
Department of CS, CA & IT Page 1/2

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University)

 (Established Under Section 3 of UGC Act 1956)

 Coimbatore-641 021

(For the candidates admitted from 2017 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

SUBJECT CODE : 17CSU302 SUBJECT : OPERATING SYSTEMS

SEMESTER : III CLASS : II B.Sc. CS-A L T P = 4 0 0

__

COURSE OBJECTIVE:

This course recognize the concepts and principles of operating systems, provide students

with the basic knowledge and skills of memory, device and Process management and

techniques and provide experience on MS Windows and LINUX environment.

COURSE OUTCOME:

A student who successfully completes this course should, at a minimum, be able to:

 Explain basic Idea about the operating system.

 Concept and techniques involved in memory, device and Process management.

 Work in MS Windows and LINUX environment.

UNIT-I

Introduction to Operating System: Basic OS Functions-Resource Abstraction-Types of

Operating Systems–Multiprogramming Systems-Batch Systems-Time Sharing Systems-

Operating Systems for Personal Computers & Workstations-Process Control & Real

Time Systems.

UNIT-II

Operating System Organization: Processor and user modes-Kernels-System Calls and

System Programs. Process Management: System view of the process and resources-

Process abstraction-Process hierarchy-Threads-Threading issues-Thread libraries-Process

Scheduling-Non pre-emptive and Preemptive scheduling algorithms-Concurrent and

processes-Critical Section-Semaphores-Methods for inter-process communication-

Deadlocks.

Department of CS, CA & IT Page 2/2

UNIT-III

Memory Management: Physical and Virtual address space-Memory Allocation

strategies –Fixed and Variable partitions-Paging-Segmentation-Virtual memory.

UNIT-IV

File and I/O Management: Directory structure-File operations-File Allocation methods-

Device management.

UNIT-V

Protection and Security: Policy mechanism-Authentication-Internal access

Authorization.

TEXTBOOKS :

1. Silberschatz, A ., Galvin, P.B. , & Gagne, G. (2008). Operating Systems Concepts,

8
th

 ed.). New Delhi: John Wiley Publications.

2. Tanenbaum, A.S. (2007).Modern Operating Systems (3
rd

 ed.). New Delhi: Pearson

Education.

3. Stallings, W. (2008). Operating Systems, Internals & Design Principles (5th ed.).

New Delhi: Prentice Hall of India.

WEB SITES

1. www.cs.columbia.edu/~nieh/teaching/e6118_s00/

2. www.clarkson.edu/~jnm/cs644

3. pages.cs.wisc.edu/~remzi/Classes/736/Fall2002/

ESE MARKS ALLOCATION

1. Section A

20 x 1 = 20

20

2. Section B

5 x 2 = 10

10

3. Section C

5 x 6 = 30

Either ‘A’ or ‘B’ choice

30

 Total 60

Lecture Plan 2017-2020

Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 1/3

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

 Coimbatore-641 021

(For the candidates admitted from 2017 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

STAFF NAME: D.MANJULA

SUBJECT NAME: OPERATING SYSTEMS SUB.CODE: 17CSU302

SEMESTER: III CLASS : II B.SC CS -A

LECTURE PLAN

S.No.

Lecture

Duration

(Period)

Topics to be Covered Support Materials

Unit – I

1. 1 Basic OS Functions W1

2. 1 Resource Abstraction T1: 4-6, W1

3. 1 Types of Operating Systems T2: 32-35, W1

4. 1 Multiprogramming Systems, Batch Systems T1: 19.T2:32, W1

5. 1 Operating Systems for Personal Computers & Workstations
T1: 20, W1, W2

6. 1 Process Control
T2: 34, W1

7. 1 Real Time Systems W1

8. 1 Recapitulation and discussion of important questions

Total No. of Hours Planned for Unit-I 8

Unit – II

1. 1
Operating System Organization: Processor and user

modes
T1: 20-23;55-58,

2. 1 Kernels T1: 66-68

3. 1 System Calls T2: 47-50

4. 1 System Programs T2: 50-59

5. 1
Process Management: System view of the process and

resources
T1: 101-110;

6. 1 Process abstraction , Process hierarchy T2: 81-93

7. Threads, Threading issues- Thread libraries
T1: 104 – 105, T2: 93-

115

Lecture Plan 2017-2020

Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 2/3

8.
Process Scheduling-Non pre-emptive and Preemptive

scheduling algorithms
T1: 105 – 110

9. Concurrent and processes, Critical Section
T1: 227 – 229, T2:

117,866

10. Semaphores, Methods for inter-process communication
T1: 234 – 239, T1: 897

– 898, T2: 115 - 126

11. Deadlocks, Deadlock Avoidance and Prevention
T1: 283 – 305, T2: 435

– 459

12. Recapitulation and discussion of important questions

Total No. of Hours Planned for Unit-II 12

Unit – III

1. 1 Memory Management: Introduction T1: 315 - 320

2. 1 Physical address space T2: 173 - 185

3. 1 Virtual address space
T1: 359 – 360, T2: 173 -

185

4. 1 Memory Allocation Strategies (First Fit, Best Fit, Worst Fit) W3

5. 1 Fixed partitions, Variable partitions T1: 325; W3

6. 1 Paging, Segmentation
T2: 186 – 195, 214,225,

T1:328 - 345

7. 1 Virtual memory
T1: 357 – 393, T2: 186

- 196

8. 1 Recapitulation and Discussion of important questions

Total No. of Hours Planned for Unit-III 8

Unit - IV

1. 1 File and I/O Management T1: 64-67, 421; W4, W5

2. 1 Directory structure T2: 266 - 270

3. 1 File operations
T1: 423-425, T2: 262-

263

4. 1 File Allocation methods
T1: 471 – 479

5. 1 Device management – Device type, storage access
T1:64, W6

 6.

1

Device management - Device drivers , detection, IPC, Driver

interface
W7

7 1 Recapitulation and Discussion of important questions

Total No. of Hours Planned for Unit-IV 7

Unit - V

1. 1
Protection and Security-Introduction T1:629

2. 1 Policy Mechanism T2:620-623

Lecture Plan 2017-2020

Batch

Prepared By Manjula.D, Department of CS, CA & IT, KAHE Page 3/3

3. 1 Authentication T2:639-662

4. 1 (i)Password authentication T2:640

5. 1 (ii)biometric authentication T2:651-654

6. 1 (iii)Encrypted and one time passwords T1:661-662

7. 1 Program threats T1:663-664

8. 1 Internal Access authorization W1

9. 1 Access Control W1

10. 1 Recapitulation and Discussion of important questions

11. 1 Recapitulation and Discussion of ESE question papers

12. 1 Recapitulation and Discussion of ESE question papers

13. 1 Recapitulation and Discussion of ESE question papers

 Total No. of Hours Planned for Unit-V 13

 Total No. of periods 48

TEXT BOOKS:

T1: A .Silberschatz, , P.B Galvin, G.Gagne (2008). Operating Systems Concepts, 8th ed.).

John Wiley Publications.

T2: A.S. Tanenbaum, (2007). Modern Operating Systems (3rd ed.). New Delhi: Pearson

Education

WEBSITES:

W1: https://www.tutorialspoint.com/operating_system/os_overview.html

W2: https://en.wikipedia.org/wiki/Workstation

W3: u.cs.biu.ac.il/~ariel/download/os381/ppts/os7-2_rea.ppt

W4:https://www.slideshare.net/DamianGordon1/operating-systems-file
management

W5: http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%205_LN.pdf
W6: https://www.slideshare.net/honeyturqueza/ch-7-device-management

W7: http://wiki.osdev.org/Device_Management

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 1/25

UNIT I

Syllabus

Introduction to Operating System: Basic OS Functions-Resource Abstraction-Types of

Operating Systems–Multiprogramming Systems-Batch Systems-Time Sharing Systems-

Operating Systems for Personal Computers & Workstations-Process Control & Real Time

Systems.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 2/25

UNIT I

Introduction to Operating System

An operating system is a program that manages the computer hardware. An Operating System
(OS) is an interface between computer user and computer hardware. An operating system is
software which performs all the basic tasks like file management, memory management, process
management, handling input and output, and controlling peripheral devices such as disk drives
and printers.

Some popular Operating Systems include Linux, Windows, Macintosh, etc.

Definition

An operating system is a program that acts as an interface between the user and the computer
hardware and controls the execution of all kinds of programs.

Figure 1.1 Abstract views of the components of a computer system

A computer system can be divided roughly into four components: the hardware, the operating
system, the application programs, and the users (Figure 1.1).

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 3/25

The hardware—the central processing unit (CPU), the memory, and the input/output (I/O)
devices—provides the basic computing resources for the system. The application programs—
such as word processors, spreadsheets, compilers, and Web browsers—define the ways in which
these resources are used to solve users’ computing problems. The operating system controls the
hardware and coordinates its use among the various application programs for the various users.
We can also view a computer system as consisting of hardware, software, and data. The
operating system provides the means for proper use of these resources in the operation of the
computer system.

Basic OS Functions

Following are some of important functions of an operating System.

 Memory Management
 Processor Management
 Device Management
 File Management
 Security
 Control over system performance
 Job accounting
 Error detecting aids
 Coordination between other software and users

Memory Management

Memory management refers to management of Primary Memory or Main Memory. Main
memory is a large array of words or bytes where each word or byte has its own address.

Main memory provides a fast storage that can be accessed directly by the CPU. For a program
to be executed, it must in the main memory. An Operating System does the following activities
for memory management −

 Keeps tracks of primary memory, i.e., what part of it are in use by whom, what part are
not in use.

 In multiprogramming, the OS decides which process will get memory when and how
much.

 Allocates the memory when a process requests it to do so.
 De-allocates the memory when a process no longer needs it or has been terminated.

Processor Management

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 4/25

In multiprogramming environment, the OS decides which process gets the processor when and
for how much time. This function is called process scheduling. An Operating System does the
following activities for processor management −

 Keeps tracks of processor and status of process. The program responsible for this task is
known as traffic controller.

 Allocates the processor (CPU) to a process.
 De-allocates processor when a process is no longer required.

Device Management

An Operating System manages device communication via their respective drivers. It does the
following activities for device management −

 Keeps tracks of all devices. Program responsible for this task is known as the I/O
controller.

 Decides which process gets the device when and for how much time.
 Allocates the device in the efficient way.
 De-allocates devices.

File Management

A file system is normally organized into directories for easy navigation and usage. These
directories may contain files and other directions.

An Operating System does the following activities for file management −

 Keeps track of information, location, uses, status etc. The collective facilities are often
known as file system.

 Decides who gets the resources.
 Allocates the resources.
 De-allocates the resources.

Following are some of the important activities that an Operating System performs −

 Security − By means of password and similar other techniques, it prevents unauthorized
access to programs and data.

 Control over system performance − Recording delays between request for a service
and response from the system.

 Job accounting − Keeping track of time and resources used by various jobs and users.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 5/25

 Error detecting aids − Production of dumps, traces, error messages, and other
debugging and error detecting aids.

 Coordination between other software’s and users − Coordination and assignment of
compilers, interpreters, assemblers and other software to the various users of the
computer systems.

Resource Abstraction

The concept of an operating system as primarily providing abstractions to application
programs is a top-down view. An alternative, bottom-up, view holds that the operating system is
there to manage all the pieces of a complex system. Modern computers consist of processors,
memories, timers, disks, mice, network interfaces, printers, and a wide variety of other devices.
In the alternative view, the job of the operating system is to provide for an orderly and controlled
allocation of the processors, memories, and input/output devices among the various programs
competing for them.

When a computer (or network) has multiple users, the need for managing and protecting
the memory, input/output devices, and other resources is even greater, since the users might
otherwise interface with one another. In addition, users often need to share not only hardware,
but information (files, databases, etc.) as well. In short, this view of the operating system holds
that its primary task is to keep track of which programs are using which resources, to grant
resource requests, to account for usage, and to mediate conflicting requests from different
programs and users.

Resource management includes multiplexing (sharing) resources in two different ways:

1. Time Multiplexing
2. Space Multiplexing

1. Time Multiplexing

When the resource is time multiplexed, different programs or users take turns using it. First one
of them gets to use the resource, then another, and so on.

For example:

With only one CPU and multiple programs that want to run on it, operating system first allocates
the CPU to one long enough, another one gets to use the CPU, then another and ten eventually
the first one again.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 6/25

Determining how the resource is time multiplexed – who goes next and for how long – is the task
of the operating system.

2. Space Multiplexing

In space multiplexing, instead of the customers taking turns, each one gets part of the resource.

For example:

Main memory is normally divided up among several running programs, so each one can be
resident at the same time (for example, in order to take turns using the CPU). Assuming there is
enough memory to hold multiple programs, it is more efficient to hold several programs in
memory at once rather than give one of them all of it, especially if it only needs a small fraction
of the total. Of course, this raises issues of fairness, protection, and so on, and it is up to the
operating system to solve them.

Figure 1.2 The Operating System as Resource Manager

Figure 1.2 suggests the main resources that are managed by the OS. A portion

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 7/25

Types of Operating Systems

Mainframe Operating Systems

At the high end are the operating systems for mainframes, those room-sized computers
still found in major corporate data centers. These computers differ from personal computers in
terms of their I/O capacity. A mainframe with 1000 disks and millions of gigabytes of data is not
unusual; a personal computer with these specifications would be the envy of its friends.

Mainframes are also making something of a comeback as high-end Web servers, servers
for large-scale electronic commerce sites, and servers for business-to-business transactions. The
operating systems for mainframes are heavily oriented toward processing many jobs at once,
most of which need prodigious amounts of I/O.

They typically offer three kinds of services: batch, transaction processing, and timesharing.

Batch systems

A batch system is one that processes routine jobs without any interactive user present. Claims
processing in an insurance company or sales reporting for a chain of stores is typically done in
batch mode.

Transaction-processing systems

Transaction-processing systems handle large numbers of small requests, for example, check
processing at a bank or airline reservations. Each unit of work is small, but the system must
handle hundreds or thousands per second.

Timesharing systems

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 8/25

Timesharing systems allow multiple remote users to run jobs on the computer at once, such as
querying a big database. These functions are closely related; mainframe operating systems often
perform all of them. An example mainframe operating system is OS/390, a descendant of
OS/360. However, mainframe operating systems are gradually being replaced by UNIX variants
such as Linux.

Server Operating Systems

One level down are the server operating systems. They run on servers, which are either very
large personal computers, workstations, or even mainframes. They serve multiple users at once
over a network and allow the users to share hardware and software resources. Servers can
provide print service, file service, or Web service. Internet providers run many server machines
to support their customers and Websites use servers to store the Web pages and handle the
incoming requests. Typical server operating systems are Solaris, FreeBSD, Linux and Windows
Server 201x.

Multiprocessor Operating Systems

An increasingly common way to get major-league computing power is to connect multiple CPUs
into a single system. Depending on precisely how they are connected and what is shared, these
systems are called parallel computers, multicomputers, or multiprocessors. They need special
operating systems, but often these are variations on the server operating systems, with special
features for communication, connectivity, and consistency.

With the recent advent of multicore chips for personal computers, even conventional
desktop and notebook operating systems are starting to deal with at least small-scale
multiprocessors and the number of cores is likely to grow over time. Luckily, quite a bit is
known about multiprocessor operating systems from years of previous research, so using this
knowledge in multicore systems should not be hard. The hard part will be having applications
make use of all this computing power. Many popular operating systems, including Windows and
Linux, run on multiprocessors.

Personal Computer Operating Systems

The next category is the personal computer operating system. Modern ones all support
multiprogramming, often with dozens of programs started up at boot time. Their job is to provide
good support to a single user. They are widely used for word processing, spreadsheets, games,
and Internet access. Common examples are Linux, FreeBSD, Windows 7, Windows 8, and
Apple’s OS X. Personal computer operating systems are so widely known that probably little
introduction is needed. In fact, many people are not even aware that other kinds exist.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 9/25

Handheld Computer Operating Systems

Continuing on down to smaller and smaller systems, we come to tablets, smartphones and other
handheld computers. A handheld computer, originally known as a PDA (Personal Digital
Assistant), is a small computer that can be held in your hand during operation. Smartphones and
tablets are the best-known examples. As we have already seen, this market is currently
dominated by Google’s Android and Apple’s iOS, but they hav e many competitors. Most of
these devices boast multicore CPUs, GPS, cameras and other sensors, copious amounts of
memory, and sophisticated operating systems. Moreover, all of them have more third-party
applications (‘‘apps’’) than you can shake a (USB) stick at.

Embedded Operating Systems

Embedded systems run on the computers that control devices that are not generally thought of as
computers and which do not accept user-installed software. Typical examples are microwave
ovens, TV sets, cars, DVD recorders, traditional phones, and MP3 players. The main property
which distinguishes embedded systems from handhelds is the certainty that no untrusted software
will ever run on it. You cannot download new applications to your microwave oven—all the
software is in ROM. This means that there is no need for protection between applications,
leading to design simplification. Systems such as Embedded Linux, QNX and VxWorks are
popular in this domain.

Sensor-Node Operating Systems

Networks of tiny sensor nodes are being deployed for numerous purposes. These nodes are tiny
computers that communicate with each other and with a base station using wireless
communication. Sensor networks are used to protect the perimeters of buildings, guard national
borders, detect fires in forests, measure temperature and precipitation for weather forecasting,
glean information about enemy movements on battlefields, and much more.

The sensors are small battery-powered computers with built-in radios. They have limited
power and must work for long periods of time unattended outdoors, frequently in
environmentally harsh conditions. The network must be robust enough to tolerate failures of
individual nodes, which happen with ever-increasing frequency as the batteries begin to run
down.

Each sensor node is a real computer, with a CPU, RAM, ROM, and one or more
environmental sensors. It runs a small, but real operating system, usually one that is event driven,
responding to external events or making measurements periodically based on an internal clock.
The operating system has to be small and simple because the nodes have little RAM and battery
lifetime is a major issue. Also, as with embedded systems, all the programs are loaded in

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 10/25

advance; users do not suddenly start programs they downloaded from the Internet, which makes
the design much simpler. TinyOS is a well-known operating system for a sensor node.

Real-Time Operating Systems

Another type of operating system is the real-time system. These systems are characterized by
having time as a key parameter. For example, in industrial process- control systems, real-time
computers have to collect data about the production process and use it to control machines in the
factory. Often there are hard deadlines that must be met. For example, if a car is moving down an
assembly line, certain actions must take place at certain instants of time. If, for example, a
welding robot welds too early or too late, the car will be ruined. If the action absolutely must
occur at a certain moment (or within a certain range), we have a hard real-time system. Many
of these are found in industrial process control, avionics, military, and similar application areas.
These systems must provide absolute guarantees that a certain action will occur by a certain time.

A soft real-time system, is one where missing an occasional deadline, while not
desirable, is acceptable and does not cause any permanent damage. Digital audio or multimedia
systems fall in this category. Smartphones are also soft realtime systems.

Since meeting deadlines is crucial in (hard) real-time systems, sometimes the operating system is
simply a library linked in with the application programs, with ev erything tightly coupled and no
protection between parts of the system.

An example of this type of real-time system is eCos. The categories of handhelds,
embedded systems, and real-time systems overlap considerably. Nearly all of them have at least
some soft real-time aspects. The embedded and real-time systems run only software put in by the
system designers; users cannot add their own software, which makes protection easier. The
handhelds and embedded systems are intended for consumers, whereas real-time systems are
more for industrial usage. Nevertheless, they hav e a certain amount in common.

Smart Card Operating Systems

The smallest operating systems run on smart cards, which are credit-card-sized devices
containing a CPU chip. They hav e very severe processing power and memory constraints. Some
are powered by contacts in the reader into which they are inserted, but contactless smart cards

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 11/25

are inductively powered, which greatly limits what they can do. Some of them can handle only a
single function, such as electronic payments, but others can handle multiple functions. Often
these are proprietary systems.

Some smart cards are Java oriented. This means that the ROM on the smart card holds an
interpreter for the Java Virtual Machine (JVM). Java applets (small programs) are downloaded to
the card and are interpreted by the JVM interpreter. Some of these cards can handle multiple
Java applets at the same time, leading to multiprogramming and the need to schedule them.
Resource management and protection also become an issue when two or more applets are present
at the same time. These issues must be handled by the (usually extremely primitive) operating
system present on the card.

Multiprogramming Systems

To overcome the problem of underutilization of CPU and main memory, the multiprogramming
was introduced. The multiprogramming is interleaved execution of multiple jobs by the
same computer.

In multiprogramming system, when one program is waiting for I/O transfer; there is another
program ready to utilize the CPU. So it is possible for several jobs to share the time of the CPU.
But it is important to note that multiprogramming is not defined to be the execution of jobs at the
same instance of time. Rather it does mean that there are a number of jobs available to the CPU
(placed in main memory) and a portion of one is executed then a segment of another and so on.

Figure 1.3. A simple process of multiprogramming.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 12/25

as shown in fig, at the particular situation, job' A' is not utilizing the CPU time because it is busy
in I/ 0 operations. Hence the CPU becomes busy to execute the job 'B'. Another job C is waiting
for the CPU for getting its execution time. So in this state the CPU will never be idle and utilizes
maximum of its time.

A program in execution is called a "Process", "Job" or a "Task". The concurrent execution of
programs improves the utilization of system resources and enhances the system throughput as
compared to batch and serial processing. In this system, when a process requests some I/O to
allocate; meanwhile the CPU time is assigned to another ready process. So, here when a process
is switched to an I/O operation, the CPU is not set idle.

Multiprogramming is a common approach to resource management. The essential components of
a single-user operating system include a command processor, an input/ output control system, a
file system, and a transient area. A multiprogramming operating system builds on this base,
subdividing the transient area to hold several independent programs and adding resource
management routines to the operating system's basic functions.

Figure 1.4 Memory layout for a multiprogramming system.

Multiprogramming increases CPUutilization by organizing jobs (code and data) so that the
CPU always has one to execute. The idea is as follows: The operating system keeps several jobs

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 13/25

in memory simultaneously (Figure 1.9). Since, in general, main memory is too small to
accommodate all jobs, the jobs are kept initially on the disk in the job pool. This pool consists of
all processes residing on disk awaiting allocation of main memory. The set of jobs in memory
can be a subset of the jobs kept in the job pool. The operating system picks and begins to execute
one of the jobs in memory. Eventually, the job may have to wait for some task, such as an I/O
operation, to complete. In a non-multiprogrammed system, the CPU would sit idle. In a
multiprogrammed system, the operating system simply switches to, and executes, another job.

When that job needs to wait, the CPU switches to another job, and so on. Eventually, the
first job finishes waiting and gets the CPU back. As long as at least one job needs to execute, the
CPU is never idle. This idea is common in other life situations. A lawyer does not work for only
one client at a time, for example. While one case is waiting to go to trial or have papers typed,
the lawyer can work on another case. If he has enough clients, the lawyer will never be idle for
lack of work. (Idle lawyers tend to become politicians, so there is a certain social value in
keeping lawyers busy.)

Multiprogrammed systems provide an environment in which the various system resources (for
example, CPU, memory, and peripheral devices) are utilized effectively, but they do not provide
for user interaction with the computer system.

Time sharing (or multitasking) is a logical extension of multiprogramming. In time-sharing
systems, the CPU executes multiple jobs by switching among them, but the switches occur so
frequently that the users can interact with each program while it is running.

Time sharing requires an interactive computer system, which provides direct communication
between the user and the system. The user gives instructions to the operating system or to a
program directly, using a input device such as a keyboard, mouse, touch pad, or touch screen,
and waits for immediate results on an output device. Accordingly, the response time should be
short—typically less than one second.

A time-shared operating system allows many users to share the computer simultaneously. Since
each action or command in a time-shared system tends to be short, only a little CPU time is
needed for each user. As the system switches rapidly from one user to the next, each user is
given the impression that the entire computer system is dedicated to his use, even though it is
being shared among many users.

A time-shared operating system uses CPU scheduling and multiprogramming to provide each
user with a small portion of a time-shared computer. Each user has at least one separate program
in memory. A program loaded into memory and executing is called a process. When a process
executes, it typically executes for only a short time before it either finishes or needs to perform

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 14/25

I/O. I/O may be interactive; that is, output goes to a display for the user, and input comes from a
user keyboard, mouse, or other device.

Since interactive I/O typically runs at “people speeds,” it may take a long time to complete.
Input, for example, may be bounded by the user’s typing speed; seven characters per second is
fast for people but incredibly slow for computers. Rather than let the CPU sit idle as this
interactive input takes place, the operating system will rapidly switch the CPU to the program of
some other user. Time sharing and multiprogramming require that several jobs be kept
simultaneously in memory. If several jobs are ready to be brought into memory, and if there is
not enough room for all of them, then the system must choose among them. Making this decision
involves job scheduling. When the operating system selects a job from the job pool, it loads that
job into memory for execution. Having several programs in memory at the same time requires
some form of memory management. In addition, if several jobs are ready to run at the same time,
the system must choose which job will run first. Making this decision is CPU scheduling.

Finally, running multiple jobs concurrently requires that their ability to affect one another be
limited in all phases of the operating system, including process scheduling, disk storage, and
memory management. We discuss these considerations throughout the text. In a time-sharing
system, the operating system must ensure reasonable response time. This goal is sometimes
accomplished through swapping, whereby processes are swapped in and out of main memory to
the disk. A more common method for ensuring reasonable response time is virtual memory, a
technique that allows the execution of a process that is not completely in memory. The main
advantage of the virtual-memory scheme is that it enables users to run programs that are larger
than actual physical memory. Further, it abstracts main memory into a large, uniform array of
storage, separating logical memory as viewed by the user from physical memory.

This arrangement frees programmers from concern over memory-storage limitations.

A time-sharing system must also provide a file system. The file system resides on a collection of
disks; hence, disk management must be provided. In addition, a time-sharing system provides a
mechanism for protecting resources from inappropriate use.

To ensure orderly execution, the system must provide mechanisms for job synchronization and
communication, and it may ensure that jobs do not get stuck in a deadlock, forever waiting for
one another.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 15/25

Batch Processing Systems

To avoid the problems of early systems the batch processing systems were introduced.
The problem of early systems was more setup time. So the problem of more set up time was
reduced by processing the jobs in batches, known as batch processing system.In this approach
similar jobs were submitted to the CPU for processing and were run together.

The main function of a batch processing system is to automatically keep executing the
jobs in a batch. This is the important task of a batch processing system i.e. performed by the
'Batch Monitor' resided in the low end of main memory.

This technique was possible due to the invention of hard-disk drives and card readers.
Now the jobs could be stored on the disk to create the pool of jobs for its execution as a batch.
First the pooled jobs are read and executed by the batch monitor, and then these jobs are
grouped; placing the identical jobs (jobs with the similar needs) in the same batch, So, in the
batch processing system, the batched jobs were executed automatically one after another saving
its time by performing the activities (like loading of compiler) only for once. It resulted in
improved system utilization due to reduced turn around time.

In the early job processing systems, the jobs were placed in a job queue and the memory
allocate or managed the primary memory space, when space was available in the main memory,
a job was selected from the job queue and was loaded into memory.

Once the job loaded into primary memory, it competes for the processor. When the
processor became available, the processor scheduler selects job that was loaded in the memory
and execute it.

In batch strategy is implemented to provide a batch file processing. So in this approach
files of the similar batch are processed to speed up the task.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 16/25

Traditional Job Processing Batch File Processing

 In batch processing the user were supposed to prepare a program as a deck of punched cards.
The header cards in the deck were the "job control" cards which would indicate that which
compiler was to be used (like FORTRAN, COBOL compilers etc). The deck of cards would be
handed in to an operator who would collect such jobs from various users. Then the submitted
jobs were 'grouped as FORTRAN jobs, COBOL jobs etc.

In addition, these jobs were classified as 'long jobs' that required more processing time or
short jobs which required a short processing time. Each set of jobs was considered as a batch and
the processing would be done for a batch. For instance, there maybe a batch of short FORTRAN
jobs. The output for each job would be separated and turned over to users in a collection area. So
in this approach, files of the similar batch were processed to speed up the task.

In this environment there was no interactivity and the users had no direct control. In this
system, only one job could engage the processor at a time and if there was any input/ output
operation the processor had to sit idle till the completion of I/O job. So it resulted to the
underutilization of CPU time.

In batch processing system, earlier; the jobs were scheduled in the order of their arrival i.e. First
Come First Served (FCFS).Even though this scheduling method was easy and simple to
implement but unfair for the situations where long jobs are queued ahead of the short jobs. To
overcome this problem, another scheduling method named as 'Shortest Job First' was used. As

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 17/25

memory management is concerned, the main memory was partitioned into two fixed partitions.
The lower end of this partition was assigned to the resident portion of the OS i.e. named as Batch
Monitor. Whereas, the other partition (higher end) was assigned to the user programs.

Though, it was an improved technique in reducing the system setup time but still there were
some limitations with this technique like as under-utilization of CPU time, non-interactivity of
user with the running jobs etc. In batch processing system, the jobs of a batch were executed one
after another. But while these jobs were performing I/O operations; meantime the CPU was
sitting idle resulting to low degree of resource utilization.

Time Sharing System

A time sharing system allows many users to share the computer resources simultaneously. In
other words, time sharing refers to the allocation of computer resources in time slots to several
programs simultaneously. For example a mainframe computer that has many users logged on to
it. Each user uses the resources of the mainframe -i.e. memory, CPU etc. The users feel that they
are exclusive user of the CPU, even though this is not possible with one CPU i.e. shared among
different users.

The time sharing systems were developed to provide an interactive use of the computer system.
A time shared system uses CPU scheduling and multiprogramming to provide each user with a
small portion of a time-shared computer. It allows many users to share the computer resources
simultaneously. As the system switches rapidly from one user to the other, a short time slot is
given to each user for their executions.

The time sharing system provides the direct access to a large number of users where CPU time is
divided among all the users on scheduled basis. The OS allocates a set of time to each user.
When this time is expired, it passes control to the next user on the system. The time allowed is
extremely small and the users are given the impression that they each have their own CPU and
they are the sole owner of the CPU. This short period of time during that a user gets attention of
the CPU; is known as a time slice or a quantum. The concept of time sharing system is shown in
figure.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 18/25

Figure 1.5 Time Sharing System Active State of User

In above figure the user 5 is active but user 1, user 2, user 3, and user 4 are in waiting state
whereas user 6 is in ready status.

As soon as the time slice of user 5 is completed, the control moves on to the next ready user i.e.
user 6. In this state user 2, user 3, user 4, and user 5 are in waiting state and user 1 is in ready
state. The process continues in the same way and so on.

The time-shared systems are more complex than the multi-programming systems. In time-shared
systems multiple processes are managed simultaneously which requires an adequate management
of main memory so that the processes can be swapped in or swapped out within a short time.

Note: The term 'Time Sharing' is no longer commonly used, it has been replaced by
'Multitasking System'.

Time-sharing operating systems

Time-sharing is a technique which enables many people, located at various terminals, to use a
particular computer system at the same time. Time-sharing or multitasking is a logical extension
of multiprogramming. Processor's time which is shared among multiple users simultaneously is
termed as time-sharing.

The main difference between Multiprogrammed Batch Systems and Time-Sharing Systems is
that in case of Multiprogrammed batch systems, the objective is to maximize processor use,
whereas in Time-Sharing Systems, the objective is to minimize response time.

Multiple jobs are executed by the CPU by switching between them, but the switches occur so
frequently. Thus, the user can receive an immediate response. For example, in a transaction
processing, the processor executes each user program in a short burst or quantum of

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 19/25

computation. That is, if n users are present, then each user can get a time quantum. When the
user submits the command, the response time is in few seconds at most.

The operating system uses CPU scheduling and multiprogramming to provide each user with a
small portion of a time. Computer systems that were designed primarily as batch systems have
been modified to time-sharing systems.

Advantages of Timesharing operating systems are as follows −

 Provides the advantage of quick response.
 Avoids duplication of software.
 Reduces CPU idle time.

Disadvantages of Time-sharing operating systems are as follows −

 Problem of reliability.
 Question of security and integrity of user programs and data.
 Problem of data communication.

Operating Systems for Personal Computers

The next category is the personal computer operating system. Modern ones all support
multiprogramming, often with dozens of programs started up at boot time. Their job is to provide
good support to a single user. They are widely used for word processing, spreadsheets, and
Internet access. Common examples are Linux, FreeBSD, Windows Vista, and the Macintosh
operating system. Personal computer operating systems are so widely known that probably little
introduction is needed. In fact, many people are not even aware that other kinds exist.

A local computer manufacturer, Seattle Computer Products, developed an operating
system, DOS (Disk Operating System). The revised system was renamed MS-DOS (MicroSoft
Disk Operating System) and quickly came to dominate the IBM PC market.

Although the initial version of MS-DOS was fairly primitive, subsequent versions
included more advanced features, including many taken from UNIX. (Microsoft was well aware
of UNIX, even selling a microcomputer version of it called XENIX during the company's early
years.) CP/M, MS-DOS, and other operating systems for early microcomputers were all based on
users typing in commands from the keyboard.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 20/25

Engelbart invented the GUI Graphical User Interface, complete with windows, icons,
menus, and mouse. These ideas were adopted by researchers at Xerox PARC and incorporated
into machines they built.

In the creative world of graphic design, professional digital photography, and
professional digital video production, Macintoshes are very widely used and their users are very
enthusiastic about them. When Microsoft decided to build a successor to MS-DOS, it was
strongly influenced by the success of the Macintosh. It produced a GUI-based system called
Windows, which originally ran on top of MS-DOS (i.e., it was more like a shell than a true
operating system).

For about 10 years, from 1985 to 1995, Windows was just a graphical environment on
top of MS-DOS. However, starting in 1995 a freestanding version of Windows, Windows 95,
was released that incorporated many operating system features into it, using the underlying MS-
DOS system only for booting and running old MS-DOS programs. In 1998, a slightly modified
version of this system, called Windows 98 was released.

Nevertheless, both Windows 95 and Windows 98 still contained a large amount of 16-bit
Intel assembly language. Another Microsoft operating system is Windows NT (NT stands for
New Technology), which is compatible with Windows 95 at a certain level, but a complete
rewrite from scratch internally. It is a full 32-bit system. The lead designer for Windows NT was
David Cutler, who was also one of the designers of the VAX VMS operating system, so some
ideas from VMS are present in NT.

In fact, so many ideas from VMS were present in it that the owner of VMS, DEC, sued
Microsoft. The case was settled out of court for an amount of money requiring many digits to
express. Microsoft expected that the first version of NT would kill off MS-DOS and all other
versions of Windows since it was a vastly superior system, but it fizzled. Only with Windows
NT 4.0 did it finally catch on in a big way, especially on corporate networks. Version 5 of
Windows NT was renamed Windows 2000 in early 1999. It was intended to be the successor to
both Windows 98 and Windows NT 4.0. That did not quite work out either, so Microsoft came
out with yet another version of Windows 98 called Windows Me (Millennium edition).

In 2001, a slightly upgraded version of Windows 2000, called Windows XP was released. That
version had a much longer run (6 years), basically replacing all previous versions of Windows.
Then in January 2007, Microsoft finally released the successor to Windows XP, called Vista. It
came with a new graphical interface, Aero, and many new or upgraded user programs. Microsoft
hopes it will replace Windows XP completely, but this process could take the better part of a
decade.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 21/25

The other major contender in the personal computer world is UNIX (and its various derivatives).
UNIX is strongest on network and enterprise servers, but is also increasingly present on desktop
computers, especially in rapidly developing countries such as India and China. On Pentium-
based computers, Linux is becoming a popular alternative to Windows for students and
increasingly many corporate users. As an aside, throughout this book we will use the term
"Pentium" to mean the Pentium I, II, III, and 4 as well as its successors such as Core 2 Duo.

The term x86 is also sometimes used to indicate the entire range of Intel CPUs going back to the
8086, whereas "Pentium" will be used to mean all CPUs from the Pentium I onwards.
Admittedly, this term is not perfect, but no better one is available. One has to wonder which
marketing genius at Intel threw out a brand name (Pentium) that half the world knew well and
respected and replaced it with terms like "Core 2 duo" which very few people understand—
quick, what does the "2" mean and what does the "duo" mean? Maybe "Pentium 5" (or "Pentium
5 dual core," etc.) was just too hard to remember.

FreeBSD is also a popular UNIX derivative, originating from the BSD project at Berkeley. AH
modern Macintosh computers run a modified version of FreeBSD. UNIX is also standard on
workstations powered by high-performance RISC chips, such as those sold by Hewlett- Packard
and Sun Microsystems. Many UNIX users, especially experienced programmers, prefer a
commandbased interface to a GUI, so nearly all UNIX systems support a windowing system
called the X Window System (also known as Xll) produced at M.I.T.

This system handles the basic window management, allowing users to create, delete, move, and
resize windows using a mouse. Often a complete GUI, such as Gnome or KDE is available to run
on top of Xll giving UNIX a look and feel something like the Macintosh or Microsoft Windows,
for those UNIX users who want such a thing. An interesting development that began taking place
during the mid-1980s is the growth of networks of personal computers running network
operating systems and distributed operating systems (Tanenbaum and Van Steen, 2007). In a
network operating system, the users are aware of the existence of multiple computers and can log
in to remote machines and copy files from one machine to another. Each machine runs its own
local operating system and has its own local user (or users).

Personal computer (PC) operating systems support complex games, business applications, and
everything in between. The PC was, of course, envisioned as a personal computer—an
inherently single-user machine. Modern Windows, however, supports the sharing of a PC among
multiple users. Each user that is logged on using the GUI has a session created to represent the
GUI environment he will be using and to contain all the processes created to run his applications.
Windows allows multiple sessions to exist at the same time on a single machine. However,
Windows only supports a single console, consisting of all the monitors, keyboards, and mice
connected to the PC. Only one session can be connected to the console at a time. From the logon
screen displayed on the console, users can create new sessions or attach to an existing session

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 22/25

that was previously created. This allows multiple users to share a single PC without having to log
off and on between users. Microsoft calls this use of sessions fast user switching.

Workstation Operating System

Workstation operating system are for example, Windows XP, Windows Vista, Windows 7,
Windows 8 and similar. Workstation operating system is primarily designed to run applications.
Those applications can be text processor, a spreadsheet application, presentation software, video
or audio editors, games, etc. Workstation operating systems can run services, but are not really
designed for it. By services we mean on services that other users can use on the network. For
example, services like DHCP, DNS, FTP, Mail, Web servers, etc. Well, some of that services
actually are available on workstation operating systems, but they are not optimized for them. As
we know, almost all workstation operating systems support multiple user accounts on the same
workstation, but the thing is they are not designed to be concurrent multi-user. Workstation OS
are not designed to support multiple users at the same time, meaning they don’t do it very well.
Most Windows operating systems have a limit of 10 concurrent users at the time. This limit is
applied when we share something on our workstation computer, for example printer or some
folder. Only 10 users maximum will be able to utilize our shared resources on the workstation
OS. Also, workstation operating systems are designed to run on lower end hardware. That’s why
the workstation operating system can run on many different and cheap computers. Examples of
workstation operating systems include Windows 95, Windows 98, Windows ME, Windows
2000, Windows XP, Windows Vista, Windows 7, Windows 8, and various Macintosh operating
systems as well

Process control & Real Time System

Process control is an engineering discipline that deals with architectures, mechanisms and
algorithms for maintaining the output of a specific process within a desired range. For instance,
the temperature of a chemical reactor may be controlled to maintain a consistent product output.

Process control is extensively used in industry and enables mass production of consistent
products from continuously operated processes such as oil refining, paper manufacturing,
chemicals, power plants and many others. Process control enables automation, by which a small
staff of operating personnel can operate a complex process from a central control room.

 Embedded systems almost always run real-time operating systems. A real-time system is used
when rigid time requirements have been placed on the operation of a processor or the flow of
data; thus, it is often used as a control device in a dedicated application. Sensors bring data to the
computer. The computer must analyze the data and possibly adjust controls to modify the sensor

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 23/25

inputs. Systems that control scientific experiments, medical imaging systems, industrial control
systems, and certain display systems are realtime systems. Some automobile-engine fuel-
injection systems, home-appliance controllers, and weapon systems are also real-time systems.

A real-time system has well-defined, fixed time constraints. Processing must be done
within the defined constraints, or the system will fail. For instance, it would not do for a robot
arm to be instructed to halt after it had smashed into the car it was building.

A real-time system functions correctly only if it returns the correct result within its time
constraints. Contrast this system with a time-sharing system, where it is desirable (but not
mandatory) to respond quickly, or a batch system, which may have no time constraints at all.

Real Time operating System

A real-time system is defined as a data processing system in which the time interval required to
process and respond to inputs is so small that it controls the environment. The time taken by the
system to respond to an input and display of required updated information is termed as
the response time. So in this method, the response time is very less as compared to online
processing.

Real-time systems are used when there are rigid time requirements on the operation of a
processor or the flow of data and real-time systems can be used as a control device in a
dedicated application. A real-time operating system must have well-defined, fixed time
constraints, otherwise the system will fail. For example, Scientific experiments, medical
imaging systems, industrial control systems, weapon systems, robots, air traffic control systems,
etc.

There are two types of real-time operating systems.

Hard real-time systems

Hard real-time systems guarantee that critical tasks complete on time. In hard real-time systems,
secondary storage is limited or missing and the data is stored in ROM. In these systems, virtual
memory is almost never found.

Soft real-time systems

Soft real-time systems are less restrictive. A critical real-time task gets priority over other tasks
and retains the priority until it completes. Soft real-time systems have limited utility than hard

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 24/25

real-time systems. For example, multimedia, virtual reality, Advanced Scientific Projects like
undersea exploration and planetary rovers, etc.

A real-time system is any information processing system which has to respond to externally
generated input stimuli within a finite and specified period – the correctness depends not only on
the logical result but also the time it was delivered – failure to respond is as bad as the wrong
response!

A system is called a real-time system, when we need quantitative expression of time (i.e. real-
time) to describe the behavior of the system.

Applications of Real-Time Systems Real-time systems have of late, found applications in wide
ranging areas. In the following, we list some of the prominent areas of application of real-time
systems and in each identified case, we discuss a few example applications in some detail. As we
can imagine, the list would become very vast if we try to exhaustively list all areas of
applications of realtime systems.

UNIT I

POSSIBLE QUESTIONS

(2 MARKS)

1. What is an Operating System?
2. List any four basic OS Functions?
3. What is Batch Systems
4. What is Timesharing systems
5. What is Real Time Systems?

(6 MARKS)

1. Explain Basic OS Functions.

2. Describe about Operating Systems for Personal Computers & Workstations.

3. Explain the Types of Operating Systems.

4. Discuss about (i)Batch Systems (ii)Time Sharing Systems

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: I(Introduction to Operating System) BATCH-2017-2020

Prepared by: D. Manjula, Dr. Hemalatha, Department of CS, CA & IT, KAHE Page 25/25

5. Discuss about (i)Real Time Systems (ii) Multiprogramming Systems

Sno Questions opt1 opt2 opt3 opt4 opt5 opt6 answer

1

The primary job of
an OS is to ________

command
resource

manage
resource

provide
utilities

Be user
friendly

manage
resource

2

The term " Operating
System " means

A set of
programs

which

controls

computer

working

The way a
computer

operator

works

on of

high-

level

language

in to

machine

level

language

The way
a floppy

disk

drive

operates

A set of
programs

which

controls

computer

working

With more

UNIT - 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

II B.Sc CS (Batch 2017-2020)

OPERATING SYSTEMS

PART - A OBJECTIVE TYPE/MULTIPLE CHOICE QUESTIONS

ONLINE EXAMINATIONS ONE MARKS QUESTIONS

3

With more
than one process can

be running

simultaneously each

on a different

processer.
Multiprog
ramming

Uniprocess
ing

Multiproc
essing

Uniprogr
amming

Multiprogra
mming

4

The two central
themes of modern

operating system are

Multiprog
ramming

and

Distribute

d

processing

Multiprogr
amming

and

Central

Processing

Single
Program

ming and

Distribute

d

processin

g
None of
above

Multiprogra

mming and

Distributed

processing

5

............ is a special
type of programming

language used to

provide instructions

to the monitor simple

batch processing

schema

Job
control

language

(JCL)

Processing
control

language

(PCL)

Batch
control

language

(BCL)

Monitor
control

language

(MCL)

Job control
language

(JCL)

6

.……………….. is a
example of an

operating system that

support single user

process and single

thread UNIX MS-DOS OS/2

Window
s 2000 MS-DOS

7

File management
function of the

operating system

includes

File
creation

and

deletion
Disk
scheduling

Process
schedulin

g

Multipro
grammin

g

File creation
and deletion

8

The operating system
of a computer serves

as a software

interface between the

user and the

________. Hardware Peripheral Memory Screen Hardware

It is a
hardware

componen
It is a
command

It is a part
in

It is a
tool in

CPU

scheduli

It is a
command

9 What is a shell

componen

t

command

interpreter

in

compiler

scheduli

ng

command

interpreter

10

The main function of
the command

interpreter is:

to get and
execute

the next

user-

specified

command

to provide
the

interface

between

the API

and

application

program

to handle
the files

in

operating

system

none of
the

mentione

d

to get and
execute the

next user-

specified

command

11

The systems which
allows only one

process execution at

a time, are called

uniprogra
mming

systems
uniprocessi
ng systems

unitaskin
g systems

none of
the

mentione

d

uniprogram
ming systems

12

As OS that has strict
time constraints

Sensor
Node OS

Real Time
OS

Mainfram
e OS

Timeshar
ing OS

Real Time
OS

13

The OS that groups
similar jobs is called

as
Network
OS

Distributed
OS

Mainfram
e OS

Batch
OS Batch OS

14

Which one of the
following error will

be handle by the

operating system?
power
failure

lack of
paper in

printer

connectio
n failure

in the

network

all of the
mentione

d

all of the
mentioned

15

By operating system,
the resource

management can be

done via:

time
division

multiplexi

ng

space
division

multiplexi

ng
both (a)
and (b)

none of
the

mentione

d

both (a) and
(b)

16

Which one of the
following is not a

real time operating

system? VxWorks

Windows
CE RTLinux Palm OS Palm OS

17

Operating System is

the
intermedia

te

between

hardware

and user

the set of
programs

make the

hardware

usable

software
that

controls

the

hardware

all the
above

all the above

18

Micro code is

programs
written in

secondary

storage

programs
written in

main

memory

programs
written in

Read

only

memory

none of
the

above

programs
written in

Read only

memory

To access the

19

To access the
services of operating

system, the interface

is provided by the

system
calls API library

assembly
instructio

ns system calls

20

In 1940s, the
electronic digital

computers has

OS/2 as
operating

system

Dos as
operating

system

No
operating

system

UNIX as
operating

system

No operating
system

21

After 1960s which
features the operating

systems have

Multiprog
ramming

Time
sharing

Real time
system

All the
above

All the above

22

_____ systems are
required to complete

a critical task within

a guaranteed amount

of time.

hard real
time

Priority
inversion

load
sharing

Priority
inheritan

ce

hard real
time

23

Clients are

Network
componen

ts that

perform

services

Network
users that

need

various

services to

be

performed

Network
compone

nts that

provide

communi

cation

facility

none

Network
users that

need various

services to be

performed

24

A system program
that combines the

separately compiled

modules of a

program into a form

suitable for execution assembler

linking
loader

cross
compiler

load and
go

linking
loader

25

A
______________ma

nages the execution

of user programs to

prevent errors and

improper use of the

computer.
Control
program

Managing
Program

allocating
program

User
program

Control
program25 computer. program Program program program program

26

________ is a
program associated

with the operating

system but are not

part of the kernel,
System
Program

User
program

System
calls

Function
s

System
Program

27

________ is a
program that

includes all programs

not associated with

the operation of the

system

Applicatio
n

Programs Kernel

Thread
Program Process

Application
Programs

28

General-purpose
computers run most

of their programs

from rewriteable

memory, called as

Floppy
disk ROM

Random
access

Memory
Hard
disk

Random
access

Memory

29

On systems with
multiple command

interpreters to choose

from, the interpreters

are known as

_________ GUI shells Signal

Comman
d shells

30

The term PDA is

Personal
Digital

Assistant

Personal
Data

Assistant

Personal
Data

Accounta

nt

Private
Digital

Assistant

Personal
Digital

Assistant

31

handle large numbers

of small requests
Batch
systems

Time
sharing

Transacti
on-

processin

g systems

Distribut

ed

systems

Transaction-
processing

systems

The occurrence of an
event is usually

signaled by an

___________from

either the hardware

32

either the hardware

or the software. interrupt signal service routine interrupt

33

Operating systems
have a

______________for

each device

controller Process

device
driver controller allocator device driver

34

CPU design that
includes multiple

computing cores on a

single chip. Such

multiprocessor

systems are termed

__________ multicore

uniprocess
or

singlecor
e

multichi
ps multicore

35

A ___________ is a
software-generated

interrupt caused

either by an error or

by a specific request

from a user program. trap driver error program trap

36

A _________is
added to the

hardware of the

computer to indicate

the current mode

kernel or user byte character mode bit integer mode bit

37

logical storage unit is
called as

___________ folder file RAM ROM file

38

___________ is any
mechanism for

controlling the access

of processes or users

to the resources

defined by a

computer system. Protection

authorizati
on policy privacy Protection

A _____________is
an operating system

that provides features network network

39

that provides features

such as file sharing

across the network.

network
operating

system
Distributed
OS

Parallel
OS

Sensor
OS

network
operating

system

40

______________ope
rating systems are

even more complex

than multi

programmed

operating systems.
Time-
sharing

desktop
systems

Multipro
grammed

systems
Multipro
cessor

systems Time-sharing

41

___________can
save more money

than multiple single-

processor systems

Multiproc
essor

systems

desktop
systems

Time
sharing

systems

Multipro
grammed

systems
Multiprocess
or systems

42

_______________ is
also known as

parallel systems or

tightly coupled

systems

Multiproc
essor

systems

desktop
systems

Time
sharing

systems

Multipro
grammed

systems Multiprocess
or systems

43

Another form of a
special-purpose

operating system is

the
real-time
system

distributed
operating

system

Process
states

multifra
me

computer

system

real-time
system

44

The message-passing
facility in Windows

2000 is called

MUTUAL
EXCLUSI

ON Buffering

local
procedure

call

facility

CRITIC
AL

SECTIO

NS

local
procedure

call facility

45

Which process is
known for

initializing a

microcomputer with

cold
booting

boot
recording

booting
warm
booting

booting

46

 A series of
statements

explaining how the

data is to be

instruction compiler program
interpret
or

program

47

Distributed systems
should

high
security

have better
resource

sharing

better
system

utilizatio

low
system

overhead

have better
resource

sharing

48

Which of the
following is always

there in a computer

Batch
system

Operating
system

Time
sharing

system

Controlli
ng

system

Operating
system

When did IBM
released the first

49

released the first

version of its disk

operating system

DOS version 1.0

1981 1982 1983 1984 1981

50

Main function of
shared memory

is________________

to use
primary

memory

efficently

to do intra
process

communic

ation

to do
inter

process

communi

cation

to do
other

process

communi

cation

to do inter
process

communicati

on

51

The kernel is
a________________

memory
manager

resource
manager

file
manager

directory
manager

resource
manager

52

_______________co
ntains the address of

an instruction to be

fetched from memory
Program
counter

(PC)

Instruction
register

(IR)
Control
registers

Status
registers

Instruction
register (IR)

53

__contains the

instruction most

recently fetched.

Program
counter

(PC)

Instruction
register

(IR)
Control
registers

Status
registers

Program
counter (PC)

54

If a process fails,
most operating

system write the

error information to a log file

another
running

process new file

none of
the

mentione

d log file

55

The OS X has

monolithi
c kernel

hybrid
kernel

microker
nel

monolith
ic kernel

with

modules

hybrid
kernel

56

Which Operating
system does not

support long file

names OS/2

Windows
95 MS-DOS

Window
s NT MS-DOS

57

Which Operating
system does not

support networking

between computers
Windows
3.1

Windows
95

Windows
2000

Window
s NT Windows 3.1

58

Which Operating
system is better for

implementing client

server network MS DOS

Windows
95

Windows
98

Window
s 2000

Windows
200058 server network MS DOS 95 98 s 2000 2000

59

___________is the
commercial UNIX-

based operating

system of Sun

Microsystems. Solaris UNIX Linux

Macintos
h Solaris

60

__________ is an
example of an open-

source operating

system
GNU/Lin
ux

Windows
3.1

Windows
NT

Macintos
h GNU/Linux

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 1/58

UNIT II

Syllabus

Operating System Organization: Processor and user modes-Kernels-System Calls and System
Programs. Process Management: System view of the process and resources- Process
abstraction-Process hierarchy-Threads-Threading issues-Thread libraries-Process Scheduling-
Non pre-emptive and Preemptive scheduling algorithms-Concurrent and processes-Critical
Section-Semaphores-Methods for inter-process communication- Deadlocks.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 2/58

UNIT II

Operating System Organization

Processor and user modes

The unrestricted mode is often called kernel mode, but many other designations exist (master
mode, supervisor mode, privileged mode, etc.).

Restricted modes are usually referred to as user modes, but are also known by many other names
(slave mode, problem state, etc.).

1. Kernel Mode

 When CPU is in kernel mode, the code being executed can access any memory address
and any hardware resource.

 Hence kernel mode is a very privileged and powerful mode.
 If a program crashes in kernel mode, the entire system will be halted.
 It can execute any CPU instruction and reference any memory address.
 Kernel mode is generally reserved for the lowest-level, most trusted functions of the

operating system. Crashes in kernel mode are catastrophic; they will halt the entire PC.

2. User Mode

 When CPU is in user mode, the programs don’t have direct access to memory and
hardware resources.

 In user mode, if any program crashes, only that particular program is halted.
 That means the system will be in a safe state even if a program in user mode crashes.
 Hence, most programs in an OS run in user mode.
 Code running in user mode must allot to system APIs to access hardware or memory.
 Due to the protection afforded by this sort of isolation, crashes in user mode are

always recoverable. Most of the code running on your computer will execute in user
mode.

At the very least, we need two separate modes of operation: user mode and kernel mode
(also called supervisor mode, system mode, or privileged mode).

A bit, called the mode bit, is added to the hardware of the computer to indicate the
current mode: kernel (0) or user (1).

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 3/58

With the mode bit, we can distinguish between a task that is executed on behalf of the
operating system and one that is executed on behalf of the user.

When the computer system is executing on behalf of a user application, the system is in
user mode. However, when a user application requests a service from the operating system (via a
system call), the system must transition from user to kernel mode to fulfill the request. This is
shown in Figure 2.1. As we shall see, this architectural enhancement is useful for many other
aspects of system operation as well.

Fig 2.1 Transition from user to kernel mode.

At system boot time, the hardware starts in kernel mode. The operating system is then loaded and
starts user applications in user mode. Whenever a trap or interrupt occurs, the hardware switches
from user mode to kernel mode (that is, changes the state of the mode bit to 0). Thus, whenever
the operating system gains control of the computer, it is in kernel mode. The system always
switches to user mode (by setting the mode bit to 1) before passing control to a user program.

The dual mode of operation provides us with the means for protecting the operating system from
errant users—and errant users from one another. We accomplish this protection by designating
some of the machine instructions that may cause harm as privileged instructions.

The life cycle of instruction execution in a computer system. Initial control resides in the
operating system, where instructions are executed in kernel mode. When control is given to a
user application, the mode is set to user mode. Eventually, control is switched back to the
operating system via an interrupt, a trap, or a system call.

Kernels

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 4/58

A kernel is a central component of an operating system. It acts as an interface between the user
applications and the hardware. The sole aim of the kernel is to manage the communication
between the software (user level applications) and the hardware (CPU, disk memory etc). The
main tasks of the kernel are :

 Process management

 Device management

 Memory management

 Interrupt handling

 I/O communication

 File system...etc..

Types Of Kernels

Kernels may be classified mainly in two categories

1. Monolithic

2. Micro Kernel

 1 Monolithic Kernels

Earlier in this type of kernel architecture, all the basic system services like process and memory
management, interrupt handling etc were packaged into a single module in kernel space.

This type of architecture led to some serious drawbacks like

1) Size of kernel, which was huge.

2) Poor maintainability, which means bug fixing or addition of new features resulted in

 recompilation of the whole kernel which could consume hours.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 5/58

A common approach is to partition the task into small components, or modules, rather than have
one monolithic system.

 In a modern day approach to monolithic architecture, the kernel consists of different
modules which can be dynamically loaded and un-loaded. This modular approach allows easy
extension of OS's capabilities. With this approach, maintainability of kernel became very easy as
only the concerned module needs to be loaded and unloaded every time there is a change or bug
fix in a particular module. So, there is no need to bring down and recompile the whole kernel for
a smallest bit of change. Also, stripping of kernel for various platforms (say for embedded
devices etc) became very easy as we can easily unload the module that we do not want.

Linux follows the monolithic modular approach

2 Microkernels

This method structures the operating system by removing all nonessential components from the
kernel and implementing them as system and user-level programs. The result is a smaller kernel.

This architecture caters to the problem of ever growing size of kernel code which we
could not control in the monolithic approach. This architecture allows some basic services like
device driver management, protocol stack, file system etc to run in user space. This reduces the
kernel code size and also increases the security and stability of OS as we have the bare minimum
code running in kernel. So, if suppose a basic service like network service crashes due to buffer
overflow, then only the networking service's memory would be corrupted, leaving the rest of the
system still functional.

The main function of the microkernel is to provide communication between the client program
and the various services that are also running in user space. Communication is provided through
message passing,

 In this architecture, all the basic OS services which are made part of user space are made
to run as servers which are used by other programs in the system through inter process
communication (IPC). eg: we have servers for device drivers, network protocol stacks, file
systems, graphics, etc. Microkernel servers are essentially daemon programs like any others,
except that the kernel grants some of them privileges to interact with parts of physical memory
that are otherwise off limits to most programs. This allows some servers, particularly device
drivers, to interact directly with hardware. These servers are started at the system start-up.

 So, what the bare minimum that micro Kernel architecture recommends in kernel space?

  Managing memory protection

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 6/58

 Process scheduling

 Inter Process communication (IPC)

Apart from the above, all other basic services can be made part of user space and can be run in
the form of servers.

System Calls

The system call provides an interface to the operating system services.

When a program in user mode requires access to RAM or a hardware resource, it must ask the
kernel to provide access to that resource. This is done via something called a system call.

Application developers often do not have direct access to the system calls, but can access them
through an application programming interface (API). The functions that are included in the API
invoke the actual system calls. By using the API, certain benefits can be gained:

 Portability: as long a system supports an API, any program using that API can compile
and run.

 Ease of Use: using the API can be significantly easier then using the actual system call.

System Call Parameters

Three general methods exist for passing parameters to the OS:

1. Parameters can be passed in registers.
2. When there are more parameters than registers, parameters can be stored in a block and

the block address can be passed as a parameter to a register.
3. Parameters can also be pushed on or popped off the stack by the operating system.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 7/58

Fig 2.2 System call parameters

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 8/58

Types of System Calls

There are 5 different categories of system calls:

process control, file manipulation, device manipulation, information maintenance and
communication.

 Process Control

A running program needs to be able to stop execution either normally or abnormally. When
execution is stopped abnormally, often a dump of memory is taken and can be examined
with a debugger.

File Management

Some common system calls are create, delete, read, write, reposition, or close. Also, there
is a need to determine the file attributes – get and set file attribute. Many times the OS
provides an API to make these system calls.

Device Management

Process usually require several resources to execute, if these resources are available, they
will be granted and control returned to the user process. These resources are also thought of
as devices. Some are physical, such as a video card, and others are abstract, such as a file.

User programs request the device, and when finished they release the device. Similar to
files, we can read, write, and reposition the device.

Information Management

Some system calls exist purely for transferring information between the user program and
the operating system. An example of this is time, or date.

The OS also keeps information about all its processes and provides system calls to report
this information.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 9/58

Communication

There are two models of interprocess communication, the message-passing model and the
shared memory model.

 Message-passing uses a common mailbox to pass messages between processes.
 Shared memory use certain system calls to create and gain access to create and gain

access to regions of memory owned by other processes. The two processes exchange
information by reading and writing in the shared data.

System Call

System calls provide an interface between the process and the operating system. System
calls allow user-level processes to request some services from the operating system which
process itself is not allowed to do. In handling the trap, the operating system will enter in the
kernel mode, where it has access to privileged instructions, and can perform the desired service
on the behalf of user-level process. It is because of the critical nature of operations that the
operating system itself does them every time they are needed. For example, for I/O a process
involves a system call telling the operating system to read or write particular area and this
request is satisfied by the operating system.

System programs provide basic functioning to users so that they do not need to write their
own environment for program development (editors, compilers) and program execution (shells).
In some sense, they are bundles of useful system calls.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 10/58

System Programs

System programs, also known as system utilities, provide a convenient environment for
program development and execution.

Some of them are simply user interfaces to system calls.

These programs are not usually part of the OS kernel, but are part of the overall operating
system.

They can be divided into these categories:

• File management. These programs create, delete, copy, rename, print, dump, list, and
generally manipulate files and directories.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 11/58

• Status information. Some programs simply ask the system for the date, time, amount
of available memory or disk space, number of users, or similar status information. Others are
more complex, providing detailed performance, logging, and debugging information. Typically,
these programs format and print the output to the terminal or other output devices or files or
display it in a window of the GUI. Some systems also support a registry, which is used to store
and retrieve configuration information.

• File modification. Several text editors may be available to create and modify the
content of files stored on disk or other storage devices. There may also be special commands to
search contents of files or perform transformations of the text.

 • Programming-language support. Compilers, assemblers, debuggers, and interpreters
for common programming languages (such as C, C++, Java, and PERL) are often provided with
the operating system or available as a separate download.

 • Program loading and execution. Once a program is assembled or compiled, it must
be loaded into memory to be executed. The system may provide absolute loaders, relocatable
loaders, linkage editors, and overlay loaders. Debugging systems for either higher-level
languages or machine language are needed as well.

 • Communications. These programs provide the mechanism for creating virtual
connections among processes, users, and computer systems. They allow users to send messages
to one another’s screens, to browse Web pages, to send e-mail messages, to log in remotely, or to
transfer files from one machine to another.

 • Background services. All general-purpose systems have methods for launching
certain system-program processes at boot time. Some of these processes terminate after
completing their tasks, while others continue to run until the system is halted. Constantly running
system-program processes are known as services, subsystems, or daemons.

One example is the network daemon, a system needed a service to listen for network
connections in order to connect those requests to the correct processes.

Other examples include process schedulers that start processes according to a specified
schedule, system error monitoring services, and print servers. Typical systems have dozens of
daemons.

In addition, operating systems that run important activities in user context rather than in
kernel context may use daemons to run these activities. Along with system programs, most
operating systems are supplied with programs that are useful in solving common problems or
performing common operations.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 12/58

Such application programs include Web browsers, word processors and text formatters,
spreadsheets, database systems, compilers, plotting and statistical-analysis packages, and games.

The view of the operating system seen by most users is defined by the application and
system programs, rather than by the actual system calls. Consider a user’s PC. When a user’s
computer is running the Mac OS X operating system, the user might see the GUI, featuring a
mouse-and-windows interface. Alternatively, or even in one of the windows, the user might have
a command-line UNIX shell. Both use the same set of system calls, but the system calls look
different and act in different ways.

Process Management:

System view of the process and resources

The Process

A process generally consists of:

• The program’s instructions (aka. the “program text”)

 • CPU state for the process (program counter, registers, flags, …)

• Memory state for the process

• Other resources being used by the process

Informally, as mentioned earlier, a process is a program in execution. A process is more than the
program code, which is sometimes known as the text section. It also includes the current activity,
as represented by the value of the program counter and the contents of the processor's registers.
A process generally also includes the process stack, which contains temporary data (such as
function parameters, return addresses, and local variables), and a data section, which contains
global variables. A process may also include a heap, which is memory that is dynamically
allocated during process run time. The structure of a process in memory is shown in Figure 2.1.

We emphasize that a program by itself is not a process; a program is a passive entity, such as a
file containing a list of instructions stored on disk (often called an executable file), whereas a
process is an active entity, with a program counter specifying the next instruction to execute and
a set of associated resources. A program becomes a process when an executable file is loaded
into memory. Two common techniques for loading executable files are double-clicking an icon

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 13/58

representing the executable file and entering the name of the executable file on the command line
(as in prog. exe or a. out.)

Process in memory

Fig 2.3 Diagram of process state

Although two processes may be associated with the same program, they are nevertheless
considered two separate execution sequences. For instance, several users may be running
different copies of the mail program, or the same user may invoke many copies of the Web
browser program. Each of these is a separate process; and although the text sections are
equivalent, the data, heap, and stack sections vary. It is also common to have a process that
spawns many processes as it runs.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 14/58

Process State

As a process executes, it changes state.

The state of a process is defined in part by the current activity of that process.

Each process may be in one of the following states:

New. The process is being created.

Running. Instructions are being executed.

Waiting. The process is waiting for some event to occur (such as an I/0 completion or reception
of a signal).

Ready. The process is waiting to be assigned to a processor.

Terminated. The process has finished execution.

These names are arbitrary, and they vary across operating systems. The states that they represent
are found on all systems, however. Certain operating systems also more finely delineate process
states. It is important to realize that only one process can be running on any processor at any
instant. Many processes may be ready and waiting, however.

The state diagram corresponding to these states is presented in Figure 2.2.

Process Control Block

Each process is represented in the operating system by a process control block (PCB)—also
called a task control block. A PCB is shown in Figure 2.3. It contains many pieces of
information associated with a specific process, including these:

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 15/58

Fig 2.4. Process Control Block

• Program counter. The counter indicates the address of the next instruction to be executed for
this process.

• CPU registers. The registers vary in number and type, depending on the computer architecture.
They include accumulators, index registers, stack pointers, and general-purpose registers, plus
any condition-code information. Along with the program counter, this state information must be
saved when an interrupt occurs, to allow the process to be continued correctly afterward

• CPU-scheduling information. This information includes a process priority, pointers to
scheduling queues, and any other scheduling parameters.

(Chapter 6 describes process scheduling.)

• Memory-management information. This information may include such items as the value of
the base and limit registers and the page tables, or the segment tables, depending on the memory
system used by the operating system.

Accounting information. This information includes the amount of CPU and real time used, time
limits, account numbers, job or process numbers and so on.

• I/O status information. This information includes the list of I/O devices allocated to the
process, a list of open files, and so on. In brief, the PCB simply serves as the repository for any
information that may vary from process to process.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 16/58

Process Abstraction

Process abstraction Main Point: What are processes? How are process, programs, threads, and
address spaces related?

The Abstraction: A Process

 The abstraction provided by the OS of a running program is something we will call a
process. As we said above, a process is simply a running program; at any instant in time,

 One obvious component of machine state that comprises a process is its memory.
 Instructions lie in memory; the data that the running program reads and writes sits in

memory as well.
 Thus the memory that the process can address (called its address space) is part of the

process.
 Also part of the process’s machine state are registers; many instructions explicitly read or

update registers and thus clearly they are important to the execution of the process.
 Note that there are some particularly special registers that form part of this machine state.
 Finally, programs often access persistent storage devices too. Such I/O information might

include a list of the files the process currently has open.

Process Hierarchies

Modern general purpose operating systems permit a user to create and destroy processes.

 In unix this is done by the fork system call, which creates a child process, and
the exit system call, which terminates the current process.

 After a fork both parent and child keep running (indeed they have the same program text)
and each can fork off other processes.

 A process tree results. The root of the tree is a special process created by the OS during
startup.

 A process can choose to wait for children to terminate. For example, if C issued a wait()
system call it would block until G finished.

Old or primitive operating system like MS-DOS are not multiprogrammed so when one process
starts another, the first process is automatically blocked and waits until the second is finished.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 17/58

Fig 2.5 Process Hierarchy

Process Hierarchies

In some systems, when a process creates another process, the parent process and child process
continue to be associated in certain ways. The child process can itself create more processes,
forming a process hierarchy.

In UNIX, a process and all of its children and further descendants together form a process group.
When a user sends a signal from the keyboard, the signal is delivered to all members of the
process group currently associated with the keyboard (usually ail active processes that were
created in the current window). Individually, each process can catch the signal, ignore the signal,
or take the default action, which is to be killed by the signal.

As another example of where the process hierarchy plays a role, let us look at how UNIX
initializes itself when it is started. A special process, called init, is present in the boot image.
When it starts running, it reads a file telling how many terminals there are. Then it forks off one
new process per terminal. These processes wait for someone to log in. If a login is successful, the
login process executes a shell to accept commands. These commands may start up more
processes, and so forth. Thus, all the processes in the whole system belong to a single tree, with
init at the root.

In contrast, Windows has no concept of a process hierarchy. All processes are equal. The only
hint of a process hierarchy is that when a process is created, the parent is given a special token
(called a handle) that it can use to control the child. However, it is free to pass this token to some
other process, thus invalidating the hierarchy. Processes in UNIX cannot disinherit their children.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 18/58

Threads

A thread is a flow of execution through the process code, with its own program counter that
keeps track of which instruction to execute next, system registers which hold its current
working variables, and a stack which contains the execution history.

A thread shares with its peer threads few information like code segment, data segment and open
files. When one thread alters a code segment memory item, all other threads see that.

A thread is also called a lightweight process. Threads provide a way to improve application
performance through parallelism. Threads represent a software approach to improving
performance of operating system by reducing the overhead thread is equivalent to a classical
process.

Each thread belongs to exactly one process and no thread can exist outside a process. Each
thread represents a separate flow of control. Threads have been successfully used in
implementing network servers and web server. They also provide a suitable foundation for
parallel execution of applications on shared memory multiprocessors. The following figure
shows the working of a single-threaded and a multithreaded process.

Fig 2.6. Single-threaded and multithreaded processes

Advantages of Thread

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 19/58

 Threads minimize the context switching time.
 Use of threads provides concurrency within a process.
 Efficient communication.
 It is more economical to create and context switch threads.
 Threads allow utilization of multiprocessor architectures to a greater scale and efficiency.

Types of Thread

Threads are implemented in following two ways −

 User Level Threads − User managed threads.
 Kernel Level Threads − Operating System managed threads acting on kernel, an

operating system core.

User Level Threads

In this case, the thread management kernel is not aware of the existence of threads. The thread
library contains code for creating and destroying threads, for passing message and data between
threads, for scheduling thread execution and for saving and restoring thread contexts. The
application starts with a single thread.

Fig 2.7. User level threads

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 20/58

Advantages

 Thread switching does not require Kernel mode privileges.
 User level thread can run on any operating system.
 Scheduling can be application specific in the user level thread.
 User level threads are fast to create and manage.

Disadvantages

 In a typical operating system, most system calls are blocking.
 Multithreaded application cannot take advantage of multiprocessing.

Kernel Level Threads

In this case, thread management is done by the Kernel. There is no thread management code in
the application area. Kernel threads are supported directly by the operating system. Any
application can be programmed to be multithreaded. All of the threads within an application are
supported within a single process.

The Kernel maintains context information for the process as a whole and for individuals threads
within the process. Scheduling by the Kernel is done on a thread basis. The Kernel performs
thread creation, scheduling and management in Kernel space. Kernel threads are generally
slower to create and manage than the user threads.

Advantages

 Kernel can simultaneously schedule multiple threads from the same process on multiple
processes.

 If one thread in a process is blocked, the Kernel can schedule another thread of the same
process.

 Kernel routines themselves can be multithreaded.

Disadvantages

 Kernel threads are generally slower to create and manage than the user threads.
 Transfer of control from one thread to another within the same process requires a mode

switch to the Kernel.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 21/58

A word processor may have a thread for displaying graphics, another thread for responding to
keystrokes from the user, and a third thread for performing spelling and grammar checking in the
background.

Multithreading Models

Some operating system provide a combined user level thread and Kernel level thread facility.
Solaris is a good example of this combined approach. In a combined system, multiple threads
within the same application can run in parallel on multiple processors and a blocking system
call need not block the entire process. Multithreading models are three types

 Many to many relationship.
 Many to one relationship.
 One to one relationship.

Many to Many Model

The many-to-many model multiplexes any number of user threads onto an equal or smaller
number of kernel threads.

The following diagram shows the many-to-many threading model where 6 user level threads are
multiplexing with 6 kernel level threads. In this model, developers can create as many user
threads as necessary and the corresponding Kernel threads can run in parallel on a
multiprocessor machine. This model provides the best accuracy on concurrency and when a
thread performs a blocking system call, the kernel can schedule another thread for execution.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 22/58

Fig 2.8. Many to Many Model

Many to One Model

Many-to-one model maps many user level threads to one Kernel-level thread. Thread
management is done in user space by the thread library. When thread makes a blocking system
call, the entire process will be blocked. Only one thread can access the Kernel at a time, so
multiple threads are unable to run in parallel on multiprocessors.

If the user-level thread libraries are implemented in the operating system in such a way that the
system does not support them, then the Kernel threads use the many-to-one relationship modes.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 23/58

Fig 2.9. Many to One Model

One to One Model

There is one-to-one relationship of user-level thread to the kernel-level thread. This model
provides more concurrency than the many-to-one model. It also allows another thread to run
when a thread makes a blocking system call. It supports multiple threads to execute in parallel
on microprocessors.

Disadvantage of this model is that creating user thread requires the corresponding Kernel
thread. OS/2, windows NT and windows 2000 use one to one relationship model.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 24/58

Fig 2.10.One to One Model

Threading issues

There are a variety of issues to consider with multithreaded programming

- Semantics of fork() and exec() system calls

- Signal handling

 - Thread cancellation

- Thread-Local Storage

- Scheduler Activations

Semantics of fork() and exec()

Some UNIX systems have chosen to have two versions of fork(), one that duplicates all threads
and another that duplicates only the thread that invoked the fork() system call.

• The exec() system call continues to behave as expected. if a thread invokes the exec() system
call, the program specified in the parameter to exec () will replace the entire process-including all

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 25/58

threads. If exec() is called immediately after forking, then duplicating all threads is unnecessary,
as the program specified in the parameters to exec() will replace the process.

- Replaces the entire process that called it, including all threads

• If planning to call exec() after fork(), then there is no need to duplicate all of the threads
in the calling process

 - All threads in the child process will be terminated when exec() is called.

Signal Handling

 • Signals are used in UNIX systems to notify a process that a particular event has occurred -
CTRL-C is an example of an asynchronous signal that might be sent to a process

 An asynchronous signal

 • An asynchronous signal is one that is generated from outside the process that receives it -
Divide by 0 is an example of asynchronous signal that might be sent to a process

Synchronous signal

 • A synchronous signal is delivered to the same process that caused the signal to occur

• All signals follow the same basic pattern:

1. A signal is generated by particular event
2. The signal is delivered to a process
3. The signal is handled by a signal handler (all signals are handled exactly once)

All signals, whether synchronous or asynchronous, follow the same pattern:

1. A signal is generated by the occurrence of a particular event.

2. The signal is delivered to a process.

3. Once delivered, the signal must be handled.

A signal may be handled by one of two possible handlers:

1. A default signal handler

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 26/58

2. A user-defined signal handler

Every signal has a default signal handler that the kernel runs when handling that signal. This
default action can be overridden by a user-defined signal handler that is called to handle the
signal. Signals are handled in different ways. Some signals (such as changing the size of a
window) are simply ignored; others (such as an illegal memory access) are handled by
terminating the program.

Handling signals in single-threaded programs is straightforward: signals are always delivered to
a process. However, delivering signals is more complicated in multithreaded programs, where a
process may have several threads. Where, then, should a signal be delivered?

In general the following options exist:

 Deliver the signal to the thread to which the signal applies.
 Deliver the signal to every thread in the process.
 Deliver the signal to certain threads in the process.
 Assign a specific thread to receive all signals for the process.

 (1) Deliver the signal to the thread to which the signal applies

Most likely option when handling synchronous signals (e.g. only the thread that attempts to
divide by zero needs to know of the error)

(2) Deliver the signal to every thread in the process

- Likely to be used in the event that the process is being terminated (e.g. a CTRLC is sent to
terminate the process, all threads need to receive this signal and terminate)

Thread Cancellation

• Thread cancellation is the act of terminating a thread before it has completed

 - Example

 - clicking the stop button on your web browser will stop the thread that is rendering the web
page

 • The thread to be cancelled is called the target thread

 • Threads can be cancelled in a couple of ways

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 27/58

- Asynchronous cancellation

- Deferred cancellation

- Asynchronous cancellation terminates the target thread immediately

- Deferred cancellation allows the target thread to periodically check if it should be cancelled

 • Allows thread to terminate itself in an orderly fashion

Thread cancellation involves terminating a thread before it has completed. For example, if
multiple threads are concurrently searching through a database and one thread returns the result,
the remaining threads might be canceled. Another situation might occur when a user presses a
button on a web browser that stops a web page from loading any further. Often, a web page loads
using several threads—each image is loaded in a separate thread. When a user presses the stop
button on the browser, all threads loading the page are canceled.

A thread that is to be canceled is often referred to as the target thread.

Cancellation of a target thread may occur in two different scenarios:

1. Asynchronous cancellation. One thread immediately terminates the target thread.

2. Deferred cancellation. The target thread periodically checks whether it

should terminate, allowing it an opportunity to terminate itself in an orderly fashion.

Thread-Local Storage

Threads belonging to a process share the data of the process. Indeed, this data sharing provides
one of the benefits of multithreaded programming. However, in some circumstances, each thread
might need its own copy of certain data. We will call such data thread-local storage (or TLS.)
For example, in a transaction-processing system, we might service each transaction in a separate
thread. Furthermore, each transaction might be assigned a unique identifier. To associate each
thread with its unique identifier, we could use thread-local storage.

Scheduler Activations

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 28/58

One scheme for communication between the user-thread library and the kernel is known as
scheduler activation. It works as follows: The kernel provides an application with a set of
virtual processors (LWPs), and the application can schedule user threads onto an available virtual
processor. Furthermore, the kernel must inform an application about certain events. This
procedure is known as an upcall. Upcalls are handled by the thread library with an upcall
handler, and upcall handlersmust run on a virtual processor. One event that triggers an upcall
occurs when an application thread is about to block.

Thread Libraries

A thread library provides the programmer with an API for creating and managing threads.
There are two primary ways of implementing a thread library. The first approach is to provide a
library entirely in user space with no kernel support. All code and data structures for the library
exist in user space. This means that invoking a function in the library results in a local function
call in user space and not a system call.

The second approach is to implement a kernel-level library supported directly by the operating
system. In this case, code and data structures for the library exist in kernel space. Invoking a
function in the API for the library typically results in a system call to the kernel. Three main
thread libraries are in use today:

 POSIX Pthreads,
 Windows, and
 Java.

Pthreads, the threads extension of the POSIX standard, may be provided as either a user-level
or a kernel-level library.

 Pthreads refers to the POSIX standard (IEEE 1003.1c) defining an API for thread creation and
synchronization. This is a specification for thread behavior, not an implementation. Operating-
system designers may implement the specification in any way they wish. Numerous systems
implement the Pthreads specification; most are UNIX-type systems, including Linux, Mac OS X,
and Solaris. Although Windows doesn’t support Pthreads natively, some third party
implementations for Windows are available.

The Windows thread library is a kernel-level library available on Windows systems. The
technique for creating threads using theWindows thread library is similar to the Pthreads
technique in several ways.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 29/58

 The Java thread API allows threads to be created and managed directly in Java programs.
However, because in most instances the JVM is running on top of a host operating system, the
Java thread API is generally implemented using a thread library available on the host system.
This means that on Windows systems, Java threads are typically implemented using theWindows
API; UNIX and Linux systems often use Pthreads.

Threads are the fundamental model of program execution in a Java program, and the Java
language and its API provide a rich set of features for the creation and management of threads.
All Java programs comprise at least a single thread of control—even a simple Java program
consisting of only a main() method runs as a single thread in the JVM. Java threads are available
on any system that provides a JVM including Windows, Linux, and Mac OS X. The Java thread
API is available for Android applications as well.

Process scheduling

The process scheduling is the activity of the process manager that handles the removal of the
running process from the CPU and the selection of another process on the basis of a particular
strategy.

Process scheduling is an essential part of a Multiprogramming operating systems. Such operating
systems allow more than one process to be loaded into the executable memory at a time and the
loaded process shares the CPU using time multiplexing. To meet these objectives, the process
scheduler selects an available process (possibly from a set of several available processes) for
program execution on the CPU. For a single-processor system, there will never be more than one
running process. If there are more processes, the rest will have to wait until the CPU is free and
can be rescheduled

Process Scheduling Queues

The OS maintains all PCBs in Process Scheduling Queues. The OS maintains a separate queue
for each of the process states and PCBs of all processes in the same execution state are placed in
the same queue. When the state of a process is changed, its PCB is unlinked from its current
queue and moved to its new state queue.

The Operating System maintains the following important process scheduling queues −

 Job queue − This queue keeps all the processes in the system.
 Ready queue − This queue keeps a set of all processes residing in main memory, ready

and waiting to execute. A new process is always put in this queue.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 30/58

 Device queues − The processes which are blocked due to unavailability of an I/O device
constitute this queue.

Fig 2.11. Process scheduling queues

The OS can use different policies to manage each queue (FIFO, Round Robin, Priority, etc.).
The OS scheduler determines how to move processes between the ready and run queues which
can only have one entry per processor core on the system; in the above diagram, it has been
merged with the CPU.

Schedulers

Schedulers are special system software which handle process scheduling in various ways. Their
main task is to select the jobs to be submitted into the system and to decide which process to
run. Schedulers are of three types −

 Long-Term Scheduler
 Short-Term Scheduler
 Medium-Term Scheduler

Long Term Scheduler

It is also called a job scheduler. A long-term scheduler determines which programs are
admitted to the system for processing. It selects processes from the queue and loads them into
memory for execution. Process loads into the memory for CPU scheduling.

The primary objective of the job scheduler is to provide a balanced mix of jobs, such as I/O
bound and processor bound. It also controls the degree of multiprogramming. If the degree of

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 31/58

multiprogramming is stable, then the average rate of process creation must be equal to the
average departure rate of processes leaving the system.

On some systems, the long-term scheduler may not be available or minimal. Time-sharing
operating systems have no long term scheduler. When a process changes the state from new to
ready, then there is use of long-term scheduler.

Short Term Scheduler

It is also called as CPU scheduler. Its main objective is to increase system performance in
accordance with the chosen set of criteria. It is the change of ready state to running state of the
process. CPU scheduler selects a process among the processes that are ready to execute and
allocates CPU to one of them.

Short-term schedulers, also known as dispatchers, make the decision of which process to
execute next. Short-term schedulers are faster than long-term schedulers.

Medium Term Scheduler

Medium-term scheduling is a part of swapping. It removes the processes from the memory. It
reduces the degree of multiprogramming. The medium-term scheduler is in-charge of handling
the swapped out-processes.

A running process may become suspended if it makes an I/O request. A suspended processes
cannot make any progress towards completion. In this condition, to remove the process from
memory and make space for other processes, the suspended process is moved to the secondary
storage. This process is called swapping, and the process is said to be swapped out or rolled
out. Swapping may be necessary to improve the process mix.

Context Switch

A context switch is the mechanism to store and restore the state or context of a CPU in Process
Control block so that a process execution can be resumed from the same point at a later time.
Using this technique, a context switcher enables multiple processes to share a single CPU.
Context switching is an essential part of a multitasking operating system features.

When the scheduler switches the CPU from executing one process to execute another, the state
from the current running process is stored into the process control block. After this, the state for

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 32/58

the process to run next is loaded from its own PCB and used to set the PC, registers, etc. At that
point, the second process can start executing.

Non pre-emptive and Preemptive scheduling algorithms

Tasks are usually assigned with priorities. At times it is necessary to run a certain task that has a
higher priority before another task although it is running. Therefore, the running task is
interrupted for some time and resumed later when the priority task has finished its execution.
This is called preemptive scheduling.

Eg: Round robin

In non-preemptive scheduling, a running task is executed till completion. It cannot be
interrupted.
Eg First In First Out

CPU-scheduling decisions may take place under the following four circumstances:

1. When a process switches from the running state to the waiting state (for example, as the
result of an I/0 request or an invocation of wait for the termination of one of the child
processes)

2. When a process switches from the running state to the ready state (for example, when an
interrupt occurs)

3. When a process switches from the waiting state to the ready state (for example, at
completion of I/0)

4. When a process terminates.

For situations 1 and 4, there is no choice in terms of scheduling. A new process (if one exists in
the ready queue) must be selected for execution. There is a choice, however, for situations 2 and
3.

When scheduling takes place only under circumstances 1 and 4, we say that the scheduling
scheme is nonpreemptive or cooperative; otherwise, it is preemptive.

Under nonpreemptive scheduling, once the CPU has been allocated to a process, the process
keeps the CPU until it releases the CPU either by terminating or by switching to the waiting
state.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 33/58

A Process Scheduler schedules different processes to be assigned to the CPU based on
particular scheduling algorithms. There are six popular process scheduling algorithms which we
are going to discuss in this chapter −

 First-Come, First-Served (FCFS) Scheduling
 Shortest-Job-Next (SJN) Scheduling
 Priority Scheduling
 Shortest Remaining Time
 Round Robin(RR) Scheduling
 Multiple-Level Queues Scheduling

These algorithms are either non-preemptive or preemptive. Non-preemptive algorithms are
designed so that once a process enters the running state, it cannot be preempted until it
completes its allotted time, whereas the preemptive scheduling is based on priority where a
scheduler may preempt a low priority running process anytime when a high priority process
enters into a ready state.

First Come First Serve (FCFS)

 Jobs are executed on first come, first serve basis.
 It is a non-preemptive, pre-emptive scheduling algorithm.
 Easy to understand and implement.
 Its implementation is based on FIFO queue.
 Poor in performance as average wait time is high.

Wait time of each process is as follows −

Process Wait Time : Service Time - Arrival Time

P0 0 - 0 = 0

P1 5 - 1 = 4

P2 8 - 2 = 6

P3 16 - 3 = 13

Average Wait Time: (0+4+6+13) / 4 = 5.75

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 34/58

Shortest Job Next (SJN)

 This is also known as shortest job first, or SJF
 This is a non-preemptive, pre-emptive scheduling algorithm.
 Best approach to minimize waiting time.
 Easy to implement in Batch systems where required CPU time is known in advance.
 Impossible to implement in interactive systems where required CPU time is not known.
 The processer should know in advance how much time process will take.

Wait time of each process is as follows −

Process Wait Time : Service Time - Arrival Time

P0 3 - 0 = 3

P1 0 - 0 = 0

P2 16 - 2 = 14

P3 8 - 3 = 5

Average Wait Time: (3+0+14+5) / 4 = 5.50

Priority Based Scheduling

 Priority scheduling is a non-preemptive algorithm and one of the most common
scheduling algorithms in batch systems.

 Each process is assigned a priority. Process with highest priority is to be executed first
and so on.

 Processes with same priority are executed on first come first served basis.
 Priority can be decided based on memory requirements, time requirements or any other

resource requirement.

Wait time of each process is as follows −

Process Wait Time : Service Time - Arrival Time

P0 9 - 0 = 9

P1 6 - 1 = 5

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 35/58

P2 14 - 2 = 12

P3 0 - 0 = 0

Average Wait Time: (9+5+12+0) / 4 = 6.5

Shortest Remaining Time

 Shortest remaining time (SRT) is the preemptive version of the SJN algorithm.
 The processor is allocated to the job closest to completion but it can be preempted by a

newer ready job with shorter time to completion.
 Impossible to implement in interactive systems where required CPU time is not known.
 It is often used in batch environments where short jobs need to give preference.

Round Robin Scheduling

 Round Robin is the preemptive process scheduling algorithm.
 Each process is provided a fix time to execute, it is called a quantum.
 Once a process is executed for a given time period, it is preempted and other process

executes for a given time period.
 Context switching is used to save states of preempted processes.

Wait time of each process is as follows −

Process Wait Time : Service Time - Arrival Time

P0 (0 - 0) + (12 - 3) = 9

P1 (3 - 1) = 2

P2 (6 - 2) + (14 - 9) + (20 - 17) = 12

P3 (9 - 3) + (17 - 12) = 11

Average Wait Time: (9+2+12+11) / 4 = 8.5

Multiple-Level Queues Scheduling

Multiple-level queues are not an independent scheduling algorithm. They make use of other
existing algorithms to group and schedule jobs with common characteristics.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 36/58

 Multiple queues are maintained for processes with common characteristics.
 Each queue can have its own scheduling algorithms.
 Priorities are assigned to each queue.


For example, CPU-bound jobs can be scheduled in one queue and all I/O-bound jobs in another
queue. The Process Scheduler then alternately selects jobs from each queue and assigns them to
the CPU based on the algorithm assigned to the queue.

Concurrent process

• Modern operating systems can handle more than one process at a time
• System scheduler manages processes and their competition for the CPU
• Memory manager role is to manage sharing of main memory between active processes

Look at how processes coexist and communicate with each other on modern computer

• Concurrency is good for users
– One of the reasons for multiprogramming

• Working on the same problem, simultaneous execution of programs,
background execution

• Concurrency is a “pain in the neck” for the system
– Access to shared data structures
– Deadlock due to resource contention

Enabling process interaction

A parallel program is a concurrent program with more than one thread executing
simultaneously.

• Fully indenendant – separate applications running on the one system
• Indenpendant but related – example users running their own copy of a data entry

program but accessing and updating the one database

Concurrent processes – set of cooperating processes, example C program

• It is necessary for some resources to remain allocated to a process for as long as process
requires. Serial reusable resources require mutual exclusion. Example printer is being
used by a process then it must remain allocated to the process until printout is complete.

Mutual exclusion gives rise to another problem which OS must handle – deadlock.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 37/58

A cooperating process is one that can affect or be affected by other processes executing in the
system. Cooperating processes can either directly share a logical address space (that is, both code
and data) or be allowed to share data only through files or messages. The former case is achieved
through the use of threads, discussed in Chapter 4. Concurrent access to shared data may result in
data inconsistency, however. In this chapter, we discuss various mechanisms to ensure the
orderly execution of cooperating processes that share a logical address space, so that data
consistency is maintained.

Critical section

A Critical Section is a code segment that accesses shared variables and has to be executed as an
atomic action. It means that in a group of cooperating processes, at a given point of time, only
one process must be executing its critical section. If any other process also wants to execute its
critical section, it must wait until the first one finishes.do {

entry section

critical section

exit section

remainder section

} while (true);

 General structure of a typical process Pi .

The Critical-Section Problem

We begin our consideration of process synchronization by discussing the so called critical-
section problem. Consider a system consisting of n processes {P0, P1, ..., Pn−1}. Each process
has a segment of code, called a critical section, in which the process may be changing common
variables, updating a table, writing a file, and so on. The important feature of the system is that,
when one process is executing in its critical section, no other process is allowed to execute in its
critical section. That is, no two processes are executing in their critical sections at the same time.
The critical-section problem is to design a protocol that the processes can use to cooperate. Each
process must request permission to enter its critical section. The section of code implementing
this request is the entry section. The critical section may be followed by an exit section. The
remaining code is the remainder section.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 38/58

The entry section and exit section are enclosed in boxes to highlight these important
segments of code.

A solution to the critical-section problem must satisfy the following three requirements:

1. Mutual exclusion. If process Pi is executing in its critical section, then no other processes can
be executing in their critical sections.

2. Progress. If no process is executing in its critical section and some processes wish to enter
their critical sections, then only those processes that are not executing in their remainder sections
can participate in deciding which will enter its critical section next, and this selection cannot be
postponed indefinitely.

3. Bounded waiting. There exists a bound, or limit, on the number of times that other processes
are allowed to enter their critical sections after a process has made a request to enter its critical
section and before that request is granted.

Two general approaches are used to handle critical sections in operating systems: preemptive
kernels and nonpreemptive kernels. A preemptive kernel allows a process to be preempted
while it is running in kernel mode. A nonpreemptive kernel does not allow a process running in
kernel mode to be preempted; a kernel-mode process will run until it exits kernel mode, blocks,
or voluntarily yields control of the CPU.

All these solutions are based on the premise of locking —that is, protecting critical regions
through the use of locks.

Synchronization Hardware

Many systems provide hardware support for critical section code. The critical section problem
could be solved easily in a single-processor environment if we could disallow interrupts to occur
while a shared variable or resource is being modified.

In this manner, we could be sure that the current sequence of instructions would be allowed to
execute in order without pre-emption. Unfortunately, this solution is not feasible in a
multiprocessor environment.

Disabling interrupt on a multiprocessor environment can be time consuming as the message is
passed to all the processors.

This message transmission lag, delays entry of threads into critical section and the system
efficiency decreases.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 39/58

Mutex Locks

As the synchronization hardware solution is not easy to implement for everyone, a strict software
approach called Mutex Locks was introduced. In this approach, in the entry section of code, a
LOCK is acquired over the critical resources modified and used inside critical section, and in the
exit section that LOCK is released.

As the resource is locked while a process executes its critical section hence no other process can
access it.

Semaphores

In 1965, Dijkstra proposed a new and very significant technique for managing concurrent
processes by using the value of a simple integer variable to synchronize the progress of
interacting processes. This integer variable is called semaphore. So it is basically a
synchronizing tool and is accessed only through two low standard atomic operations, wait and
signal designated by P() and V() respectively.

The classical definition of wait and signal are :

 Wait : decrement the value of its argument S as soon as it would become non-negative.
 Signal : increment the value of its argument, S as an individual operation.

Properties of Semaphores

1. Simple
2. Works with many processes
3. Can have many different critical sections with different semaphores
4. Each critical section has unique access semaphores
5. Can permit multiple processes into the critical section at once, if desirable.

Types of Semaphores

Semaphores are mainly of two types:

1. Binary Semaphore

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 40/58

It is a special form of semaphore used for implementing mutual exclusion, hence it is often
called Mutex. A binary semaphore is initialized to 1 and only takes the value 0 and 1 during
execution of a program.

2. Counting Semaphores

These are used to implement bounded concurrency.
Limitations of Semaphores

1. Priority Inversion is a big limitation of semaphores.
2. Their use is not enforced, but is by convention only.
3. With improper use, a process may block indefinitely. Such a situation is called Deadlock.

Binary semaphore can take the value 0 & 1 only. Counting semaphore can take nonnegative
integer values.

Two standard operations, wait and signal are defined on the semaphore. Entry to the critical
section is controlled by the wait operation and exit from a critical region is taken care by signal
operation. The wait, signal operations are also called P and V operations. The manipulation of
semaphore (S) takes place as following:

1. The wait command P(S) decrements the semaphore value by 1. If the resulting value
becomes negative then P command is delayed until the condition is satisfied.

2. The V(S) i.e. signals operation increments the semaphore value by 1.

Mutual exclusion on the semaphore is enforced within P(S) and V(S). If a number of processes
attempt P(S) simultaneously, only one process will be allowed to proceed & the other processes
will be waiting.These operations are defined as under −

P(S) or wait(S):

If S > 0 then

 Set S to S-1

Else

 Block the calling process (i.e. Wait on S)

V(S) or signal(S):

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 41/58

If any processes are waiting on S

 Start one of these processes

Else

 Set S to S+1

The semaphore operation are implemented as operating system services and so wait and signal
are atomic in nature i.e. once started, execution of these operations cannot be interrupted.

Thus semaphore is a simple yet powerful mechanism to ensure mutual exclusion among
concurrent processes.

Mutex locks, as we mentioned earlier, are generally considered the simplest of
synchronization tools. In this section, we examine a more robust tool that can for processes to
synchronize their activities.

A semaphore S is an integer variable that, apart from initialization, is accessed only through two
standard atomic operations: wait() and signal(). The wait() operation was originally termed P
(from the Dutch proberen, “to test”); signal() was originally called V (from verhogen, “to
increment”). The definition of wait() is as follows:

wait(S) { while (S <= 0)

; // busy wait

S--;

}

The definition of signal() is as follows:

signal(S) { S++;

}

All modifications to the integer value of the semaphore in the wait() and signal() operations must
be executed indivisibly. That is, when one process modifies the semaphore value, no other

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 42/58

process can simultaneously modify that same semaphore value. In addition, in the case of
wait(S), the testing of the integer value of S (S ≤ 0), as well as its possible modification (S--),
must be executed without interruption. First, let’s see how semaphores can be used.

Semaphore Usage

Operating systems often distinguish between counting and binary semaphores. The value of a
counting semaphore can range over an unrestricted domain. The value of a binary semaphore
can range only between 0 and 1. Thus, binary semaphores behave similarly to mutex locks. In
fact, on systems that do not provide mutex locks, binary semaphores can be used instead for
providing mutual exclusion.

Counting semaphores can be used to control access to a given resource consisting of a
finite number of instances. The semaphore is initialized to the number of resources available.
Each process that wishes to use a resource performs a wait() operation on the semaphore
(thereby decrementing the count). When a process releases a resource, it performs a signal()
operation (incrementing the count). When the count for the semaphore goes to 0, all resources
are being used. After that, processes that wish to use a resource will block until the count
becomes greater than 0.

Semaphores are used to solve various synchronization problems. For example, consider
two concurrently running processes: P1 with a statement S1 and P2 with a statement S2. Suppose
we require that S2 be executed only after S1 has completed. We can implement this scheme
readily by letting P1 and P2 share a common semaphore synch, initialized to 0. In process P1,
we insert the statements

S1;

signal(synch);

In process P2, we insert the statements

wait(synch);

S2;

Because synch is initialized to 0, P2 will execute S2 only after P1 has invoked

signal(synch), which is after statement S1 has been executed.

Methods for inter-process communication

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 43/58

Processes executing concurrently in the operating system may be either independent
processes or cooperating processes. A process is independent if it cannot affect or be
affected by the other processes executing in the system. Any process that does not share data
with any other process is independent. A process is cooperating if it can affect or be affected
by the other processes executing in the system. Clearly, any process that shares data with
other processes is a cooperating process.

Cooperating processes require an interprocess communication (IPC) mechanism that will
allow them to exchange data and information. There are two fundamental models of interprocess
communication: shared memory and message passing. In the shared-memory model, a region
of memory that is shared by cooperating processes is established. Processes can then exchange
information by reading and writing data to the shared region. In the message-passing model,
communication takes place by means of messages exchanged between the cooperating processes.
The two communications models are contrasted in Figure 3.12.

Both of the models just mentioned are common in operating systems, and many systems
implement both. Message passing is useful for exchanging smaller amounts of data, because no
conflicts need be avoided. Message passing is also easier to implement in a distributed system
than shared memory. (Although there are systems that provide distributed shared memory, we do
not consider them in this text.) Shared memory can be faster than message passing, since
message-passing systems are typically implemented using system calls and thus require the more
time-consuming task of kernel intervention. In shared-memory systems, system calls are required
only to establish shared

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 44/58

Fig 2.12. Communications models. (a) Message passing. (b) Shared memory.

memory regions. Once shared memory is established, all accesses are treated as routine memory
accesses, and no assistance from the kernel is required. Recent research on systems with several
processing cores indicates that message passing provides better performance than shared
memory on such systems. Shared memory suffers from cache coherency issues, which arise
because shared data migrate among the several caches. As the number of processing cores on
systems increases, it is possible that we will see message passing as the preferred mechanism for
IPC. In the remainder of this section, we explore shared-memory and message passing systems in
more detail.

1 Shared-Memory Systems

Interprocess communication using shared memory requires communicating processes to
establish a region of shared memory. Typically, a shared-memory

region resides in the address space of the process creating the shared-memory segment. Other
processes that wish to communicate using this shared-memory segment must attach it to their
address space. Recall that, normally, the operating system tries to prevent one process from
accessing another process’s memory. Shared memory requires that two or more processes agree
to remove this restriction. They can then exchange information by reading and writing data in the
shared areas. The form of the data and the location are determined by these processes and are not
under the operating system’s control. The processes are also responsible for ensuring that they
are not writing to the same location simultaneously.

To illustrate the concept of cooperating processes, let’s consider the producer–consumer
problem, which is a common paradigm for cooperating processes. A producer process produces
information that is consumed by a consumer process. For example, a compiler may produce
assembly code that is consumed by an assembler. The assembler, in turn, may produce object
modules that are consumed by the loader. The producer–consumer problem also provides a
useful metaphor for the client–server paradigm.We generally think of a server as a producer and
a client as a consumer. For example, a web server produces (that is, provides) HTML files and
images, which are consumed (that is, read) by the client web browser requesting the resource.
One solution to the producer–consumer problem uses shared memory.

To allow producer and consumer processes to run concurrently, we must have available a buffer
of items that can be filled by the producer and emptied by the consumer. This buffer will reside
in a region of memory that is shared by the producer and consumer processes. A producer can
produce one item while the consumer is consuming another item. The producer and consumer

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 45/58

must be synchronized, so that the consumer does not try to consume an item that has not yet been
produced.

Two types of buffers can be used. The unbounded buffer places no practical limit on the
size of the buffer. The consumer may have to wait for new items, but the producer can
always produce new items. The bounded buffer assumes a fixed buffer size. In this case, the
consumer must wait if the buffer is empty, and the producer must wait if the buffer is full.

Message-Passing Systems

cooperating processes can communicate in a shared-memory environment. The scheme requires
that these processes share a region ofmemory and that the code for accessing andmanipulating
the shared memory be written explicitly by the application programmer. Another way to achieve
the same effect is for the operating system to provide the means for cooperating processes to
communicate with each other via a message-passingfacility.

Message passing provides a mechanism to allow processes to communicate and to synchronize
their actions without sharing the same address space. It is particularly useful in a distributed
environment, where the communicating processes may reside on different computers connected
by a network. For example, an Internet chat program could be designed so that chat participants
communicate with one another by exchanging messages.

A message-passing facility provides at least two operations:

send(message) receive(message)

Messages sent by a process can be either fixed or variable in size. If only fixed-sized messages
can be sent, the system-level implementation is straightforward. This restriction, however, makes
the task of programming more difficult. Conversely, variable-sized messages require a more
complex system level implementation, but the programming task becomes simpler. This is a
common kind of tradeoff seen throughout operating-system design. If processes P and Q want to
communicate, theymust send messages to and receive messages from each other: a
communication link must exist between them. This link can be implemented in a variety of
ways.We are concerned here not with the link’s physical implementation) but rather with its
logical implementation. Here are several methods for logically implementing a link

and the send()/receive() operations:

• Direct or indirect communication

• Synchronous or asynchronous communication

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 46/58

• Automatic or explicit buffering

Issues related to each of these features next.

1 Naming

Processes that want to communicate must have a way to refer to each other.

They can use either direct or indirect communication.

Under direct communication, each process that wants to communicate

must explicitly name the recipient or sender of the communication. In this

scheme, the send() and receive() primitives are defined as:

• send(P, message)—Send a message to process P.

• receive(Q, message)—Receive a message from process Q.

A communication link in this scheme has the following properties:

• A link is established automatically between every pair of processes that

want to communicate. The processes need to know only each other’s

identity to communicate.

• A link is associated with exactly two processes.

• Between each pair of processes, there exists exactly one link. This scheme exhibits symmetry in
addressing; that is, both the sender process and the receiver process must name the other to
communicate. A variant of this scheme employs asymmetry in addressing. Here, only the sender
names the recipient; the recipient is not required to name the sender. In this scheme, the send()
and receive() primitives are defined as follows:

• send(P, message)—Send a message to process P.

• receive(id, message)—Receive a message from any process. The

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 47/58

variable id is set to the name of the process with which communicationhas taken place.

The disadvantage in both of these schemes (symmetric and asymmetric) is the limited modularity
of the resulting process definitions. Changing the identifier of a process may necessitate
examining all other process definitions. All references to the old identifier must be found, so that
they can be modified to the new identifier. In general, any such hard-coding techniques, where
identifiers must be explicitly stated, are less desirable than techniques involving indirection, as
described next.

With indirect communication, the messages are sent to and received from mailboxes, or ports.A
mailbox can be viewed abstractly as an object into which messages can be placed by processes
and from which messages can be removed. Each mailbox has a unique identification. For
example, POSIX message queues use an integer value to identify a mailbox. A process can
communicate with another process via a number of different mailboxes, but two processes can
communicate only if they have a shared mailbox. The send() and receive()

primitives are defined as follows:

• send(A, message)—Send a message to mailbox A.

• receive(A, message)—Receive a message from mailbox A.

In this scheme, a communication link has the following properties:

• A link is established between a pair of processes only if both members of the pair have a shared
mailbox.

• A link may be associated with more than two processes.

• Between each pair of communicating processes, a number of different links may exist, with
each link corresponding to one mailbox.

Now suppose that processes P1, P2, and P3 all share mailbox A. Process P1 sends a message to
A, while both P2 and P3 execute a receive() from A. Which process will receive the message sent
by P1? The answer depends on which of the following methods we choose:

• Allow a link to be associated with two processes at most.

• Allow at most one process at a time to execute a receive() operation.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 48/58

• Allow the system to select arbitrarily which process will receive the message (that is, either P2
or P3, but not both, will receive the message). The system may define an algorithm for selecting
which process will receive the message (for example, round robin, where processes take turns
receiving messages). The system may identify the receiver to the sender.

A mailbox may be owned either by a process or by the operating system. If the mailbox is owned
by a process (that is, the mailbox is part of the address space of the process), then we distinguish
between the owner (which can only receive messages through this mailbox) and the user (which
can only send messages to the mailbox). Since each mailbox has a unique owner, there can be no
confusion about which process should receive a message sent to this mailbox. When a process
that owns a mailbox terminates, the mailbox disappears. Any process that subsequently sends a
message to this mailbox must be notified that the mailbox no longer exists. In contrast, a mailbox
that is owned by the operating system has an existence of its own. It is independent and is not
attached to any particular process. The operating system then must provide a mechanism that
allows aprocess to do the following:

• Create a new mailbox.

• Send and receive messages through the mailbox.

• Delete a mailbox.

The process that creates a new mailbox is that mailbox’s owner by default. Initially, the owner is
the only process that can receive messages through this mailbox. However, the ownership and
receiving privilege may be passed to other processes through appropriate system calls. Of course,
this provision could result in multiple receivers for each mailbox.

2 Synchronization

Communication between processes takes place through calls to send() and receive() primitives.
There are different design options for implementing each primitive. Message passing may be
either blocking or nonblocking— also known as synchronous and asynchronous. (Throughout
this text, you will encounter the concepts of synchronous and asynchronous behavior in relation
to various operating-system algorithms.)

• Blocking send. The sending process is blocked until the message is received by the receiving
process or by the mailbox.

• Nonblocking send. The sending process sends the message and resumes operation.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 49/58

• Blocking receive. The receiver blocks until a message is available.

• Nonblocking receive. The receiver retrieves either a valid message or a null.

Different combinations of send() and receive() are possible.When both send() and receive() are
blocking, we have a rendezvous between the sender and the receiver. The solution to the
producer–consumer problem becomes trivial when we use blocking send() and receive()
statements. The producer merely invokes the blocking send() call and waits until the message is
delivered to either the receiver or the mailbox. Likewise, when the consumer invokes receive(), it
blocks until a message is available. This is

illustrated in Figures 3.15 and 3.16.

3 Buffering

Whether communication is direct or indirect, messages exchanged by communicating processes
reside in a temporary queue. Basically, such queues can be implemented in three ways:

message next produced;

while (true) { /* produce an item in next produced */

send(next produced);

}

Figure The producer process using message passing.

• Zero capacity. The queue has a maximum length of zero; thus, the link cannot have any
messageswaiting in it. In this case, the sender must block until the recipient receives the
message.

• Bounded capacity. The queue has finite length n; thus, at most n messages can reside in it. If
the queue is not full when a new message is sent, the message is placed in the queue (either the
message is copied or a pointer to the message is kept), and the sender can continue execution
without waiting. The link’s capacity is finite, however. If the link is full, the sender must block
until space is available in the queue.

• Unbounded capacity. The queue’s length is potentially infinite; thus, any number of messages
can wait in it. The sender never blocks. The zero-capacity case is sometimes referred to as a

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 50/58

message system with no buffering. The other cases are referred to as systems with automatic
buffering.

Deadlocks

In a multiprogramming environment, several processes may compete for a finite number of
resources. A process requests resources; if the resources are not available at that time, the
process enters a waiting state. Sometimes, a waiting process is never again able to change state,
because the resources it has requested are held by other waiting processes. This situation is called
a deadlock.

A process must request a resource before using it and must release the resource after using it. A
process may request as many resources as it requires to carry out its designated task. Obviously,
the number of resources requested may not exceed the total number of resources available in the
system. In other words, a process cannot request three printers if the system has only two. Under
the normal mode of operation, a process may utilize a resource in only the following sequence:

1. Request. The process requests the resource. If the request cannot be granted immediately (for
example, if the resource is being used by another process), then the requesting process must wait
until it can acquire the resource.

2. Use. The process can operate on the resource (for example, if the resource

is a printer, the process can print on the printer).

3. Release. The process releases the resource.

A set of processes is in a deadlocked state when every process in the set is waiting for an event
that can be caused only by another process in the set. The events with which we are mainly
concerned here are resource acquisition and release. The resources may be either physical
resources (for example, printers, tape drives, memory space, and CPU cycles) or logical
resources (for example, semaphores, mutex locks, and files).

Deadlock Characterization

In a deadlock, processes never finish executing, and system resources are tied up, preventing
other jobs from starting. Before we discuss the various methods for dealing with the deadlock
problem, we look more closely at features that characterize deadlocks.

 Necessary Conditions

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 51/58

A deadlock situation can arise if the following four conditions hold simultaneously

in a system:

1. Mutual exclusion. At least one resource must be held in a non-sharable mode; that is, only
one process at a time can use the resource. If another process requests that resource, the
requesting process must be delayed until the resource has been released.

2. Hold and wait. A process must be holding at least one resource and waiting to acquire
additional resources that are currently being held by other processes.

3. No preemption. Resources cannot be preempted; that is, a resource can be released only
voluntarily by the process holding it, after that process has completed its task.

4. Circular wait. A set {P0, P1, ..., Pn} of waiting processes must exist such that P0 is waiting
for a resource held by P1, P1 is waiting for a resource held by P2, ..., Pn−1 is waiting for a
resource held by Pn, and Pn is waiting for a resource held by P0.

We emphasize that all four conditions must hold for a deadlock to occur. The circular-wait
condition implies the hold-and-wait condition, so the four conditions are not completely
independent.

Resource-Allocation Graph

Deadlocks can be described more precisely in terms of a directed graph called a system
resource-allocation graph. This graph consists of a set of vertices V and a set of edges E. The
set of vertices V is partitioned into two different types of nodes: P = {P1, P2, ..., Pn}, the set
consisting of all the active processes in the system, and R = {R1, R2, ..., Rm}, the set consisting
of all resource types in the system.

A directed edge from process Pi to resource type Rj is denoted by Pi → Rj ; it signifies that
process Pi has requested an instance of resource type Rj and is currently waiting for that
resource. A directed edge from resource type Rj to process Pi is denoted by Rj → Pi; it signifies
that an instance of resource type Rj has been allocated to process Pi. A directed edge Pi → Rj is
called a request edge; a directed edge Rj → Pi is called an assignment edge.

Pictorially, we represent each process Pi as a circle and each resource type Rj as a
rectangle. Since resource type Rj may have more than one instance, we represent each such

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 52/58

instance as a dot within the rectangle. Note that a request edge points to only the rectangle Rj ,
whereas an assignment edge must also designate one of the dots in the rectangle.

When process Pi requests an instance of resource type Rj, a request edge is inserted in the
resource-allocation graph. When this request can be fulfilled, the request edge is instantaneously
transformed to an assignment edge. When the process no longer needs access to the resource, it
releases the resource. As a result, the assignment edge is deleted.

The resource-allocation graph shown in Figure 7.1 depicts the following

situation.

• The sets P, R, and E:

◦ P = {P1, P2, P3}

Fig 2.13. Resource-allocation graph.

Given the definition of a resource-allocation graph, it can be shown that, if the graph
contains no cycles, then no process in the system is deadlocked. If the graph does contain a
cycle, then a deadlock may exist. If each resource type has exactly one instance, then a cycle
implies that a deadlock has occurred. If the cycle involves only a set of resource types, each of
which has only a single instance, then a deadlock has occurred. Each process involved in the
cycle is deadlocked. In this case, a cycle in the graph is both a necessary and a sufficient
condition for the existence of deadlock. If each resource type has several instances, then a cycle
does not necessarily imply that a deadlock has occurred. In this case, a cycle in the graph is a
necessary but not a sufficient condition for the existence of deadlock.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 53/58

Fig 2.14. Resource-allocation graph with a deadlock.

type R2. Since no resource instance is currently available, we add a request edge P3→ R2 to the
graph (Figure 7.2). At this point, two minimal cycles exist in the

system:

P1 → R1 → P2 → R3 → P3 → R2 → P1

P2 → R3 → P3 → R2 → P2

Processes P1, P2, and P3 are deadlocked. Process P2 is waiting for the resource

R3, which is held by process P3. Process P3 is waiting for either process P1 or

process P2 to release resource R2. In addition, process P1 is waiting for process

P2 to release resource R1

Methods for Handling Deadlocks

Generally speaking, we can deal with the deadlock problem in one of three

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 54/58

ways:

• We can use a protocol to prevent or avoid deadlocks, ensuring that the system will never enter
a deadlocked state.

• We can allow the system to enter a deadlocked state, detect it, and recover.

• We can ignore the problem altogether and pretend that deadlocks never occur in the system.

Methods

■Deadlock Prevention

■ Deadlock Avoidance

■Deadlock Detection

Deadlock Prevention

For a deadlock to occur, each of the four necessary conditions must hold. By ensuring that at
least one of these conditions cannot hold, we can prevent the occurrence of a deadlock.

Mutual Exclusion

The mutual exclusion condition must hold. That is, at least one resource must be nonsharable.
Sharable resources, in contrast, do not require mutually exclusive access and thus cannot be
involved in a deadlock. Read-only files are a good example of a sharable resource. If several
processes attempt to open a read-only file at the same time, they can be granted simultaneous
access to the file. A process never needs to wait for a sharable resource. In general, however, we
cannot prevent deadlocks by denying the mutual-exclusion condition, because some resources
are intrinsically nonsharable. For example, a mutex lock cannot be simultaneously shared by
several processes.

Hold and Wait

To ensure that the hold-and-wait condition never occurs in the system, we must guarantee that,
whenever a process requests a resource, it does not hold any other resources. One protocol that
we can use requires each process to request and be allocated all its resources before it begins
execution. We can implement this provision by requiring that system calls requesting resources
for a process precede all other system calls.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 55/58

An alternative protocol allows a process to request resources only when it has none. A process
may request some resources and use them. Before it can request any additional resources, it must
release all the resources that it is currently allocated.

Both these protocols have two main disadvantages. First, resource utilization may be low, since
resources may be allocated but unused for a long period. In the example given, for instance, we
can release the DVD drive and disk file, and then request the disk file and printer, only if we can
be sure that our data will remain on the disk file. Otherwise, we must request all resources at the
beginning for both protocols.

Second, starvation is possible. A process that needs several popular resources may have to wait
indefinitely, because at least one of the resources that it needs is always allocated to some other
process.

No Preemption

The third necessary condition for deadlocks is that there be no preemption of resources that have
already been allocated. To ensure that this condition does not hold, we can use the following
protocol. If a process is holding some resources and requests another resource that cannot be
immediately allocated to it (that is, the process must wait), then all resources the process is
currently holding are preempted. In other words, these resources are implicitly released. The
preempted resources are added to the list of resources for which the process is waiting. The
process will be restarted only when it can regain its old resources, as well as the new ones that it
is requesting.

Circular Wait

A set {P0, P1, ..., Pn} of waiting processes must exist such that P0 is waiting for a resource held
by P1, P1 is waiting for a resource held by P2, ..., Pn−1 is waiting for a resource held by Pn, and
Pn is waiting for a resource held by P0.

The fourth and final condition for deadlocks is the circular-wait condition. One way to ensure
that this condition never holds is to impose a total ordering of all resource types and to require
that each process requests resources in an increasing order of enumeration.

Although ensuring that resources are acquired in the proper order is the responsibility of
application developers, certain software can be used to verify that locks are acquired in the
proper order and to give appropriate warnings when locks are acquired out of order and deadlock
is possible. One lock-order verifier, which works on BSD versions of UNIX such as FreeBSD, is
known as witness

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 56/58

Deadlock Avoidance

Requires that the system has some additional a priori information available.

■ Simplest and most useful model requires that each process declare the maximum number of
resources of each type that it may need.

■ The deadlock-avoidance algorithm dynamically examines the resource-allocation state to
ensure that there can never be a circular-wait condition.

 ■ Resource-allocation state is defined by the number of available and allocated resources, and
the maximum demands of the processes

Safe State

A state is safe if the system can allocate resources to each process (up to its

maximum) in some order and still avoid a deadlock. More formally, a system

is in a safe state only if there exists a safe sequence.

Banker’s Algorithm

The resource-allocation-graph algorithm is not applicable to a resource allocation system with
multiple instances of each resource type. The deadlock avoidance algorithm that we describe
next is applicable to such a system but is less efficient than the resource-allocation graph scheme.
This algorithm is commonly known as the banker’s algorithm. The name was chosen because
the algorithm could be used in a banking system to ensure that the bank never allocated its
available cash in such a way that it could no longer satisfy the needs of all its customers.

Deadlock Detection

If a system does not employ either a deadlock-prevention or a deadlock avoidance algorithm,
then a deadlock situation may occur. In this environment, the system may provide:

• An algorithm that examines the state of the system to determine whether a deadlock has
occurred

• An algorithm to recover from the deadlock

Deadlock Detection

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 57/58

 ■ Allow system to enter deadlock state

 ■ Detection algorithm

 ■ Recovery scheme

Handling Deadlock

The above points focus on preventing deadlocks. But what to do once a deadlock has occured.
Following three strategies can be used to remove deadlock after its occurrence.

1. Preemption

We can take a resource from one process and give it to other. This will resolve the deadlock
situation, but sometimes it does causes problems.

2. Rollback

In situations where deadlock is a real possibility, the system can periodically make a record
of the state of each process and when deadlock occurs, roll everything back to the last
checkpoint, and restart, but allocating resources differently so that deadlock does not occur.

3. Kill one or more processes

This is the simplest way, but it works.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS COURSE NAME: OPERATING SYSTEMS

 COURSE CODE: 17CSU302 UNIT: II(Operating System Organization) BATCH-2017-2020

Prepared by: D. Manjula, Dr.Hemalatha,Department of CS, CA & IT, KAHE Page 58/58

UNIT II

POSSIBLE QUESTIONS

(2 MARKS)

1. What is a Kernel?
2. What is Process?
3. What is a Deadlock?
4. What is System Call?
5. What is preemptive scheduling?

(6 MARKS)

1. Explain in detail about System Calls and System Programs.
2. Write a note on Non pre-emptive and Preemptive scheduling algorithms.
3. Discuss about (i)Kernels (ii)Processor and user modes
4. Explain in detail about Threads and Threading issues
5. Explain the concept of System view of the process and resources.
6. Explain about Deadlocks in detail.
7. Discuss about (i)Process (ii)Process hierarchy.
8. Describe about Critical Section and Semaphores in detail
9. Explain about Process Scheduling in detail.
10. Discuss about Methods for inter-process communication

Sno Questions opt1 opt2 opt3 opt4 opt5 opt6 answer

1

Process is
........................

A program in
execution kernel thread deadlock

A
program

in

execution

2

In Unix, Which
system call creates

the new process? fork create new

none of
the

mentioned fork

 is a large
kernel, including

scheduling file

UNIT - 2

KARPAGAM ACADEMY OF HIGHER EDUCATION

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

II B.Sc CS (Batch 2017-2020)

OPERATING SYSTEMS

PART - A OBJECTIVE TYPE/MULTIPLE CHOICE QUESTIONS

ONLINE EXAMINATIONS ONE MARKS QUESTIONS

3

scheduling file

system, networking,

device drivers,

memory

management and

more.
Monolithic
kernel

 Micro
kernel

 Macro
kernel

 Mini
kernel

Monolith
ic kernel

4

A
architecture assigns

only a few essential

functions to the

kernel, including

address spaces, Inter

process

communication(IPC)

and basic

scheduling.
 Monolithic
kernel

 Micro
kernel

 Macro
kernel

 Mini
kernel

 Micro
kernel

5

Thread cancellation
is :

the task of
destroying the

thread once its

work is done

the task
of

removing

a thread

once its

work is

done

the task
of

terminatin

g a thread

before it

has

complete

d
None of
these

the task
of

terminati

ng a

thread

before it

has

complete

d

6

When one thread
immediately

terminates the target

thread, it is called :
Asynchronous
cancellation

Systemati
c

cancellati

on

Sudden
Terminati

on

Deferred
cancellatio

n

Asynchro
nous

cancellati

on

If multiple threads
are concurrently

searching through a

database and one

thread returns the

result then the

remaining threads None of

7

remaining threads

must be : continued cancelled protected

None of
these cancelled

8

Which of the
following are the

states of a process

model? Delete Run New

Both ii
and iiii

Both ii
and iiii

9

Process
Management

function of an

operating system

kernel includes.

 Process
creation and

termination.

 Process
schedulin

g and

dispatchi

ng
 Process
switching

 All of
these

 All of
these

10

Which of the
following is not the

function of Micro

kernel?
 File
management

 Low-
level

memory

managem

ent

 Inter-
process

communi

cation

 I/O
interrupts

manageme

nt

 File
managem

ent

11 A semaphore :

is a binary
mutex

must be
accessed

from only

one

process

can be
accessed

from

multiple

processes
None of
these

can be
accessed

from

multiple

processes

12

.................. refers to
the ability of an

operating system to

support multiple

threads of execution

with a single

process. Multithreading

Multiproc

essing

Multiexec

uting
 Bi-
threading

Multithr

eading

13

The unit of
dispatching is

usually referred to as

a ………….. Thread

Lightweig

ht process Process

 Both A
and B

 Both A
and B

14

………….is a
lightweight process

where the context

switching is low Process Thread Kernel

Minikerne
l Thread

15

Process means Program in
execution

An
asynchron

ous

activity

Entity to
which

processor

is

assigned

All All

15 assigned

16

Process states are

Submit, Ready,
Block

Submit,
Run,

Ready

Ready,
Run,

Block

None Ready,
Run,

Block

17

PCB includes Unique id of a
process

Current
state of a

process

Process’s
priority

All All

18

Concurrent access to
shared data may

result in :
data
consistency

data
insecurity

data
inconsiste

ncy
None of
these

data
inconsist

ency

19

 A situation where
several processes

access and

manipulate the same

data concurrently

and the outcome of

the execution

depends on the

particular order in

which access takes

place is called :

data

consistency

race

condition aging starvation

race
condition

20

Messages sent by a
process :

have to be of a
fixed size

have to
be a

variable

size

can be
fixed or

variable

sized
None of
these

can be
fixed or

variable

sized

21

_____________can
assume only the

value 0 or the value

1
Binary
semaphores

Counting
semaphor

es

semaphor
e

operation

s

normal
semaphore

s

Binary
semapho

res

22

Semaphores are used
to solve the problem

of
race condition

process
synchroni

zation

mutual
exclusion

belady
problem

mutual
exclusion

23
Which is non pre-
emptive

Round robin FIFO MQS MQSF FIFO

24

Each process
accessing the shared

data excludes all the

others from doing so

simultaneously

Mutual
exclusion

Deadlock
preventio

n
Preemptio
n

Circular
Wait

Mutual
exclusion

25

Critical section can
also be called

Critical region Mutual
exclusion

Parallalis
m

None Critical
region 25 also be called exclusion m region

26

How many child
processes a process

can have?

0 1 2 Any
number

Any
number

27

The structure of
parent - child

process known as

Master - Slave
structure

Parent-
Children

structure

Hierarchi
cal

structure

All Hierarch
ical

structure

28

The address of the
next instruction to be

executed by the

current process is

provided by the CPU registers

program
counter

process
stack pipe

b)
program

counter

29

Which system call
returns the process

identifier of a

terminated child? wait exit fork get a) wait

30

What is interprocess
communication?

communication
within the

process

communi
cation

between

two

process

communi
cation

between

two

threads of

same

process

none of
the

mentioned

b)
communi

cation

between

two

process

31

The interval from
the time of

submission of a

process to the time

of completion is the

Queues Processor
Sharing

Sharing
resources

turaround
time

turaroun
d time

32

The simplest CPU
sceduling algorithm

is the

FCS SJS FCFS DFG FCFS

33

_______ is the basis
of multiprogrammed

operating system.

RR scheduling Self
Schedulin

g

 CPU
sceduling

throughput CPU
sceduling

34

_____ is a
fundamental

operating system

function.

RR CPU Schedulin
g

nonpreem
ptive

Scheduli
ng

35

Process execution
begins with a_____

CPU burst RR
schedulin

g

SJF
schedulin

g

SRT
scheduling

CPU
burst

The operating
system must select

nonpreemptive short term
scheduler

long term
scheduler

low level short
term

36

system must select

one of the processes

in the ready queue to

be executed by the

scheduler scheduler term

scheduler

37

When scheduling
takes place only

under circumstances

1 and 4 called

variable class real time
class

priority
class

nonpreem
ptive

nonpree
mptive

38

Another component
involved in the CPU

scheduling function

is the ______

central edge dispatche
r

claim
edge

graph edge dispatche
r

39

One measure of
work is the number

of processes

completed per time

unit called _____

throughput variable
class

real time
class

priority
class

throughp
ut

40

Which of the
following is the

simplest scheduling

discipline?

FIFO
scheduling

RR
schedulin

g

SJF
schedulin

g

SRT
scheduling

FIFO
schedulin

g

41

A major problem
with priority

scheduling

algorithms is _____

tail Starvatio
n

time first time
quantum

Starvatio
n

42

In which scheduling,
processes are

dispatched according

to their arrival time

on the ready queue?

FIFO
scheduling

RR
schedulin

g

SJF
schedulin

g

SRT
scheduling

FIFO
schedulin

g

43

If the time quantum
is very small the RR

aproach is called

Queues Processor
Sharing

Sharing
resources

Context
switching

Processor
Sharing

44

In which scheduling,
processes are

dispatched FIFO but

are given a limited

amount of CPU

time?

FIFO
scheduling

RR
schedulin

g

SJF
schedulin

g

SRT
scheduling

RR
schedulin

g

44 time?

45

If no thread is found
the dispatcher will

execute a special

thread called______

variable class real time
class

priority
class

idle thread idle
thread

46

Deadlocks can be
described more

precisely in terms of

a directed graph

called

resource graph system
graph

system
resources

allocation

graph

request
graph

system
resources

allocatio

n graph

47

______ is th set of
methods for ensuring

that at atleast one of

the necessary

condition.

Deadlock
prevention

deadlock
avoidance

handling
deadlock

resource
deadlock

Deadlock
preventio

n

48

_____ is possible to
construct an

algorithm that

ensures that the

system will never

enter the deadlock

state.

Deadlock
prevention

deadlock
avoidance

handling
deadlock

resource
deadlock

deadlock
avoidanc

e

49

A system is in a safe
state only if there

exists a ______

Safe state unsafe
state

normal deadlock Safe state

50

A major problem for
priority __________

is starvation.

sort algorithms schedulin
g

algorithm

s

search
algorithm

s

manage
algorithms

schedulin
g

algorith

ms

51

The seek _______
strategy in which

there is no

reordering of the

queue is called SSTF

processing schedulin
g

optimizati
on

implement
ation

optimizat
ion

52

The high
___________ would

be waiting for a

lower priority one to

finish is called

priority inversion

performance priority patent graph edge priority

A __________ is a critical section sub cross class critical

53

A __________ is a
program segment

where shared

resources are

accessed.

critical section sub
section

cross
section

class
section

critical
section

54

............... refers to
the ability of

multiple process (or

threads) to share

code, resources or

data in such a way

that only one process

has access to shared

object at a time.

Synchronizatio

n
 Mutual
Exclusion

 Dead
lock Starvation

 Mutual
Exclusio

n

55

................. is the
ability of multiple

process to co-

ordinate their

activities by

exchange of

information

Synchronizatio

n
 Mutual
Exclusion

 Dead
lock Starvation

Synchron

ization

56

Which of the
following is not the

approach to dealing

with deadlock? Prevention

Avoidanc

e Detection Deletion Deletion

57

A direct method of
deadlock prevention

is to prevent the

occurrences of

...................
 Mutual
exclusion

 Hold and
wait

 Circular
waits

 No
preemptio

n

 Circular
waits

58

____________is the
process of actually

determining that a

deadlock exists
Deadlock
detection

Deadlock
preventio

n
fault
tolerant

process
synchroniz

ation Deadlock
detection

Once a system has
become

___________ the

deadlock must be

broken by removing

one or more of the

race
condition

mutual-

cooperatin
g deadlock

59

one or more of the

necessary conditions deadlocked

mutual-
exclusion

g

processes

deadlock
ed

60

In Banker's
Algorithm

____ conditions are

allowed
mutual-
exclusion

Time-
sharing

race
condition

cooperatin
g

processes

mutual-
exclusion

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

Memory Management: Physical and Virtual address space
Fixed and Variable partitions-Paging

The main purpose of a computer system is to execute programs. These programs, together with
the data they access, must be at least partially in main memory during execution. To improve
both the utilization of the CPU and the speed of its response to users, a g
computer must keep several processes in memory. Many memory
reflecting various approaches, and the effectiveness of each algorithm depends on the situation.

Selection of a memory-management scheme for a system depen
especially on the hardware design of the system. Most algorithms require hardware support.

Memory management keeps track of each and every memory location, regardless of
either it is allocated to some process or it is free. It checks h
to processes.

It decides which process will get memory at what time. It tracks whenever some memory
gets freed or unallocated and correspondingly it updates the status.

Memory consists of a large array of bytes, each with its own address.

 The memory unit sees only a stream of memory addresses; it does not know how they
are generated (by the instruction counter, indexing, indirection, literal addresses, and so on) or
what they are for (instructions or data).

Basic Hardware

Main memory and the registers built into the processor itself are the only general
storage that the CPU can access directly. There are machine instructions that take memory
addresses as arguments, but none that take disk addresses. Therefore, any instructions in
execution, and any data being used by the instructions, must be in one of these direct
storage devices. If the data are not in memory, they must be moved there before the CPU can
operate on them.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

UNIT III

Syllabus

Physical and Virtual address space-Memory Allocation strategies
Paging-Segmentation-Virtual memory

Memory Management

main purpose of a computer system is to execute programs. These programs, together with
the data they access, must be at least partially in main memory during execution. To improve
both the utilization of the CPU and the speed of its response to users, a g
computer must keep several processes in memory. Many memory-management schemes exist,
reflecting various approaches, and the effectiveness of each algorithm depends on the situation.

management scheme for a system depends on many factors,
especially on the hardware design of the system. Most algorithms require hardware support.

Memory management keeps track of each and every memory location, regardless of
either it is allocated to some process or it is free. It checks how much memory is to be allocated

It decides which process will get memory at what time. It tracks whenever some memory
gets freed or unallocated and correspondingly it updates the status.

Memory consists of a large array of bytes, each with its own address.

The memory unit sees only a stream of memory addresses; it does not know how they
are generated (by the instruction counter, indexing, indirection, literal addresses, and so on) or

t they are for (instructions or data).

Main memory and the registers built into the processor itself are the only general
storage that the CPU can access directly. There are machine instructions that take memory

s, but none that take disk addresses. Therefore, any instructions in
execution, and any data being used by the instructions, must be in one of these direct
storage devices. If the data are not in memory, they must be moved there before the CPU can

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 1/27

Memory Allocation strategies –

main purpose of a computer system is to execute programs. These programs, together with
the data they access, must be at least partially in main memory during execution. To improve
both the utilization of the CPU and the speed of its response to users, a general-purpose

management schemes exist,
reflecting various approaches, and the effectiveness of each algorithm depends on the situation.

ds on many factors,
especially on the hardware design of the system. Most algorithms require hardware support.

Memory management keeps track of each and every memory location, regardless of
ow much memory is to be allocated

It decides which process will get memory at what time. It tracks whenever some memory

The memory unit sees only a stream of memory addresses; it does not know how they
are generated (by the instruction counter, indexing, indirection, literal addresses, and so on) or

Main memory and the registers built into the processor itself are the only general-purpose
storage that the CPU can access directly. There are machine instructions that take memory

s, but none that take disk addresses. Therefore, any instructions in
execution, and any data being used by the instructions, must be in one of these direct-access
storage devices. If the data are not in memory, they must be moved there before the CPU can

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

Make sure that each process has a separate memory space. Separate per
protects the processes from each other and is fundamental to having multiple processes loaded
in memory for concurrent execution. To separate memor
determine the range of legal addresses that the process may access and to ensure that the process
can access only these legal addresses. We can provide this protection by using two registers,
usually a base and a limit, as illustrated in Figure 3.1.

 The base register holds the smallest legal physical memory address; the
specifies the size of the range. For example, if the base register holds 300040 and the limit
register is 120900, then the program can legall
420939 (inclusive).

Fig 3.1. A base and a limit register define a logical address space.

Address Binding

Usually, a program resides on a disk as a binary executable file. To be executed, the program
must be brought into memory and placed within a process. Depending on the memory
management in use, the process may be moved between disk and memory during its ex
The processes on the disk that are waiting to be brought into memory for execution form the
input queue.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

Make sure that each process has a separate memory space. Separate per-process memory space
protects the processes from each other and is fundamental to having multiple processes loaded
in memory for concurrent execution. To separate memory spaces, we need the ability to
determine the range of legal addresses that the process may access and to ensure that the process
can access only these legal addresses. We can provide this protection by using two registers,

illustrated in Figure 3.1.

holds the smallest legal physical memory address; the
specifies the size of the range. For example, if the base register holds 300040 and the limit
register is 120900, then the program can legally access all addresses from 300040 through

A base and a limit register define a logical address space.

Usually, a program resides on a disk as a binary executable file. To be executed, the program
must be brought into memory and placed within a process. Depending on the memory
management in use, the process may be moved between disk and memory during its ex
The processes on the disk that are waiting to be brought into memory for execution form the

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 2/27

process memory space
protects the processes from each other and is fundamental to having multiple processes loaded

y spaces, we need the ability to
determine the range of legal addresses that the process may access and to ensure that the process
can access only these legal addresses. We can provide this protection by using two registers,

holds the smallest legal physical memory address; the limit register
specifies the size of the range. For example, if the base register holds 300040 and the limit

y access all addresses from 300040 through

A base and a limit register define a logical address space.

Usually, a program resides on a disk as a binary executable file. To be executed, the program
must be brought into memory and placed within a process. Depending on the memory
management in use, the process may be moved between disk and memory during its execution.
The processes on the disk that are waiting to be brought into memory for execution form the

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

Addresses in the source program are generally symbolic (such as the variable count). A
compiler typically binds these symbolic addresses to
from the beginning of this module”). The linkage editor or loader in turn binds the relocatable
addresses to absolute addresses (such as 74014). Each binding is a mapping from one address
space to another.

Process Address Space

The process address space is the set of logical addresses that a process references in its code.
For example, when 32-bit addressing is in use, addresses can range from 0 to 0x7fffffff; that is,
2^31 possible numbers, for a total theoretical

The operating system takes care of mapping the logical addresses to physical addresses at the
time of memory allocation to the program. There are three types of addresses used in a program
before and after memory is allocated

1 Symbolic addresses

The addresses used in a source code. The variable names, constants, and instruction labels are
the basic elements of the symbolic address space.

2 Relative addresses

At the time of compilation, a compiler converts symbolic addresses into

3 Physical addresses

The loader generates these addresses at the time when a program is loaded into main memory.

Classically, the binding of instructions and data to memory addresses can be done at any step
along the way:

• Compile time. If you know at compile time where the process will reside in memory, then
absolute code can be generated. The MS
time.

Load time. If it is not known at compile time where the process will reside in memory,
compiler must generate relocatable code

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

Addresses in the source program are generally symbolic (such as the variable count). A
these symbolic addresses to relocatable addresses (such as “14 bytes

from the beginning of this module”). The linkage editor or loader in turn binds the relocatable
addresses to absolute addresses (such as 74014). Each binding is a mapping from one address

The process address space is the set of logical addresses that a process references in its code.
bit addressing is in use, addresses can range from 0 to 0x7fffffff; that is,

2^31 possible numbers, for a total theoretical size of 2 gigabytes.

The operating system takes care of mapping the logical addresses to physical addresses at the
time of memory allocation to the program. There are three types of addresses used in a program
before and after memory is allocated –

The addresses used in a source code. The variable names, constants, and instruction labels are
the basic elements of the symbolic address space.

At the time of compilation, a compiler converts symbolic addresses into relative addresses.

The loader generates these addresses at the time when a program is loaded into main memory.

Classically, the binding of instructions and data to memory addresses can be done at any step

. If you know at compile time where the process will reside in memory, then
can be generated. The MS-DOS .COM-format programs are bound at compile

. If it is not known at compile time where the process will reside in memory,
relocatable code.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 3/27

Addresses in the source program are generally symbolic (such as the variable count). A
relocatable addresses (such as “14 bytes

from the beginning of this module”). The linkage editor or loader in turn binds the relocatable
addresses to absolute addresses (such as 74014). Each binding is a mapping from one address

The process address space is the set of logical addresses that a process references in its code.
bit addressing is in use, addresses can range from 0 to 0x7fffffff; that is,

The operating system takes care of mapping the logical addresses to physical addresses at the
time of memory allocation to the program. There are three types of addresses used in a program

The addresses used in a source code. The variable names, constants, and instruction labels are

relative addresses.

The loader generates these addresses at the time when a program is loaded into main memory.

Classically, the binding of instructions and data to memory addresses can be done at any step

. If you know at compile time where the process will reside in memory, then
format programs are bound at compile

. If it is not known at compile time where the process will reside in memory, then the

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

Execution time. If the process can be moved during its execution from one memory segment to
another, then binding must be delayed until run time. Special hardware must be available for this
scheme to work.

Logical versus Physical Address Space

An address generated by the CPU is a logical address whereas address actually available on
memory unit is a physical address. Logical address is also known a Virtual address.

Virtual and physical addresses are the
schemes. Virtual and physical addresses differ in execution

The set of all logical addresses generated by a program is referred to as a logical address space.
The set of all physical addresses corresponding to these logical addresses is referred to as a
physical address space.

The run-time mapping from virtual to physical address is done by the memory management unit
(MMU) which is a hardware device. MMU uses following mechanism
to physical address.

 The value in the base register is added to every address generated by a user process which
is treated as offset at the time it is sent to memory. For example, if the base register value is
10000, then an attempt by the user to use address location 100 will be dynamically reallocated to
location 10100.
 The user program deals with virtual addresses; it never sees the real physical addresses.

An address generated by the CPU is commonly referred to as a
address seen by the memory unit
the memory—is commonly referred to as a

 The compile-time and load-time address
physical addresses. However, the execution
logical and physical addresses. In this case, we usually refer to the logical address as a
address.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

. If the process can be moved during its execution from one memory segment to
another, then binding must be delayed until run time. Special hardware must be available for this

Logical versus Physical Address Space

An address generated by the CPU is a logical address whereas address actually available on
memory unit is a physical address. Logical address is also known a Virtual address.

Virtual and physical addresses are the same in compile-time and load-time address
schemes. Virtual and physical addresses differ in execution-time address-binding scheme.

The set of all logical addresses generated by a program is referred to as a logical address space.
ysical addresses corresponding to these logical addresses is referred to as a

time mapping from virtual to physical address is done by the memory management unit
(MMU) which is a hardware device. MMU uses following mechanism to convert virtual address

The value in the base register is added to every address generated by a user process which
is treated as offset at the time it is sent to memory. For example, if the base register value is

empt by the user to use address location 100 will be dynamically reallocated to

The user program deals with virtual addresses; it never sees the real physical addresses.

An address generated by the CPU is commonly referred to as a logical address, whereas an
address seen by the memory unit—that is, the one loaded into the memory-address register

is commonly referred to as a physical address.

time address-binding methods generate identical logical and
physical addresses. However, the execution-time address binding scheme results in differing
logical and physical addresses. In this case, we usually refer to the logical address as a

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 4/27

. If the process can be moved during its execution from one memory segment to
another, then binding must be delayed until run time. Special hardware must be available for this

An address generated by the CPU is a logical address whereas address actually available on
memory unit is a physical address. Logical address is also known a Virtual address.

time address-binding
binding scheme.

The set of all logical addresses generated by a program is referred to as a logical address space.
ysical addresses corresponding to these logical addresses is referred to as a

time mapping from virtual to physical address is done by the memory management unit
to convert virtual address

The value in the base register is added to every address generated by a user process which
is treated as offset at the time it is sent to memory. For example, if the base register value is

empt by the user to use address location 100 will be dynamically reallocated to

The user program deals with virtual addresses; it never sees the real physical addresses.

, whereas an
address register of

binding methods generate identical logical and
time address binding scheme results in differing

logical and physical addresses. In this case, we usually refer to the logical address as a virtual

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

Fig 3.2. Physical address and Logical Address

The set of all logical addresses generated by a program is a
physical addresses corresponding to these logical addresses is a
in the execution-time address-binding scheme, the logical and

The run-time mapping from virtual to physical addresses is done by a hardware device called the
memory-management unit (MMU)
value in the relocation register is ad
the address is sent to memory (see Figure 8.4). For example, if the base is at 14000, then an
attempt by the user to address location 0 is dynamically relocated to location14000; an access to
location 346 is mapped to location 14346.

The user program never sees the real physical addresses.

Static vs Dynamic Loading

At the time of loading, with static loading
memory in order for execution to start.

If you are using dynamic loading
relocatable form and are loaded into memory only when they are needed by the program.

Static vs Dynamic Linking

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

Fig 3.2. Physical address and Logical Address

The set of all logical addresses generated by a program is a logical address space
physical addresses corresponding to these logical addresses is a physical address space

binding scheme, the logical and physical address spaces differ.

time mapping from virtual to physical addresses is done by a hardware device called the
management unit (MMU). The base register is now called a relocation register

value in the relocation register is added to every address generated by a user process at the time
the address is sent to memory (see Figure 8.4). For example, if the base is at 14000, then an
attempt by the user to address location 0 is dynamically relocated to location14000; an access to

ation 346 is mapped to location 14346.

The user program never sees the real physical addresses.

static loading, the absolute program (and data) is loaded into
memory in order for execution to start.

dynamic loading, dynamic routines of the library are stored on a disk in
relocatable form and are loaded into memory only when they are needed by the program.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 5/27

logical address space. The set of all
physical address space. Thus,

physical address spaces differ.

time mapping from virtual to physical addresses is done by a hardware device called the
relocation register. The

ded to every address generated by a user process at the time
the address is sent to memory (see Figure 8.4). For example, if the base is at 14000, then an
attempt by the user to address location 0 is dynamically relocated to location14000; an access to

, the absolute program (and data) is loaded into

, dynamic routines of the library are stored on a disk in
relocatable form and are loaded into memory only when they are needed by the program.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

As explained above, when static linking is used, the l
by a program into a single executable program to avoid any runtime dependency.

When dynamic linking is used, it is not required to link the actual module or library with the
program, rather a reference to the dynamic
linking. Dynamic Link Libraries (DLL) in Windows and Shared Objects in Unix are good
examples of dynamic libraries.

Swapping

Swapping is a mechanism in which a process can be swapped temporarily out of
to a backing store , and then brought back into memory for continued execution.

Backing store is a usually a hard disk drive or any other secondary storage which fast in access
and large enough to accommodate copies of all memory images for all
of providing direct access to these memory images.

Memory Allocation

Now we are ready to turn to memory allocation. One of the simplest methods for allocating
memory is to divide memory into several fixed
exactly one process. Thus, the degree of multiprogramming is bound by the number of partitions.
In this multiplepartition method

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

As explained above, when static linking is used, the linker combines all other modules needed
by a program into a single executable program to avoid any runtime dependency.

When dynamic linking is used, it is not required to link the actual module or library with the
program, rather a reference to the dynamic module is provided at the time of compilation and
linking. Dynamic Link Libraries (DLL) in Windows and Shared Objects in Unix are good

Swapping is a mechanism in which a process can be swapped temporarily out of
to a backing store , and then brought back into memory for continued execution.

Backing store is a usually a hard disk drive or any other secondary storage which fast in access
and large enough to accommodate copies of all memory images for all users. It must be capable
of providing direct access to these memory images.

Fig 3.3. Process of Swapping

Now we are ready to turn to memory allocation. One of the simplest methods for allocating
memory is to divide memory into several fixed-sized partitions. Each partition may contain
exactly one process. Thus, the degree of multiprogramming is bound by the number of partitions.

multiplepartition method, when a partition is free, a process is selected from the input

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 6/27

inker combines all other modules needed
by a program into a single executable program to avoid any runtime dependency.

When dynamic linking is used, it is not required to link the actual module or library with the
module is provided at the time of compilation and

linking. Dynamic Link Libraries (DLL) in Windows and Shared Objects in Unix are good

Swapping is a mechanism in which a process can be swapped temporarily out of main memory
to a backing store , and then brought back into memory for continued execution.

Backing store is a usually a hard disk drive or any other secondary storage which fast in access
users. It must be capable

Now we are ready to turn to memory allocation. One of the simplest methods for allocating
. Each partition may contain

exactly one process. Thus, the degree of multiprogramming is bound by the number of partitions.
, when a partition is free, a process is selected from the input

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

queue and is loaded into the free
available for another process. it is used primarily in batch environments.

In the variable-partition
parts of memory are available an
processes and is considered one large block of available memory, a
see, memorycontains a set of holes of various sizes.

This procedure is a particular instance
which concerns how to satisfy a request of size
solutions to this problem. The first
commonly used to select a free hole from the set of available holes.

Memory Allocation Strategies

1. First Fit
2. Best fit
3. Worst fit
4. Next fit

First Fit

• First fit. Allocate the first hole that is big enough. Searching can start eitherat the beginning of
the set of holes or at the location where the previousfirst
as soon as we find a free holethat is large enough.

In the first fit approach is to allocate the first free partition or hole large enough which can
accommodate the process. It fini

Advantage

Fastest algorithm because it searches as little as possible.

Disadvantage

The remaining unused memory areas left after allocation become waste if it is too smaller. Thus
request for larger memory requirement cannot be accomplished.

First Fit

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

queue and is loaded into the free partition. When the process terminates, the partition becomes
available for another process. it is used primarily in batch environments.

partition scheme, the operating system keeps a table indicating which
parts of memory are available and which are occupied. Initially, all memory is available for user
processes and is considered one large block of available memory, a hole. Eventually, as you will
see, memorycontains a set of holes of various sizes.

This procedure is a particular instance of the general dynamic storageallocation problem
which concerns how to satisfy a request of size n from a list of free holes. There are many

first-fit, best-fit, and worst-fit strategies are the ones most
lect a free hole from the set of available holes.

Memory Allocation Strategies

. Allocate the first hole that is big enough. Searching can start eitherat the beginning of
e location where the previousfirst-fit search ended. We can stop searching

as soon as we find a free holethat is large enough.

In the first fit approach is to allocate the first free partition or hole large enough which can
accommodate the process. It finishes after finding the first suitable free partition.

Fastest algorithm because it searches as little as possible.

The remaining unused memory areas left after allocation become waste if it is too smaller. Thus
memory requirement cannot be accomplished.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 7/27

partition. When the process terminates, the partition becomes

scheme, the operating system keeps a table indicating which
d which are occupied. Initially, all memory is available for user

. Eventually, as you will

dynamic storageallocation problem,
from a list of free holes. There are many

strategies are the ones most

. Allocate the first hole that is big enough. Searching can start eitherat the beginning of
fit search ended. We can stop searching

In the first fit approach is to allocate the first free partition or hole large enough which can
shes after finding the first suitable free partition.

The remaining unused memory areas left after allocation become waste if it is too smaller. Thus

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

The first of these is called first fit. The basic idea with first fit allocation is that we begin
searching the list and take the first block whose size is greater than or equal to the request size. If
we reach the end of the list without finding a suitable block, then the request fails.

 To illustrate the behavior of first fit allocation, as well as the other allocation policies later, we
trace their behavior on a set of allocation and deallocation req
A20, A15, A10, A25, D20, D10, A8, A30, D15, A15, where An denotes an allocation request for
n KB and Dn denotes a deallocation request for the allocated block of size n KB. (For simplicity
of notation, we have only one blo
depend on this property; it is used here merely for clarity.) In these examples, the memory space
from which we serve requests is 128 KB. Each row of Figure 9
after the operation labeling it on the left.

 Shaded blocks are allocated and unshaded blocks are free. The size of each block is shown in
the corresponding box in the figure. In this, and other allocation figures in this chapter, time
moves downward in the figure. In other words, each operation happens prior to the one below it.

Next Fit

If we want to spread the allocations out more evenly across the memory space, we often

use a policy called next fit. This scheme is very similar

for the place where the search starts.In next fit, we begin the search with the free block

that was next on the list after the last allocation.

a circular one. If we come back to the

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

The first of these is called first fit. The basic idea with first fit allocation is that we begin
searching the list and take the first block whose size is greater than or equal to the request size. If

e reach the end of the list without finding a suitable block, then the request fails.

To illustrate the behavior of first fit allocation, as well as the other allocation policies later, we
trace their behavior on a set of allocation and deallocation requests. We denote this sequence as
A20, A15, A10, A25, D20, D10, A8, A30, D15, A15, where An denotes an allocation request for
n KB and Dn denotes a deallocation request for the allocated block of size n KB. (For simplicity
of notation, we have only one block of a given size allocated at a time. None of the policies
depend on this property; it is used here merely for clarity.) In these examples, the memory space
from which we serve requests is 128 KB. Each row of Figure 9-9 shows the state of memory

e operation labeling it on the left.

Shaded blocks are allocated and unshaded blocks are free. The size of each block is shown in
the corresponding box in the figure. In this, and other allocation figures in this chapter, time

e. In other words, each operation happens prior to the one below it.

Fig 3.4. First Fit Allocation

If we want to spread the allocations out more evenly across the memory space, we often

This scheme is very similar to the first fit approach, except

for the place where the search starts.In next fit, we begin the search with the free block

that was next on the list after the last allocation. During the search, we treat the list as

a circular one. If we come back to the place where we started without finding a suitable

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 8/27

The first of these is called first fit. The basic idea with first fit allocation is that we begin
searching the list and take the first block whose size is greater than or equal to the request size. If

e reach the end of the list without finding a suitable block, then the request fails.

To illustrate the behavior of first fit allocation, as well as the other allocation policies later, we
uests. We denote this sequence as

A20, A15, A10, A25, D20, D10, A8, A30, D15, A15, where An denotes an allocation request for
n KB and Dn denotes a deallocation request for the allocated block of size n KB. (For simplicity

ck of a given size allocated at a time. None of the policies
depend on this property; it is used here merely for clarity.) In these examples, the memory space

9 shows the state of memory

Shaded blocks are allocated and unshaded blocks are free. The size of each block is shown in
the corresponding box in the figure. In this, and other allocation figures in this chapter, time

e. In other words, each operation happens prior to the one below it.

If we want to spread the allocations out more evenly across the memory space, we often

to the first fit approach, except

for the place where the search starts.In next fit, we begin the search with the free block

During the search, we treat the list as

place where we started without finding a suitable

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

block, then the search fails.

For the next three allocation policies in this section, the results after the first six requests

(up through the D10 request) are the same. In Figure 9

each of the other requests when following the next fit policy.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

For the next three allocation policies in this section, the results after the first six requests

(up through the D10 request) are the same. In Figure 9-10, we show the the results after

each of the other requests when following the next fit policy.

Fig 3.5. Next Fit Allocation

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 9/27

For the next three allocation policies in this section, the results after the first six requests

sults after

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

Best Fit

• Best fit. Allocate the smallest hole that is big enough.Wemust search theentire list, unless the
list is ordered by size. This strategy

The best fit deals with allocating the smallest free partition which meets the requirement of the
requesting process. This algorithm first searches the entire list of free partitions and considers
the smallest hole that is adequate. It then tries to find a hole which is close to actual process size
needed.

Advantage

Memory utilization is much better than first fit as it searches the smallest free partition first
available.

Disadvantage

It is slower and may even tend to

In many ways, the most natural approach is to allocate the free block that is closest insize
to the request. This technique is called best fit. In best fit, we search the list for theblock that is
smallest but greater than or equal to the request size.

As with the next fit example, we show only the final four steps of best fit allocation forour
example.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

. Allocate the smallest hole that is big enough.Wemust search theentire list, unless the
list is ordered by size. This strategy produces thesmallest leftover hole.

The best fit deals with allocating the smallest free partition which meets the requirement of the
requesting process. This algorithm first searches the entire list of free partitions and considers

is adequate. It then tries to find a hole which is close to actual process size

Memory utilization is much better than first fit as it searches the smallest free partition first

It is slower and may even tend to fill up memory with tiny useless holes.

In many ways, the most natural approach is to allocate the free block that is closest insize
to the request. This technique is called best fit. In best fit, we search the list for theblock that is

r than or equal to the request size.

As with the next fit example, we show only the final four steps of best fit allocation forour

Fig 3.6. Best Fit Allocation

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 10/27

. Allocate the smallest hole that is big enough.Wemust search theentire list, unless the

The best fit deals with allocating the smallest free partition which meets the requirement of the
requesting process. This algorithm first searches the entire list of free partitions and considers

is adequate. It then tries to find a hole which is close to actual process size

Memory utilization is much better than first fit as it searches the smallest free partition first

In many ways, the most natural approach is to allocate the free block that is closest insize
to the request. This technique is called best fit. In best fit, we search the list for theblock that is

As with the next fit example, we show only the final four steps of best fit allocation forour

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

Worst fit

• Worst fit. Allocate the largest hole. Again, we must search the entire
size. This strategy produces the largest leftover hole,which may be more useful than the smaller
leftover hole from a best-fitapproach.

In worst fit approach is to locate largest available free portion so that the portion left
enough to be useful. It is the reverse of best fit.

Advantage

Reduces the rate of production of small gaps.

Disadvantage

If a process requiring larger memory arrives at a later stage then it cannot be accommodated as
the largest hole is already split and occupied.

Worst Fit

If best fit allocates the smallest block that satisfies the request, then worst fit allocatesthe largest
block for every request. Although the name would suggest that we wouldnever use the worst fit
policy, it does have one advantage: If most of the requests are ofsimilar size, a worst fit policy
tends to minimize external fragmentation.

Main memory usually has two partitions

 Low Memory − Operating system resides in this memory.
 High Memory − User processes are held in high memory.

Operating system uses the following memory allocation mechanism.

1 Single-partition allocation

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

. Allocate the largest hole. Again, we must search the entire list,unless it is sorted by
size. This strategy produces the largest leftover hole,which may be more useful than the smaller

fitapproach.

In worst fit approach is to locate largest available free portion so that the portion left
enough to be useful. It is the reverse of best fit.

Reduces the rate of production of small gaps.

If a process requiring larger memory arrives at a later stage then it cannot be accommodated as
split and occupied.

If best fit allocates the smallest block that satisfies the request, then worst fit allocatesthe largest
block for every request. Although the name would suggest that we wouldnever use the worst fit

dvantage: If most of the requests are ofsimilar size, a worst fit policy
tends to minimize external fragmentation.

Fig 3.7. Worst fit allocation

Main memory usually has two partitions −

− Operating system resides in this memory.
User processes are held in high memory.

Operating system uses the following memory allocation mechanism.

partition allocation

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 11/27

list,unless it is sorted by
size. This strategy produces the largest leftover hole,which may be more useful than the smaller

In worst fit approach is to locate largest available free portion so that the portion left will be big

If a process requiring larger memory arrives at a later stage then it cannot be accommodated as

If best fit allocates the smallest block that satisfies the request, then worst fit allocatesthe largest
block for every request. Although the name would suggest that we wouldnever use the worst fit

dvantage: If most of the requests are ofsimilar size, a worst fit policy

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

In this type of allocation, relocation
other, and from changing operating
smallest physical address whereas limit register contains range of logical addresses. Each
logical address must be less than the limit register.

2 Multiple-partition allocation

In this type of allocation, main memory is divided into a number of fixed
each partition should contain only one process. When a partition is free, a process is selected
from the input queue and is loaded into the free partition. When the
partition becomes available for another process.

Fragmentation

As processes are loaded and removed from memory, the free memory space is broken into little
pieces. It happens after sometimes that processes cannot be allocated to me
considering their small size and memory blocks remains unused. This problem is known as
Fragmentation.

Fragmentation is of two types −

1 External fragmentation

Total memory space is enough to satisfy a request or to reside a process in it, but
contiguous, so it cannot be used.

2 Internal fragmentation

Memory block assigned to process is bigger. Some portion of memory is left unused, as it cannot
be used by another process.

Fixed and Variable partitions

1. Fixed Partitioning: Main memory is divided into a no. of static partitions at system generation
time. A process may be loaded into a partition of equal or greater size.

 Memory Manager will allocate a region to a process that best fits it

Unused memory within an allocated partiti

Advantages:

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

In this type of allocation, relocation-register scheme is used to protect user processes from each
ing operating-system code and data. Relocation register contains value of

smallest physical address whereas limit register contains range of logical addresses. Each
logical address must be less than the limit register.

partition allocation

is type of allocation, main memory is divided into a number of fixed-sized partitions where
each partition should contain only one process. When a partition is free, a process is selected
from the input queue and is loaded into the free partition. When the process terminates, the
partition becomes available for another process.

As processes are loaded and removed from memory, the free memory space is broken into little
pieces. It happens after sometimes that processes cannot be allocated to me
considering their small size and memory blocks remains unused. This problem is known as

External fragmentation

Total memory space is enough to satisfy a request or to reside a process in it, but

Memory block assigned to process is bigger. Some portion of memory is left unused, as it cannot

Fixed and Variable partitions

memory is divided into a no. of static partitions at system generation
time. A process may be loaded into a partition of equal or greater size.

Memory Manager will allocate a region to a process that best fits it

Unused memory within an allocated partition called internal fragmentation.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 12/27

register scheme is used to protect user processes from each
system code and data. Relocation register contains value of

smallest physical address whereas limit register contains range of logical addresses. Each

sized partitions where
each partition should contain only one process. When a partition is free, a process is selected

process terminates, the

As processes are loaded and removed from memory, the free memory space is broken into little
pieces. It happens after sometimes that processes cannot be allocated to memory blocks
considering their small size and memory blocks remains unused. This problem is known as

Total memory space is enough to satisfy a request or to reside a process in it, but it is not

Memory block assigned to process is bigger. Some portion of memory is left unused, as it cannot

memory is divided into a no. of static partitions at system generation

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

Simple to implement

Little OS overhead

Disadvantages:

Inefficient use of Memory due to internal fragmentation. Main memory utilization is extremely
inefficient. Any program, no matter how small, occupies an e
which there is wasted space internal to a partition due to the fact that the block of data loaded is
smaller than the partition, is referred to as internal fragmentation.

 Two possibilities:

 a). Equal size partitioning

b). Unequal size Partition

Not suitable for systems in which process memory requirements not known ahead of time; i.e.
timesharing systems

Fig 3.8. (a) Fixed memory partitions with separate input queues for each partition.

(b) Fixed memory partitions with a single input queue.

When the queue for a large partition is empty but the queue for a small partition is full, as is the
case for partitions 1 and 3. Here small jobs have to wait to get into memory, even though plenty
of memory is free.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

Inefficient use of Memory due to internal fragmentation. Main memory utilization is extremely
inefficient. Any program, no matter how small, occupies an entire partition. This phenomenon, in
which there is wasted space internal to a partition due to the fact that the block of data loaded is
smaller than the partition, is referred to as internal fragmentation.

Not suitable for systems in which process memory requirements not known ahead of time; i.e.

(a) Fixed memory partitions with separate input queues for each partition.

with a single input queue.

When the queue for a large partition is empty but the queue for a small partition is full, as is the
case for partitions 1 and 3. Here small jobs have to wait to get into memory, even though plenty

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 13/27

Inefficient use of Memory due to internal fragmentation. Main memory utilization is extremely
ntire partition. This phenomenon, in

which there is wasted space internal to a partition due to the fact that the block of data loaded is

Not suitable for systems in which process memory requirements not known ahead of time; i.e.

(a) Fixed memory partitions with separate input queues for each partition.

When the queue for a large partition is empty but the queue for a small partition is full, as is the
case for partitions 1 and 3. Here small jobs have to wait to get into memory, even though plenty

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

An alternative organization is to maintain a single queue as in Fig. 4

becomes free, the job closest to the front of the queue that fits in it could be loaded into the
empty partition and run.

2. Dynamic/Variable Partitioning:

To overcome some of the difficulties with fixed partitioning, an approach known as dynamic

partitioning was developed . The partitions are of variable length and number. When a process is

brought into main memory, it is allocated exactly as much memory as it requires
An example, using 64 Mbytes of main memory, is shown in Figure Eventually it leads to a
situation in which there are a lot of small holes in memory. As time goes on, memory

becomes more and more fragmented, and memory utilization declines. Thi
referred to as external fragmentation
partitions becomes increasingly fragmented.

One technique for overcoming external fragmentation is compaction: From time to time, the
operating system shifts the processes so that they are contiguous and so that all of the free
memory is together in one block. For example, in Figure h, compaction will result in a block of
free memory of length 16M.

This may well be sufficient to load in an additional pr
compaction is that it is a time consuming procedure and wasteful of processor time.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

ve organization is to maintain a single queue as in Fig. 4-2(b). Whenever a partition

becomes free, the job closest to the front of the queue that fits in it could be loaded into the

2. Dynamic/Variable Partitioning:

some of the difficulties with fixed partitioning, an approach known as dynamic

partitioning was developed . The partitions are of variable length and number. When a process is

brought into main memory, it is allocated exactly as much memory as it requires
An example, using 64 Mbytes of main memory, is shown in Figure Eventually it leads to a
situation in which there are a lot of small holes in memory. As time goes on, memory

becomes more and more fragmented, and memory utilization declines. This phenomenon is
external fragmentation, indicating that the memory that is external to all

partitions becomes increasingly fragmented.

One technique for overcoming external fragmentation is compaction: From time to time, the
shifts the processes so that they are contiguous and so that all of the free

memory is together in one block. For example, in Figure h, compaction will result in a block of

This may well be sufficient to load in an additional process. The difficulty with
compaction is that it is a time consuming procedure and wasteful of processor time.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 14/27

2(b). Whenever a partition

becomes free, the job closest to the front of the queue that fits in it could be loaded into the

some of the difficulties with fixed partitioning, an approach known as dynamic

partitioning was developed . The partitions are of variable length and number. When a process is

brought into main memory, it is allocated exactly as much memory as it requires and no more.
An example, using 64 Mbytes of main memory, is shown in Figure Eventually it leads to a
situation in which there are a lot of small holes in memory. As time goes on, memory

s phenomenon is
, indicating that the memory that is external to all

One technique for overcoming external fragmentation is compaction: From time to time, the
shifts the processes so that they are contiguous and so that all of the free

memory is together in one block. For example, in Figure h, compaction will result in a block of

ocess. The difficulty with
compaction is that it is a time consuming procedure and wasteful of processor time.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

Fig.3.9.

Paging

A computer can address more memory than the amount physically installed on the system. This
extra memory is actually called virtual memory and it is a section of a hard that's set up to
emulate the computer's RAM. Paging technique plays an important role in implementing virtual
memory.

Paging is a memory management technique in which process addr
blocks of the same size called pages
The size of the process is measured in the number of pages.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

3.9. The Effect of dynamic partitioning

A computer can address more memory than the amount physically installed on the system. This
extra memory is actually called virtual memory and it is a section of a hard that's set up to
emulate the computer's RAM. Paging technique plays an important role in implementing virtual

Paging is a memory management technique in which process address space is broken into
pages (size is power of 2, between 512 bytes and 8192 bytes).

The size of the process is measured in the number of pages.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 15/27

A computer can address more memory than the amount physically installed on the system. This
extra memory is actually called virtual memory and it is a section of a hard that's set up to
emulate the computer's RAM. Paging technique plays an important role in implementing virtual

ess space is broken into
(size is power of 2, between 512 bytes and 8192 bytes).

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

Similarly, main memory is divided into small fixed
called frames and the size of a frame is kept the same as that of a page to have optimum
utilization of the main memory and to avoid external fragmentation.

Address Translation

Page address is called logical address

Logical Address = Page number + page offset

Frame address is called physical address

Physical Address = Frame number + page offset

A data structure called page map
process to a frame in physical memory.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

Similarly, main memory is divided into small fixed-sized blocks of (physical)
and the size of a frame is kept the same as that of a page to have optimum

utilization of the main memory and to avoid external fragmentation.

Fig 3.10. Paging Process

logical address and represented by page numberand the

Logical Address = Page number + page offset

physical address and represented by a frame number and the

Physical Address = Frame number + page offset

page map table is used to keep track of the relation between a page of a
process to a frame in physical memory.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 16/27

sized blocks of (physical) memory
and the size of a frame is kept the same as that of a page to have optimum

and the offset.

and the offset.

is used to keep track of the relation between a page of a

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

Fig 3.11. Paging with Page Table

When the system allocates a frame to any page, it translates this logical address into a physical
address and create entry into the page table to be used throughout execution of the program.

When a process is to be executed, its corresponding pages are loaded into any available memory
frames. Suppose you have a program of 8Kb but your memory can accommodate only 5Kb at a
given point in time, then the paging concept will come into picture. When a computer runs out
of RAM, the operating system (OS) will move idle or unwanted pages of memory to secondary
memory to free up RAM for other processes and brings them back when need
program.

This process continues during the whole execution of the program where the OS keeps
removing idle pages from the main memory and write them onto the secondary memory and
bring them back when required by the program.

Advantages and Disadvantages of Paging

Here is a list of advantages and disadvantages of paging

 Paging reduces external fragmentation, but still suffer from internal fragmentation.
 Paging is simple to implement and assumed as an efficient memory management

technique.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

Fig 3.11. Paging with Page Table

When the system allocates a frame to any page, it translates this logical address into a physical
ntry into the page table to be used throughout execution of the program.

When a process is to be executed, its corresponding pages are loaded into any available memory
frames. Suppose you have a program of 8Kb but your memory can accommodate only 5Kb at a
given point in time, then the paging concept will come into picture. When a computer runs out
of RAM, the operating system (OS) will move idle or unwanted pages of memory to secondary
memory to free up RAM for other processes and brings them back when need

This process continues during the whole execution of the program where the OS keeps
removing idle pages from the main memory and write them onto the secondary memory and
bring them back when required by the program.

antages of Paging

Here is a list of advantages and disadvantages of paging −

Paging reduces external fragmentation, but still suffer from internal fragmentation.
Paging is simple to implement and assumed as an efficient memory management

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 17/27

When the system allocates a frame to any page, it translates this logical address into a physical
ntry into the page table to be used throughout execution of the program.

When a process is to be executed, its corresponding pages are loaded into any available memory
frames. Suppose you have a program of 8Kb but your memory can accommodate only 5Kb at a
given point in time, then the paging concept will come into picture. When a computer runs out
of RAM, the operating system (OS) will move idle or unwanted pages of memory to secondary
memory to free up RAM for other processes and brings them back when needed by the

This process continues during the whole execution of the program where the OS keeps
removing idle pages from the main memory and write them onto the secondary memory and

Paging reduces external fragmentation, but still suffer from internal fragmentation.
Paging is simple to implement and assumed as an efficient memory management

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

 Due to equal size of the pages and frames, swapping becomes very easy.
 Page table requires extra memory space, so may not be good for a system having small

RAM.

Paging

External fragmentation is avoided by using paging technique. Paging is a technique in which
physical memory is broken into blocks of the same size called pages (size is power of 2, between
512 bytes and 8192 bytes). When a process is to be executed, it's corresponding pages are loaded
into any available memory frames.

Logical address space of a proc
memory whenever the free memory frame is available. Operating system keeps track of all free
frames. Operating system needs n free frames to run a program of size n pages.

Address generated by CPU is divided into

 Page number (p) -- page number is used as an index into a page table which contains
base address of each page in physical memory.
 Page offset (d) -- page offset is combined with base address to define the physical
memory address.

● Each virtual address space is divided into fixed

 ● The physical address space is divided into fixed

● Pages have same size as frames.

● The kernel maintains a page table (or page
within which each page is located.

● The CPU's memory management unit (MMU) translates virtual addresses to physical addresses
on-the-fly for every memory access.

 Properties:

● relatively simple to implement (in hardware);

● virtual address space need not be physically contiguous.

Basic Method

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

equal size of the pages and frames, swapping becomes very easy.
Page table requires extra memory space, so may not be good for a system having small

External fragmentation is avoided by using paging technique. Paging is a technique in which
sical memory is broken into blocks of the same size called pages (size is power of 2, between

512 bytes and 8192 bytes). When a process is to be executed, it's corresponding pages are loaded
into any available memory frames.

Logical address space of a process can be non-contiguous and a process is allocated physical
memory whenever the free memory frame is available. Operating system keeps track of all free
frames. Operating system needs n free frames to run a program of size n pages.

PU is divided into

page number is used as an index into a page table which contains
base address of each page in physical memory.

page offset is combined with base address to define the physical

virtual address space is divided into fixed-size chunks called pages.

● The physical address space is divided into fixed-size chunks called frames.

● Pages have same size as frames.

● The kernel maintains a page table (or page-frame table) for each process, specifying the frame
within which each page is located.

● The CPU's memory management unit (MMU) translates virtual addresses to physical addresses
fly for every memory access.

● relatively simple to implement (in hardware);

virtual address space need not be physically contiguous.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 18/27

Page table requires extra memory space, so may not be good for a system having small

External fragmentation is avoided by using paging technique. Paging is a technique in which
sical memory is broken into blocks of the same size called pages (size is power of 2, between

512 bytes and 8192 bytes). When a process is to be executed, it's corresponding pages are loaded

contiguous and a process is allocated physical
memory whenever the free memory frame is available. Operating system keeps track of all free

page number is used as an index into a page table which contains

page offset is combined with base address to define the physical

ess, specifying the frame

● The CPU's memory management unit (MMU) translates virtual addresses to physical addresses

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

The basic method for implementing paging involves breaking physical memoryinto fixed
blocks called frames and breaking logical memory intoblocks of the same size called

When a process is to be executed, itspages are loaded into any available memory frames
from their source (a filesystem or the backing store). The backing store is divided into fixed
sizedblocks that are the same size as the memory frames or clusters of multip
rather simple idea has great functionality and wide ramifications.For example, the logical address
space is now totally separate from the physicaladdress space, so a process can have a logical 64
bit address space even thoughthe system has l

The hardware support for pagi
divided into two parts: a page number (p)
index into a page table. The page
memory. This base addressis combined with the page offset to define the physical memory
address thatis sent to the memory unit. The paging model of memory is shown in Figure.

Following figure show the

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

The basic method for implementing paging involves breaking physical memoryinto fixed
and breaking logical memory intoblocks of the same size called

n a process is to be executed, itspages are loaded into any available memory frames
from their source (a filesystem or the backing store). The backing store is divided into fixed
sizedblocks that are the same size as the memory frames or clusters of multip
rather simple idea has great functionality and wide ramifications.For example, the logical address
space is now totally separate from the physicaladdress space, so a process can have a logical 64
bit address space even thoughthe system has less than 264 bytes of physical memory.

The hardware support for paging is illustrated. Every addressgenerated by the CPU is
page number (p) and a pageoffset (d). The page number is used as an
. The page tablecontains the base address of each page in physical

memory. This base addressis combined with the page offset to define the physical memory
address thatis sent to the memory unit. The paging model of memory is shown in Figure.

Following figure show the paging table architecture.

Fig 3.12. Page Table

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 19/27

The basic method for implementing paging involves breaking physical memoryinto fixed-sized
and breaking logical memory intoblocks of the same size called pages.

n a process is to be executed, itspages are loaded into any available memory frames
from their source (a filesystem or the backing store). The backing store is divided into fixed-
sizedblocks that are the same size as the memory frames or clusters of multipleframes. This
rather simple idea has great functionality and wide ramifications.For example, the logical address
space is now totally separate from the physicaladdress space, so a process can have a logical 64-

ess than 264 bytes of physical memory.

. Every addressgenerated by the CPU is
. The page number is used as an

tablecontains the base address of each page in physical
memory. This base addressis combined with the page offset to define the physical memory
address thatis sent to the memory unit. The paging model of memory is shown in Figure.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

The page size (like the frame size) is defined by the hardware. The size of apage is a power of 2,
varying between 512 bytes and 1 GB per page, dependingon the computer architecture. The
selection of a power of 2 as a page sizemakes the translation of a logical address into a page
number and page offsetparticularly easy. If the size of the logical address space is 2
size is2n bytes, then the high-order
the n low-order bits designate the page offset. Thus, the logicaladdress is as follows:

where p is an index into the page table and

Segmentation

Segmentation is a memory-management scheme that
A logical address space is a collection of segments.

As we’ve already seen, the user’s view of memory is not the same as the actualphysical memory.
This is equally true of the programmer’s view of memory.Indeed, deal
of its physical properties is inconvenientto both the operating system and the programmer. What
if the hardware couldprovide a memory mechanism that mapped the programmer’s view to
theactual physical memory? The system would have m
programmer would have a more natural programmingenvironment. Segmentation provides such
a mechanism.

Basic MethodDo programmers think of memory as a linear array of bytes, some
containinginstructions and others contai
they prefer to view memory as a collection of variable
ordering among the segments. When writing a program, a programmer thinks of it as a main
programwith a set of methods
datastructures: objects, arrays, stacks, variables, and so on. Each of these modules ordata
elements is referred to by name. The programmer talks about “the stack,”“the math library,” and
“the main program” without caring what addressesin memory these elements occupy. She is not
concerned with whether thestack is stored before or after the Sqrt() function. Segments vary in
length,and the length of each is intrinsically defined by its purpose in the progr

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

The page size (like the frame size) is defined by the hardware. The size of apage is a power of 2,
varying between 512 bytes and 1 GB per page, dependingon the computer architecture. The

er of 2 as a page sizemakes the translation of a logical address into a page
number and page offsetparticularly easy. If the size of the logical address space is 2

order m− n bits of a logical address designate the pagenumber, and
order bits designate the page offset. Thus, the logicaladdress is as follows:

is an index into the page table and d is the displacement within thepage.

management scheme that supports this programmerview of memory.
A logical address space is a collection of segments.

As we’ve already seen, the user’s view of memory is not the same as the actualphysical memory.
This is equally true of the programmer’s view of memory.Indeed, dealing with memory in terms
of its physical properties is inconvenientto both the operating system and the programmer. What
if the hardware couldprovide a memory mechanism that mapped the programmer’s view to
theactual physical memory? The system would have more freedom to managememory, while the
programmer would have a more natural programmingenvironment. Segmentation provides such

Do programmers think of memory as a linear array of bytes, some
containinginstructions and others containing data? Most programmers would say “no.”Rather,
they prefer to view memory as a collection of variable-sized segments,with no necessary

When writing a program, a programmer thinks of it as a main
programwith a set of methods, procedures, or functions. Itmayalso include various
datastructures: objects, arrays, stacks, variables, and so on. Each of these modules ordata
elements is referred to by name. The programmer talks about “the stack,”“the math library,” and

ram” without caring what addressesin memory these elements occupy. She is not
concerned with whether thestack is stored before or after the Sqrt() function. Segments vary in
length,and the length of each is intrinsically defined by its purpose in the progr

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 20/27

The page size (like the frame size) is defined by the hardware. The size of apage is a power of 2,
varying between 512 bytes and 1 GB per page, dependingon the computer architecture. The

er of 2 as a page sizemakes the translation of a logical address into a page
number and page offsetparticularly easy. If the size of the logical address space is 2m, and a page

he pagenumber, and
order bits designate the page offset. Thus, the logicaladdress is as follows:

is the displacement within thepage.

supports this programmerview of memory.

As we’ve already seen, the user’s view of memory is not the same as the actualphysical memory.
ing with memory in terms

of its physical properties is inconvenientto both the operating system and the programmer. What
if the hardware couldprovide a memory mechanism that mapped the programmer’s view to

ore freedom to managememory, while the
programmer would have a more natural programmingenvironment. Segmentation provides such

Do programmers think of memory as a linear array of bytes, some
ning data? Most programmers would say “no.”Rather,

sized segments,with no necessary
When writing a program, a programmer thinks of it as a main

, procedures, or functions. Itmayalso include various
datastructures: objects, arrays, stacks, variables, and so on. Each of these modules ordata
elements is referred to by name. The programmer talks about “the stack,”“the math library,” and

ram” without caring what addressesin memory these elements occupy. She is not
concerned with whether thestack is stored before or after the Sqrt() function. Segments vary in
length,and the length of each is intrinsically defined by its purpose in the program.Elements

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

within a segment are identified by their offset from the beginning ofthe segment: the first
statement of the program, the seventh stack frame entryin the stack, the fifth instruction of the
Sqrt(), and so on.

Each segment has a name and a length. The addresses specify both the segmentname and the
offset within the segment. The programmer therefore specifieseach address by two quantities: a
segment name and an offset.For simplicity of implementation, segments ar
referredto by a segment number, rather than by a segment name. Thus, a logical addressconsists
of a two tuple:<segment-number, offset>.

Normally, when a program is compiled, the compiler automatically constructs

segments reflecting the input program.

A C compiler might create separate segments for the following:

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

within a segment are identified by their offset from the beginning ofthe segment: the first
statement of the program, the seventh stack frame entryin the stack, the fifth instruction of the

Fig 3.13. Segmentation

Each segment has a name and a length. The addresses specify both the segmentname and the
offset within the segment. The programmer therefore specifieseach address by two quantities: a
segment name and an offset.For simplicity of implementation, segments are numbered and are
referredto by a segment number, rather than by a segment name. Thus, a logical addressconsists

number, offset>.

Normally, when a program is compiled, the compiler automatically constructs

nput program.

A C compiler might create separate segments for the following:

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 21/27

within a segment are identified by their offset from the beginning ofthe segment: the first
statement of the program, the seventh stack frame entryin the stack, the fifth instruction of the

Each segment has a name and a length. The addresses specify both the segmentname and the
offset within the segment. The programmer therefore specifieseach address by two quantities: a

e numbered and are
referredto by a segment number, rather than by a segment name. Thus, a logical addressconsists

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

1. The code

2. Global variables

3. The heap, from which memory is allocated

4. The stacks used by each thread

5. The standard C library

Libraries that are linked in during compile
would take all these segments and assign them segmentnumbers.

Segmentation

Segmentation is a memory management technique in which each job is divided into several
segments of different sizes, one for eac
functions. Each segment is actually a different logical address space of the program.

When a process is to be executed, its corresponding segmentation are loaded into non
contiguous memory though every seg
memory.

Segmentation memory management works very similar to paging but here segments are of
variable-length where as in paging pages are of fixed size.

A program segment contains the program's main funct
so on. The operating system maintains a
memory blocks along with segment numbers, their size and corresponding memory locations in
main memory. For each segment, the table stores the starting address of the segment and the
length of the segment. A reference to a memory location includes a value that identifies a
segment and an offset.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

The heap, from which memory is allocated

The stacks used by each thread

Libraries that are linked in during compile time might be assigned separatesegments. The loader
would take all these segments and assign them segmentnumbers.

Segmentation is a memory management technique in which each job is divided into several
segments of different sizes, one for each module that contains pieces that perform related
functions. Each segment is actually a different logical address space of the program.

When a process is to be executed, its corresponding segmentation are loaded into non
contiguous memory though every segment is loaded into a contiguous block of available

Segmentation memory management works very similar to paging but here segments are of
length where as in paging pages are of fixed size.

A program segment contains the program's main function, utility functions, data structures, and
so on. The operating system maintains a segment map table for every process and a list of free
memory blocks along with segment numbers, their size and corresponding memory locations in

ment, the table stores the starting address of the segment and the
length of the segment. A reference to a memory location includes a value that identifies a

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 22/27

time might be assigned separatesegments. The loader

Segmentation is a memory management technique in which each job is divided into several
h module that contains pieces that perform related

functions. Each segment is actually a different logical address space of the program.

When a process is to be executed, its corresponding segmentation are loaded into non-
ment is loaded into a contiguous block of available

Segmentation memory management works very similar to paging but here segments are of

ion, utility functions, data structures, and
for every process and a list of free

memory blocks along with segment numbers, their size and corresponding memory locations in
ment, the table stores the starting address of the segment and the

length of the segment. A reference to a memory location includes a value that identifies a

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

Virtual Memory

Virtual Memory is a space where large programs can store themselves in form of pages while
their execution and only the required pages or portions of processes are loaded into the main
memory. This technique is useful as large virtual memory is provided for user programs when
very small physical memory is there.

In real scenarios, most processes never need all their pages at once, for following reasons :

 Error handling code is not needed unless that specific error occurs, some of which are quite
rare.

 Arrays are often over-sized for worst
are actually used in practice.

 Certain features of certain programs are rarely used.

Benefits of having Virtual Memory :

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

Fig 3.14. Segmentation Process

space where large programs can store themselves in form of pages while
their execution and only the required pages or portions of processes are loaded into the main
memory. This technique is useful as large virtual memory is provided for user programs when
very small physical memory is there.

In real scenarios, most processes never need all their pages at once, for following reasons :

Error handling code is not needed unless that specific error occurs, some of which are quite

ized for worst-case scenarios, and only a small fraction of the arrays

Certain features of certain programs are rarely used.

Benefits of having Virtual Memory :

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 23/27

space where large programs can store themselves in form of pages while
their execution and only the required pages or portions of processes are loaded into the main
memory. This technique is useful as large virtual memory is provided for user programs when a

In real scenarios, most processes never need all their pages at once, for following reasons :

Error handling code is not needed unless that specific error occurs, some of which are quite

case scenarios, and only a small fraction of the arrays

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

1. Large programs can be written, as virtual space available is hug
memory.

2. Less I/O required, leads to faster and easy swapping of processes.
3. More physical memory available, as programs are stored on virtual memory, so they occupy

very less space on actual physical memory.

Demand Paging

The basic idea behind demand paging is that when a process is swapped in, its pages are not
swapped in all at once. Rather they are swapped in only when the process needs them(On
demand). This is termed as lazy swapper, although a pager is a more accurate term.

Fig 3.15. Demand Paging Process

Initially only those pages are loaded which will be required the process immediately.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

Large programs can be written, as virtual space available is huge compared to physical

Less I/O required, leads to faster and easy swapping of processes.
More physical memory available, as programs are stored on virtual memory, so they occupy
very less space on actual physical memory.

idea behind demand paging is that when a process is swapped in, its pages are not
swapped in all at once. Rather they are swapped in only when the process needs them(On
demand). This is termed as lazy swapper, although a pager is a more accurate term.

Fig 3.15. Demand Paging Process

Initially only those pages are loaded which will be required the process immediately.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 24/27

e compared to physical

More physical memory available, as programs are stored on virtual memory, so they occupy

idea behind demand paging is that when a process is swapped in, its pages are not
swapped in all at once. Rather they are swapped in only when the process needs them(On
demand). This is termed as lazy swapper, although a pager is a more accurate term.

Initially only those pages are loaded which will be required the process immediately.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

The pages that are not moved into the memory, are marked as invalid in the page table. For an
invalid entry the rest of the table is empty
are marked as valid along with the information about where to find the swapped out page.

When the process requires any of the page that is not loaded into the memory, a page fault trap is
triggered and following steps are followed,

1. The memory address which is requested by the process is first checked, to verify the request
made by the process.

2. If its found to be invalid, the process is terminated.
3. In case the request by the process is valid, a free fram

list, where the required page will be moved.
4. A new operation is scheduled to move the necessary page from disk to the specified memory

location. (This will usually block the process on an I/O wait, allowing some ot
use the CPU in the meantime.)

5. When the I/O operation is complete, the process's page table is updated with the new frame
number, and the invalid bit is changed to valid.

6. The instruction that caused the page fault must now be restarted from

There are cases when no pages are loaded into the memory initially, pages are only loaded when
demanded by the process by generating page faults. This is called

The only major issue with Demand Paging is, after a new page
execution from the beginning. Its is not a big issue for small programs, but for larger programs it
affects performance drastically.

Page Replacement

As studied in Demand Paging, only certain pages of a process are loaded i
memory. This allows us to get more number of processes into the memory at the same time. but
what happens when a process requests for more pages and no free memory is available to bring
them in. Following steps can be taken to deal with t

1. Put the process in the wait queue, until any other process finishes its execution thereby
freeing frames.

2. Or, remove some other process completely from the memory to free frames.
3. Or, find some pages that are not being used right now, move

frames. This technique is called
some great algorithms to carry on page replacement efficiently.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

The pages that are not moved into the memory, are marked as invalid in the page table. For an
invalid entry the rest of the table is empty. In case of pages that are loaded in the memory, they
are marked as valid along with the information about where to find the swapped out page.

When the process requires any of the page that is not loaded into the memory, a page fault trap is
following steps are followed,

The memory address which is requested by the process is first checked, to verify the request

If its found to be invalid, the process is terminated.
In case the request by the process is valid, a free frame is located, possibly from a free
list, where the required page will be moved.
A new operation is scheduled to move the necessary page from disk to the specified memory
location. (This will usually block the process on an I/O wait, allowing some ot
use the CPU in the meantime.)
When the I/O operation is complete, the process's page table is updated with the new frame
number, and the invalid bit is changed to valid.
The instruction that caused the page fault must now be restarted from the beginning.

There are cases when no pages are loaded into the memory initially, pages are only loaded when
demanded by the process by generating page faults. This is called Pure Demand Paging

The only major issue with Demand Paging is, after a new page is loaded, the process starts
execution from the beginning. Its is not a big issue for small programs, but for larger programs it

As studied in Demand Paging, only certain pages of a process are loaded initially into the
memory. This allows us to get more number of processes into the memory at the same time. but
what happens when a process requests for more pages and no free memory is available to bring
them in. Following steps can be taken to deal with this problem :

Put the process in the wait queue, until any other process finishes its execution thereby

Or, remove some other process completely from the memory to free frames.
Or, find some pages that are not being used right now, move them to the disk to get free
frames. This technique is called Page replacement and is most commonly used. We have
some great algorithms to carry on page replacement efficiently.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 25/27

The pages that are not moved into the memory, are marked as invalid in the page table. For an
. In case of pages that are loaded in the memory, they

are marked as valid along with the information about where to find the swapped out page.

When the process requires any of the page that is not loaded into the memory, a page fault trap is

The memory address which is requested by the process is first checked, to verify the request

e is located, possibly from a free-frame

A new operation is scheduled to move the necessary page from disk to the specified memory
location. (This will usually block the process on an I/O wait, allowing some other process to

When the I/O operation is complete, the process's page table is updated with the new frame

the beginning.

There are cases when no pages are loaded into the memory initially, pages are only loaded when
Pure Demand Paging.

is loaded, the process starts
execution from the beginning. Its is not a big issue for small programs, but for larger programs it

nitially into the
memory. This allows us to get more number of processes into the memory at the same time. but
what happens when a process requests for more pages and no free memory is available to bring

Put the process in the wait queue, until any other process finishes its execution thereby

them to the disk to get free

and is most commonly used. We have

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

Basic Page Replacement

 Find the location of the page requested by ongoing proc
 Find a free frame. If there is a free frame, use it. If there is no free frame, use a page

replacement algorithm to select any existing frame to be replaced, such frame is known
as victim frame.

 Write the victim frame to disk. Change all r
longer in memory.

 Move the required page and store it in the frame. Adjust all related page and frame tables to
indicate the change.

 Restart the process that was waiting for this page.

FIFO Page Replacement

 A very simple way of Page replacement is FIFO (First in First Out)
 As new pages are requested and are swapped in, they are added to tail of a queue and the

page which is at the head becomes the victim.
 Its not an effective way of page replacement but c

LRU Page Replacement

FIFO algorithm uses the time when a page was brought into memory, whereasthe OPT algorithm
uses the time when a page is to be
future, then we can replace the page that
approach is the leastrecently used (LRU) algorithm

1. What is Paging?
2. What is a Physical address space?
3. What is Segmentation?
4. What is Virtual memory?
5. What is Fixed partition?

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

Find the location of the page requested by ongoing process on the disk.
Find a free frame. If there is a free frame, use it. If there is no free frame, use a page
replacement algorithm to select any existing frame to be replaced, such frame is known

Write the victim frame to disk. Change all related page tables to indicate that this page is no

Move the required page and store it in the frame. Adjust all related page and frame tables to

Restart the process that was waiting for this page.

A very simple way of Page replacement is FIFO (First in First Out)
As new pages are requested and are swapped in, they are added to tail of a queue and the
page which is at the head becomes the victim.
Its not an effective way of page replacement but can be used for small systems.

FIFO algorithm uses the time when a page was brought into memory, whereasthe OPT algorithm
uses the time when a page is to be used. If we use the recentpast as an approximation of the near

can replace the page thathas not been used for the longest period of time. This
leastrecently used (LRU) algorithm.

UNIT III

POSSIBLE QUESTIONS

(2 MARKS)

What is a Physical address space?

Virtual memory?

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 26/27

Find a free frame. If there is a free frame, use it. If there is no free frame, use a page-
replacement algorithm to select any existing frame to be replaced, such frame is known

elated page tables to indicate that this page is no

Move the required page and store it in the frame. Adjust all related page and frame tables to

As new pages are requested and are swapped in, they are added to tail of a queue and the

an be used for small systems.

FIFO algorithm uses the time when a page was brought into memory, whereasthe OPT algorithm
If we use the recentpast as an approximation of the near

for the longest period of time. This

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

1. Write about Memory Allocation strategies with neat sketch.
2. Explain the concept of Virtual memory in detail
3. Write about Physical and Virtual address space in detail.
4. Explain in detail about Segmentation with neat sketch.
5. Discuss about Paging in detail.
6. Write about Fixed and Variable partitions in detail.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: III(Memory Management) BATCH

emalatha ,Department of CS, CA & IT, KAHE

(6 MARKS)

1. Write about Memory Allocation strategies with neat sketch.
2. Explain the concept of Virtual memory in detail
3. Write about Physical and Virtual address space in detail.

egmentation with neat sketch.
5. Discuss about Paging in detail.
6. Write about Fixed and Variable partitions in detail.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 27/27

Sno Questions opt1 opt2 opt3 opt4 opt5 opt6 answer

1

Memory is array of
___________ bytes circuits ics ram bytes

2

CPU fetches instructions
from ______ memory pendrive dvd cmos memory

3

Program must be in
________________ memory pendrive dvd cmos memory

4

Collection of process in
disk forms_____

input
queue

output
queue stack circle

input
queue

5

Address space of computer
starts at _________ 0000 4444 3333 2222 0000

If process location is found
during compile time then

UNIT - 3

KARPAGAM ACADEMY OF HIGHER EDUCATION

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

II B.Sc CS (Batch 2017-2020)

OPERATING SYSTEMS

PART - A OBJECTIVE TYPE/MULTIPLE CHOICE QUESTIONS

ONLINE EXAMINATIONS ONE MARKS QUESTIONS

6

during compile time then

_________ code is

generated absolute relative

approxima
te

more or
less absolute

7

Address generated by CPU
is ______________ address logical physical direct indirect logical

8

Logical address can be also
called as ______________

address physical virtual direct indirect virtual

9

Run time mapping is done
using _____________ MMU CPU CU IU MMU

10

In address binding base
register is also called as

relocation
register

memory
register hard disk pendrive

relocatio
n

register

11

Better memory space is
utilized using

dynamic
loading

dynamic
linking registers

array of
words

dynamic
loading

12

routine is never loaded in

dynamic loading unused used regular recursive unused

13

Some operating systems
support only __________

linking static dynamic temporary

interrupt
ive static

14

______________ is a code
that locates library routine stub dll

recursive
routine exe file stub

15

____________ can be used
to manage large memory

requirement for a process overlays

swappin
g

roll in and
out libraries overlays

16

______________ error is
raised in memory addressing

swappin
g dynamic index

addressi
ng

17

Set of ___________ are
scattered throughout the

memory holes gaps free space words holes

18

_____________ can be
internal and external

fragmentat
ion merging grouping fixing

fragment
ation

19

____________ is used to
divide a process into fixed

size chunks paging

segment
ation sp

swappin
g paging

20

In paging physical memory
is divided into

_______________ frames pages segments bytes frames20 _______________ frames pages segments bytes frames

21

In paging virtual memory is
divided into

_______________ frames pages segments bytes pages

22

_____________ is first of
virtual address in paging

page
number

segment
number

frame
number offset

page
number

23

_____________ is second
part of virtual address in

paging
page
number

segment
number

frame
number offset offset

24

Page mapping entries are
found in __________ page table

segment
table hash table

pointing
table

page
table

25

Page size is defined by
______________ hardware software os kernel

hardwar
e

26

_____________ is first in
mapping of virtual to

physical address in paging direct associate

direct &
associativ

e pointing direct

27

_____________ is second
in mapping of virtual to

physical address in paging direct associate

direct &
associativ

e pointing associate

28

_____________ is third in
mapping of virtual to

physical address in paging direct associate

direct &
associativ

e pointing

direct &
associati

ve

29

____________ is used to
divide a process into

variable size chunks paging

segment
ation sp

swappin
g

segmenta
tion

30

In segmentation virtual
memory is divided into

_______________ frames pages segments bytes segments

31

___________ view is
supported in segmentation user system cpu manager user

32

____________ is format for
segmentation virtual

address (s,d) (p,d) (v,d) (k,d) (s,d)

33

____________ is the first
element in segment table limit base offset

page
number limit

34

____________ is the
second element in segment

table limit base offset

page
number base

35

Addressing in segmentation
is similar as ___________

addressing in paging direct associate

direct &
associativ

e pointing direct

How many elements are

36

How many elements are
there in segmentation

address ________ 1 2 3 4 3

37

____________ is
organization in physical

memory in segmentation frames pages segments bytes frames

38

_______________ memory
is used to manage

incompleteness of a process

execution virtual physical rom eprom virtual

39

virtual memory abstracts
________ memory virtual eerom main eprom main

40

______________ reasons
are there for existence for

virtual memory 1 2 3 4 3

41

______________ benefits
are there from virtual

memory 1 2 3 4 3

42

Virtual memory is
commonly implemented by

___________ paging demand bargain quarrel order demand

43

_______________ fault
occurs when desired page is

not in memory page segment pages

segment
s page

44

______________ table is
used in demand paging page segment pages

segment
s page

45

______________ methods
are there for process

creation 1 2 3 4 2

46

______________ method
implements partial sharing

in process creation
copy on
write

memory
mapping paging

segment
ation

copy on
write

47

______________ is done
for page fault

replaceme
nt

swappin
g logging locking

replacem
ent

48

______________ is
unrealizable page

replacement algorithm optimal FIFO LRU NRU optimal

49

______________ is first
page replacement algorithm optimal FIFO LRU NRU FIFO

______________ is second

50

______________ is second
page replacement algorithm optimal FIFO LRU NRU optimal

51

______________ is third
page replacement algorithm optimal FIFO LRU NRU NRU

52

______________ is
associated with each page

in optimal algorithm label index number identity label

53

______________ labelled
page replaced in optimal

algorithm highest lowest moderate

below
average highest

54

______________ end page
is removed in fifo algorithm rear head top bottom head

55

Modified version of fifo
algorithm gives

___________ chance to a

page 1 2 3 4 2

56

_____________ is called as
high paging activity thrashing

smashin
g mocking breaking

thrashin
g

57

_____________ occurs
frequently during thrashing page fault

segment
fault

memory
fault

address
fault

page
fault

58

______________ strategy is
used to solve thrashing a

little
working
set pff

lpr
algorithm

gpl
algorith

m

working
set

59

______________ algorithm
is used to solve thrashing a

little
working
set pff

lpr
algorithm

gpl
algorith

m

lpr
algorith

m

60

______________ is a basic
solution for thrashing

working
set pff

lpr
algorithm

gpl
algorith

m pff

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

File and I/O Management: Directory structure
management.

No general-purpose computer stores just one file. There are typically thousands, millions, even
billions of files within a computer. Files are stored on random
hard disks, optical disks, and solid
its entirety for a file system. It can also be subdivided for finer
disk can be partitioned into quarters, and each quarter can hold a separate file system.

A file system can be created on each of these parts of the disk. Any entity containing a
file system is generally known as a
Volumes can also store multiple operating systems, allowing a system to b
one operating system.

Each volume that contains a file system must also contain information about the files in
the system. This information is kept in entries in a
contents. The device directory (m
information—such as name, location, size, and type

Directory Overview
The directory can be viewed as a symbol table that translates file names into their directory
entries. If we take such a view, we see that the directory itself can be organized in many ways.
The organization must allow us to insert entries, to delete entries, to search for a named entry,
and to list all the entries in the directory. In this section, we exam
defining the logical structure of the directory system. When considering a particular directory
structure, we need to keep in mind the operations that are to be performed on a directory:
 • Search for a file. We need to be able to s
particular file. Since files have symbolic names, and similar names may indicate a relationship
among files, we may want to be able to find all files whose names match a particular pattern. •
Create a file. New files need to be created and added to the directory.
 • Delete a file. When a file is no longer needed, we want to be able to remove it from the
directory.
• List a directory. We need to be able to list the files in a directory and the contents of
directory entry for each file in the list.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

UNIT-IV

Syllabus

Directory structure-File operations-File Allocation methods

File and I/O Management

purpose computer stores just one file. There are typically thousands, millions, even
billions of files within a computer. Files are stored on random-access storage devices, including
hard disks, optical disks, and solid-state (memory-based) disks. A storage device can be used in
its entirety for a file system. It can also be subdivided for finer-grained control. For example, a

into quarters, and each quarter can hold a separate file system.

A file system can be created on each of these parts of the disk. Any entity containing a
file system is generally known as a volume. Each volume can be thought of as a virtual disk.
Volumes can also store multiple operating systems, allowing a system to boot and run more than

Each volume that contains a file system must also contain information about the files in
the system. This information is kept in entries in a device directory or volume table of

. The device directory (more commonly known simply as the directory
such as name, location, size, and type—for all files on that volume.

The directory can be viewed as a symbol table that translates file names into their directory
If we take such a view, we see that the directory itself can be organized in many ways.

The organization must allow us to insert entries, to delete entries, to search for a named entry,
and to list all the entries in the directory. In this section, we examine several schemes for
defining the logical structure of the directory system. When considering a particular directory
structure, we need to keep in mind the operations that are to be performed on a directory:

. We need to be able to search a directory structure to find the entry for a
particular file. Since files have symbolic names, and similar names may indicate a relationship
among files, we may want to be able to find all files whose names match a particular pattern. •

. New files need to be created and added to the directory.
. When a file is no longer needed, we want to be able to remove it from the

. We need to be able to list the files in a directory and the contents of
directory entry for each file in the list.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 1/26

File Allocation methods- Device

purpose computer stores just one file. There are typically thousands, millions, even
access storage devices, including

s. A storage device can be used in
grained control. For example, a

into quarters, and each quarter can hold a separate file system.

A file system can be created on each of these parts of the disk. Any entity containing a
. Each volume can be thought of as a virtual disk.

oot and run more than

Each volume that contains a file system must also contain information about the files in
volume table of

directory) records
for all files on that volume.

The directory can be viewed as a symbol table that translates file names into their directory
If we take such a view, we see that the directory itself can be organized in many ways.

The organization must allow us to insert entries, to delete entries, to search for a named entry,
ine several schemes for

defining the logical structure of the directory system. When considering a particular directory
structure, we need to keep in mind the operations that are to be performed on a directory:

earch a directory structure to find the entry for a
particular file. Since files have symbolic names, and similar names may indicate a relationship
among files, we may want to be able to find all files whose names match a particular pattern. •

. When a file is no longer needed, we want to be able to remove it from the

. We need to be able to list the files in a directory and the contents of the

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

 • Rename a file. Because the name of a file represents its contents to its users, we must be able
to change the name when the contents or use of the file changes. Renaming a file may also allow
its position within the directory structure to be changed.
 • Traverse the file system. We may wish to access every directory and every file within a
directory structure. For reliability, it is a good idea to save the contents and structure of the entire
file system at regular intervals. Often, we do this by copying all files to magnetic tape. This
technique provides a backup copy in case of system failure. In addition, if a file is no longer in
use, the file can be copied to tape and the disk space of that file released

Directory structure

 In the following sections, we describe the most common schemes for defining the logical
structure of a directory.

Single-Level Directory

The simplest directory structure is the single
directory, which is easy to support and understand.

 A single-level directory has significant limitations, however, when the number of files increases
or when the system has more than one user. Since all files are in the
have unique names.

If two users call their data file test.txt, then the unique

For example, in one programming class, 23 students called the program for their second
assignment prog2.c; another 11 called it assign2.c. Fortunately, most file systems support file
names of up to 255 characters, so it is relatively easy to select unique

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

. Because the name of a file represents its contents to its users, we must be able
to change the name when the contents or use of the file changes. Renaming a file may also allow

ithin the directory structure to be changed.
. We may wish to access every directory and every file within a

directory structure. For reliability, it is a good idea to save the contents and structure of the entire
regular intervals. Often, we do this by copying all files to magnetic tape. This

technique provides a backup copy in case of system failure. In addition, if a file is no longer in
use, the file can be copied to tape and the disk space of that file released for reuse by another file.

In the following sections, we describe the most common schemes for defining the logical

The simplest directory structure is the single-level directory. All files are contained in the same
directory, which is easy to support and understand.

level directory has significant limitations, however, when the number of files increases
or when the system has more than one user. Since all files are in the same directory, they must

Fig 4.1.Single-level directory.

If two users call their data file test.txt, then the unique-name rule is violated.

For example, in one programming class, 23 students called the program for their second
assignment prog2.c; another 11 called it assign2.c. Fortunately, most file systems support file
names of up to 255 characters, so it is relatively easy to select unique file names.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 2/26

. Because the name of a file represents its contents to its users, we must be able
to change the name when the contents or use of the file changes. Renaming a file may also allow

. We may wish to access every directory and every file within a
directory structure. For reliability, it is a good idea to save the contents and structure of the entire

regular intervals. Often, we do this by copying all files to magnetic tape. This
technique provides a backup copy in case of system failure. In addition, if a file is no longer in

for reuse by another file.

In the following sections, we describe the most common schemes for defining the logical

l files are contained in the same

level directory has significant limitations, however, when the number of files increases
same directory, they must

For example, in one programming class, 23 students called the program for their second
assignment prog2.c; another 11 called it assign2.c. Fortunately, most file systems support file

file names.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

Even a single user on a single-level directory may find it difficult to remember the names of all
the files as the number of files increases. It is not uncommon for a user to have hundreds of files
on one computer system and an equal number o

Keeping track of so many files is a daunting task.

Two-Level Directory
As we have seen, a single-level directory often leads to confusion of file names among different
users. The standard solution is to create a s

In the two-level directory structure, each user has his own
have similar structures, but each lists only the files of a single user.

When a user job starts or a user logs in, the system
The MFD is indexed by user name or account number, and each entry points to the UFD for that
user. When a user refers to a particular file, only his own UFD is searched. Thus, different users
may have files with the same name, as long as all the file names within each UFD are unique.

To create a file for a user, the operating system searches only that user’s UFD to ascertain
whether another file of that name exists. To delete a file, the operating system confines
to the local UFD; thus, it cannot accidentally delete another user’s file that has the same name.

Fig 4.2.

The user directories themselves must be created and deleted as necessary.
program is run with the appropriate user name and account information. The program creates a
new UFD and adds an entry for it to the MFD. The execution of this program might be restricted
to system administrators. The allocation of disk space for user directories can
the techniques for files themselves.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

level directory may find it difficult to remember the names of all
the files as the number of files increases. It is not uncommon for a user to have hundreds of files
on one computer system and an equal number of additional files on another system.

Keeping track of so many files is a daunting task.

level directory often leads to confusion of file names among different
users. The standard solution is to create a separate directory for each user.

level directory structure, each user has his ownuser file directory (UFD)
have similar structures, but each lists only the files of a single user.

When a user job starts or a user logs in, the system’s master file directory (MFD)
The MFD is indexed by user name or account number, and each entry points to the UFD for that
user. When a user refers to a particular file, only his own UFD is searched. Thus, different users

the same name, as long as all the file names within each UFD are unique.

To create a file for a user, the operating system searches only that user’s UFD to ascertain
whether another file of that name exists. To delete a file, the operating system confines
to the local UFD; thus, it cannot accidentally delete another user’s file that has the same name.

Fig 4.2.Two-level directory structure.

The user directories themselves must be created and deleted as necessary. A special system
run with the appropriate user name and account information. The program creates a

new UFD and adds an entry for it to the MFD. The execution of this program might be restricted
to system administrators. The allocation of disk space for user directories can
the techniques for files themselves.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 3/26

level directory may find it difficult to remember the names of all
the files as the number of files increases. It is not uncommon for a user to have hundreds of files

f additional files on another system.

level directory often leads to confusion of file names among different

user file directory (UFD). The UFDs

master file directory (MFD) is searched.
The MFD is indexed by user name or account number, and each entry points to the UFD for that
user. When a user refers to a particular file, only his own UFD is searched. Thus, different users

the same name, as long as all the file names within each UFD are unique.

To create a file for a user, the operating system searches only that user’s UFD to ascertain
whether another file of that name exists. To delete a file, the operating system confines its search
to the local UFD; thus, it cannot accidentally delete another user’s file that has the same name.

A special system
run with the appropriate user name and account information. The program creates a

new UFD and adds an entry for it to the MFD. The execution of this program might be restricted
 be handled with

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

 Although the two-level directory structure solves the name
disadvantages. This structure effectively isolates one user from another.
advantage when the users are completely independent but is a disadvantage when the users want
to cooperate on some task and to access one another’s files. Some systems simply do not allow
local user files to be accessed by other users.

 If access is to be permitted, one user must have the ability to name a file in another user’s
directory. To name a particular file uniquely in a two
name and the file name. A two-level directory can be thought of as a tree
height 2. The root of the tree is the MFD. Its direct descendants are the UFDs. The descendants
of the UFDs are the files themselves. The files are the leaves of the tree. Specifying a user name
and a file name defines a path in t
Thus, a user name and a file name define a

 To name a file uniquely, a user must know the path name of the file desired. For example, if
user A wishes to access her own test file named test.txt, she can simply refer to test.txt. To access
the file named test.txt of user B (with directory
refer to /userb/test.txt. Every system has its own syntax
the user’s own. Additional syntax is needed to specify the volume of a file. For instance, in
Windows a volume is specified by a letter followed by a colon. Thus, a file specification might
be C:\userb\test.

Whenever a file name is given to be loaded, the operating system first searches the local UFD. If
the file is found, it is used. If it is not found, the system automatically searches the special user
directory that contains the system files. The sequence of
named is called the search path.

The search path can be extended to contain an unlimited list of directories to search when a
command name is given. This method is the one most used in UNIX and Windows. Systems can
also be designed so that each user has his own search path.

Tree-Structured Directories
Once we have seen how to view a two
generalization is to extend the directory structure to a tree of arbitrary height. Thi
allows users to create their own subdirectories and to organize their files accordingly.

A tree is the most common directory structure. The tree has a root directory, and every file in the
system has a unique path name.

 A directory (or subdirectory) contains a set of files or subdirectories. A directory is simply
another file, but it is treated in a special way.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

level directory structure solves the name-collision problem, it still has
disadvantages. This structure effectively isolates one user from another.
advantage when the users are completely independent but is a disadvantage when the users want
to cooperate on some task and to access one another’s files. Some systems simply do not allow
local user files to be accessed by other users.

s to be permitted, one user must have the ability to name a file in another user’s
directory. To name a particular file uniquely in a two-level directory, we must give both the user

level directory can be thought of as a tree, or an inverted tree, of
height 2. The root of the tree is the MFD. Its direct descendants are the UFDs. The descendants
of the UFDs are the files themselves. The files are the leaves of the tree. Specifying a user name
and a file name defines a path in the tree from the root (the MFD) to a leaf (the specified file).
Thus, a user name and a file name define a path name. Every file in the system has a path name.

To name a file uniquely, a user must know the path name of the file desired. For example, if
user A wishes to access her own test file named test.txt, she can simply refer to test.txt. To access
the file named test.txt of user B (with directory-entry name userb), however, she might have to
refer to /userb/test.txt. Every system has its own syntax for naming files in directories other than
the user’s own. Additional syntax is needed to specify the volume of a file. For instance, in
Windows a volume is specified by a letter followed by a colon. Thus, a file specification might

enever a file name is given to be loaded, the operating system first searches the local UFD. If
the file is found, it is used. If it is not found, the system automatically searches the special user
directory that contains the system files. The sequence of directories searched when a file is

.

The search path can be extended to contain an unlimited list of directories to search when a
command name is given. This method is the one most used in UNIX and Windows. Systems can

be designed so that each user has his own search path.

Once we have seen how to view a two-level directory as a two-level tree, the natural
generalization is to extend the directory structure to a tree of arbitrary height. Thi
allows users to create their own subdirectories and to organize their files accordingly.

A tree is the most common directory structure. The tree has a root directory, and every file in the

subdirectory) contains a set of files or subdirectories. A directory is simply
another file, but it is treated in a special way.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 4/26

collision problem, it still has
disadvantages. This structure effectively isolates one user from another. Isolation is an
advantage when the users are completely independent but is a disadvantage when the users want
to cooperate on some task and to access one another’s files. Some systems simply do not allow

s to be permitted, one user must have the ability to name a file in another user’s
level directory, we must give both the user

, or an inverted tree, of
height 2. The root of the tree is the MFD. Its direct descendants are the UFDs. The descendants
of the UFDs are the files themselves. The files are the leaves of the tree. Specifying a user name

he tree from the root (the MFD) to a leaf (the specified file).
. Every file in the system has a path name.

To name a file uniquely, a user must know the path name of the file desired. For example, if
user A wishes to access her own test file named test.txt, she can simply refer to test.txt. To access

entry name userb), however, she might have to
for naming files in directories other than

the user’s own. Additional syntax is needed to specify the volume of a file. For instance, in
Windows a volume is specified by a letter followed by a colon. Thus, a file specification might

enever a file name is given to be loaded, the operating system first searches the local UFD. If
the file is found, it is used. If it is not found, the system automatically searches the special user

directories searched when a file is

The search path can be extended to contain an unlimited list of directories to search when a
command name is given. This method is the one most used in UNIX and Windows. Systems can

level tree, the natural
generalization is to extend the directory structure to a tree of arbitrary height. This generalization
allows users to create their own subdirectories and to organize their files accordingly.

A tree is the most common directory structure. The tree has a root directory, and every file in the

subdirectory) contains a set of files or subdirectories. A directory is simply

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

 All directories have the same internal format. One bit in each directory entry defines the entry as
a file (0) or as a subdirectory (1).

Special system calls are used to create and delete directories.

In normal use, each process has a current directory. The
of the files that are of current interest to the process. When reference is made
directory is searched. If a file is needed that is not in the current directory, then the user usually
must either specify a path name or change the current directory to be the directory holding that
file.

To change directories, a system call is provided that takes a directory name as a parameter and
uses it to redefine the current directory. Thus, the user can change her current directory whenever
she wants.

Fig 4.3.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

All directories have the same internal format. One bit in each directory entry defines the entry as
rectory (1).

Special system calls are used to create and delete directories.

In normal use, each process has a current directory. The current directory should contain most
of the files that are of current interest to the process. When reference is made to a file, the current
directory is searched. If a file is needed that is not in the current directory, then the user usually
must either specify a path name or change the current directory to be the directory holding that

system call is provided that takes a directory name as a parameter and
uses it to redefine the current directory. Thus, the user can change her current directory whenever

Fig 4.3.Tree-structured directory structure.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 5/26

All directories have the same internal format. One bit in each directory entry defines the entry as

should contain most
to a file, the current

directory is searched. If a file is needed that is not in the current directory, then the user usually
must either specify a path name or change the current directory to be the directory holding that

system call is provided that takes a directory name as a parameter and
uses it to redefine the current directory. Thus, the user can change her current directory whenever

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

From one change directory() system call to the next, all open() system calls search the
current directory for the specified file.
special entry that stands for “the current directory.” The initial current directory of a user’s l
shell is designated when the user job starts or the user logs in.

The current directory of any subprocess is usually the current directory of the parent when it was
generated. Path names can be of two types: absolute and relative.

An absolute path name begins at the root and follows a path down to the specified file, giving
the directory names on the path. A

For example, in the tree-structured file system, if the current directory is root
relative path name prt/first refers to the same file as does the absolute path name
root/spell/mail/prt/first. Allowing a user to define her own subdirectories permits her to impose a
structure on her files.

This structure might result in separate directories for files associated with different topics (for
example, a subdirectory was created to hold the text of this book) or different forms of
information (for example, the directory programs may contain source programs; the directory
may store all the binaries).

 An interesting policy decision in a tree
deletion of a directory. If a directory is empty, its entry in the directory that contains it can
simply be deleted. However, suppos
several files or subdirectories. One of two approaches can be taken. Some systems will not delete
a directory unless it is empty. Thus, to delete a directory, the user must first delete all the files
that directory. If any subdirectories exist, this procedure must be applied recursively to them, so
that they can be deleted also.

This approach can result in a substantial amount of work. An alternative approach, such as that
taken by the UNIX rm command, is to provide an option: when a request is made to delete a
directory, all that directory’s files and subdirectories are also to be deleted. Either approach is
fairly easy to implement; the choice is one of policy.

Acyclic-Graph Directories

Consider two programmers who are working on a joint project. The files associated with that
project can be stored in a subdirectory, separating them from other projects and files of the two

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

ry() system call to the next, all open() system calls search the
current directory for the specified file. Note that the search path may or may not contain a
special entry that stands for “the current directory.” The initial current directory of a user’s l
shell is designated when the user job starts or the user logs in.

The current directory of any subprocess is usually the current directory of the parent when it was
generated. Path names can be of two types: absolute and relative.

begins at the root and follows a path down to the specified file, giving
the directory names on the path. A relative path name defines a path from the current directory.

structured file system, if the current directory is root/spell/mail, then the
relative path name prt/first refers to the same file as does the absolute path name
root/spell/mail/prt/first. Allowing a user to define her own subdirectories permits her to impose a

lt in separate directories for files associated with different topics (for
example, a subdirectory was created to hold the text of this book) or different forms of
information (for example, the directory programs may contain source programs; the directory

An interesting policy decision in a tree-structured directory concerns how to handle the
. If a directory is empty, its entry in the directory that contains it can

simply be deleted. However, suppose the directory to be deleted is not empty but contains
several files or subdirectories. One of two approaches can be taken. Some systems will not delete
a directory unless it is empty. Thus, to delete a directory, the user must first delete all the files
that directory. If any subdirectories exist, this procedure must be applied recursively to them, so

This approach can result in a substantial amount of work. An alternative approach, such as that
mmand, is to provide an option: when a request is made to delete a

directory, all that directory’s files and subdirectories are also to be deleted. Either approach is
fairly easy to implement; the choice is one of policy.

Consider two programmers who are working on a joint project. The files associated with that
project can be stored in a subdirectory, separating them from other projects and files of the two

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 6/26

ry() system call to the next, all open() system calls search the
Note that the search path may or may not contain a

special entry that stands for “the current directory.” The initial current directory of a user’s login

The current directory of any subprocess is usually the current directory of the parent when it was

begins at the root and follows a path down to the specified file, giving
defines a path from the current directory.

/spell/mail, then the
relative path name prt/first refers to the same file as does the absolute path name
root/spell/mail/prt/first. Allowing a user to define her own subdirectories permits her to impose a

lt in separate directories for files associated with different topics (for
example, a subdirectory was created to hold the text of this book) or different forms of
information (for example, the directory programs may contain source programs; the directory bin

how to handle the
. If a directory is empty, its entry in the directory that contains it can

e the directory to be deleted is not empty but contains
several files or subdirectories. One of two approaches can be taken. Some systems will not delete
a directory unless it is empty. Thus, to delete a directory, the user must first delete all the files in
that directory. If any subdirectories exist, this procedure must be applied recursively to them, so

This approach can result in a substantial amount of work. An alternative approach, such as that
mmand, is to provide an option: when a request is made to delete a

directory, all that directory’s files and subdirectories are also to be deleted. Either approach is

Consider two programmers who are working on a joint project. The files associated with that
project can be stored in a subdirectory, separating them from other projects and files of the two

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

programmers. But since both programmers are equally responsible fo
subdirectory to be in their own directories. In this situation, the common subdirectory should be
shared. A shared directory or file exists in the file system in two (or more) places at once.

A tree structure prohibits the sharing of files or directories.

 An acyclic graph —that is, a graph with no cycles
and files. The same file or subdirectory may be in two different directories. The acyclic graph is
a natural generalization of the tree
shared file (or directory) is not the same as two copies of the file.

With two copies, each programmer can view the copy rather than the original, but if one
programmer changes the file, the changes will not appear in the other’s copy.

With a shared file, only one actual file exists, so any changes made by one person are
immediately visible to the other. Sharing is particularly important for subdirectories; a new file
created by one person will automatically appear in all the shared subdirectories. When people are
working as a team, all the files they want to share can be put into one directory. The UFD of each
team member will contain this directory of shared files as a subdirectory.

Even in the case of a single user, the user’s file organization may require that some file be placed
in different subdirectories. For example, a program written for a particular project should be both
in the directory of all programs and in the directory f
subdirectories can be implemented in several ways. A common way, exemplified by many of the
UNIX systems, is to create a new directory entry called a link. A
another file or subdirectory. For example, a link may be implemented as an absolute or a relative
path name.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

programmers. But since both programmers are equally responsible for the project, both want the
subdirectory to be in their own directories. In this situation, the common subdirectory should be

A shared directory or file exists in the file system in two (or more) places at once.

sharing of files or directories.

that is, a graph with no cycles—allows directories to share subdirectories
and files. The same file or subdirectory may be in two different directories. The acyclic graph is

he tree-structured directory scheme. It is important to note that a
shared file (or directory) is not the same as two copies of the file.

With two copies, each programmer can view the copy rather than the original, but if one
, the changes will not appear in the other’s copy.

With a shared file, only one actual file exists, so any changes made by one person are
immediately visible to the other. Sharing is particularly important for subdirectories; a new file

son will automatically appear in all the shared subdirectories. When people are
working as a team, all the files they want to share can be put into one directory. The UFD of each
team member will contain this directory of shared files as a subdirectory.

Even in the case of a single user, the user’s file organization may require that some file be placed
in different subdirectories. For example, a program written for a particular project should be both
in the directory of all programs and in the directory for that project. Shared files and
subdirectories can be implemented in several ways. A common way, exemplified by many of the
UNIX systems, is to create a new directory entry called a link. A link is effectively a pointer to

or example, a link may be implemented as an absolute or a relative

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 7/26

r the project, both want the
subdirectory to be in their own directories. In this situation, the common subdirectory should be

A shared directory or file exists in the file system in two (or more) places at once.

allows directories to share subdirectories
and files. The same file or subdirectory may be in two different directories. The acyclic graph is

structured directory scheme. It is important to note that a

With two copies, each programmer can view the copy rather than the original, but if one

With a shared file, only one actual file exists, so any changes made by one person are
immediately visible to the other. Sharing is particularly important for subdirectories; a new file

son will automatically appear in all the shared subdirectories. When people are
working as a team, all the files they want to share can be put into one directory. The UFD of each

Even in the case of a single user, the user’s file organization may require that some file be placed
in different subdirectories. For example, a program written for a particular project should be both

or that project. Shared files and
subdirectories can be implemented in several ways. A common way, exemplified by many of the

is effectively a pointer to
or example, a link may be implemented as an absolute or a relative

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

Fig 4.4.

When a reference to a file is made, we search the directory. If the directory entry is marked as a
link, then the name of the real file is included in the link information.

We resolve the link by using that path name to locate the real file. Links are easily identified by
their format in the directory entry (or by having a special type on systems that support types) and
are effectively indirect pointers. The operating system ignores these links when traversing
directory trees to preserve the acyclic structure of the system.

Another common approach to implementing shared files is simply to duplicate all information
about them in both sharing directories. Thus, both entries are identical and equal. Consider the
difference between this approach and the creation of a link. The link is clearly different from the
original directory entry; thus, the two are not equal.

 The deletion of a link need not affect the original file; only the link is removed. If the file entry
itself is deleted, the space for the file is deallocated, leaving the links dangling.We can search for
these links and remove them as well, but unless a
file, this search can be expensive.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

Fig 4.4.Acyclic-graph directory structure.

When a reference to a file is made, we search the directory. If the directory entry is marked as a
ile is included in the link information.

the link by using that path name to locate the real file. Links are easily identified by
their format in the directory entry (or by having a special type on systems that support types) and

ly indirect pointers. The operating system ignores these links when traversing
directory trees to preserve the acyclic structure of the system.

Another common approach to implementing shared files is simply to duplicate all information
sharing directories. Thus, both entries are identical and equal. Consider the

difference between this approach and the creation of a link. The link is clearly different from the
original directory entry; thus, the two are not equal.

The deletion of a link need not affect the original file; only the link is removed. If the file entry
itself is deleted, the space for the file is deallocated, leaving the links dangling.We can search for
these links and remove them as well, but unless a list of the associated links is kept with each
file, this search can be expensive.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 8/26

When a reference to a file is made, we search the directory. If the directory entry is marked as a

the link by using that path name to locate the real file. Links are easily identified by
their format in the directory entry (or by having a special type on systems that support types) and

ly indirect pointers. The operating system ignores these links when traversing

Another common approach to implementing shared files is simply to duplicate all information
sharing directories. Thus, both entries are identical and equal. Consider the

difference between this approach and the creation of a link. The link is clearly different from the

The deletion of a link need not affect the original file; only the link is removed. If the file entry
itself is deleted, the space for the file is deallocated, leaving the links dangling.We can search for

list of the associated links is kept with each

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

General Graph Directory
 A serious problem with using an acyclic
we start with a two-level directory and allow user
directory results. It should be fairly easy to see that simply adding new files and subdirectories to
an existing tree-structured directory preserves the tree
links, the tree structure is destroyed, resulting in a simple graph structure.

If we have just searched a major shared subdirectory for a particular file without finding it, we
want to avoid searching that subdirectory again; the second search would be a waste of t

 If cycles are allowed to exist in the directory, we likewise want to avoid searching any
component twice, for reasons of correctness as well as performance. A poorly designed
algorithm might result in an infinite loop continually searching through t
terminating. One solution is to limit arbitrarily the number of directories that will be accessed
during a search.

Fig 4.5.

A similar problem exists when we are trying to determine when a file can be deleted.

With acyclic-graph directory structures, a value of 0 in the reference count means that there are
no more references to the file or directory, and the file can be deleted.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

A serious problem with using an acyclic-graph structure is ensuring that there are no cycles. If
level directory and allow users to create subdirectories, a tree

directory results. It should be fairly easy to see that simply adding new files and subdirectories to
structured directory preserves the tree-structured nature. However, when we add

tree structure is destroyed, resulting in a simple graph structure.

If we have just searched a major shared subdirectory for a particular file without finding it, we
want to avoid searching that subdirectory again; the second search would be a waste of t

If cycles are allowed to exist in the directory, we likewise want to avoid searching any
component twice, for reasons of correctness as well as performance. A poorly designed
algorithm might result in an infinite loop continually searching through the cycle and never
terminating. One solution is to limit arbitrarily the number of directories that will be accessed

Fig 4.5.General graph directory.

A similar problem exists when we are trying to determine when a file can be deleted.

graph directory structures, a value of 0 in the reference count means that there are
no more references to the file or directory, and the file can be deleted.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 9/26

graph structure is ensuring that there are no cycles. If
s to create subdirectories, a tree-structured

directory results. It should be fairly easy to see that simply adding new files and subdirectories to
structured nature. However, when we add

If we have just searched a major shared subdirectory for a particular file without finding it, we
want to avoid searching that subdirectory again; the second search would be a waste of time.

If cycles are allowed to exist in the directory, we likewise want to avoid searching any
component twice, for reasons of correctness as well as performance. A poorly designed

he cycle and never
terminating. One solution is to limit arbitrarily the number of directories that will be accessed

A similar problem exists when we are trying to determine when a file can be deleted.

graph directory structures, a value of 0 in the reference count means that there are

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

However, when cycles exist, the reference count may not be 0 even when it is no
to refer to a directory or file. This anomaly results from the possibility of self
cycle) in the directory structure.

 In this case, we generally need to use a
reference has been deleted and the disk space can be reallocated. Garbage collection involves
traversing the entire file system, marking everything that can be accessed.

Thus, an acyclic-graph structure is much easier to work with. The difficulty is to avoid cycl
new links are added to the structure. How do we know when a new link will complete a cycle?
There are algorithms to detect cycles in graphs; however, they are computationally expensive,
especially when the graph is on disk storage. A simpler algorith
directories and links is to bypass links during directory traversal. Cycles are avoided, and no
extra overhead is incurred.

File Operations
A file is an abstract data type. To define a file properly, we need to consider the
can be performed on files. The operating system can provide system calls to create, write, read,
reposition, delete, and truncate files.

Files exist to store information and allow it to be retrieved later. Different systems provide
different operations to allow storage and retrieval. Below is a discussion of the most common
system calls relating to files.

 1. Create. The file is created with no data. The purpose of the call is to announce that the file is
coming and to set some of the attr
2. Delete. When the file is no longer needed, it has to be deleted to free up disk space. There is
always a system call for this purpose.
3. Open. Before using a file, a process must open it. The purpose of the
system to fetch the attributes and list of disk addresses into main memory for rapid access on
later calls.
4. Close. When all the accesses are finished, the attributes and disk addresses are no longer
needed, so the file should be closed to free up internal table sp
by imposing a maximum number of open files on processes.
A disk is written in blocks, and closing a file forces writing of the file's last block, even though
that block may not be entirely full yet. 5. Read. Data are read f
from the current position. The caller must specify how many data are needed and must also
provide a buffer to put them in.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

However, when cycles exist, the reference count may not be 0 even when it is no
to refer to a directory or file. This anomaly results from the possibility of self-

In this case, we generally need to use a garbage collection scheme to determine when the last
e has been deleted and the disk space can be reallocated. Garbage collection involves

traversing the entire file system, marking everything that can be accessed.

graph structure is much easier to work with. The difficulty is to avoid cycl
new links are added to the structure. How do we know when a new link will complete a cycle?
There are algorithms to detect cycles in graphs; however, they are computationally expensive,
especially when the graph is on disk storage. A simpler algorithm in the special case of
directories and links is to bypass links during directory traversal. Cycles are avoided, and no

A file is an abstract data type. To define a file properly, we need to consider the
can be performed on files. The operating system can provide system calls to create, write, read,
reposition, delete, and truncate files.

Files exist to store information and allow it to be retrieved later. Different systems provide
nt operations to allow storage and retrieval. Below is a discussion of the most common

The file is created with no data. The purpose of the call is to announce that the file is
coming and to set some of the attributes.

When the file is no longer needed, it has to be deleted to free up disk space. There is
always a system call for this purpose.

Before using a file, a process must open it. The purpose of the open call is to allow the
etch the attributes and list of disk addresses into main memory for rapid access on

When all the accesses are finished, the attributes and disk addresses are no longer
needed, so the file should be closed to free up internal table space. Many systems encourage this
by imposing a maximum number of open files on processes.

disk is written in blocks, and closing a file forces writing of the file's last block, even though
that block may not be entirely full yet. 5. Read. Data are read from file. Usually, the bytes come
from the current position. The caller must specify how many data are needed and must also

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 10/26

However, when cycles exist, the reference count may not be 0 even when it is no longer possible
-referencing (or a

scheme to determine when the last
e has been deleted and the disk space can be reallocated. Garbage collection involves

graph structure is much easier to work with. The difficulty is to avoid cycles as
new links are added to the structure. How do we know when a new link will complete a cycle?
There are algorithms to detect cycles in graphs; however, they are computationally expensive,

m in the special case of
directories and links is to bypass links during directory traversal. Cycles are avoided, and no

A file is an abstract data type. To define a file properly, we need to consider the operations that
can be performed on files. The operating system can provide system calls to create, write, read,

Files exist to store information and allow it to be retrieved later. Different systems provide
nt operations to allow storage and retrieval. Below is a discussion of the most common

The file is created with no data. The purpose of the call is to announce that the file is

When the file is no longer needed, it has to be deleted to free up disk space. There is

call is to allow the
etch the attributes and list of disk addresses into main memory for rapid access on

When all the accesses are finished, the attributes and disk addresses are no longer
ace. Many systems encourage this

disk is written in blocks, and closing a file forces writing of the file's last block, even though
rom file. Usually, the bytes come

from the current position. The caller must specify how many data are needed and must also

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

6. Write. Data are written to the file again, usually at the current position. If the current posi
is the end of the file, the file's size increases. If the current position is in the middle of the file,
existing data are overwritten and lost forever.
 7. Append. This call is a restricted form of write. It can only add data to the end of the file.
Systems that provide a minimal set of system calls do not generally have append, but many
systems provide multiple ways of doing the same thing, and these systems sometimes have
append.
 8. Seek. For random access files, a method is needed to specify from
common approach is a system call, seek, that repositions the file pointer to a specific place in the
file. After this call has completed, data can be read from, or written to, that position.
9. Get attributes. Processes often ne
UNIX make program is commonly used to manage software development projects consisting of
many source files. When make is called, it examines the modification times of all the source and
object files and arranges for the minimum number of compilations required to bring everything
up to date. To do its job, it must look at the attributes, namely, the modification times.
 10. Set attributes. Some of the attributes are user settable and can be change
been created. This system call makes that possible. The protection mode information is an
obvious example. Most of the flags also fall in this category.
 11. Rename. It frequently happens that a user needs to change the name of an exis
system call makes that possible. It is not always strictly necessary, because the file can usually be
copied to a new file with the new name, and the old file then deleted.

• Creating a file. Two steps are necessary to create a file.
found for the file. Second, an entry for the new file must be made in the directory.
 • Writing a file. To write a file, we make a system call specifying both the name of the file and
the information to be written to
directory to find the file’s location. The system must keep a
file where the next write is to take place. The write pointer must be updated whenever a write
occurs.
 • Reading a file. To read from a file, we use a system call that specifies the name of the file and
where (in memory) the next block of the file should be put. Again, the directory is searched for
the associated entry, and the system needs to kee
where the next read is to take place. Once the read has taken place, the read pointer is updated.
Because a process is usually either reading from or writing to a file, the current operation
location can be kept as a per-process
operations use this same pointer, saving space and reducing system complexity.
 • Repositioning within a file. The directory is searched for the appropriate entry, and the
current-file-position pointer is repositioned to a given value. Repositioning within a file need not
involve any actual I/O. This file operation is also known as a file
 • Deleting a file. To delete a file, we search the directory for the named file. Having fou
associated directory entry, we release all file space, so that it can be reused by other files, and
erase the directory entry.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

Data are written to the file again, usually at the current position. If the current posi
is the end of the file, the file's size increases. If the current position is in the middle of the file,
existing data are overwritten and lost forever.

This call is a restricted form of write. It can only add data to the end of the file.
Systems that provide a minimal set of system calls do not generally have append, but many
systems provide multiple ways of doing the same thing, and these systems sometimes have

For random access files, a method is needed to specify from where to take the data. One
common approach is a system call, seek, that repositions the file pointer to a specific place in the
file. After this call has completed, data can be read from, or written to, that position.

. Processes often need to read file attributes to do their work. For example, the
program is commonly used to manage software development projects consisting of

is called, it examines the modification times of all the source and
iles and arranges for the minimum number of compilations required to bring everything

up to date. To do its job, it must look at the attributes, namely, the modification times.
. Some of the attributes are user settable and can be changed after the file has

been created. This system call makes that possible. The protection mode information is an
obvious example. Most of the flags also fall in this category.

It frequently happens that a user needs to change the name of an exis
system call makes that possible. It is not always strictly necessary, because the file can usually be
copied to a new file with the new name, and the old file then deleted.

. Two steps are necessary to create a file. First, space in the file system must be
found for the file. Second, an entry for the new file must be made in the directory.

. To write a file, we make a system call specifying both the name of the file and
the information to be written to the file. Given the name of the file, the system searches the
directory to find the file’s location. The system must keep a write pointer to the location in the
file where the next write is to take place. The write pointer must be updated whenever a write

. To read from a file, we use a system call that specifies the name of the file and
where (in memory) the next block of the file should be put. Again, the directory is searched for
the associated entry, and the system needs to keep a read pointer to the location in the file
where the next read is to take place. Once the read has taken place, the read pointer is updated.
Because a process is usually either reading from or writing to a file, the current operation

process currentfile- position pointer. Both the read and write
operations use this same pointer, saving space and reducing system complexity.

. The directory is searched for the appropriate entry, and the
position pointer is repositioned to a given value. Repositioning within a file need not

involve any actual I/O. This file operation is also known as a file seek.
. To delete a file, we search the directory for the named file. Having fou

associated directory entry, we release all file space, so that it can be reused by other files, and

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 11/26

Data are written to the file again, usually at the current position. If the current position
is the end of the file, the file's size increases. If the current position is in the middle of the file,

This call is a restricted form of write. It can only add data to the end of the file.
Systems that provide a minimal set of system calls do not generally have append, but many
systems provide multiple ways of doing the same thing, and these systems sometimes have

where to take the data. One
common approach is a system call, seek, that repositions the file pointer to a specific place in the
file. After this call has completed, data can be read from, or written to, that position.

ed to read file attributes to do their work. For example, the
program is commonly used to manage software development projects consisting of

is called, it examines the modification times of all the source and
iles and arranges for the minimum number of compilations required to bring everything

up to date. To do its job, it must look at the attributes, namely, the modification times.
d after the file has

been created. This system call makes that possible. The protection mode information is an

It frequently happens that a user needs to change the name of an existing file. This
system call makes that possible. It is not always strictly necessary, because the file can usually be

First, space in the file system must be
found for the file. Second, an entry for the new file must be made in the directory.

. To write a file, we make a system call specifying both the name of the file and
the file. Given the name of the file, the system searches the

to the location in the
file where the next write is to take place. The write pointer must be updated whenever a write

. To read from a file, we use a system call that specifies the name of the file and
where (in memory) the next block of the file should be put. Again, the directory is searched for

to the location in the file
where the next read is to take place. Once the read has taken place, the read pointer is updated.
Because a process is usually either reading from or writing to a file, the current operation

. Both the read and write

. The directory is searched for the appropriate entry, and the
position pointer is repositioned to a given value. Repositioning within a file need not

. To delete a file, we search the directory for the named file. Having found the
associated directory entry, we release all file space, so that it can be reused by other files, and

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

 • Truncating a file. The user may want to erase the contents of a file but keep its attributes.
Rather than forcing the user to delete the file and then recreate it, this function allows all
attributes to remain unchanged—
and its file space released.

 These six basic operations comprise the minimal set of requ
common operations include appending new information to the end of an existing file and
renaming an existing file.

 These primitive operations can then be combined to perform other file operations. For
instance, we can create a copy of a file
or a display—by creating a new file and then reading from the old and
of the file operations mentioned involve searching the directory for the entry associated with the
named file. To avoid this constant searching, many systems require that an open() system call be
made before a file is first used.
containing information about all open files. When a file operation is requested, the file is
specified via an index into this table, so no searching is required. When the file is no longer
being actively used, it is closed by the process, and the operating system removes its entry from
the open-file table. create() and delete() are system calls that work with closed rather than open
files.

 In summary, several pieces of information are asso
 • File pointer. On systems that do not include a file offset as part of the read() and write()
system calls, the system must track the last read
This pointer is unique to each process operating on the file and therefore must be kept separate
from the on-disk file attributes.
 • File-open count. As files are closed, the operating system must reuse its open
entries, or it could run out of space in the table. Multiple pro
the system must wait for the last file to close before removing the open
open count tracks the number of opens and closes and reaches zero on the last close. The system
can then remove the entry.
 • Disk location of the file.Most file operations require the systemtomodify data within the file.
The information needed to locate the file on disk is kept in memory so that the system does not
have to read it from disk for each operation.
 • Access rights. Each process opens a file in an accessmode. This information is stored on the
per-process table so the operating system can allow or deny subsequent I/O requests. Some
operating systems provide facilities for locking an open file (or sections of a fil
provide functionality similar to reader

A shared lock is akin to a reader lock in that several processes can acquire the lock concurrently.
An exclusive lock behaves like a writer lock; only one process at a time
It is important to note that not all operating systems provide both types of locks: some systems
only provide exclusive file locking.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

. The user may want to erase the contents of a file but keep its attributes.
ser to delete the file and then recreate it, this function allows all

—except for file length—but lets the file be reset to length zero

These six basic operations comprise the minimal set of required file operations. Other
common operations include appending new information to the end of an existing file and

These primitive operations can then be combined to perform other file operations. For
instance, we can create a copy of a file—or copy the file to another I/O device, such as a printer

by creating a new file and then reading from the old and writing to the new. Most
of the file operations mentioned involve searching the directory for the entry associated with the
named file. To avoid this constant searching, many systems require that an open() system call be
made before a file is first used. The operating system keeps a table, called the
containing information about all open files. When a file operation is requested, the file is
specified via an index into this table, so no searching is required. When the file is no longer

ng actively used, it is closed by the process, and the operating system removes its entry from
file table. create() and delete() are system calls that work with closed rather than open

In summary, several pieces of information are associated with an open file.
. On systems that do not include a file offset as part of the read() and write()

system calls, the system must track the last read– write location as a current-file-
rocess operating on the file and therefore must be kept separate

. As files are closed, the operating system must reuse its open
entries, or it could run out of space in the table. Multiple processes may have opened a file, and
the system must wait for the last file to close before removing the open-file table entry. The file
open count tracks the number of opens and closes and reaches zero on the last close. The system

.Most file operations require the systemtomodify data within the file.
The information needed to locate the file on disk is kept in memory so that the system does not
have to read it from disk for each operation.

. Each process opens a file in an accessmode. This information is stored on the
process table so the operating system can allow or deny subsequent I/O requests. Some

operating systems provide facilities for locking an open file (or sections of a fil
provide functionality similar to reader–writer locks, covered in

is akin to a reader lock in that several processes can acquire the lock concurrently.
behaves like a writer lock; only one process at a time can acquire such a lock.

It is important to note that not all operating systems provide both types of locks: some systems
only provide exclusive file locking.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 12/26

. The user may want to erase the contents of a file but keep its attributes.
ser to delete the file and then recreate it, this function allows all

but lets the file be reset to length zero

ired file operations. Other
common operations include appending new information to the end of an existing file and

These primitive operations can then be combined to perform other file operations. For
or copy the file to another I/O device, such as a printer

writing to the new. Most
of the file operations mentioned involve searching the directory for the entry associated with the
named file. To avoid this constant searching, many systems require that an open() system call be

The operating system keeps a table, called the open-file table,
containing information about all open files. When a file operation is requested, the file is
specified via an index into this table, so no searching is required. When the file is no longer

ng actively used, it is closed by the process, and the operating system removes its entry from
file table. create() and delete() are system calls that work with closed rather than open

. On systems that do not include a file offset as part of the read() and write()
-position pointer.

rocess operating on the file and therefore must be kept separate

. As files are closed, the operating system must reuse its open-file table
cesses may have opened a file, and

file table entry. The file-
open count tracks the number of opens and closes and reaches zero on the last close. The system

.Most file operations require the systemtomodify data within the file.
The information needed to locate the file on disk is kept in memory so that the system does not

. Each process opens a file in an accessmode. This information is stored on the
process table so the operating system can allow or deny subsequent I/O requests. Some

operating systems provide facilities for locking an open file (or sections of a file). File locks

is akin to a reader lock in that several processes can acquire the lock concurrently.
can acquire such a lock.

It is important to note that not all operating systems provide both types of locks: some systems

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

Furthermore, operating systems may provide either
mechanisms. If a lock is mandatory, then once a process acquires an exclusive lock, the
operating system will prevent any other process from accessing the locked file.

File Allocation Methods
The direct-access nature of disks gives us flexibility in the implemen
every case, many files are stored on the same disk. The main problem is how to allocate space to
these files so that disk space is utilized effectively and files can be accessed quickly.

 Three major methods of allocating disk
indexed. Each method has advantages and disadvantages.
 Although some systems support all three, it is more common for a system to use one
method for all files within a file-system type.

 Contiguous Allocation

 Contiguous allocation requires that each file occupy a set of contiguous blocks on the disk.
Disk addresses define a linear ordering on the disk. With this ordering, assuming that only one
job is accessing the disk, accessing block
movement.

 When head movement is needed (from the last sector of one cylinder to the first sector of the
next cylinder), the head need only move from one track to the next. Thus, the number of disk
seeks required for accessing contiguously allocated files is minimal, as is seek time when a seek
is finally needed. Contiguous allocation of a file is defined by the disk address and length (in
block units) of the first block. If the file is
blocks b, b + 1, b + 2, ...,b + n −

The directory entry for each file indicates the address of the starting block and the length of the
area allocated for this file (Figure 12.5). Accessing a file that has been allocat
easy. For sequential access, the file system remembers the disk address of the last block
referenced and, when necessary, reads the next block. For direct access to block

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

Furthermore, operating systems may provide either mandatory or advisory
ms. If a lock is mandatory, then once a process acquires an exclusive lock, the

operating system will prevent any other process from accessing the locked file.

access nature of disks gives us flexibility in the implementation of files. In almost
every case, many files are stored on the same disk. The main problem is how to allocate space to
these files so that disk space is utilized effectively and files can be accessed quickly.

Three major methods of allocating disk space are in wide use: contiguous, linked, and
indexed. Each method has advantages and disadvantages.

Although some systems support all three, it is more common for a system to use one
system type.

requires that each file occupy a set of contiguous blocks on the disk.
Disk addresses define a linear ordering on the disk. With this ordering, assuming that only one
job is accessing the disk, accessing blockb + 1 after block b normally requires no head

When head movement is needed (from the last sector of one cylinder to the first sector of the
next cylinder), the head need only move from one track to the next. Thus, the number of disk

red for accessing contiguously allocated files is minimal, as is seek time when a seek
is finally needed. Contiguous allocation of a file is defined by the disk address and length (in
block units) of the first block. If the file is n blocks long and starts at location b,

 1.

The directory entry for each file indicates the address of the starting block and the length of the
area allocated for this file (Figure 12.5). Accessing a file that has been allocated contiguously is
easy. For sequential access, the file system remembers the disk address of the last block
referenced and, when necessary, reads the next block. For direct access to block

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 13/26

advisory file-locking
ms. If a lock is mandatory, then once a process acquires an exclusive lock, the

tation of files. In almost
every case, many files are stored on the same disk. The main problem is how to allocate space to
these files so that disk space is utilized effectively and files can be accessed quickly.

space are in wide use: contiguous, linked, and

Although some systems support all three, it is more common for a system to use one

requires that each file occupy a set of contiguous blocks on the disk.
Disk addresses define a linear ordering on the disk. With this ordering, assuming that only one

normally requires no head

When head movement is needed (from the last sector of one cylinder to the first sector of the
next cylinder), the head need only move from one track to the next. Thus, the number of disk

red for accessing contiguously allocated files is minimal, as is seek time when a seek
is finally needed. Contiguous allocation of a file is defined by the disk address and length (in

b, then it occupies

The directory entry for each file indicates the address of the starting block and the length of the
ed contiguously is

easy. For sequential access, the file system remembers the disk address of the last block
referenced and, when necessary, reads the next block. For direct access to block i of a 554

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

Fig 4.6.

file that starts at block b, we can immediately access block
access can be supported by contiguous allocation. Contiguous allocation has some problems,
however. One difficulty is finding space for a new file. The system chosen to manage free space
determines how this task is accompli

Any management system can be used, but some are slower than others. The contiguous
allocation problem can be seen as a particular application of the general
allocation problem which involves how to satisfy a request of size

First fit and best fit are the most common strategies used to select a free hole from the set of
available holes. Simulations have shown that both first fit and best fit are more efficient than
worst fit in terms of both time and sto
terms of storage utilization, but first fit is generally faster. All these algorithms suffer from the
problem of external fragmentation

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

Fig 4.6. Contiguous allocation of disk space

we can immediately access block b + i. Thus, both sequential and direct
access can be supported by contiguous allocation. Contiguous allocation has some problems,
however. One difficulty is finding space for a new file. The system chosen to manage free space
determines how this task is accomplished;

Any management system can be used, but some are slower than others. The contiguous
allocation problem can be seen as a particular application of the general dynamic storage

problem which involves how to satisfy a request of size n from a list of free holes.

First fit and best fit are the most common strategies used to select a free hole from the set of
available holes. Simulations have shown that both first fit and best fit are more efficient than
worst fit in terms of both time and storage utilization. Neither first fit nor best fit is clearly best in
terms of storage utilization, but first fit is generally faster. All these algorithms suffer from the

external fragmentation.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 14/26

Thus, both sequential and direct
access can be supported by contiguous allocation. Contiguous allocation has some problems,
however. One difficulty is finding space for a new file. The system chosen to manage free space

Any management system can be used, but some are slower than others. The contiguous-
dynamic storage-

list of free holes.

First fit and best fit are the most common strategies used to select a free hole from the set of
available holes. Simulations have shown that both first fit and best fit are more efficient than

rage utilization. Neither first fit nor best fit is clearly best in
terms of storage utilization, but first fit is generally faster. All these algorithms suffer from the

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

As files are allocated and deleted, the free disk
fragmentation exists whenever free space is broken into chunks. It becomes a problem when the
largest contiguous chunk is insufficient for a request; storage is fragmented into a number of
holes, none of which is large enough to store the data.

Depending on the total amount of disk storage and the average file size, external
fragmentation may be a minor or a major problem. One strategy for preventing loss of significant
amounts of disk space to external fragmen
disk. The original disk is then freed completely, creating one large contiguous free space. We
then copy the files back onto the original disk by allocating contiguous space from this one large
hole. This scheme effectively compacts
fragmentation problem. The cost of this
particularly high for large hard disks. Compacting these disks may take hours and ma
necessary on a weekly basis.

Some systems require that this function be done
this down time, normal systemoperation generally cannot be permitted, so such compaction is
avoided at all costs on production machines. Most modern systems that need defragmentation
can perform it on-line during normal system operations, but the performance penalty can be
substantial.

Another problem with contiguous allocation is determining how much space is needed for a f
When the file is created, the total amount of space it will need must be found and allocated. How
does the creator (program or person) know the size of the file to be created? In some cases, this
determination may be fairly simple (copying an existing
the size of an output file may be difficult to estimate. If we allocate too little space to a file, we
may find that the file cannot be extended. Especially with a best
on both sides of the file may be in use. Hence, we cannot make the file larger in place.

 Two possibilities then exist. First, the user program can be terminated, with an appropriate error
message. The user must then allocate more space and run the program again. T
may be costly. To prevent them, the user will normally overestimate the amount of space needed,
resulting in considerable wasted space. The other possibility is to find a larger hole, copy the
contents of the file to the new space, and r
repeated as long as space exists, although it can be time consuming.

Linked Allocation
Linked allocation solves all problems of contiguous allocation. With linked allocation, each file
is a linked list of disk blocks; the disk blocks may be scattered anywhere on the disk. The
directory contains a pointer to the first and last blocks of the file.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

As files are allocated and deleted, the free disk space is broken into little pieces. External
fragmentation exists whenever free space is broken into chunks. It becomes a problem when the
largest contiguous chunk is insufficient for a request; storage is fragmented into a number of

is large enough to store the data.

Depending on the total amount of disk storage and the average file size, external
fragmentation may be a minor or a major problem. One strategy for preventing loss of significant
amounts of disk space to external fragmentation is to copy an entire file system onto another
disk. The original disk is then freed completely, creating one large contiguous free space. We
then copy the files back onto the original disk by allocating contiguous space from this one large

compactsall free space into one contiguous space, solving the
fragmentation problem. The cost of this compaction is time, however, and the cost can be
particularly high for large hard disks. Compacting these disks may take hours and ma

Some systems require that this function be done off-line, with the file system unmounted. During
, normal systemoperation generally cannot be permitted, so such compaction is

ion machines. Most modern systems that need defragmentation
during normal system operations, but the performance penalty can be

Another problem with contiguous allocation is determining how much space is needed for a f
When the file is created, the total amount of space it will need must be found and allocated. How
does the creator (program or person) know the size of the file to be created? In some cases, this
determination may be fairly simple (copying an existing file, for example). In general, however,
the size of an output file may be difficult to estimate. If we allocate too little space to a file, we
may find that the file cannot be extended. Especially with a best-fit allocation strategy, the space

des of the file may be in use. Hence, we cannot make the file larger in place.

Two possibilities then exist. First, the user program can be terminated, with an appropriate error
message. The user must then allocate more space and run the program again. These repeated runs
may be costly. To prevent them, the user will normally overestimate the amount of space needed,
resulting in considerable wasted space. The other possibility is to find a larger hole, copy the
contents of the file to the new space, and release the previous space. This series of actions can be
repeated as long as space exists, although it can be time consuming.

solves all problems of contiguous allocation. With linked allocation, each file
list of disk blocks; the disk blocks may be scattered anywhere on the disk. The

directory contains a pointer to the first and last blocks of the file.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 15/26

space is broken into little pieces. External
fragmentation exists whenever free space is broken into chunks. It becomes a problem when the
largest contiguous chunk is insufficient for a request; storage is fragmented into a number of

Depending on the total amount of disk storage and the average file size, external
fragmentation may be a minor or a major problem. One strategy for preventing loss of significant

tation is to copy an entire file system onto another
disk. The original disk is then freed completely, creating one large contiguous free space. We
then copy the files back onto the original disk by allocating contiguous space from this one large

all free space into one contiguous space, solving the
is time, however, and the cost can be

particularly high for large hard disks. Compacting these disks may take hours and may be

, with the file system unmounted. During
, normal systemoperation generally cannot be permitted, so such compaction is

ion machines. Most modern systems that need defragmentation
during normal system operations, but the performance penalty can be

Another problem with contiguous allocation is determining how much space is needed for a file.
When the file is created, the total amount of space it will need must be found and allocated. How
does the creator (program or person) know the size of the file to be created? In some cases, this

file, for example). In general, however,
the size of an output file may be difficult to estimate. If we allocate too little space to a file, we

fit allocation strategy, the space
des of the file may be in use. Hence, we cannot make the file larger in place.

Two possibilities then exist. First, the user program can be terminated, with an appropriate error
hese repeated runs

may be costly. To prevent them, the user will normally overestimate the amount of space needed,
resulting in considerable wasted space. The other possibility is to find a larger hole, copy the

elease the previous space. This series of actions can be

solves all problems of contiguous allocation. With linked allocation, each file
list of disk blocks; the disk blocks may be scattered anywhere on the disk. The

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

Fig 4.7.

For example, a file of five blocks might start at block 9 an
then block 10, and finally block 25 . Each block contains a pointer to the next block. These
pointers are not made available to the user. Thus, if each block is 512 bytes in size, and a disk
address (the pointer) requires 4 bytes, then the user sees blocks of 508 bytes. To create a new
file, we simply create a new entry in the directory. With linked allocation, each directory entry
has a pointer to the first disk block of the file.

This pointer is initialized to null
field is also set to 0. A write to the file causes the free
block, and this new block is written to and is linked to the end of the file.

To read a file, we simply read blocks by following the pointers from block to block. There is no
external fragmentation with linked allocation, and any free block on the free
used to satisfy a request. The size of a file need not be declared when t
can continue to grow as long as free blocks are available. Consequently, it is never necessary to
compact disk space. Linked allocation does have disadvantages, however. The major problem is
that it can be used effectively only f

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

Fig 4.7.Linked allocation of disk space.

For example, a file of five blocks might start at block 9 and continue at block 16, then block 1,
then block 10, and finally block 25 . Each block contains a pointer to the next block. These
pointers are not made available to the user. Thus, if each block is 512 bytes in size, and a disk

res 4 bytes, then the user sees blocks of 508 bytes. To create a new
file, we simply create a new entry in the directory. With linked allocation, each directory entry
has a pointer to the first disk block of the file.

This pointer is initialized to null (the end-of-list pointer value) to signify an empty file. The size
field is also set to 0. A write to the file causes the free-space management system to find a free
block, and this new block is written to and is linked to the end of the file.

file, we simply read blocks by following the pointers from block to block. There is no
external fragmentation with linked allocation, and any free block on the free-
used to satisfy a request. The size of a file need not be declared when the file is created. A file
can continue to grow as long as free blocks are available. Consequently, it is never necessary to
compact disk space. Linked allocation does have disadvantages, however. The major problem is
that it can be used effectively only for sequential-access files.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 16/26

d continue at block 16, then block 1,
then block 10, and finally block 25 . Each block contains a pointer to the next block. These
pointers are not made available to the user. Thus, if each block is 512 bytes in size, and a disk

res 4 bytes, then the user sees blocks of 508 bytes. To create a new
file, we simply create a new entry in the directory. With linked allocation, each directory entry

list pointer value) to signify an empty file. The size
space management system to find a free

file, we simply read blocks by following the pointers from block to block. There is no
-space list can be

he file is created. A file
can continue to grow as long as free blocks are available. Consequently, it is never necessary to
compact disk space. Linked allocation does have disadvantages, however. The major problem is

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

 To find the ith block of a file, we must start at the beginning of that file and follow the pointers
until we get to the ith block. Each access to a pointer requires a disk read, and some require a
disk seek. Consequently, it is inefficient to support a direct
allocation files. Another disadvantage is the space required for the pointers. If a pointer requires
4 bytes out of a 512-byte block, then 0.78 percent of the disk is being used for pointers,
than for information.

 Each file requires slightly more space than it would otherwise. The usual solution to this
problem is to collect blocks into multiples, called
blocks. For instance, the file sys
only in cluster units. Pointers then use a much smaller percentage of the file’s disk space. This
method allows the logical-to-physical block mapping to remain simple but improves disk
throughput (because fewer disk
block allocation and free-list management.

The cost of this approach is an increase in internal fragmentation, because more space is wasted
when a cluster is partially full than when a block is partially full. Clusters can be used to improve
the disk-access time for many other algorithms as well, so they are used in most file systems. Yet
another problem of linked allocation is reliability. Recall that the files are linked
pointers scattered all over the disk, and consider what would happen if a pointer were lost or
damaged.

 A bug in the operating-system software or a disk hardware failure might result in picking up the
wrong pointer. This error could in turn
file. One partial solution is to use doubly linked lists, and another is to store the file name and
relative block number in each block. However, these schemes require even more overhead for
each file. An important variation on linked allocation is the use of a

 This simple but efficient method of disk
system. A section of disk at the beginning of each volume is set as
table has one entry for each disk block and is indexed by block number. The FAT is used in
much the same way as a linked list. The directory entry contains the block number of the first
block of the file. The table entry index
next block in the file.

This chain continues until it reaches the last block, which has a special end
table entry. An unused block is indicated by a table value of 0. Allocating
a simple matter of finding the first 0
value with the address of the new block. The 0 is then replaced with the end

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

th block of a file, we must start at the beginning of that file and follow the pointers
th block. Each access to a pointer requires a disk read, and some require a

is inefficient to support a direct-access capability for linked
allocation files. Another disadvantage is the space required for the pointers. If a pointer requires

byte block, then 0.78 percent of the disk is being used for pointers,

Each file requires slightly more space than it would otherwise. The usual solution to this
problem is to collect blocks into multiples, called clusters, and to allocate clusters rather than
blocks. For instance, the file system may define a cluster as four blocks and operate on the disk
only in cluster units. Pointers then use a much smaller percentage of the file’s disk space. This

physical block mapping to remain simple but improves disk
put (because fewer disk-head seeks are required) and decreases the space needed for

list management.

The cost of this approach is an increase in internal fragmentation, because more space is wasted
ll than when a block is partially full. Clusters can be used to improve

access time for many other algorithms as well, so they are used in most file systems. Yet
another problem of linked allocation is reliability. Recall that the files are linked
pointers scattered all over the disk, and consider what would happen if a pointer were lost or

system software or a disk hardware failure might result in picking up the
wrong pointer. This error could in turn result in linking into the free-space list or into another
file. One partial solution is to use doubly linked lists, and another is to store the file name and
relative block number in each block. However, these schemes require even more overhead for

file. An important variation on linked allocation is the use of a file-allocation table (FAT)

This simple but efficient method of disk-space allocation was used by the MS
system. A section of disk at the beginning of each volume is set aside to contain the table. The
table has one entry for each disk block and is indexed by block number. The FAT is used in
much the same way as a linked list. The directory entry contains the block number of the first
block of the file. The table entry indexed by that block number contains the block number of the

This chain continues until it reaches the last block, which has a special end-of
table entry. An unused block is indicated by a table value of 0. Allocating a new block to a file is
a simple matter of finding the first 0-valued table entry and replacing the previous end
value with the address of the new block. The 0 is then replaced with the end-

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 17/26

th block of a file, we must start at the beginning of that file and follow the pointers
th block. Each access to a pointer requires a disk read, and some require a

access capability for linked-
allocation files. Another disadvantage is the space required for the pointers. If a pointer requires

byte block, then 0.78 percent of the disk is being used for pointers, rather

Each file requires slightly more space than it would otherwise. The usual solution to this
, and to allocate clusters rather than

tem may define a cluster as four blocks and operate on the disk
only in cluster units. Pointers then use a much smaller percentage of the file’s disk space. This

physical block mapping to remain simple but improves disk
head seeks are required) and decreases the space needed for

The cost of this approach is an increase in internal fragmentation, because more space is wasted
ll than when a block is partially full. Clusters can be used to improve

access time for many other algorithms as well, so they are used in most file systems. Yet
another problem of linked allocation is reliability. Recall that the files are linked together by
pointers scattered all over the disk, and consider what would happen if a pointer were lost or

system software or a disk hardware failure might result in picking up the
space list or into another

file. One partial solution is to use doubly linked lists, and another is to store the file name and
relative block number in each block. However, these schemes require even more overhead for

allocation table (FAT).

space allocation was used by the MS-DOS operating
ide to contain the table. The

table has one entry for each disk block and is indexed by block number. The FAT is used in
much the same way as a linked list. The directory entry contains the block number of the first

ed by that block number contains the block number of the

of-file value as the
a new block to a file is

valued table entry and replacing the previous end-of-file
-of-file value. An

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

illustrative example is the FAT struct
217, 618, and 339. The FAT allocation scheme can result in a significant number of disk head
seeks, unless the FAT is cached. The disk head must move to the start of the volume to read the
FAT and find the location of the block in question, then move to the location of the block itself.
In the worst case, both moves occur for each of the blocks. A benefit is that random
is improved, because the disk head can find the location of any b
in the FAT.

Indexed Allocation
 Linked allocation solves the external
allocation. However, in the absence of a FAT, linked allocation cannot support efficient direct
access, since the pointers to the blocks are scattered with the
and must be retrieved in order.
pointers together into one location: the
an array of disk-block addresses. The

The ithentry in the index block points to the
address of the index block (Figure 12.8). To find and read the
ithindex-block entry. This scheme is similar to the paging scheme described in Section 8.5.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

illustrative example is the FAT structure shown in Figure 12.7 for a file consisting of disk blocks
217, 618, and 339. The FAT allocation scheme can result in a significant number of disk head
seeks, unless the FAT is cached. The disk head must move to the start of the volume to read the

nd find the location of the block in question, then move to the location of the block itself.
In the worst case, both moves occur for each of the blocks. A benefit is that random
is improved, because the disk head can find the location of any block by reading the information

Linked allocation solves the external-fragmentation and size-declaration problems of contiguous
allocation. However, in the absence of a FAT, linked allocation cannot support efficient direct
access, since the pointers to the blocks are scattered with the blocks themselves all over the disk
and must be retrieved in order. Indexed allocation solves this problem by bringing all the
pointers together into one location: the index block. Each file has its own index block, which is

es. The ithentry in the index block points to the ith

Fig 4.8.File-allocation table.

entry in the index block points to the ithblock of the file. The directorycontains the
address of the index block (Figure 12.8). To find and read the ithblock, we use the pointer in the

block entry. This scheme is similar to the paging scheme described in Section 8.5.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 18/26

ure shown in Figure 12.7 for a file consisting of disk blocks
217, 618, and 339. The FAT allocation scheme can result in a significant number of disk head
seeks, unless the FAT is cached. The disk head must move to the start of the volume to read the

nd find the location of the block in question, then move to the location of the block itself.
In the worst case, both moves occur for each of the blocks. A benefit is that random-access time

lock by reading the information

declaration problems of contiguous
allocation. However, in the absence of a FAT, linked allocation cannot support efficient direct

blocks themselves all over the disk
solves this problem by bringing all the

. Each file has its own index block, which is
ithblock of the file.

block of the file. The directorycontains the
block, we use the pointer in the

block entry. This scheme is similar to the paging scheme described in Section 8.5.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

When the file is created, all pointers in the index block are set to null. When the
written, a block is obtained from the free
block entry. Indexed allocation supports direct access, without suffering fr
fragmentation, because any free block on the disk can satisfy a request for more space. Indexed
allocation does suffer from wasted space, however. The pointer overhead of the index block is
generally greater than the pointer overhead of linked

Fig 4.9.

 Consider a common case in which we have a file of only one or two blocks.With linked
allocation, we lose the space of only one pointer per block. With indexed allocation, an entire
index block must be allocated, even if only one or two pointers will be non

 This point raises the question of how large the index block should be. Every file must have an
index block, so we want the index block to be as small as possible. If the index block is too
small, however, it will not be able to hold enough pointers for a large file, and a mechanism will
have to be available to deal with this issue.

Space Allocation

Files are allocated disk spaces by operating system. Operating systems deploy following

main ways to allocate disk space to files.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

ated, all pointers in the index block are set to null. When the
written, a block is obtained from the free-space manager, and its address is put in the
block entry. Indexed allocation supports direct access, without suffering fr
fragmentation, because any free block on the disk can satisfy a request for more space. Indexed
allocation does suffer from wasted space, however. The pointer overhead of the index block is
generally greater than the pointer overhead of linked allocation.

Fig 4.9.Indexed allocation of disk space.

Consider a common case in which we have a file of only one or two blocks.With linked
allocation, we lose the space of only one pointer per block. With indexed allocation, an entire

be allocated, even if only one or two pointers will be non-null.

This point raises the question of how large the index block should be. Every file must have an
index block, so we want the index block to be as small as possible. If the index block is too
small, however, it will not be able to hold enough pointers for a large file, and a mechanism will
have to be available to deal with this issue.

Files are allocated disk spaces by operating system. Operating systems deploy following

main ways to allocate disk space to files.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 19/26

ated, all pointers in the index block are set to null. When the ithblock is first
space manager, and its address is put in the ith index-

block entry. Indexed allocation supports direct access, without suffering from external
fragmentation, because any free block on the disk can satisfy a request for more space. Indexed
allocation does suffer from wasted space, however. The pointer overhead of the index block is

Consider a common case in which we have a file of only one or two blocks.With linked
allocation, we lose the space of only one pointer per block. With indexed allocation, an entire

This point raises the question of how large the index block should be. Every file must have an
index block, so we want the index block to be as small as possible. If the index block is too
small, however, it will not be able to hold enough pointers for a large file, and a mechanism will

Files are allocated disk spaces by operating system. Operating systems deploy following three

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

 Contiguous Allocation

 Linked Allocation

 Indexed Allocation

Contiguous Allocation

 Each file occupies a contiguous address space on disk.

 Assigned disk address is in linear order.

 Easy to implement.

 External fragmentation is a major issue with this type of allocation technique.

Linked Allocation

 Each file carries a list of links to disk blocks.

 Directory contains link / pointer to first block of a file.

 No external fragmentation

 Effectively used in sequential

 Inefficient in case of direct access file.

Indexed Allocation

 Provides solutions to problems of contiguous and linked allocation.

 A index block is created having all pointers to files.

 Each file has its own index block which stores the address

the file.

 Directory contains the addresses of index blocks of files.

To keep track of files, file systems normally have
which in many systems are themselves files. In this section we will discuss
their organization, their properties, and the operations that can be performed
on them.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

Each file occupies a contiguous address space on disk.

Assigned disk address is in linear order.

fragmentation is a major issue with this type of allocation technique.

Each file carries a list of links to disk blocks.

Directory contains link / pointer to first block of a file.

No external fragmentation

Effectively used in sequential access file.

Inefficient in case of direct access file.

Provides solutions to problems of contiguous and linked allocation.

A index block is created having all pointers to files.

Each file has its own index block which stores the addresses of disk space occupied by

Directory contains the addresses of index blocks of files.

To keep track of files, file systems normally have directories or folders,
which in many systems are themselves files. In this section we will discuss directories,
their organization, their properties, and the operations that can be performed

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 20/26

fragmentation is a major issue with this type of allocation technique.

es of disk space occupied by

directories,

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

Device Management

A process may need several resources to execute

so on. If the resources are available, t

process. Otherwise, the process will have to wait until sufficient resources are available.

The various resources controlled by the operating system can be thought of as devices. Some of

these devices are physical devices (for example, disk drives), while others can be thought of as

abstract or virtual devices (for example, files).A system with multiple users may require us to

first request() a device, to ensure exclusive use of it. After we are fi

release() it.

These functions are similar to the open() and close() system calls for files. Other operating

systems allow unmanaged access to devices. The hazard then is the potential for device

contention and perhaps deadlock.

Once the device has been requested (and allocated to us), we can read(), write(), and (possibly)

reposition() the device, just as we can with files. In fact, the similarity between I/O devices and

files is so great that many operating systems, including UN

file–device structure. In this case, a set of system calls is used on both files and devices.

Sometimes, I/O devices are identified by special file names, directory placement, or file

attributes. The user interface can als

the underlying system calls are dissimilar. This is another example of the many design decisions

that go into building an operating system and user interface.

Hardware devices typically provide th

from the computer. To simplify the ability to support a variety of hardware devices, standardized

application programming interfaces (API) are used.

 Application programs use the System Call API to re

requests from the Operating System.

 The Operating System uses algorithms for processing the request that are device

independent.

 The Operating System uses another API to request data from the device driver.

 The device driver is third party software that knows how to interact with the specific

device to perform the I/O.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

A process may need several resources to execute—main memory, disk drives, access to files, and

so on. If the resources are available, they can be granted, and control can be returned to the user

process. Otherwise, the process will have to wait until sufficient resources are available.

The various resources controlled by the operating system can be thought of as devices. Some of

ices are physical devices (for example, disk drives), while others can be thought of as

abstract or virtual devices (for example, files).A system with multiple users may require us to

first request() a device, to ensure exclusive use of it. After we are finished with the device, we

These functions are similar to the open() and close() system calls for files. Other operating

systems allow unmanaged access to devices. The hazard then is the potential for device

contention and perhaps deadlock.

Once the device has been requested (and allocated to us), we can read(), write(), and (possibly)

reposition() the device, just as we can with files. In fact, the similarity between I/O devices and

files is so great that many operating systems, including UNIX, merge the two into a combined

device structure. In this case, a set of system calls is used on both files and devices.

Sometimes, I/O devices are identified by special file names, directory placement, or file

attributes. The user interface can also make files and devices appear to be similar, even though

the underlying system calls are dissimilar. This is another example of the many design decisions

that go into building an operating system and user interface.

Hardware devices typically provide the ability to input data into the computer or

from the computer. To simplify the ability to support a variety of hardware devices, standardized

application programming interfaces (API) are used.

Application programs use the System Call API to request one of a finite set of preset I/O

requests from the Operating System.

The Operating System uses algorithms for processing the request that are device

The Operating System uses another API to request data from the device driver.

e driver is third party software that knows how to interact with the specific

device to perform the I/O.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 21/26

main memory, disk drives, access to files, and

hey can be granted, and control can be returned to the user

process. Otherwise, the process will have to wait until sufficient resources are available.

The various resources controlled by the operating system can be thought of as devices. Some of

ices are physical devices (for example, disk drives), while others can be thought of as

abstract or virtual devices (for example, files).A system with multiple users may require us to

nished with the device, we

These functions are similar to the open() and close() system calls for files. Other operating

systems allow unmanaged access to devices. The hazard then is the potential for device

Once the device has been requested (and allocated to us), we can read(), write(), and (possibly)

reposition() the device, just as we can with files. In fact, the similarity between I/O devices and

IX, merge the two into a combined

device structure. In this case, a set of system calls is used on both files and devices.

Sometimes, I/O devices are identified by special file names, directory placement, or file

o make files and devices appear to be similar, even though

the underlying system calls are dissimilar. This is another example of the many design decisions

data into the computer or output data

from the computer. To simplify the ability to support a variety of hardware devices, standardized

quest one of a finite set of preset I/O

The Operating System uses algorithms for processing the request that are device

The Operating System uses another API to request data from the device driver.

e driver is third party software that knows how to interact with the specific

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

 Sometimes we have a layering of device drivers where one device driver will call on

another device driver to facilitate the I/O. An example of this is

connected to a USB port. The driver for the device will make use of the USB device

driver to facilitate passing data to and from the device.

Device Drivers

The Device Driver Interface

System Call Interface

 Functions available to application programs

 Abstract all devices (and files) to a few interfaces

 Make interfaces as similar as possible

o Block vs character

o Sequential vs direct access

 Device driver implements functions (one entry point per API function)

. Example - UNIX Driver

open Prepare dev for operation

close No longer using the device

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

Sometimes we have a layering of device drivers where one device driver will call on

another device driver to facilitate the I/O. An example of this is when devices are

connected to a USB port. The driver for the device will make use of the USB device

driver to facilitate passing data to and from the device.

application programs

Abstract all devices (and files) to a few interfaces

Make interfaces as similar as possible

Block vs character

Sequential vs direct access

Device driver implements functions (one entry point per API function)

Prepare dev for operation

No longer using the device

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 22/26

Sometimes we have a layering of device drivers where one device driver will call on

when devices are

connected to a USB port. The driver for the device will make use of the USB device

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

ioctl Character dev specific info

read Character dev input op

write Character dev output op

strategy Block dev input/output ops

select Character dev check for data

stop Discontinue a stream output op

. Waiting for I/O

Many types of input / output (I/O) do not occur immediately. So the process must wait in a

waiting queue and the device driver needs a strategy of how to effectively wait for I/O data.

Polling

Polling is not very efficient because the system must continually check the device for data.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

Character dev specific info

Character dev input op

Character dev output op

Block dev input/output ops

Character dev check for data

stream output op

Many types of input / output (I/O) do not occur immediately. So the process must wait in a

waiting queue and the device driver needs a strategy of how to effectively wait for I/O data.

efficient because the system must continually check the device for data.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 23/26

Many types of input / output (I/O) do not occur immediately. So the process must wait in a

waiting queue and the device driver needs a strategy of how to effectively wait for I/O data.

efficient because the system must continually check the device for data.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

Interrupt Driven

When an interrupt occurs it calls the interrupt handlers.

It is more efficient to start an I/O peripheral doing a task and let it interrupt the system when the

I/O operation is finished.

The interrupt driven approach causes drivers to consist of a top and bottom half.

Non maskable interrupt

These kind of interrupts are reserved for events like unrecoverable memory errors

Maskable interrupt

Such interrupts can be switched off by the CPU before the execution of critical instructions that

must not be interrupted.

Blocking and Nonblocking I/O

Some control over how the wait for I/O to complete is accommodated is available to the

programmer of user applications. Most I/O

that control does not return to the application until the I/O is complete. The delayed from

systems calls such read() and write()

sometimes call synchronous programming. In most cases, the wait is not really a problem

because the program can not do anything else until the I/O is finished.

One solution for these situations is to use multiple threads so that one part of the program is not

waiting for unrelated I/O to complete. Another alternative is to use

techniques with nonblocking system calls. An asynchronous call returns immediately, without

waiting for the I/O to complete.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

When an interrupt occurs it calls the interrupt handlers.

It is more efficient to start an I/O peripheral doing a task and let it interrupt the system when the

The interrupt driven approach causes drivers to consist of a top and bottom half.

These kind of interrupts are reserved for events like unrecoverable memory errors

ched off by the CPU before the execution of critical instructions that

Some control over how the wait for I/O to complete is accommodated is available to the

programmer of user applications. Most I/O requests are considered blocking requests, meaning

that control does not return to the application until the I/O is complete. The delayed from

write() can be quite long. Using systems call that block is

programming. In most cases, the wait is not really a problem

because the program can not do anything else until the I/O is finished.

One solution for these situations is to use multiple threads so that one part of the program is not

r unrelated I/O to complete. Another alternative is to use asynchronous

system calls. An asynchronous call returns immediately, without

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 24/26

It is more efficient to start an I/O peripheral doing a task and let it interrupt the system when the

These kind of interrupts are reserved for events like unrecoverable memory errors

ched off by the CPU before the execution of critical instructions that

Some control over how the wait for I/O to complete is accommodated is available to the

requests, meaning

that control does not return to the application until the I/O is complete. The delayed from

can be quite long. Using systems call that block is

programming. In most cases, the wait is not really a problem

One solution for these situations is to use multiple threads so that one part of the program is not

asynchronous programming

system calls. An asynchronous call returns immediately, without

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

Blocking I/O system calls (a) do not return

calls return immediately. The process is later notified when the I/O is complete.

A good example of nonblocking behavior is the

Using select(), an application can

for network activity without blocking. The

then read() or write()may be used knowing that they will complete immediately.

1. List any four File Operations?
2. What are the file allocation methods?
3. What is linked allocation?
4. What are the directory structures available?
5. What is device management?

1. Explain File operations with example.
2. Briefly describe about Device management.
3. Describe about Directory structure with neat diagram.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

Blocking I/O system calls (a) do not return until the I/O is complete. Nonblocking I/O sy

calls return immediately. The process is later notified when the I/O is complete.

A good example of nonblocking behavior is the select() system call for network sockets.

, an application can monitor several resources at the same time and can also poll

for network activity without blocking. The select() system call identifies if data is pending or not,

may be used knowing that they will complete immediately.

UNIT IV
POSSIBLE QUESTIONS

(2 MARKS)

List any four File Operations?
What are the file allocation methods?
What is linked allocation?
What are the directory structures available?
What is device management?

(6 MARKS)

Explain File operations with example.
Briefly describe about Device management.
Describe about Directory structure with neat diagram.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 25/26

until the I/O is complete. Nonblocking I/O systems

for network sockets.

monitor several resources at the same time and can also poll

system call identifies if data is pending or not,

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302

Prepared by: D. Manjula, Dr.Hemalatha

4. Write about File Allocation methods.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

 UNIT: IV(FILE and I/O MANAGEMENT) BATCH

emalatha, Department of CS, CA & IT, KAHE

Write about File Allocation methods.

: OPERATING SYSTEMS

BATCH-2017-2020

 Page 26/26

SNO QUESTIONS opt1 opt2 opt3 opt4 opt5 opt6 ANSWER

1

The file system consist
of -------------- Distinct

parts 2 3 4 5 2

2

A --------------- File is a
sequence of character

organized into lines Source Object Text Executable Text

3

A --------------- File is a
sequence of

subroutines and

functions Source Object Text Executable Source

UNIT - 4

KARPAGAM ACADEMY OF HIGHER EDUCATION

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

II B.Sc CS (Batch 2017-2020)

OPERATING SYSTEMS

PART - A OBJECTIVE TYPE/MULTIPLE CHOICE QUESTIONS

ONLINE EXAMINATIONS ONE MARKS QUESTIONS

4

The operating system
keeps a small table

called the ---------------

,containing information

about all open files
Show file
table

Visible
file table

Open file
ta

Manage
file table

Open
file

table

5

A file is executed in ----
----------- extension

External
structure .bat .mdb .in .bat

6

The .bat file is a ---------
-------containing in

ANSI format,command

to the operating system
Binary
file

Batch
file Text file Word file

Batch
file

7

The file type is used to
indicate the ---------------

- of the file .txt

Internal
structure

Block
structure

Outer
structure

Interna
l

structu

re

8

is processed in the

order called--------------

Direct
access

Sequenc
e access

Dynamic
access

Random
access

Sequen
ce

access

9

A file is made up of
fixed length that allows

the program to read and

write record rapidly in

no particular order is

called -------------------
Direct
access

Sequenc
e access

Dyanamic
access

Random
access

Direct
access

10

Data cannot be written
in secondary storage

unless written with in a

--------------------- File

Swap
space Directory

Text
format File

11

File attribute consist of -

Name,Ty

pe,Conten

t
Name,ty
pe,Size

Seperate

directory

system
Name,iden
tifier

Name,S
ize,Typ

e,identi

fier

12

The information about
all files is kept in --------

swap
space

operatin
g system

Name,Siz
e,Type,ide

ntifier Hard disk

Seperat
e

director

y

system 12 --------- space g system ntifier Hard disk system

13

A file is a --------------
type Abstract

Primitiv
e Public Private

Abstrac
t

14

In UNIX Open system
call returns ---------------

--

pointer to
the entry

in the

open file

table

pointer
to the

entry in

the

system

wide

table

A file to
the

process

calling it

pointer to
the entry

in the

close file

pointer
to the

entry in

the

open

file

table

15

The open file table has
a -------------------

Associated with each

file
File
content

File
permissi

on
open
count

Close
count

open
count

16

The file name is
generaly split into

which of the two parts --

Name and
type

Name
and

identifie

r
Name and
extension

Extension
and type

Name
and

extensi

on

17

In the sequential access
method, information in

the file is processed

One disk
after the

other

One
record

after the

other

One text
document

after the

other

One name
after the

other

One
record

after

the

other

18

Sequential access
method ----------------

,on random access

devices
Works
well

Dosen’t
works

well
Works
slow

Works
normal

Works
well

19

The direct access
method is based on a ---

---------- model of a file

as---------------- allow

random access to any

file block

Magnetic
tape,magn

etic tapes
Tape,Ta
pes

Disk,Disk
s Tape,Disk

Disk,Di
sks

20

A relative block
number is an index

relative to ----------------

The
beginning

of the file

The end
of the

file

The last
written

position in

file
Middle of
the file

The
beginni

ng of

the file

21

The index contains ------

Name of
all

content of

file

Pointer
to each

page

Pointers
to the

various

blocks
Pointer to
same page

Pointer
s to the

various

blocks

The directory can be
viewed as a ---------------

22

viewed as a ---------------

,that translate the file

name into their

directory entries
Symbol
table Partition

Swap
space Cache

Symbol
table

23

In the single level
directory: -----------------

All files
are

contain in

different

directorie

s

All files
are

containe

d in the

same

directory

Depend
on the

operating

system

Depend on
the file

name

All files
are

contain

ed in

the

same

director

y

24

In the single level
directory --------------

All
directory

must have

a unique

name

All files
must

have a

unique

name

All files
must have

a unique

owner

All files
must have

a different

names

All files
must

have a

unique

name

25

In the two level
directory structure -------

Each user
has its

own user

file

directory

The
system

has its

own

master

file

directory
)Both a
and b

Each user
has its

different

file

directory

Both a
and b

26

When a user refers to a

particular file ------------

System

MFD is

searched

His own

UFD is

searched

Both
MFD and

UFD are

searched

Every

directory

is searched

Both
MFD

and

UFD

are

searche

d

The disadvantage of

It does
not solve

the name

It solve
the

name

It does not
isolate

users from
It isolates
users from

It
isolates

users

from

27

The disadvantage of
the two level directory

structure is that

the name

collision

problem

name

collision

problem

users from

one

another

users from

one

another

from

one

another

28

In the tree structure
directory ------------------

-

The tree
has the

same

directory

The tree
has the

leaf

directory

The tree
has the

root

directory

The tree
has no

directory

The
tree has

the root

director

y

29

The three major
methods of allocating

disk space that are in

wide use are --------------

-

Contiguo
us,Linked

,Hashed

Contigu
ous,Link

ed,Index

ed

Linked,Ha
shed,Inde

xed
Contiguou
s ,Linked

Contig
uous,Li

nked,In

dexed

30

In Contiguous
allocation ----------------

each file
must

occupy a

set of

contiguou

s block on

the disk

Each file
is a

linked

list of

disk

blocks

All the
pointers to

scattered

All the
files are

blocked

each
file

must

occupy

a set of

contigu

ous

block

on the

disk

31

In linked allocation -----

Each file
must

occupy a

set of

contiguou

s block on

the disk

Each file
is a

linked

list of

disk

blocks

All the
pointers to

scattered

All the
files are

blocked

Each
file is a

linked

list of

disk

blocks

All the

32

In indexed allocation ---

Each file
must

occupy a

set of

contiguou

s block on

the disk

Each file
is a

linked

list of

disk

blocks

All the
pointers to

scattered

blocks are

placed

together

in one

location

All the
files are

blocked

All the
pointer

s to

scattere

d

blocks

are

placed

togethe

r in one

location

33

One system where
there are multiple

operating system, the

decision to load a

particular one is done

by ----------------
Boot
loader

Boot
strap

Process
control

block

File
control

block

Boot
loader

34

The VFS refers to -------

Virtual
File

System

Valid
File

System

Virtual
Font

System

Virtual
Function

System

Virtual
File

System

35

The disadvantage of a
linear list of directory

entries is the -------------

Size of
the linear

list in the

memory

Linear
search to

find a

file
It is not
reliable

It is not
valid

Linear
search

to find

a file

36

One difficulty of
contiguous allocation is

Finding
space for

a new file
Ineffecie
nt Costly

Time
taking

Finding
space

for a

new file

37

To solve the problem
of external

fragmentation ------------

----- needs to be done

periodically
Compacti
on Check

Formattin
g

Replacing
memory

Compa
ction

38

If too little space is
allocated to a file --------

The file
will not

work

There
will not

be any

space

The file
cannot be

extended
file cannot
be opened

The file
cannot

be

extende

d 38 -------- work space extended be opened d

39

A system program such
as fsck ------------------

is a consistency

checker UNIX

Window
s Macintosh Solaris UNIX

40

Each set of operations
for performing a

specific task is a ---------

------------- Program Code

Transactio
n Method

Transa
ction

41

Once the changes are
written to the log, they

are considered to be ----

Committe
d Aborted

Complete
d Finished

Commi
tted

42

When an entire
command transaction is

completed,----------------

It is
stored in

the

memory

It is
removed

from the

log file
It is
redone

It is
deleted

from the

memory

It is
remove

d from

the log

file

43

A circular buffer is ------

Write to
the end of

its space

Overwrit
e older

value as

it goes
both A
and B

overwrite
new values

both A
and B

44

information is recorded

magnetically on

platters
Magnetic
disk

Electrica
l disk

Assemblie
s Cylinders

Magnet
ic disk

45

The head of the
magnetic disk are

attached to a -------------

-- that moves all the

head as unit Spindle

Disk
arm Track Pointer

Disk
arm

46

The set of tracks that
are at one arm position

make up a -----------
Magnetic
disk

Electrica
l disk

Assemblie
s Cylinders

Cylinde
rs

47

The time taken to move
a disk arm to the

desired cylinder is

called as---------------
Positionin
g time

Random
access ti Seek time

Rotational
latency

Seek
time

48

When a head damages
the magnetic surface, it

is known as --------------

Disk
crash

Head
crash

Magnetic
damage

All of
these

Head
crash

A flopy disk is

49

A flopy disk is
designed to rotate -------

------- as compared to a

hard disk drive Faster Slower

At the
same

speed
Normal
speed Slower

50

The host controller is ---

Controller
built at

the end of

each disk

Controll
er at the

compute

r end of

the bus
Both a
and b

Controller
at the

system

side

Control
ler at

the

comput

er end

of the

bus

51

The process of dividing
a disk into sectors that

the disk controller can

read and write, before a

disk can store data is

known as-----------------
Partitioni
ng

Swap
space

creation
Low-level
formatting

Physical
formatting

Low-
level

formatt

ing

,Physic

al

formatt

ing

52

the data structure for a
sector typically

contains -------------------Header

Data
area Trailer

Main
section

Header
,Data

area

,Trailer

53

The header and trailer
of a sector contains

information used by the

disk controller such as

_____________.
Main
section

Error
corectin

g codes
Sector
number

Disk
identifier

Sector
number

54

The two steps that the
operating system takes

to use a disk to hold its

files are ----------------

and --------------
partitioni
ng

Swap
space

creation Catching

Logical
formatting

partitio

ning

55

The --------------
program initializes all

aspects of the system,

from CPU registers to

device controllers and

the content of main

memory, and then

starts the operating

system Main

Boot
loader Boot strap ROM

Boot
strap

For most computers the

56

For most computers the
boot strap is stored in---

----------------- RAM ROM Cache

Tertiary
storage ROM

57

A disk that has a boot
partition is called a ------

--------- Start disk

Destroye
d blocks Boot disk

Format
disk

System
disk,bo

ot disk

58

Defective sectors on
disks are often known

as -----------------
Good
blocks

System
disk

Bad
blocks

Semi
blocks

Bad
blocks

59

Bad blocks are called
as __________

Good
Sectors

Defectiv
e

Sectors boot disks boot strap

Defecti
ve

Sectors

60

ROM got _________
file boot strap

Data
area head data

random
data

boot
strap

ANSWER

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302 UNIT: V

Prepared by: D. Manjula Dr.Hemalatha

Protection and Security: Policy mechanism

Policy Mechanism

The policies what is to be done while the
the timer construct for ensuring CPU protection is mechanism. On the other hand, the decision of
how long the timer is set for a particular user is a policy decision.

The separation of mechanism and p
interface between mechanism and policy is well defined, the change of policy may affect only a
few parameters. On the other hand, if interface between these two is vague or not well defined, it
might involve much deeper change to the system.

Once the policy has been decided it gives the programmer the choice of using his/her own
implementation. Also, the underlying implementation may be changed for a more efficient one
without much trouble if the mechanism and policy are well defined. Specifically, separating
these two provides flexibility in a variety of ways. First, the same mechanism can be used to
implement a variety of policies, so changing the policy might not require the development of a
new mechanism, but just a change in parameters for that mechanism, but just a change in
parameters for that mechanism from a library of mechanisms. Second, the mechanism can be
changed for example, to increase its efficiency or to move to a new platform, wit
the overall policy.

Policy vs mechanism OS examples

 Granting a resource to a process using first come first serve algorithm (policy). This

policy can be implemented using a queue (mechanism).

 Thread scheduling or answering the question "which

to run next?" is a policy. For example, is it priority based ?or just round robin ?.

Implementing context switching is the corresponding mechanism.

 In virtual memory, keeping track of free and occupied pages in memory is

mechanism. Deciding what to do when a page fault occurs is a policy. You may check

the following articles cpu scheduling

Separation of mechanism and policy

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

UNIT: V(PROTECTION AND SECURITY) BATCH-2017

emalatha, Department of CS, CA & IT, KAHE

UNIT V

Syllabus

Policy mechanism-Authentication-Internal access Authorization.

Protection and Security

The policies what is to be done while the mechanism specifies how it is to be done. For instance,
the timer construct for ensuring CPU protection is mechanism. On the other hand, the decision of
how long the timer is set for a particular user is a policy decision.

The separation of mechanism and policy is important to provide flexibility to a system. If the
interface between mechanism and policy is well defined, the change of policy may affect only a
few parameters. On the other hand, if interface between these two is vague or not well defined, it
might involve much deeper change to the system.

Once the policy has been decided it gives the programmer the choice of using his/her own
implementation. Also, the underlying implementation may be changed for a more efficient one

mechanism and policy are well defined. Specifically, separating
these two provides flexibility in a variety of ways. First, the same mechanism can be used to
implement a variety of policies, so changing the policy might not require the development of a

w mechanism, but just a change in parameters for that mechanism, but just a change in
parameters for that mechanism from a library of mechanisms. Second, the mechanism can be
changed for example, to increase its efficiency or to move to a new platform, wit

Policy vs mechanism OS examples

Granting a resource to a process using first come first serve algorithm (policy). This

policy can be implemented using a queue (mechanism).

Thread scheduling or answering the question "which thread should be given the chance

to run next?" is a policy. For example, is it priority based ?or just round robin ?.

Implementing context switching is the corresponding mechanism.

In virtual memory, keeping track of free and occupied pages in memory is

mechanism. Deciding what to do when a page fault occurs is a policy. You may check

cpu scheduling, paging vs segmentation and page tables

Separation of mechanism and policy

: OPERATING SYSTEMS

2017-2020

 Page 1/19

Internal access Authorization.

mechanism specifies how it is to be done. For instance,
the timer construct for ensuring CPU protection is mechanism. On the other hand, the decision of

olicy is important to provide flexibility to a system. If the
interface between mechanism and policy is well defined, the change of policy may affect only a
few parameters. On the other hand, if interface between these two is vague or not well defined, it

Once the policy has been decided it gives the programmer the choice of using his/her own
implementation. Also, the underlying implementation may be changed for a more efficient one

mechanism and policy are well defined. Specifically, separating
these two provides flexibility in a variety of ways. First, the same mechanism can be used to
implement a variety of policies, so changing the policy might not require the development of a

w mechanism, but just a change in parameters for that mechanism, but just a change in
parameters for that mechanism from a library of mechanisms. Second, the mechanism can be
changed for example, to increase its efficiency or to move to a new platform, without changing

Granting a resource to a process using first come first serve algorithm (policy). This

thread should be given the chance

to run next?" is a policy. For example, is it priority based ?or just round robin ?.

In virtual memory, keeping track of free and occupied pages in memory is a

mechanism. Deciding what to do when a page fault occurs is a policy. You may check

page tables

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302 UNIT: V

Prepared by: D. Manjula Dr.Hemalatha

Separation of policy and mechanism is a design principle t

adopting a certain mechanism should not restrict existing policies. The idea behind this concept

is to have the least amount of implementation changes if we decide to change the way a

particular feature is used. We ca

implementation needs to be changed (ex. improve efficiency). This must not greatly influence

the way it is used. In the login example mentioned earlier (logging to a website) switching from a

user name password pair to Facebook account should not prevent a user from logging in to the

website.

Summary

 Policy is the what and mechanism is the how.

 The separation between the two gives us the flexibility to add and modify existing

policies and reuse existing mechanisms for implementing new policies.
Mechanism versus Policy

 Another principle that helps architectural coherence, along with keeping things small and

well structured, is that of separating mechanism from policy. By putting the mechanism

in the operating system and leaving the policy to user processes, the system itself can be

left unmodified, even if there is a need to change policy. Even if the policy module has to

be kept in the kernel, it should be isolated from the mechanism, if possibl

changes in the policy module do not affect the mechanism module.

 To make the split between policy and mechanism clearer, let us consider two real

examples. As a first example, consider a large company that has a payroll department,

which is in charge of paying the employees' salaries. It has computers, software, blank

checks, agreements with banks, and more mechanism for actually paying out the salaries.

However, the policy—determining who gets paid how much

is decided by management. The payroll department just does what it is told to do.

 As the second example, consider a restaurant. It has the mechanism for serving diners,

including tables, plates, waiters, a kitchen full of equipment, agreements with credit card

companies, and so on. The policy is set by the chef, namely, what is on the menu. If the

chef decides that tofu is out and big steaks are in, this new policy can be handled by the

existing mechanism.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

UNIT: V(PROTECTION AND SECURITY) BATCH-2017

emalatha, Department of CS, CA & IT, KAHE

Separation of policy and mechanism is a design principle to achieve flexibility. In other words,

adopting a certain mechanism should not restrict existing policies. The idea behind this concept

is to have the least amount of implementation changes if we decide to change the way a

particular feature is used. We can also look at it from the other side. For example, if a certain

implementation needs to be changed (ex. improve efficiency). This must not greatly influence

the way it is used. In the login example mentioned earlier (logging to a website) switching from a

user name password pair to Facebook account should not prevent a user from logging in to the

Policy is the what and mechanism is the how.

The separation between the two gives us the flexibility to add and modify existing

e existing mechanisms for implementing new policies.

Another principle that helps architectural coherence, along with keeping things small and

well structured, is that of separating mechanism from policy. By putting the mechanism

the operating system and leaving the policy to user processes, the system itself can be

left unmodified, even if there is a need to change policy. Even if the policy module has to

be kept in the kernel, it should be isolated from the mechanism, if possibl

changes in the policy module do not affect the mechanism module.

To make the split between policy and mechanism clearer, let us consider two real

examples. As a first example, consider a large company that has a payroll department,

is in charge of paying the employees' salaries. It has computers, software, blank

checks, agreements with banks, and more mechanism for actually paying out the salaries.

determining who gets paid how much—is completely separate and

ecided by management. The payroll department just does what it is told to do.

As the second example, consider a restaurant. It has the mechanism for serving diners,

including tables, plates, waiters, a kitchen full of equipment, agreements with credit card

companies, and so on. The policy is set by the chef, namely, what is on the menu. If the

chef decides that tofu is out and big steaks are in, this new policy can be handled by the

: OPERATING SYSTEMS

2017-2020

 Page 2/19

o achieve flexibility. In other words,

adopting a certain mechanism should not restrict existing policies. The idea behind this concept

is to have the least amount of implementation changes if we decide to change the way a

n also look at it from the other side. For example, if a certain

implementation needs to be changed (ex. improve efficiency). This must not greatly influence

the way it is used. In the login example mentioned earlier (logging to a website) switching from a

user name password pair to Facebook account should not prevent a user from logging in to the

The separation between the two gives us the flexibility to add and modify existing

Another principle that helps architectural coherence, along with keeping things small and

well structured, is that of separating mechanism from policy. By putting the mechanism

the operating system and leaving the policy to user processes, the system itself can be

left unmodified, even if there is a need to change policy. Even if the policy module has to

be kept in the kernel, it should be isolated from the mechanism, if possible, so that

To make the split between policy and mechanism clearer, let us consider two real-world

examples. As a first example, consider a large company that has a payroll department,

is in charge of paying the employees' salaries. It has computers, software, blank

checks, agreements with banks, and more mechanism for actually paying out the salaries.

is completely separate and

ecided by management. The payroll department just does what it is told to do.

As the second example, consider a restaurant. It has the mechanism for serving diners,

including tables, plates, waiters, a kitchen full of equipment, agreements with credit card

companies, and so on. The policy is set by the chef, namely, what is on the menu. If the

chef decides that tofu is out and big steaks are in, this new policy can be handled by the

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302 UNIT: V

Prepared by: D. Manjula Dr.Hemalatha

 Now let us consider some operating system examples. Fir

The kernel could have a priority scheduler, with

array, indexed by priority level, as shown in Fig. 10

head of a list of ready threads at that priori

from highest priority to lowest priority, selecting the first threads it hits. The policy is

setting the priorities. The system may have different classes of users, each with a

different priority, for example

priority of its threads. Priorities might be increased after completing I/O or decreased

after using up a quantum. There are numerous other policies that could be followed, but

the idea here is the separation between setting policy and carrying it out.

 A second example is paging. The mechanism involves MMU management, keeping lists

of occupied pages and free pages, and code for shuttling pages to and from disk. The

policy is deciding what to do when a

based or FIFO-based, or something else, but this algorithm can (and should) be

completely separate from the mechanics of actually managing the pages.

 A third example is allowing modules to be loaded into

concerns how they are inserted, how they are linked, what calls they can make, and what

calls can be made on them. The policy is determining who is allowed to load a module

into the kernel and which modules. Maybe only the superu

maybe any user can load a module that has been digitally signed by the appropriate

authority.

Policy and Mechanism

Critical to our study of security is the distinction between policy and mechanism.

 Definition 1–1. A security policy

 Definition 1–2. A security mechanism

security policy.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

UNIT: V(PROTECTION AND SECURITY) BATCH-2017

emalatha, Department of CS, CA & IT, KAHE

Now let us consider some operating system examples. First, consider thread scheduling.

The kernel could have a priority scheduler, with k priority levels. The mechanism is an

array, indexed by priority level, as shown in Fig. 10-11 or Fig. 11-19. Each entry is the

head of a list of ready threads at that priority level. The scheduler just searches the array

from highest priority to lowest priority, selecting the first threads it hits. The policy is

setting the priorities. The system may have different classes of users, each with a

different priority, for example. It might also allow user processes to set the relative

priority of its threads. Priorities might be increased after completing I/O or decreased

after using up a quantum. There are numerous other policies that could be followed, but

eparation between setting policy and carrying it out.

A second example is paging. The mechanism involves MMU management, keeping lists

of occupied pages and free pages, and code for shuttling pages to and from disk. The

policy is deciding what to do when a page fault occurs. It could be local or global, LRU

based, or something else, but this algorithm can (and should) be

completely separate from the mechanics of actually managing the pages.

A third example is allowing modules to be loaded into the kernel. The mechanism

concerns how they are inserted, how they are linked, what calls they can make, and what

calls can be made on them. The policy is determining who is allowed to load a module

into the kernel and which modules. Maybe only the superuser can load modules, but

maybe any user can load a module that has been digitally signed by the appropriate

Critical to our study of security is the distinction between policy and mechanism.

policy is a statement of what is, and what is not, allowed.

security mechanism is a method, tool, or procedure for enforcing a

: OPERATING SYSTEMS

2017-2020

 Page 3/19

st, consider thread scheduling.

priority levels. The mechanism is an

19. Each entry is the

ty level. The scheduler just searches the array

from highest priority to lowest priority, selecting the first threads it hits. The policy is

setting the priorities. The system may have different classes of users, each with a

. It might also allow user processes to set the relative

priority of its threads. Priorities might be increased after completing I/O or decreased

after using up a quantum. There are numerous other policies that could be followed, but

A second example is paging. The mechanism involves MMU management, keeping lists

of occupied pages and free pages, and code for shuttling pages to and from disk. The

page fault occurs. It could be local or global, LRU-

based, or something else, but this algorithm can (and should) be

the kernel. The mechanism

concerns how they are inserted, how they are linked, what calls they can make, and what

calls can be made on them. The policy is determining who is allowed to load a module

ser can load modules, but

maybe any user can load a module that has been digitally signed by the appropriate

Critical to our study of security is the distinction between policy and mechanism.

is a statement of what is, and what is not, allowed.

is a method, tool, or procedure for enforcing a

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302 UNIT: V

Prepared by: D. Manjula Dr.Hemalatha

Mechanisms can be nontechnical, such as requiring proof of identity before changing a

password; in fact, policies often require some procedural mechanisms that technology cannot

enforce.

As an example, suppose a university's computer science laboratory has a policy that prohibits

any student from copying another student's homework files. The comput

mechanisms for preventing others from reading a user's files. Anna fails to use these mechanisms

to protect her homework files, and Bill copies them. A breach of security has occurred, because

Bill has violated the security policy. Anna'

copy them.

In this example, Anna could easily have protected her files. In other environments, such

protection may not be easy. For example, the Internet provides only the most rudimentary

security mechanisms, which are not adequate to protect information sent over that network.

Nevertheless, acts such as the recording of passwords and other sensitive information violate an

implicit security policy of most sites (specifically, that passwords are a us

property and cannot be recorded by anyone).

Policies may be presented mathematically, as a list of allowed (secure) and disallowed

(nonsecure) states. For our purposes, we will assume that any given policy provides an axiomatic

description of secure states and nonsecure states. In practice, policies are rarely so precise; they

normally describe in English what users and staff are allowed to do. The ambiguity inherent in

such a description leads to states that are not classified as "allowed

example, consider the homework policy discussed above. If someone looks through another

user's directory without copying homework files, is that a violation of security? The answer

depends on site custom, rules, regulations, and laws

change over time.

When two different sites communicate or cooperate, the entity they compose has a security

policy based on the security policies of the two entities. If those policies are inconsistent, either

or both sites must decide what the security policy for the combined site should be. The

inconsistency often manifests itself as a security breach. For example, if proprietary documents

were given to a university, the policy of confidentiality in the corpora

more open policies of most universities. The university and the company must develop a mutual

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

UNIT: V(PROTECTION AND SECURITY) BATCH-2017

emalatha, Department of CS, CA & IT, KAHE

Mechanisms can be nontechnical, such as requiring proof of identity before changing a

; in fact, policies often require some procedural mechanisms that technology cannot

As an example, suppose a university's computer science laboratory has a policy that prohibits

any student from copying another student's homework files. The computer system provides

mechanisms for preventing others from reading a user's files. Anna fails to use these mechanisms

to protect her homework files, and Bill copies them. A breach of security has occurred, because

Bill has violated the security policy. Anna's failure to protect her files does not authorize Bill to

In this example, Anna could easily have protected her files. In other environments, such

protection may not be easy. For example, the Internet provides only the most rudimentary

mechanisms, which are not adequate to protect information sent over that network.

Nevertheless, acts such as the recording of passwords and other sensitive information violate an

implicit security policy of most sites (specifically, that passwords are a us

property and cannot be recorded by anyone).

Policies may be presented mathematically, as a list of allowed (secure) and disallowed

(nonsecure) states. For our purposes, we will assume that any given policy provides an axiomatic

n of secure states and nonsecure states. In practice, policies are rarely so precise; they

normally describe in English what users and staff are allowed to do. The ambiguity inherent in

such a description leads to states that are not classified as "allowed" or "disallowed." For

example, consider the homework policy discussed above. If someone looks through another

user's directory without copying homework files, is that a violation of security? The answer

depends on site custom, rules, regulations, and laws, all of which are outside our focus and may

When two different sites communicate or cooperate, the entity they compose has a security

policy based on the security policies of the two entities. If those policies are inconsistent, either

r both sites must decide what the security policy for the combined site should be. The

inconsistency often manifests itself as a security breach. For example, if proprietary documents

were given to a university, the policy of confidentiality in the corporation would conflict with the

more open policies of most universities. The university and the company must develop a mutual

: OPERATING SYSTEMS

2017-2020

 Page 4/19

Mechanisms can be nontechnical, such as requiring proof of identity before changing a

; in fact, policies often require some procedural mechanisms that technology cannot

As an example, suppose a university's computer science laboratory has a policy that prohibits

er system provides

mechanisms for preventing others from reading a user's files. Anna fails to use these mechanisms

to protect her homework files, and Bill copies them. A breach of security has occurred, because

s failure to protect her files does not authorize Bill to

In this example, Anna could easily have protected her files. In other environments, such

protection may not be easy. For example, the Internet provides only the most rudimentary

mechanisms, which are not adequate to protect information sent over that network.

Nevertheless, acts such as the recording of passwords and other sensitive information violate an

implicit security policy of most sites (specifically, that passwords are a user's confidential

Policies may be presented mathematically, as a list of allowed (secure) and disallowed

(nonsecure) states. For our purposes, we will assume that any given policy provides an axiomatic

n of secure states and nonsecure states. In practice, policies are rarely so precise; they

normally describe in English what users and staff are allowed to do. The ambiguity inherent in

" or "disallowed." For

example, consider the homework policy discussed above. If someone looks through another

user's directory without copying homework files, is that a violation of security? The answer

, all of which are outside our focus and may

When two different sites communicate or cooperate, the entity they compose has a security

policy based on the security policies of the two entities. If those policies are inconsistent, either

r both sites must decide what the security policy for the combined site should be. The

inconsistency often manifests itself as a security breach. For example, if proprietary documents

tion would conflict with the

more open policies of most universities. The university and the company must develop a mutual

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302 UNIT: V

Prepared by: D. Manjula Dr.Hemalatha

security policy that meets both their needs in order to produce a consistent policy. When the two

sites communicate through an indepe

complexity of the situation grows rapidly.

A u t h e n t i c a t i on

Every secured computer system must require all users to be authenticated at login time. After all,
if the operating system cannot be sure who the user is, it cannot know which files and other
resources he can access. While authentication may sound like a trivial topic,
complicated than you might expect.

Early minicomputers (e.g., PDP-

but with the spread of UNDC on the PDP
personal computers (e.g., Apple II
more sophisticated personal computer operating systems, such as Linux and Windows Vista, do
(although foolish users can disable it). Machines on corporate LANs almost always have a login
procedure configured so that users cannot bypass it. Finally, many people nowadays (indirectly)
log into remote computers to do Internet banking, e
commercial activities. All of these things require authenticated login, so user
once again an important topic.

Having determined that authentication is often important, the next step is to
find a good way to achieve it. Most methods of authenticating users when they attempt
to log in are based on one of three genera
1. Something the user knows.
2. Something the user has.
3. Something the user is.

Sometimes two of these are required for additional security. These principles lead to different
authentication schemes with different complex
sections we will examine each of these in turn. People who want to cause trouble on a particular
system have to first log in to that system, which means getting past whichever authentication
procedure is used. In the popular press, these people are called
hackers, we will use the term in the original sense and will call people who try to break into
computer systems where they do not belong

Authentication Using Passwords

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

UNIT: V(PROTECTION AND SECURITY) BATCH-2017

emalatha, Department of CS, CA & IT, KAHE

security policy that meets both their needs in order to produce a consistent policy. When the two

sites communicate through an independent third party, such as an Internet service provider, the

complexity of the situation grows rapidly.

computer system must require all users to be authenticated at login time. After all,
if the operating system cannot be sure who the user is, it cannot know which files and other
resources he can access. While authentication may sound like a trivial topic,
complicated than you might expect.

-1 and PDP-8) did not have a login procedure,

but with the spread of UNDC on the PDP-11 minicomputer, logging in was again needed. Early
personal computers (e.g., Apple II and the original IBM PC) did not have a login procedure, but
more sophisticated personal computer operating systems, such as Linux and Windows Vista, do
(although foolish users can disable it). Machines on corporate LANs almost always have a login

e configured so that users cannot bypass it. Finally, many people nowadays (indirectly)
log into remote computers to do Internet banking, e-shopping, download music, and other
commercial activities. All of these things require authenticated login, so user

Having determined that authentication is often important, the next step is to
find a good way to achieve it. Most methods of authenticating users when they attempt
to log in are based on one of three general principles, namely identifying

Sometimes two of these are required for additional security. These principles lead to different
authentication schemes with different complexities and security properties. In the following
sections we will examine each of these in turn. People who want to cause trouble on a particular
system have to first log in to that system, which means getting past whichever authentication

. In the popular press, these people are called hackers. In deference to true
hackers, we will use the term in the original sense and will call people who try to break into
computer systems where they do not belong crackers.

Authentication Using Passwords

: OPERATING SYSTEMS

2017-2020

 Page 5/19

security policy that meets both their needs in order to produce a consistent policy. When the two

ndent third party, such as an Internet service provider, the

computer system must require all users to be authenticated at login time. After all,
if the operating system cannot be sure who the user is, it cannot know which files and other
resources he can access. While authentication may sound like a trivial topic, it is a bit more

11 minicomputer, logging in was again needed. Early
and the original IBM PC) did not have a login procedure, but

more sophisticated personal computer operating systems, such as Linux and Windows Vista, do
(although foolish users can disable it). Machines on corporate LANs almost always have a login

e configured so that users cannot bypass it. Finally, many people nowadays (indirectly)
shopping, download music, and other

commercial activities. All of these things require authenticated login, so user authentication is

find a good way to achieve it. Most methods of authenticating users when they attempt

Sometimes two of these are required for additional security. These principles lead to different
ities and security properties. In the following

sections we will examine each of these in turn. People who want to cause trouble on a particular
system have to first log in to that system, which means getting past whichever authentication

In deference to true
hackers, we will use the term in the original sense and will call people who try to break into

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302 UNIT: V

Prepared by: D. Manjula Dr.Hemalatha

The most widely used form of authentication is to require the user to type a login name and a
password. Password protection is easy to understand and easy to implement.

The simplest implementation just keeps a central list of (login
name typed in is looked up in the list and the typed password is compared to the stored
password. If they match, the login is allowed; if they do not match, the login is rejected.

It goes almost without saying that while a password is being
display the typed characters, to keep them from prying eyes near the monitor. With Windows, as
each character is typed, an asterisk is displayed. With UNIX, nothing at all is displayed while the
password is being typed. These schemes have different properties. The Windows scheme may
make it easy for absent-minded users to see how many characters they have typed so far, but it
also discloses the password length to "eavesdroppers" (for some reason, English has a word for
auditory snoopers but not for visual snoopers, other than perhaps Peeping Tom, which does not
seem right in this context). From a security perspective, silence is golden.

How Crackers Break In
Most crackers break in by connecting to the target computer (e.g.

many (login name, password) combinations until they find one that works. Many people use their

name in one form or another as their login name. Of course, guessing the login name is not

enough. The password has to be guessed

The classic work on password security was done by Morris and Thompson (1979) on UNIX

systems.

They compiled a list of likely passwords: first and last names, street names, city names, words

from a moderate-sized dictionary (also words spelled backward), license plate numbers, and

short strings of random characters. They then compared their list to the system password file to

see if there were any matches. Over 86% of all passwords turned up in their list

UNIX Password Security
Some (older) operating systems keep the password file on the disk in unencrypted form, but

protected by the usual system protection mechanisms. Having all the passwords in a disk file in

unencrypted form is just looking for trouble because all too often ma

These may include system administrators, machine operators, maintenance personnel,

programmers, management, and maybe even some secretaries.

A better solution, used in UNIX, works like this. The login program asks the user to

name and password. The password is immediately "encrypted" by using it as a key to encrypt a

fixed block of data. Effectively, a one

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

UNIT: V(PROTECTION AND SECURITY) BATCH-2017

emalatha, Department of CS, CA & IT, KAHE

The most widely used form of authentication is to require the user to type a login name and a
password. Password protection is easy to understand and easy to implement.

The simplest implementation just keeps a central list of (login-name, password) pai
name typed in is looked up in the list and the typed password is compared to the stored
password. If they match, the login is allowed; if they do not match, the login is rejected.

It goes almost without saying that while a password is being typed in, the computer should not
display the typed characters, to keep them from prying eyes near the monitor. With Windows, as
each character is typed, an asterisk is displayed. With UNIX, nothing at all is displayed while the

ese schemes have different properties. The Windows scheme may
minded users to see how many characters they have typed so far, but it

also discloses the password length to "eavesdroppers" (for some reason, English has a word for
tory snoopers but not for visual snoopers, other than perhaps Peeping Tom, which does not

seem right in this context). From a security perspective, silence is golden.

Most crackers break in by connecting to the target computer (e.g., over the Internet) and trying

many (login name, password) combinations until they find one that works. Many people use their

name in one form or another as their login name. Of course, guessing the login name is not

enough. The password has to be guessed, too. How hard is that? Easier than you might think.

The classic work on password security was done by Morris and Thompson (1979) on UNIX

They compiled a list of likely passwords: first and last names, street names, city names, words

sized dictionary (also words spelled backward), license plate numbers, and

short strings of random characters. They then compared their list to the system password file to

see if there were any matches. Over 86% of all passwords turned up in their list.

Some (older) operating systems keep the password file on the disk in unencrypted form, but

protected by the usual system protection mechanisms. Having all the passwords in a disk file in

unencrypted form is just looking for trouble because all too often many people have access to it.

These may include system administrators, machine operators, maintenance personnel,

programmers, management, and maybe even some secretaries.

A better solution, used in UNIX, works like this. The login program asks the user to

name and password. The password is immediately "encrypted" by using it as a key to encrypt a

fixed block of data. Effectively, a one-way function is being run, with the password as input and

: OPERATING SYSTEMS

2017-2020

 Page 6/19

The most widely used form of authentication is to require the user to type a login name and a

name, password) pairs. The login
name typed in is looked up in the list and the typed password is compared to the stored
password. If they match, the login is allowed; if they do not match, the login is rejected.

typed in, the computer should not
display the typed characters, to keep them from prying eyes near the monitor. With Windows, as
each character is typed, an asterisk is displayed. With UNIX, nothing at all is displayed while the

ese schemes have different properties. The Windows scheme may
minded users to see how many characters they have typed so far, but it

also discloses the password length to "eavesdroppers" (for some reason, English has a word for
tory snoopers but not for visual snoopers, other than perhaps Peeping Tom, which does not

, over the Internet) and trying

many (login name, password) combinations until they find one that works. Many people use their

name in one form or another as their login name. Of course, guessing the login name is not

, too. How hard is that? Easier than you might think.

The classic work on password security was done by Morris and Thompson (1979) on UNIX

They compiled a list of likely passwords: first and last names, street names, city names, words

sized dictionary (also words spelled backward), license plate numbers, and

short strings of random characters. They then compared their list to the system password file to

.

Some (older) operating systems keep the password file on the disk in unencrypted form, but

protected by the usual system protection mechanisms. Having all the passwords in a disk file in

ny people have access to it.

These may include system administrators, machine operators, maintenance personnel,

A better solution, used in UNIX, works like this. The login program asks the user to type his

name and password. The password is immediately "encrypted" by using it as a key to encrypt a

way function is being run, with the password as input and

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302 UNIT: V

Prepared by: D. Manjula Dr.Hemalatha

a function of the password as output. This process is n

speak of it as encryption. The login program then reads the password file, which is just a series

of ASCII lines, one per user, until it finds the line containing the user's login name.

If the (encrypted) password contained in this line matches the encrypted password just computed,

the login is permitted, otherwise it is refused. The advantage of this scheme is that no one, not

even the superuser, can look up any users' passwords because

form anywhere in the system.

One-Time Passwords
Most superusers exhort their mortal users to change their passwords once a month. It falls on
deaf ears. Even more extreme is changing the password with every login, leadi
passwords. When one-time passwords are used, the user gets a book containing a list of
passwords. Each login uses the next password in the list. If an intruder ever discovers a
password, it will not do him any good, since next time a differe
suggested that the user try to avoid losing the password book.

Authentication Using a Physical Object
The second method for authenticating users is to check for some physical object they have rather
than something they know. Metal door keys have been used for centuries for this purpose.
Nowadays, the physical object used is often a plastic card that is inserted into a reader associated
with the computer. Normally, the user must not only insert the card, but must also type
password, to prevent someone from using a lost or stolen card. Viewed this way, using a bank's
ATM (Automated Teller Machine) starts out with the user logging in to the bank's computer via
a remote terminal (the ATM machine) using a plastic card and a
PIN code in most countries, but this is just to avoid the expense of putting a full keyboard on the
ATM machine).

Information-bearing plastic cards come in two varieties: magnetic stripe cards and chip cards.
Magnetic stripe cards hold about 140 bytes of information written on a piece of magnetic tape
glued to the back of the card. This information can be read out by the terminal and sent to the
central computer. Often the information contains the user's password (e.g., PIN
terminal can do an identity check even if the link to the main computer is down. Typically the
password is encrypted by a key known only to the bank.

Authentication Using Biometrics

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

UNIT: V(PROTECTION AND SECURITY) BATCH-2017

emalatha, Department of CS, CA & IT, KAHE

a function of the password as output. This process is not really encryption, but it is easier to

speak of it as encryption. The login program then reads the password file, which is just a series

of ASCII lines, one per user, until it finds the line containing the user's login name.

If the (encrypted) password contained in this line matches the encrypted password just computed,

the login is permitted, otherwise it is refused. The advantage of this scheme is that no one, not

even the superuser, can look up any users' passwords because they are not stored in unencrypted

Most superusers exhort their mortal users to change their passwords once a month. It falls on
deaf ears. Even more extreme is changing the password with every login, leadi

time passwords are used, the user gets a book containing a list of
passwords. Each login uses the next password in the list. If an intruder ever discovers a
password, it will not do him any good, since next time a different password must be used. It is
suggested that the user try to avoid losing the password book.

Authentication Using a Physical Object
The second method for authenticating users is to check for some physical object they have rather

ow. Metal door keys have been used for centuries for this purpose.
Nowadays, the physical object used is often a plastic card that is inserted into a reader associated
with the computer. Normally, the user must not only insert the card, but must also type
password, to prevent someone from using a lost or stolen card. Viewed this way, using a bank's
ATM (Automated Teller Machine) starts out with the user logging in to the bank's computer via
a remote terminal (the ATM machine) using a plastic card and a password (currently a 4
PIN code in most countries, but this is just to avoid the expense of putting a full keyboard on the

bearing plastic cards come in two varieties: magnetic stripe cards and chip cards.
pe cards hold about 140 bytes of information written on a piece of magnetic tape

glued to the back of the card. This information can be read out by the terminal and sent to the
central computer. Often the information contains the user's password (e.g., PIN
terminal can do an identity check even if the link to the main computer is down. Typically the
password is encrypted by a key known only to the bank.

Authentication Using Biometrics

: OPERATING SYSTEMS

2017-2020

 Page 7/19

ot really encryption, but it is easier to

speak of it as encryption. The login program then reads the password file, which is just a series

of ASCII lines, one per user, until it finds the line containing the user's login name.

If the (encrypted) password contained in this line matches the encrypted password just computed,

the login is permitted, otherwise it is refused. The advantage of this scheme is that no one, not

they are not stored in unencrypted

Most superusers exhort their mortal users to change their passwords once a month. It falls on
deaf ears. Even more extreme is changing the password with every login, leading to one-time

time passwords are used, the user gets a book containing a list of
passwords. Each login uses the next password in the list. If an intruder ever discovers a

nt password must be used. It is

The second method for authenticating users is to check for some physical object they have rather
ow. Metal door keys have been used for centuries for this purpose.

Nowadays, the physical object used is often a plastic card that is inserted into a reader associated
with the computer. Normally, the user must not only insert the card, but must also type in a
password, to prevent someone from using a lost or stolen card. Viewed this way, using a bank's
ATM (Automated Teller Machine) starts out with the user logging in to the bank's computer via

password (currently a 4-digit
PIN code in most countries, but this is just to avoid the expense of putting a full keyboard on the

bearing plastic cards come in two varieties: magnetic stripe cards and chip cards.
pe cards hold about 140 bytes of information written on a piece of magnetic tape

glued to the back of the card. This information can be read out by the terminal and sent to the
central computer. Often the information contains the user's password (e.g., PIN code) so the
terminal can do an identity check even if the link to the main computer is down. Typically the

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302 UNIT: V

Prepared by: D. Manjula Dr.Hemalatha

The third authentication method measures physical characte
forge. These are called biometrics (Pankanti et al., 2000). For example, a fingerprint or
voiceprint reader hooked up to the computer could verify the user's identity.

 A typical biometrics system has two parts: enrol
user's characteristics are measured and the results digitized. Then significant features are
extracted and stored in a record associated with the user. The record can be kept in a central
database (e.g., for logging in to a remote computer), or stored on a smart card that the user
carries around and inserts into a remote reader (e.g., at an ATM machine).

 The other part is identification. The user shows up and provides a login name. Then the system
makes the measurement again. If the new values match the ones sampled at enrollment time, the
login is accepted; otherwise it is rejected. The login name is needed because the measurements
are never exact, so it is difficult to index them and then search the index
have the same characteristics, so requiring the measured characteristics to match those of a
specific user is stronger than just requiring it to match those of any user.

Access Control
Operating System Security

Security refers to providing a protection system to computer system resources such as CPU,

memory, disk, software programs and most importantly data/information stored in the computer

system. If a computer program is run by unauthorized user then he/she may cause severe da

to computer or data stored in it. So a computer system must be protected against unauthorized

access, malicious access to system memory, viruses, worms etc. We're going to discuss

following topics in this article.

 Authentication
 One Time passwords
 Program Threats
 System Threats
 Computer Security Classifications

Authentication

Authentication refers to identifying the each user of the system and associating the executing

programs with those users. It is the responsibility of the Operating System to cr

system which ensures that a user who is running a particular program is authentic. Operating

Systems generally identifies/authenticates users using following three ways:

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

UNIT: V(PROTECTION AND SECURITY) BATCH-2017

emalatha, Department of CS, CA & IT, KAHE

The third authentication method measures physical characteristics of the user that are hard to
forge. These are called biometrics (Pankanti et al., 2000). For example, a fingerprint or
voiceprint reader hooked up to the computer could verify the user's identity.

A typical biometrics system has two parts: enrollment and identification. During enrollment, the
user's characteristics are measured and the results digitized. Then significant features are
extracted and stored in a record associated with the user. The record can be kept in a central

logging in to a remote computer), or stored on a smart card that the user
carries around and inserts into a remote reader (e.g., at an ATM machine).

The other part is identification. The user shows up and provides a login name. Then the system
e measurement again. If the new values match the ones sampled at enrollment time, the

login is accepted; otherwise it is rejected. The login name is needed because the measurements
are never exact, so it is difficult to index them and then search the index. Also, two people might
have the same characteristics, so requiring the measured characteristics to match those of a
specific user is stronger than just requiring it to match those of any user.

o providing a protection system to computer system resources such as CPU,

memory, disk, software programs and most importantly data/information stored in the computer

system. If a computer program is run by unauthorized user then he/she may cause severe da

to computer or data stored in it. So a computer system must be protected against unauthorized

access, malicious access to system memory, viruses, worms etc. We're going to discuss

Computer Security Classifications

Authentication refers to identifying the each user of the system and associating the executing

programs with those users. It is the responsibility of the Operating System to cr

system which ensures that a user who is running a particular program is authentic. Operating

Systems generally identifies/authenticates users using following three ways:

: OPERATING SYSTEMS

2017-2020

 Page 8/19

ristics of the user that are hard to
forge. These are called biometrics (Pankanti et al., 2000). For example, a fingerprint or

lment and identification. During enrollment, the
user's characteristics are measured and the results digitized. Then significant features are
extracted and stored in a record associated with the user. The record can be kept in a central

logging in to a remote computer), or stored on a smart card that the user

The other part is identification. The user shows up and provides a login name. Then the system
e measurement again. If the new values match the ones sampled at enrollment time, the

login is accepted; otherwise it is rejected. The login name is needed because the measurements
. Also, two people might

have the same characteristics, so requiring the measured characteristics to match those of a

o providing a protection system to computer system resources such as CPU,

memory, disk, software programs and most importantly data/information stored in the computer

system. If a computer program is run by unauthorized user then he/she may cause severe damage

to computer or data stored in it. So a computer system must be protected against unauthorized

access, malicious access to system memory, viruses, worms etc. We're going to discuss

Authentication refers to identifying the each user of the system and associating the executing

programs with those users. It is the responsibility of the Operating System to create a protection

system which ensures that a user who is running a particular program is authentic. Operating

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302 UNIT: V

Prepared by: D. Manjula Dr.Hemalatha

 Username / Password -
Operating system to login into the system.
 User card/key - User need to punch card in card slot, or enter key generated by key
generator in option provided by operating system to login into the system.
 User attribute - fingerprint/ eye retina
attribute via designated input device used by operating system to login into the system.

One Time passwords

One time passwords provides additional security along with normal authentication. In One

Password system, a unique password is required every time user tries to login into the system.

Once a one-time password is used then it cannot be used again. One time password are

implemented in various ways.

Random numbers - Users are provided cards havin

alphabets. System asks for numbers corresponding to few alphabets randomly chosen.

 Secret key - User are provided a hardware device which can create a secret id mapped
with user id. System asks for such secret id
 Network password - Some commercial applications send one time password to user on
registered mobile/ email which is required to be entered prior to login.

Program Threats

Operating system's processes and

made these process do malicious tasks then it is known as Program Threats. One of the common

example of program threat is a program installed in a computer which can store and send user

credentials via network to some hacker. Following is the list of some well known program

threats.

 Trojan Horse - Such program traps user login credentials and stores them to send to
malicious user who can later on login to computer and can access system resources
 Trap Door - If a program which is designed to work as required, have a security hole in
its code and perform illegal action without knowledge of user then it is called to have a trap door.
 Logic Bomb - Logic bomb is a situation when a program misbehaves
conditions met otherwise it works as a genuine program. It is harder to detect.
 Virus - Virus as name suggests can replicate themselves on computer system .They are
highly dangerous and can modify/delete user files, crash systems. A virus
code embedded in a program. As user accesses the program, the virus starts getting embedded in
other files/ programs and can make system unusable for user.

System Threats

System threats refers to misuse of system services and network

trouble. System threats can be used to launch program threats on a complete network called as

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

UNIT: V(PROTECTION AND SECURITY) BATCH-2017

emalatha, Department of CS, CA & IT, KAHE

- User need to enter a registered username and p
Operating system to login into the system.

User need to punch card in card slot, or enter key generated by key
generator in option provided by operating system to login into the system.

fingerprint/ eye retina pattern/ signature - User need to pass his/her
attribute via designated input device used by operating system to login into the system.

One time passwords provides additional security along with normal authentication. In One

Password system, a unique password is required every time user tries to login into the system.

time password is used then it cannot be used again. One time password are

Users are provided cards having numbers printed along with

alphabets. System asks for numbers corresponding to few alphabets randomly chosen.

User are provided a hardware device which can create a secret id mapped
with user id. System asks for such secret id which is to be generated every time prior to login.

Some commercial applications send one time password to user on
registered mobile/ email which is required to be entered prior to login.

Operating system's processes and kernel do the designated task as instructed. If a user program

made these process do malicious tasks then it is known as Program Threats. One of the common

example of program threat is a program installed in a computer which can store and send user

ials via network to some hacker. Following is the list of some well known program

Such program traps user login credentials and stores them to send to
malicious user who can later on login to computer and can access system resources

If a program which is designed to work as required, have a security hole in
its code and perform illegal action without knowledge of user then it is called to have a trap door.

Logic bomb is a situation when a program misbehaves only when certain
conditions met otherwise it works as a genuine program. It is harder to detect.

Virus as name suggests can replicate themselves on computer system .They are
highly dangerous and can modify/delete user files, crash systems. A virus is generally a small
code embedded in a program. As user accesses the program, the virus starts getting embedded in
other files/ programs and can make system unusable for user.

System threats refers to misuse of system services and network connections to put user in

trouble. System threats can be used to launch program threats on a complete network called as

: OPERATING SYSTEMS

2017-2020

 Page 9/19

User need to enter a registered username and password with

User need to punch card in card slot, or enter key generated by key

User need to pass his/her
attribute via designated input device used by operating system to login into the system.

One time passwords provides additional security along with normal authentication. In One-Time

Password system, a unique password is required every time user tries to login into the system.

time password is used then it cannot be used again. One time password are

g numbers printed along with corresponding

alphabets. System asks for numbers corresponding to few alphabets randomly chosen.

User are provided a hardware device which can create a secret id mapped
which is to be generated every time prior to login.

Some commercial applications send one time password to user on

kernel do the designated task as instructed. If a user program

made these process do malicious tasks then it is known as Program Threats. One of the common

example of program threat is a program installed in a computer which can store and send user

ials via network to some hacker. Following is the list of some well known program

Such program traps user login credentials and stores them to send to
malicious user who can later on login to computer and can access system resources.

If a program which is designed to work as required, have a security hole in
its code and perform illegal action without knowledge of user then it is called to have a trap door.

only when certain

Virus as name suggests can replicate themselves on computer system .They are
is generally a small

code embedded in a program. As user accesses the program, the virus starts getting embedded in

connections to put user in

trouble. System threats can be used to launch program threats on a complete network called as

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302 UNIT: V

Prepared by: D. Manjula Dr.Hemalatha

program attack. System threats creates such an environment that operating syste

user files are misused. Following is the li

 Worm -Worm is a process which can choked down a system performance by using
system resources to extreme levels. A Worm process generates its multiple copies where each
copy uses system resources, prevents all other pro
processes can even shut down an entire network.
 Port Scanning - Port scanning is a mechanism or means by which a hacker can detects
system vulnerabilities to make an attack on the system.
 Denial of Service - Denial
use of the system. For example user may not be able to use internet if denial of service attacks
browser's content settings.

Identification, Authentication, Authorization

For a user to be able to access a resource, he must first prove that he is who he claims to be, has

the necessary credentials, and has been given the necessary rights or privileges to perform the

actions he is requesting.

Identification describes a method of ensuring that a

entity it claims to be. Identification can be provided with the use of a username or account

number.

To be properly authenticated, the subject is usually required to provide a second piece to the

credential set (a password, a cryptographic key, personal identification number (PIN), ….).

Identification, Authentication, Authorization (cont’d)

If identification and authentication credentials match the stored information, the subject

is authenticated.

Once the subject is authenticated, the system it is trying to access needs to determine if this

subject has been given the necessary rights and privileges to carry out the requested actions.

If the system determines that the subject may access the resource, it

These mechanisms are enforced through AAA (Authentication, Authorization and Auditing)

tools.

AAA tools

Access controls tools are used for identification, authentication, authorization, and auditability.

They are software components that enforc

processes, and information.

They can be embedded within operating systems, applications, add

database and telecommunication management systems.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

UNIT: V(PROTECTION AND SECURITY) BATCH-2017

emalatha, Department of CS, CA & IT, KAHE

program attack. System threats creates such an environment that operating syste

used. Following is the list of some well known system threats.

Worm is a process which can choked down a system performance by using
system resources to extreme levels. A Worm process generates its multiple copies where each
copy uses system resources, prevents all other processes to get required resources. Worms
processes can even shut down an entire network.

Port scanning is a mechanism or means by which a hacker can detects
system vulnerabilities to make an attack on the system.

Denial of service attacks normally prevents user to make legitimate
use of the system. For example user may not be able to use internet if denial of service attacks

Identification, Authentication, Authorization

access a resource, he must first prove that he is who he claims to be, has

the necessary credentials, and has been given the necessary rights or privileges to perform the

describes a method of ensuring that a subject (user, program, or process) is the

entity it claims to be. Identification can be provided with the use of a username or account

, the subject is usually required to provide a second piece to the

password, a cryptographic key, personal identification number (PIN), ….).

Identification, Authentication, Authorization (cont’d)

If identification and authentication credentials match the stored information, the subject

is authenticated, the system it is trying to access needs to determine if this

subject has been given the necessary rights and privileges to carry out the requested actions.

If the system determines that the subject may access the resource, it authorizes

These mechanisms are enforced through AAA (Authentication, Authorization and Auditing)

tools are used for identification, authentication, authorization, and auditability.

They are software components that enforce access control measures for systems, programs,

They can be embedded within operating systems, applications, add-on security packages, or

database and telecommunication management systems.

: OPERATING SYSTEMS

2017-2020

 Page 10/19

program attack. System threats creates such an environment that operating system resources/

Worm is a process which can choked down a system performance by using
system resources to extreme levels. A Worm process generates its multiple copies where each

cesses to get required resources. Worms

Port scanning is a mechanism or means by which a hacker can detects

of service attacks normally prevents user to make legitimate
use of the system. For example user may not be able to use internet if denial of service attacks

access a resource, he must first prove that he is who he claims to be, has

the necessary credentials, and has been given the necessary rights or privileges to perform the

subject (user, program, or process) is the

entity it claims to be. Identification can be provided with the use of a username or account

, the subject is usually required to provide a second piece to the

password, a cryptographic key, personal identification number (PIN), ….).

If identification and authentication credentials match the stored information, the subject

is authenticated, the system it is trying to access needs to determine if this

subject has been given the necessary rights and privileges to carry out the requested actions.

authorizes the subject.

These mechanisms are enforced through AAA (Authentication, Authorization and Auditing)

tools are used for identification, authentication, authorization, and auditability.

e access control measures for systems, programs,

on security packages, or

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302 UNIT: V

Prepared by: D. Manjula Dr.Hemalatha

They can be offered as outsourced serv

It can be challenging to synchronize all access controls and ensure that all vulnerabilities are

covered without producing overlaps of functionality.

Identification and Authentication

Once a person has been identified, throug

He must prove he is who he says he is.

There are three general factors that can be used for authentication:

 something a person knows (a password, PIN, …);

 something a person has (a key, an access card, a badge);

 something a person is (physical attributes).

Identification and Authentication (cont’d)

Authenticating a person by something

but it is less secure, too. Another person may easily acquire this knowl

unauthorized access to a system.

Something a person has is a very common mechanism but the token’s life

managed, they can be lost or stolen, which could result in unauthorized access.

Authenticating a person’s identity based

biometrics.

Strong authentication contains two out of these three methods: something a person knows, has,

or is (two-factors authentication).

Identification Component Requirements

When issuing identification values to users, the following should be in place:

 Each value should be unique, for user accountability.

 A standard naming scheme should be followed.

 The value should be non-descriptive of the user’s position or tasks.

 The value should not be shared betw

Identity management

Identity management is a broad term that encompasses the use of different products to identify,

authenticate, and authorize users through automated means.

The continual increase in complexity and diversity of networked

complexity of keeping track of who can access what and when.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

UNIT: V(PROTECTION AND SECURITY) BATCH-2017

emalatha, Department of CS, CA & IT, KAHE

They can be offered as outsourced services by trusted third parties.

It can be challenging to synchronize all access controls and ensure that all vulnerabilities are

covered without producing overlaps of functionality.

Identification and Authentication

Once a person has been identified, through the user ID, he must be authenticated;

He must prove he is who he says he is.

There are three general factors that can be used for authentication:

something a person knows (a password, PIN, …);

something a person has (a key, an access card, a badge);

something a person is (physical attributes).

Identification and Authentication (cont’d)

mething that he knows is usually the least expensive to implement,

but it is less secure, too. Another person may easily acquire this knowl

is a very common mechanism but the token’s life-cycle needs to be

managed, they can be lost or stolen, which could result in unauthorized access.

Authenticating a person’s identity based on a unique physical attribute is referred to as

contains two out of these three methods: something a person knows, has,

).

Identification Component Requirements

n values to users, the following should be in place:

Each value should be unique, for user accountability.

A standard naming scheme should be followed.

descriptive of the user’s position or tasks.

The value should not be shared between users.

is a broad term that encompasses the use of different products to identify,

authenticate, and authorize users through automated means.

The continual increase in complexity and diversity of networked environments only increases the

complexity of keeping track of who can access what and when.

: OPERATING SYSTEMS

2017-2020

 Page 11/19

It can be challenging to synchronize all access controls and ensure that all vulnerabilities are

h the user ID, he must be authenticated;

is usually the least expensive to implement,

but it is less secure, too. Another person may easily acquire this knowledge and gain

cycle needs to be

is referred to as

contains two out of these three methods: something a person knows, has,

is a broad term that encompasses the use of different products to identify,

environments only increases the

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302 UNIT: V

Prepared by: D. Manjula Dr.Hemalatha

Users usually access several different types of systems throughout their daily tasks, which makes

controlling access and providing the necessary level of protectio

and full of obstacles.

This complexity usually results in unforeseen and unidentified holes in asset protection,

overlapping and contradictory controls, and policy and regulation noncompliance.

It is the goal of identity management technologies to simplify the administration of these tasks

and bring sanity to chaos.

Identity management (cont’d)

The following are many of the common problems that enterprises deal with today in controlling

access to assets:

 Various types of users need different levels of access: internal users, contractors,

outsiders, partners, etc.

 Resources have different classification levels: confidential, internal use only, private,

public, etc.

 Diverse identity data must be kept on different types of us

contact information, work-related data, digital certificates, cognitive passwords, etc.

 The corporate environment is continually changing: business environment needs,

resource access needs, employee roles, current employees

Identity management (cont’d)

The traditional identity management process has been manual, using directory services with

permissions and profiles.

This approach has proven incapable of keeping up with complex demands and thus has been

replaced with the use of newly arrived automated applications that are rich in functionality,

including enterprise-wide products and single sign

Identity management (cont’d)

The following are some of the services that these types of products supply:

 User provisioning

 Password synchronization and resetting

 Self service for users on specific types of activities

 Delegation of administrative tasks

 Centralized auditing and reporting

 Integrated workflow and increase in business productivity

 Decrease in network access points

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

UNIT: V(PROTECTION AND SECURITY) BATCH-2017

emalatha, Department of CS, CA & IT, KAHE

Users usually access several different types of systems throughout their daily tasks, which makes

controlling access and providing the necessary level of protection on different data types difficult

This complexity usually results in unforeseen and unidentified holes in asset protection,

overlapping and contradictory controls, and policy and regulation noncompliance.

management technologies to simplify the administration of these tasks

The following are many of the common problems that enterprises deal with today in controlling

users need different levels of access: internal users, contractors,

Resources have different classification levels: confidential, internal use only, private,

Diverse identity data must be kept on different types of users: credentials, personal data,

related data, digital certificates, cognitive passwords, etc.

The corporate environment is continually changing: business environment needs,

resource access needs, employee roles, current employees, etc.

The traditional identity management process has been manual, using directory services with

This approach has proven incapable of keeping up with complex demands and thus has been

he use of newly arrived automated applications that are rich in functionality,

wide products and single sign-on solutions.

The following are some of the services that these types of products supply:

Password synchronization and resetting

Self service for users on specific types of activities

Delegation of administrative tasks

Centralized auditing and reporting

Integrated workflow and increase in business productivity

access points

: OPERATING SYSTEMS

2017-2020

 Page 12/19

Users usually access several different types of systems throughout their daily tasks, which makes

n on different data types difficult

This complexity usually results in unforeseen and unidentified holes in asset protection,

overlapping and contradictory controls, and policy and regulation noncompliance.

management technologies to simplify the administration of these tasks

The following are many of the common problems that enterprises deal with today in controlling

users need different levels of access: internal users, contractors,

Resources have different classification levels: confidential, internal use only, private,

ers: credentials, personal data,

related data, digital certificates, cognitive passwords, etc.

The corporate environment is continually changing: business environment needs,

The traditional identity management process has been manual, using directory services with

This approach has proven incapable of keeping up with complex demands and thus has been

he use of newly arrived automated applications that are rich in functionality,

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302 UNIT: V

Prepared by: D. Manjula Dr.Hemalatha

 Regulatory compliance

Authentication mechanisms

Biometrics:

 Fingerprint

 Palm Scan

 Hand Geometry

 Retina Scan

 Iris Scan

 Signature Dynamics

 Keyboard Dynamics

 Voice Print

 Facial Scan

 Hand Topography

Authentication mechanisms (cont’d)

Passwords….. weakness:

If an attacker is after a password, he can try different techniques:

 Electronic monitoring Listening to network traffic to capture information, especially

when a user is sending her password to an authentication server. The password can be

copied and reused by the attacker at another time, which is called a replay attack.

 Access the password file Usually done on the authentication server. The password file

contains many users’ passwords and, if compromised, can be the source of a lot of

damage. This file should be protected with access control mechanisms and encryption.

 Brute force attacks Performed with tools that cycle through many possible character,

number, and symbol combinations to uncover a password.

 Dictionary attacks Files of

password until a match is found.

 Social engineering An attacker falsely convinces an individual that she has the

necessary authorization to access specific resources.

Authentication mechanisms (cont’d)

 Password Checkers;

 Password Hashing and Encryption;

 Password Aging;

 Limit Logon Attempts;

 Cognitive Passwords;

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

UNIT: V(PROTECTION AND SECURITY) BATCH-2017

emalatha, Department of CS, CA & IT, KAHE

Authentication mechanisms (cont’d)

If an attacker is after a password, he can try different techniques:

Listening to network traffic to capture information, especially

when a user is sending her password to an authentication server. The password can be

copied and reused by the attacker at another time, which is called a replay attack.

Usually done on the authentication server. The password file

contains many users’ passwords and, if compromised, can be the source of a lot of

ge. This file should be protected with access control mechanisms and encryption.

Performed with tools that cycle through many possible character,

number, and symbol combinations to uncover a password.

Files of thousands of words are used to compare to the user’s

password until a match is found.

An attacker falsely convinces an individual that she has the

necessary authorization to access specific resources.

Authentication mechanisms (cont’d)

Password Hashing and Encryption;

: OPERATING SYSTEMS

2017-2020

 Page 13/19

Listening to network traffic to capture information, especially

when a user is sending her password to an authentication server. The password can be

copied and reused by the attacker at another time, which is called a replay attack.

Usually done on the authentication server. The password file

contains many users’ passwords and, if compromised, can be the source of a lot of

ge. This file should be protected with access control mechanisms and encryption.

Performed with tools that cycle through many possible character,

thousands of words are used to compare to the user’s

An attacker falsely convinces an individual that she has the

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302 UNIT: V

Prepared by: D. Manjula Dr.Hemalatha

 One-Time Passwords:

 Synchronous token device,

 Asynchronous token device;

 Cryptographic keys;

 Smart Cards.

Authorization mechanisms (cont’d)

After successful authentication, the system must establish whether the user is authorized to

access the particular resource and what actions he is permitted to perform on that resource.

Authorization is a core component of every operating system, but application

packages, and resources themselves can also provide this functionality.

The decision of whether or not to allow users to access some resource was based on access

criteria.

Access criteria is the crux of authentication.

Authorization: Access Criteria

This subject can get very granular in its level of detail when it comes to dictating what a subject

can or cannot do to an object or resource.

This is a good thing for network administrators and security professionals, because they want to

have as much control as possible over the resources they have been put in charge of protecting,

and a fine level of detail enables them to give individuals just the precise level of access that they

need.

It would be frustrating if access control permissions

These choices are very limiting, and an administrator would end up giving everyone full control,

which would provide no protection.

There are different ways of limiting access to resources and, if they are unde

properly, they can give just the right level of access desired.

Authorization: Access Criteria (cont’d)

Granting access rights to subjects should be based on the level of trust a company has in a

subject and the subject’s need to know. Just

files and resources does not mean she fulfills the need

tax returns and profit margins.

These issues need to be identified and integrated into the access criteria.

The different access criteria can be broken up into different types:

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

UNIT: V(PROTECTION AND SECURITY) BATCH-2017

emalatha, Department of CS, CA & IT, KAHE

Asynchronous token device;

Authorization mechanisms (cont’d)

successful authentication, the system must establish whether the user is authorized to

access the particular resource and what actions he is permitted to perform on that resource.

Authorization is a core component of every operating system, but applications, security add

packages, and resources themselves can also provide this functionality.

The decision of whether or not to allow users to access some resource was based on access

Access criteria is the crux of authentication.

ess Criteria

This subject can get very granular in its level of detail when it comes to dictating what a subject

can or cannot do to an object or resource.

This is a good thing for network administrators and security professionals, because they want to

e as much control as possible over the resources they have been put in charge of protecting,

and a fine level of detail enables them to give individuals just the precise level of access that they

It would be frustrating if access control permissions were based only on full control or no access.

These choices are very limiting, and an administrator would end up giving everyone full control,

which would provide no protection.

There are different ways of limiting access to resources and, if they are unde

properly, they can give just the right level of access desired.

Authorization: Access Criteria (cont’d)

Granting access rights to subjects should be based on the level of trust a company has in a

subject and the subject’s need to know. Just because a company completely trusts Alice with its

files and resources does not mean she fulfills the need-to-know criteria to access the company’s

These issues need to be identified and integrated into the access criteria.

The different access criteria can be broken up into different types:

: OPERATING SYSTEMS

2017-2020

 Page 14/19

successful authentication, the system must establish whether the user is authorized to

access the particular resource and what actions he is permitted to perform on that resource.

s, security add-on

The decision of whether or not to allow users to access some resource was based on access

This subject can get very granular in its level of detail when it comes to dictating what a subject

This is a good thing for network administrators and security professionals, because they want to

e as much control as possible over the resources they have been put in charge of protecting,

and a fine level of detail enables them to give individuals just the precise level of access that they

were based only on full control or no access.

These choices are very limiting, and an administrator would end up giving everyone full control,

There are different ways of limiting access to resources and, if they are understood and used

Granting access rights to subjects should be based on the level of trust a company has in a

because a company completely trusts Alice with its

know criteria to access the company’s

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302 UNIT: V

Prepared by: D. Manjula Dr.Hemalatha

 roles,

 groups,

 location,

 time,

 transaction types.

Access Criteria

 Using roles is an efficient way to assign rights to a type of user who performs a certain

task. The role is based on a job assignment or function.

 Using groups is another effective way of assigning access control rights. If several users

require the same type of access to information and resources, putting them into a group

and then assigning rights and permissions to that

assigning rights and permissions to each and every individual separately.

Access Criteria (cont’d)

 Physical or logical location

may be available only to users who

location restrictions are usually done through network address restrictions.

 Time of day, or temporal isolation, is another access control mechanism that can be

used.

 Transaction-type restrictions can be used

types of functions and what commands can be carried out on the data. An online banking

program may allow a customer to view his account balance, but may not allow the

customer to transfer money until he has

database administrator may be able to build a database for the human resources

department, but may not be able to read certain confidential files within that database).

Authorization Creep

As employees work at a company over time and move from one department to another, they

often are assigned more and more access rights and permissions.

This is commonly referred to as authorization creep. It can be a large risk for a company,

because too many users have too much

Users’ access needs and rights should be periodically reviewed to ensure that the principle of

least privilege is being properly enforced.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

UNIT: V(PROTECTION AND SECURITY) BATCH-2017

emalatha, Department of CS, CA & IT, KAHE

is an efficient way to assign rights to a type of user who performs a certain

job assignment or function.

is another effective way of assigning access control rights. If several users

require the same type of access to information and resources, putting them into a group

and then assigning rights and permissions to that group is easier to manage than

assigning rights and permissions to each and every individual separately.

location can also be used to restrict access to resources. Some files

may be available only to users who can log on interactively to a computer. Logical

location restrictions are usually done through network address restrictions.

, or temporal isolation, is another access control mechanism that can be

restrictions can be used to control what data is accessed during certain

types of functions and what commands can be carried out on the data. An online banking

program may allow a customer to view his account balance, but may not allow the

customer to transfer money until he has a certain security level or access right. (A

database administrator may be able to build a database for the human resources

department, but may not be able to read certain confidential files within that database).

company over time and move from one department to another, they

often are assigned more and more access rights and permissions.

This is commonly referred to as authorization creep. It can be a large risk for a company,

because too many users have too much privileged access to company assets.

Users’ access needs and rights should be periodically reviewed to ensure that the principle of

least privilege is being properly enforced.

: OPERATING SYSTEMS

2017-2020

 Page 15/19

is an efficient way to assign rights to a type of user who performs a certain

is another effective way of assigning access control rights. If several users

require the same type of access to information and resources, putting them into a group

group is easier to manage than

can also be used to restrict access to resources. Some files

can log on interactively to a computer. Logical

, or temporal isolation, is another access control mechanism that can be

to control what data is accessed during certain

types of functions and what commands can be carried out on the data. An online banking

program may allow a customer to view his account balance, but may not allow the

a certain security level or access right. (A

database administrator may be able to build a database for the human resources

department, but may not be able to read certain confidential files within that database).

company over time and move from one department to another, they

This is commonly referred to as authorization creep. It can be a large risk for a company,

Users’ access needs and rights should be periodically reviewed to ensure that the principle of

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302 UNIT: V

Prepared by: D. Manjula Dr.Hemalatha

Notes on Authorization

It is important to understand that it is management’s jo

of individuals and how access is authorized.

The security administrator configures the security mechanisms to fulfill these requirements, but

it is not her job to determine security requirements of users.

Access Control Models

An access control model is a framework that dictates how subjects access objects. It uses access

control technologies and security mechanisms to enforce the rules and objectives of the model.

There are three main types of access control models:

 Discretionary (DAC),

 Mandatory (MAC),

 Nondiscretionary (also called role

Each model type uses different methods to control how subjects access objects.

For every access attempt, before a subject can communicate with an object, the security mo

reviews the rules of the access control model to determine whether the request is allowed.

Discretionary Access Control

If a user creates a file, he is the owner of that file. An identifier for this user is placed in the file

header.

A system that uses discretionary

specify which subjects can access specific resources.

This model is called discretionary because the control of access is based on the discretion of the

owner.

The most common implementation of DAC is through ACLs, which are dictated and set by the

owners and enforced by the operating system.

Discretionary Access Control (cont’d)

Most of the operating systems are based on DAC models, such as all Windows, Linux, and

Macintosh systems and most flavors of Unix.

When you look at the properties of a file or directory and you see the choices that allow you to

control which users can have access to this resource and to what degree, you are witnessing an

instance of ACLs enforcing a DAC model

DACs can be applied to both the directory tree structure and the files it contains.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

UNIT: V(PROTECTION AND SECURITY) BATCH-2017

emalatha, Department of CS, CA & IT, KAHE

It is important to understand that it is management’s job to determine the security requirements

of individuals and how access is authorized.

The security administrator configures the security mechanisms to fulfill these requirements, but

it is not her job to determine security requirements of users.

is a framework that dictates how subjects access objects. It uses access

control technologies and security mechanisms to enforce the rules and objectives of the model.

There are three main types of access control models:

Nondiscretionary (also called role-based RBAC).

Each model type uses different methods to control how subjects access objects.

For every access attempt, before a subject can communicate with an object, the security mo

reviews the rules of the access control model to determine whether the request is allowed.

If a user creates a file, he is the owner of that file. An identifier for this user is placed in the file

discretionary access control (DAC) enables the owner of the resource to

specify which subjects can access specific resources.

This model is called discretionary because the control of access is based on the discretion of the

mentation of DAC is through ACLs, which are dictated and set by the

owners and enforced by the operating system.

Discretionary Access Control (cont’d)

Most of the operating systems are based on DAC models, such as all Windows, Linux, and

and most flavors of Unix.

When you look at the properties of a file or directory and you see the choices that allow you to

control which users can have access to this resource and to what degree, you are witnessing an

instance of ACLs enforcing a DAC model.

DACs can be applied to both the directory tree structure and the files it contains.

: OPERATING SYSTEMS

2017-2020

 Page 16/19

b to determine the security requirements

The security administrator configures the security mechanisms to fulfill these requirements, but

is a framework that dictates how subjects access objects. It uses access

control technologies and security mechanisms to enforce the rules and objectives of the model.

For every access attempt, before a subject can communicate with an object, the security monitor

reviews the rules of the access control model to determine whether the request is allowed.

If a user creates a file, he is the owner of that file. An identifier for this user is placed in the file

enables the owner of the resource to

This model is called discretionary because the control of access is based on the discretion of the

mentation of DAC is through ACLs, which are dictated and set by the

Most of the operating systems are based on DAC models, such as all Windows, Linux, and

When you look at the properties of a file or directory and you see the choices that allow you to

control which users can have access to this resource and to what degree, you are witnessing an

DACs can be applied to both the directory tree structure and the files it contains.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302 UNIT: V

Prepared by: D. Manjula Dr.Hemalatha

The PC world has access permissions of No Access, Read (r), Write (w), Execute (x), Delete (d),

Change (c), and Full Control.

Notes on DAC

Identity-Based Access Control

 DAC systems grant or deny access based on the identity of the subject. The identity can

be a user identity or group membership. So, for example, a data owner can choose to

allow Bob (user identity) and the Accounting group (group membership identity) to

access his file.

Mandatory Access Control

In a mandatory access control (MAC)

access files.

This model is much more structured and strict and is based on a security label system. Users are

given a security clearance (secret, top secret, confidential, and so on), and data is classified in the

same way. The clearance and classification data is stored in the security labels, which are bound

to the specific subjects and objects.

When the system makes a decision

the clearance of the subject, the classification of the object, and the security policy of the system.

The rules for how subjects access objects are made by the security officer, configured by

administrator, enforced by the operating system, and supported by security technologies.

DAC and MAC limitations

Each organization has unique security requirements, many of which are difficult to meet using

traditional DAC and MAC controls.

DAC is an access control mechanisms that permits system users to allow or disallow other users

access to objects under their control without the intercession of a system administrator.

In many organizations, the end users do not “own” the information for which they

access; the actual “owner” is the corporation

rather than data ownership.

Role-based Access Control

A user has access to an object based on the assigned role.

Roles are defined based on job funct

Permissions are defined based on job authority and responsibilities within a job function.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

UNIT: V(PROTECTION AND SECURITY) BATCH-2017

emalatha, Department of CS, CA & IT, KAHE

The PC world has access permissions of No Access, Read (r), Write (w), Execute (x), Delete (d),

AC systems grant or deny access based on the identity of the subject. The identity can

be a user identity or group membership. So, for example, a data owner can choose to

allow Bob (user identity) and the Accounting group (group membership identity) to

(MAC) model, users and data owners cannot determine who can

This model is much more structured and strict and is based on a security label system. Users are

clearance (secret, top secret, confidential, and so on), and data is classified in the

same way. The clearance and classification data is stored in the security labels, which are bound

to the specific subjects and objects.

When the system makes a decision about fulfilling a request to access an object, it is based on

the clearance of the subject, the classification of the object, and the security policy of the system.

The rules for how subjects access objects are made by the security officer, configured by

administrator, enforced by the operating system, and supported by security technologies.

Each organization has unique security requirements, many of which are difficult to meet using

traditional DAC and MAC controls.

access control mechanisms that permits system users to allow or disallow other users

access to objects under their control without the intercession of a system administrator.

In many organizations, the end users do not “own” the information for which they

access; the actual “owner” is the corporation -> control has to be based on employee functions

A user has access to an object based on the assigned role.

Roles are defined based on job functions.

Permissions are defined based on job authority and responsibilities within a job function.

: OPERATING SYSTEMS

2017-2020

 Page 17/19

The PC world has access permissions of No Access, Read (r), Write (w), Execute (x), Delete (d),

AC systems grant or deny access based on the identity of the subject. The identity can

be a user identity or group membership. So, for example, a data owner can choose to

allow Bob (user identity) and the Accounting group (group membership identity) to

model, users and data owners cannot determine who can

This model is much more structured and strict and is based on a security label system. Users are

clearance (secret, top secret, confidential, and so on), and data is classified in the

same way. The clearance and classification data is stored in the security labels, which are bound

about fulfilling a request to access an object, it is based on

the clearance of the subject, the classification of the object, and the security policy of the system.

The rules for how subjects access objects are made by the security officer, configured by the

administrator, enforced by the operating system, and supported by security technologies.

Each organization has unique security requirements, many of which are difficult to meet using

access control mechanisms that permits system users to allow or disallow other users

access to objects under their control without the intercession of a system administrator.

In many organizations, the end users do not “own” the information for which they are allowed

> control has to be based on employee functions

Permissions are defined based on job authority and responsibilities within a job function.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302 UNIT: V

Prepared by: D. Manjula Dr.Hemalatha

Operations on an object are invocated based on the permissions.

The object is concerned with the user’s role and not the user.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

UNIT: V(PROTECTION AND SECURITY) BATCH-2017

emalatha, Department of CS, CA & IT, KAHE

Operations on an object are invocated based on the permissions.

The object is concerned with the user’s role and not the user.

: OPERATING SYSTEMS

2017-2020

 Page 18/19

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II BSC CS

 COURSE CODE: 17CSU302 UNIT: V

Prepared by: D. Manjula Dr.Hemalatha

1. What is Authentication?

2. What is Security Policy?

3. What is Security Mechanism?

4. What is Access Control Lists?

5. What is internal access authorization?

1. Discuss about Policy mechanism with example.

2. Explain in detail about Authentication.

3. Describe about Internal access Authorization.

KARPAGAM ACADEMY OF HIGHER EDUCATION

BSC CS COURSE NAME: OPERATING SYSTEMS

UNIT: V(PROTECTION AND SECURITY) BATCH-2017

emalatha, Department of CS, CA & IT, KAHE

UNIT V

POSSIBLE QUESTIONS

(2 MARKS)

What is Security Mechanism?

What is Access Control Lists?

What is internal access authorization?

(6 MARKS)

Discuss about Policy mechanism with example.

Explain in detail about Authentication.

ibe about Internal access Authorization.

: OPERATING SYSTEMS

2017-2020

 Page 19/19

SNO QUESTIONS opt1 opt2 opt3 opt4 opt5 opt6 ANSWER

1

In computer security,
…………………….

means that computer

system assets can be

modified only by

authorized parities.
Confident
iality Integrity

Availabi
lity

Authentic
ity Integrity

In computer security,
……………………..

means that the

information in a

computer system only

be accessible for

UNIT - 5

KARPAGAM ACADEMY OF HIGHER EDUCATION

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

II B.Sc CS (Batch 2017-2020)

OPERATING SYSTEMS

PART - A OBJECTIVE TYPE/MULTIPLE CHOICE QUESTIONS

ONLINE EXAMINATIONS ONE MARKS QUESTIONS

2

be accessible for

reading by authorized

parities.
Confident
iality Integrity

Availabi
lity

Authentic
ity

Confidenti
ality

3

Which of the
following is

independent malicious

program that need not

any host program?
Trap
doors

Trojan
horse Virus Worm Worm

4

The ……….. is code
that recognizes some

special sequence of

input or is triggered by

being run from a

certain user ID of by

unlikely sequence of

events.
Trap
doors

Trojan
horse

Logic
Bomb Virus Trap doors

5

The …………….. is
code embedded in

some legitimate

program that is set to

“explode” when

certain conditions are

met.
Trap
doors

Trojan
horse

Logic
Bomb Virus Trap doors

6

following malicious

program do not

replicate

automatically?
Trojan
Horse Virus Worm Zombie

Trojan
Horse

7

…………… programs
can be used to

accomplish functions

indirectly that an

unauthorized user

could not accomplish

directly. Zombie Worm

Trojan
Horses

Logic
Bomb

Trojan
Horses

8

A ………….. is a
program that can

infect other programs

by modifying them,

the modification

includes a copy of the

virus program, which

can go on to infect

other programs. Worm Virus Zombie

Trap
doors Virus8 other programs. Worm Virus Zombie doors Virus

9

Which principle states
that programs, users

and even the systems

be given just enough

privileges to perform

their task?

principle
of

operating

system

principle
of least

privilege

principle
of

process

scheduli

ng

none of
the

mentione

d

principle of
least

privilege

10

_______ is an
approach to restricting

system access to

authorized users.

Role-
based

access

control

Process-
based

access

control

Job-
based

access

control

none of
the

mentione

d

Role-based
access

control

11

For system protection,
a process should

access
all the
resources

only
those

resource

s for

which it

has

authoriz

ation

few
resource

s but

authoriz

ation is

not

required

all of the
mentione

d

only those
resources

for which it

has

authorizati

on

12

The protection domain
of a process contains

object
name

rights-
set

object
name

and

rights-

set

none of
the

mentione

d

object
name and

rights-set

13

If the set of resources
available to the

process is fixed

throughout the

process’s lifetime then

its domain is static dynamic

neither
static nor

dynamic

none of
the

mentione

d static

14

Access matrix model
for user authentication

contains
a list of
objects

a list of
domains

a
function

which

returns

an

object’s

type
all the
options

all the
options

Global table
implementation of all the all the

15

implementation of

matrix table contains domain object right-set

all the
options

all the
options

16

For a domain _______
is a list of objects

together with the

operation allowed on

these objects.
capability
list

access
list

authoriz
ation

none of
the

mentione

d

capability
list

17

Which one of the
following is capability

based protection

system? hydra

cambrid
ge CAP

system

hydra &
cambrid

ge CAP

system

none of
the

mentione

d

hydra &
cambridge

CAP

system

18

In UNIX, domain
switch is

accomplished via
file
system user

superuse
r

the

mentione

d file system

19

 ___________ is an
important property of

an operating system

that hopes to keep up

with advancements in

computing technology.

Portability

Reliabili

ty

Extensib

ility

compatibi

lity

Extensibilit

y

20

 ___________ is the
ability to handle error

conditions, including

the ability of the

operating system to

protect itself and its

users from defective

or malicious software.

Portability

Reliabili

ty

Extensib

ility

compatibi

lity

 Reliability

21

 __________ is the
ability to move from

one hardware

architecture to another

with relatively few

changes.

Portability

Reliabili

ty

Extensib

ility

compatibi

lity

Portability

22

 Windows NT is
designed to afford

good ___________.

Portability

Reliabili

ty

Extensib

ility

performan

ce

performan

ce

 A __________ is
created by the NT disk

administrator utility,

 Volume File
Director

y

subdirecto

ry

 Volume

23

administrator utility,

and is based on a

logical disk partition.

y ry

24

 A __________ of a
directory contains the

top level of the B+

tree.

 index
root

 file
referenc

e

attribute

s

 metadata index
root

25

 The _________ in
NT may occupy a

portion of a disk, may

occupy an entire disk

or may span across

several disks.

 Volume File
Director

y

subdirecto

ry

 Volume

26

 The ___________ of
a directory contains

the top level of the B+

tree.

 Volume File index
root

subdirecto

ry

 index
root

27

 The _____________
attribute contains the

access token of the

owner of the file, and

an access control list

that states the access

privileges that are

granted to each user

that has access to the

file.

Portability

Recover

y

Reliabili

ty

 Security Security

28

 To deal with disk
sectors that go bad,

___________ uses a

hardware technique

called sector spanning.

 Ps Valloc
Kmalloc

 FtDisk FtDisk

In the security literature,
people who are nosing

around places where

29

around places where

they have no business

being are called

__________ intruders crackers hackers worms intruders

30

Outsiders can sometimes

take command of

people's home

computers (using viruses

and other means) and

turn them into

______________ virus worms malware zombies zombies

31

Most operating systems
allow individual users to

determine who may read

and write their files and

other objects, This

policy is called

__________________ mandatory access control

access
matrix

discretio

nary

access

control.

access
control

lists

discretionar
y access

control

32

Every secured computer
system must require all

users to be

___________________a

t login time

authentica
ted

authorize
d

transferre
d scheduled

authenticate
d

33

The most widely used
form of authentication is

to require the user to

type a __________and a

_______________` mailid, PIN number

login
name,

passwor

d.

PIN
number,

Account

number
Username,
mailid

login name,
password.

34

The authentication
method that measures

the physical

characteristics of the

user that are hard to

forge is called as

Biometric
s password

stegnogra

phy

access

control Biometrics

___________is the
name given to hackers

who break into

35

who break into

computers for criminal

gain hackers spoofing phising Crackers Crackers

36

A typical biometrics
system has two parts:

enrollmen

t and

identificat

ion

identifica
tion &

authentic

ation

authentic
ation &

confident

iality

authorizati
on and

authenticat

ion

enrollment

and

identificatio

n

37

Any malware hidden in
software or a Web page

that people voluntarily

download is called

_________________ worm

Trojan
Horse Virus Backdoor

Trojan
Horse

38

The idea of creating a
virus that could

overwrite the master

boot record or the boot

sector, with devastating

results, such viruses

called as

device

driver

virus

source

code

virus
companio
n virus

boot
sector

viruses
boot sector
viruses

39

The trick to infect a

device driver leads to a

source

code virus

device
driver

virus
companio

n virus

boot sector

viruses

device
driver virus

40

When an attempt is to
make a machine or

network resource

unavailable to its

intended users, the

attack is called

denial-of-

service

attack
slow read
attack

spoofed
attack

starvation
attack

denial-of-

service

attack

41

The code segment that
misuses its environment

is called a
internal
thief

trojan

horse
code
stacker

none of the
mentioned trojan horse

42

The internal code of any

software that will set of

a malicious function

when specified

conditions are met, is

called

logic

bomb trap door

code

stacker

none of the

mentioned logic bomb

43

The pattern that can be
used to identify a virus

is known as stealth

virus
signatur

e armoured

multipartit
e

virus

signature

Which one of the

following is a process

44

following is a process

that uses the spawn

mechanism to revage the

system performance? worm trojen threat virus worm

45
What is a trap door in a
program?

a security
hole,

inserted at

program

ming time

in the

system for

later use
a type of
antivirus

security
hole in a

network
none of the
mentioned

a security

hole,

inserted at

programmin

g time in the

system for

later use

46

Which one of the

following is not an

attack, but a search for

vulnerabilities to attack?
denial of
service

port
scanning

memory
access

violation
dumpster
diving

port
scanning

47
File virus attaches itself
to the source file

object
file

executab
le file

all of the
mentioned

executable
file

48
Multipartite viruses
attack on files

boot
sector memory

all of the

mentioned

all of the

mentioned

49
In asymmetric
encryption

same key

is used for

encryption

and

decryption

different

keys are

used for

encrypti

on and

decrypti

on

no key is
required

for

encryptio

n and

decryptio

n
none of the
mentioned

different
keys are

used for

encryption

and

decryption

50

Which of the
following are forms of

malicious attack ?

Theft of
informati

on

Modific
ation of

data

Wiping
of

informat

ion

All of the
mentione

d

All of the
mentioned

51

What are common
security threats ?

File
Shredding

File
sharing

and

permissi

on

File
corruptin

g
File
integrity

File
sharing

and

permission51 security threats ? Shredding on g integrity permission

52

From the following,
which is not a

common file

permission ? Write Execute Stop Read Stop

53

Which of the
following is a good

practice ?

Give full
permissio

n for

remote

transferrin

g

Grant
read

only

permissi

on

Grant
limited

permissi

on to

specified

account

Give both
read and

write

permissio

n but not

execute.

Grant
limited

permission

to specified

account

54

What is not a good
practice for user

administration ?

Isolating a
system

after a

compromi

se

Perform
random

auditing

procedur

es

Granting
privilege

s on a

per host

basis

Using
telnet and

FTP for

remote

access.

Using
telnet and

FTP for

remote

access.

55

following is least

secure method of

authentication ? Key card

fingerpri
nt

retina
pattern Password Password

56

following is a strong

password ?
19thAugu
st88 Delhi88

P@assw
0rd

!augustdel
hi

P@assw0r
d

57

What does Light
Directory Access

Protocol (LDAP)

doesn’t store ? Users Address

Passwor
ds

Security
Keys Address

58

Which happens first
authorization or

authentication ?
Authoriza
tion

Authenti
cation

Both are
same

the

mentione

d

Authorizati
on

59

What is characteristics
of Authorization ?

RADIUS
and RSA

3 way
handsha

king

with syn

and fin.

Multilay
ered

protectio

n for

securing

resource

s

Deals
with

privileges

and rights

Deals with
privileges

and rights

60

What forces the user
to change password at

first logon ?

Default
behavior

of OS

Part of
AES

encrypti

on

practice

Devices
being

accessed

forces

the user

Account
administr

ator

Account
administrat

or

CIA- 1 Batch 2017 -2020

Prepared byD.Manjula, Asst.Prof, Dept of CS 1/3

Register no___________________

 [17CSU302]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021
B.Sc Computer Science

FIRST INTERNAL EXAMINATION – JULY 2018
Third Semester

OPERATING SYSTEMS
Date & Session : 13 .07.2018 & AN
Maximum: 50 marks Duration: 2 hours

SECTION - A (20 X 1= 20 Marks)
ANSWER ALL THE QUESTIONS

1. The primary job of an OS is to ________.

a) command resource b)manage resource c)provide utilities d)Be user friendly
2. ……………… is an example of an operating system that support single user process and
single thread.

a) UNIX b) MS-DOS c) OS/2 d) Windows 2000
3. The systems which allows only one process execution at a time, are called

a) uniprogramming systems b)uniprocessing systems
c) unitasking systems d) none of the mentioned

4. Which one of the following is not a real time operating system?
a) VxWorks b) Windows CE c) RTLinux d) Palm OS

5. What is a shell?
a) It is a hardware component b) It is a command interpreter
c) It is a part in compiler d) It is a tool in CPU scheduling

6. A.................... architecture assigns only a few essential functions to the kernel, including
address spaces, Inter process communication(IPC) and basic scheduling.
 a) Monolithic kernel b) Micro kernel c) Macro kernel d) Mini kernel
7 Micro code is __________

a) programs written in secondary storage b) programs written in main memory
c) programs written in Read only memory d) none of the above

8. The term PDA is ______________
a) Personal Digital Assistant b) Personal Data Assistant
c) Personal Data Accountant d) Private Digital Assistant

9. Operating systems have a ______________for each device controller
a) Process b) device driver c) controller d) allocator

CIA- 1 Batch 2017 -2020

Prepared byD.Manjula, Asst.Prof, Dept of CS 2/3

10. refers to the ability of an operating system to support multiple threads of
execution with a single process.
 a) Multithreading b) Multiprocessing c) Multiexecuting d) Bi-threading
11. Process is........................
 a) A program in execution b) kernel c) thread d) deadlock
12. When one thread immediately terminates the target thread, it is called:

a) Asynchronous cancellation b) Systematic cancellation
 c) Sudden Termination d) Deferred cancellation
13. To access the services of operating system, the interface is provided by the:
 a) system calls b) API c) library d) assembly instructions
14. Process Management function of an operating system kernel includes.

a) Process creation and termination. b) Process scheduling and dispatching
c) Process switching d) All of these

15. The kernel is a___________________
 a) memory manager b) resource manager c) file manager d) directory manager

16. In Unix, Which system call creates the new process?
a) fork b) create c) new d) none of the mentioned

17. What is the ready state of a process?
a) when process is scheduled to run after some execution
b) when process is unable to run until some task has been completed
c) when process is using the CPU
d) none of the mentioned

18. ………….is a lightweight process where the context switching is low
 a) Process b) Thread c) Kernel d) Minikernel
19. Which process is known for initializing a microcomputer with its OS
 a) cold booting b) boot recording c) booting d) warm booting

 20. The OS that groups similar jobs is called as
 a) Network OS b) Distributed OS c) Mainframe OS d) Batch OS

SECTION- B (3 X 2= 6 Marks)

Answer ALL the Questions.

21. Define Operating System.

22. What is Batch System? Give an Example.

23. What is Main Frame Operating System?

SECTION- C (3 X 8= 24 Marks)
Answer ALL the Questions.

24. a) Explain the Types of Operating Systems. [OR]

CIA- 1 Batch 2017 -2020

Prepared byD.Manjula, Asst.Prof, Dept of CS 3/3

 b) Explain about Operating Systems for Personal Computers in detail.

25. a) Write about Basic OS Functions. [OR]

 b) Explain Multiprogramming Systems and Batch Systems with example.

26. a) Explain System Calls and System Programs [OR]

 b) Describe Process Abstraction and Process hierarchy in detail.

CIA- 1 Batch 2017 -2020

Prepared by Dr.S.Hemalatha, Asst.Prof, Dept of CS 1/7

Register no___________________

 [17CSU302]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021
B.Sc Computer Science

FIRST INTERNAL EXAMINATION – JULY 2018
Third Semester

OPERATING SYSTEMS – ANSWER KEY
Date & Session : 13 .07.2018 & AN
Maximum: 50 marks Duration: 2 hours

SECTION - A (20 X 1= 20 Marks)
ANSWER ALL THE QUESTIONS

1. The primary job of an OS is to ________.

a) command resource b)manage resource c)provide utilities d)Be user friendly
2. ……………… is an example of an operating system that support single user process and
single thread.

a) UNIX b) MS-DOS c) OS/2 d) Windows 2000
3. The systems which allows only one process execution at a time, are called

a) uniprogramming systems b)uniprocessing systems
c) unitasking systems d) none of the mentioned

4. Which one of the following is not a real time operating system?
a) VxWorks b) Windows CE c) RTLinux d) Palm OS

5. What is a shell?
a) It is a hardware component b) It is a command interpreter
c) It is a part in compiler d) It is a tool in CPU scheduling

6. A.................... architecture assigns only a few essential functions to the kernel, including
address spaces, Inter process communication(IPC) and basic scheduling.
 a) Monolithic kernel b) Micro kernel c) Macro kernel d) Mini kernel
7 Micro code is __________

a) programs written in secondary storage b) programs written in main memory
c) programs written in Read only memoryd) none of the above

8. The term PDA is ______________
a) Personal Digital Assistant b) Personal Data Assistant
c) Personal Data Accountant d) Private Digital Assistant

9. Operating systems have a ______________for each device controller
a) Process b) device driver c) controller d) allocator

CIA- 1 Batch 2017 -2020

Prepared by Dr.S.Hemalatha, Asst.Prof, Dept of CS 2/7

10. refers to the ability of an operating system to support multiple threads of
execution with a single process.
 a) Multithreading b) Multiprocessing c) Multiexecuting d) Bi-threading
11. Process is........................
 a) A program in execution b) kernel c) thread d) deadlock
12. When one thread immediately terminates the target thread, it is called:

a) Asynchronous cancellation b) Systematic cancellation
 c) Sudden Termination d) Deferred cancellation
13. To access the services of operating system, the interface is provided by the:
 a) system calls b) API c) library d) assembly instructions
14. Process Management function of an operating system kernel includes.

a) Process creation and termination. b) Process scheduling and dispatching
c) Process switching d) All of these

15. The kernel is a___________________
 a) memory manager b) resource manager c) file manager d) directory manager

16. In Unix, Which system call creates the new process?
a) fork b) create c) new d) none of the mentioned

17. What is the ready state of a process?
a) when process is scheduled to run after some execution
b) when process is unable to run until some task has been completed
c) when process is using the CPU
d) none of the mentioned

18. ………….is a lightweight process where the context switching is low
 a) Process b) Thread c) Kernel d) Minikernel
19. Which process is known for initializing a microcomputer with its OS
 a) cold booting b) boot recording c) booting d) warm booting

 20. The OS that groups similar jobs is called as
 a) Network OS b) Distributed OS c) Mainframe OS d) Batch OS

SECTION- B (3 X 2= 6 Marks)

Answer ALL the Questions.

21. Define Operating System.

An operating system (OS) is the program that, after being initially loaded into the

computer by a boot program, manages all the other programs in a computer. The other programs

are called applications or application programs. The application programs make use of the

operating system by making requests for services through a defined application program

interface (API)

22. What is Batch System? Give an Example.

Batch processing is a technique in which an Operating System collects the programs and

data together in a batch before processing starts.Example: credit card companies process billing.

CIA- 1 Batch 2017 -2020

Prepared by Dr.S.Hemalatha, Asst.Prof, Dept of CS 3/7

23. What is Main Frame Operating System?

Mainframe computers are computers used primarily by large organizations for critical

applications; bulk data processing, such as census, industry and consumer statistics, enterprise

resource planning; and transaction processing.

SECTION- C (3 X 8= 24 Marks)
Answer ALL the Questions.

24. a) Explain the Types of Operating Systems.

 Batch Operating System – This type of operating system do not interact with the

computer directly.

 Time-Sharing Operating Systems – Each task has given some time to execute, so that

all the tasks work smoothly.

 Distributed Operating System – Distributed Operating System is a model where

distributed applications are running on multiple computers linked by communications

 Network Operating System – A network operating system (NOS) is a computer

operating system that is designed primarily to support workstation, personal computer,

and, in some instances, older terminal that are connected on a local area network (LAN).

 Real-Time Operating System - A real-time operating system (RTOS) is an operating

system (OS) intended to serve real-time applications that process data as it comes in,

typically without buffer delays.

24. b) Explain about Operating Systems for Personal Computers in detail.

 Personal computer (PC) operating systems support complex games, business

applications, and everything in between. The PC was, of course, envisioned as a personal

computer—an inherently single-user machine. Modern Windows, however, supports the sharing

of a PC among multiple users. Each user that is logged on using the GUI has a session created to

represent the GUI environment he will be using and to contain all the processes created to run his

applications. Windows allows multiple sessions to exist at the same time on a single machine.

Workstation operating system are for example, Windows XP, Windows Vista, Windows

7, Windows 8 and similar. Workstation operating system is primarily designed to run

applications. Those applications can be text processor, a spreadsheet application, presentation

software, video or audio editors, games, etc. Workstation operating systems can run services, but

are not really designed for it.

25. a) Write about Basic OS Functions.

 Memory Management

CIA- 1 Batch 2017 -2020

Prepared by Dr.S.Hemalatha, Asst.Prof, Dept of CS 4/7

 Processor Management
 Device Management
 File Management
 Security
 Control over system performance
 Job accounting
 Error detecting aids
 Coordination between other software and users

25. b) Explain Multiprogramming Systems and Batch Systems with example.

 To overcome the problem of underutilization of CPU and main memory, the

multiprogramming was introduced. The multiprogramming is interleaved execution of multiple

jobs by the same computer. In multiprogramming system, when one program is waiting for I/O

transfer; there is another program ready to utilize the CPU. So it is possible for several jobs to

share the time of the CPU.

A simple process of multiprogramming.

Example - A computer running excel and firefox browser simultaneously is an example of

multiprogramming.

Batch Systems

To avoid the problems of early systems the batch processing systems were introduced.
The problem of early systems was more setup time. So the problem of more set up time was
reduced by processing the jobs in batches, known as batch processing system.In this approach
similar jobs were submitted to the CPU for processing and were run together.

CIA- 1 Batch 2017 -2020

Prepared by Dr.S.Hemalatha, Asst.Prof, Dept of CS 5/7

The main function of a batch processing system is to automatically keep executing the
jobs in a batch. This is the important task of a batch processing system i.e. performed by the
'Batch Monitor' resided in the low end of main memory.

Example - Payroll System, Bank Statements, etc

26. a) Explain System Calls and System Programs

 System Calls

 The system call provides an interface to the operating system services. When a

program in user mode requires access to RAM or a hardware resource, it must ask the kernel to

provide access to that resource. This is done via something called a system call.

 System Call Parameters

1. Parameters can be passed in registers.
2. When there are more parameters than registers, parameters can be stored in a block and

the block address can be passed as a parameter to a register.
3. Parameters can also be pushed on or popped off the stack by the operating system.

CIA- 1 Batch 2017 -2020

Prepared by Dr.S.Hemalatha, Asst.Prof, Dept of CS 6/7

System call parameters

Types of System Calls

 Process control

 File Management

 Device Management

 Information Management

 Communication

System programs
System programs, also known as system utilities, provide a convenient environment for

program development and execution. Some of them are simply user interfaces to system calls.
These programs are not usually part of the OS kernel, but are part of the overall operating
system. System Programs are different categories. They are

 File Management
 Status Information
 File modification
 Programming-language support
 Program loading and execution
 Communications
 Background services

CIA- 1 Batch 2017 -2020

Prepared by Dr.S.Hemalatha, Asst.Prof, Dept of CS 7/7

 26. b) Describe Process Abstraction and Process hierarchy in detail.

The Abstraction: A Process

 The abstraction provided by the OS of a running program is something we will call a
process. As we said above, a process is simply a running program; at any instant in time,

 One obvious component of machine state that comprises a process is its memory.
 Instructions lie in memory; the data that the running program reads and writes sits in

memory as well.
 Thus the memory that the process can address (called its address space) is part of the

process.
 Also part of the process’s machine state are registers; many instructions explicitly read or

update registers and thus clearly they are important to the execution of the process.
 Note that there are some particularly special registers that form part of this machine state.
 Finally, programs often access persistent storage devices too. Such I/O information might

include a list of the files the process currently has open.

Process Hierarchies

when a process creates another process, the parent process and child process continue to be
associated in certain ways. The child process can itself create more processes, forming a process
hierarchy.

CIA - 2 BATCH 2017 -2020

Prepared by Dr.S.Hemalatha, Asst.Prof, Dept of CS 1/3

Register no___________________

 [17CSU302]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021
B.Sc Computer Science

SECOND INTERNAL EXAMINATION – AUGUST 2018
Third Semester

OPERATING SYSTEMS
Date & Session : 14.08.2018 & AN
Maximum: 50 marks Duration: 2 hours

SECTION - A (20 X 1= 20 Marks)
ANSWER ALL THE QUESTIONS

1. Process states are __________

 a) Submit, Ready, Block b) Submit, Run, Ready

 c) Ready, Run, Block d) None

 2. PCB includes __________

 a) Unique id of a process b) Current state of a process

 c) Process’s priority d) All

 3. Concurrent access to shared data may result in _______

 a) data consistency b) data insecurity c) data inconsistency d)None of these

 4. _____________can assume only the value 0 or the value 1

 a) Binary semaphores b) Counting semaphores

 c) semaphore operations d) normal semaphores

 5. Semaphores are used to solve the problem of ______

 a) race condition b) process synchronization

 c) mutual exclusion d) belady problem

 6. Which is non pre-emptive?

 a) Round robin b) FIFO c) MQS d) MQSF

 7. Each process accessing the shared data excludes all the others from doing so simultaneously

 a) Mutual exclusion b) Deadlock prevention c) Preemption d) Circular

Wait

 8. How many child processes a process can have?

 a) 0 b) 1 c) 2 d) Any number

 9. The structure of parent - child process known as________

 a) Master - Slave structure b) Parent- Children structure

 c) Hierarchical structure d) All

CIA - 2 BATCH 2017 -2020

Prepared by Dr.S.Hemalatha, Asst.Prof, Dept of CS 2/3

 10. The address of the next instruction to be executed by the current process is provided by the

 a) CPU registers b) program counter c) process stack d) pipe
 11. What is interprocess communication?
 a) communication within the process
 b) communication between two process
 c) communication between two threads of same process
 d) none of the mentioned
12. The interval from the time of submission of a process to the time of completion is the ____
 a) Queues b) Processor Sharing c) Sharing resources d) turaround

time
13. The simplest CPU scheduling algorithm is the
 a) FCS b) SJS c) FCFS d) DFG
14. _____ is a fundamental operating system function.
 a) RR b) CPU c) Scheduling d)

nonpreemptive
15. Process execution begins with a_____
 a) CPU burst b) RR scheduling c) SJF scheduling d) SRT

scheduling
 16. ______ is the set of methods for ensuring that at atleast one of the necessary condition.
 a) Deadlock prevention b) deadlock avoidance c) handling deadlock d) resource

deadlock
 17. _____ is possible to construct an algorithm that ensures that the system will never enter the

deadlock state.
 a) Deadlock prevention b) deadlock avoidance c) handling deadlock d) resource

deadlock
18. Memory is array of ___________
 a) bytes b) circuits c) ics d) ram
 19. CPU fetches instructions from ______
 a) memory b) pendrive c) dvd d) cmos
 20. ____________ is used to divide a process into fixed size chunks
 a) paging b) segmentation c) sp d) swapping

SECTION- B (3 X 2= 6 Marks)
Answer ALL the Questions.

21. Define Memory Management.

22. What are semaphores?

23. What is Deadlock?

CIA - 2 BATCH 2017 -2020

Prepared by Dr.S.Hemalatha, Asst.Prof, Dept of CS 3/3

SECTION- C (3 X 8= 24 Marks)
Answer ALL the Questions.

24. a) Describe Process Abstraction and Process hierarchy in detail. [OR]

 b) Write a program to implement Round Robin scheduling algorithm.

25. a) Describe Semaphores. [OR]

 b) Explain about non-preemptive and preemptive scheduling algorithms .Give Example

26. a) Explicate Memory Allocation Strategies with neat sketch. [OR]

 b).Discuss Paging in Operating System.

CIA- 2 Batch 2017 -

2020

Prepared by Dr.S.Hemalatha, Asst.Prof, Dept of CS 1/10

Register no___________________

 [17CSU302]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021
B.Sc Computer Science

SECOND INTERNAL EXAMINATION – AUGUST 2018
Third Semester

OPERATING SYSTEMS – ANSWER KEY
Date & Session : 14 .08.2018 & AN
Maximum: 50 marks Duration: 2 hours

SECTION - A (20 X 1= 20 Marks)
ANSWER ALL THE QUESTIONS

1. Process states are __________

 a) Submit, Ready, Block b) Submit, Run, Ready

 c) Ready, Run, Block d) None

 2. PCB includes __________

 a)Unique id of a process b) Current state of a process

 c) Process’s priority d) All

 3. Concurrent access to shared data may result in _______

 a) data consistency b) data insecurity c) data inconsistency d)None of these

 4. _____________can assume only the value 0 or the value 1

 a) Binary semaphores b) Counting semaphores

 c) semaphore operations d) normal semaphores

 5. Semaphores are used to solve the problem of ______

 a) race condition b) process synchronization

 c) mutual exclusion d) belady problem

 6. Which is non pre-emptive?

 a) Round robin b) FIFO c) MQS d) MQSF

 7. Each process accessing the shared data excludes all the others from doing so simultaneously

 a) Mutual exclusion b) Deadlock prevention c) Preemption d) Circular Wait

 8. How many child processes a process can have?

 a) 0 b) 1 c) 2 d) Any number

CIA- 2 Batch 2017 -

2020

Prepared by Dr.S.Hemalatha, Asst.Prof, Dept of CS 2/10

 9. The structure of parent - child process known as________

 a) Master - Slave structure b) Parent- Children structure

 c) Hierarchical structure d) All

 10. The address of the next instruction to be executed by the current process is provided by the ___
 a) CPU registers b) program counter c) process stack d) pipe
 11. What is interprocess communication?
 a) communication within the process
 b) communication between two process
 c) communication between two threads of same process
 d) none of the mentioned
12. The interval from the time of submission of a process to the time of completion is the ____
 a) Queues b) Processor Sharing c) Sharing resources d) turaround time
13. The simplest CPU scheduling algorithm is the
 a) FCS b) SJS c) FCFS d) DFG
14. _____ is a fundamental operating system function.
 a) RR b) CPU c) Scheduling d) nonpreemptive
15. Process execution begins with a_____
 a) CPU burst b) RR scheduling c) SJF scheduling d) SRT scheduling
 16. ______ is the set of methods for ensuring that at atleast one of the necessary condition.
 a) Deadlock prevention b) deadlock avoidance c) handling deadlock d) resource deadlock
 17. _____ is possible to construct an algorithm that ensures that the system will never enter the deadlock

state.
 a) Deadlock prevention b) deadlock avoidance c) handling deadlock d) resource deadlock
18. Memory is array of ___________
 a) bytes b) circuits c) ics d) ram
 19. CPU fetches instructions from ______
 a) memory b) pendrive c) dvd d) cmos
 20. ____________ is used to divide a process into fixed size chunks
 a) paging b) segmentation c) sp d) swapping

SECTION- B (3 X 2= 6 Marks)

Answer ALL the Questions.

21. Define Memory Management.

 Memory management is the functionality of an operating system which handles or manages

primary memory and moves processes back and forth between main memory and disk during execution

22. What are semaphores?

 A semaphore is a variable or abstract data type used to control access to a common resource by

multiple processes in a concurrent system such as a multitasking operating system.

CIA- 2 Batch 2017 -

2020

Prepared by Dr.S.Hemalatha, Asst.Prof, Dept of CS 3/10

23. What is Deadlock?
 A deadlock is a situation in which two computer programs sharing the same resource are

effectively preventing each other from accessing the resource, resulting in both programs ceasing to

function

SECTION- C (3 X 8= 24 Marks)
Answer ALL the Questions.

24. a) Describe Process Abstraction and Process hierarchy in detail.

 The abstraction provided by the OS of a running program is something we will call a process.

Therefore, A process is simply a running program; at any instant in time, we can summarize a process by

taking an inventory of the different pieces of the system it accesses or affects during the course of its

execution.

 Operating System needs some way to create and kill processes. When a process is created, it

creates another process which in turn creates some more processes and so on. Thus it forms a Process

Hierarchy or Process Tree.

Process States: Life Cycle of a Process

A process moves through a series of discrete process states:

Running state - The process is executing on a processor

Ready state - The process could execute on a processor if one were available

Blocked state - The process is waiting for some event to happen before it can proceed

The OS maintains a ready list and a blocked list to store references to processes not running

CIA- 2 Batch 2017 -

2020

Prepared by Dr.S.Hemalatha, Asst.Prof, Dept of CS 4/10

 24. b) Write a program to implement Round Robin scheduling algorithm.

 #include<stdio.h>

int main()

{
int count,j,n,time,remain ,flag=0,time_quantum;
int wait_time=0,turnaround_time=0,at[10],bt[10],rt[10];
printf("Enter total process:\t");
scanf("%d",&n);
remain=n;
for(count=0;count<n;count++)
{
printf("Enter Arrival time and Burst time for process number %d:",count+1);
scanf("%d",&at[count]);
scanf("%d",&bt[count]);
rt[count]=bt[count];
}
printf("Enter time Quantum:\t");
scanf("%d",&time_quantum);
printf("\n\n Process\tTurnaround Time\tWaiting Time\n\n");
for(time=0,count=0;remain!=0;)
{
if(rt[count]<=time_quantum && rt[count]>0)

{
time+=rt[count];
rt[count]=0;
flag=1;
}

else if(rt[count]>0)
{
rt[count]-=time_quantum;
time+=time_quantum;
}

CIA- 2 Batch 2017 -

2020

Prepared by Dr.S.Hemalatha, Asst.Prof, Dept of CS 5/10

if(rt[count]==0 && flag==1)
{
remain--; printf("P[%d]\t|\t%d\t|\t%d\n",count+1,time-at[count],time-at[count]-bt[count]);
wait_time+=time-at[count]-bt[count];
turnaround_time+=time-at[count]; flag=0;
}
if(count==n-1)
count=0;
else if(at[count+1]<=time)
count++;
else
count=0;
}
printf("\n Average Waiting Time =%f\n",wait_time*1.0/n);
printf("\n Average Turnaround Time =%f\n",turnaround_time*1.0/n); return 0;
}

25. a) Describe Semaphores.

 Semaphore is a simply a variable. This variable is used to solve critical section problem and to

achieve process synchronization in the multi processing environment. The two most common kinds of

semaphores are counting semaphores and binary semaphores. Counting semaphore can take non-negative

integer values and Binary semaphore can take the value 0 & 1. only.

 The classical definitions of wait and signal are:

1. Wait: Decrements the value of its argument S, as soon as it would become non-negative (greater than

or equal to 1).

2. Signal: Increments the value of its argument S, as there is no more process blocked on the queue.

Types of Semaphores - Semaphores are mainly of two types:

1. Binary Semaphore: It is a special form of semaphore used for implementing mutual exclusion, hence

it is often called a Mutex. A binary semaphore is initialized to 1 and only takes the values 0 and 1 during

execution of a program.

2. Counting Semaphores: These are used to implement bounded concurrency.

 P(S) or wait(S):

 If S > 0 then

 Set S to S-1

 Else

 Block the calling process (i.e. Wait on S)

 V(S) or signal(S):

CIA- 2 Batch 2017 -

2020

Prepared by Dr.S.Hemalatha, Asst.Prof, Dept of CS 6/10

 If any processes are waiting on S

 Start one of these processes

 Else

 Set S to S+1

 25. b) Explain about non-preemptive and preemptive scheduling algorithms .Give Example

The running task is interrupted for some time and resumed later when the priority task has
finished its execution. This is called preemptive scheduling.

 Eg: Round robin

In non-preemptive scheduling, a running task is executed till completion. It cannot be
interrupted

.
 Eg First In First Out

CPU-scheduling decisions may take place under the following four circumstances:

1. When a process switches from the running state to the waiting state (for example, as the result of
an I/0 request or an invocation of wait for the termination of one of the child processes)

2. When a process switches from the running state to the ready state (for example, when an interrupt
occurs)

3. When a process switches from the waiting state to the ready state (for example, at completion of
I/0)

4. When a process terminates.

Round Robin Scheduling

 Round Robin is the preemptive process scheduling algorithm.
 Each process is provided a fix time to execute, it is called a quantum.
 Once a process is executed for a given time period, it is preempted and other process executes for

a given time period.
 Context switching is used to save states of preempted processes.

Process Wait Time : Service Time - Arrival Time

P0 (0 - 0) + (12 - 3) = 9

CIA- 2 Batch 2017 -

2020

Prepared by Dr.S.Hemalatha, Asst.Prof, Dept of CS 7/10

P1 (3 - 1) = 2

P2 (6 - 2) + (14 - 9) + (20 - 17) = 12

P3 (9 - 3) + (17 - 12) = 11

 Average Wait Time: (9+2+12+11) / 4 = 8.5

First Come First Serve (FCFS)

 Jobs are executed on first come, first serve basis.
 It is a non-preemptive, pre-emptive scheduling algorithm.
 Easy to understand and implement.
 Its implementation is based on FIFO queue.

Poor in performance as average wait time is high

Process Wait Time : Service Time - Arrival Time

P0 0 - 0 = 0

P1 5 - 1 = 4

P2 8 - 2 = 6

P3 16 - 3 = 13

 Average Wait Time: (0+4+6+13) / 4 = 5.75

26. a) Explicate Memory Allocation Strategies with neat sketch.

 One of the simplest methods for allocating memory is to divide memory into several fixed-sized

partitions. Each partition may contain exactly one process.

 1. First Fit - In the first fit approach is to allocate the first free partition or hole large enough which

can accommodate the process. It finishes after finding the first suitable free partition.

Advantage - Fastest algorithm because it searches as little as possible.

CIA- 2 Batch 2017 -

2020

Prepared by Dr.S.Hemalatha, Asst.Prof, Dept of CS 8/10

Disadvantage - The remaining unused memory areas left after allocation become waste if it is too

smaller. Thus request for larger memory requirement cannot be accomplished.

 2. Best fit - The best fit deals with allocating the smallest free partition which meets the requirement

of the requesting process. This algorithm first searches the entire list of free partitions and considers the

smallest hole that is adequate. It then tries to find a hole which is close to actual process size needed.

Advantage - Memory utilization is much better than first fit as it searches the smallest free partition first

available.

Disadvantage - It is slower and may even tend to fill up memory with tiny useless holes.

 3. Worst fit - In worst fit approach is to locate largest available free portion so that the portion left

will be big enough to be useful. It is the reverse of best fit.

Advantage - Reduces the rate of production of small gaps.

Disadvantage - If a process requiring larger memory arrives at a later stage then it cannot be

accommodated as the largest hole is already split and occupied.

 4. Next fit - If we want to spread the allocations out more evenly across the memory space, we often

use a policy called next fit. This scheme is very similar to the first fit approach

CIA- 2 Batch 2017 -

2020

Prepared by Dr.S.Hemalatha, Asst.Prof, Dept of CS 9/10

26. b).Discuss Paging in Operating System.

Paging is a memory management technique in which process address space is broken into blocks
of the same size called pages (size is power of 2, between 512 bytes and 8192 bytes). The size of the
process is measured in the number of pages.

Similarly, main memory is divided into small fixed-sized blocks of (physical) memory
called frames and the size of a frame is kept the same as that of a page to have optimum utilization of
the main memory and to avoid external fragmentation.

Paging Process

Address Translation

1. Page address is called logical address and represented by page numberand the offset.

 Logical Address = Page number + page offset

CIA- 2 Batch 2017 -

2020

Prepared by Dr.S.Hemalatha, Asst.Prof, Dept of CS 10/10

2. Frame address is called physical address and represented by a frame number and the
offset.

 Physical Address = Frame number + page offset

A data structure called page map table is used to keep track of the relation between a page
of a process to a frame in physical memory.

Advantages and Disadvantages of Paging

 Paging reduces external fragmentation, but still suffer from internal fragmentation.

 Paging is simple to implement and assumed as an efficient memory management technique.

 Due to equal size of the pages and frames, swapping becomes very easy.

 Page table requires extra memory space, so may not be good for a system having small RAM.

	1.pdf (p.1-2)
	2.pdf (p.3-5)
	3.pdf (p.6-30)
	4.pdf (p.31-38)
	5.pdf (p.39-96)
	6.pdf (p.97-104)
	7.pdf (p.105-131)
	8.pdf (p.132-136)
	9.pdf (p.137-162)
	10.pdf (p.163-171)
	11.pdf (p.172-190)
	12.pdf (p.191-199)
	13.pdf (p.200-202)
	14.pdf (p.203-209)
	15.pdf (p.210-212)
	16.pdf (p.213-222)

