
SYLLABUS 2018-2020 BATCH

 Department of CS,CA,IT,KAHE 1/3

18CSP101 PYTHON PROGRAMMING 4H – 4C

Instruction Hours / week: L: 4 T: 0 P: 0 Marks: Int : 40 Ext : 60 Total: 100

SCOPE

This programming language is versatile, robust and comprehensive programming
language. It has true portability features and can be used across a multitude of
platforms.

COURSE OBJECTIVES

 To learn how to design and program Python applications.

 To learn how to use indexing and slicing to access data in Python programs.

 To define the structure and components of a Python program.

 Master the principles of object-oriented programming and the interplay of
algorithms and data structures in well-written modular code;

 Solve problems requiring the writing of well-documented programs in the
Python language, including use of the logical constructs of that language;

 Demonstrate significant experience with the Python program development
environment.

COURSE OUTCOME

After the course, students should be able to:

 Adequately use standard programming constructs: repetition, selection,
functions, composition, modules, aggregated data (arrays, lists, etc.)

 Master an understanding of loops and decision statements and functions.

 Master an understanding of Python especially the object‐oriented concepts.

 Master an understanding of the built‐in objects ,List, tuple, set of Python

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 ((DDeeeemmeedd ttoo bbee UUnniivveerrssiittyy))

 ((EEssttaabblliisshheedd UUnnddeerr SSeeccttiioonn 33 ooff UUGGCC AAcctt,, 11995566))

 CCooiimmbbaattoorree -- 664411 002211,, IInnddiiaa

 FFAACCUULLTTYY OOFF AARRTTSS,, SSCCIIEENNCCEE AANNDD HHUUMMAANNIITTIIEESS ((FFAASSHH))

 Department of CS,CA & IT

 I M.Sc CS I SEMESTER BATCH : 2018 - 2020

SYLLABUS 2018-2020 BATCH

 Department of CS,CA,IT,KAHE 2/3

UNIT I

Python Basics: Introduction-features-Syntax and Statements- Variables and
Assignments-Identifier- Operators .Conditional and looping statement. Functions:
calling function-creating functions-Function arguments.

UNIT II

Numbers: Introduction- Integer-Floating Point-Complex numbers-Operators-Other
numeric type. Strings-Strings and Operator-String only operator- Built-in-Functions-
Built-in-Methods-String Features. List : Operators-Built-in-Functions-Built-in-Methods-
Features of List

UNIT III

Tuple : Introduction- Operators and Built-in-Functions-Features. Mapping and set type
Dictionaries-Operators-Built-in and Factory Functions-Built-in- Methods. Set type:
Introduction- Operators-Built-in Function-Built-in Methods-

UNIT IV

Python Objects: Introduction-Standard Type- Built-in-type-Built-in functions. Class:
Introduction- Class and Instance- Method calls. File: Objects- Built in Functions-
Methods-Attributes- Command line Argument-File System-File Execution.

UNIT V

Exception and Tools: Why use it?- Exception roles-Exception in python-Try/finally
statement. Regular Expression: Introduction-Special Symbols and characters-Regexes
and Python- Examples of Regexes. Network Programming: Architecture- Socket-
networking programming in python.

SUGGESTED READINGS

1. Chun, J Wesley. (2015). Core Python Programming (2nd ed) New Delhi: Pearson.
2. Wesley J Chun. Core python Application Programming. (3rd ed.)
3. Budd, T. (2013). Exploring Python (1st ed.). New Delhi: TMH.
4. Python Tutorial/Documentation www.python.org 2015.
5. Allen Downey., Jeffrey Elkner, & Chris Meyers. (2012). How to think like a

computer scientist: learning with Python. Freely available online.

SYLLABUS 2018-2020 BATCH

 Department of CS,CA,IT,KAHE 3/3

WEB SITES

1. www.programiz.com
2. www.guru99.com
3. https://www.tutorialspoint.com

4. http://interactivepython.org/courselib/static/pythonds.

Lecture Plan 2018 -2020 Batch

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 1/6

STAFF NAME : A.JEEVARATHINAM

SUBJECT NAME : PYTHON PROGRAMMING SUB.CODE : 18CSP101

SEMESTER : I CLASS : I M.Sc (CS)

UNIT I

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 ((DDeeeemmeedd ttoo bbee UUnniivveerrssiittyy))

 ((EEssttaabblliisshheedd UUnnddeerr SSeeccttiioonn 33 ooff UUGGCC AAcctt,, 11995566))

 CCooiimmbbaattoorree -- 664411 002211,, IInnddiiaa

 FFAACCUULLTTYY OOFF AARRTTSS,, SSCCIIEENNCCEE AANNDD HHUUMMAANNIITTIIEESS ((FFAASSHH))

 Department of CS,CA & IT

S.NO Lecture
Duration
(Hours)

Topics To Be Covered

Support Materials/

Pg.No

 Python Basics

1 1 Introduction, features T2:1-4,W3

 Syntax and Statements

T2:17-23 2 1 Variables and Assignments

 Identifier

3 1 Operators T3:40-50

4 1 Conditional Statements
T2:113-137,W3

5 1 looping statement

6 1 Functions

T3:19-24,W3 calling function

7 1 creating functions, Function arguments

8 1 Recapitulation and Discussion of Important Questions

 Total No of Hours Planned for Unit I 8

Lecture Plan 2018 -2020 Batch

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 2/6

UNIT II

S.NO Lecture
Duration
(Hours)

Topics To Be Covered

Support
Materials/ Pg.No

 Numbers

1 1 Introduction

T1 : 153 - 161

 Integer,Floating Point

2 1 Complex numbers,Operators

3 1 Other numeric type

 Strings

4 1 Strings and Operator

T1: 199-222,W1

 String only operator

5 1 Built-in-Functions

6 1 Built-in-Methods,String Features

 List

7 1 Operators,Built-in-Functions

T1: 240 - 254,W2 8 1 Built-in-Methods

 Features of List

9 1 Recapitulation and Discussion of Important Questions

Total No of Hours Planned for Unit II

9

Lecture Plan 2018 -2020 Batch

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 3/6

UNIT III

S.NO Lecture
Duration
(Hours)

Topics To Be Covered

Support
Materials/ Pg.No

 Tuple:

1 1 Introduction, Operators

T1: 262 - 272
2 1 Built-in-Functions,Features

 Dictionaries

3 1 Operators

T1: 284- 296 4 1 Built-in and Factory Functions

5 1 Built-in- Methods

6 Set type

 1 Introduction,Operators

T1: 304 - 315,W3 7 1 Built-in Function

8 1 Built-in Methods-

9 1 Recapitulation and Discussion of Important Questions

Total No of Hours Planned for Unit III

9

Lecture Plan 2018 -2020 Batch

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 4/6

UNIT IV

S.NO Lecture
Duration
(Hours)

Topics To Be Covered

Support
Materials/ Pg.No

 Python Objects

1 1 Introduction-Standard Type

T1: 123 - 140 2 1 Built-in-type

3 1 Built-in functions

 Class

4 1 Introduction,Class and Instance
T1: 553 - 560,W2

5 1 Method calls

 File

6 1 Objects,Built in Functions

T1: 360 - 380

7 1 Methods

 Attributes

8 1 Command line Argument

9 1 File System,File Execution

10 1 Recapitulation and Discussion of Important Questions

Total No of Hours Planned for Unit IV

10

Lecture Plan 2018 -2020 Batch

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 5/6

UNIT V

S.NO Lecture
Duration
(Hours)

Topics To Be Covered

Support
Materials/ Pg.No

 Exception and Tools

1 1 Why use it?, Exception roles

T1: 397- 405 Exception in python

2 1 Try/finally statement

 Regular Expression

3 1 Introduction,Special Symbols and characters

T1: 696 - 720 4 1 Regexes and Python-

5 1 Examples of Regexes

 Network Programming

6 1 Architecture

T1: 729 - 740 7 1 Socket

8 1 Networking programming in python.

9 1 Recapitulation and Discussion of Important Questions

10 1 Discussion of previous ESE question papers

11 1 Discussion of previous ESE question papers

12 1 Discussion of previous ESE question papers

Total No of Hours Planned for Unit V

12

Total Hours 48

Lecture Plan 2018 -2020 Batch

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 6/6

S.NO TEXT BOOKS

T1 Chun, J Wesley. (2015). Core Python Programming (2nd ed) New Delhi:
Pearson.

T2 Richard L. Halterman,"FUNDAMENTS OF PYTHON PROGRAMMIN" 2013

T3 Allen Downey,"Think Python How to Think Like a Computer
Scientist",2012,Green Tea Press

S.NO WEB SITES

W1 www.programiz.com

W2 www.guru99.com

W3 www.javatpoints.com

W4 https://www.tutorialspoint.com

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 1/38

Python Basics: Introduction-features-Syntax and Statements- Variables and Assignments-

Identifier- Operators .Conditional and looping statement. Functions: calling function-creating

functions-Function arguments.

OVERVIEW OF PROGRAMMING:

PYTHON INTRODUCTION

Python is a general purpose, dynamic, high level and interpreted programming language. It

supports Object Oriented programming approach to develop applications. It is simple and easy

to learn and provides lots of high-level data structures.

Python is easy to learn yet powerful and versatile scripting language which makes it attractive

for Application Development.

Python's syntax and dynamic typing with its interpreted nature, makes it an ideal language for

scripting and rapid application development.

Python supports multiple programming pattern, including object oriented, imperative and

functional or procedural programming styles.

Python is not intended to work on special area such as web programming. That is why it is

known as multipurpose because it can be used with web, enterprise, 3D CAD etc.

We don't need to use data types to declare variable because it is dynamically typed so we can

write a=10 to assign an integer value in an integer variable.

Python makes the development and debugging fast because there is no compilation step

included in python development and edit-test-debug cycle is very fast.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 2/38

Python Features

Python provides lots of features that are listed below.

1) Easy to Learn and Use

Python is easy to learn and use. It is developer-friendly and high level programming language.

2) Expressive Language

Python language is more expressive means that it is more understandable and readable.

3) Interpreted Language

Python is an interpreted language i.e. interpreter executes the code line by line at a time. This

makes debugging easy and thus suitable for beginners.

4) Cross-platform Language

Python can run equally on different platforms such as Windows, Linux, Unix and Macintosh etc.

So, we can say that Python is a portable language.

5) Free and Open Source

Python language is freely available at offical web address.The source-code is also available.

Therefore it is open source.

6) Object-Oriented Language

Python supports object oriented language and concepts of classes and objects come into

existence.

https://www.python.org/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 3/38

7) Extensible

It implies that other languages such as C/C++ can be used to compile the code and thus it can

be used further in our python code.

8) Large Standard Library

Python has a large and broad library and prvides rich set of module and functions for rapid

application development.

9) GUI Programming Support

Graphical user interfaces can be developed using Python.

10) Integrated

It can be easily integrated with languages like C, C++, JAVA etc.

Python History

o Python laid its foundation in the late 1980s.

o The implementation of Python was started in the December 1989 by Guido Van

Rossum at CWI in Netherland.

o In February 1991, van Rossum published the code (labeled version 0.9.0) to alt.sources.

o In 1994, Python 1.0 was released with new features like: lambda, map, filter, and

reduce.

o Python 2.0 added new features like: list comprehensions, garbage collection system.

o On December 3, 2008, Python 3.0 (also called "Py3K") was released. It was designed to

rectify fundamental flaw of the language.

o ABC programming language is said to be the predecessor of Python language which was

capable of Exception Handling and interfacing with Amoeba Operating System.

o Python is influenced by following programming languages:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 4/38

o ABC language.

o Modula-3

Python Version

Python programming language is being updated regularly with new features and supports.

There are lots of updations in python versions, started from 1994 to current release.

A list of python versions with its released date is given below.

Python Version Released Date

Python 1.0 January 1994

Python 1.5 December 31, 1997

Python 1.6 September 5, 2000

Python 2.0 October 16, 2000

Python 2.1 April 17, 2001

Python 2.2 December 21, 2001

Python 2.3 July 29, 2003

Python 2.4 November 30, 2004

Python 2.5 September 19, 2006

Python 2.6 October 1, 2008

Python 2.7 July 3, 2010

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 5/38

Python 3.0 December 3, 2008

Python 3.1 June 27, 2009

Python 3.2 February 20, 2011

Python 3.3 September 29, 2012

Python 3.4 March 16, 2014

Python 3.5 September 13, 2015

Python 3.6 December 23, 2016

Python 3.6.4 December 19, 2017

Python Applications Area

Python is known for its general purpose nature that makes it applicable in almost each domain

of software development. Python as a whole can be used in any sphere of development.

Here, we are specifing applications areas where python can be applied.

1) Web Applications

We can use Python to develop web applications. It provides libraries to handle internet

protocols such as HTML and XML, JSON, Email processing, request, beautifulSoup, Feedparser

etc. It also provides Frameworks such as Django, Pyramid, Flask etc to design and delelop web

based applications. Some important developments are: PythonWikiEngines, Pocoo,

PythonBlogSoftware etc.

2) Desktop GUI Applications

Python provides Tk GUI library to develop user interface in python based application. Some

other useful toolkits wxWidgets, Kivy, pyqt that are useable on several platforms. The Kivy is

popular for writing multitouch applications.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 6/38

3) Software Development

Python is helpful for software development process. It works as a support language and can be

used for build control and management, testing etc.

4) Scientific and Numeric

Python is popular and widely used in scientific and numeric computing. Some useful library and

package are SciPy, Pandas, IPython etc. SciPy is group of packages of engineering, science and

mathematics.

5) Business Applications

Python is used to build Bussiness applications like ERP and e-commerce systems. Tryton is a

high level application platform.

6) Console Based Application

We can use Python to develop console based applications. For example: IPython.

7) Audio or Video based Applications

Python is awesome to perform multiple tasks and can be used to develop multimedia

applications. Some of real applications are: TimPlayer, cplay etc.

8) 3D CAD Applications

To create CAD application Fandango is a real application which provides full features of CAD.

9) Enterprise Applications

Python can be used to create applications which can be used within an Enterprise or an

Organization. Some real time applications are: OpenErp, Tryton, Picalo etc.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 7/38

10) Applications for Images

Using Python several application can be developed for image. Applications developed are:

VPython, Gogh, imgSeek etc.

There are several such applications which can be developed using Python

Python Example

Python is easy to learn and code and can be execute with python interpreter. We can also use

Python interactive shell to test python code immediately.

A simple hello world example is given below. Write below code in a file and save

with .py extension. Python source file has.py extension.

hello.py

print("hello world by python!")

Execute this example by using following command.

Python3 hello.py

After executing, it produces the following output to the screen.

Output

hello world by python!

Python Example using Interactive Shell

Python interactive shell is used to test the code immediately and does not require to write and

save code in file.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 8/38

Python code is simple and easy to run. Here is a simple Python code that will print "Welcome to

Python".

A simple python example is given below.

>>> a="Welcome To Python"

>>> print a

Welcome To Python

>>>

Python 3.4 Example

In python 3.4 version, you need to add parenthesis () in a string code to print it.

>>> a=("Welcome To Python Example")

>>> print a

Welcome To Python Example

>>>

Python Variables

Variable is a name which is used to refer memory location. Variable also known as identifier

and used to hold value.

In Python, we don't need to specify the type of variable because Python is a type infer language

and smart enough to get variable type.

Variable names can be a group of both letters and digits, but they have to begin with a letter or

an underscore.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 9/38

It is recomended to use lowercase letters for variable name. Rahul and rahul both are two

different variables.

 Assigning value to variable:

Value should be given on the right side of assignment operator(=) and variable on left

side.

>>>counter =45

print(counter)

Assigning a single value to several variables simultaneously:

>>> a=b=c=100

Assigning multiple values to multiple variables:

>>> a,b,c=2,4,"ram"

Python program to swap two variables

Variable swapping:

In computer programming, swapping two variables specifies the mutual exchange of values of

the variables. It is generally done by using a temporary variable.

For example:

data_item x := 1

data_item y := 0

swap (x, y)

After swapping:

data_item x := 0

data_item y := 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 10/38

See this example:

Python swap program

x = input('Enter value of x: ')

y = input('Enter value of y: ')

 # create a temporary variable and swap the values

temp = x

x = y

y = temp

print('The value of x after swapping: {}'.format(x))

print('The value of y after swapping: {}'.format(y))

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 11/38

VALUES AND DATA TYPES

Value:

Value can be any letter ,number or string.

Eg, Values are 2, 42.0, and 'Hello, World!'. (These values belong to different

datatypes.)

Data type:

Every value in Python has a data type.

It is a set of values, and the allowable operations on those values.

Python has four standard data types:

Python Keywords

Python Keywords are special reserved words which convey a special meaning to the

compiler/interpreter. Each keyword have a special meaning and a specific operation. These

keywords can't be used as variable. Following is the List of Python Keywords.

True False None and as

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 12/38

asset def class continue break

else finally elif del except

global for if from import

raise try or return pass

nonlocal in not is lambda

Identifiers

Identifiers are the names given to the fundamental building blocks in a program.

These can be variables ,class ,object ,functions , lists , dictionaries etc.

There are certain rules defined for naming i.e., Identifiers.

I. An identifier is a long sequence of characters and numbers.

II.No special character except underscore (_) can be used as an identifier.

III.Keyword should not be used as an identifier name.

IV.Python is case sensitive. So using case is significant.

V.First character of an identifier can be character, underscore (_) but not digit.

Python Operators

Operators are particular symbols that are used to perform operations on operands. It returns

result that can be used in application.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 13/38

Example 4 + 5 = 9

Here 4 and 5 are Operands and (+) , (=) signs are the operators. This expression produces the

output 9.

Types of Operators

Python supports the following operators

1. Arithmetic Operators.

2. Relational Operators.

3. Assignment Operators.

4. Logical Operators.

5. Membership Operators.

6. Identity Operators.

7. Bitwise Operators.

Arithmetic Operators

The following table contains the arithmetic operators that are used to perform arithmetic

operations.

Operators Description

// Perform Floor division(gives integer value after division)

+ To perform addition

- To perform subtraction

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 14/38

* To perform multiplication

/ To perform division

% To return remainder after division(Modulus)

** Perform exponent(raise to power)

Example

>>> 10+20

30

>>> 20-10

10

>>> 10*2

20

>>> 10/2

5

>>> 10%3

1

>>> 2**3

8

>>> 10//3

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 15/38

3

>>>

Relational Operators

The following table contains the relational operators that are used to check relations.

Operators Description

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

<> Not equal to(similar to !=)

eg:

>>> 10<20

True

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 16/38

>>> 10>20

False

>>> 10<=10

True

>>> 20>=15

True

>>> 5==6

False

>>> 5!=6

True

>>> 10<>2

True

>>>

Assignment Operators

The following table contains the assignment operators that are used to assign values to the

variables.

Operators Description

= Assignment

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 17/38

/= Divide and Assign

+= Add and assign

-= Subtract and Assign

*= Multiply and assign

%= Modulus and assign

**= Exponent and assign

//= Floor division and assign

Example

>>> c=10

>>> c

10

>>> c+=5

>>> c

15

>>> c-=5

>>> c

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 18/38

10

>>> c*=2

>>> c

20

>>> c/=2

>>> c

10

>>> c%=3

>>> c

1

>>> c=5

>>> c**=2

>>> c

25

>>> c//=2

>>> c

12

>>>

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 19/38

Logical Operators

The following table contains the arithmetic operators that are used to perform arithmetic

operations.

Operators Description

and Logical AND(When both conditions are true output will be true)

or Logical OR (If any one condition is true output will be true)

not Logical NOT(Compliment the condition i.e., reverse)

Example

a=5>4 and 3>2

print a

b=5>4 or 3<2

print b

c=not(5>4)

print c

Output:

>>>

True

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 20/38

True

False

>>>

Conditional and looping statement

Control statements

Python If Statements

The Python if statement is a statement which is used to test specified condition. We can use if

statement to perform conditional operations in our Python application. The if statement

executes only when specified condition is true. We can pass any valid expression into the if

parentheses.

There are various types of if statements in Python.

o if statement

o if-else statement

o nested if statement

Python If Statement Syntax

if(condition):

 statements

Python If Statement Example

a=10

if a==10:

 print "Welcome to javatpoint"

Output: Hello User

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 21/38

 Python If Else Statements

The If statement is used to test specified condition and if the condition is true, if block executes,

otherwise else block executes. The else statement executes when the if statement is false.

Python If Else Syntax

if(condition): False

 statements

 else: True

 statements

 Example-

year=2000

if year%4==0:

 print "Year is Leap"

else:

 print "Year is not Leap"

Output: Year is Leap

Python Nested If Else Statement

In python, we can use nested If Else to check multiple conditions. Python provides elif keyword

to make nested If statement. This statement is like executing a if statement inside a else

statement.

Python Nested If Else Syntax

If statement:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 22/38

 Body

elif statement:

 Body

else:

 Body

Python Nested If Else Example

a=10

if a>=20:

 print "Condition is True"

else:

 if a>=15:

 print "Checking second value"

 else:

 print "All Conditions are false"

Output: All Conditions are false.

EXAMPLE:

Python Program to get a number num and check whether num is odd or even?

 num1=int(input("Enter your number:"))

if(num1%2==0):

 print("{} is even".format(num1))

else:

 print("{} is odd".format(num1))

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 23/38

Looping

For Loop

Python for loop is used to iterate the elements of a collection in the order that they appear.

This collection can be a sequence(list or string).

Python For Loop Syntax

for <variable> in <sequence>:

Python For Loop Simple Example

num=2

for a in range (1,6):

 print num * a

Output:

2
4
6
8
10

Python Example to Find Sum of 10 Numbers

sum=0

for n in range(1,11):

 sum+=n

print sum

Output: 55

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 24/38

Python Nested For Loops

Loops defined within another Loop are called Nested Loops. Nested loops are used to iterate

matrix elements or to perform complex computation. When an outer loop contains an inner

loop in its body it is called Nested Looping.

Python Nested For Loop Syntax

for <expression>:

 for <expression>:

 Body

Python Nested For Loop Example

for i in range(1,6):

 for j in range (1,i+1):

 print i,

 print

Output:

>>>

1

2 2

3 3 3

4 4 4 4

5 5 5 5 5

>>>

Explanation:

For each value of Outer loop the whole inner loop is executed.

For each value of inner loop the Body is executed each time.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 25/38

Python Nested Loop Example 2

for i in range (1,6):

 for j in range (5,i-1,-1):

 print "*",

 print

Output:

>>>

* * * * *

* * * *

* * *

* *

*

 Python While Loop

In Python, while loop is used to execute number of statements or body till the specified

condition is true. Once the condition is false, the control will come out of the loop.

Python While Loop Syntax

while <expression>:

 Body

Here, loop Body will execute till the expression passed is true. The Body may be a single

statement or multiple statement.

Python While Loop Example 1

a=10

while a>0:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 26/38

 print "Value of a is",a

 a=a-2

print "Loop is Completed"

Output:

>>>

Value of a is 10

Value of a is 8

Value of a is 6

Value of a is 4

Value of a is 2

Loop is Completed

>>>

Python While Loop Example 2

n=153

sum=0

while n>0:

 r=n%10

 sum+=r

 n=n/10

print sum

Output:

>>>

9 >>>

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 27/38

Do While Loop

Python doesn't have do-while loop. But we can create a program like this.

The do while loop is used to check condition after executing the statement. It is like while loop

but it is executed at least once.

General Do While Loop Syntax

do {

 //statement

} while (condition);

Python Do While Loop Example

i = 1

while True:

 print(i)

 i = i + 1

 if(i > 5):

 break

Output:

1

2

3

4

5

Python Break

Break statement is a jump statement which is used to transfer execution control. It breaks the

current execution and in case of inner loop, inner loop terminates immediately.

When break statement is applied the control points to the line following the body of the loop,

hence applying break statement makes the loop to terminate and controls goes to next line

pointing after loop body.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 28/38

Python Break Example 1

for i in [1,2,3,4,5]:

 if i==4:

 print "Element found"

 break

 print i,

Output:

>>>

1 2 3 Element found

>>>

Python Break Example 2

for letter in 'Python3':

 if letter == 'o':

 break

 print (letter)

Output:

P

y

t

h

Python Continue Statement

Python Continue Statement is a jump statement which is used to skip execution of current

iteration. After skipping, loop continues with next iteration. We can use continue statement

with for as well as while loop in Python.

Python Continue Statement Example

a=0

while a<=5:

 a=a+1

 if a%2==0:

 continue

 print a

print "End of Loop"

Output:

>>>

1

3

5

End of Loop

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 29/38

>>>

Python Pass

In Python, pass keyword is used to execute nothing; it means, when we don't want to execute

code, the pass can be used to execute empty. It is same as the name refers to. It just makes the

control to pass by without executing any code. If we want to bypass any code pass statement

can be used.

Python Pass Syntax

pass

Python Pass Example

for i in [1,2,3,4,5]:

 if i==3:

 pass

 print "Pass when value is",i

 print i,

Output:

>>>

1 2 Pass when value is 3

3 4 5

>>>

Python Functions

A Function is a self block of code which is used to organize the functional code. Function can be
called as a section of a program that is written once and can be executed whenever required in
the program, thus making code reusability. Function is a subprogram that works on data and
produces some output.

Types of Functions:

There are two types of Functions.

a) Built-in Functions: Functions that are predefined and organized into a library. We have used
many predefined functions in Python.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 30/38

b) User- Defined: Functions that are created by the programmer to meet the requirements.

Defining a Function

A Function defined in Python should follow the following format:

1) Keyword def is used to start and declare a function. Def specifies the starting of function
block.

2) def is followed by function-name followed by parenthesis.

3) Parameters are passed inside the parenthesis. At the end a colon is marked.

Python Function Syntax

def <function_name>(parameters):

</function_name>

Example def sum(a,b):

4) Python code requires indentation (space) of code to keep it associate to the declared block.

5) The first statement of the function is optional. It is ?Documentation string? of function.

6) Following is the statement to be executed.

Syntax:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 31/38

Invoking a Python Function

To execute a function it needs to be called. This is called function calling.

Function Definition provides the information about function name, parameters and the
definition what operation is to be performed. In order to execute the function definition, we
need to call the function.

Python Function Syntax

<function_name>(parameters)

</function_name>

Python Function Example

sum(a,b)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 32/38

Here, sum is the function and a, b are the parameters passed to the function definition.

Let?s have a look over an example.

Python Function Example 2

#Providing Function Definition

def sum(x,y):

 "Going to add x and y"

 s=x+y

 print "Sum of two numbers is"

 print s

 #Calling the sum Function

 sum(10,20)

 sum(20,30)

Output:

>>>

Sum of two numbers is

30

Sum of two numbers is

50

>>>

Python Function return Statement

return[expression] is used to return response to the caller function. We can use expression with
the return keyword. send back the control to the caller with the expression. In case no
expression is given after return it will return None. In other words return statement is used to
exit the function definition.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 33/38

Python Function return Example

def sum(a,b):

 "Adding the two values"

 print "Printing within Function"

 print a+b

 return a+b

def msg():

 print "Hello"

 return

total=sum(10,20)

print ?Printing Outside: ?,total

msg()

print "Rest of code"

Output:

>>>

Printing within Function

30

Printing outside: 30

Hello

Rest of code

>>>

 Python Function Argument and Parameter

There can be two types of data passed in the function.

1) The First type of data is the data passed in the function call. This data is called ?arguments?.

2) The second type of data is the data received in the function definition. This data is called
?parameters?.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 34/38

Arguments can be literals, variables and expressions. Parameters must be variable to hold
incoming values. Alternatively, arguments can be called as actual parameters or actual
arguments and parameters can be called as formal parameters or formal arguments.

Python Function Example

def addition(x,y):

 print x+y

x=15

addition(x ,10)

addition(x,x)

y=20

addition(x,y)

Output:

>>>

25

30

35

>>>

Passing Parameters

Apart from matching the parameters, there are other ways of matching the parameters.

Python supports following types of formal argument:

1) Positional argument (Required argument).

2) Default argument.

3) Keyword argument (Named argument)

Positional/Required Arguments:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 35/38

When the function call statement must match the number and order of arguments as defined
in the function definition. It is Positional Argument matching.

Python Function Positional Argument Example

#Function definition of sum

def sum(a,b):

 "Function having two parameters"

 c=a+b

 print c

sum(10,20)

sum(20)

Output:

>>>

30

Traceback (most recent call last):

 File "C:/Python27/su.py", line 8, in <module>

 sum(20)

TypeError: sum() takes exactly 2 arguments (1 given)

>>>

</module>

 Explanation:

1) In the first case, when sum() function is called passing two values i.e., 10 and 20 it matches
with function definition parameter and hence 10 and 20 is assigned to a and b respectively. The
sum is calculated and printed.

2) In the second case, when sum() function is called passing a single value i.e., 20 , it is passed
to function definition. Function definition accepts two parameters whereas only one value is
being passed, hence it will show an error.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 36/38

Python Function Default Arguments

Default Argument is the argument which provides the default values to the parameters passed
in the function definition, in case value is not provided in the function call default value is used.

Python Function Default Argument Example

#Function Definition

def msg(Id,Name,Age=21):

 "Printing the passed value"

 print Id

 print Name

 print Age

 return

#Function call

msg(Id=100,Name='Ravi',Age=20)

msg(Id=101,Name='Ratan')

Output:

>>>

100

Ravi

20

101

Ratan

21

>>>

Explanation:

1) In first case, when msg() function is called passing three different values i.e., 100 , Ravi and
20, these values will be assigned to respective parameters and thus respective values will be
printed.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 37/38

2) In second case, when msg() function is called passing two values i.e., 101 and Ratan, these
values will be assigned to Id and Name respectively. No value is assigned for third argument via
function call and hence it will retain its default value i.e, 21.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT I

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 38/38

Possible Questions:

2 Mark Questions

1. What is Python?

2. Define Namespace & mention its type.

3. How does a computer run a python program?

4. List the features of python.

5. What is necessary to execute a Python program?

6. What is a statement in a Python program?

7. What is interpreter?

8. Select and assign how an input operation was done in python.

9. Differentiate for loop and while loop.

10. Write the syntax for while loop with flowchart.

6 Mark Questions

1. Briefly discuss about the fundamental of Python.

2. Write a Python program to multiply two matrices.

3. Discuss the need and importance of function in python.

4. Explain conditional statements in detail with example

5. What are the different loop control statements available in python? Explain with

suitable examples.

6. Briefly discuss about the types of decision making statement

7. Write a Python program using function to check given number is odd or even.

S.NO QUESTIONS OPT 1 OPT 2 OPT 3 OPT 4 ANSWER

1 Python is said to be easily readable language writable language bug-able language script-able language readable language

2
Extensible programming language that can be
extended through classes and programming interfaces
is

Python Perl PHP Ada Python

3 Python was released publicly in 1941 1971 1981 1991 1991

4

What is the output when following code is executed ?
print r"\nhello"
The output is

a new line and
hello

\nhello
the letter r and

then hello
Error \nhello

5

What is the output of the following code ?
example = "snow world"
example[3] = 's'
print example

snow snow world Error snos world Error

6 Is Python case sensitive when dealing with identifiers? yes no
machine

dependent
none yes

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

UNIT I

KARPAGAM ACADEMY OF HIGHER EDUCATION
Department of Computer Science

I M.Sc(CS) (BATCH 2018 - 2021) I SEMESTER

PYTHON PROGRAMMING (18CSP101)

7 What is the maximum possible length of an identifier? 31 characters 63 characters 79 characters none of the mentioned
none of the
mentioned

8 Which of the following is not a keyword? eval assert nonlocal pass eval

9 All keywords in Python are in lower case UPPER CASE Capitalized None of the mentioned
None of the
mentioned

10
Which of the following is true for variable names in
Python?

unlimited length

all private
members must

have leading and
trailing

underscore and
ampersand are

the only two
special characters

none of the mentioned unlimited length

11 Which of the following is an invalid statement? abc = 1,000,000
a b c = 1000 2000

3000
a,b,c = 1000,
2000, 3000

a_b_c = 1,000,000
a b c = 1000 2000

3000

12 Which of the following cannot be a variable? __init__ in it on in

13 What is the output of print 0.1 + 0.2 == 0.3? TRUE FALSE
machine

dependent
Error FALSE

14 Which of the following is not a complex number? k = 2 + 3j k = complex(2, 3) k = 2 + 3l k = 2 + 3J k = 2 + 3l

15
Which of the following data types is not supported in
python?

number list string slice slice

16 Which of these is not a core data type? Lists Dictionary Tuples Class Class

17
What data type is the object below ?
L = [1, 23, ‘hello’, 1]

Lists Dictionary Tuples Array Lists

18
Which of the following function convert a string to a
float in python?

int(x [,base]) long(x [,base]) float(x) str(x) float(x)

19 The sequence \n does what? Makes a link
Prints a backslash

followed by a n
Adds 5 spaces Starts a new line Starts a new line

20 Python is a ________ programming language higher-level lowe level mid level first level higher-level

21
An ________translates a source file into machine
language as the program executes

complier interpreter editor none interpreter

22
A ________ translates a source file into an executable
file

compiler interpreter editor none compiler

23
Messages can be printed in the output window by
using Python’s _______function. scan edit print none print

24 Python is a _______ language case insensitive case sensitive character none case sensitive

25
The _______ function enables a Python program to
display textual information to the user

scan edit print input print

26
Programs may use
the _______ function to obtain information from the
user.

scan edit print input input

27
Python does not permit ______ to be used when
expressing numeric literals

commas quote questionmark arrow commas

28
The statement a = b copies the value stored in

variable a into
variable b

variable b into
variable a

error none
variable b into

variable a

29
The ______ function accepts an optional prompt string.

scan edit print input input

30
The _______ function can be used to convert a string
representing a numeric expression into its evaluated
numeric value.

scan eval print input eval

31 Python was created by__ James Gosling Bill Gates Steve Jobs Guido van Rossum Guido van Rossum

32
To start Python from the command prompt, use the
command ________.

execute python run proram pyhton go pyhton pyhton

33
To run python script file named t.py, use the command
________.

 execute python
t.py

run python t.py python t.py go python t.py python t.py

34 A Python line comment begins with ________. // /* # @ #

35 A Python paragraph comment uses the style ________. // comments // /* comments */ '' comments ''' /# comments #/ '' comments '''

36
In Python, a syntax error is detected by the ________
at _________.

compiler/at
compile time

interpreter/at
runtime

compiler/at
runtime

interpreter/at compile
time

interpreter/at
runtime

37
_______ is the code in natural language mixed with
some program code.

Python program
A Python
statement

Pseudocode A flowchart diagram Pseudocode

38
2 ** 3 evaluates to __________.

9 8 9.1 8.1 8

39
The following is NOT an example of a data type.

int public double void public

40 The _____ statement terminates the loop containing it. break continue pass stop break

41
The________ statement is used to skip the rest of the
code inside a loop for the current iteration only

break continue pass stop continue

42
Which of the following keyword is a valid placeholder
for body of the function ?

break continue pass body pass

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 1/38

Numbers: Introduction- Integer-Floating Point-Complex numbers-Operators-Other numeric

type. Strings-Strings and Operator-String only operator- Built-in-Functions-Built-in-Methods-

String Features. List : Operators-Built-in-Functions-Built-in-Methods-Features of List

Numbers:

Number data types store numeric values. They are immutable data types, means that changing

the value of a number data type results in a newly allocated object.

Number objects are created when you assign a value to them.

For example

var1 = 1
var2 = 10

You can also delete the reference to a number object by using the del statement. The syntax of

the del statement is −

del var1[,var2[,var3[....,varN]]]]

You can delete a single object or multiple objects by using the del statement. For example −

del var
del var_a, var_b

Python supports four different numerical types −

 int (signed integers) − They are often called just integers or ints, are positive or

negative whole numbers with no decimal point.

 long (long integers) − Also called longs, they are integers of unlimited size, written like

integers and followed by an uppercase or lowercase L.

 float (floating point real values) − Also called floats, they represent real numbers and

are written with a decimal point dividing the integer and fractional parts. Floats may

also be in scientific notation, with E or e indicating the power of 10 (2.5e2 = 2.5 x 102 =

250).

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 2/38

 complex (complex numbers) − are of the form a + bJ, where a and b are floats and J (or

j) represents the square root of -1 (which is an imaginary number). The real part of the

number is a, and the imaginary part is b. Complex numbers are not used much in

Python programming.

Examples

Here are some examples of numbers

int long float complex

10 51924361L 0.0 3.14j

100 -0x19323L 15.20 45.j

-786 0122L -21.9 9.322e-36j

080 0xDEFABCECBDAECBFBAEL 32.3+e18 .876j

-0490 535633629843L -90. -.6545+0J

-0x260 -052318172735L -32.54e100 3e+26J

0x69 -4721885298529L 70.2-E12 4.53e-7j

 Python allows you to use a lowercase L with long, but it is recommended that you use

only an uppercase L to avoid confusion with the number 1. Python displays long

integers with an uppercase L.

 A complex number consists of an ordered pair of real floating point numbers denoted

by a + bj, where a is the real part and b is the imaginary part of the complex number.

Number Type Conversion

Python converts numbers internally in an expression containing mixed types to a common

type for evaluation. But sometimes, you need to coerce a number explicitly from one type to

another to satisfy the requirements of an operator or function parameter.

 Type int(x) to convert x to a plain integer.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 3/38

 Type long(x) to convert x to a long integer.

 Type float(x) to convert x to a floating-point number.

 Type complex(x) to convert x to a complex number with real part x and imaginary part

zero.

 Type complex(x, y) to convert x and y to a complex number with real part x and

imaginary part y. x and y are numeric expressions

Add Two Numbers Provided by The User

Store input numbers

num1 = input('Enter first number: ')

num2 = input('Enter second number: ')

Add two numbers

sum = float(num1) + float(num2)

Display the sum

print('The sum of {0} and {1} is {2}'.format(num1, num2, sum))

Output

Enter first number: 1.5
Enter second number: 6.3
The sum of 1.5 and 6.3 is 7.8

Complex Number

A long time ago, mathematicians were absorbed by the following equation:

x2= -1

The reason for this is that any real number (positive or negative) multiplied by itself results in a
positive number. How can you multiply any number with itself to get a negative number? No
such real number exists. So in the eighteenth century, mathematicians invented something
called an imaginary number I (or) j.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 4/38

Python complex() Function

Definition and Usage

The complex() function returns a complex number by specifying a real number and an

imaginary number.

Syntax

complex(real, imaginary)

Parameter Values

Parameter Description

real Required. A number representing the real part of the complex number.
Default 0. The real number can also be a String, like this '3+5j', when this
is the case, the second parameter should be omitted.

imaginary Optional. A number representing the imaginary part of the complex
number. Default 0.

Example

Convert the number 3 and imaginary number 5 into a complex number:

x = complex(3, 5)

More Examples

x = complex('3+5j')

print(x)

OUTPUT: (3+5j)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 5/38

PYTHON STRINGS

Python string is a built-in type text sequence. It is used to handle textual data in python. Python

Strings are immutable sequences of Unicode points. Creating Strings are simplest and easy to

use in Python.

We can simply create Python String by enclosing a text in single as well as double quotes.

Python treat both single and double quotes statements same.

Accessing Python Strings

o In Python, Strings are stored as individual characters in a contiguous memory location.

o The benefit of using String is that it can be accessed from both the directions (forward and

backward).

o Both forward as well as backward indexing are provided using Strings in Python.

o Forward indexing starts with 0,1,2,3,....

o Backward indexing starts with -1,-2,-3,-4,....

Example

str[0]='P'=str[-6] , str[1]='Y' = str[-5] , str[2] = 'T' = str[-4] , str[3] = 'H' = str[-3]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 6/38

str[4] = 'O' = str[-2] , str[5] = 'N' = str[-1].

Python String Example

Here, we are creating a simple program to retrieve String in reverse as well as normal form.

name="Rajat"

length=len(name)

i=0

for n in range(-1,(-length-1),-1):

 print name[i],"\t",name[n]

 i+=1

Output:

>>>

R t

a a

j j

a a

t R

>>>

Python Strings Operators

To perform operation on string, Python provides basically 3 types of Operators that are given

below.

1. Basic Operators.

2. Membership Operators.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 7/38

3. Relational Operators.

Python String Basic Operators

There are two types of basic operators in String "+" and "*".

String Concatenation Operator (+)

The concatenation operator (+) concatenates two Strings and creates a new String.

Python String Concatenation Example

>>> "ratan" + "jaiswal"

Output:

'ratanjaiswal'

>>>

Expression Output

'10' + '20' '1020'

"s" + "007" 's007'

'abcd123' + 'xyz4' 'abcd123xyz4'

Eg:

'abc' + 3

>>>

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 8/38

output:

Traceback (most recent call last):

 File "", line 1, in

 'abc' + 3

TypeError: cannot concatenate 'str' and 'int' objects

>>>

Python String Replication Operator (*)

Replication operator uses two parameters for operation, One is the integer value and the other

one is the String argument.

The Replication operator is used to repeat a string number of times. The string will be repeated

the number of times which is given by the integer value.

Python String Replication Example

>>> 5*"Vimal"

Output:

'VimalVimalVimalVimalVimal'

Expression Output

"soono"*2 'soonosoono'

3*'1' '111'

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 9/38

'$'*5 '$$$$$'

Python String Membership Operators

Membership Operators are already discussed in the Operators section. Let see with context of

String.

There are two types of Membership operators

1) in:"in" operator returns true if a character or the entire substring is present in the specified

string, otherwise false.

2) not in:"not in" operator returns true if a character or entire substring does not exist in the

specified string, otherwise false.

Python String membership operator Example

>>> str1="javatpoint"

>>> str2='sssit'

>>> str3="seomount"

>>> str4='java'

>>> st5="it"

>>> str6="seo"

>>> str4 in str1

True

>>> str5 in str2

>>> st5 in str2

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 10/38

True

>>> str6 in str3

True

>>> str4 not in str1

False

>>> str1 not in str4

True

Python Relational Operators

All the comparison (relational) operators i.e., (<,><=,>=,==,!=,<>) are also applicable for strings.

The Strings are compared based on the ASCII value or Unicode(i.e., dictionary Order).

Python Relational Operators Example

>>> "RAJAT"=="RAJAT"

True

>>> "afsha">='Afsha'

True

>>> "Z"<>"z"

True

Explanation:

The ASCII value of a is 97, b is 98, c is 99 and so on. The ASCII value of A is 65,B is 66,C is 67 and

so on. The comparison between strings are done on the basis on ASCII value.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 11/38

Python String Slice Notation

Python String slice can be defined as a substring which is the part of the string. Therefore

further substring can be obtained from a string.

There can be many forms to slice a string, as string can be accessed or indexed from both the

direction and hence string can also be sliced from both the directions.

Python String Slice Syntax

<string_name>[startIndex:endIndex],

<string_name>[:endIndex],

<string_name>[startIndex:]

Python String Slice Example 1

>>> str="Nikhil"

>>> str[0:6]

'Nikhil'

>>> str[0:3]

'Nik'

>>> str[2:5]

'khi'

>>> str[:6]

'Nikhil'

>>> str[3:]

'hil'

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 12/38

String slice can also be used with Concatenation operator to get whole string.

Python String Slice Example 2

>>> str="Mahesh"

>>> str[:6]+str[6:]

'Mahesh'

//here 6 is the length of the string.

Python String Functions and Methods

Python provides various predefined or built-in string functions. They are as follows:

capitalize() It capitalizes the first character of the String.

count(string,begin,end) It Counts number of times substring occurs in a String between

begin and end index.

endswith(suffix

,begin=0,end=n)

It returns a Boolean value if the string terminates with given suffix

between begin and end.

find(substring ,beginIndex,

endIndex)

It returns the index value of the string where substring is found

between begin index and end index.

index(subsring, beginIndex,

endIndex)

It throws an exception if string is not found and works same as

find() method.

isalnum() It returns True if characters in the string are alphanumeric i.e.,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 13/38

alphabets or numbers and there is at least 1 character. Otherwise

it returns False.

isalpha() It returns True when all the characters are alphabets and there is

at least one character, otherwise False.

isdigit() It returns True if all the characters are digit and there is at least

one character, otherwise False.

islower() It returns True if the characters of a string are in lower case,

otherwise False.

isupper() It returns False if characters of a string are in Upper case,

otherwise False.

isspace() It returns True if the characters of a string are whitespace,

otherwise false.

len(string) It returns the length of a string.

lower() It converts all the characters of a string to Lower case.

upper() It converts all the characters of a string to Upper Case.

startswith(str

,begin=0,end=n)

It returns a Boolean value if the string starts with given str

between begin and end.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 14/38

swapcase() It inverts case of all characters in a string.

lstrip() It removes all leading whitespace of a string and can also be used

to remove particular character from leading.

rstrip() It removes all trailing whitespace of a string and can also be used

to remove particular character from trailing.

Python String capitalize() Method Example

This method capitalizes the first character of the String.

>>> 'abc'.capitalize()

Output: 'Abc'

Python String count(string) Method Example

This method counts number of times substring occurs in a String between begin and end index.

msg = "welcome to sssit";

substr1 = "o";

print msg.count(substr1, 4, 16)

substr2 = "t";

print msg.count(substr2)

Output:

>>>

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 15/38

2

2

>>>

Python String endswith(string) Method Example

This method returns a Boolean value if the string terminates with given suffix between begin

and end.

string1="Welcome to SSSIT";

substring1="SSSIT";

substring2="to";

substring3="of";

print string1.endswith(substring1);

print string1.endswith(substring2,2,16);

print string1.endswith(substring3,2,19);

print string1.endswith(substring3);

Output:

>>>

True

False

False

False

>>>

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 16/38

Python String find(string) Method Example

This method returns the index value of the string where substring is found between begin index

and end index.

str="Welcome to SSSIT";

substr1="come";

substr2="to";

print str.find(substr1);

print str.find(substr2);

print str.find(substr1,3,10);

print str.find(substr2,19);

Output:

>>>

3

8

3

-1

>>>

Python String index() Method Example

This method returns the index value of the string where substring is found between begin index

and end index.

str="Welcome to world of SSSIT";

substr1="come";

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 17/38

substr2="of";

print str.index(substr1);

print str.index(substr2);

print str.index(substr1,3,10);

print str.index(substr2,19);

Output:

>>>

3

17

3

Traceback (most recent call last):

 File "C:/Python27/fin.py", line 7, in

 print str.index(substr2,19);

ValueError: substring not found

>>>

Python String isalnum() Method Example

This method returns True if characters in the string are alphanumeric i.e., alphabets or numbers

and there is at least 1 character. Otherwise it returns False.

str="Welcome to sssit";

 print str.isalnum();

str1="Python47";

print str1.isalnum();

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 18/38

>>>

False

True

>>>

Python String isalpha() Method Example

It returns True when all the characters are alphabets and there is at least one character,

otherwise False.

string1="HelloPython"; # Even space is not allowed

print string1.isalpha();

string2="This is Python2.7.4"

print string2.isalpha();

Output:

>>>

True

False

>>>

Python String isdigit() Method Example

This method returns True if all the characters are digit and there is at least one character,

otherwise False.

string1="HelloPython";

print string1.isdigit();

string2="98564738"

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 19/38

print string2.isdigit();

Output:

>>>

False

True

>>>

Python String islower() Method Example

This method returns True if the characters of a string are in lower case, otherwise False.

string1="Hello Python";

print string1.islower();

string2="welcome to "

print string2.islower();

Output:

>>>

False

True

>>>

Python String isupper() Method Example

This method returns False if characters of a string are in Upper case, otherwise False.

string1="Hello Python";

print string1.isupper();

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 20/38

string2="WELCOME TO"

print string2.isupper();

Output:

>>>

False

True

>>>

Python String isspace() Method Example

This method returns True if the characters of a string are whitespace, otherwise false.

string1=" ";

print string1.isspace();

string2="WELCOME TO WORLD OF PYT"

print string2.isspace();

Output:

>>>

True

False

>>>

Python String len(string) Method Example

This method returns the length of a string.

string1=" ";

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 21/38

print len(string1);

string2="WELCOME TO SSSIT"

print len(string2);

Output:

>>>

4

16

>>>

Python String lower() Method Example

It converts all the characters of a string to Lower case.

string1="Hello Python";

print string1.lower();

string2="WELCOME TO SSSIT"

print string2.lower();

Output:

>>>

hello python

welcome to sssit

>>>

Python String upper() Method Example

This method converts all the characters of a string to upper case.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 22/38

string1="Hello Python";

print string1.upper();

string2="welcome to SSSIT"

print string2.upper();

Output:

>>>

HELLO PYTHON

WELCOME TO SSSIT

>>>

Python String startswith(string) Method Example

This method returns a Boolean value if the string starts with given str between begin and end.

string1="Hello Python";

print string1.startswith('Hello');

string2="welcome to SSSIT"

print string2.startswith('come',3,7);

Output:

>>>

True

True

>>>

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 23/38

Python String swapcase() Method Example

It inverts case of all characters in a string.

string1="Hello Python";

print string1.swapcase();

string2="welcome to SSSIT"

print string2.swapcase();

Output:

>>>

hELLO pYTHON

WELCOME TO sssit

>>>

Python String lstrip() Method Example

It removes all leading whitespace of a string and can also be used to remove particular

character from leading.

string1=" Hello Python";

print string1.lstrip();

string2="@@@@@@@@welcome to SSSIT"

print string2.lstrip('@');

Output:

>>>

Hello Python

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 24/38

welcome to world to SSSIT

>>>

Python String rstrip() Method Example

It removes all trailing whitespace of a string and can also be used to remove particular

character from trailing.

string1=" Hello Python ";

print string1.rstrip();

string2="@welcome to SSSIT!!!"

print string2.rstrip('!');

Output:

>>>

 Hello Python

@welcome to SSSIT

>>>

Python List

Python list is a data structure which is used to store various types of data.

In Python, lists are mutable i.e., Python will not create a new list if we modify an element of the

list.

It works as a container that holds other objects in a given order. We can perform various

operations like insertion and deletion on list.

A list can be composed by storing a sequence of different type of values separated by commas.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 25/38

Python list is enclosed between square([]) brackets and elements are stored in the index basis

with starting index 0.

Python List Example

data1=[1,2,3,4];

data2=['x','y','z'];

data3=[12.5,11.6];

data4=['raman','rahul'];

data5=[];

data6=['abhinav',10,56.4,'a'];

A list can be created by putting the value inside the square bracket and separated by comma.

Python List Syntax

<list_name>=[value1,value2,value3,...,valuen];

Syntax to Access Python List

<list_name>[index]

Python allows us to access value from the list by various ways.

Python Accessing List Elements Example

data1=[1,2,3,4];

data2=['x','y','z'];

print data1[0]

print data1[0:2]

print data2[-3:-1]

print data1[0:]

print data2[:2]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 26/38

Output:

1

[1, 2]

['x', 'y']

[1, 2, 3, 4]

['x', 'y']

>>>

Elements in a Lists:

Following are the pictorial representation of a list. We can see that it allows to access elements

from both end (forward and backward).

Data=[1,2,3,4,5];

Data[0]=1=Data[-5] , Data[1]=2=Data[-4] , Data[2]=3=Data[-3] ,

=4=Data[-2] , Data[4]=5=Data[-1].

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 27/38

Python List Operations

Apart from creating and accessing elements from the list, Python allows us to perform various

other operations on the list. Some common operations are given below

a) Adding Python Lists

In Python, lists can be added by using the concatenation operator(+) to join two lists.

Add lists Example 1

list1=[10,20]

 list2=[30,40]

 list3=list1+list2

 print list3

Output: [10, 20, 30, 40]

Add lists Example 2

 list1=[10,20]

list1+30

print list1

Output:

Traceback (most recent call last):

 File "C:/Python27/lis.py", line 2, in <module>

 list1+30

b) Python Replicating lists

Replicating means repeating, It can be performed by using '*' operator by a specific number of

time.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 28/38

Python list Replication Example

list1=[10,20]

print list1*1

Output:[10, 20]

c)Python List Slicing

A subpart of a list can be retrieved on the basis of index. This subpart is known as list slice. This

feature allows us to get sub-list of specified start and end index.

Python List Slicing Example

list1=[1,2,4,5,7]

print list1[0:2]

print list1[4]

list1[1]=9

print list1

Output:

[1, 2]

7

[1, 9, 4, 5, 7]

Python List Other Operations

Apart from above operations various other functions can also be performed on List such as

Updating, Appending and Deleting elements from a List.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 29/38

Python Updating List

To update or change the value of particular index of a list, assign the value to that particular

index of the List.

Python Updating List Example

data1=[5,10,15,20,25]

print "Values of list are: "

print data1

data1[2]="Multiple of 5"

print "Values of list are: "

print data1

Output:

Values of list are:

[5, 10, 15, 20, 25]

Values of list are:

[5, 10, 'Multiple of 5', 20, 25]

Appending Python List

Python provides, append() method which is used to append i.e., add an element at the end of

the existing elements.

Python Append List Example

list1=[10,"rahul",'z']

print "Elements of List are: "

print list1

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 30/38

list1.append(10.45)

print "List after appending: "

print list1

Output:

Elements of List are:

[10, 'rahul', 'z']

List after appending:

[10, 'rahul', 'z', 10.45]

Deleting Elements

In Python, del statement can be used to delete an element from the list. It can also be used to

delete all items from startIndex to endIndex.

Python delete List Example

list1=[10,'rahul',50.8,'a',20,30]

print list1

del list1[0]

print list1

del list1[0:3]

print list1

Output:

 [10, 'rahul', 50.8, 'a', 20, 30]

['rahul', 50.8, 'a', 20, 30]

[20, 30]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 31/38

Python lists Method

Python provides various Built-in functions and methods for Lists that we can apply on the list.

Following are the common list functions.

Function Description

min(list) It returns the minimum value from the list given.

max(list) It returns the largest value from the given list.

len(list) It returns number of elements in a list.

cmp(list1,list2) It compares the two list.

list(sequence) It takes sequence types and converts them to lists.

Python List min() method Example

This method is used to get min value from the list.

list1=[101,981,'abcd','xyz','m']

list2=['aman','shekhar',100.45,98.2]

print "Minimum value in List1: ",min(list1)

print "Minimum value in List2: ",min(list2)

Output:

Minimum value in List1: 101

Minimum value in List2: 98.2

Python List max() method Example

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 32/38

This method is used to get max value from the list.

list1=[101,981,'abcd','xyz','m']

list2=['aman','shekhar',100.45,98.2]

print "Maximum value in List : ",max(list1)

print "Maximum value in List : ",max(list2)

Output:

Maximum value in List : xyz

Maximum value in List : shekhar

Python List len() method Example

This method is used to get length of the the list.

list1=[101,981,'abcd','xyz','m']

list2=['aman','shekhar',100.45,98.2]

print "No. of elements in List1: ",len(list1)

print "No. of elements in List2: ",len(list2)

Output:

No. of elements in List1 : 5

No. of elements in List2 : 4

Python List cmp() method Example

Explanation: If elements are of the same type, perform the comparison and return the result. If

elements are different types, check whether they are numbers.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 33/38

o If numbers, perform comparison.

o If either element is a number, then the other element is returned.

o Otherwise, types are sorted alphabetically .

If we reached the end of one of the lists, the longer list is "larger." If both list are same it returns

0.

Python List cmp() method Example

list1=[101,981,'abcd','xyz','m']

list2=['aman','shekhar',100.45,98.2]

list3=[101,981,'abcd','xyz','m']

print cmp(list1,list2)

print cmp(list2,list1)

print cmp(list3,list1)

Output:

-1

1

0

Python List list(sequence) method Example

This method is used to form a list from the given sequence of elements.

seq=(145,"abcd",'a')

data=list(seq)

print "List formed is : ",data

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 34/38

Output:

List formed is : [145, 'abcd', 'a']

There are following built-in methods of List

Methods Description

index(object) It returns the index value of the object.

count(object) It returns the number of times an object is repeated in list.

pop()/pop(index) It returns the last object or the specified indexed object. It removes the
popped object.

insert(index,object) It inserts an object at the given index.

extend(sequence) It adds the sequence to existing list.

remove(object) It removes the object from the given List.

reverse() It reverses the position of all the elements of a list.

sort() It is used to sort the elements of the List.

Python List index() Method Example

data = [786,'abc','a',123.5]

print "Index of 123.5:", data.index(123.5)

print "Index of a is", data.index('a')

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 35/38

Output:

Index of 123.5 : 3

Index of a is 2

Python List count(object) Method Example

data = [786,'abc','a',123.5,786,'rahul','b',786]

print "Number of times 123.5 occured is", data.count(123.5)

print "Number of times 786 occured is", data.count(786)

Output:

Number of times 123.5 occured is 1

Number of times 786 occured is 3

Python List pop()/pop(int) Method Example

data = [786,'abc','a',123.5,786]

print "Last element is", data.pop()

print "2nd position element:", data.pop(1)

print data

Output:

Last element is 786

2nd position element:abc

[786, 'a', 123.5]

Python List insert(index,object) Method Example

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 36/38

data=['abc',123,10.5,'a']

data.insert(2,'hello')

print data

Output:

['abc', 123, 'hello', 10.5, 'a']

Python List extend(sequence) Method Example

data1=['abc',123,10.5,'a']

data2=['ram',541]

data1.extend(data2)

print data1

print data2

Output:

 ['abc', 123, 10.5, 'a', 'ram', 541]

['ram', 541]

Python List remove(object) Method Example

data1=['abc',123,10.5,'a','xyz']

data2=['ram',541]

print data1

data1.remove('xyz')

print data1

print data2

data2.remove('ram')

print data2

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 37/38

Output:

['abc', 123, 10.5, 'a', 'xyz']

['abc', 123, 10.5, 'a']

['ram', 541]

[541]

Python List reverse() Method Example

list1=[10,20,30,40,50]

list1.reverse()

print list1

Output:

 [50, 40, 30, 20, 10]

Python List sort() Method Example

list1=[10,50,13,'rahul','aakash']

list1.sort()

print list1

Output:

 [10, 13, 50, 'aakash', 'rahul']

Possible Questions:

2 Mark Questions

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT II

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 38/38

1. Define string. How to get a string at run time?

2. Name the type of Boolean operators.

3. What is complex numbers?

4. Define Python list.

5. What are the list operations?

6. What are the different ways to create a list?

7. Illustrate negative indexing in list with an example.

8. Describe list slicing with examples.

9. Give the use of return () statement with a suitable example.

6 Mark Questions

1. What is Python list? Explain the basic list operations with suitable examples.

2. Discuss numbers and its methods in python.

3. Define string. How to get a string at run time? Explain with example.

4. Discuss numbers and its operators.

5. Describe the following

a) Creating the List

b) Accessing values in the Lists

c) Updating the Lists

d) Deleting the list Elements

6. Write a Python program to multiply two Matrices

7. Define methods in a string with an example program using at least five methods.

8. How to access characters of a string?

S.NO QUESTIONS OPT 1 OPT 2 OPT 3 OPT 4 ANSWER

1 The following is NOT an example of a data type. int public double void public

2 Identifiers must contain at least ____character one two three four one

3 A _____ word cannot be used as an identifier variable reserved string token reserved

4
______ are identifiers that have predefined meanings in
Python

Keywords string variable token Keywords

5
A _____ operator performs an operation using one
operand

binary unary trinary none unary

6 _______ expression, sometimes called a predicate bitwise assignemnt Boolean arithmetic Boolean

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

UNIT II

KARPAGAM ACADEMY OF HIGHER EDUCATION
Department of Computer Science

I M.Sc(CS) (BATCH 2018 - 2021) I SEMESTER

PYTHON PROGRAMMING (18CSP101)

7 In Python, a string literal is enclosed in __________. parentheses brackets single-quotes
braces

single-quotes

8
Suppose x is a char variable with a value 'b'. What will
be displayed by the statement print(chr(ord(x) + 1))?

a b c d c

9 What is chr(ord('B')))? A B C D B

10
Which of the following statement prints
smith\exam1\test.txt?

print("smith\exam
1\test.txt")

print("smith\\
exam1\\test.tx

t")

print("smith\"exam
1\"test.txt")

print("smith"\exam1
"\test.txt")

print("smith\\exa
m1\\test.txt")

11 The Unicode of 'a' is 97. What is the Unicode for 'c'? 96 97 98 99 99

12 Suppose s = "Welcome", what is type(s)? int float string str str

13 The format function returns _______. an int a float a str a chat a str

14 Which of the following operators are right-associative. = * + _ =

15 Assume x = 4 and y = 5, Which of the following is true? not (x == 4) x != 4 x == 5 x != 5 x != 5

16 Which operator is overloaded by the or() function? || | // / |

17

What is the output of the following program :
i = 0
while i < 3:
 print i
 i++
 print i+1

 0 2 1 3 2 4 0 1 2 3 4 5 Error 1 0 2 4 3 5 Error

18 Which function overloads the >> operator? more() gt() ge() None of the above
None of the

above

19

__________ creates a list.

list1 = list() list1 = []
list1 = list([12, 4,

4])
list1 = [12, 4, 4] All

20
Which of the following statements is used to create an
empty set?

{ } set() [] () set()

21
What is the output of the following piece of code when
executed in the python shell?
a={1,2,3}

{2,3}
Error,

duplicate item
present in list

Error, no method
called

intersection_updat
{1,4,5} {2,3}

22
Which of the following lines of code will result in an
error?

s={abs}
s={4, ‘abc’,

(1,2)}
s={2, 2.2, 3, ‘xyz’} s={san} s={san}

23
hat is the output of the line of code shown below, if s1=
{1, 2, 3}?
s1.issubset(s1)

TRUE Error No output FALSE TRUE

24

What is the output of the code shown below?
s=set([1, 2, 3])
s.union([4, 5])
s|([4, 5])

{1, 2, 3, 4, 5}{1, 2,
3, 4, 5}

Error{1, 2, 3, 4,
5}

{1, 2, 3, 4, 5}Error ErrorError {1, 2, 3, 4, 5}Error

25
Which of the following function capitalizes first letter of
string?

shuffle(lst) capitalize() isalnum() isdigit() capitalize()

26
Which of the following function checks in a string that
all characters are digits?

shuffle(lst) capitalize() isalnum() isdigit() isdigit()

27
Which of the following function convert an integer to
octal string in python?

unichr(x) ord(x) hex() oct(x) oct(x)

28 What is the name of data type for character in python ? char

python do not
have any data

type for
characters

charcter chr

python do not
have any data

type for
characters

29 In python 3 what does // operator do ? Float division
Integer
division

returns remainder same as a**b Integer division

30 What is "Programming is fun"[4: 6]? ram ra r pr ra

31 What is "Programming is fun"[-1]? pr ram ra n n

32 What is "Programming is fun"[1:1]? pr p r ' ' ' '

33
Given a string s = "Welcome", which of the following
code is incorrect?

print(s[0]) print(s.lower()) s[1] = 'r' print(s.strip()) s[1] = 'r'

34
Given a string s = "Programming is fun", what is
s.find('ram')?

1 2 3 4 4

35
Given a string s = "Programming is fun", what is
s.startswith('Program')?

0 1 TRUE FALSE TRUE

36 A function is:
An entity that

receives inputs
and outputs

A way of
storing values

A sequence of
characters

enclosed by quotes
A kind of computer

An entity that
receives inputs

and outputs

37
The _______ operator is a string operator called the
format operator

& * % # %

38
_______ function you can iterate through the sequence
and retrieve the index position and its corresponding
value at the same time.

enumerate() enum() e() eindex() enumerate()

39
_______ finds all the occurrences of match and return
them as an iterator.

find() finditer() replace() check() finditer()

40
Invoking the ___________ method converts raw byte
data to a string.

encode() decode() convert() toString() decode()

41 The readlines() method returns a ____________. str a list of lines
a list of single

characters
a list of integers a list of lines

42 The keyword __________ is required to define a class. def return class all class

43 _______ terminates the process normally. abort() exit() assert() all exit()

44 ________ is interpreted. python c++ ada c python

45
The __________ function immediately terminates the
program.

sys.terminate() sys.halt() sys.exit() sys.stop() sys.exit()

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 1/26

Tuple : Introduction- Operators and Built-in-Functions-Features. Mapping and set type

Dictionaries-Operators-Built-in and Factory Functions-Built-in- Methods. Set type: Introduction-

Operators-Built-in Function-Built-in Methods-

Python Tuple

A tuple is a sequence of immutable objects, therefore tuple cannot be changed. It can be used

to collect different types of object.

The objects are enclosed within parenthesis and separated by comma.

Tuple is similar to list. Only the difference is that list is enclosed between square bracket, tuple

between parenthesis and List has mutable objects whereas Tuple has immutable objects.

Python Tuple Example

>>> data=(10,20,'ram',56.8)

>>> data2="a",10,20.9

>>> data

(10, 20, 'ram', 56.8)

>>> data2

('a', 10, 20.9)

>>>

There can be an empty Tuple also which contains no object. Lets see an example of empty

tuple.

Python Empty Tuple Example

tuple1=()

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 2/26

Python Single Object Tuple Example

For a single valued tuple, there must be a comma at the end of the value.

Tuple1=(10,)

Python Tuple of Tuples Example

Tuples can also be nested, it means we can pass tuple as an element to create a new tuple. See,

the following example in which we have created a tuple that contains tuples an the object.

tupl1='a','mahesh',10.56

 tupl2=tupl1,(10,20,30)

 print tupl1

 print tupl2

Output:

>>>

('a', 'mahesh', 10.56)

(('a', 'mahesh', 10.56), (10, 20, 30))

>>>

Accessing Tuple

Accessing of tuple is prity easy, we can access tuple in the same way as List. See, the following

example.

Accessing Tuple Example

data1=(1,2,3,4)

data2=('x','y','z')

print data1[0]

print data1[0:2]

print data2[-3:-1]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 3/26

print data1[0:]

print data2[:2]

Output:

>>>

1

(1, 2)

('x', 'y')

(1, 2, 3, 4)

('x', 'y')

>>>

Elements in a Tuple

Data=(1,2,3,4,5,10,19,17)

Replicating Tuple Example

Replicating means repeating. It can be performed by using '*' operator by a specific number of

time.

tuple1=(10,20,30);

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 4/26

tuple2=(40,50,60);

print tuple1*2

print tuple2*3

Output:

>>>

(10, 20, 30, 10, 20, 30)

(40, 50, 60, 40, 50, 60, 40, 50, 60)

>>>

Python Tuple Slicing Example

A subpart of a tuple can be retrieved on the basis of index. This subpart is known as tuple slice.

data1=(1,2,4,5,7)

print data1[0:2]

print data1[4]

print data1[:-1]

print data1[-5:]

print data1

Output:

>>>

(1, 2)

7

(1, 2, 4, 5)

(1, 2, 4, 5, 7)

(1, 2, 4, 5, 7)

>>>

Data[0]=1=Data[-8] , Data[1]=2=Data[-7] , Data[2]=3=Data[-6] ,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 5/26

 Data[3]=4=Data[-5] , Data[4]=5=Data[-4] , Data[5]=10=Data[-3],

Data[6]=19=Data[-2],Data[7]=17=Data[-1]

Python Tuple Operations

Python allows us to perform various operations on the tuple. Following are the common tuple

operations.

Adding Tuples Example

Tuple can be added by using the concatenation operator(+) to join two tuples.

data1=(1,2,3,4)

data2=('x','y','z')

data3=data1+data2

print data1

print data2

print data3

Output:

>>>

(1, 2, 3, 4)

('x', 'y', 'z')

(1, 2, 3, 4, 'x', 'y', 'z')

>>>

Python Tuple other Operations

Updating elements in a List

Elements of the Tuple cannot be updated. This is due to the fact that Tuples are immutable.

Whereas the Tuple can be used to form a new Tuple.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 6/26

Example

data=(10,20,30)

data[0]=100

print data

Output:

>>>

Traceback (most recent call last):

 File "C:/Python27/t.py", line 2, in

 data[0]=100

TypeError: 'tuple' object does not support item assignment

>>>

Creating Tuple from Existing Example

We can create a new tuple by assigning the existing tuple, see the following example.

data1=(10,20,30)

data2=(40,50,60)

data3=data1+data2

print data3

Output:

>>>

(10, 20, 30, 40, 50, 60)

>>>

Python Tuple Deleting Example

Deleting individual element from a tuple is not supported. However the whole of the tuple can

be deleted using the del statement.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 7/26

data=(10,20,'rahul',40.6,'z')

print data

del data #will delete the tuple data

print data #will show an error since tuple data is already deleted

Output:

>>>

(10, 20, 'rahul', 40.6, 'z')

Traceback (most recent call last):

 File "C:/Python27/t.py", line 4, in

 print data

NameError: name 'data' is not defined

>>>

Functions of Tuple

There are following in-built Type Functions

Function Description

min(tuple) It returns the minimum value from a tuple.

max(tuple) It returns the maximum value from the tuple.

len(tuple) It gives the length of a tuple

cmp(tuple1,tuple2) It compares the two Tuples.

tuple(sequence) It converts the sequence into tuple.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 8/26

Python Tuple min(tuple) Method Example

This method is used to get min value from the sequence of tuple.

data=(10,20,'rahul',40.6,'z')

print min(data)

Output:

>>>

10

>>>

Python Tuple max(tuple) Method Example

This method is used to get max value from the sequence of tuple.

data=(10,20,'rahul',40.6,'z')

print max(data)

Output:

>>>

z

>>>

Python Tuple len(tuple) Method Example

This method is used to get length of the tuple.

data=(10,20,'rahul',40.6,'z')

print len(data)

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 9/26

>>>

5

>>>

Python Tuple cmp(tuple1,tuple2) Method Example

This method is used to compare tuples.

Explanation:If elements are of the same type, perform the comparison and return the result. If

elements are different types, check whether they are numbers.

o If numbers, perform comparison.

o If either element is a number, then the other element is returned.

o Otherwise, types are sorted alphabetically .

If we reached the end of one of the lists, the longer list is "larger." If both list are same it returns

0.

data1=(10,20,'rahul',40.6,'z')

data2=(20,30,'sachin',50.2)

print cmp(data1,data2)

print cmp(data2,data1)

data3=(20,30,'sachin',50.2)

print cmp(data2,data3)

Output:

>>>

-1

1

0

>>>

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 10/26

5) tuple(sequence):

Eg:

dat=[10,20,30,40]

data=tuple(dat)

print data

Output:

>>>

(10, 20, 30, 40)

>>>

Why should wee use Tuple? (Advantages of Tuple)

1. Processing of Tuples are faster than Lists.

2. It makes the data safe as Tuples are immutable and hence cannot be changed.

3. Tuples are used for String formatting.

Mapping and set type

Dictionaries

Dictionary is an unordered set of key and value pair. It is a container that contains data,

enclosed within curly braces.

The pair i.e., key and value is known as item. The key passed in the item must be unique.

The key and the value is separated by a colon(:). This pair is known as item. Items are separated

from each other by a comma(,). Different items are enclosed within a curly brace and this forms

Dictionary.

Python Dictionary Example

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 11/26

data={100:'Ravi' ,101:'Vijay' ,102:'Rahul'}

print data

Output:

>>>

{100: 'Ravi', 101: 'Vijay', 102: 'Rahul'}

>>>
Note:

Dictionary is mutable i.e., value can be updated.

Key must be unique and immutable. Value is accessed by key. Value can be updated while key

cannot be changed.

Dictionary is known as Associative array since the Key works as Index and they are decided by

the user.

Python Dictionary Example

plant={}

plant[1]='Ravi'

plant[2]='Manoj'

plant['name']='Hari'

plant[4]='Om'

print plant[2]

print plant['name']

print plant[1]

print plant

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 12/26

>>>

Manoj

Hari

Ravi

{1: 'Ravi', 2: 'Manoj', 4: 'Om', 'name': 'Hari'}

>>>

Accessing Dictionary Values

Since Index is not defined, a Dictionary values can be accessed by their keys only. It means, to

access dictionary elements we need to pass key, associated to the value.

Python Accessing Dictionary Element Syntax

<dictionary_name>[key]

</dictionary_name>

Accessing Elements Example

data1={'Id':100, 'Name':'Suresh', 'Profession':'Developer'}

data2={'Id':101, 'Name':'Ramesh', 'Profession':'Trainer'}

print "Id of 1st employer is",data1['Id']

print "Id of 2nd employer is",data2['Id']

print "Name of 1st employer:",data1['Name']

print "Profession of 2nd employer:",data2['Profession']

Output:

>>>

Id of 1st employer is 100

Id of 2nd employer is 101

Name of 1st employer is Suresh

Profession of 2nd employer is Trainer

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 13/26

>>>

Updating Python Dictionary Elements

The item i.e., key-value pair can be updated. Updating means new item can be added. The

values can be modified.

Example

data1={'Id':100, 'Name':'Suresh', 'Profession':'Developer'}

data2={'Id':101, 'Name':'Ramesh', 'Profession':'Trainer'}

data1['Profession']='Manager'

data2['Salary']=20000

data1['Salary']=15000

print data1

print data2

Output:

>>>

{'Salary': 15000, 'Profession': 'Manager','Id': 100, 'Name': 'Suresh'}

{'Salary': 20000, 'Profession': 'Trainer', 'Id': 101, 'Name': 'Ramesh'}

>>>

Deleting Python Dictionary Elements Example

del statement is used for performing deletion operation.

An item can be deleted from a dictionary using the key only.

Delete Syntax

del <dictionary_name>[key]

</dictionary_name>

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 14/26

Whole of the dictionary can also be deleted using the del statement.

Example

data={100:'Ram', 101:'Suraj', 102:'Alok'}

del data[102]

print data

del data

print data #will show an error since dictionary is deleted.

Output:

>>>

{100: 'Ram', 101: 'Suraj'}

Traceback (most recent call last):

 File "C:/Python27/dict.py", line 5, in

 print data

NameError: name 'data' is not defined

>>>

Python Dictionary Functions and Methods

Python Dictionary supports the following Functions

Python Dictionary Functions

Functions Description

len(dictionary) It returns number of items in a dictionary.

cmp(dictionary1,dictionary2) It compares the two dictionaries.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 15/26

str(dictionary) It gives the string representation of a string.

Python Dictionary Methods

Methods Description

keys() It returns all the keys element of a dictionary.

values() It returns all the values element of a dictionary.

items() It returns all the items(key-value pair) of a dictionary.

update(dictionary2) It is used to add items of dictionary2 to first dictionary.

clear() It is used to remove all items of a dictionary. It returns

an empty dictionary.

fromkeys(sequence,value1)/

fromkeys(sequence)

It is used to create a new dictionary from the

sequence where sequence elements forms the key

and all keys share the values ?value1?. In case value1

is not give, it set the values of keys to be none.

copy() It returns an ordered copy of the data.

has_key(key) It returns a boolean value. True in case if key is

present in the dictionary ,else false.

get(key) It returns the value of the given key. If key is not

present it returns none.

Python Dictionary len(dictionary) Example

It returns length of the dictionary.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 16/26

data={100:'Ram', 101:'Suraj', 102:'Alok'}

print data

print len(data)

Output:

>>>

{100: 'Ram', 101: 'Suraj', 102: 'Alok'}

3

>>>

Python Dictionary cmp(dictionary1,dictionary2) Example

The comparison is done on the basis of key and value.

If, dictionary1 == dictionary2, returns 0.

 dictionary1 < dictionary2, returns -1.

 dictionary1 > dictionary2, returns 1.

data1={100:'Ram', 101:'Suraj', 102:'Alok'}

data2={103:'abc', 104:'xyz', 105:'mno'}

data3={'Id':10, 'First':'Aman','Second':'Sharma'}

data4={100:'Ram', 101:'Suraj', 102:'Alok'}

print cmp(data1,data2)

print cmp(data1,data4)

print cmp(data3,data2)

Output:

>>>

-1

0

1

>>>

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 17/26

Python Dictionary str(dictionary) Example

This method returns string formation of the value.

data1={100:'Ram', 101:'Suraj', 102:'Alok'}

print str(data1)

Output:

>>>

{100: 'Ram', 101: 'Suraj', 102: 'Alok'}

>>>

Python Dictionary keys() Method Example

This method returns all the keys element of a dictionary.

data1={100:'Ram', 101:'Suraj', 102:'Alok'}

print data1.keys()

Output:

>>>

[100, 101, 102]

>>>

Python Dictionary values() Method Example

This method returns all the values element of a dictionary.

data1={100:'Ram', 101:'Suraj', 102:'Alok'}

print data1.values()

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 18/26

>>>

['Ram', 'Suraj', 'Alok']

>>>

Python Dictionary items() Method Example

This method returns all the items(key-value pair) of a dictionary.

data1={100:'Ram', 101:'Suraj', 102:'Alok'}

print data1.items()

Output:

>>>

[(100, 'Ram'), (101, 'Suraj'), (102, 'Alok')]

>>>

Python Dictionary update(dictionary2) Method Example

This method is used to add items of dictionary2 to first dictionary.

data1={100:'Ram', 101:'Suraj', 102:'Alok'}

data2={103:'Sanjay'}

data1.update(data2)

print data1

print data2

Output:

>>>

{100: 'Ram', 101: 'Suraj', 102: 'Alok', 103: 'Sanjay'}

{103: 'Sanjay'}

>>>

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 19/26

Python Dictionary clear() Method Example

It returns an ordered copy of the data.

data1={100:'Ram', 101:'Suraj', 102:'Alok'}

print data1

data1.clear()

print data1

Output:

>>>

{100: 'Ram', 101: 'Suraj', 102: 'Alok'}

{}

>>>

Python Dictionary fromkeys(sequence)/ fromkeys(seq,value) Method Example

This method is used to create a new dictionary from the sequence where sequence elements

forms the key and all keys share the values ?value1?. In case value1 is not give, it set the values

of keys to be none.

sequence=('Id' , 'Number' , 'Email')

data={}

data1={}

data=data.fromkeys(sequence)

print data

data1=data1.fromkeys(sequence,100)

print data1

Output:

>>>

{'Email': None, 'Id': None, 'Number': None}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 20/26

{'Email': 100, 'Id': 100, 'Number': 100}

>>>

Python Dictionary copy() Method Example

This method returns an ordered copy of the data.

data={'Id':100 , 'Name':'Aakash' , 'Age':23}

data1=data.copy()

print data1

Output:

>>>

{'Age': 23, 'Id': 100, 'Name': 'Aakash'}

>>>

Python Dictionary has_key(key) Method Example

It returns a boolean value. True in case if key is present in the dictionary, else false.

data={'Id':100 , 'Name':'Aakash' , 'Age':23}

print data.has_key('Age')

print data.has_key('Email')

Output:

>>>

True

False

>>>

Python Dictionary get(key) Method Example

This method returns the value of the given key. If key is not present it returns none.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 21/26

data={'Id':100 , 'Name':'Aakash' , 'Age':23}

print data.get('Age')

print data.get('Email')

Output:

>>>

23

None

>>>

Set type

Mathematically a set is a collection of items not in any particular order. A Python set is similar

to this mathematical definition with below additional conditions.

The elements in the set cannot be duplicates.

The elements in the set are immutable(cannot be modified) but the set as a whole is mutable.

There is no index attached to any element in a python set. So they do not support any indexing

or slicing operation.

Set Operations

The sets in python are typically used for mathematical operations like union, intersection,

difference and complement etc. We can create a set, access it’s elements and carry out these

mathematical operations as shown below.

Creating a set

A set is created by using the set() function or placing all the elements within a pair of curly

braces.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 22/26

Days=set(["Mon","Tue","Wed","Thu","Fri","Sat","Sun"])

Months={"Jan","Feb","Mar"}

Dates={21,22,17}

print(Days)

print(Months)

print(Dates)

 When the above code is executed, it produces the following result. Please note how the order

of the elements has changed in the result.

set(['Wed', 'Sun', 'Fri', 'Tue', 'Mon', 'Thu', 'Sat'])

set(['Jan', 'Mar', 'Feb'])

set([17, 21, 22])

Accessing Values in a Set

We cannot access individual values in a set. We can only access all the elements together as

shown above. But we can also get a list of individual elements by looping through the set.

Days=set(["Mon","Tue","Wed","Thu","Fri","Sat","Sun"])

 for d in Days:

 print(d)

When the above code is executed, it produces the following result.

Wed

Sun

Fri

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 23/26

Tue

Mon

Thu

Sat

Methods

Adding Items to a Set

We can add elements to a set by using add() method. Again as discussed there is no specific

index attached to the newly added element.

Days=set(["Mon","Tue","Wed","Thu","Fri","Sat"])

 Days.add("Sun")

print(Days)

When the above code is executed, it produces the following result.

set(['Wed', 'Sun', 'Fri', 'Tue', 'Mon', 'Thu', 'Sat'])

Removing Item from a Set

We can remove elements from a set by using discard() method. Again as discussed there is no

specific index attached to the newly added element.

Days=set(["Mon","Tue","Wed","Thu","Fri","Sat"])

 Days.discard("Sun")

print(Days)

When the above code is executed, it produces the following result.

set(['Wed', 'Fri', 'Tue', 'Mon', 'Thu', 'Sat'])

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 24/26

Union of Sets

The union operation on two sets produces a new set containing all the distinct elements from

both the sets. In the below example the element “Wed” is present in both the sets.

DaysA = set(["Mon","Tue","Wed"])

DaysB = set(["Wed","Thu","Fri","Sat","Sun"])

AllDays = DaysA|DaysB

print(AllDays)

When the above code is executed, it produces the following result. Please note the result has

only one “wed”.

set(['Wed', 'Fri', 'Tue', 'Mon', 'Thu', 'Sat'])

Intersection of Sets

The intersection operation on two sets produces a new set containing only the common

elements from both the sets. In the below example the element “Wed” is present in both the

sets.

DaysA = set(["Mon","Tue","Wed"])

DaysB = set(["Wed","Thu","Fri","Sat","Sun"])

AllDays = DaysA & DaysB

print(AllDays)

When the above code is executed, it produces the following result. Please note the result has

only one “wed”.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 25/26

set(['Wed'])

Difference of Sets

The difference operation on two sets produces a new set containing only the elements from the

first set and none from the second set. In the below example the element “Wed” is present in

both the sets so it will not be found in the result set.

DaysA = set(["Mon","Tue","Wed"])

DaysB = set(["Wed","Thu","Fri","Sat","Sun"])

AllDays = DaysA - DaysB

print(AllDays)

When the above code is executed, it produces the following result. Please note the result has

only one “wed”.

set(['Mon', 'Tue'])

Compare Sets

We can check if a given set is a subset or superset of another set. The result is True or False

depending on the elements present in the sets.

DaysA = set(["Mon","Tue","Wed"])

DaysB = set(["Mon","Tue","Wed","Thu","Fri","Sat","Sun"])

SubsetRes = DaysA <= DaysB

SupersetRes = DaysB >= DaysA

print(SubsetRes)

print(SupersetRes)

When the above code is executed, it produces the following result.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT III

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 26/26

True

True

Possible Questions:

2 Mark Questions

1. How to pass tuple as argument

2. How can you insert values in to dictionary

3. What is key value pair

4. Mention different data types can be used in key and value

5. What are the immutable data types available in python

6. What is the use of fromkeys() in dictioanary.

7. Create tuple with single element

8. What is the use of map () function.

9. How can you distinguish between tuples and lists?

6 Mark Questions

1. Demonstrate tuple and its functions with example.

2. Generalize the uses of dictionaries and its methods.

3. What are the accessing elements in a tuple? Explain With suitable Programs.

4. What are the different ways to create a set? Explain its functions.

5. Discuss the various operation that can be performed on a tuple with an example program.

6. How can you access elements from the dictionary? Explain with example.

7. List out the methods that are available with set object in python. Explain it.

8. Define Python tuple. Classify the Python accessing Elements in a tuples.

S.NO QUESTIONS OPT 1 OPT 2 OPT 3 OPT 4 ANSWER

1 A ____ is an associative array of key-value pairs dictionary list tuple sequence dictionary

2 A _____ is though similar to a list, but it’s immutable. dictionary list tuple sequence tuple

3
A ___, in Python, stores a sequence of objects in a defined
order.

dictionary list tuple sequence list

4
What Will Be The Output Of The Following Code Snippet?
a=[1,2,3,4,5,6,7,8,9]
print(a[::2])

[1,2] [8,9] [1,3,5,7,9] [1,2,3] [1,3,5,7,9]

5 _________enclosed between square bracket dictionary list tuple sequence list

6 _________enclosed between parenthesis dictionary list tuple sequence tuple

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

UNIT III

KARPAGAM ACADEMY OF HIGHER EDUCATION
Department of Computer Science

I M.Sc(CS) (BATCH 2018 - 2021) I SEMESTER

PYTHON PROGRAMMING (18CSP101)

7 A subpart of a tuple can be retrieved on the basis of _______ index semicolon colon comma index

8 Elements of the ______ cannot be updated. dictionary list tuple sequence tuple

9 Deleting individual element from a_______ is not supported dictionary list tuple sequence tuple

10 _____converts the sequence into tuple. tuple(sequence) list(sequecnce) map(sequecnce) none tuple(sequence)

11 Processing of Tuples are faster than ____. dictionary list tuple sequence list

12 _______ are used for String formatting dictionary list tuple sequence tuple

13 ______ is an unordered set of key and value pair dictionary list tuple sequence dictionary

14 _________enclosed within curly braces. dictionary list tuple sequence dictionary

15 The key and the value is separated by a ________ index semicolon colon comma colon

16 __________ is mutable.i.e., value can be updated dictionary list tuple sequence dictionary

17
_________ is known as Associative array since the Key works
as Index and they are decided by the user

dictionary list tuple sequence dictionary

18 _____ statement is used for performing deletion operation. del delete remove erase del

19 ____ returns all the key-value pair of a dictionary values() keys() items() clear() items()

20 has_key(key) returns a _____ value char float int boolean boolean

21 ____used to create a new dictionary from the sequence
update(dictionar

y2)

fromkeys(sequence,val

ue1)

has_key(key) get(key) fromkeys(sequence

,value1)

22 _______used to remove all items of a dictionary erase() delete() remove() clear() clear()

23
The _________objects are enclosed within parenthesis and
separated by comma.

dictionary list tuple sequence tuple

24
________method returns the value of the given key. If key is
not present it returns none

update(dictionar

y2)

fromkeys(sequence,val

ue1)

has_key(key) get(key) get(key)

25
What Will Be The Output Of The Following Code Snippet?
a=[1,2,3,4,5,6,7,8,9]
print(a[::2])

[1,2] [8,9] [1,3,5,7,9] [1,2,3] [1,3,5,7,9]

26

What Will Be The Output Of The Following Code Snippet?
a=[1,2,3,4,5,6,7,8,9]
a[::2]=10,20,30,40,50,60
print(a)

ValueError:
attempt to

assign sequence
of size 6 to

extended slice of

 [10, 2, 20, 4, 30, 6, 40,

8, 50, 60]

[1, 2, 10, 20, 30,

40, 50, 60]

[1, 10, 3, 20, 5, 30, 7,

40, 9, 50, 60]

ValueError: attempt
to assign sequence

of size 6 to
extended slice of

size 5

27
What Will Be The Output Of The Following Code Snippet?
a=[1,2,3,4,5]
print(a[3:0:-1])

Syntax error [4, 3, 2] [4, 3] [4, 3, 2, 1] [4, 3, 2]

28
What Is The Correct Command To Shuffle The Following List?
fruit=['apple', 'banana', 'papaya', 'cherry']

fruit.shuffle() shuffle(fruit)
random.shuffle(fr

uit)

random.shuffleList(fr

uit)

random.shuffle(frui

t)

29
What Will Be The Output Of The Following Code Snippet?
a = {(1,2):1,(2,3):2}
print(a[1,2])

 Key Error 1 {(2,3):2} {(1,2):1} 1

30 _________ as a mapping between a set of indices dictionary list tuple sequence dictionary

31 The curly brackets, {}, represent an empty________ . list tuple dictionary sequence dictionary

32
________is a statistical term for a set of
counters

bar chart histogram pie chart line chart histogram

33
What Will Be The Output Of The Following Code Snippet?
counts = { 'chuck' : 1 , 'annie' : 42, 'jan': 100}
print(counts.get('jan', 0))

0 1 42 100 100

34

>>>a=[9,8,7,6,5,4] >>>
a[1:]

[9,8,7,6,5,4] [8, 7, 6, 5, 4] [7, 6, 5, 4] [7, 6, 5] [8, 7, 6, 5, 4]

35

>>>a=[9,8,7,6,5,4] >>>
a[::-1]

[8, 7, 6, 5, 4] [4, 5, 6, 7, 8, 9] [9,8,7,6,5,4] [7, 6, 5, 4] [4, 5, 6, 7, 8, 9]

36
>>>a=[1,2,3,4,5]
>>>b=[7,8,9] >>>a.extend(b)
>>>print(a)

[9,8,7,6,5,4] [1,2,3,4,5,7,8,9] [0, 1, 2, 3, 4, 5, 6, 7, 8,9] [7, 6, 5, 4] [1,2,3,4,5,7,8,9]

37 >>>[8, 7, 6, 5, 4, 3, 2, 1, 0] >>>a.pop(0) [1,2,3,4,5,7,8,9] [4, 5, 6, 7, 8, 9] [9,8,7,6,5,4] [8, 7, 6, 5, 4, 3, 2, 1,]
[8, 7, 6, 5, 4, 3, 2, 1,

]

38
_____ is immutable so changes cannot be done on the

elements of a tuple once it is assigned.
dictionary list tuple sequence tuple

39

>>>a={1: 'ONE', 2: 'two', 3: 'three'} >>>

a.keys()

{1: 'ONE', 2:
'two', 3: 'three'}

dict_keys([1, 2, 3])
([(1, 'ONE'), (2,

'two'), (3,
'three')])

dict_keys([0, 2, 3]) dict_keys([1, 2, 3])

40
___________Heterogeneous

dictionary list tuple sequence tuple

41
In ________,Slicing can't be done

dictionary list tuple sequence dictionary

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT IV

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 1/19

Python Objects: Introduction-Standard Type- Built-in-type-Built-in functions. Class:

Introduction- Class and Instance- Method calls. File: Objects- Built in Functions-Methods-

Attributes- Command line Argument-File System-File Execution.

Python Classes and Objects

Python is an object oriented programming language.

Almost everything in Python is an object, with its properties and methods.

A Class is like an object constructor, or a "blueprint" for creating objects.

Create a Class

To create a class, use the keyword class:

Example

Create a class named MyClass, with a property named x:

class MyClass:
 x = 5

Create Object

Now we can use the class named myClass to create objects:

Example

Create an object named p1, and print the value of x:

p1 = MyClass()
print(p1.x)
Run example »

The __init__() Function

https://www.w3schools.com/python/showpython.asp?filename=demo_class2

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT IV

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 2/19

The examples above are classes and objects in their simplest form, and are not really useful in
real life applications.

To understand the meaning of classes we have to understand the built-in __init__() function.

All classes have a function called __init__(), which is always executed when the class is being
initiated.

Use the __init__() function to assign values to object properties, or other operations that are
necessary to do when the object is being created:

Example

Create a class named Person, use the __init__() function to assign values for name and age:

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

p1 = Person("John", 36)

print(p1.name)
print(p1.age)

Note: The __init__() function is called automatically every time the class is being used to create
a new object.

Built-In Class Attributes

Every Python class keeps following built-in attributes and they can be accessed using dot

operator like any other attribute −

 __dict__ − Dictionary containing the class's namespace.

 __doc__ − Class documentation string or none, if undefined.

 __name__ − Class name.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT IV

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 3/19

 __module__ − Module name in which the class is defined. This attribute is "__main__"

in interactive mode.

 __bases__ − A possibly empty tuple containing the base classes, in the order of their

occurrence in the base class list.

For the above class let us try to access all these attributes −

Object Methods

Objects can also contain methods. Methods in objects are functions that belongs to the object.

Let us create a method in the Person class:

Example

Insert a function that prints a greeting, and execute it on the p1 object:

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def myfunc(self):
 print("Hello my name is " + self.name)

p1 = Person("John", 36)
p1.myfunc()

Note: The self parameter is a reference to the class itself, and is used to access variables that
belongs to the class.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT IV

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 4/19

The self Parameter

The self parameter is a reference to the class itself, and is used to access variables that belongs
to the class.

It does not have to be named self , you can call it whatever you like, but it has to be the first
parameter of any function in the class:

Example

Use the words mysillyobject and abc instead of self:

class Person:
 def __init__(mysillyobject, name, age):
 mysillyobject.name = name
 mysillyobject.age = age

 def myfunc(abc):
 print("Hello my name is " + abc.name)

p1 = Person("John", 36)
p1.myfunc()

Modify Object Properties

You can modify properties on objects like this:

Example

Set the age of p1 to 40:

p1.age = 40

Delete Object Properties

You can delete properties on objects by using the del keyword:

Example

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT IV

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 5/19

Delete the age property from the p1 object:

del p1.age

Delete Objects

You can delete objects by using the del keyword:

Example

Delete the p1 object:

del p1

Python Object

Python is an object oriented programming language. So, its main focus is on objects unlike
procedure oriented programming languages which mainly focuses on functions.

In object oriented programming language, object is simply a collection of data (variables) and
methods (functions) that act on those data.

Python Class

A class is a blueprint for the object. Let's understand it by an example:

Suppose a class is a prototype of a building. A building contains all the details about the floor,
doors, windows, etc. we can make another buildings (as many as we want) based on these
details. So building is a class and we can create many objects from a class.

An object is also called an instance of a class and the process of creating this object is known as
instantiation.

Python classes contain all the standard features of Object Oriented Programming. A python
class is a mixture of class mechanism of C++ and Modula-3.

Define a class in Python

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT IV

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 6/19

In Python, a class is defined by using a keyword class like a function definition begins with the
keyword def.

Syntax of a class definition:

class ClassName:

 <statement-1>

 .

 .

 .

 <statement-N>

A class creates a new local namespace to define its all attributes. These attributes may be data
or functions.

See this example:

There are also some special attributes that begins with double underscore (__). For example:
__doc__ attribute. It is used to fetch the docstring of that class. When we define a class, a new
class object is created with the same class name. This new class object provides a facility to
access the different attributes as well as to instantiate new objects of that class.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT IV

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 7/19

See this example:

Create an Object in Python

We can create new object instances of the classes. The procedure to create an object is similar
to a function call.

Let's take an example to create a new instance object ob. We can access attributes of objects
by using the object name prefix.

See this example:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT IV

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 8/19

Here, attributes may be data or method. Method of an object is corresponding functions of that
class. For example: MyClass.func is a function object and ob.func is a method object.

Python Object Class Example

class Student:

 def __init__(self, rollno, name):

 self.rollno = rollno

 self.name = name

 def displayStudent(self):

 print "rollno : ", self.rollno, ", name: ", self.name

emp1 = Student(121, "Ajeet")

emp2 = Student(122, "Sonoo")

emp1.displayStudent()

emp2.displayStudent()

Output:

rollno : 121 , name: Ajeet

rollno : 122 , name: Sonoo

Python File Handling

Python provides the facility of working on Files. A File is an external storage on hard disk from
where data can be stored and retrieved.

Operations on Files:

1) Opening a File: Before working with Files you have to open the File. To open a File, Python
built in function open() is used. It returns an object of File which is used with other functions.
Having opened the file now you can perform read, write, etc. operations on the File.

Syntax:

obj=open(filename , mode , buffer)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT IV

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 9/19

here,

filename:It is the name of the file which you want to access.

mode:It specifies the mode in which File is to be opened.There are many types of mode. Mode
depends the operation to be performed on File. Default access mode is read.

2) Closing a File:Once you are finished with the operations on File at the end you need to close
the file. It is done by the close() method. close() method is used to close a File.

Syntax:

fileobject.close()

3) Writing to a File:write() method is used to write a string into a file.

Syntax:

fileobject.write(string str)

4) Reading from a File:read() method is used to read data from the File.

Syntax:

fileobject.read(value)

here, value is the number of bytes to be read. In case, no value is given it reads till end of file is
reached.

Program to read and write data from a file.

obj=open("abcd.txt","w")

obj.write("Welcome to the world of Python")

obj.close()

obj1=open("abcd.txt","r")

s=obj1.read()

print s

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT IV

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 10/19

obj1.close()

obj2=open("abcd.txt","r")

s1=obj2.read(20)

print s1

obj2.close()

Output:

>>>

Welcome to the world of Python

Welcome to the world

>>>

Attributes of File:

There are following File attributes.

Attribute Description

Name Returns the name of the file.

Mode Returns the mode in which file is being opened.

Closed Returns Boolean value. True, in case if file is closed else false.

Example

obj = open("data.txt", "w")

print obj.name

print obj.mode

print obj.closed

Output:

>>>

data.txt

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT IV

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 11/19

w

False

>>>

Modes of File:

There are different modes of file in which it can be opened. They are mentioned in the
following table.

A File can be opened in two modes:

1) Text Mode.

2) Binary Mode.

Mode Description

R It opens in Reading mode. It is default mode of File. Pointer is at beginning
of the file.

rb It opens in Reading mode for binary format. It is the default mode. Pointer
is at beginning of file.

r+ Opens file for reading and writing. Pointer is at beginning of file.

rb+ Opens file for reading and writing in binary format. Pointer is at beginning
of file.

W Opens file in Writing mode. If file already exists, then overwrite the file
else create a new file.

wb Opens file in Writing mode in binary format. If file already exists, then
overwrite the file else create a new file.

w+ Opens file for reading and writing. If file already exists, then overwrite the

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT IV

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 12/19

file else create a new file.

wb+ Opens file for reading and writing in binary format. If file already exists,
then overwrite the file else create a new file.

a Opens file in Appending mode. If file already exists, then append the data
at the end of existing file, else create a new file.

ab Opens file in Appending mode in binary format. If file already exists, then
append the data at the end of existing file, else create a new file.

a+ Opens file in reading and appending mode. If file already exists, then
append the data at the end of existing file, else create a new file.

ab+ Opens file in reading and appending mode in binary format. If file already
exists, then append the data at the end of existing file, else create a new
file.

Methods:

There are many methods related to File Handling. They are given in the following table:

There is a module "os" defined in Python that provides various functions which are used to
perform various operations on Files. To use these functions 'os' needs to be imported.

Method Description

rename() It is used to rename a file. It takes two arguments, existing_file_name
and new_file_name.

remove() It is used to delete a file. It takes one argument. Pass the name of the
file which is to be deleted as the argument of method.

mkdir() It is used to create a directory. A directory contains the files. It takes
one argument which is the name of the directory.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT IV

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 13/19

chdir() It is used to change the current working directory. It takes one
argument which is the name of the directory.

getcwd() It gives the current working directory.

rmdir() It is used to delete a directory. It takes one argument which is the
name of the directory.

tell() It is used to get the exact position in the file.

1) rename():

Syntax:

os.rename(existing_file_name, new_file_name)

eg:

import os

os.rename('mno.txt','pqr.txt')

2) remove():

Syntax:

os.remove(file_name)

eg:

import os

os.remove('mno.txt')

3) mkdir()

Syntax:

os.mkdir("file_name")

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT IV

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 14/19

eg:

import os

os.mkdir("new")

4) chdir()

Syntax:

os.chdir("file_name")

Example

import os

os.chdir("new")

5) getcwd()

Syntax:

os.getcwd()

Example

import os

print os.getcwd()

6) rmdir()

Syntax:

os.rmdir("directory_name)

Example

import os

os.rmdir("new")

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT IV

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 15/19

NOTE: In order to delete a directory, it should be empty. In case directory is not empty first
delete the files.

Command line arguments

In the command line, we can start a program with additional arguments.
These arguments are passed into the program.

Python programs can start with command line arguments.

For example:

$ python program.py image.bmp

where program.py and image.bmp is are arguments. (the program is Python)

 How to use command line arguments in python?

We can use modules to get arguments.

Which modules can get command line arguments?

Module Use
Python

version

sys All arguments in sys.argv (basic) All

argparse Build a command line interface >= 2.3

docopt Create command line interfaces >= 2.5

fire
Automatically generating command line interfaces

(CLIs)
All

optparse Deprecated < 2.7

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT IV

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 16/19

Sys argv

You can get access to the command line parameters using the sys module. len(sys.argv)
contains the number of arguments. To print all of the arguments simply execute str(sys.argv)

 #!/usr/bin/python

import sys

print('Arguments:', len(sys.argv))
print('List:', str(sys.argv))

Example:

$ python3 example.py image.bmp color

Arguments: 3

List: [‘example.py’, ‘image.bmp’, ‘color’]

Storing command line arguments
You can store the arguments given at the start of the program in variables.
For example, an image loader program may start like this:

 #!/usr/bin/python
#!/usr/bin/python

import sys

print('Arguments:', len(sys.argv))
print('List:', str(sys.argv))

if sys.argv < 2:
 print('To few arguments, please specify a filename')

filename = sys.argv[1]
print('Filename:', filename)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT IV

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 17/19

Another example:

(‘Arguments:’, 2)

(‘List:’, “[‘example.py’, ‘world.png’]”)

(‘Filename:’, ‘world.png’)

 Argparse

If you need more advanced parsing, you can use argparse.
You can define arguments like (-o, -s).

The example below parses parameters:

import argparse

parser = argparse.ArgumentParser()
parser.add_argument('-o','--open-file', help='Description', required=False)
parser.add_argument('-s','--save-file', help='Description', required=False)

args = parser.parse_args()

print(args.open_file)
print(args.save_file)

Docopt

Docopt can be used to create command line interfaces.

 from docopt import docopt

if __name__ == '__main__':
 arguments = docopt(__doc__, version='Example 1.0')

https://pythonprogramminglanguage.com/argparse/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT IV

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 18/19

 print(arguments)

Note: docopt is not tested with Python 3.6

Fire

Python Fire automatically generates a command line interface, you only need one line of code.
Unlike the other modules, this works instantly.

You don’t need to define any arguments, all methods are linked by default.

To install it type:

pip install fire

Then define or use a class:

 import fire

class Program(object):
 def hello(self):
 print("Hello World")

 def openfile(self, filename):
 print("Opening file '" + filename + "'")

if __name__ == '__main__':
 fire.Fire(Program)

You then have the options matching the class methods:

python example.py hello

python example.py openfile filename.txt

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT IV

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 19/19

 Possible Questions:

2 Mark Questions

1. Point out different modes of file opening

2. Discover the format operator available in files.

3. Define read and write file.

4. Define class and object

5. What are command line arguments?

6. Mention the built in objects in python

6 Mark Questions

1. Illustrate Command line Argument with proper example.

2. Briefly discuss about Built-in-type objects in python.

3. Describe classes and its methods with example.

4. Identify the various methods used in file. Explain it.

5. What is an object? Describe built it objects with example.

6. Define file types. Write a Python program to demonstrate the file I/O operations.

7. Discover syntax and example for Built in Functions in file.

8. Define class. Explain classes and it methods with example.

9. Discuss with suitable examples i) Close a File. ii) Writing to a File.

10. Define object .Describe built in methods with example.

S.NO QUESTIONS OPT 1 OPT 2 OPT 3 OPT 4 ANSWER

1 What is setattr() used for?
To access the

attribute of the
object

To set an
attribute

To check if an
attribute exists

or not

To delete an
attribute

To set an
attribute

2
What are the methods which begin and end with two
underscore characters called?

Special methods
 In-built
methods

User-defined
methods

Additional methods Special methods

3
Which Of The Following Statements Can Be Used To
Check, Whether An Object “Obj” Is An Instance Of
Class A Or Not?

obj.isinstance(A) A.isinstance(obj

)

isinstance(obj,

A)

 isinstance(A, obj) isinstance(obj, A)

4

s = "\t\tWelcome\n" print(s.strip())

 \t\tWelcome\n Welcome\n \t\tWELCOME Welcome Welcome

5

Which Of The Following Statements Are Correct? A reference

variable is an

object.

 A reference

variable refers

to an object.

An object may

contain other

objects.

 An object can

contain the

references to other

objects.

B and D

6
Which Of The Following Represents A Distinctly

Identifiable Entity In The Real World?
A class An object A method A data field An object

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

UNIT III

KARPAGAM ACADEMY OF HIGHER EDUCATION
Department of Computer Science

I M.Sc(CS) (BATCH 2018 - 2021) I SEMESTER

PYTHON PROGRAMMING (18CSP101)

7

Which Of The Following Keywords Mark The Beginning

Of The Class Definition?

def return class All of the above. class

8
which Of The Following Is Required To Create A New

Instance Of The Class?
A constructor A class

A value-
returning
method

A None method A constructor

9

Which Of The Following Statements Is Most Accurate

For The Declaration X = Circle()?

 x contains an

int value.

x contains an

object of the

Circle type.

x contains a

reference to a

Circle object.

you can assign an

int value to x.

x contains a

reference to a

Circle object.

10

Which Of The Following Represents A Template,

Blueprint, Or Contract That Defines Objects Of The

Same Type?

A class An object A method A data field A class

11
What Relationship Correctly Fits For University And
Professor?

association composition inheritance All of the above composition

12
What Relationship Is Appropriate For Fruit And
Papaya?

association composition inheritance All of the above inheritance

13 __________are mutable objects inheritance class methods objects

14
A _____object is well-formed if the values of minute
and second are between 0 and 60 and if hour is
positive

date circle Time constructor Time

15
_____is a function that is associated
with a particular class

class method object string method

16
The ____ method is a special method that gets
invoked when an object is instantiated.

string date Time init init

17
>>> time = Time(9, 45)
>>> time.print_time()

0:00:00 9:00:00 9:45:00 2:00:00 9:45:00

18
_______ is a named location on disk to store related
information.

folder file record disk file

19 ________ is volatile ram rom eprom eeprom ram

20
_______ Symbol is used for Openning a file for
exclusive creation.

'x' 'r' 'w' 'a' 'x'

21
_______ Symbol is used for Openning a file for
updating

'x' 'w' +' -' +'

22 cwd stands for _____
current word

dict

current
working
directory

common
working
directory

current working
Drive

current working
directory

23
A ________ path starts from the current
directory

isolate absolute modified relative relative

24
an _____ path starts from the topmost directory in
the file system

isolate absolute modified relative absolute

25 _____,Open in binary mode. 'x' 'r' 'w' b' 'b'

26
The ___ variable contains an array of strings
consisting of each argument from the command line

args argv argc argz argv

27
______ variable contains the number of
arguments entered

args argv argc argz argc

28
the value for argc is simply the number of items in the
______ list

sys.argv sys.argc sys.argx sys.argz sys.argv

29 __________ is the list of command-line arguments sys.argv sys.argc sys.argx sys.argz sys.argv

30 _______ is the number of command-line arguments len(sys.argc) len(sys.argv) len(sys.argx) len(sys.argz) len(sys.argv)

31 ________Generate filenames in a directory tree walk() chroot() release() root() walk()

32 _______Return last file access time getctime() getmtime() getatime() getbtime() getatime()

33 _____Return last file modification time getctime() getmtime() getatime() getbtime() getmtime()

34
An ________ is a data or functional element that
belongs to another object.

method attribute class object attribute

35 _____ numbers have data attributes (real and imag) complex integer float char complex

36
_______ keyword with which to create an instance of
a class

insert new modify delete new

37
The __________ function immediately terminates the

program.
sys.terminate() sys.halt() sys.exit() sys.stop() sys.exit()

38
______ ,Unique identifier that differentiates an object

from all others
identity type value set identity

39
_____,an object's type indicates what kind of values

an object can hold
identity type value set type

40
________,Data item that is represented by an object.

identity type value set value

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT V

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 1/16

Exception and Tools: Why use it?- Exception roles-Exception in python-Try/finally statement. Regular

Expression: Introduction-Special Symbols and characters-Regexes and Python- Examples of Regexes.

Network Programming: Architecture- Socket- networking programming in python.

Python Exception Handling

Exception can be said to be any abnormal condition in a program resulting to the disruption in
the flow of the program.

Whenever an exception occurs the program halts the execution and thus further code is not
executed. Thus exception is that error which python script is unable to tackle with.

Exception in a code can also be handled. In case it is not handled, then the code is not executed
further and hence execution stops when exception occurs.

Common Exceptions

1. ZeroDivisionError: Occurs when a number is divided by zero.

2. NameError: It occurs when a name is not found. It may be local or global.

3. IndentationError: If incorrect indentation is given.

4. IOError: It occurs when Input Output operation fails.

5. EOFError: It occurs when end of the file is reached and yet operations are being

performed.

Exception Handling:

The suspicious code can be handled by using the try block. Enclose the code which raises an
exception inside the try block. The try block is followed except statement. It is then further
followed by statements which are executed during exception and in case if exception does not
occur.

Syntax:

try:

 malicious code

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT V

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 2/16

except Exception1:

 execute code

except Exception2:

 execute code

....

....

except ExceptionN:

 execute code

else:

 In case of no exception, execute the else block code.

Python Exception Handling Example

try:

 a=10/0

 print a

except ArithmeticError:

 print "This statement is raising an exception"

else:

 print "Welcome"

Output:

>>>

This statement is raising an exception

>>>

Explanation:

1. The malicious code (code having exception) is enclosed in the try block.

2. Try block is followed by except statement. There can be multiple except statement with

a single try block.

3. Except statement specifies the exception which occurred. In case that exception is

occurred, the corresponding statement will be executed.

4. At the last you can provide else statement. It is executed when no exception is occurred.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT V

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 3/16

Python Exception(Except with no Exception) Example

Except statement can also be used without specifying Exception.

Syntax:

try:

 code

 except:

 code to be executed in case exception occurs.

 else:

 code to be executed in case exception does not occur.

Example

try:

 a=10/0;

except:

 print "Arithmetic Exception"

else:

 print "Successfully Done"

Output:

>>>

Arithmetic Exception

>>>

Declaring Multiple Exception in Python

Python allows us to declare multiple exceptions using the same except statement.

Syntax:

try:

 code

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT V

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 4/16

except Exception1,Exception2,Exception3,..,ExceptionN

 execute this code in case any Exception of these occur.

else:

 execute code in case no exception occurred.

Example

try:

 a=10/0;

except ArithmeticError,StandardError:

 print "Arithmetic Exception"

else:

 print "Successfully Done"

Output:

>>>

Arithmetic Exception

>>>

Finally Block:

In case if there is any code which the user want to be executed, whether exception occurs or
not then that code can be placed inside the finally block. Finally block will always be executed
irrespective of the exception.

Syntax:

try:

 Code

finally:

 code which is must to be executed.

Example

try:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT V

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 5/16

 a=10/0;

 print "Exception occurred"

finally:

 print "Code to be executed"

Output:

>>>

Code to be executed

Traceback (most recent call last):

 File "C:/Python27/noexception.py", line 2, in <module>

 a=10/0;

ZeroDivisionError: integer division or modulo by zero

>>>

In the above example finally block is executed. Since exception is not handled therefore
exception occurred and execution is stopped.

Raise an Exception:

You can explicitly throw an exception in Python using ?raise? statement. raise will cause an
exception to occur and thus execution control will stop in case it is not handled.

Syntax:

raise Exception_class,<value>

Example

try:

 a=10

 print a

 raise NameError("Hello")

except NameError as e:

 print "An exception occurred"

 print e

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT V

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 6/16

Output:

>>>

10

An exception occurred

Hello

>>>

Explanation:

i) To raise an exception, raise statement is used. It is followed by exception class name.

ii) Exception can be provided with a value that can be given in the parenthesis. (here, Hello)

iii) To access the value "as" keyword is used. "e" is used as a reference variable which stores the
value of the exception.

Custom Exception:

Refer to this section after visiting Class and Object section:

Creating your own Exception class or User Defined Exceptions are known as Custom Exception.

Example

class ErrorInCode(Exception):

 def __init__(self, data):

 self.data = data

 def __str__(self):

 return repr(self.data)

try:

 raise ErrorInCode(2000)

except ErrorInCode as ae:

 print "Received error:", ae.data

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT V

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 7/16

>>>

Received error : 2000

>>>

Regular expressions

Regular expressions are a very useful technique for extracting information from text such as

code, spreadsheets, documents or log-files. The first thing to keep in mind while implementing

regular expression is that everything essentially needs to be a character & programmers write

patterns to match a specific sequence of characters/strings.

Defining Regular expressions

Regular expressions are characters in special order that help programmers find other sequences

of characters or strings or set of strings using specialized syntax held in a pattern. Python

supports regular expressions through the standard Python library's' which is packed with every

Python installation.

Here, we will be learning about the vital functions that are used to handle regular expressions.

There are many characters having special meaning when they are used as regular expressions.

This is mostly used in UNIX.

Raw Strings in Python

It is recommended to use raw-strings instead of regular strings. When programmers write

regular expressions in Python, they begin raw strings with a special prefix 'r'

and backslashes and special meta-characters in the string, that allows us to pass through them

to regular-expression-engine directly.

match Function

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT V

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 8/16

This method is used to test whether a regular expression matches a specific string in Python.

The re.match(). The function returns 'none' of the pattern doesn't match or includes additional

information about which part of the string the match was found.

Syntax:

re.match (pattern, string, flags=0)

Here, all the parts are explained below:

 match(): is a method

 pattern: this is the regular expression that uses meta-characters to describe what strings
can be matched.

 string: is used to search & match the pattern at the string's initiation.

 flags: programmers can identify different flags using bitwise operator '|' (OR)

Example:

import re#simple structure of re.match()

matchObject = re.match(pattern, input_str, flags=0)

A Program by USING re.match:

Example:

import re

list = ["mouse", "cat", "dog", "no-match"]

Loop starts here

for elements in list:

 m = re.match("(d\w+) \W(d/w+)" , element)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT V

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 9/16

Check for matching

if m:

 print (m . groups ())

In the above example, the pattern uses meta-character to describe what strings it can match.

Here '\w' means word-character & + (plus) symbol denotes one-or-more.

Most of the regular expressions' control technique comes to a role when "patterns" are used.

The re.match function returns a match object on success, None on failure. We

usegroup(num) or groups() function of match object to get matched expression.

Sr.No. Match Object Method & Description

1 group(num=0)
This method returns entire match (or specific subgroup num)

2 groups()
This method returns all matching subgroups in a tuple (empty if there weren't
any)

search Function

It works in a different manner than that of a match. Though both of them uses pattern; but

'search' attempts this at all possible starting points in the string. It scans through the input

string and tries to match at any location.

Syntax:

re.search(pattern, strings, flags=0)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT V

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 10/16

Program to show how it is used:

import re

value = "cyberdyne"

g = re.search("(dy.*)", value)

if g:

 print("search: ", g.group(1))

s = re.match("(vi.*)", value)

if s:

 print("match:", m.group(1))

Output:

dyne

split Function

The re.split() accepts a pattern that specifies the delimiter. Using this, we can match pattern &

separate text data. 'split()" is also available directly on a string & handles no regular expression.

Program to show how to use split():

Example:

import re

value = "two 2 four 4 six 6"

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT V

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 11/16

#separate those non-digit characters

res = re.split ("\D+" , value)

print the result

for elements in res :

 print (elements)

Output:

2

4

6

In the above program, \D+ represents one or more non-digit characters.

 Network Programming

Python plays an essential role in network programming. The standard library of Python has full

support for network protocols, encoding and decoding of data and other networking concepts

and it is simpler to write network programs in Python than that of C++.

Here, we will learn about the essence of network programming concerning Python. But for this

programmers must need to have basic knowledge of:

 Low-Level Programming using sockets

 Data encoding

 HTTP and web-programming

 High-Level client modules

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT V

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 12/16

 Basic networking terms and their concepts etc.

Python Network Services

There are two levels of network service access in Python. These are:

 Low-Level Access

 High-Level Access

In the first case, programmers can use and access the basic socket support for the operating

system using Python's libraries, and programmers can implement both connection-less and

connection-oriented protocols for programming.

Application level network protocols can also be accessed using high-level access provided by

Python libraries. These protocols are HTTP, FTP, etc.

Defining Socket

A socket is the end-point in a flow of communication between two programs or communication

channels operating over a network. They are created using a set of programming request called

socket API (Application Programming Interface). Python's socket library offers classes for

handling common transports as a generic interface.

Sockets use protocols for determining the connection type for port-to-port communication

between client and server machines. The protocols are used for:

 Domain Name Servers (DNS)

 IP addressing

 E-mail

 FTP (File Transfer Protocol) etc...

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT V

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 13/16

Socket Program

Python has socket method that let programmers' set-up different types of socket virtually. The

syntax for socket method is:

Syntax:

g = socket.socket (socket_family, type_of_socket, protocol=value)

For example, if we want to establish a TCP socket, we can write the following code snippet:

Example:

imports everything from 'socket'

from socket import *

use socket.socket() - function

tcp1=socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Here's another example to establish UDP socket. The code is:

udp1=socket.socket (socket.AF_INET, socket.SOCK_DGRAM)

After you defined the socket, you can you can use several methods to manage the connections.

Some of the important server socket methods are:

 listen(): is used to establish and start TCP listener.

 bind(): is used to bind address (host-name, port number) to the socket.

 accept(): is used to TCP client connection until the connection arrives.

 connect(): is used to initiate TCP server connection.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT V

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 14/16

 send(): is used to send TCP messages.

 recv(): is used to receive TCP messages.

 sendto(): is used to send UDP messages

 close(): is used to close a socket.

A Simple Network Program Using Python

Example:

import socket

T_PORT = 60

TCP_IP = '127.0.0.1'

BUF_SIZE = 30

create a socket object name 'k'

k = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

k.bind((TCP_IP, T_PORT))

k.listen(1)

con, addr = k.accept()

print ('Connection Address is: ' , addr)

while True :

 data = con.recv(BUF_SIZE)

if not data:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT V

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 15/16

 break

print ("Received data", data)

con.send(data)

con.close()

Save the file with filename - tcpserver.py

This will open a web server at port 60. In the above program, everything you write in the client

goes to the server.

Now a simple Python client script:

import socket

T_PORT = 5006

TCP_IP = '127.0.0.1'

BUF_SIZE = 1024

MSG = "Hello karl"

create a socket object name 'k'

k = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

k.connect((TCP_IP, T_PORT))

k.send(MSG)

data = k.recv(BUF_SIZE)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : I M.Sc CS BATCH : 2018 - 2020

COURSE NAME : PYTHON PROGRAMMING COURSE CODE : 18CSP101

UNIT V

Prepared by : A.Jeevarathinam ,Department of CS,CA & IT ,KAHE 16/16

k.close

Sending messages back and forth using different basic protocols is simple and straightforward.

It shows that programming takes a significant role n client-server architecture where the client

makes data request to a server, and the server replies that machine.

Possible Questions:

2 Mark Questions

1. What is exception?

2. Mention the types of exception in python.

3. Define Socket.

4. Define networks.

5. Define Exception and its types

6. What is regular expression?

7. Write the syntax for re.match in RE.

6 Mark Questions

1. Describe in detail exception handling with sample program.

2. Explain network programming with neat sketch.

3. Summarize regular expression in python.

4. Demonstrate architecture of network programming in python

5. Define Exception and its types. Write a program to catch a Divide by zero exception.

6. Analyze regular expression using in python.

7. How to handle exception in python. Explain its types.

8. Difference between built in exceptions and handling exception with example.

S.NO QUESTIONS OPT 1 OPT 2 OPT 3 OPT 4 ANSWER

1 When will the else part of try-except-else be executed? always
when an

exception
occurs

when no
exception

occurs

when an exception
occurs in to except

block

when no
exception occurs

2
What is the output of the expression?
round(4.5676,2)? 4.5 4.6 4.57 4.56 4.57

3

What is the output of the code shown below?
def f(x):
 yield x+1
 print("test")
 yield x+2
g=f(9)

Error test test1012 No output No output

4
How many keyword arguments can be passed to a
function in a single function call?

zero one zero or more one or more zero or more

5
Which module in the python standard library parses
options received from the command line?

getopt os getarg main getopt

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

UNIT V

KARPAGAM ACADEMY OF HIGHER EDUCATION
Department of Computer Science

I M.Sc(CS) (BATCH 2018 - 2021) I SEMESTER

PYTHON PROGRAMMING (18CSP101)

6 What is the type of sys.argv? set list tuple string list

7
How are keyword arguments specified in the function
heading?

one star

followed by a

valid identifier

one underscore
followed by a
valid identifier

two stars
followed by a
valid identifier

two underscores
followed by a valid

identifier

two stars
followed by a
valid identifier

8
What is the output of the code shown below?

def f1():
Error 100 101 99 100

9 When is the finally block executed? always
when an

exception
occurs

when no
exception

occurs

when an exception
occurs in to except

block
always

10

What is the output of the following code?

def foo():
 try:

1 2 1 2 none 1 2

11
Which of the following is not an exception handling
keyword in Python?

try except accept finally accept

12

 What is the output of the code shown below?

g = (i for i in range(5))
type(g)

class <’loop’>
class

<‘iteration’>
class <’range’> class <’generator’>

class
<’generator’>

13
Python has a very powerful library called ____
expressions that handles many of these tasks quite
elegantly.

regular accept irrugular start regular

14
_________ expressions are almost their own little
programming language for searching and
parsing strings

irrugular accept Regular start Regular

15
__________ method to
extract all of the substrings which match a regular
expression.

replaceall() findall() find() replace() findall()

16

Identify the type of error in the codes shown below.
Print(“Good Morning”)
print(“Good night)

Syntax, Syntax
Semantic,

Syntax
Semantic,
Semantic

Syntax, Semantic
Semantic, Syntax

17
Which of the following is not a standard exception in
Python? NameError IOError

AssignmentErro
r

ValueError AssignmentError

18 An exception is: an object
a special
function

a standard module a module an object

19
_______________________ exceptions are raised as a
result of an error in opening a particular file.

NameError IOError
AssignmentErro

r
ValueError IOError

20
Which of the following blocks will be executed
whether an exception is thrown or not?

except else finally assert finally

21
The _______statement allows the programmer to
force a specific exception to occur.

except else raise assert raise

22

What is the output of the code shown?
def f(x):
 for i in range(5):
 yield i
g=f(8)
print(list(g))

[0, 1, 2, 3, 4]
 [1, 2, 3, 4, 5, 6,

7, 8]
[1, 2, 3, 4, 5]

[0, 1, 2, 3, 4, 5, 6, 7]
[0, 1, 2, 3, 4]

23

What is the output of the code shown below?
#generator
def f(x):
 yield x+1
g=f(8)
print(next(g))

8 9 7 ERROR 9

24
Which of the following is not an exception handling
keyword in Python?

accept finally except Try accept

25
_____ statements allow one to detect and handle
exceptions

TRy-finally try-except except_suite try_suite try-except

26
____statements allow only for detection and
processing of any obligatory cleanup

except_suite try_suite TRy-finally try-except TRy-finally

27
The_____ built-in function has a primary purpose of
converting any numeric type to a float

int() double() long() float() float()

28 ____Request termination of Python interpreter SystemEnd SystemStop SystemFinish SystemExit SystemExit

29 ______Iteration has no further values SystemEnd SystemStop StopIteration SystemExit StopIteration

30 ____Base class for all standard built-in exceptions StopError StandardError BulitinError ComplieError StandardError

31
it is used to choose from one of the different regular
expressions, which are separated by the ____
symbol

star pipe comma colon pipe

32
____Match 0 or more occurrences of preceding
Regular Expression

star plus minus divide star

33 ____Match 1 or more occurrences of preceding RE star plus minus divide plus

34 ____Match end of string $! # % $

35 ____Match stast of string $ ^ # % ^

36 ____Match any character (except NEWLINE) $ ^ . % .

37
____ will either return the entire match, or a specific
subgroup,

split splits() group() groups() group()

38
____ will simply return a tuple consisting of only/all

the subgroups
split groups() group() splits() groups()

39
____ servers are examples of hardware servers

web printer Software hardware printer

40

____ servers also run on a piece of hardware but do

not have dedicated peripheral devices as

hardware servers

Software hardware web printer Software

41 One of the more common software servers today is
the ___ server.

Software hardware Web printer Web

	1.pdf (p.1-3)
	18CSP101 PYTHON PROGRAMMING 4H – 4C
	UNIT V

	2.pdf (p.4-9)
	3.pdf (p.10-47)
	PYTHON INTRODUCTION
	Python Features
	1) Easy to Learn and Use
	2) Expressive Language
	3) Interpreted Language
	4) Cross-platform Language
	5) Free and Open Source
	6) Object-Oriented Language
	7) Extensible
	8) Large Standard Library
	9) GUI Programming Support
	10) Integrated

	Python History
	Python Version
	Python Applications Area
	1) Web Applications
	2) Desktop GUI Applications
	3) Software Development
	4) Scientific and Numeric
	5) Business Applications
	6) Console Based Application
	7) Audio or Video based Applications
	8) 3D CAD Applications
	9) Enterprise Applications
	10) Applications for Images

	Python Example
	Python Example using Interactive Shell
	Python 3.4 Example

	Python Variables
	Python program to swap two variables
	Data type:
	Python has four standard data types:
	Python Keywords
	Identifiers
	Python Operators
	Types of Operators
	Arithmetic Operators
	Relational Operators
	Assignment Operators
	Logical Operators

	Python If Statements
	Python If Else Statements
	Python Nested If Else Statement
	Looping
	For Loop
	Python Nested For Loops

	Python While Loop
	Do While Loop
	Python Break
	Python Continue Statement
	Python Pass
	Python Functions
	Types of Functions:
	Defining a Function
	Invoking a Python Function
	Python Function return Statement
	Python Function return Example

	Python Function Argument and Parameter
	Passing Parameters
	Python Function Default Arguments

	4.pdf (p.48-52)
	5.pdf (p.53-90)
	Examples
	Number Type Conversion
	Add Two Numbers Provided by The User
	Complex Number
	A long time ago, mathematicians were absorbed by the following equation:
	x2= -1
	The reason for this is that any real number (positive or negative) multiplied by itself results in a positive number. How can you multiply any number with itself to get a negative number? No such real number exists. So in the eighteenth century, mathe...
	Python complex() Function
	Definition and Usage
	Syntax
	Parameter Values
	Example

	More Examples
	Accessing Python Strings
	Python String Example

	Python Strings Operators
	Python String Basic Operators
	String Concatenation Operator (+)
	Python String Concatenation Example

	Python String Replication Operator (*)
	Python String Membership Operators
	Python String membership operator Example

	Python Relational Operators
	Python String Slice Notation
	Python String Slice Example 1

	Python String Functions and Methods
	Python String capitalize() Method Example
	Python String count(string) Method Example
	Python String endswith(string) Method Example
	Python String find(string) Method Example
	Python String index() Method Example
	Python String isalnum() Method Example
	Python String isalpha() Method Example
	Python String isdigit() Method Example
	Python String islower() Method Example
	Python String isupper() Method Example
	Python String isspace() Method Example
	Python String len(string) Method Example
	Python String lower() Method Example
	Python String upper() Method Example
	Python String startswith(string) Method Example
	Python String swapcase() Method Example
	Python String lstrip() Method Example
	Python String rstrip() Method Example

	Python List
	Python List Syntax
	Syntax to Access Python List
	Elements in a Lists:
	Python List Operations
	a) Adding Python Lists
	Add lists Example 1
	Add lists Example 2
	b) Python Replicating lists
	Python list Replication Example
	c)Python List Slicing

	Python List Other Operations
	Python Updating List
	Appending Python List
	Deleting Elements

	Python lists Method

	6.pdf (p.91-96)
	7.pdf (p.97-122)
	Python Tuple
	Python Tuple Example
	Python Empty Tuple Example
	Python Single Object Tuple Example
	Python Tuple of Tuples Example
	Accessing Tuple
	Accessing Tuple Example

	Elements in a Tuple
	Python Tuple Slicing Example

	Python Tuple Operations
	Adding Tuples Example

	Python Tuple other Operations
	Creating Tuple from Existing Example
	Python Tuple Deleting Example

	Functions of Tuple
	Python Tuple min(tuple) Method Example
	Python Tuple max(tuple) Method Example
	Python Tuple len(tuple) Method Example
	Python Tuple cmp(tuple1,tuple2) Method Example

	Why should wee use Tuple? (Advantages of Tuple)
	Accessing Dictionary Values
	Updating Python Dictionary Elements
	Deleting Python Dictionary Elements Example
	Python Dictionary Functions and Methods
	Python Dictionary len(dictionary) Example
	Python Dictionary cmp(dictionary1,dictionary2) Example
	Python Dictionary str(dictionary) Example
	Python Dictionary keys() Method Example
	Python Dictionary values() Method Example
	Python Dictionary items() Method Example
	Python Dictionary update(dictionary2) Method Example
	Python Dictionary clear() Method Example
	Python Dictionary fromkeys(sequence)/ fromkeys(seq,value) Method Example
	Python Dictionary copy() Method Example
	Python Dictionary has_key(key) Method Example
	Python Dictionary get(key) Method Example

	8.pdf (p.123-127)
	9.pdf (p.128-146)
	Python Classes and Objects
	Create a Class
	Example

	Create Object
	Example

	The __init__() Function
	Example

	Object Methods
	Example

	The self Parameter
	Example

	Modify Object Properties
	Example

	Delete Object Properties
	Example

	Delete Objects
	Example

	Python Object
	Python Class
	Define a class in Python
	Create an Object in Python
	Python Object Class Example
	Attributes of File:
	Modes of File:
	Methods:
	How to use command line arguments in python?
	Sys argv
	Argparse
	Docopt
	Fire

	10.pdf (p.147-151)
	11.pdf (p.152-167)
	Python Exception Handling
	Exception Handling:
	Python Exception(Except with no Exception) Example
	Declaring Multiple Exception in Python
	Finally Block:
	Raise an Exception:
	Custom Exception:
	match Function
	search Function
	split Function
	Python Network Services
	Socket Program
	A Simple Network Program Using Python

	12.pdf (p.168-172)

