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PO: After the completion of this course, the learner will be enriched with the concept of analysis
which is the motivating tool in other area such as applied mathematics.

PLO: To understand the Riemann — Stieltjes Integral, Infinite series, infinite products,
Sequences of functions, the Lebesgue integral, Implicit functions and extremum problems to
have a sound knowledge in Measure Theory.

UNIT I

The Riemann — Stieltjes Integral:

Introduction — Basic Definitions — Linear Properties — Integration by parts — Change of variable
in a Riemann — Stieltjes Integral — Reduction to a Riemann Integral — Step functions as
integrators — Reduction of a Riemann — Stieltjes Integral to a finite sum — Monotonically
increasing — Additive and linear properties — Riemann condition — Comparison theorems —
Integrators of bounded variation — Sufficient condition for Riemann Stieltjes integral.

UNIT Il

Infinite series and infinite products:

Introduction — Basic definitions — Ratio test and root test — Dirichlet test and Able’s test
Rearrangement of series — Riemann’s theorem on conditionally convergent series — Sub series -
Double sequences — Double series — Multiplication of series — Cesaro summability.

UNIT 111

Sequences of functions:

Basic definitions — Uniform convergence and continuity - Uniform convergence of infinite series
of functions — Uniform convergence and Riemann — Stieltjes integration — Non uniformly
convergent sequence — Uniform convergence and differentiation — Sufficient condition for
uniform convergence of a series.

UNIT IV

The Lebesgue integral:

Introduction- The class of Lebesgue — integrable functions on a general interval- Basic properties
of the Lebesgue integral- Lebesgue integration and sets of measure zero- The Levi monotone
convergence theorem- The Lebesgue dominated convergence theorem-

Applications of Lebesgue dominated convergence theorem- Lebesgue integrals on unbounded
intervals as limit of integrals on bounded intervals- Improper Riemann integrals- Measurable
functions.

UNIT V
Implicit functions and extremum problems:
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Introduction — Functions with non zero Jacobian determinant — Inverse function theorem —
Implicit function theorem — Extrema of real valued functions of one variable and several
variables.
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S. No. Lecture Topics to be covered Support Materials
Duration
(Hours)
UNIT -1
1. 1 Introduction on Riemann-Stieltjes integral T1: Chap: 6, Pg. No : 120-
124
2. 1 Some basic definitions on Riemann-Stieltjes T1: Chap: 6, Pg. No : 124-
integral 128
3. 1 Linear properties of Riemann-Stieltjes integral | T1: Chap: 6, Pg. No : 128-
129
4. 1 Continuation on linear properties of Riemann- | T1: Chap: 6, Pg. No : 129-
Stieltjes integral 131
5. 1 Integration by parts T1: Chap: 6, Pg. No : 134
6. 1 Change of variable in Riemann-Stieltjes T1: Chap: 6, Pg. No : 132-
integral 133
7. 1 Reduction to Riemann integral R1: Chap: 7, Pg. No : 145-
146
8. 1 Step function as integrators R1: Chap: 7, Pg. No : 147-
148
9. 1 Reduction of a Riemann-Stieltjes integral toa | R1: Chap: 7, Pg. No : 148-
finite sum 149
10. 1 Monotonically increasing on Riemann integral | R1: Chap: 7, Pg. No : 150-
152
11. 1 Additive and linear properties on Riemann R1: Chap: 7, Pg. No : 153
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integral

12. 1 Riemann condition R1: Chap: 7, Pg. No : 154

13. 1 Comparison theorems & Integrators of R1: Chap: 7, Pg. No : 155-
bounded variation 156

14. 1 Sufficient condition for Riemann stieltjes R1: Chap: 7, Pg. No : 156-
integral 158

15. 1 Recapitulation and discussion of important R1: Chap: 7, Pg. No : 159
questions on unit |

Total 15 Hours

T1. Rudin. W.,1976 .Principles of mathematical Analysis, Mcgraw hill, Newyork .

R1. Tom .M. Apostol .,2002. Mathematical Analysis, Second edition, Narosa Publishing

House,New Delhi.

UNIT -1l

1. 1 Introduction on infinite series & infinite R3: Chap: 5, Pg. No : 5.1-
products 5.3

2. 1 Some basic definitions on infinite series and R1: Chap: 8, Pg. No : 183-
infinite products 191

3. 1 Ratio test and root test R1: Chap: 8, Pg. No : 193-
194

4. 1 Drichlet test and R3: Chap: 6, Pg. No : 6.1-
6.4

5. 1 Able’s test R1: Chap: 8, Pg. No : 196

6. 1 Rearrangement of Series R1: Chap: 8, Pg. No : 197

7. 1 Riemann’s Theorem on conditionally R1: Chap: 8, Pg. No : 197-
convergent series 199

8. 1 Sub series on conditionally convergent series R1: Chap: 8, Pg. No : 199-
Double sequences on 200
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9. 1 conditionally convergent series R1: Chap: 8, Pg. No :200-
202
10. 1 Double series on conditionally convergent R1: Chap: 8, Pg. No :203-
series 205
11. 1 Problems on double series on conditionally R1: Chap: 8, Pg. No :205-
convergent series 206
12. 1 Multiplication of series R1: Chap: 8, Pg. No :206-
208
13 1 conditionally convergent series R1: Chap: 8, Pg. No :209-
210
14 1 Cesaro Summability R1: Chap: 8, Pg. No :11-
212
15 1 Recapitulation and discussion of important
questions on unit 11
Total 15 Hours

R1. Tom .M. Apostol .,2002. Mathematical Analysis, Second edition, Narosa Publishing

House,New Delhi.

R3. Gupta . S.L ., and N.R. Gupta ., 2003.Principles of Real Analysis, Second edition, Pearson

Education Pvt.Ltd,Singapore.

UNIT —I11
1. 1 Basic definitions on sequences R5: Chap:3, Pg. No :33-36
2. 1 Basic definitions on of functions R5: Chap:3, Pg. No :39-41
3. 1 Uniform convergence on sequences of T1: Chap:7, Pg. No :143-
functions 146
4. 1 Continuity of uniform convergence on T1: Chap:7, Pg. No :147-
sequences of functions 148
5. 1 Uniform convergence of infinite series R2: Chap:9, Pg. No :533-
534
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6. 1 Problems on infinite series of functions T1: Chap:7, Pg. No :152-
153
7. 1 Riemann-Stieltjes integration T1: Chap:7, Pg. No :152-
154
8. 1 Non-uniformly convergent sequence R1: Chap:9, Pg. No :228-
229
9. 1 Non-uniformly convergent sequence. R1: Chap:9, Pg. No :230-
231
10. 1 Problems on non-uniformly convergent
sequence
11 1 Problems on non-uniformly convergent R1: Chap:9, Pg. No :231
sequence
12 1 Problems on non-uniformly convergent R1: Chap:9, Pg. No :232
sequence .
13 1 Necessary condition for uniform convergence | R1: Chap:9, Pg. No :235
of a series
14 1 Sufficient condition for uniform convergence | R1: Chap:9, Pg. No :235
of a series
15 1 Recapitulation and discussion of important
questions on unit I11
Total 15 Hours

T1. Rudin. W.,1976 .Principles of mathematical Analysis, Mcgraw hill, Newyork .

R1. Tom .M. Apostol .,2002. Mathematical Analysis, Second edition, Narosa Publishing

House,New Delhi.

R5. Sterling. K. Berberian ., 2004.A First Course in Real Analysis, Springer Pvt Ltd, New Delhi.

UNIT-IV
1. 1 Introduction on Lebesgue integral R4:Chap:4,Pg.No:75-77
2. 1 The class of Lebesgue — integrable functions R1:Chap:10,Pg.No:254-
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on a general interval 256
3. 1 Basic properties of a Lebesgue integral R4:Chap:4,Pg.N0:85-88
4. 1 Lebesgue integration and sets of measure zero | R1:Chap:10,Pg.N0:264-
265
5. 1 The Levi monotone convergence theorem R1:Chap:10,Pg.N0:266-
268
6. 1 The Lebesgue dominated convergence theorem | R1:Chap:10,Pg.No:268-
270
7. 1 Applications of Lebesgue dominated R1:Chap:10,Pg.No:270-
convergence theorem 272
8. 1 Continuation of applications of Lebesgue R1:Chap:10,Pg.No:272-
dominated convergence theorem 274
9. 1 Lebesgue integrals on unbounded interval as R1:Chap:10,Pg.No:274-
limit of integrals on bounded intervals 275
10. 1 Improper Riemann integrals R1:Chap:10,Pg.N0:276-
279
11. 1 Measurable functions R1:Chap:10,Pg.N0:279-
280
12. 1 Problems on Improper Riemann integrals R1:Chap:10,Pg.N0:278
13 1 Problems on Improper Riemann integrals R1:Chap:10,Pg.No0:282
14 1 Problems on Measurable functions R1:Chap:10,Pg.N0:279-
280
15 Recapitulation and discussion of important
questions on unit IV
Total 15 Hours

R1. Tom .M. Apostol .,2002. Mathematical Analysis, Second edition, Narosa Publishing

House,New Delhi.

UNIT -V
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1. 1 Introduction on implicit functions R1:Chap:13,Pg.N0:367-
368
2. 1 Functions with non-zero Jacobian determinant | R1:Chap:13,Pg.N0:368-
371
3. 1 Inverse function theorem R1:Chap:13,Pg.N0:372-
373
4. 1 Implicit function theorem R1:Chap:13,Pg.N0:373-
375
5. 1 Extrema of real valued functions of one R1:Chap:13,Pg.N0:375-
variable 376
6. 1 Extrema of real valued functions of several R1:Chap:13,Pg.N0:376-
variables-Theorems 379
7. 1 Extrema of real valued functions of several R1:Chap:13.Pg No : 380-
variables -Theorems 381
8. 1 Problems on Extrema of real valued functions | R1:Chap:13.Pg No : 380
of several variables
9. 1 Problems on Inverse function theorem R1:Chap:13.Pg No : 380
10. 1 Problems on Inverse function theorem R1:Chap:13.Pg No : 376
11 1 Problems on Inverse function theorem R1:Chap:13.Pg No : 378
12 1 Recapitulation and discussion of important
questions on unit V
13 1 Discussion of previous ESE question papers.
14 1 Discussion of previous ESE question papers.
15 1 Discussion of previous ESE question papers.
Total 15 Hours

R1. Tom .M. Apostol .,2002. Mathematical Analysis, Second edition, Narosa Publishing
House,New Delhi.
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UNIT I

The Riemann — Stieltjes Integral:

Introduction — Basic Definitions — Linear Properties — Integration by parts — Change of variable
in a Riemann — Stieltjes Integral — Reduction to a Riemann Integral — Step functions as
integrators — Reduction of a Riemann — Stieltjes Integral to a finite sum — Monotonically
increasing — Additive and linear properties — Riemann condition — Comparison theorems —
Integrators of bounded variation — Sufficient condition for Riemann Stieltjes integral.

TEXT BOOK
1. Rudin. W., (1976) .Principles of Mathematical Analysis, Mcgraw Hill, New york .

REFERENCES

1. Tom .M. Apostol., (2002). Mathematical Analysis, Second edition, Narosa Publishing House,
New Delhi.

2. Balli. N.P., (1981). Real Analysis, Laxmi Publication Pvt Ltd, New Delhi.

3. Royden .H.L., (2002). Real Analysis, Third edition, Prentice hall of India,New Delhi.

Prepared by : S.Kohila,Department of Mathematics ,KAHE Page 1/14



UNIT | RIEMANN STIELTJES INTEGRATION 2017 | BATCH

1.1.The Riemann-Stieltjes Integral.
Definitions:

Let [a, b] be a given interval. Then a set P = {x0 , x1, ..., xn-1, xn } of [a, b] such that
a=x0 <xI1<...... <xn-1 <xn=b is said to be a Partition of [a, b]. The set of all partitions of [a,
b] is denoted by P([a, b]). The intervals [x0, x1 ], [x0, x1 ], [x] ,x2 ], ..., [xn-1, xn] are called
the subintervals of [a, b]. Write Axi = xi — xi-1 is called the length of the interval [xi-1, xi ] (i = 1,
..., n) and max |Axi | is called the norm of the partition P and is denoted by ||P|| or Q is called the
refinement or finer of the partition P.c(P). A partition Q of [a, b] such that P — Q is called the
refinement or finer of the partition P.c(P). A partition Q of [a, b] such that P Suppose fis a
bounded real valued function defined on [a, b] and 2 P( [a, b]). TheMi = sup f(x) , m i = inf f(x)
(xi-1 < x <xi) for each P

Suppose f is a bounded real valued function defined on [a, b] and P( [a, b]). Thene

Mi = sup f(x) , m i = inf f(x) (xi-1 <x < xi) for each P nn m i Axi are called the Upper
and Lower Riemann sumsZ M i Axi and L(P, f) = 2U(P, f) = i=11=1 or Upper and Lower
Darboux sums of f on [a, b] with respect to the partition P .

Further write - bb | fdx = inf U(P, f) and | f dx = sup L(P, ) a - a where the inf and the
sup are taken over all partitions P of [a, b] are called the Upper and Lower Riemann integrals of f
over [a, b], respectively.

If the upper and lower Riemann integrals are R[a, b] and we denotesequal, we say that f
is Riemann-integrable on [a, b] and we write f the common value of these integrals by b | £ d(x),
a-bbbie.,[fdx=[fdx=]fdx.

R is bounded function then the upper and lower Riemann—1.1.1. Lemma . If f: [a, b]
integrals of f are bounded. Since f is bounded, there exist two numbers m and M such that m <
f(x) <M (a < x <b). Hence, for every partition P of [a, b] we have M< Mi < mi <m miAxiX
<mAXi £ = MiAxiZ < MAxiX <,i=1,2, 3, ...,n. m(b-a)<L(P,f) <U(P,f) <M(b-a),= so that
the numbers L(P,f) and U(P,f) form a bounded set. Therefore by the definition of lower and
upper Riemann integrals this shows that the upper and lower integrals are defined for every
bounded function f are bounded also. The question of their equality, and hence the question of
the integrability of f,

R is bounded function, P is any partition of [a, b] and P* is the—

1.1.2. Lemma. If f: [a, b] refinement of P, then L(P, f) < L(P*, f) and U(P*, f) <U(P, f).
R is bounded function and P1, P2 are any two partitions of [a, b]—
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1.1.3. Lemma. R is bounded function and P1, P2 are any two partitions of [a, b]—>If f: [a,
b]

L(P1, f) <U(P2, f) and L(P2, f) <U(P1, ).
R are bounded functions and P is any partition of [a, b] then—1.1.4.

Lemma. Iff, g: [a, b] (i) L(P, f+ g) > L(P, f) + L(P, g) (ii) U(P, f+ g) < U(P, f) + U(P,
g). R is bounded function .

Theorem. Iff: [a,b] -bb|fdx>]fdxa-aeR is bounded function then for —1.1.2.
Theorem (Darboux). If f: [a, b] > 0 there exists > 0 such that - b b U(P, f) < and L(P, f)ef f+
e>[fdx - a-a Risbounded function is Riemann Integrable if the oscillatory—

1.1.3. Theorem. If f: [a, b] sum< (P, f) = U(P,f) - L(P,Nw, i.e. e < e, for e > 0 and any
partition P of [a, b]. R is Riemann Integrable.

1.1.4. Theorem. Every continuous function f: [a, b] R is Riemann Integrable.—»1.1.5.
Theorem. Every monotone function f: [a, b] Students you studied the properties given above
and other properties of Riemann Integrals in previous classes therefore we are not interested to
investigate these here. However we shall immediately consider a more general situation. be a
monotonically increasinga R is bounded function and —

1.1.2 Definition. Let f: [a, b] function on [a, b]. Let P = {x0, x1, ..., xn-1, xn } such
that a= x0 <x1<...... <xn-1 <xn = b be any Partition of [a, b] . We write (xi-1),1=1, 2,3, ...,
n.ou(xi) - ai =alA is bounded on [a, b],a.(b) are finite therefore a(a) and aBy the definition of
monotone function 1>0,i=1, 2, 3, ..., n.aA is monotonically increasing function then clearly
oalso since P([a, b]). We definecLet Mi = sup f(x) , mi = inf f(X) (xi-1 <x < xi) for each P nn
i,ao mi AY) = ai, and L(P, f, o Mi AY) = aU(P, f, i=1 i=1 are called the Upper and Lower
Riemann Stieltjes sums respectively. Further we define -b b ),o = sup L(P, f, o) and | fdo = inf
U(P, f, of £d a -a where the inf and the sup are taken over all partitions P of [a, b], are called the
Upper and Lower Riemann Stieltjes integrals of f over [a, b], respectively.

If the upper and lower Riemann Stieltjes integrals are equal, we say that f is Riemann
Stieltjes integrable on [a, b]

Lower Riemann Stieltjes integrals of f over [a, b], respectively. If the upper and lower
Riemann Stieltjes integrals are equal, we say that f is Riemann Stieltjes integrable on [a, b]

[ fd (x)o or | f(x) daf fd
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overaThis is the Rientatm-Stieltjes integral (or simply the Slielljes integral of f with
respect to (x) = x we see that the Riemann integral is the special case of the Riemannafa,b]. If
we put (X) = X

we see that the Riemann integral is the special case of the Riemanns
If f: [a, b] be a monotonically increasing functiona R is bounded function

.Lemma If f: [a, b] on [a, b]. Let P be any Partition of [a, b] . Then the upper and lower
Riemann-Stietjes integrals of be a monotonically increasing function on [a, b]. Let P be any
Partition of [a, b] .Then the upper and lower Riemann-Stietjes integrals of are bounded.af with
respect to

Proof. Since f is bounded, there exist two numbers m and M such that m < f(x) <M (a <
x <b). Hence, for every partition P of [a, b] we have M< Mi<mi <m iomiAX <i amAZ =
IcMIAY < 1IoMAX <,i=1,2, 3, ...,n. (a)],a(b) —a) <M[a) S U(P, f, a(a)] <L(P, £, a(b) — o
m[= ) form a bounded set.

Therefore by the definition ofo)) and U(P, f, aso that the numbers L(P, f, lower and
upper Riemann-Stietjes integrals this shows that the upper and lower integrals are defined for
every bounded function f are bounded also. 1.1.6.

Lemma. If P* is a refinement of the partition P of [a, b], then ).a) <U(P, f, a) and U(P*,
f, o) <L(P*, f, aL(P, f,

Proof. Let P= {x0, x1, ..., xn-1, xn } such that a=x0 <xI<...... <xn-1<xn=>bbe
any Partition of [a, b] and P* the refinement of P contains just one point X* more than P such
that xi-1< x*

where X i-1 and xi are two consecutive points of P.

Let mi, mi, mi’ are the infimum of f(x) in” mi<[xi-1, xi], [xi-1, x*] and [ x* , xi]
respectively then clearly mi mi <and mi’ . Therefore” ) = mia) - L(P,f, aL(P*,f, (xi-1)] +
mio(x*) - o [" (Xi-1)Jou(xi) - ou(x*)] - mifou(xi) - o ['" = mi (xi-1)] + mio(X*) - o[’ (Xi-1)]ou(x*) -
o(X*) + au(xi) - a(x*)] - mifou(xi) - o[ = (Mi (xi-1)] + (Mio(x*) - a- mi)[" 0.>(x*)] ou(xi) - a-

mi)["" ).

If P* contains k points more than P then byb repeating thea L(P*, f, <) aHence L(P, f, )
is analogousa) < U(P, f, a )same process we arrive at the same result.
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E.2. PROPERTIES 279

a8 L — OO, wWe have

fm flzr)da(x) = 50 + 55 = 105.

E.2. Properties

Theorem E4. Let ¢y, o be two constants in B.

(1) If f.g € R(a) on [a,b], then c1f + c2g € R(a) on [a,b], and

] ] b
f (cr f + cog)da = clf fdo+ r.'g—[ g dex.

(2) If f € Rla) and f € R(3) on [a.b]. then f € R(c,a + &3) on [a.b]. and

_/;b fdley +ea3) =y -[’ fdo + e j:fd.i_

(3) If c € [a,b], then

f:fdn=[fm+ffdﬂ.

Definition E.5. If a2 < b, we define

[fdn=—[fdn_

Theorem E.6. If f € R(a) and a has a confinuous derivative on [a.b], then the

b
Riemann integral _[ f(z)a'(x)dr erists and

/ ' (@) do(z) = / ' f(@)a' (@) d.
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E.3.1. Integration by parts.

Theorem E.7 (Integration by parts). If f € R(a) on [a.b]. then a € R(f) on [a.b].

and

b b
/ f(z) da(z) = f(b)a(b) — f(a)a(a) — / o(x) df (z).

Example E.8. As in Example E.3, f(z) = z, and a(z) = z + [z]. Then

10
£(10)a(10) — £(0)a(0) — A a(z) df (z)

10
10x20—0x0— [ (z+][])dr
0

10
A f(z) da(z)

10
200 — 50 — / [z)dz = 150 — 45 = 105
0

E.3.2. Change of variables.

Theorem E.9 (Change of variables). Suppose that f € R(a) on [a,b] and g is a
strictly increasing continuous function on [c.d) with a = g(c). b = g(d). Let h = fog.

3=aog. Then h € R(3) on [c.d] and
b d d
/ f(2) doz) = / £(9(t)) dalg(t) = / h(t) d3(e).
Example E.10. Let y = \/z, we have

_/:([\/a+12)d\/; = /:([y]+y‘)dy=/02[y]dy+[)2y4dy

2

| 37
= 1+ 2y TR
2 v=0 2
E.3. TECHNIQUE OF INTEGRATIONS 281

E.3.3. Step functions as a. By Remark C.6 and Theorem E.4(2), we have

] b b ]
[ r@ar@) = [ 1@ dFu@ + [ 1@dFe) + [ f@ar@ @2

Prepared by : S.Kohila,Department of Mathematics ,KAHE Page 6/14



UNIT I RIEMANN STIELTJES INTEGRATION 2017 | BATCH

Remark E.11. If o = constant on [a,b], then S(P, f.a) = 0 for all partition P, and

fbf[_r} da(zx) = (.

Example E.15. (1) Consider
flr)=1 forze[-1,1], and a(zr) = —Ijy,
then
1
f flx)da(r) = f0)a(D+) —a(0=)) =10
-1
(2) Consider

flz) = 2oy + L1 muo.y) and alr) = —Ip)-

Then both of & and f are discontinuous from the left at r = (0. This implies that

1
the Riemann-Stieltjes integral f [ do does not exist.
-1

Fiod. LEACTININSUE LMD L0W L CAsDLSRL BLALN DY L3

Theorem E.16 (Reduction of a Riemann-Stieltjes Integral to a finite sum). Let a be

a step function on [a.b) with jump
op =alr+) —alr,—) atx=x.

Let f be defined on [a.b] in such a way that not both of f and a are discontinuous from

b
the left or from the right af xp. Then f flxr)delx) erists and

b n
[ $@daz) =Y faee
“ k=1
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Theorem E.16 (Reduction of a Riemann-Stieltjes Integral to a finite sum). Let o be

a step function on [a,b) with jump
o =a(r+) —alr,—) atr=ux.

Let f be defined on [a,b] in such a way that not both of f and a are discontinuous from
b

the left or from the right af rp. Then f flx)dalx) exists and

b
f fix)dalr) = Zf{n—}ik
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Theorem E.16 (Reduction of a Riemann-Stieltjes Integral to a finite sum). Let o be

a step function on [a,b) with jump
o =a(r+) —alr,—) atr=ux.

Let f be defined on [a,b] in such a way that not both of f and a are discontinuous from
b

the left or from the right af rp. Then f flx)dalx) exists and

b
f fix)dalr) = Zf{n—}ik
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Theorem E.12. Given ¢ € (a, b). Define
rt[.l:] = Pflu.c} + Tf{,:} + E‘rf[:_b]

{as given in Figure E.1). Suppose at least one of the functions f or a is continuous from

the left at ¢, and at least one is continuous from the right at ¢. Then [ € R(a) and

]
f f(z)da(z) = f(c)(alc+) — ale=)) = f(c)(g - p).’

b
Remark E.13. The integral f f dex does not exist if both of f and o are discontinuous
a

from the left or from the right at c.
Remark E.14. (1) If a(r) = pl{a} + gliay. then

b
f f(z)da(z) = fla)(ala+) —ala))

Prepared by : S.Kohila,Department of Mathematics ,KAHE Page 9/14
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Example E. 15. (1) Consider
flz)=1 forze[-11] and  a(r) = —Iiy,
then
1
f flz)da(z) = FID){a(0+) — ali—)) =10
-1
(2) Consider
flz) = 2Ly + Jj—1 oo and a(z) = —Tp-
Then both of a and f are discontinnous from the left at © = (). This implies that
1
the Riemann-Stieltjes integral f f doe does not exist.
-1
Prepared by : S.Kohila,Department of Mathematics ,KAHE Page 10/14
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Example E.17. (1) Let
3 ifr=10
flr)=93—4r fo<z<1

-1 ifxz=1

]

and

-

0 ifxr<0

alr)=59 fo<r<l

0 ifr>=1

3
Since f is continuous, f flr)do(r) exists and
-3

’/:I.if{:r]d‘n[j] FI0e(04) — a(0=)) + fF(1){a(l+) — a(l-))

3(2—0)+ (=1)(0—2) = 8.
(2) Let afx) = 2z + g + 613 )

10
f e da(zr) = e (2-0)+e*5—-2) + (6 - 5)

24+ 3% 40

Example E.18. Suppose F is the Cantor function (see Figure C.1). By integration

by parts, we have
1 1 1
f rdF(z) = oF ()|}, —f Flr)de=1- f Fix)dz.
0 [V [V

1
Since f F(x) dx is the area of the Cantor function on [0, 1], we get
0

! 1
Fix)dr = —.
[ Fayds=3
Henee,

! 1
f zdF(z) = —.
D 2
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E.3.4. Comparison theorem.

Theorem E.19. Assume that o is an increasing function on [a,b]. If f.g € R{a) on

(a5, and if f(z) < g(z) for = € [a.b], then
/ " f(x) daz) < Ji " 4(x) dar(a).
Corollary E.20. If g(z) > 0 and a is an increasing function on [a, ], then
f., " f(a) do(x) = 0.

Theorem E.21. Assume thet o is an increasing function on [a.b]. If f € R(a) on

[a. E?]. then

(1) |f| € Ria) on [a.b]. and

| / ' f(@) do()

(2) f* € R(a) on [a.b)].

B
< f |f(x)| da(z).

Definition E.23. A function o : [a.lr] — IR 15 said to be of bounded variation if there

exists a constant M such that

L

3 lafze) — afzim)| < M

k=1

for every partition {rg, x1.--- .z, } of [a. b].
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Theorem E.24. Let a be defined on [a.b]. then a is of bounded variation on [a. b]. if

and only if there exist two increasing functions oy and s, such that o0 = 0y — s

Theorem E.25. If f is continuous on [a,b], and if a is of bounded variation on [a, b,

then f € R(a). Moreover, the function
t
F() = [ fle)da(a)
[V
has the following properties :

(1) F is of bounded variation on [a.b].

(2) Every continuous point of a is also a continwous point of F.

Prepared by : S.Kohila,Department of Mathematics ,KAHE Page 13/14
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POSSIBLE QUESTIONS
UNIT-I PART-B (5% 6=230)
1. Show that Reimann Steiljes integral can be reduced to a finite sum.
2. Prove: Iff € R(a) and f € R(B),then f € R(c; a + ¢, B).
3. IffeR(a)on [a,b]thena €R (f) on [a,b,] we have

[ FOOd o)+ [ o ()d £(x)=f(b) a(b)- f(a)a(a).
4. Explain change of variables in Riemann — Stieltjes integral ?
5. State and prove linearity property in Reimann Steiltjes integrals.

6. Let f(x)=a(x)=x on [0,1] .Then show that ¢ R(a) and find the integral.
PART- C (1 x 10 =10)

1. Prove that the modulus of Reimann Steiltjes integrable functions are also Reimann
Steiltjes integrable.
2. State and Prove relation between Riemann integral and Reimann Steiltjes integral.

3. Show that every bounded function on a closed interval is Reimann integrable.
4. Prove that a function f is continous iff its bounded variation function is also continous.

5. State and prove necessary and sufficient condition for Reiamann Steiltjes integrability
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KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),
Coimbatore ~641 021
DEPARTMENT OF MATHEMATICS
Multiple Choice Questions (Each Question Carries One Mark)
Subject Name: REAL ANALYSIS Subject Code: 17MMP102

UNIT-1 Option 1 option 2 Option 3 Option 4 ANSWERS
X(y+2)=xytxzis law [commutative associative distributive closure [distributive
If x <y, then for every z we have - [x+2)<(y+2) (x+2)>(y+2) |(x+2)=(y+2) x+2=0 [x+2)<(y+2)
Ifx>0andy >0, then Xy less than equal to 0 xy >0 xy greater than equal to 0 xy <0 [xy>0
Ifx>yandy >z, then x<y x=2 x>2 x<z x>2
If aless than equal to b + § for every $ > 0, then a<b a>b a greater than equal to b a less than equalto b _|aless than equal to b
The set of all points between a and b is called integer interval elements set interval
The sel {x. 8 < x < b} IS " [(a, b) [ta, b1 [(a, b] |2, b) [, b)
A real number is called a positive integer if it belongs to - interval open interval closed interval inductive set inductive set
If d is a divisor of n, then n=c n<cd n>cd n=cd n=cd
If albc and (a, b) =1, then alc alb bla cla alc
additive
If abc and (a, b) =1, then alc is Unique factorisation theorem property approximation property Euclid's lemma Euclid's lemma
Rational numbers is of the form ptq b/q p-q
€ is - - rational irrational prime composite irrational
An integer n is called - if the only possible divisors of n are 1 and n rational irrational prime composite prime
If dja and d|b, then d is called - LM common divisor |prime function common divisor
If (a, b) = 1, then a and b are called [twin prime common factor [LCM relatively prime relatively prime
If an upper bound 'b' of a set S is also a member of S then 'b' is called - rational irrational element minimum element il element
If an lower bound 'b' of a set S is also a member of S then 'b' is called - rational irrational element minimum element minimum element
A set with no upper bound is called - bounded above bounded below |prime function bounded above
A set with no lower bound is called - bounded above bounded below |prime function bounded below
The least upper bound is called bounded above bounded below |supremum infimum supremum
The greatest lower bound is called - bounded above bounded below |supremum infimum infimum
The supremum of {3, 4} is 4](3,4) 13,4] 4]
Every finite set of numbers is bounded prime bounded above bounded
A set S of real numbers which is bounded above and bounded below is called -- bounded set inductive set super set subset bounded set
The set N of natural numbers is bounded not bounded _[irrational rational not bounded
The completeness axiom is b=supS S=supb b=infS S =infb) b=supS
43,4) |[EX3] 3
approximation additive archi comparison additive
For any real x, there is a positive integer n such that -— n>x n<x n=x n=0 n>x
If x>0 and if y is an arbitrary real number, there is a positive number n such that nx >y is -- —-- property approximation additive archit comparison archit
The set of positive integers is -- bounded above bounded below nded above below unbou above
The absolute value of x is denoted by — 1Ix11 x<0 Ix|
Ifx< 0 then 1xl 1= IxI 1xI 1|
If S =10, 1) then sup S 1/(0,1) 1
a+b)| less than equal ||a +b| less than equal to
Triangle inequality is - la] + [b] greater equal to |a + b] lal>la+b| |Ibl>]a+b] toa]+ bl lal+bl
I+ y| greater than equal to - - Ix] + Iyl Ix] 1yl Ix] - 1yl x| -1yl | Lixl-lyl |
Set of real numbers S is bounded above implies S has @ ———— supremum infimum additive property comparison property _[supremum
In{ (3n +2) / (2n + 1) such that n is in N}, the greatest lower bound is - 5 divided by 3 8 divided by 5 |11 divided by 47 3 divided by 2 3 divided by 2
In Cauchy-Schwarz inequality, the equality holds iff - - |akx=0 akx + bkx = 0 akx + bk =0 bk=0 |akx + bk =0
If a set consists of a finite number of elements is called infinite set finite set cantor set null set finite set
/A sequence < S n > is said to be increasing if Sn+l2Sn Sn+l<Sn Sn+1>Sn Sn+l=Sn Sn+l2Sn
If A,B,C are three sets then whatis A-(B -C ) = (A-B)U(AnC) A-(BNC) (A-B)UC (A-B)U(A-C) (A-B)U(AnC)
If S is a non-empty set of real numbers and S is below ,then inf S§=- inf S=+ Sup S =- = Sup S =+ inf S§=-
If P (A) denotes the power set of A and A is the void set then P {P {P{P(A)}}} = 1 16
If X € R then [ X/0 = oo X/~ =0 X/ X/
If x< 0 then X (- X(-=)=w X(-=)=0 X(-=)=

If R *is an extended real number system then the least upper bound is

negative infinity

o least upper bound

Letf:R—Rbea asf (x) = x| x| then

f is 1-1 but not onto

neither Tis 1-1
nor onto

fis 1-1 both onto

f is onto but not one-one

The value of (0, =) is

0|

not defined

can not be determined
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Definition :

Given an infinite sequence , the nth partial sum Is the sum of the first n terms

of the sequence, that is,

A series is convergent if the sequence of its partial sums tends to a limit; that means
that the partial sums become closer and closer to a given number when the number of their

terms increases. More precisely, a series converges, if there exists a number such that
for any arbitrarily small positive number , there is a (sufficiently
large) integer such that for all :
If the series is convergent, the number (necessarily unique) is called the sum of the
series.

Any series that is not convergent is said to be divergent.

The reciprocals of the positive integers produce a divergent series (harmonic series):

Alternating the signs of the reciprocals of positive integers produces a convergent
series:

e The reciprocals of prime numbers produce a divergent series (so the set of primes is
"large™):

e The reciprocals of triangular numbers produce a convergent series:

e The reciprocals of factorials produce a convergent series (see €):

e The reciprocals of square numbers produce a convergent series (the Basel problem):

e The reciprocals of powers of 2 produce a convergent series (so the set of powers of 2
is "small™):


https://en.wikipedia.org/wiki/Partial_sum
https://en.wikipedia.org/wiki/Limit_of_a_sequence
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Divergent_series
https://en.wikipedia.org/wiki/Natural_number
https://en.wikipedia.org/wiki/Divergent_series
https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Divergent_series
https://en.wikipedia.org/wiki/Small_set_(combinatorics)
https://en.wikipedia.org/wiki/Triangular_number
https://en.wikipedia.org/wiki/Factorial
https://en.wikipedia.org/wiki/E_(mathematical_constant)
https://en.wikipedia.org/wiki/Square_number
https://en.wikipedia.org/wiki/Basel_problem
https://en.wikipedia.org/wiki/Power_of_two
https://en.wikipedia.org/wiki/Small_set_(combinatorics)
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The reciprocals of powers of any n produce a convergent series:
Alternating the signs of reciprocals of powers of 2 also produces a convergent series:

o Alternating the signs of reciprocals of powers of any n produces a convergent series:

e The reciprocals of Fibonacci numbers produce a convergent series (see v):

There are a number of methods of determining whether a series converges or diverges.

5'-.‘__. IIIIII b{n)
am) ",
If the blue series, , can be proven to converge, then the smaller series, must
converge. By contraposition, if the red series, is proven to diverge, then
must also diverge.
Comparison test. The terms of the sequence are compared to those of another
sequence .,
for all n, , and converges, then so does
However, if,
for all n, , and diverges, then so does

Ratio test. Assume that for all n, . Suppose that there exists such that


https://en.wikipedia.org/wiki/Geometric_series
https://en.wikipedia.org/wiki/Power_of_two
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Reciprocal_Fibonacci_constant
https://en.wikipedia.org/wiki/Divergent_series
https://en.wikipedia.org/wiki/Direct_comparison_test
https://en.wikipedia.org/wiki/Ratio_test
https://en.wikipedia.org/wiki/File:Comparison_test_series.svg
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If r < 1, then the series converges. If r > 1, then the series diverges. If r = 1, the ratio
test is inconclusive, and the series may converge or diverge.

Root test or nth root test. Suppose that the terms of the sequence in question
are non-negative. Define r as follows:

where "lim sup™ denotes the limit superior (possibly oo; if the limit exists it is the same

value).

If r <1, then the series converges. If r > 1, then the series diverges. If r =
1, the root test is inconclusive, and the series may converge or diverge.

The ratio test and the root test are both based on comparison with a
geometric series, and as such they work in similar situations. In fact, if the
ratio test works (meaning that the limit exists and is not equal to 1) then so
does the root test; the converse, however, is not true. The root test is
therefore more generally applicable, but as a practical matter the limit is
often difficult to compute for commonly seen types of series.

Integral test. The series can be compared to an integral to establish

convergence or divergence. Let be a positive and monotone decreasing
function. If

then the series converges. But if the integral diverges, then the series
does so as well.

Limit comparison test. If , and the limit exists and is not

zero, then converges if and only if converges.

Alternating series test. Also known as the Leibniz criterion,
the alternating series test states that for an alternating series of the

form , if is monotone decreasing, and has a limit of O at
infinity, then the series converges.

Cauchy condensation test. If is a positive monotone decreasing
sequence, then converges if and only if converges.
Dirichlet's test

Abel's test

Raabe's test

Conditional and absolute convergence[edit]


https://en.wikipedia.org/wiki/Root_test
https://en.wikipedia.org/wiki/Non-negative
https://en.wikipedia.org/wiki/Limit_superior
https://en.wikipedia.org/wiki/Integral_test_for_convergence
https://en.wikipedia.org/wiki/Monotonic_function
https://en.wikipedia.org/wiki/Monotonic_function
https://en.wikipedia.org/wiki/Limit_comparison_test
https://en.wikipedia.org/wiki/If_and_only_if
https://en.wikipedia.org/wiki/Alternating_series_test
https://en.wikipedia.org/wiki/Alternating_series_test
https://en.wikipedia.org/wiki/Alternating_series
https://en.wikipedia.org/wiki/Decreasing
https://en.wikipedia.org/wiki/Cauchy_condensation_test
https://en.wikipedia.org/wiki/Dirichlet%27s_test
https://en.wikipedia.org/wiki/Abel%27s_test
https://en.wikipedia.org/wiki/Raabe%27s_test
https://en.wikipedia.org/w/index.php?title=Convergent_series&action=edit&section=3
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Illustration of the absolute convergence of the power series of Exp|[z]
around 0 evaluated at z = Exp['4]. The length of the line is finite.

A

Illustration of the conditional convergence of the power series of
log(z+1) around 0 evaluated at z = exp((n—%4)i). The length of the
line is infinite.

For any sequence : for all n. Therefore,

This means that if converges, then also converges (but
not vice versa).

If the series converges, then the series is absolutely
convergent. An absolutely convergent sequence is one in which the
length of the line created by joining together all of the increments to
the partial sum is finitely long. The power series of the exponential
function is absolutely convergent everywhere.


https://en.wikipedia.org/wiki/Absolutely_convergent
https://en.wikipedia.org/wiki/Absolutely_convergent
https://en.wikipedia.org/wiki/Exponential_function
https://en.wikipedia.org/wiki/Exponential_function
https://en.wikipedia.org/wiki/File:ExpConvergence.gif
https://en.wikipedia.org/wiki/File:LogConvergenceAnim.gif
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If the series converges but the series diverges, then the

series is conditionally convergent. The path formed by
connecting the partial sums of a conditionally convergent series is
infinitely long. The power series of the logarithm is conditionally
convergent.

The Riemann series theorem states that if a series converges
conditionally, it is possible to rearrange the terms of the series in
such a way that the series converges to any value, or even diverges.

Uniform convergence[edit]
Main article: uniform convergence

Let be a sequence of functions. The series is said to
converge uniformly to f if the sequence of partial sums defined
by

converges uniformly to f.

There is an analogue of the comparison test for infinite series of
functions called the Weierstrass M-test.

Cauchy convergence criterion[edit]

The Cauchy convergence criterion states that a series

converges if and only if the sequence of partial sums is
a Cauchy sequence. This means that for every there is a

positive integer such that for all we have


https://en.wikipedia.org/wiki/Conditionally_convergent
https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/Riemann_series_theorem
https://en.wikipedia.org/w/index.php?title=Convergent_series&action=edit&section=4
https://en.wikipedia.org/wiki/Uniform_convergence
https://en.wikipedia.org/wiki/Weierstrass_M-test
https://en.wikipedia.org/w/index.php?title=Convergent_series&action=edit&section=5
https://en.wikipedia.org/wiki/Cauchy%27s_convergence_test
https://en.wikipedia.org/wiki/If_and_only_if
https://en.wikipedia.org/wiki/Partial_sum
https://en.wikipedia.org/wiki/Cauchy_sequence
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1. SEQUENCES

1.1. Sequences. An infinite sequence of real numbers 1s an ordered
unending hst of real numbers. E.g.:

1,2,3,4,. ..

We represent a generic sequence as aq.as, as, ..., and its n-th as a,,.
In order to define a sequence we must give enough information to
find 1ts n-th term. Two ways of doing this are:

1. With a formula. E.g.:

a--n_ = —
Tt
1
n = 107
an, =V3n—"T

1.2. Limit of a Sequence. We say that a sequence a,, converges to
a limit L if the difference |a,, — L| can be made as small as we wish by
taking n large enough. We write a, — L, or more formally:

lim a, = L.
TE— 0

E.g.:

Ihm — =0.
n—oc 71
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If a sequence does not converge we say that it diverges. E.g., the
following sequences diverge:

n=12234,---— diverges (to +oo)
(-)"=-1,1,-1,1,--- — diverges

1.3. Limit Laws for Sequences. If lim_a.n = A and hm b, = B,

then: N 550 T—s 50

lim (a, +b,) = A+ B

lim (a, —b,) = A— B

lim (a, b,) = AB

lim (a,/b,) = A/B (provided B = 0)

1

So, a “complicated” hmit such as L = lim 1~ can be computed
by replacing smaller parts of it with their limits 1/n — 0, 1/10™ — 0:

_1+0 1

C3+0 3

1.4. Squeeze Law. If a, < ¢, < b,, and a, and b, have the same
limit: a, — L, b, — L, then ¢, has also the same limit: ¢, — L. This
can be used to compute limits such as the following one:

. sInn
hm
n—oo T
In this case we have:
1 sinn 1
—— = = —.
n n n
sinn

— 0 also.

T

1.5. Limits of Functions of Sequences. If a, = f(n) for some func-

tion f and lim f(z) = L, then lim a, = L. This basically allows us to
Tr—n TM— oo

replace limits of sequences with limits of functions. In particular this is

useful for using L'Hopital’s rule in computing hhmits of sequences. E.g:

n T T
€

. € : N . €
lim — = lim — = (L’Hopital’s rule) = Iim — = oc.
n—oco 1 T—oo T r—oo 1

2017| BATCH
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2.1. Series. An infinite series 1s an expression of the form
o)

Za.n=a1+a.g+a3+---,

n=1

1Proof: We use induction. First note that 0 < a; = +/6 < 3. By adding 6 and
taking square roots we get 6 < /6 +a; < V6+3 =3, ie: a; < az < 3. Now
assume @, < @n4+1 < 3 for a given n > 1 (induetion hypothesis). Again, by adding
6 and taking square roots we get /6 +a,, < 6+ a,11 < 3, 1. Gpy1 < Qpyo <3
(induction step). From here we get that a, < a,+; < 3 for every n > 1, which
proves both, a,, is increasing and is bounded by 3.

2C.H. Edwards, Jr. & David E. Penney: Calculus with Analytic Geometry, 5th
edition, Prentice Hall.
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where {a,} is a sequence of numbers—sometimes the series starts at
n = 0 or some other term instead of n = 1. Its Nth partial sum is

N
SNZZ%Zﬂ-1+ﬂ*2+113+“'+ﬂ-_w-

n=1

2.2, Sum of a Series. The sum

S:ia:a,1

n=1

of a series 1s defined as the limit of its partial sums

N
S= lm Sy = lim E an
N—oo N—oo

n=1

if 1t exists—1t this case we say that the series converges. For instance,
consider the following series:

Hence, 1ts sum 1s

S= lim Sy = lim (1—ﬁ) =1,

N—oo N—co

Le.:

A series may or may not have a sum. For instance, in the following
series:
o0
D) =1-141-14+1—-1+--
n=0
the sequence of partial sums Sy = 1,0,1,0,1,0,... diverges, and the
series has no sum.
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2.3. Telescopic Series. Telescopic series are series for which all terms
of 1ts partial sum can be canceled except the first and last ones. For
mstance, consider the following series:

- 1 —1+1+1+
nn+1) 2 6 12

n=1
Its nth term can be rewritten in the following way:
1 1 1

- n(n+1) " n ntl

Hence, 1ts Nth partial sum becomes:

N 1 Yo/t 1
S — _ -
y ;n(n—i—l) ;(n n—i—l)
AT A A U A
- 2 2 3 3 4 N N+1
1
:]_—
N+1
Hence:
= 1 _ 1
;n(n—i—l):_-ng};c(l_N—i—l):1'

o

2.4. Geometric series. A geometric series E a, 1s a series 1n which
n=>0

each term 1s a fixed multiple of the previous one: a,.1 = r a,,, where r

18 called the ratio. A geometric series can be rewritten in this way:

o0
n __ 2 3
ar' =a+ar+ar-+ar” +---.

n=>0

If |r| <1 its sum is

o0
Z ar" = T : —
n=>0
Note that a is the first term of the series. If @ # 0 and |r| = 1, the
series diverges.
Examples:

[UEPNE SE SIS S
o T2 408 11—

|
b

B | b=
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UNIT Il
(—1)n 111 1 2
2473 271 8 —(-1) 3

. -1 n+1 2n+1
Note that in the last example r = a,,,1/a, = {Lil}—ﬂﬁgﬂ

——1/2.

6.1. Alternating Series Test. If an alternating series verifies:
1. a, 1t 1s decreasing: a, = a, > 0 for every n, and
2. the nth term tends to zero: hm,, .. a, =0 |,

then the series converges.
So, 1n this particular case the “reciprocal” of the nth term test holds.

E.g.
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6.3. Absolute Convergence. A general series ) a,, 1s said to be ab-
solutely convergent if the series of absolute values of its terms > |an
18 convergent.

We have that a series can be:

1. Convergent and absolutely convergent, e.g:

i _1 Tl_l_l+l_1+...
~\'2) 274 8

2. Convergent but not absolutely convergent—in this case the series
1s called conditionally convergent—, e.g:

iﬂ:1_1+

N
n 2 3 4

n=1
3. Not convergent nor absolutely convergent, e.g:

oo

) n=1+243+4+--

n=1

However, a series cannot be absolutely convergent and not conver-
gent, because absolute convergence implies convergence:

absolute convergent — convergent

COs T
2

e ]
Example: Does the series Z

n=1

converge? Answer: Look at the
n

series of absolute values:

(s o]

> | cosn P 1
> —w Sl

n=1 n=1

By comparison test, it converges (the right hand side is a p-series with
p > 1), hence the given series is absolutely convergent, which implies
that 1t 1s indeed convergent.

exists or 1s

6.4. Ratio Test. Suppose that the limit p = lim

T— o0

. . all
infinity. Then

1.If p<1 = > a, converges absolutely.

2 Ifp>1 = > a, diverges.

3. If p=1 = the ratio test 1s inconclusive.
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As a rule of thumb, for geometric series p = |r| (the ratio), and the
conclusion of the ratio test 1s analogous to the one for geometric series,

i.e., the series converges for |r| < 1 and diverges for |r| > 1.
09

Example: For the series Z % we have
n=1
R N . (n41)2/2nH! . (m+1)?2 1
P || T T e kT 2 h

hence, it converges absolutely.?

6.5. Root Test. In some cases in which the ratio test 1s unable to pro-
vide an answer, the root test may help. It says the following: Suppose
that the imit p = him {/|a,| exists or is infinity. Then

— o0

1. If p<1 = > a, converges absolutely.
2. Ifp>1 = > a, diverges.
3. If p=1 = the root test 1s inconclusive.
o0
Example: Consider the following series Z prETT For this series
n=1
the ratio test cannot be used, because
An41 _ 2—1+sin n—sin(n+1) 2—1—2 sin % CO8 (n-l—%j
an
which has no limit. However, the root tests shows that the series is
absolutely convergent:
1 1 1
=lm _—=—<1.
2

s o0 Ontsinn n—oo 21l+sinn/n
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POSSIBLE QUESTIONS
UNIT-II PART-B(5x6=30)
1.Prove: If ) a, converges absolutely then the subseries }; b,, is also converges

absolutely.Also | X1 bn| <X2_4 |ay |-

2.Suppose Y-, a, convereges absolutely and }7_, a, =A and }7_, b, =B; then show that the
product of these two series converges to AB.

3.State and prove Ratio test for convergence of series.

4.State and Prove Riemann theorem on conditionally convergent series .

.5.Using Root test, show that the series

1 1 1 1 1 1
—t ot ottt T
Sttt tetatat converges

PART- C (1 x 10 =10)

1. State and prove uniform convergence in double sequences
2. Let ) a, be an absolutely convergent series having sum S then every rearrangement of
2. a,, also converges absolutely has sum S.
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Uniform Convergence.

1 Introduction.

In this course we study amongst other things Fourier series. The Fourier series for a
periodic function f(x) with period 27 is defined as the series
oo
g ;
3 + Z (ap cos kx + by sin kx) ,
k=1
where the coefficients ay, by are defined as

1 T

Ge=— f(z)coskxdr, b= L f(x)sinkzdex,
L m T

with k= 0,1,... (note that this means that b, = 0).
This is an example of a functional series, which is a series whose terms are functions:

o0

Z ug(z).

k=0

As usual with series, we define the above infinite sum as a limit:

oo N
> () = lim D u(x),
k=0 . k=0

providing the limit exists. Note that different values of x will, in general, give different
limits, if they exist.

In this lecture we shall look at functional series, and functional sequences, and we
shall consider first the question of convergence. To deal with this, we consider two types
of convergence: pointwise convergence and uniform convergence. There are three
main results: the first one is that uniform convergence of a sequence of continuous
functions gives us a continuous function as a limit. The second main result is Weier-
strass’ Majorant Theorem, which gives a condition that guarantees that a functional
series converges to a continuous function. The third result is that integrals of a sequence
of functions which converges uniformly to a limit function f(x) also converge with the
limit being the integral of f(z). These results are not only good for your mental health,
they are also important tools in our later discussion of Fourier series. and that is the
reason for looking at them.
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Definition 2.1 (Pointwise convergence.) Suppose {f,(z) : n = 0,1,2,...} is a se-
quence of functions defined on an interval I. We say that f,(r) converges pointwise
to the function f(z) on the interval I if

fulx) = f(x), as n— oo, for each x € 1.

We call the function f(x) the limit function.

Uniform continuity

Definition. A function f: D — R is continuous at a point d € D if for any € > 0 there
exists 0 > 0 such that for all x € D,

2 —d < 5= |f(z) — f(d)| <e

The following is an equivalent ‘sequential’ definition of the same concept.

Definition. A function f: D — R is continuous at a point d € D if for any sequence
(Zn)new in D with d = lim,,_,, T,,, the convergence f(d) = lim, .~ f(%,) holds as well.

Definition. A function f: D — R is continuous if it is continuous at every point of D.

Definition. A function f: D — R is uniformly continuous if for all € > 0 there exists
& > 0 such that for all .y € D,

lz—yl <d=|f(z) - f(y)| <e

The cruical point to note here is that for uniform continuity, the number ¢ may only
depend on e. For continuity (at z), it may depend on z as well. Using quantifiers, we
express continuity of f as follows:

VreDVe>03 >0VyeD:|lz—y|<d=|flz)— fly)| <e
Uniform continuity, on the other hand, means that
Ve>030 >0Vr,ye D: |[z—y| <d=|f(z)— fy)| <e

It is clear that uniform continuity implies continuity. But continuity does not imply
uniform continuity.

Example. Define f: R — R,z + sin(2?). Then f is continuous but not uniformly
contimious (see Exercise 1.1).

Prepared by : S.Kohila,Department of Mathematics ,KAHE Page 3/24



Unit Il SEQUENCES OF FUNCTIONS 2017|BATCH

Example 2.1 f,(z)=z— % Then f,(x) converges pointwise to x for each x € R:

| Ful) — 2| = % —0 as n— o0

Example 2.2 f,(z) = ¢ on [1,3]. For each x € [1,3] we have nx — 00 as n — 00
and therefore fo(x) = 0 as n — oo for each x € [1,3]. Thus fn(x) converges pointwise to
f(z) =0 for each x € [1,3].

Example 2.3 f,(z) = e on [0,3]. For each 0 < x < 3 we have nx — 00 as n — 00
and therefore fo(x) — 0 as n — oo for each 0 < x < 3. However, at x = 0 we have
fa(0) = 1 for all n. Thus f.(x) converges pointwise to the function f(r) defined by
f(0) =1, f(z) =0 for each 0 < x < 3. This is not a continuous function, despite the
fact that each function f.(x) is continuous.
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Example 2.4 Let the sequence f, be defined as

nr
fu(z) = a4 TP

Then f,(0) =0 and for each fized x > 0

z € [0,00].

'H.QI y

(nz + 1)*
n’x
n3(z + %)"

1 T
=———73 0 asn—oo
n(z4 )

falz) =

So that fn,(x) — f(z) =0 pointwise on [0, co|.
Then for x > —= we have

n?(1 — 2nx)
(nz+1)*

fol@) =

and we see that for x > 0 we have f!(z) — 0 as n — oo whereas f!(0) = n? — co. Here
we see that f2 — " only on for x > 0. This shows that differentiability is not always

n
respected by pointwise convergence.

The last two examples then lead us to pose the question: what extra condition (other
than just pointwise convergence) can guarantee that the limit function is also continuous
or differentiable? The answer to this is given by the concept of uniform convergence.

3 Uniform convergence

We define for a real-valued (or complex-valued) function f on a non-empty set I the
supremum norm of f on the set I:

1/1l7 = sup[f(z)].
xel
Note that if f is a bounded function on [ then
sup| ()| = sup{ |f(x)| : @ €1}
exists, by the so-called supremum axiom. Observe that

lf@) < WIfll; forall zel,

and that |f(z)| takes on values which are arbitrarily near ||f||;. In particular | f||; =
the largest value of |f(x)| whenever such a value exists (such as when [ is a closed,
bounded interval and f(z) is a continuous function on I).
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Definition. Consider a sequence (f,).en of functions f,,: D — R and another function
f:D—R.

(i) We say that f, converges to f pointwise if for all x € D and all € > 0, there exists
N € M such that for all n > N,

|fnl(z) — flz)] <€

(ii) We say that f, converges to f uniformly if for all € > 0 there exists N € N such
that for all z € D and alln > N,

|fn(z) — f(z)| <e

The above definition is equivalent to the following.

Definition. Consider a sequence (f,)nem of functions f,: D — R and another function
f:D—R.

(i) We say that f,, converges to [ pointwise if
f(z) = Tim fu(z)
for every fixed x € D.
(ii) We say that f,, converges to f uniformly if
sup | fu(z) — f(z)[ =0
zeD
as n — 00.

Clearly uniform convergence implies pointwise convergence, but pointwise convergence
does not imply uniform convergence.

Example. Let D = [0,1]. Consider the sequence (fy)nes of functions f,: D — R,
x — x". The pointwise limit is the discontinuous function f : D — R given by

o ize,1),
fm_{l ifr=1.

The convergence is not uniform, however, since

sup | fu(z) — f(z)] =1
zeD

for all x € N.

(-
;‘h
———
=]
e
=1
p——

converges pointwise

n—o

i o Ve
| =
-

=
o=
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5.4. Properties of uniform convergence

In this section we prove that, unlike pointwise convergence, uniform convergence
preserves boundedness and continuity. Uniform convergence does not preserve dif-
ferentiability any better than pointwise convergence. Nevertheless, we give a result
that allows us to differentiate a convergent sequence; the key assumption is that
the derivatives converge uniformly.

5.4.1. Boundedness. First, we consider the uniform convergence of hounded
functions.

Theorem 5.14. Suppose that f, : A — R is bounded on A for every n € M and
fn — f uniformly on A. Then f: A — R is bounded on A.

Proof. Taking € = 1 in the definition of the uniform convergence, we find that
there exists N € M such that

|Ifn(z) — flz)| < 1 forallz € Aifn > N.

Choose some n > N. Then, since f, is bounded, there is a constant M, > 0 such
that
[fr(z)] < My for all z € A.
It follows that
|f[I}| < |f(I} = fn(rﬂ g Un('rﬂ <1+ M, for all z € A,

meaning that f is bounded on A (by 1 + M,). O

We do not assume here that all the functions in the sequence are hbounded by
the same constant. (If they were, the pointwise limit would also be bounded by that

constant.) In particular, it follows that if a sequence of bounded functions converges
pointwise to an unbounded funetion, then the convergence is not uniform.

Example 5.15. The sequence of functions f, : (0,1) — R in Example 5.2, defined

by
n
T)= .
Inlz) |
cannot converge uniformly on (0, 1), since each f, is bounded on (0, 1), but their
pointwise limit f({x) = 1/ is not. The sequence (fn) does, however, converge

uniformly to f on every interval [a,1) with 0 < a < 1. To prove this, we estimate
for a < x < 1 that

fn(@) = f(2)] = | =2 — 2 L e

R :
nr+1 = ‘ r(nex+1)  nz? — na?

Thus, given € > 0 choose N = 1/(a’¢), and then
|fulz) — flz)] <€ forall z € [a,1) ifn > N,
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5.4.2. Continuity. One of the most important property of uniform convergence
is that it preserves continuity. We use an “¢/3" argument to get the continuity of
the uniform limit f from the contimiity of the f,.

Theorem 5.16. If a sequence ( fy,) of continuous funections fn : A — B converges
uniformly on A CR to f: A — R, then f is continuous on A.

Proof. Suppose that ¢ € A and € = 0 is given. Then, for every n € M,
|f(z) — fle)l < |f(z) — falz)| + | falz) — fale)| + | fnle) — Fle)] -

By the uniform eonvergence of ( f,), we can choose n € M such that
Ifulz) — f(z)] < % for all z € A,

and for such an n it follows that
e

[f(z) = Fle)l < |fnl(z) = fale)| + 5

{Here we use the fact that [, is close to f at both o and ¢, where 2 is an an arbitrary
point in a neighborhood of ¢; this is where we use the uniform convergence in a
crucial way. )

Since fy is continuous on A, there exists 4 > 0 such that
€ :
| fu(z) — fale)] < 3 iflz—¢/<dand x € A,

which implies that
|flz)— fle)| < e if|lt—¢/<dand z € A

This proves that f is continuous. O

This result can be interpreted as justifyving an “exchange in the order of limits”

lim lim f(z) = lim lim f,(x).
n—00 B—C E=FC F—FOD

Such exchanges of limits always require some sort of condition for their validity — in

this case, the uniform convergence of fy, to f is sufficient, but pointwise convergence

is not.

It follows from Theorem 5.16 that if a sequence of continuous funections con-
verges pointwise to a discontinuous function, as in Example 5.3, then the conver-
gence is not uniform. The converse is not true, however, and the pointwise limit
of a sequence of continuous functions may be continuous even if the convergence is
not uniform, as in Example 5.4.
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Definition 3.1 A sequence of functions f,(x) defined on an set I is said to converge
uniformly to f(x) on [ if

lfa—fllr =0 as n— .
We write this as

lim f, = f uniformly on I
=

or as
fo— f uniformly on I as n — oc.

Uniform convergence implies pointwise convergence, however there are sequences
which converge pointwise but not uniformly. Indeed we have

| fulz) — f(2)] < D | fu(z) = f(2)] = ||.fa — Fllss

so that

fn— f uniformly on / as n —+
= |faulz) — f(x)] = 0 foreach x €1
= f, — f pointwise on 1.

Example 3.1 f.(r) =" on|l1,3]. We have seen above that f,(x) converges pointwise
to flx) =0 for each x € [1.3]. Then we have |f,(2) — f(x)| = | fulz)| and we then have

Il fu— .'rll = sup |.er| {le
re(1.3]
= sup |e7™|
=£1.3)
= sup e
=e1.3]

= " =0 asn — oo

Thus we have uniform convergence in this ense. Nole thal the last step follows from the
observation that =™ is sirictly decreasing for x = 0 with n 2= (), so thaf e7™ = 7™ for
allr>1.
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Theorem 4.3 Suppose that {f.(z);n = 0,1.2,...} 15 a sequence of functions on an
interval 1 and salisfying the following conditions:

(i) fulx) is differentiable on I for cach n=10,1,2, ...
(i1) falr)eonverges pointwise fo f(x) on I

fiti) fl(x) is continuous for each n and [ — g converges uniformly on I where g(x)
t5 a continuous function on 1.

Then the limit funclion f(x) is differentiable and ['(x) = g(x).

Proof: First note that

£o(2) = fala) = f F(t)dt

for each f,(x) and for each choice of x.a € I. Becanse f,(x) converges pointwise to f(xr)
for all # € I, the left-hand side converges to f(r) — fla) as n — oo, Also, f, — ¢
uniformly on I so by Theorem 4.2 we have that

f: fL(t)dt — f:g(t};u.

f(2) — f(a) = f J(t)dt.

Now, g(t) is continuous, so that, by the Fundamental Theorem of Caleulus,

d I
= [ st =)

so that f(r) must be differentiable and f'(x) = g(x).
This result is very useful, as we shall see, in examining the differentiability of lunetional
series.

and we then find that

5 Applications to functional series.

Definition 5.1 4 functional series is a series

Z_ uk{I}
k=0

where each term of the series ug(r) is a function on an interval 1.
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We can also define pointwise convergence for functional series:

Jefinition 5.2 The functional series

o

Z iy ()

k=0
s pointwise convergent for each v € I of the limit

o N
D u(a) = lim ¥ uy(x)
=0 Ty

wists for ench v € 1.

Thus, we always define a sequence of partial sums Sy(r) given as

N

Snl(x) = w(x)

k=l)
o that

Selx) = wa(x), Si(x) = welx) + (), Sa(x) = wplx) + wy(x) +u

i if
lim Sy(x)
Ne—no
aeists for o then we say that the series
D w(x) = lim Sy(x)
k=0 Al

onverges at x. It converges pointwise on the interval T if

\h_l-.i Sx(x)

wists for each r € 1.
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Theorem 5.1 Suppose that the functional series

.

Z g x)

k=i
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is defined on an inferval I and that there is 0 sequence of positive constants M, s0
fhat

jup(z)| < Mg, £=0,1,2,.:.
foralloze . If

oo

Z My

k=l

converges, then

=

> ()

k=l
converges uniformly on 1.

Proof: If the conditions are fullfilled then we immediately have, from the Comparison
Theorems for Positive Series. that, [or each @ £ I. the series

=

Z | ()]

k=0
is convergent, so that

=

z teg )

k=)
is absolutely convergent, and therefore convergent. This means that

=

z teg )

k=l

is pointwise convergent on I, and we denote the limit by S(x). We now show that the
partial sums

N

Sxix) = Z g ()

k=0
converges uniformly to S(x) on I under the conditions of the theorem. We have

o

S(x) — Sylx) = Z ()

k=N+1

(all we do is subtract the first N terms from the series). Then it follows that

1S(z) — Sn(=)| € D |w(x)| € Y My
k=N+1 k=N+1

for each & € I. since |ug(x)] £ My for each = € I according to our assumption. Then
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IS — Sullr = Z M.

E=N+1
We also know (by assumption) that 3.~ M converges, so we must have that 3 .~ o, My —
0 as N — oo, Consequently,
5 —=Sxlli =0 as N — o,

and our result is proved.

Corollary 5.1 If
(i) the functional series

5{x) = Z ug(r) econverges uniformly on interval I,
k=0

(i) wp(x) is o continuous function on I for ench k=10,1,2, ...,

then S(r) is continuous on 1.

Proof: Because a fnite sum of continnous inetions is again a continuous function, it
follows that the partial sums

N

Sn(x)= Z ug ()

k=i

are continuous functions for N =10,1.2,..., Then by Theorem 4.1, we have that S(x) =
limy_.oc Sy(x) is a continuous function.

Example 5.1 Tuke the funclional series

i sin kr
2
k=1

We have

sin b
J2

stnce |sint] < 1 for all real t. We know (standard positive series) that
S5
z
: k

converges (series of the form 3 1/k® converge for a > 1 and diverge for « < 1). Hence,
by Weterstrass™ Majorant Theorem,

sin kr 1
| |
= K2 T2

|ug ()| =
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oo

Z si:jz'

k=1

converges uniformly for all ¥, and by Corollary 5.1 this series is a conlimuous function of
x for all xr € R.

Theorem 5.2 If

(1) the functional series

z uplr)  converges uniformly on the interval [
k=i

(it) wi(x) is continuous on I for each £ =10,1.2, ...,

then

[ (o) e-£([ o)

k=l k=l
Jor all a.x € 1. In other words, if the sertes of continuous funclions converges uniformly
on I, then the indegral of the sum is the sum of the inlegrals of the functions, just as in

the case of a finite sum.

Proof: Put S(t) = 37 u(t) and Sx(f) = EL{: (1), then we have Sy — S uniformly
on I so that

lim [ :S'_-;{.*.}df=[ lim S,»;I[t}dt=[ S(t)dt,
N—ao " T N—ao Ja

according to Theorem 4.2, Note that since Sy(t) is a finite sum of functions, we see that

Prepared by : S.Kohila,Department of Mathematics ,KAHE Page 15/24



Unit 1l SEQUENCES OF FUNCTIONS 2017|BATCH

[ Sx(t)dt [

= -mr
(Z uk{i}) ift

@\ g=q
N x
= i {t}rﬂ') ;
> (/=
and we then And that
fr (Z uk{!']) dt = Z (/I ua.-[i}:ft) :
R k=( @

We can also say something about the differentiability of the series 3 wg(r), using
Theorem 4.3 In this case. as in the previous two theorems, we replace f,(x) by Sx(t) and
flx) by S(t). Thus, we want the following:

e Sy(r) — S(r) pointwise on T
. .'S'fq,-{.-r] — (7(x) uniformly on I
e Sy(x) is continuously differentiable for each N

and then we may conclude that S(r) is continuously differentiable with S'(x) = G(x). All
we need is to formulate these requirements and result as follows:

Theorem 5.3 Suppose that Z uy(2) satisfies the following conditions:
k=0

= u)
. E ug(r) converges poinfwise on I

k=0
X

. z uy () converges uniformly on I

k=0
o uplr) is continvously differentiable for each k

==

Then Z up(r) s continuously differentiable and

h=u . .
- (Z ukm) = 4(a).

k=0 k={)
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Proof: We have that each S () is continnous on I and

Sx(x) — S(x) pointwise on T
Sy — G uniformly on I

Then by Theorem 4.3. 5(x) is differentiable and 5'(x) = G(z) on I. In other words:

% (Z rq_.I:.T}) = Z ()

k=0

Definition 6.1 We say that the integral

Flz) = f f(z,8)dy

converges uniformly on I if:
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(i) Flx)= [ flx. y)dy converges pointwise for each x € I;
(i) the family of functions Fg defined as
R
Fa()= [ f(e.u)dy
converges uniformly to F on I. That is, if

|Fr—Fll; — 0 as R — .

A test for uniform convergence of integrals is an analogy of the Welerstrass

functional series:
Theorem 6.1 (M-test) Suppose
(i) f(x.y) ts continuons on I x [a. oc|

(it) |flx.y)| < M(y) for all x € I and y € [a, o0
(i) / M{y)dy converges.
Then
F(x) =f Flx, y)dy
converges uniformly on 1.

Proof: We have
Fa(e) = () = [~ (e 9)dy
JR

from which we obtain

Fala) = F@) < [ 1f(e.w)ldy
< [ M
JR
by assumption. Consequently,
|1Fe — Fl: Ef Mig)dy =0 as H— =,
R

because
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f My)dy converges
implies that
f M(y)dy — 0 as R — o
R

Thus, Fr — F uniformly on 1.
Now we come to proving that if Fp — F uniformly on an interval [, then F is
continuous if each Fg is continnous. here. the problem is to show that Fg(r) is continuons.

We have the following result:

Lemma 7.1 Suppose that f(x) is a real-valued continuous function on the closed,
bounded interval [a.b]. Then

sup f(x) =max{f(z) :z € [a.b]}. inf flz)=min{f(z):x € [a.b]}.
xE[a ] xela,bi

That is. the supremum of a continwouns function over a closed, bounded interval is equal
to ils lorgest value over that interval, and the infimum is the least value of the function

over the interval.

Proof: Since f{r) is continnous and the interval is closed. then f{r) has a largest value
and a least value on the interval: there exist zy, s € [a, b] so that f(xy) € f(x) € f(ra2)
for all x € [a.b], and we now see that

sup flz) = f(r2), inf f(x) = f(z),
z€[ab] z€lat]

and the result is proved,
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We sketch the proof and refer to any good book on analysis for hurther details,

Our task is to prove that for each r € [e. d] we have

Fple+h) — Fglr) as h =0

Then we have

R
[Fala+ ) — Fa(o)| < [ 11+ 1) — £z 0)lda.

Now if f is continuous on [¢, d] x [a, K] it can be shown that for any ¢ = O there isad > 0
so that

|f (0, 50) — fx1.3n)] < e
whenever 1,/{:.3 —r)* +(yo—)* < &. That is, whenever the distance hetween the
points (xg. ) and (r;.y,) is less than 4. This is called uniform continuity. Using this
fact, we choose ¢ > () (arbitrarily small) and then for each given B we find a § = 0 so that

S

|z +hoy) - Fa.y)] < T—

whenever |h] < 4. From this it follows that

|Frlx + h) — Fp(r)| < e whenever || < 4.

Note that we have € > (0 arbitrarily small, and for each such choice there is a corresponding
4. From this it follows that

|Frlx +h) — Fplx)] — 0 as k. — (.

Hence Fp(r) is continmous on [c, d], for each choice of R > (.

7.3 Cauchy’s condition for uniform convergence of series

In this section we record, without proof. a result which is of some interest: Cauchy’s cri-
terion for uniform convergence of functional series. and we make some comments
on some aspects of uniform convergence.

Theorem T.1 Suppose that {ug(x)} is a sequence of continuous functions defined on an
inlerval 1. Then the series

Z_ I'.I.k{I}
k=0

s uniformly convergent on I if and only if for each choice of € > 0, however small, there
erists a (corresponding) integer N > 0 so that

Jtsr(x) + upsa(r) + - -+ umlz)| <€
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Jorallm =k > N and for all x € 1. In particular, we then have, on putting m =k + 1,

|ttsr(x)] < €
Jorall k= N and allx € 1.

The proof of this result requires more mathematical machinery than we have at hand,
and can be found in any good textbook on Mathematical Analysis.

As an illustration of the usefulness of this result we look at the series expansion of *.
We have

x — ak
E':—1+J,+?+ Zr

This expansion is true for each + € B, s0 we have pointwise convergence of the series.
However, we do not have uniform convergence on B, To see this, we apply the last
comment in the theorem: we need to find, for a given € > (), an & > () so that for all
x € B we have

Jaf!
k!
whenever & > N. However, if we choose any & we may choose x so that

|uH1{..r}| = < E

|Ir|k+l
k!

is as large as we like, contradicting the requirement for uniform convergence. Hence
we do not have uniform convergence on the whole of B. However, il we only consider
z € [—a.a] for some a > 0 then we can prove uniform convergence of the series on this
closed, bounded interval. This can be done using Weierstrass’ Majorant Theorem.
This phenomenon occurs often, and then we say that the series converges uniformly
on closed, bounded intervals or converges on compact sets. Another example of
this phenomenon oceurs in power series (which are the first kind of functional series
taught in elementary caleulus courses). For instance, for the geometric series

oo
§ _-;.'k
k=i

we have absolute convergence for |r| < 1 and divergence for x| > 1. For |z] < 1 we have

Zf"-

The corresponding partial sums are

= 5(x).

1 _ _r:'\’+1

Swix) Z ¥ =
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The sequence Sy(x) does not converge uniformly to S(r) on the interval | — 1.1] : we
have

|| V41
Sxlz)—S(r)|= ——
|Sw(z) = S(a)l = T—

and as © — 1_ we see that |¢|V*' — 1 and 1/(1 — x) — oc, so that we may make
|Sw(x) — S(x)| as large as we like, and it then follows that ||Sy — S| does not exist, so
it is impossible for ||Sy — S|| — 0 as N — oo, However, if we consider the series on the
closed, bounded interval [—a, a] with a fixed 0 < a < 1, we have

U.N+1
[Sw(x) — ()] < T
for all x € [—a.a]. and therefore
N41
ISy — S| = sup |Snlz) = S(z)| < ;’ 50 as N — oo,
£ —n.ni -

because 0 < a < 1 gives a™*t' — o0 when N — so. So we have uniform convergence of
the series on compact subsets of | — 1. 1[.
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POSSIBLE QUESTIONS
UNIT-11 PART-B (5% 6=30)

1. Show that the sequence of functions {fn} converges uniformly on E iff v €> 0 ,3 an
integer N such that for every m,n>N; |f,, (x) — f;, X)|<e.

2. Prove that limit of sequences of functions in R() which converge uniformly on[a,b] is
also in R ().

3. State and prove Weistrass M-test for Uniform convergence of series of functions.
4. Let series ), f,, ( x) = f (x) converges uniformly on S be such that each f, is continuous
at a point xo of S then fis also continuous at X o.

5. State and prove Cauchy criterion for convergence of sequences of functions.

6. If lim fn= fand lim gn= gon[abJdefine h(x) =" f(t)g(t)dt and
n—-oo

n-w
hn (X) =f: fn(®) gn(t)dt foreach x € [a,b]then prove that h »— h uniformly on [a,b].
7. Let the sequence { f »} is a real valued function such that f » € R (a ) on [a,b] for each ne
N. If f, - f uniformlyon [a, b],thenfe R (a)on[ab]”.
PART- C(1 x 10 =10)

1. Let {f .} br sequence of differentiable functions on[a,b].If { f »} converges to f
uniuformly, then show that f'(x) = lim £, (x).
n—->oo
2. State and prove Arzela Theorem.
3. Let the series }; f,, (x) be such that {f.} is uniformly convergent on S .Suppose{ g n}
be a sequence of real valued function such that g n+1)<gn (X)and uniformly bounded

onS. Then show that the series ). f,, (x) g n ( X) converges uniformly on S.
4. Let a be of bounded variation on [a,b] and each term of the series X f is Reimann

Steiltjes integrable with respect to a on [a,b] and if }X_; f;, (x) = f(x) (a < x < b)
series converges . uniformly on [a,b], then show that f ¢ R(a) and

Lbfdoc:ijjﬁqdoc
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[oPTIONT

OPTION2

OPTION3

oPTION4

[ANSWERS

A Sequence of functions is said to boundadly convergent on T is seq

point wise convergent

it contains no_limit points

it contains some fimit

it contains infinite limit points

it contains all of ts limit points

poin
countable collection of

A set Fis closed if it contains all of its limit points collection of disjoint disjoint collection of disjoint |countable collection of disjoint
[Every open set of real numbers s the union of [countabe collection of disjont__[open intervals closed intervals closed intervals [open intervals
composite number n is [a prime number and n >1 Uncountable infinite finite
The union of a finite or collection of countable sefs is [countable a_does not belongs 0 § s not lower bound of S _|a is not upper bound of
/An element a is an minimal element of set S then [abelongs oS n<x n=x n#x
For every real number xthere is a positive ineger n such that n>x uncountable subset proper subset improper subset [countable subset
Every infinite set has a countable subset finite countable (finite
Set of real numbers is bounded above is Sup S infinite minimal element only maximal and minimal no maximal no minimal minimal element only
[The haf interval [0,1) have maximal element only finite countable infinite
Set of real numbers is unbounded above 1s Sup S infinite closed semi open semi closed [closed
[ The arbitrary intersection of closed set is lopen a singleton set a finite set not a well defined set not a well defined set
rime numbers or a product of prime
The set of intelligent student in a class is 2 null set sum of prime numbers product of prime numbers _|numbers prime numbers or a product of prime numbers
Every integer n>1 s prime numbers non ordered set el of irrational numbers _|does not salisfies principle induction _[ordered set
The set of integer s lordered set unbounded below unbounded above no maximal element bounded above
The closed interval S= (0,115 bounded above 2[emply 1
7S = [0,1) the least upper bound for S is 0fprime number not a point of closure __|non prime number a point of closure to S
7S is a set of real numbers which is bounded below then inf S is 2 point of closure to § closed set set countable set closed set
Afinite setis open set inf E>sup £ inf E=sup £ inf E = sup E
fEisa Then inf E<sup € B = (negative] no infimum = (negative)
7R is a extended real number system then inf R is Bl

The set of negative integers having least upper bound is

-1

closure of E contains non emply
opensets

closure of E contains
lempty opensets

closure of E contains no non emply
closedsets

[closure of E contains no non empty opensets

[closure of E contains o non

The set E is nowhere dense ,if lempty opensets upper bound maximal element minimal element lower bound
The set of natural numbers has fower bound no maximal element o
Let S =[0,1) the maximal elementof S is. o its complement s closed set its complement its complement is semiclosed set __|its complement is closed set
If Ais a non-emply open set then its is open set closed set emply set set [open set
fthe intersection finite collection of open set is [open set finite set set set [open set
[The set of real number R is [open set lbounded from below lbounded from above bounded unbounded
The set of real numbers is unbounded closed set empty set non empty set [closed set
The intersection of any collection of closed set s [open set limit point infinite fimit point fnite fimit point limit point
/An infinite set must possess a [does not have a fimit point open intervals open closed intervals lopen
The emply setis imperfect open set set countable set [closed
single ton set{ x} is [closed closed 0} B [open set
The union of any or collection of open sefs is. o open semi open either open or closed [closed
The derived set of a setis [closed limit point largest limit point no limit point [smallest imit point
Every bounded infinite set has smallest limit point countable finite infinite [countable
The set of all integers is uncountable countable finite infinite. [countable
The cartesian product of two countable set s, E"is null E"is open E"is closed interval E “is closed
Lt E " is the set of point of closure of E E "is closed semi open closed intervals open intervals [open set
bounded above by 0 & minimal bounded below by 1& 1o [bounded above by 1 & maximal
INull set lopen set element is 0 maximal element element is 1 bounded above by 1 & maximal element is 1
bounded above by T & maximal
$=(0, 1]is lelement is 1 A~ B is non empty set A-Bis closed set A~ Biis empty set |A- B is open set

If As open set and B is closed set then

|A- Bis open set

may be closed set

may not always be a closed|

open set

may not always be a closed set

The union of an arbitrary family of closed set

[closed set

equal sequence

range set of a sequence

null sequence

range set of a sequence

neither bounded above nor bounded

The set of all distict element of a sequence is called |constant sequence bounded below bounded below neither bounded above nor bounded below
<(-1)"n> bounded above oscillates finitely diverges converges o oscillates finitely |converges or oscillates finitely
'A bounded sequence [converges. one limit ‘many limit no limit point more than one limit

A sequence can not converge to

more than one limit

must a member of the sequence

heed ot be a member of
the sequence

not a member of the sequence

need not be a member of the sequence

limit point of a sequence

member of the sequence

no limit point

a limit point

[more than two limit point

[a Timit point

Everu bounded real sequence has

many limit point
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TRANSPORTATION AND ASSIGNMENT PROBLEMS
Transportation Problems:
Introduction

Transportation deals with the transportation of a commodity (single product) from ‘m’
sources (origins or supply or capacity centers) to ‘n’ destinations (sinks or demand or
requirement centers). It is assumed that

(1 Level of supply at each source and the amount of demand at each destination and
(i) The unit transportation cost of transportation is linear.

It is also assumed that the cost of transportation is linear.

The objective is to determine the amount to be shifted from each sources to each
destination such that the total transportation cost is minimum.

Note: The transportation model also can be modified to Account for multiple
commodities.

1. Mathematical Formulation of a Transportation problem:

Let us assume that there are m sources and n destinations.

Let ai be the supply (capacity) at source i, bj be the demand at destination j, Cij be the unit
transportation cost from source i to destination j and x;; be the number of units shifted from
sources i to destination j.

Then the transportation problems can be expressed mathematically as

Minimize Z = Y02, Y71 ¢ijx;;
Subject to the constraints
;’lzlxij: ai, i=1,2,3,....... m
{21 Xij= by, i=1,2,3,....... N.

And x;; = 0, foralliand j.

Note 1: The two sets of constraints will be consistent if
m a.="__b.
1=1" Jj=1%]j

(total supply) (total demand)

Which is the necessary and sufficient condition for a transportation problems to have a
feasible solution. Problems satisfying this condition are balanced transportation problems.

Note 2: If ), ai # ), b;

Note 3: For any transportation problems, the coefficient of all Xij in the constraints are
unity.
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Note 4: The objective function and the constraints being all linear, the transportation
problems is a special class of linear programming problem. Therefore it can be solved by
simplex method. But the number of variables being large, there will be too many calculations.
So we can look for some other technique which would be simpler that the usual simplex method.

Standard transportation table:

Transportation problem is explicitly represented by the following transportation table.

Destination
D, D, D, .. D, ... D, supply
S1 Ci1 C12 Ci3 Cyj Cin a;
Source Sl C21 C22 C23 CZ] CZn a,
Sl Czl Ciz Cl] Cln
Sl le sz ij Cmn an
Demand by b, by e e by Za,» =zbj

The mn squares are called cells. The unit transportation cost cjj from the i source to the
j" destination is displayed in the upper left side of the (i,j)™ cell. Any feasible solution us
shown in the table by entering the value of x;; in the center of the (i,j)" cell. The various a’s
and b’s are called rim requirements. The feasibility of a solution can be verified by summing
the values if xjj along the rows and down the columns.

Definition 1: A set of non-negative values xij, i=1,2............... m;j=1,2........... n. that
satisfies the constrains (rim conditions and also the non-negativity restrictions) is called a
feasible solution to the transportation problems.

Note: A balanced transportation problems will always have a feasible solution.

Definition 2: A feasible solution to a (m x n) transportation problems that contains no
more than m + n-1 non-negative allocations is called a basic feasible solution (BFS) to the
transportation problem.

Definition 3: A basic feasible solution to a (m x n) transportation problem is said to be a
non-degenerate basic feasible solution if it contains exactly m + n-1 non-negative allocations
in independent positions.
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Definition 4: A basic feasible solution that contains less than m + n -1 non-negative
allocations is said to be a degenerate basic feasible solution.

Definition 5: A feasible solution (not necessarily basic) is said to be an optimal
solution if it minimize is atmost m + n -1.

Note: The number of non-basic variables in an m x n balanced transportation problem is
almost m+ n -1.

Note: The number of non-basic variables in an m x n balanced transportation problem is
atleast mn — (m + n -1).

Il. Methods for finding initial basic feasible solution

The transportation problems has a solution is and only if the problem is
balanced. Therefore before starting to find the initial basic feasible solution, check
whether the given transportation problem is balanced. If not once has to balance the
transportation problems first. The way to doing this is discussed in section 7.4 page 7.40. In this
section all the given transportation problems are balanced.

Method I: North west corner rule:

Step I: The first assignment is made in the cell occupying the upper left-hand (north-
west) corner of the transportation table. The maximum possible amount is allocated there. That
is X121 = min {az, b1}.

Case (i): If min {a1, b1} =as, then put x11=a1, decrease by by a; and move vertically to
the 2" row (i.e.,) to the cell (2, 1) cross out the first row.

Case (ii): If min {a1, b1} =bs, then put x11=bs, decrease a1 by b; and move horizontally
right (i.e.,) to the cell (2, 1) cross out the first column.

Case (iii): If min {a1, b1} = a1 =by, the put x11 = a1=b1 and move diagonally to the cell (2,
2) cross out the first row and the first column.

Step 2: Repeat the procedure until all the rim requirements are satisfied.

Method 2: Lest cost method (or) Matrix minima method (or) Lowest cost entry
method:

Step 1: Identify the cell with smallest cost and allocate xi;= Min {ai,b;}

Case (i): If min {ai,bj}= a;, then put x;;= a, cross out the ith row and decrease bj by ai, go
to step(2).
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Case (ii): If min {ai,bj}= bj, then put Xij = bj, cross out the jth column and decrease aj by
bj, go to step(2).

Case (iii): If min {ai,bj}=ai= bj, then put x;=ai = bj, cross out either ith row and jth
column but not both, go to step(2).

Step 2: Repeat step (1) for the resulting reduced transportation table until all the rim
requirements are satisfied.

Method 3: Vogel’s approximation method (VAM) (or) Unit cost penalty method:

Step 1: Find the difference (penalty) between the smallest and next smallest costs in each
row (column) and write them in brackets against the corresponding row (column).

Step 2: Identify the row (or) column with large penalty. If a tie occurs, break the tie
arbitrarily. Choose the sell with smallest cost in that selected row or column and allocate as
much as possible to this cell and cross out the satisfied row or column and go to step (3).

Step 3: Again compute the column and row penalties for the reduced transportation table
and then go to step (2). Repeat the procedure until all the rim requirements are satisfied.

Example 1: Determine basic feasible solution to the following transportation
problems using North West Corner Rule:

Sin k
A B C D E  Supply
Origin P 2 11 10 3 4
Q 1 4 7 2 8
R 3 9 4 8 12 9
Demand 3 3 4 5 6

[MU. BE. Apr 94]
Solution:

Since a; = b; = 21, the given problem is balanced. - There exists a feasible solution to
the transportation problem.
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Following North West Corner rule, the first allocation is made in the cell(1,1)
Here x;; = min {a,, b;} = min {4,3} =3
Allocate 3 to the cell(1,1) and decrease 4 by 3i.e.,4-3=1

As the first column is satisfied, we cross out the first column and the resulting reduced
Transportation table is

11 10 3 7 1

Here the North West Corner cell is (1,2).

So allocate x;,= min {1, 3} = 1 to the cell (1,2) and move vertically to cell (2, 2). The
resulting transportation table is

9 4 8 12

2 4 5 6

Allocate x,,=min {8, 2} = 2 to the cell (2, 2) and move horizontally to cell (2, 3). The
resulting transportation table is

7 2 1
4 6
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Allocate x,5=min {6, 4} = 4 and move horizontally to cell (2, 4). The resulting reduced
transportation table is

8 12 |9

5 6
Allocate x,,= min {2, 5} = 2 and move vertically to cell (3, 4). The resulting reduced

transportation table is

8 12
3 9
3 6
Allocate x3,= min {9, 3} = 3 and move horizontally to cell (3, 5).which is
12
6 6
6

Allocate x;s= min {6, 6} =6

Finally the initial basic feasible solution is as shown in the following table.

2 11 10 3 7
3 1
1 4 7 2 1
2 4 2
3 9 4 8 12
3 6

From this table we see that the number of positive independent allocations is equal to

m+n-1=3+5-1=7. This ensures that the solution is non degenerate basic feasible.
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RsS.2Xx3+11x1+4x2+7x4+2x2+8x3
+12x6

~The initial transportation
cost

Rs. 153/-

Example 2:

Find the initial basic feasible solution for the following transportation problem by Least
Cost Method.

To Supply
1 2 1 4 30

From 3 3 2 1 50
4 2 5 9 20

Demand 20 40 30 10

[MU. BE. Apr 95,BE. Nov 96]

Solution:
Since Y a; = ¥ b; = 100, the given TPP is balanced. There exists a feasible solution to the

transportation problem.

1 2 1 4

20 30
3 3 2 1 50
4 2 5 9 20

20 40 30 10

By least cost method, min ¢;; = cyq = ¢13 =4 =1
Since more than one cell having the same minimum c;;, break the tie.

Let us choose the cell (1,1) and allocate x,,= min {a,, b;} = min {30,20} = 20 and cross out the
satisfied column and decrease 30 by 20.

The resulting reduced transportation table is

2 1 4
10 10
3 2 1 50
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2 5 9 20

40 30 10
Here min ¢;; = ¢;3 = ¢4 = 1.Choose the cell (1,3) and allocate x;3= min {a;, b3} = min

{10,30} = 10 and cross out the satisfied row.

The resulting reduced transportation table is

3 2 1
10 |50
2 5 9 20

40 20 10
Here min¢;; =cp =1

=~ Allocate x,,= min {a,, b,} = min (50,10) = 10 and cross out the satisfied column.

The resulting transportation is

3 2
20 |40
2 5 20

40 20
Here c;; = c,3 = c3; = 2. Choose the cell (2,3) and allocate x,3= min {a,, b;}=

min (40,20) = 10 and cross out the satisfied column.

The resulting reduced transportation table is

3
20

2
20 |20

40
Here min = ¢;;= c3, = 2. Choose the cell (3,2) and allocate x3,= min {as, b,}=

min (20,40) = 20 and cross out the satisfied row.

The resulting reduced transportation table is

3

20 |20
20
Finally the initial basic feasible solution is as shown in the following table.
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1 2 1 4
20 10
3 3 2 1
20 20 10
4 2 5 9
20

From this table we see that the number of positive independent allocations is equal to
m+n-1=3+4-1=6. This ensures that the solution is non degenerate basic feasible.
=~ The initial transportation = Rs.1x20+1x10+3x20+2x20

Cost 1x10+2x20

Rs. 20+ 10+ 60 + 40 + 10 + 40

Rs. 180/-

Example 3:

Find the initial basic feasible solution for the following transportation problem by VAM.

Distribution centres

D, D, D, D,  Availability
Sy 11 13 17 14 | 250
Origin S, 16 18 14 10 | 300
S3 21 24 13 10 | 400

Requirements 200 225 275 250

Solution:

Since Y a; = X b; = 100, the given is balanced. - There exists a feasible solution to this
problem.

11 13 17 14 250 (2)
200

16 18 14 10 300 (4)

21 24 13 10 400 (3)

200 225 275 250
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(%) (%) (1) (0)
First let us find the difference (penalty) between the smallest and next smallest costs in
each row and column and write them in brackets against the respective rows and columns.

The largest of these differences is (5) and is associated with the first two columns of the
transportation table. We choose the first column arbitrarily.

In this selected column, the cell (1,1) has the minimum unit transportation cost ¢;4 = 11.

=~ Allocate x,,= min (250,200) = 200 to this cell (1,1) and decrease 250 by 200 and cross
out the satisfied column.

The resulting reduced transportation table is

13 [17 [14 |50 (1)
50

18 |14 |10 |300 (4)

24 13 |10 | 400 (3)

225 275 250
G @O O

The row and column differences are now computed for this reduced transportation table.
The largest of these is (5) which is associated with the second column. Since ¢, = 13 is the
minimum cost, we allocate x,,= min (50,225) = 50 to the cell (1,2) and decrease 225 by 50 and
cross out the satisfied row.

Continuing in this manner, the subsequent reduced transportation tables and the differences
for the surviving rows and columns are shown below:

18 14 10 ]300 (4)

175
24 13 10 400 (3)

175 275 250

(6) D) (0)
(i)

Prepared by : S.Kohila ,Department of Mathematics ,KAHE Page 11|61



UNIT IV

14 10 (4)
125
125
13 10 400 (3)
250
@ ©
(ii)
14 10
400
125
275 125
(iii)
13
275
275
275
(iv)
Finally the initial basic feasible solution is as shown in the following table.
11 13 17 14
200 50
16 18 14 10
175 125
21 24 13 10
275 125

TRANSPORTATION PROBLEM

2017|BATCH

From this table we see that the number of positive independent allocation is equal to

m+n-1=3+4-1=6. This ensures that the solution is non degenerate basic feasible.

~ The initial transportation = Rs. 11 x 200 + 13 x50 + 18 x 175 +
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+10x125+13x 275+ 10x 125

Cost
Rs. 12075/-

Example 4:

Find the starting solution of the following transportation model

1 2 6 7
0 4 2 12
3 1 5 11

10 10 10
Using (i). North West Corner rule

(if). Least Cost method

(iii). Vogel’s approximation method.

Solution:
Since Y a; = X b; = 100, the given Transportation problem is balanced. - There exists a
basic feasible solution to this problem.

(i). North West Corner rule: Using this method, the allocation are shown in the tables

below:

1 2 6
7 7
0 4 2
12
3 1 5
11
10 10 10
(i)
0 4 2 12
3
3 1 5 11
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(i)
4 2 9
8
1 ) 11
10 10
(iii)
1 5 11 5) 10
1 10
10
1 10
_ _ (iv_) _ _ (V)
The starting solution is as shown in the following table
1 2 6
7
0 4 2
3 9
3 1 5
1 10

=~ The initial transportation cost = Rs. 1x7+0x3+4x9+1x1+5x10

= Rs. 94/-

(if).  Least Cost method: Using this method, the allocation are as shown in the table below:

1 2 6 7
7
0 4 2 12
10
3 1 5
11

10 10 10

(i)
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2 6
4 2
1 5
10
10 10
(i)
6 |7
5 |1
1
8
(iv)

The starting solution is as shown in the following table:

11

1 2 6
0 4 2
10
3 1 5
10

=~ The initial transportationcost = Rs. 6x7+0x10+2x2+1x10+5x1

= Rs. 61/-

6 |7
2 |2
2
5 |1
10
(iii)
6 |7
7
:
(v)

2017|BATCH

(iii). Vogel’s approximation Method: Using this method, the allocations are shown in the

table below:
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1 2 6 7 )
0 4 2 12 (2)
10
3 1 5 11 (2)
10 10 10
1) 1) 3)
(1)
1 2 7 ()
0 4 2 (4)
2
3 1 11 (2)
10 10
1) (1)
(i)
1 2 7 Q)
3 1 11 (2)
10
8 10
2 (1)
(iii)
1 7
7 3 |1
3 1 1
1
8
(iv) (v)

The starting solution is as shown in the following table:
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1 2 6

7
0 4 2

2 10
3 1 5

1 10

=~ The initial transportation cost = Rs.1x7+0x2+2x10+3x1+1x10

= Rs. 40/-

Note: For the above problem, the number of positive allocation in independent positions is
(m+n-1) (ie, m+n—-1=3+3-1=5). This ensures that the given problem has a non-
degenerate basic feasible solution by using all the three methods. This need not be the case in all
the problems.

Transportation Algorithm (or) MODI Method (modified distribution
method) (Test for optimal solution).

Step 1: Find the initial basic feasible solution of the given problems by Northwest Corner
rule (or) Least Cost method or VAM.

Step 2: Check the number of occupied cells. If these are less than m + n — 1, there exists
degeneracy and we introduce a very small positive assignment of £ (* 0) in suitable independent

positions, so that the number of occupied cells is exactly equal to m+n —1.

Step 3: Find the set of values ui, vj (i= 1,2,3,....m; j=1,2,3...n) from the relation cij = uU; +
vj for each occupied cell (i,j), by starting initially with ui =0 or v; =0 preferably for which the
corresponding row or column has maximum number of individual allocations.

Step 4: Find u; + v; for each unoccupied cell (i,j) and enter at the upper right corner of
the corresponding cell (i,j).

Step 5: Find the cell evaluations dij = cij — (ui + vj) (dij = upper left — upper right) for each
unoccupied cell (i,j) and enter at the lower right corner of the corresponding cell (i,j).

Step 6: Examine the cell evolutions djj for all unoccupied cells (i,j) and conclude that

(N If all di>0, then the solution under the test is optimal and unique.

(i) If all d;j>0, with atleast one d;j=0, then the solution under the test is
optimal and an alternative optimal solution exists.

(iif)  If atleast one d;j<0, then the solution is not optimal. Go to the next step.
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Step 7: Form a new B>F>S by giving maximum allocation to the cell for which djjis most
negative by making an occupied cell empty. For that draw a closed path consisting of horizontal
and vertical lines beginning and ending at the cell for which djj is most negative and having its
other corners at some allocated cells. Along this closed loop indicate +6 and — 8 alternatively
at the corners. Choose minimum of the allocations from the cells having — 8. Add this minimum
allocation to the cells with + 8 and subtract this minimum allocation from the allocation to the
cells with — 6.

Step 8: Repeat steps (2) to (6) to test the optimality of this new basic feasible solution.
Step 9: Continue the above procedure till an optimum solution is attained.

Note: The Vogels approximation method (VAM) takes into account not only the least
cost ¢jj but also the costs that just exceed the least cost cij and therefore yields better initial
solution than obtained from other methods in general. This can be justified by the above
example (4). So to find the initial solution, give preference to VAM unless otherwise specified.

Example 1: Solve the transportation problem:

1 2 3 4  Supply
I 21 |16 |25 |13 |11

1 17 18 |14 |23 |13
11 32 27 |18 |41 |19
Demand 6 10 12 15

Solution: Since Y a; = X b; =43, the given transportation problem is balanced. - There exists a
basic feasible solution to this problem.

By Vogel’s approximation method, the initial solution is an shown in the following table.

21 16 25 13 @) - - -
11
17 18 14 23 (3) 3) (3) (3)
6 3 4
32 27 18 41 9) (9) (9) (9)
7 12
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(4) 2 (4) (10)
(15) 9) (4) (18)
(15) 9) (4)

_ 9 (4)
That is 21 16 25 13
11
17 18 12 23
6 3 4
32 27 18 41
7 12

From this table, we see that the number of non-negative independent allocations is (m + n
— 1) = (3+4-1) =6. Hence the solution is non-degenerate basic feasible.

=~ The initial transportation cost.

=Rs.13x11+17x6+18Xx3+23x4+27x7+18x12
= Rs. 796/-

To find the optimal solution
Consider the above transportation table. Since m+n-1=6, we apply MODI method,
Now we determine a set of values u; and v; for each occupied cell (i,j) by using the
relation cij= ui + vj. As the 2" row contains maximum number of allocations, we choose uz=0.
Therefore
Ca=U+Vvi=>17=0+vi=>vi =17
Ceo=U2+Vv2=>18=0+Vv, =>Vv, =18
Cu=U2+Vv4=>23=0+Vvs =>Vv4=23
Cu=uUr+v4=>13=u1+23=>u;=-10
C=Uz+Vve=>27=u3+18=>u3=9
Caz=U3+Vv3=>18=9+v3 =>v3=9
Thus we have the following transportation table:

21 16 25 13 ur = -10
11
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17 18 14 23 uz =0

32 27 18 41 us = 9
7 12

vi=1l7 v»=18 wvs =9 v =23
Now we find u; + vj for each unoccupied cell (i,j) and enter at the upper right corner of
the corresponding unoccupied cell(i,j).

Then we find the cell evalutions dijj = cij— (ui + Vvj) (ie., upper left corner — upper right
corner) for each unoccupied cell (i,j) and enter at the lower right corner of the corresponding
unoccupied cell (i,j).

21 7 |16 8125 -1113
ur = -10
14 8 26 11
17 18 14 9|23
u =0
6 3 5 4
32 26|27 18 41 32
us = 9
6 7 12 9

vi=17 v2=18 wv3 =9 v4 =23
Since all dij>0, with ds2 = 0, the current solution is optimal and unique.
~ The optimum allocation schedule is given by X14 = 11, X21 = 6, X22 =3, Xo4 =4, X32 =7,
x33 =12, and the optimum (minimum) transportation cost
=Rs. 13x11+17x6+18x3+23 x4 +27x7 +18x 12

= Rs. 796/-
Example 2:
Obtain on optimum has feasible solution to the following transportation problem:
To Available
7 3 2 |2
From 2 1 3 |3
3 4 6 |5
Demand 4 1 5 10

Solution:
Since ¥ a; = Y. b; =43, the given transportation problem is balanced. - There exists a

basic feasible solution to this problem.
By Vogel’s approximation method, the initial solution is as shown in the following table:
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7 3 2 (1) (5)
2
2 1 3 1 @O @
1 2
3 4 6 1) 3) 3
4 1
1) (2) (1)
1) 1)
1) 3)
That is
7 3 2
2
2 1 3
1 2
3 4 6
4 1

From this table we see that the number of non-negative allocation is
m+n-1=(3+3-1)=5.
Hence the solution is non-degenerate basic feasible

=~ The initial transportationcost = Rs.2x2+1x1+3x2+3x4+6x1

= Rs. 29/-

For optimality: since the number of non — negative independent allocation is m + n -1, we apply
MODI method.

Since the third column contains maximum number of allocations, we choose vz = 0.

Now we determine a set of values ui and v; by using the occupied cells and the relation
Cij = UitV

That is

up = 2
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3 4 6
us = 6
4 1
vi= -3 Vo = -2 V3 = 0

Now we find u; + v; for each unoccupied cell (i, j) and enter at the corresponding
unoccupied cell (1,j).

Then we find the cell evaluations djj = cij — (ui + v;) for each unoccupied cell (i, j) and
enter at the lower right corner of the corresponding unoccupied cell (i, j).

Thus we get the following table

7 -1 13 2
up = 2
8 2
2 0|1 3
u = 3
2 2
3 4 6
Us = 6
4 0 1
vi= -3 Vo = -2 vi =0

Since all dij>0, with ds> = 0, the current solution is optimal and there exists an alternative
optimal solution.

=~ The optimum allocation schedule is given by X13 = 2, X32 = 1, X23 =2, X31 =4, X33 =1, and
the optimum (minimum) transportation cost

= Rs.2x2+1x1+3x2+3x4+6x1 = Rs.29/-
Example 3: Find the optimal transportation cost of the following matrix using least cost

method for finding the critical solution.

A B C D E  Available
P14 |1 2 6 9 100
Factory Q |6 |4 3 5 7 120
R |5 |2 6 4 8 120
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Demand

Solution:

TRANSPORTATION PROBLEM

40

50

70

90

90
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Since X, a; = X, b;j= 340, the given transportation problem is balanced. - There exists a
basic feasible solution to this problem.

By using Least cost method, the initial solution is an shown in the following table:

4 1 6 9
50| 50
6 4 5 7
10 20 90
5 2 4 8
30 90

=~ The initial transportation cost = Rs. 1 x50+2x50+6x10+3x20+7x90

= Rs. 1410/-

+5x30+4x90

For optimality: Since the number of non — negative independent allocations is ( m + n -1), we
apply MODI method:

511 2 6 4 6
-1 50 50 2 3
4 2|3 5 5
10 2 20 0 90
2 1|6 2 |4 6
30 1 4 90 2
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vi=6 w=2 v3=3 wv=5 vs =17

Since di1 = -1 <0, the current solution is not optimal.

Now let us form a new basic feasible solution by giving maximum allocation to the cell
(1,J) for which djj is most negative by making an occupied cell empty. Here the cell (1,1) having
the negative value d11=-1. We draw a closed loop consisting of horizontal and vertical lines
beginning and ending at this cell (1,1) and having its other corners at some occupied cells.
Along this closed loop indicate +6 and +6 alternatively at the corners. We have

4 1 2 6 9
+0 ) 50|50 -6
6 4 3 5 7
10 20 90
i 6
5 2 6 4 8
30 90

From the two cells (1,3), (2,1) having +68, we find that the minimum of the allocations
50,10 is 10. Add this cells with +8 and subtract this 10 to the cells with+6.

Hence the new basic feasible solution is displayed in the following table:

4 1 2 6 9
10 50 40
6 4 3 5 7
30 90
5 2 6 4 8
30 90
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We see that the above table satisfies the rim conditions with (m + n — 1) non-negative
allocations at independent position. So we apply MODI method.

4 1 2 6 319 6
10 50 40
3 3
6 514 2 |3 5 417
30 90
1 2 1
5 2 2|6 34 8 7
30 90
0 3 1
vi=4 v=1 v3=2 w=3 Vs =6

ur =0

Since all dij>0, with d3>=0, the current solution is optimal and there exists an alternative

optimal solution.

The optimum allocation schedule is given by x11=10, X12=50, X13 =40, X23=30, X25=90,
x31=30, X34=90 and the optimum (minimum) transportation cost.
=Rs.4x10+1x50+2x40+3x30+7x90+5x30+4x90.

= Rs. 1400/-

Degeneracy in Transportation Problems

In transportation problems, whenever the number of non-negative independent
allocations in less than m + n — 1, the transportation problems is said to be degenerate one.
Degeneracy may occur either at the initial stage or at an intermediate stage at some subsequent

iteration.

To resolve degeneracy, we allocate an extremely small amount (close to zero)to one or
more empty cells of the transportation table(generally minimum cost cells if possible), so that the
total number of occupied cells becomes (m + n — 1) at independent positions. WE denote this
small amount by € (epsilon) satisfying the following conditions:

(i)
(ii)

0 <€ <xj, forall x;;> 0
Xij = € = xij, forall x;> 0
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The cells containing £ are then treated like other occupied cells and the problems is

solved in the usual way. The&’s are kept till the optimum solution is attained. Then we let each

€—0.

Example 1: find the non-degenerate basic feasible solution for the following transportation

problems using

() North west corner rule

(i)  Least cost method

(ili)  Vogel’s approximation method.

From

Demand

Solution: Since Y. a; = X, bj= 150, the given transportation problems is balanced.

= There exists a basic feasible solution to this problem.

0] The starting solution by NWC rule is an shown in the following table.

To
10 20 5 7
13 9 12 8
4 5 7 9
14 7 1 0
3 12 5 19
60 60 20 10

10 20 5 7
10

13 9 12 8
20

4 5 7 9
30

14 7 1 0

40

supply

10
20
30
40
50
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20

20

19

10
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Since the number of non-negative allocations at independent positions is 7 which is less
than (m+n—1) =(5+ 4 - 1) = 8, this basic feasible solution is a degenerate one.

To resolve this degeneracy, we allocate a very small quantity € to the unoccupied cell

(5,1) so that the number of occupied cells becomes (m+n-1) (m + n—1). Hence the non-
degenerate basic feasible solution is an shown in the following table.

The initial

10 20 5 7
10
13 9 12 8
20
4 5 7 9
30
14 7 1 0
40
3 12 5 19
20 20 10

10x10+13x20+4x30+7x40+3xE+20x20+5x20+19x10

transportation cost = Rs.
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= Rs.(1290 = 3¢)

=Rs. 1290/- as €— 0.

2017|BATCH

(i) Least cost method: Using this method the starting solution is an shown in the
following table:

10 20 5 7
10
13 9 12 8
20
4 ) 7 9
10 20
14 7 1 0
10 20 10
3 12 5 19
50

Since the number of non-negative allocations at independent positions is (m + n — 1) =8,
the solution is non-degenerate basic feasible.

The initial transportation cost = Rs.20x10+9x20+4x10+5x20+7x10+1x20+0x10+3x50
= Rs. 760/-

(iii) Vogel’s approximation method: The starting solution by this method is an shown
in the following table:

10 20 5 7
10
13 9 12 8
20
4 5 7 9
30
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10

20

10

50

12

19

1)=8., this basic solution is a degenerate one.
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Since the number of non-negative allocations is 7 which is less than (m + n — 1) = (5+4-

To resolve this degeneracy, we allocate a very small quantity £ to the unoccupied

cell(5,2) so that the number of occupied cells becomes (m + n — 1). Hence the non-degenerate
basic feasible solution is an shown in the following table.

10 20 5 7
10
13 9 12 8
20
4 5 7 9
30
14 7 1 0
10 20 10
3 12 5 19
50

=~ The initial transportation cost

=Rs. 10X10 +9Xx20+5x30+7x10+1x20+0x 10+ 3x50 + 12X €
= Rs. (670 +12¢)
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Example 2: Solve the following transportation problems using vogel’s method.

A B C D E F  Available
11 9 12 9 6 9 10 |5
Factory 2| 7 3 7 7 5 5 |6
3 6 5) 9 11 3 11 |2
41 6 8 11 2 2 10 |9
Requirement 4 4 6 2 4 2

= Rs.670/- = as €-0.

TRANSPORTATION PROBLEM

2017|BATCH

Solution: Since Y. a; = Y. b;= 22, the given transportation problem is balanced. - There exists a

basic feasible solution to this problem. By Vogel’s approximation method, the initial solution is
as shown in the following table:

9 12 9 6 10
7 3 7 7 5
4 2
6 5 9 11 11
€
6 8 11 2 10
2 4

Since the number of non-negative allocations is 8 which is less than (m + n — 1)=(4+6-
1)=9, this basic solution is degenerate one.

To resolve degeneracy, we allocate a very small quantity € to the cell (3,2), so that the
number of occupied cells becomes (m + n — 1). Hence the non-degenerate basic feasible

solution is as shown in the following table.

9

12

9

10

4
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The initial transportation cost =Rs.9x5+3x4+5x2+6x1+5x€+9x1
+6x3+2x2+2x4
=Rs.(112+5€) = Rs.112/-, €é-0.
To find the optimal solution

Now the number of non-negative allocations at independent positions is (m+n —1). We
apply the MODI method.

9 6|12 519 6 219 2110 7
5 ur =0
3 7 4 7 3
7 4|3 7 77 0|5 015
4 2 U =-2
3 0 7 5
6 5 9 11 213 2111 7
1 € 1 us = 0
9 1 4
6 8 511 912 2 10 7
3 2 4 us = 0
3 2 3
Vi= 6 v2=5 vi =9 Vg = 2 Vs = 2 Ve = 7

Since all dij>0 with d23=0, the solution under the test is optimal and an alternative optimal
solution is also exists.

=~ The optimum allocation schedule is given by X14=5, X20=4,X26=2,X31=1,X32=€
X33=1,X41=3,X44=2,X45=4 and the optimum(minimum) transportation cost is

=RS.9X5+3x4+5x2+6X1+5XE+9x1+6X3+2X2+2x4
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=Rs. (112+5€)

=Rs. 112 as €-0.

Example 3: Solve the following transportation problem to minimize the total cost of
transportation.

To Supply
1 2 3 4 |6
From | 4 3 2 0O |8
0 2 2 1 |10
Demand 4 6 8 6

Solution: Since Y. a; = Y. b;= 24, the given transportation problem is balanced. - There exists a
basic feasible solution to this problem.

By using Vogel’s approximation method, the initial solution is as shown in the following
table:

4

Since the number of non-negative allocations is 5, which is less than (m + n — 1)=(3+4-
1)=6, this basic feasible solution is degenerate.

To resolve degeneracy, we allocate a very small quantity € to the cell (1,4), so that the

number of occupied cells becomes (m + n — 1). Hence the non-degenerate basic feasible solution
is given in the following table

2 6
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=~ The initial transportation cost = Rs.2x6+2x2+0x6+0x4+2X €+2X6
= Rs. (28 + 2¢)
= Rs. 28/-,as € —> 0.
To find the optimum solution:

Now the number of non-negative allocations at independent positions is (m + n — 1). We
apply MODI method.

1 012 3 2 |4 0
6 up =0
1 1 4
4 0|3 2 |2 0
2 6 u =0
4 1
0 2 2 1 0
4 6 us =0
€ 1

vi=0 v=2 wv3=2 wvwu=0

Since all dij > 0 the solution under the test is optimal and unique.

=~ The optimal allocation schedule is given by Xi12=6, X23= 2, Xo4= 6, X31 =4, X32= £, X33=6 and
the optimum (minimum) transportation cost

=RsS.2X6+2x2+0Xx6+0x4+2XE+2X6
=Rs. (28 + 2€) = Rs. 28,as € —> 0.
Example 5:

Solve the following transportation problem to minimize the total cost of transportation.

Destination
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TRANSPORTATION PROBLEM

1 2 3 4

1| 14 56 48 27
Origin2| 82 35 21 81
3] 99 31 71 63
Demand 70 35 45 60

Solution:

2017|BATCH

supply
70

47

93
210

Since ¥, a; = Y. b;= 210, the given transportation problem is balanced. -- There exists a

basic feasible solution to this problem.

By using Vogel’s approximation method, the initial solution is as shown in the following

table:

14 56 48 27
70
82 35 21 81
45 2
99 31 71 63
35 58

Since the number of non-negative allocations is 5, which is less than

(m+n-1) =(3+4-1) = 6, this basic feasible solution is degenerate.

To resolve degeneracy, we allocate a very small quantity € to the cell (1,4). So that the
number of occupied cells becomes (m + n —1). Hence the non-degenerate basic feasible solution

is given in the following table.

14 56 48 27
70 €
82 35 21 81
45 2
99 31 71 63
35 58

To find the optimum solution:
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Now the number of non-negative allocations at independent positions is (m + n — 1) =6.

We apply MODI method.

14 56 -5148 -33 |27
70 € up =27
61 81
82 68 |35 49 |21 81
45 2| u =81
14 -14
99 50 | 31 71 3|63
35 58 | us =63
49 68
vi= -13 Vo =-32 V3 = 60 vs=0

Since d22=-14<0, the solution under the test is not optimal.

Now let us from a new basic feasible solution by giving maximum allocation to the cell
(2,2) by making an occupied cell empty. We draw a closed loop consisting of horizontal and
vertical lines beginning and ending at this cell (2,2) and having its other corners at some
occupied cells. Along this closed loop, indicate +8 and -6 alternatively at the corners.

14 56 48 27
70 €
82 35 21 81
45 2
+0 ¢ A -0
99 31 71 63
-0 » +0
35 58

From the two cells (2,4),(3,2) having —6 we find that the minimum of the allocations 2,35
is 2. Add this 2 to the cells with +8 and subtract this 2 to the cells with +8. Hence the new basic
feasible solution is given by
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14 56 48 27
70 €
82 35 21 81
2 45
99 31 71 63
33 60

2017|BATCH

We see that the above table satisfies the rim conditions with (m + n — 1) non-negative
allocations at independent position. We apply MODI method for optimality.

14 56 5148 -19 | 27
70 € ur =-40
61 81
82 54 | 35 21 81 67
2 45 u =0
28 14
99 50 | 31 71 17 | 63
33 60 |us =-4
49 54
vi= 54 v2=35 wv3 =21 v4= 67

Since di>0, the solution under the test is optimal.

=~ The optimal allocation schedule is given by X11 = 70, X14 = €,X22 = 2, X23 = 45, X32 = 33,
X34 = 60 and the optimum (minimum) transportation cost

=Rs. 14 X 70+ 27Xx€+35x2+21x45+31x33+63x60
=Rs.6798/- as €-0.

Unbalanced Transportation Problems

I the given transportation problems is unbalanced one, i.e., ifY a; # X b;, then convert

this into a balanced one by introducing a dummy source or dummy destination with zero cost
vector (zero unit transportation costs) as the case may be and then solve by usual method.

When the total supply if greater than the total demand, a dummy destination is included
in the matrix with zero cost vectors. The excess supply is entered as a rim requirement for the
dummy destination.
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When the total demand is greater than the total supply, a dummy source is included in the
matrix with zero cost vectors. The excess demand is entered as rim requirements for the dummy

source.

Example 1: Solve the transportation problem

Destination
A B C D  supply
1 11 20 7 8 50

Source 2 21 16 20 12 40
3 8 12 18 9 70
Demand 30 25 35 40

Solution: Since the total supply (X a; =160) is greater than the total demand (% b; =130),
the given problem is an unbalanced transportation problem. To convert this i9nto a balanced
one, we introduce a dummy destination E with zero unit transportation costs and having demand

equal to 160-130=30 units.

~. The given problem becomes

Destination
A B C D E supply
1 11 20 7 8 0 50
Source 2 21 16 20 12 0 40
3 8 12 18 9 0 70

Demand 30 25 35 40 30 160

By using VAM the initial solution is as shown in the following table

11 20 7 8 0
35 15
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12
10

9
15

21 16 20
30

12 18

25

30

~ The initial transportation cost

=Rs. 7x35+8x15+12x10+0x30+8x30+12x25+9x15

=Rs. 1160/-
For Optimality: Since the number non-negative allocations at independent position is

(m + n— 1), we apply the MODI method.

11 7120 11 |7 8 0 -4
35 15 up =8
4 9 4
21 11 |16 15|20 11 | 12
10 30 u =12
10 1 9
8 12 18 819 0 -3
30 25 15 us =9
10 3
vi= -1 Vo =3 vy =-1 vie=0 v5=-12

Since all dij>0, the solution under the test is optimum and unique.

=~ The optimum allocation schedule is X13= 35, X14= 15, X24 = 10, X25 = 30, X31 = 30, X32=

25, X33=15
It can be noted that x25=30 means that 30 units are dispatched from source 2 to the

dummy destination E. In other words, 30 units are left undespatched from source 2.

The optimum (minimum) transportation cost
=Rs. 7x35+8x15+12x10+0x30+8x30+12x25+9x15

=Rs. 1160/-
Example 2: Solve the transportation problem with unit transportation costs, demands and

supplies as given below:
Page 38|61
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S1

Source S
S3
Demand

TRANSPORTATION PROBLEM

Destination
D1 D> Ds D
6 1 9 3
11 5 2 8
10 12 4 7
85 35 50 45

2017|BATCH

Supply
70
55

70

Solution: Since the total demand (X b; =215) is greater than the total supply (X a; =195), the
given problem is unbalanced transportation problem. To convert this into a balanced one, we
introduce a dummy source S, with zero unit transportation costs and having supply equal to 215-
195=20 units. - The given problems becomes

S1

Source S
S3

S4
Demand

Destination
D1 D, D3 D4
6 1 9 3
11 5 2 8
10 12 4 7
0 0 0 0
85 35 50 45

Supply
70

55

70

20

215

As this problem is balanced, there exists a basic feasible solution to this problem. By
using Vogel’s approximation method, the initial solution is as shown in the following table.

6 1

65 5
11 5

30 25
10 12
25 45

0 0

20

=~ The initial transportation cost

= Rs. 6x65+1x5+5x30+2x25+4x25+7x45+0x20

=Rs.1010/-
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For optimality: Since number of non-negative allocations at independent positions is (m + n —

1), we apply the MODI method.

6 1 -2 1
65 5 ur =6
11 2
11 10 | 5 5
30 25 uz =10
1 3
10 12 | 12 7
25 45 | uz =12
-2 5
0 0 510 810 -5
20 us =0
5 8 5
vi= 0 Vo2=-5 wv3=-8 wv;=-5

Since ds;1=-2<0, the solution under the test is not optimal.

Now let us form a new basic feasible solution by giving maximum empty. For this, we
draw a closed path consisting of horizontal and vertical lines beginning and ending at this cell
(3,1) and having its other corners at some occupied cells. Along this closed loop, indicate +6
and -6 alternatively at the corners.

We have,
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65 5 +0
-6
< A
11 5
30 25
-0 | +0
- A
10 12
25 45
+0 | -6

\ 4
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20

From the three cells (1,1), (2,2), (3,3) having —6 , we find that the minimum of the
allocations 65,30,25 is 25. Add this 25 to the cells with +6 and subtract this 25 to this cells
with—6. Finally, the new feasible solution is displayed in the following table.

6 1 9 3

40 30
11 5 2 8

5 50

10 12 4 7

25 45
0 0 0 0

20

We see that the above table satisfies the rim conditions with (m + n — 1) non-negative
allocations at independent positions. Now we check for optimality.

6 1 9 -2 13 3
40 30
11 0
11 105 2 8 7
5 50
1 1
10 12 S5 |4 2 |7
25 45
7 2
0 0 510 -8 10 -3
20
5 8 3

Since all dij>0 with d14=0, the solution under the test is optimal and an alternative
optimal solution exists.
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=~ The optimum allocation schedule is given by Xx13 = 35, X14 = 15, X24 = 10, Xo5 = 30,
X31= 30, X32= 25, X34 =15, Xa1 = 20.

It can be noted that x41=20 means that 20 units are dispatched from the dummy source S,
to the destinationD,. In other words, 20 units are not fulfilled for the destination D;,.

The optimum (minimum) transportation cost
=Rs.6Xx40+1x30+5x5+2x50+10x25+7x45+0x20
=Rs.960/-

Example 3:

Solve the transportation problem with unit transportation costs in rupees, demand and
supplies as given below:
Destination

D1 D> Dz Supply(units)
Al 5 6 9 |100
Origin B 75
C 50
D 6 4 10 |75
Demand 70 80 120
(units)

w
a1
[EY
o

»
\‘
(2}

Solution: Since the total supply (3 a; =270), the given transportation problem is unbalanced.

To convert this into a balanced one, we introduce a dummy source D, with zero unit
transportation costs and having demand equal to 300-270=30 units. -~ The given problem

becomes

Destination

D1 D2 D3 Ds  Supply(units)
Al 5 6 9 0 |100
Origin B 10 75
C 6 50
D 6 4 10 0 |75
Demand 70 80 120 30 300
(units)

w
ol
(@)

(@]
\‘
o

By using VAM the initial solution is given by
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5 6 9 0
100
3 5 10 0
70 5
6 7 6 0
20 30
6 4 10 0
75

Since the number of non-negative allocations is 6, which is less than
(m+n-—1) = 4+4-1 =7, this basic feasible solution is degenerate.

To resolve this degeneracy, we allocate a very small quantity £ to the cell (2,4), so that

the number of occupied cells becomes (m + n — 1). Hence the non-degenerate basic feasible
solution is given in the following table.

5 6 9 0
100

3 5 10 0
70 5 €

6 7 6 0
20 30

6 4 10 0

75

Now the number of non-negative allocations at independent positions is (m +n —1). We
apply MODI method.

100 ur =3

3 5 10 6|0

4
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6 3|7 5|6 0
20 30 us =0
3 2
6 2|4 10 510 -1
75 us =-1
4 5 1

vi=3 V=5 v3 =6 vs =0

Since there are some djj < 0, the current solution is not optimal.

Since di4= -3 is the most negative, let is form a new basic feasible solution is giving
maximum allocations to the corresponding cell(1,4) by making an occupied cell empty. We
draw a closed loop consisting of horizontal and vertical lines beginning and ending at this cell
(1,4) and having its other corners at some occupied cells. Along this closed loop indicate +6 and

—6 Alternatively at the corners.

5 6 9 0

100 +0

-9 ¢ A
3 5 10 0

70 5 (S

6 7 6 0

20 30

+6 » -9
6 4 10 0

75

From the two cells (1, 3), (3, 4) having -6, we find that the minimum of the allocations
100, 30 is 30. Add this 30 the cells with +8 and subtract this 30 to the cells with —6. Hence the
new basic feasible solution is given in the following table.
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5 6 9 0
70 30
3 5 10 0
70 5 £
6 7 6 0
50
6 4 10 0
75

2017|BATCH

We see that the above table satisfies the rim conditions with (m + n — 1) non-negative
allocations at independent positions. We apply MODI method.

5 3 1|6 519 0
70 30 up =0
2 1
3 5 10 910
70 5 [S u =0
1
6 07 216 0
50 us =-3
6 5
6 2|4 10 8|0 -1
75 us =-1
4 2 1
vi=3 Vv2=5 wv3 =9 vs=0

Since all dij>0, the current solution is optimal and unique.

The optimum allocation schedule is given by x13= 70, X14= 30, X21 =70, X22=5, X4 = €,
x33 = 50, X42 = 75 and the optimum (minimum) transportation cost

=Rs.9x70+0x30+3x70+5x5+0x€+6x50+4x75
=Rs. 1465/-
Maximization case in Transportation Problems

So far we have discussed the transportation problems in which the objectives has been to
minimize the total transportation cost and algorithms have been designed accordingly.

If we have a transportation problems where the objective is to maximize the total profit,
first we have to convert the maximization problem into a minimization problem by multiplying
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all the entries by -1 (or) by subtracting all the entries from the highest entry in the given
transportation table. The modified minimization problem can be solved in the usual manner.
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Assignment Problem:

Introduction

The assignment problem is a particular case of the transportation problem in which the
objective is to assign a number of tasks (Jobs or origins or sources) to an equal number of
facilities (machines or persons or destinations) at a minimum cost (or maximum profit).

Suppose that we have ‘n’ jobs to be performed on ‘m’ machines (one Job to one machine)
and our objective is to assign the jobs to the machines at the minimum cost (or maximum profit)
under the assumption that each machine can perform each job but with varying degree of
efficiencies.

The assignment problem can be stated in the form of m x n matrix (cj;) called a cost
matrix (or) Effectiveness matrix where cij is the cost of assigning i*" machine to the j™" job.

1 2 3 n
11 cn C12 C13  rrrrrerrennnees Cin
2] cn C22 C23  cerrrrrreennenn Con
Machines 3 | c3; Ca2 £33  crrrrrrreennens Can
m| Cm Cm2 Cm3  ceverececeenens Conn

Mathematical formulation of an assignment problem.

Consider an assignment problem of assigning n jobs to n machines (one job to one
machine). Let cjj be the unit cost of assigning i™ nachine to the j™ job and

Let xij= [ 1, if j job is assigned to i machine
{0, if j job is not assigned to i machine
The assignment model is then given by the following LPP
Minimize Z = Y1, Y71 ¢ijx;;
Subject to the constraints

" x;=1, j=12,..n

Prepared by : S.Kohila ,Department of Mathematics ,KAHE Page 47|61



UNIT IV TRANSPORTATION PROBLEM 2017|BATCH

;-lzlxij:l, i=1,2,....,n
and x;; =0(or) 1.

Difference between the transportation problem and the assignment problem.

Transportation problem Assignment problem

(a) Supply at any source may be Supply at any source (machine) will
any positive quantity a; belie., a=1

(b) Demand at any destination may Demand at any destination (job) will
be any positive b; belie., bj=1.

(c) One or more source to any One source (machine) to only one
Number of destinations destination (job).

Assignment Algorithm (or) Hungarian Method.

First check whether the number of rows is equal to the number of columns. Ifit is so, the
assignment problem is said to be balanced. Then proceed to step 1. If it is not balanced, then it
should be balanced before applying the algorithm.

Step 1: Subtract the smallest cost element of each row from all the elements in the row of the
row of the given cost matrix. See that each row contains atleast one zero.

Step 2: Subtract the smallest cost element of each column from all the elements in the column
of the resulting cost matrix obtained by step 1.

Step 3: (Assigning the zeros)

(a) Examine the rows successively until a row with exactly one unmarked zero is found.
Make an assignment to this single unmarked zero by encircling it. Cross all other zeros
in the column of this enriched zero, as these will not be considered for any future
assignment. Continues in this way until all the rows have been examined.

(b) Examine the columns successively until a column with exactly one unmarked zero is
found. Make an assignment to this single unmarked zero by encircling it and cross any
other zero in its row. Continue until all the columns have been examined.

Step 4: (Apply optimal Test)
(a) If each row and each column contain exactly one encircled zero, then the current
assignment is optimal.
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(b) It atleast one row/column is without an assignment (i.e., if there is atleast one
row/column is without one encircled zero), then the current assignment is not optimal.
Go to step 5.

Step 5: Cover all the zeros by drawing a minimum number of straight lines as follows.
(a) Mark (/') the rows that do not have assignment.

(b) Mark () the columns (not already marked) that have zeros in marked columns.

(c) Mark (/') the rows (not already marked) that have assignments in marked columns.

(d) Repeat (b) and (c) until no more marking is required.

(e) Draw lines through all unmarked rows and columns. If the number of these lines is equal
to the order of the matrix then it is an optimum solution otherwise not.

Step 6: Determine the smallest cost element not covered by the straight lines. Subtract this
smallest cost element from all the uncovered elements and add this to all those elements
which are lying in the intersection of these straight lines and do not change the remaining
elements which lie on the straight lines.

Step 7: Repeat steps (1) to (6). Until an optimum assignment is attained.

Note 1: In case some rows or columns contain more than one zero, encircle any unmarked
zero, encircle any unmarked zero arbitrarily and cross all other zeros in its column or
row. Proceed in this way until no zero is left unmarked or encircled.

Note 2: The above assignment algorithm is only for minimization problems.

Note 3: If the given assignment problem is of maximization type, convert it to a minimization
assignment problem by max Z = - min (-Z) and multiply all the given cost elements by -1
in the cost matrix and then solve by assignment algorithm.

Note 4: Sometimes a final cost matrix contains more than required number of zeros at
independent positions. This implies that there is more than one optimal solution
(multiple optimal solutions) with the same optimum assignment cost.

Example 1:

Consider the problem of assigning five jobs to five persons. The assignment costs are
given as follows:
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D 4310 3
E 95 8 9 5
Determine the optimum assignment schedule.

Solution: The cost matrix of the given assignment problem is

8 4 2 6 1
/0 9 5 5 4\
|3 8 9 2 6]

4 3 1 0 3

9 5 8 9 5

Since the number of rows is equal to the number of columns in the cost matrix, the given
assignment problem is balanced.

Step 1: Select the smallest cost element in each row and subtract this from all the
elements of the corresponding row, we get the reduced matrix

K 0\
0 4
| 1 4 |

\d o)

Step 2: select the smallest cost element in each column and subtract this from all the
elements of the corresponding column, we get the reduced matrix.

S WO W
Wk JulR
SO O U1 U

/7 3 0 5 0\
0 9 4 5 4
|1 6 6 0 4|
4 3 0 0 3
4 0 2 4 0

Since each row and each column at least one zero, we shall make assignments in the
reduced matrix.

Step 3: Examine the rows successively until a row with exactly one unmarked zero is
found. Since the 2" row contains a single zero, encircle this zero and cross all other zeros of its
column. The 3™ row contains exactly one unmarked zero, so encircle this zero and cross all
other zeros in its column. The 4™ row contains exactly one unmarked zero, so encircle this zero
and cross all other zeros in its column. The 1% row contains exactly one unmarked zero, so
encircle this zero and cross all other zeros in its column. Finally the last row contains exactly
one unmarked zero, so encircle this zero and cross all other zeros in its column. Likewise
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examine the columns successively. The assignments in rows and columns in the reduced matrix

is given by
7 3 0 5 (0
(@ 5 35 )
[ 1 6
(

5
6 © 4 |
\ 4 3 (0 0 3 /
4 (0 2 4 0
Step 4: Since each row and each column contains exactly one assignment (i.e., exactly
one encircled zero) the current assignment is optimal.

=~ The optimal assignment schedule is givenby A — 5B —»1,C —4,D —» 3,

E— 2.

The optimum (minimum) assignment cost = (1 + 0 + 2 + 1 + 5) cost units = 9 units of
cost.

Example 2:

The processing time in hours for the when allocated to the different machines are
indicated below. Assign the machines for the jobs so that the total processing time is
minimum.

Machines

Mi Mz M: Ms Ms

J 9 22 58 11 19

J 43 78 72 50 63

JobsJs 41 28 91 37 45
Jo 74 42 27 49 39

J 36 11 57 22 25

Solution:

The cost matrix of the given problem is
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9 22 58 11 19
43 78 72 50 63
41 28 91 37 45
74 42 27 49 39
36 11 57 22 25

Since the number of rows is equal to the number of columns in the cost matrix, the given
assignment problem is balanced.

Step 1: select the smallest cost element in each row and subtract this from all the
elements of the corresponding row, we get the reduced matrix.

/0 13 49 2 10\
0 35 29 7 20
| 13 0 63 9 17 |

47 15 0 22 12

25 0 46 11 14

Step 2: Select the smallest cost element in each column and subtract this from all the
elements of the corresponding column, we get the following reduced matrix.

/0 13 49 0 0\
0 35 29 5 10
|13 0 63 7 7
47 15 0 20 2

25 0 46 9 4

Step 3: Now we shall examine the rows successively. Second row contains a single
unmarked zero, encircle this zero and cross all other zeros in its column. Third row contains a
single unmarked zero, encircle this zero and cross all other zeros in its column. Fourth row
contains a single unmarked zero, encircle this zero and cross all other zero in its column. After
this no row is with exactly one unmarked zero. So go for columns.

Examine the columns successively. Fourth column contains exactly one unmarked zero,
encircle this zero and cross all other zeros in its row. After examining all the rows and columns.

We get
6 13 49 (0) B

© 35 29 5 10

13 (0) 63 7
47 15 (0) 20

7
2
e 0 46 94J
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Step 4: Since the 5 column do not have any assignment, the current assignment is not optimal.
Step 5: Cover all the zeros by drawing a minimum number of straight lines as follows:

(a) Mark () the rows that do not have assignment. The row 5 is marked.

(b) Mark (/') the columns (not already marked) that have zeros in marked rows. Thus
column 2 is marked.

(c) Mark the rows (not already marked) that have assignment in, marked columns.
Thus row 3 is marked.

(d) Repeat (b) and (c) until no more marking is required. In the present case this
repetition is not necessary.

(e) Draw lines through all unmarked rows (rows 1, 2 and 4). And marked columns
(column 2). We get

—13—49—6 0
—35—29— 5140
13 0 63 7 7
47—45—p—20—2

25 0 4 9 (@)

Step 6: Here 4 is the smallest element not covered by these straight lines. Subtract this
4 from all the uncovered element and add this 4 to all those elements which are lying in the
intersections of these straight lines and do not change the remaining elements which lie on these
straight lines. We get the following matrix.

0 17 49 0 O
0 39 29 5 10
9 0 59 3 3
47 19 0 20 2
21 0 42 5 O

Since each row and each column contains at least one zero, we examine the rows and
columns successively, i.e., repeat step 3 above, we get

0 17 249 (0 0)

(0 39 29 5 10
9 (0) 59 3 3
47 19 (0) 20 2

2t 0 4 5(@
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In the above matrix, each row and each column contains exactly one assignment
(i.e., exactly one encircled zero), therefore the current assignment is optimal.

=~ The optimum assignment schedule is J,—>M,, J,—>» M, J]; —>M,, j,—> M,

Js—> M and the optimum (minimum) processing time
= 11+43+28+27+25 hours = 134 hours.
Unbalanced Assignment Models

If the number of rows is not equal to the number columns in the cost matrix of the given
assignment problems, then the given assignment problems is said to be unbalanced.

First convert the unbalanced assignment problems in to a balanced one by adding dummy
rows or dummy columns with zero cost element in the cost matrix depending upon whether m<n
or m>n and then solve by the usual method.

Example 1: A company has four machines to do three jobs. Each job can be assigned to
one and only one machine. The cost of each job on each machine is given in the following
table.

Machines
1 2 3 4
Al 18 24 28 32
B| 8 13 17 19
JobsC| 10 15 19 22

What are job assignments which will minimize the cost?
Solution:
The cost matrix of the given assignment problems is
18 24 28 32
8 13 17 19
10 15 19 22

Since the number of rows is less than the number of columns in the cost matrix, the given
assignment problems is unbalanced.

To make it a balanced one, add a dummy job D (row) with zero cost elements. The
balanced cost matrix is given by
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18 24 28 32
8 13 17 19
10 15 19 22

Now select the smallest cost element in each row (column) and subtract this from all the
elements of the corresponding row (columns), we get the reduced matrix

0 6 10 1
0 5 9 1
0 5 9 1
0 0

In this reduced matrix, we shall make the assignment in rows and columns having single
zero. We have

Since there are some rows and columns without assignment, the current assignment is not
optimal.

Cover the all zeros by drawing a minimum number of straight lines. Choose the smallest
cost element not covered by these straight lines.

6 10 14
5 9 11
G) 9 12
6——6—5

—

Here 5 is the smallest cost element not covered by these straight lines. Subtract this 5
from all the uncovered element, add this 5 to those elements which lie in the intersections of
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these straight lines and do not change the remaining element which lie on the straight lines. We
get

oo O O O
o O o
o A~ B~ O
o N o ©

Since each row and each column contains atleast one zero, we shall make assignment in
the rows and columns having single zero. We get

© 1 5 9
0 (0 4 6
0o 0 4 7

5 0 (0 O

Since there are some rows and columns without assignment, the current assignment is not
optimal.

Cover all the zeros by drawing a minimum number of straight lines.

0o 1 5 9
O 0 4 6
o 0 @4 7
5 0 0 0

Choose the smallest cost element not covered by these straight line, subtract this from all
the uncovered elements, add this to those elements which are in the intersection of the lines and
do not change the remaining elements which lie on these straight lines. Thus we get

0 5
0 2
0 3
9 0

o O O -

1
0
0
4

Since each row and each column contains atleast one zero, we shall make the assignment
in the rows and columns having single zero. We get
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© 1 1 5

Since each row and each column contains exactly one assignment (i.e., exactly one
encircled zero) the current assignment is optimal.

~ The optimum assignment schedule is givenby A —1,B —» 2,C —3,D — 4
and the optimum (minimum) assignment cost

= (18+13+19+0) cost unit = 50/- units of cost

Note 1: For this problem, the alternative optimum schedule is A—» 1, B —» 2,
C—» 3, D—4, with the same optimum assignment cost= Rs. (18+17+15+0) = 50/- units of
cost.

Note 2: Here the assignment D— 4 means that the dummy Job D is assigned to the 4%
Machine. It means that machine 4 is left without any assignment.

Maximization case in Assignment Problems

In an assignment problem, we may have to deal with maximization of an objective
function. For example, we may have to assign persons to jobs in such a way that the total profit
is maximized. The maximization problems has to be converted into an equivalent minimization
problem and then solved by the usual Hungarian Method.

The conversion of the maximization problem into an equivalent minimization problems
can be done by any of the following methods:

Q) Since max Z = - min (-Z), multiply all the cost element c;; of the cost matrix by -1.
(i) Subtract all the cost elements cij of the cost matrix from the highest cost element
in that cost matrix.

Example:
Solve the assignment problem for maximization given the profit matrix (profit in rupees).

Machines
P Q R S
A| 51 53 54 50
B | 47 50 48 50
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JobsC|49 50 60 61
D63 64 60 60

Solution:
The profit matrix of the given assignment problem is

51 53 54 50
47 50 48 50
49 50 60 61
63 (64) 60 60
Since this is a maximization problem, it can be converted into an equivalent minimization

problem by subtracting all the profit elements in the profit from the highest profit element 64 of
this profit matrix. Thus the cost matrix of the equivalent minimization problem is

13 11 10 14
17 14 16 14
15 14 4 3
1 0 4 4

Select the smallest cost in each row and subtract this from all the cost elements of the
corresponding row. We get

3 0 4
3 0 2 0
12 11 1 0
1 0 4 4

Select the smallest cost element in each column and subtract this from all the cost
elements of the corresponding column. We get

2 0 4
2 0 2 0
11 11 1 0
0 0 4 4

Since each row and each column contains atleast one zero, we shall make the assignment
in rows and columns having single zero. We get
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2 1 0) 4
2 0) 2 0
11 11 1 (0)
0) 0 4 4
Since each row and each column contains exactly one encircled zero, the current
assignment is optimal.

~ The optimum assignment schedule is given by A —R, B —Q, C—»S, D —P and the
optimum (maximum) profit =Rs. (54 + 50 + 61 + 63)

= Rs. 228/-
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POSSIBLE QUESTIONS
PART-B(5x 2=10)
1.What do you understand by transportation problem?

2. Define feasible solution of a transportation problem.

3. What is the optimality test used while solving an Assignment Problem using Hungarian
method?

1. What is an assignment problem? Give two applications.

2. What is the optimality test used while solving an Assignment Problem using Hungarian
method?
3. Define feasible solution of a transportation problem.
4. What do you understand by transportation problem?
PART-C (5x4=20)
1. a) Find the initial basic feasible solution for the following transportation problem by

VAM.
Distribution centres
D, D, D, D,  Availability
S 11 13 17 14 250
Origin S, 16 18 14 10 300
S, 21 24 13 10 400

Requirements 200 225 275 250
2). Find the starting solution of the following transportation model

1 2 6 |7
0 4 2 |12

3 1 5 |11
10 10 10
Using (i) North West Corner rule
(ii).Least Cost method
3) Explain the procedure of Hungarian method to solve Assignment Problem.

4.Solve the following transportation problems using vogel’s method.

A B C D E F Available

11 9 12 9 6 9 10 |5

Factory 2| 7 3 7 7 5 5 |6

3| 6 5 9 11 3 11 |2

41 6 8 11 2 2 10 |9
Requirement 4 4 6 2 4 2

PART-D (1x 10=10)
1) Solve the assignment problem for maximization given the profit matrix (profit in rupees).
Machines
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Jobs C

P Q R S
51 53 54 50
47 50 48 50
49 50 60 61
63 64 60 60

2017|BATCH

2) Solve the transportation problem with unit transportation costs, demands and supplies as

given below:
Destination
D D2 Ds D4 Supply
S1 6 1 9 3 70
Source S 11 5 2 8 55
S3 10 12 4 7 70
Demand 85 35 50 45

3.Determine basic feasible solution to the following transportation problems using North West

Corner  Rule:
Sink
A B C D E  Supply
Origin P 2 11 10 3 4
Q 1 7 2 8
R 3 4 8 12 9
Demand 3 4 5 6
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2. The definition of a local maximum or mintmum 15 as follows:

Def. f has a local maximum (minimum) at a point x"eX if' 3 N(x") such that for all xeN(x"), f{x)

= fix%) < 0(fix) - fix") = 0 for a minimum.)
3. The generalization of the first order condition is as follows:

Praposition 1. If a differentiable function f has a maximum or a minimum at x” & X, then f{x") =

0, for all 1.

The n equations generated by setting cach partial derivative equal to zero represent the first order

conditions. If a solution exists, then they may be solved for the n solution values x;".

4. As in the case of n choice vanables, there are second order conditions which determine
whether a critical point is a maximum or a minimum. The complication is that there is no longer
one second order derivative which can be checked for negativity or positivity. In fact, there are
n® such derivatives, Fi(x"), i, j = 1....n. The relevant second order condition for a maximum is

that

() EAx)= T T f(x") dudx; <0 for all (dx,__dx,) = 0.

=l =1

This condition is that the quadratic form i i F(x") dxydy; is negative definite.

i=l =1
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In (*), the discriminate is the Hessian matrix of { (the objective function). As discussed
above, the rather cumbersome (*) condition is equivalent to a fairly simple sign condition. This

i5 as follows:

[}

(S0C) (max) |PM;| of H=1 - - |. evaluated at x°, have signs (-1

The analogous conditions for a minimum are that

(**)  Ex)= ¥ Y £(x") dxdx; >0 for all (dx,__dx,) £ 0,

i=l  j=I

meaning that d’f(x®) is positive definite, and this condition is equivalent to

f] 1 * ) ) rI n

(SOC) (min) [PM;| of H={ - - |, evaluated at x", have positive signs

nl

If f satisfies the SOC for a maximum globally, then fis strictly concave. If it satisfies the S0OC
for a minimum globally, then f is strictly convex. For an n variable function, the definition of

strict concavity reads the same: flox + (1=0)x") = afix) +(1-o)fix'), x 2 2, a e (0,1).

Proposition 2. If at a point x® we have

(1) f(x™) =0, for all 1, and

(11) SOC for a maximum (minimum) is satisfied at x°,
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Then x® 15 a local maximum (minimum). I in addition the SOC 15 met for all x € X orif {is
strictly concave {convex), then x” is a unique global maximum (minimum).

Examples: #1 Maximizing a profit function over two strategy variables. Let profit be a function
of the two variables x;, i =1,2. The profit function is m{x;,x2) = Rix;,%;) = Erx;, where r; is the
unit cost of x; and R 15 revenue. We wish to charactenize a profit maximal choice of x;. The

problem is written as

Max mi(x;.xa).

{my.xa]
The FOC are
mi(x1,%) =10
Tl %X =00
The second order conditions are
<0, e - mas = 0 (recall Young's Theorem w3 = ;).

The effect of a change in r) can be determined by differentiating the FOC with respect to r;. We

obtain

H|:E'x,.l"frr,

1
.= , where H is the relevant Hessian.
%, /O, ]

Using Cramer's rule,

EX.J"I'.*!I] = ='."EE||1H|{D.
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Likewise

Ty, 1
Ty 0
[H]|

xaflon =

= -il'[:..llel s

The sign of w3 is positive if 1 and 2 are complements in profit and it is negative if they are

substitutes.

#2. Min x" +xy +2y". The FOC are

fx.¥i
x+y=0,
x+d4y=0.

Solving for the critical values x =0and v =0. f;;=2, fj =1 and f5; =4. The Hessian is
2 1 .
H=|\ | withfi=2>0and[H|=8-1=7>0.

Thus, (0,0) is a minimum. Further, it is global, because the Hessian sign conditions are met for

any x.¥.

Existence

In the case of a function of many variables, we want to generalize our existence
argument above. To do this, we must introduce a few concepts.
Def. 1. A set X = R” is said to be open if for all x & X 3 Nix) such that N(x) = X. The set X is

said to be closed if its complement is open.
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Def. 2. A set X = R is said to be bounded if the distance between any two of its points is finite.
Thatis, [ (x; =x;)*]"* <o, forall x.x' € X.
=l

Def. 3 A set X < R" is said to be compact if it is both closed and bounded.

We can now state a basic existence result.
Proposition. Let f: X— R, where X is a subset of R¥. If X is compact and f is continuous, then f
has a maximum and a minimum on X. If X 15 both compact and convex and { 1s strictly concave,
then { has a unique maximum on X. If X is both compact and convex and f is strictly convex,
then f has a unique minimum on X.

This proposition does not distinguish between boundary optima and interior optima.  As
in the case of a function of single variable, the results can be used to show the existence of
interior optima by showing that boundary optima are dominated. The technigue 1s as described

above.
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Suppose that there are m < n constraints g{x) =0, j=1. ., m.  The Lagrangian is
written as L{ky, ... , Am X1, .. . Xa) = f(x) + Edjg(x). The FOC are that the derivatives of L in x;

and &; vanish:
f; + Edogf/ox; = 0, for all i,
gi(x) =0, for all j.

The bordered Hessian becomes

where J; is the Jacobian of the constraint system in x, and [Lj] 1s the Hessian of the function L in
x. The condition m < n must be met, and the sign conditions for a maximum and a minimum are
written 1t terms of the principle minors of the above bordered Hessian. For a maximum, the

condition 1%

(SOC) max) PM;of | H | of order 1 > 2m has sign (-1)', where r is the order of the largest order

square [Ly] embedded in | PM.
For a minimum, the condition is

(SOC) min) |PM; of |E| of order 1> 2m has sign (-1)™
Examples:
#1. Find the critical 4-tuple for the function v = fix,, x5, x3), £ Ri —=R

¥ = KiXiXa
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subject to
X+ -1=0
Xy =xz =10
Restrict your choice of x;, 1 =1, 2, 3, to the positive reals.
L=x%%; + Ayl xf + Ng = 1)+ (%= x3)
(n XaXz + 2%, + A, =0
(2) X+ 2% =0
(3) XXz =ha=0
4 x+xi-1=0
(5) X =x2=0
From (5)
X=X
From (3)
X)Xy = X3Xo = Ay
Solve for &, from 2
XX+ 2hx =0

XE = -Ell.ﬁ

Goto(l)

_x:
|
xlx3+2[ zx ]X] +x]x3=ﬂ

2017|BATCH
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Multiply by x2/x; (both sides)
(@) 2x5-x =0
Usei4)
By x+x3-1=0
Solve %, %

() X; =2x;

ix; =1
x;=1/3
11:\0’_5
but
x; =2x; =2(1/3)=213
x1= A% X3 = /%
and

¥ =(1/3) 213" (23)'"

o
},l=

2
3.3

(273,173,273, %43).

The Problem’s Bordered Hessian.

0 0 2x

0o 0 1
[A)=|2x, 1 24
2x, 0 x

0 -1 x

2x,
0
Xy

24,

X

2017|BATCH
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Remark 2: The FOC (1) and (2) are necessary conditions only if the Constraint Qualification
holds. This rules out particular irregularities by imposing restrictions on the boundary of the
feasible set. These irregularities would invalidate the FOC (1) and (2) should the solution occur
there. Let x° be the point at which (1) and (2) hold and let index set k=1,..., K represent the set

of g; which are satisfied with equality at x°. Then the matrix

2g,(x°) a2,(x")
ax, - ax,
I=
Oge (x7) g (x°)
o, ax,

Has rank K < n. That 15 the gradient vectors of the set of equality constraints are linearly

imdependent.
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Proof. 1. Choose é1 > 0 and €1 > 0 so that Fy(z,y) > 0 for ||z —al| < d1, |[y—D| < €1. Since F(a,b) =0
and F(a,y) is strictly increasing in y, F(a,b+€1/2) > 0 and F(a,b—€;/2) < 0. Let € = ¢ /2 and
choose & < 41 so that F(z,b+¢€) > 0 and F(z,b—¢) < 01if ||z — a| < 4. These dimensions define B.
For fixed z with ||z — a|| < 0, since F(z,b—¢€) <0, F(z.b+¢€) > 0, and F(z,y) is strictly increasing
in y, the intermediate value theorem implies that there is a unique y with |y — b| < € such that
F(z,y) = 0. The uniquely determined y defines a functionf(z). This proves the first statement.

2. We prove that f is continuous at a. Let e > 0 be given. Assume that e < € Then by the proof of
the first statement, there is a d > 0 (we may choose d < §) so that the uniquely defined f(z) in
{|lz — a]| < d} satisfies | f(z) — b| < d. This proves continuity at a. We can repeat this argument at
any point (a1, f(a1)) € B, proving that f is continuous on {||z — a|| < €}.

3. By differentiability

0= F(z, f(z)) = F(a,b) +ZP;(r,f(1‘-))(a‘- — ;) + Q(=, f(2))(f() — f(a))
= Z Pi(z, f(2))(z — a;) + Q(z, f(2))(f(2) — f(a)),

where Pj(z, f(z)), Q(x, f(x)) are continuous at a. Rewrite this as

Q(z, f(2))(f(=) — f(a)) ZP z))(@ — a;).

Since Q(z, f(z)) is continuous at @ and Q(a, (f(a)) = fy(a,b) > 0, Q(z, f(x)) > 0 for = near a and
we can divide by it to get

f@) = f(a) +— ZP(”{T) —aj).

f(z))
Each term M is continuous at a so f is differentiable at a. Moreover
Q(z, f(z))
Fi(a,b)
.l b — _37’
F 0D = F @
You might like this bad notation:
dy  OFy,
or;  IF,’
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The geometrical significance of the Jacobian determinant is outlined here. Consider a
transformation of a single rectangular Cartesian coordinate x to a new coordinate &. The
line element dxis transformed to the new coordinate via

dx
de=——dS
ds
. . . . ... dx
In this case, the Jacobian determinant is simply the derivative —.
Now, consider an area element dyxdy. For convenience in later generalization, we label
the coordinates (x,.x, ). Therefore, x, =x. and x, = y. Let us make a transformation to
a new set of coordinates (&.&, ). The area element transforms as follows.
ox, x, O, O | .. .
dx dx, = |—-————F—-d& dé&
08 0&, 0& o8&,
How did we obtain the above result? First, consider a differential change in the new
variable & while keeping the variable & fixed. The components of the infinitesimal
vector resulting from this change are
" ox (929
1 Je 2 J&
- d‘:‘l‘ - d‘:‘l
09 0g
In a like manner, we can write the components of the vector obtained by making a
differential change in the second variable &, while keeping the variable & fixed.
o, . oy . |
— ds,. —=dé,
0%, 0s
These two vectors need not be orthogonal in general. Therefore, we need a result for the
area of a parallelogram whose sides are the differential vectors written above. We know
that this is the magnitude of the vector product (cross product) of the two vectors. This
is the result given above for the area element.
Prepared by : S.Kohila,Department of Mathematics,KAHE Page 13|14
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POSSIBLE QUESTIONS

UNIT-V

PART-B (5x6=230)

1. State and prove implicit function theorem.

2. Find implicit function defined by relation x + y + z — xyz = 0 near point (0,0,0) and find
derivative with respect to x and y using implicit function theorem.

3. Prove that functionsu = x +y—z,v=x—y+zandw = x? + y%2 + z? — 2yz are not
independent of one another .Also find relation between them.

4.State and prove functions with non Zero Jacobian determinant.
5. Define saddle point with example and Define Jacobian determinant .
6. State and prove Inverse Function Theorem.
7.provethat if f = u + iv isacomplex valued function with derivative at a point zin C,
then Jr 2)=| f'(2)|?.
PART- C (1 x 10 =10)
1. Let A be an open subset of R" and assume that f: A— R" has continous partial derivatives on
A. If Jr (X) # 0 for every x in A, then prove f is an open mapping.
2. Examine the following functions extreme values
() f(x,y) =y2+4xy + 3x? + x3
(i) f(x,y,z) = 2xy? + 3y? + 422 — 3xy + 8z
3.Prove: For some integer n> 1, Let fhave continuous n " derivative in the open interval (a,b).
Suppose for some interior point ¢ in (a,b) , we have f " (c),f "(¢)........ £0*(c) =0 such
that f" (c¢) # 0.Then for n even,f has a local minimumat cif f" (c) > 0 & a local
maximumat cif f"(c) <0 .Ifnisodd there is neither alocal minimum nor a local
maximum at c.

4. State and prove Inverse function Theorem

Prepared by : S.Kohila,Department of Mathematics,KAHE Page 14|14
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PART — A (15x 1 =15 marks)
ANSWER ALL THE QUESTIONS
1. Two cards are drawn from a pack of 52 cards. Find the probability
that  both are red cards---------

a) 26C, b)52Cs ¢)52C, d)26Cs
2. The mean of Binomial distribution is measured by
a) np b) npq c) pq d)na.

3. Optimization means-----------------------
a) Maximization of profit or minimization of cost
b) minimization
¢) Maximization
d) cost
4. An assignment problem is a particular case of ---------

a) Transportation problem b) LPP
c) Network problem problem d) Integer programming problem

5. Assignment problem isa --------------- form of a transportation
problem.
a) non-degenerate b) feasible
c) degenerate d) infeasible

6. In Birth—death model, the probability distribution of queue length
is given by -------- .
a)p"/(1-p) b)p*/(l-p) <) p/(l-p) d)(1-p)/p"

7. The probability of an empty system is given by --------------- :
aA)l-(A/p) bD)A/(u—A) c)rlu(u-2r) dar/

8. A is a decision of the player to always select the

same strategy.
a) competitor b)Mixed Strategy
c) pure Strategy  d) strategy
9. The variance of a binomial distribution is measured by

a) np b) np(1-p) ¢)Pq d) Nqg
10. A BFS for transportation problem must have exactly--------

non-negative allocation

a) m+n b) m+n-2 ¢) m+n-1 d) m+n+l

11. The arriving people in a queueing system are called --------
a) Input b) servers c) customers d) queue

12. A loss is considered as a gain.
a) Positive  b) negative  c) finite d) infinite

13. If binomial distribution is symmetrical if p=g="?

a)l b)0.4 ¢)0 d)05
14. Assignment technique is essentially a ---------- technique

a) Maximization b) minimization
C) minimization or maximization d) none
15. The Birth—-death model is called ----------- :

aM/M/1 b)M/M/N
)M/ M/ oo dM/M/2



PART-B (3 x 8 =24 Marks)
ANSWER ALL THE QUESTIONS
16. a) Three coins are tossed simultaneously. Find the
probability that
i) no head i) one head iii) two heads
(OR)
b) Two persons A and B appeared for an interview for a
job. The probability of selection of Ais 1/3 and that of
B is %. Find the probability that
(i) both of them will be selected
(i1) only one of them will be selected
17.a) Solve the transportation problem with unit transportation
costs, demands and supplies as given below:
Destination

D, D, D3 D4 Supply

Si| 6 1 9 3 70
Source | 11 5 2 8 55
S2

Ss| 10 12 4 7 70

Demand | 85 35 50 45

(OR)
b) Solve the assignment problem for maximization given
the profit matrix (profit in rupees).

Machines
P Q R S
A|51 53 54 50
B|47 50 48 50
Jobs |49 50 60 61

D63 64 60 60

18.a) Find the starting solution of the following
transportation model

1 2 6 |7
0 4 2 |12

3 1 5 |11
10 10 10
Using (i) North West Corner rule

(ii)Least Cost method

(OR)

b) What is the application of the Theory of Game in the
contemporary business environment? Explain.

PART- C (1 X 11 =11 Marks)
COMPULSORY
19.) A box containing 100 transistors,20 of which are
Defective ,10 are selected for insepectin ,Indicate what
Is the probability that (a) all10 are defective
(b) all 10 are good  (c) atleast one is defective
(d) at most 3 are defective
(i) Write the properties of Binomial Distribution.
(i) Comment on the following “The mean of a binomial
distribution is 5 and its variance is 9.
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PART — A (20 x 1 = 20 Marks)
ANSWER ALL THE QUESTIONS:

1. If P is a partition of closed interval, then || P || is the length

(a) largest subinterval  (b) smallest subinterval
(c) last subinterval (d) first subinterval
2. The least upper bound is called -----------
(a) bounded above  (b) bounded below
(c) Supremum (d) infimum
3. A continous mapping r of [a,b] is said to be closed
i
@ r(a)=r(b (b) r(a)<r(b) (c)r(a)>r(b) (d)r(a)=r(b)=0
4. A function which is Reimann Steiltjes integrable w.r.t
S can be denoted as
@ finR(S) (b)fnotinR(S) (c)finR
5. Aset Sisclosed ifand only if S = ----------
@.intS (b) closure of S (c)limit (o

(d) fnotinR

6. The set N of natural numbers is ----------
(@) bounded (b) not bounded (c)countable (d)uncountable
7. 1f fis Reimann Steiltjes integrable w.r.t S, then its

............... is also similar
@l Of  ©IFI/f (@) f/1f1
8. Iff: [a,b ] —R is continuous and monotonic functions then
(a) fis Riemann integrable (b) Infinite limit
(c) Unique limit (d) No limit
9. The series 1+3+5+7+.....--=-—------
(@) divergent  (b) Convergent
(c) Bounded (d) conditionally convergent
10. The series 1+ r+r2+rd+............ is oscillatory if

@r=1 "(b)r=0 cr=-1 dr=2
11. If S=[0, 1) then sup S = ---------=------
(@ (0,1) (b)[0.1] ()0 (d)1
12. If f and g are Reimann Steiltjes integrable w.r.t S,
then.............. is also.
@f g () f + g/g
(©f - g/g (d) f/g

13. If a sequence {an } converges to a real number then the
given sequence is----------
(a) unbounded sequence (b) convergent
(c) divergent & bounded (d) bounded
14, ... is a range of a function from N x N to R.
(@) Double sequence  (b) Double series
(c) finite sequence (d) finite series
15.The n'" partial sum of series Xf,, is given by-----

@ FL—foF o +fo
(O) fi — fo = oo eee ees e — L
©F i +fo = o=

@) fi4fyt o tfy



16. If an unbounded sequence --------
(a) has a limit point
(b)does not have a limit point
(c) has a unique limit point
(d) may or may not have a limit point
17. Double sequence of real numbers can be denoted

(@) (xmn) (b)) Zxmn  (¢) Zxm  (d) (Xm)
18. The sequence {1/n}is ------
(a) convergent (b)increasing sequence
(c)monotonic sequence (d)oscillating sequence
19. The set of limit points of a bounded sequence is
() unbounded (b) not necessarily bounded
(c) bounded (d) neither bounded nor unbounded
20. Double series of real numbers depends on -------
(a) a single parameter (b) 2 parameters
(c) 3 parameters (d) 4 parameters
PART - B (3 x2 =6 Marks)
ANSWER ALL THE QUESTIONS
21.Show that Reimann Steiljes integral can be reduced to a
finite sum.
22.State the Root test for convergence of series
23.State and prove linearity property in Reimann Steiltjes
integrals.

PART - C (3x8 = 24 Marks)
ANSWER ALL THE QUESTIONS
24. ) IffeR (o) on [a, b] then a € R (f) on [a,b,] prove that

[ f@)da+ [ aG)dfx)=f(b)a(b)- f(@)a(
(OR)
b) Forany f € R (o) on [a,b] and g€ R (a ) on [a,b] then
cif+cog €R (a).
we have [ (c1f +cog)da=c1 [ (fda) +c2 [} (gda).
25. a) State and prove Riemann — Stieltjes condition.
(OR)
b) Assume that « is increasing on [a,b] then prove that
the following are equivalent
(i)feR(a)on[ab]
(i) f satisfies Riemann condition w.r.to o on [a,b]
(i)l -(f a)=1"(f,a)
(OR)
26.a) Let }; a, be an absolutely convergent series f having sum
S. then every rearrangement of ) a,, also converges
absolutely f has sum S.

(OR)
b) State and prove Ratio Test Theorem.
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