

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021 DEPARTMENT OF MATHEMATICS

SUBJECT :REAL ANALYSIS	SUBJECT CODE :17MMP102
	LTPC
	4 0 0 4

PO: After the completion of this course, the learner will be enriched with the concept of analysis which is the motivating tool in other area such as applied mathematics.

PLO: To understand the Riemann – Stieltjes Integral, Infinite series, infinite products, Sequences of functions, the Lebesgue integral, Implicit functions and extremum problems to have a sound knowledge in Measure Theory.

UNIT I

The Riemann – Stieltjes Integral:

Introduction – Basic Definitions – Linear Properties – Integration by parts – Change of variable in a Riemann – Stieltjes Integral – Reduction to a Riemann Integral – Step functions as integrators – Reduction of a Riemann – Stieltjes Integral to a finite sum – Monotonically increasing – Additive and linear properties – Riemann condition – Comparison theorems – Integrators of bounded variation – Sufficient condition for Riemann Stieltjes integral.

UNIT II

Infinite series and infinite products:

Introduction – Basic definitions – Ratio test and root test – Dirichlet test and Able's test Rearrangement of series – Riemann's theorem on conditionally convergent series – Sub series – Double sequences – Double series – Multiplication of series – Cesaro summability.

UNIT III

Sequences of functions:

Basic definitions – Uniform convergence and continuity - Uniform convergence of infinite series of functions – Uniform convergence and Riemann – Stieltjes integration – Non uniformly convergent sequence – Uniform convergence and differentiation – Sufficient condition for uniform convergence of a series.

UNIT IV

The Lebesgue integral:

Introduction- The class of Lebesgue – integrable functions on a general interval- Basic properties of the Lebesgue integral- Lebesgue integration and sets of measure zero- The Levi monotone convergence theorem- The Lebesgue dominated convergence theorem-

Applications of Lebesgue dominated convergence theorem- Lebesgue integrals on unbounded intervals as limit of integrals on bounded intervals- Improper Riemann integrals- Measurable functions.

UNIT V

Implicit functions and extremum problems:

Introduction – Functions with non zero Jacobian determinant – Inverse function theorem – Implicit function theorem – Extrema of real valued functions of one variable and several variables.

SUGGESTED READINGS TEXT BOOK

1. Rudin. W., (1976) .Principles of Mathematical Analysis, Mcgraw Hill, New york .

REFERENCES

- 1. Tom .M. Apostol., (2002). Mathematical Analysis, Second edition, Narosa Publishing House, New Delhi.
- 2. Balli. N.P., (1981). Real Analysis, Laxmi Publication Pvt Ltd, New Delhi.

3. Gupta.S.L. and Gupta.N.R.,(2003).Principles of Real Analysis, Second edition, Pearson Education Pvt.Ltd, Singapore.

- 4. Royden .H.L., (2002). Real Analysis, Third edition, Prentice hall of India, New Delhi.
- 5. Sterling. K. Berberian., (2015). A First Course in Real Analysis, Springer Pvt Ltd, New Delhi.

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore –641 021 DEPARTMENT OF MATHEMATICS Lecture Plan

Subject: Real Analysis Sub. Code: 17MMP102

Class: I M.Sc Mathematics Name of the faculty: S.KOHILA

S. No.	Lecture Duration (Hours)	Topics to be covered	Support Materials
		UNIT – I	
1.	1	Introduction on Riemann-Stieltjes integral	T1: Chap: 6, Pg. No : 120- 124
2.	1	Some basic definitions on Riemann-Stieltjes integral	T1: Chap: 6, Pg. No : 124- 128
3.	1	Linear properties of Riemann-Stieltjes integral	T1: Chap: 6, Pg. No : 128- 129
4.	1	Continuation on linear properties of Riemann- Stieltjes integral	T1: Chap: 6, Pg. No : 129- 131
5.	1	Integration by parts	T1: Chap: 6, Pg. No : 134
6.	1	Change of variable in Riemann-Stieltjes integral	T1: Chap: 6, Pg. No : 132- 133
7.	1	Reduction to Riemann integral	R1: Chap: 7, Pg. No : 145- 146
8.	1	Step function as integrators	R1: Chap: 7, Pg. No : 147- 148
9.	1	Reduction of a Riemann-Stieltjes integral to a finite sum	R1: Chap: 7, Pg. No : 148- 149
10.	1	Monotonically increasing on Riemann integral	R1: Chap: 7, Pg. No : 150- 152
11.	1	Additive and linear properties on Riemann	R1: Chap: 7, Pg. No : 153

Total	15 Hours		
15.	1	Recapitulation and discussion of important questions on unit I	R1: Chap: 7, Pg. No : 159
14.	1	Sufficient condition for Riemann stieltjes integral	R1: Chap: 7, Pg. No : 156- 158
13.	1	Comparison theorems & Integrators of bounded variation	R1: Chap: 7, Pg. No : 155- 156
12.	1	Riemann condition	R1: Chap: 7, Pg. No : 154
		integral	

T1. Rudin. W., 1976 . Principles of mathematical Analysis, Mcgraw hill, Newyork .

R1. Tom .M. Apostol .,2002. Mathematical Analysis, Second edition, Narosa Publishing House,New Delhi.

		UNIT – II	
1.	1	Introduction on infinite series & infinite products	R3: Chap: 5, Pg. No : 5.1- 5.3
2.	1	Some basic definitions on infinite series and infinite products	R1: Chap: 8, Pg. No : 183- 191
3.	1	Ratio test and root test	R1: Chap: 8, Pg. No : 193- 194
4.	1	Drichlet test and	R3: Chap: 6, Pg. No : 6.1- 6.4
5.	1	Able's test	R1: Chap: 8, Pg. No : 196
6.	1	Rearrangement of Series	R1: Chap: 8, Pg. No : 197
7.	1	Riemann's Theorem on conditionally convergent series	R1: Chap: 8, Pg. No : 197- 199
8.	1	Sub series on conditionally convergent series Double sequences on	R1: Chap: 8, Pg. No : 199- 200

9.	1	conditionally convergent series	R1: Chap: 8, Pg. No :200- 202
10.	1	Double series on conditionally convergent series	R1: Chap: 8, Pg. No :203- 205
11.	1	Problems on double series on conditionally convergent series	R1: Chap: 8, Pg. No :205- 206
12.	1	Multiplication of series	R1: Chap: 8, Pg. No :206-208
13	1	conditionally convergent series	R1: Chap: 8, Pg. No :209- 210
14	1	Cesaro Summability	R1: Chap: 8, Pg. No :11- 212
15	1	Recapitulation and discussion of important questions on unit II	
Total	15 Hours		
R1. Ton	n .M. Apos	stol .,2002. Mathematical Analysis, Second	edition, Narosa Publishing

R1. Tom .M. Apostol .,2002. Mathematical Analysis, Second edition, Narosa Publishing House,New Delhi.

R3. Gupta . S.L ., and N.R. Gupta ., 2003.Principles of Real Analysis, Second edition, Pearson Education Pvt.Ltd,Singapore.

		UNIT –III	
1.	1	Basic definitions on sequences	R5: Chap:3, Pg. No :33-36
2.	1	Basic definitions on of functions	R5: Chap:3, Pg. No :39-41
3.	1	Uniform convergence on sequences of functions	T1: Chap:7, Pg. No :143- 146
4.	1	Continuity of uniform convergence on sequences of functions	T1: Chap:7, Pg. No :147- 148
5.	1	Uniform convergence of infinite series	R2: Chap:9, Pg. No :533- 534

1.	1	Introduction on Lebesgue integrat	R4:Chap:4,Pg.No:75-77
		Introduction on Lebesgue integral	D4.Char. 4 Da No.75 77
		UNIT-IV	
R1. To House,N	m .M. Apos New Delhi.	stol .,2002. Mathematical Analysis, Second erian ., 2004. A First Course in Real Analysis, Spr	edition, Narosa Publishing
		Principles of mathematical Analysis, Mcgraw hill	. Newvork
Total	15 Hours	questions on unit III	
14		of a series Recapitulation and discussion of important	1(1. Chup.7, 1 g. 110 .233
14	1	of a series Sufficient condition for uniform convergence	R1: Chap:9, Pg. No :235
13	1	Necessary condition for uniform convergence	R1: Chap:9, Pg. No :235
12	1	Problems on non-uniformly convergent sequence .	R1: Chap:9, Pg. No :232
11	1	Problems on non-uniformly convergent sequence	R1: Chap:9, Pg. No :231
10.	1	Problems on non-uniformly convergent sequence	
			231
9.	1	Non-uniformly convergent sequence.	229 R1: Chap:9, Pg. No :230-
8.	1	Non-uniformly convergent sequence	R1: Chap:9, Pg. No :228-
7.	1	Riemann-Stieltjes integration	T1: Chap:7, Pg. No :152- 154
		Problems on infinite series of functions	T1: Chap:7, Pg. No :152- 153

	m .M. Apos New Delhi.	stol .,2002. Mathematical Analysis, Second e	dition, Narosa Publishin
Total	15 Hours		
15		Recapitulation and discussion of important questions on unit IV	
14	1	Problems on Measurable functions	R1:Chap:10,Pg.No:279 280
13	1	Problems on Improper Riemann integrals	R1:Chap:10,Pg.No:282
12.	1	Problems on Improper Riemann integrals	R1:Chap:10,Pg.No:278
11.	1	Measurable functions	R1:Chap:10,Pg.No:279- 280
10.	1	Improper Riemann integrals	R1:Chap:10,Pg.No:276- 279
9.	1	Lebesgue integrals on unbounded interval as limit of integrals on bounded intervals	R1:Chap:10,Pg.No:274- 275
8.	1	Continuation of applications of Lebesgue dominated convergence theorem	R1:Chap:10,Pg.No:272- 274
7.	1	Applications of Lebesgue dominated convergence theorem	R1:Chap:10,Pg.No:270- 272
6.	1	The Lebesgue dominated convergence theorem	R1:Chap:10,Pg.No:268- 270
5.	1	The Levi monotone convergence theorem	R1:Chap:10,Pg.No:266- 268
4.	1	Lebesgue integration and sets of measure zero	R1:Chap:10,Pg.No:264- 265
3.	1	Basic properties of a Lebesgue integral	R4:Chap:4,Pg.No:85-88
2	1	on a general interval	256

Total	15 Hours	stol .,2002. Mathematical Analysis, Second	
15	1	Discussion of previous ESE question papers.	
14	1	Discussion of previous ESE question papers.	
13	1	Discussion of previous ESE question papers.	
12	1	Recapitulation and discussion of important questions on unit V	
11	1	Problems on Inverse function theorem	R1:Chap:13.Pg No : 378
10.	1	Problems on Inverse function theorem	R1:Chap:13.Pg No : 376
9.	1	Problems on Inverse function theorem	R1:Chap:13.Pg No : 380
8.	1	Problems on Extrema of real valued functions of several variables	R1:Chap:13.Pg No : 380
7.	1	Extrema of real valued functions of several variables -Theorems	R1:Chap:13.Pg No : 380- 381
6.	1	Extrema of real valued functions of several variables-Theorems	R1:Chap:13,Pg.No:376- 379
5.	1	Extrema of real valued functions of one variable	R1:Chap:13,Pg.No:375- 376
4.	1	Implicit function theorem	R1:Chap:13,Pg.No:373- 375
3.	1	Inverse function theorem	R1:Chap:13,Pg.No:372- 373
2.	1	Functions with non-zero Jacobian determinant	R1:Chap:13,Pg.No:368- 371
1.	1	Introduction on implicit functions	R1:Chap:13,Pg.No:367- 368

Text book and References:

T1. Rudin. W., 1976 .Principles of mathematical Analysis, Mcgraw hill, Newyork .

R1. Tom .M. Apostol .,2002. Mathematical Analysis, Second edition, Narosa Publishing House,New Delhi.

R2. Balli. N.P., 1981. Real Analysis, Laxmi Publication Pvt Ltd, New Delhi.

R3. Gupta . S.L ., and N.R. Gupta ., 2003.Principles of Real Analysis, Second edition, Pearson Education Pvt.Ltd,Singapore.

R4. Royden .H.L ., 2002. Real Analysis, Third edition, Prentice hall of India, New Delhi.

R5. Sterling. K. Berberian ., 2004. A First Course in Real Analysis, Springer Pvt Ltd, New Delhi.

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021 DEPARTMENT OF MATHEMATICS

Subject : REAL ANALYSIS	SEMESTER: I	LTPC
SUBJECT CODE: 17MMP102	CLASS: IM.Sc	4004

UNIT I

The Riemann – Stieltjes Integral:

Introduction – Basic Definitions – Linear Properties – Integration by parts – Change of variable in a Riemann – Stieltjes Integral – Reduction to a Riemann Integral – Step functions as integrators – Reduction of a Riemann – Stieltjes Integral to a finite sum – Monotonically increasing – Additive and linear properties – Riemann condition – Comparison theorems – Integrators of bounded variation – Sufficient condition for Riemann Stieltjes integral.

TEXT BOOK

1. Rudin. W., (1976) .Principles of Mathematical Analysis, Mcgraw Hill, New york .

REFERENCES

- 1. Tom .M. Apostol., (2002). Mathematical Analysis, Second edition, Narosa Publishing House, New Delhi.
- 2. Balli. N.P., (1981). Real Analysis, Laxmi Publication Pvt Ltd, New Delhi.
- 3. Royden .H.L., (2002). Real Analysis, Third edition, Prentice hall of India, New Delhi.

1.1.The Riemann-Stieltjes Integral.

Definitions:

Let [a, b] be a given interval. Then a set $P = \{x0, x1, ..., xn-1, xn\}$ of [a, b] such that $a=x0 \le x1 \le ... \le xn-1 \le xn = b$ is said to be a Partition of [a, b]. The set of all partitions of [a, b] is denoted by P([a, b]). The intervals [x0, x1], [x0, x1], [x1, x2], ..., [xn-1, xn] are called the subintervals of [a, b]. Write $\Delta xi = xi - xi-1$ is called the length of the interval [xi-1, xi] (i = 1, ..., n) and max $|\Delta xi|$ is called the norm of the partition P and is denoted by ||P|| or Q is called the refinement or finer of the partition P. \subset (P). A partition Q of [a, b] such that P \subset Q is called the refinement or finer of the partition P. \subset (P). A partition Q of [a, b] such that P Suppose f is a bounded real valued function defined on [a, b] and 2 P([a, b]). TheMi = sup f(x), m i = inf f(x) (xi-1 \le x \le xi) for each P

Suppose f is a bounded real valued function defined on [a, b] and P([a, b]). Thene

 $Mi = \sup f(x)$, $mi = \inf f(x) (xi-1 \le x \le xi)$ for each P n n m i Δxi are called the Upper and Lower Riemann sums Σ M i Δxi and L(P, f) = $\Sigma U(P, f) = i = 1$ i = 1 or Upper and Lower Darboux sums of f on [a, b] with respect to the partition P.

Further write - $b b \int f dx = \inf U(P, f)$ and $\int f dx = \sup L(P, f)$ a - a where the inf and the sup are taken over all partitions P of [a, b] are called the Upper and Lower Riemann integrals of f over [a, b], respectively.

If the upper and lower Riemann integrals are R[a, b] and we denote ε equal, we say that f is Riemann-integrable on [a, b] and we write f the common value of these integrals by $b \int f d(x)$, a - b b b i.e., $\int f dx = \int f dx = \int f dx$.

R is bounded function then the upper and lower Riemann \rightarrow 1.1.1. Lemma . If f : [a, b] integrals of f are bounded. Since f is bounded, there exist two numbers m and M such that m $\leq f(x) \leq M$ (a $\leq x \leq b$). Hence, for every partition P of [a, b] we have $M \leq Mi \leq mi \leq m mi\Delta xi\Sigma \leq m\Delta xi\Sigma \leq M\Delta xi\Sigma \leq M\Delta xi\Sigma \leq , i = 1, 2, 3, ..., n$. m(b –a) $\leq L(P,f) \leq U(P,f) \leq M(b-a), \Rightarrow$ so that the numbers L(P,f) and U(P,f) form a bounded set. Therefore by the definition of lower and upper Riemann integrals this shows that the upper and lower integrals are defined for every bounded function f are bounded also. The question of their equality, and hence the question of the integrability of f,

R is bounded function, P is any partition of [a, b] and P* is the \rightarrow

1.1.2. Lemma. If f : [a, b] refinement of P, then L(P, f) \leq L(P*, f) and U(P*, f) \leq U(P, f). R is bounded function and P1, P2 are any two partitions of [a, b] \rightarrow

1.1.3. Lemma. R is bounded function and P1, P2 are any two partitions of $[a, b] \rightarrow$ If f : [a, b]

 $L(P1, f) \le U(P2, f)$ and $L(P2, f) \le U(P1, f)$.

R are bounded functions and P is any partition of [a, b] then \rightarrow 1.1.4.

 $\label{eq:Lemma. If f, g: [a, b] (i) } L(P, f+g) \geq L(P, f) + L(P, g) (ii) U(P, f+g) \leq U(P, f) + U(P, g).$ R is bounded function .

Theorem. If $f:[a, b] - b b \int f dx \ge \int f dx a - a \varepsilon R$ is bounded function then for $\rightarrow 1.1.2$. Theorem (Darboux). If $f:[a, b] \delta > 0$ there exists > 0 such that $-b b U(P, f) < and L(P, f)\varepsilon \int f + \varepsilon > \int f dx - a - a R$ is bounded function is Riemann Integrable if the oscillatory \rightarrow

1.1.3. Theorem. If $f : [a, b] sum < (P, f) = U(P, f) - L(P, f)\omega$, i.e. $\epsilon < \epsilon$, for $\epsilon > 0$ and any partition P of [a, b]. R is Riemann Integrable.

1.1.4. Theorem. Every continuous function f : [a, b] R is Riemann Integrable. \rightarrow 1.1.5. Theorem. Every monotone function f : [a, b] Students you studied the properties given above and other properties of Riemann Integrals in previous classes therefore we are not interested to investigate these here. However we shall immediately consider a more general situation. be a monotonically increasing α R is bounded function and \rightarrow

1.1.2 Definition. Let f: [a, b] function on [a, b]. Let $P = \{x0, x1, ..., xn-1, xn\}$ such that $a = x0 \le x1 \le ... \le xn-1 \le xn = b$ be any Partition of [a, b]. We write (xi-1), $i = 1, 2, 3, ..., n.\alpha(xi) - \alpha i = \alpha \Delta$ is bounded on $[a, b], \alpha(b)$ are finite therefore $\alpha(a)$ and αBy the definition of monotone function $i \ge 0$, $i = 1, 2, 3, ..., n.\alpha\Delta$ is monotonically increasing function then clearly α also since P([a, b]). We define E the sup f(x), mi = inf f(x) (xi-1 $\le x \le xi$) for each P n n i, α mi $\Delta \Sigma$) = α i, and L(P, f, α Mi $\Delta \Sigma$) = α U(P, f, i=1 i=1 are called the Upper and Lower Riemann Stieltjes sums respectively. Further we define -b b), α = sup L(P, f, α) and $\int f d\alpha$ = inf U(P, f, $\alpha \int f d a$ -a where the inf and the sup are taken over all partitions P of [a, b], are called the Upper and Lower Riemann Stieltjes integrals of f over [a, b], respectively.

If the upper and lower Riemann Stieltjes integrals are equal, we say that f is Riemann Stieltjes integrable on [a, b]

Lower Riemann Stieltjes integrals of f over [a, b], respectively. If the upper and lower Riemann Stieltjes integrals are equal, we say that f is Riemann Stieltjes integrable on [a, b]

 $\int f d(x) \alpha \text{ or } \int f(x) d\alpha \int f d$

over α This is the Rientatm-Stieltjes integral (or simply the Slielljes integral of f with respect to (x) = x we see that the Riemann integral is the special case of the Riemann α [a,b]. If we put (x) = x

we see that the Riemann integral is the special case of the Riemanns

If f: [a, b] be a monotonically increasing function α R is bounded function

. Lemma If f: [a, b] on [a, b]. Let P be any Partition of [a, b] .Then the upper and lower Riemann-Stietjes integrals of be a monotonically increasing function on [a, b]. Let P be any Partition of [a, b] .Then the upper and lower Riemann-Stietjes integrals of are bounded. α f with respect to

Proof. Since f is bounded, there exist two numbers m and M such that $m \le f(x) \le M$ ($a \le x \le b$). Hence, for every partition P of [a, b] we have $M \le Mi \le mi \le m$ $i\alpha mi\Delta\Sigma \le i\alpha m\Delta\Sigma \Longrightarrow$ $i\alpha Mi\Delta\Sigma \le i\alpha M\Delta\Sigma \le$, i = 1, 2, 3, ..., n. (a)], $\alpha(b) - \alpha) \le M[\alpha) \le U(P, f, \alpha(a)] \le L(P, f, \alpha(b) - \alpha)$ $m[\Rightarrow)$ form a bounded set.

Therefore by the definition of α) and U(P, f, α so that the numbers L(P, f, lower and upper Riemann-Stietjes integrals this shows that the upper and lower integrals are defined for every bounded function f are bounded also. 1.1.6.

Lemma. If P* is a refinement of the partition P of [a, b], then $).\alpha) \leq U(P, f, \alpha)$ and $U(P^*, f, \alpha) \leq L(P^*, f, \alpha L(P, f, \alpha))$

Proof. Let $P = \{x0, x1, ..., xn-1, xn\}$ such that $a = x0 \le x1 \le ... \le xn-1 \le xn = b$ be any Partition of [a, b] and P* the refinement of P contains just one point X* more than P such that xi-1< x*

where x i-1 and xi are two consecutive points of P.

Let mi, mi , mi' are the infimum of f(x) in'' mi≤[xi-1, xi], [xi-1, x*] and [x*, xi] respectively then clearly mi mi ≤ and mi'. Therefore'') = mi α) - L(P,f, α L(P*,f, (xi-1)] + mi α (x*) - α [' (xi-1)] α (xi) - α (x*)] - mi[α (xi) - α ['' = mi (xi-1)] + mi α (x*) - α [' (xi-1)] α (x*) - α (x*) + α (xi) - α (x*)] - mi[α (xi) - α ['' = (mi (xi-1)] + (mi α (x*) - α - mi)[' 0.≥(x*)] α (xi) - α - mi)['').

If P* contains k points more than P then byb repeating the $\alpha L(P^*, f, \leq) \alpha$ Hence L(P, f,) is analogous $\alpha) \leq U(P, f, \alpha)$ same process we arrive at the same result.

E.2. PROPERTIES

as $n \to \infty$, we have

$$\int_0^{10} f(x) \, d\alpha(x) = 50 + 55 = 105.$$

E.2. Properties

<u>Theorem</u> E.4. Let c_1 , c_2 be two constants in \mathbb{R} .

(1) If $f, g \in R(\alpha)$ on [a, b], then $c_1f + c_2g \in R(\alpha)$ on [a, b], and

$$\int_a^b (c_1 f + c_2 g) \, d\alpha = c_1 \int_a^b f \, d\alpha + c_2 \int_a^b g \, d\alpha.$$

(2) If f ∈ R(α) and f ∈ R(β) on [a, b], then f ∈ R(c₁α + c₂β) on [a, b], and

$$\int_a^b f \, d(c_1 \alpha + c_2 \beta) = c_1 \int_a^b f \, d\alpha + c_2 \int_a^b f \, d\beta.$$

(3) If $c \in [a, b]$, then

$$\int_{a}^{b} f \, d\alpha = \int_{a}^{c} f \, d\alpha + \int_{c}^{b} f \, d\alpha.$$

<u>Definition</u> E.5. If a < b, we define

$$\int_{b}^{a} f \, d\alpha = -\int_{a}^{b} f \, d\alpha.$$

<u>Theorem</u> E.6. If $f \in R(\alpha)$ and α has a continuous derivative on [a, b], then the Riemann integral $\int_{a}^{b} f(x)\alpha'(x) dx$ exists and

$$\int_{a}^{b} f(x) \, d\alpha(x) = \int_{a}^{b} f(x) \alpha'(x) \, dx.$$

Prepared by : S.Kohila,Department of Mathematics ,KAHE

E.3.1. Integration by parts.

<u>Theorem</u> E.7 (Integration by parts). If $f \in R(\alpha)$ on [a, b], then $\alpha \in R(f)$ on [a, b], and

$$\int_a^b f(x) \, d\alpha(x) = f(b)\alpha(b) - f(a)\alpha(a) - \int_a^b \alpha(x) \, df(x).$$

Example E.8. As in Example E.3, f(x) = x, and $\alpha(x) = x + [x]$. Then

$$\int_{0}^{10} f(x) \, d\alpha(x) = f(10)\alpha(10) - f(0)\alpha(0) - \int_{0}^{10} \alpha(x) \, df(x)$$
$$= 10 \times 20 - 0 \times 0 - \int_{0}^{10} (x + [x]) \, dx$$
$$= 200 - 50 - \int_{0}^{10} [x] \, dx = 150 - 45 = 105$$

E.3.2. Change of variables.

<u>Theorem</u> E.9 (Change of variables). Suppose that $f \in R(\alpha)$ on [a, b] and g is a strictly increasing continuous function on [c, d] with a = g(c), b = g(d). Let $h = f \circ g$, $\beta = \alpha \circ g$. Then $h \in R(\beta)$ on [c, d] and

$$\int_a^b f(x) \, d\alpha(x) = \int_c^d f(g(t)) \, d\alpha(g(t)) = \int_c^d h(t) \, d\beta(t).$$

Example E.10. Let $y = \sqrt{x}$, we have

$$\int_0^4 ([\sqrt{x}] + x^2) \, d\sqrt{x} = \int_0^2 ([y] + y^4) \, dy = \int_0^2 [y] \, dy + \int_0^2 y^4 \, dy$$
$$= 1 + \frac{1}{5} y^5 \Big|_{y=0}^2 = \frac{37}{5}$$

E.3. TECHNIQUE OF INTEGRATIONS

281

E.3.3. Step functions as α. By Remark C.6 and Theorem E.4(2), we have

$$\int_{a}^{b} f(x) dF(x) = \int_{a}^{b} f(x) dF_{ac}(x) + \int_{a}^{b} f(x) dF_{sc}(x) + \int_{a}^{b} f(x) dF_{d}(x)$$
(E.2)

<u>Remark</u> E.11. If $\alpha \equiv \text{constant}$ on [a, b], then $S(P, f, \alpha) = 0$ for all partition P, and

$$\int_{a}^{b} f(x) \, d\alpha(x) = 0.$$

Example E.15. (1) Consider

$$f(x) = 1$$
 for $x \in [-1, 1]$, and $\alpha(x) = -I_{\{0\}}$,

then

$$\int_{-1}^{1} f(x) \, d\alpha(x) = f(0)(\alpha(0+) - \alpha(0-)) = 0$$

(2) Consider

$$f(x) = 2I_{\{0\}} + I_{[-1,0)\cup(0,1]}$$
 and $\alpha(x) = -I_{[0,1]}$.

Then both of α and f are discontinuous from the left at x = 0. This implies that the Riemann-Stieltjes integral $\int_{-1}^{1} f \, d\alpha$ does not exist.

<u>Theorem</u> E.16 (Reduction of a Riemann-Stieltjes Integral to a finite sum). Let α be a step function on [a, b] with jump

$$c_k = \alpha(x_k+) - \alpha(x_k-)$$
 at $x = x_k$.

Let f be defined on [a, b] in such a way that not both of f and α are discontinuous from the left or from the right at x_k . Then $\int_a^b f(x) d\alpha(x)$ exists and

$$\int_{a}^{b} f(x) d\alpha(x) = \sum_{k=1}^{n} f(x_k) c_k.$$

200

E.5. IEODNQUE OF INTEGRATIONS

<u>Theorem</u> E.16 (Reduction of a Riemann-Stieltjes Integral to a finite sum). Let α be a step function on [a, b] with jump

$$c_k = \alpha(x_k+) - \alpha(x_k-)$$
 at $x = x_k$.

Let f be defined on [a, b] in such a way that not both of f and α are discontinuous from the left or from the right at x_k . Then $\int_a^b f(x) d\alpha(x)$ exists and

$$\int_{a}^{b} f(x) d\alpha(x) = \sum_{k=1}^{n} f(x_{k})c_{k}.$$

<u>Theorem</u> E.16 (Reduction of a Riemann-Stieltjes Integral to a finite sum). Let α be a step function on [a, b] with jump

$$c_k = \alpha(x_k+) - \alpha(x_k-)$$
 at $x = x_k$.

Let f be defined on [a, b] in such a way that not both of f and α are discontinuous from the left or from the right at x_k . Then $\int_a^b f(x) d\alpha(x)$ exists and

$$\int_{a}^{b} f(x) d\alpha(x) = \sum_{k=1}^{n} f(x_k)c_k.$$

<u>Theorem</u> E.12. Given $c \in (a, b)$. Define

$$\alpha(x) = pI_{[a,c)} + rI_{\{c\}} + qI_{(c,b]}$$

(as given in Figure E.1). Suppose at least one of the functions f or α is continuous from the left at c, and at least one is continuous from the right at c. Then $f \in R(\alpha)$ and

$$\int_{a}^{b} f(x) \, d\alpha(x) = f(c)(\alpha(c+) - \alpha(c-)) = f(c)(q-p).^{1}$$

<u>**Remark**</u> E.13. The integral $\int_{a}^{b} f d\alpha$ does not exist if both of f and α are discontinuous from the left or from the right at c.

 $\underline{\mathbf{Remark}} ~ \mathrm{E.14.} \qquad (1) ~ \mathrm{If} ~ \alpha(x) = pI_{\{a\}} + qI_{(a,b]}, \, \mathrm{then}$

$$\int_{a}^{b} f(x) \, d\alpha(x) = f(a)(\alpha(a+) - \alpha(a))$$

Example E.15. (1) Consider

$$f(x) = 1$$
 for $x \in [-1, 1]$, and $\alpha(x) = -I_{\{0\}}$,

then

$$\int_{-1}^{1} f(x) \, d\alpha(x) = f(0)(\alpha(0+) - \alpha(0-)) = 0$$

(2) Consider

$$f(x) = 2I_{\{0\}} + I_{[-1,0]\cup(0,1]}$$
 and $\alpha(x) = -I_{[0,1]}$.

Then both of α and f are discontinuous from the left at x = 0. This implies that the Riemann-Stieltjes integral $\int_{-1}^{1} f \, d\alpha$ does not exist.

Example E.17. (1) Let

$$f(x) = \begin{cases} 3 & \text{if } x \le 0\\ 3 - 4x & \text{if } 0 < x < 1\\ -1 & \text{if } x \ge 1 \end{cases}$$

and

$$\alpha(x) = \begin{cases} 0 & \text{if } x \le 0 \\ 2 & \text{if } 0 < x < 1 \\ 0 & \text{if } x \ge 1 \end{cases}$$

Since f is continuous, $\int_{-3}^{3} f(x) d\alpha(x)$ exists and $\int_{-3}^{3} f(x) d\alpha(x) = f(0)(\alpha(0+) - \alpha(0-)) + f(1)(\alpha(1+) - \alpha(1-))$ = 3(2-0) + (-1)(0-2) = 8.

(2) Let
$$\alpha(x) = 2I_{[0,2)} + 5I_{[2,3)} + 6I_{[3,\infty)}$$

$$\int_{-5}^{10} e^{-3x} d\alpha(x) = e^{-3\cdot 0}(2-0) + e^{-3\cdot 2}(5-2) + e^{-3\cdot 3}(6-5)$$
$$= 2 + 3e^{-6} + e^{-9}.$$

<u>Example</u> E.18. Suppose F is the Cantor function (see Figure C.1). By integration by parts, we have

$$\int_0^1 x \, dF(x) = xF(x)|_{x=0}^1 - \int_0^1 F(x) \, dx = 1 - \int_0^1 F(x) \, dx.$$

Since $\int_0^1 F(x) dx$ is the area of the Cantor function on [0, 1], we get

$$\int_0^1 F(x) \, dx = \frac{1}{2}.$$

Hence,

$$\int_{0}^{1} x \, dF(x) = \frac{1}{2}.$$

UNIT I

E.3.4. Comparison theorem.

<u>Theorem</u> E.19. Assume that α is an increasing function on [a, b]. If $f, g \in R(\alpha)$ on [a, b], and if $f(x) \leq g(x)$ for $x \in [a, b]$, then

$$\int_{a}^{b} f(x) \, d\alpha(x) \le \int_{a}^{b} g(x) \, d\alpha(x).$$

Corollary E.20. If $g(x) \ge 0$ and α is an increasing function on [a, b], then

$$\int_{a}^{b} f(x) \, d\alpha(x) \ge 0.$$

<u>Theorem</u> E.21. Assume that α is an increasing function on [a, b]. If $f \in R(\alpha)$ on [a, b], then

(1) $|f| \in R(\alpha)$ on [a, b], and

$$\left| \int_{a}^{b} f(x) \, d\alpha(x) \right| \leq \int_{a}^{b} |f(x)| \, d\alpha(x).$$

(2) $f^2 \in R(\alpha)$ on [a, b].

<u>Definition</u> E.23. A function $\alpha : [a, b] \longrightarrow \mathbb{R}$ is said to be of <u>bounded variation</u> if there exists a constant M such that

$$\sum_{k=1}^{n} |\alpha(x_k) - \alpha(x_{k-1})| \le M$$

for every partition $\{x_0, x_1, \cdots, x_n\}$ of [a, b].

<u>Theorem</u> E.24. Let α be defined on [a, b], then α is of bounded variation on [a, b], if and only if there exist two increasing functions α_1 and α_2 , such that $\alpha = \alpha_1 - \alpha_2$

<u>Theorem</u> E.25. If f is continuous on [a, b], and if α is of bounded variation on [a, b], then $f \in R(\alpha)$. Moreover, the function

$$F(t) = \int_0^t f(x) \, d\alpha(x)$$

has the following properties :

- F is of bounded variation on [a, b].
- Every continuous point of α is also a continuous point of F.

POSSIBLE QUESTIONS

UNIT-I PART-B
$$(5 \times 6 = 30)$$

- 1. Show that Reimann Steiljes integral can be reduced to a finite sum.
- 2. Prove: If $f \in R(\alpha)$ and $f \in R(\beta)$, then $f \in R(c_1 \ \alpha + c_2 \beta)$.
- 3. If $f \in R(\alpha)$ on [a, b] then $\alpha \in R(f)$ on [a,b,] we have

$$\int_a^b f(x) d\alpha(x) + \int_a^b \alpha(x) df(x) = f(b)\alpha(b) - f(a)\alpha(a).$$

- 4. Explain change of variables in Riemann Stieltjes integral ?
- 5. State and prove linearity property in Reimann Steiltjes integrals.
- 6. Let $f(x) = \alpha(x) = x$ on [0,1]. Then show that $f \in R(\alpha)$ and find the integral.

PART- C (1 × 10 =10)

- 1. Prove that the modulus of Reimann Steiltjes integrable functions are also Reimann Steiltjes integrable.
- 2. State and Prove relation between Riemann integral and Reimann Steiltjes integral.
- 3. Show that every bounded function on a closed interval is Reimann integrable.
- 4. Prove that a function f is continous iff its bounded variation function is also continous.
- 5. State and prove necessary and sufficient condition for Reiamann Steiltjes integrability

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore – 641 021 DEPARTNETN OF MATTIEMATICS Multiple Choice Questions (Each Question Carries One Mark) Subject Name: REAL ANALYSIS Subject Code: 17MMP102 UNT-I

Subject Name: REAL ANALYSIS Subject Code: 17MMP102					
UNIT-I	Option 1	option 2	Option 3	Option 4	ANSWERS
$\mathbf{x}(\mathbf{y}+\mathbf{z}) = \mathbf{x}\mathbf{y} + \mathbf{x}\mathbf{z} \text{ is } \text{law}$	commutative	associative	distributive	closure	distributive
If x < y, then for every z we have	(x + z) < (y + z)	(x + z) > (y + z)	(x + z) = (y + z)	x + z = 0	(x + z) < (y + z)
If x > 0 and y > 0, then	xy less than equal to 0	xy > 0	xy greater than equal to 0	xy < 0	xy > 0
If x > y and y > z, then	x < y	x = z	x > z	x < z	x > z
If a less than equal to b + \$ for every \$ > 0, then	a < b	a > b	a greater than equal to b	a less than equal to b	a less than equal to b
The set of all points between a and b is called	integer	interval	elements	set	interval
The set {x: a < x < b} is	(a, b)	[a, b]	(a, b)	(a, b)	(a, b)
A real number is called a positive integer if it belongs to	interval	open interval	closed interval	inductive set	inductive set
If d is a divisor of n, then	n = c	n < cd	n > cd	n = cd	n = cd
If albc and (a, b) =1, then	alc	alb	b a	cla	alc
If albc and (a, b) =1, then alc is	Unique factorisation theorem	additive property	approximation property	Euclid's lemma	Euclid's lemma
Rational numbers is of the form	pq	p+q	p/q	p - q	p/q
e is	rational	irrational	prime	composite	irrational
An integer n is called if the only possible divisors of n are 1 and n	rational	irrational	prime	composite	prime
An integer this called if the only possible divisors of thate that it	Tational	III duolidi	prime	composite	prime
If dja and djb, then d is called	LCM	common divisor	prime	function	common divisor
If (a, b) = 1, then a and b are called	twin prime	common factor	LCM	relatively prime	relatively prime
If an upper bound 'b' of a set S is also a member of S then 'b' is called	rational	irrational	maximum element	minimum element	maximum element
If an lower bound 'b' of a set S is also a member of S then 'b' is called	rational	irrational	maximum element	minimum element	minimum element
	1.00.00.000				
A set with no upper bound is called	bounded above	bounded below	prime	function	bounded above
A set with no lower bound is called	bounded above	bounded below	prime	function	bounded below
The least upper bound is called	bounded above	bounded below	supremum	infimum	supremum
	bounded above	bounded below	supremum	Intimum	
The greatest lower bound is called	bounded above	bounded below	supremum	infimum	infimum
The supremum of {3, 4} is		3 4	(3, 4)	[3, 4]	
Every finite set of numbers is	bounded	unbounded	prime	bounded above	bounded
A set S of real numbers which is bounded above and bounded below is called	bounded set	inductive set	super set	subset	bounded set
The set N of natural numbers is	bounded	not bounded	irrational	rational	not bounded
The completeness axiom is	b = sup S	S = sup b	b = inf S	S = inf b	b = sup S
					b = 3up 3
The infimum of /3 /1 is			(2.4)		
The infimum of {3, 4} is		3 4	4 (3, 4)	[3, 4]	a al-Matrice
Sup C = Sup A + Sup B is called property	approximation	3 4 additive	archimedean	[3, 4] comparison	additive
Sup C = Sup A + Sup B is called property For any real x, there is a positive integer n such that	approximation n > x	3 4 additive n < x	archimedean n = x	[3, 4] comparison n = 0	n > x
Sup C = Sup A + Sup B is called property	approximation	3 4 additive	archimedean	[3, 4] comparison	
Sup C = Sup A + Sup B is called property For any real x, there is a positive integer n such that If x > 0 and if y is an arbitrary real number, there is a positive number n such that nx > y is property	approximation n > x approximation	3 4 additive n < x additive	archimedean n = x archimedean	[3, 4] comparison n = 0 comparison	n > x archimedean
Sup C = Sup A + Sup B is calledproperty For any real x, there is a positive integer n such that If x > 0 and if y is an arbitrary real number, there is a positive number n such that nx > y is property The set of positive integers is	approximation n > x approximation bounded above	3 4 additive n < x additive bounded below	archimedean n = x archimedean unbounded above	[3, 4] comparison n = 0 comparison unbounded below	n > x
Sup C = Sup A + Sup B is called property For any real x, there is a positive integer n such that If x > 0 and if y is an arbitrary real number, there is a positive number n such that nx > y is property	approximation n > x approximation	3 4 additive n < x additive	archimedean n = x archimedean	[3, 4] comparison n = 0 comparison	n > x archimedean
Sup C = Sup A + Sup B is calledproperty For any real x, there is a positive integer n such that If x > 0 and (1 y is an arbitrary real number, there is a positive number n such that nx > y is property The set of positive integers is The absolute value of x is denoted by If x < 0 than	approximation n > x approximation bounded above	3 4 additive n < x additive bounded below	archimedean n = x archimedean unbounded above	[3, 4] comparison n = 0 comparison unbounded below	n > x archimedean unbounded above
Sup C = Sup A + Sup B is called property For any real x, there is a positive integer n such that If x > 0 and if y is an arbitrary real number, there is a positive number n such that nx > y is property The set of positive integers is The absolute value of x is denoted by If x < 0 than	approximation n > x approximation bounded above x	3 4 additive n < x additive bounded below x x = x	archimedean n = x archimedean unbounded above x < 0	[3, 4] comparison n = 0 comparison unbounded below x > 0	n > x archimedean unbounded above x
Sup C = Sup A + Sup B is called property For any real x, there is a positive integer n such that If x > 0 and if y is an arbitrary real number, there is a positive number n such that nx > y is property The set of positive integers is The absolute value of x is demoted by	approximation n > x approximation bounded above x	3 4 additive n < x additive bounded below x x = x	archimedean n = x archimedean unbounded above x < 0 x = -x	[3, 4] comparison n = 0 comparison unbounded below x > 0 x = -x [0,1]	n > x archimedean unbounded above x x = -x
Sup C = Sup A + Sup B is called property For any real x, there is a positive integer n such that If x > 0 and if y is an arbitrary real number, there is a positive number n such that nx > y is property The set of positive integers is The absolute value of x is denoted by If x < 0 then	approximation n > x approximation bounded above x x = x	3 4 additive n < x additive bounded below x x = x 0 1	archimedean n = x archimedean unbounded above x < 0 x = -x (0, 1)	$ \begin{array}{l} [3,4] \\ comparison \\ n=0 \\ comparison \\ \\ unbounded below \\ x>0 \\ x =-x \\ [0,1] \\ a+b less than equal \\ \end{array} $	n > x archimedean unbounded above x x = -x a + b less than equal to
Sup C = Sup A + Sup B is called property For any real x, there is a positive integer n such that If x > 0 and if y is an arbitrary real number, there is a positive number n such that nx > y is property The set of positive integers is	approximation n > x approximation bounded above x x = x a + b greater equal to a + b	3 4 additive n < x	archimedean n = x archimedean unbounded above x < 0 x = -x (0, 1) b > a + b	[3, 4] comparison n = 0 comparison unbounded below x > 0 x = -x [0,1] a + b less than equal to a + b	n > x archimedean unbounded above x x = -x a + b less than equal to a + b
Sup C = Sup A + Sup B is called property For any real x, there is a positive integer n such that If x > 0 and if y is an arbitrary real number, there is a positive number n such that nx > y is property The set of positive integers is	approximation n > x approximation bounded above x x = x a + b greater equal to a+b x + y	3 4 additive n < x additive bounded below x bounded below x 0 1 a > a + b x y	archimedean n = x archimedean unbounded above x < 0 x = -x (0, 1) b > a + b x - Y	[3, 4] comparison n = 0 comparison unbounded below x > 0 x = -x [0,1] a + b less than equal to a + b x - y	n > x archimedean unbounded above x x = -x a + b less than equal to a + b x - y
Sup C = Sup A + Sup B is called property For any real x, there is a positive integer n such that If x > 0 and if y is an arbitrary real number, there is a positive number n such that nx > y is The set of positive integers is	approximation n × x approximation bounded above x x = x a + b greater equal to a + b x + y supremum	3 4 additive n < x additive bounded below x x = x 0 1 a > a + b] x y infimum	archimedean n = x archimedean unbounded above x < 0 [x = x (0, 1) b > a + b x - y additive property	[3, 4] comparison n = 0 comparison unbounded below x > 0 x = -x [0,1] a + b less than equal to a + b x - y comparison property	n > x archimedean x x = -x a + b less than equal to a + b x - y supremum
Sup C = Sup A + Sup B is called property For any real x, there is a positive integer n such that	approximation n > x approximation bounded above x x = x a + b] greater equal to a + b x + y supremum 5 divided by 3	3 4 additive n < x additive bounded below x x = x 0 1 a > a + b x v a > a + b x v	archimedean n = x archimedean unbounded above x < 0 x = -x (0, 1) b > a + b x' = y additive property 11 divided by 47	[3, 4] comparison n = 0 comparison unbounded below x > 0 [0,1] a + b] less than equal to a + b] x - y comparison property 3 divided by 2	n > x archimedean unbounded above [x] [x] = -x [a + b] less than equal to [a] + [b] [x] - [y] supremum 3 divided by 2
Sup C = Sup A + Sup B is called property For any real x, there is a positive integer n such that	approximation (n > x approximation bounded above x x = x a + b greater equal to a + b x + y supremum 5 divided by 3 akx = 0	3 4 additive n < x additive bounded below x x = x 0 2 3 a > a + b x y nfimum 8 divided by 5 akx + bk = 0	archimedean n = x archimedean unbounded above x < 0 x = x (0, 1) b > a + b x - y additive property 11 divided by 47 adx + bk = 0	$\begin{array}{l} [3,4]\\ (comparison\\ n=0\\ (comparison\\ whounded below\\ x>0\\ x>0\\ [x]=-x\\ [0,1]\\ [a+b] less than equal\\ to [a]+[b]\\ x - y \\ (whother arrow property\\ 3 divided by 2\\ bk=0 \end{array}$	n > x archimedean unbounded above x x = x a + b less than equal to a + b less than equal to a + b d supremum 3 divided by 2 akx + bk = 0
Sup C = Sup A + Sup B is called	approximation n > x approximation bounded above x x = x a + b greater equal to a + b x + y supremum 5 divided by 3 akx = 0 infinite set	3 4 additive n < x additive bounded below x u x = x 0 2 a > a + b x y infimum 8 divided by 5 akx + bkx = 0 finite set	archimedean n = x archimedean unbounded above x < 0 x = -x (0, 1) b > a + b x - y additive property 11 divided by 47 adx + bk = 0 cantor set	$ \begin{array}{l} [3,4]\\ (3,4]\\ (2m) = 0\\ (2m) = 1\\ (2m) = 0\\ (2m)$	$\label{eq:second} \begin{split} n > x \\ archimedean \\ unbounded above \\ [x] \\ [x] = -x \\ [a+b] less than equal to \\ [a+b] s + b] \\ x - y \\ supremum \\ 3 divided by 2 \\ akx + b = 0 \\ finite set \end{split}$
Sup C = Sup A + Sup B is called property For any real x, there is a positive integer n such that If x > 0 and if y is an arbitrary real number, there is a positive number n such that nx > y is property The set of positive integers is	approximation n > x approximation bounded above x x = x a + b greater equal to a + b x + v supremum 5 divided by 3 adx = 0 infinite set 5 n+125 n	3 additive n < x additive bounded below x x = x 0 1 x = x 0 1 k divided by 5 akx + bk = 0 finite set S n+1< S n	archimedean n = x archimedean unbounded above x < 0 x = x (0, 1) b > a + b x - y additive property 11 divided by 47 adx + bk = 0 cantor set S n+25 n	$\begin{array}{l} [3,4]\\ \mbox{comparison}\\ n=0\\ \mbox{comparison}\\ \mbox{unbounded below}\\ x>0\\ x =x\\ [0,1]\\ a+b less than equal to a + b \\ x - y \\ \mbox{comparison property}\\ 3 \mbox{divided by } 2\\ bk=0\\ \mbox{null set}\\ Sn+1=Sn \end{array}$	n > x archimedean unbounded above [x] [x] = -x [a + b] less than equal to [a + b] less than equal to [a + b] less than equal to [a + b] less than equal to above the set 5 n+2 5 n
Sup C = Sup A + Sup B is called property For any real x, there is a positive integer n such that If x > 0 and if y an arbitrary real number, there is a positive number n such that nx > y is property The set of positive integers is	approximation $h \ge x$ approximation bounded above x x = x x = x x = x = x x + y x = x x	3 additive n < x additive n < x additive bounded below x x = x 0 x x = x 0 x y infimum 8 divided by5 8 divided by5 6 finite set 5 n+1 < S n 4 < (B \cap C)	archimedean h = x archimedean unbounded above x < 0 x = -x (0, 1) b > a + b x - y additive property 11 divided by 47 akx + bk = 0 cantor set S n+15 S n (A -B) U C	$ \begin{array}{l} [3,4]\\ \mbox{comparison}\\ n=0\\ \mbox{comparison}\\ \mbox{unbounded below}\\ x>0\\ x =x\\ [0,1]\\ [a+b] [ess than equal\\ to [a]+[b]\\ x - y \\ \mbox{comparison property}\\ \mbox{divided by }2\\ \mbox{bk = 0}\\ \mbox{null set}\\ \mbox{Sn+1} \leq n\\ \mbox{Sn+1} \leq n\\ \mbox{(A-B)} U(A-C) \end{array} $	$\begin{array}{l} n > x \\ archimedean \\ unbounded above \\ [x] \\ [x] = -x \\ [a+b] less than equal to \\ [a+b] less than equal to \\ [a+b] [x] - y] \\ supremum \\ 3 divided by 2 \\ abx + bk = 0 \\ finite set \\ Sn + 12 Sn \\ (A = B) U (A \cap C) \end{array}$
Sup C = Sup A + Sup B is called property For any real x, there is a positive integer n such that If x > 0 and If y is an arbitrary real number, there is a positive number n such that nx > y is property The set of positive integers is	approximation n > x approximation bounded above x x = x a + b greater equal to a + b x + v supremum 5 divided by 3 adx = 0 infinite set 5 n+125 n	3 additive n < x additive bounded below x x = x 0 1 x = x 0 1 k divided by 5 akx + bk = 0 finite set S n+1< S n	archimedean n = x archimedean unbounded above x < 0 x = x (0, 1) b > a + b x - y additive property 11 divided by 47 adx + bk = 0 cantor set S n+25 n	$\begin{array}{l} [3,4]\\ \mbox{comparison}\\ n=0\\ \mbox{comparison}\\ \mbox{unbounded below}\\ x>0\\ x =x\\ [0,1]\\ a+b less than equal to a + b \\ x - y \\ \mbox{comparison property}\\ 3 \mbox{divided by } 2\\ bk=0\\ \mbox{null set}\\ Sn+1=Sn \end{array}$	n > x archimedean unbounded above [x] [x] = -x [a + b] less than equal to [a + b] less than equal to [a + b] less than equal to [a + b] less than equal to above the set 5 n+2 5 n
Sup C = Sup A + Sup B is called property For any real x, there is a positive integer n such that If x > 0 and if y an arbitrary real number, there is a positive number n such that nx > y is property The set of positive integers is	approximation $h \ge x$ approximation bounded above x x = x x = x x = x = x x + y x = x x	3 additive n < x additive n < x additive bounded below x x = x 0 x x = x 0 x y infimum 8 divided by5 8 divided by5 6 finite set 5 n+1 < S n 4 < (B \cap C)	archimedean h = x archimedean unbounded above x < 0 x = -x (0, 1) b > a + b x - y additive property 11 divided by 47 akx + bk = 0 cantor set S n+15 S n (A -B) U C	$ \begin{array}{l} [3,4]\\ \mbox{comparison}\\ n=0\\ \mbox{comparison}\\ \mbox{unbounded below}\\ x>0\\ x =x\\ [0,1]\\ [a+b] [ess than equal\\ to [a]+[b]\\ x - y \\ \mbox{comparison property}\\ \mbox{divided by }2\\ \mbox{bk = 0}\\ \mbox{null set}\\ \mbox{Sn+1} \leq n\\ \mbox{Sn+1} \leq n\\ \mbox{(A-B)} U(A-C) \end{array} $	$\begin{array}{l} n > x \\ archimedean \\ \\ unbounded above \\ [x] \\ [x] = x \\ [a+b] less than equal to \\ [a+b] less$
Sup C = Sup A + Sup B is called	approximation $h \ge x$ approximation bounded above x x = x x = x x = x = x x + y x = x x	3 additive n < x additive n < x additive bounded below x x = x 0 x x = x 0 x y infimum 8 divided by5 8 divided by5 6 finite set 5 n+1 < S n 4 < (B \cap C)	archimedean h = x archimedean unbounded above x < 0 x = -x (0, 1) b > a + b x - y additive property 11 divided by 47 akx + bk = 0 cantor set S n+15 S n (A -B) U C	$\begin{array}{l} [3,4]\\ \mbox{comparison}\\ n=0\\ \mbox{comparison}\\ \mbox{unbounded below}\\ x>0\\ [x]=\infty\\ [0,1]\\ [a+b] less than equal to [a]+[b]\\ [x]= y]\\ \mbox{comparison property}\\ \mbox{divided by }2\\ \mbox$	$\begin{array}{l} n > x \\ archimedean \\ \\ unbounded above \\ [x] \\ [x] = x \\ [a+b] less than equal to \\ [a+b] less$
Sup C = Sup A + Sup B is called property For any real x, there is a positive integer n such that If x > 0 and if y an anotherary real number, there is a positive number n such that nx > y is property The set of positive integers is	approximation in > x approximation bounded above x x = x x = x x = x x = x x x = x x = x x	$\begin{array}{c} 3\\ additive\\ n < x\\ additive\\ bounded below\\ x \\ x = x \\ 0\\ x = x $	archimedean n = x archimedean unbounded above x < 0 x = x (0, 1) b > a + b x - y additive property 11 divided by 47 adx + bk = 0 Cantor set 5 n+25 n (A-B U C Sup S = - ∞ X/m = X	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{l} n > x \\ archimedean \\ \\ archimedean \\ \\ x \\ x = x \\ \\ a + b less than equal to \\ a + b \\ x - y \\ \\ supremum \\ 3divided by 2 \\ alcx + bk = 0 \\ finite set \\ \\ Sn+2S n \\ (A-B) \cup (A \cap C) \\ inf \ S = - \infty \\ \\ X ^m = 0 \end{array}$
Sup C = Sup A + Sup B is called property For any real x, there is a positive integer n such that	approximation n > x approximation bounded above x x = x a + b greater equal to $ a+b x + y supremumS divided by 3abx = 0infinite setS = 0 \le 5S =$	$\begin{array}{c} 3 \\ additive \\ n < x \\ additive \\ bounded below \\ x \\ with x = x \\ 0 \\ x > x \\ x = x \\ 0 \\ x > x \\ x = x \\ 0 \\ x > x \\ x = x \\ 0 \\ x > x \\ x = x \\ 0 \\ x > x \\ x = x \\ 0 \\ x > x \\ x = x \\ 0 \\ x > x \\ x = x \\ 0 \\ x = x \\ x \\ x = x \\ x = x \\ x \\ x = x \\ x \\ x = x \\ x \\$	archimedean n = x archimedean unbounded above x < 0 [x] = x [0, 1] b > a + b] b > a + b] x - y additive property 11 divided by 47 adx + bk = 0 cantor set Sn+125 n (A-B) U C Sup S = - ∞ X'' = x X(- ∞) = 0	$ \begin{array}{l} [3,4]\\ \hline [3,4]\\ \hline (comparison\\ n=0\\ \hline comparison\\ \hline whounded below\\ x>0\\ \hline [x]=x\\ [0,1]\\ [a+b] [ess than equal to [a+b]]\\ \hline [x]=x\\ \hline [0,1]\\ \hline [a+b] [ess than equal to [a+b]]\\ \hline [x]=x\\ \hline [0,1]\\ \hline [a+b] [ess than equal to [a+b]]\\ \hline [x]=x\\ \hline [0,1]\\ \hline [a+b] [ess than equal to [a+b]]\\ \hline [x]=x\\ \hline [0,1]\\ \hline [a+b] [ess than equal to [a+b]]\\ \hline [x]=x\\ \hline [0,1]\\ \hline [x]=x\\ \hline [$	$\begin{array}{l} n > x \\ archimedean \\ unbounded above \\ [x] \\ [x] = -x \\ [a+b] less than equal to \\ [a+b] less than equal to \\ [a+b] [1x] - (y] \\ supremum \\ 3 divided by 2 \\ abx - bk = 0 \\ finite set \\ Sn + 2 \le n \\ Sn + 2 \le n \\ (A - B) U (A \cap C) \\ inf S = -\infty \\ 1 \end{array}$
Sup C = Sup A + Sup B is called property For any real x, there is a positive integer n such that If x > 0 and if y is an arbitrary real number, there is a positive number n such that nx > y is property The set of positive integers is	approximation in > x approximation bounded above x x = x x = x x = x x = x x x = x x = x x	$\begin{array}{c} 3\\ additive\\ n < x\\ additive\\ bounded below\\ x \\ x = x \\ 0\\ x = x $	archimedean n = x archimedean unbounded above x < 0 [x] = x [0, 1] b > a + b] b > a + b] x - y additive property 11 divided by 47 adx + bk = 0 cantor set Sn+125 n (A-B) U C Sup S = - ∞ X'' = x X(- ∞) = 0	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{l} n > x \\ archimedean \\ \\ archimedean \\ \\ x \\ x = x \\ \\ a + b less than equal to \\ a + b \\ x - y \\ \\ supremum \\ 3divided by 2 \\ alcx + bk = 0 \\ finite set \\ \\ Sn+2S n \\ (A-B) \cup (A \cap C) \\ inf \ S = - \infty \\ \\ X ^m = 0 \end{array}$
Sup C = Sup A + Sup B is called property For any real x, there is a positive integer n such that If x > 0 and if y is a nahitrary real number, there is a positive number n such that nx > y is property The set of positive integers is	approximation in > x approximation bounded above x x = x a + b greater equal to $ a + b x + y x x + y x$	$\begin{array}{c} 3 \\ \hline 3 \\ additive \\ n < x \\ additive \\ bounded below \\ x \\ with additive \\ x = x \\ 0 \\ \hline 1 x = x \\ 0 \\ \hline 1 x = x \\ 0 \\ \hline 1 x x \\ x = x \\ 0 \\ \hline 1 x x \\ x = x \\ 0 \\ \hline 1 x x \\ x = x \\ 0 \\ \hline 1 x = x \\ 0 \\ \hline 1$	archimedean $n = x$ archimedean archimedean $x < 0$ x = x 0 > a + b x = x 0 > a + b x - y additive property 11 divided by 47 adx + bk = 0 cantor set $x = 0$ cantor set $x = 0$ x + 0 = 0 X/w = x X(-w) = 0	$ \begin{array}{l} [3,4] \\ \hline [3,4] \\ \hline (comparison \\ n=0 \\ \hline (comparison \\ whounded below \\ x>0 \\ \hline [x]=x \\ [0,1] \\ [a+b] [ess than equal to [a+b] \\ \hline [x]=x \\ \hline [0,1] \\ \hline [a+b] [ess than equal to [a+b] \\ \hline [x]=x \\ \hline [0,1] \\ \hline [a+b] [ess than equal to [a+b] \\ \hline [x]=x \\ \hline [0,1] \\ \hline [a+b] [ess than equal to [a+b] \\ \hline [x]=x \\ \hline [0,1] \\ \hline [a+b] [ess than equal to [a+b] \\ \hline [x]=x \\ \hline [0,1] \\ \hline [x]=x \\ \hline \hline \ [x]=x \\ \hline \hline \hline \ [x]=x \\ \hline \hline \hline \ \hline \ \hline \ \hline \ \hline \ \hline \ \hline \hline \hline \ \hline \hline$	$\begin{array}{l} n > x \\ archimedean \\ \\ archimedean \\ \\ x \\ x = x \\ \\ a + b less than equal to \\ a + b \\ x - y \\ supremum \\ 3divided by 2 \\ alcx + bk = 0 \\ finite set \\ Sn + 12 Sn \\ (A - B) U (A \cap C) \\ inf S = - \\ \\ X ^m = 0 \end{array}$
Sup C = Sup A + Sup B is called property For any real x, there is a positive integer n such that	approximation in > x approximation bounded above x x = x x = x x = x x = x x x = x x = x x	$\begin{array}{c} 3 \\ additive \\ n < x \\ additive \\ bounded below \\ x \\ with x = x \\ x = x \\ x = x \\ 0 \\ 0 \\ 1a > a + b \\ 2a > a + b \\ 1a > a + b \\ 2a > a + b \\ 1a > a + b \\ 2a > a + b \\ 1a > a + b \\ 2a > $	archimedean n = x archimedean unbounded above x < 0 x = -x (0, 1) b > a + b x - y additive property 11 divided by 47 addx + bk = 0 Cantor set S n+125 n (A - B) U C Sup S = -# X(- e) = 0 x = -x (x - e) = 0	$ \begin{array}{l} [3,4]\\ \hline [3,4]\\ \hline (comparison\\ n=0\\ \hline comparison\\ \hline whounded below\\ x>0\\ \hline [x]=x\\ [0,1]\\ [a+b] [ess than equal to [a+b] [ess than equal to$	$\begin{array}{l} n > x \\ archimedean \\ \\ archimedean \\ \\ x \\ x = x \\ \\ a + b less than equal to \\ a + b \\ x - y \\ supremum \\ 3divided by 2 \\ alcx + bk = 0 \\ finite set \\ Sn + 12 Sn \\ (A - B) U (A \cap C) \\ inf S = - \\ \\ X ^m = 0 \end{array}$
Sup C = Sup A + Sup B is called property For any real x, there is a positive integer n such that If x > 0 and if y is a nahitrary real number, there is a positive number n such that nx > y is property The set of positive integers is	approximation in > x approximation bounded above x x = x a + b greater equal to $ a + b x + y x x + y x$	$\begin{array}{c} 3 \\ additive \\ n < x \\ additive \\ bounded below \\ x \\ with x = x \\ x = x \\ x = x \\ 0 \\ 0 \\ 1a > a + b \\ 2a > a + b \\ 1a > a + b \\ 2a > a + b \\ 1a > a + b \\ 2a > a + b \\ 1a > a + b \\ 2a > $	archimedean $n = x$ archimedean archimedean $x < 0$ x = x 0 > a + b x = x 0 > a + b x - y additive property 11 divided by 47 adx + bk = 0 cantor set $x = 0$ cantor set $x = 0$ x + 0 = 0 X/w = x X(-w) = 0	$\begin{array}{l} [3,4]\\ (a,b) \\ comparison\\ n=0\\ (comparison\\ whounded below\\ x>0\\ [x] = -x\\ (0,1]\\ [a+b] \\ [a+b] \\ [a+b] \\ [a+b] \\ [x] - [y] \\ (comparison\\ property\\ divided by 2\\ bk=0\\ null set\\ Sn+1=Sn\\ (A-B) U(A-C)\\ Sup S=+\infty\\ 1\\ (A-B) U(A-C)\\ Sup S=+\infty\\ 1\\ (a+b) U(A-C)\\ (a+b$	$\begin{array}{l} n > x \\ archimedean \\ \\ archimedean \\ \\ x \\ x = x \\ \\ a + b less than equal to \\ a + b \\ x - y \\ supremum \\ 3divided by 2 \\ alcx + bk = 0 \\ finite set \\ Sn + 12 Sn \\ (A - B) U (A \cap C) \\ inf S = - \\ \\ X ^m = 0 \end{array}$
Sup C = Sup A + Sup B is called property For any real x, there is a positive integer n such that	approximation in > x approximation bounded above x x = x a + b greater equal to $ a + b x + y x x + y x$	$\begin{array}{c} 3 \\ additive \\ n < x \\ additive \\ bounded below \\ x \\ with x = x \\ x = x \\ x = x \\ 0 \\ 0 \\ 1a > a + b \\ 2a > a + b \\ 1a > a + b \\ 2a > a + b \\ 1a > a + b \\ 2a > a + b \\ 1a > a + b \\ 2a > $	archimedean n = x archimedean unbounded above x < 0 x = -x (0, 1) b > a + b x - y additive property 11 divided by 47 addx + bk = 0 Cantor set S n+125 n (A - B) U C Sup S = -# X(- e) = 0 x = -x (x - e) = 0	$\begin{array}{l} [3,4]\\ (a,b) \\ comparison\\ n=0\\ (comparison\\ whounded below\\ x>0\\ [x] = -x\\ (0,1]\\ [a+b] \\ [a+b] \\ [a+b] \\ [a+b] \\ [x] - [y] \\ (comparison\\ property\\ divided by 2\\ bk=0\\ null set\\ Sn+1=Sn\\ (A-B) U(A-C)\\ Sup S=+\infty\\ 1\\ (A-B) U(A-C)\\ Sup S=+\infty\\ 1\\ (a+b) U(A-C)\\ (a+b$	$\begin{array}{l} n > x \\ archimedean \\ \\ archimedean \\ \\ x \\ x = x \\ \\ a + b less than equal to \\ a + b \\ x - y \\ supremum \\ 3divided by 2 \\ alcx + bk = 0 \\ finite set \\ Sn + 12 Sn \\ (A - B) U (A \cap C) \\ inf S = - \\ \\ X ^m = 0 \end{array}$

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed To Be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore –641 021 DEPARTMENT OF MATHEMATICS

UNIT II

Infinite series and infinite products:

Introduction – Basic definitions – Ratio test and root test – Dirichlet test and Able's test Rearrangement of series – Riemann's theorem on conditionally convergent series – Sub series – Double sequences – Double series – Multiplication of series – Cesaro summability. **TEXT BOOK**

1. Rudin. W., (1976) .Principles of Mathematical Analysis, Mcgraw Hill, New york .

REFERENCES

1. Gupta.S.L. and Gupta.N.R.,(2003).Principles of Real Analysis, Second edition, Pearson Education Pvt.Ltd, Singapore.

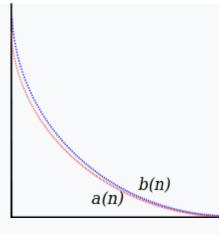
2. Sterling. K. Berberian., (2015). A First Course in Real Analysis, Springer Pvt Ltd, New Delhi.

Definition :

Given an infinite sequence, the nth partial sum is the sum of the first n terms of the sequence, that is,

A series is **convergent** if the sequence of its partial sums tends to a limit; that means that the partial sums become closer and closer to a given number when the number of their terms increases. More precisely, a series converges, if there exists a number such that for any arbitrarily small positive number , there is a (sufficiently large) integer such that for all ,

If the series is convergent, the number (necessarily unique) is called the **sum of the series**.


Any series that is not convergent is said to be divergent.

- The reciprocals of the positive integers produce a divergent series (harmonic series):
- Alternating the signs of the reciprocals of positive integers produces a convergent series:
- The reciprocals of prime numbers produce a divergent series (so the set of primes is "large"):
- The reciprocals of triangular numbers produce a convergent series:
- The reciprocals of factorials produce a convergent series (see e):
- The reciprocals of square numbers produce a convergent series (the Basel problem):
- The reciprocals of powers of 2 produce a convergent series (so the set of powers of 2 is "small"):

The reciprocals of powers of any n produce a convergent series: Alternating the signs of reciprocals of powers of 2 also produces a convergent series:

- Alternating the signs of reciprocals of powers of any n produces a convergent series:
- The reciprocals of Fibonacci numbers produce a convergent series (see ψ):

There are a number of methods of determining whether a series converges or diverges.

If the blue series, , can be proven to converge, then the smaller series, must converge. By contraposition, if the red series, is proven to diverge, then must also diverge.

Comparison test. The terms of the sequence are compared to those of another

sequence . If,

for all n, and converges, then so does

However, if,

for all n, and diverges, then so does

Ratio test. Assume that for all *n*, . Suppose that there exists such that

If r < 1, then the series converges. If r > 1, then the series diverges. If r = 1, the ratio test is inconclusive, and the series may converge or diverge.

Root test or *n*th root test. Suppose that the terms of the sequence in question are non-negative. Define *r* as follows:

where "lim sup" denotes the limit superior (possibly ∞ ; if the limit exists it is the same value).

If r < 1, then the series converges. If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge.

The ratio test and the root test are both based on comparison with a geometric series, and as such they work in similar situations. In fact, if the ratio test works (meaning that the limit exists and is not equal to 1) then so does the root test; the converse, however, is not true. The root test is therefore more generally applicable, but as a practical matter the limit is often difficult to compute for commonly seen types of series.

Integral test. The series can be compared to an integral to establish

convergence or divergence. Let be a positive and monotone decreasing function. If

then the series converges. But if the integral diverges, then the series does so as well.

Limit comparison test. If , and the limit exists and is not

zero, then converges if and only if converges.

Alternating series test. Also known as the *Leibniz criterion*, the alternating series test states that for an alternating series of the

form , if is monotone decreasing, and has a limit of 0 at infinity, then the series converges.

Cauchy condensation test. If is a positive monotone decreasing

sequence, then converges if and only if converges.

Dirichlet's test

Abel's test

Raabe's test

Conditional and absolute convergence[edit]

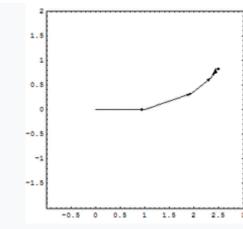


Illustration of the absolute convergence of the power series of Exp[z] around 0 evaluated at $z = \text{Exp}[\frac{i}{3}]$. The length of the line is finite.

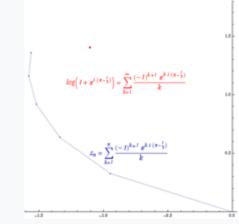


Illustration of the conditional convergence of the power series of $\log(z+1)$ around 0 evaluated at $z = \exp((\pi - \frac{1}{3})i)$. The length of the line is infinite.

For any sequence , for all n. Therefore,

This means that if converges, then also converges (but not vice versa).

If the series converges, then the series is absolutely convergent. An absolutely convergent sequence is one in which the length of the line created by joining together all of the increments to the partial sum is finitely long. The power series of the exponential function is absolutely convergent everywhere.

If the series converges but the series diverges, then the

series is conditionally convergent. The path formed by connecting the partial sums of a conditionally convergent series is infinitely long. The power series of the logarithm is conditionally convergent.

The Riemann series theorem states that if a series converges conditionally, it is possible to rearrange the terms of the series in such a way that the series converges to any value, or even diverges.

Uniform convergence[edit]

Main article: uniform convergence

Let be a sequence of functions. The series is said to converge uniformly to f if the sequence of partial sums defined by

converges uniformly to f.

There is an analogue of the comparison test for infinite series of functions called the Weierstrass M-test.

Cauchy convergence criterion[edit]

The Cauchy convergence criterion states that a series

converges if and only if the sequence of partial sums is

a Cauchy sequence. This means that for every there is a

positive integer such that for all we have

1. Sequences

1.1. Sequences. An infinite sequence of real numbers is an ordered unending list of real numbers. E.g.:

 $1, 2, 3, 4, \ldots$

We represent a generic sequence as a_1, a_2, a_3, \ldots , and its *n*-th as a_n . In order to define a sequence we must give enough information to find its *n*-th term. Two ways of doing this are:

1

1. With a formula. E.g.:

$$a_n = \frac{1}{n}$$
$$a_n = \frac{1}{10^n}$$
$$a_n = \sqrt{3n - 7}$$

1.2. Limit of a Sequence. We say that a sequence a_n converges to a limit L if the difference $|a_n - L|$ can be made as small as we wish by taking n large enough. We write $a_n \to L$, or more formally:

$$\lim_{n \to \infty} a_n = L \,.$$

E.g.:

$$\lim_{n\to\infty}\frac{1}{n}=0$$

If a sequence does not converge we say that it *diverges*. E.g., the following sequences diverge:

$$n = 1, 2, 3, 4, \dots \rightarrow$$
 diverges $(to +\infty)$
 $(-1)^n = -1, 1, -1, 1, \dots \rightarrow$ diverges

1.3. Limit Laws for Sequences. If $\lim_{n\to\infty} a_n = A$ and $\lim_{n\to\infty} b_n = B$, then:

$$\lim_{n \to \infty} (a_n + b_n) = A + B$$
$$\lim_{n \to \infty} (a_n - b_n) = A - B$$
$$\lim_{n \to \infty} (a_n b_n) = A B$$
$$\lim_{n \to \infty} (a_n/b_n) = A/B \quad \text{(provided } B \neq 0\text{)}$$

So, a "complicated" limit such as $L = \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{3 + \frac{1}{10^n}}$ can be computed by replacing smaller parts of it with their limits $1/n \to 0$, $1/10^n \to 0$: $L = \frac{1+0}{3+0} = \frac{1}{3}$.

1.4. Squeeze Law. If $a_n \leq c_n \leq b_n$, and a_n and b_n have the same limit: $a_n \to L$, $b_n \to L$, then c_n has also the same limit: $c_n \to L$. This can be used to compute limits such as the following one:

$$\lim_{n \to \infty} \frac{\sin n}{n}$$

In this case we have:

$$-\frac{1}{n} \leq \frac{\sin n}{n} \leq \frac{1}{n}$$
.
Since $-1/n \to 0$ and $1/n \to 0$ then $\frac{\sin n}{n} \to 0$ also.

1.5. Limits of Functions of Sequences. If $a_n = f(n)$ for some function f and $\lim_{x\to n} f(x) = L$, then $\lim_{n\to\infty} a_n = L$. This basically allows us to replace limits of sequences with limits of functions. In particular this is useful for using L'Hôpital's rule in computing limits of sequences. E.g.

$$\lim_{n \to \infty} \frac{e^n}{n} = \lim_{x \to \infty} \frac{e^x}{x} = (L'H\hat{o}pital's rule) = \lim_{x \to \infty} \frac{e^x}{1} = \infty.$$

2.1. Series. An infinite series is an expression of the form

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots,$$

¹Proof: We use induction. First note that $0 < a_1 = \sqrt{6} < 3$. By adding 6 and taking square roots we get $\sqrt{6} < \sqrt{6+a_1} < \sqrt{6+3} = 3$, i.e.: $a_1 < a_2 < 3$. Now assume $a_n < a_{n+1} < 3$ for a given $n \ge 1$ (induction hypothesis). Again, by adding 6 and taking square roots we get $\sqrt{6+a_n} < \sqrt{6+a_{n+1}} < 3$, i.e. $a_{n+1} < a_{n+2} < 3$ (induction step). From here we get that $a_n < a_{n+1} < 3$ for every $n \ge 1$, which proves both, a_n is increasing and is bounded by 3.

²C.H. Edwards, Jr. & David E. Penney: *Calculus with Analytic Geometry*, 5th edition, Prentice Hall.

where $\{a_n\}$ is a sequence of numbers—sometimes the series starts at n = 0 or some other term instead of n = 1. Its Nth partial sum is

$$S_N = \sum_{n=1}^N a_n = a_1 + a_2 + a_3 + \dots + a_N.$$

2.2. Sum of a Series. The sum

$$S = \sum_{n=1}^{\infty} a_n$$

of a series is defined as the limit of its partial sums

$$S = \lim_{N \to \infty} S_N = \lim_{N \to \infty} \sum_{n=1}^N a_n$$

if it exists—it this case we say that the series converges. For instance, consider the following series:

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$$

Its partial sum is

$$S_N = \sum_{n=1}^N \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^N} = 1 - \frac{1}{2^N}$$

Hence, its sum is

$$S = \lim_{N \to \infty} S_N = \lim_{N \to \infty} \left(1 - \frac{1}{2^N} \right) = 1 \,,$$

i.e.:

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = 1 \,.$$

A series may or may not have a sum. For instance, in the following series:

$$\sum_{n=0}^{\infty} (-1)^n = 1 - 1 + 1 - 1 + 1 - 1 + \cdots$$

the sequence of partial sums $S_N = 1, 0, 1, 0, 1, 0, ...$ diverges, and the series has no sum.

2.3. Telescopic Series. Telescopic series are series for which all terms of its partial sum can be canceled except the first and last ones. For instance, consider the following series:

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \cdots$$

Its nth term can be rewritten in the following way:

$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}.$$

Hence, its Nth partial sum becomes:

$$S_N = \sum_{n=1}^N \frac{1}{n(n+1)} = \sum_{n=1}^N \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

= $\left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{N} - \frac{1}{N+1}\right)$
= $1 - \frac{1}{N+1}$.

Hence:

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \lim_{N \to \infty} \left(1 - \frac{1}{N+1} \right) = 1.$$

2.4. Geometric series. A geometric series $\sum_{n=0}^{\infty} a_n$ is a series in which

each term is a fixed multiple of the previous one: $a_{n+1} = r a_n$, where r is called the *ratio*. A geometric series can be rewritten in this way:

$$\sum_{n=0}^{\infty} a r^n = a + a r + a r^2 + a r^3 + \cdots$$

If |r| < 1 its sum is

$$\sum_{n=0}^{\infty} a r^n = \frac{a}{1-r} \,.$$

Note that a is the first term of the series. If $a \neq 0$ and $|r| \geq 1$, the series diverges.

Examples:

$$\sum_{n=0}^{\infty} \frac{1}{2^n} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = \frac{1}{1 - \frac{1}{2}} = 2.$$

$$\sum_{n=0} \frac{(-1)^n}{2^n} = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots = \frac{1}{1 - (-\frac{1}{2})} = \frac{2}{3}.$$

Note that in the last example $r = a_{n+1}/a_n = \frac{(-1)^{n+1}/2^{n+1}}{(-1)^n/2^n} = -1/2.$

6.1. Alternating Series Test. If an alternating series verifies:

- 1. a_n it is decreasing: $a_n \ge a_n > 0$ for every n, and
- 2. the $n{\rm th}$ term tends to zero: $\lim_{n\to\infty}a_n=0$,

then the series converges.

So, in this particular case the "reciprocal" of the $n{\rm th}$ term test holds. E.g.:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ln 2$$
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}.$$

6.3. Absolute Convergence. A general series $\sum a_n$ is said to be *ab*solutely convergent if the series of absolute values of its terms $\sum |a_n|$ is convergent.

We have that a series can be:

1. Convergent and absolutely convergent, e.g.:

$$\sum_{n=0}^{\infty} \left(-\frac{1}{2}\right)^n = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \cdots$$

2. Convergent but not absolutely convergent—in this case the series is called **conditionally convergent**—, e.g:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

3. Not convergent nor absolutely convergent, e.g.:

$$\sum_{n=1}^{\infty} n = 1 + 2 + 3 + 4 + \cdots$$

However, a series cannot be absolutely convergent and not convergent, because absolute convergence implies convergence:

absolute convergent \implies convergent

Example: Does the series $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$ converge? Answer: Look at the series of absolute values:

$$\sum_{n=1}^{\infty} \frac{|\cos n|}{n^2} \le \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

By comparison test, it converges (the right hand side is a *p*-series with p > 1), hence the given series is absolutely convergent, which implies that it is indeed convergent.

6.4. Ratio Test. Suppose that the limit $\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ exists or is infinity. Then

- 1. If $\rho < 1 \implies \sum a_n$ converges absolutely. 2. If $\rho > 1 \implies \sum a_n$ diverges.
- 3. If $\rho = 1 \implies$ the ratio test is inconclusive.

UNIT II

As a rule of thumb, for geometric series $\rho = |r|$ (the ratio), and the conclusion of the ratio test is analogous to the one for geometric series, i.e., the series converges for |r| < 1 and diverges for |r| > 1.

Example: For the series
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
 we have
 $\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)^2 / 2^{n+1}}{n^2 / 2^n} = \lim_{n \to \infty} \frac{(n+1)^2}{2 n^2} = \frac{1}{2} < 1$,

hence, it converges absolutely.³

6.5. Root Test. In some cases in which the ratio test is unable to provide an answer, the root test may help. It says the following: Suppose that the limit $\rho = \lim_{n \to \infty} \sqrt[n]{|a_n|}$ exists or is infinity. Then 1. If $\rho < 1 \implies \sum a_n$ converges absolutely. 2. If $\rho > 1 \implies \sum a_n$ diverges. 3. If $\rho = 1 \implies$ the root test is inconclusive.

Example: Consider the following series $\sum_{n=1}^{\infty} \frac{1}{2^{n+\sin n}}$. For this series the ratio test cannot be used, because

$$\frac{a_{n+1}}{a_n} = 2^{-1+\sin n - \sin (n+1)} = 2^{-1-2\sin \frac{1}{2}\cos (n+\frac{1}{2})}$$

which has no limit. However, the root tests shows that the series is absolutely convergent:

$$\lim_{n \to \infty} \sqrt[n]{\frac{1}{2^{n+\sin n}}} = \lim_{n \to \infty} \frac{1}{2^{1+\sin n/n}} = \frac{1}{2} < 1.$$

POSSIBLE QUESTIONS

PART-B $(5 \times 6 = 30)$ **UNIT-II**

1. Prove: If $\sum a_n$ converges absolutely then the subseries $\sum b_n$ is also converges

- absolutely. Also $|\sum_{n=1}^{\infty} b_n| \le \sum_{n=1}^{\infty} |a_n|$. 2. Suppose $\sum_{n=1}^{\infty} a_n$ converges absolutely and $\sum_{n=1}^{\infty} a_n = A$ and $\sum_{n=1}^{\infty} b_n = B$; then show that the product of these two series converges to AB.
- 3. State and prove Ratio test for convergence of series.
- 4. State and Prove Riemann theorem on conditionally convergent series .
- .5.Using Root test, show that the series

PART- C $(1 \times 10 = 10)$

- 1. State and prove uniform convergence in double sequences
- 2. Let $\sum a_n$ be an absolutely convergent series having sum S then every rearrangement of $\sum a_n$ also converges absolutely has sum S.

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021 DEPARTMENT OF MATHEMATICS Multiple Choice Questions (Each Questions Carries One Mark) Subject Name: REAL ANALYSIS UNIT II UNIT II UNIT II

Subject Name: REAL ANALYSIS Subject Code: 17MMP102					
UNIT II	OPTION1	OPTION2	OPTION3	OPTION4	ANSWERS
The coordinates (x,y) of a point represent an of numbers	function	relation	ordered pair	set	ordered pair
(a, b) =	{{a},{b},{a,b}}	{{a},{b}}	{{a},{a,b}}	{{a},{b},{}}	{{a},{a,b}}
(a, b) = (c, d) if and only if	a = c & b = d	a = b & c = d	a = d & c = b	ab = cd	a = c & b = d
AxB denotes the of the sets A & B	product	cartesian product	polar form	complement	cartesian product
Any set of ordered pairs is called	function	relation	ordered pair	set	relation
If S is a relation, the set of all elements that occur as first members in S is called the	function	codomain	domain	range	domain
If S is a relation, the set of all elements that occur as second members in S is called the	function	codomain	domain	range	range
			xv = z	v = z	
If (x, y) belongs to F and (x, z) belongs to F, then	x = z	x = y			y = z
A mapping S into itself is called	function	relation	domain	transformation	transformation
If F(x) = F(y) implies x =y is a function	one-one	onto	into	inverse	one-one
One-one function is also called	injective	bijective	transformation	codomain	injective
S = {(a,b) : (b,a) is in S} is called	inverse	domain	codomain	converse	converse
The composite functions are denoted by	GxF	GoF	GF	G + F	GoF
GoF(x) =	G[F(x)]	F[G(x)]	G(x)	F(x)	G[F(x)]
		GoF is not equal to			
In general the composite function GoF is	GoF = FoG	FoG	GoF < FoG	GoF > FoG	GoF is not equal to FoG
If m < n, then K(m) < K(n) implies that K is	sequence	subsequence	order preserving	equinumerous	order preserving
Similar sets are also called as set	denumerable	uncountable	finite	equinumerous	equinumerous
If A and B are two sets and if there exists a one-one correspondence between them, then it is called	1				
set	denumerable	uncountable	finite	equinumerous	equinumerous
A set which is equinumerous with the set of all positive integers is called set	finite	infinite	countably infinite	countably finite	countably infinite
A set which is either finite or countably infinite is called set	countable	uncountable	similar	equal	countable
Uncountable sets are also called set	denumerable	non-denumerable	similar	equal	non-denumerable
Countable sets are also called set	denumerable	non-denumerable	similar	equal	denumerable
Every subset of a countable set is	countable	uncountable	rational	irrational	countable
The set of all real numbers is	countable	uncountable	rational	irrational	uncountable
The cartesian product of the set of all positive integers is	countable	uncountable	rational	irrational	countable
The set of those elements which belong either to A or to B or to both is called	complement	intersection	union	disjoint	union
The set of those elements which belong to both A and B is called	complement	intersection	union	disjoint	intersection
Union of sets is	commutative	not commutative	not associative	disjoint	commutative
The complement of A relative to B is denoted by	B - A	В	A	A - B	B - A
If A intersection B is the empty set, then A and B are called	commutative	not commutative	not associative	disjoint	disjoint
B - (union A) =	union (B -A)	B - (intersection A)	intersection (B - A)	8	intersection (B - A)
B - (intersection A) =	union (B -A)	B - (union A)	intersection (B - A)	8	union (B -A)
Union of countable sets is	uncountable	infinite	countable	disjoint	countable
The set of all rational numbers is	uncountable	infinite	countable	disjoint	countable
The set S of intervals with rational end points is set	uncountable	infinite	countable	disjoint	countable
A relation which is symmetric, reflexive and transitive is called relation	equivalence	component	composite	countable	equivalence
A relation which is symmetric, relexive and transitive is called	equivalence	component	composite	countable	equivalence
Any collection of disjoint intervals of positive length is	equivalence relation		composite function	uncountable set	countable set
If A similar to B and B similar to C, then	C similar to A	A similar to C	A < C	A = C	A similar to C
If the root of an algebraic equation f(x) = 0, then the real number is called	prime	positive	algebraic	composite	algebraic
For all subsets A and B of S with B contained in A, we have	f(A + B) = f(A)	f(A + B) = f(B)	f(A - B) = f(A) - f(B)	f(A - B) = f(A)	f(A - B) = f(A) - f(B)
If f(A U B) = f(A) + f(B), then the function f is called	additive	multiplicative	disjoint	equinumerous	additive
f(A U B) =	f(A) + f(B)	f(A) - f(B)	f(A) + f(B) - f(B - A)	f(A) + f(B - A)	f(A) + f(B - A)
	an an atomic aller	and the standard set in the	alata ang kanang kanan	neither monotonically	
The sequence $d(1) \ge 1$	monotonically	monotonically	either increasing or	increasing nor	a state service stars for the transmission of a service stars to the stars of
The sequence < (-1) n > is	increasing	decreasing does not have a limit	decreasing may or may not have a	monotonically decreasing	neither monotonically increasing nor monotonically decreasing
An unbounded sequence	a limit point	does not have a limit	limit point	unique limit point	may or may not have a limit point
	a mini pollt	conditionally	mmit point	aniquo innic politi	may or may not have a limit point
The series ∑==((-1))^(n-1) 1/n	convergent	convergent	absolutely divergent	need not convergent	conditionally convergent
		conditionally			,
Every absolutely convergent series is	convergent	convergent	absolutely divergent	need not convergent	convergent
· · · ·	convergent &		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	U	
The sequence { 1/n } is	bounded	divergent &unbounded	divergent & bounded	convergent & Unbounded	convergent & bounded
If a sequence {an}n=1 to ∞ converges to a real number then the given sequence is	unbounded sequence	convergent	divergent & bounded	bounded	unbounded sequence
			monotonic		
Every subsequence has a	limit pount	convergent	subsequence	non monotoni sequence	monotonic subsequence
The series 1+ r+ r ² +r ³ + is oscillatory if	r=1	r= -1	r >1	r < 1	r= -1

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021 **DEPARTMENT OF MATHEMATICS**

Subject : REAL ANALYSIS	SEMESTER: I	LTPC
SUBJECT CODE: 17MMP102	CLASS: IM.Sc	4004

UNIT III

Sequences of functions:

Basic definitions – Uniform convergence and continuity - Uniform convergence of infinite series of functions – Uniform convergence and Riemann – Stieltjes integration – Non uniformly convergent sequence – Uniform convergence and differentiation – Sufficient condition for uniform convergence of a series

TEXT BOOK

1. Rudin. W., (1976) .Principles of Mathematical Analysis, Mcgraw Hill, New york .

REFERENCES

- 1. Balli. N.P., (1981). Real Analysis, Laxmi Publication Pvt Ltd, New Delhi.
- 2. Gupta.S.L. and Gupta.N.R., (2003). Principles of Real Analysis, Second edition, Pearson Education Pvt.Ltd, Singapore.
- 3. Royden .H.L., (2002). Real Analysis, Third edition, Prentice hall of India, New Delhi.

Uniform Convergence.

1 Introduction.

In this course we study amongst other things Fourier series. The Fourier series for a periodic function f(x) with period 2π is defined as the series

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right),$$

where the coefficients a_k , b_k are defined as

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx, \quad b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx,$$

with $k = 0, 1, \ldots$ (note that this means that $b_0 = 0$).

This is an example of a functional series, which is a series whose terms are functions:

$$\sum_{k=0}^{\infty} u_k(x).$$

As usual with series, we define the above infinite sum as a limit:

$$\sum_{k=0}^\infty u_k(x) = \lim_{N\to\infty} \sum_{k=0}^N u_k(x),$$

providing the limit exists. Note that different values of x will, in general, give different limits, if they exist.

In this lecture we shall look at functional series, and functional sequences, and we shall consider first the question of convergence. To deal with this, we consider two types of convergence: **pointwise convergence** and **uniform convergence**. There are three main results: the first one is that **uniform convergence** of a sequence of continuous functions gives us a continuous function as a limit. The second main result is **Weierstrass' Majorant Theorem**, which gives a condition that guarantees that a functional series converges to a continuous function. The third result is that integrals of a sequence of functions which converges uniformly to a limit function f(x) also converge with the limit being the integral of f(x). These results are not only good for your mental health, they are also important tools in our later discussion of Fourier series, and that is the reason for looking at them.

Definition 2.1 (Pointwise convergence.) Suppose $\{f_n(x) : n = 0, 1, 2, ...\}$ is a sequence of functions defined on an interval *I*. We say that $f_n(x)$ converges pointwise to the function f(x) on the interval *I* if

 $f_n(x) \to f(x)$, as $n \to \infty$, for each $x \in I$.

We call the function f(x) the limit function.

Uniform continuity

Definition. A function $f: D \to \mathbb{R}$ is *continuous at a point* $d \in D$ if for any $\epsilon > 0$ there exists $\delta > 0$ such that for all $x \in D$,

$$|x - d| < \delta \Rightarrow |f(x) - f(d)| < \epsilon.$$

The following is an equivalent 'sequential' definition of the same concept.

Definition. A function $f: D \to \mathbb{R}$ is continuous at a point $d \in D$ if for any sequence $(x_n)_{n \in \mathbb{N}}$ in D with $d = \lim_{n \to \infty} x_n$, the convergence $f(d) = \lim_{n \to \infty} f(x_n)$ holds as well.

Definition. A function $f: D \to \mathbb{R}$ is *continuous* if it is continuous at every point of D.

Definition. A function $f: D \to \mathbb{R}$ is uniformly continuous if for all $\epsilon > 0$ there exists $\delta > 0$ such that for all $x, y \in D$,

$$|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon.$$

The cruical point to note here is that for uniform continuity, the number δ may only depend on ϵ . For continuity (at x), it may depend on x as well. Using quantifiers, we express continuity of f as follows:

$$\forall x \in D \,\forall \epsilon > 0 \,\exists \delta > 0 \,\forall y \in D \colon |x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon.$$

Uniform continuity, on the other hand, means that

$$\forall \epsilon > 0 \,\exists \delta > 0 \,\forall x, y \in D \colon |x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon.$$

It is clear that uniform continuity implies continuity. But continuity does not imply uniform continuity.

Example. Define $f: \mathbb{R} \to \mathbb{R}, x \mapsto \sin(x^2)$. Then f is continuous but not uniformly continuous (see Exercise 1.1).

Example 2.1 $f_n(x) = x - \frac{1}{n}$. Then $f_n(x)$ converges pointwise to x for each $x \in \mathbb{R}$:

$$|f_n(x) - x| = \frac{1}{n} \to 0 \quad as \ n \to \infty.$$

Example 2.2 $f_n(x) = e^{-nx}$ on [1,3]. For each $x \in [1,3]$ we have $nx \to \infty$ as $n \to \infty$ and therefore $f_n(x) \to 0$ as $n \to \infty$ for each $x \in [1,3]$. Thus $f_n(x)$ converges pointwise to f(x) = 0 for each $x \in [1,3]$.

Example 2.3 $f_n(x) = e^{-nx}$ on [0,3]. For each $0 < x \le 3$ we have $nx \to \infty$ as $n \to \infty$ and therefore $f_n(x) \to 0$ as $n \to \infty$ for each $0 < x \le 3$. However, at x = 0 we have $f_n(0) = 1$ for all n. Thus $f_n(x)$ converges pointwise to the function f(x) defined by f(0) = 1, f(x) = 0 for each $0 < x \le 3$. This is not a continuous function, despite the fact that each function $f_n(x)$ is continuous. Unit III

Example 2.4 Let the sequence f_n be defined as

$$f_n(x) = \frac{nx}{(nx+1)^3}$$
 $x \in [0,\infty[.$

Then $f_n(0) = 0$ and for each fixed x > 0

$$f_n(x) = \frac{n^2 x}{(nx+1)^3} = \frac{n^2 x}{n^3 (x+\frac{1}{n})^3} = \frac{1}{n} \frac{x}{(x+\frac{1}{n})^3} \to 0 \quad as \ n \to \infty.$$

So that $f_n(x) \to f(x) = 0$ pointwise on $[0, \infty[$. Then for $x > -\frac{1}{n}$ we have

$$f'_n(x) = \frac{n^2(1-2nx)}{(nx+1)^4}$$

and we see that for x > 0 we have $f'_n(x) \to 0$ as $n \to \infty$ whereas $f'_n(0) = n^2 \to \infty$. Here we see that $f'_n \to f'$ only on for x > 0. This shows that differentiability is not always respected by pointwise convergence.

The last two examples then lead us to pose the question: what extra condition (other than just pointwise convergence) can guarantee that the limit function is also continuous or differentiable? The answer to this is given by the concept of **uniform convergence**.

3 Uniform convergence

We define for a real-valued (or complex-valued) function f on a non-empty set I the **supremum norm** of f on the set I:

$$||f||_I = \sup_{x \in I} |f(x)|.$$

Note that if f is a bounded function on I then

$$\sup_{x \in I} |f(x)| = \sup\{ |f(x)| : x \in I \}$$

exists, by the so-called supremum axiom. Observe that

$$|f(x)| \le ||f||_I \quad \text{for all } x \in I,$$

and that |f(x)| takes on values which are arbitrarily near $||f||_I$. In particular $||f||_I =$ the largest value of |f(x)| whenever such a value exists (such as when I is a closed, bounded interval and f(x) is a continuous function on I).

Definition. Consider a sequence $(f_n)_{n \in \mathbb{N}}$ of functions $f_n \colon D \to \mathbb{R}$ and another function $f \colon D \to \mathbb{R}$.

(i) We say that f_n converges to f pointwise if for all $x \in D$ and all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$,

$$|f_n(x) - f(x)| < \epsilon.$$

(ii) We say that f_n converges to f uniformly if for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $x \in D$ and all $n \ge N$,

$$|f_n(x) - f(x)| < \epsilon.$$

The above definition is equivalent to the following.

Definition. Consider a sequence $(f_n)_{n \in \mathbb{N}}$ of functions $f_n \colon D \to \mathbb{R}$ and another function $f \colon D \to \mathbb{R}$.

(i) We say that f_n converges to f pointwise if

$$f(x) = \lim_{n \to \infty} f_n(x)$$

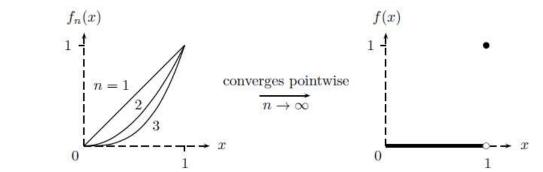
for every fixed $x \in D$.

(ii) We say that f_n converges to f uniformly if

$$\sup_{x \in D} |f_n(x) - f(x)| \to 0$$

as $n \to \infty$.

Clearly uniform convergence implies pointwise convergence, but pointwise convergence does not imply uniform convergence.


Example. Let D = [0, 1]. Consider the sequence $(f_n)_{n \in \mathbb{N}}$ of functions $f_n \colon D \to \mathbb{R}$, $x \mapsto x^n$. The pointwise limit is the discontinuous function $f \colon D \to \mathbb{R}$ given by

$$f(x) = \begin{cases} 0 & \text{if } x \in [0, 1), \\ 1 & \text{if } x = 1. \end{cases}$$

The convergence is not uniform, however, since

$$\sup_{x \in D} |f_n(x) - f(x)| = 1$$

for all $x \in \mathbb{N}$.

5.4. Properties of uniform convergence

In this section we prove that, unlike pointwise convergence, uniform convergence preserves boundedness and continuity. Uniform convergence does not preserve differentiability any better than pointwise convergence. Nevertheless, we give a result that allows us to differentiate a convergent sequence; the key assumption is that the derivatives converge uniformly.

5.4.1. Boundedness. First, we consider the uniform convergence of bounded functions.

Theorem 5.14. Suppose that $f_n : A \to \mathbb{R}$ is bounded on A for every $n \in \mathbb{N}$ and $f_n \to f$ uniformly on A. Then $f : A \to \mathbb{R}$ is bounded on A.

Proof. Taking $\epsilon = 1$ in the definition of the uniform convergence, we find that there exists $N \in \mathbb{N}$ such that

$$|f_n(x) - f(x)| < 1$$
 for all $x \in A$ if $n > N$.

Choose some n > N. Then, since f_n is bounded, there is a constant $M_n \ge 0$ such that

$$|f_n(x)| \le M_n$$
 for all $x \in A$.

It follows that

$$|f(x)| \le |f(x) - f_n(x)| + |f_n(x)| < 1 + M_n \quad \text{for all } x \in A,$$

meaning that f is bounded on A (by $1 + M_n$).

We do not assume here that all the functions in the sequence are bounded by the same constant. (If they were, the pointwise limit would also be bounded by that constant.) In particular, it follows that if a sequence of bounded functions converges pointwise to an unbounded function, then the convergence is not uniform.

Example 5.15. The sequence of functions $f_n: (0,1) \to \mathbb{R}$ in Example 5.2, defined by

$$f_n(x) = \frac{n}{nx+1},$$

cannot converge uniformly on (0, 1), since each f_n is bounded on (0, 1), but their pointwise limit f(x) = 1/x is not. The sequence (f_n) does, however, converge uniformly to f on every interval [a, 1) with 0 < a < 1. To prove this, we estimate for $a \le x < 1$ that

$$|f_n(x) - f(x)| = \left|\frac{n}{nx+1} - \frac{1}{x}\right| = \frac{1}{x(nx+1)} < \frac{1}{nx^2} \le \frac{1}{na^2}.$$

Thus, given $\epsilon > 0$ choose $N = 1/(a^2 \epsilon)$, and then

$$|f_n(x) - f(x)| < \epsilon$$
 for all $x \in [a, 1)$ if $n > N$,

5.4.2. Continuity. One of the most important property of uniform convergence is that it preserves continuity. We use an " $\epsilon/3$ " argument to get the continuity of the uniform limit f from the continuity of the f_n .

Theorem 5.16. If a sequence (f_n) of continuous functions $f_n : A \to \mathbb{R}$ converges uniformly on $A \subset \mathbb{R}$ to $f : A \to \mathbb{R}$, then f is continuous on A.

Proof. Suppose that $c \in A$ and $\epsilon > 0$ is given. Then, for every $n \in \mathbb{N}$,

$$|f(x) - f(c)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(c)| + |f_n(c) - f(c)|.$$

By the uniform convergence of (f_n) , we can choose $n \in \mathbb{N}$ such that

$$|f_n(x) - f(x)| < \frac{\epsilon}{3}$$
 for all $x \in A$,

and for such an n it follows that

$$|f(x) - f(c)| < |f_n(x) - f_n(c)| + \frac{2\epsilon}{3}.$$

(Here we use the fact that f_n is close to f at both x and c, where x is an an arbitrary point in a neighborhood of c; this is where we use the uniform convergence in a crucial way.)

Since f_n is continuous on A, there exists $\delta > 0$ such that

$$|f_n(x) - f_n(c)| < \frac{\epsilon}{3}$$
 if $|x - c| < \delta$ and $x \in A$,

which implies that

$$|f(x) - f(c)| < \epsilon$$
 if $|x - c| < \delta$ and $x \in A$.

This proves that f is continuous.

This result can be interpreted as justifying an "exchange in the order of limits"

$$\lim_{n \to \infty} \lim_{x \to c} f_n(x) = \lim_{x \to c} \lim_{n \to \infty} f_n(x).$$

Such exchanges of limits always require some sort of condition for their validity — in this case, the uniform convergence of f_n to f is sufficient, but pointwise convergence is not.

It follows from Theorem 5.16 that if a sequence of continuous functions converges pointwise to a discontinuous function, as in Example 5.3, then the convergence is not uniform. The converse is not true, however, and the pointwise limit of a sequence of continuous functions may be continuous even if the convergence is not uniform, as in Example 5.4.

Definition 3.1 A sequence of functions $f_n(x)$ defined on an set I is said to converge uniformly to f(x) on I if

$$||f_n - f||_I \to 0 \quad as \ n \to \infty.$$

We write this as

$$\lim_{n \to \infty} f_n = f \quad \text{uniformly on } I$$

or as

$$f_n \to f$$
 uniformly on I as $n \to \infty$.

Uniform convergence implies pointwise convergence, however there are sequences which converge pointwise but not uniformly. Indeed we have

$$|f_n(x) - f(x)| \le \sup_{x \in I} |f_n(x) - f(x)| = ||f_n - f||_I,$$

so that

$$f_n \to f$$
 uniformly on I as $n \to \infty$
 $\implies |f_n(x) - f(x)| \to 0$ for each $x \in I$
 $\implies f_n \to f$ pointwise on I .

Example 3.1 $f_n(x) = e^{-nx}$ on [1,3]. We have seen above that $f_n(x)$ converges pointwise to f(x) = 0 for each $x \in [1,3]$. Then we have $|f_n(x) - f(x)| = |f_n(x)|$ and we then have

$$\|f_n - f\| = \sup_{x \in [1,3]} |f_n(x)|$$

=
$$\sup_{x \in [1,3]} |e^{-nx}|$$

=
$$\sup_{x \in [1,3]} e^{-nx}$$

=
$$e^{-n} \to 0 \quad as \ n \to \infty.$$

Thus we have uniform convergence in this case. Note that the last step follows from the observation that e^{-nx} is strictly decreasing for $x \ge 0$ with $n \ge 0$, so that $e^{-n} \ge e^{-nx}$ for all $x \ge 1$.

2017|BATCH

Unit III

Theorem 4.3 Suppose that $\{f_n(x); n = 0, 1, 2, ...\}$ is a sequence of functions on an interval I and satisfying the following conditions:

- (i) f_n(x) is differentiable on I for each n = 0, 1, 2, ...
- (ii) $f_n(x)$ converges pointwise to f(x) on I
- (iii) f'_n(x) is continuous for each n and f'_n → g converges uniformly on I where g(x) is a continuous function on I.

Then the limit function f(x) is differentiable and f'(x) = g(x).

Proof: First note that

$$f_n(x) - f_n(a) = \int_a^x f'_n(t)dt$$

for each $f_n(x)$ and for each choice of $x, a \in I$. Because $f_n(x)$ converges pointwise to f(x)for all $x \in I$, the left-hand side converges to f(x) - f(a) as $n \to \infty$. Also, $f'_n \to g$ uniformly on I so by Theorem 4.2 we have that

$$\int_{a}^{x} f_{n}'(t)dt \to \int_{a}^{x} g(t)dt,$$

and we then find that

$$f(x) - f(a) = \int_{a}^{x} g(t)dt.$$

Now, g(t) is continuous, so that, by the Fundamental Theorem of Calculus,

$$\frac{d}{dx}\int_{a}^{x}g(t)dt = g(x)$$

so that f(x) must be differentiable and f'(x) = g(x).

This result is very useful, as we shall see, in examining the differentiability of functional series.

5 Applications to functional series.

Definition 5.1 A functional series is a series

$$\sum_{k=0}^{\infty} u_k(x)$$

where each term of the series $u_k(x)$ is a function on an interval I.

We can also define **pointwise convergence** for functional series:

Definition 5.2 The functional series

$$\sum_{k=0}^\infty u_k(x)$$

s pointwise convergent for each $x \in I$ if the limit

$$\sum_{k=0}^{\infty} u_k(x) = \lim_{N \to \infty} \sum_{k=0}^{N} u_k(x)$$

xists for each $x \in I$.

Thus, we always define a sequence of partial sums $S_N(x)$ given as

$$S_N(x) = \sum_{k=0}^N u_k(x)$$

o that

$$S_0(x) = u_0(x), \quad S_1(x) = u_0(x) + u_1(x), \quad S_2(x) = u_0(x) + u_1(x) + u_1(x)$$

und if

$$\lim_{N\to\infty}S_N(x)$$

xists for x then we say that the series

$$\sum_{k=0}^{\infty} u_k(x) = \lim_{N \to \infty} S_N(x)$$

onverges at x. It converges pointwise on the interval I if

$$\lim_{N\to\infty}S_N(x)$$

exists for each $x \in I$.

Theorem 5.1 Suppose that the functional series

$$\sum_{k=0}^{\infty} u_k(x)$$

is defined on an interval I and that there is a sequence of positive constants M_k so that

$$|u_k(x)| \le M_k, k = 0, 1, 2, \dots$$

for all $x \in I$. If

$$\sum_{k=0}^{\infty} M_k$$

converges, then

$$\sum_{k=0}^{\infty} u_k(x)$$

converges uniformly on I.

Proof: If the conditions are fulfilled then we immediately have, from the **Comparison Theorems for Positive Series**, that, for each $x \in I$, the series

$$\sum_{k=0}^{\infty} |u_k(x)|$$

is convergent, so that

$$\sum_{k=0}^{\infty} u_k(x)$$

is absolutely convergent, and therefore convergent. This means that

$$\sum_{k=0}^{\infty} u_k(x)$$

is **pointwise convergent on** I, and we denote the limit by S(x). We now show that the partial sums

$$S_N(x) = \sum_{k=0}^N u_k(x)$$

converges uniformly to S(x) on I under the conditions of the theorem. We have

$$S(x) - S_N(x) = \sum_{k=N+1}^{\infty} u_k(x)$$

(all we do is subtract the first N terms from the series). Then it follows that

$$|S(x) - S_N(x)| \le \sum_{k=N+1}^{\infty} |u_k(x)| \le \sum_{k=N+1}^{\infty} M_k$$

for each $x \in I$, since $|u_k(x)| \leq M_k$ for each $x \in I$ according to our assumption. Then

$$\|S - S_N\|_I \le \sum_{k=N+1}^{\infty} M_k.$$

We also know (by assumption) that $\sum_{k=0}^{\infty} M_k$ converges, so we must have that $\sum_{k=N+1}^{\infty} M_k \to 0$ as $N \to \infty$. Consequently,

$$||S - S_N||_I \to 0 \text{ as } N \to \infty,$$

and our result is proved.

Corollary 5.1 If

(i) the functional series

$$S(x) = \sum_{k=0}^{\infty} u_k(x)$$
 converges uniformly on interval I,

(ii) $u_k(x)$ is a continuous function on I for each k = 0, 1, 2, ...,

then S(x) is continuous on I.

Proof: Because a finite sum of continuous functions is again a continuous function, it follows that the partial sums

$$S_N(x) = \sum_{k=0}^N u_k(x)$$

are continuous functions for N = 0, 1, 2, ... Then by Theorem 4.1, we have that $S(x) = \lim_{N\to\infty} S_N(x)$ is a continuous function.

Example 5.1 Take the functional series

$$\sum_{k=1}^{\infty} \frac{\sin kx}{k^2}.$$

We have

$$|u_k(x)| = \left|\frac{\sin kx}{k^2}\right| = \frac{|\sin kx|}{k^2} \le \frac{1}{k^2}$$

since $|\sin t| \leq 1$ for all real t. We know (standard positive series) that

$$\sum_{1}^{\infty} \frac{1}{k^2}$$

converges (series of the form $\sum 1/k^{\alpha}$ converge for $\alpha > 1$ and diverge for $\alpha \leq 1$). Hence, by Weierstrass' Majorant Theorem,

$$\sum_{k=1}^{\infty} \frac{\sin kx}{k^2}$$

converges uniformly for all x, and by Corollary 5.1 this series is a continuous function of x for all $x \in \mathbb{R}$.

Theorem 5.2 If

(i) the functional series

$$\sum_{k=0}^{\infty} u_k(x) \quad converges \ uniformly \ on \ the \ interval \ l$$

(ii) u_k(x) is continuous on I for each k = 0, 1, 2, ...,

then

$$\int_{a}^{x} \left(\sum_{k=0}^{\infty} u_{k}(t) \right) dt = \sum_{k=0}^{\infty} \left(\int_{a}^{x} u_{k}(t) dt \right)$$

for all $a, x \in I$. In other words, if the series of continuous functions converges uniformly on I, then the integral of the sum is the sum of the integrals of the functions, just as in the case of a finite sum.

Proof: Put $S(t) = \sum_{k=0}^{\infty} u_k(t)$ and $S_N(t) = \sum_{k=0}^{N} u_k(t)$, then we have $S_N \to S$ uniformly on I so that

$$\lim_{N \to \infty} \int_{a}^{x} S_{N}(t) dt = \int_{a}^{x} \lim_{N \to \infty} S_{N}(t) dt = \int_{a}^{x} S(t) dt,$$

according to Theorem 4.2. Note that since $S_N(t)$ is a finite sum of functions, we see that

$$\int_{a}^{x} S_{N}(t)dt = \int_{a}^{x} \left(\sum_{k=0}^{N} u_{k}(t)\right) dt$$
$$= \sum_{k=0}^{N} \left(\int_{a}^{x} u_{k}(t)dt\right),$$

and we then find that

$$\int_{a}^{x} \left(\sum_{k=0}^{\infty} u_{k}(t) \right) dt = \sum_{k=0}^{\infty} \left(\int_{a}^{x} u_{k}(t) dt \right).$$

We can also say something about the differentiability of the series $\sum u_k(x)$, using Theorem 4.3 In this case, as in the previous two theorems, we replace $f_n(x)$ by $S_N(t)$ and f(x) by S(t). Thus, we want the following:

- S_N(x) → S(x) pointwise on I
- S'_N(x) → G(x) uniformly on I
- S_N(x) is continuously differentiable for each N

and then we may conclude that S(x) is continuously differentiable with S'(x) = G(x). All we need is to formulate these requirements and result as follows:

Theorem 5.3 Suppose that $\sum_{k=0} u_k(x)$ satisfies the following conditions:

- $\sum_{k=0}^{\infty} u_k(x)$ converges pointwise on I
- $\sum_{k=0}^{\infty} u'_k(x)$ converges uniformly on I
- $u_k(x)$ is continuously differentiable for each k

Then $\sum_{k=0}^{\infty} u_k(x)$ is continuously differentiable and

$$\frac{d}{dx}\left(\sum_{k=0}^{\infty}u_k(x)\right) = \sum_{k=0}^{\infty}u'_k(x).$$

Unit III

Proof: We have that each $S'_N(x)$ is continuous on I and

$$S_N(x) \longrightarrow S(x)$$
 pointwise on I
 $S'_N \longrightarrow G$ uniformly on I .

Then by Theorem 4.3, S(x) is differentiable and S'(x) = G(x) on I. In other words:

$$\frac{d}{dx}\left(\sum_{k=0}^{\infty}u_k(x)\right) = \sum_{k=0}^{\infty}u'_k(x)$$

Definition 6.1 We say that the integral

$$F(x) = \int_a^\infty f(x,y) dy$$

converges uniformly on I if:

(i)
$$F(x) = \int_{a}^{\infty} f(x, y) dy$$
 converges pointwise for each $x \in I$;

(ii) the family of functions F_R defined as

$$F_R(x) = \int_a^R f(x, y) dy$$

converges uniformly to F on I. That is, if

$$||F_R - F||_I \longrightarrow 0 \quad as \ R \to \infty.$$

A test for uniform convergence of integrals is an analogy of the Weierstrass functional series:

Theorem 6.1 (M-test) Suppose

Then

$$F(x) = \int_{a}^{\infty} f(x, y) dy$$

converges uniformly on I.

Proof: We have

$$F_R(x) - F(x) = \int_R^\infty f(x, y) dy$$

from which we obtain

$$|F_R(x) - F(x)| \le \int_R^\infty |f(x, y)| dy$$

$$\le \int_R^\infty M(y) dy,$$

by assumption. Consequently,

$$||F_R - F||_I \le \int_R^\infty M(y) dy \to 0 \text{ as } R \to \infty,$$

because

 $\int_a^\infty M(y) dy \quad \text{converges}$

implies that

$$\int_{R}^{\infty} M(y) dy \longrightarrow 0 \quad \text{as} \ R \to \infty.$$

Thus, $F_R \longrightarrow F$ uniformly on I.

Now we come to proving that if $F_R \to F$ uniformly on an interval I, then F is continuous if each F_R is continuous. Here, the problem is to show that $F_R(x)$ is continuous. We have the following result:

Lemma 7.1 Suppose that f(x) is a real-valued continuous function on the closed, bounded interval [a, b]. Then

$$\sup_{x \in [a,b]} f(x) = \max\{f(x) : x \in [a,b]\}, \quad \inf_{x \in [a,b]} f(x) = \min\{f(x) : x \in [a,b]\}.$$

That is, the supremum of a continuous function over a closed, bounded interval is equal to its largest value over that interval, and the infimum is the least value of the function over the interval.

Proof: Since f(x) is continuous and the interval is closed, then f(x) has a largest value and a least value on the interval: there exist $x_1, x_2 \in [a, b]$ so that $f(x_1) \leq f(x) \leq f(x_2)$ for all $x \in [a, b]$, and we now see that

$$\sup_{x \in [a,b]} f(x) = f(x_2), \quad \inf_{x \in [a,b]} f(x) = f(x_1),$$

and the result is proved.

We sketch the proof and refer to any good book on analysis for further details.

Our task is to prove that for each $x \in [c, d]$ we have

$$F_R(x+h) \longrightarrow F_R(x)$$
 as $h \to 0$.

Then we have

$$|F_R(x+h) - F_R(x)| \le \int_a^R |f(x+h,y) - f(x,y)| dy.$$

Now if f is continuous on $[c, d] \times [a, R]$ it can be shown that for any $\epsilon > 0$ there is a $\delta > 0$ so that

$$|f(x_0, y_0) - f(x_1, y_1)| < \epsilon$$

whenever $\sqrt{(x_0 - x_1)^2 + (y_0 - y_1)^2} < \delta$. That is, whenever the distance between the points (x_0, y_0) and (x_1, y_1) is less than δ . This is called **uniform continuity**. Using this fact, we choose $\epsilon > 0$ (arbitrarily small) and then for each given R we find a $\delta > 0$ so that

$$|f(x+h,y) - f(x,y)| < \frac{\epsilon}{R-a}$$

whenever $|h| < \delta$. From this it follows that

$$|F_R(x+h) - F_R(x)| < \epsilon$$
 whenever $|h| < \delta$.

Note that we have $\epsilon > 0$ arbitrarily small, and for each such choice there is a corresponding δ . From this it follows that

$$|F_R(x+h) - F_R(x)| \longrightarrow 0 \text{ as } h \to 0.$$

Hence $F_R(x)$ is continuous on [c, d], for each choice of R > 0.

7.3 Cauchy's condition for uniform convergence of series

In this section we record, without proof, a result which is of some interest: Cauchy's criterion for uniform convergence of functional series, and we make some comments on some aspects of uniform convergence.

Theorem 7.1 Suppose that $\{u_k(x)\}$ is a sequence of continuous functions defined on an interval I. Then the series

$$\sum_{k=0}^{\infty} u_k(x)$$

is uniformly convergent on I if and only if for each choice of $\epsilon > 0$, however small, there exists a (corresponding) integer N > 0 so that

$$|u_{k+1}(x) + u_{k+2}(x) + \dots + u_m(x)| < \epsilon$$

for all $m > k \ge N$ and for all $x \in I$. In particular, we then have, on putting m = k + 1,

$$|u_{k+1}(x)| < \epsilon$$

for all $k \ge N$ and all $x \in I$.

The proof of this result requires more mathematical machinery than we have at hand, and can be found in any good textbook on Mathematical Analysis.

As an illustration of the usefulness of this result we look at the series expansion of e^x . We have

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots = \sum_{k=0}^{\infty} \frac{x^k}{k!}.$$

This expansion is true for each $x \in \mathbb{R}$, so we have pointwise convergence of the series. However, we do not have uniform convergence on \mathbb{R} . To see this, we apply the last comment in the theorem: we need to find, for a given $\epsilon > 0$, an N > 0 so that for all $x \in \mathbb{R}$ we have

$$|u_{k+1}(x)| = \frac{|x|^{k+1}}{k!} < \epsilon$$

whenever $k \ge N$. However, if we choose any k we may choose x so that

$$\frac{|x|^{k+1}}{k!}$$

is as large as we like, contradicting the requirement for uniform convergence. Hence we do not have uniform convergence on the whole of \mathbb{R} . However, if we only consider $x \in [-a, a]$ for some a > 0 then we can prove uniform convergence of the series on this closed, bounded interval. This can be done using Weierstrass' Majorant Theorem. This phenomenon occurs often, and then we say that the series converges uniformly on closed, bounded intervals or converges on compact sets. Another example of this phenomenon occurs in power series (which are the first kind of functional series taught in elementary calculus courses). For instance, for the geometric series

$$\sum_{k=0}^{\infty} x^k$$

we have absolute convergence for |x| < 1 and divergence for $|x| \ge 1$. For |x| < 1 we have

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} = S(x).$$

The corresponding partial sums are

$$S_N(x) = \sum_{k=0}^N x^k = \frac{1 - x^{N+1}}{1 - x}.$$

The sequence $S_N(x)$ does not converge uniformly to S(x) on the interval] -1, 1[: we have

$$|S_N(x) - S(x)| = \frac{|x|^{N+1}}{1-x}$$

and as $x \to 1_-$ we see that $|x|^{N+1} \to 1$ and $1/(1-x) \to \infty$, so that we may make $|S_N(x) - S(x)|$ as large as we like, and it then follows that $||S_N - S||$ does not exist, so it is impossible for $||S_N - S|| \to 0$ as $N \to \infty$. However, if we consider the series on the closed, bounded interval [-a, a] with a fixed 0 < a < 1, we have

$$|S_N(x) - S(x)| \le \frac{a^{N+1}}{1-a}$$

for all $x \in [-a, a]$, and therefore

$$||S_N - S|| = \sup_{x \in [-a,a]} |S_N(x) - S(x)| \le \frac{a^{N+1}}{1-a} \to 0 \text{ as } N \to \infty,$$

because 0 < a < 1 gives $a^{N+1} \to \infty$ when $N \to \infty$. So we have uniform convergence of the series on compact subsets of] - 1, 1[.

POSSIBLE QUESTIONS

UNIT-III PART-B ($5 \times 6 = 30$)

- 1. Show that the sequence of functions {fn} converges uniformly on E iff $\forall \in > 0$, \exists an integer N such that for every m, $n \ge N$; $|f_n(x) f_m(x)| \le \epsilon$.
- 2. Prove that limit of sequences of functions in $R(\propto)$ which converge uniformly on[a,b] is also in $R(\propto)$.
- 3. State and prove Weistrass M-test for Uniform convergence of series of functions.
- 4. Let series $\sum f_n(x) = f(x)$ converges uniformly on S be such that each f_n is continuous

at a point x_0 of S then f is also continuous at x_0 .

- 5. State and prove Cauchy criterion for convergence of sequences of functions.
- 6. If $\lim_{n \to \infty} f_n = f$ and $\lim_{n \to \infty} g_n = g$ on [a,b]; define $h(x) = \int_a^x f(t)g(t)dt$ and

 $h_n(x) = \int_a^b f_n(t) g_n(t) dt$ for each $x \in [a,b]$ then prove that $h_n \to h$ uniformly on [a,b].

7. Let the sequence { f_n } is a real valued function such that $f_n \in R(\alpha)$ on [a,b] for each $n \in$

N. If $f_n \rightarrow f$ uniformly on [a, b], then $f \in R(\alpha)$ on [a,b]".

PART- C(1 × 10 =10)

- 1. Let { f n } br sequence of differentiable functions on[a,b]. If { f n } converges to f uniuformly, then show that $f'(x) = \lim_{n \to \infty} f'_n(x)$.
- 2. State and prove Arzela Theorem.
- 3. Let the series $\sum f_n(x)$ be such that $\{f_n\}$ is uniformly convergent on S. Suppose $\{g_n\}$ be a sequence of real valued function such that $g_{(n+1)} \leq g_n(x)$ and uniformly bounded on S. Then show that the series $\sum f_n(x) g_n(x)$ converges uniformly on S.
- 4. Let α be of bounded variation on [a,b] and each term of the series Σf_n is Reimann Steiltjes integrable with respect to α on [a,b] and if $\sum_{n=1}^{\infty} f_n(x) = f(x)$ ($a \le x \le b$) series converges. uniformly on [a,b], then show that $f \in R(\alpha)$ and

$$\int_{a}^{b} f d \propto = \sum_{n=1}^{\infty} \int_{a}^{b} f_{n} d \propto$$

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatere -641 0121 DEPARTMENT OF MATHEMATICS Multiple Choice Queetions (fach Question Garries One Mark) Subject Name: REAL ANALYSIS Subject Code: 17MMP102

UNIT III	OPTION1	OPTION2	OPTION3	OPTION4	ANSWERS
· Comment of functions, in said to be under the second set of T is see		it	it contains some limit	it anotaine infinite limit a sinte	is another all of its limit anists
A Sequence of functions is said to boundadly convergent on T is seq	point wise convergent	it contains no limit points	points countable collection of	it contains infinite limit points	it contains all of its limit points
set Fis closed if	it contains all of its limit points	uncountable collection of disjoint	disioint	uncountable collection of disjoint	countable collection of disjoint
very open set of real numbers is the union of	countable collection of disjoint	open intervals	closed intervals	closed intervals	open intervals
omposite number n is	a prime number and n >1	Uncountable	infinite	finite	open menus
he union of a finite or collection of countable sets is	countable	a does not belongs to S	a is not lower bound of S	a is not upper bound of S	
n element a is an minimal element of set S.then	a belongs to S	n <x< td=""><td>n=x</td><td>n ≠ x</td><td></td></x<>	n=x	n ≠ x	
or every real number x there is a positive integer n such that	n>x	uncountable subset	proper subset		countable subset
very infinite set has a	countable subset	finite	countable	uncountable	finite
very infinite set has a Set of real numbers is bounded above is Sup S	infinite	minimal element only	countable maximal and minimal	no maximal no minimal	minimal element only
he half interval [0,1) have	maximal element only	finite	countable	uncountable	infinite
Set of real numbers is unbounded above is Sup S	infinite	closed	semi open	semi closed	closed
he arbitrary intersection of closed set is	open	a singleton set	a finite set	not a well defined set	not a well defined set
he set of intelligent student in a class is	a null set	sum of prime numbers	product of prime numbers	prime numbers or a product of prime numbers	prime numbers or a product of prime number
very integer n>1 is	prime numbers	non ordered set	set of irrational numbers		ordered set
	ordered set	unbounded below	unbounded above	no maximal element	bounded above
he set of integer is	ordered set bounded above	unbounded below	unbounded aDOVe	no maximal element	bounded above
he closed interval S= [0,1] is			1 2		
S = [0,1) the least upper bound for S is		0 prime number	not a point of closure	non prime number	a point of closure to S
S is a set of real numbers which is bounded below then inf S is	a point of closure to S	closed set	uncountable set	countable set	closed set
finite set is	open set	inf E>sup E	inf E=sup E	inf E ≠ sup E	
E is a nonemptyset then	inf E< sup E		↔ (negative)	no infimum	↔ (negative)
R is a extended real number system then inf R is		0	1 (2	
		closure of E contains non empty	closure of E contains	closure of E contains no non empty	
he set of negative integers having least upper bound is		1 opensets	empty opensets	closedsets	closure of E contains no non empty openset
he set E is nowhere dense .if	closure of E contains no non empty opensets	upper bound	maximal element	minimal element	lower bound
he set of natural numbers has	lower bound	upper bound		1 no maximal element	lower board
	lower bound				φ
et S =[0,1) the maximal elementof S is	φ	its complement is closed set	its complement is null set		its complement is closed set
A is a non-empty open set then	its complement is open set	closed set	empty set	unbounded set	open set
e intersection finite collection of open set is	open set	finite set	unbounded set		open set
he set of real number R is	open set	bounded from below	bounded from above		unbounded
he set of real numbers is	unbounded	closed set	empty set	non empty set	closed set
he intersection of any collection of closed set is	open set	limit point	infinite limit point	finite limit point	limit point
n infinite set must possess a	does not have a limit point	open intervals	open		open
he empty set is	imperfect	open set	uncountable set	countable set	closed
ingle ton set { x } is	closed	closed	{ 0}	φ	open set
he union of any or collection of open sets is	φ	open	semi open	either open or closed	closed
he derived set of a set is	closed	limit point	largest limit point	no limit point	smallest limit point
very bounded infinite set has	smallest limit point	countable	finite	infinite	countable
he set of all integers is	uncountable	countable	finite	infinite	countable
he cartesian product of two countable set is	uncountable	E " is null	E " is open	E " is closed interval	E " is closed
et E * is the set of point of closure of E	E " is closed	semi open	closed intervals	open intervals	open set
		bounded above by 0 & minimal	bounded below by 1 & no		l ·
lull set	open set	element is 0	maximal element	element is 1	bounded above by 1 & maximal element is 1
	bounded above by 1 & maximal		1	1	
S=(0, 1] is	element is 1	A - B is non empty set	A - B is closed set	A - B is empty set	A - B is open set
			may not always be a closed		
A is open set and B is closed set then	A - B is open set	may be closed set	set	open set	may not always be a closed set
he union of an arbitrary family of closed set	closed set	equal sequence	range set of a sequence	null sequence	range set of a sequence
he set of all distict element of a sequence is called	constant coguance	bounded below	bounded	neither bounded above nor bounded below	neither bounded above nor bounded below
	constant sequence				
(-1) ⁿ n >	bounded above	oscillates finitely	diverges	converges or oscillates finitely	converges or oscillates finitely
bounded sequence	converges	one limit	many limit	no limit point	more than one limit
			need not be a member of		
sequence can not converge to	more than one limit	must a member of the sequence	the sequence	not a member of the sequence	need not be a member of the sequence
mit point of a sequence	member of the sequence	no limit point	a limit point	more than two limit point	a limit point
	many limit point				

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore –641 021 DEPARTMENT OF MATHEMATICS

Subject : QUANTITATIVE METHODS FOR MANAGEMENT	SEMESTER: I	LTPC
SUBJECT CODE: 17MBAP105	CLASS: I MBA	4104

Unit IV

Transportation problem - Mathematical formulation of Transportation problem - Initial Basic Feasible solution - Optimum solution for non degeneracy and degeneracy models - Unbalanced Transportation problems and Maximization case in Transportation problem. The Assignment problem - Mathematical formulation of Assignment problem – Hungarian method – Unbalanced Assignment problem - Maximization case in Assignment problem.

Text Books:

 J.K Sharma, "Operations Research- Theory and Applications", MacMillan Publishers India Pvt Ltd, 2013.

References:

- 1. Anand Sharma, "Operations Research", Himalaya Publishing House, 2004.
- 2. Franks S.Buknick Mcleavey, Richard Mojena, "Principles of Operations Research for Management", AITBS publishers, 2002.
- 3. Kanthi Swarup, P.K. Gupta, Man Mohan. "Operations Research", Sultan Chand & Sons, New Delhi, 2015.
- 4.V.K.Kapoor, "Operation Research Techniques for Management", Sultan Chand & Sons,

TRANSPORTATION AND ASSIGNMENT PROBLEMS

Transportation Problems:

Introduction

Transportation deals with the transportation of a commodity (single product) from 'm' sources (origins or supply or capacity centers) to 'n' destinations (sinks or demand or requirement centers). It is assumed that

- (i) Level of supply at each source and the amount of demand at each destination and
- (ii) The unit transportation cost of transportation is linear.

It is also assumed that the cost of transportation is linear.

The objective is to determine the amount to be shifted from each sources to each destination such that the total transportation cost is minimum.

Note: The transportation model also can be modified to Account for multiple commodities.

1. Mathematical Formulation of a Transportation problem:

Let us assume that there are m sources and n destinations.

Let a_i be the supply (capacity) at source i, b_j be the demand at destination j, c_{ij} be the unit transportation cost from source *i* to destination j and x_{ij} be the number of units shifted from sources *i* to destination *j*.

Then the transportation problems can be expressed mathematically as

Minimize $Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$ Subject to the constraints

 $\sum_{j=1}^{n} x_{ij} = a_i, \qquad i = 1, 2, 3, \dots, m$ $\sum_{i=1}^{m} x_{ij} = b_j, \qquad j = 1, 2, 3, \dots, N.$

And $x_{ij} \ge 0$, for all *i* and *j*. *Note 1:* The two sets of constraints will be consistent if $\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$

(total supply) (total demand)

Which is the necessary and sufficient condition for a transportation problems to have a feasible solution. Problems satisfying this condition are balanced transportation problems.

Note 2: If $\sum a_i \neq \sum b_j$

Note 3: For any transportation problems, the coefficient of all x_{ij} in the constraints are unity.

UNIT IV

Note 4: The objective function and the constraints being all linear, the transportation problems is a special class of linear programming problem. Therefore it can be solved by simplex method. But the number of variables being large, there will be too many calculations. So we can look for some other technique which would be simpler that the usual simplex method.

Standard transportation table:

Transportation problem is explicitly represented by the following transportation table.

		D_1	D_1	D_1	 D_1	 D_1	supply
	S_1	<i>C</i> ₁₁	C ₁₂	C ₁₃	<i>C</i> _{1<i>j</i>}	<i>C</i> _{1<i>n</i>}	<i>a</i> ₁
Source	<i>S</i> ₁	<i>C</i> ₂₁	<i>C</i> ₂₂	C ₂₃	C _{2j}	<i>C</i> _{2<i>n</i>}	<i>a</i> ₂
							•
	<i>S</i> ₁	<i>C</i> _{<i>i</i>1}	<i>C</i> _{<i>i</i>2}		C _{ij}	C _{in}	•
	S_1	<i>C</i> _{<i>m</i>1}	<i>C</i> _{<i>m</i>2}		C _{mj}	C _{mn}	a_n
Demand		b_1	<i>b</i> ₂	<i>b</i> ₃	 	 b_n	$\sum a_i = \sum b_j$

Destination

The *mn* squares are called **cells.** The unit transportation cost c_{ij} from the ith source to the jth destination is displayed in the **upper left side of the (i,j)th cell.** Any feasible solution us shown in the table by entering the value of x_{ij} in the center of the (i,j)th cell. The various a's and b's are called **rim requirements.** The feasibility of a solution can be verified by summing the values if x_{ij} along the rows and down the columns.

Definition 1: A set of non-negative values x_{ij} , i=1,2,...,m; j=1,2,...,n. that satisfies the constraints (rim conditions and also the non-negativity restrictions) is called a **feasible solution** to the transportation problems.

Note: A balanced transportation problems will always have a feasible solution.

Definition 2: A feasible solution to a $(m \times n)$ transportation problems that contains no more than m + n-1 non-negative allocations is called a **basic feasible solution** (BFS) to the transportation problem.

Definition 3: A basic feasible solution to a $(m \times n)$ transportation problem is said to be a **non-degenerate basic feasible solution** if it contains exactly m + n-1 non-negative allocations in independent positions.

Definition 4: A basic feasible solution that contains less than m + n - 1 non-negative allocations is said to be a degenerate basic feasible solution.

Definition 5: A feasible solution (not necessarily basic) is said to be an **optimal** solution if it minimize is atmost m + n - 1.

Note: The number of non-basic variables in an m x n balanced transportation problem is almost m + n - 1.

Note: The number of non-basic variables in an m x n balanced transportation problem is atleast mn - (m + n - 1).

II. Methods for finding initial basic feasible solution

The transportation problems has a solution is and only if the problem is balanced. Therefore before starting to find the initial basic feasible solution, check whether the given transportation problem is balanced. If not once has to balance the transportation problems first. The way to doing this is discussed in section 7.4 page 7.40. In this section all the given transportation problems are balanced.

Method I: North west corner rule:

Step I: The first assignment is made in the cell occupying the upper left-hand (north-west) corner of the transportation table. The maximum possible amount is allocated there. That is $x_{11} = \min \{a_1, b1\}$.

Case (i): If min $\{a_1, b_1\} = a_1$, then put $x_{11} = a_1$, decrease b_1 by a_1 and move vertically to the 2^{nd} row (i.e.,) to the cell (2, 1) cross out the first row.

Case (ii): If min $\{a_1, b_1\} = b_1$, then put $x_{11}=b_1$, decrease a_1 by b_1 and move horizontally right (i.e.,) to the cell (2, 1) cross out the first column.

Case (iii): If min $\{a_1, b_1\} = a_1 = b_1$, the put $x_{11} = a_1 = b_1$ and move diagonally to the cell (2, 2) cross out the first row and the first column.

Step 2: Repeat the procedure until all the rim requirements are satisfied.

Method 2: Lest cost method (or) Matrix minima method (or) Lowest cost entry

method:

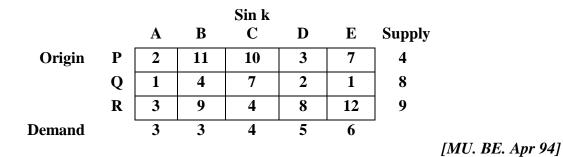
Step 1: Identify the cell with smallest cost and allocate $x_{ij} = Min \{a_i, b_j\}$

Case (i): If min $\{a_i, b_j\} = a_i$, then put $x_{ij} = a_j$, cross out the ith row and decrease b_j by a_i , go to step(2).

Case (ii): If min $\{a_i,b_j\}=b_j$, then put $x_{ij}=b_j$, cross out the jth column and decrease a_j by b_j , go to step(2).

Case (iii): If min $\{a_i, b_j\}=a_i=b_j$, then put $x_{ij}=a_i=b_j$, cross out either ith row and jth column but not both, go to step(2).

Step 2: Repeat step (1) for the resulting reduced transportation table until all the rim requirements are satisfied.


Method 3: Vogel's approximation method (VAM) (or) Unit cost penalty method:

Step 1: Find the difference (penalty) between the smallest and next smallest costs in each row (column) and write them in brackets against the corresponding row (column).

Step 2: Identify the row (or) column with large penalty. If a tie occurs, break the tie arbitrarily. Choose the sell with smallest cost in that selected row or column and allocate as much as possible to this cell and cross out the satisfied row or column and go to step (3).

Step 3: Again compute the column and row penalties for the reduced transportation table and then go to step (2). Repeat the procedure until all the rim requirements are satisfied.

Example 1: Determine basic feasible solution to the following transportation problems using North West Corner Rule:

Solution:

Since $a_i = b_j = 21$, the given problem is balanced. \therefore There exists a feasible solution to the transportation problem.

2 3	11	10	3	7	4
1	4	7	2	1	8
3	9	4	8	12	9

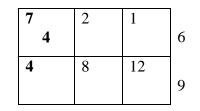
3 3 4 5 6

Following North West Corner rule, the first allocation is made in the cell(1,1)

Here $x_{11} = \min \{a_1, b_1\} = \min \{4,3\} = 3$

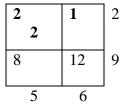
Allocate 3 to the cell(1,1) and decrease 4 by 3 i.e., 4-3=1

As the first column is satisfied, we cross out the first column and the resulting reduced Transportation table is

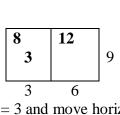

11	10	3	7	1
1				
4	7	2	1	8
9	4	8	12	9
3	4	5	6	

Here the North West Corner cell is (1,2).

So allocate $x_{11} = \min \{1, 3\} = 1$ to the cell (1,2) and move vertically to cell (2, 2). The resulting transportation table is


4 2	7	2	1	8
9	4	8	12	9
2	4	5	6	

Allocate $x_{22} = \min \{8, 2\} = 2$ to the cell (2, 2) and move horizontally to cell (2, 3). The resulting transportation table is



4 5 6

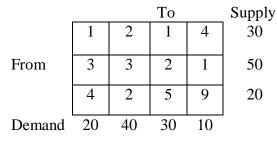
Allocate $x_{23} = \min \{6, 4\} = 4$ and move horizontally to cell (2, 4). The resulting reduced transportation table is

Allocate $x_{24} = \min \{2, 5\} = 2$ and move vertically to cell (3, 4). The resulting reduced transportation table is

Allocate $x_{34} = \min \{9, 3\} = 3$ and move horizontally to cell (3, 5). which is

Allocate $x_{35} = \min \{6, 6\} = 6$

Finally the initial basic feasible solution is as shown in the following table.


2	11	10	3	7
3	1			
1	4	7	2	1
		4	2	
	2	4	2	
3	9	4	8	12

From this table we see that the number of positive independent allocations is equal to m + n - 1 = 3 + 5 - 1 = 7. This ensures that the solution is non degenerate basic feasible.

 $\therefore \text{The initial transportation} = \text{Rs. } 2 \times 3 + 11 \times 1 + 4 \times 2 + 7 \times 4 + 2 \times 2 + 8 \times 3$ $\text{cost} + 12 \times 6$ = Rs. 153/-

Example 2:

Find the initial basic feasible solution for the following transportation problem by Least Cost Method.

[MU. BE. Apr 95, BE. Nov 96]

Solution:

Since $\sum a_i = \sum b_j = 100$, the given TPP is balanced. There exists a feasible solution to the transportation problem.

1	2	1	4]
20				30
3	3	2	1	50
4	2	5	9	20
20	40	30	10	J

By least cost method, min $c_{ij} = c_{11} = c_{13} = c_{24} = 1$

Since more than one cell having the same minimum c_{ij} , break the tie.

Let us choose the cell (1,1) and allocate $x_{11} = \min \{a_1, b_1\} = \min \{30, 20\} = 20$ and cross out the satisfied column and decrease 30 by 20.

The resulting reduced transportation table is

2	1	4]
	10		10 50
3	2	1	50

ſ	2	5	9	20
L	40	30	10	

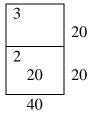
Here min $c_{ij} = c_{13} = c_{24} = 1$. Choose the cell (1,3) and allocate $x_{13} = \min \{a_1, b_3\} = \min \{10,30\} = 10$ and cross out the satisfied row.

The resulting reduced transportation table is

3	2	1	
		10	50 20
2	5	9	20
40	20	10	
1			

Here min $c_{ij} = c_{24} = 1$

: Allocate $x_{24} = \min \{a_2, b_4\} = \min (50, 10) = 10$ and cross out the satisfied column.


The resulting transportation is

3	2	
	20	40
2	5	20
40	20	-

Here $c_{ij} = c_{23} = c_{32} = 2$. Choose the cell (2,3) and allocate $x_{23} = \min \{a_2, b_3\} =$

min (40,20) = 10 and cross out the satisfied column.

The resulting reduced transportation table is

Here min = $c_{ij} = c_{32} = 2$. Choose the cell (3,2) and allocate $x_{32} = \min \{a_3, b_2\} =$

min (20,40) = 20 and cross out the satisfied row.

The resulting reduced transportation table is

Finally the initial basic feasible solution is as shown in the following table.

1	2	1	4
20		10	
3	3	2	1
	20	20	10
4	2	5	9
	20		

From this table we see that the number of positive independent allocations is equal to

m + n - 1 = 3 + 4 - 1 = 6. This ensures that the solution is non degenerate basic feasible.

: The initial transportation = Rs. $1 \times 20 + 1 \times 10 + 3 \times 20 + 2 \times 20$

Cost
$$1 \ge 10 + 2 \ge 20$$

= Rs. 20 + 10 + 60 + 40 + 10 + 40
= Rs. 180/-

Example 3:

Find the initial basic feasible solution for the following transportation problem by VAM.

		D_1	D_1	D_1	D_1	Availability
	S_1	11	13	17	14	250
Origin	<i>S</i> ₂	16	18	14	10	300
	S_3	21	24	13	10	400
Requiren	nents	200	225	275	250]

Distribution centres

Solution:

Since $\sum a_i = \sum b_j = 100$, the given is balanced. \therefore There exists a feasible solution to this problem.

11 200	13	17	14	250	(2)
16	18	14	10	300	(4)
21	24	13	10	400	(3)
200	225	275	250		

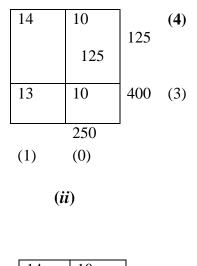
(5) (5) (1) (0)

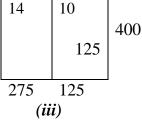
First let us find the difference (penalty) between the smallest and next smallest costs in each row and column and write them in brackets against the respective rows and columns.

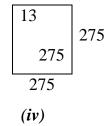
The largest of these differences is (5) and is associated with the first two columns of the transportation table. We choose the first column arbitrarily.

In this selected column, the cell (1,1) has the minimum unit transportation cost $c_{11} = 11$.

: Allocate $x_{11} = \min (250,200) = 200$ to this cell (1,1) and decrease 250 by 200 and cross out the satisfied column.


The resulting reduced transportation table is


	13 50	17	14	50	(1)
	18	14	10	300	(4)
	24	13	10	400	(3)
ļ	225 (5)	275 (1)	250 (0)	I	


The row and column differences are now computed for this reduced transportation table. The largest of these is (5) which is associated with the second column. Since $c_{12} = 13$ is the minimum cost, we allocate $x_{12} = \min (50,225) = 50$ to the cell (1,2) and decrease 225 by 50 and cross out the satisfied row.

Continuing in this manner, the subsequent reduced transportation tables and the differences for the surviving rows and columns are shown below:

18	14	10	300	(4)
175				
24	13	10	400	(3)
175	275	250		
(6)	(1)	(0)		
	<i>(i)</i>			

Finally the initial basic feasible solution is as shown in the following table.

11		13		17		14	
	200		50				
16		18		14		10	
			175				125
21		24		13		10	
					275		125

From this table we see that the number of positive independent allocation is equal to

m + n - 1 = 3 + 4 - 1 = 6. This ensures that the solution is non degenerate basic feasible.

: The initial transportation = Rs. $11 \ge 200 + 13 \ge 50 + 18 \ge 175 \pm 175 = 18 \ge 175 \pm 175 \pm 175 = 18 \ge 175 \pm 175 \pm 175 \pm 175 = 18 \ge 175 \pm 175$

Cost =
$$+10 \times 125 + 13 \times 275 + 10 \times 125$$

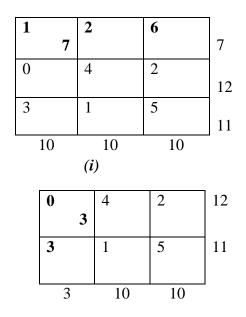
= Rs. 12075/-

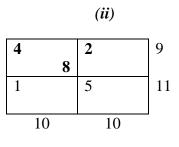
Example 4:

Find the starting solution of the following transportation model

1	2	6	7
0	4	2	12
3	1	5	11
10	10	10	1

Using (i). North West Corner rule


(ii). Least Cost method


(iii). Vogel's approximation method.

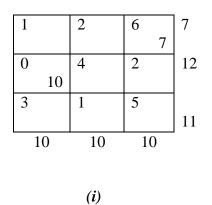
Solution:

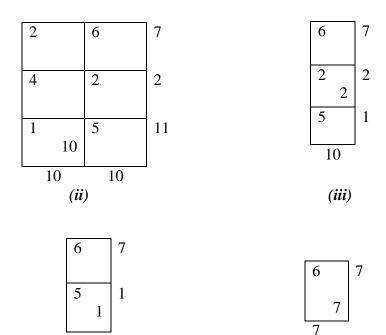
Since $\sum a_i = \sum b_j = 100$, the given Transportation problem is balanced. \therefore There exists a basic feasible solution to this problem.

(i). North West Corner rule: Using this method, the allocation are shown in the tables below:

(iii)

1 1	5	11	5 10	10
1	10		10	J


(iv) (v) The starting solution is as shown in the following table


1	7	2		6	
0	,	4		2	
	3		9		
3		1		5	
			1		10

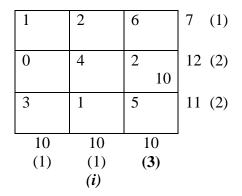
: The initial transportation cost = Rs. $1 \times 7 + 0 \times 3 + 4 \times 9 + 1 \times 1 + 5 \times 10$

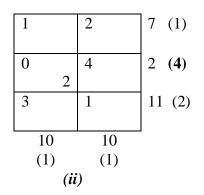
= Rs. 94/-

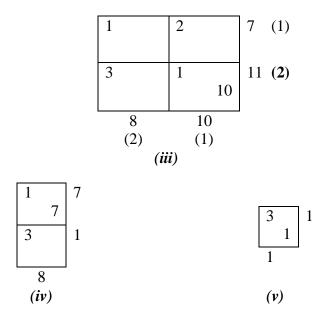
(ii). Least Cost method: Using this method, the allocation are as shown in the table below:

(v)

The starting solution is as shown in the following table:


8 (iv)


1		2		6	7
0	10	4		2	2
3		1	10	5	1


: The initial transportation cost = Rs. $6 \times 7 + 0 \times 10 + 2 \times 2 + 1 \times 10 + 5 \times 1$

$$=$$
 Rs. 61/-

(iii). Vogel's approximation Method: Using this method, the allocations are shown in the table below:

The starting solution is as shown in the following table:

1		2		6	
	7				
0		4		2	
	2				10
3		1		5	
	1		10		

: The initial transportation cost = Rs.1 x 7 + 0 x 2 + 2 x 10 + 3 x 1 + 1 x 10

$$=$$
 Rs. 40/-

Note: For the above problem, the number of positive allocation in independent positions is (m + n - 1) (i.e., m + n - 1 = 3 + 3 - 1 = 5). This ensures that the given problem has a non-degenerate basic feasible solution by using all the three methods. This need not be the case in all the problems.

Transportation Algorithm (or) MODI Method (modified distribution method) (Test for optimal solution).

Step 1: Find the initial basic feasible solution of the given problems by Northwest Corner rule (or) Least Cost method or VAM.

Step 2: Check the number of occupied cells. If these are less than m + n - 1, there exists degeneracy and we introduce a very small positive assignment of $\in (\geq 0)$ in suitable independent positions, so that the number of occupied cells is exactly equal to m + n - 1.

Step 3: Find the set of values u_i , v_j (i=1,2,3,...m; j=1,2,3...n) from the relation $c_{ij} = u_i + v_j$ for each occupied cell (i,j), by starting initially with $u_i = 0$ or $v_j = 0$ preferably for which the corresponding row or column has maximum number of individual allocations.

Step 4: Find $u_i + v_j$ for each unoccupied cell (i,j) and enter at the upper right corner of the corresponding cell (i,j).

Step 5: Find the cell evaluations $d_{ij} = c_{ij} - (u_i + v_j) (d_{ij} = upper left - upper right)$ for each unoccupied cell (i,j) and enter at the lower right corner of the corresponding cell (i,j).

Step 6: Examine the cell evolutions d_{ij} for all unoccupied cells (i,j) and conclude that

- (i) If all $d_{ij}>0$, then the solution under the test is optimal and unique.
- (ii) If all $d_{ij}>0$, with atleast one $d_{ij}=0$, then the solution under the test is optimal and an alternative optimal solution exists.
- (iii) If at least one $d_{ij} < 0$, then the solution is not optimal. Go to the next step.

Step 7: Form a new B>F>S by giving maximum allocation to the cell for which d_{ij} is most negative by making an occupied cell empty. For that draw a closed path consisting of horizontal and vertical lines beginning and ending at the cell for which d_{ij} is most negative and having its **other corners at some allocated cells.** Along this closed loop indicate $+\theta$ and $-\theta$ alternatively at the corners. Choose minimum of the allocations from the cells having $-\theta$. Add this minimum allocation to the cells with $+\theta$ and subtract this minimum allocation from the allocation to the cells with $-\theta$.

Step 8: Repeat steps (2) to (6) to test the optimality of this new basic feasible solution.

Step 9: Continue the above procedure till an optimum solution is attained.

Note: The Vogels approximation method (VAM) takes into account not only the least cost c_{ij} but also the costs that just exceed the least cost c_{ij} and therefore yields better initial solution than obtained from other methods in general. This can be justified by the above example (4). So to find the initial solution, give preference to VAM unless otherwise specified.

Example 1: Solve the transportation problem:

	1	2	3	4	Supply
Ι	21	16	25	13	11
II	17	18	14	23	13
III	32	27	18	41	19
Demand	6	10	12	15	_

Solution: Since $\sum a_i = \sum b_j = 43$, the given transportation problem is balanced. \therefore There exists a basic feasible solution to this problem.

By Vogel's approximation method, the initial solution is an shown in the following table.

	21		16		25		13		(3)	-	-	-
								11				
ľ	17		18		14		23		(3)	(3)	(3)	(3)
		6		3				4				
	32		27		18		41		(9)	(9)	(9)	(9)
	52		27	7	10	12			(\mathcal{I})	(\mathcal{I})	())	(\mathcal{I})
				-								

		(4) (15) (15)		(2) (9) (9) (9)		(4) (4) (4) (4)		(10) (18)
That is	21		16		25		13	11
	17		18		14		23	
		6		3				4
	32		27	7	18	12	41	

From this table, we see that the number of non-negative independent allocations is (m + n - 1) = (3+4-1) = 6. Hence the solution is non-degenerate basic feasible.

... The initial transportation cost.

= Rs. 13 x 11 + 17 x 6 + 18 x 3 + 23 x 4 + 27 x 7 + 18 x 12

= Rs. 796/-

To find the optimal solution

Consider the above transportation table. Since m+n-1=6, we apply MODI method,

Now we determine a set of values u_i and v_j for each occupied cell (i,j) by using the

relation $c_{ij} = u_i + v_j$. As the 2nd row contains maximum number of allocations, we choose $u_2=0$.

Therefore

 $\begin{array}{l} C_{21}=u_2+v_1 \Longrightarrow 17=0+v_1 \Longrightarrow v_1=17\\ C_{22}=u_2+v_2 \Longrightarrow 18=0+v_2 \implies v_2=18\\ C_{24}=u_2+v_4 \Longrightarrow 23=0+v_4 \implies v_4=23\\ C_{14}=u_1+v_4 \Longrightarrow 13=u_1+23 \Longrightarrow u_1=-10\\ C_{32}=u_3+v_2 \Longrightarrow 27=u_3+18 \Longrightarrow u_3=9\\ C_{33}=u_3+v_3 \Longrightarrow 18=9+v_3 \implies v_3=9 \end{array}$

Thus we have the following transportation table:

21	16	25	13		$u_1 = -10$
				11	

17		18		14		23		$u_2 = 0$
	6		3				4	
32		27		18		41		$u_3 = 9$
			7		12			
$v_1 = 17$	7	v ₂ =	18	v ₃ =	9	$v_4 = 23$	3	

Now we find $u_i + v_j$ for each unoccupied cell (i,j) and enter at the upper right corner of the corresponding unoccupied cell(i,j).

Then we find the cell evalutions $d_{ij} = c_{ij} - (u_i + v_j)$ (ie., upper left corner – upper right corner) for each unoccupied cell (i,j) and enter at the lower right corner of the corresponding unoccupied cell (i,j).

21	7	16	8	25	-1	13		
								$u_1 = -10$
	14		8		26		11	
17		18		14	9	23		
								$u_2 = 0$
	6		3		5		4	
32	26	27		18		41	32	
								$u_3 = 9$
	6		7		12		9	-
$\mathbf{v}_1 =$	17	$v_2 =$	18	v ₃ =	: 9	V ₄ =	= 23	

Since all $d_{ij}>0$, with $d_{32}=0$, the current solution is optimal and unique.

: The optimum allocation schedule is given by $x_{14} = 11$, $x_{21} = 6$, $x_{22} = 3$, $x_{24} = 4$, $x_{32} = 7$,

 $x_{33} = 12$, and the optimum (minimum) transportation cost

= Rs. 13x 11 + 17 x 6 + 18 x 3 + 23 x 4 + 27 x 7 + 18 x 12

= Rs. 796/-

Example 2:

Obtain on optimum has feasible solution to the following transportation problem:

		То		Available
	7	3	2	2
From	2	1	3	3
	3	4	6	5
Demand	4	1	5	10

Solution:

Since $\sum a_i = \sum b_j = 43$, the given transportation problem is balanced. \therefore There exists a basic feasible solution to this problem.

By Vogel's approximation method, the initial solution is as shown in the following table:

7	3	2	(1)	(5)
		2		
2	1	3	(1)	(1) (1)
	1	2		
3	4	6	(1)	(3) (3)
4		1		
	1		1	
(1)	(2)	(1)		
(1)		(1)		
(1)		(3)		
7	3	2]	

That is

7		3		2		
					2	
2		1		3		
			1		2	
3		4		6		
	4				1	

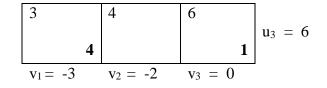
From this table we see that the number of non-negative allocation is

m + n - 1 = (3 + 3 - 1) = 5.

Hence the solution is non-degenerate basic feasible

: The initial transportation cost = Rs. $2 \times 2 + 1 \times 1 + 3 \times 2 + 3 \times 4 + 6 \times 1$

= Rs. 29/-


For optimality: since the number of non – negative independent allocation is m + n - 1, we apply MODI method.

Since the third column contains maximum number of allocations, we choose $v_3 = 0$.

Now we determine a set of values u_i and v_j by using the occupied cells and the relation $c_{ij} = u_i + v_j. \label{eq:constraint}$

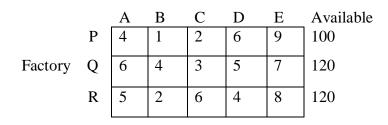
That is

7	-1	3	0	2		
					2	$u_1 = 2$
2		1		3		
			1		2	$u_2 = 3$
			T		2	

Now we find $u_i + v_j$ for each unoccupied cell (i, j) and enter at the corresponding unoccupied cell (I,j).

Then we find the cell evaluations $d_{ij} = c_{ij} - (u_i + v_j)$ for each unoccupied cell (i, j) and enter at the lower right corner of the corresponding unoccupied cell (i, j).

Thus we get the following table


7	-1	3	0	2		
	8		3		2	$u_1 = 2$
2	0	1		3		2
	2		1		2	$u_2 = 3$
3		4	4	6		
	4		0		1	$u_3 = 6$
$v_1 =$	-3	$v_2 = -2$		$v_3 = 0$		

Since all $d_{ij}>0$, with $d_{32}=0$, the current solution is optimal and there exists an alternative optimal solution.

: The optimum allocation schedule is given by $x_{13} = 2$, $x_{32} = 1$, $x_{23} = 2$, $x_{31} = 4$, $x_{33} = 1$, and the optimum (minimum) transportation cost

$$= Rs.2x2+1x1+3x2+3x4+6x1 = Rs.29/-$$

Example 3: Find the optimal transportation cost of the following matrix using least cost method for finding the critical solution.

Demand

40	50	70	90	90

Solution:

Since $\sum a_i = \sum b_j = 340$, the given transportation problem is balanced... There exists a basic feasible solution to this problem.

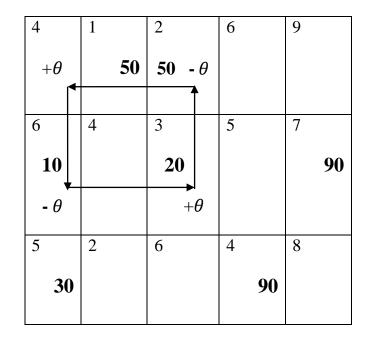
By using Least cost method, the initial solution is an shown in the following table:

4	1	2	6	9
	50	50		
6	4	3	5	7
10		20		90
5	2	6	4	8
30			90	

 $\therefore \text{ The initial transportation cost} = \text{Rs. } 1 \times 50 + 2 \times 50 + 6 \times 10 + 3 \times 20 + 7 \times 90$

 $+5 \times 30 + 4 \times 90$

= Rs. 1410/-


For optimality: Since the number of non – negative independent allocations is (m + n - 1), we apply MODI method:

4	5	1		2		6	4	9	6	
	-1		50		50		2		3	$u_1 = -1$
6		4	2	3		5	5	7		0
	10		2		20		0		90	$u_2 = 0$
5		2	1	6	2	4		8	6	
	30		1		4		90		2	$u_3 = -1$

$$v_1 = 6$$
 $v_2 = 2$ $v_3 = 3$ $v_4 = 5$ $v_5 = 7$

Since $d_{11} = -1 < 0$, the current solution is not optimal.

Now let us form a new basic feasible solution by giving maximum allocation to the cell (i,j) for which d_{ij} is most negative by making an occupied cell empty. Here the cell (1,1) having the negative value d_{11} =-1. We draw a closed loop consisting of horizontal and vertical lines beginning and ending at this cell (1,1) and having its other corners at some occupied cells. Along this closed loop indicate + θ and + θ alternatively at the corners. We have

From the two cells (1,3), (2,1) having $+\theta$, we find that the minimum of the allocations 50,10 is 10. Add this cells with $+\theta$ and subtract this 10 to the cells with $+\theta$.

Hence the new basic feasible solution is displayed in the following table:

4		1		2		6		9	
	10		50		40				
6		4		3		5		7	
					30				90
5		2		6		4		8	
	30					1	90		

4		1		2		6	3	9	6	$u_1 = 0$
	10		50		40					
							3		3	
6	5	4	2	3		5	4	7		1
					30				90	$u_2 = 1$
	1		2		20		1		70	
5		2	2	6	3	4		8	7	1
	30						90			$u_3 = 1$
			0		3				1	
$v_1 =$	4	v ₂ =	= 1	V 3	= 2	V 4	= 3	V 5	= 6	-

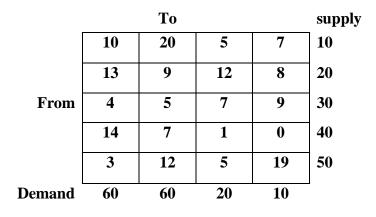
We see that the above table satisfies the rim conditions with (m + n - 1) non-negative allocations at independent position. So we apply MODI method.

Since all $d_{ij}>0$, with $d_{32}=0$, the current solution is optimal and there exists an alternative optimal solution.

The optimum allocation schedule is given by $x_{11}=10$, $x_{12}=50$, $x_{13}=40$, $x_{23}=30$, $x_{25}=90$, $x_{31}=30$, $x_{34}=90$ and the optimum (minimum) transportation cost. = Rs. 4 x 10 + 1 x 50 + 2 x 40 + 3 x 30 + 7 x 90 + 5 x 30 + 4 x 90. = Rs. 1400/-

Degeneracy in Transportation Problems

In transportation problems, whenever the number of non-negative independent allocations in less than m + n - 1, the transportation problems is said to be **degenerate** one. Degeneracy may occur either at the initial stage or at an intermediate stage at some subsequent iteration.


To resolve degeneracy, we allocate an extremely small amount (close to zero)to one or more empty cells of the transportation table(generally minimum cost cells if possible), so that the total number of occupied cells becomes (m + n - 1) at independent positions. WE denote this small amount by \in (epsilon) satisfying the following conditions:

- (i) $0 < \varepsilon < x_{ij}$, for all $x_{ij} > 0$
- (ii) $X_{ij} \pm \epsilon = x_{ij}$, for all $x_{ij} > 0$

The cells containing \in are then treated like other occupied cells and the problems is solved in the usual way. The \in 's are kept till the optimum solution is attained. Then we let each $\in \rightarrow 0$.

Example 1: find the non-degenerate basic feasible solution for the following transportation problems using

- (i) North west corner rule
- (ii) Least cost method
- (iii) Vogel's approximation method.

Solution: Since $\sum a_i = \sum b_i = 150$, the given transportation problems is balanced.

... There exists a basic feasible solution to this problem.

(i) The starting solution by NWC rule is an shown in the following table.

10		20	5	7
	10			
13		9	12	8
	20			
4		5	7	9
	30			
14		7	1	0
		40		

3	12	5	19
	20	20	10

Since the number of non-negative allocations at independent positions is 7 which is less than (m + n - 1) = (5 + 4 - 1) = 8, this basic feasible solution is a degenerate one.

To resolve this degeneracy, we allocate a very small quantity \in to the unoccupied cell (5,1) so that the number of occupied cells becomes (m+n-1) (m + n - 1). Hence the non-degenerate basic feasible solution is an shown in the following table.

10	20	5	7	
10				
13	9	12	8	
20				
4	5	7	9	
30				
14	7	1	0	
	40			
3	12	5	19	transportation $cost = Rs$.
E	20	20	10	runsportation cost – RS.
	10 13 20 4 30 14	10 13 9 20	10 12 13 9 12 20 4 5 7 30 14 7 1 40 5	10

 $10x10 + 13x20 + 4x30 + 7x40 + 3x \in +20x20 + 5x20 + 19x10$

= Rs.(1290 = 3∈) = Rs. 1290/- as $∈ \to 0$.

(ii) Least cost method: Using this method the starting solution is an shown in the following table:

10		20		5	7	
			10			
13		9		12	8	
			20			
4		5		7	9	
	10		20			
-						
14		7		1	0	
14		7	10	1 20		10
14 3		7 12	10			10

Since the number of non-negative allocations at independent positions is (m + n - 1) = 8, the solution is non-degenerate basic feasible.

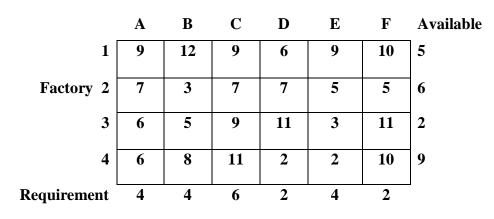
The initial transportation cost = Rs.20x10+9x20+4x10+5x20+7x10+1x20+0x10+3x50

(iii) Vogel's approximation method: The starting solution by this method is an shown in the following table:

10	20	5	7	
10				
13	9	12	8	
	2	20		
4	5	7	9	
	3	30		

14	7	1	0
	10	20	10
3	12	5	19
50			

Since the number of non-negative allocations is 7 which is less than (m + n - 1) = (5+4-1)=8, this basic solution is a degenerate one.


To resolve this degeneracy, we allocate a very small quantity \in to the unoccupied cell(5,2) so that the number of occupied cells becomes (m + n - 1). Hence the non-degenerate basic feasible solution is an shown in the following table.

10	20	5	7
		-	•
1.0			
10			
13	9	12	8
10			0
	20		
	20		
4	5	7	9
	30		
14	7	1	0
	10	20	10
3	12	5	19
	E		
50			
30			

∴ The initial transportation cost

= Rs. 10 x 10 + 9 x 20 + 5 x 30 + 7 x 10 + 1 x 20 + 0 x 10 + 3 x 50 + 12 x ∈ = Rs. (670 +12∈)

$$=$$
 Rs.670/- $=$ as $\in \rightarrow 0$.

Example 2: Solve the following transportation problems using vogel's method.

Solution: Since $\sum a_i = \sum b_j = 22$, the given transportation problem is balanced. \therefore There exists a basic feasible solution to this problem. By Vogel's approximation method, the initial solution is as shown in the following table:

9	12	9 5	6	9	10
7	3 4	7	7	5	5 2
6 1	5 ∈	9 1	11	3	11
6 3	8	11	2 2	2 4	10

Since the number of non-negative allocations is 8 which is less than (m + n - 1)=(4+6-1)=9, this basic solution is degenerate one.

To resolve degeneracy, we allocate a very small quantity \in to the cell (3,2), so that the number of occupied cells becomes (m + n - 1). Hence the non-degenerate basic feasible solution is as shown in the following table.

9	12	9 5	6	9	10
7	3 4	7	7	5	5 2

6 1	5 ∈	9 1	11	3	11
6 3	8	11	2 2	2 4	10

The initial transportation cost = Rs.9 x 5 + 3 x 4 + 5 x 2 + 6 x 1 + 5 x \in + 9 x 1

+ 6 x 3 + 2 x 2 + 2 x 4

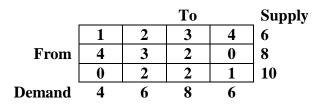
=Rs.(112+5 \in) = Rs.112/-, $\in \rightarrow 0$.

To find the optimal solution

Now the number of non-negative allocations at independent positions is (m + n - 1). We apply the MODI method.

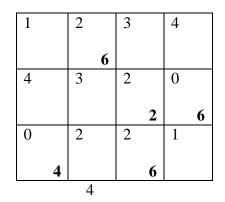
9		6	12		5	9			6		2	9		2	10		7	
							5											$u_1 \ = 0$
		3			7						4			7			3	
7		4	3			7		7	7		0	5		0	5			
				4												2		$u_2 = -2$
		3						0			7			5				
6			5			9			11		2	3		2	11		7	
	1			E			1											$u_3 = 0$
											9			1			4	
6			8		5	11		9	2			2			10		7	
	3									2			4					$u_4 = 0$
					3			2									3	
v ₁ =	= 6		v ₂ :	= 5		V 3	= 9		V 4 =	= 2		V 5	= 2		V 6	= 7		

Since all $d_{ij}>0$ with $d_{23}=0$, the solution under the test is optimal and an alternative optimal solution is also exists.


: The optimum allocation schedule is given by $x_{14}=5$, $x_{22}=4$, $x_{26}=2$, $x_{31}=1$, $x_{32}=6$, $x_{33}=1$, $x_{41}=3$, $x_{44}=2$, $x_{45}=4$ and the optimum(minimum) transportation cost is

=Rs.9x5+3x4+5x2+6x1+5x \in +9x1+6x3+2x2+2x4

=Rs. (112+5€)


=Rs. 112 as $\in \rightarrow 0$.

Example 3: Solve the following transportation problem to minimize the total cost of transportation.

Solution: Since $\sum a_i = \sum b_j = 24$, the given transportation problem is balanced. \therefore There exists a basic feasible solution to this problem.

By using Vogel's approximation method, the initial solution is as shown in the following table:

Since the number of non-negative allocations is 5, which is less than (m + n - 1)=(3+4-1)=6, this basic feasible solution is degenerate.

To resolve degeneracy, we allocate a very small quantity \in to the cell (1,4), so that the number of occupied cells becomes (m + n - 1). Hence the non-degenerate basic feasible solution is given in the following table

1	2	3	4
	6		
4	3	2	0
		2	6

0	2	2	1
4	E	6	

$$\therefore \text{ The initial transportation cost} = \text{Rs. } 2 \times 6 + 2 \times 2 + 0 \times 6 + 0 \times 4 + 2 \times 6 + 2 \times 6$$

= Rs.
$$(28 + 2∈)$$

= Rs. 28/-, as $∈ → 0$.

To find the optimum solution:

Now the number of non-negative allocations at independent positions is (m + n - 1). We apply MODI method.

	1	0	2		3	2	4	0		
		1		6		1		4	u ₁	= 0
	4	0	3	2	2	2	0	6	U2	= 0
		4		1		-		Ū		0
(0		2		2		1	0		
		4				6			u_3	= 0
				E				1		
	v_1	= 0	V ₂	= 2	V 3	= 2	V 4	= 0		

Since all $d_{ij} > 0$ the solution under the test is optimal and unique.

: The optimal allocation schedule is given by $x_{12} = 6$, $x_{23} = 2$, $x_{24} = 6$, $x_{31} = 4$, $x_{32} = 6$, $x_{33} = 6$ and the optimum (minimum) transportation cost

 $= \text{Rs. } 2 \ge 6 + 2 \ge 2 + 0 \ge 6 + 0 \ge 4 + 2 \ge 4 \ge 2 \ge 6$

= Rs. $(28 + 2\epsilon) =$ Rs. 28, as $\epsilon \longrightarrow 0$.

Example 5:

Solve the following transportation problem to minimize the total cost of transportation.

Destination

	1	2	3	4	supply
1	14	56	48	27	70
Origin 2	82	35	21	81	47
3	99	31	71	63	93
Demand	70	35	45	60	210

Solution:

Since $\sum a_i = \sum b_j = 210$, the given transportation problem is balanced. \therefore There exists a basic feasible solution to this problem.

By using Vogel's approximation method, the initial solution is as shown in the following table:

14		56		48		27	
	70						
82		35		21		81	
-					45		2
99		31		71		63	-0
			35				58

Since the number of non-negative allocations is 5, which is less than (m + n - 1) = (3+4-1) = 6, this basic feasible solution is degenerate.

To resolve degeneracy, we allocate a very small quantity \in to the cell (1,4). So that the number of occupied cells becomes (m + n - 1). Hence the non-degenerate basic feasible solution is given in the following table.

14 70	56		48		27 (Ξ
82	35		21	45	81	2
99	31	35	71		63	58

To find the optimum solution:

14		56	-5	48	-33	27		
	70		C 1		01		E	$u_1 = 27$
			61		81			
82	68	35	49	21		81		
	1.4		1.4		45		2	$u_2 = 81$
	14		-14					
99	50	31		71	3	63		
	49		35		60		58	$u_3 = 63$
	49				68			
$v_1\!=\!$	-13	$v_2 =$	-32	V3 =	= 60	V 4	= 0	

Now the number of non-negative allocations at independent positions is (m + n - 1) = 6. We apply MODI method.

Since d_{22} =-14<0, the solution under the test is not optimal.

Now let us from a new basic feasible solution by giving maximum allocation to the cell (2,2) by making an occupied cell empty. We draw a closed loop consisting of horizontal and vertical lines beginning and ending at this cell (2,2) and having its other corners at some occupied cells. Along this closed loop, indicate $+\theta$ and $-\theta$ alternatively at the corners.

14 70	56	48	27 E
82	35 +θ ←	²¹ 45	81 2 -θ
99	31 θ 35	71	63 +θ 58

From the two cells (2,4),(3,2) having $-\theta$ we find that the minimum of the allocations 2,35 is 2. Add this 2 to the cells with $+\theta$ and subtract this 2 to the cells with $+\theta$. Hence the new basic feasible solution is given by

14		56		48		27	
	70					e	Ξ
82		35		21		81	
			2		45		
99		31		71		63	
			33				60

We see that the above table satisfies the rim conditions with (m + n - 1) non-negative allocations at independent position. We apply MODI method for optimality.

14		56	-5	48	-19	27		
	70		61		81		E	$u_1 = -40$
82	54	35		21		81	67	
	28		2		45		14	$u_2 = 0$
99	50	31		71	17	63	60	
	49		33		54		60	$u_3 = -4$
v ₁ =	= 54	V ₂ =	= 35	V 3	= 21	V 4	= 67	

Since d_{ij} >0, the solution under the test is optimal.

∴ The optimal allocation schedule is given by $x_{11} = 70$, $x_{14} = \in, x_{22} = 2$, $x_{23} = 45$, $x_{32} = 33$, $x_{34} = 60$ and the optimum (minimum) transportation cost

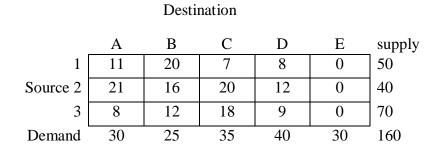
=Rs. 14 x 70 + 27 x ∈ + 35 x 2 + 21 x 45 + 31 x 33 + 63 x 60

=Rs.6798/- as $\in \rightarrow 0$.

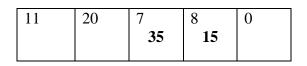
Unbalanced Transportation Problems

If the given transportation problems is unbalanced one, i.e., if $\sum a_i \neq \sum b_j$, then convert this into a balanced one by introducing a dummy source or dummy destination with zero cost vector (zero unit transportation costs) as the case may be and then solve by usual method.

When the total supply if greater than the total demand, a dummy destination is included in the matrix with zero cost vectors. The excess supply is entered as a rim requirement for the dummy destination. When the total demand is greater than the total supply, a dummy source is included in the matrix with zero cost vectors. The excess demand is entered as rim requirements for the dummy source.


Example 1: Solve the transportation problem

А	В	С	D	supply
11	20	7	8	50
21	16	20	12	40
8	12	18	9	70
30	25	35	40	-
	21 8	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$


Destination

Solution: Since the total supply ($\sum a_i = 160$) is greater than the total demand ($\sum b_j = 130$), the given problem is an unbalanced transportation problem. To convert this i9nto a balanced one, we introduce a dummy destination E with zero unit transportation costs and having demand equal to 160-130=30 units.

 \therefore The given problem becomes

By using VAM the initial solution is as shown in the following table

21	16	20	12 10	0 30
8 30	12 25	18	9 15	0

... The initial transportation cost

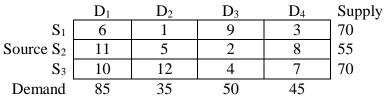
=Rs. 1160/-

For Optimality: Since the number non-negative allocations at independent position is (m + n - 1), we apply the MODI method.

11	7	20	11	7		8	0	-4	
	4		0		35	15		4	$u_1 = 8$
	4		9					4	
21	11	16	15	20	11	12	0		
						10		30	$u_2 = 12$
	10		1		9				
8		12		18	8	9	0	-3	
	30	2	25			15			$u_3 = 9$
					10			3	
V 1	= -1	V ₂	= 3	V 3	; = -1	$v_4 = 0$	V5	= -12	I

Since all d_{ij} >0, the solution under the test is optimum and unique.

: The optimum allocation schedule is $x_{13} = 35$, $x_{14} = 15$, $x_{24} = 10$, $x_{25} = 30$, $x_{31} = 30$, $x_{32} = 25$, $x_{34} = 15$


It can be noted that $x_{25}=30$ means that 30 units are dispatched from source 2 to the dummy destination E. In other words, 30 units are left undespatched from source 2.

The optimum (minimum) transportation cost

=Rs. 1160/-

Example 2: Solve the transportation problem with unit transportation costs, demands and supplies as given below:

Destination

Solution: Since the total demand ($\sum b_j = 215$) is greater than the total supply ($\sum a_i = 195$), the given problem is unbalanced transportation problem. To convert this into a balanced one, we introduce a dummy source S_4 with zero unit transportation costs and having supply equal to 215-195=20 units. \therefore The given problems becomes

Destination

	D_1	D_2	D_3	D_4	Supply
\mathbf{S}_1	6	1	9	3	70
Source S ₂	11	5	2	8	55
S_3	10	12	4	7	70
S_4	0	0	0	0	20
Demand	85	35	50	45	215

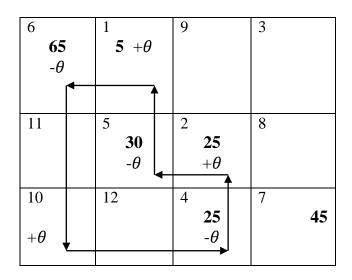
As this problem is balanced, there exists a basic feasible solution to this problem. By using Vogel's approximation method, the initial solution is as shown in the following table.

6	1		9		3	
65		5				
11	5		2		8	
		30		25		
10	12		4		7	
				25		45
0	0		0		0	
20	Ū				-	

... The initial transportation cost

= Rs. 6x65 + 1x5 + 5x30 + 2x25 + 4x25 + 7x45 + 0x20

=Rs.1010/-


For optimality: Since number of non-negative allocations at independent positions is (m + n - 1), we apply the MODI method.

6		1		9	-2	3	1	
	65		5					$u_1 = 6$
					11		2	
11	10	5		2		8	5	
			30		25			$u_2 = 10$
	1						3	
10	12	12	7	4		7		
					25		45	$u_3 = 12$
	-2		5					
0		0	-5	0	-8	0	-5	
	20							$u_4 = 0$
			5		8		5	
V1 =	= 0	V2 =	= -5	V 3	= -8	V 4	= -5	

Since $d_{31}=-2<0$, the solution under the test is not optimal.

Now let us form a new basic feasible solution by giving maximum empty. For this, we draw a closed path consisting of horizontal and vertical lines beginning and ending at this cell (3,1) and having its other corners at some occupied cells. Along this closed loop, indicate $+\theta$ and $-\theta$ alternatively at the corners.

We have,

0	0	0	0
20			

From the three cells (1,1), (2,2), (3,3) having $-\theta$, we find that the minimum of the allocations 65,30,25 is 25. Add this 25 to the cells with $+\theta$ and subtract this 25 to this cells with $-\theta$. Finally, the new feasible solution is displayed in the following table.

6	40	1	30	9		3	
11		5	5	2	50	8	
10	25	12		4		7	45
0	20	0		0		0	

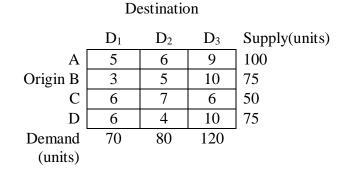
We see that the above table satisfies the rim conditions with (m + n - 1) non-negative allocations at independent positions. Now we check for optimality.

6		1		9	-2	3	3
	40		30				
					11		0
11	10	5		2		8	7
			5		50		
	1						1
10		12	5	4	2	7	
	25						45
			7		2		
0		0	-5	0	-8	0	-3
	20						
			5		8		3

Since all $d_{ij}>0$ with $d_{14}=0$, the solution under the test is optimal and an alternative optimal solution exists.

: The optimum allocation schedule is given by $x_{13} = 35$, $x_{14} = 15$, $x_{24} = 10$, $x_{25} = 30$, $x_{31} = 30$, $x_{32} = 25$, $x_{34} = 15$, $x_{41} = 20$.

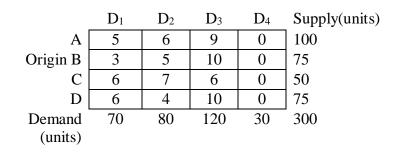
It can be noted that $x_{41}=20$ means that 20 units are dispatched from the dummy source S_4 to the destination D_1 . In other words, 20 units are not fulfilled for the destination D_1 .


The optimum (minimum) transportation cost

= Rs. 6 x 40 + 1 x 30 + 5 x 5 + 2 x 50 + 10 x 25 + 7 x 45 + 0 x 20

=Rs.960/-

Example 3:


Solve the transportation problem with unit transportation costs in rupees, demand and supplies as given below:

Solution: Since the total supply ($\sum a_i = 270$), the given transportation problem is unbalanced.

To convert this into a balanced one, we introduce a dummy source D_4 with zero unit transportation costs and having demand equal to 300-270=30 units. \therefore The given problem becomes

Destination

By using VAM the initial solution is given by

5	6	9 100	0
³ 70	5 5	10	0
6	7	6 20	0 30
6	4 75	10	0

Since the number of non-negative allocations is 6, which is less than (m + n - 1) = 4+4-1 = 7, this basic feasible solution is degenerate.

To resolve this degeneracy, we allocate a very small quantity \in to the cell (2,4), so that the number of occupied cells becomes (m + n - 1). Hence the non-degenerate basic feasible solution is given in the following table.

5	6	9 100	0
3 70	5 5	10	0 ∈
6	7	6 20	0 30
6	4 75	10	0

Now the number of non-negative allocations at independent positions is (m + n - 1). We apply MODI method.

5	6	6	8	9		0		3	
				10	0				$u_1 = 3$
	-1		-2				-	-3	
3		5		10	6	0			
	70		5				E		$u_2 = 0$
					4				

6	3	7	5	6		0		
				2	0	3	30	$u_3 = 0$
	3		2					
6	2	4		10	5	0	-1	
		7	5					$u_4 = -1$
	4				5		1	
v ₁ =	3	V 2 =	= 5	V 3 =	= 6	V 4	= 0	

Since there are some $d_{ij} < 0$, the current solution is not optimal.

Since d_{14} = -3 is the most negative, let is form a new basic feasible solution is giving maximum allocations to the corresponding cell(1,4) by making an occupied cell empty. We draw a closed loop consisting of horizontal and vertical lines beginning and ending at this cell (1,4) and having its other corners at some occupied cells. Along this closed loop indicate + θ and

 $-\theta$ Alternatively at the corners.

5	6	9 100	$0 + \theta$
		-θ (▲
3 70	5 5	10	0 €
6	7	$\begin{array}{c} 6 \\ 20 \\ +\theta \end{array}$	0 30
6	4 75	+0	-θ 0

From the two cells (1, 3), (3, 4) having $-\theta$, we find that the minimum of the allocations 100, 30 is 30. Add this 30 the cells with $+\theta$ and subtract this 30 to the cells with $-\theta$. Hence the new basic feasible solution is given in the following table.

5	6	9 70	0 30
3 70	5 5	10	0 €
6	7	6 50	0
6	4 75	10	0

We see that the above table satisfies the rim conditions with (m + n - 1) non-negative allocations at independent positions. We apply MODI method.

5	3	6	5	9		0		
				7	0		30	$u_1 = 0$
	2		1					
3		5		10	9	0		
	70		5				E	$u_2 = 0$
					1			
6	0	7	2	6		0		
				5	0			$u_3 = -3$
	6		5					
6	2	4		10	8	0	-1	
		,	75					$u_4 = -1$
	4				2		1	
v	$r_1 = 3$	v ₂	= 5	V 3	= 9	\mathbf{V}_{2}	$_{4} = 0$	

Since all d_{ij} >0, the current solution is optimal and unique.

The optimum allocation schedule is given by $x_{13} = 70$, $x_{14} = 30$, $x_{21} = 70$, $x_{22} = 5$, $x_{24} = \epsilon$, $x_{33} = 50$, $x_{42} = 75$ and the optimum (minimum) transportation cost

$$= \text{Rs. } 9 \ge 70 + 0 \ge 30 + 3 \ge 70 + 5 \ge 5 + 0 \ge 6 \le 6 \ge 50 + 4 \ge 75$$

=Rs. 1465/-

Maximization case in Transportation Problems

So far we have discussed the transportation problems in which the objectives has been to minimize the total transportation cost and algorithms have been designed accordingly.

If we have a transportation problems where the objective is to maximize the total profit, first we have to convert the maximization problem into a minimization problem by multiplying

all the entries by -1 (or) by subtracting all the entries from the highest entry in the given transportation table. The modified minimization problem can be solved in the usual manner.

Assignment Problem:

Introduction

The assignment problem is a particular case of the transportation problem in which the objective is to assign a number of tasks (Jobs or origins or sources) to an equal number of facilities (machines or persons or destinations) at a minimum cost (or maximum profit).

Suppose that we have 'n' jobs to be performed on 'm' machines (one Job to one machine) and our objective is to assign the jobs to the machines at the minimum cost (or maximum profit) under the assumption that each machine can perform each job but with varying degree of efficiencies.

The assignment problem can be stated in the form of $m \ge n$ matrix (c_{ij}) called a cost matrix (or) Effectiveness matrix where c_{ij} is the cost of assigning ith machine to the jth job.

	1	2	3		n
1	<i>C</i> 11	<i>C</i> ₁₂	C13		C_{1n}
2	C ₁₁ C ₂₁ C ₃₁	C ₁₂ C ₂₂ C ₃₂	C23		C_{2n}
Machines 3	C31	<i>C</i> 32	<i>C</i> 33		C _{3n}
•	•••••	•••••	•••••		•••••
·	•••••	• • • • •	•••••	•••••	•••••
	•••••		•••••		•••••
m	C_{ml}	C_{m2}	<i>C</i> _{<i>m</i>3}		C _{mn}

Mathematical formulation of an assignment problem.

Consider an assignment problem of assigning *n* jobs to *n* machines (one job to one machine). Let c_{ij} be the unit cost of assigning *i*th nachine to the *j*th job and

Let $x_{ij} = \begin{cases} 1, \text{ if } j^{\text{th}} \text{ job is assigned to } i^{\text{th}} \text{ machine} \\ 0, \text{ if } j^{\text{th}} \text{ job is not assigned to } i^{\text{th}} \text{ machine} \end{cases}$

The assignment model is then given by the following LPP

Minimize
$$Z = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

Subject to the constraints

$$\sum_{i=1}^{n} x_{ij} = 1, \quad j = 1, 2, \dots, n$$

$$\sum_{j=1}^{n} x_{ij} = 1, \quad i = 1, 2, \dots, n$$

and
$$x_{ij} = 0$$
 (or) 1.

Difference between the transportation problem and the assignment problem.

Transportation problem	Assignment problem
 (a) Supply at any source may be any positive quantity a_i 	Supply at any source (machine) will be 1 i.e., $a_i = 1$.
 (b) Demand at any destination may be any positive b_j 	Demand at any destination (job) will be 1 i.e., $b_j = 1$.
(c) One or more source to any Number of destinations	One source (machine) to only one destination (job).

Assignment Algorithm (or) Hungarian Method.

First check whether the number of rows is equal to the number of columns. If it is so, the assignment problem is said to be **balanced**. Then proceed to step 1. If it is not balanced, then it should be balanced before applying the algorithm.

Step 1: Subtract the smallest cost element of each row from all the elements in the row of the row of the given cost matrix. See that each row contains atleast one zero.

Step 2: Subtract the smallest cost element of each column from all the elements in the column of the resulting cost matrix obtained by step 1.

Step 3: (Assigning the zeros)

- (a) Examine the rows successively until a row with exactly one unmarked zero is found. Make an assignment to this single unmarked zero by encircling it. Cross all other zeros in the column of this enriched zero, as these will not be considered for any future assignment. Continues in this way until all the rows have been examined.
- (b) Examine the columns successively until a column with exactly one unmarked zero is found. Make an assignment to this single unmarked zero by encircling it and cross any other zero in its row. Continue until all the columns have been examined.

Step 4: (Apply optimal Test)

(a) If each row and each column contain exactly one encircled zero, then the current assignment is optimal.

- (b) It atleast one row/column is without an assignment (i.e., if there is atleast one row/column is without one encircled zero), then the current assignment is not optimal. Go to step 5.
- Step 5: Cover all the zeros by drawing a minimum number of straight lines as follows.
 - (a) Mark (f) the rows that do not have assignment.
 - (b) Mark (1) the columns (not already marked) that have zeros in marked columns.
 - (c) Mark (\mathcal{V}) the rows (not already marked) that have assignments in marked columns.
 - (d) Repeat (b) and (c) until no more marking is required.
 - (e) Draw lines through all unmarked rows and columns. If the number of these lines is equal to the order of the matrix then it is an optimum solution otherwise not.
- **Step 6:** Determine the smallest cost element not covered by the straight lines. Subtract this smallest cost element from all the uncovered elements and add this to all those elements which are lying in the intersection of these straight lines and do not change the remaining elements which lie on the straight lines.
- Step 7: Repeat steps (1) to (6). Until an optimum assignment is attained.

Note 1: In case some rows or columns contain more than one zero, encircle any unmarked zero, encircle any unmarked zero arbitrarily and cross all other zeros in its column or row. Proceed in this way until no zero is left unmarked or encircled.

- **Note 2:** The above assignment algorithm is only for minimization problems.
- Note 3: If the given assignment problem is of maximization type, convert it to a minimization assignment problem by max Z = -min(-Z) and multiply all the given cost elements by -1 in the cost matrix and then solve by assignment algorithm.
- **Note 4:** Sometimes a final cost matrix contains more than required number of zeros at independent positions. This implies that there is more than one optimal solution (multiple optimal solutions) with the same optimum assignment cost.

Example 1:

Consider the problem of assigning five jobs to five persons. The assignment costs are given as follows:

Job 1 2 3 4 5 A 8 4 2 6 1 B 9 5 5 4 From C 3 8 9 2 6 D 4 3 1 0 3 E 9 5 8 9 5

Determine the optimum assignment schedule.

Solution: The cost matrix of the given assignment problem is

/8	4	2	6	1\
0	9	5	5	4
3	8	9	2	6 3 5/
4	3	1	0	3
\9	5	8	9	5/

Since the number of rows is equal to the number of columns in the cost matrix, the given assignment problem is balanced.

Step 1: Select the smallest cost element in each row and subtract this from all the elements of the corresponding row, we get the reduced matrix

/7	3	1	5	0\
$\begin{pmatrix} 7\\ 0 \end{pmatrix}$	9	5	5	$\begin{pmatrix} 0\\ 4 \end{pmatrix}$
1	6	7	0	4 3 0/
$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$	3	1	0	3
$\setminus 4$	0	3	4	0/

Step 2: select the smallest cost element in each column and subtract this from all the elements of the corresponding column, we get the reduced matrix.

/7	3	0	5	$\begin{pmatrix} 0\\ 4 \end{pmatrix}$
$\begin{pmatrix} 7\\ 0 \end{pmatrix}$	9	4	5	4
1	6	6	0	4 3 0/
$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$	3	0	0	3
$\setminus 4$	0	2	4	0/

Since each row and each column at least one zero, we shall make assignments in the reduced matrix.

Step 3: Examine the rows successively until a row with exactly one unmarked zero is found. Since the 2^{nd} row contains a single zero, encircle this zero and cross all other zeros of its column. The 3^{rd} row contains exactly one unmarked zero, so encircle this zero and cross all other zeros in its column. The 4^{th} row contains exactly one unmarked zero, so encircle this zero and cross all other zeros in its column. The 1^{st} row contains exactly one unmarked zero, so encircle this zero, so encircle this zero and cross all other zeros in its column. The 1^{st} row contains exactly one unmarked zero, so encircle this zero and cross all other zeros in its column. The 1^{st} row contains exactly one unmarked zero, so encircle this zero and cross all other zeros in its column. Finally the last row contains exactly one unmarked zero, so encircle this zero and cross all other zeros in its column. Likewise

examine the columns successively. The assignments in rows and columns in the reduced matrix is given by

$$\begin{pmatrix} 7 & 3 & 0 & 5 & (0) \\ (0) & 9 & 4 & 5 & 4 \\ 1 & 6 & 6 & (0) & 4 \\ 4 & 3 & (0) & 0 & 3 \\ 4 & (0) & 2 & 4 & 0 \end{pmatrix}$$

Step 4: Since each row and each column contains exactly one assignment (i.e., exactly one encircled zero) the current assignment is optimal.

: The optimal assignment schedule is given by A \rightarrow 5, B \rightarrow 1, C \rightarrow 4, D \rightarrow 3,

E → 2.

The optimum (minimum) assignment cost = (1 + 0 + 2 + 1 + 5) cost units = 9 units of cost.

Example 2:

The processing time in hours for the when allocated to the different machines are indicated below. Assign the machines for the jobs so that the total processing time is minimum.

Machines					
	\mathbf{M}_1	M_2	M_3	M_4	M_5
\mathbf{J}_1	9	22	58	11	19
J_2	43	78	72	50	63
Jobs J ₃	41	28	91	37	45
\mathbf{J}_4	74	42	27	49	39
J_5	36	11	57	22	25

Solution:

The cost matrix of the given problem is

9	22	58	11	19
43	78	72	50	63
41	28	91	37	45
74	42	27	49	39
36	11	57	22	25

Since the number of rows is equal to the number of columns in the cost matrix, the given assignment problem is balanced.

Step 1: select the smallest cost element in each row and subtract this from all the elements of the corresponding row, we get the reduced matrix.

1	´ 0	13	49	2	10 \
1	0	35	29	7	20
	13	0	63	9	17
	47	15	0	22	12
	25	0	46	11	14/

Step 2: Select the smallest cost element in each column and subtract this from all the elements of the corresponding column, we get the following reduced matrix.

	(0	13	49	0	0 \
	0	35	29	5	10
I	13	0	63	7	7
	47	15	0	20	2
	25	0	46	9	4/

Step 3: Now we shall examine the rows successively. Second row contains a single unmarked zero, encircle this zero and cross all other zeros in its column. Third row contains a single unmarked zero, encircle this zero and cross all other zeros in its column. Fourth row contains a single unmarked zero, encircle this zero and cross all other zero in its column. After this no row is with exactly one unmarked zero. So go for columns.

Examine the columns successively. Fourth column contains exactly one unmarked zero, encircle this zero and cross all other zeros in its row. After examining all the rows and columns. We get

\int_{Ω}	13	49	(0)	$\overline{0}$	
(0)	35	29	5	10	
13	(0)	63	7	7	
47	15	(0)	20	2	
25	0	46	9	4	
$\overline{}$					

Step 4: Since the 5th column do not have any assignment, the current assignment is not optimal.

Step 5: Cover all the zeros by drawing a minimum number of straight lines as follows:

- (a) Mark (*f*) the rows that do not have assignment. The row 5 is marked.
- (b) Mark (\mathcal{J}) the columns (not already marked) that have zeros in marked rows. Thus column 2 is marked.
- (c) Mark the rows (not already marked) that have assignment in, marked columns. Thus row 3 is marked.
- (d) Repeat (b) and (c) until no more marking is required. In the present case this repetition is not necessary.
- (e) Draw lines through all unmarked rows (rows 1, 2 and 4). And marked columns (column 2). We get

$$\begin{pmatrix} 0 & 13 & 49 & 0 & 0 \\ 0 & 35 & 29 & 5 & 10 \\ 13 & 0 & 63 & 7 & 7 \\ 47 & 15 & 0 & 20 & 2 \\ 25 & 0 & 46 & 9 & (4) \end{pmatrix}$$

Step 6: Here 4 is the smallest element not covered by these straight lines. Subtract this 4 from all the uncovered element and add this 4 to all those elements which are lying in the intersections of these straight lines and do not change the remaining elements which lie on these straight lines. We get the following matrix.

0	17	49	0	0
0	39	29	5	10
9	0	59	3	3
47	19	0	20	2
21	0	42	5	0)

Since each row and each column contains at least one zero, we examine the rows and columns successively, i.e., repeat step 3 above, we get

$\begin{pmatrix} 0 \end{pmatrix}$	17	49	(0)	0
(0)	39	29	5	10
9	(0)	59	3	3
47	19	(0)	20	2
21	0	42	5	(0)
$\overline{\ }$				

In the above matrix, each row and each column contains exactly one assignment (i.e., exactly one encircled zero), therefore the current assignment is optimal.

: The optimum assignment schedule is $J_1 \longrightarrow M_4$, $J_2 \longrightarrow M_1$, $J_3 \longrightarrow M_2$, $j_4 \longrightarrow M_3$,

 $J_5 \longrightarrow M_5$ and the optimum (minimum) processing time

= 11+43+28+27+25 hours = 134 hours.

Unbalanced Assignment Models

If the number of rows is not equal to the number columns in the cost matrix of the given assignment problems, then the given assignment problems is said to be unbalanced.

First convert the unbalanced assignment problems in to a balanced one by adding dummy rows or dummy columns with zero cost element in the cost matrix depending upon whether m < n or m > n and then solve by the usual method.

Example 1: A company has four machines to do three jobs. Each job can be assigned to one and only one machine. The cost of each job on each machine is given in the following table.

	Machines			
	1	2	3	4
Α	18	24	28	32
В	8	13	17	19
Jobs C	10	15	19	22

What are job assignments which will minimize the cost?

Solution:

The cost matrix of the given assignment problems is

/18	24	28	32\
8	13	17	19
\10	15	19	22)

Since the number of rows is less than the number of columns in the cost matrix, the given assignment problems is unbalanced.

To make it a balanced one, add a dummy job D (row) with zero cost elements. The balanced cost matrix is given by

18	24	28	32
8	13	17	19
10	15	19	22
$\bigcup 0$	0	0	0)

Now select the smallest cost element in each row (column) and subtract this from all the elements of the corresponding row (columns), we get the reduced matrix

(\int_0	6	10	14
	0	5	9	11
	0	5	9	12
	0	0	0	ø
	\sim			/

In this reduced matrix, we shall make the assignment in rows and columns having single zero. We have

(0)	6	10	14
0	5	9	11
0	5	9	12
0	(0)	0	9

Since there are some rows and columns without assignment, the current assignment is not optimal.

Cover the all zeros by drawing a minimum number of straight lines. Choose the smallest cost element not covered by these straight lines.

$\langle \cdot \rangle$			$\overline{}$
(þ	6	10	14
0	5	9	11
0	(5)	9	12
(<u> </u>	-0-	-0-	0]
<u> </u>			ノ

Here 5 is the smallest cost element not covered by these straight lines. Subtract this 5 from all the uncovered element, add this 5 to those elements which lie in the intersections of

these straight lines and do not change the remaining element which lie on the straight lines. We get

0	1	5	9
0	0	4	6
0	0	4	7
5	0	0	0

Since each row and each column contains atleast one zero, we shall make assignment in the rows and columns having single zero. We get

(0)	1	5	9
0	(0)	4	6
0	0	4	7
5	0	(0)	0)

Since there are some rows and columns without assignment, the current assignment is not optimal.

Cover all the zeros by drawing a minimum number of straight lines.

0	1	5	9
0	0	4	6
0	0	(4)	7
5	0	0	9

Choose the smallest cost element not covered by these straight line, subtract this from all the uncovered elements, add this to those elements which are in the intersection of the lines and do not change the remaining elements which lie on these straight lines. Thus we get

0	1	1	5
0	0	0	2
0	0	0	3
2	4	0	0)

Since each row and each column contains atleast one zero, we shall make the assignment in the rows and columns having single zero. We get

(0)	1	1	5
0	(0)	0	2
0	0	(0)	3
9	4	0	(0)

Since each row and each column contains exactly one assignment (i.e., exactly one encircled zero) the current assignment is optimal.

: The optimum assignment schedule is given by A \rightarrow 1, B \rightarrow 2, C \rightarrow 3, D \rightarrow 4 and the optimum (minimum) assignment cost

= (18+13+19+0) cost unit = 50/- units of cost

Note 1: For this problem, the alternative optimum schedule is A \rightarrow 1, B \rightarrow 2, C \rightarrow 3, D \rightarrow 4, with the same optimum assignment cost= Rs. (18+17+15+0) = 50/- units of cost.

Note 2: Here the assignment $D \longrightarrow 4$ means that the dummy Job D is assigned to the 4th Machine. It means that machine 4 is left without any assignment.

Maximization case in Assignment Problems

In an assignment problem, we may have to deal with maximization of an objective function. For example, we may have to assign persons to jobs in such a way that the total profit is maximized. The maximization problems has to be converted into an equivalent minimization problem and then solved by the usual Hungarian Method.

The conversion of the maximization problem into an equivalent minimization problems can be done by any of the following methods:

- (i) Since max $Z = -\min(-Z)$, multiply all the cost element c_{ij} of the cost matrix by -1.
- (ii) Subtract all the cost elements c_{ij} of the cost matrix from the highest cost element in that cost matrix.

Example:

Solve the assignment problem for maximization given the profit matrix (profit in rupees).

Jobs C	49	50	60	61
D	63	64	60	60

Solution:

The profit matrix of the given assignment problem is

51	53	54	50
47	50	48	50
49	50	60	61
63	(64)	60	60

Since this is a maximization problem, it can be converted into an equivalent minimization problem by subtracting all the profit elements in the profit from the highest profit element 64 of this profit matrix. Thus the cost matrix of the equivalent minimization problem is

(13	11	10	14
17	14	16	14
15	14	4	3
$\lfloor 1$	0	4	4)

Select the smallest cost in each row and subtract this from all the cost elements of the corresponding row. We get

			\sim
(3	1	0	4
3	0	2	0
12	11	1	0
1	0	4	4
~			_

Select the smallest cost element in each column and subtract this from all the cost elements of the corresponding column. We get

$\overline{2}$	1	0	4
2	0	2	0
11	11	1	0
0	0	4	4

Since each row and each column contains atleast one zero, we shall make the assignment in rows and columns having single zero. We get

2	1	(0)	4
2	(0)	2	0
11	11	1	(0)
(0)	0	4	4

Since each row and each column contains exactly one encircled zero, the current assignment is optimal.

∴ The optimum assignment schedule is given by A \rightarrow R, B \rightarrow Q, C \rightarrow S, D \rightarrow P and the optimum (maximum) profit = Rs. (54 + 50 + 61 + 63)

= Rs. 228/-

POSSIBLE QUESTIONS

PART-B(
$$5 \times 2 = 10$$
)

1. What do you understand by transportation problem?

- 2. Define feasible solution of a transportation problem.
- 3. What is the optimality test used while solving an Assignment Problem using Hungarian method?
- 1. What is an assignment problem? Give two applications.
- 2. What is the optimality test used while solving an Assignment Problem using Hungarian method?
- 3. Define feasible solution of a transportation problem.
- 4. What do you understand by transportation problem?

PART-C ($5 \times 4 = 20$)

1. a) Find the initial basic feasible solution for the following transportation problem by VAM.

		Distribution centres				
		D_1	D_1	D_1	D_1	Availability
	<i>S</i> ₁	11	13	17	14	250
Origin	<i>S</i> ₂	16	18	14	10	300
	S_3	21	24	13	10	400
Requiren	nents	200	225	275	250	_

2). Find the starting solution of the following transportation model

1	2	6	7
0	4	2	12
3	1	5	11
10	10	10	

Using (i) North West Corner rule

(ii).Least Cost method

3) Explain the procedure of Hungarian method to solve Assignment Problem.

4. Solve the following transportation problems using vogel's method.

	А	В	С	D	Е	F	Available		
1	9	12	9	6	9	10	5		
Factory 2	7	3	7	7	5	5	6		
3	6	5	9	11	3	11	2		
4	6	8	11	2	2	10	9		
Requirement	4	4	6	2	4	2	-		
PART- D (1×10=10)									

1) Solve the assignment problem for maximization given the profit matrix (profit in rupees). Machines

	Р	Q	R	S
А	51	53	54	50
В	47	50	48	50
A B Jobs C D	49	50	60	61
D	63	64	60	60

2) Solve the transportation problem with unit transportation costs, demands and supplies as given below:

Destination							
		D_1	D_2	D3	D ₄	Supply	
	S_1	6	1	9	3	70	
Source	S_2	11	5	2	8	55	
	S ₃	10	12	4	7	70	
Dem	nand	85	35	50	45		

3.Determine basic feasible solution to the following transportation problems using North West Corner Rule:

				Sink			
		А	В	С	D	Е	Supply
Origin	Р	2	11	10	3	7	4
	Q	1	4	7	2	1	8
	R	3	9	4	8	12	9
Demand	I	3	3	4	5	6	

KARPAGAM ACADEMY OF HIGHER EDUCATION					
(Deemed to be University Established Under Section 3 of UGC Act 1956)					
Pollachi Main Road, Eachanari (Po),					
Coimbatore –641 021					
DEPARTMENT OF MATHEMATICS	-				
Multiple Choice Questions (Each Question Carries One Mark)					
Subject Name: REAL ANALYSIS Subject Code: 17MMP102		1	lana ava		
UNIT IV	OPTION1	OPTION2	OPTION3	OPTION4	ANSWERS
Sequence [1/n] is	unbounded & convergent	decreasing sequence	monotonic sequence	oscillating sequence	bounded
The sequence { 1,0,1,0,1, } is	increasing sequence	unbounded	bounded below	bounded above	divergent
Every convergent sequence is	bounded	convergent	unbounded	both converges and diverges	bounded
The series 1+3+5+7+	divergent	convergent	bounded	divergent	comparison test
Cauchy sequence is	unbounded & convergent	root test	ratio test	leibnitz test	
Which one of the following test does not give absolute convergence series	comparison test	$\lim_{n \to \infty} Sup (x_n + y_n) > \lim_{n \to \infty} Sup x_n$ + $\lim_{n \to \infty} Sup y_n$	$\lim_{n \to \infty} Sup (x_n + y_n) = \lim_{n \to \infty} Sup x_n + \lim_{n \to \infty} Sup y_n$	$\lim Sup (x_n + y_n) < \lim Sup x_n + \lim Sup y_n$	$\lim Sup(x_n + y_n) \le \lim Sup x_n + \lim Sup y_n$
If < x n > and < y n > sequence of real number	$\lim_{n \to \infty} \operatorname{Sup} (x_n + y_n) \leq \lim_{n \to \infty} \operatorname{Sup} x_n + \lim_{n \to \infty} \operatorname{Sup} (x_n + y_n) \leq \lim_{n \to$	exactly two constant sub sequence	exactly three constant sub sequence	exactly four constant sub sequence	exactly two constant sub sequence
n - xm - und - ym - sequence or rear named	Sup y n	bequence		chacily four constant sub sequence	could we constant sub sequence
		have ded	having a subsequence converging to 3		bounded
The sequence < 1+ (-1) n > has	exactly one constant sub sequence		10.3	convergent	bounded
		convergent but not absolutely			
Let < a n > = least power of 2 that divides n.then < a n > is	divergent to infinity	convergent	absolutely divergent	divergent	convergent but not absolutely convergent
A conditionally converges series is a series which is	absolutely convergent	bounded	not necessarily bounded	neither bounded nor unbounded	bounded
The set of limit points of a bounded sequence is	unbounded	sequence of rational numbers	sequence of irrational numbers	bounded sequence of rational numbers	sequence of real numbers
Cauchy sequence is convergent if it is a	sequence of real numbers	convergent sequencee	bounded sequencee	unboundedt sequencee	divergent sequencee
If a sequence is not a cauchy sequence then it is	divergent sequencee	bounded	not necessarily bounded	neither bounded nor unbounded	bounded
The set of limit points of a bounded sequence is	unbounded		2		4 2
If { x n } and { x n+1 }=v(2+x n) then the sequence { x n } converges to					
· (···)-···(····-) · ···················					
		need not be convergent	may be conversent	divergent subsequence	convergent cubreauence
Construction and the second seco			may be convergent	divergent subsequence	convergent subsequence
Every cauchy sequence contains	convergent subsequence	divergent	convergent	unbounded	bounded
The series ∑_(n=1) ⁿ ∞[[(-1)] n n	bounded	infinite limit	unique limit	no limit	unique limit
Every convergent sequence is bounded and it has	finite limit	f is not Riemann integrable on [a,b]	f is Riemann integrable on R	f is integrable on R	f is Riemann integrable on [a,b]
If f : [a,b] →R is continuous and monotonic functions then	f is Riemann integrable on [a,b]	Q	[S]	(Sn)	{S n }
The notation of a sequence is	s	divergent	Uniformly Convergent	does not Uniformly Convergent	Uniformly Convergent
The series 5 (n=1) ^A (-1)) n 1/n	convergent	need not be measurable	measurable	may be measurable	measurable
Union of two measurable sets is	not measurable		infinity	· ·	2 0
		uncountable	bounded	un bounded	uncountable
Cantor ternary set is measurable and its measure is A set without measure different from zero is		uncountable only one subcover	bounded finite subcover	un bounded	Incountable finite subcover
A set without measure different from zero is	countable	uncountable only one subcover closed	finite subcover	no subcover	finite subcover
A set without measure different from zero is A set A is said to be Compact if it has a	countable many subcover	only one subcover closed	finite subcover open as well as closed	no subcover neither open nor closed	finite subcover open as well as closed
A set without measure different from zero is A set A is said to be Compact if it has a The empty set of and whole set X	countable many subcover open	only one subcover closed one limit	finite subcover open as well as closed many limit	no subcover neither open nor closed no limit point	finite subcover open as well as closed no limit point
A set without measure different from zero is A set A is said to be Compact II has a The empty set p and whole set X Finite sets in a metric space have	countable many subcover open more than one limit	only one subcover closed one limit it ia set	finite subcover open as well as closed many limit It is a limit point	no subcover neither open nor closed no limit point it is empty	finite subcover open as well as closed no limit point it is an interval
A set without measure different from zero is A set A is said to be Compact if it has a The empty set e and whole set X Finite sets in a metric space have A subset A of R is connected if and only if	countable many subcover open more than one limit it is an interval	only one subcover closed one limit it ia set closed	finite subcover open as well as closed many limit It is a limit point semi open	no subcover neither open nor closed no limit point It is empty semi closed	finite subcover open as well as closed no limit point it is an interval closed
A set without measure different from zero is A set A lis and to Compact if it has a The empty set e and whole set X Finis sets in a metric space have A subset A d R is connected if and only if in a metric space every singletion are (p) is	countable many subcover open more than one limit it is an interval open	only one subcover closed one limit it ia set closed B - A is semi open set	finite subcover open as well as closed many limit It is a limit point semi open B - A is closed set	no subcover neither open nor closed no limit point It is empty semi closed B - A is empty set	finite subcover open as well as closed no limit point it is an interval closed B - A is closed set
A set attract measure different from zero is A set attract measure different from zero is a set is a said to compact if if the is a The entry set a an and shole set X provide the state is a measure show the measure of the state is a set of the final and the space every angleton set (p) is if is a goest att and is is closed as the then if is a goest att and is is in closed as the then	countable many subcover open more than one limit it is an interval open B - A is open set	only one subcover closed one limit It ia set closed B - A is semi open set unbounded	finite subcover open as well as closed many limit It is a limit point semi open B - A is closed set totally bounded	no subcover neither open nor closed no limit point it is empty semi closed B - A is empty set bounded below	finite subcover open as well as closed no limit point it is an interval closed B - A is closed set totally bounded
A set without measure different from zero is A set A lis and to Compact if it has a The empty set e and whole set X Finis sets in a metric space have A subset A d R is connected if and only if in a metric space every singletion are (p) is	countable many subcover open more than one limit it is an interval open	only one subcover closed one limit it la set closed B - A is semi open set unbounded non negative finite number	finite subcover open as well as closed many limit It is a limit point semi open B - A is closed set	no subcover neither open nor closed no limit point It is empty semi closed B - A is empty set	finite subcover open as well as closed no limit point it is an interval closed B - A is closed set
A set without measure different from zero is A set A is all ob Compact if if the a a The empty set a and whole set X mink set in a mainter super have mink set in a mainter super have the super super super have (if A is open set and b is a closed set if then [A is open set and b is a closed set then [A is open set and b is a closed set then]	countable many subcover open more than one limit it is an interval open B - A is open set	only one subcover closed one limit It ia set closed B - A is semi open set unbounded	finite subcover open as well as closed many limit It is a limit point semi open B - A is closed set totally bounded extended real number t is not of bounded variation of R	no subcover neither open nor closed no limit point it is empty semi closed B - A is empty set bounded below	finite subcover open as well as closed no limit point It is an interval closed B - A is closed set totally bounded non negative finite number it is of bounded variation of [a,b]
A set attricture different from zero is A set attricture different from zero is a set h is said to be Compact if if has a The empty set y and whole set X Finite sets in a metric space have A subset A of R is connected if and coly if if h is open set and 0 is closed at then A source is a set of the set of the set of the set if A subset is a set of the set of the set if A subset is a set of the set of the set if A subset is a set of the set of the set The set all variation on [a,b] is	countable many subcover open more than one limit it is an interval open B - A is open set bounded non positive finite number	only one subcover closed one limit it is set closed B - A is semi open set unbounded non negative finite number it is not of bounded variation of [a,b]	finite subcover open as well as closed many limit it is a limit point semi open B - A is closed set totally bounded extended real number t is not of bounded variation of R ts never a function of bounded	no subcover no limit point i la empty demi closed a empty demi closed S - A is empty bounded below bounded below advender national number at is of bounded variation of R	finite aubcover open as well as closed no limit point it is an interval closed b - A is closed set to totally bounded non reguine finite number (an ore guine finite number (bounded variation of [a,b]) may or may not be a function of bounded
A set attrict.measure different from zero is A set attrict.measure different from zero is The empty set a and whole set X Filter sets in a method space have A subset X of R is commediated if and only if A subset X of R is commediated if and only if Th is grown at and the is is closed at the in Th is grown at and the is is closed at the in A sequentially compact metric space is	countable many subcover open more than one limit It is an interval open B - A is open set bounded non positive finite number It is of bounded variation of (a,b)	only one subcover closed one limit It is set closed B - A is semi open set unbounded non negative finite number It is not of bounded variation of	finite subcover open as well as closed many limit it is a limit point semi open B - A is closed set totally bounded extended real number t is not of bounded variation of R ts never a function of bounded	no subcover no limit point la lisempty & lisempty B - A lisempty set bounded below extended rational number	finite subcover open as well as closed no limit point II is an interval closed B - A is closed set totally bounded non negative finite number it is of bounded variation of [a,b]
A set ativation measure different from zero is A set ativation of compact if if has a The entry is at y and whole set X Finder sets in a matter space have Finder sets in a matter space avery fauldes f A d R is connected if and only if if A is open set and B is closed set then if A subject A d R is connected set then the subject is a subject is a The total Variation on (a,b] if is absolutely continuous on (a,b]	countable many subcover open more than one limit it is an interval open B - A is open set bounded non positive finite number It is of bounded variation of (a.b) may or may not be a function of	only one subcover closed one limit It is set closed B - A is semi open set unbounded non negative finite number It is not of bounded variation (a,b) It is always a bounded variation	finite subcover open as well as dosed many limit It is a limit point semi copen B - A is closed set totally bounded statistic and the set totally bounded statistic and the set totally bounded statistic and the set totally bounded wariation of R is never a function of bounded variation	no subcover no lant point la elimptopia sem closed beneficial bounded below dended rational mumber dended rational number t la of bounded variation of R may be a function of bounded variation	Inite subcover copen as well as closed no limit point is an interval closed b - A is closed set totally bounded not negative limits number not negative limits number los on regative limits number nor may or may not be a function of bounded variation
A set attrict.measure different from zero is A set at is all ob Compact if if has a The empty set a and whole set X The is any set at an and whole set X The is any set at an and whole set X The is any set at an and whole set X The is any set at an and whole set X The is any set at an and only if In a metric space server any any set on any only if The is any set at an any set on any set of the is any set of the is any set of the is any set at any set of the is any set of the iset of the ise of the isen of the isen of the isen of the isen of t	countable many subcover open more than one limit it is an interval open B - A is open set bounded non positive finite number it is of bounded variation of [a,b] may or may not be a function of bounded variation	only one subcover diosed one limit it is set closed B - A is seni open set unbounded non negative finite number it is not of bounded variation of (a,b) it is always a bounded variation atmost one cluster point	finite subcover open as well as closed many limit. It is a limit point semi open. B - A is closed set totally bounded extended real number its not of bounded variation of R its not of bounded variation of R its not a function of bounded variation atleast one cluster point	ins subcover meltine open nor doaed po limit point is empty is empty S-A is empty set bounded below extended rational number it is of bounded variation of R may be a function of bounded variation unique cluster point.	Initia subcover open as well as closed no limit point it is an interval it is an interval it is an interval in an tockead set it is of bounded variation of (a,b) may or may not be a function of bounded variation generation of bounded variation of variation of bounded variation of bounded variation.
A set attribut measure different from zero is A set attribut of compact if if has a The empty set g and whole set X Films sets in a mattribut scape have A subset A of R is connected if and only if if A is open set and B is closed set then if A is open set and B is closed set then The total Variation on (a,b] if if is obsolutely continuous on (a,b]	countable many subcover open more than one limit it is an interval open B - A is open set bounded non positive finite number It is of bounded variation of (a.b) may or may not be a function of	only one subcover closed one limit it is set closed B - A is semi open set unbounded non negative finite number fit is not of bounded variation (a,b) it is always a bounded variation atmost one cluster point A is complete metric space	finite subcover open as well as closed many limit. It is a limit point semi open. It is a limit point semi open. It is a limit point totally bounded extended real number extended real number is not of bounded variation alleast one cluster point undefined	ino subcover Insitute open nor cloaed no limit point ke empty semi cloaed 5 - As empty aemi cloaed 5 - As empty set bounded below advender attactor number t is of bounded variation t is of bounded variation of R may be a function of bounded variation unique cluster point made not be a complete metric space	Inite subcover open as well a closed too anit point closed Coleed 8 - A is closed set tool negative linit number is or bounded variation of (a,b) may or may not be a function of bounded variation afleast one cluster point A is incomplete metric space
A set attrict.measure different from zero is A set at is all ob Compact if if has a The empty set a and whole set X The integrate space have A subset A of the commended if and (p) is The set in a motion of the space have F has post at and and only if A subset A of the commended if and (p) is The store in a motion of the home A subset A variation on (a,b) is If is absolutely continuous on (a,b) A continuous function is Every infinite sequence (x n) in X has	countable many subcover open more than one limit is an interval b - A is open set bounded non positive finite number is a of bounded variation of [a b] may or may not be a function of bounded variation more cluster point	only one subcover diosed one limit it is set closed B - A is seni open set unbounded non negative finite number fit is not of bounded variation atmost one cluster point A is complete metric space any infinite subcollection of F	finite subcover open as well as closed many time Ts a limit point Sea and	ins subcover neither open nor doaed po limit point is empty emp (control of the second emp (control of the second empty) est bounded below extended variation of R may be a function of P bounded variation unique cluster point med not be a complete metric space any finite subcoderator of F has non-empty	Inite subcover open as well as closed no limit point its an interval do A La closed set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set
A set attrict.measure different from zero is A set at is all ob Compact if if has a The empty set a and whole set X The is any set at an and whole set X The is any set at an and whole set X The is any set at an and whole set X The is any set at an and whole set X The is any set at an and only if In a metric space server any any set on any only if The is any set at an any set on any set of the is any set of the is any set of the is any set at any set of the is any set of the iset of the ise of the isen of the isen of the isen of the isen of t	Countable many subcover open in any cost limit is an interval open B - A is open set bounded bounded is or bounded variation of [a,b] may or may not be a function of bounded variation more cluster point A is incomplete metric space	only one subcover closed one limit it is set closed B - A is semi open set unbounded non negative finite number fit is not of bounded variation (a,b) it is always a bounded variation atmost one cluster point A is complete metric space	finite subcover open as well as closed many limit. It is a limit point semi open. It is a limit point semi open. It is a limit point totally bounded extended real number extended real number is not of bounded variation alleast one cluster point undefined	ino subcover Insitute open nor cloaed no limit point ke empty semi cloaed 5 - As empty aemi cloaed 5 - As empty set bounded below advender attactor number t is of bounded variation t is of bounded variation of R may be a function of bounded variation unique cluster point made not be a complete metric space	Inite subcover open as well a closed too anit point closed Coleed 8 - A is closed set tool negative linit number is or bounded variation of (a,b) may or may not be a function of bounded variation afleast one cluster point A is incomplete metric space
A set attricture different from zero is A set at is as dio do Compact if if his a The empty set y and whole set X The interpoly set y and the interpoly if A subjects or top if A A subject A of R is commended if and only if A subject A of R is commended if and only if A A subject A of R is commended if and only if A A subject A of R is commended if and only if A A subject A of R is commended if and only if A A subject A of R is commended if and only if A A subject A of R is commended if and only if A A subject A of R is commended if and only if A A subject A of R is commended if and only if A A subject A of R is commended if A A subject A of R is commended if A A subject A of R is commended if A A subject A of R is commended if A A of R of R is commend if A A is a boold only if A A is a boold only if A A is a commended if A A is a boold only if A A is a commended if A A is a commend if A	countable many subcover open more than row limit it is an interval of - A is open set bounded non positive finite number it is of bounded variation of (a,b) may or may not be a function of bounded variation more cluster point A is incomplete metric space any finite subcetion of F has any finite subcetion of F has	only one subcover doesed one limit is set doesed probunded is not of bounded variation of (a,b) it is always a bounded variation it is always a bounded variation it is always a bounded variation almost one cluster point As complete metric space any infinite subcettor of F has empty intersection F	Entre subcover open as well as closed many limit It is a limit point Sem in point Sem of bounded vertaint Set of bounded vertaint Vertaint Set of bounded vertaint Ve	ins subcover no subcover no limit point it all empty services and the sub- section of the sub- section of the sub- extended rational number isoteneded rational number is of bounded variation may be a function of the sub- naige obtaine point need not be a complete matrix space any finite subcollection of if has non-empty intersection	Inite subcover open as well a closed no limit point is an interval closed is an interval closed set closed set
A set attract measure different from zero is A set attract measure different from zero is A set A is add to Compact if if his is The empty set a and verdue as X. A subset A of R is consected if and only if In a metric space every angleton set (p) is If A is open set and is is closed set then A sequentially compact metric space is If is absolutely confinuous on (a,b) is If is absolutely confinuous on (a,b) is A confinuous function is Every infinite sequence (x + 1) is X has If A is obset of a complete metric space A collection F of sets have finite intersection property if	Countable many subcover open in any source of the deal is an interver open B - A its open set bounded bounded bounded is of bounded variation of [a,b] bounded variation into a bounded variation for a bounded variation for a bounded variation for a bounded variation for a bounded variation and subcollection of F has enry [b is subcollection of F has	only one subcover doesd of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the se	Sine subcover copen as well as closed mit a faith and constant as closed mit a faith and constant as closed sent open Sentopen Sentopen Sentopen	Ins subcover ins subcover the filter open nor doeld to first paint series doeld B - A is entry set bounded below extended subcover extended subcover extended subcover advanded subcover the of bounded variation of R may be a function of bounded variation unique cluster point extended to be a complete metric space any finite subcovercion of F has non-empty interaction completiment of A is open	Intel subcover open as well a cloted on any point of any point closed B - A is closed set today bounded train regularie finite number is or bounded variation of (a.b) may or may not be a function of bounded variation alteast one cluster point A is incomplete metric space any finite subcollection of F has empty intersection completment of A is closed
A set attricture different from zero is A set at is as dio do Compact if if his a The empty set y and whole set X The interpoly set y and the interpoly if A subjects or top if A A subject A of R is commended if and only if A subject A of R is commended if and only if A A subject A of R is commended if and only if A A subject A of R is commended if and only if A A subject A of R is commended if and only if A A subject A of R is commended if and only if A A subject A of R is commended if and only if A A subject A of R is commended if and only if A A subject A of R is commended if and only if A A subject A of R is commended if A A subject A of R is commended if A A subject A of R is commended if A A subject A of R is commended if A A of R of R is commend if A A is a boold only if A A is a boold only if A A is a commended if A A is a boold only if A A is a commended if A A is a commend if A	countable many subcover open more than row limit it is an interval of - A is open set bounded non positive finite number it is of bounded variation of (a,b) may or may not be a function of bounded variation more cluster point A is incomplete metric space any finite subcetion of F has any finite subcetion of F has	only one subcover decked one inmit Research and the service of the service of the service of the B - A is service of the service (a,b) It is not of benuffed variation of (a,b) It is not of service of the service of the service of the service of the the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service	Sinte subcover open as well as closed many jimit Ease financi onte Ease financi Ease f	ins subcover no subcover no limit point it all empty services and the sub- section of the sub- section of the sub- extended rational number isoteneded rational number is of bounded variation may be a function of the sub- naige obtaine point need not be a complete matrix space any finite subcollection of if has non-empty intersection	Inite subcover open as well a closed no limit point is an interval closed is an interval closed set closed set
A set ethnol measure different from zero is A set ethnol measure different from zero is A set A is as do to Compact if if his A a The empty airs and veloce axX The empty airs and veloce axX A set A is as do to Compact if an and only if In a metric space every singleton set (p) is If A is open at and all is closed set for them A sequentially compact metric space is If is absolutely continuous on [a,b] A continuous function is Every infinite sequence (x n) ix has If A is obsect of a complete metric space A collection F of sets have finite intersection property if	Countable many subcover open in any cost bind open is an interval open B - A is open set bounded bounded is or bounded variation of (a b) may or may not be a function of bounded variation of bounded variation of bounded variation of a loss of the subcollection of P has emply intersection A is incomplete metric space any fine subcollection of P has emply intersection	only one subcover doesd of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the se	Ente subcover copen as well as closed many limit many limit somit open S - A is closed set butally bounded setarget setarget	Ins subcover ins subcover the filter open nor doeld to first paint series doeld B - A is entry set bounded below extended subcover extended subcover extended subcover advanded subcover the of bounded variation of R may be a function of bounded variation unique cluster point extended to be a complete metric space any finite subcovercion of F has non-empty interaction completiment of A is open	Inite subcover open as well a closed on any point of any point closed B - A is closed set today bounded from regarine finite number is or bounded variation of (a,b) may or may not be a function of bounded variation alteast one cluster point A is incomplete meric space any finite subcollicition of F has empty intersection completment of A is closed
A set athord measure different from zero is A set athord measure different from zero is A set h is all to be Compact if if has a The entry set a and whole set X Finite sets in a mote space have A subset A of R is commediated if and (1) is A subset A of R is commediated if and (1) is If is a spin set and is is closed as set then A sequentially compact metric space is If is absolutely continuous on [a,b] If is absolutely continuous on [a,b] A continuous function is Every infinite sequence (x n) in X has If is is closed subset of a complete metric space If is absolute of a complete metric space A collector is Every infinite sequence (x n) in X has If is a closed subset of a complete metric space A collector I f of sets have finite intersection property if If A is a cone subset of complete metric space X then A metric space (X, p) is complete. If is done if it is cone if it is a cone intersection is If is a cone subset of complete metric space X then	countable many subcover open more than one limit is an interval bit is an interval bounded non positive finite number is and bounded variation of [ab] may or may not be a function of bounded variation of [ab] may or may not be a function of bounded variation of the subcounded variation of the subcounded variation of the subcounded variation of the any finite subcollection of F has empty intersection A is incomplete every sequence in X is convergent	only one subcover deceed one innt formed innt deceed one instant deceed one instant service on the service of the service one of the and the subconded variation and the subconded variation deceed one cluster point any refinite subconder on the assemption there exists any refinite subconder on the assemption there exists and the subconder of the subconder one of the subconder of the assemption the assemption the	Sine subcover copen as well as closed mit a faith and constant as closed mit a faith and constant as closed sent open Sentopen Sentopen Sentopen	Ins subcover no subcover pa limit point pa limit point semi closed B - A is enryly set bounded below extended rational number It is of bounded variation willige a duration of RA may be a function of bounded variation unique outsets point and not be a complete metric space any finite subcolection of P has non-empty interaction completement of A is open meny cauchy sequence in X is divergent	Inite subcover goint as well as closed no limit point no limit point no limit point lossed l
A set attract measure different from zero is A set attract measure different from zero is A set A is as do be Compact if if has a The empty set a and whole set X The empty set a and whole set X A subset A of R is connected if and only if is a motie paper every angleton set (p) is if a boot is a connected if and only if is a motie paper every angleton set (p) is The total Variation on (a,b) is if is advolute origination set (a,b) A continuous function is Every infinite sequence (x, i) in X has if A is cone at an of a complete metric space A collection f of sets have finite interaction property if if A is an open subset of complete metric space X han A metric space (x, p) is complete. if The union diary finite collection of non empty closed set is	Countable many subcover open international control open is a notaxing open open bounded is a notaxing bounded is or bounded variation of (a,b) may or may not be a function of bounded variation more cluster point is or bounded variation more cluster point is incomplete metric space any fine subcollection of F hese empty intersection A is incomplete	only one subcover doesed one limit is set to a set the not of bounded variation (a,b) it is always a bounded variation it is always a bounded variation at somotion ce utater point As complete metric space any infinite subcollection of F has empty intersection As complete metric space and somotion of the set has empty intersection As complete metric space and somotion of the set has empty intersection and somotion of the set has empty intersection and somotion of the set has empty intersection and the set to a set the set to a set to a something the set to a set to	Entre subcover copen as well as closed many junt See and the subcover See and the subcover See and the subcover See and the subcover as the subcover See and the subcover as the subcover as the subcover See and the subcover as the subcover as the subcover See and the subcover as the subcov	In subcover In subcover and init point common dead a limit point common dead B - A te endy set bounded below extended atoxian number it is of bounded variation unique cluster point unique cluster point unique cluster point paid on C bounded variation unique cluster point paid on C bounded variation unique cluster point paid on C bounded variation competenent of A is open every cauchy sequence in X is divergent non empty set.	Inite subcover open as well as closed no limit point is an interval doe at a closed set of a start interval doe at a closed set of a point of a start of a b non negative finite number is of bounded variation of (a,b) may or may not be a function of bounded variation tensor or may not be a function of bounded variation affects one closter point A is incomplete metric space any finite subclicition of F has empty intersection completement of A is closed every cauchy sequence in X is convergant closed set
A set athord measure different from zero is A set athord measure different from zero is A set h is all to be Compact if if has a The entry set a and whole set X Finite sets in a mote space have A subset A of R is commediated if and (1) is A subset A of R is commediated if and (1) is If is a spin set and is is closed as set then A sequentially compact metric space is If is absolutely continuous on [a,b] If is absolutely continuous on [a,b] A continuous function is Every infinite sequence (x n) in X has If is is closed subset of a complete metric space If is absolute of a complete metric space A collector is Every infinite sequence (x n) in X has If is a closed subset of a complete metric space A collector I f of sets have finite intersection property if If A is a cone subset of complete metric space X then A metric space (X, p) is complete. If is done if it is cone if it is a cone intersection is If is a cone subset of complete metric space X then	countable many subcover open more than one limit is an interval bit is an interval bounded inon positive finite number is and bounded variation of [ab] may or may not be a function of bounded variation of [ab] may or may not be a function of bounded variation of more cluster point A is incomplete metric space amy finite subcollection of F has empty intersection A is incomplete every sequence in X is convergent	only one subcover decked one innit Screed B - A is semi open set unbounded Is not of sounded variation of (s.b) It is not of sounded variation atmost one cluster point A is complete matter space A is complete matter space A is complete net a subcover a sounded variation at a complete matter space divergent divergent closed set divergent	Entre subcover open as well as closed many limit Ts a limit point Be a limit point	ins subcover no subcover point point (a empty) employed and a sub- employed and a sub- employed and a sub- employed and a sub- extended rational number (a sub- naybe a function of R may be a function of R may be a function of R may be a sub- naybe a sub- ray finet sub-observed missescelar of Fina non-empty intersection.	Inite subcover open as well a closed no limit point account of the second closed and the second of the second second of the second second non negative finite number is an of sound variation of (ab) may or may not be a function of bounded variation atleast one cluster point A is incomplete metric space and the second second second press cluster point complement of A is closed every cauchy sequence in X is convergant closed sec
A set attrict measure different from zero is A set attrict measure different from zero is A set A is all of the Compact if if has a The empty set a and whole set X The empty set and the	Countable many subcover open more than one limit argent interval argent interval argent interval argent interval argent argent argent argent argent argent argent argent bounded variation of [a,b] may or may not be a function of bounded variation more cluster point is in council argent arg	only one subcover doked one imit i a set i a set on negative finance in the set of the set of the set is and one set in and of bounded variation is and one sounded variation is always a bounded variation is almost one cluster point A is complete metric space any infinite subcostcon of F has empty intersection A is complete metry sequence in X is divergent closed aet doked net countable	Entra subcover copen as well as closed many limit Es a limit point Es a limit point	ins autoorer no autoorer pa imit poon to a imit poon to a la encly a la encly a encly boundet below extended rational number akterided rational number akterides rational number and not be a complete metric space any finite subcollection of F has non-empty intersection completiment of A is open every cauchy sequence in X is divergent non entry at does not hast and not be a countable	Inite subcover open as well as closed no limit point it is an interval it is an interval it is an interval it is not closed as the loading bounded variation of (a.b) interval wariation may or may not be a function or bounded wariation may or may not be a function or bounded wariation may or may not be a function or bounded wariation at least one cluster point A is incomplete metric space any finite subcollection of F has empty intersection completement of A is closed every cauchy sequence in X is convergant closed as fill open and closed
A set struct measure different from zero is A set struct measure different from zero is A set is said to be Compact if it has a The empty set g and whole set X The empty set g and whole set X A sequent and its consected if and only if in a metric space even y ingleton set (p) is If is a port set and its closed set of them A sequentially compact metric space is If is absoluted of the set of them If is absoluted or is in X Set of them If is absoluted or is in X Set of them If is absoluted or is in X Set of them If is absoluted or is in X Set of them If is absoluted or is absoluted intersection property if If is absoluted or object metric space X A metric space (X, p) is complete metric space X Metric absoluted or object on or empty closed set is The entry is if of a metric space is The entry is if of a metric space is A metric space (X, p) is complete metric space is The union of any metric objection is Description A metric space (X, p) is complete metric space is The entry is if of a metric space is The entry is if of a metric space is The entry is if of a metric space is The union of any metric objection is Description A metric space (X, p) is complete metric space is The entry is if of a metric space is The entry is if of a metric space is The entry is if of a metric space is The entry is if of a metric space is The entry is if of a metric space is The entry is if of a metric space is Description A metric space (X, p) is Description A metric space (X, p) is Description A metric space is Description A	Countable many subcover open in any cost bind open is an intervel open is an intervel open is a nitrover open bounded is on positive finite number it is of bounded variation of bounded variation of bounded variation of bounded variation of a bounded variation of bounded variation of a bounded variation of his open set a is incomplete metric space any finite subcollection of F has enery sequence in X is convergent open set open	only one subcover decked one innit Screed B - A is semi open set unbounded Is not of sounded variation of (s.b) It is not of sounded variation atmost one cluster point A is complete matter space A is complete matter space A is complete net a subcover a sounded variation at a complete matter space divergent divergent closed set divergent	Sine subcover copen as well as closed many limit sant open sant sant open sant open sant open sant sant open sant sant open sant s	In subcorer In subcorer belikr open nor doed pa imit point comordated B - A te endy set boundat below extended availation of R may be a function of bounded variation unique cluster point unique cluster point paid on C bas a compose metric space memordon of R man and emply memordon of R has non-emply memordon of R has non-emply does not exist.	Inite subcover open as well a closed no limit point account of the second closed and the second of the second second of the second second non negative finite number is an of sound ventision of (ab) may or may not be a function of bounded versation atleast one cluster point A is incomplete metric space and the second second second references. The second second every cauchy sequence in X is convergant closed set (board dest)
A set vertice different from zero is A set vertice different from zero is A set vertice different from zero is A set is as all of the Compact if if has a The entry set of an other space have the set of a random space have the space news insident set (2) is If is a specific the space have the space news insident set (2) is If is a specific the space have the space news insident set (2) is If is a specific the space have the space news insident set (2) is If is a specific the space have the space news insident set (2) is If is a specific the space have the space news insident set (2) is If is a specific the space have the space news insident space have the space of a complete netric space X then A metric space (X, p) is complete , if the units of any finite collection if nor metry closed set is the entry set (4) and the space have the netry (5) is C + 0 complete netric space X then The space (2, 1) is C + 0 complete netric space X then	countable many subcover open more than one limit is an intervel is a subcover bounded non positive finite number is of bounded variation of [ab] may or may not be a function of bounded variation more cluster point A is incomplete metric space emply intersection A is incomplete every sequence in X is convergent open set open	only one subcover doced one imit it is set if a set in a set in a set in a set in a set in a set in a	Sinte subcover copen as well as closed many limit Ts a limit point Ts a limit point Si and closed set Si not of bounded variation of R Si and of bounded variation Si and of bounded variation Si and of bounded variation Si and of bounded Sinter a function Sinter a functin Sinter a function Sinter a f	ins subcover no subcover point point is empty is empty is a empty is a subcover is a subcover extended rational number is do bounded variation of R may be a function of bounded variation unique cluster point need not be a complete metric space any finite subcolection of F has non-empty intersuccion of F has non-empty intersuccion of F has non-empty intersuccion of F has non-empty intersuccion of F has non-empty energy succivy sequence in X is divergent non empty set does not coat and not be a countable C is uncountable and of positive measure	Initia subcover open as well as closed no limit point it is an interval it is an interval it is an interval is an theread is an the closed set is of bounded variation of (a,b) may or may not be a function of bounded variation may finite subcolston of the sub- regime is a set of the subcolston of the subcolston of the subcolston of the sub- regime is a set of the subcolston of the subcolston of the subcolston of the subcolston completement of A is closed open and closed open and closed of countable of messure zero of subcolstoned of messure zero of subcolstoned of the subcolstoned of the subcolstoned set of the subcolstoned of the subcolstoned set of the subcolstoned set of the subcolstoned open and closed of the subcolstoned set of the subcolstoned open and closed of the subcolstoned set
A set struct measure different from zero is A set struct measure different from zero is A set is task to be Compact if it has a The empty set a and whole set X A set is task to be Compact if it has a The empty set a compact measure is I an empty set a compact if it has a compact for the set of the I I an empty set a compact measure is I an explore the collection of non empty closed set is I an empty set a compact measure is I a set of trainomation means measure is I a set of trainomation means measure is I a explore the collection of non empty closed set is I a explore the collection of non empty closed set is I a explore the collection of non empty closed set is I an empty set a compact empty end the measure is I a compact and the means measure is I a compact set the means m	Countable many subcover open intervention one limit is an intervention open open bounded intervention bounded variation of [a,b] may or may not be a function of bounded variation of [a,b] may or may not be a function of bounded variation of the bounded variation of [a,b] may or may not be a function of bounded variation of [a,b] may or may not be a function of bounded variation of [a,b] may or the subcollection of F has empty intersection A is incomplete metric space open a subcollection of F has empty intersection open a set open countable C is not countable C is not countable	only one subcover deceed one innt first foread B - A is semi open set umbounded B - A is semi open set umbounded B - A is semi open set umbounded B - A is not of bauded variation almost one claster point almost one claster point deceed and deceed int countrable C is of measure zero infine subcovering of F	Entre subcover copen as well as closed many junt many junt many junt somit open somitopen somitopen somit open somitopen	In subcover no subcover pa limit point series development series development series development is of bounded below addended variation of R may be a function of Rounded variation unique cluster point unique cluster point paid paid as a complete matrix space ment be a complete matrix space interesction completement of A is open every cauchy sequence in X is divergent non empty set deen not exist med on be a combine to be a com	Inite subcover open as well a closed open as well as open as well open and closed open approximative approximative open and closed open approximative open approxima
A set vertice different from zero is A set vertice different from zero is A set vertice different from zero is A set is as all of the Compact if if has a The entry set of an other space have the set of a random space have the space news insident set (2) is If is a specific the space have the space news insident set (2) is If is a specific the space have the space news insident set (2) is If is a specific the space have the space news insident set (2) is If is a specific the space have the space news insident set (2) is If is a specific the space have the space news insident set (2) is If is a specific the space have the space news insident space have the space of a complete netric space X then A metric space (X, p) is complete , if the units of any finite collection if nor metry closed set is the entry set (4) and the space have the netry (5) (1) is (C + C + C + C + C + C + C + C + C + C +	countable many subcover open more than one limit is an intervel is a subcover bounded non positive finite number is of bounded variation of [ab] may or may not be a function of bounded variation more cluster point A is incomplete metric space emply intersection A is incomplete every sequence in X is convergent open set open	only one subcover doced one imit it is set if a set in a set in a set in a set in a set in a set in a	Sine subcover open as well as closed may immediate open as well as closed may immediate sent open Sent Sent open Sent Sent Sent open Sent S	ins subcover no subcover point point is empty is empty is a empty is a subcover is a subcover extended rational number is do bounded variation of R may be a function of bounded variation unique cluster point need not be a complete metric space any finite subcolection of F has non-empty intersuccion of F has non-empty intersuccion of F has non-empty intersuccion of F has non-empty intersuccion of F has non-empty energy succivy sequence in X is divergent non empty set does not coat and not be a countable C is uncountable and of positive measure	Initie subcover open as well as closed no limit point it is an interval it is an interval it is an interval it is an there are a subcover and the interval is an theorem of a subcover it is of bounded variation of (a,b) may or may not be a function of bounded variation may or may not be a function of bounded variation and the interval is a subcover variation and the interval is a subcover variation and the interval is a subcover variation of the interval is a subcover variation of the interval is a subcover variation and the interval is a subcover variation of the interval is a subcover variation
A set veltaria from zero is A set veltaria for a compact if it has a The entry is of an advantage of the adv	Countable many subcover open many subcover open is a notarian one limit is a notarian open bounded is a notarian bounded is of bounded is of bounded variation of [a,b] may or may not be a function of bounded variation more cluster point is in consumpted remay intersection A is incomplete remay sequence in X is convergent open contable Control finite subcovering of F	only one subcover decked one initi Foread B - A is semi open set unbounded B - A is semi open set unbounded B - A is semi open set unbounded atmost one cluster point atmost one cluster point A is complete metric space A is complete metric space A is complete metric space A is complete nerey sequence in X is divergent closed set diceed not countable C is of measure zero finitie subcovering of F B suncountable	Entra subcover open as well as closed many jimit Es a finno point estended veisition of R Es and es bounded vindelon alleast one cluster point undefined artificat articitat point artificat artificat articitat articitat artificat arti	In subcorer In subcorer believe open nor doeed pa imit point is more and is more and is more and is a service of the service of the service of the service of the service of the unique cluster point unique cluster point unique cluster point unique cluster point paid on to ba a complete metric space metric of the service of the service of the service of the metric of the service of the service of the service of the service of the service of the the animite subcorer of the service of the service of the the perfect set	Inite subcover gen as well a closed no Init point actional Conard
A set struct measure different from zero is A set struct measure different from zero is A set is task to be Compact if it has a The empty set a and whole set X A set is task to be Compact if it has a The empty set a compact measure is I an empty set a compact if it has a compact for the set of the I I an empty set a compact measure is I an explore the collection of non empty closed set is I an empty set a compact measure is I a set of trainomation means measure is I a set of trainomation means measure is I a explore the collection of non empty closed set is I a explore the collection of non empty closed set is I a explore the collection of non empty closed set is I an empty set a compact empty end the measure is I a compact and the means measure is I a compact set the means m	Countable many subcover open intervention one limit is an intervention open open bounded intervention bounded variation of [a,b] may or may not be a function of bounded variation of [a,b] may or may not be a function of bounded variation of the bounded variation of [a,b] may or may not be a function of bounded variation of [a,b] may or may not be a function of bounded variation of [a,b] may or the subcollection of F has empty intersection A is incomplete metric space open a subcollection of F has empty intersection open a set open countable C is not countable C is not countable	only one subcover deced deced one innt the deced one is and subcover subcov	Sine subcover open as well as closed many limit open as well as closed many limit semi open Seni Seni Seni Seni Seni Seni Seni	In subcover no subcover pa limit point series development series development series development is of bounded below addended variation of R may be a function of Rounded variation unique cluster point unique cluster point paid paid as a complete matrix space ment be a complete matrix space interesction completement of A is open every cauchy sequence in X is divergent non empty set deen not exist med on be a combine to be a com	Inite subcover open as well a closed open as well as open as well open and closed open approximative approximative open and closed open approximative open approxima
A set attract measure different from zero is A set attract measure different from zero is A set A is as do be Compact if if has a The empty set o and whole set X A A set A is as do be Compact if at has a The empty set o and whole set X A A sequent and a set of the A set of the A set of the A set of the A sequent and A sequ	Countable many subcover open many subcover open is a notarian one limit is a notarian open bounded is a notarian bounded is of bounded is of bounded variation of [a,b] may or may not be a function of bounded variation more cluster point is in consumpted remay intersection A is incomplete remay sequence in X is convergent open contable Control finite subcovering of F	only one subcover decked one initi Foread B - A is semi open set unbounded B - A is semi open set unbounded B - A is semi open set unbounded atmost one cluster point atmost one cluster point A is complete metric space A is complete metric space A is complete metric space A is complete nerey sequence in X is divergent closed set diceed not countable C is of measure zero finitie subcovering of F B suncountable	Entra subcover open as well as closed many jimit Es a finno point estended veisition of R Es and es bounded vindelon alleast one cluster point undefined artificat articitat point artificat artificat articitat articitat artificat arti	In subcorer In subcorer believe open nor doeed pa imit point is more and is more and is more and is a service of the service of the service of the service of the service of the unique cluster point unique cluster point unique cluster point unique cluster point paid on to ba a complete metric space metric of the service of the service of the service of the metric of the service of the service of the service of the service of the service of the the animite subcorer of the service of the service of the the perfect set	Inite subcover goen as well a closed no limit point account in the subcover account of the subcover account of the subcover and account of the subcover and account of the subcover and account of the subcover and account of the subcover account of the subcover
A set without measure different from zero is A set without measure different from zero is A set is as all to be Compact if if has a The empty set o and whole set X The empty set of a compact metric space is The total Variation on (a.b.) A continuous timetication is Every infinite sequence (x.n.) A X has The is absolutely communation of a the metric space A The empty set of a complete metric space X han A metric space (x.n.) p. Is complete metric space X han The empty set of a metric space is The set O and whole context of non empty closed us is The set of a metric space is The set of a	Countable many subcover open in one limit is an introver open is an introver open bounded non positive finite number is of bounded variation of [ab] may or may not be a function of bounded variation more cluster point A is incomplete may finite subcotection of F has emply intersection of F has emply intersection A is incomplete the subcovering of F finite subcovering of F the subcovering of F	only one subcover decked one imit I is set I is set I is set I is set I is set I is not of bounded variation of lab.) It is not of bounded variation atmost one cluster point A is complete metric space may infinise subcollection of I ⁺ has empy intersection A is complete metric space merry sequence in X is divergent closed set devergent C is of measure zero infinite subcovering of I ⁻ is aurocontable not commative in a uncontable not measure zero	Sinte subcover open as well as closed man man open as well as closed man	ins subcover non subcover paint profit is enclosed paint profit is enclosed bandback below extended rational number is a of bounded variation unique cluster paint askended rational number is a of bounded variation unique cluster paint angle ta function of bounded variation unique cluster paint angle ta a complete metric space any finde subcoderation of F has non-empty intersection completement of h is open every cauchy sequence in X is divergent one angly set does not exit need not be a countable need on to be a countable need not be a countable in finite subcovering of F is perfectuet is perfectuet need not be messurable	Inite subcover open as well as closed pole mit your as a closed pole mit your as closed pole mit your as closed pole mit your as a closed set locally bounded inon negative finite rumber in a of hounded variation of (a,b) range of may not be a function of bounded variation affects on cluster point A is incomplete metric space metry finite subclection of F has empty intersection completement of A is closed every cauchy sequence in X is convergant closed set penn and closed por contrabile C is uncountable and of measure zero I finite subcovering of F is defined measurable

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021 DEPARTMENT OF MATHEMATICS

Subject : REAL ANALYSIS	SEMESTER: I	L T P C
SUBJECT CODE: 17MMP102	CLASS: IM.Sc	4004

UNIT V

Implicit functions and extremum problems:

Introduction – Functions with non zero Jacobian determinant – Inverse function theorem – Implicit function theorem – Extrema of real valued functions of one variable and several variables.

TEXT BOOK

1. Rudin. W., (1976) .Principles of Mathematical Analysis, Mcgraw Hill, New york .

REFERENCES

- 1. Tom .M. Apostol., (2002). Mathematical Analysis, Second edition, Narosa Publishing House, New Delhi.
- 2. Gupta.S.L. and Gupta.N.R.,(2003).Principles of Real Analysis, Second edition, Pearson Education Pvt.Ltd, Singapore.
- 3. Royden .H.L., (2002). Real Analysis, Third edition, Prentice hall of India, New Delhi.
- 4. Sterling. K. Berberian., (2015). A First Course in Real Analysis, Springer Pvt Ltd, New Delhi.

2. The definition of a local maximum or minimum is as follows:

Def. f has a local maximum (minimum) at a point $x^o \in X$ if $\exists N(x^o)$ such that for all $x \in N(x^o)$, $f(x) - f(x^o) < 0$.($f(x) - f(x^o) > 0$ for a minimum.)

3. The generalization of the first order condition is as follows:

Proposition 1. If a differentiable function f has a maximum or a minimum at $x^{\circ} \in X$, then $f_i(x^{\circ}) = 0$, for all i.

The n equations generated by setting each partial derivative equal to zero represent the first order conditions. If a solution exists, then they may be solved for the n solution values x_i°.

4. As in the case of n choice variables, there are second order conditions which determine whether a critical point is a maximum or a minimum. The complication is that there is no longer one second order derivative which can be checked for negativity or positivity. In fact, there are n^2 such derivatives, $f_{ij}(x^o)$, i, j = 1,...,n. The relevant second order condition for a maximum is that

$$(*) \qquad d^2f(x^o)=\ \sum\limits_{i=1}^n \ \sum\limits_{j=1}^n \ f_{ij}(x^o)\ dx_idx_j \leq 0 \ for \ all \ (dx_{1,\ldots,}dx_n)\neq 0.$$

This condition is that the quadratic form $\sum_{i=1}^{n} \sum_{j=1}^{n} f_{ij}(x^{o}) dx_i dx_j$ is negative definite.

In (*), the discriminate is the Hessian matrix of f (the objective function). As discussed above, the rather cumbersome (*) condition is equivalent to a fairly simple sign condition. This is as follows:

(SOC) (max)
$$|PM_i|$$
 of $H = \begin{cases} f_{11} \cdot \cdot \cdot \cdot f_{1n} \\ \cdot & \cdot \\ \cdot & \cdot \\ f_{n1} \cdot \cdot \cdot f_{nn} \end{cases}$, evaluated at x° , have signs $(-1)^i_{\cdot}$.

The analogous conditions for a minimum are that

$$(\ensuremath{^{\ast\ast}}) \qquad d^2f(x^o) = \ensuremath{\sum_{i=1}^n} \ensuremath{\sum_{j=1}^n} \ensuremath{f_{ij}(x^o)}\ensuremath{\,dx_idx_j} > 0 \mbox{ for all } (dx_{1,\dots,}dx_n) \neq 0,$$

meaning that d²f(x°) is positive definite, and this condition is equivalent to

$$(\text{SOC}) \text{ (min)} \quad |\text{PM}_i| \text{ of } H = \begin{cases} f_{11} \cdot \cdot \cdot \cdot f_{1n} \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ f_{n1} \cdot \cdot \cdot \cdot f_{nn} \end{cases}, \text{ evaluated at } x^\circ, \text{ have positive signs} \end{cases}$$

If f satisfies the SOC for a maximum globally, then f is strictly concave. If it satisfies the SOC for a minimum globally, then f is strictly convex. For an n variable function, the definition of strict concavity reads the same: $f(\alpha x + (1-\alpha)x') > \alpha f(x) + (1-\alpha)f(x'), x \neq x', \alpha \in (0,1)$.

Proposition 2. If at a point xº we have

(i) f_i(x°) = 0, for all i, and

(ii) SOC for a maximum (minimum) is satisfied at x°,

Then x° is a local maximum (minimum). If in addition the SOC is met for all $x \in X$ or if f is strictly concave (convex), then x° is a unique global maximum (minimum).

Examples: #1 Maximizing a profit function over two strategy variables. Let profit be a function of the two variables x_i , i = 1, 2. The profit function is $\pi(x_1, x_2) = R(x_1, x_2) - \Sigma r_i x_i$, where r_i is the unit cost of x_i and R is revenue. We wish to characterize a profit maximal choice of x_i . The problem is written as

$$\max_{\{x_1,x_2\}} \pi(x_1,x_2).$$

The FOC are

$$\pi_1(x_1,x_2)=0$$

$$\pi_2(x_1, x_2) = 0.$$

The second order conditions are

 $\pi_{11} < 0, \ \pi_{11}\pi_{22} - \pi_{12}^2 > 0$ (recall Young's Theorem $\pi_{ij} = \pi_{ji}$).

The effect of a change in r_1 can be determined by differentiating the FOC with respect to r_1 . We obtain

$$H\begin{bmatrix} \partial x_1 / \partial r_1\\ \partial x_2 / \partial r_1 \end{bmatrix} = \begin{bmatrix} 1\\ 0 \end{bmatrix}, \text{ where H is the relevant Hessian.}$$

Using Cramer's rule,

$$\partial x_1 / \partial r_1 = \frac{\begin{vmatrix} 1 & \pi_{12} \\ 0 & \pi_{22} \end{vmatrix}}{|H|} = \pi_{22} / |H| < 0.$$

Likewise

$$\partial x_2 / \partial r_1 = \frac{\begin{vmatrix} \pi_{11} & 1 \\ \pi_{21} & 0 \end{vmatrix}}{|H|} = -\pi_{21} / |H|.$$

The sign of π_{21} is positive if 1 and 2 are complements in profit and it is negative if they are substitutes.

#2. $\min_{\{x,y\}} x^2 + xy + 2y^2$. The FOC are

$$2\mathbf{x} + \mathbf{y} = \mathbf{0},$$

$$x + 4y = 0.$$

Solving for the critical values x = 0 and y = 0. $f_{11} = 2$, $f_{12} = 1$ and $f_{22} = 4$. The Hessian is

$$H = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}, \text{ with } f_{11} = 2 > 0 \text{ and } |H| = 8 - 1 = 7 > 0.$$

Thus, (0,0) is a minimum. Further, it is global, because the Hessian sign conditions are met for any x,y.

Existence

In the case of a function of many variables, we want to generalize our existence

argument above. To do this, we must introduce a few concepts.

Def. 1. A set $X \subset \mathbb{R}^N$ is said to be *open* if for all $x \in X \exists N(x)$ such that $N(x) \subset X$. The set X is said to be *closed* if its complement is open.

Def. 2. A set $X \subset \mathbb{R}^N$ is said to be *bounded* if the distance between any two of its points is finite.

That is,
$$\left[\sum_{i=1}^{n} (x_i - x_i)^2\right]^{1/2} < \infty$$
, for all $x, x' \in X$.

Def. 3 A set $X \subset \mathbb{R}^N$ is said to be *compact* if it is both closed and bounded.

We can now state a basic existence result.

Proposition. Let $f: X \to R$, where X is a subset of \mathbb{R}^N . If X is compact and f is continuous, then f has a maximum and a minimum on X. If X is both compact and convex and f is strictly concave, then f has a unique maximum on X. If X is both compact and convex and f is strictly convex, then f has a unique minimum on X.

This proposition does not distinguish between boundary optima and interior optima. As in the case of a function of single variable, the results can be used to show the existence of interior optima by showing that boundary optima are dominated. The technique is as described above. Suppose that there are m < n constraints $g_j(x) = 0$, j = 1, ..., m. The Lagrangian is written as $L(\lambda_1, ..., \lambda_m, x_1, ..., x_n) = f(x) + \Sigma \lambda_j g_j(x)$. The FOC are that the derivatives of L in x_i and λ_j vanish:

$$f_i + \Sigma \lambda_j \partial g_j / \partial x_i = 0$$
, for all i,

$$g_j(x) = 0$$
, for all j.

The bordered Hessian becomes

$$|\overline{\mathbf{H}}| = \begin{bmatrix} \mathbf{0} & \mathbf{J}_{\mathbf{g}} \\ \mathbf{J}_{\mathbf{g}}^{'} & \mathbf{L}_{\mathbf{ij}} \end{bmatrix},$$

where J_g is the Jacobian of the constraint system in x, and $[L_{ij}]$ is the Hessian of the function L in x. The condition m < n must be met, and the sign conditions for a maximum and a minimum are written it terms of the principle minors of the above bordered Hessian. For a maximum, the condition is

(SOC)(max) PM_i of $|\overline{H}|$ of order i > 2m has sign (-1)^r, where r is the order of the largest order square $[L_{ij}]$ embedded in $|PM_i|$.

For a minimum, the condition is

(SOC)(min) $|PM_i|$ of $|\overline{H}|$ of order i > 2m has sign $(-1)^m$.

Examples:

#1. Find the critical 4-tuple for the function $y = f(x_1, x_2, x_3)$, f: $R^3_+ \rightarrow R$

 $y = x_1 x_2 x_3$

subject to

$$x_1^2 + x_2^2 - 1 = 0$$

 $x_1 - x_3 = 0.$

Restrict your choice of x_i , i = 1, 2, 3, to the positive reals.

$$L = x_1 x_2 x_3 + \lambda_1 (x_1^2 + x_2^2 - 1) + \lambda_2 (x_1 - x_3)$$

- (1) $x_2x_3 + 2\lambda_1x_1 + \lambda_2 = 0$
- (2) $x_1x_3 + 2\lambda_1x_2 = 0$
- (3) $x_1x_2 \lambda_2 = 0$
- $(4) \qquad x_1^2 + x_2^2 1 = 0$
- (5) x₁ x₃ = 0

From (5)

 $x_1 = x_3$

From (3)

 $x_1x_2=x_3x_2=\lambda_2$

Solve for λ_1 from 2

$$x_1 x_3 + 2\lambda_1 x_2 = 0$$
$$x_1^2 = -2\lambda_1 x_2$$
$$\therefore \lambda_1 = \frac{-x_1^2}{2x_2}$$

Go to (1)

$$x_1 x_2 + 2 \left(\frac{-x_1^2}{2x_2} \right) x_1 + x_1 x_2 = 0$$
$$2x_1 x_2 - \frac{x_1^3}{x_2} = 0$$

Multiply by x2/x1 (both sides)

$$(\alpha) \qquad 2 x_2^2 - x_1^2 = 0$$

Use (4)

$$(\beta) \qquad x_1^2 + x_2^2 - 1 = 0$$

Solve x1, x2:

(α)
$$x_1^2 = 2 x_2^2$$

∴ $2 x_2^2 + x_2^2 = 1$
 $3 x_2^2 = 1$
 $x_2^2 = 1/3$
 $x_2 = \sqrt{\frac{1}{3}}$

but

$$x_1^2 = 2 x_2^2 = 2(1/3) = 2/3$$

 $x_1 = \sqrt{\frac{2}{3}}$ $x_3 = \sqrt{\frac{2}{3}}$

and

$$y^{0} = (1/3)^{1/2} (2/3)^{1/2} (2/3)^{1/2}$$
$$y^{0} = \frac{2}{3\sqrt{3}}$$

∴ $(\sqrt{2/3}, \sqrt{1/3}, \sqrt{2/3}, \frac{2}{3}\sqrt{3}).$

The Problem's Bordered Hessian.

$$\begin{bmatrix} \overline{H} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 2x_1 & 2x_2 & 0 \\ 0 & 0 & 1 & 0 & -1 \\ 2x_1 & 1 & 2\lambda_1 & x_3 & x_2 \\ 2x_2 & 0 & x_3 & 2\lambda_1 & x_1 \\ 0 & -1 & x_2 & x_1 & 0 \end{bmatrix}$$

<u>Remark 2</u>: The FOC (1) and (2) are necessary conditions only if the Constraint Qualification holds. This rules out particular irregularities by imposing restrictions on the boundary of the feasible set. These irregularities would invalidate the FOC (1) and (2) should the solution occur there. Let x° be the point at which (1) and (2) hold and let index set k = 1,..., K represent the set of g_i which are satisfied with equality at x° . Then the matrix

$$\mathbf{J} = \begin{vmatrix} \frac{\partial g_1(x^o)}{\partial x_1} & \cdots & \frac{\partial g_1(x^o)}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_K(x^o)}{\partial x_1} & \frac{\partial g_K(x^o)}{\partial x_n} \end{vmatrix}$$

Has rank $K \le n$. That is the gradient vectors of the set of equality constraints are linearly independent.

- *Proof.* 1. Choose $\delta_1 > 0$ and $\epsilon_1 > 0$ so that $F_y(x, y) > 0$ for $||x a|| < \delta_1$, $|y b| < \epsilon_1$. Since F(a, b) = 0 and F(a, y) is strictly increasing in y, $F(a, b + \epsilon_1/2) > 0$ and $F(a, b \epsilon_1/2) < 0$. Let $\epsilon = \epsilon_1/2$ and choose $\delta < \delta_1$ so that $F(x, b + \epsilon) > 0$ and $F(x, b \epsilon) < 0$ if $||x a|| < \delta$. These dimensions define B. For fixed x with $||x a|| < \delta$, since $F(x, b \epsilon) < 0$, $F(x, b + \epsilon) > 0$, and F(x, y) is strictly increasing in y, the intermediate value theorem implies that there is a unique y with $||y b|| < \epsilon$ such that F(x, y) = 0. The uniquely determined y defines a function f(x). This proves the first statement.
 - 2. We prove that f is continuous at a. Let e > 0 be given. Assume that $e < \epsilon$ Then by the proof of the first statement, there is a d > 0 (we may choose $d < \delta$) so that the uniquely defined f(x) in $\{||x a|| < d\}$ satisfies |f(x) b| < d. This proves continuity at a. We can repeat this argument at any point $(a_1, f(a_1)) \in B$, proving that f is continuous on $\{||x a|| < \epsilon\}$.
 - 3. By differentiability

$$0 = F(x, f(x)) = F(a, b) + \sum_{j} P_j(x, f(x))(x - a_j) + Q(x, f(x))(f(x) - f(a))$$

=
$$\sum_{j} P_j(x, f(x))(x - a_j) + Q(x, f(x))(f(x) - f(a)),$$

where $P_i(x, f(x)), Q(x, f(x))$ are continuous at a. Rewrite this as

$$Q(x, f(x))(f(x) - f(a)) = -\sum_{j} P_j(x, f(x))(x - a_j).$$

Since Q(x, f(x)) is continuous at a and $Q(a, (f(a)) = f_y(a, b) > 0$, Q(x, f(x)) > 0 for x near a and we can divide by it to get

$$f(x) = f(a) + -\sum_{j} \frac{P_j(x, f(x))}{Q(x, f(x))} (x - a_j).$$

Each term $\frac{P_j(x, f(x))}{Q(x, f(x))}$ is continuous at a so f is differentiable at a. Moreover

$$f_{x_j}(a,b) = -\frac{F_j(a,b)}{F_y(a,b)}.$$

You might like this bad notation:

$$\frac{\partial y}{\partial x_j} = -\frac{\partial F_{x_j}}{\partial F_y}.$$

The geometrical significance of the Jacobian determinant is outlined here. Consider a transformation of a single rectangular Cartesian coordinate x to a new coordinate ξ . The line element dx is transformed to the new coordinate via

$$dx = \frac{dx}{d\xi} d\xi$$

In this case, the Jacobian determinant is simply the derivative $\frac{dx}{d\xi}$.

Now, consider an area element dx dy. For convenience in later generalization, we label the coordinates (x_1, x_2) . Therefore, $x_1 = x$, and $x_2 = y$. Let us make a transformation to a new set of coordinates (ξ_1, ξ_2) . The area element transforms as follows.

$$dx_1 dx_2 = \left| \frac{\partial x_1}{\partial \xi_1} \frac{\partial x_2}{\partial \xi_2} - \frac{\partial x_2}{\partial \xi_1} \frac{\partial x_1}{\partial \xi_2} \right| d\xi_1 d\xi_2$$

How did we obtain the above result? First, consider a differential change in the new variable ξ_1 while keeping the variable ξ_2 fixed. The components of the infinitesimal vector resulting from this change are

$$\left(\frac{\partial x_1}{\partial \xi_1} d\xi_1, \frac{\partial x_2}{\partial \xi_1} d\xi_1\right)$$

In a like manner, we can write the components of the vector obtained by making a differential change in the second variable ξ_2 while keeping the variable ξ_1 fixed.

$$\left(\frac{\partial x_1}{\partial \xi_2} d\xi_2, \frac{\partial x_2}{\partial \xi_2} d\xi_2\right)$$

These two vectors need not be orthogonal in general. Therefore, we need a result for the area of a parallelogram whose sides are the differential vectors written above. We know that this is the magnitude of the vector product (cross product) of the two vectors. This is the result given above for the area element.

POSSIBLE QUESTIONS

UNIT-V

PART-B $(5 \times 6 = 30)$

1. State and prove implicit function theorem.

2. Find implicit function defined by relation x + y + z - xyz = 0 near point (0,0,0) and find derivative with respect to x and y using implicit function theorem.

3. Prove that functions u = x + y - z, v = x - y + z and $w = x^2 + y^2 + z^2 - 2yz$ are not independent of one another .Also find relation between them.

4. State and prove functions with non Zero Jacobian determinant.

- 5. Define saddle point with example and Define Jacobian determinant .
- 6. State and prove Inverse Function Theorem.
- 7. prove that if f = u + iv is a complex valued function with derivative at a point z in C, then $J_f(z) = |f'(z)|^2$.

PART- C (1 × 10 =10)

- 1. Let A be an open subset of \mathbb{R}^n and assume that f: A $\rightarrow \mathbb{R}^n$ has continous partial derivatives on A. If $J_f(x) \neq 0$ for every x in A, then prove f is an open mapping.
- 2. Examine the following functions extreme values
 - (i) $f(x, y) = y^2 + 4xy + 3x^2 + x^3$
 - (ii)) $f(x, y, z) = 2xy^2 + 3y^2 + 4z^2 3xy + 8z$
- 3.Prove: For some integer $n \ge 1$, Let f have continuous nth derivative in the open interval (a,b). Suppose for some interior point c in (a,b), we have f'(c), f''(c)...... $f^{(n+1)}(c) = 0$ such that $f^n(c) \ne 0$.Then for n even, f has a local minimum at c if $f^n(c) > 0$ & a local maximum at c if $f^n(c) < 0$. If n is odd, there is neither a local minimum nor a local maximum at c.
- 4. State and prove Inverse function Theorem

KARPAGAM ACADEMY OF HIGHER EDUCATION		1					
(Deemed to be University Established Under Section 3 of UGC Act 1956)							
Pollachi Main Road, Eachanari (Po),							
Coimbatore -641 021 DEPARTMENT OF MATHEMATICS							
Multiple Choice Questions (Each Question Carries One Mark)							
Subject Name: REAL ANALYSIS Subject Code: 17MMP102							
UNIT-V	OPTION1	OPTION2	OPTION3 size of the interval	OPTION4 modulus of its value	ANSWERS		
The outer measure of its interval is its Every increasing function of its	value bounded variation	length variational value	size of the interval bounded	modulus of its value unbounded variation	length bounded variation		
			either increasing or				
v (x) is monotonic function	increasing	decreasing	decreasing division of two	neither increasing nor decreasing	increasing		
	difference of two monotonic	sum of two monotonic	monotonic increasing		difference of two monotonic		
A function f of bounded variation is the expressible as a	increasing functions	increasing functions	functions	product of two monotonic increasing functions	increasing functions		
Outer Lebesgue measure is also known as	Lebesgue exterior measure	measure	Lebesgue measure	Lebesgue interior measure			
If set A is Lebesgue measurable and m *(A ∧ B) =	C		2	3	0		
The sets \$ 1,\$ 2,\$ n are called the of the partition P The Refinement of P is denoted by	components	parts n2	partition	combined	components		
Every singleton set is set	disconnected set	connected	measurable	unmeasurable	connected		
Intersection of finite number of open set is			neither open nor not closed				
Intersection or time number or open set is	closed	open	neither open nor not	semiopen	open		
Union of finite number of closed set is	closed	open	closed	semi closed	closed		
Every closed interval is	closed	compact	open as well as closed	not compact	compact		
- *	closed						
In a metric space (X, d) a non-empty X is Every infinite set A has a	closed no limit point	compact nelbourhood	open as well as closed limit point	not compact need not be a limit point	compact limit point		
· ·		not uniformly					
If f is a continuous mapping of a compact metric space X into M.space y	f is uniformly continuous	continuous	continuous	discotinuous	f is uniformly continuous		
	E1 union E2 is also				E1 union E2 is also lebesgue		
If E1 and E2 are lebesgue measurable set then	lebesgue measurable sets	E1 = E 2	E1 >E2	E1 <e 2<="" td=""><td>measurable sets</td><td></td><td></td></e>	measurable sets		
	there exist countable	there exist					
Let f be an open covering of A , then	collection of F which covers	Uncountable collection of F which covers A	there exist collection of E which covers A	there exist Uncountable collection of F which not covers A	there exist countable collection of F which covers A		
If f is continuous Real valued function of Compact metric space then	f is bounded	f is unbounded	f is constant	f is a function	f is bounded		
	there exist a finite		there exist a infinite				
If f is an open covering of a closed and bounded set A then	subcollection of F which covers A	a finite subcollection of F which covers A	subcollection of F which covers A	there exist a finite collection of F which covers A	there exist a finite subcollection of F which covers A		
Any Countable set of points on the real axis line	no measure	measure is 1	measure zero	not measurable	measure zero		
		measure is 1			measure zero	∫(f)dµ	
Any Controller set of points on the real axis line $\int (-r) 4e$ Areal value of function e is	no measure ∫(f)dµ large	measure is 1 ∫(f)dµ 0 simple	measure zero 1 minor	not measurable 2 major	measure zero 	∫(f)dµ	
Any Countable set of points on the real axis line f(-r)/a A real valued function q is function if it is lebergue measurable Every open and dosed set is measurable	no measure ∫(f)dμ large zero	measure is 1 ∫(f)dµ 0 simple lebesgue	measure zero 1 minor not measurable	not measurable 2 major need not be measurable	measure zero . ∫(f)dµ simple lebesgue	∫(f)dµ	
Any Controller set of points on the real axis line $\int (-r) 4e$ Areal value of function e is	no measure ∫(f)dµ large	measure is 1 ∫(f)dµ 0 simple	measure zero 1 minor	not measurable 2 major	measure zero . f(f)dµ simple lebesgue Heine borel	∫(f)dµ	
Any Countable set of points on the real axis line f(-r)/a A real valued function q is function if it is lebergue measurable Every open and dosed set is measurable	no measure . ∫(f)dμ large zero cantor set Family M of Lebesgue	measure is 1 Simple lebesgue empty set Family M of Lebesgue	measure zero 1 minor not measurable heine borel	not measurable 2 major need not be measurable	measure zero 	∫(f)dµ	
Aler Countelles set of points on the real axis line	no measure ∫(f)dμ large zero cantor set	measure is 1 Simple lebesgue empty set Family M of Lebesgue	measure zero 1 minor not measurable	not measurable 2 major need not be measurable non -empty set	measure zero . f(f)dµ simple lebesgue Heine borel	∫(ƒ)dµ	
Ang Countellise and points on the real axis line	no measure 	measure is 1 S() dµ () simple lebesgue empty set Family M of Lebesgue measurable sets is no algebra of sets	measure zero minor not measurable heine borel Family M of Lebesgue measurable sets E is need not be	not measurable 2 major 2 need not be measurable non -ompty set Lebergue measurable sets	measure zero 	∫(ƒ)dµ	
Aler Countelles set of points on the real axis line	homeasure , ∬(f) dμ large zero cantor set Family M of Lebesgue measurable sets is an	measure is 1 \$(f) dµ (simple lebesgue empty set Family M of Lebesgue measurable sets is no algebra of sets E is not measurable	measure zero 1 minor not measurable heine borel Family M of Lebesgue measurable sets	not measurable 2 major need not be measurable non -empty set	measure zero 	∫(ƒ)dµ	
Ang Countellise and points on the real axis line	no measure $\int (f) d\mu$ large zero cantor set Family M of Lebesgue measurable sets is an algebra of sets E is measurable	measure is 1 S() dµ () simple lebesgue empty set Family M of Lebesgue measurable sets is no algebra of sets	measure zero minor not measurable heine borel Family M of Lebesgue measurable sets E is need not be	not measurable 2 major 2 need not be measurable non -ompty set Lebergue measurable sets	measure zero 	∫(f)dµ	
Ang Countrielles set of points on the real axis into \$\frac{-\phi}{2}-\phi	no measure , f(f) dµ large zero Cantor set Family M of Lebesgue measurable sets is an algebra of sets E is measurable Lebesgue exterior measure 	measure is 1 simple labesgue empty set Family M of Lebesgue measurable sets is no algebra of sets E is not measurable Lebesgue exterior measure, m * is not translation is	measure zero ininor not measurable heline borel Family M of Lebesgue measurable sets E is need not be need not be	net measurable 2 major	messure zero 	∫(ƒ)dµ	
Ang Countedlast et of points on the real axis line	no mesure , $\int (f) d\mu$ large zero contor set Family M of Lebesgue measurable sets is an algebra of sets E is measurable Lebesgue exterior measure , m is translation is invariant	measure is 1 Simple inbesgue empty set Family M of Lebesgue measurable sets is no algebra of sets E is not measurable Lebesgue exterior measure, m * is not translation is invariant	measure zero 1 1 rninor not measurable heine borel Family M of Lebesgue measurable sets E is need not be measurable need not be measurable	no mesurable 2 main and not be measurable 2 non-empty set Lebergue measurable verts . referer measurable nor not measurable Lebergue interfor measure , m * is not transition in invante	measure zero . f(f)dµ simple lebesgue Heine borel Family M of Lebesgue measurable sels is an algebra of sels E ist measurable Lebesgue exterior measure, m is translation is invariant	<u></u> ∫(f)dμ	
Ang Countrielles set of points on the real axis into \$\frac{-\phi}{2}-\phi	no measure , f(f) dµ large zero Cantor set Family M of Lebesgue measurable sets is an algebra of sets E is measurable Lebesgue exterior measure 	measure is 1 simple labesgue empty set Family M of Lebesgue measurable sets is no algebra of sets E is not measurable Lebesgue exterior measure, m * is not translation is	measure zero 1 minor not measurable heine borel Family M of Lebesgue measurable E is need not be measurable need not be measurable m*A =1	net measurable 2 major	messure zero 	∫(ƒ)4µ	
Ang Countedlast and picktin on the real axis line	no mesure , $\int (f') d\mu$ large zero cantor set Family M of Lobesgue modeutrable sets is an algebra of sets E is measurable Lobesgue exterior measure invariant m * Is translation is invariant m * A = 0	messure is 1 S(f) dµ (f) simple inspine amphyset Early M of Lebesgue messurable sets is no algebra of sets Lebesgue exterior messure, m * is not translation is invariant m * A =infinity	measure zero 1 minor minor not measurable haine bore! Family Mol Lebesgue measurablesis E is need not be measurable need not be measurable m*1.4-1 the set of discontinuity	not measurable 2 mgar 2 mgar been to the measurable from -erryty set under group and an analysis of the set under or measurable not of measurable inder group and the set of the set under the set of the set of the set of the set under the set of the set of the set of the set inder the set of the s	measure zero 	∫(ƒ)4µ	
Ang Countries and a point on the real axis into	no mesure , $\int (f) d\mu$ large zero contor set Family M of Lebesgue measurable sets is an algebra of sets E is measurable Lebesgue exterior measure , m is translation is invariant	measure is 1 Simple inbesgue empty set Family M of Lebesgue measurable sets is no algebra of sets E is not measurable Lebesgue exterior measure, m * is not translation is invariant	measure zero 1 minor not measurable heine borel Family M of Lebesgue measurable E is need not be measurable need not be measurable m*A =1	no mesurable 2 main and not be measurable and not be measurable non-empty set Lebergue measurable verts . referer measurable nor not measurable Lebergue interfor measure , m * is not transition is invanted.	measure zero . f(f)dµ simple lebesgue Heine borel Family M of Lebesgue measurable sels is an algebra of sels E ist measurable Lebesgue exterior measure, m is translation is invariant	<i>∫(1)4µ</i>	
Ang Countelling and parts on the real axis line	In measure $\int \int (f + f) d\mu$ large zero carlos set set se an algebra of sets set set set set set set set set se	messure is 1 f(r)du simple simple simple simple sources Family M of Lebesgue measurable sets is no algebra of sets E is not measurable Lebesgue exterior measure, m ² to invariant m ⁴ A =infinity f is unbounded divergent f is of not bounded	measure zero 1 minor not measurable home borel 1 Farrity M of Lebesgue measurable sets E is need not be measurable $m^{-1}A = 1$ measurable $m^{-1}A = 1$ the set of discontinuity of if are uncountable constant.	nn mesurable ref to the mesurable ref to the mesurable ref to the mesurable ref and the mesurable ref. Lefergue mesurable ref. Lefergue interfor mesurable interfor mesurable not manufation is invariant	measure zero If() Jaja simple liefengun Heins borel Family Laf Lebegue of sets E ist measurable E ist measurable Labelague addelor measure in ** to translation is invariant m * A rol ocovergent	<u></u> (<i>f</i>)4μ	
Ang Countries and a point on the real axis into	no measure $\int (f \) d\mu$ large zero cantor set Earnly M of Lebesgue measurable sets is an algebra of sets E is measurable sets Lebesgue exterior measure meaturat measure measure f is of bounded variation	messure is 1 S(f) July (simple aimple aimple aimple action packar of sets agents of sets agents of sets agents of sets agents of sets invariant m * A =infinity fis unbounded divergent	measure zero 1 minor not measurable heine borel Family M of Labesgue measurable sets E is need not be measurable need not be measurable need not be measurable of ar a not analy of a set of discontinuity of a set of discontinuity of a set noncontable	not mesurable 2 major 2 major mesurable sets mesor has mesurable sets setting mesurable sets setting mesurable not not mesurable labelingue interior mesure 1, m * is not translation is invariant m * An 0 he set of continuity of are uncountable	$\begin{split} measure zero & \\ & \ \ \ \ \ \ \ \ \ \ \ \ \$	<u></u> ζ(<i>f</i>)4μ	
Ang Countedlast and picktis on the real axis line	The measure $\int (f \cdot f) d\mu$ large $\int (f \cdot f) d\mu$ large $\int (f \cdot f) d\mu$ peroperation $f \cdot f = 0$ and $f = 0$ contror set $f = 0$ and $f = 0$ and $f = 0$ measurable tests is an algebra of sets is a largebra of sets $f = 0$ and $f = 0$ and $f = 0$ invariant $n = 1$ to instance in invariant $n = 1$ is translation in invariant $n = 1$ is an observed variation convergent $f = 0$ founded variation every copen tal $f = 0$ (c)	measure is 1 Single single	measure zero ininor not measurable hane borel Family M of Lebesgue measurable set and the measurable on A = 1 de arc A	nn meaurable 2 mgiar 2 mean tab meaurable sets real-marky set Listengue meaurable sets Listengue interfor measurable setengue interfor measurable sets manufation in invariant m A x 0 the set of contentius of a se uncourable companyer as well of an uncourable companyer as well of an uncourable	Interact and I (f) (Age) I (f)	<u>ξ(f)</u> 4μ	
Any Countedits and point on the neal axis ins	no measure	measure is 1 Sing) day (simple labeague empty set Family M of Lebeague empty set Family M of Lebeague empty set invariant invariant in * A sinfinity f is unbounded deargent f is of not bounded variation every open ball (i) (i)	measure zero nenor nenor not messurable here borel Family lof L sbespe measurable ses measurable ses measurable measurable nerd not be measurable nerd not be measurable nerd not be measurable nerd not be measurable nerd not be measurable nerd not be measurable dif are uncountable the set of discontinuity of are uncountable bounded variation des not contains many des not contains many des not contains many measurable nor not	nn mesurable ref to the mesurable ref to the mesurable ref to the mesurable ref and the mesurable ref. Lefergue mesurable ref. Lefergue interfor mesurable interfor mesurable not manufation is invariant	measure zero If() Jaja simple liefengun Heins borel Family Laf Lebegue of sets E ist measurable E ist measurable Labelague addelor measure in ** to translation is invariant m * A rol ocovergent	<u>ξ(f)</u> 4μ	
Ang Constrained part of perior on the real axis line	no measure $\int (f_i)^2 d\mu_i$ large $\int (f_i)^2 d\mu_i$ large cardio set is an provide set is an apply of the design of the desig	measure is 1 Singth and a fill bisingth and the second s	$\begin{array}{c} \mbox{measure zero} & measure z$	nel mesurable region of the mesurable region of the mesurable region of the mesurable region mesurable sets. Lefergue mesurable nor not mesurable Lefergue interfor mesurar (m * 1) not remaindring in invariant (m * 1) a of a region of a set of designed consergent as well as designed f a of may be bounded caration	Interact non	j(f)4µ	
Any Countralise set of points on the real axis line	no measure	measure is 1 Singh of the second langh of the second errory set. Family M of Lebesgue errory set. E is not measurable Lebesgue exterior measure, m' is motion translation is invariant m " A -infinity m " A -infinity contains finitely many points open dosed	measure zero	not measurable 2 import meter that measurable intervent that measurable into meter that measurable into meter that measurable into meters that measurable into that that the set of the measurable into the set of contains, of if are uncountable into the set of contains, or if are uncountable into the set of contains,	measure zero : 	j(f)4μ	
Ang Constrained part of perior on the real axis line	no measure	measure is 1 Singth and a fill bisingth and the second s	$\begin{array}{c} \mbox{measure zero} & measure z$	nel mesurable region of the mesurable region of the mesurable region of the mesurable region mesurable sets. Lefergue mesurable nor not mesurable Lefergue interfor mesurar (m * 1) not remaindring in invariant (m * 1) a of a region of a set of designed consergent as well as designed f a of may be bounded caration	measure zmo , (()) / / / / simple design design frames tome frames to tome frames to to tome frames to tome frames to	j(f)4μ	
Ang Countediates and pickte on the realization the	no measure	measure 1 f(f) Mar (sings) sings lesspan emply set (Lesspan) Mid Lesspan massarable sets is on lesspan of sets E is not measurable lesspan of sets invariant. If a unbounded desayret If a unbounded desayret desay	measurezero minor not measurable haine borel Family Mid of Ledegue Family Mid of Ledegue Family Mid of Ledegue Tan med notibe measurable measurable far an unconstate far an	not measurable 2 mpior 2 mpi	measure zmo 	[())4p	
Ang Countedlast and picts on the mata lasts line	no metavo	measure s 1 f(r) f(a) (r) sinch binspan entry sci binspan entry sci territy (r) (r) binspan estimation entry sci entry sci	measure and minor minor measurement have been measurement measurem	nn meaurable indineaurable read to be meaurable read to be meaurable read with the meaurable sets indine meaurable nor of measurable indine meaurable nor of measurable indine meaurable nor of measurable indine in any of an uncountable indine and originat f an of may be bounded variation wavey open and b (c) contains fee points indicated periodead p	measor and	[(f)]dμ	
Any Controlles set of point on the real axis ins	no measure	measure 1 Simple Simple Messgan amply not Lebergen ethics Messgan messurable Lebergen ethics En ort messurable Lebergen ethics The Simple Messarable The Simple Messarable messurable Lebergen ethics messurable Lebergen ethics messurable Lebergen ethics messurable Lebergen ethics messurable the Simple Messarable messurable the Simple Messarable messarable messarable messurable the Simple Messarable messarabl	measure zmo merer en resurcable herre bord Farniy Nord Ledesgue measurable en and State State measurable en and Andrea Part of Abordham en and Abordh	nni mesurable 22 major 22 majo	messare zero	f(f)4e	
Ang Countedlast and picts on the mata lasts line	no metavo	measure s 1 f(r) f(a) (r) sinch binspan entry sci binspan entry sci territy (r) (r) binspan estimation entry sci entry sci	measure and minor minor measurement have been measurement measurem	nn meaurable indineaurable read to be meaurable read to be meaurable read with the meaurable sets indine meaurable nor of measurable indine meaurable nor of measurable indine meaurable nor of measurable indine in any of an uncountable indine and originat f an of may be bounded variation wavey open and b (c) contains fee points indicated periodead p	measor and	5(f)4e	
Ang Controlles set of perior on the real axis free Ang Souther function is	no measure	measure 1 Simple Simple Simple Simple Simple Simple Simple E is not measurable Les out measurable	measure and mean of the second second second second mean of measurable have been framework and the second second second measurable means and second second second second measurable means and second second second second means and second sec	not measurable refer the measurable refer the measurable procerryty set interrupt of the measurable procerryty set interrupt measurable more demonstrated interrupt measurable more demonstrated interrupt measurable more demonstrated interrupt measurable more demonstrated the set of constrains fee points minimum of a processing demonstrated interrupt measurable (or contains fee points meany capacity and be (or contains fee points) interrupt measurable (or contains fee points) i	Instanze zmo , (())) // // // // // // // // // // // //		
Ang Countedbast and pictris on the mail axis line	no measure	measure 1 Sign Adu and Adu an	measure and the second	nn measurable intermediate and an anti- intermediate and anti- intermediate and anti- intermediate intermediate and anti- intermediate intermediate and anti- intermediate anti- interm	measor and		
Ang Controlles set of perior on the real axis free Ang Souther function is	no measure	measure 1 Simple Automation of the second o	measure zero merer en resurcable herre bord Farmly hird Ledesgan measurable m	not measurable	mease2 aro : , f()) / / / / / / / / / / / / / / / / / /		
Any Controlles and points on the mail and line Any Controlles and points on the mail and line And waked function is a	no measure	measure 1 Sign Adu and Adu an	measure and the second	nn measurable intermediate and an anti- intermediate and anti- intermediate and anti- intermediate intermediate and anti- intermediate intermediate and anti- intermediate anti- interm	measor and		

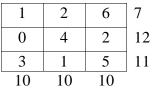
Reg No : - [17N KARPAGAM UNIVERSITY Karpagam Academy of Higher Educatio COIMBATORE – 641021 First Semester II Internal Test Sep'17 Quantitative Methods For Management	MBAP105]is given by a) $\rho^n / (1-\rho)$ b) ρ^2 on7. The probability of an er a) $1 - (\lambda / \mu)$ b) $\lambda /$ 8. A is a decis same strategy.
Class: I MBA Time :2 Ho Date : 27.10.17 Maximum: 50	
PART – A (15 x 1 = 15 marks) ANSWER ALL THE QUESTIONS 1. Two cards are drawn from a pack of 52 cards. Find the pr	a) np b) np(1 – 10. A BFS for transporta
that both are red cards a) $26C_2$ b) $52C_4$ c) $52C_2$ d) $26C_3$ 2. The mean of Binomial distribution is measured by	a) m+n b) m+n-2 11. The arriving people a) Input b) serve
 a) np b) npq c) pq d) nq. 3. Optimization means	a) Input b) serve 12. A loss is considered a) Positive b) nega 13. If binomial distribu
 d) cost 4. An assignment problem is a particular case of a) Transportation problem b) LPP c) Network problem problem d) Integer program 5. Assignment problem is aform of a transporta problem. a) non-degenerate b) feasible c) degenerate d) infeasible 	a) 1 b) 0.4 14. Assignment techniq ming problem a) Maximization

, the probability distribution of queue length $p^2 / (1-\rho)$ c) $\rho / (1-\rho)$ d) $(1-\rho) / \rho^n$ empty system is given by -----. $\lambda / (\mu - \lambda) = c) \lambda / \mu (\mu - \lambda) = d) \lambda / \mu$ ision of the player to always select the b)Mixed Strategy d) strategy nomial distribution is measured by -p) c) Pq d) Nq rtation problem must have exactly-----ation -2 c) m+n-1 d) m+n+1 e in a queueing system are called -----vers c) customers d) queue ed as a _____ gain. gative c) finite d) infinite oution is symmetrical if p=q=? c) 0 d) 0.5 ique is essentially a ----- technique b) minimization maximization d) none odel is called -----. b) M / M / N c) M / M / ∞ d) M / M / 2

PART-B (3 x 8 =24 Marks) ANSWER ALL THE QUESTIONS

- 16. a) Three coins are tossed simultaneously. Find the probability that
 - i) no head ii) one head iii) two heads (OR)
 - b) Two persons A and B appeared for an interview for a job. The probability of selection of A is 1/3 and that of
 - B is $\frac{1}{2}$. Find the probability that
 - (i) both of them will be selected
 - (ii) only one of them will be selected
- 17.a) Solve the transportation problem with unit transportation costs, demands and supplies as given below:

Destination


	D_1	D_2	D ₃	D_4	Supply
\mathbf{S}_1	6	1	9	3	70
Source	11	5	2	8	55
S_2					
S ₃	10	12	4	7	70
Demand	85	35	50	45	
	(

(**OR**)

b) Solve the assignment problem for maximization given the profit matrix (profit in rupees).

Machines						
	PQRS					
А	51	53 50	54	50		
В	47	50	48	50		
Jobs	49	50	60	61		
С						
D	63	64	60	60		

18.a) Find the starting solution of the following transportation model

Using (i) North West Corner rule (ii)Least Cost method

(OR)

b) What is the application of the Theory of Game in the contemporary business environment? Explain.

PART- C (1 X 11 = 11 Marks) COMPULSORY

- 19.) A box containing 100 transistors ,20 of which are Defective ,10 are selected for insepectin ,Indicate what Is the probability that (a) all10 are defective(b) all 10 are good (c) atleast one is defective(d) at most 3 are defective
 - (i) Write the properties of Binomial Distribution.
 - (ii) Comment on the following "The mean of a binomial distribution is 5 and its variance is 9.

KARPAGAM UNIV KARPAGAM ACADEMY OF HI COIMBATORI DEPARTMENT OF MA First Semeste I Internal Test – A REAL ANALY Class : I M.Sc (MATHEMATICS)	GHER EDUCATION E-21 THEMATICS er Aug'17 SIS
Date : 29.08.17 (FN)	Max Marks: 50 Marks
PART – A (20 ANSWER ALL THE QUESTIONS	0 x 1 = 20 Marks) :
1. If P is a partition of closed interval, of	then $ P $ is the length
(a) largest subinterval (b) smalle	st subinterval
(c) last subinterval (d) first su	ıbinterval
2. The least upper bound is called	
(a) bounded above (b) bounded	below
(c) Supremum (d) infimum	
3. A continous mapping <i>r</i> of [a,b] is s if	aid to be closed
(a) $r(a)=r(b (b) r(a) < r(b) (c) r(a)$	>r(b) (d) $r(a)=r(b)=0$
4. A function which is Reimann Steilt	jes integrable w.r.t
S can be denoted as	
(a) f in $R(S)$ (b) f not in $R(S)$ (c)	<i>,</i> , , , , , , , , , , , , , , , , , ,
5. A set S is closed if and only if $S = -$	
(a). int S (b) closure of S	(c)limit (d) 0

6. The set N of natural numbers is ------(a) bounded (b) not bounded (c)countable (d)uncountable 7. If f is Reimann Steiltjes integrable w.r.t S, then itsis also similar (b) *f* ' (a) |f|(c) |f|/f(d) f/|f|8. If $f: [a,b] \rightarrow R$ is continuous and monotonic functions then (a) f is Riemann integrable (b) Infinite limit (c) Unique limit (d) No limit 9. The series 1+3+5+7+..... (a) divergent (b) Convergent (c) Bounded (d) conditionally convergent 10. The series $1 + r + r^2 + r^3 + \dots$ is oscillatory if (c) r = -1(a) r = 1 ` (b) r = 0(d) r = 2(a) (0, 1) (b) [0,1](c) 0(d) 1 12. If f and g are Reimann Steiltjes integrable w.r.t S, then.....is also. (a) f * g(b) f + g/g(c) f - g/g(d) f/g13. If a sequence $\{a_n\}$ converges to a real number then the given sequence is------(a) unbounded sequence (b) convergent (d) bounded (c) divergent & bounded 14.is a range of a function from N x N to R. (a) Double sequence (b) Double series (c) finite sequence (d) finite series 15. The nth partial sum of series Σf_n is given by-----(a) $f_1 - f_2 + \dots + f_n$ (b) $f_1 - f_2 - \dots - f_n$ (c) $f_1 + f_2 - \dots - f_n$ (d) $f_1 + f_2 + \dots + f_n$

- 16. If an unbounded sequence ------(a) has a limit point (b) does not have a limit point (c) has a unique limit point (d) may or may not have a limit point 17. Double sequence of real numbers can be denoted by..... (b) $\Sigma x_{m,n}$ (c) Σx_m (a) $(x_{m.n})$ $(d)(x_{m})$ 18. The sequence $\{1/n\}$ is -----(a) convergent (b)increasing sequence (c)monotonic sequence (d)oscillating sequence 19. The set of limit points of a bounded sequence is (b) not necessarily bounded (a) unbounded (d) neither bounded nor unbounded (c) bounded 20. Double series of real numbers depends on ------(a) a single parameter (b) 2 parameters (c) 3 parameters (d) 4 parameters PART - B (3 x 2 = 6 Marks) **ANSWER ALL THE QUESTIONS**
- 21.Show that Reimann Steiljes integral can be reduced to a finite sum.
- 22.State the Root test for convergence of series
- 23.State and prove linearity property in Reimann Steiltjes integrals.

PART – C (3x8 = 24 Marks) ANSWER ALL THE QUESTIONS

24. a) If $f \in R(\alpha)$ on [a, b] then $\alpha \in R(f)$ on [a,b] prove that

$$\int_{a}^{b} f(x)d \alpha(x) + \int_{a}^{b} \alpha(x)d f(x) = f(b) \alpha(b) - f(a) \alpha(a)$$
(**OR**)

b) For any $f \in R(\alpha)$ on [a,b] and $g \in R(\alpha)$ on [a,b] then $c_1f+c_2g \in R(\alpha)$.

we have $\int_a^b (c_1 f + c_2 g) d\alpha = c_1 \int_a^b (f d\alpha) + c_2 \int_a^b (g d\alpha).$

25. a) State and prove Riemann - Stieltjes condition.

(**OR**)

- b) Assume that α is increasing on [a,b] then prove that the following are equivalent
 (i) f ∈ R (α) on [a,b]
 - (ii) f satisfies Riemann condition w.r.to α on [a,b]
 - (iii) $I_{-}(f,\alpha) = I^{-}(f,\alpha)$

(**OR**)

26.a) Let $\sum a_n$ be an absolutely convergent series f having sum S. then every rearrangement of $\sum a_n$ also converges absolutely f has sum S.

(OR)

b) State and prove Ratio Test Theorem.

Reg. No.....

[15MMP102]

KARPAGAM UNIVERSITY Karpagam Academy of Higher Education (Established Under Section 3 of UGC Act 1956) COIMBATORE – 641 021 (For the candidates admitted from 2015 onwards)

M.Sc., DEGREE EXAMINATION, NOVEMBER 2015

First Semester

MATHEMATICS

REAL ANALYSIS

Maximum : 60 marks

PART – A (20 x 1 = 20 Marks) (30 Minutes) (Question Nos. 1 to 20 Online Examinations)

(Part - B & C 2 1/2 Hours)

PART B (5 x 6 = 30 Marks) Answer ALL the Questions

21. a) If $f \in \mathbb{R}(\alpha)$ on [a,b] and $f f \in \mathbb{R}(\beta)$ on [a,b] then $f \in \mathbb{R}(c_1 \alpha + c_2 \beta)$ on [a,b] we have $\int_a^b fd(c_1 \alpha + c_2 \beta) = c_1 \int_a^b fd\alpha + c_2 \int_a^b fd\beta$. Or

b) State and prove change of variable in Riemann - Stieltjes integral .

22. a) State and prove Merten's Theorem

Time: 3 hours

Or b) State and prove Ratio Test Theorem.

Or

23. a) State and prove Cauchy's condition for Uniform convergence .

- Or b) Assume that $\Sigma f_n(x) = f(x)$ (uniformly on S) if each f_n is continuous at a point x_0 of S then f is also continuous at x_0 .
- 24. a) State and prove Lesgue dominated convergence Theorem
 - b) Assume f is Riemann integrable on $[a,b] \forall b \ge a$ and assume there is a positive constant M such that $\int_{a}^{b} |f(x)| dx \le M \forall b \ge a$.

25. a) Let A be an open subset of Rⁿ and assume that $f: A \to R^n$ has continuous partial Derivatives $D_j f_j$ on A.If f is 1-1 on A and if $J_f(x) \neq 0 \forall x$ in A, then f(A) is an open. Or

b) State and prove functions with non Zero Jacobian determinant.

PART C (1 x 10 = 10 Marks) (Compulsory)

26. State and prove Rearrangement Theorem for double sequence.

2

KARPAGAM UNIVERSITY (Under Section 3 of UGC Act 1956) COIMBATORE - 641 021

(For the candidates admitted from 2014 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2014

First Semester

MATHEMATICS

REAL ANALYSIS

Time: 3 hours

Maximum : 60 marks

PART – A (10 x 2 = 20 Marks) Answer any TEN Questions

1. What do you mean by Partition?

2. Write about refinement.

3. Define Riemann stieltjes sum.

4. Define rearrangement of a series.

5. Define double series.

6. What do you mean by Cesaro summability?

7. What do you say about limit function?

8. When a series is said to be converges uniformly?

9. Define mean convergence.

- 10. Define Lebesgue intergrable.
- 11. When we say that a function f is measurable?
- State Lebesgue bounded convergence theorem.
 Write a brief note on Jacobian determinant.

14. Define open mapping.

15. Define quadratic form.

PART B (5 X 8= 40 Marks) Answer ALL the Questions

16. a) If $f \in R(\alpha)$ on [a,b], then $\alpha \in R(f)$ on [a,b] and prove that

$\int f(x) d\alpha(x) + \int \alpha(x) df(x) dx = f(b)\alpha(b) - f(a)\alpha(a)$

Or

b) Let α be increasing on $\{a, b\}$. Then show the following i) If P' is finer than P, prove that $U(P, f, \alpha) \le L(P, f, \alpha)$ and $L(P', f, \alpha) \ge L(P, f, \alpha)$

i) For any two partitions P_1 and P_2 , prove that $L(P_1, f, \alpha) \leq U(P_2, f, \alpha)$

17. a) State and prove Riemann's theorem on conditionally convergent series.

b) If $\sum a_n$ converges absolutely, then show that the subseries $\sum b_n$ also

converges absolutely. Also, $|\sum_{n=1}^{\infty} b_n| \le \sum_{n=1}^{\infty} b_n| \le \sum_{n=1}^{\infty} a_n$

18. a) State and prove Dirichlet's test for uniform convergence Or

b) Assume that $\sum f_n(x) = f(x)$ (uniformly on S) if each f_n is continuous at a point x_0 of S, then show that f is also continuous at x_0 .

19. a) Assume $f \in L(I)$ and $g \in L(I)$. Then show that

i. $(af + bg) \in L(I)$ for ever real a and b, and $\int (af + bg) = a \int f + b \int g$

 $\int f \ge 0 \text{ if } f(x) \ge 0 \text{ a.e. on } 1.$

 $\int f \ge \int g \text{ if } f(x) \ge g(x) \text{ a.e. on } I.$

 $\int f = \int g \text{ if } f(x) = g(x) \text{ a.e. on } I.$

v. i i Or

b) State and prove Levi theorem for sequences of Lebesgue-integrable functions.

2

20. Compulsory : -

State and prove implicit function theorem.

Scanned by CamScanner

Reg. No.....

[12MCP102] KARPAGAM UNIVERSITY

(Under Section 3 of UGC Act 1956) COIMBATORE - 641 021 (For the candidates admitted from 2012 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2012

First Semester

MATHEMATICS

REAL ANALYSIS

Time: 3 hours

Maximum : 100 marks

PART - A (15 x 2 = 30 Marks) Answer ALL the Questions

- 1. Write about the family of all functions of bounded variation?
- 2. What do you mean by compact interval?
- 3. What is called Partition of [a,b]?
- 4. Describe about limit superior?
- 5. Define about Strictly finer?
- 6. Write about lower stieltjes integral?
- 7. Describe about Infinite series?
- 8. Explain about Supremum?
- 9. Describe about sum of the series?
- 10. Describe about Converge pointwise?
- 11. Explain about Converges uniformly on sequence of functions?
- 12. Mention about power series?
- 13. Define about Directional derivative?
- 14. Describe about Gradient vector?
- 15. Mention about Chain rule?

PART B (5 X 14= 70 Marks) Answer ALL the Questions

- 16. a) i) Let $f:[a,b] \rightarrow \mathbb{R}^n$ and $g:[c,d] \rightarrow \mathbb{R}^n$ be two paths in \mathbb{R}^n , each of which is one to one on its domain .Then prove that f and g are equivalent iff they have same graph.
 - ii) If f is an increasing function on[a,b] and c $\epsilon(a,b),$ then both f(c-) and f(c+)exist and satisfy the inequalities $f(c-) \leq f(c) \leq f(c+)$. Then f(a+) and f(b-) exist and $f(a) \le f(a+)$ and $f(b-) \le f(b)$.

(Or)

b) Let f be of bounded variation on[a,b].If $x \; \epsilon[a,b]$,let $V(x)\!\!=\!\!V_f(a,\!x)$ and put V(a)=0. Then show that every point of continuity of f is also a point of continuity of V and Converse is also true.

O.P-488

- 17. a) i) Let α be of bounded variation on [a,b] and assume that f ε R(α) on[a,b] .then f εR(α) On every subinterval [c,d] of [a,b].
 ii) Assume that α be an increasing sequence on [a,b].if f εR(α) on[a,b]. If gεR(α) on [a,b] then the product f.g ε R(α) on [a,b].
 - (Or)
 - b) State and prove Riemann conditions.
- 18. a) The infinite product $\prod U_n$ converges iff for all $\in >0$ there exist an integer N, Such that for all
 - $n > N \Rightarrow |Un+1Un+2....Un+k| < |Un+1||Un+2|.....|Un+k|$ (Or)

b) State and prove Merten's theorem.

- 19. a) Let α be of bounded variation on[a,b]. Assume that each term of the sequence $\{f_n\}$ is a real valued function such that $f_n \, \epsilon \, R(\alpha) \, \text{on}[a,b]$ for each $n=1,\,2....$ Assume That $f_n\to f$ uniformly on[a,b] and define $g_n(x)= \sqrt[a]{x}\ f_n(t)d\alpha\ (t).$ i) $f \in R(\alpha)$ on [a,b].
 - ii) $g_n \rightarrow g$ uniformly on[a,b] where $g(x) = {}_a \int x f(t) d\alpha(t)$. (Or)
 - b) i) State and prove Cauchy condition for uniform convergence. ii) Assume that $f_n \to f$ uniformly on S . If each f_n is continuous at a point c of S, then show that the limit function f is also continuous at c.
- 20. a) i) Let A be an open subset of \mathbb{R}^n and assume that $f: A \rightarrow \mathbb{R}^n$ is continuous and has finite partial derivatives Dj f, on A .If f is one to one on A and if $J_f(x) \neq 0$ for each x in A , then prove that f(A) is open.
 - ii) Assume that $f = (f_1, f_2, \dots, f_n)$ has continuous partial derivatives $D_j f_i$ on an open set S in \mathbb{R}^n , nad that the Jacobian determinant $J_f(a) \neq 0$ for some point a in S. Then there is an n-ball B(a) on which f is one- to-one. (Or)
 - b) State and prove second derivative test for extrema.