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Course Objective: This course provides a deep knowledge to the learners to understand the
basic concepts ofNumerical Methods which utilize computers to solve Engineering Problems
that are not easily solved or even impossible to solve by analytical means.

Course Outcome: To familiarize with numerical solution of equations, ODE & PDE and get
exposed withnumerical differentiation and integration.

UNIT I

Solutions of Non Linear Equations: Newton’s method-Convergence of Newton’s method-
Bairstow’s method for quadratic factors. Numerical Differentiation and Integration:
Derivatives from difference tables — Higher order derivatives — divided difference.
Trapezoidal rule — Romberg integration — Simpson’s rules.

UNIT 11

Solutions of system of Equations: The Elimination method: Gauss Elimination and Gauss
Jordan Methods — LU decomposition method.

Methods of Iteration: Gauss Jacobi and Gauss Seidal iteration-Relaxation method.

UNIT 111

Solutions of Ordinary Differential Equations: One step method: Euler and Modified Euler
methods—Rungekutta methods. Multistep methods: Adams Moulton method — Milne’s
method

UNIT IV

Boundary Value Problem and Characteristic value problem: The shooting method: The linear
shooting method — The shooting method for non-linear systems.

Characteristic value problems —Eigen values of a matrix by Iteration-The power method.

UNIT V
Numerical Solution of Partial Differential Equations: Classification of Partial Differential
Equation of the second order — Elliptic Equations. Parabolic equations: Explicit method — The
Crank Nicolson difference method. Hyperbolic equations — solving wave equation by Explicit
Formula.
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SUGGESTED READINGS

TEXT BOOK

1. Gerald, C. F., and Wheatley. P. O., (2006). Applied Numerical Analysis, sixth edition,
Dorling Kindersley (India) Pvt. Ltd. New Delhi.

REFERENCES

1. Jain. M. K,, lyengar. S. R. K. and R. K. Jain., (2012). Numerical Methods for
Scientific and Engineering Computation, New Age International Publishers, New Delhi .

2. Burden R. L., and Douglas Faires.J,( 2007). Numerical Analysis, Seventh edition, P.
W. S. Kent Publishing Company, Boston.

3. Sastry S.S., (2008). Introductory methods of Numerical Analysis, Fourth edition,
Prentice Hall of India, New Delhi.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),

Coimbatore —641 021.

Department of Mathematics

LECTURE PLAN

Subject code: 17MMP103

S.No h‘fﬁ}gre Topics to be Covered Support Materials
UNIT 1

1 1 Introduction and basic concepts of simultaneous R1: Ch 2: Pg: 20-24
equations

2 1 Problems on Newton Raphson method R3: Ch 2: Pg: 33-34

3 1 Continuation of Problems on Newton Raphson R3: Ch 2: Pg: 34-35
method

4 1 Convergency on Newton Raphson method R1: Ch 2: Pg: 35-36

5 1 Bairstows method for quadratic factors T1: Ch 1: Pg: 66-68

5 1 Continuation of Bairstows method for quadratic T1: Ch 1: Pg: 68-70
factors

7 1 Derivative from difference table and higher order T1: Ch5: Pg: 357-367
derivatives

8 1 Divided difference R2: Ch 5: Pg: 124-129

9 1 Trapezoidal rule and Simpson’s rule R3: Ch 5: Pg: 198-201

10 1 Problems on Trapezoidal rule and Simpson’s rule R3: Ch 5: Pg: 209

11 1 Romberg’s Integration R3: Ch 5: Pg: 202-204

12 1 Problems on Romberg’s Integration R3: Ch 5: Pg: 208

13 Recapitulation and discussion of possible questions

Total No. of Lecture hours planned — 13 hours

T1.Gerald, C. F., and Wheatley. P. O., (2006). Applied Numerical Analysis, sixth edition,

Dorling Kindersley (India) Pvt. Ltd. New Delhi.

R1.Jain. M. K., lyengar. S. R. K. and R. K. Jain., (2012). Numerical Methods for Scientific and

Engineering Computation, New Age International Publishers, New Delhi .

R2.Burden R. L., and Douglas Faires.J,( 2007). Numerical Analysis, Seventh edition, P. W. S.

Kent Publishing Company, Boston.

R3.Sastry S.S., (2008). Introductory methods of Numerical Analysis, Fourth edition, Prentice

Hall of India, New Delhi.
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UNIT Il
S.No lljlicl}lrjre Topics to be Covered Support Materials
1 1 Introduction: Gauss Elimination method problems R3: Ch 6: Pg: 257-258
9 1 Continuation of problems on Gauss Elimination R3: Ch 6: Pg: 259-260
method
3 1 Problems on Gauss Jordan method R3: Ch 6: Pg: 260-261
4 1 Continuation of Problems on Gauss Jordan method R3: Ch 6: Pg: 261-262
5 1 Problems on LU decomposition method R3: Ch 6: Pg: 265-266
5 1 Continuation of Problems on LU decomposition R3: Ch 6: Pg: 266-269
method
7 1 Problems on Gauss Jacobi method R2: Ch 7: Pg: 450-452
8 1 Continuation of Problems on Gauss Jacobi method R2: Ch 7: Pg: 452-454
9 1 Problems on Gauss Seidal method R2: Ch7: Pg: 454-455
10 1 Continuation of Problems on Gauss Seidal method R2: Ch 7: Pg: 456-457
11 1 Problems on Relaxation method R2: Ch 7: Pg: 462-463
12 1 Continuation of Problems on Relaxation method R2: Ch 7: Pg: 464-466
13 1 Recapitulation and discussion of possible questions
Total No. of Lecture hours planned — 13 hours

R2.Burden R. L., and Douglas Faires.J,( 2007). Numerical Analysis, Seventh edition, P. W. S.

Kent Publishing Company, Boston.

R3.Sastry S.S., (2008). Introductory methods of Numerical Analysis, Fourth edition, Prentice

Hall of India, New Delhi.

UNIT 111

S.No Iljliiﬂrj re Topics to be Covered Support Materials

1 1 Introduction on solution of ODE R3: Ch 7: Pg: 295-296
2 1 Problems on Euler method R3: Ch 7: Pg: 300-301
3 1 Continuation of problems on Euler method R3: Ch 7: Pg: 301-303
4 1 Problems on Modified Euler method R3: Ch 7: Pg: 303-304
5 1 Continuation of problems on Modified Euler method R3: Ch7: Pg: 304-305
6 1 Problems on RungeKutta method R3: Ch7: Pg: 305-306
7 1 Continuation of problems on RungeKutta method R3: Ch 7: Pg: 307-308
8 1 Problems on Multistep methods: Adams Moulton R3: Ch 7: Pg: 309-310

method
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R3: Ch 7: Pg: 310-311

9 1 Continuation of problems on Adams Moulton method

10 1 Problems on Milne’s method R3: Ch 7: Pg: 311-312
11 1 Continuation of problems on Milne’s method R3: Ch7: Pg: 313-314
12 1 Recapitulation and discussion of possible questions

Total No. of Lecture hours planned — 12 hours

R3.Sastry S.S., (2008). Introductory methods of Numerical Analysis, Fourth edition, Prentice

Hall of India, New Delhi.

UNIT IV
S.No ::ﬁﬂgre Topics to be Covered Support Materials
R3: Ch 7: Pg: 318-323
1 1 Boundary value problems
2 1 Problems on linear shooting method R2:Ch11: Pg: 672-674
3 1 Continuation of problems on linear shooting method | R2: Ch 11: Pg: 674-676
. . R2: Ch 11: Pg: 678-680
4 1 Problems on shooting method for nonlinear systems 9
5 1 Continuation of problems on shooting method for R2: Ch 11: Pg: 680-683
nonlinear systems
6 1 Characteristics value problems T1:Ch7:Pg: 541-542
7 1 Problems on eigen values of a matrix by iteration TL: Ch7: Pg: 542-543
8 1 Continuation of problems on eigen values of a matrix | T1: Ch 7: Pg: 544-545
by iteration
9 1 Problems on power method R2: Ch9: Pg: 580-581
10 1 Recapitulation and discussion of possible questions
Total No. of Lecture hours planned — 10 hours

T1.Gerald, C. F., and Wheatley. P. O., (2006). Applied Numerical Analysis, sixth edition,

Dorling Kindersley (India) Pvt. Ltd. New Delhi.

R2.Burden R. L., and Douglas Faires.J,( 2007). Numerical Analysis, Seventh edition, P. W. S.

Kent Publishing Company, Boston.

R3.Sastry S.S., (2008). Introductory methods of Numerical Analysis, Fourth edition, Prentice

Hall of India, New Delhi.

UNIT V
S.No h?ﬁ};lre Topics to be Covered Support Materials
1 1 Classification of PDE R3: Ch8: Pg: 333-335
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R3: Ch8: Pg: 338-341

2 1 Problems on Elliptic equation

3 1 Continuation of Problems on Elliptic equation R3: Ch8: Pg: 341-345

4 1 Problems on Parabolic equation- Explicit method R3: Ch8: Pg: 349-354

5 1 P_roblems on parabolic equation- Crank Nicolson R3: Ch8: Pg: 355-356
difference method

5 1 Qontlnuatlon of problems on Crank Nicolson R3: Ch8: Pg: 356-357
difference method

7 1 Problems on Hyperbolic equations R3: Ch8: Pg: 358-362

8 1 Problems on solving wave equation by explicit T1: Ch8: Pg: 603-605
formula

9 1 Recapitulation and discussion of possible questions

10 1 Discussion of previous ESE question papers.

11 1 Discussion of previous ESE question papers.

12 1 Discussion of previous ESE question papers.

Total No. of Lecture hours planned — 12 hours

T1. Gerald, C. F., and Wheatley. P. O., (2006). Applied Numerical

Dorling Kindersley (India) Pvt. Ltd. New Delhi.

R3. Sastry S.S., (2008). Introductory methods of Numerical Analysis, Fourth edition, Prentice

Hall of India, New Delhi.

Analysis, sixth edition,

SUGGESTED READINGS

TEXT BOOK

1.Gerald, C. F., and Wheatley. P. O., (2006). Applied Numerical Analysis, sixth edition, Dorling
Kindersley (India) Pvt. Ltd. New Delhi.

REFERENCES

1.

Jain. M. K., lyengar. S. R. K. and R. K. Jain., (2012). Numerical Methods for Scientific and
Engineering Computation, New Age International Publishers, New Delhi .

Kent Publishing Company, Boston.

of India, New Delhi.

. Burden R. L., and Douglas Faires.J,( 2007). Numerical Analysis, Seventh edition, P. W. S.

. Sastry S.S., (2008). Introductory methods of Numerical Analysis, Fourth edition, Prentice Hall
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UNIT-I

Solutions of Non Linear Equations: Newton’s method-Convergence of Newton’s method-
Bairstow’s method for quadratic factors. Numerical Differentiation and Integration: Derivatives
from difference tables — Higher order derivatives — divided difference. Trapezoidal rule —
Romberg integration — Simpson’s rules.

TEXT BOOK

1. Gerald, C. F., and Wheatley. P. O., (2006). Applied Numerical Analysis, sixth edition,
Dorling Kindersley (India) Pvt. Ltd. New Delhi.

REFERENCES

1. Jain. M. K., lyengar. S. R. K. and R. K. Jain., (2012). Numerical Methods for Scientific
and Engineering Computation, New Age International Publishers, New Delhi .

2. Burden R. L., and Douglas Faires.J,( 2007). Numerical Analysis, Seventh edition, P. W.
S. Kent Publishing Company, Boston.

3. Sastry S.S., (2008). Introductory methods of Numerical Analysis, Fourth edition, Prentice
Hall of India, New Delhi.
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Introduction

Equations that can be cast in the form of a polynomial are referred to as algebraic
equations. Equations involving more complicated terms, such as trigonometric,
hyperbolic, exponential, or logarithmic functions are referred to as transcendental
equations. The methods presented in this section are numerical methods that can be
applied to the solution of such equations, to which we will refer, in general, as non-linear
equations. In general, we will we searching for one, or more, solutions to the equation,

fix) = 0.

We will present the Newton-Raphson algorithm, and the secant method. In the secant
method we need to provide two initial values of x to get the algorithm started. In the
Newton-Raphson methods only one initial value is required.

Newton-Raphson method (or Newton’s method)
Let us suppose we have; an equation of the form f{x) = 0 in which solution is lies between in the range
(ab). Also f(x) is continuous and it can be algebraic or transcendental. If f{a) and f{b) are opposite

signs, then there exist atleast one real root between a and b.

Let f{a) be positive and f{b) negative. Which implies atleast one root exits between a and b. We
assume that rﬁot to be either a or b, in which the value of f(a) or f(b) is very close to zero.
That number is assumed to be  initial root. Then we iterate the process by using the following
formula until the value is converges.
JX)
Xn+1 = Xn-
f(Xn)
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Steps:
1. Find a and b in which f{a) and f{b) are opposite signs for the given equation using trial and error method.

2. Assume initial root as X,= a i.e., if f{a)is very close to zero or Xo = b if f{a)is very close to zero

3. Find X1 by using the formula JXo)
X; =Xo -
f'(Xo)
4. Find X>; by using the following formula
Jxy
X =X; -
F&y

5. Find X3,X, ...X, until any two successive values are equal.

Example:

Find the positive root of f(x) = 2x3 - 3x-6 =0 by Newton — Raphson method correct to
five decimal places.

Solution:

Let fix) = 26 3x—6 ; ()= 6x — 3

ftlh) = 2-3-6 =7 =-ve |

fl2) =16—-6-6 =4 =+ve

So, aroot between 1 and 2 . In which 4 is closer to 0 Hence we assume initial root as 2.

Consider x0=2

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 3/18
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So X; = Xo— f(Xo)/f (Xo)
= Xo- ((2Xo3 -3Xp-6)/ 600 -3) = (4Xo3 +6)/(6Xp2-3)

Xir1= (4X;3 + 6)/(6X;2-3)

Xi= (4(2)°+6)/(6(2)°- 3) = 38/21 = 1.809524
X,= (4(1.809524)°+6)/(6(1.809524)°- 3) = 29.700256/16.646263 = 1.784200
X;= (4(1.784200)°+6)/(6(1.784200)°- 3) = 28.719072/16.100218 = 1.783769

X4= (4(1.783769)°+6)/(6(1.783769)°- 3) = 28.702612/16.090991 = 1.783769

1l

Example:

Using Newton’s method, find the root between 0 and 1 of X = 6x — 4 correct to 5

decimal places.
Solution :
Let f(x)=x -6x+4; f(0)=4=+ve; f(1)=-1=-ve
So a root lies between 0 and 1
f(]) is nearer to 0. Therefore we take initial root as Xo= 1
P(x)=3x"-6
=x — f(x)
£(x)
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= x - (3% -6x+4)/(3X-6)
= (2x° -4)/(3%x° -6) _ .
X, (2Xo0 3 — 4 Y(3Xo 2-6) = (2-4)/(3-6) = 2/3 = 0.66666
Xo (2(2/3)° — 4 )/(3(2/3)°-6) = 0.73016
X3= (2(0.73015873)° — 4 )/(3(0.73015873)°-6)
— (3.22145837/ 4.40060469)
= 0.73205
Xa= (2(0.73204903)° — 4 )/(3(0.73204903)°-6)
= (3.21539602/ 4.439231265)
— 0.73205

The root is 0.73205 correct to 5 decimal places.

Bairstow Method

Bairstow Method is an iterative mathod used tfo find both the real and complex roots of a polynomial. It is based on the idea
of synthetic division of the given polynomial by a quadratic function and can be used fo find all the roots of a pelynomial.
Given a polynomial say,

fl@) =ag + a1z + 2’ + ...+ a,2" (B.1)

Bairstow's method divides the polynomial by & quadratic function.

P -rz-s (B.2)

Now the quotient will be a polynomial f,_4(z), i.e.

fa-a(2) = by +baz +bya® + ... + b2 + 2™ (B.3)
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and the remainder is a linear function R(z). i.e.

R(z) =bi(z —7) + b (B.4)

Since the quotient f,_,(z) and the remainder R(z) are obtained by standard synthetic division the co-efficients

b; ( =0..11) can be obtained by the following recurrence relation.
by = a, (B.5a)
bpy =au_1+1b, (B.5b)
bi=a; + b1 +sbiys for i=n—-2 to 0 (B.5¢)

If 22 — rz — s is an exact factor of f,(z) then the remainder R(z) is zero and the real/complex roots of 22 — rz — s are
the roots of f,(z). It may be noted that 22 — rz — s is considered based on some guess values for r,s. So Bairstow's

method reduces to determining the values of r and s such that R(z) is zero. For finding such valuss Bairstow's method uses

a strategy similar to Newton Raphson's method.

Since both by and b, are functions of r and s we can have Taylor series expansion of by, b; as:

by by

bi(r+Ar, s+As)=b+ Eﬁr + aﬁs + O(Ar?, As?) (B.6a)
bo(r +Ar, s+ As) =bg+ %Ar + %As +0(Ar?, As?) (B.6b)

For As, Ar << 1, O(Ar?, As?) terms =0 i.e. second and higher order terms may be neglected, so that (Ar, As) the
improvement over guess value (r,s) may be obtained by equating (B.6a),(B.6b) to zero i.e.
by by

Em + aAs =—b (B.7a)
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b b
EAT + aAs =—b (B.7h)

To solve the system of equations (B.7a) — (B.7b). we need the partial derivatives of by,b; w.rt. r and s. Bairstow has
shown that these partial derivatives can be obtained by synthetic division of £, _,(z). which amounts to using the recurrence

relation (B.5a) — (B.5c) replacing ajs with bfs and bls with ¢{s i.e.

e =by (B.8a)
Cn—1 = by + 70, (B.8b)
G =b; +7Cit1 + 861 (B-8¢)
for i=1L25yn—2
where
b, O b
o, BBy aa Do (8.9)

.". The system of equations (B.7a)-(B.7b) may be written as.

coAr +  c3As =—b (B.10a)

CIAT +c,AS == b, (B.10b)

These equations can be solved for (Ar, As) and turn be used to improve guess value (r,s) to  (r + Ar,s +As)
Now we can calculate the percentage of approximate errors in (r,s) by

Ar As
learl =171 100;  eqs = |- ~| x 100 (B.11)

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 7/18



UNIT -1 Solution of Non Linear Equations 2017 Batch

If leasr| > & or leass| > &, where ¢, is the iteration stopping error, then we repeat the process with the new guess i.e.

(r + Ar,s + As) . Otherwise the roots of f,(z) can be determined by

ERGETT

T= g (B.12)

If we want to find all the roots of f,(z) then at this point we have the following three possibilities:

1. If the quotient polynomial f,_o(z) is a third (or higher) order polynomial then we can again apply the Bairstow's method
to the quotient polynomial. The previous values of (r, s) can serve as the starting guesses for this application.
2. If the quotient polynomial f,_,(z) is a quadratic function then use (B.12) to obtain the remaining two roots of f,(z).

3. If the quotient polynomial f,_,(z) is a linear function say az + b =0 then the remaining single root is given by

= -

ple

Example:
Find all the roots of the polynomial

fu(z) = z* — 52* + 102° — 10z + 4
by Bairstow method . With the initial values r = 0.5, s=-0.5 and &, =0.01.

Solution:
Set iteration=1

a=4, a=-10, a;=10, az=-5 a =1

Using the recurrence relations (B.5a)-(B.5c) and (B.8a)-(B.8c) we get
by =1, by=-4.5, b=7.25 b =-4125 by =-1.6875

=1, ez=—4 =475, ¢ =025

.". the simultaneous equations for Ar and As are:

4.75Ar - 4As=4.125
0.25Ar +4.75As = 1.6875
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on solving we get Ar =1.1180371, As = 0.296419084
S =054 Ar = 1.6180371

§==0.54+ As = —=0.203580916

and
1.1180371
IEa,rI = |m| x 100 = 69.0983582
0.296419084
lea, 8| = |7—0.203580916 x 100 = 145.602585

Set jteration=2

by =1.0, by =—3.38196278, b, =4.32427788, b, = —2.31465483, by = —0.625537872

cg =10, 3 =-1.76392567, co=1.26650977, c; =0.0938522071

.. now we have to solve

1.26659977Ar—1.76392567 As = 2.31465483
0.0938522071Ar + 1.26659977A s = 0.625537872

On solving we get Ar =2.27996969, As = 0.324931115
oo = 1.6180371 + Ar = 3.89800692
s = —0.203580916 + As = 0.121350199

2.27996969
|ease | = |m % 100 = 58.490654
3249311
leass | = |% x 100 = 267.763153

Now proceeding in the above manner in about ten iteration we get r =3, s= —2 with

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 9/18
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|Eare] ~ 795 x 107 < g, = 0.01
|Eass | ~ 5.96 x 107 < £, = 0.01

+r244 -
TESUT e (i.e. egn. B.12)weget z = Jacaiob 2,1

Now on usin =)
gz ) )

So at this point Quotient is a quadratic equation

fg(ﬂ:) =z + 2z 42
Roots of fy(z) are: e =1—4, 1+

s Roots fy(z) are =1—4, 144 1, 2
ie fz) =@ -1 -9)=-1+)Hz—1)(z-2).
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Numerical differentiation

The problem of Interpolation is finding the value of y for the given value of x among (i,
y;) for i= 1 to n. Now we find the derivatives of the corresponding arguments . If the required
value of y lies in the first half of the interval then we call it as Forward interpolation .If the
required value of y ( derivative value ) lies in the second half of the interval we call it as
Backward interpolation also if the derivative of y lies in the middle of of class interval then we
solve by central difference.

Newton’s forward formula for Interpolation :
Y= yo +u Ayotu(u-1)/2! A%Y, +u (u-1)(u-2)/ 3! A’Yo+......
Where u = (x-Xo)/h
Differentiating with respect to x ,
dy/dx = (dy/du). (du/dx) = (1/h) (dy / du)
(dy/ dx) x #x0 = (1/h) [Ayo +(2u-1)/2 A%yo+(3u® —6u+2)/ 6 A’yo +......... ]
(dy/dx)x=xo = (1/h) [Ayo—(1/2) A’yo+(1/3) Ayo+......... ]
(d%y / dx?) x # x¢= d/dx ( dy / dx) = d/dx(dy / du. du / dx)
= (1/h%) [A? yo + 6(u-1) / 6 A’yo + (120 =36 u+22) / 2 A'yo +.......]
(dy 1 dx®) x= xo=(1/h%) [A? yo - A’yo +(11/12) A'yp +.......]

Similarly,
@y d®) x # xo= (1/h%) [ A’yo + (2u—-3)/2 A'yo +.......]
(d%y / dx®) x= x¢=(1/h%) [A® yo (312)A%yg +.......].

In a similar manner the derivatives using backward interpolation an also be found out.
Using backward interpolation .

(dy / dx) x %, = (1/h) [Vya +H2u+1)2 P2y, +(Bu’ +6u+2)/ 6 Vyp+......... |
(dy/ dx) x =Xy =(1/h) [Vya~(1/2) V2ya+(1/3) Vya+..coene. ]

(dy 1 dx?) x # x¢= (1/h%) [V2 yo + 6(u-1) / 6 V’yo + (1207 36 u+22) /2 V'yp +.......]
(d 1 dx) x=xo=(1/h%) [V yo - V’yo +(11/12) V'yo +.]
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Example
Find the first two derivatives of x ® at x= 50 and x= 56, given the table below.

X: 50 51 52 53 54 55 56
Y: 3.6840 3.7084 3.7325 3.7563 3.7798 3.8030 3.8259

X Y Ay Ay Ay | Ay
50 |3.6840

51 3.7084 | 0.0244

52 3.7325 | 0.0241 -0.0003 |0

53 3.7563 | 0.0238 -0.0003 |0 0
54 [3.7798 |0.0235 -0.0003 |0 0
55 3.8030 | 0.0232 -0.0003 |0 0
56 |3.8259 |0.0229 -0.0003

At x= 50,

(dy/dx) x=x0 = (1 /M)[Ayo—(1/2) A’yo+(1/3)A%yo +......... ]

= (1/1)[0.024-(1/2)(-0.0003)+0] = 0.02455
(dPy/dx?) x=xo=(1/h?) [A? yo - A’yo +(11/12) Ayo +....... ]
= (1/1){-0.003-0]= -.0003
At x=56,
(dy/dX)x = xa=(1/h)[ Vyn H(1/2) VZy,+(1/3) Vy, +......... ]
= (1/1) [ 0.0229+(1/2)(-0.0003)+0] = 0.02275.
(d*y/dx®) x=xo=(1/hD)[ Vyut Vya +(11/12) Viy, +...]
= (1/1) [ -0.003-0] = -0.0003.
For the above ptroblem let us find the first two derivatives of x when x= 52 and x= 55.
When x=52, From Newton’s forward formula
(dy/dx) x #xo = (1/h) [Ayo +2u-1)/2 A’y +(3u’ -
6u+2)/ 6 Adyo+......... 1
= (1/1) [ 0.0244+(3/2)(-0.0003)+0] = 0.02395,
Since here u= (x-xp) / h = (52-50)/1 =2.
(d%y 7 dx®) x # xo= (1/h%) [A% yo + 6(u-1) / 6 A’yo + (12u° — 36 u +22) / 2 A'yo +....... ]
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= (1/)m [ -0.0003+0] = -0.0003.
When x= 55,from backward interpolation
(dy/ dx) x # %o = (1/h) [Vya H2vH1)2 Vi, +3V +6v42)/ 6 Viy, +.........]
= (1/1) [ 0.0229+(-1/2)(-0.0003)+0] = 0.02305,
Since here v=(x-x,) / h = (55-56)/1 =-1.
(dy / dx?) x # xo= (1/h%) [V2 yu + 6(v+1) / 6 VVyn + (12V2 + 36 v +22) / 2 Viyp +.......]
= (1/1) [ 0.0229+(-1/2)(-0.0003)+0] = 0.02305.

Numerical Integration:

We know that _Lh f(x)dx represents the area between y = f{x), x — axis and the ordinates

X = a and x = b. This integration is possible only if the f(x) is explicitly given and if it is
integrable. The problem of numerical integration can be stated as follows: Given as set of (n+1)
paired values (x.yi), i = 0,1,2,...,n of the function y=f(x), where f(x) is not known explicitly, it is

required to compute J-:: y dx.
A general quadrature formula for equidistant ordinates (or Newton — cote’s formula)
For equally spaced intervals, we have Newton's forward difference formula as

u{u—1)
2!

Y(%)=y(xo+uh)=yo+ullyo+ Ayt )

Now, instead of fjx), we will replace it by this interpolating formula of Newton.

-X
Here, u = © where h is interval of differencing.
. X=Xp X=2Xp
Since x, = xp + nh,and u = = we have . =n=u

[ f@ax= 77 f(x)dx
Ixn+uh

o P, (x) dx where P,(x) is interpolating polynomial

u{u—1) ﬂzj’b +u{u“ﬂ(u—2}

=_|:' (yn +ully, + —; 3 Ay, + ... ) (hdu)
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Since dx = hdu, and when x = xp, u = 0 and when x = xp+nh, u = n.

ud_u?

n? n?
Lo rax-nhyor Tag 2 5= 4oy, 42

(:—‘ - n?+ nz) Ay, +],{2}

The equation (2), called Newton-cote’s quadrature formula is a general quadrature
formula. Giving various values for n, we get a number of special formula.

Trapezoidal rule:

By putting n = 1, in the quadrature formula (i.e there are only two paired values and
interpolating polynomial is linear).

f;ﬂﬂhf(x)dxz h [1.3,!0 + %d}'n] since other differences do not exist if n = 1.
xp+nh
= Fax= L7 F()dx
=2 fdx [ fOOdx sk

[ e dx

xg+{n—1)k
h
= 2 Eyu+Yn}+ 200Vt ¥3 + o Vo) :|

h
= E [(sum of the first and the last ordinates) + 2(sum of the remaining ordinates)]

This is known as Trapezoidal Rule and the error in the trapezoidal rule is of the order 4’

Romberg’s method

For an interval of size h, let the error in the trapezoidal rule be kh® where k is a constant.
Suppose we evaluate [ = _f::' y dx, taking two different values of h, say h; and h;, then

[=1,+E; =1, +kh?® [ =1+ E;=1; + kh;?
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Where I, I; are the values of I got by two different values of h, by trapezoidal rule and E,, E; are
the corresponding errors.

Ii +kh11 =[,+ l(]lz2

I,- 1L
-

o _ -
substituingin (1 =11+ —ighi? & 1= 2

This I is a better result than either [, I,

If hy= handh;=§h,thm1weget

(3h°)-1b* aly-1
I=l1 %h’-h: 53 1=I:+§(]2—I|}, }=Iz +§{Iﬂ—ll}
We got this result by applying trapezoidal rule twice. By applying the trapezoidal rule many
times, every time halving h, we get a sequence of results A;, A;, As,...... we apply the formula
given by (3), to each of adjacent pairs and get the resultants By, By B; ..... (which are improved
values). Again applying the formula given by (3), to each of pairs By, B; B; .....we get another
sequence of better results C;, C; C; ....continuing in this way, we proceed until we get two
successive values which are very close to each other. This systematic improvement of
Richardson’s method is called Romberg method or Romberg integration.

Simpson's one-third rule:

4
Setting n = 2 in Newton- cote’s quadrature formula, we have j:"f(x)d.x =h 2t E,ﬂyﬂ+
o
1 8 4 ) ) _
32 A%y (sincelother terfs vanish)

(vz+yityo)

w |

h
Similarly, j':: f(x)dx= S Oz dysty)

x h
_L ¢ F(x)dx=—= (yitdviityuz)
2 3
If n is an even integer, last integral will be

J:; H_-z flx)dx =§ (Vn2+4Vn1+Vn)
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Adding all the integrals, if » is an even positive integer, that is, the number of ordinates Yo, Vi,
¥2....Vn i8 0dd, we have

Ll feodx= [ fdx+ [7 fOdx+ ...t
L f@ax

xn—-z

h
= ; Eﬂ"'}’n] + 2(}'2""}’4"’----} +oiiaenn + 4(}';"' _}-’3"‘"...] ]

= g [(sum of the first and the last ordinates) +  2(sum of remaining odd ordinates) +
2(sum of even ordinates))
Simpson’s three-eighths rule:
Putting n = 3 in Newton — cotes formula

3h
=8 Wotyn) + 3t yatyutyst o Hyn 2y +

Yetyot...+yn) jl..H(Z}

Equation (2) is called Simpson's three — eighths rule which is applicable only when n is a
multiple of 3.Truncation error in simpson’s rule is of the order h

Example

Evaluate fg x*dx by using (1) trapezoidal rule (2)simpson’s rule. Verify your results by actual
integration.

Solution.

Here y(s) = x". Interval length(b — @) = 6. So, we divide 6 equal intervals with 7 =2=1.

We form below the table
x -3 =2 -1 0 1 2 3
¥y 81 16 1 0 1 16 81

(i) By trapezoidal rule:

[2,ydx= > [(sum of the first and the last ordinates) +
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2(sum of the remaining ordinates)]

[(81+81)+2(16+1+0+1+16)] =115

b | s

(ii) By simpson’s one - third rule (since number of ordinates is odd):

I3y dx = 2[(81+81) + 2(1+1) + 4(16+0+16)] =08
(iii)  Since n = 6, (multiple of three), we can also use simpson’s three - eighths rule. By this
rule,
[y dx= = [(81+81) + 3(16+1+1+16) + 2(0)] =99

(iv) By actual integration,
3 4, e | X _2e243 _
Jo xtdx =2 [Sj =972

From the results obtained by various methods, we see that simpson’s rule gives better result than
trapezoidal rule
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o

~

Part B (5x6=30 Marks)
Possible Questions

Find the positive root of f(x) = x*- x -1= 0 by Newton —Raphson method correct to 5
decimal places.
By dividing the range into 10 equal parts evaluate | : sinxdx by Trapezoidal &Simpson’s
rule. Verify your answer with integration.
Find a first two derivative of x'/3 at x =50 &x =56 given the table below.
X 50 51 52 53 54 55 56

Y =x1/3 | 3.6840 |3.7084 |3.7325 |3.7563 |3.7798 |3.8030 | 3.8259
Using Lin Bairstow’s method, obtain the quadratic factors of the polynomial given by
f(X)=x-2x%+X-2.
Write Down the Derivative ofNewton’s forward difference.
Find the positive root of f(x) =2x>-3x-6 =0 by Newton —Raphson method correct to

five decimal places.

Evaluate [° - using Trapezoidal rule.
0 1+

x2

Part C (1x10=10 Marks)

Possible Questions

N

Derive Newton —Raphson method.
Use Romberg’s method to compute [ = | 01 i—xx correct to 3 decimal places.
Find the values of y at x =21 and x =28 from the following data

X 20 23 26 29
Y 0.3420 0.3907 0.4384 0.4848

Evaluate f_33 x* dx using Simpson’s rule.

Derive the formula for trapezoidal rule.
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Class :1-M.Sc. Mathematics Semester |
Unit 11
Solutions of system of Equations
Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
What are the types of solving linear system of Direct and Iterative |differentiation integration interpolation Direct and Iterative
equations----------- ?
Gauss elimination method is a ----------------- : Direct method InDirect method Iterative method convergent Direct method
The rate of convergence in Gauss — Seidel method 2|3 4 0 2
is roughly ---------
times than that of Gauss Jacobi method.
Example for iterative method ------------- Gauss elimination | Gauss Siedal Gauss Jordan none Gauss Siedal
In the absence of any better estimates, the initial x=0,y=0,z=0 |x=1,y=1,2z=1 x=2,y=2,z=2 |x=3,y=3,z=3 |x=0,y=0,z=0
approximations are taken as---
When Gauss Jordan method is used to solve AX = B,|Scalar matrix diagonal matrix Upper triangular lower diagonal matrix

elements above the
diagonal are -------------- _

The modification of Gauss — Elimination method is | Gauss Jordan Gauss Siedal Gauss Jacobbi Gauss Elimination | Gauss Jordan
called
------------- Method produces the exact solution after | Gauss Siedal Gauss Jacobbi Iterative method Direct Direct
a finite number of steps.
In the upper triangular coefficient matrix, all the Zero non-zero unity negative non-zero
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In the upper triangular coefficient matrix, all the Positive nonzero zero negative zero
elements below the diagonal

are -------------- :

Gauss Seidal method always --------- for a special Converges diverges oscillates equal Converges
type of systems.

Condition for convergence of Gauss Seidal method

Coefficient matrix

pivot element is

Coefficient matrix

pivot element is

Coefficient matrix

IS ~--mmmmemeeeee IS Zero is not non Zero IS
diagonally diagonally diagonally
dominant dominant dominant
Modified form of Gauss Jacobi method is -------------- Gauss Jordan Gauss Siedal Gauss Jacobbi Gauss Elimination | Gauss Siedal
------ method.
In Gauss elimination method by means of Forward Backward random Gauss Elimination |Backward
elementary row operations, substitution substitution substitution
from which the unknowns are found by ----------------
- method
In iterative methods, the solution to a system of less than greater than or equal to not equal greater than or
linear equations will exist if the absolute value of the equal to equal to
largest coefficient is ------------- the sum of the
absolute values of all remaining coefficients in each
equation.
In -----m-mmmme- iterative method, the current values | Gauss Siedal Gauss Jacobi Gauss Jordan Gauss Elimination | Gauss Siedal
of the unknowns at each stage of iteration are used in
proceeding to the next stage of iteration.
The direct method fails if any one of the pivot Zero one two negative Zero
elements become ----.
In Gauss elimination method the given matrix is Unit matrix diagonal matrix Upper triangular  |lower triangular Upper triangular

transformed into --------------

matrix

matrix

matrix

If the coefficient matrix is not diagonally dominant,

Interchanging rows

Interchanging

adding zeros

Interchangingrow

Interchangingrow

then by ----------- Columns and Columns and Columns
that diagonally dominant coefficient matrix is

formed.

Gauss Jordan method is a ----------------- : Direct method InDirect method iterative method  |convergent Direct method
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Gauss Jacobi method is a

Direct method

InDirect method

iterative method

convergent

InDirect method

The modification of Gauss — Jordan method is called

Gauss Jordan Gauss Siedal Gauss Jacobbi gauss elemination | Gauss Siedal
Gauss Seidal method always converges for ----------- Only the special |all types quadratic types first type Only the special
of systems type type
In solving the system of linear equations, the BX=B AX=A AX =B AB =X AX =B
system can be written as ---
In solving the system of linear equations, the (A A) (B, B) (A, X) (A, B) (A, B)

augment matrix is

In the direct methods of solving a system of linear

An augment matrix

a triangular matrix

constant matrix

Coefficient matrix

An augment matrix

All the row operations in the direct methods can be
carried out on
the basis of --

all elements

pivot element

negative element

positiveelement

pivot element

The direct method fails if ----------- 1st row elements 0 |1st column elements |Either 1st or 2nd 2 nd row is Either 1st or 2nd
0 dominant
The elimination of the unknowns is done not only in | Gauss elimination | Gauss jordan Gauss jacobi Gauss siedal Gauss jordan

the equations below,
but also in the equations above the leading diagonal
is called

without using back
substitution

By using back
substitution method

by using forward
substitution method

Without using
forward

By using back
substitution

method substitution method |method
If the coefficient matrix is diagonally dominant, then | Gauss elimination | Gauss jordan Direct Gauss siedal Gauss siedal
---------- method
converges quickly.
Which is the condition to apply Jocobi’s method to | 1st row is dominant |1st column is diagonally dominant|2 nd row is diagonally
solve a system of equations dominant dominant dominant

Iterative method is a

Direct method

InDirect method

Interpolation

extrapolation

InDirect method
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As soon as a new value for a variable is found by
iteration it is used
immediately in the equations is called

Iteration method

Direct method

Interpolation

extrapolation

Iteration method

is also a self-correction method.

Iteration method

Direct method

Interpolation

extrapolation

Iteration method

The condition for convergence of Gauss Seidal
method is that the
should be diagonally dominant

Constant matrix

unknown matrix

Coefficient matrix

extrapolation

Coefficient matrix

In ----------- method, the coefficient matrix is Gauss elimination |Gauss jordan Gauss jacobi Gauss seidal Gauss jordan
transformed into diagonal matrix
We get the approximate solution from the ------------- Direct method InDirect method fast method Bisection InDirect method
-------------- Method takes less time to solve a Direct method InDirect method fast method Bisection Direct method
system of equations

The iterative process continues till ------------- IS |convergency divergency oscillation point convergency
secured.
In Gauss elimination method, the solution is getting | Elementary Elementary column | Elementary Elementary row Elementary row
by means of ----------- operations operations diagonal operations operations
from which the unknowns are found by back operations
substitution.
The method of iteration is applicable only if all smaller larger equal non zero larger
equation must contain one
coefficient of different unknowns as ---------- than

other coefficients.

is reduced to an upper triangular
matrix or a diagonal matrix in direct methods.

Coefficient matrix

Constant matrix

unknown matrix

Augment matrix

Augment matrix

Coefficient matrix
and constant matrix

Unknown matrix
and
constant matrix

Coefficient matrix
and
Unknown matrix

Coefficient matrix,
constant matrix and
Unknown matrix

Coefficient matrix
and constant matrix

The given system of equations can be taken as in the
form of -----------

A=B

BX=A

AX=B

AB=X

AX=B
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The sufficient condition of iterative methods will be
satisfied if the large

coefficients are along the ---------------- of the
coefficient matrix.

Rows

Coloumns

Leading Diagonal

elements

Leading Diagonal

Which is the condition to apply Gauss Seidal method | 1st row is dominant |1st column is diagonally dominant|Leading Diagonal |diagonally

to solve a system of equations. dominant dominant

In the absence of any better estimates, the ------------- roots points final value

of the function are takenasx =0,y =0, z=0. initialapproximatio initialapproximatio
ns ns

The solution of simultaneous linear algebraic Direct method InDirect method fast method Bisection InDirect method

equations are found by using-
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SOLUTIONS OF SIMULTANEOUS LINEAR ALGEBRAIC EQUATIONS
INTRODUCTION '

We will study here a few methods below deals with the solution of simultaneous
Linear Algebraic Equations

GAUSS ELIMINATION METHOD (DIRECT METHOD).

This is a direct method based on the elimination of the unknowns by combining equations
such that the 7 unknowns are reduced to an equation upper triangular system which could be
solved by back substitution.

Consider the » linear equations in n unknowns, viz.
apxrtaaxat....tamxn=b;

ayxi+azxat.... +axuxa=b2

A1 X1+ @paXa oot OuXn=bn o (1)
Where ay; and b; are known constants and x;'s are unknowns.

The system (1) is equivalent to AX=B .....(2)

~ s s
rﬂn A2 ereennn-Qin J;? bJW
Where A =|az azz...... An X=|x and B =| b
any a2 ..... @ X b
C ™5 U "
Now our aim is to reduce the augmented matrix (A,B) to upper triangular matrix.
'rﬁu ajp2 ceveeennlin b; B
(AB)= B2y ax.... dam b;
ani (4 0 S # P b.-, s (3)
~ ~
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Qi1
Now, multiply the first row of (3) (if a;; < 0) by - @14 and add to th

i=2,3,...,n. By thia, all elements in the first column of
(3) is of the form

e ith row of (A,B), where
(A,B) except a,; are made to zero. Now

“'b\
an 77 5 S | . b}
r,.
0 bgz ......... bz,, [}
0 by b e, J )

Now take the pivot'by;. Now, considering b, as the pivot, we will make all elements
below by in the second column of (4) as zeros. That is, multiply second

by

row of (4) by - b2: and add to the corresponding elements of the ith row (1=3,4,...,n).
Now all elements below b, are reduced to zero. Now (4) reduces to

(a]] aj2 A3, Aig b,: M
0 bzz bz_g.......-. bg,, c2
0 0 i AR Cin ds
\0 0  cCnzon... Con s 4 O

Now taking c3; as the pivot, using elementary operations, we make all elements below ¢33

as zeros. Continuing the process, all elements below the leading diagonal elements of A are
made to zero.

Hence, we get (A,B) after all these operations as

ﬁm di2 A3 eeenrenann ., Ain b; N

0 b;z 523 .‘53,, Cc2

0 0 C23 [+ V S— Cip d_;

0 0 o0 0 ... Crn d, |..(6)
N b,

From, (6) the given system of linear equations is equivalent to
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. : %
ayxrtapXataxst ... tamn=bi
baaxzt+basxst.... +bonXn=C2
c33X3+ ... FC3Xn=d3
OprXn=Kn ",

kn
Going from the bottom of these equation, we solve for x,= @nn. Using this in the penultimate
equation, we get x,,.; and so. By this back substitution method for we solve x,, Xp-1, Xp-2, .- o X2,
X].

GAUSS - JORDAN ELIMINATION METHOD (DIRECT METHOD)

This method is a modification of the above Gauss elimination method. In this method,
the coefficient matrix A of the system AX=B is brought to a diagonal matrix or unit matrix by
making the matrix A not only upper triangular but also lower triangular by making the matrix A
not above the leading diagonal of A also as zeros. By this way, the system AX: =B will reduce to

the form.
an 0 0 [/ QAin by )
0 by 0 Q' i bwm | c2
....................................................... d3
0o 0 0 | S—— Cnn kn ...(]
From~(7)
kn £ b,
X, =nn, ...... , x2=D22,x, =014
Note: By this method, the values of X;,X,.....X, are got immediately without using the process
of back substitution.

Example 1. Solve the system of equations by (i) Gauss elimination method (ii) Gauss — Jordan
method.

x+2y+z=3, 2x+3y+3z=10, 3x-y+2z=I13.

Solution. (By Gauss method)
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This given system is equivalent to

G 3 96). ()

AX =
1 2 1 3
2 3 3 (10
4B)=|3 -1 2 18 Losiasiie. ¢))

Now, we will make the matrix A upper triangluar.

1 2 1 3
2 3 3 |1lo
(4,B) = 3 —1 2 |13
1 2 1 (3
0o -1 1 |4
o -7 -1 |4 R>+(-2)R; , R3+(-3)R,

Now, take b,>=-1 as the pivot and make b3 as zero.

2 1 L 3]
F) -1 1 4
(4,B) ~ lo 0 —8 24 R3o(=7) cvvencennn- (2)

From this, we get
x+2y+z= 3, -y+tz=4 , -8z=-24
z=3, y=-1, x =2 by back substitution.
x=2, y=-1, z=3

Solution. (Gauss — Jordan method)

In stage 2, make the element, in the position (1,2), also zero.
1 2 1 3
[o -1 1 4 ]
(4.8) ~ lo 0 -8 24

o 3 11
]
~1lo o -8 —24 ] R;5(2)
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1 0 3 1;'
0 -1 1
~lo o -1 -3 R;G)
1 0 © 2
0 -1 0 1
~10 o0 -1 =31 Ria3), Ra(l)
ie., x=2, y=-1, z=3

METHOD OF TRIANGULARIZATION (OR METHOD OF FACTORIZATION)
(DIRECT METHOD)

This method is also called as decomposition method. In this method, the coefficient
matrix A of the system 4AX = B, decomposed or factorized into the product of a lower triangular
matrix L and an upper triangular matrix U. we will explain this method in the case of three
equations in three unknowns.

Consider the system of equations
apx;t+ apxot ap;x3 = b
azxt apxyt axxs = b
azix;+ asxot azxs = b

This system is equivalent to AX = B

a1, Q12 Q34 Xy b,
Ay, Q3; A3, Xz b3
Where 4= \@3s Q3; A3/ x=\X3/ B= b,

Now we will factorize 4 as the product of lower triangular matrix

1 ¢ 0
(lz, 1 0)
L= 131 l3z 1

And an upper triangular matrix

11 Uqz Ugg .
0 Uy, Up,
U=\0 0 U3z;/ sothat

LUX =B Let UX =Y And hence LY=B8B
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1 0 o0\ yy, b,
(b £ 36).
That is, "'31 13: 1 i/ = bl

= Yi=b byyrtys = by Lyy+lzystys = b;

By forward substitution, y;, y, y; can be found out if  is known.

11 Uz U\ [X, 1
(uﬁ Uz, uz:)(xz) @:)
From (4), 0 0 U3 /\Xa/=\¥;

Upxy * upx; +upzx; =y, Up2X2 + U23X3 = V3 and U33X3 = )3

From these, x;, x5, x; can be solved by back substitution, since y;, y, y; are known if U is

known.Now L and U can be found from LU=4
Il L 11 Uq, Uqqg aq, ay, a;;
22 1 0 0 Uy Uz |= Az, Qz; Az
ie., 131 13: 1 0 0 Uz, as, Qaz, Qs
i.e.,
a *\
Upy Ujz Ujps

aq, a4, i,
N Az, az,
Lpupy Duwgatuzy Dzt =\a3, Q3; Qg3,

Liuny Ipupatlsuzs B jugs+sous+us;
e

Equating corresponding coefficients we get nine equations in nine unknowns. From these
9 equations, we can solve for 3 /’s and 6 «’s.

That is, L and U're known. Hence X is found out. Going into details, we get u;; - @140 ;-
@12- u;5. @12, That is the elements in the first rows of U are same as the elements in the first
of 4. '

Also, Ly, = as, Liujtuz; = Ao, lg;ﬂ;g"‘uﬂ =03z,

Q

21
aiq,. apz

Az,
, Up = Az, -Qq,, Q12 and U3 =

Qz,
@i, e

Iy =

again, Iyu;; = @31, Iyup+inu; = @32 and Isjupstlsoupstuz; = A3q
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Az,
_ Gy
solving, I3; =14, I3, = a2 G4 -G1s

a
[&:2_ an -Aq;
1a a
31

az, e
E — .a
uz3 =f43a- 01,. ajs - 22 L+ P iz aa,-ail. a3

Therefore L and U are known.
Example 2 By the method of triangularization, solve the following system.
Sx-2y+z=4, 7x+y—-5z=8 3x+7y+4z=10.

Solution. The system is equivalent to

G5 2)6).¢)

A X = B

Now, let LU=A

1 0 0\ u,, Uy, U, § -2 1
I, 1 o) o uz us)=(7 1 -s
That is, l3, I3, 1 0 0 Uz, 3 7 4

Multiplying and equating coefficients,

U = 5' Up2= -2, uj3=1

Lyupyy=7 bLuptup= 1 Dusztusz=—3

7 7 19
Li='5, up=1 -5, C2= 35 and
= 7 32
Uz = 5 (])= 5

Again equating elements in the third row,

lsuy = 3¢ Lyjuiatlspuzz = 7 and Lspuys+lsouss+uss = 4
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UNIT -1
3
7 —-(=2)
3 19 A
. Isy =S, I3p= 5 = 19
s — () il , 1312
Uss = 3 - 19 s/=*7 5,705
163s 327
= 9 = 19
Now L and U are known.Since LUX = B, LY = B where UX =Y..
From LY = B,
% 0 o
—_— 1 o|/Vs
o JE)
i _‘i 1 2 (g)
5 19 = \1o
7 3 h
yl=4, gyl-f'y.?=8, _5y1+ 19 y2+y3= IO
28 12
y2=8-85 = 5§
12 41 1, 12 492 4e
y3=10-"5 - 19X 5 =10-"5- 95 = 19
-2 1 4
o X2 32 4 [1z
5 5 (y) 5
327 |\z 46
0 — e
UX =Y gives 19 =\19
x—-2y+z=¢4
19 32 12
S5y-'5 z=5
9/20
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327 46
19 z= 19

46
Zz = 327

10 12 E(ﬂ)

284
y= 327

(563) 46
Sx=4+42y- z=4+2\327). 327

366

ITERATIVE METHODS

This iterative methods is not always successful to all systems of equations. If this method
is to succeed, each equation of the system must possess one large coefficient and the large
coefficient must be attached to a different unknown in that equation. This condition will be
satisfied if the large coefficients are along the leading diagonal of the coefficient matrix. When
this condition is satisfied, the system will be solvable by the iterative method. The system,

apx;+ apxat apzxs = b;
azx;t az;xt azpxz; = b,
azXi+ azxat azxs = b;

will be solvable by this method if
a1l > |@a1:]+|a1.]
laz:] > laz|+lazl
a3zl > laz, ]+ jas,|
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In other words, the solution will exist (iteration will converge) if the absolute values of the
leading diagonal elements of the coefficient matrix 4 of the system AX=B are greater than the
sum of absolute values of the other coefficients of that row. The condition is sufficient but not

necessary.
JACOBI METHOD OF ITERATION OR GAUSS — JACOBI METHOD

Let us explain this method in the case of three equations in three unknowns.
Consider the system of equations,
aix+by+c;z = d;
ax+byy+crz =d,
agtbytez =ds ... (1)
Let us assume la,l > |Dy|+ 1yl
1b2] > 1az1+1csl
Ical > 1asl+ [bs]
Then, iterative method can be used for the system (1). Solve for x, y, z (whose

coefficients are the larger values) in terms of the other variables. That is,

1
x=0; di-by-ciz)

1

y= b: @@- ax — ¢z)
3
z= Cz (8% —B3) cereerren (2)

If X®, ¥", Z® are the initial values of x, y, z respectively, then

1
(1) — @ (4,-5,y® _,z(9,
1
y(l) - E (dz—azx(o) = czz(o))

1
zM) - & (@ ax(® _py (D) L)

Again using these values x(2) . J’(z), z(2) in (2), we get
i
x(®) _@; (@,- 5,y - ,2(2),
X
¥ i e (it i

1
22 - T @y 0xM —p, vy @
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Proceeding in the same way, if the rth iterates are X Ll : Al , 27 the iteration scheme
reduces to

[

xﬂ"‘l‘l) =

2

1 (di- 6, Y™ - ;27
1
YO — b, (d,— 2, X" _,2™)

1
z20) = T, (d;- 2,7 _ b,V ... (5)

The procedure is continued till the convergence is assured (correct to required decimals).

GAUSS - SEIDEL METHOD OF ITERATION:

This is only a refinement of Guass — Jacobi method. As before,
3
x=Qy (d;-byy-ciz)

1
y=bBa (dr-ayx—cz)

1
z=C; (ds- azx —byy)

We start with the initial values ¥°, Z® for y and z and get x(1) from the first equation.
That is,

1
x(]') = a_' (d- b;}'fﬂ} _0;3(0))

While using the second equation, we use Z (0) forzand X (1) for x instead of X° as in
Jacobi’s method, we get

1
y(I) = -b_: (dz—agx(l) —czz(o))

2 1
Now, having known X®*and y (1) , use X2 for x and y(1) ¢ y in the third equation,
we get

1
z(l] = Cg (ds- ajx(l) _ bjy(i)}
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In finding the values of the unknowns, we use the latest available values on the right hand side.
If XD ¥9 z® e the rth iterates, then the iteration scheme will be

1
xﬂ"i‘l) =.a_l (djl"b,f}’trj -c!z{rj)

1
yfr‘f'lj i T): (dz_azxﬂ"}‘l] —C;zm)

1
zr+l) _ ¢ (ds- a;x@+D _ b;J’fr'H))

This process of iteration is continued until the convergence assured. As the current
values of the unknowns at each stage of iteration are used in getting the values of unknowns, the
convergence in Gauss — seidel method is very fast when compared to Gauss — Jacobi method.
The rate of convergence in Gauss — Seidel method is roughly two times than that of Gauss —
Jacobi method. As we saw the sufficient condition already, the sufficient condition for the
convergence of this method is also the same as we stated earlier. That is, the method of iteration
will converge if in each equation of the given system, the absolute value of the largest coefficient

is greater than the sum of the absolute values of all the remaining coefficients. (The largest

coefficients must be the coefficients for different unknowns).

Example 3 Solve the following system by Gauss — Jacobi and Gauss — Seidel methods:
10x-5y-2z=3; 4x-10y+3z=-3; x+6y+10z=-3.

Solution: Here, we see that the diagonal elements are dominant. Hence, the iteration process can
be applied.

lo -5 -2
+ -lo 3 0
That is, the coefficient matrixL 1 6 1@ | is diagonally dominant, since | 10|

> |-51 + I-2L
|-lo| > 41 + | 3 1
|10 1 1]+ |6

Gauss — Jacobi method, solving for x, y, z we have

1
x=T10 3+59+422) e (1)
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32
y=10 G+4x+32) i, (2)
A
z= 10 (-3-x-6Y) = i 3)

First iteration: Let the initial values be (0, 0, 0).
Using these initial values in (1), (2), (3), we get

1
x(Y) — T 3+ 5(0) + 20)) = 0.3

1
¥ _ T 3+ 4(0)+ 30)) = 0.3

1
z(1) = T (-3- (0)- 6(0))=- 0.3

Second iteration: using these values in (1), (2), (3), we get

1
x(2) = Tq (3+ 5(0.3) + 2(-0.3)) = 0.39

E 1
¥®) _To 3+ 4(03) + 3¢0.3)) =033
6(0.3)) =- 0.51

Third iteration: using these values of X (2) s ¢ (2), z(?) in (1), (2), (3), we get,

1
x(3) = To 3+ 5(0.33) + 2(:0.51)) = 0.363
5
¥®) ~Tg 3+ 4(0.39) + 3(:0.51)) = 0.303

1
z(®) = To (3 (0.39) - 6(0.33)) = - 0.537

Fourth iteration:

x(%) — Tg (3+ 5(0.303) + 2(-0.537)) = 0.3441
4 -

vy - 1o (3+4(0.363) + 3(-0.537)) = 0.2841

1
z(*) - T (-3 (0.363) - 6(0.303)) = -0.5181

1
z(2) _ 10 (-3-(0.3) -
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Fifth iteration;

i
x5 —Tg (34 5(0.2841) + 2 (0.5181)) = 033843

1
V) ~ T 3+ 40.3841) + 30.5181)) = 02822

_ 1
208) - Tg (3- (03441 - 60.2841)) = - 0.50487

Sixth iteration:

1
x(8) ~Tg 3+ 5(02822) + 2 (-0.50487) = 0340126

1
¥ T4 5+ 4(0.33843) + 3(-0.50487)) = 0.283911

1
2() ~ To (3. (033843) - 6(0.2822)) = - 0.503163

Seventh iteration:

Iterat Gauss - jacobi method Gauss — seidel method
ion

X y z x ¥y z

1 0.3 0.3 -0.3 0.3 0.42 -0.582

2 1039 0.33 -0.51 0.3936 | 0.2828 |-0.5090
3 [0.363 0.303 -0.537 0.3396 |0.2831 |-0.5038
4 03441 |0.2841 |[-0.5181 |0.3407 |0.2851 |-0.5051
5 (03384 | 02822 (-0.5048 |[0.3415 |0.2850 |-0.5051
6 |0.3401 |0.2839 |-0.5031 |0.3414 |0.2850 |-0.5051

7 103413 [0.2851 |-0.5043 |0.3414 |0.2850 |-0.5051
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8 [0.3416 |0.2852 |-0.5051
9 (03411 |[0.2851 |-0.5053

k
7 ——
x(7) = T (3+ 5(0.285039017) + 2(-0.5051728))
= 0.3414849

1
7 —
¥ — T (3+4(0.3414849) + 3(- 0.5051728))
= 028504212

1
? —
z(7) = Tg (.3 (0.3414849) - 6(0.28504212))
= -0.5051737

The values at each iteration by both methods are tabulated below:

The values correct to 3 decimal places are

x = 0.342, y=0.285, z=-0.505

Relaxation Method

Consider the system of equations,
ayx+byy+ciz =d;
aX+hoy+cz = d, (1)}
asx+bay+csz = ds

we define the residuals ry, r,, r3 by the relations
rn=ax+by+ ¢z -d;
r; =aX + boy + ¢z - dy }(2)

3= asX + bgy + C3z - ds
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If we can find the values of X, y, zso that r, = 0 =r, = r3 then those values of x, y, z are
the exact values of the system. If it is not possible to make r, =0 =r, =r3, then we
make simultaneously the values to ry, r,, r3to as close to zero as possible. In other
words we “liquidate” the residuals r3, Iy, r3 by taking better approximate values of X,
y, z what will be the slight change is made in the values of x, y, z what will be the
corresponding changes in the residuals, ry, r,, 13? We give below an ‘operation table’
from which we can easily know the corresponding changes in ry, r,, r3for a change of
1 unit in x, while there is no change in re is no change in y and z, for a change of 1 unit
in y while there in no change in x and z for a change of 1 unit in z while there is no
change iny and x.

Operation Table

Operation | Change in ( or increment in)

Xyl z |1 |r| r
Ry 1 (0] 0] a |a| a
R, O |10 ]| by |by| bg
Rs 0|01 ]| c |bg| c3

What is the meaning of the above table ?
The operator R, increase the value of x by 1, y by zero, z by zero

(no change in y and z) and this operation increases the residuals r; by a; r, by a, and
r; by az (the increase in ry, r,, r3 are the nothing but the coefficients of x in the
equations given). Similarly Rj increases the value of z by 1 (while x, y are kept
constant) and the effect of this operation increases the values of ry, 1y, r3by ¢y ¢, C3
respectively.

One can easily see that the operation table consists of the unit matrix | and the
transpose of the matrix A and A°, where A is the coefficient matrix of the system of
equations.

Convergence of the relaxation method:

If the method should converge, the diagonal elements of the coefficient matrix
A should be dominant; that is, A is diagonally dominant. Referring to the system of
equations given above; the system can be solved by this method successfully only if

|[11|> Ib1|+ IC,]

1Dz]> 161+ 1¢51
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Ics1>1a:1+ [Ds]
Where at least once the strict inequality holds.

Example 1.Solve the following equations using relaxation method

10x—-2y—-22=6
X+ 10y—-2z=7
Xx—y+10z=8

Solution:Since the diagonal elements are dominant, we will do by relaxation method.
The residuals ry, r,, r3 are given by
r=10x-2y—-2z-6
r,=-x+10y—-2z-7
r= -x—y+10z—-8
Operation Table (write 1,A”)

Changes in
X y Z r I s
R, 1 0 0 10 -1 -1
R, 0 1 0 -2 10 -1
R3 0 0 1 -2 -2 10

We will take the initial values of x,y,z as0,0, 0.
Setting x=0=y=z, we getr, =-6, r,=-7, r3=-8

We write these residuals below and relax these values making changes in X,
y, Z as shown below:
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X y z r ry rs

Analysis: In line (1), for x=0, y= 0, z = 0 the residuals are -6,-7,-8. The
numerically largest residual is -8 which is encircled.

First, we liquidate the numerically largest residual r3 = -8 by a proper multiple
of Rj. Since R; operation increases r3 by 10, by operation 1.R3, we get (i.e., put x=0,
y=0, z=1) r; = -6+(-2) = -8; r, = -7+(-2) = -9; r3 = -8+10 = 2 giving line (2). Now, in
line (2), numerically greatest residual is -9 which is encircled. We will liquidate this
r, by proper multiple of R,. Anincrease of 1 in y will increase r, by 10, r; by -2 and r3
by -1. Hence doing the operation 1.R, new r;=-8-2=-10,r,=-9+10=1, r;=2+(-1)=1 and
we get the line (3). Now in line (3), r;=-10 is the numerically greatest value. Now,
we will liquidate this r=-10 by a proper multiple of R;. Doing the operations R;
(1, 0, 0), r;=-10+10=0, r,=1+(-1)=0, r;=1+(-1)=0. Fortunately all the residuals have
become zero after the 3 operations. Adding the values of x,y, z we get x=1, y= 1, z
=1 as the exact solution for the system.
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Part B (5x6=30 Marks)

Possible Questions

1.

2.

Applying Gauss Jordan method to find the solution of the following system
10x+y+z = 12;2x+10y+z = 13;x+y+5z = 7

Solve the system of equation by Gauss Jacobi method.

5X-2y+z= -4; Xx+6y-2z= -1; 3x+y+5z=13

Solve the system of equation by Gauss Seidel method

10x-5y-2z =3; 4x-10y+3z =-3; x+6y+10z =-3

Solve the following system by Relaxation method.

10x-2y-2z =6; -x+10y+-2z =7; -X-y+10z =8

By the Method of Triangularization solve the following system

S5X-2y+z =4; 7x+y-5z = 8; 3x+7y+4z =10

Solve the system of equations by Gauss Seidel method correct to 3 decimal places.
8X-3y+2z=20; 4x+11y-z=33; 6x+3y-127=35

Solve the system of equations by Gauss elimination method.

X+2y+z = 3; 2x+3y+3z = 10;3x-y+2z = 13

Part C (1x10=10 Marks)

Possible Questions

1.

By the Gauss Jordan method solve the following equations.

5X-2y+z=4; Tx+y-5z=8; 3x+7y+4z=10

Explain the algorithm of LU decomposition method

Solve the following system of equations using Gauss Elimination method.
2x+y+z=10; 3x+2y+3z=18; x+4y+9z=16

Applying Gauss Jacobi method to find the solution of the following system
10x+2y+z=9; 2x+20y-2z= - 44; -2x+3y+10z=22
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Subject: Numerical Analysis

Subject Code: 177MMP103

Class :1-M.Sc. Mathematics Semester 1
Unit 111
Solutions of Ordinary Differential Equations
Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
The Euler Method of second category are called ------- Diagram graph line graph Continuous line Continuous line
_____ graph graph
In Euler's Method solution of the differential Xt =X thf (X Y1 =Y n-hf (X (Yo=Yt F(X 0y Y1 =Yt h (X Y=yt hf(x
equation denoted by ----------- Yo )n=0,1,23... |,y,)n=0,1,23... y,)n=0,1,23... |,y,)n=0,1.23... |,,y,)n=
0,1,2,3...
Euler,s algorithm formula is - points slopes slopes and points  |chords slopes
The error in Euler method is ----------------=-=---------- .10(h2) o(h4) o(h3) o(hn) o(h2)
In Euler's Method averaged the ------------ points slopes slopes and points  |chords points
In Modified Euler's Method averaged the - Y1 =Yet Yoo Yer=YethyYe xen =X thX, You=ya-hy,  Ypa=y.+hy,
The Euler Method Predicator is ------------- Yuwi=Ynt bn+t Yo =yYptyn® [You=yYat yn Y uu=Va- n Y =yYnt
Yntl ¢ ) +Yn+tl ) + Yntl ¢ ) Yntl © ) (yn‘+ Yntl ¢
)
The Euler Method Corrector is ------------- convergent slow convergent divergent fast convergent slow convergent
The Euler Method and Modified Euler's Method are -|required not required may be required must required not required
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In R - k method derivatives of higher order are -------- constant zero variable non-zero constant

The n -divided difference of a polynomialof the n -th | Trapezoidal rule simpson s rule 3/8 simpson's rule | Booles rule simpson s rule
degree are

Relation between A, V and E Ki=hf(x,) Ki=hf(x, yn) Ki=1(yn,) Ki= hf(y,) Ki=hf(x, yn)
Given Initial value problem y = dy/dx f(x,y) Trapezoidal rule simpson s rule 3/8 simpson's rule | Booles rule Booles rule
wherey (x0) =y 0, In Runge kutta

In Newton cote formula if f(x) is interpolate at constant variable zero negative zZero

equally spaced nodes by a polynomial of degree four

then it represents

n th difference of a polynomial of n th degree are Independent dependent Inverse not Independent Independent

constant and all higher order difference are

In divided difference the value of any difference is ----
- of the order of their argument

Trapezoidal rule

simpson s rule

3/8 simpson's rule

Booles rule

3/8 simpson's rule

In Newton cote formula if f(x) is interpolate at
equally spaced nodes by a polynomial of degree
three then it represents

g has fixed point in [
a, b]

g has not fixed
pointin [ a, b]

g has fixed point in
(ab)

g has fixed point in

(ac)

g has fixed point in
[a, b]

Which of the following relation is true ?

Trapezoidal rule

simpson s rule

3/8 simpson's rule

Booles rule

Trapezoidal rule

In Newton cote formula if f(x) is interpolate at
equally spaced nodes by a polynomial of degree one
then it represents

1, -1
E*+E"

-

E”-E

E” E %

E*JE ”

- Y

E” . E

central difference equivalent to shift operator is

Ks=hf(x ,+h,y,

|<3=hf(xn’yn)

Ks=hf(x ,+% h

K3: f0<n,Yn)

Ks=hf(x ,+%

+h) Ynt¥e h) h,ynt% h)
In R-k methods, the derivatives of ----- are not higher order lower order middle order zero higher order
require only the given function values at different
A predictor formula is used to the |correct predict increase decrease predict
values of y at xi+1.
If all the non zero terms involve only the dependent |homogeneous non homogeneous |linear non linear homogeneous
variable u and u' then differential equation is called
Sum of the eigen values of a matrix is equal to the-----'sum product divide square sum

of the diagonal element of the matrix.

Prepared by : A.Henna Shenofer, Department of Mathematics,

KAHE




Solution of ordinary differential equations / 2017 Batch

calculation of the ----- order derivatives.

Euler's method uses straight line segments to 4th order 3rd order 2nd order 1st order 1st order
approximate the solution method is refered to as a-----

Adams Moulton method is -------------- method single step multi step direct indirect multi step
The Runge-Kutta method do not require prior middle lower higher zero higher

Taylor series and Euler methods are
--then Runge- Kutta method.

fastly divergent

slowly divergent

fastly convergent

slowly convergent

slowly convergent

values of y at xi+1.

Which of these are multistep methods? Milne’s method Runge-Kutta Euler Modified euler Milne’s method
method
A predictor formula is used to the |correct predict increase decrease predict

If dy/dx is a function x alone, then fourth order

Runge-Kutta method reduces to ------ :

Trapezoidal rule

Taylor series

Euler method

Simpson method

Simpson method
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EULER'S METHOD

Consider the differential equation

dy
dx -—f(x, »)
where y(x,)) = y,
Suppose that we wish to find successi here y, 1%
! essively y , V., ---s Vo W .
value of y corresponding to x = x,., where x_ ¥ xz +mh,m=12"" i

being small. Here, w : ], acu
. » We use the pro i small interval, G
nearly a straight line. property that in a .

. the interval x_ t0 x. of X, we apnrax: L E
ThUss n t . 0 1 ’ apprOleate the i
ngent at the point (x;, ;) urve by the
ta Therefore, the equation of the tangent at (x ¥,) is
= (é!_ (x i xo) 2
y-’yo (10.)'0)

= f(xp Vo) (X x,) [from Eqn (1 1.32)]
of ¥ =yo+ (x —xo)f('.ro'yo)
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Hence, the value of y corresponding to x = x, is
¥ =Yt ini=a) F )

of YW=Yot hf(x,.y) (11.33)

Since the curve is approximated by the tangent in [x, x,], Eqn (11.33)
gives the approximated value of y .

| error

: ¢

? actual curve
of solution

(%o, Yo)

Ym
Yo Y4 Y2

o;‘h’L 1 e

X
xo " X: m

Fig 11.2

Similarly, approximating the curve in the next interval [x,, x,) by a line
through (x,, »,) with slope f(x,, ,), we get

y,=y,+ hf(xl’yl) (11.34)
Proceeding on, in general it can be shown that | ”
TR A

:’?;ma’*s In Euler’s method, the actual curve of 8 solution is approx:i 4

; : hat the
8 sequence of short lines as shown in Fig 11.2. 1t ls.poss!b::tla:;nﬂ)'-
uence of lines may deviate from the curve of solution csc:tgn'acy using
Eu: Process is very slow and to obtain it with reaso nable amont over thas
mem method, we have to take A very small. A ke
IS discussed in the following section.

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE
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1111 IMPROVED EULER'S METHOD

2 : i hrough A(x_. v,) whose slope ;
,we considera line passing t o*Yo > SlOpeisthe 5
?fe::e slopes at A )’O) and P(A'|, _vlﬂ)) such that y" it A hj(x”;:*
In Fig. 11.3, let AL, be the tangent to the curve at A(x,, ¥.) and Pl_. _
the line thropgh P, ™ having the slope f(x, »,'"). Now PMis'he’-b‘

|
having slope -
2 UG 3+ S (5 ) |

that is, average of two slopes f(x,. y,) and f(x,, y,"). k

+ <

— X

Fig11.3

Line AQ through (x,, y,) and parallel to PM is used to approximate the |
curve. Then, ordinate of point £ will give the value of y,. !

Therefore, equation to ABQ is -
!
(11.36) |

;
Y=Y = (x—x) 5 {7 (x,, ) + S (x,, ¥ N
This

As we are assuming that 4 B =y , coordinates of B will be (2
point will lie on 4Q. :

1 .
# W=V = 0y —=%) 5 Vo v +f(x 7"} . 1
' h
oE N=X + 5 UGy ¥) + (x5 5,

. s o
_y0+-2- {f(xovyo) +f(xo+ A ayo+hf(x0’y°)
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In general, we have the formula

=y +ﬁ.{f(x V) HSf(x +th,y +h
y,,,, ~ 2 m® 7 m - ’y.. f(x.,oy.,)}.

(11.38)
Where x,,. i xn-l = h'

11.12 MODIFIED EULER'S METHOD

In this method the curve in the interval (x5 x,), where x, = x, + h, is
approximated by the line through (xo, ¥,) with slope

h
f(x ’yo f(xoryo)) (1)
that is, the slope at the mlddle point whose abscissa is the average of x,
dx,i o 1
and x, 1.€. X, 5
Y
4
s
Alxg, ¥o)
=
Yo Y1
Yor - 1%0, ¥o)
O X xo*g_ l,‘Xo"h o X
Fig 11.4

Geometrically, line L through (x4 ¥,) which is parallﬁl to L,, a line through

h o h -
(*,*3> 3 f(x,¥,), with the slope (1) approximates the curve in R

[’;9- x ] The ordinate at x = x,, meeting the line L at B, will give the value
%Y,

The equation for line Z is"

K

Sl o ‘ h ho
E Y yo‘(x*xo){f(xo'l' —2-’yo+ 'i'f(xosyo)}
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) = x., WO B~ 1
putting ¥ = X1 h i FAC BN} i
{f(x -+ 2 s> Yo 2 |
=y (X T x°) °
¥y, = h _’z_ £ YO
—y,thfGF 7 Y 27 T » (1.39)
: be shown that,
3 e ways itcan
proceeding in the W oo Boie 503 '
o=V F I Ea T g Vet 2 T (11.49)
) m

1 —y, HO)= 0 in the range Q <x 0.3 \ISing(‘)

118 Solve g~ Na———
Example s A Euler’s method, and (iii) modified Euler,

Euler’s method i 0.1. Compare the answers with exact solutio,

method by choosing /=

Solution Given —‘(-1{-':—‘ 1 —yand Y0) = 0 and h=0.1. G
x

N we have to find out the solutions at x = 0.1, 0.2 and 0.3.
ow i

(i) Euler’s method : The algorithm is,

if %=f(x: y) ’y(xo)::yo

: = = . =0 = 0
Hel’e,f(x, y) - l—ya h 0-1 - xO ’ o

. From Eqn (1), ¥pn =Y+ (0-1) (1)

or Yoy = Oul¥ 09y,

Putting m=10,1,2 successively, we get
y,=0.1+ 09y,=0.1+ (0.9) (0) = 0.1

y,= 0.1+ 09y, =0.1+ (0.9) (0.1 = 0.19
=01+ 09y,=0.1+ (0.9) (0.19) = 0.271

- 0.1)=0.1 ; (0.2) =0.19 s M(0.3)= 0.271

(ii) Improved Euler’s method : Here, the formula 1s -

Vo ™, F % S (x v )+ (X Y}

where, f(x,_, ., )= {x* h,y + hf (x_.» YD)}
Here, f(x, ) =1-y, - f(xp,y)=1"Vm
S )= 1=, (X, y.)}
=1-y —h(1-Y)
= =-hX1-yD)

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE
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- n (iV), we get
subgttw

& _g.{(l -yJ)t (1 —h)1 -y}

y'.l’y-

oyt %h(Z-—h)(l =)
+0.095(1 -¥,) [~h=0.1]
y_., =0.095+0.095y, | )
s m=0,1,2 successively in Eqn (v), we get
PutiTE 95 + 0.905 ¥, = 0.095 + (0.905)(0) = 0.095
%7 0095 +0.905 y, =0.095 + (0.905)0.095) = 0.180975

2 0095 +0905y, =0.095 +(0.905X0.180905) = 0.2587823

ﬁv), Modified Euler’s method : The formula is,

i

h
y.+|=yu+hf{xm+ %,ym+ Ef(x,..’ym)}
h
3 =ym+h{1-—[ym+ Ef(xm,ym)]}
h
—yuth{1=y,— 5 A=y}

7
=y th{1-2)(1 -y}

=y, +0.095(1-y,) [ h=0.1]
=0.095 + 0.905 y,.

which is identical to Eqn (vi). Putting m =0, 1, 2 successively in Eqn
(vi), we get -

¥y, =0.095, y,=0.180975,y, = 0.2587823
_Exact solution : We have '

——
=

& =y or

1—-y e
On imegrating, we get
\1og(l~y)+logC=xor Tg;=€ g
N . e —y)=c _ (vil}.
B‘lty= O 0. Therefore, from Eqn (vii), we get C =_l and he;“c;eii\
E e(l-y=1 or y=1-€ |
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y,=n0.1)=1-e®= 0.0951625
y,=102)=1-¢e°=0.1812692
and y,=)03)=1-¢= 0.2591817

* Now compare the results in the following table.

x Euler’'s method Improved Modified Exact
Euler’s method Euler's method solytjop

0 o 0 0 5
0.1 0.1 0.095 0.095 0.095162s
02 0.19 0.180975 0.180975 0.181269)
0.3 0271 0.2587823 0.2587823 025935

—

RUNGE KUTTA METHODS

In this section, we will study the formula for third and fourth order Runge-
Kutta methods. Their derivations being tedious and unrequired, the
formulae have not been derived here. _
Runge—Kutta method of third order . 1t is defined by the following equations:

= (5,0,

k=hfx,*h y* k)

k=hfx,*h Y, + k)

1
k = g (kl + ?_64‘4" k})

8nd yl =yo + K
We can see that this is identical to Runge’s method. |
Hunge—-Kutia meihod of fourth order : 1t is most commonly known a3 Rung®?

Kutta method and the working procedure is as follows. Consider
following equations. -

dy
2 =T Mx) = o

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 8/19
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tey calculate successively
To oompu 1 k‘ - hf(xo’ ),0)

k,=hf|\XeT5:YeT

h +£z_)
k3'=hf xo“"z,}’o 2)
k4=hf(xo+h~, vy, + k)

k = l6(k, + 2k + 2k, + k)

Thien y‘=yo+kandxl=xo+h

. crement in y in second interval is computed in a similar manner
The incr
by means of the formuiae

k= hf(x,y)

h +§‘_)
k,=hf x1+'2"3"| 5

h kz)
= B, B s
s—hf(xx 5 N,

k,=hf(x,+h y,+k)

B = Jé(k, + 2k + 2k, + k)
Then
. and so on for succeeding intervals.

: the different

You can notice that the only change in the fgrmdul:a;‘ fg; I, 8

intervals is in the values of x and y. Thus, to 1in ' for k., k., k, and k.
should have substituted x, , and y, , in the expressio 2

y2=yl+kandxz=xl+h

2) using -
Banple 1112 Given yf = #* — y» Y0 = 1, find X0 YO0

11y thi iii) fourth
Runge-Kutta methods of (i) second order, (ii) third order and (ii1)
order,

Solution  Given 1
y=f(x,y)="z‘y’x°=:)'y°' |
.'. (x,yo)s-— . _
., Leth=oy e

rrepared py - A. Henna snenoter, bepartment ot Iviathematics, KAHE 10/?9
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Runge—Kutta method of 2nd order : Here,
kl=hf(xo,yo)=(0.l)(—l)=-—0.l ]
k,=hf(x,+h y,* k)= hf(0.1, 0.9)
= (0.1) [(0.1)* — 0.9] =— 0.089
1 1
k = 5 (k, + k)= 5 [(—0.1) + (0.089)] = — 0.0945
- yl=y(0.l)=yo+k=~l —0.0945 = 0.9055 ;
Again, taking x, = 0.1, y, = 0.9055 in place of (x,, y,) and repeating the

process,
k, = hf(x,y)=h(x?-y)
= (0.1) [(0.1)* — 0.9055] = — 0.08955
k, = hflx+h, y+k]l=hs(02,081595)
= (0.1) [(0.2)* — 0.81595] = — 0.077595
k- %(k, + k)= ;_— [(— 0.08955 — 0.077595] = — 0.0835725

-y, = y(0.2)=y,+ k= 0.9055—0.0835725

= (0.8219275
Runge—Kutta method of 3rd order :Here,
k = hf(x,y)=—0.1

k, = hf(x,*+h, y,+k)=-—0.089
k, = hf(x,+h, y,+k)=hf(0.1,0911)
= (0.1)[(0.1)*-0.911] =-0.0901
k, = hf(x,+h/2, y,+ k/2)=hf(0.05,0.95)
= (0.1) [(0.05)* — 0.95] =—0.09475

1
b = E)

1
& [(-0.1) +4 (- 0.09475) + (- 0.0901 ] =— 0.09485

Tny y(0.1) =0.90515 )

Taking x, = 0.1, y, =0.90515, h= 0.1 in place of (x; y,) and repeatif
the process, we get
hf(x,,y)=(0.1)[(0.1)*—0.90515] =— 0.089515
k, = hf(x,+h, y,+k)=hf(0.2,0815635)

(0.1) [(0.2)> - 0.815635] = —0.0775635

k, = hf(x,+h, y +k)=hf(02, 0.8275865)
: = (0.1)[(0.2 2—0.8275865] =— 0.0787586 |
Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 11/19'
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hf("o 2 Yo —) = h£(0.15, 0.8603925)
k =
_ ©.D IO 15)2 0.8603925] = — 0.0837892

g 6(k + 4k, +k)
[( 0.089515) + 4 (— 0. 0837892) — 5.0787586] =— 0.0839051
(0 2) =y, +k= 0.90515 — 0.0839051 = 0.8212449

5 ' kutta method of 4th order : Here,

Rungé~ b = BTy 0.1

hf(xo +2s Yo+ ) =(0.1)£[0.05, 0.95]

k=
= (0.1) [(0.05)* — 0.95] =0.09475
Py |
k, = hf| %o +§',)’o + =% e h £(0.05, 0.952625)

~ (0.1) [(0.05)* — 0.952625] =— 0.0950125
k= hf(x,+h y,+k)=hf[0.1, 09049875]
= (0.1)[(0.1)* — 0.9049875] = — 0.0894987

Now, k = % (k, + 2k, + 2k,+ k)

e % [~ 0.1 + 2(— 0.09475) + 2(— 0.0950125) — 0.0894987]

=-0.0948372
Y =y{0.1) —yo+k"1—-00948372 0.9051627

Takmg x, = 0.1, y, = 0.9051627 in place of x_, y, and repeating the
¥ocess, we get

k= hf(x,y)=hf (0.1,0.9051627)
= (0.1) [(0.1)* - 0.9051627] = — 0.0895162

| h k
3 = (x, +5 e +—2'~) =hf (0.15, 0.8604046)

I

(0.1) [(0.15)2 — 0.8604046] = — 0.0837904

Bk
&4 (" MR +?2) = h£(0.15, 0.8632674)

©.1) [(0.15): — 0.8632674] =— 0.0840767
Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 12/19
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ke = hAf(x,+h y +k)=hf(0.2, 0.8210859)
= (0.1) [(0.2)* - 0.8210859] = — 0.0781085
1
o - e (ki *+ 2k, + 2k, + 2k, + k)

" -
¢ [0.0895162 + 2(—0.0837904) + 2(—0.0840767) — 0.078108s)
= — 0.0838931

¥ =»y(0.2) =y + k=0.9051627 — 0.0838931
= 0.08212695

119 MiLNE'S METHOD

Here . .
» the equation to be solved numerically is

dy
‘Th 2 S s Ax) =Y,
yz:y:xva.:u; Yo = M(x,) being given, we calculate y, = y(x, + h) = x,) s
o h)=.v(x2); ¥y = Mx, + 3h) = x,) - - -

wh : . :
Crehis a Suitably chosen spacing.

where x = x, + uh.
For y = y’ the above gives

w(u—1 s -
y =y, uly + —(—_—)' 7o e o ular— 1) —2) 3

2! v 31 &y,
u(n—1u—-2)0(u-3) ..
+ 41 A 'y 5 & Saiw
: (1155
F Ey.n= 1. 2. 3 and simplylying the above. we get
1 — -
| ing 8"~ ¢ 2¢ ;
.uglng > :__, O P ___2y ’ +}, )4
- [4yo'+s(y=")’° AS e ' %
"”’h '\~liA‘y'+'”] (11.56
By P83 L ¥o. T8 2 .56)
3
IR (11.57)
. a1l », 2
or V' . ering only differences upto third order]
. i 1157)is=—l'iA"y'+--- and this can be
e. the error in Eqgn (11. as o
Hen€
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14
pfo\'Cd to be = 45
(11.57) can be written a5

y(€), where £ lies in between x, and x,. Hence, Eqn

<
4h by e 29 T) Wi 11.58
pevt g @V S Y .

-y x, X, X, X, are any five consecutive values of x, the above, in
Lilkgy Ay A T4
gener:l, can be written as
; 4h r 7 ' SN2 14h5 9
e RSl € A ¥ 2,07 s yE,) (11.59)

where § lies between x__, and x_. Egn (11.59) is known as Milne's

‘predictor formula. g
Toget Milne s corrector formula, integrate Eqn (11 .55) with respect to

rover the interval x,tox, + 2h. Then we have

L+2h

2
e _ | {yé +ubyy + 2 (u - A}
4 0 2
l 1 9 X
+g(u =3u” +2u)A'y,
b — 6’ #1142 — WA Yo+ }du
24
Ory 1 4 1 ' ]
Y = ' 1 2 l_____..._-A +
() h[Zyo +2Ay, 3Ay0 15724 Yo

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 14/19
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1
< 2y,"+2 =o' )+ — (¥, — ’
= h [ Yo (,Vl Yo ) 3 (.‘_,_ 2_}'. +y0,)

A s 1
= R o
90 % 70 ] e AT = ey,

h
or Wy = Yk 3-(-"0'-4)’1'* yz')

Considering only differences upto third order, Eqn (11 60)
i giVes

h
Fe=e ™ -3—(}"0'- a,'+y,)

h
.. Error = — % A*y "+ - - - and this can be Proved to be = 4
o0 Y,

where x; < § <x,.
Eqgn (11.61) can be written as
5

h h :
=y + _( & 4 ! 4 < < N
Y=, 3 Yo MV 5) 90 Y (&) (!|.62)
Since x, x,, x, are any three consecutive values of x, the above can be

written in general as
i ﬁ ’ ’ L hs
Furi THoia T FY = ) = 90 V(&) (11.63

where £, lies in between x, ,and x_ . Eqn (11.63) is called as Milne’s

corrector formula.
Note : This method requires at least four values prior to the required

value. If the initial four values are not given, we can obtain them by using
Picard’s method or Taylor’s series method or Euler’s method of

Runge—Kutta method.

Example 11.16 Given gxy— = 1/x +}, ¥(0) = 2, y(0.2) = 2.09%,

M0.4) = 2.1755, 3(0.6) = 2.2493, find »(0.8) using Milne’s method

Solution In the usual notation, Milne’s predictor formula is :
"7;":’" " 4h- ' m
i T AL W +2y,) |
where y_| - denotes_the predicted value at y, , ,- N 02 }.'051"

In the given problem, X =0,x =02,%*= 0.4, x,= %
¥, =2.0933, y, = 2.1755, y, = 2.2493
!Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE
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/!’—
y= 2y o
'_ ~3in Eqn (i). the predictor is
putting n i

o e 1% ¥ e ’
Y=o + 5 @ =y 2v,")

1 1
Oigmr o - — = 0.4
Now N T x4y 02+20933 360528

i 1
i< x,+y,  04+21755 =haksaral

!
O X3+ V3 " 0.6 +22493
Substituting in Eqn (ii), we get
. =2+4(0.2)3 [2(0.4360528) — 0.3882741 + 2(0.3509633)]
Y - 23162022

Now, Milne’s corrector formula in general form is

=0.3509633

h
yn-vl.c= 1 " S(y»-l'+ 4yn’+ y,,.,|')
here y,,, . denotes the corrected value of y .
Putting n = 3 in above, we get
h
V=¥t 3+ 4y
From Eqn (iii), y, =2.3162022 and x, = 0.8.

' 1 1
Y™ =

Y ox+y,, 08+23162022
Hence, from Eqn (v),

= 0.3209034

Yio= 21755 + 072 [0.3882741 + 4(0.3509633) + 0.3209034]

=23163687
~r(0.8)= Y,=2.3164 corrected to four decimals.

(i)

(iii)

(iv)

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE
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\
11.20 ADAMS-BASHFORTH METHOD

Given

n
% =f(xt }') '

L 2
and y(x,) =y ISR | T
we compute ;z_, = Wx~h), y,= ¥x—2h): Vs W5 ,:

SEE

Neglecting the fourth order and higher order differences and using

v, =f =L VoIS h =2 s VL~ =3+ Ha=l

in Eqn (11.66), we get, after simplification,

h
g = ¥ t5g L5900 43~

which is known Adams—Bashforth predictor formula and is denoted
generally as

h
ylvl} = yn ¥ EZ- {55-,;— ng»—l T 37-,»—2 —-9fn-3}

h
Voo = V¥ o (5800~ S99, "+ 318,90 F ULeD)

Having found Yowefindf, =f(x,+h,y)

Then to find a better value of ¥,» we derive a corrector formula by
:"bﬁihfﬂng Newrton's backward interpolation formula at f, in place of
(%) in Eqn (11.65), i.e.

Xo+h

Y =y + I{_f,+qu,+—l—u(u+l)sz1
. 21

+ %u(tH- IXu+2)V’ S +}dt
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Example 11.18 Using Adams—Bashforth method. find y(1.4) given
Yy =x2(1 + ), (1) = 1,3(1.1) = 1.233, 3(1.2) = 1.548 and y(1.3) = 1.9

Scilution Given
VER ) ¥ ) X Lo e bk = 120 = L3,y =,
wo= 1233, y.= 1.548, v,=~1.979. =01,
Adams-Bashforth predictor formula is

h . : ; i )
W T, . >4 (38 3, =89y =37y "=9w)
Yo =X +yo)=(l)’[l+l]=2
Y, =x2(1+y)=(l.1)[1 +1.233] =2.70193
v, —x2(|+y2)-—(12)2[1+1 .548] = 3.66912
vy, =x2(1+y)=(1.3)*[1 +1.979] = 5.03451

" Y., =1.979 +0.1/24 {55(5.03451) — 59(3.66912)
+37(2.70193) — 9(2)}
=2.5722974

_x2,(1 + )= (141 + 2.57220974,
NoW Yor 700170')9

the € h
z}t+§-&.{9’v",+lq}"—s)’2'+y'}
Wici

0.1
~1.979+ 54 {2(7.0017029) + 19(5.03451)

— 5(3.66912) + 2.70193}
_ 25749473

-

)04 = 2.57S. correct to three decimal places.
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Part B (5x6=30 Marks)
Possible Questions

1) Derive the Newton’s Forward difference formula
i1) Derive the Newton’s Backward difference formula.
Use Euler’s method to solve the equation y’ = -y with the condition y(0) = 1.

Given Z—i’: y-x where y(0)=2, find y(0.1),y(0.2) using RungeKutta method.

Write the Derivative of Adams Moulton’s Method
Solve y’= -y &y(0)=1 determine the values of y at x=(0.01)(0.01)(0.04) by Euler method.

Solve the equation Z—Z = 1-y given y(0)=0 using Modified Euler method and tabulate the

solutions at x=0.1,0.2. ’
Determine the value of y (0.4) using Milne’s Method given y = xy+y?, y(0)=1 and get
the values of y(0.1),y(0.2) andy(0.3)

Part C (1x10=10 Marks)

Possible Questions

=

Compute y at x=0.25 by Modified Euler method given y’=2xy, y(0)=1.
Apply the fourth order Runge Kutta method to find y(0.1), y(0.2) given that y’=x+y,

y(0)=1.
Derivative of Milne’s Predicator and Corrector Method.

Given %:1+y2, where y=0 when x=0, find y(0.4) using Adams Moultan method.
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Unit IV
Boundary Value Problem and Characteristic value problem
Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
In numerical methods, the boundary problems,are  |finite difference Euler Milne's Runge- kutta finite difference
solved by using ----------------- method.
The boundary value problem by using the method  |shooting method difference method |finite element iterative method shooting method

for solving the initial value problem is called----------

--------------- method is initial value problem Milne's Euler Shooting Runge- kutta Shooting
methods.
The -------- method is used to determine numerically |Gauss Jordan power choleskey Gauss seidel power
largest eigen value and the corresponding eigen
vector of matrix A.

The iterative process continues till --------- IS convergency divergency oscillation infinite convergency
secured.

-------------- is also a self-correction method. Iteration method Direct method Interpolation extrapolation Iteration method
The condition for convergence of Gauss Seidal Constant matrix unknown matrix Coefficient matrix extrapolation Coefficient matrix

method is that the ------
should be diagonally dominant
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In iterative methods, the solution to a system of less than greater than or equal to not equal greater than or
linear equations will exist if the absolute value of equal to equal to
the largest coefficient is ------------- the sum of the
absolute values of all remaining coefficients in each
equation.

In ------mmmmmm- iterative method, the current values | Gauss Siedal Gauss Jacobi Gauss Jordan Gauss Elimination | Gauss Siedal
of the unknowns at each stage of iteration are used
in proceeding to the next stage of iteration.
The direct method fails if any one of the pivot Zero one two negative Zero
elements become ----.
In -----mnmm-- method, the coefficient matrix is Gauss elimination | Gauss jordan Gauss jacobi Gauss seidal Gauss jordan
transformed into diagonal matrix
We get the approximate solution from the ------------ Direct method InDirect method fast method Bisection InDirect method
-------------- Method takes less time to solve a Direct method InDirect method fast method Bisection Direct method

system of equations

The ------------ problem by using the method for initial value boundary value secondary value primary value boundary value
solving the initial value problem is called shooting

method.

Which involves the transformation of the boundary- |Milne's Euler Shooting Runge- kutta Shooting
value problem into an initial-value prolem?

Which method involves the solution of the initial-  |Milne's Euler Shooting Runge- kutta Shooting
value problem by any of the known methods?

Which method involves the solution of the given Milne's Euler Shooting Runge- kutta Shooting
boundary-value problem.

The eienvalues of a 4x4 matrix [A] are given as 2, - |546 19 25 3 546

3, 13 and 7. the |det(A)| then is---------

The ---------------- process continues till first second iterative non iterative iterative
convergency is secured.

The method is used to find the Jordan Seidal choleskey Jacobi Jacobi

eigen values of a real symmetric matrix.
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called ---------

If the eigen values of A are 1,3,4 then the dominant 4 1 3 4
eigen value of A i -------------- .

The shooting method is --------- problem. initial value boundary value secondary value primary value initial value

If all the non zero terms involve only the dependent |homogeneous non homogeneous |linear non linear homogeneous
variable u and u’ then the differential equation is
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Introduction
Consider the two point boundary value problem
u= f (x,u,u), x e(a, b) (4.1)

Where a prime denotes differentiation with respect to x, with one of the following
three boundary conditions.

Boundary condition of the first kind:

u(@)=vy, ub)=v,. (4.2)

Boundary condition of the second kind:

uw@=y, wuby=y,. (4.3)

Boundary condition of the third kind(or mixed kind):
a,u(@)-a, u(a=vy, (4.41)

b,u(b)+b, u(b)=v, (4.4i1)

Where a,, b,,a,, b,,v,,y, are constant such that
a,a,>0, |a0 |+| a, |7é0
b,b,>0, | b, |+| b, |#0and , |a, [+]|b, | 0.

In (4.1), if all the non zero terms involve only the dependent variable u and u’, then the
differential equation is called homogeneous, otherwise, it is inhomogeneous. Similarly,
the boundary conditions are homogeneous when vy, and y, are zero; otherwise, they are
inhomogeneous. A homogeneous boundary value problem , that is a homogeneous
differential equation along with homogeneous boundary condition , possesses only a
trivial solution u(x)=0. we, therefore , consider those boundary value problems in which a
parameter A occurs either in the differential equation or in the boundary condition , and
we determine value of A, called eigenvalues for which the boundary value problem has a
nontrivial solution. Such a solution is called eigenfunction and the entire problem is
called an eigenvalue or a characteristic value problem.

The solution of the boundary (4.1) exists and is unique if the following conditions are
satisfied:

Let u'=z and -oo< u, z <o
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Q) f(X, u, z) is continuous,
(i)  of/ou and 0f/0z exist and are continuous.
(iii)  of/ou>0 and |of/oz | < w.

In what follows, we shall assume that the boundary value problems a unique
solution and we shall attempt to determine it. The numerical methods for
solving the boundary value problems may broadly be classified in to the
following three types:

(). Shooting MethodsThese are initial value problem methods. Here, we add
sufficient number of conditions at one end point and adjust these conditions
until the required conditions are satisfied at the other end.

(i)Difference methodsThe differential equation is replaced by a set of
difference
Equations which are solved by direct or iterative methods.

(iii) Finite element methodsThe differential equation is discretized by using
approximate methods with a piece wise polynomial solution.

We shall now discuss in detail the shooting methods and for solving
numerically both the linear and non linear second order boundary value
problems.

Initial Value Problem Method (Shooting Method )

Consider the boundary value problem (4.1) (BVP) subject to the given boundary
conditions

Since the differential equation is of second order, we require two linear independent
conditions to solve the boundary value problem. one of the ways of solving the boundary
value problem is the following.

(i) Boundary conditions of the first kindHere , we are given u(a) = v,.in order that an
initial value method can be used, we guess the value of the slope at x=a as u’(a)=s.

(if) Boundary conditions of the second kind Here, we are given u’(a)=y,.in order that an
initial value method can be used, we guess the value of u(x) at x=a as u(a)=s.

(ii1) Boundary conditions of the third kind Here, we guess the value u(a) or u’(a). if we
assume that u'(a)=s, then from(4.4i), we get u(a)=(a,s+v,)/ a, .
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The related initial value problem is solved upto x=b, by using single step or a multi-step
method. If the problem is solved directly, then we use the methods for second order
initial value problems. If the differential equation is reduced to a system of two first order
equations, then we use the Runge-Kutta methods or the multi-step methods for a system
of first order equations.

If the solution at x=b does not satisfy the given boundary condition at the other end x=b ,
then we take another guess value of u(a) or u’(a) and solve the initial value problem again
upto x=b. these two solutions at x=b , of the initial value problems are used to obtain a
better estimate of u(a) or u’(a) .A Sequence of such problems are solved, if necessary, to
obtain the solution of the

given boundary value problem. For a linear, non-homogenous boundary value problem, it
Is sufficient to solve two initial value problems with two linearly independent guess initial
conditions.

This technique of solving the boundary value problem by using the methods for
solving the initial value problems is called the shooting method.

Linear SecondOrder Differential Equations
Consider the linear differential equations
-u"+p(x) u+q(x) u=r(x) ,a<x <b (4.5)

Subject to the given boundary conditions. We assume that the functions p(x),
g(x)>0, and r(x) are continuous on [a, b], so that the boundary value problem(4.5) has a
unique solution,

The general solution of (4.5) can written as

U(X)=u, (X)+p, U () + |, U, (X) (4.6)

Where (i).u,(x) is a particular solution of the non homogeneous equation (4.5), that is
-U,"+p(X) Uy +q(X) Uy =r(x) (4.7)

(if) u,(x) and u, (x) are any two linearly independent , complementary solutions of the
corresponding homogeneous equation of (4.5) , that is

-Ul"‘l‘p(X) U1'+C](X) U1:0 (48)
-u, "+p(X) u, '+C](X) u, =0 (49)

We choose the initial conditions as follows:
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Boundary conditions of the first kind Since u(a) =y, is given, we take a guess value for
u’(a). We have the following two case.

Case 1:y,#0. We choose
u,(a) = u,(a)=u, (ay=y,
Uy’ ()=n, . u,'(a)=n;, u,'(a)=n, (4.10i)
Where 1 ,M,, M, are arbitrary. Since u,(x) and u, (x) are linearly independent solutions,
a suitable choice of the initial conditions is
n, =0,n;=1,n, =0. (4.10ii)
Other choices of linearly independent values can also be considered.

We now solve the differential equation (4.7)-(4.9) along with the corresponding initial
conditions, using value methods with the same lengths, and obtain u, (b), u,(b) and u,

(b).Now since the solution (4.6) satisfies the boundary conditions at x=a and x=b , we
obtain, at x=a: U, (@)+u, u,(@+u, u,(@=vy,

Or Vit vt H, 7, =7,0r g+, =00 x=h

Uo D)+, Uy (b)+ W, u, (b)=v, (4.11i)

— }/2-U0(b) .-
or H,= m,ul(b);&uz(b). (4.11ii)

Case 2:y,=0. In this case, we cannot (4.10i), since [u,(a), u’, (a)]"=[0,1]" and [u, (a), u’
,(@)]"=[0,0]" are linearly dependent . We choose the conditions as

Uo (@)= 1o , U (@)= 1, , U, (@)= 1,
Uy" (a)=n, . U,"(a)=n;, u,"(a)=n,
A suitable set of values is
1,=7,=0, n; =0; 7,=1,1,=0; ,=0, n; =1. (4.12)

We note that the conditions [u, (a), u’, (a)]"=[0,1]" and[u, (a), u’, (a)]" =[0,0] " are
linearly independent . Any other linearly independent set of values can be used.
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We now solve the corresponding initial values problems upto x=b.

Now, since the solution (4.6) satisfies the boundary conditions at x=a and x=b, we obtain,
at

X=a: Uu,(a)+p, u,(a)+p, u,(ay=1vy,=0.

Or Mot Hym+ M, 1,=0

Or H,=0(using (4.12))

X=b: u,(b)+p, u,(b)+ p, u,(by=v, (4.13i)

Or uzzyzllzj—(ob;b),uz(b);éo
(4.13ii)

We determine p, , i, from (4.11) or (4.13) and obtain the solution of the given boundary
value problem, using (4.6), at mesh point used in integrated the initial value problems.

Boundary conditions of the second kind Since u'(a)=1, is given ,we guess the value of
u(a). Again, we consider the following two cases.

Case 1:y,#0. We choose

Uy (@)= 1o, U (@)=, ,u, (@)= n,

Uy, (@=u,'(@) =u,"(a=1vy, (4.141)

A suitable set is values is

1,=0, 7,=1, n,=0. (4.14ii)

Since the initial conditions [u, (a), u’, (a)]"=[0,1]" and[u, (), u’, (a)]" =[0,0] " are
linearly independent , we obtain linearly independent solutions u, (x) and u, (x). Using

these initial conditions, we solve the corresponding initial value problems, with the same
step lengths, upto x=b.

Now, from (4.6) , we get
U(X) = urg ()1, ur, (X)+ |, U, (X)

Using the given condition (4.3), we get, at
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X=a: U, (@)+u, u, @)+ u, u,(@=v,

Or R VO T (4.161)
Or M, +H, =0

X =b: u,(0)+u, w,(b)+p, u,(b)=v,

or W= 22 ® b ). . (4.16)

u, (0)-u, (b)°

Case 2:y,=0. we cannot use the conditions as in case 1, since [u,(a), u’, (@)]" =[1,0]"
and [u, (@), u,(a)]"=[0,0]" are linearly dependent . In this case, we choose

Uo(@)= 17, , U (@)= 1, , U, (@)= 1,
u,(a)=n, .u,(a)=n,, u, (@=n,
A suitable set of values is
1,=0, 1y =v,=0; n,=1,m;=0; 7,=0, n; =1.(4.17)

We note that the conditions [u, (a), u’, (a)]"=[1,0]" and[u, (a), u", (a)]" =[0,0] " are
linearly independent . Any other linearly independent set of values can be used.

Using (4.6), (4.15) and the boundary conditions (4.3), we get, at

X=a: u,(@)+u, u, @+ p, u,(a=1y,=0.

Or n +um+u,n,=0 . (4.18i)

Or M,=0

X=b: o (b)+p, ur, (0)+ p, ur, (b)=v,

or p,=229%0 e (4.18ii)
u; (b)

We determine y, , 1, from (4.16) or (4.18) and obtain the solution of the boundary value

problem, using (4.6), at mesh point used in integrated the initial value problems.
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Boundary conditions of the third kindIn the case, we assume the arbitrary initial
conditions as

Uy (a)= 7,, u,(@)=n, ,u,(@)=n,
u,(a)=n, . uy(a)=ny, U, (@)=n; (4.19i)
A suitable set of values is
7,=0, n, =0; n,=1,1n,=0; »,=0, n; =1.  (4.19ii)
Again , We note that the conditions [u, (a), u’, (a)]"=[1,0]" and[u, (a), u’, (a)]" =[0,0]"

are linearly independent . Using these initial conditions, we solve the corresponding
initial value problems, using the same step lengths, upto x=b.

Using (4.6) (4.19) and the boundary conditions (4.4), we get, at x=a:
a, [Uo(@)+H, u(@)+p, u,(@)]-a, [uy(a)+y, u,(a)

M, U, (@)= v,

Or ag[ne+ pym+ W, mpl-a[ng +H, i+, ML 1= v,

Or Aol -, =Y, (4.201)

x=b: b [us(b)+u, u,(b)+ p, U, (B)] + by [ury(0)+u, U, (B)+ 1, U, (D)]= v,
Or  u, [byu,(b)+ b, u,(B)]+ 1, [b,u, (b)+b, u,(b)]

=y, [b,u,(@+b, u,® ... (4.20ii)

We determine y, , 1, from (4.20) and obtain the solution of the boundary value problem,
using (4.6), at mesh point used in integrated the initial value problems.

Boundary value problem of the first kind we solve the initial value problems
(4.21i)(4.21ii) using the initial conditions

u,(@=vy, , url(a) =0
u,(@=y, ,u,@=1 ... (4.230)

upto x =b. Any other value for u’, (a) can also be used. Since the general solution
(4.22) satisfies the boundary condition at x =b, we get
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u(b) =y,=ru,(b)+(1-1) u, (b)

_ V27U, (b) ..
or A —ul(b)-uz(b)’ul(b#ug(b)' veenn...(4.2300)

Boundary value problem of the second kind we solve the initial value problem (4.21i) ,
(4.21ii) using the initial conditions

u,(@=0,u,(a=y, u,@=1,u,@=y, ... (4.23iii)
upto x=b. since the general solution (4.22) satisfies the boundary condition at x=b, we
have u (b)y=vy,=ruw,(b)+(1+ 1) w, (b)
or a=2292 0 s @) (4.23iv)

u (b) - u5(b)

Boundary value problem of the third kind we solve the initial value problem (4.21i) ,
(4.21ii) using the initial conditions  u,(a) =0, u",(a) = -y, / a,

u,(@=1,u,@) =(a,-v,)a,  .cooeiiiinn. (4.23v)
upto x=b. the general solution (4.22) satisfies the boundary condition at x=b, we get
y.= by u(b)+ b, u (b) =b, [Au,(b)+(1-2) u, (0)]+ b,[ 2w, (b)+(1-1) v, (b)]

=M [bou,(0)+ b, u,(b) 1+(1-1) [byu, (b)+ b, ur, (b)]

72—bgu; (b)+byu; (b) '
Or A= Tbou (0)+bu] (0)-[bouy (D) +byuy (D) wevvvvvvnne (4.23vi)

The results obtained are identical in both the approaches.
Example 1
Using the shooting method, solve the first boundary value problem
ur=u+l, 0< x <1
u(0)=0, u(1)=e-1.

Use the Euler-Cauchy method with h=0.25 to solve the resulting system of first order
initial problems. Compare the solution with the exact solution u(x) = e *-1.

Since boundary value problem in linear and non-homogeneous, we assume the solution in
the form
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uX)=u,(X)+y, u,(X)+ 4, u,(x) (4.24i)

Where u, (x) satisfies the non-homogeneous differential equation and u, (x), u, (x) satisfy
the homogeneous differential equation. Therefore, we have

u”,-u,(x)=1, u”,-u,(x)=0 and u~,-u,(x)=1
We assume the initial conditions as given in (4.12), that is
u,(0)=0, u,(0)=0;u,(0)=1, u,(0)=0;u,(©0)=0,u,0)=1.

For the sake of illustration, we shall follow the steps in the method and obtain the
analytical solution also.

Solving the differential equations and using the initial conditions, we obtain
U, (¥)=(1/2)(e*+e)-1, u,(x)=(1/2)(e* +e™),

u, X)=(1/2)e*-e>) (4.24ii)

Now from (4.24i) we obtain

u(0)=u, (0)+p; u, (0)+ 1, u,(0)

u(1)=u, (D)+p; u ()+ |, u, (1)

=u,(1)+u, u,(D)=e-1. ..l (4.24ii1)

Now from (4.24ii) we obtain

u,(1)=(1/2)(e-e *)-1and u, (1)=(1/2)(e-e )

Hence, from (4.24iii), we get

_(e-D-u,0) _2(e-1)—-(e+e'-2)
Cow® (e—e?)

e—et

e—e?

M.

=1

Therefore, the analytical of the problem is
U()=Uo (X)+H, U )+ 1, U, (X)

=(1/2)(e* +e ™)-1+(1/2)(e* -e *)=e*-1.
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The illustrates the general of implementation of the method.

We now determine the solution of the initial value problems, using the Euler —Cauchy
method with h=0.25.

We need to solve the following three, second order initial problems in 0< x <1.
u”,-u,(x)=1, u,(0)=0, u,(0)=0.
u,-u,(x)=0 , u,(0)=1, u,(0)=0.
u",-u,(x)=1,u,(0)=0,u,0=1.  ...... (4.24iv)
We write these problems as equivalent first order systems.
Denote U, (X)=Y (%), Uy (X)=Y",(X) = Z, (),
U, (X)=Y,(x), U, (X)=Y"1(X) = Z; (%),
u,( X)=Y,Xx),u,x)=Y",(X)=2Z,(x).

then , we can write (4.24iv) as the following systems

!

Y0 — ZO YO(O) —_ 0
o) =) (zo) =
V) _(Z) (.0 (2
ZJ' YJ’(ZI(O)]' 0
) _(2.) (%.0)_(1
zzj' Yz]’(zz(O)J' 0

Applying the Euler-Cauchy method

Uamu, 42 (k)

j+l
Ki=h f(t;,u;) k,=hf(t;+h,u;+k,)
We obtain the following systems:

System1wehave f, =Z,and f ,=1+Y,
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Yosa ) = (You ), 0 Zos ), h(Zos +N@+Y,)
Zoin) \Zo;) 2114Y,,) 2| 14Y,, +hZ,,
_((1+(n%12) h (Yo, L [h?72

h 1+ (h?/2)\Zo, h
Yo | (h?/2
= B(h) {0"J+ /J
Z,, h
! N~

1+(h?/2) h
h 1+(h?/2) |

Where B(h)=

The initial conditions are Y, ,=0, Z,, ,=0.

The system 2 and 3 can be immediately written as

Yiia Y
’ =B(h Noy,..=1 ., Z,.=0.
[Zl,jﬂJ { Z; . Ho

YZ,j+l _ YZ,j _ _
And | 7 =B()| ] Y,0=0, Z,,=1,
2.j+1 2,j

Where B(h) is same as above.

Using h=0.25 . We obtain

E{OV i J {1.03125 0.25}[& j }r [0.03125 J
Zo i 0.25  1.03125\Z,; 0.25

With Y ,,=0, Z,,=0 for j=0,1,2,3, we get
Ug(0.25)%Y,,=0.03125  u',(0.25)~Z,,=0.025

U,(0.50)=Y,,=0.12598  u’,(0.50)=Z,,=0.51563

U, (0.75)=Y ,,=0.29007 ', (0.75)~Z,,=0.81324

U,(1.00)~Y =0.53369 w,(1.00)~Z,,=1.16117

" 1.03125 0.25 ||Y;;
we have [Z“ 1} :[ 025 1 031JL“ J Y,;=1 ,Z,,=0.
1,j+1 : ' Lj
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u,(0.25)=Y,,=1.03125  w, (0.25)=Z,,=0.025

u,(0.50)=Y,,=1.12598  w, (0.50)~Z,,=0.51563
u,(0.75)=Y,,=1.29007  w, (0.75)~Z,,=0.81324

u,(1.00)=Y,,=1.53369  u, (1.00)~Z,,=1.16117

Yoju | _[103125 025 Y/, . )
Z | 025 1.03125 Y2070, Z40=1.
2.j+1 . . ¥

u,(0.25)=Y,,=0.025 u, (0.25)~Z,,=1.03125

u,(0.50)=Y,,=0.51563  u',(0.50)=Z,,=1.12598
u,(0.75)=Y,,=0.81324  ur,(0.75)=Z,,=1.129007
u,(1.00)~Y,,=1.16117  u,(1.00)=Z,,=1.53369

From (4.13) , we get

_72—Uo(1) _e-1-0.53369

=0, u,= =1.02017
H=5 Ha u, (1) 1.16117

we obtain the solution of the boundary value problem from

u(x)=u,(x)+1.02017 u, (x).

the solution at the model points are given in table 4.1 . The maximum absolute error

which
Occurs at x=0.50 is given by
max.abs.error=0.00329

TABLE 1 SOLUTIONOFEXAMPLE 1

X Exact: u(x;) |u;

0.25 0.28403 0.28629
0.50 0.64872 0.65201
0.75 1.11700 1.11971
1.00 1.71828 1.71828
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More accurate results can be obtained by using smaller step length h.
Iterative Method For Eigen Values
Power method

Power method is used to determine numerically largest eigen value and
corresponding eigen vector of a matrix A.

Let A be anxn square matrix and let 4, 4,....4, be distinct eigen value of so that
[l > 2] > [ ] > 4| (1)

Let v,,v,,...v, be their corresponding eigen vectors
Av. = Av,,i=123...n (2)

This method is applicable only if the vectors v,,v,,...v, are linearly independent. This
may be true even if the eigen value 4, 4,...4, are not distinct.

These n vectors constitute a vector space of which these vectors from a basis.

Let Y, be any vector of this space.
Then Y, =Cv, +C,v, +C,v, +....+C v,
Where C,’s are constants (scalars).
Pre-multiplying by A, we get
Y, =AY, =CAv, +C,Av, +C,Av, +...+C Av,

=C A4V, +C, A4V, +C v, +....+C AV,
Similarly Y, =C%v, +C, 2%V, +C, 2%V, +....+C A%V,
Continuing this process

Y. =AY, , =CAw, +C, A2V, +CA sV, +....+C A"V,

=" |Cy, +C2(£Jrv2 +C3(ﬁjrv3 +....+Cn(ﬁjrvn
A A 4
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Similarly,

r+l r+l r+1
Y., =A™Y, =2 Cyv, + CZ(ﬁJ v, + C{ﬁ] Vg F et Cn(ﬁj v,
z A z

AS r aw,(i) —0,i=23,..n
A

In the limitas r -«
Y, >4 Cv,

Y., > A4Cy,

r+l
AI’+1Y )
A =i ( © 1=1,2...n.
i m r—oo W
Where the suffix i denotes ith component of the vector.

To get the convergence quicker, we normalize the vector before multiplication by A.

Method: Let v,be an arbitrary vector and find

1 2
Example 1: Find the dominant eigen value of A= (3 4j by power method and hence find

the other eigen value also. Verify your results by any other matrix theory.

Solution

- , 0
Let an initial arbitrary vector be X, = (J

ey Y

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 15/17



UNIT — IV Boundary Value Problems and Characteristic Value Problem

2017 Batch

wnify Yo

1 21} (7 7
AX;= 3|=|3|=515|=bX,
3 4)l1) |5 1
37
7Y (22 37
1 2\ 1 g1 2] a1
AX, (3 A 15} 81 (=1 [81} TRE
1 o2 1
15
37
1 2\ 3| (24568 0.4575
AX = 8l |= —5.3704 =5.3704X,
3 4) 9 5.3704 1
1 2Y0.4575\ (2.4575 0.4574
AX, = - —5.3704 =54.3724X,
3 4 1 5.3724 1
1 2Y 04574\ (2.4574 0.4574
AX,= - —5.3723 =5.3723X,
3 4| 1 5.3723 1
1 2Y 04574\ (2.4574 0.4574
AX,= - —5.3723
3 4| 1 5.3723 1

0.4574
Hence 4, =5.3723 and eigenvector X, =( L J :

Since A4, + 4, =Trace of A=1+4=5

Second eigen value=4,=-0.3723

. .. 1
Characterstic equation is A* — (1+4)A + 3

2‘
=0
4

le., A -51-2=0..1= =5.3723,-0.3723.

5+./25+48 5++/33
2 2

The values got by power method exactly coinside with the solution from analytical

method.

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE

16/17



UNIT — IV Boundary Value Problems and Characteristic Value Problem | 2017 Batch

Part B (5x6=30 Marks)
Possible Questions

1. Using boundary value problem to solve y"+y+1=0, 0< x < 1, where y(0)=0, y(1)=0
with h=0.5 use finite difference method to determine the value of y(0.5).

25 1 2
2. Use power method to find the eigen valuesof A= 1 3 0]
2 0 -4
1 6 1
3. Find the dominant eigen value and the corresponding eigen vectorof A=|1 2 0
0 0 3

Solve the boundary value problem y"=y(x),y(0)=0,y(1)=1.
Write the derivative of Power method.
Write the Derivative of Characteristic value Problems

Solve the boundary value problem % -y =0 with y(0) = 0 and y(2) = 3.62686

N ook

Part C (1x10=10 Marks)
Possible Questions

1. Solve the boundary value problem y"(x)=y(x), y(0)=0, y(1)=1.752 by the shooting
methodtake m=0.7, m;=0.8

2. Derive the Shooting method.

5 0 1
3. Find the eigen values and eigen vectors of the matrix A=|0 -2 O]
1 0 5

4. Find the dominant eigen value of A= [; i] by power method and hence find the
other eigen values.
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5"* %% KARPAGAM ACADEMY OF HIGHER EDUCATION
\;‘;—ﬁ ,___j/ (Deemed to be University'Esta.inshed Under Sect.ion 3 of UGC Act 1956)
e | g | v Pollachi Main Road, Eachanari (Po),
e eenervas A Coimbatore —641 021
Subject: Numerical Analysis Subject Code: 177MMP103
Class :1-M.Sc. Mathematics Semester
Unit V
Numerical Solution of Partial Differential Equations
Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
method is used to solve |Crank-Nicholson |Liebmann's iteration |Laplace Bender -schmidt Liebmann's
the Laplace's equation. iteration
------------- method is used to solve the | Crank-Nicholson |Liebmann's iteration |Laplace Bender -schmidt Crank-Nicholson
parabolic equation.
Explicit method is used to solve the ------- one dimensional wave laplace poisson wave
equation.
The error in the diagonal formula is ------- 3 2 5 4 4
------- times the error in the standard
formula.
In ------mm--- method, the coefficient Gauss elimination |Gauss jordan Gauss jacobi Gauss seidal Gauss jordan
matrix is transformed into diagonal
matrix
We get the approximate solution from  |Direct method InDirect method fast method Bisection InDirect method
the --------------- .
-------------- Method takes less timeto | Direct method InDirect method fast method Bisection Direct method
solve a system of equations
The iterative process continues till ------ convergency divergency oscillation point convergency

------- is secured.
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We get the approximate solution from  |Direct method InDirect method fast method Bisection InDirect method
the --------------- .
-------------- Method takes less timeto | Direct method InDirect method fast method Bisection Direct method
solve a system of equations
The iterative process continues till ------ convergency divergency oscillation point convergency
------- IS secured.
Liebmann's iteration process is used to  one two three zero two
solve laplace equation in -
-dimension.
solving numerically the hyperbolic u(0,t)=0 u(l,t)=0 u(x,0)=0 u(x,0) =f(x)_ u(@0,t)=0
equation utt = cM2uxx, solution is
provided by the boundary condition
The simplest form of the explicit formula |h/a h/k I/a I/ca I/a
to solve utt =a2uxx, can be got if we
select | as----------
An important and frequently occuring laplace parabolic hyperbolic poisson laplace
elliptic equation is --------------- equation.
In numerical methods, the boundary finite difference Euler Milne's Runge- finite difference

problems,are solved by using  --------------
---method.
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Equation of the second order — Elliptic Equations. Parabolic equations: Explicit method — The
Crank Nicolson difference method. Hyperbolic equations — solving wave equation by Explicit
Formula.

TEXT BOOK

1. Gerald, C. F., and Wheatley. P. O., (2006). Applied Numerical Analysis, sixth edition,
Dorling Kindersley (India) Pvt. Ltd. New Delhi.

REFERENCES

1. Jain. M. K,, lyengar. S. R. K. and R. K. Jain., (2012). Numerical Methods for
Scientific and Engineering Computation, New Age International Publishers, New Delhi .

2. Burden R. L., and Douglas Faires.J,( 2007). Numerical Analysis, Seventh edition, P.
W. S. Kent Publishing Company, Boston.

3. Sastry S.S., (2008). Introductory methods of Numerical Analysis, Fourth edition,
Prentice Hall of India, New Delhi.

Prepared by : A. Henna Shenofer, Department of Mathematics, KAHE 1/26



UNIT -V Numerical Solutions of Partial Differential Equations 2017 Batch

CLASSIFICATION OF PARTIAL
DIFFERENTIAL EQUATIONS

In this section, we will classify partial differential equations of the second
order. The general linear partial differential equation of second order in
two independent variables is of the form,

u  Ou a u  pu Ou
A- 2*866) O +bo +Eg,+ Fu=d |
or Au_+ Buxy $: Cu”, +Du + Eu + Fu=0 “2'2,2}

where 4, B, C, D, E and F are in general, functions of x and y-
Eqn (12.22) is said to be
(i) Elliptic at a point (x, y) in the plane if B2~ 4 AC <0
(ii) Parabolic if B2~ 4 AC=0
(iii) Hyperbolic if B2— 4 AC > 0.
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vy

.. nossible for an equation to be of more than o i
- llsu!::(s) of the coefficients. RSB

mple, the equation yu_ -+ U, =0is elliptic ify> 0, parabolic if

Note:
on the va
For exa
<0 5
But here, we are concerned with constant coefficients only

gxample 12.1 Classify the following equations
(i) 3%. ey du  + 3u,=0

(ii)xzun+(a’-y’)u”=0;—°0<x<oo,-a<y<a‘
(iii) i, — 6u + 9u” -1 7uy =0
Sotion (i) Here, A =3,B=1,C=-4
. B4 AC=(1)—4(3%—4)>0
- The given equation is hyperbolic.
(ii)Here,A =x,B=0,C=a—)?
s Bt—4 AC =—4x*(a* - y*) = 4x? (a® — 3?)
Now x? is always (+)ve forall —oo < x < 0
anda@®—)y*is(-)veforall—a<y<a.
WB—4AC=4(+ ve)—-ve)=(-)veie <0
So, the given equation is elliptic. ~
(iii) Here, A=1,B=-6,C=9
B =4 4C=(-6) " —4(1)9)=0
So, the given equation is parabolic.

125 ELLIPTIC EQUATIONS

An important equation of the elliptic type is

&’u " 8’u )
px: T oyt Oie.u,+u =0 (12.23)

l'l:lis equation is called Laplace’s equation.
eplacing the derivati - . .
nEqn (12.23), we e ves by the corresponding difference expressions

u;-] -2u ]
J + u; ; -
i,j l+l.L 4 ul.j-l zui.j % uiJ+l

h2 k: =0
Taki
INg a square mesh and putting /4 = k, we get from above
1
u“ N Z [u“l..l - ul—l.j * ul.jﬂ + ul.}-l] ] (12.24)
3/26
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i,
{4’

.

that is, the value of u at any interior mesh point is the arith, :
its values at the four neighbouring mesh points to the left, right, be San op
above. This is called the standard five point formula (SFp F) k"“nd 3

Instead of Eqn (12.24), we may also use the formula

metic

; .
i U8 ¢ o P Uior e v Hiersnl (1225)

which shows that the value of u, , is the arithmetic mean of its valyeg

four neighbouring diagonal mesh points. This is called the diago,,‘;;t s

point formula [DFPF]}. Jive
The SFPF and DFPF are represented in Figs. 12.3 and 12 4 below

Ili-l,j+| ““lm
U,
g+ N 7

~
¢——> >—&- &
¥y u,, LIPeW ‘(/ \ui\.}‘

4
¥ i1 BN u,,,_H

Fig. 12.3 SFPF Fig. 12.4 DFPF

;
:

Note: The DFPF is valid since, we know that Laplace equation remains
invariant when the coordinate axes are rotated through 45°. But the emor |
in DFPF is four times the error in SFPF. Therefore, we prefer SFPF.

12.6 SOLUTION TO LAPLACE’S EQUATION BY
LIEBMANN'S ITERATION PROCESS

Consider the Laplace’s equation

with the given boundary conditions. For simplicity, we assume that f‘““‘;‘:
(x, y) is required over a rectaﬁgular region R with boundary C. Let )
fivided into a network of small squares of side h. Let the values of u(%
>n boundary C be given by C, and the interior mesh points and bo
soints be as shown in Fig. 12.5 ationt®®
We know that the value of u(x, y) satisfying the Laplacian &4 = .y
»e replaced by either SFPF or DFPF. To start the iteration pﬂf_’cfs’i st
ve find rough values at interior points and then improve ¥
yocess, mostly using SFPF.
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Fig. 12.5

We first find u,, at the centre of the square by taking the average of four
undary values (SF PE).
1
S Ug = Z (cste et )
Next, we find the initial values at the centres of the four large inner
squares using DFPF.

1
Thus, u= Z(u +C +c+c‘s)
1
u=5 (U *e,+c,*c)
1
U, = Z(“ Fe,; T +cl$)

1
u9=_4~(u5+c9+c7+cn) o
The values at the remaining interior points are obtained by SFPF.

1

] ;
u;“;(c},+us+u‘+u7) | ﬁ
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I

U= 7 (u,+c,+u +u)
|

u,= 7 (U, *u,vu +c)

¢ 4
Now that we have got all the boundary values of uand Tough va| |
every mesh (grid) point in the interior of the region R, we Proceed w"le IR |
iteration process to improve their accuracy. We start with u and ite,“h |
using the latest available values of the four adjacent points. Thus, we it:te it
all the mesh points systematically from left to right along successive r,
The iterative formula is ws.

st et A\ aliain it wal

(nel) _ I (n+1) (n) (n) (n+1)
i, = Z[“’-l.; YU U U

Here, the superscript denotes iteration number. This is known ;.
Liebmann’s iteration process.

Example 122  Solve u_+ u =0in0<x<4,0<y<4, given that
u(0, y) =0: u(4, y) = 81.2y;

2
u(x, 0) = {— and u(x, 4) = x* . Take h = k = 1 and obtain the result

R

correct to one decimal.

Solution  Let us divide the given region R, i.e. 0 <x <4, 0 Sys<dinto
16 square meshes. The - umerical values of the boundary, using the given
analytical expression are calculated and exhibited in Fig. 12.6.

Letu, u, u,, ..., u, bethe values of u at the interior mesh points. Now
the initial values of «’s are calculated either by SFPF or DFPF as given
below:

0+12+4+2

U= ————= =45 (SFPF)

) 0+4+0+45

e =2.125 (DFPF)
454+16+4+12

u® = : < =9.125 (DFPF)
0+2+0+45

u® = - = 1.625 (DFPF)
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L4y = x?
0} 1
L"_,hf— bed —A
st 2 % 14
0 &
+
- oo
il L
/;: //A;‘ Lus #uc 12 ’;:
o 0 -~
< - *
N S S
" 03 5 435 I
2
u(x, 0) = —’52—
Fig. 12.6
. 45+3:2+12 IR —
. 12
0 = 4+45+2;25+9 > — 4.9375 (SFPF)
2125+ 1.625
gl - L = 2.0625 (SFPF)
45+12+9.125+6.625
s 2w 2B 94 ~ 8.0625 (SFPF)
1.625+6.625+4.5+2 »
JLCELEIER B
OW we use Liebmann’s iteration formula, i.e.
i = f.".+;> ul™) -+ ul)y Ul
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to improve above results. When we use this formula at pointg

=
R
‘e

we get the following equations for iteration: »
1 -
e u"+u P+ 1]
n+l) — ..l_ (n+1) g gy )4 g N4 4
() = L =+ 4+ 14 + uy ™+ 9)
u, T4 [uz 6
Y e M 4 gy M4 gy (24D
g = 2 [0+ 40 D442
(r+) = l\" "'*“+u"‘)+u(")+u"'”)]
Hy T4 (u, 6 s 2

-

— R +1 ( +1
u6(n+l) = 2 [us(" ) 4+ ]2+u9")+ ua(" )]

S s [0+ 2 +0.5 +, 1)

1
i e e Ty N () (41
% i 2 [a e ¥t g M 2 % g 0]
1
G+ = — [+ (+1)
u* 4[“3 + 104435 +@ "]

First iteration (n=0)

A\
u® = % [0+ uz(o).; u“°’+ 1]
= % [0 +4.9375 +2.0625 +1]=2
uz(‘) — -;— [u|“) + u3(°)+ us(°)+ 4]
% ;11- [2+49.125 +4.5 +4]= 4.90625
: 1 : :
g = 7 14 + u O+ 9] 4

o
aLAN
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o

o NP

1 :
=2 [4.90625 + 14 + 8.0625 + 9] = 89921875

1
©) (0) 1
M = Z [0»-{- ug + ll., + u‘( )]

- :‘1_ [0 +4.5+1.625 +2] = 2.03125

1
1 ) ©) (© 0
usm = [P+ u"Fu"+u, ]

-} [2.03125 + 8.0625 + 3.6875 + 4.90625] =4.671875

1
© 4 3 M
e [a+ 12 +a. O+ 4]

% [4.671875 + 12 + 6.625 + 8.9921875] = 8.0722656

I

u® :1‘- [(4=4-0.5 +u Y]

= ;11- [0+ 3.6875 + 0.5 + 2.03125] = 1.5546875

I _ .
u") == 2 [u7(!) -+ u9(°)+ 2 - us(”]

. % [1.5546875 + 6.625 +2 +4.671875] = 3.7128906

u = 5 (4™ +1Q+ 4.5+ u ]

N % [3.7128906 + 10 + 4.5 + 8.0722656] = 6.5712891

Second iteration (n = 1)

s 1
u® < ‘. [0+ 2,4+ 3 0+ 1]
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1 10+4.90625 +2.03125 + 1] = 1.984375
4 .

: 1 m
e A2 M+ 4 W+ 4]
uz(z) = 4 [u' + u, 5

~

1 [1.984375 + 8.9921875 +4.671875 + 4] =4.9121094

— —

1 M4
u® = 5 [u,?+ 14+ ug 9]

1 123 +4.9121094 + 8.0722656] = 8.9960937

] i (2)
- o [0+ O a0 )

u® =
s %_ [0+ 4/671875 + 1.5546875 + 1.984375] =2.0527344
u® = :l‘- [4,®+ ul+ g i)
- % [2.0527344 + 8.0722656 + 3.7128906 + 4.9121094]
* = 4.6875
u® = L [, + 12 + u 0+ u®]
= :‘l— [4.6875 + 12 + 6.5712891 + 8.9960937] = 8.063720
uR = 1 [0 + @+ 0.5 +u ] :
= ;1— (0.5 +3.7128906 + 2.0527344] = 1.5664063
. 1
u® = = [, @+ u O+ 2 + u®)

— 3.7062988
[1.5664063 + 6.5712891 + 2+ 4.6875] -3'7

B |
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1
~ [u@+ 10+ 4.5 + 1,®)

n =
iy’ 4 fix

: :
=7 [3.7062988 + 14.5 + 8.0637207] = 6.5675049

ﬂl‘ifd iteration (n= 2)

1
e sy @+ 1
o = 0+u?+u ]
ul 4 [ 2 4

[0+4.9121094 +2.0527344 + 1] =1.991211

=

B

o 2 2)
[u| + gty + 4]

B—

3 =
ul

[1.991211 + 8.9960931 + 4.6815 +4] =4.9181012

|-

[+ 14+ 4@+ 9]

&=

=
~
-
&
il

1
=3 [4.9187012 + 14 + 8.0637207 + 9] = 8.9956055

1
ol (2) (2) N
2 [0+, 24 44 ]

@)
u4

1
) [0+4.6875 + 1.5664063 +1.991211] =2.0612793

1
W o T OF g O 5 @ efigy O
U 4 (4 +u D+ 0@+ u]

g

1
= 1 [2.0612793 + 8.0637207 + 3.7062988 + 4.9187012]

4.6875

146(1) = l [u O+ 124+ u®+y (3)]
4" 9 3

1
= 7 [4.6875 + 12 + 6.5675049 + 8.9956055] = 8.0626526
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—

u® = 3 [0+ u+ 0.5 +ul]
= L [0+ 3.7062988 + 0.5 + 2.0612793] = 1.5668945
4
1 3) () o e o (-"]
us“ = _I [ur( LE ARt
L {1 5668945 + 6.5675049 + 2 + 4.6875] = 3.7054749
- 4
0 = l M+ 10+4.5+uM]
uq- - 4 [I‘B .- &
o (3.7054749 + 10 + 4.5 + 8.0626326] = 6.56707319
5 [3.703
u, = 1.99; u, ~4.91; u,~ 8.99; u,~2.06
2. = 4.69: u =~ 8.06: u, = 1.5 u,=3.71;
and u, = 6.57

12.7 POISSON’'S EQUATION — ITS SOLUTION

The partial differential equation
L] 2 az

o’u u - ’
v u4=f(x, yyor =7 + 7 =f(x,y)oru, +u =f(xy) (12.26)
where f(x, ) is a given function of x and y is called the Poisson’s equation.
It is of elliptic type.

Tosolve the Poisson equation numerically, the derivatives in Eqn (12.26)
are replaced by difference expressions at the points x = ih, y = jk (here,

h=k). Then we get

] . .
Uipyd ¥ Pl (u, & 2u, , tu,, J=f(ih, jh)

;2“ [u,._u— ZuU +

—4u = ih, j 12.27)
i-1,) i+l i1 ul,j*l 4"1,,' hzf(’h’fh) (

_ Applying the above formula at each mesh point, we get similar eguntic.msv
in the pivotal values i, j. These equations can be solved by iteration
lechniques,

or u +u +u
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Sxampe 12 5 : 0) over the square
5 Solve the equation V2u=—10(x*+)*+10) ov
meshwithsidesx-.-o y:qo x=3 y=3withu=00ntheboundary§nd
meSh lengthz l. b ’ b ;

Saltion

u=0
X
1=
o
NE

) (o1
VR

w)
u=0

Fig. 12.9

The given differential equation is

azu ’u .
H2 + ‘é‘y‘T =—10(x* + »* +10)

(M)
Letu,, u, u,u, be the values of u at the four mesh points 4, B, Can¢ p

as shown in Fig 12.9. Replacing LHS of Eqn (1) by finite difference

expressions and putting x = i, y = jh on the RHS of it, we get .

- =—10( + 2+
B ol MG s U o7 Wy du, 10(i# + 2+ 10)

(i)
At A4, i.e. for u,, by putting i = 1, j = 2 in Egn (ii), we get
0+ u, +u,+0+—du=-10(1+4 +10)
1 ’ ti)
oru, = Z(u2 +u,+ 150) (i
At B, i.e. for u,, by putting i = 2, j = 2 in Eqn (ii), we get
1 .
u,= 7 (u,+ u,+ 180) ()
At C, i.e. for u, by putting i=1,j=11in Eqn (ii), we get
1 ®
u]=z(u|+u‘+120) . :
At D, i.e. for u,, by putting i =2, j = 1 in Eqn (ii), W€ get
) A ()
u2=z(u2+u3+150) :é
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1

u, = (u, + u, + 150)
1

u, = 3 (u, +90)
1

Uy T 5 (u, + 60)

Now let us solve these equations by Gauss—Seidal iteration method.
First iteration: We start the iteration by putting u,=0,u,=0

(N = 1—5—0 : 37 5

u, i ?
- ‘

uz“’ = -2- (37.5 +90) = 63_.75
I

e = 5 (37.5 +60) =48.75

Second iteration:

1

u‘(2 = Z (63.75 +48.75 + 150) = 65.625
1

uz(z' = -2— (65.625 +90) = 77.8125

u = -;— (65.625 + 60) = 62.8125

Third iteration:

u® = 71—(77.8125 + 62.8125 + 150) = 72.65625

N
NA
<

il

.;_ (72.65625 + 90) = 81.328125

u® = .;_ (72.65625 + 60) = 66.32815
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Fourth iteration: '%
1
¢ = —_— 8 .

u® 4(81.328125 + 66.328125 + !50)_-74.414 "

1
u® = > (74.414063 + 90) = 82.207031
. 1
u® = = (74.414063 + 60) = 67.207031

Fifth iteration:

1
u® = i (82.207031 + 67.207031 + 150) = 74.8535|6
1
u'®) = > (74.853516 + 90) = 82.426758
() !
u® = E_’— (74.853516 + 60) = 67.426758
Sixth iteration:
1
(84 s eid
i ) (82.426758 + 67.426758 + 150) = 74.963379
i6) -_— ..1. . : *
u, = 3 (74.963379 + 90) = 82.481689
ae = ‘2- (74.963379 + 60) =67.481689

Since these values are the same as those of ﬁﬁh.iteration, we have,
u, =75, u,= 82.5 and u,=67.5, ;. u,=1785.
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128 PARABOLIC EQUATIONS
The one dimensional heat equation .
au azu k ] 2%
5 = @ ox? Wherea’= "0 (12.28)

(cis the specific heat of the material, p is the density and k is the thermal
fo'fdf'c‘i"it)’) is a well-known example of a parabolic equation. The solution
;L':)’S a function of x and 1 i.e. u(x, ). It is defined for values of x .from
deﬁn::; =1, and for values of time ¢ from 1= 0 to t = . The solution is not
in an Ina closed form (as in the case of elliptic equations) but propagates

uﬂdopen-ended region from initial values satisfying the prescribed
ATy conditions (see Fig. 12.18).

T
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& ot

o
R

ta ‘T Solution advances

Boundary ¢ t I

prescribed f‘\/j\/‘\/\}f\/l\‘
prescri
here Bo""@aw
%‘
(e

Open region R

Initial conditions
are given here

Fig. 12.18

12.8.1 Bander—-Schmidt method

Solution to one dimensional heat equations can be obtained

usi
Bender-Schmidt method. Here, consider the one dimensional heat equatli:‘,ﬁ
.Ql_‘. 20 2 ilf. % o JjPa _k._ |
at a ax2 ot = CP (l229)
This can be wirtten as
I
u = au, where a = &—2 : (12.30)
Now our aim is to solve Eqn (12.30) subject to the boundary conditions
u@0,n=T1, (12.31)
u(l,i;=T, (1232)

and the initial conditions

| u(x, 0) =/ (x) | 0212
by finite differences method. We select a spacing h for the variable x
a spacing & for the time variable 7. We know that

U, =7 [u,,,= 20,4
.. .f
and u = _k_ [-ui,j_f} - ul.}] A
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| eyueuons 12,34

F substituting the above in Eqn (12.30) it becomes

l Ld
I =q—
h/{ [#1~ 2u % U0 . k [ul.h 1=y, ]
2 ui_j" = u'.J 3 =A [u'* X5 -21('-14- u, l.j]
k
~ wher¢ A TR
or U, je1 = ’lun 1.Jj ol 2'1)"»‘.}+ )‘ui— 1. ;) (12.34)

The boundary conditions (12.31) and (12.32) can be. put in difference
form as

4, =T, (12.35a)

and u, =1, (12.35b)
sherej= iy [herd: »h =[] and the initial condition (12.33) as

u=fUh), i=1,2,... (12.36)

Eqn (12.34) gives the vaiue of u at x = ik at time {,,, in terms of values of
uatx=(i—1h,ihand (i + 1)h ata time ¢,
‘- ulx,0)=f(x), uisknownat =0 )

Therefore, the recurrence relation (12.34) allows the evaluation of u at
each pivotal point x, at any 7.

If h, k are chosen such that the coefficient of u, vanishes,
1
ie. 1-2A=00rA= -2-,then
Eqn (12.34) becomes
Boger iy Gy (12.37)
e - 21 I (12.38)

" Eqn (12.37) implies that the value of x at x =x,attimet, is equaltothe
p‘r':?ge Qf the values of  at the surrounding points x_, and x, at the
loustime 7 . Eqn (12.37) is called Bender—Schmidt recurrence equation.

Bample 126 go1ve

% Iow
With the Goymiie: o 2 o
Onditions w0, 1)=0, u(4, £)=0, u(x, 0)=x(4 —x) taking h=1 and
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employing Bender—Schmudt recurrence equation. Continue the o,
through ten time steps.

Solution  The general equation is u = au,

L
~ h

a =

k
Here.a=2,h=1 5

-

1 :
Therefore, A= 3 and k should be equal to 1. Now using Bender—Schm; g

_ recurrence relation, the values of u, are tabulated below (Fig. 12.19)

direction of x —

oo 1 2 3 4
0 0 3 4 3 0
s | 1 0 2 3 2 0
2| 2 0 1.5 2 1.5 0
S| 3 0 I 1.5 1 1 0
S| 4 0 0.75 1 0.75 0
=~ 5 0 0.5 0.75 0.5 0
L] 6 0 0.375 0.5 0375 | ©
7 0 0.25 0 375 0.25 0
8 0 01878 | 025 0.1875 | ©
9 0 0.12s ! 01875 | 0.125 0
10 0 0.094 s 0.094 | 0
Fig 1219
Explanation: Range for x 1~ 0 =
= ih =5 % €dbrs A A 3
t=jk = L - & L)

Given u(x, 0) = x(4 — x) or u(i, O) =i(4-1)

Now for 0 <x <4, i.e.0<i<4,wehave u(i,0)=0,3,4,3,0. These are
filled in the first row.

Given «(0, 1) O Mt ie 140 ))
column are zero. -

Also, (4, ) =0 M1, i.e. (4, ) = 0 M /.
are zero.

The Bender—Schmldt s rgcurrence relation is

l‘ lf ”’.’
Uy, )
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ting J = 0 in Eqn (i), we get
put .

‘ ..
U= _2— (#.,0F u:-:.o] (i1)

tting i=1 in Eqn (ii), we get
Pu

U =

1
(3, 0+ 0] = 5 [4+01=2

N |-

putting I = 2 in Eqn (i), we get

ll2-|=

[y o+, ) = 5 [3+31=3

N |-

putting i =3 in Eqn (ii), we get

1

‘ —_—
u3.|= -’—7- [u4.0+ ul—°]= 5 [0+4]—2

-~

—— i b 5
Thus the second row is filled. Similarly, putting J 128, &, 56,
8. 9, the other rows are filled.

12.8.2 Crank—Nicholson method

In this section, we will derive Crank—/vicnoisun differernce melnoa io soive
parabolic equations.

ietu =au, ‘.3.239;
Fe
be the partial differential equation 1o be s0ived suljedy wine conciuon:
uld, ) =1 {12.41)
and u(x, 0y =% (12.42)

- We know that at point _, th= finite siffsrence approximation for u, is

%
#

Y TR e 1243
U hz 1&".“J W5 ¥ I o2/ “2 )

s sm Y &
33 i A

At point ,,_, the finite difference approximation for 415

u:"_

xx };2- {u‘r,v";— P Lo 2!'/ 1‘ U i {}2-44)

Average of Eqns (12.43) and (17.44) 1

1

' v (12.45)
— oy - - + s (. *
Y 2K {u"”.f*l_zul,juﬁ ¥oaq jaa ® Wi 3™ Yy LR
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LY %]

. the forward difference approximation is
’O

Fo
1 |
“— k {ll,]”-— :j} (‘246)
SubStlwtmg Eqns (12.45) and (12.46) in Eqn (12 39), we get (after
phf'catl()ﬂ)
%’ {u, o jer ™ 0 H U Y, 2y ) = {u,,,-u}
k
(where A= — q)
h
A A
i 5 Uisy oA Dt 2 %ioige
- -f\.
 .~2 ”1().—1)11 2 -
or /{{.umliu*- R | HI} 2(]"+ l)u o | .
=2A=1 g =L 4 (12.47)

#qn (12.47) is called Crank—Nicholson difference scheme or method.
Note:(i) Choosing A 1s very important. Very often a good choice of A is

"

A~1.In such a case, the Crank—Nicholson scheme becomes

1 ,

. % 4 it T gl Wyt ui+|_1} ) (12.48)

Subject to k = ah?

(ii) The Crank—Nicholson’s formula is convergent for all values of A.

Example 128  Using Crank—Nicholson’s method, solve
=16u,0<x<1,r>0,given u (x, 0)=0, u(0, N =0, u(1, 1) = 50t

Compute u for two steps in £ direction taking s = 2 )

So’””‘?ﬂ Here,a= 16, h= -]—

4

1
w oo e s
k=ah 16(16
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The Crank—Nicholson scheme is given by | z
Ly . '
ul.j*l=.4. ul'l.;'l u'-l.j‘l+u,‘n .
) )
" x increasing
(Jo lo025 [os Jo7s |
1 0 0 0 0 0 |
1 |o u, u, u, |50
=~ 12 0 u, u, u, 100
Fig. 12.21
‘Applying Eqn (i) at the mesh points u, u,, u,, we get
s TR
W =4t =y % (i
- —— l —
u, —-Z(O+0+ul+u3) 4(u+u) (iii)
1 1
u, =Z (O+O+uz+50)=z(u2+SQ) (iv)
Substituting (iv) and (ii) in (iii), we get
1 1 1
w,= 734 + :{(u2 + 50)]
or Lou, = 24,7+ 50 Jou,=3.5714
u, =0.89285; u,=13.39285
Applying Eqn (i) again at the mesh points u,, u,, u,, we get
1
wo=tu, ®
 S— vi
4= g W) -
(vii)

1
U= —(u+ 100) -

On Solving, we get u, = 1.7857, u, = 7.1429 and ¥, = 26.7857
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_..'-v:lll- tQuationg 1130

¢ HYPERBOLIC EQUATIONS
. pelow is @ wave equation of one dimensjon
‘ ’
u  du @
7= S ordu —u =0
Ox - ot (12.49)
This is 2 hyperbolic equation.
weknow that B2 ~dACE0 - HaW-1) =4t >0
solution by Method of Finite Differences
Eqn (1249) is subject to the conditions
W 1) =
ey . (12.50)
‘ L) =0 112.51)
and u(x, 0) = f(x) {12.52)
ulx,0)=10 {12 535
Substituting
e ] '
W™ R [un ¥ . ?'ui.j + . |,,]
- ok
ll” = k2 [ur, Jj+1 il 2ui,j & ul.}'— I]

in Eqn (12.49) where h and k are selected spacings for the variables x and
1, we get

1
h2(1+u zul,j+ul-l,j)———-(ui_jfl—zu —~H =0

k2 7 R ) W
- 1202( I*U uj*u ’j) (ui,+|_2ul,j"ui.j-1)=o
where r - .IE ’
h

T =21 - R+ R, -, (1258)

fonT,;h :sboundary conditions (12.50) and (12.51) can be put in the difference

e apnnh | (12.55)
Thiadics: (Here it means nh =1)
®itial condition (12.52) as

u,=f(ih),i=1,2, (12.56)
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a;md (12.53) as

i‘ b, A oOwhent=0,i.e.J= 0
ol gl (12
ie.u, = u,,=SU h) (12.5‘) _

using Eqn (12.56).
Now Eqns (12.56) and (12.57) give the values of u on the first ty,

j=0andj=1.Puttingj = 1 in Eqn (12.54), we get :
W, 201 = Aa)u, |+ a1 Y. 1.1) B (l2_sq)

R.H.S of Eqn (12.59) involves the values Ofl.l on the first two roys;
andj= 1. These are known from the initial conditions (12.56) a“d(u-SSL

Hence u_, is found explicitly. ‘
Knowing u, ,, we can calculate u, , by putting j = 2 in (12.54) and soop,
Thus, Eqn (12.54) is an explicit scheme for the solution to the giye,

Tow,

equation. :

Note:
(i) If k < h solution (12.54) is convergent.

: . 1
(ii) The coefficient of »,  in Eqn(12.50) will be zero if A*= " ie.

QN

k=

Then Eqn (12.54) takes the form
u:,jn:u;—1,1+un1.}—uu-| '
That is, the value of wat x =x, atatime t=¢+ k
= Value of v at x = x,_, at previous time 1 =1
+ Value of u at x = x, | at previous time 1=/

—Value of uat x = x, attimet=t,—k.

Example 12.9 Solve u, = 4u_ with the boundary conditions
(0, 1) = 0 = u(4, 1), ux, 0) and u(x, 0) = x(4 — x).

Solution  Given equation is u, = 4u_
h_L_os

Here, @* =4, i.e. a=2. Taking h = 1, we getk=— =2

From the initial conditions, .
(0, r) =0 = u=0along entire li.ne xi
(4, 1)=0=>u=0along entire line X~
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YRR 1A
in difference form, these are
n

~0and %, ,= 0 for all j

No;w u(x, 0)= X(4 -X)=> u(O, 0)= 0,

W3, 0=3 u(4, 0). =0

In difference notation, |
= u(i, 0) = i(4 - i) for different i

Pkting 1= 0. 1.2.3.4 we get

oo™ 020" 3., o= % Uy o= 3, U,=0

Now the condition u(x, Q)=0

u(1| 0)= 3, u(z‘ 0)=4‘

=%, u,_o¥z
i e. u on the first two rows are equal.
Now consider the recurrence relation
ui'j+l = ui*‘-j + ui— l-j_ ui.."l
If we putj = 1, we get

2™ Ui * Uicr s — U,

Putting i =1, 2, 3. . . successively, we get
u|,2=u2,1+uo_x~z‘|,o=4+0—3=l
u2,2=u3,l+ul.]—u2.o=3+3—4=2
u3'2=u“+u2;|——u3'0=0+4_3=1

that is, the third row is filled in. In a similar way we can fi

Ilin the remaining
rows as shown in the following table

& 0 1 2 3 4
0 0 3 4 3 0
l 0 3 4 3 0
2 0 1 2 1 0
3 0 -1 -2 =] 0
4 0 -3 —4 -3 0
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Part B (5x6=30 Marks)
Possible Questions

1. Solve the Laplace equation.
100 100 100 50

o O o o
o O O o

0 0 0

2. Write the Derivative for Crank Nicholson method.

w

Using Crank —Nicholson method Solve uxy = 16u; ,0< x < 1,t >0,given u (x,0) =0
u(0,t)=0,u(1,t)=50t Compute u for two steps in t taking directionh =1/ 4
Write the derivative of explicit formula to solve the wave equation.

Write the derivative of Elliptic equations.

Solve the Poisson equation Uy + Uy = -10(x*+y?*+10).

N o g &

Write the derivative of Bender Schmidt method to solve parabolic equations

Part C (1x10=10 Marks)
Possible Questions

1. Explain the classification of Partial differential Equations.

2. Use Bender Schmidt recurrence relation to solve the equation ‘;27’2‘ =2 Z—’: with the
conditions u(x, 0)=4x-x?, u(0, t)=u(4, t)=0. Assume h=0.1. find the values of
u upto t=5.
3. Solve by Crank Nicholson method the equation uy,= u; subject to u(x, 0)=0, u(0, t)=0
& u(1, t)=t for two time steps.

4. Solve numerically 4uyy = ug with the boundary condition, u(0, t)=u(4, t)=0 and the
initial conditions uy(x, 0)=0 & u(x, 0)=4x-x?, taking h=1(for 4 time steps).
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Solutions of Non Linear Equations
Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
The formula for Newton Raphson method is ---- X1 = T (X,) /f°(xn) |Xpsq =X0+ £ (X)) /T [ Xpeq =XN- T (X)) I [ Xy =XN- (X)) /E [ Xpe = T (Xp) /f7(xn)
-------------- : *(xn) *(xn) (xn)
The order of convergence of Newton Raphson |4 2 1 0 2
method is ----------
The approximate value of the root of f(x) given |[x,=a+b Xo = f(a) + f(b) Xo=(a+Db)/ 2 xo = (f(@) + f(b))/2 |xo=(a+hb)/2
by the bisection method is ----
In Newton Raphson method, the error at any |cubic square square root 0 square root

stage is proportional to the -------
of the error in the previous stage.

------------------ method is also called method | Gauss Seidal secant bisection Newton raphson Newton raphson
of tangents.

If f (X) contains some functions like Algebraic transcendental numerical polynomial transcendental
exponential, trigonometric, logarithmic etc.,

then f (x) is called -------------- equation.

A polynomial in x of degree n is called an f(x)=0 f(x)=1 f(x) <1 f(x)>1 f(x)=0
algebraic equation of degree n if -----

The Newton Rapson method fails if ------------- f(x)=0 f(x)=0 f(x)=1 f(x)=1 f(x)=0
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The initial approximation root is not given,  |"a" "p" 0 1 "a"

choose two values of x ‘a’ and ‘b’, such that
f(a) and f(b) are of opposite signs. If |f(a)| <

[f(b)| take ------

Graeffe’s root squaring method has a great initial value approximate value |final value small approximate value
advantage over other methods in that it does

not require prior information about the -----------

If we choose the initial approximation X -------- Close far average small Close

---- to the root then we get the

root of the equation very quickly

In Newton Rapson method when f’(x) is very |Small large Average of the normal root Small

large and the interval h roots

will be --- then the root can be calculated in

even less time.

The order of convergence in --------------- Bisection Regula falsi False position Newton raphson Newton raphson
method is two.

If f (x;) and f (a) are of opposite signs, then the |‘a’ and ‘b’ ‘b’ and ‘x;’ ‘a’ and ‘x;’ ‘X, and ‘x,’ ‘a’ and ‘x;’
actual roots of the equation f(x)=0 in False

position method lie between ------------------ :

The iterative procedure is repeated till the ------ initial value approximate value |Root linear Root

--- is found to the desired degree of accuracy.

If we equate a function f(x) to zero, then f(x) = |Polynomial transcendental algebraic linear Polynomial

0 will reprasent an ----- equation

The equation 3x — cosx — 1 =0 is known as ---- Polynomial transcendental algebraic linear linear

--------- equation.

X4 2% 21 = 0 iS —ommmeee equation. Polynomial transcendental algebraic linear algebraic
X € —3x + 1.2 =0 is kKnown as --------- Polynomial transcendental algebraic linear transcendental
equation

If f(a) and f(b) have opposite signs then the 0&a a&hb b&O 1&-1 a&hb

root of f(x) = 0 lies between ----.
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The error at any stage is proportional to the

error in the

error in the next

error in the last

error in the first

error in the

square of the ------------------ . previous stage stage stage stage previous stage
The convergence of iteration method is ---------- Zero Polynomial Quadratic linear Zero

The sufficient condition for convergence of || f'(x)|=1 | £ (x)|>1 IP(x) <1 [f(x)|=0 I P(x)|<1
iterations is ---------------- :

Solution of an equation f(x) = 0 means we have |Roots or Zeros initial value final value approximate value |approximate value
to find its -----------

In Newton Rapson method if ----------- ,then || f(a) |+ | f(b) | | f(@) | = | f(b) | | f(a) | > | f(b) | | f(a) | < | f(b) | | f(a) | < | f(b) |
‘a’ is taken as the initial approximation to the
root.

In iteration method the given equation is taken |y = f(x) x = f(X) x = f(y) y =1(y) y = f(x)
in the form of ------------- .

The convergence of the sequence is not Xo Yo X Yo Xo
guaranteed always unless the choice of -----------

----- is properly chosen.

The sequence will converge rapidly in Iteration |Zero Very large Very small one Very small
method, if [f’(x)] is ------------- .

If - , [X,— a| will become very great and || f(x) |=1 | £(x)|>1 | fP(x)|<1 | f(x)|<0 | f(x)|>1
the sequence will not converge.

If p >=1 can be found out such that |e i+1] order of order of divergent | order of oscillation [none order of
intersecion |e i |p. k where k is a positive convergence convergence
constant for every i, then p is called the ----------

If p = 1, then the convergence is ------------- cubic Quadratic Linear zero Linear

If p = 2, then the convergence is ------------- . |cubic Quadratic Linear zero Linear

In Iteration method if the convergence is linear |four three two one one
then the convergence is of order ---

If the function f(x) is € — 3x = 0, then for e"/3 3/¢ e/ 3x e*/3 e*/3

Iteration method the variable x can
be taken as ------------ .
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The values of x which makes f(x) as ----------- Zero one f'(x) '(x) Zero

are known as roots or zeros

of the function f(x).

In Iteration method if the convergence is -------- cubic Quadratic Linear zero Linear

- then the convergence is of order one.

In Newton Raphson method the choice of ------- initial value final value intermediate value |approximate value |approximate value
-------- is very important for

the convergence

If f(a) and f(b) are of opposite signs, a root of - f(y) =0 f(x) =1 f(x)=0 fly)=1 f(x)=0
--------- lies between ‘a’ and ‘b’.

If f(a) and f(b) are of opposite signs, a root of |approximate root  |actual root intermediate root | acurate root approximate root
f(x) = 0 lies between ‘a’ and ‘b’.

This idea can be used to fix an --------------------

The polynomial equations is given in he form |Zero one complex real 2™ th power
of ag X" +a; X" +ay X T+, +an=0,
where ai’s are ---------- .

Newton Rapson method is also called method | Gauss Seidal Regula Falsi Bisection tangents real

Of —----mmmemme- .

If f (1) and f (-2) are of opposite signs, then |1 and —2 —l and 1 1 and -2 1and 2 tangents
the negative roots of the equation f(x)=0 in

False position method lie between ----------------

The method fails if f ’(x) = 0. |Bisection False Position Newton Rapson Graffe's root —1 and -2

squaring

--------------- Formula can be used for unequal | Newton’s forward | Newton’s backward | Lagrange stirling Lagrange
intervals.

By putting n = 3 in Newton cote’s formula we
get ----------- rule.

Simpson’s 1/3 rule

Simpson’s 3/8 rule

Trapezoidal rule

Simpson’s rule

Simpson’s 3/8 rule

The process of computing the value of a interpolation extrapolation triangularisation integration extrapolation
function outside the range is called -----
The process of computing the value of a interpolation extrapolation triangularisation integration interpolation

function inside the range is called ------
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Solution of non linear equations / 2017 Batch

The difference value y, — y; in a Newton’s Dy, Ny, Dy, K2y, Ny,

forward difference table is denoted by

The order of error in Trapezoidal rule is --------- h h? he h* h?

The order of error in Simpson’s rule is ----------- h h? he h* h*
Formula can be used for Newton’s forward | Newton’s backward | Lagrange stirling Newton’s

interpolating the value of f(x) near the backward

end of the tabular values.

The technique of estimating the value of a interpolation extrapolation forward method backward method |interpolation

function for any intermediate value is

The (n+1) " and higher differences of a Zero one two three Z€ero

polynomial of the nth degree are -----
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PART — A (20 x 1 = 20 Marks)
1.The order of convergence of Newton Raphson method is ---.

a)4 b)2 c)l d)o
2.Bairstow’s is used to find the --------------------- roots of
polynomial without using complex arithmetic.

a)real b)complex valued c)square root d)cubic
3.Numerical differentiation can be used only when the
difference of some order are -----

a)zero b)one c)constant d)two
4.Relation between D and E is D = --------------------

a)E-1 b)E+1 C)E*1 d)1-E

5.The n" divided difference of a polynomial of degree n are---.
a)zero b)constant c)linear d)non-linear
6.The order of error in Trapezoidal rule is ---------=--=-==-=----- .
a)h b)h? c)h? d)h?
7.The------=-mmmmmmmmee method is also called method of tangents.

a)Gauss seidal b)Secant c)Bisection d)Newton Raphson

8. If f (x) contains some functions like exponential,
trigonometric, logarithmic etc.,then f (x) is called --------------
equation.

a)algebraic  b)transcendental c)numerical d)polynomial

9. The iterative procedure is repeated till the --------- is found to
the desired degree of accuracy.

a)initial value  b)approximate value c)root d)linear
10.Example for iterative method -------------------- .

a)Gauss elimination b)Gauss Jordan

c)Gauss seidal d)Newton’s forward

11.The modification of Gauss-Elimination method is called ----
a)Gauss Jordan  b)Gauss seidal ~ c)Gauss Jacobi d)crout
12.In the upper triangular coefficient matrix, all the elements
below the diagonal are ------

a)positive b)non zero c)zero d)Negative

13.Gauss Jordan method is a------------------------- :

a)direct method b)indirect method

c)iterative method d)convergent

14.In solving the system of linear equations the system can be
written as ---------------------

a)BX =A b)AX=A  ¢)AX =B d)AB =X

15, m e - is also a self-correction method.
a)direct method b)iteration method
c)interpolation d)extrapolation

16.Euler method is used for solving ------------------ differential
equation.

a)firstorder b)fourth order c)third order d)second order



17.The error in Euler method i --------------------=-=--=--- .
a)o(h?) b)o(h?) c)o(h®) d)o(h™

18.The Euler Method of second category are called ------------
a)diagram Db)graph c)line graph  d)continuous line graph
19.Which is the condition to apply Gauss Seidal method to
solve a system of equations.

a)1st row is dominant b)1st column is dominant
c)diagonally dominant d)leading diagonal
20.The method of iteration is applicable only if all equation
must contain onecoefficient of different unknowns as ----------
than other coefficients.

a)small b)larger c)equal d)non zero

PART - B (3 x 2 =6 Marks)
21. Write the formula for Simpson’s rule.
22. Explain Gauss Jordan method.
23. What is the formula for Newton forward difference?

PART - C (3 x 8 = 24 Marks)
24. a) Find the positive root of f(x) = x3- x -1= 0 by Newton
Raphson method correct to 5decimal places.
(OR)
b) Use Romberg’s method to compute I = [ 01 % correct to
3 decimal places.

25. a) By the Method of Triangularization solve the following
system

5X-2y+z =4; 7x+y-5z = 8; 3x+7y+4z =10
(OR)

b) Solve the system of equations by Gauss Seidel method
correct to 3 decimal places.
8x-3y+22=20; 4x+11y-z=33; 6x+3y-12z=35
26. a) Solve the system of equations by Gauss elimination
method.
X+2y+z = 3; 2x+3y+3z = 10;3x-y+2z = 13

(OR)
b) Use Euler’s method to solve the equation y’ = -y with the
condition y(0) = 1.
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PART — A (20 x 1 = 20 Marks)
Answer all the questions:
1. The Runge-Kutta method do not require prior calculation of

the ----- order derivatives.

a) middle b) lower c) higher d) zero

2. Which of these are multistep methods?

a) Milne’s method b) Runge-Kutta method

c) Euler d) Modified euler

3. Taylor series and Euler methods are -----------------=----- then
Runge- Kutta method.

a) fastly divergent b) slowly divergent

c) fastly convergent d) slowly convergent

4. In R - k method derivatives of higher order are ------------

a) constant  b) zero c) variable  d) non zero

5. The Euler Method and Modified Euler's Method are ---------
a) required b) not required

c) may be required d) must required

6. In numerical methods, the boundary problems, are solved by
using =----------------- method.

a) finite difference  b) Euler  c) Milne's d) Runge-Kutta
7. mmmmmmmmeeo method is initial value problem methods.
a) Euler b) Shooting  c) Milne's d) Runge-kutta

8. The -------- method is used to determine numerically largest
eigen value and the corresponding eigen vector of matrix A.
a) Gauss Jordan  b) choleskey c) power d) Gauss Seidel

R method is used to find the eigen values of a
real symmetric matrix.

a) Jordan b) Seidel c) choleskey d) Jacobi

10. .A predictor formula is used tQ ----------=----=----- the values of y
at xi+1.

a) correct b) predict C) increase d) decrease

11. If the eigen values of A are 1,3,4 then the dominant eigen
value of A is -------------- :

a)0 b) 4 c)l d)3

12. If dy/dx is a function x alone, then fourth order Runge-
Kutta method reduces to ------ :

a) Trapezoidal rule b) Taylor series

c¢) Euler method d) Simpson method

13. If all the non zero terms involve only the dependent
variable u and u’ then the differential equation is called ---------
a) homogeneous b) non homogeneous

c) linear d) non linear

14. The error in Euler method is ---------------=-=-==-m-o---- :

a) o(h?) b) o(h*) c) o(h®) d) o(h")



15. In solving equation ux = a2 uxx by the Crank-Nicholson
method, to simplify method we take (dx)?/a’k as -----------------

a) 3 b) 1 c) 2 d) 0
16. —-------m oo method is used to solve the Laplace’s
equation.

a) Crank-Nicholson difference b) Liebmann’s iteration
c) Bender-Schmidt d) Laplace

17. Classify the equation Uxx+2uUxy+4uyy =0 IS ------------------ .
a) hyperbolic b) parabolic ) poisson d) elliptic

18. The --------------mmmmmm—- scheme converges for all values of I.
a) Crank-Nicholson difference b) Liebmann’s iteration
c) Bender-Schmidt d) Explicit scheme

19. The differential equation xuxx+uyy = 0 is said to elliptic if --
a) x<0 b) x=0 c) x>0 d) x#0

20. The wave equation in one dimension is ---------------- .

a) hyperbolic b) parabolic c) Poisson d) elliptic

PART - B (3 x 2 =6 Marks)
Answer all the questions:

21. Write the formula of Modified and Improved Euler method.

22. Explain briefly about the Boundary value problem.
23. Write the classification of partial differential equation of
the second order.

PART - C (3 x 8 = 24 Marks)
Answer all the questions:
24. a) Apply the fourth order Runge Kutta method to find
y(0.1), y(0.2) given that y’=x+y, y(0)=1.

(OR)

b) Find y(2) if y(x) is the solution of y’= % (x + y)given
y(0) =2, y(0.5) =2.636, y(1) = 3.595 and y(1.5) = 4.968.
25. a) Derive the Shooting method.
(OR)
b) Use power method to find the eigen values of
25 1 2
A= [ 1 3 0 ]
2 0 —4

26. a) Solve the Laplace equation.

111  17.0 197 186

21.9
21.0
17.0
9.0

o O O o

87 121 128
(OR)

b) Solve numerically 4uxx = ux with the boundary
condition, u(0, t)=u(4, t)=0 and the initial conditions
ui(X, 0)=0 & u(x, 0)=4x-x?, taking h=1(for 4 time steps).
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