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Course Objectives: On successful completion of this course the learner gains knowledge about
Second order linear equation, Legendre equation and Bessel equations etc., which provides the
essential motivation in applied mathematics.

Course Outcome: To be familiar with formulation and solutions of ordinary differential
equations and get exposed to physical problems with applications.

UNIT I
Second order linear equations with ordinary points — Legendre equation and Legendre
polynomial — Second order equations with regular singular points — Bessel equation.

UNIT 11
System of first order equations — existence and uniqueness theorems — fundamental matrix.

UNIT I
Non homogeneous linear system — linear systems with constant coefficient — Linear systems
with periodic coefficients.

UNIT IV

Successive approximation — Picard’s theorem — Non uniqueness of solution — continuation and
dependence on initial conditions — existence of solution in the large existence and uniqueness of
solution in the system.

UNIT V

Fundamental results — Sturms comparison theorem — elementary linear oscillations —
comparison theorem of Hille winter — Oscillations of  x” + a(t)x = 0 elementary non linear
oscillations.

SUGGESTED READINGS

TEXT BOOK

1.Earl A. Coddington, (2002). An introduction to Ordinary differential Equations, Prentice Hall
of India Private limited, New Delhi.
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LESSON PLAN

UNIT -I
Lecture
S.No | Duration Topics to be covered Support Materials
Hr
1. ( 1 : Second order linear equation with ordinary | R1: Ch 3: Page no: 69-70
2. 1 Points-Definition and Example R1: Ch 3: Page no:70-71
3. 1 Continuations of example on second order | R1: Ch 3: Page no:72-76
4. 1 Legendre equation T1: Ch 3: P. no:130-134
5. 1 Legendre polynomial T1: Ch 3: P. no:130-134
6. 1 Second order equation with regular points R1: Ch 3: Page no:76-78
7. 1 Power series solution of order n R1: Ch 3: Page no:76-78
8. 1 Bessel equation with example R1: Ch 3: Page no:78-80
9. 1 Bessel Functions R1: Ch 3: Page no:78-80
10. 1 Properties of Bessel equations R1: Ch 3: Page no:78-80
11. 1 Derivation of bessels function R1: Ch 3: Page no:80-84
12. 1 Recapitations and Discussion of possible R1: Ch 3: Page no:84-88
questions
Total 12 hrs
TEXT BOOK

1. Earl A. Coddington, (2002). An introduction to Ordinary differential Equations, Prentice
Hall of India Private limited, New Delhi.

REFERENCES

1. Deo. S. G, Lakshmikantham, V. and Raghavendra, V. (2003). of Ordinary differential
Equations, Second edition, Tata Mc Graw Hill Publishing Company limited, New
Delhi.
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UNIT-1I
Lecture
S.No | Duration Topics to be covered Support Materials
(Hr)
1. 1 System of first order equation- definitions R1: Ch 4: Page n0:92-94
2. 1 System of first order equation example R1: Ch 4: Page n0:92-94
3. 1 System of first order equation example R1: Ch 4: Page n0:92-94
4. 1 Existence and uniqueness theorem R1: Ch 4: Page no:99-102
5. 1 Continuation of theorem R1: Ch 4: Page n0:99-102
6. 1 Example for existence theorem R1: Ch 4: Page no:102-104
7. 1 Fundamental Matrix —definition and R1: Ch 7: Page no:254
theorem
8. 1 Theorem for Fundamental Matrix R1: Ch 4: Page no:105-107
9. 1 Fundamental matrix Examples R1: Ch 4: Page no:105-107
10. 1 Fundamental matrix Examples R1: Ch 4: Page no:105-107
11. 1 Fundamental matrix Examples R1: Ch 4: Page no:107-108
12. 1 Recapitulation and discussion of possible
questions
Total 12 hrs
REFERENCES

1. Deo. S. G, Lakshmikantham, V. and Raghavendra, V. (2003). of Ordinary differential
Equations, Second edition, Tata Mc Graw Hill Publishing Company limited, New Delhi.
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UNIT-1
Lecture
S.No | Duratio Topics to be covered Support Materials
n (Hr)
1. 1 Non Homogenous linear system R1: Ch 4: Page no:108-110
2. 1 Linear System with Constant coefficient R1: Ch 4: Page no:110-112
3. 1 Linear System with Constant coefficient R1: Ch 4: Page no:110-112
theorem
4. 1 Example for linear system with constant R1: Ch 4: Page no:112-116
coefficient
5. 1 Example for linear system with constant co | R1: Ch 4: Page no:119-120
efficient
6. 1 Example for linear system with constant co | R1: Ch 4: Page no:119-120
efficient
7. 1 Linear system with periodic co efficient R1: Ch 4: Page no:121-123
concept
8. 1 Linear system with periodic co efficient R1: Ch 4: Page n0:121-123
concept and theorem
9. 1 Linear system with periodic co efficient R1: Ch 4: Page no:121-123
lemmas
10. 1 Linear system with periodic co efficient R1: Ch 4: Page no:123-124
concept ant theorem
11. 1 Recapitulation and discussion of possible
questions
Total 11 hrs
REFERENCES

1. Deo. S. G, Lakshmikantham, V. and Raghavendra, V.

(2003). of Ordinary

differential Equations, Second edition, Tata Mc Graw Hill Publishing Company

limited, New Delhi.

Prepared By: K.Aarthiya, Department of Mathematics, KAHE

Page 3 of 5




LESSON PLAN/2017 Batch

UNIT-IV
Lecture
S.No | Duratio Topics to be covered Support Materials
n (Hr)
1. 1 Successive approximation introduction T1: Ch 5: Page no:200-202
2. 1 Theorem for successive approximation R1: Ch 5: Page no:134-135
3. 1 Picard’s theorem R1: Ch 5: Page n0:136-139
4, 1 Picard’s theorem Lemma R1: Ch 5: Page n0:136-139
. 1 Example for Picard’s theorem R1: Ch 5: Page no:140-142
6. 1 Non Uniqueness Solution R1: Ch 5: Page no:143-146
7. 1 Continuous and dependence of initial R1: Ch 5: Page no:143-146
conditions
8. 1 Theorem Continuous and dependence of R1: Ch 5: Page no:147-149
initial conditions
9. 1 Existence and uniqueness of solution of R1: Ch 5: Page no:147-149
system-definition and lemma
10. 1 Existence and uniqueness of solution of R1: Ch 5: Page no:147-149
system-Theorem
11. 1 Existence of solution in large theorem R1: Ch 5: Page n0:149-151
12. 1 Recapitulation and discussion of possible
questions
Total 12 hrs
TEXT BOOK

1.Earl A. Coddington, (2002). An introduction to Ordinary differential Equations, Prentice
Hall of India Private limited, New Delhi.

REFERENCES

1. Deo. S. G, Lakshmikantham, V. and Raghavendra, V.
differential Equations, Second edition, Tata Mc Graw Hill Publishing Company

limited, New Delhi.
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UNIT-V
Lecture
S.No | Duratio Topics to be covered Support Materials
n (Hr)
1. 1 Fundamental results-concept and theorem R1: Ch 8: Page no:204-207
2. 1 Strum’s comparison theorem R3: Ch 8: Page no: 161-163
3. 1 Strum separation theorem R1: Ch 8: Page no:208-209
4. 1 Strum separation theorem with example R1: Ch 8: Page no:208-209
5. 1 Elementary linear oscillation theorem R1: Ch 8: Page no:210-212
6. 1 Lemma for comparison theorem of Hille R1: Ch 8: Page no:213-215
winder
7. 1 Hille Theorem R1: Ch 8: Page no:216-217
8. Winder Theorem R1: Ch 8: Page no:216-217
9. Oscillations of x+a(t)x=0 of elementary R1: Ch 8: Page no:218-219
non linear oscillations
10. 1 Recapitulation and discussion of important
questions
11. 1 Discuss on Previous ESE question papers
12. 1 Discuss on Previous ESE question papers
13. 1 Discuss on Previous ESE question papers
Total 13 hrs
REFERENCES

1. Deo. S. G, Lakshmikantham, V. and Raghavendra, V.

(2003). of Ordinary

differential Equations, Second edition, Tata Mc Graw Hill Publishing Company

limited, New Delhi.

2. George F. Simmons, (1991). Differential Equations with application and historical notes,
Second edition, Tata Mc Graw Hill Publishing Company limited, New Delhi.
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UNIT -I

Second order linear equations with ordinary points — Legendre equation and Legendre
polynomial — Second order equations with regular singular points — Bessel equation.

TEXT BOOK

1.Earl A. Coddington, (2002). An introduction to Ordinary differential Equations, Prentice
Hall of India Private limited, New Delhi.

REFERENCES

1. Deo. S. G, Lakshmikantham, V. and Raghavendra, V. (2003). of Ordinary
differential Equations, Second edition, Tata Mc Graw Hill Publishing Company
limited, New Delhi.

2. Rai. B, Choudhury, D. P. and Freedman, H. I. (2004). A course of Ordinary differential
Equations, Narosa Publishing House, New Delhi.

3. George F. Simmons, (1991). Differential Equations with application and historical notes,
Second edition, Tata Mc Graw Hill Publishing Company limited, New Delhi.

4. OrdinaryDifferential Equations: An Introduction, Author(s): B.Rai, D.P. Choudhury
ISBN: 978-81-7319-650-8, Publication Year: Reprint 2017
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UNIT — 11

SOLUTION IN POWER SERIES

SECOND ORDER LINEAR EQUATIONS WITH
ORDINARY POINTS

Consider the second order linear homogeneous equation of the form
X+ a (X + ay(tx=0. 1

Definition:
(Analytic functions) A function g, defined on an interval / is said

to be analytic at t=a where ae I, if g can he expanded in a power series

K, (1 —a)" with a positive radius of convergence.
a=0

Example:
Trivially, any polynomial in ¢ is analytic at t=0. The elementary
functions €', sin , cos t are analytic at all points of the real line.
Consider the differential equation

Co(tix” + C, (X" + C()x=0, tel

--2
G )
Let dy(n) = Gl and d,= Gl
Definition:
A point a € [ is called an ordinary point for the Equation -
if d,(f) and dy(r) are analytic at r=a.
Example:
The Hermite equation
=20 +2x=0 ____3(3 9)

has an ordinary point at t=0 since =2t and 2 are analytic functions at =0,
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Example:

The point t=2 is not an ordinary point for the equation
(t = 2)x” + x = 0 because the function U—l 2)
2 with a positive radius of convergence.

In all of what follows, we would be interested in studying the series solution
around an ordinary point. Firstly, we illustrate the method by an example and later
generalize it to a linear second order equation around an ordinary point.

does not admit a power series around

Example:
Consider the Hermite equation (3.9). Assume that
=Y att
k=10

is a solution of (3.9). The aim now is to determine the constants a,. First of all note
that

2"(1) — 212'(1) + 22(r) = 0, (3.10)

Here term by term differentiation for the series would be valid in the interior of
the interval of convergence. Differentiating 2’(r) we get

=Y (k+1)k+2ay, 1"

k=0
Substituting the values of z¥, z’ and z in (3.10), one obtains

2a, + i [(k+ 2)(k+ 1)ay, , - 2a,(k - 1)}¢* + 2a, = 0. (3.11)

k=]

Since (3.11) holds for all 1, the coefficients of powers of ¢ vanish individually.
Hence 2a, + 2a,=0, (3.12)
(k+2)(k+ 1)y, ,— 2a(k—1)=0, k1. (3.13)

From (3.12), we get a, =—a,. It is easy to see from (3.13) that @, =0 and hence
successively it can be deduced that a,, , ;=0 fork=1,2,.... From (3.13) we get

_ 22k-1)
2T BRIk + 1)

Substituting for a,, from (3.13) and repeating the process, we obtain
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22k - 1)2(2%=3)...(2-3)(2 1)
U2 T Ry 2k+1)...4-3 @ pie)

But from (3.12), we have a, =—a, and so

='2“ W=1)(=1 +2)(~144)...(-1+2k)
Gak+2 2k+2)!

So the series solution z(¢) is

b k
o 3 SEHEC D Mo 619

z{rl=a.,[

k=1
where a; and a, are arbitrary constants. Let

o 2X=1)(=1+2)...(=1+2k=2)
Z](‘]=1+k§ 2h)! 1* and N =t

Since (3.15) is a solution of (3.9) whatever be a; and a;, in particular we see that
z; and z, are two solutions of (3.9). Also z; and z, are linearly independent on any
interval of the real line. Thus we have established the existence of two lincarly
independent solutions of (3.9). This is an outcome of the power series method.
Relation (3.15) has many implications. It can be used to obtain approximate
solutions of (3.9) in an interval around zero.
~ Example 3.7 illustrates that it is possible to obtain solutions of second order
linear equations by the method of power series. For this purpose, we assumed that
the coefficients which occur in the equation are analytic at 1,. But the question is,
can we assume that any second order linear equation admits a power series solution

around an ordinary point? The answer to this question is in the affirmative as can
be seen from the following result.

Theorem:
Consider the second order linear Equation (3.7) where a,(r) and
a,(r) are analytic at a point f;. Then there exists a unique function z(7), analytic at
fg which is a solution of (3.7) in a certain neighbourhood of ¢, and in addition
2(fy) = &, and Z'(1y) = o, where o, and o, are given constants, Further, if the power
series of a, (1) and a,(r) converge on the interval |1 - Il < r, then so does the power
series expansion for z(1).
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LEGENDRE EQUATION AND LEGENDRE POLYNOMIALS

The equation
(1 =P -2t +p(p+ 1)x=0 (3.18)

where p is a real number, is called the Legendre equation of order p. Let us employ
the power series method to solve (3.18) The standard form of (3.18) is given by

+1
X' = ﬂzx’-t-p{‘p RJ:={}. r# 11, (3.19)
1=t |

Comparison of (3.19) with (3.7) yields

2 pp+1)
ﬂ|(1}=—w and ﬂz{ﬂ'= (|_ﬂ) .

We know that the binomial expansions of a,(r) and a,(r) converge for |¢| < 1. Hence
from Theorem 3.1 the Equation (3.18) admits a power series solution valid for
|t] < 1. Let us assume that

=Y ar (3.20)
k=0
is a solution of (3.18).
Then we have (1= -2 +pp+ 1)z=0. (3.21)

We obtain the following relations from (3.20)

-22Z(f)= Y, —2kay", :
i x (3.22)
770 = 3, ~k(k~-Day*

k=0 J
Using (3.20) and (3.22) in (3.21) we get, after simplification,

Y, [k +2)(k+ Dag, o+ (p+k+1)(p-Kadr* =0.
k=0
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Since the above equation is valid for |¢| < 1, the coefficients of rl. for all k, vanish.
This gives the recursion formula
__Ap+k+)(p=k)
R T T

The formula (3.23) shows that for even k, a, is a multiple of @y while for odd k,
a, is a multiple of a,. Let us list some of the values of a,. From (3.23), we have

+1

ay=- G g,
(p+2)(p-1)

G==""3 o a4

+3)(p-2 +3)(p+1 -2
a,=-“’ 4%(.; Jazt{p }{94!1;!’(;: J%

k=0,1,2,... (3.23)

a=2+p-3) _(+ap+2pe-1)p-3)
e 5:4 "= 5! v
In general
%2{—l}“(p+2m-1){p+2m-3){.2.n;)[!p+llp{p—2)...{p—2m+2}aﬂ‘
_EN(p+2m)p+2m=2).. (p+2(p-1)p=3)...(p=2m+1)
Dome1 = @m+1)! ‘

where m=1,2,.... Thus we have evaluated coefficients a,,, and a,,, ,, in terms
of ay and a, respectively. Substituting these values in (3.20), we get the required
power series solution for (3.18) as follows:

1 3 1 -
z(r}:,,o[l_(.ﬂ-;! P 2, 0+ e+ ete ’:‘-...]
= ~1p-—
+al[;-“’”§" 11,_,,+cp+4>(p+2;(rp )P 3)‘,_”.]. G54
Let us write ,
2r) = agz, (1) +a, (1), |rl<1, (3.25)

where z,(r) and z,(r) represent the series

o (=1)"(p+2m—=1)p+2m—3)...(p+ Dp(p=2)...(p-2m+2) 5

=1+ E:.I am)! .
(3.26)
_ o (=D"(p+2m)(p+2m=2)...(p+2)(p—-1)p-3)...(p-2m+1) 2m+1
n)=t+ 3. G D] gl
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The constants a; and a, are arbitrary. If we choose ay=1 and a,=0, then
zf)=z,(r) and similarly if a,=0 and a, =1, then z(r) = z,(1). Indeed, z/(r) and
Z,(1t) are two linearly independent solutions of (3.18) on [#] < 1. The general solution
of (3.18) is thus given by (3.25).

In deriving z,(f) and z,(f) we have assumed that p is a real number. If p is a

non-negative integer then z,(f) or z,(r) reduces to a polynomial in t of degree p if
p is even, or of d-egru p= 1 if p is odd respectively. For example,

z,{l)—][p n) z(n=1~-37 (p=2), z,{r}—l-lﬂl'l+£t‘[p=4]

For these values of p, z(f) is still an infinite power series. In case p is odd then
z,(¢) is an infinite power series and z,(¢) reduces to a polynomial. For example,

LN =t(p=1), zlf,rjzr——r (p=3), zltr)-:-ﬁr 21.|"||‘,p=!i}.

' Legendre Polynomiails

Let us now consider the Legendre equation when p 20 is an integer n, namely,
- P’ =2 +n(n+ )x=0. (3.28)

It is already seen that (3.28) admits a polynomial solution. Let us denote this solution
by P,(1). We say P,(t) is a Legendre polynomial when P (I)=1, n=0,1,2...
These polynomials play an important role in mathematical physics. We obtain below
some of their important properuw

Let V denote the polynomial (%= 1)". Then we show that the nth derivative of
V, denoted by D"V, satisfies (3.28). By definition we have

V=(t 2_ 1 (3.29)
and so — n(rz 1"~ ' . 2t which for t#+1 can be rewritten as
(- l)%’-zmv=o (3.30)

Differentiating (3.30), (n+ 1) times by u.siﬂg Leibnitz's theorem, we get
(1-7) “'22 O'V) -2 {D"v}+n{u+|}n"v 0

which proves that D"V is a solution of (3.28). Hence the Legendre polynomial
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P,(1) is a constant multiple of D"V and so P,(1)=AD"V. To evaluate A, note that
the Legendre polynomial satisfies P,(1)= 1. Now,

PH{.I’}=AIT‘[(I*- D"+ 1"}
=A(t+ 1)"D"(t— 1)" + terms with (1 - 1) as a factor
=n! A(t + 1)" + terms with (t — 1) as a factor.

Hence P()=An!2"=1

which determines the value A, namely, A = 1/(n! 2").
We have thus proved the following result.

Theorem:
The Legendre polynomial P(r) is given by

1 n
2 A1 3.3
deﬂ[x’ 1" (3.31)

As a consequence of Theorem 3.2 we obtain the following result which exhibits
one of the important properties of P (1).

P(n=

Theorem:
If P, is a Legendre polynomial, then

1
e = |
[ Pwda=5". (3.32)
Proof Let us denote, as before, (£ —1)" by V.
| | 1 dl dl
= -— V(1) — Y
L I—-l Pz"(’) @ J-l [n! 2"]zdr" © dr" v

Let us evaluate the integral given below

1 drl dn
=| —WH)—V :
! R (1) pr (1) dt

Note that V(- 1)=vV™(1)=0, if 0<m<n. (3.33)
We successively integrate by parts the integral / and get

i db- z 1 A
1=I_' [F V(:)J 1) V(t)dr-(2n)!j_' (1-P)dr.

With the help of the transformation t=cos® and using the formula for
w2 I
Io sin” 0 dB, we arrive at I ’ Pty dt=2/2n +1).
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Theorem:
If P(1) and P,[(r) are Legendre Polynomials, then

)
I : PP (ndt=0 if m#n. (3.34)

Proof Equation (3.28) can also be written as

%((1 ~A)P)=—n(n+1)P,,

d .
'E[(I—F)Pm]- m(m+ 1)P,,.

Multiply the first relation by P, and the second relation by P, and subtract the
resulting expressions. Hence, we get

(1 =X = PP = [mm + 1) = nn+ 1IP P,

Now integrate between the limits —1 and 1. The conclusion (3.34) follows.

Theorem 3.4 essentially says that the Legendre polynomials form an orthogonal
set of functions with weight function unity on [-1, 1]. This property of P, (1) is
crucially used in the expansion of a given function g(#) defined and continuous on
[=1, 1] in terms of P,(#).

Theorem:
If g(z) is any continuous function of r defined on [-1, 1], then g
admits an expansion of the form
g)=Y C,P(, te[-1,1],

where C, are constants given by

|
=X [ gop@d n=01.2...

The proof of this theorem is a consequence of Theorems 3.3 and 3.4 and hence is
omitted.
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SECOND ORDER EQUATION WITH REGULAR

SINGULAR POINT
Consider the second order equation
ag()x"" + a,(1)x" + a,(t)x = 0. (3.35)
Suppose that — a,{r} a:{f} are analytic functions at a point f, on an interval [.

The point ¢ is then called an ordinary point of the given equation.

A point t, € [ is defined to be a singular point for the given equation if it is not
a,(t
an ordinary point. Thus, at a singular point either a::; 1[ . fall to be analytic
at 1=1, However, if the singularity is not of a pmdmnmant nntum in the form of
irregular one then the extension of the series method is possible for a class of such
equations. We classify singular points as follows:

Example:
A point t, € [ is called a regular singular point for the Equation

(3.35) if 1 is a singular pc_uinl and, in addition, the functions (f—1,) a;:é: and

]2 z:(::: are analytic at t=1, If a singular point #, is not regular, it is called

an irregular singular point.

Example:
The Bﬁsscl equation of order p

L)1) = r’x" +1 + (- pz}x 0, Rep20, (3.36)
possesses a regular singular point at r = 0. Observe that the functions

:(‘3} ie.1 and l"[fz—:zﬁ} ie. rz—pz

are both analytic at r=0.
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Example:

In the case of equation
=12 +3) + P2 = (P +1-1)x=0
observe that t1=0, t=1 and t=~3 are singular points. It is easy to verify that the
points 0 and — 3 are regular singular points whereas since

(=) & 7
fe—17%+3)  Ht-1)(t+3)
is not analytic at f= 1, we conclude that 1 is not a regular singular point of the
given equation. ™~

The aim of this section is to extend the series solution method to Equation (3.35)
with regular singular points. To begin with we assume that series solutions for such
equations exist. Suppose further that the singular point £, is at zero. There is no
loss of generality in this assumption. We seek a solution ¢(r) for (3.35) in the form

o =t" Y ¢t (3.37)

k=0

where the coefficients ¢, are constants to be determined and m is a number so
chosen that the power series ¢(r) satisfies the Equation (3.35). After expanding
a,(t¥ay(t) and a,(t)/ay(f) in power series at 7= 0 and substituting these in (3.35), we
equate the coefficient of the first term to zero. This coefficient is of the form

g(m), a polynomial of second degree in m. The equation g(m)=0 is called the
‘indicial equation’. Assume that c¢;#(. The indicial equation has two roots
m=m, and m = m, We obtain two sets of constants ¢,'s which lead 1o two series
solutions ¢,(r) and ¢,(7) respectively. There are several cases to be dealt with in
detail depending on the nature of the roots m; and m,.

To illustrate the method of power series in the case of second order equations
with a regular singular point we propose to discuss the Bessel Equation (3.36) in
this section. We need some properties of well known Gamma function defined by

rm=j: e ' dt, Rey>0.
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They are listed below
(i) Tiy+ )=yI'(y
(i) (=1
(iii) Nn+ 1)=n!, n=0,1,2,...
(iv) T(1/2) =Vr.

Gamma function is not defined at 0,-1,-2, .. .. Limiting values of the Gamma
function at these arguments are oo,

T'(Y) =I: e 'dr, Rey>0
(y+N)

TYY+D) .. (y+N=1)]

N being a positive integer.
We state below a theorem concerning existence and the nature of solutions of
the Bessel Equation (3.36). The proof of this theorem is omitted.

Rey<0, -N<Reys-N+1, y# -N+1,

Theorem:

Let m, and m, be the roots of the indicial equation g(m) = 0 of the

Bessel Equation (3.36). Then _
(1) There exists a solution ¢, such that

o,(0=t™ 3 ot =1, 1>0;
k=T

if m; —m, # 0 or a positive integer, there exists a second solution ¢, for > 0 of the
form
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oO=t" 3 &Gtt, &=L
k=0

(ii) When m, = m,, there are two linearly independent solutions ¢, and ¢, defined
for 1> 0 of the form
0,(N=1"0y(0)

§y(t) =1™ "' o(1) + (log 1) §,(1)

where 0, and 0, have power series representations and are convergent for all finite
values of r>0 and o,(0) 2 0.

(1)) When m, —m, is a positive integer therc are two linearly independent
solutions ¢, and ¢, for 1> 0 of the form

() =1t"ay)
$,(1) = 1™ o,(t) + e(log 1) §,()

where o, and O, have power scries representations and are convergent for > 0,
0,(0) 20, 6,(0) # 0 and c is a constant.

Before proceeding to the study of Bessel Equation (3.36), we give below an
example which illustrates the need for assuming a solution of the form (3.37) when
a second order equation possesses a regular singular point.

Example:

Consider the equation £2x” — (1 + f)x = 0 having a regular singular

point at £=0.
Let xn=ag+ap+al+...= Y at
b=
Then X0=Y kat*', x'0)= Y kk-ar*?
k=1 k=2
We then have

-1 +Nx=—ay, - (a, +ayt + E [k(k — 1)a,— (a, +a, _ |J]ft
k=1

=0

Hence, a3 =0, a; =0 and in turn a,=0,n=2,3,... . This proves that x(r) =0 is
a solution of the given equation. But the situation is different. For, let the series
solution be of the form
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x=t" Y at*, m#0, a,#0.

k=0
Ox" = (L +nx=[mm=1)~1ag+ Y [k+m)k+m-1a,~(a,+a,_)}"
k=1

=0
We conclude that g(m)=m(m~1)~1=m’-m~1=0 is the indicial equation
having roots m|=-;-(l+\/5_)andmz=-;-(l—‘f5—). Further,
(k+m)k+m-1)a,—(a,+a,_,)=0, k=1,2,....
Choose ay= 1. We get a recurrence relation

P b 2
Tk +m)k+m=1)=1

yielding a solution x(r) given by

. k=1,2,...

1 s
Jr{"1"“"[1".:m+|:w:|-i i+ 2)m+ i}-l][{mmm-u*“']
ki i ;‘E of & '2"'5_. Observe that this solution is different from x(r) = 0.
Bessel Function

We are now in a position to study the Bessel Equation (3.36). Assume a solution
in the form

WD=1" Y o', ¢=#0, 1>0.

k=0
Clearly 2" +1¢'(0+ (2 =pP) §(1) =0. (3.38)
We have (=Y (m+kpec 1™+t
k=0
and "= (m+k)m+k~ e "2,
k=0

From (3.38) , we have, for 1 >0,

co{mz -pHe™ +¢)[(m+ ) =-ppum "+ Z [{(m + k)? —pzic,‘+ r:*_:]r"" =0.
k=2
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Hence, the indicial equation g(m)=m’—p*=0 has roots m,=p and m,=-p.
Assume that m, — m, is not an integer. Further, note that ¢, =0 and

((m+ k)P =ptle,+6,.,=0, k=2,3,... .

Case (i) We determine a solution corresponding to the root m, = p.

Hence, ﬂp+k}’—p’}q+q_z=ﬂ' Emd diiias
which yields . SESRON, T O
YT K2p+ k)

Since ¢, =0, it follows that all coefficients
cua1 =0, k=12,....

_cﬂ
Further f2‘4(p+ ik
2 o
C‘ = = : L]
42p+4) 2-4(p+1)p+2)
In general

o
K p+k)p+k—=1)...(p+1)
Hence, one solution ¢,(¢) of the Bessel Equation (3.36) is given by
i S 5
Hlo=ey Ea K& p+kp+k=1)...(p+1)
Employing Gamma function, we have

cy = (-1)*

0O=c T+ 1) 3, oot (1"
; S K T(p+k+1)|2

Note that c,# 0 is an arbitrary constant. For convenience, we choose

1
T+ 1y

< -1 AR
Then ¢|{l}=;nﬁ;{£,—+'}k':—'ﬁ[§) , >0,

The solution ¢,(f) is called the Bessel function of order p and is denoted by J.,(t).

sa p+lk
Thus 5m=3 —("—'L[i] . >0,
k=0

KT(p+k+1)
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Case (ii)) We now consider the second root of the indicial equation, namely
m, = -p. It can be observed that there is a minor change in the above discussions.
We need to replace p by —p everywhere. Hence, we get another solution J_,(1) given

by
"-P(’)‘kz_ok!r‘(—p+k+l)(2) v 120

In arriving at this solution we have assumed that

st N

2PTp+1)’

We assume that the solutions J(f) and J_ () exists. We can prove that the series
representing them are convergent for 1> 0 and that these two solutions are linearly

C°=

- Tms———tmm e mmmwmm——

it gt T -

independent when p p is not a posmvc integer or zero.  Hence, the general solution
of the Bessel Equation (3.36) of order which is neither a positive integer nor zero
and Re p#0 is given by

xAN=A J’F{r] +B J_F{r], t>0

where A and B are arbitrary constants. The solution J () of the Bessel Equation
(3.36) is called Bessel function of order p of the first kind.
In case p=0, the Bessel equation takes the form

P+ + Px=0, (3.39)
Assume that solution @(t) of this eguation has the form

o=y gt
k=0
We can now proceed as in the previuus case and arrive at a solution Jn'[r) given by
2%
Jo(t) = , 1>0. 3.40
o) = E .t |2 [ ] (340

It is easy to show that the solution series Jy(f) converges for all finite values of
t > 0. The solution Jy(r) is called Bessel function of order zero of the first kind.
In fact, one can obtain Jy(f) from J,(1) by substituting p=0 and noting that
Tk + 1) =k
The Bessel Equation is of the second order and hence it possesses two linearly
independent solutions. It has been possible to determine two such solutions when
constant p in the Equation (3.36) is such that p # 0, Re p # 0 and p is not a positive
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integer. It remains to determine solutions when two roots m; and m, of the indicial
equation are such that m, # m, and m, — m, is an integer.

Assume that the two roots differ by an integer. Let m; = m, = 2n. Employing the
Theorem 3.6 we find that the Equation (3.36) has two solutions

0,1 =1,(0)

and P =" Y, c,t*+c(log ) J,(1). (3.41)
k=0 -

We already have the function J (1) satisfying
LU0 =0.

To determine solution ¢, of the Equation (3.36) we need to determine the coefficients
¢y for k=0, 1,2,.... For this purpose, let us substitute ¢, in (3.36). We first find
¢; and ¢3. It is seen that

0x0 = X, ck—m)t="""+ cllog ) J(0)+ 5 J,(0)
k=0

and 00 = 3, cylk—mlk—n—1)*"""2+c(log 1) J){n)
c € C o
+2 00~ a o)+ (0.

Hence, we get

L($,(1)) = 2 §5(1) + 1 §5(0) + (P = n®) §,(1)

=0-cyf™+¢l(1 -nl-n' "

+r" i {[(k=n)* = nle, + ¢, )t
k=2

+ 2ct J)(1) + c(log H)L (J )(1) = 0. (3.42)
The last term on the right side is zero. Further

e (_l)k ‘u+2k
Jux) = Eo K (n+k)! 2n+ 2

=% Z bu'n-&z&
k=0

I )
Uy (k)

From (3.42), it follows that

where
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(-2mect+ Y [k(k=2n)c,+c, Jt*=-2c 3, (2k+mby™* ™.
k=2 k=0

The first term on the left side is a multiple of ¢ and the first term on the right side
is a multiple of 7. Hence, ¢, =0. For n> 1

k(k—zn)ck+ck_2=0. k=2.3,....2"_l

yielding C=Cy=Cs=...=Cp,_=0.

Co
Al - o bk Bl
- AT (n-1)... (k) ?

Comparing the coefficients of #** on both sides of (3.42) we get

—co
c= 2l X
2" (n-1)!
Also Cone1 =Cpe3=...=0.

Thus, all coefficients ¢y, i=0,1,2,... are zero. The coefficients c,, for
k=1,2,...,n-1 are known. Now from (3.42) we have

2k(2n + 2k)C2n 4 20 + Con 20~ 2= — 26(n + 2k)by,
fork=1,2,....
For k=1, we get

cb, 1 Cap
“m+2=73 (“nn]‘qﬁl)‘
Observe that c,, is still not determined. We choose

ch,
fh=-‘-i'u‘{l+%+..,+i),

This choice is made for convenience. We then have

cb I 1
Cm+2=""3 I+1+E+...+m

(Note that 4(n + 1)b, =~ by)
and recursively

chy | 1 1 1
Copann=— 5 [(]+2+'”+A:J+[]+2+”'+n+k 08 5 0

Observe that we have now determined all the coefficients. In view of the rela-
uon (3.41) we have

n=1
m e + g - o P |
(1) = cof ™" + ot E. P oD h 2 {1+2+...+"]f‘

The series representing K|, is convergent for £> 0. ( Apply ratio test.)
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PROPERTIES OF BESSEL FUNCTIONS

Several interesting properties of Bessel functions are known. We prove below some

of them.
(i) Show that

% (" IO =171, (1) (3.43)

and % [ L) ==1" 4, , (1) (3.44)

Proof We have

d < o ) ot sbdng
L5 =1)

d ., -
a "=y 2 sy, Mk+p+1)

k=0

(_Ut l.thn—l
S 22 P Tk + p)

s _L'LU

= rFrJF (0.
The other relation follows similarly. Expanding the relations (3.43) and (3.44), we
get
v il oy "
A= dy=dy_y;
e Py
B== =l
- Addition and subtraction yield
s
JF=E [JP— I _Jp+ llu

I
pjﬁ:i [JF-‘ +Jp+‘].

(ii) Let a, a,, . .. be the positive zeros of the Bessel function Iﬁ[r].
i 0 . MmEN,
The tt(a 1) ] (a1 dt= 41
n | jl.'i p(ﬂm] p{ﬂq) EI:H(‘IH;' , m=n,
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Part -B (5x6=30 Marks)

Possible Questions:

1. If P, is a legendre polynomial, then prove that f_11 P2(t)dt = 2n2+1.

2. Show that d/dt[tPJp(t)]=tPJp-1(t).

3. Find the power series solution for the Bessel equation of order p.

4. Solve: x”-2tx’+2x=0

5. Show that d/dt[tPJy(t)]=-t PIp+1(t)

6. Show that (i) Jp(t) == [Jp—1 () = Jpsr (O] (i) P 3p(®) = D=1 (&) + Jpp 1 (D)]

7. Solve: x”-2tx’+2nx=0

8. Show that the legendre polynomial Pn(t) can be expressed as Pn(t)=1/2"n! d"/dt"(t>-1)"
9.Consider the equation t(t-1)2(t+3)x"+t?x'-(t?+t-1)x=0. Check whether the point t=0, 1,-3 are

regular singular points (or) not.

10. If Pn(t) and Pm(t) are legendre polynomial thef_l1 B, (t). B, (t)dt = 0 if m=n.

Prepared By: K.Aarthiya, Department of Mathematics, KAHE Page 20/21



Unit | SOLUTION IN POWER SERIES 2017 Batch

Part -C (1x10=10 Marks)

Possible Questions:
1.Find the power series solution for the Bessel equation of order p.
2. 1T Py(t) and Pm(t) are legendre polynomial thef_11 B, (t).B,(t)dt = 0 if m=n.

3. Ifal,a2,...., be the positive zeros of the Bessel function Jp(t),then prove

) 0 ifm#n
thatfo t]p [an(t)].]p lam ()] = {% ]5+1(t)ifm =n

4. Solve: i. x7-2tx’+2x=0

il x”-2tx’+2nx=0
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Part A (20x1=20 Marks)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
Consider the equation co(t)x"+c (t)x=0 then a point a is an
ordinary point if d (t) and d (t) are analytic at t=0 t=a t=1 t=a? t=a
An hermite equation has an ordinary point at t=0 t=a t=1 t=a2 t=0
An analytic function for an hermite equation at t=0 is
—tand 1 tand 2 -2t and 2 2tand 1 -2t and 2
The legendre equation of order p is (1-t) x"- (1-t) x"- t2 x"- (1-t2) x"- (1-t2) x"-
2tx"+p(p+1)x=0 2tx"+(p+1)x=0 2tx"+p(p+1)x=0 2tx"+p(p+1)x=0 2tx"+p(p+1)x=0
When pj(t) is called an legendre polynomial? Pn(1)=0 Pn(0)=1 Pn(1)=1 Pn(t)=1 Pn(1)=1
If p,(t) is a legendre polynomial then _ [
pn(t)dt= 1/(2n+1)! 2/(2n+1)! 2/(n+1)! 1/(n+2)! 2/(2n+1)!
If pm(t) and p,(t) are legendre polynomials then _ [ipn(t)
pm(t)dt= if m#n 1 12 0 0
If p,(t) is a legendre polynomial then p,(-1)=1ifnis Negative odd Even positive odd
2" ' 2
The Bessel equation of order p is t2x X 2X"H(1-)x (1 ) ) -
p)x=0 tx"+(1-t)x"+px=0  p2)x=0 tx"+(1-)x+px=0 t°X +tx+tx"+(t"-p)x=0
The Bessel function of the first kind d/dt (tpJp(t))= £°3,(t) tP3p-1(t) tPIpea(t) tP3(t) t"3p-a(t)
If p,(t) is the generating function then p,(-1)= -1 0 (1) (-1)n (-1)n
The hermite equation is 22x"-2tx"+x=0  x"+tx'-2x=0 x"-2tx"+2x=0 tx"-tx"+x=0 X"-2tx"+2x=0

The legendre polynomial p,(t) can be express as

1/2"n! D"(t-1)"  1/2"n! D"(t-1)""  1/n! D"(t*-1)" 1/2"n! D"(t*-1) 1/2"n! D"(t*-1)"

The order of equation is (D*+2D-8)y=0 is 1 20 8 2
The solution of ordinary differential equation of n order

. . no n Atleast n n
contains arbitrary constants More than n

The n™ order ordinary linear homogeneous differential (n-1) singular  one singular n-singular

equation have solution solution solution no singular solution no singular solution
. . - . . . . Non-
::;e linearity principle for ordinary differential equation holds homogeneous linear differential  Homogeneous linear differential
equation equation equation non-linear equation equation
A singular point which in is called an irregular
singular point Regular ordinary point analytic point analytic function ~ Regular

If p(t) and p,(t) are legendre polynomials then _ [ipn(t)
pm(t)dt= if m=n 0 1/n+1 2/(2n+1) 1 2/(2n+1)

On Bessel’s function, where n is any integer then J-

n(x): ('l)n‘]—n(x) (_1)an(X) ('1)an+1(X) (-l)an_l(X) ('l)n‘]n(x)

When the hermite equation has an ordinary point? t=0 t=-2 t=0 t=0 t=0
The second order linear homogeneous equation is of the x"+al(t)x'+a2(t) x"+al(t)x'+a2(t)x=c x"+al(x)x'=constan
form X onstant x"+al(x)x=0 t x"+al(t)x'+a2(t)x
The regular singular point of the equation tx"+(1-t)x"+nx=0 : _ a
. _ _ t=0 t=n t=0
IS t=1 t=-1

i "+(1-t)x"+nx= i is aagrange : . : .

The equation tx™+(1-x"nx=0 where n is a constant, is aag g legendre equation  Bessel equation  hermite equation .
called the equation lagrange equation
The singular point of the equation t(t-l)2 (t+3)x"+t 2
1)x=0is t=0 and =1 t=0,t=1andt=-3  t=1qgnd t=-3 t=0 and t=-3 t=0, t=1 and t=-3

. 2 _ . . .
The equation t"x"-(1+t)x=0 having a regular singular point t=1 =+-1 t=0 t=0
at t=-1
If Jp(t) is a Bessel function then d/dx[t-pJp(t)]= 051 (t) t-PIpea (1) —t-PJpa(t) t°3p-1(t) —t-"pa(t)
- M - 2
The regula_tr singular point of the equation t infinity 1 2 infinity
n(n+1)x=0 is 0
L . linearly : linearly

The Bessel equation is of the second order then it possesses dependent |_ndependent dependent independent linearly independent
two i solutions . . .

solution solutions solutions solutions
A point to is defined to be a singular point for the equations not an not an irregular

a0(t)x"+al(t)x'+a2(t)x=0 if it is

ordinary point

ordinary point

point

irregular point

not an ordinary point



The regular singular points of the equations (t-t?)x"+[y-
(at+p+1)]tx-Pax=0 is
The Bessel function of

The consider non-linear differential equation x'= t*x*, x=1/2
when t=0 then the value of x (0)=

The equation (1-t%)x"-2tx"+p(p+1)x=0 where p is a real
number is called the of order p
The Bessel equation possesses a at t=0

The equation t(t-1)%(t+3)x"+t*x'-(t*+t-1)=0 is not analytic at

The Bessel function
when n is

A regular singular point of the equation 2t*x"+(2t+1)x"-x=0 is

An equation has an ordinary pointatt = 0.
The order linear homogeneous equation is of the
form x" + al(t)x'+a2(t)x= 0

Oand 1
(1/m)In(t)

1/2

legendre
equation

ordinary point
t=0
even or odd

t=0
Legendre

first

0 and «©

mJq(t)

-1/2

laguerse equation

analytic function

t=-1

t=2
Bessel

second

0,1 and o0
wIn (t)

1/4

Bessel equation

regular singular
point

t=-3

costant

t=1
Hermite

third

1 and «© 0,1 and o
In(t) s (1)
-1/4 -1/4

Hermite equation .
legendre equation

singular point regular singular point
t=1 t=1
even odd
t=-1
t=0
Lagrange Hermite
fourth
second
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UNIT — 11

System of Linear Differential Equations

SYSTEMS OF FIRST CRDER EQUATIONS

In Chapter 1 we observed that a general non-linear differential equation of order

one is denoted in the form
X =f{t, x) (4.1)

where x is a real valued scalar function defined on an interval / contained in the
real line. The first order non-homogeneous linear equation
L +altx=5b(t), tel, (4.2)
is a special case of (4.1). We show that the Equations (4.1) and (4.2) are special
cases in a more general set-up.
Suppose that n is a positive integer. Let fi, f5,...,f, be given n real valued
functions defined on some open connected set D contained in (n+ 1)-dimensional

space. Consider a system of n equations

linear systems on which we concentrate in this chapter. Consider a system of
equations ,
x =ay,(Nx, +a (e, +...+a, (Ox, +b (1)

x5 =ay,(0)x, + ay(fx; + . . .+ ay,(0x, + b,(1) vel) 4.6)

I: =d, I(Ilr] + anlt'ﬂxz to..F a’n.h{'r}xl + 'b.-{“
where all the functions a;, b, i,j=1,2,..., n are given. Let
flrx,x ..., x,) =a, (0hx; + axlthx; + . . .+ a, (f)x, + b{1)

for i=1,2,...,n It is then clear that the system (4.6) is a special case of the
system (4.3). Define the matrix A(r) by the relation

a () ap(® ... a,
Ay =| O D - a0
0 @) .. aud)
and the vectors b(r) and x{r) by
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b‘ﬂﬂ' x,(0)
_ b-‘::} . .:2:(0

b,(0) £, (0
respectively. With these notations (4.6) reduces to

X=A(Nx+b(r), tel (4.7)

It is easy to observe that the system (4.6) is linear in x;, x,,. . ., x,. Equation (4.7)
is a vector matrix representation of a linear non-homogeneous system (4.6). If
b(r) =0 on I, then the system (4.7) reduces to the homogeneous system

X=A(x, tel (4.8)

b(r)

Example:

Consider the system of equations
x) =55 -2x,
X =25+ Xy
This system of two equations can be represented in the form
xl” 15 =2||x
n| (2 1=
It can be verified that a solution of this system is given by
x () =(c, + r:zr}e"f‘, x(1)= [cl --,';" c+ clr]!j’.
In Chapter 1, it has been shown that a general nth order IVP in normal form is

JI‘J:ﬁﬂx‘x’.---rx[.-“}r tel (4'91

=0 YlP=0, .... # N=a,_, Kel (4.10)

where o, @, ..., o,_, are given constants. The theory concerning nth order
equations is deducible from the theory of a system of n equations. For this purpose
let us define x,, x,, . . ., x, by

nymx Xmky wiiy K Vmi,

Then X| =Xy
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X=X
: 4.11)
S

x=g(tx,%...,x)

-x.

Let 9=($,,9,, ...,9,) be a solution of (4.11). Then
®=¢, &=6;=0 ..., ¢,=¢"",
8l6 00, 0,0), . ... 0,0} = glt, 0,0, 4]0, ... ¢" "))
= o).
Clearly the component ¢, is a solution of (4.9). Conversely, if ¢, is a solution of

(4.9) on I then the vector ¢ = (¢;, §,, . . ., 9,) is a solution of (4.11). Thus the system
(4.11) is equivalent to (4.9). Further, if
) =0 Gil)=0, ... O =0,
then the vector @(f) is so defined that @(fy) = & where @ =(0p, &, ..., @, _,). Itis
not difficult to observe that the system (4.11) is a special case of the vector equation
X =f(t, x). '
In particular, consider a special case of (4.9), namely, a linear equation of nth
order of the form
agtx® +a, (" V+. . +a(x=h(t), tel

where a(f) # 0 for t € I. This is equivalent to

x“"+-:—"‘8x"’“+..,+::g;x-%%. 4.12)
Equation (4.12) can be represented in the form of a system by defining
x(f) = x,(1)
AO=x01 e 4.13)

Xpo 0 = 2,00
an(‘) o a, .- l(‘) al(‘) ¥ _'_‘Q)_

x (=~ ao(0) X aolt) Xy =oee™ m X, aolt)’
% g
Let x=| 2| bp=| i
: h(®)
T | () |
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[ 0 1 0 e 0]
0 0 1 ay D
A= : : cew
0 0 0 o

|~9,/y —Gy_yldy —O,_Jay ... —Gay |

With these notations the system (4.13) is

X =Ax+b(t), tel ) (4.14)
Thus it has been established that (4.12) and (4.14) are equivalent. The representations
(4.7) and (4.14) provide us considerable simplicity in studying certain aspects of
systems of n equations and an ath order equation respectively.

Example:

For illustration consider a linear equation
X" =6x"+ 11" —6x=0.

_ Denote ' x=x, x=x=xX, n=x"=x,
% 0 10

x=| x| and A(N={0 0 1|.
25 6 -11 6

The equation takes the form X’ = A(#)x.

Notice that the first component x, of the system is a solution of the given equation.
It is easy to check, in the present case, that x,(f) = c,e' + c,” + c;e where ¢;, ¢,
and ¢, are arbitrary constants.

Prepared By: K.Aarthiya, Department of Mathematics, KAHE Page 5/17



Unit 11 System of Linear Differential Equations 2017 Batch

MODEL FOR ARMS COMPETITION BETWEEN
TWO NATIONS

Let x(1) denote the war potential of the nation A and y(r) the war potential of the
nation B at a given time f. The war potential can be evaluated on the basis of the
budgetary provisions made for defence by a nation as also the type of weapons
possessed by a nation and the involvement of man-power for this purpose.

In a simplestic way it is natural to expect that the nation A will keep its rate of
change of x(7) keeping in view the change in the war potential y(f) of the nation B.

Hence, % = qaty.

However, quite some investment in armament race is required to keep the available
arms in order and keep them fit for subsequent use. This and such other factors
retard the rate of growth of x(r). Naturally the retarding factor is proportional to the
existing accumulated strength x(r). Thus the above equation gets modified and we
have

& _
il Px.

The war-like situation prevails in a nation when there are occasional disputes
between the two nations. Rise in disputes immediately results into the rate of change
of war potential. These considerations lead to the following mathematical model

dx _
= fir + A
dy
E—v—®+m

Here A and p are assumed to be constants and represent the level of occasional
disputes between two quarreling nations A and B.

This is a system of two linear equations. The model will faithfully represent the
real situation provided the constants o, B, A, v, 8, i are calculated properly. The
effectiveness of the model will increase if these constants can be replaced by variable
coefficients. But then the model will become complicated.

In case A=0,u=0, i.e. the current disputes between two nations are al zero
level, we have

dx dy
Eﬁuy—ﬁx and Eﬁﬁ—ﬁy.

o'
Suppose that %-—“1{1, ?':={]I. 1.e. there is no increase in war poiential between two
nations. This state indicates that the war-like atmosphere is absent in both the
nations, i.e. peace prevails between them. The two nations attain an equilibrium

position when
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oy _-'Bx - 01-
w=38y=0.
This is possible when x =y =0; (b = fy).
Obviously even when equilibrium position x = 0, y = 0 is attended by two nations,
local grievances between two nations may initiate increase in war polentials of the
two nations, i.e.

dx dy
3 =A and 2 =W A>0, u>0.

In case the constants o and Y known as ‘defence term’ are very large in comparison
to B, 8, A and p the war potential increases rapidly since the equations representing
the war potential are

dx dy
o e =Th

i.e % = otyx having a solution
x(1) = Ae¥™ 4 geVort,

Clearly when A > 0, x(f) — . This situation is an indication of actual war between
two nations.

In order to create sympathetic atmosphere between two warring nations, one of
the nations may resolve to adopt unilateral disarmament. Let us say that the nation
B adopts this policy at a time ¢ making y = 0. In this case the equations take the form

dx _
% etk

dy
and d‘-wu-u.

In case yis positive or x is positive, y will not remain zero in future. Hence unilateral
disarmament decision cannot acquire a permanent status.

The model given above has been tested for some realistic situations prevailing
in the first and second world war between conflicting nations. It has been experienced
that it yields fairly correct conclusions.

The above model represents armament race between two nations, It is possible
to extend the same model further to represent the armament race among three or
more nations. Suitable modifications are then necessary.
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It is our experience that while there exists an atmosphere of war between two

It is our experience that while there exists an atmosphere of war between two
nations, there are other factors such as trade and cooperation between two nations
which reduce the fear of war in the minds of people. These factors also play their

role in the armament race. It is possible to incorporate these factors while modelling.

EXISTENCE AND UNIQUENESS THEOREM

Theorem:2.1

Let A(f) be an n X n matrix that is continuous in ¢ on a closed and

bounded interval /. Then there exists a solution to the IVP (4.15) on / and, in
addition, this solution is unique.

Proof Assume that 1 2 I, without loss of generality. We write the IVP (4.15) in the
following equivalent integral form

x(t) = xp + j". A(s) x(s) d.

Define the successive approximations by the relations, x,(r) = x,,
X, 40 'htL:‘l{ﬂ x(s5)ds, tel,

forn=0,1,2,.... Note that the sequence of the functions (x,} exists, since x, is
a given vector. First of all it is proved that {x,(r)) is uniformly convergent on /.
Consider the series

xo(r) + En (%, . 1 (1) = x,(1)).
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Io{l) + zu (xl + 1{‘} T 'Iu.(‘n'

The convergence of this series implies the convergence of the sequence [x,(r)}). It
is clear that

I
Xy o 1(0) = x,0) = I:. At (5) = X, y(s)) dis,
and so it follows that
lx, o (0 = X, (D)l 51-.. AN 1x,0) = x, _ ()l ds.

Since / is a closed and bounded interval and A(f) is continuous, there exists a
constant k; > 0 such that k, = max JJA(9)]]. Thus
Ty

Iy s 1) = 2Ol S Ky f‘_ lly() = %, () .

Further it is seen that |
lxy(8) = x()l < &y gl (= %),

assuming that 1 2 #,. Using this inequality and the method of induction it is easy to
obtain the estimate

K ol — 19"
Since the right-hand side in the above estimate can be made arbitrarily small by

+| - n+l
%ismmn}mtm

choosing n sufficiently large. [Nme here that
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b
in the expansion of ¢4~% and ¢ is an element of the closed and bounded interval
f]. We claim that {x,(f)} is a uniform Cauchy sequence on /. This implies that the

sequence {x.(r)} converges uniformly to a continuous function x(r) on /. Thus, it is
seen that

r
W) =xg+| AG)x(s)ds, tel,
ta
which follows by taking the limit as n — = on both sides of
I
x5 0=x0+] AW x(o)ds, tel.
fy

This clearly proves that x(r) is a solution of the integral equation equivalent to the
system (4.15) existing on [.
To establish the uniqueness, assume that y(1), 1 € I, is another solution of (4.15).
Then observe that

(0 =x +J;d[3).d:)dl

and ¥O) =+ [' A(s) Y(s) ds.
la
Thus we obtain
r
x(1) = (1) ==_L A(s)(x(s) = y(s))ds, tel,

-

from which it follows that
I
lx(f}-)-(r}lsfi. AN llx(s) - W)l ds

<k, J;Ix{s} ~ Yl ds.
So, for any €> 0, it is seen that
() = Ol < €+ k, [" ix(s) - W)l ds, re L.

Let z(r) = Jlx(£) = y(©) |l Then,
(]
w)<e+k, | 2s)ds, tel.
fy
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Let r(r) denote the right side of this inequality. Clearly, n(ry) =€ and z(1) < (). Now
r(t) = kz(t) < k,r(1). So
r(f) = k,r(t) <0.
Multiplying by exp {—k,(t—1,)]) on either side it is seen that
[r(1) exp {—k,(r=1)}) <O.

Afier integration, between ¢, and 1, the following ineguality

z(r) < r(1r) < e exp [k, (t — 1))
is obtained.
Since this is true for each £>0, it is seen that z(f) 0. This proves that
x()=wy(r) on I.

Theorem 2.2:

The set of all solutions of the system (4.15 (a)) on [ forms an

n-dimensional vector space over the field of complex numbers.

Proof Let y,andy, be any two solutions of (4.15 (a)) on / and let ¢, and ¢, be
any scalars. Then it is easy to show that c,y, + ¢,y, is a solution of (4.15 (a)) on /.
This establishes that the set of solutions of the system forms a vector space.

It is now shown that this vector space is of dimension n.

Let e,;€ R"(i=1,2,...,n) be an n-tuple such that the ith component is 1 and

all other components are zeros. It is clear that the vectors ¢, ¢,, . . ., ¢, are linearly
independent. The system (4.15 (a)) has n solutions y,, y,. .. ., y, such that
ni=e. ylg=en ... yltg=e,

where 1, is some point of I It is now shown that (y,, y,,...,¥,} is a linearly
independent set of n vectors. Consider n scalars ¢, i=1,2,...,n such that
enD+ey(D+.. . +cy =0, rel
In particular for t=1, € [ it is seen that
enip) + eyt + . . .+ ¢,y,(1g) = 0.

But y(t))=e,i=1,2,...,n are linearly independent and so the above equation
clearly implies that ¢, =¢,=...=¢,=0. Thus the vectors y(f),i=1,2,...,n are
linearly independent of 1.

The proof is concluded by showing that any solution @ of (4.15 (a)) is a linear

combination of y,, ¥5,...,¥, Let @(f)) =B e, +B,e;+...+B,e,, and the vector

L]
B=(B,,B,,...,B,). So the vector Z B;y/1),t € I, is a solution of (4.15 (a)) and,

i=1
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in addition, this solution passes mrnugh the point (1, B). Hence from the uniqueness

property proved in Theorem 4.1, 3, B,y{r) has to coincide with @(t) since
i=1
¢(1y) = B and @(f) is a solution of (4.15 (a)). This completes the proof.
To sum up, the set of n linearly independent solutions thus obtained forms a
fundamental set of solutions of the system (4.15 (a)).

FUNDAMENTAL MATRIX

Theorem 2.3:
Let A(r) be an n x » matrix which is continuous on /. Suppose a
matrix & satisfies (4.17). Then det @ satisfies the first order equation

(det ®) = (tr A)(det B). (4.18)
Or, in other words, for T € [,

det (7) = det O(t) exp | " w A ds. (4.19)

Proof By definition the n columns of @ are n solutions @, @5, . . . , @, of (4.15 (a)).
Denote

¢i={¢|f'¢y*""¢ﬂf}' f=l12|.-+1ﬂu
Let a;(r) be the (i, j)th element of A(r). Then

n

0= 2, a0 ij=12,...,m (4.20)
k=1
¢ll ¢I1 I1’“'1
Now D= ¢:1' 1’11%

O b2 - O

and so it is seen that
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Substituting the values of &],,¢{,,..., ¢{, from (4.20), the first term on the right
side of the above equation reduces to .
Y oady X a4l - 2, audn
k=1 k=1 k=1
o2 ¢ .
b P

which is a,, det ®. Carrying this out for the remaining terms it is seen that
(det @)’ =(a), +an+...+a,,) det D =(tr A) det P,

The equation thus obtained is a linear differential equation. The proof of the theorem
is complete since it is known that the solution of this equation is given by (4.19).

Theorem 2.4:

A solution maﬁ'ix @ of (4.17) on I is a fundamental matrix of
(4.15 (a)) on I if and only if det ®(1) #0,z¢€ /.

Proof Let ®(t) be a solution matrix such that det @(f) #0, 7 € I. Then the columns

of ® are linearly independent on /. Hence @ is a fundamental matrix.
Conversely, let ®(r) be a fundamental matrix and let @,j=1,2,...,n be the

columns of ®. Let ¢ be any solution of (4.15 (a)). Then there exist constants

1 6
. ¢ c
9= I c9;=®| ?|=®c, wherec=|"?
i=1 . .
cl cl
This is a system of linear equations for the unknowns ¢,, ¢,, ..., ¢,. For a fixed

T € [ the above system has a solution and hence det ®(t) # 0. Now from Theorem

4.3 it is clear that det ®(z) # 0, t € I, which completes the proof.
Some of the useful properties of the fundamental matrix are established in the

following results.
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Theorem 2.6:
Let @(1), t € I, denote a fundamental matrix of the system

x'=Ax (4.21)
such that ®(0) = E, where A is a constant matrix. Here E denotes the identity matrix.
Then @ satisfies

D(1 + 5) = (N P(s) (4.22)
for all values of rands € /.

Proof By the uniqueness theorem there exists a unique fundamental matrix ®(r)
for the given system such that ®(0) = E. It is to be noted here that ®() satisfies
the matrix equation

X'=AX (4.23)
Define for any real number s
¥(1) = (1 + 5).
Then Y (=@t + 5) = AD(t + 5) = AY(1).

Hence ¥(1) is a solution of the matrix Equation (4.23) such that ¥(0) = ®(s). Now,
suppose Z(1) = ®(r) ®(s), for all r and s. Observe that Z(r) is a solution of (4.23).
Clearly Z(0) = ®(0) ®(s) = E®(s5) = ®(s). So there are two solutions ¥(#) and Z(r) of
(4.23) such that ¥(0)=Z(0) = ®(s). By uniqueness property therefore it must be
seen that ¥(¢) = Z(1), whence the relation (4.22). The proof of the theorem is complete.
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Example:

Consider the linear system x’ = A(f)x where

Xy -3 1 0
x=|Xx;| and A=| 0 -3 1]{.
X3 0 0 -3

We show that the matrix
eV e PN
d"{!'}: 0 E-Bi' M-—]r

0 0 e
is fundamental. For this, we need to show thzt the three columns
1 1] £i2
e>lol, e¥|1], ¥ ¢
0 0 1

are linearly independent. We can show that

= =

. [¢ 12
eMNe 0|+ 1|+ ¢
0 1

- o

implies that ¢; = ¢, =¢3=0.

Further we show that ®(r) satisfies the given linear equation. Clearly

(3 1-3t 1-@322))
dM=erl 0 -3 1-3t

0 0 -3
(-3 1 ol[1 ¢ 2
=¥ 0 -3 t

=AD(r).
Hence @(r) is a fundamental matrix.

In a subsequent section, we provide a method of finding fundamental matrix

when the matrix A is constant.
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Part -B (5x6=30 Marks)

Possible Questions:

1. Prove that the solution matrix ¢ of X'=A(t)X (t€ I) on | is a fundamental matrix of
x'=A(t)x on [ iff det ¢ (t)# O for te I.

N

. Solve X1'=5x1- 2X2; X2'= 2X1 + Xo.

w

. Let ¢(t), te I denote a fundamental matrix of the system x'+Ax such that
¢@( 0)=E, denotes identity matrix , then P.T ¢ satisfies, @( t+s)=¢p(t)@(s), for all
values of t,se [
. . . L X1 0 171r*%1
4. Find the first three successive approximation for the system[xz] = [_ 1 2] [xz];
[x1 (0) _ [0]
x,(0) 1

. State and prove the existence and uniqueness theorem on I1\VP.

(621

(o]

. Let A(t) be an n x n matrix which is continuous on I. Suppose a matrix ¢ satisfies the
matrix X'=A(t)X, tel .Then Prove that det ¢ satisfies the first order equation

(det @)'=(trA)(det ¢ ).

7. Find the four approximations of a solution to x”-2x’+x=0,x(0)=0,x’(0)=1.

oo

. Prove that the set of all solutions of the system x’=A(t)x on I form an n dimensional vector
space over the field of complex numbers.

9. Solve 3 x1'+3x1+4x2=0; 3x2'+2x1+3%2=0.

1 -1 1
10. Find the fundamental matrix of the system x'(t) = A(t).x(t) where [0 1 3]
0 3 1
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Part -C (1x10=10 Marks)

Possible Questions

1.State and prove the existence and uniqueness theorem on IVP.

1 -1 1
2. Find the fundamental matrix of the system x'(t) = A(t).x(t) where [0 1 3
0 3 1

3. Let ¢ be a fundamental matrix, for the system x'=A(t)x(t€ I) ---(1) and let C be a
constant non-singular matrix. Then prove that ¢c is also a fundamental matrix of
x'=A(t)x .In addition prove that every fundamental matrix of (1) is of this type for
some non-singular matrix C.

4. Solve : i) 3 X1'"+3x1+4%2=0; 3x2'+2X1+3x2=0.

i) X1'=5X1-2X2; X2'= 2X1 + Xo.
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DEPARTMENT OF MATHEMATICS

Subject: Ordinary Differential Equations Subject Code: 177MMP104
Class : I-M.Sc Mathematics Semester : |
UNIT- 11
System of Linear Differential Equations
Part A (20x1=20 Marks) (Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
The IVP problemshas _ solution. unique infinte finite uncountable unique
The general non-linear differential equation of order one is
denoted in the form : x'=f(x,t) x'=f(t,x) x=f(t,x) x=f(x,t) x'=f{(t,X)
The first order non-homoeneous linear equation x'-a(t)x=b(t), t
is a special case of x'=f(t,x). el x+x=b(t), tel x'+a(t)x=b(t), te I x"-x=b(t),tel x'+a(t)x=b(t), tel

If the columns are linearly independent in the matrix ¢ then  a fundamental  fundamental non singular
the matrix is called matrix matrix of period w  matrix singular matrix a fundamental matrix

The set of all solutions of the system x'=A(t)x on | forms an n-
dimensional vector space over the field of numbers. complex real whole integers complex

The general non-linear differential equation of order
is denoted in the form x'=f{t,x).

In the inequality | f(t, x )-f(t,x )I<K|x -x |, K
IS

In lipschitz conditions, the value of K is

f(t, x )-f(t,x )=

In the inequality | f(t, x )-f(t,x )|/|x -x |[is
theorem

The variable x(t,t ,x ) is a function of

The second approximation of x’=-x, x(0)=1, t=0
IS

The solution for x’=x2, x(0)=1 is

The value ofe t att= o0 is

Let x(t)=1/(1-t) is the solution in interval
The solution for x’=-x, x(0)=1, t> 0 is

The value of 1/et at t= o0 is

The solution for x’=x, x(0)=2, t> 0 is

The solution for x’= 2x/t, x(0)=0, t> 0 is

The solution for x’=x, x(0)=-2, t> 0 is

The solution for x’=-x, x(0)=3, t> 0 is

The solution for x’=-x, x(0)=a (a is constant), t> 0 is

The existence of the solution x(t) in -0o<t<oo is called
existence
The solution for x’=-x, x(0)=0, t> 0 is

The solution for x’=-x, x(0)=13, t> 0 is

The solution for x’=-x, x(0)=c (c is constant), t> 0 is

The solution for x’=x, x(0)=3p, t> 0 is

The solution for x’=-x, x(0)=31, t> 0 is

The solution for x’=-x, x(0)=4.9, t> 0 is

The solution for x’=-x, x(0)=9, t> 0 is

The has unique solution.

1 2 3 4 1

Variable in t constant Variable in x Variable in x constant
<0 >0 <0 >0 <0

of(t,x) of(t, x ) of(t,x ) of(t,x) of(t,x)
Intermediate
value average value mean value bounded value mean value
t X t X t

1+t 1-t t 11-t
x(t)=1/ X(t)=1/(t-1) X(t)=1/(1-t) X(t)=1/(1+t) X(t)=1/(1-t)
X(t)=0 X(t)=-1 x(t)= - o0 x(t)=o0 X(t)=0

-0 <t<] o< t <] -0 <t<] —o<t<] ~0<t<]
x(t)=2et X(t)=-e™ X(t)=e™* X(t)=et x(t)=¢ *
x(t)=0 x(t)=-1 X(t)= - oo X(t)=00 X(t)=0
X(t)=2e™ X(t)=2e" x(t)=et X(t)=e™* x(t)=2et
x(t)=e* x(t)=t"2 x(t)=t? x(t)=t X(t)=t?
x(t)=-2e7" x(t)=-2e" x(t)=e™ x(t)=e? x(t)y=-2et
x(t)=3e™* x(t)=3et x(t)=e™3t x(t)=e3 x(t)=3et
X(t)=ae™ X(t)=ae" X(t)=e™ x(t)=e" x(t)=aet
local non local neighbourhood  solution non local
x(t)=et x(t)=0 X(t)=e™* x(t)=1 X(t)=0
x(t)=13e™t x(t)=13e" x(t)=e 3¢ x(t)=e™t x(t)=13¢e !
x(t)=ce™t x(t)=cet x(t)=e x(t)=e®t x(t)=ce !
X(t)=3pe™ x(t)=3pe" X(t)=e2"" X(t)=e3r* x(t)=3pe!
x(t)=31e™t x(t)=31e" cx(t)=e 8" x(t)=e?" x(t)=31e ¢
x(t)=4.9et x(t)=4.9¢e* x(t)=e™*" o x(t)=e*" ot x(t)=4.9¢ 1
x(t)=9e™t x(t)=9e" x(t)=e™°t x(t)=e% x(t)=9¢
boundary value local exixtence cinitial value

problem problem problem none of the above initial value problem



The
t=0.

equation possesses a reular singular point at
Bessel equation

The second order linear equation is of the non-
form x" + al(t)x'+a2(t)x= 0. homogeneous
If the columns are linearly in the matrix ¢ linear
then the matrix is called fundamental matrix.
The variable is a function of t. X(t,to)
In conditions, the value of K is <0. lipschitz
The linearity principle for Non-
holds for linear homogeneous
differential equation. equation
If A=2l,then the is 4. tr(A')
A real or complex-valued function ¢ defined on a non-empty
subset is said to be a if it possesses the first order  function
derivative.
A differential equation of order of the form
x'=g(t)h(x) is called an equation with variables separable. first

legendre equation

homogeneous

non-linear
X(t,t,Xo)
non-linear

ordinary

differential equation

tr(A.A)

solution

second

lagrange equation hermite equation

lagrange equation hermite equation

independent
X(tltolx)
independent

Homogeneous
equation
tr(A)

order

third

dependent
X(t,to,Xo0)
dependent

dnon-linear
equation

tr(0)

degree

fourth

Bessel equation

homogeneous

independent
X(t,t ,x)
lipschitz

ordinary differential
equation

tr(A)
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first
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UNIT — 11

System of Linear Differential Equations

NON-HOMOGENEOUS LINEAR SYSTEMS

Theorem 3.1:

Let @(r) be a fundamental matrix for the system (4.15 (a)) for
t € 1. Then ¢, defined by (4.28), is a solution of the IVP V

X' =A(t)x+b(t), x(15)=0. (4.29)
Now let us assume that x,(7) is a solution of the IVP
X=A(tx, x(ty) =x5, Hige L (4.30)

Then F(f) = x,(f) + ¢(#) is also a solution of the Equation (4.25). For
F'()=xy(t)+¢'()
=A(1) x,(1) + A7) &(r) + b(1)

= A(D)[x,(1) + &(1)] + b(7)
= A(1) F(t) + b(1).
Further F(1) = x,(t) + 0(tp) = x,
Hence F(t) = x,0y+ 00) | &7(s) b(s) ds 4.31)

is the solution of X’ = A(f)x + b(1), x(1) = x,,.
Since @(1) is a fundamental matrix, the solution x,(rf) may be written as

x,() = D(t)e

where c is a constant vector. Further, since x,(f) = xo, we have

xy(to) = Ptg)e = x,
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LINEAR SYSTEMS WITH CONSTANT COEFFICIENTS

systems in an explicit form several difficulties are encountered. In fact there are
very few situations when the solution can be found explicitly. The aim of this section
is to develop a method to find the solution of (4.15) with the assumption that
A(1) is a constant matrix. The method involves first finding the characteristic values
of the matrix A. If the characteristic values of a matrix A are known then, in general,
a solution can be obtained in an explicit form. Note that when the matrix A(r) is
variable, it is usually difficult to find solutions.

Before proceeding further, recall the definition of the exponential of a given
matrix A. It is defined as follows

Y
expA=E+ 2 A—'
p=1 7"
Also, if A and B are two matrices which commute then

exp (A + B) =exp A exp B.

For the present assume the proofs of the convergence of the sum through which
exp A is defined and the result stated above. So by definition
= (PAP
exp (A)=E+ z %
p=t P
Here it is noted that the infinite series for exp (tA) converges uniformly on every
compact interval.
Now consider a linear homogeneous system with a constant matrix, namely

X'=Ax, tel (4.32)
where [ is an interval in R. From Chapter 1, recall that the solution of (4.32), when

A and x are scalers, is x{:}:ce“ for an arbitrary constant ¢. A similar situation
prevails when we deal with (4.32). We prove the following theorem.
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Theorem 3.2

The general solution of the system (4.32) is x(r) = e”c where c is
an arbitrary constant vector. Further, the solution of (4.32) with the initial condition
x(ty) = xq, 1 € I is given by

x(t)=e""Mx, tel (4.33)

Proof Let x(r) be any solution of (4.32). Define a vector u(f) by u(r) = e x(1),
t€ [. Then it follows that
W) =eM-Ax(t) + X(1), tel

Since x(1) is a solution of (4.32), «’(f) =0. It means that u(r) =c, 1 € [, where c is
some constant vector. Substituting the value ¢ for u(z), it is seen that x(r) = ec.
Employing the glven initial condition x(fy) = x;, it follows that ¢ = ¢x,. Hence,
we get x(f)=e" e"‘"xo Since A commutes with itself, it is seen that
x(1) = e~ My, which is (4.33)-

In particular, choose %, =0 and n linearly independent vectors ¢, j= 1, 2, .
the vector ¢ being the vector with 1 at the jth component and zero elsewherc ln thls

case we get n linearly independent solutions corresponding to the set of n vectors
(), €5 ...,¢,). Thus a fundamental matrix for (4.32) is

D) =eE=e", rtel; (4.34)

since the matrix with columns represented by ¢, e,, .. ., ¢, is the identity matrix E.
Thus € solves the matrix differential equation

X =AX, x(0)=E; te l. (4.35)
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Example:

Consider a similar example to determine a fundamental matrix for

3 "2} Notice that

2 3
3 0].[ 0 =
o 52 )

By the remark given before Theorem 4.8, it is known that the fundamental matrix
in this case is given by

exp (tA) =exp [g g] texp [_g _ﬂ] 1,

since [3 ﬂ:l and[ 0 _2] commute. But

¥ =Ax, where A =[

03 -2 0

3 0] 3t 0 ' o
gl 9 3
Observe that )
[0 2], _p.5[0 2"
x|, ﬂ_r_JE.‘:E:I 2 D] o
= _:lp =
0 2] _[2% 0O _
and 2 o] =|o 2"’]’ p=1,2,3,....
+1 r
0 - |0 %+ _
I:_z u:r "-_21_“1 0 ]. p=0,1,2,....
0 - 1 0] [0 27" &
Hence expl:_z n]l—-n I]+F§ [_1 ﬂr o)1
e +1
0 - !
> [—2 ﬂr @p+ 1)
p=0 ’
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1 0] w [220] &
o 210 e

r=1
o 0 _21‘""1 ’Zy+l
+ 2 [-2‘*’»*“ 0 szn}z
p=0
s @)% _y e
2 oy 2 G+
v (! - (2%
2 Gpeii 1t X Gy
1 e® eF-eH
T2 M- e

Hence, if follows that

8“ = _:!-_ 65' +é - fy
2|d-e Sud)

From Theorem 4.8 it is learnt that the general solution of the system (4.32) is
¢“c but the nature of ¢ is yet to be known. Once ¢ is determined the solution
of (4.32) is completely obtained.

In order to be able to do this the procedure given below is followed. Choose a
solution of (4.32) in the form

x(1) = eMe (4.36)

where ¢ is a constant vector and A is a scalar. x(t) is determined if A and ¢ are
known. Substituting (4.36) in (4.32), we get

(AE-A)c=0. (4.37)
Observe that c is a constant vector (c,, .. ., c,). Hence (4.37) is equivalent to
A-ay =-ap -a, ||¢
Gy A-an oy (|of_,
_"';nl "‘;nz 1_:‘11':- “:n
Hence A=-a,)e, —ac5—...—ac,=0
+ (A - - .= =

=0, = @,Cy—...+(A-a,),=0.
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This is a system of n-algebraic homogeneous lincar equations in unknowns
€}y €y - - - » €. This system of equations has a nontrivial solution (i.e. different from
€, =¢;=...=¢,=0) if and only if the determinant of the coefficients, namely

l—a" "alz cee -ﬂ|.
SO~ Aye| T8 Ao o | g

—a, =4y A —.aml
This determinant is a polynomial of degree n in A. Let us denote it by p(A), i.e.
p(A) =det AE-A)=0 (4.38)

is called the characteristic equation for the matrix A. This being an nth order

polynomial equation in A, it admits n solutions which may be distinct, repeated,

real or complex.

The roots of (4.38) are called the “eigenvalues” or the “characteristic values” of

A. Let A, be an cigenvalue of A and corresponding to this eigenvalue, let ¢, be the

non-trivial solution of (4.37). The vector ¢, is called an “gigenvector" of A
corresponding to the eigenvalue A,. Note that any constant multiple of ¢, is also an
eigenvector. Then

x,(1) = eMe,

is a solution of the system (4.32). Now suppose that all the eigenvalues
AAy ..., A, are distinct and that ¢, ¢, ...,c, are the distinct eigenvectors
respectively. Then it is clear that x,(r) =e""c,I (k=1,2,...,n) are n solutions of
the system (4.32). Note that the eigenvectors corresponding to distinct eigenvalues
are linearly independent. Thus {x,(f)},k=1,2,...,n is a set of n linearly inde-
pendent vector functions, which are solutions of (4.32). So by the principle of
superposition the general solution of the linear system is

k=1

e, e, ..., M,

Let these vectors be columns of an n X n matrix ®(f). So by construction, @ has
n lincarly independent columns which are solutions of (4.32) and hence ® is a
fundamental matrix. Since ¢ is also a fundamental matrix, from Theorem 4.5, it
is therefore seen that ¢ = (#)D where D is some non-singular constant matrix. A
word of caution is warranted here. Note that the above discussion is based on the
assumption that the eigenvalues A, A,, . .., A, are distinct.

Now consider the vectors
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LINEAR SYSTEMS WITH PERIODIC COEFFICIENTS

Theorem 3.3:

The necessary and sufficient condition for the system (4.43) to

admit a non-zero periodic solution of period  is that E — €*® is singular. (E is the
identity matrix.)

Proof The general non-zero solution of (4.43) is x(f) = ¢*'c where ¢ is an arbitrary
non-zero constant vector. So by definition x(r) is periodic, of period w# 0, if and
only if x(1) = x(t + @) = Ve = Me.

From the above equation it follows that (4.43) has a non-zero periodic solution
if and only if (E —&"“)c=0. But it is known that ¢ is a non-zero vector and so
system (4.43) has a non-zero periodic solution of period w if and only if E-®
is singular. The proof is complete.

It is to be observed that Theorem 4.9 is also interesting in itself. It throws light
on the non-singularity of the matrix E—¢*®. In fact, it states a criterion for the
non-singularity of E — &*®.

Consider the forced system
X =Ax+f(l), te (—oo,00) (4.44)

where fis a continuous vector function on (—ee, =), Firstly a characterisation for a
periodic solution of period @ for (4.44) is dealt with under the assumption that
f(1) is periodic with period w. Then we try to connect the criterion for periodic
solutions for (4.44) in the light of the corresponding unforced system (4.43).

Theorem 3.4:

Let f(r) be periodic with period @w. Then a solution x(r) of (4.44)

is periodic of period @ if and only if x(0) = x(w).

Proof Let x(1) be a periodic solution with period @. Then x(0) = x(®). The
condition is necessary. For sufficiency, assume that x() is a solution of (4.44) such
that x(0)=x(w). Let w(t)=x(r+w). Then u'(f)=x(t+ ©)=Ax(t+ ©)+ f(t + w)
=Au(r)+ f(r). This shows that w(r) is a solution of (4.44) and in addition
u(0) = x(w) = x(0). The uniqueness of solutions therefore shows that x(7) = u(f) =
x(1 + ) which shows that x(r) is periodic with period @.

Many times it is interesting to study properties of solutions of (4.44) in the light
of the associated system (4.43). A study of this type indicates the many-sided
implications of the forcing term f(r). The following is one such implication.
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Theorem 3.5

Let f(t) be continuous on (==, ==) and periodic with period @. A
necessary and sufficient condition for the system (4.44) to have a unique periodic
solution with period @ is that the system (4.43) has no non-zero periodic solution

of period .
Proof The general solution of (4.44) is given by
x(1) =e"c+j;¢*“"’f(s) ds.
Note here that x(0) = c. Now
x(®) = A% + f: A@=9 f(s) ds,

But from Theorem (4.10) there is a periodic solution of period @ for (4.44) if and
only if

x(O):c:x(m)nl“c+I:(“"" f(s) ds,
that is, if and only if, for some ¢
(E-)c= [: &9 f(s) ds. (4.45)

Hence there exists a unique periodic solution for (4.44) if and only if the Equation
(4.45) has a unique solution ¢ for any periodic function f. But it has a unique solution
c if and only if E - €*® is non-singular. Thus the conclusion of the theorem follows
by an application of Theorem 4.9.
Let us now consider a linear system
X =A()x (4.46)
where A(f) is a continuous n X n matrix such that

Al+w)=A(1), ©#0, ~eo << oo (4.47)

and that @ is the minimal period. Let ®(f) denote a fundamental matrix for (4.46).
We prove the following basic result.
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Theorem 3.6

Let © denote a fundamental matrix for (4.46). Then (1 + w),

(—eo < t < o0), is also a fundamental matrix for (4.46).

Proof The fundamental matrix @ satisfies the relation
D) =A(N) D(1), (—eo<t<es).
Clearly, Q'(t+ W) =A(t+ ) D(r + )
=A(N D1+ w), (—ee<i<en)

Further, note that det ®(t+ w) £ 0. Hence, in view of Theorem 4.4 we conclude
that ®(r + ) is also a fundamental matrix. The proof is complete.

Since @(r) and ®(r + ©) are fundamental solution matrices for (4.46), there exists
a non-singular constant matrix C such that

(1 + w) = (1) C. (4.48)

It is known that corresponding to a non-singular constant matrix C there exists a
matrix R such that
C =™ (4.49)

We make use of this fact in the following well-known result due to Floquet.

Theorem 3.7

Let €(r) be a fundamental matrix for (4.46) where the matrix

A(t) satisfies the condition (4.47). Then there exists a periodic non-singular matrix
P such that P(r + @) = P(f), =ee <t < oo, and a constant matrix R such that

D(1) = P(1) &®, (oo <t <o), (4.50)
Proof In view of the relations (4.48) and (4.49), we get
Dt + ©) = () €™, (—co< 1<),
Let P(t) denote the matrix d(f)e™™®, Then
P(t+ ) = D(t + @) e+ OR

N P B

=) e

= P(1).

Prepared By: K.Aarthiya, Department of Mathematics, KAHE Page 10/12



Unit 111 System of Linear Differential Equations 2017 Batch

Part -B (5x6=30 Marks)

Possible Questions:

1 Find a fundamental matrix for X’=AX, where A = [_32 _32]

2. Let P(t) and R be the matrices obtained in Floquet theorem. Prove that the transformation
x =P(t) reduce the linear system x'=A(t)x to the system z' = Rz.

3. Let f(t) be periodic with period w. Prove that there is a solution x(t) of X' = Ax + f(t),
t € (-o0,0) Is periodic of period w Iff X(0) = X(w).

4. Determine the variation of parameter formula.

5. Find a fundamental matrix e where A = [_32 _32]

2
-3t te—3t e—3ttz

e
6. Showthat p(t) =] o -3t te—3t | is a fundamental matrix of the linear system

e
0 0 e 3t
X1 -3 1 0
x(t)' = A(t).x(t) where x = |X2|, A= 0 -3 1
X3 0 0 -3
-1 2 3
7. Determine e for the system x1= Axwhere A=| 0 -2 1
0 3 0

8. State and prove Floquet theorem.

9. The general solution of system x’=Ax, t€ I is x(t)= e®™c where ¢ is an arbitrary constant
vector. Then prove that the solution of x’=Ax with initial condition x(to)=Xo, to€ I,is
given by x(t)=e®'x xo, te I.

10. . Determine e for the system X’=AX where A=
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Part —-C (1x10=10 Marks)

Possible Questions

2
e—3t t€_3t e—3ttz

0 o3t te—3t | is a fundamental matrix of the linear system
0 0 e 3t

X1 -3 1 0
x(t)' = A(t).x(t) where x = | X2 0 -3 1
0 0 -3

X3
1 0 O
0 1 0

0 0 2

1.Show that ¢(t) =

A=

2. Determine e for the system X’=AX where A=

3. Determine e for the system x* = Ax where A =

31 0
0 3 1
0 0 3

4. Determine the variation of parameter formula and Find a fundamental matrix e**

where A = [_32 _32]
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Part A (20x1=20 Marks)

UNIT-
System of Linear Differential Equation
(Question Nos. 1 to 20 Online Examinations)

Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

Letf, f,, ... f,, be given n real valued functions defined on
some open connected set be contained in
dimensional space n-1 n n+l n+1/2 n+1

I__et A=(to, O, 0, an) is a point in D . then the 1 1+1/2
dimensionofais n n+1 n+1

The system of the equation x'=A(t)x where t €I is
called Homogeneous  non homogenous  linear non linear Homogeneous
The n™ order differential equation can be reduced from 1

system of equation n n+1 n-1 n

The set of all solution of the system is in the field of real complex rational exponential complex
The solution of the x"-2x'+x=0 x(0)=0, x'(0)=1 where
t€[0,a] is (tet, e) (tet+(1+t) e) (e, tet) (0, €Y (tet+(1+t) et

The solution of x'=A(a) is t€l X(s) dx, t€1 A(s) X(s) dx, t€1 A(s) X(s) ds, t€1
If A=2l,then the tr(A) is 6 4 4
A solution matrix of X'=A(t)x on is a fundamental matrix on
iff det ¢(t)=0 det ¢(t)#0 det ¢@'(t)£0 A(t)#0 det ¢(t)#0
If ¢ is a fundamental matrix of X'=A(t)X on L. If C be any
constant,then is also a fundamental matrix. o+C o-C Co (0] Co
. , . X(2) =X o a0 0 X(2) =X + 4 J? X(2) =X ot w0 [0 X(2) =X+ 4 [? X(a) =X ot a0 J?
The solution of x="A(t)x is AGXE)ds  A@)X())ds A@)x())ds A@)x(s))ds A(S)X(S))ds
The set of all solution of the system are linearly
independent linearly dependent linear unique linearly independent
exp(A+B)= exp(A)+exp(B) exp(A)exp(B) exp(A)-exp(B) exp(A)/exp(B) exp(A)+exp(B)
exp(AB)= exp(A)+exp(B) exp(A)exp(B) exp(A)-exp(B) exp(A)/exp(B) exp(A)exp(B)
log(ab)= log(a)+log(b)  log(a)-log(b) log(a)log(b) log(a)/log(b) log(a)/log(b)
log(a+b) log(a)+log(b)  log(a)-log(b) log(a)log(b) log(a)/log(b) log(a)-log(b)
If (t) is a fundamental matrix, then ¢@'(t)= A(t)o'(t) A(t)o(t) A'(H)o'(t) A(t+w)o(t) A(t)o(t)
The system x'=-A!(t)(x) is to x'=A(t)x adjacent adjoint opposite equal adjoint
If x(t)=de, then
X(t+w)= w is period e de edat Aedat det
If o(t)and @(t+w) are a fundamental matrix for x=A(t)x,
then(1/ @(t))p(ttw)= I singular scalar matrix constant matrix constant matrix
exp(r +r +.....oocoiiiiina. a)W= where r.
are characteristic roots tr (w) det(1/ @(w)) det (w) det(r.) det (w)
A solution matrix of x'=a(t)x t €I with the initial condition ) ) ) )
X(t ):X ’ t CI iS eat —-ato Xo eato x eat x eat ato yx eat ato x
For any two differential matrix X and Y, d/dt(X)Y+Xd/dt
d/dt(XY) (Y) d/dt(X)+Xd/dt(Y)  d/dt(X)+d/dt(Y) d/dt(XY)+d/dt(Y) d/dt(X)Y+Xd/dt(Y)
(L/A)d/dt(1/A) -
For any two differential matrix A, d/dt(1/A)= A (L/A)(d/dt(A))(1/A) d/dt(1/A)A (L/A)d/dt(1/A)A -(1/A)(d/dt(A))(1/A)

If the columns are linearly independent in the matrix ¢ then
the matrix is called
If o(t) is a fundamental matrix for x'=A(t)x, then

X(2) =X ot g0 J?
A(s) X(s) dx,

column matrix

X(a) = a0 [* A(s)

fundamental matrix

x(a) =X o .a0 Ja

soltion matrix

x(a) =X ot a0 J?

Identity matrix

fundamental matrix

a fundamental fundamental non singular
o(t+w)= matrix matrix of period w  matrix singular matrix a fundamental matrix
which of the following equation is periodic but solution is not
periodic X'=C0s%t X'=X X'=C0S?X X'=cos t X'=C0s%t

closed and

If A(t) is nXn matrix continuous in ton closed bounded bounded open closed and bounded
If ¢(t) is a fundamental matrix , then
o(t+s)= P(DP(s) o(t)+o(s) o(t)-¢(s) (t)/o(s) P(H)e(s)

If o(t) is a fundamental matrix , then

o=

column matrix

fundamental matrix

soltion matrix

Identity matrix

Identity matrix




If (1/¢(t))tis a fundamental matrix for the
equation

The system x'=-Al(t)x, t €I has the fundamental matrix of the

form

The solution of x'=Ax+f(t),t €(-00,00) is period w iff x(0)=

The solution of x"+x=cost is

If X'=ax has non zero periodic solution of period b then |E-

elis

A differential equation of first order of the

form is called an equation with variables

separable.

The class of nth order equations is divided mainly into
sub-classes.

A real or complex-valued function ¢ defined on a

subset is said to be a solution if it possesses the first order

derivative.

The order of equation is (D2+2D-8)y:0 IS

A function is said to be homogeneous function of degree
if for any t, f(tx, ty) = t" f(x, y)

d/dt (1ep(t))=-  d/dt (1/g(t))=A"

At (L)) (1/o(t))
(1/9(1)) (o(t))"
x(0) x(-0)
X(t)=acos(t+b)+
(1/2)t sint X(t)=acos(t+b)
zero not zero
x=g(Oh'(x)  x=g(H)h(x)
one two
Linearly
independent Independent
1 2
n-1 n+1

d/dt (Vep()y=-At  d/dt (1/p(t))=-A

(1/o(t)) (1/o(t))"
(1/o(t)) (/o())
X(w) X(t)
X(t)=cos(t)+(1/2)t x(t)=acos(t-
sint b)+(1/2)t sint
1 not define
x=g(t)h'(x) x=g(t)h(x)
three fourth
non-empty empty
0 8
n

d/dt (1/g(t))=-At
(I/o(®)"

(1/o(t)
X(w)
X(t)=acos(t+b)+(1/2)t

sint

Zero

x=g(t)h(x)

two

non-empty
2
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UNIT - IV

EXISTENCE AND UNIQUENCE OF SOLUTION

Definition: A function f(1, x) defined in a region Dc R is said to satisfy
Lipschitz condition in the variable x with a Lipschitz constant X, if the inequality
1A%, X)) = f(t, )| < K |x; = x5 (5.1

holds whenever (1, x,), (1, x,) are in D. In such a case we denote f to be a member
of the class Lip (D, K).

As a consequence of the definition, a function f(z, x) satisfies Lipschitz condition
if and only if there exists a constant K > 0 such that

Lt x,) = £t )|

lx' "le

<K, x#x,

whenever (¢, x,), (1, x,) belong to D.

The question which may arise is to find a general criterion which would ensure
the Lipschitz condition. The following theorem shows the existence of a typical
class of such functions. For simplicity, we assume the region D to be a closed
rectangle.

Theorem 4.1:
Let f(r.x) be a continuous function defined over a rectangle

R=((t.x):|t=1tyl Sp,|x=x,| S q). Here p, g are some positive real numbers. Let
of

-a—tbcdeﬁncdmdcomimousmk.'nmf(t.x) satisfies the Lipschitz condition in R.

d
Proof Since 5;: is continuous on R there exists a positive constant A such that

SA (5.2)

of
l = (1, x)

for all (1, x) in R. Let (£, x;), (. x;) be any two points in R. Then by the mean value
theorem of differential calculus, there exists a number s which lies between x, and
X, such that

of
£t xy) =t x9) = 5° (1, $)(x; = Xp),
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Since the point (1, 5) lies in R and the inequality (5.2) holds, it is seen that

<A

of
|$ (1, 5)
Hence we have
[Ar, x)) = ft. X)) | SAlx, = x;]
whenever (4, x,), (1, x,) are in R. The proof is complete.

The following example illustrates that the existence of partial derivative of f is
not necessary for f to be a Lipschitz function.

Example:

Let f(t, x) =|x| on the unit square R around the origin, namely,

R={(tx):|tls1, |x|s1).

The partial derivative of f at (¢, 0) fails to exist but f satisfies Lipschitz condition
in x on R with Lipschitz constant K = 1.

The example below shows that there exist functions which do not satisfy the
Lipschitz condition.

Example:
Let f(1, x) = x'” be defined on the rectangle

R={(t,x):|1]<2, |x|s2).
Then f does not satisfy the inequality (5.1) in R. This is because
f(’o X) —f(‘v O) 12
e axR
x-0

is unbounded in R, since it can be made as large as possible by choosing x close
to zero.

x#0,

Gronwall Inequality
The integral inequality, due to Gronwall, plays a useful part in the study of several
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Theorem 4.2: Assume that f(r) and g(r) are non-negative continuous functions
for 121, Let k>0 be a constant. Then the inequality
!
f(<k+ j’ g(s) fs)ds, 121,
0
implies the inequality
I
f(t) <kexp (I g(s) ds). 121,
fo

Proof By hypothesis we have
J(1) g()

k+[ g1 ds

g, t21,

'
Noting that f(r) g(¢) is the derivative of k+ [ g(s)f(s)ds, integration of this
'0
inequality between the limits £, to 1, leads to
log (Ic + j' g(s) f(s) ds).— logk < j' g(s) ds
'0 '0
or, in other words,
] ' '
k+ I g(s) f(s)ds <k exp (I 8(s) ds) :
fo )

This inequality together with the hypothesis leads to the desired conclusion.

Corollary : [ fort24
fskf o)
where f and k are as given in Theorem 5.2 then, f(1) =0 for t2 1,
Proof From the hypothesis it is clear that for 121, and any €>0
fH<e+k J: f(s) ds.

The application of the above theorem yields
f(<eexpkt—ty), t21,
Let € = 0. This leads to the fact that f(r) =0 for ¢ 2 1.

SUCCESSIVE APPROXIMATIONS
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Lemma:

x(f) is a solution of (5.3) on some interval / if and only if x(r) is a
solution of (5.4).

Proof 1f x(1) is a solution of (5.3) then it is easy to show that x(1) satisfies (5.4).
Let x(r) be a solution of (5.4). Obviously x(7y) = x,. Differentiating both sides of
(5.4), and noting that f(z, x) is continuous in (#, x), it is seen that x(z) = f(1, x(1))
which completes the proof.

Now we are set to define certain approximations to a solution of (5.3). First of
all we start with an approximation to a solution and improve it by iteration. It is
expected that these iterations converge to a solution of (5.3) in the limit. The
importance of Equation (5.4) now springs up. In this connection, we mention that
the estimates can be handled easily with integrals rather than derivatives.

A rough approximation to a solution of (5.3) is just the constant function
xo (1) = x,. We may get a better approximation by substituting x,(f) in the right hand
sides of (5.4), thus obtaining a new approximation x,(f) given by

() =x+ I' S(s, x4(s)) ds.

To get a still better approxinfation we repeat the process thereby defining

I
x,(1) = x5+ J.L f(s, x,(s)) ds.

In general,

x(0=xg+ | fls.x,_(Nds, n=12,... (5.5)
I

This procedure is known in the literature as "Picards’ method of successive
approximations”. We conclude this section with a few examples. In the next section
we show that the sequence {x,(f)] does converge to a unique solution of (5.3)
provided f(1, x) satisfies the desired condition.
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Example:
Consider the IVP X' =-x,x(0)=1,120. It is equivalent to the
intcgrai equation
X)=1 -[; x(5) ds.
The first approximation is given by x,(f) = 1. The second approximation is
x(H=1 —I;xo(s)dm joi
By the definition of successive approximations, it follows that

x,(:)_r.x-[;(l-s)ds=1-(:-—§).

In general, the (n + 1)th approximation is

7 "
x (=1 —[r--2-+ - .+(—l)"; !
We recognize here that x,(f) is the (n + 1)th partial sum of the series for ™', It is
easy (o note that ¢ is the solution of the IVP under consideration.

Example:

Consider the IVP x’=x% x (0)= 1. The equation is equivalent o
the integral equation

!
0 =1+ 2s)ds.
‘0
The first approximation is xy(f) = 1. Now

!
x,(r)=l+f' lds=1+1¢
0

' 2 r
x2(’)=l+‘[o(l+$) dS=l+l+tz+.§.‘

2
t 3 4 7
_ 2,5\ 4o I S
.r3(r)-l+jo(l+s+s +3) ds=1+t+P+r+ B R
All x,(1),n=0,1,2, ... are polynomials.

Observe that the IVP can be solved explicitly by the method of separation of

variables. Here

!
=15

is a solution existing on —ee <1< 1.
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PICARD'S THEOREM

Theorem 4.3 :

Let h=min (a.%). Then the successive approximations given by

(5.5) are valid on /=|r—-1,| < h. Further

lx () —xpl SL|t—1)Sb, j=1,2,...,1€l (5.6)
Proof The method of induction is used to prove the lemma. Since we start with
any point (f, %) in R% it is clear that xy(r) = x, satisfies (5.6). Now assume that,
by induction hypothesis, for any j=n>0, x, is defined on / and satisfies (5.6).

Hence (s, x,(s)) is in R? for all s in I. Therefore x, , , is defined on /. Because of
the definition, we have

x, 0 =x +_|ll_)"{.r, x(s))ds, tel
fn
Using the induction hypothesis, it is seen that

r I
| fls xsnds| <[ 1fGs.x () 1dsS LIt =15 ] SLASD.
fa U

I"r.q-]["}_xﬂ]:

Thus x, , , satisfies (5.6). This completes the proof.

We now state and prove the Picard’s Theorem, a fundamental result dealing with
the problem of existence of a unique solution for a class of nonlinear initial value

problems.
Theorem 4.4:

(Picard’s Theorem) Let f(t, x) be continuous and be bounded by

L and satisfy Lipschitz condition with Lipschitz constant K on the closed rectangle
R. Then the successive approximations x,, n=1,2,..., given by (5.5) converge
uniformly on an interval I = || t — &, || < A, h = min (g, /L), to a solution x of the IVP

(5.3). In addition, this solution is unique.
Proof We know that the IVP (5.3) is equivalent to the integral Equation (5.4). Our

aim is to show that the successive approximations x, converge to the unique solution
of (5.4) and hence to the unique solution of the IVP (5.3). First, note that
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O =x0+ Y, [xf)=x,_, (O

i=1
is the nth partial sum of the series

XM+ Y, [0 = x,_,(0). (5.7)

i=1

Hence the convergence of the sequence (x,} is equivalent to the convergence of
the series (5.7). We complete the proof by showing that

(a) the series (5.7) converges uniformly to a continuous function x(#);

(b) x satisfies the integral Equation (5.4);

(c) x is the unique solution of (5.3).
To start with we fix a positive number h = min (a, b/L). Because of Lemma 5.1 the
successive approximations x,(f),n=1,2,... in (5.5) are well defined on
I=|t~-1t,] < h. Henceforth, we stick to the interval 7, <1< 1, + h. The proof on the
interval [#, - h, t,) is similar except for minor changes.

We estimate x;, ,()—x(t) on the interval [f,7,+h]. Let us denote
m(t) =|x;, () -x(j=012,.... Since f{(1, x) satisfies Lipschitz condition, by
the definition of successive approximations, we obtain

m= |J, L. o = fis 3, ey ds

<K I' Ix(s) = x,(5)] ds

or, in other words,
m(n) S K I,' m; .y (s) ds. (5.8)
By direct computation, ’
molt) = x,61) — xo(0)] = | I'.f(s. %(5) ¢,| ‘
< I; 1f(s, xgls))] ds
S L1t -1). (59)
We assert that
w (t -1 +1
mi) S LK = o (5.10)

forj=0,1,2,...and t, 15 1+ h. The proof of the assertion follows by induction.
When j =0, (5.10) is, in fact, (5.9). Assume that for an integer j=p 2 | the assertion
(5.10) is valid. Therefore,
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' r (s=t !
mPH{I}SKLmF{:}d: < R'LLK"WdJ

sf_xFHL(P_.l-@'lz.]!_‘ ;ﬁsrsr”h.‘

which shows that (5.10) holds when j = p + 1. Thus (5.10) holds for all £ 2 0. Hence
- o o [ <hdd TAd
the series Z my1) is dominated by the series — Z W

K

j=0 j=0
L(e"" = 1YK. Hence the series (5.7) converges uniformly and absolutely on the
nterval foStS1,+h. Let

which converges

) =x+ 3, (50 =x,_ (N t,StSt5+h. (5.11)

n=1

Since the convergence is uniform, the limit function x(#) in (5.11) is continuous on
(1o, fo + h). Tt is easy to show that the points (¢, x(1)) are in the rectangle R for all
t € 1. This completes the proof of (a).

We now show that the limit function x(7) satisfies the integral equation

‘
(1) =x+ j‘ f(s, x(s)) d. (5.12)
By the definition of successive approximations
!
x,(1) =xo+_[' f(s.x,_ ,(s)) ds. (5.13)

In view of (5.13), we have

[0 x0= [ sts.xt s

50 =50+ [ fis.5, N ds=[ fis, xts) ds
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[
<50 = x, ()] + I £(s, %, _ 1(5) = £(5, x(s))| ds. (5.14)

Since x,(f) — x(f) uniformly, and |x, () = x,| < b for all n and for 7 in [t,, &, + A, it
follows that |x(r) — x,| < b on [ty , + h]. Using the Lipschitz condition in (5.14), it
is seen that

] ]
|x(r:n—xu -] fis. x) ds| <1x(0) - x, ()] + KI:., Ix(s) = X, _ ()] ds
<Ix(t) - x|+ Kh max |x(s)—x,_ ()l (5.15)
ﬁ5’5%+*

The uniform convergence of x,(f) to x(f) now implies that the right hand side of

(5.15) tends to zero as n — ==, But the left side of (5.15) is independent of n. Thus
x(1) satisfies the Integral Equation (5.4). This proves (b).

Let us now prove that if X(r) and x(r) are any two solutions of the IVP (5.3), then
they coincide on [ty &, + h]. X(t) and x(1) salisfy (5.4). Therefore

I
I5(1) - x(1)] SI'“ | £(s. 5(5)) = (s, x(5))| ds. (5.16)

150 - 201 < | 1£(5. 56D = 1G5, (D] . (5.16)
Both X(s) and x(s) lie in R for all s in [#,, 4, + k] and hence it follows from (5.16) that
!
150 - 01 S K | 1) = x(9) s

By the application of the Gronwall inequality, we arrive at
(1) = x()] =0 on [ty 1+ h]

which means x(1) = x(z) on [t,, t,+ h]. This proves (c), completing the proof of the
theorem.

Another important feature of Picard’s theorem is that a bound for the error in
the case of truncated computation at the n-th iteration can also be obtained. The
theorem that follows is a result dealing with such a bound on the error.
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Theorem 4.5: The error x(f) — x,() satisfies the estimate
-" ""Kh.'.. n.
|x(0) = x, (D] S’—“L—J-——K(M D 1€ U lg+hl (5.17)

Proof Since ) =x0+ X, [, () - x{0), we have

j=0
X =-x 0= Y [x5,,0-xm)

j=n

The above relation implies, in view of (5.10), that

X)) - %0l Y, 15 0=-x01s Y m@)

i=n j=n
o LKhY*'  L(Khy*! - (Kh)!
512; K(j+|)z'x(n+1)![“ E (n+2)...(n+j+l)]

Kh +1
s!“-(—)'——x(“l)! & tetgtg+h]

which is (5.17). The proof is complete.

Example:

Consider the IVP x" = x, x(0) = 1; t 2 0. Observe that all the condi-

tions of the Picard's theorem are satisfied. To find a bound on the error
x(f) - x,(r) we have to determine K and L. It is quite clear that XK'= 1. Let R be the

closed rectangle around (0, 1) i.e. R={(t,x):|tf|<1 and |[x=1]|<1). Then L=1
and.h = 1. Suppose the error is not to exceed €. The question is to find a number
n such that |x - x,| < €. To achieve this, a sufficient condition is that

!Exhlnd-l h
Kn+1p° <%

Prepared By: K.Aarthiya, Department of Mathematics, KAHE Page 11/20



Unit IV EXISTENCE AND UNIQUENCE OF SOLUTION | 2017 Batch

1

(n+1)!
This 1ne.quahl]r can be achieved since € 'e is finite and (n+ 1)! = eo. Thus, if
£=1, we can choose n 2 2, so that the eror is less than 1.

CONTINUATION AND DEPENDENCE ON
INITIAL CONDITIONS

We have to find an n such that ——— <ege”! or, in other words, (n+ 1)! > & e.

Theorem 4.6: Let

(i) f(t, x) be defined and continuous on an open connected set D < R**' and
satisfy the Lipschilz condition on D;
(i1) f(r, x) is bounded on D;
(iii) x(r) be the unique solution of the TVP (5.3) existing on h; <t <h,. Then

lim  x(r) exists. If the point [h,, x(h, - 0)] is in D, then x() can be continued
t= b -0

to the right of h,.
The remaining part of this section deals with the continuous dependence of
solutions on initial conditions. We start with the IVP

Z=flt,x), x(tp) =x, (5.22)
Let x(f; 1y, x;) be a solution of (5.22). Them x(f; f,, x;) is a function of the time

variable ¢, the initial time #, and the initial state x,. The problem of dependence of
initial conditions is to know how x(f; 1y, x,) behaves as a function of 1, and x;,. We
show, under certain conditions, that x(f; 7, x;) is a continuous function of
t; and x;. This amounts to saying that the mlullun x{r. r,,q x,) of a physical problem
(5.22) stays in a neighbourhood of solutions x*(r; rn. x,:,} of

X=f(t.x), x(§)=xg (5.23)

provided that [t,—1, | and |x, —xg | are sufficiently small.

Theorem 4.6:

Let x(f) = x(1; 1y, x,) and x*(1) = x(n, 1. xg) be solutions of the IVPs

(5.22) and (5.23) respectively on an interval a <1< b. Let (¢, x(1), (t, x* (1)) lic in a
domain D for a <t < b. Further, let fe Lip (D, K) be bounded by L in D. Then for
any € > 0, there exists a & = 8(g) > 0 such that

|x() -x*(1)|<e, ast<b (5.24)
whenever |1, - ;| < 8:and |x, — x5 < .
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Proof Tt is first of all clear that for a < ¢, 15 < b the solutions x(f) and x*(#) with
x(ty) = x, and x*(13) = xg exists uniquely. Let £5 2 f,. From Lemma 5.2, we have

!
x(f) = xo + I‘ (s, x(s3) ds (5.25)
) =xt+ I’: (s, x*(s)) ds. (5.26)

From (5.25) and (5.26), we obtain
X0 =20 = 5= x5 + [ | S5, 59) ~fls. ")) ds

&
+ '[r. (s, x(s)) ds. (5.27)

Taking absolute values on both sides of (5.27) and using the hypothesis it is seen
that

x(6) = x* ()1 S |xg - x5 + I«: f(s, (5) — f(s, x*(s)) | ds

+] " 1fts.xtop1ds

31}
Slxo-x3l+J;: Kix(s) - x*(s)| ds + L |ty = § |

Hence, by the Gronwall inequality, it follows that

for all 1: a <1< b. Given any £ > 0, now choose
I il ¥
)= exp (K- ™" [ i L]‘
From (5.28) it is easy to see that
o £ Le
Ix(e) - x7(0) 5[2 exp (K(b-a)} | 2L exp (K(b—a)]

provided |1, — t3| < 8(€) as well as |x, - x5 | < 8(€).
This completes the proof of the theorem.

] exp K[(b-a)]=¢
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EXISTENCE OF SOLUTIONS IN THE LARGE

Theorem 5.7 :

Assume that f(r, x) is continuous on the strip § defined by
S:lt=1,| ST and |x|<oo

where T is some finite positive real number. Let fe Lip (§,K). Then the successive
approximations defined by (5.5) for the IVP (5.29) exist on |f — 1,| £ T and converge
to a solution x of (5.29).

Proof Recall that the definition of successive approximations (5.5) is
xo(t) = X

x (1) =xy+ I" fls.x,_((s))ds, |t—15|ST. (5.30)

We prove the theorem for the interval (g, f,+ T]. The proof for the interval
[to = T, 1] is similar. First note that (5.30) defines the successive approximations on

toSt<ty+T. Further
1%, (2) = xo(0)| =

I‘ £(s. %) dsl . (5.31)

Since f(z, x) is assumed to be continuous, f(1, x,) is continuous on (1, £, + T} which
implies that there exists a positive constant L such that

flt, xp)lSL forall re [t t,+T).
Using this bound on f(#, xp) in (5.31), we get
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o () —x(D SL(t = 1) LT, te [t51,+T). (5.32)

Once we arrive at the estimate (5.32), then

L e ltptg+T] (5.33)

I, () —x, (D=

n!

follows by induction. From (5.33), as in the proof of Theorem 5.3, the uniform
convergence of the series

xo‘('r] + E lxn - I{I} - x”(ﬂ]

a=0

and hence, the uniform convergence of the sequence {x,} on [fy, f+ T] can be
easily established. Let x(r) denote the limit function, namely,

x(1) = xp(r) + 2 [, (0 =x,(0). te [t 1+ T (5.34)
n=0

In view of (5.33), it follows that

l5 ) = xol = | 3 [x(0) = x,_,(0)]
p=l

L]
S 2, 1x,(0 = x, (0]

p=1

L « KPT?

) i
Ptl
L K L
sxgl P! =% -0

Since x,(f) converges to x(f) on fp St <1+ T, it is seen that
1x(0) = xgl S 7 (T~ D).

Note that the functi_on f(t, x) is continuous on the rectangle

R:|lt—=1)<T, Ix-xolsﬁ(en- 1).

Hence, there exists a real number L, such that
'f(" X)' S Lln (‘v I) € R.
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The convergence of the sequence {x, (1)} is uniform. Hence the limit function x(r)
is continuous. From (5.17), it follows that

Ll{mll +1 .
1) - 2,001 $ =5 &
Now our aim is to prove that the function x(f) is a solution of the integral equation
x()=x,+ r fls,x(s))ds, 15<t<tg+T. (5.35)
fo

The continuity of x is a consequence of the uniform convergence of {x,} on
[ty 25+ T]. Now

| x(f) — xg— I':f(-!- x(s)) ds l
=[50 =50+ 655,00 ~sts xom s

r
S0 - x, 01+ L | f(s, x(8)) = f(5, x,(s))] ds. (5.36)

Since x, = x uniformly on [t £, + T], the right side of (5.36) tends to zero as
n — e, So by letting n —» oo, it follows from (5.36) that

r
tx{f}-xa—jhﬁs,.t{;}}dxls{]. 1€ [tg tg+ T]
EXISTENCE AND UNIQUENCE OF SOLUTION OF SYSTEM

Definition 5.2 A vector function f(r, x) defined on D is said to satisfy the Lipschitz
condition in the variable x, with Lipschitz constant K on D, if

(e, x,) = (2, )N £ Kllx, = x,lh, (5.41)

uniformly in ¢ for all (1, x), (r, x5) in D.

It is easy to show the continuity of f{t, x) in x for each fixed t in case f{(1, x) is
Lipschitzian in x. If f(t, x) is Lipschitzian on D then there exists a non-negative,
real-valued function L(r) such that | f(t, x)| € L(r), for all (1, x) in D.

It might possibly happen that L(r) is continuous on |t —f,] Sa. We know then
that there exists a constant L > 0 such that L(r) < L.
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Lemma :

Let f(t, x) be a continuous function in (2, x) on D. x(t, £y, x,) denoted
by x(#) is a solution of (5.40) on some interval / contained in |t = t,| S a if and only
if x(r) is a solution of the integral equation

x(f)=x +I' f(s, x(s)) ds, tel (5.42)
Ta

Proof We indicate the line of the proof. First of all we prove that the component
x{1) of x(1) satisfies

J:;(r]zxf(l‘oj+j:f1{s.x{.r})ds, tel, i=1,2,....n

if and only if X(f)=£{1)),i=1,2,...,n hold. The proof of the above assertion is
exactly the same as that of Lemma 5.1. Once this step is established it is obvious

that Lemma 5.3 follows.

As expected, the integral Equation (5.42) is now exploited to define successive -
approximations { yj{!}. j=0,1,2,...) where each Y is an n-vector. We define them
by the relations

Yolt) = Xo

r.(!}=xu+1;ﬂs. ¥i-(s) ds’ tel (5.43)

The following lemma establishes that, under certain conditions, the successive
approximations are indeed well defined.

Lemma :

Let f(z, x) be defined and continuous in (1, x) € D and let f{¢, x) be

bounded by L >0 on D. Define h = min (a, b/L). Then the successive nppmnmauons
are well defined by (5.43) on the interval /= |t—ty| < h. Further

Iyfn)—xll SLit 1] Sb, j=1.2,...
The proof is very similar to the proof of Lemma 5.2.

Theorem 4.9

(Picard’s theorem for system of equations). Let all the conditions

of Lemma 5.4 hold and let f(1, x) satisfy the Lipschitz condition with Lipschitz
constant K on D. Then the successive approximations defined by (5.43) converge -
uniformly on [: |t —1,| £ h to a unique solution of the IVP (5.40).
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Corollary :

The error left over by truncation at the nthiapproximation for
x(r) has a bound given by
_ Kﬁ a+l *
ECESAOIES E—J—K{n A (5.44)
As seen earlier the Lipschitz property of f(¢, x) in Theorem 5.9 cannot be altogether

dropped. We show this by the following example.
Example :

Consider the nonlinear IVP given by the system of equations

A=25" x0)=0,

5=3x5, x(0)=0.
This IVP can be written in the vector form as follows:

xX=f(t,x), x0)=0,

where x=(x,, x,), f(t, ) = (2x}", 3x,) and 0 is the zero vector (0,0). Note that
x(f) =0 is a solution. It can be verified that x(r) = (>, ') is yet another solution of
the IVP. Thus the uniqueness of solutions of IVP is violated. However, it is clear

that the IVP has solutions. It is not difficult to verify, in this case, that f{(1, x) is
continuous in (, x) in the neighbourhood of (5, 0).
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Part -B (5x6=30 Marks)

Possible Questions:

L(kh)n+1

kh.
oD & S LE [to, to + R

1. The error X(t)-xn(t)satisfies the estimates |x(t) — x, (t)| <

2. State and prove the Gronwall inequality.

3. Prove that x(t) is a solution of x’=f{t,x), x(to)=Xo 0n some interval I if x(t) is a solution of

t
X(t)=xo+ [, f (s, x(s)) ds.
4. Prove that Picard’s theorem

5. Assume that f(t,x) is continuous on the strip S defined by S: |t — t,| <T and |x| < o
where T is some finite positive real number. Let f € Lip(S,K). Then prove that the successive

approximations defined by xn(t) = Xo + [ tto £(s,xp_1(s))ds,n=1,2...for the X' =f{t,x),

X(to)=Xo exist on [t — t,| <T and converge to a solution x of x’=f{t,x).

6. Consider the IVP x' = x? + cos?, x(0) = 0. Determine the largest interval of existence of its
solution.

7. Let h:min(a,%)then P.T.the successive approximations given by
Xn(t) = %o + ftt; f(s,xp_1(s))ds,n=1,2........ are valid on I = |t — t,| < h further
| (t) — xo|< LIt —tol <b,j=1,2,...,t€ L.
8. State and prove the theorem on non-local existence of solution of IVP x'= f{t,x),x(to)=Xo.

9. Assume that f (t, X) is a continuous function on |t| < oo, |x| < co. Further , let f satisfy
Lipschitz condition on the strip S, for all a > 0 where S, = {(t, x): |t| < a, |x| < o}
Then prove that the initial value problem x' = f (t, X), X(to) = Xo.

10. Prove that x(t) is a solution of Xx(t)=Xo+/, ti) f (s, x(s)) ds if x(t) is a solution of

x’=f(t,x), X(to)=xo0n some interval I
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Part -C (1x10=10 Marks)

Possible Questions:
1.State and prove Picard’s theorem

2.Consider the IVP x' = x? + cos’t, x(0) = 0. Determine the largest interval of existence of its
solution.

3. Assume that f (t, x) is a continuous function on |t| < oo, |x| < . Further , let f satisfy
Lipschitz condition on the strip S, for all a > 0 where S, = {(t, x): |t| < a, |x| < }.
Then prove that the initial value problem x' = f (t, X), X(to) = Xo has a unique solution
existing for all

4. State and prove the theorem on non-local existence of solution of IVP x'= f{t,x),x(to)=Xo.

Let h=min(a,%)then P.T.the successive approximations given by

Xn(t) = %o + fti; f(s,xp_1(s))ds,n=1,2........ are valid on I = |t — t,| < h further

| () — xo|< LIt —tol <b,j=1,2,...,t€ L.
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Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
The derivative of x(a) =X o+ 1 J* f(s,x(s))ds with respect toa  x’(a)=f(a , s) x’(a)= f(a, x) x’(a)=f(a) x’(a)= f(x) x’(a)=f(a, x)
The Picard's theorem deal with the problem of existence of a
solution for a class of non-linear initial value  finite unique unique
problem. infinite none of the above
x(a) =X ot a0 J* f(s,xp (5))ds is the 81
th approximation B-1 B-2 § B-2
xX(2) =X ot 20 [* f(s,xp  (5))ds is the 81
th approximation B-3 B-2 B-1 B-3
X(8) =X o+ a0 J* f(s,x  (5))ds is the B8
th approximation B-8 B-7 B+8 B-8
x(a) =X o 20 J* f(s,xg  (5))ds is the 853
th approximation B-52 B-51 B+52 B-52
x(a) =X o 20 J* f(s,xg  (5))ds is the B+87
th approximation B-86 B-85 B+86 B-86
x(a) =X ot o J* f(s,xg  (5))ds is the B+34
th approximation B-33 B-32 B+32 B-33
s:‘(fc‘:::;"’e approximations is finite infinite n n-1 infinite
X(8) =X o+ a0 J* f(s,x  (5))ds is the -
th approximation 52 51 54 52
X(8) =X ot 40 J* f(3,x (5))ds is the 4
th approximation 5 3 14
X(8) =X ot 40 J* f(3,x (S))ds is the 3
th approximation 2 1 42
X(a) =X ot a0 [* f(s,x  (5))ds is the -
th approximation 54 52 56 54
X(a) =X o+ 4 J* f(s,x  (5))ds is the 23
th approximation 32 31 34 32
X(8) =X o+ 4 J* f(s,x  (5))ds is the -
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th approximation 88 87 90 88
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th approximation 92 91 94 92
X(8) =X o+ a0 J* f(s,x  (5))ds is the 83
th approximation 82 81 84 82
X(a) =X ot a0 [* f(s,x (5))ds is the 5
th approximation 1 0 31
The initial value problem furnishing a solution around (t ,x ) boundary value local exixtence initial value local exixtence
is called the for an initial value problem. problem problem problem none of the above problem
The deals with the problem of existence of a existence
unique solution for a class of nonlinear initial value problems. theorem uniquenes theorem hermite equation Picard's theorem  Picard's theorem
Existence of solutions in the large is also known as existence uniqueness
theorem non-local existence local existence  theorem non-local existence
The is an infinite process. existence . : success_ive . successfive .
theorem non-local existence local existence approximations approximations
The in the large is alo known as non-local existence existence of uniqueness
existence. theorem non-local existence solutions theorem existence of solutions
The furnishing a solution around (t ,x )is  boundary value local exixtence initial value

called the local existene problem for an initial value problem. problem problem problem none of the above initial value problem




The Picard's theorem deal with the problem of existence of a

unique solution for a class of initial value
problem.

The solution of ,t €(-00,00) is period w iff
X(0)=x(w).

A real or complex-valued function ¢ defined on a non-empty
subset is said to be a solution if it possesses the order
derivative.

A differential equation of first order of the form x'=g(t)h(x) is

called an equation with variables

The function f(x)=4x +2 is of degree

of a Differential equation is the degree of the

highest ordered derivative.

The equation F(xX)G(y)dx + f(x)g(y) = 0 is called

OM/0y = ON/0x is a

The exact equation is

The solution of ordinary differential equation of n order

contains arbitrary constants

of general particular solution
If ,then the tr(A) is 4.
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first
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2
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UNIT V

Oscillations of Second Order Equations

Fundamental Result

Definition:

The equation (py') + qu = 0 is said to be oscillatory on an inferval 1 if there

exists a non=trivial solution of the equation wnth ifinttely many zeros on 1.

Sturm’s Comparison Theorem

The phrase “comparison theorem” for a pair of differential equations is used in the sense
stated below:

* If a solution of the first differential equation has a certain known property P then the
solution of a second differential equation has the same o1 some related property P ounder
certain hypothesis.’

Sturm’s comparison theorem is a result in this direction concerning zeros of solutions of a
pair of linear homogeneous differential equations. Sturm’s theorem has varied interesting
implications in the theory of oscillations, We remind that a solution means a nonzero solution.

Theorem 5.1:
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(Sturm’s Comparison Theorem)

Let vy, ra and p be continuous functions on (a,b) and p > 0. Assume that r and y are real
solutions of
(pz') + rix =10, (4.4)
(py') +ray =0 (4.5)

respectively on (a,b). If ra(t) = v (t) for t € (a,b) then between any two conseculive zeros
ti bz of 2 in (a.b) there exvists at least one zero of y (unless vy = r2) in [th tg]. Moreover,
when vy = r2 in [ty t2] the conclusion still holds if © and y are linearly independent .

Proof. The proof is by the method of contradiction. Suppose y does not vanish in (0, 1).
Then either y is positive in (0. 1) or y is negative in (0,1). Without loss of generality, let us
assume that x(¢) = 0 on (#.82) . Multiplving (4.4) and (4.5) by y and @ respectively and
subtraction leads to

(pz')'y — (pv)'x — (r2 —r1)xy = 0,

which, on integration gives us

1 2 [{PITIJ - {PI!F}FI] dt = 1 ’ (ra — v )xy dt.

If ra 2 vy on (ty,£2), then, ra(t) = r1(t) in a small interval of (i, f2). Consequently

iz
f (p')'y — (p')'z] > . (4.6)

Using the identity

d
Py —2y)] = (p2')'y — (py')'z,

now the inequality (4.6) implies
pltz)a’ (t2)y(t2) — p(tr)=’(t1)y(t1) > 0, (4.7)
since x(t)) = x(t2) = 0. However, ='(t1) = 0 and 2'(t2) < 0 as z is a non-trivial solu-
tion which is positive in (f1.42). As py is positive at £; as well as at {3, (4.7) leads to a
contradiction.
Again, if ry = rp on [t1, £2], then in place of (4.7), we have

plt2)y(tz)z'(t2) — p(tr)y(tr)z"(t1) = 0.

which again leads to a contradiction as above unless g is a multiple of 2. This completes the
proof. o

Remark : What Sturm’s comparison theorem asserts is that the solution y has at least
one zero between two successive zeros £) and fs of r. Many times y may vanish more than
once between §; and fz. As a special case of Theorem 4.2.1,we have
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Theorem 5.2:

Let vy and rs be two continuous functions such that rs > ry on (a.b). Let
x and y be solutions of equations
2 +rt)r=0 (4.8)
and
Y +ra(t)y=0 (4.9)
on the interval (a,b). Then y has at least a zero between any two successive zeros ty and ta

of x in (a,b) unless ry = ra on [ty ts2]. Moreover, in this case the conclusion remains valid
if the solutions y and = are linearly independent.

Proof. the proof is immediate if we let p = 1 in Theorem 4.2.1. Notice that the hypotheses
of Theorem 4.2.1 are satisfied. 0

The celebrated Sturm’s separation theorem is an easy consequence of Sturm’s comparison
theorem as shown below.

Theorem 5.3:

(Sturm’s Separation Theorem) Let x and y be two linearly independent
real solutions of
2 +alt)d +b(t)z=0, t>0 (4.10)

where a, b are real valued continuous functions on (0,.o¢0). Then, the zeros of x and y separate

each other, 1.e. between any two consecutive zeros of x there is one and only one zero of y.
(Note that the roles of x and y are interchangeable.)

Proof. First we note that all the hypotheses of Theorem 4.2.1 are satisfied by letting
t
()= ra) = b exp ( [ als)is)
0
t
)= exp ([ ale)is)

So between any two consecutive zeros of @, there is at least one zero of y. By repeating the
argument with x in place of y, it is clear that between any two consecutive zeros of y there
is a zero of x which completes the proof. O

Corollary :

Let v be a continuous function on (0.00) and let = and y be two linearly
independent solulions of
" 4+ r(t)e = 0.

Then, the zeros of © and y separate each other.

A few comments are warranted on the hypotheses of Theorem 4.2.1. Example (given
below) shows that Theorem 4.2.1 fails if the condition re = r is dropped.
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Example:

Consider the equations
(i) 2" +x=0,r(t) = +1,t >0,
(ii) 2" —z =0.r(t) = —1.¢ = (.

All the conditions of Theorem 4.2.1 arve satisfied except that ry is not greater than ;. We
note that between any consecutive zeros of a solution x { of (i), any solution y of (i) does not
| admit a zero. Thus, Theorem 4.2.1 may not hold true if the condition re =y is dropped.

Example:

Consider
+r=0nr()=1
Y +4y=0,m(t) = 4.

Note that r, > r; and also that the remaining conditions of Theorem 4.2.1 are satisfied.

xz(t) = sint is a solution of the first equation and y(t) = sin(2¢) is a solution of the second

equation which has zero at t; = 0 and {2 = #/2. It is obvious that z(t) = sint does not

vanish at any point in (0,7/2). This clearly shows that, under the hypotheses of Theorem
| 4.2.1, between two successive zeros of y there need not exist a zero of z.

Elementary Linear Oscillations

Presently we restrict our discussion to a class of second order equations of the type
' La(f)r=0,t>0, (4.11)
where a iz a real valued continuons function defined for ¢ = 0. A very interesting implication

of Sturm’s separation theorem is

Theorem 5.3:

{a) The equation (4.11) is oscillatory if and only if. it has no solution

with finite number of zeros in |0, o).
(b) Egquation (4.11) is either oscillatory or non-oscillatory but cannot be both.

Proof.  (a) Necessity It has an immediate consequence of the definition.
Sufficiency  Let z be the given solution which does not vanish on (¢*, o) where £* = 0.
Then any non-trivial solution x(t) of (4.11) can vanish atmost once in (t*, ), ie. there
exists ty(> t*) such that x(f) does not have a zero in [ty, oo).

The proof of (b) is obvious. O

We conclude this section with two elementary results.
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Theorem 5.4:
Let x be a solution of (4.11) existing on (0,2¢c). Ifa < 0 on (0,2¢), then )

x has utmost one zero.

Proof. Let tg be a zero of x. It is clear that x'(tg) # 0 for x(t) # 0. Without loss of generality
let us assume that x'(fy) > 0 so that x is positive in some interval to the right of t5. Now
a < 0 implies that 2" is positive on the same interval which in turn implies that 2’ is an
increasing function. and so, x does not vanish to the right of t5. A similar argument shows

that x has no zero to the left of t5. Thus, x has utmost one zero. a
Remark Theorem is also a corollary of Sturm’s comparison theorem. For the equa-
tion
yu =0

any non-zero constant function y = k is a solution. Thus, if this equation is compared
with the equation (4.11) (observe that all the hypotheses of Theorem are satisfied) then, z
vanishes utmost once, for otherwise if x vanishes twice then y necessarily vanishes at least
once by Theorem 4.2.1,which is not true. So x cannot have more than one zero.

From Theorem the question arises: If a is continuous and a(t) > 0 on (0,2c), is the
equation (4.11) oscillatory ? A partial answer is given in the following theorem.

Theorem 5.5:

Let a be continuous and positive on (0, =) with

fx afs)ds = oo, (4.12)
1

Also assume that x is any {non-zero) solution of (4.11) existing for ¢t = 0. Then, x has
infinite zeros in (0, oc).
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Proof. Assume, on the contrary, that x has only a finite number of zeros in (), o0c). Then,
there exists a point £ > 1 such that = does not vanish on [ty, 0¢). Without loss of generality
we assume that x(t) = 0 for all £ > {5. Thus

is well defined. It now follows that
v'(t) = —a(t) — v*(t).
Integration on the above leads to
o(t) = v(to) = = J}, a(s)ds — [} *(s)ds.

The condition (4.12) now implies that there exist two constants A and T such that v(t) <
A(< 0) if t > T since v*(t) is always non-negative and

w(t) < v(tg) —/: as)ds.

This means that =’ is negative for large £. Let T(> fg) be so large that z'(T) < 0. Then, on
[T, oc) notice that x > 0,2 < 0 and 2" < (. But

f 2"(s)ds =2'(t) —2'(T) <0

T

Now integrating once again we have
2(t) — 2(T) < 2'(T)(t—T),t 2 T > to. (4.13)

Sinece 2'(T') is negative, the right hand side of (4.13) tends to —oe as £ — oo while the left
hand side of {4.13) either tends to a finite limit (because x(T") iz finite) or tends to 400 (in
case r|f) — oo as t — o). Thus, in either case we have a contradiction . So the assumption
that x has a finite number of zeros in (00, 00) is false. Henee, x has infinite munber of zeros
in (0, oc), which completes the proof. O

It is not possible to do away with the condition (4.12) as shown by the following example.
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COMPARISON THEOREM OF HILLE-WINTNER

Lemma 1. The function Plu, v) defined in (10) satisfies the following inequalities

1
FPlu,v) = §|fr,|2_”{f: — i?{fr,]l:lz Jor p=<2,

FPlu,v) < %hﬁF“”{v - i?{fr,]l:lz for p=2, uzs#0.

Futhermore, let T = 0 be arbitrary. There exists a constant K = K(T) = 0 such
that

Plu,v) > K|u|* 7P (v - tIl{u}}IE for p=2
Plu.v) < Klu|*P(v - tIl{u}}E for p<2.

=T.

and every w, v € B satisfying |Tr!-ﬁ'i

Now we derive the so-called modified Riccati equation which plays the crucial
role in the proof of our main result. Let x € ! be any function and w be a solution
of the Riccati equation (8). Then from Picone’s identity (9) we have

(11) (wlz|?)" = r|z'|F — clzf® — pr=9|z|* P(@7 (w,). w),

where w, = r®(z' /z) and 97! is the inverse function of ®. At the same time, let
h be a (positive) solution of (6) and wy, = r®(R'/h) be the solution of the Riceati
equation associated with (6), then

(12) (wy|z|") = r|z'|P — &x|® — prl_‘?|:r|PP{'I’_l{wI._ uh]]l )

Substituting @ = h into (11), (12) and subtracting these equalities we get the
equation (in view of the identity P{® ™ {wy). wy) = 0)

(13) ((w — wp }bP) + (e — EWP 4+ pri WP P(S ™ wy,), w) = 0.

Observe that if &t} = 0 and k(t) = 1, then (13) reduces to (8) and this is also the
reason why we call this equation the modified Riccati equation.

Finally, let us recall the concept of the principal solution of nonoscillatory equa-
tion (1) is introduced by Mirzov in [12] and later independently by Elbert and
Kusano in [7]. If (1) is nonoscillatory, as mentioned at the beginning of this sec-
tion, there exists a solution w of Riccati equation (8) which is defined on some
interval [T, o¢). It can bhe shown that among all solutions of (8) there exists the

minimal one @ (sometimes called the distinguished solution), minimal in the sense
that any other solution of (8) satisfies the inequality w(t) = @(t) for large . Then
the principal solution of (1) is given by the formula

2= Ko { [ 1100~ (20) s}

i.e., the principal solution F of (1) is a solution which “produces” the minimal
solution @ = rP{E'/F) of (8).
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Theorem 5.6:

Let [T r'=9(t)dt = oc. Suppose that equation (6) is nonoscillatory
and possesses a positive principal solution h such that there exist a finite limit

(14) lim r(t)h()B(h(t)) = L >0

and

= df
(15) / -
r{t)h2(t)('(t))
Further suppose that ) < f:ﬂ C(s)ds < oo and

(16) 0= fx (c(s) — é(s))h¥(s) ds < fx (C(s) — &(s))h"(s) ds < oo,
¢ ¢
all for large t. If equation (3) is nonoscillatory, then (1) is also nonoscillatory.

Proof. As we have already mentioned before, to prove that (1) is nonoscillatory,
it is sufficient to find a solution of associated Riccati equation (8) which is defined
on some interval [T, oc). This solution we will find (using the Schander-Tychonov
theorem) as a fixed point of a suitably constructed integral operator.

By our assumption, equation (3) is nonoscillatory, i.e., there exists an eventually
positive principal solution = of this equation. Denote by w := r®{z’ /x) the solution
of the associated Riccati equation

w' +Ct) + (p— Ve~ ) w|* = 0.
From the previous section, with (1) replaced by (3), ie., with ¢ replaced by ', we
know that the modified Riccati equation
((w — wy )hP) + (€ — E)RP + pri= WP P(d~ Y uy), w) = 0
holds, where & is the principal solution of (6) and wy, = r®(k'/h) iz the minimal

solution of the Riccati equation corresponding to equation (6). By integrating we
get

(17)
hP(wy, —w)|y = L (C(s) — &(s)) 1P (s) ds + _i:rf r'=9(s)P(ra7 ' wP(h)) ds.

t
T
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Since [T r'79(t)dt = oo and 0 < ffﬂ (=) ds < oo, w solves also the integral
Riceati equation (see [3, p. 207])

w(t) = f Cls)ds + (p— 1}[ =9 (s)|w(s)|? ds,
¢ ¢
and therefore w(t) = 0 for large t. Hence
B (wy, — w)|p < WPwy(t) + hP(w(T) — wy(T))
and letting ¢+ — oo in (17) we have (with L given by (14))

L+ h®(w(T) — wy(T)) = j:: (C(s) — &(s)) ¥ (=) ds

+ pf r (s P(r T wd(h)) ds .
T
Since Plu,v) = 0 and (16) holds, this means that

(18) / P9 () P (re=1 ()1 (£), w(e) B (h(1))) dt < oo

MNow, sinee (14), (16), (18) hold, from (17) it follows that there exists a finite limit
tliln he(t)(w(t) — wy(t)) = 3

and also the limit

w) _ W) _L+8
(19) A T A )~ L

Therefore, letting ¢t — oc in (17) and then replacing T by ¢, we get the equation

h2(e) (wit) — wa(t)) — 6 = fx (C(s) — &(s)) hP(s) ds
(20) . :
+p/t s P(rT T R wd(h)) ds.

Since (19) holds, according to Lemma 1 there exists a positive constant i such
that
K& Yy )| P(w — wp)® < P(® (). w)
and hence
 [(w(t) - wn) )
r()h2 () (' ()"

(21) < PO P (R (1), w(t) (1)) .

Dencte G(t) = v~ 1)k 3(t) {JL'{E}]E_P_ then the last inequality after integrating
over [T, oc) reads

f(j; G(t) [(w(t)— wn(t)) h7(t)] dtgﬁ I P(r T R (2), wit)R(h(t)) dt .
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By (15) we have f’ (#(s)ds — oc ast — oo, This implies that 3 = lim,_ . B#(t)(w(t)—
wy(t)) = 0 since if 3 # 0, we have

f B G() [(w(t) — wi () h7(1)]” dt = oo,

which, in view of (21), implies that [~ r!=9P(r9= i/, w®(h)) dt = oo and this
contradicts (18). Consequently from (20), we get the integral equation

(22)  RP(1) (w(t) — wn(t)) = [ T (C(s) — =) hP(s) ds

+ p[mr“?{s}P{r?—lf;'_u@{h)}ds_

and this equation we use in constructing the integral operator whose fixed point
is a solution of (8) which we are looking for.
Define the function =et [7 and the mapping F by

UD={ue CT, 0c):wylt) < ult) < wli) for t € [T. o)},

where T is sufficiently large,
F(u)(t) = wr(t) + h~P(t) { [ - (c(s) — &(s)) hP(s) ds
- pfﬂ ri79(s)RF(s) P  (wp ), u) .f,-;}

Ohbserve that the set [ is well defined sinee w(t) = wy(t) for large t by (16) and
(22). Obwiously, IV is a convex and closed subset of the Frechet space O[T, )
with the topology of the uniform convergence on compact subintervals of [T, o¢).
Denote H{s) := qu: — & Yy )s. Then H'(s) = &Y s)— B~ Hwy) = 0 for 5 = wy,.
This means that P(®~(uy ). u) is nondecreasing in the second variable and hence
if wi(t) < wlt) < ua(t) < wi(t), t € [T,o0), we have Flu)(t) = Flus)(t) for
t € [T, 0a).

Next we show that F maps [7 into itself. To this end, it is sufficient to show
that wy(f) < Flwg)(t) < Flu)(t) < Flw)(t) < w(t) for large t. We have

Flwn)(t) = wa(t) + hP(t) {]:I (e(s) — &(=)) BP(s) .-i.i} =y (t)
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Part -B (5x6=30 Marks)

Possible Questions

1 State and prove Hille-Wintner comparison theorem.
2. Let a(t) be a continuous and positive on (0,-c2) with [ 1°° a(s) ds = oo also assume that x(t)

is any solution of x”+a(t)x=0,existing for t= 0 then P.T. x(t) has infinite zero’s in (0,%2).
3. Show that the equation x" + x = 0 is oscillatory.
4. State and prove Strum’s separation.

5. For large t, let a (t) be a continuous function for which f(t) exists and f(t) > pt* where
p>1/4. Then prove that x" (t) + a(t)x = 0 is oscillatory.

6. Let x(t) be a x"(t) + a(t)x = 0, t= 0 existing on (0, «).If a(t)<0 on (0, o) then prove that
X(t) has atmost one zero.

7. Let a(t) in x"(t) + a(t)x = 0 be continuous on (0, ) and let a" = tlim suptf(t) < 1/4

then prove that x"(t) + a(t)x = 0 is non- oscillatory.

8. State and prove Strum’s comparison.

9. Let a(t) be a continuous and positive on (0,-c2) with [ 1°° a(s) ds = oo also assume that x(t)

is any solution of x”+a(t)x=0,existing for t= 0 then P.T. x(t) has infinite zero’s in (0,22).

10. Assume that f(t)= f:o a(s)ds exists on (0, o). Let v(t) be a continuous function such that
v(T) — v(t)+ ftT v2(s)ds = — ftT a(s)ds foreach T >t and for each t in (0, o). Then
prove that the integral ftoo v2(s)ds converges and v(T) —0 as T— oo,
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Part —C (1x10=10 Marks)

Possible Questions
1. State and prove Hille-Winter comparison theorem.
2. State and prove Strum’s comparison.

3. If x(t) is a solution of equation x”+a(t)x=0,there exists x(t) does not vanish for t =tg then
prove that V(t)=x"(t)/x(t),t =to is well defined and satisfy the Riccati equation V’(t)+V?2(t)=-
a(t).

4. State and Prove Strum’s Separation Theorem

5. State and prove Hille theorem and winter theorem
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Part A (20x1=20 Marks)

Question
If x(t*)=0 then a point t=t* >0 is a solution of x”’=f(t,x,x”) is
called
A zero of a solution x(t) of x”’=f(t,x,x’) if x(t*)=0 at a point
t=
The zero’s of solution of x*’+a(t)x’+b(t)x=0 are

Elementary linear equation is of the

form

If the equation x’’+a(t)x=0, t > 0 is non oscillatoryiff it has a
solution with only
When the euler equation is oscillatory?
When the euler equation is non oscillatory?
The Euler equation of the form

The Riceatin equation is
If the solution of x”’+a(t)x=0, t > 0 on (0,

), a(t)<0 then

X(t) has atleast one zero atmost one zero zero one zero atmost one zero
The solution of x”’=f{t, x, x”) ,t>0 existing in
[0, o) [0, o] (0, ) 0, ] [0, o)
The solution of x”’=f{(t, x, x”), t=0 in [0,0]
IS solution Non trivial trivial isolated non isolated Non trivial
The solution of x”’=f{t, X, X’), >0 is non oscillatory if it does
not have in [t o] Solution Value Zero Non zero Value
The solution of x”’=f{t, x, x’), >0 is non oscillatory if it does ) ) ) ) )
not have zero in [t , o) [t , 0] (t, o] (t , ) (t ,o0]
The solution of x’=f{t, x, x’), t>0 is if it
does have zeroin [t 0] Isolate Parallel Oscillatory Non oscillatory Oscillatory
The solution of x*=f{t, x, x’), t>0 is Oscillatory if it does
have in[t 0] Solution Value Zero Non zero Solution
The solution of x’=f{(t, x, x’), t>0 1is oscillatory if it does ) : : : )
have zero in [t |, o) [t o] (t ,o0] t o) (t , o)
The solution of x*’=f{t, x, X’), t>0 1is if it
does have zeroin [ t,x] Isolate Parallel Oscillatory Non oscillatory Isolate
Let x(t) & y(t) are two linearly independent solution then
w(x(t), y(t)= Zero Non zero Infinity Infinity Non zero
Let x(t) & y(t) are two linearly dependent solution then
w(x(t), y(t))= Zero Non zero Infinity — Infinity Zero
If w(x(t), y(t))=0then x(t) & y(t) are Linearly
solution independent dependent Same Different dependent
If w(x(t), y(t))#0 then x(t) & y(t) are Linearly
solution independent Independent Same Different Linearly independent
If w(x(a), y(a))#0, here ‘a’should be Linearly
point independent common dependent Different common
If w(x(a), y(a))#0, here ‘a’is called Linearly
of the equation independent zero dependent point zero
0,%m,m.........
The zero of y=sin2tis t= .. 0,27, ........... 0,%2m,. e 00,%m,m............
0,)2m,m.........
The zero of y=sintist= 0,27 ...c.n..... 0,%2m,. ... 00,27 ...........
0,2m,m.........
The zero of y=cost is t= .. 0,%2m,. ... Vor 7 O
0,%mm.........
The zero of y=sint cost is t= 0,27 ........... 0,%m, ..o 00,Yoamt,m............
0,%2m,m.........
The zero of y=sin(t/2) is t= 027, ..c..en 0,%m,............ 002m............
0,)2m,m.........
The zero of y=cos(t/4) is t= 2T,6T, ..o Vom 02m6m,............

Possible Questions

Choice 1 Choice 2 Choice 3 Choice 4 Answer

Oscillatory Zero solution Non oscillatory ~ Non zero solution  Zero solution
0t*>1 t*>0 t*=0 t*>0

Isolated Parallel Oscillatory Non oscillatory Isolated

x’+a(t)x=0 x”’+a(t)x£0 x”’+a(t)x=0 x’+a(t)x#0 x”’+a(t)x=0

Infinite One Two Finite Finite

K=1/4 K>1/4 K<1/4 K>1/4 K>1/4

K=1/4 K>1/4 K<1/4 K<1/4 K<1/4

X" +a(t)x=0 x”’+H(k /t)x=0 x”+H(k/t?) x=0 x”’+kx=0 x”+H(k/t?) x=0

Vv (t)+ v2 ( v (H)+v(H)+a(t)=

t)+a(t)=0 V(1) +v(t)=0 0 v’ (t)+a(t)=0 Vv’ (t)+ v (t)+a(t)=0

more then one



The zero of y=cos(2t) is t= 0,m/4,............ /232, e /4 w/43/4,. . .......... w/43/4,............

The zero of y=sin4tis t= O,m/4,............ 02n4m............ 0,m/4,............ 00,7/4,............
0,)2m,m.........

The zero of y=2sint cost is t= 0,m,2m............ 0,%2m,. ... 00,%m,m............

The zero of y= (t-1)(t-2) is t= 1,-2 1,2 -1, -2 -1,2 1,2

The zero of y= (t+1)(t+2) is t= 1,-2 1,2 -1, -2 -1,2 -1, -2

The zero of y= (t-1)(t+2) is t= 1,-2 1,2 -1, -2 -1,2 1,-2

The zero of y= (t+1)(t-2) is t= 1,-2 1,2 -1, -2 -1, 2 -1, 2

The zero of y= (t-2)(t-2) is t= -2, -2 2,2 -1,-2 -1,2 2,2

The zero of y= (t-1)(t-2)(t-3) is t= 1,2,3 -1,-2,3 -1,2,-3 1,2,3

The zero of y=(t-1)(t-1)(t-2) is
t= 1,1,2 -1,-1,-2 -1, 2,-2 1,1,2
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PART - A (20 x 1 =20 Marks)

1. If A(t) is n x n matrix continuous in t on

a) closed b) bounded
c) closed and bounded d) open

2. The solution of x"+x=cost is

a) x(t)=acos(t+b)+(1/2)t sint
c) x(t)=cos(t)+(1/2)t sint

b) x(t)=acos(t+b)
d) x(t)=acos(t-b)+(1/2)t sint

3. If o(t) is a fundamental matrix, then @(t+s)=

a) e()o(s) b) e(H)+0(s)
c) o()-9(s) d) e()/o(s)

4. The solution of x'=Ax + f(t),t €(-00,0) is period w iff x(0)=_

a) X(o) b) X(-e0)
€) X(w) d) ()

5. The system x'=-A!(t)x, t €I has the fundamental matrix of the
form

a) (1/o(1)) b) (o(t))"
¢) (Le®) d) (1/9(t))
6. The is an infinite process.

a) existence theorem
c) local existence

b) non-local existence
d) successive approximations

7. The Picard's theorem deal with the problem of existence of a
unique solution for a class of initial value problem.

a) linear
c) independent

b) non-linear
d) dependent

8. The Picard's theorem deal with the problem of existence of a
solution for a class of non-linear initial value problem.

a) finite
c) infinite

b) unique
d) none of the above



9. The initial value problem furnishing a solution around (to,Xo) is
called the for an initial value problem.

a) boundary value problem
c) initial value problem

b) local exixtence problem
d) none of the above

10. The in the large is also known as non-local
existence.

a) existence theorem
c) existence of solutions

b) non-local existence
d) uniqueness theorem

11. The deals with the problem of existence of a unique
solution for a class of non-linear initial value problems.

a) existence theorem
¢) hermite equation

b) uniquenes theorem
d) Picard's theorem

12. Successive approximations is

process
a) finite b) infinite
c)n d) n-1

13. Existence of solutions in the large is also known as

a) existence theorem
c) local existence

b) non-local existence
d) unigueness theorem

14. A zero of a solution x(t) of x”’=f{t,x,x”) if x(t*)=0 at a point
t=

a) 0 b) t*>1
¢) t*20 d) t*=0

15. The Euler equation of the form

a) x”’+a(t)x=0
c) x’+(k/t?) x=0

b) x’+(k /t)x=0
d) x’+kx=0

16. The solution of x”’=f{t, x, x’), t>0 is non oscillatory if it does
not have zero in

a) [to, =) b) [to , o]

€) (to, =] d) (to , )

17. The zero of y=cost is t=

a) 0,am,m............ b) 0,%m,............
c) ¥am d) em,............

18. The zero’s of solution of x’* + a(t)x’ + b(t)x=0 are

a) Isolated
c) Oscillatory

b) Parallel
d) Non oscillatory

19. Let x(t) & y(t) are two linearly dependent solution then w(x(t),
y)=___ .

a) zero b) non zero
¢) infinity d) —infinity



20. The zero of y = (t-1)(t-2) is t= 25. a) Prove that x(t) is a solution of x’=f{t,x), x(to)=Xo ON some

3 1122 g; 1122 interval I iff x(t) is a solution of x(t)=xo+ [,y £ (s, x(s)) ds.
(Or)
PART-B (3x2 =6 Marks) b) Consider the IVP x* = x? + cos?, x (0) = 0. Determine the
Answer all the questions largest interval of existence of its solution.
21. State the Floquet theorem. 26. a) State and prove Strum’s separation.
22. State and Gronwall inequality. (Or)
23 Define Isolated. b) Let a(t) be a continuous and positive on (0,-22) with

) 100 a(s) ds = oo also assume that x(t) is any solution of
PART-B (3 x8 =24 Marks)

x+a(t)x=0,existing for t= 0 then P.T. x(t) has infinite zero’s
Answer all the questions

in (0,20).

24. a) Find a fundamental matrix for X’=AX, where A = [_32 _32]

(Or)

b) Determine e* for the system X’=AX where A=
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PART - A (20 x 1 =20 Marks)
1 x(2) =X ot a0 J* f(8,Xp_g7(5))ds is the approximation
a) p+87 b) p-86
c) B-85 d) p+86
2. The solution of x"+x=cost is
a) x(t)=acos(t+b)+(1/2)t sint b) x(t)=acos(t+b)
c) x(t)=cos(t)+(1/2)t sint d) x(t)=acos(t-b)+(1/2)t sint
3. If o(t) is a fundamental matrix, then @(t+s)=

a) e(1)e(s) b) p(t)+e(s)

¢) @(t)-9(s) d) (t)/e(s)

4. The solution of x'=Ax + f(t),t €(-0,00) is period w iff x(0)=__
a) x(0) b) X(-0)

c) x(w) d) x(t)

5. The system x'=-A!(t)x, t €I has the fundamental matrix of the
form

a) (1/o(1))
c) (/o))

b) ((1))"
d) (1/e(V)

6. The is an infinite process.

a) existence theorem b) non-local existence

c) local existence d) successive approximations
7. The Picard's theorem deal with the problem of existence of a
unique solution for a class of initial value problem.
a) Linear b) non-linear

c) independent d) dependent

8. If x(t*)=0 then a point t=t* >0 is a solution of x”’=f{t,x,x’) is
called

a) Oscillatory b) Zero solution

c¢) Non oscillatory d) Non zero solution
9. The initial value problem furnishing a solution around (to,Xo) is
called the for an initial value problem.

a) boundary value problem b) local exixtence problem
c) initial value problem d) none of the above

10. The in the large is also known as non-local
existence.

a) existence theorem b) non-local existence

c) existence of solutions d) unigueness theorem

11. The deals with the problem of existence of a unique
solution for a class of non-linear initial value problems.

a) existence theorem b) uniquenes theorem

¢) hermite equation d) Picard's theorem

12. Successive approximations is process
a) finite b) infinite
c)n d) n-1



13. Elementary linear equation is of the form
a) x’+a(t)x=0 b) x*’+a(t)x£0

¢) x”’+a(t)x=0 d) x’+a(t)x£0

14. A zero of a solution x(t) of x”’=f{t,x,x”) if x(t*)=0 at a point
t=

a)0 b) t*>1

c) t*>0 d) t*=0

15. The Euler equation of the form
a) x”’+a(t)x=0 b) x*’+(k /t)x=0

¢) x”+(k/t?) x=0 d) x”’+kx=0

16. The solution of x”’=f{(t, x, x’), t>0 is non oscillatory if it does
not have zero in

a) [to, ) b) [to , ]

c) (to, ] d) (to, )

17. The zero of y=cost is t=

a)0,)am,m............ b) 0,%m,............
C) /am d) Yam,............
18. The zero’s of solution of x’* + a(t)x’ + b(t)x=0 are

a) Isolated b) Parallel

c) Oscillatory d) Non oscillatory
19. Let x(t) & y(t) are two linearly dependent solution then w(x(t),

y(t)=

a) zero b) non zero
¢) infinity d) —infinity
20. The zero of y = (t-1)(t-2) is t=

a)l,-2 b) 1,2

¢)-1, -2 d) -1,2

PART-B (3x2 =6 Marks)

Answer all the questions

21. State the Floquet theorem.

22. State and Gronwall inequality.
23. Define Isolated.

PART-C (3 x8 =24 Marks)

Answer all the questions
24. a) Find a fundamental matrix for X’=AX, where A = [_32 _2]

3
(Or)
1 0 O
b) Determine e” for the system X’=AX where A=[0 1 0
0 0 2

25. a Consider the IVP x' = x? + cos?, x(0) = 0. Determine the
largest interval of existence of its ~ solution.

(On)
b) Consider the IVP x* = x? + cos?t, x (0) = 0. Determine the largest
interval of existence of its solution.
26. a) State and prove Strum’s separation.

(Or)
b) Let a(t) be a continuous and (+ve) on (0,-22) Withfloo a(s)ds =

also assume that x(t) is any solution of x+a(t)x=0,existing for t= 0
then Prove that x(t) has infinite zero’s in (0,22).
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1 hous Maximum : 60 marks
}"J

PART - A (20 x 1 =20 Marks) (30 Minutes)

(Question Nos. 1 to 20 Online Examinations)
(Part-B & C 2 % Hours)

PART B (5 x 6 =30 Marks)
Answer ALL the Questions

2.1 B(t) and Py, (t) are legendre polynomials, then prove that
[ P) Pa(t) dt=0,ifm # n
(OR)

5 Show that ;‘; [P ®)=[-tP Jpsa(®)]

2.z Let ®(t), te I denote a fundamental matrix of the system x' = Ax such
that®(0) = E, where A is a constant matrix. Here E denotes the identity

m?’“ Then @ satisfies ®(t + s) = ®(t)P(s) for all values of t and
sel.

(OR)

b. :
?fmre that the set of all solutions of the system x' = A(t)x on I forms ann —

mensional vector space over the field of complex numbers .

' .n,tFmdeAt when A = ([} 1)
=1 0
(OR)

b. Let @(t), te I denote a fundamental matrix for the system x' = Ax. Then
P(t + w),- 0w <t < o, is also a fundamental matrix.

24. a. Let f{t,x) be a continuous function defined over a rectangle
R={{(t,x): |t = tol SP.,* |x = Xg| S q}Herep, qare some
s a !
positive real numbers. Let 5{- be defined and continuous on R. Then prove that

f(t,x) satisfies the Lipschitz condition in R.
(OR)
b. The error x(1) - x,(t) satisfies the estimate
1%(8) = x,(O)] < 2B gkh | teft,,t, +h)
n k(n+1)! : il
25. a. Prove that the zeros of a solution of X +a(t)x +b(t)x =0, t > 0 are isolated.
(OR)
b. Leta(t) in x + a(t)x = 0 be continuous on ( 0, ) and leta* =
lim¢_,, sup tf(t) < 1/4 where f(t) is defined in Hille - winter. Then the
equation x + a(t)x =0 is non oscillatory.

PART - C (1x10 = 10 marks)

26. Compulsory:
2,-3t
e_3t te_gt tce

I
Show that @(t) = 0 e-3t -3t | is fundamental, where

-3 1 0
A=(0 -3 1).
60 0 =3
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