
Semester – VI

16CSU601B SYSTEM PROGRAMMING 4H – 4C

Instruction Hours / week: L: 4 T: 0 P: 0 Marks: Int : 40 Ext : 60 Total: 100

SCOPE

This course enables for good understanding of the role of system programming and the

scope of duties and tasks of a system programmer. This course enables to learn the

concepts and principles of developing system-level software (e.g., compiler, and

networking software)

OBJECTIVES

 To introduce students the concepts and principles of system programming

 To provide students the knowledge about both theoretical and practical aspects of

system programming, teaching them the methods and techniques for designing

and implementing system-level programs.

 To train students in developing skills for writing system software with the aid of

sophisticated OS services, programming languages and utility tools.

UNIT-I

Assemblers & Loaders, Linkers: One pass and two pass assembler design of an

assembler, Absolute loader, relocation and linking concepts, relocating loader and

Dynamic Linking., overview of compilation, Phases of a compiler.

UNIT-II

Lexical Analysis:

Role of a Lexical analyzer, Specification and recognition of tokens, Symbol table, lexical

UNIT-III

Parsing:

Bottom up parsing- LR parser, yaCSU. Intermediate representations: Three address

code generation, syntax directed translation, translation of types, control Statements.

UNIT-IV

Storage organization: Activation records stack allocation.

UNIT-V

Code Generation: Object code generation

Suggested Readings

1. Santanu Chattopadhyaya. (2011). Systems Programming. New Delhi: PHI.

2. Alfred, V. Aho., Monica, S. Lam., Ravi Sethi.,& Jeffrey, D. Ullman. (2006).

Compilers: Principles, Techniques, and Tools (2nd ed.). New Delhi: Prentice

Hall.

3. Dhamdhere, D. M. (2011). Systems Programming. New Delhi: Tata McGraw

Hill.

4. Leland Beck., & Manjula, D. (2008). System Software: An Introduction to

System Programming (3rd ed.). New Delhi: Pearson Education.

5. Grune, D., Van Reeuwijk, K., Bal, H. E., Jacobs, C. J. H., & Langendoen,

K.(2012). Modern Compiler Design (2nd ed.). Springer.

Websites

1. cs.lmu.edu/~ray/notes/sysprog/

 2. https://www.tutorialspoint.com/assembly_programming

 ESE MARKS ALLOCATION

1.

Section A

20 X1 = 20

(Online Examination)

20

2.

Section C

5X8 = 40

(Either ‘A’ or ‘B’ Choice)

40

3. Total 60

2.%20%20%20https:/www.tutorialspoint.com/assembly_programming
2.%20%20%20https:/www.tutorialspoint.com/assembly_programming

LECTURE PLAN 2016-2019
Batch

Prepared by Dr. T. GENISH, Department of CS, CA & IT, KAHE Page 1/5

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

 (Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021.

LECTURE PLAN

 DEPARTMENT OF COMPUTER SCIENCE

STAFF NAME: Dr. T. GENISH

SUBJECT NAME: SYSTEM PROGRAMMING SUB.CODE: 16CSU601B

SEMESTER: VI CLASS: III B. Sc - CS

Sl.No

Lecture

Duration

(Periods)

Topics to be covered

Support

 Materials

UNIT- I

1 1

Assemblers & Loaders, Linkers: One pass and

two pass assembler design of an assembler
T2: 71-118

2 1
Absolute loader T2: 161-162

3 1
Relocation and linking concepts T2: 162-1169

4 1
Relocating loader and Dynamic Linking T2: 170-183

5 1
Overview of compilation T2: 183-185

6 1 Phases of a compiler
T2: 185-192,W1

7 1
Recapitulation and Discussion of Possible Questions

Total No. Of Hours Planned for unit I 07

TEXT BOOK:

1. T1: Alfred, V. Aho., Monica, S. Lam., Ravi

Sethi.,& Jeffrey, D. Ullman. (2006).

Compilers: Principles, Techniques, and

Tools (2nd ed.). New Delhi: Prentice Hall.

LECTURE PLAN 2016-2019
Batch

Prepared by Dr. T. GENISH, Department of CS, CA & IT, KAHE Page 2/5

WEB SITES

W1: cs.lmu.edu/~ray/notes/sysprog/

Sl.No

Lecture

Duration

(Periods)

Topics to be covered

Support

 Materials

UNIT- II

1 1 Role of a Lexical analyzer T1: 109-113

2 1 Contd... Role of a Lexical analyzer T1: 109-113

3 1
Contd… Specification and recognition of tokens

T1: 116-

135,W1

4 1
Contd…Specification and recognition of tokens

T1: 116-

135,W1

5 1
Contd…Specification and recognition of tokens

T1: 116-

135,W1

6 1 Contd…Symbol table T1: 85-99,W2

7 1 Contd…Symbol table T1: 85-99,W2

8 1 Contd…Symbol table T1: 85-99,W2

9 1 Recapitulation and Discussion of Possible Questions

 Total No. Of Hours Planned for unit II: 09

TEXT BOOK:
 T1

WEB SITES

 W2:

https://www.tutorialspoint.com/assembly_programmi

ng

Sl.No

Lecture

Duration

(Periods)

Topics to be covered

Support

 Materials

2.%20%20%20https:/www.tutorialspoint.com/assembly_programming
2.%20%20%20https:/www.tutorialspoint.com/assembly_programming
2.%20%20%20https:/www.tutorialspoint.com/assembly_programming
2.%20%20%20https:/www.tutorialspoint.com/assembly_programming

LECTURE PLAN 2016-2019
Batch

Prepared by Dr. T. GENISH, Department of CS, CA & IT, KAHE Page 3/5

UNIT- III

1 1 Bottom up parsing- LR parser T1: 233-256

2 1 yaCSU W1

3 1 Intermediate representations: Three address code

generation
T1: 363-369,W1

4 1 syntax directed translation T1: 303-306

5 1 translation of types T1: 370-378

6 1
control Statements.

T1: 399-408

7 1 Recapitulation and Discussion of Possible Questions

Total No. Of Hours Planned for unit III: 07

TEXT BOOK: Alfred, V. Aho., Monica, S. Lam., Ravi Sethi.,&

Jeffrey, D. Ullman. (2006). Compilers:

Principles, Techniques, and Tools (2nd ed.).

New Delhi: Prentice Hall.

WEB SITES

W1

Sl.No

Lecture

Duration

(Periods)

Topics to be covered

Support

Materials

UNIT- IV

1 1 Storage organization T2: 435-459,

W2

2 1 Contd… Storage organization

3 1 Contd… Storage organization

4 1
Contd…Activation records stack allocation

T2: 463-481 5 1 Contd…Activation records stack allocation

6 1 Contd…Activation records stack allocation

7 1 Recapitulation and Discussion of Possible Questions

LECTURE PLAN 2016-2019
Batch

Prepared by Dr. T. GENISH, Department of CS, CA & IT, KAHE Page 4/5

8 1 Recapitulation and Discussion of Possible Questions

Total No. Of Hours Planned for unit IV:

08

TEXT BOOKS: T2: Dhamdhere, D. M. (2011). Systems

Programming. New Delhi: Tata McGraw Hill.

WEBSITES
W2

Sl.No

Lecture

Duration

(Periods)

Topics to be covered

Support

 Materials

UNIT- V

1
1 Code Generation

T1: 505-

520,W2
2

1 Contd… Code Generation

3
1 Object code generation

T1: 520-530
4

1 Contd… Object code generation

5
1 Recapitulation and Discussion of Possible Questions

6
1 Recapitulation and Discussion of Possible Questions

7
1 Discussion of Previous ESE Question Paper

8 1 Discussion of Previous ESE Question Paper

 Total No. Of Hours Planned for unit V: 08

Overall Planned Hours : 40

TEXT BOOKS: T1

WEBSITES -

LECTURE PLAN 2016-2019
Batch

Prepared by Dr. T. GENISH, Department of CS, CA & IT, KAHE Page 5/5

Suggested Readings

1. Santanu Chattopadhyaya. (2011). Systems Programming. New Delhi: PHI.

2. Alfred, V. Aho., Monica, S. Lam., Ravi Sethi.,& Jeffrey, D. Ullman. (2006). Compilers:

 Principles, Techniques, and Tools (2nd ed.). New Delhi: Prentice Hall.

3. Dhamdhere, D. M. (2011). Systems Programming. New Delhi: Tata McGraw Hill.

4. Leland Beck., & Manjula, D. (2008). System Software: An Introduction to System

Programming (3rd ed.). New Delhi: Pearson Education.

5. Grune, D., Van Reeuwijk, K., Bal, H. E., Jacobs, C. J. H., & Langendoen, K.(2012).

Modern Compiler Design (2nd ed.). Springer.

Websites

 1. cs.lmu.edu/~ray/notes/sysprog/

 2. https://www.tutorialspoint.com/assembly_programming

2.%20https:/www.tutorialspoint.com/assembly_programming
2.%20https:/www.tutorialspoint.com/assembly_programming

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 1/23

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: System Programming

COURSE CODE: 16CSU601B BATCH: 2016-2019

UNIT I: ASSEMBLERS, LOADERS AND LINKERS

UNIT I

SYLLABUS

Assemblers & Loaders, Linkers: One pass and two pass assembler design of an

assembler, Absolute loader, relocation and linking concepts, relocating loader and

Dynamic Linking., overview of compilation, Phases of a compiler.

Assemblers & Loaders, Linkers:

Assembly language is a low-level programming language for a computer or other

programmable device specific to particular computer architecture in contrast to most

high-level programming languages, which are generally portable across multiple systems.

Assembly language is converted into executable machine code by a utility program

referred to as an assembler like NASM, MASM, etc.

Linker and Loader are the utility programs that plays a major role in the execution

of a program. The Source code of a program passes through compiler, assembler, linker,

loader in the respective order, before execution. On the one hand, where the

linker intakes the object codes generated by the assembler and combine them to generate

the executable module. On the other hands, the loader loads this executable module to

the main memory for execution.

Linker

• Tool that merges the object files produced by separate compilation or
assembly and creates an executable file

• Three tasks

– Searches the program to find library routines used by program, e.g.
printf(), math routines,…

– Determines the memory locations that code from each module will
occupy and relocates its instructions by adjusting absolute references

– Resolves references among files

Translation Hierarchy

• Compiler

– Translates high-level language program into assembly language
(CS 440)

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 2/23

• Assembler

– Converts assembly language programs into

object files

• Object files contain a combination of machine instructions, data,
and information needed to place instructions properly in memory

Assemblers

• Assemblers need to

– translate assembly instructions and pseudo-instructions into machine
instructions

– Convert decimal numbers, etc. specified by programmer
into binary

• Typically, assemblers make two passes over the assembly file

– First pass: reads each line and records labels in a
symbol table

– Second pass: use info in symbol table to produce actual machine code
for each line

Differences between Linkers and Loaders

BASIS FOR

COMPARISON

LINKER LOADER

Basic It generates the executable

module of a source program.

It loads the executable module to

the main memory.

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 3/23

BASIS FOR

COMPARISON

LINKER LOADER

Input It takes as input, the object code

generated by an assembler.

It takes executable module

generated by a linker.

Function It combines all the object modules

of a source code to generate an

executable module.

It allocates the addresses to an

executable module in main

memory for execution.

Type/Approach Linkage Editor, Dynamic linker. Absolute loading, Relocatable

loading and Dynamic Run-time

loading.

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 4/23

Object file format

Object

file

header

Text

segme

nt

Data

segmen

t

Relocati

on

informati

on

Sym

bol

table

Debuggi

ng

informat

ion

• Object file header describes the size and position of the other pieces of the file

• Text segment contains the machine instructions

• Data segment contains binary representation of data in assembly file

• Relocation info identifies instructions and data that depend on absolute addresses

• Symbol table associates addresses with external labels and lists unresolved references

• Debugging info

One pass and two pass assembler design of an assembler

One pass assemblers perform single scan over the source code. If it encounters

any undefined label, it puts it into symbol table along with the address so that the label

can be replaced later when its value is encountered. On the other hand two pass

assembler performs two sequential scans over the source code.

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 5/23

An assembler program creates object code by translating combinations of

mnemonics and syntax for operations and addressing modes into their numerical

equivalents. This representation typically includes an operation code ("opcode") as well

as other control bits and data. The assembler also calculates constant expressions and

resolves symbolic names for memory locations and other entities. The use of symbolic

references is a key feature of assemblers, saving tedious calculations and manual address

updates after program modifications. Most assemblers also include macro facilities for

performing textual substitution – e.g., to generate common short sequences of

instructions as inline, instead of called subroutines.

Some assemblers may also be able to perform some simple types of instruction

set-specific optimizations. One concrete example of this may be the

ubiquitous x86 assemblers from various vendors. Most of them are able to perform jump-

instruction replacements (long jumps replaced by short or relative jumps) in any number

of passes, on request. Others may even do simple rearrangement or insertion of

instructions, such as some assemblers for RISC architectures that can help optimize a

sensible instruction scheduling to exploit the CPU pipeline as efficiently as possible.

Like early programming languages such as Fortran, Algol, Cobol and Lisp,

assemblers have been available since the 1950s and the first generations of text

based computer interfaces. However, assemblers came first as they are far simpler to

write than compilers for high-level languages. This is because each mnemonic along with

the addressing modes and operands of an instruction translates rather directly into the

numeric representations of that particular instruction, without much context or analysis.

There have also been several classes of translators and semi automatic code

generators with properties similar to both assembly and high level languages,

with speedcode as perhaps one of the better known examples.

There may be several assemblers with different syntax for a

particular CPU or instruction set architecture. For instance, an instruction to add memory

data to a register in a x86-family processor might be add eax,[ebx] , in original Intel

syntax, whereas this would be written addl (%ebx),%eax in the AT&T syntax used by

the GNU Assembler. Despite different appearances, different syntactic forms generally

generate the same numeric machine code, see further below. A single assembler may also

have different modes in order to support variations in syntactic forms as well as their

exact semantic interpretations (such as FASM-syntax, TASM-syntax, ideal mode etc., in

the special case of x86 assembly programming).

https://en.wikipedia.org/wiki/Object_code
https://en.wikipedia.org/wiki/Syntax
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Identifier
https://en.wikipedia.org/wiki/Macro_(computer_science)
https://en.wikipedia.org/wiki/Inline_expansion
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Compiler_optimization
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/RISC
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Instruction_scheduling
https://en.wikipedia.org/wiki/CPU_pipeline
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/ALGOL
https://en.wikipedia.org/wiki/Cobol
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Computer_interface
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/High-level_language
https://en.wikipedia.org/wiki/Code_generator
https://en.wikipedia.org/wiki/Code_generator
https://en.wikipedia.org/wiki/High_level_language
https://en.wikipedia.org/wiki/Speedcode
https://en.wikipedia.org/wiki/Syntax_(programming_languages)
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Intel_syntax
https://en.wikipedia.org/wiki/Intel_syntax
https://en.wikipedia.org/wiki/AT%26T_syntax
https://en.wikipedia.org/wiki/GNU_Assembler
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/FASM
https://en.wikipedia.org/wiki/TASM
https://en.wikipedia.org/wiki/X86_assembly_language

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 6/23

Number of passes

There are two types of assemblers based on how many passes through the source are

needed (how many times the assembler reads the source) to produce the object file.

 One-pass assemblers go through the source code once. Any symbol used before

it is defined will require "errata" at the end of the object code (or, at least, no earlier

than the point where the symbol is defined) telling the linker or the loader to "go

back" and overwrite a placeholder which had been left where the as yet undefined

symbol was used.

 Multi-pass assemblers create a table with all symbols and their values in the first

passes, then use the table in later passes to generate code.

In both cases, the assembler must be able to determine the size of each instruction on

the initial passes in order to calculate the addresses of subsequent symbols. This means

that if the size of an operation referring to an operand defined later depends on the type or

distance of the operand, the assembler will make a pessimistic estimate when first

encountering the operation, and if necessary pad it with one or more "no-operation"

instructions in a later pass or the errata. In an assembler with peephole optimization,

addresses may be recalculated between passes to allow replacing pessimistic code with

code tailored to the exact distance from the target.

The original reason for the use of one-pass assemblers was speed of assembly – often

a second pass would require rewinding and rereading the program source on tape or

rereading a deck of cards or punched paper tape. Later computers with much larger

memories (especially disc storage), had the space to perform all necessary processing

without such re-reading. The advantage of the multi-pass assembler is that the absence of

errata makes the linking process (or the program load if the assembler directly produces

executable code) faster.[10]

Example: in the following code snippet a one-pass assembler would be able to determine

the address of the backward reference BKWD when assembling statement S2, but would

not be able to determine the address of the forward referenceFWD when assembling the

branch statement S1; indeed FWD may be undefined. A two-pass assembler would

determine both addresses in pass 1, so they would be known when generating code in

pass 2,

S1 B FWD

 ...

FWD EQU *

 ...

https://en.wikipedia.org/wiki/Erratum
https://en.wikipedia.org/wiki/Linker_(computing)
https://en.wikipedia.org/wiki/NOP_(code)
https://en.wikipedia.org/wiki/Peephole_optimization
https://en.wikipedia.org/wiki/Magnetic_tape_data_storage
https://en.wikipedia.org/wiki/Punch_cards
https://en.wikipedia.org/wiki/Punched_tape
https://en.wikipedia.org/wiki/Linker_(computing)
https://en.wikipedia.org/wiki/Loader_(computing)
https://en.wikipedia.org/wiki/Assembly_language#cite_note-10

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 7/23

BKWD EQU *

 ...

S2 B BKWD

High-level assemblers

More sophisticated high-level assemblers provide language abstractions such as:

 High-level procedure/function declarations and invocations

 Advanced control structures (IF/THEN/ELSE, SWITCH)

 High-level abstract data types, including structures/records, unions, classes, and

sets

 Sophisticated macro processing (although available on ordinary assemblers since

the late 1950s for IBM 700 series and since the 1960s for IBM/360, amongst other

machines)

 Object-oriented programming features such

as classes, objects, abstraction, polymorphism, and inheritance

A program written in assembly language consists of a series of mnemonic processor

instructions and meta-statements (known variously as directives, pseudo-instructions and

pseudo-ops), comments and data. Assembly language instructions usually consist of

an opcode mnemonic followed by a list of data, arguments or parameters.[12] These are

translated by anassembler into machine language instructions that can be loaded into

memory and executed.

For example, the instruction below tells an x86/IA-32 processor to move an immediate 8-

bit value into a register. The binary code for this instruction is 10110 followed by a 3-bit

identifier for which register to use. The identifier for the AL register is 000, so the

following machine code loads the AL register with the data 01100001.[13]

10110000 01100001

This binary computer code can be made more human-readable by expressing it

in hexadecimal as follows.

B0 61

Here, B0 means 'Move a copy of the following value into AL', and 61 is a hexadecimal

representation of the value 01100001, which is 97 in decimal. Assembly language for the

https://en.wikipedia.org/wiki/High-level_assembler
https://en.wikipedia.org/wiki/IBM_700/7000_series
https://en.wikipedia.org/wiki/IBM/360
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Class_(computer_programming)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Type_polymorphism
https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
https://en.wikipedia.org/wiki/Mnemonic
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Assembly_language#cite_note-intel-1999-12
https://en.wikipedia.org/wiki/Assembly_language_assembler
https://en.wikipedia.org/wiki/Machine_language
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/IA-32
https://en.wikipedia.org/wiki/Constant_(programming)
https://en.wikipedia.org/wiki/Constant_(programming)
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Assembly_language#cite_note-intel-1999-MOV-13
https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/Decimal

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 8/23

8086 family provides the mnemonic MOV (an abbreviation ofmove) for instructions such

as this, so the machine code above can be written as follows in assembly language,

complete with an explanatory comment if required, after the semicolon. This is much

easier to read and to remember.

MOV AL, 61h ; Load AL with 97 decimal (61 hex)

In some assembly languages the same mnemonic such as MOV may be used for a family

of related instructions for loading, copying and moving data, whether these are immediate

values, values in registers, or memory locations pointed to by values in registers. Other

assemblers may use separate opcode mnemonics such as L for "move memory to

register", ST for "move register to memory", LR for "move register to register", MVI for

"move immediate operand to memory", etc.

The x86 opcode 10110000 (B0) copies an 8-bit value into the AL register, while

10110001 (B1) moves it into CL and 10110010 (B2) does so into DL. Assembly

language examples for these follow.[13]

MOV AL, 1h ; Load AL with immediate value 1

MOV CL, 2h ; Load CL with immediate value 2

MOV DL, 3h ; Load DL with immediate value 3

The syntax of MOV can also be more complex as the following examples show.[14]

MOV EAX, [EBX] ; Move the 4 bytes in memory at the address contained in

EBX into EAX

MOV [ESI+EAX], CL ; Move the contents of CL into the byte at address ESI+EAX

In each case, the MOV mnemonic is translated directly into an opcode in the ranges 88-

8E, A0-A3, B0-B8, C6 or C7 by an assembler

https://en.wikipedia.org/wiki/Mnemonic
https://en.wikipedia.org/wiki/MOV_(x86_instruction)
https://en.wikipedia.org/wiki/Assembly_language#cite_note-intel-1999-MOV-13
https://en.wikipedia.org/wiki/Assembly_language#cite_note-14

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 9/23

Algorithm for Pass-1 Assembler

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 10/23

Two-pass assembler

Uses of two-pass assembler

 A two-pass assembler reads through the source code twice. Each read-through is

called a pass.

On pass one the assembler doesn't write any code. It builds up a table of symbolic

names against values or addresses.

On pass two, the assembler generates the output code, using the table to resolve

symbolic names, enabling it to enter the correct values.

The advantage of a two-pass assember is that it allows forward referencing in the

source code because when the assembler is generating code it has already found

all references.

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 11/23

Algorithm for Pass-2 Assembler

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 12/23

Absolute loader

In computer systems a loader is the part of an operating system that is

responsible for loading programs and libraries. It is one of the essential stages in the

process of starting a program, as it places programs into memory and prepares them for

execution.

An absolute loader is the simplest type of loading scheme that loads the file into

memory at the location specified by the beginning portion (header) of the file, then it

passes control to the program.

There are two types of loaders, relocating and absolute. The absolute loader is the

simplest and quickest of the two. The loader loads the file into memory at the location

specified by the beginning portion (header) of the file, then passes control to the program.

If the memory space specified by the header is currently in use, execution cannot

proceed, and the user must wait until the requested memory becomes free.

 The absolute loader is a kind of loader in which relocated object files are created,

loader accepts these files and places them at a specified location in the memory.

 This type of loader is called absolute loader because no relocating information is

needed, rather it is obtained from the programmer or assembler.

 The starting address of every module is known to the programmer, this

corresponding starting address is stored in the object file then the task of loader

becomes very simple that is to simply place the executable form of the machine

instructions at the locations mentioned in the object file.

 In this scheme, the programmer or assembler should have knowledge of memory

management. The programmer should take care of two things:

 Specification of starting address of each module to be used. If some

modification is done in some module then the length of that module may vary.

This causes a change in the starting address of immediate next modules, it's then

the programmer's duty to make necessary changes in the starting address of

respective modules.

 While branching from one segment to another the absolute starting address

of respective module is to be known by the programmer so that such address can

be specified at respective JMP instruction.

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 13/23

Advantages:

1. It is simple to implement.

2. This scheme allows multiple programs or the source programs written in different

languages. If there are multiple programs written in different languages then the

respective language assembler will convert it to the language and common object file

can be prepared with all the ad resolution.

3. The task of loader becomes simpler as it simply obeys the instruction regarding

where to place the object code to the main memory.

4. The process of execution is efficient.

Disadvantages:

1. In this scheme, it's the programmer's duty to adjust all the inter-segment addresses

and manually do the linking activity. For that, it is necessary for a programmer to

know the memory management.

2. If at all any modification is done to some segment the starting address of

immediate next segments may get changed the programmer has to take care of this

issue and he/she needs to update the corresponding starting address on any

modification in the source.

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 14/23

The relocating loader

 The relocating loader will load the program anywhere in memory, altering the

various addresses as required to ensure correct referencing. The decision as to where in

memory the program is placed is done by the Operating System, not the programs header

file. This is obviously more efficient, but introduces a slight overhead in terms of a small

delay whilst all the relative offsets are calculated. The relocating loader can only relocate

code that has been produced by a linker capable of producing relative code.

Types of Loaders:

Absolute Loader.

Bootstrap Loader.

 Relocating Loader (Relative Loader)

 Linking Loader.

Two methods for specifying relocation as part of the object program:

The first method:

 A Modification is used to describe each part of the object code that must be

changed when the program is relocated.

Consider the program

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 15/23

 Most of the instructions in this program use relative or immediate addressing.

 The only portions of the assembled program that contain actual addresses are the

extended format instructions on lines 15, 35, and 65. Thus these are the only items

whose values are affected by relocation.

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 16/23

Object program

 Each Modification record specifies the starting address and length of the field

whose value is to be altered.

 It then describes the modification to be performed.

 In this example, all modifications add the value of the symbol COPY, which

represents the starting address of the program.

The second method:

 There are no Modification records.

 The Text records are the same as before except that there is a relocation bit

associated with each word of object code.

 Since all SIC instructions occupy one word, this means that there is one relocation

bit for each possible instruction.

Object program with relocation by bit mask

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 17/23

Dynamic Linking

 An application that depends on dynamic linking calls the external files as needed

during execution. The subroutines are typically part of the operating system, but may be

auxiliary files that came with the application.

 Dynamic linking has the following advantages: Saves memory and reduces

swapping. Many processes can use a single DLL simultaneously, sharing a single copy of

the DLL in memory. In contrast, Windows must load a copy of the library code into

memory for each application that is built with a static link library.

 A dynamic link library (DLL) is a collection of small programs that can be loaded

when needed by larger programs and used at the same time. The small program lets the

larger program communicate with a specific device, such as a printer or scanner. It is

often packaged as a DLL program, which is usually referred to as a DLL file. DLL files

that support specific device operation are known as device drivers.

 Link editors are commonly known as linkers. The compiler automatically invokes

the linker as the last step in compiling a program. The linker inserts code (or maps in

shared libraries) to resolve program library references, and/or combines object modules

into an executable image suitable for loading into memory. On Unix-like systems, the

linker is typically invoked with the ld command.

Static linking is the result of the linker copying all library routines used in the

program into the executable image. This may require more disk space and memory than

dynamic linking, but is both faster and more portable, since it does not require the

presence of the library on the system where it is run.

Dynamic linking is accomplished by placing the name of a sharable library in the

executable image. Actual linking with the library routines does not occur until the image

is run, when both the executable and the library are placed in memory. An advantage of

dynamic linking is that multiple programs can share a single copy of the library.

Linking is often referred to as a process that is performed when the executable

is compiled, while a dynamic linker is a special part of an operating system that loads

external shared libraries into a running process and then binds those shared libraries

dynamically to the running process. This approach is also called dynamic linking or late

linking.

https://searchenterprisedesktop.techtarget.com/definition/device-driver
https://en.wikipedia.org/wiki/Compile_time
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Dynamic_dispatch
https://en.wikipedia.org/wiki/Process_(computing)

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 18/23

Overview of compilation:

 The process of compiling a set of source files into a corresponding set of class files

is not a simple one, but can be generally divided into three stages. Different parts of

source files may proceed through the process at different rates, on an "as needed" basis.

This process is handled by the JavaCompiler class.

1. All the source files specified on the command line are read, parsed into

syntax trees, and then all externally visible definitions are entered into the

compiler's symbol tables.

2. All appropriate annotation processors are called. If any annotation processors

generate any new source or class files, the compilation is restarted, until no

new files are created.

3. Finally, the syntax trees created by the parser are analyzed and translated

into class files. During the course of the analysis, references to additional

classes may be found. The compiler will check the source and class path for

these classes; if they are found on the source path, those files will be

compiled as well, although they will not be subject to annotation processing.

Parse and Enter

Source files are processed for Unicode escapes and converted into a stream of tokens by

the Scanner.

The token stream is read by the Parser, to create syntax trees, using a TreeMaker. Syntax

trees are built from subtypes of JCTree which implementcom.sun.source.Tree and its

subtypes.

Each tree is passed to Enter, which enters symbols for all the definitions encountered into

the symbols. This has to done before analysis of trees which might reference those

symbols. The output from this phase is a To Do list, containing trees that need to be

analyzed and have class files generated.

Enter consists of phases; classes migrate from one phase to the next via queues.

class enter → Enter.uncompleted → MemberEnter (1)

 → MemberEnter.halfcompleted → MemberEnter (2)

 → To Do → (Attribute and Generate)

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 19/23

1. In the first phase, all class symbols are entered into their enclosing scope,

descending recursively down the tree for classes which are members of other

classes. The class symbols are given a MemberEnter object as completer.

In addition, if any package-info.java files are found, containing package

annotations, then the top level tree node for the file is put on the To Do list as

well.

2. In the second phase, classes are completed using MemberEnter.complete().

Completion might occur on demand, but any classes that are not completed

that way will be eventually completed by processing theuncompleted queue.

Completion entails

 (1) determination of a class's parameters, supertype and

interfaces.

 (2) entering all symbols defined in the class into its scope, with

the exception of class symbols which have been entered in phase

3. After all symbols have been entered, any annotations that were encountered

on those symbols will be analyzed and validated.

Whereas the first phase is organized as a sweep through all compiled syntax trees, the

second phase is on demand. Members of a class are entered when the contents of a class

are first accessed. This is accomplished by installing completer objects in class symbols

for compiled classes which invoke the MemberEnter phase for the corresponding class

tree.

Annotation Processing

This part of the process is handled by JavacProcessingEnvironment.

Conceptually, annotation processing is a preliminary step before compilation. This

preliminary step consists of a series of rounds, each to parse and enter source files, and

then to determine and invoke any appropriate annotation processors. After an initial

round, subsequent rounds will be performed if any of the annotation processors that are

called generate any new source files or class files that need to be part of the eventual

compilation. Finally, when all necessary rounds have been completed, the actual

compilation is performed.

Analyse and Generate

Once all the files specified on the command line have been parsed and entered into the

compiler's symbol tables, and after any annotation processing has

occurred,JavaCompiler can proceed to analyse the syntax trees that were parsed with a

view to generating the corresponding class files.

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 20/23

Attr

The top level classes are "attributed", using Attr, meaning that names, expressions

and other elements within the syntax tree are resolved and associated with the

corresponding types and symbols. Many semantic errors may be detected here,

either by Attr, or by Check.

Flow

If there are no errors so far, flow analysis will be done for the class, using Flow.

Flow analysis is used to check for definite assignment to variables, and

unreachable statements, which may result in additional errors.

TransTypes

Code involving generic types is translated to code without generic types,

usingTransTypes.

Phases of a compiler:

 The compilation process is a sequence of various phases. Each phase takes input

from its previous stage, has its own representation of source program, and feeds its output

to the next phase of the compiler. Let us understand the phases of a compiler.

Lexical Analysis

 The first phase of scanner works as a text scanner. This phase scans the source

code as a stream of characters and converts it into meaningful lexemes. Lexical analyzer

represents these lexemes in the form of tokens as:

<token-name, attribute-value>

Syntax Analysis

 The next phase is called the syntax analysis or parsing. It takes the token produced

by lexical analysis as input and generates a parse tree (or syntax tree). In this phase,

token arrangements are checked against the source code grammar, i.e. the parser checks

if the expression made by the tokens is syntactically correct.

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 21/23

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 22/23

Semantic Analysis

Semantic analysis checks whether the parse tree constructed follows the rules of

language. For example, assignment of values is between compatible data types, and

adding string to an integer. Also, the semantic analyzer keeps track of identifiers, their

types and expressions; whether identifiers are declared before use or not etc. The

semantic analyzer produces an annotated syntax tree as an output.

Intermediate Code Generation

After semantic analysis the compiler generates an intermediate code of the source code

for the target machine. It represents a program for some abstract machine. It is in

between the high-level language and the machine language. This intermediate code

should be generated in such a way that it makes it easier to be translated into the target

machine code.

Code Optimization

The next phase does code optimization of the intermediate code. Optimization can be

assumed as something that removes unnecessary code lines, and arranges the sequence

of statements in order to speed up the program execution without wasting resources

(CPU, memory).

Code Generation

In this phase, the code generator takes the optimized representation of the intermediate

code and maps it to the target machine language. The code generator translates the

intermediate code into a sequence of (generally) re-locatable machine code. Sequence of

instructions of machine code performs the task as the intermediate code would do.

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 23/23

Symbol Table

It is a data-structure maintained throughout all the phases of a compiler. All the

identifier's names along with their types are stored here. The symbol table makes it

easier for the compiler to quickly search the identifier record and retrieve it. The symbol

table is also used for scope management.

KARPAGAM ACADEMY OF HIGHER EDUCATION

DEPARTMENT OF CS, CA & IT

SUBJECT: SYSTEM PROGRAMMING

SUBJECT CODE: 16CSU601B

MULTIPLE CHOICE QUESTIONS

UNIT-1

sno Questions opt1 opt2

1

In a two pass assembler the object code

generation is done during the ?
Second pass First pass

2

Which of the following is not a type of

assembler ?
one pass two pass

3

In a two pass assembler, adding literals to

literal table and address resolution of local

symbols are done using ?

First pass and

second

respectively

Both second

pass

4

In a two pass assembler the pseudo code EQU

is to be evaluated during ?
Pass 1 Pass 2

5

Which of the following system program

foregoes the production of object code to

generate absolute machine code and load it

into the physical main storage location from

which it will be executed immediately upon

completion of the assembly ?

Macro processor
Load and go

assembler

6

Translator for low level programming language

were termed as
Assembler Compiler

7 An assembler is

programming

language

dependent

syntax

dependant

8 An imperative statement

Reserves areas of

memory and

associates names

with them

Indicates an

action to be

performed

during

execution of

assembled

program

9

In a two-pass assembler, the task of the Pass

II is to

separate the

symbol, mnemonic

opcode and

operand fields.

build the

symbol table.

10 TII stands for

Table of

incomplete

instructions

Table of

information

instructions

11

Which of the following system software resides

in main memory always ?
Text editor Assembler

12 Daisy chain is a device for ?

Interconnecting a

number of devices

to number of

controllers

Connecting a

number of

devices to a

controller

13

Which of the following type of software should

be used if you need to create,edit and print

document ?

Word processing Spreadsheet

14

Producer consumer problem can be solved

using ?

semaphores event counters

15 What is bootstraping?

A language

interpreting other

language program

A language

compiling other

language

program

16 Shell is the exclusive feature of

UNIX DOS

17 A program in execution is called Process Instruction

18 A UNIX device driver is

Structured into two

halves called top

half and bottom

half

Three equal

partitions

19 Memory

is an device that

performs a

sequence of

operations

specified by

instructions in

memory

is the device

where

information is

stored

20

In which addressing mode, the operand is

given explicitly in the instruction itself

absolute mode immediate

mode

21

In which addressing mode the effective

address of the operand is generated by adding

a constant value to the context of register

absolute mode immediate

mode

22 A garbage is

un-allocated

storage

allocated

storage with all

across path to

it destroyed

23 Which of the following program is not a utility?

Debugger Editor

24

A development stategy whereby the executive

control modules of a system are coded and

tested first, is known as

Bottom-up

development

Top-down

development

25

Which of the following systems software does

the job of merging the records from two flies

into one?

Documentation

system

Utility program

26 A computer can not boot if it does not have the

compiler loader

27 The Process Manager has to keep track of:

the status of each

program

the priority of

each program

28

A sequence of instructions, in a computer

language, to get the desired result, is known as

Algorithm Decision Table

29

Action implementing instruction’s meaning are

a actually carried out by

Instruction fetch Instruction

decode

30 A bottom up parser generates

Right most

derivation

Right most

derivation in

reverse

31 Object program is a

Program written in

machine language

Program to be

translated into

machine

language

32

Software that allows your computer to interact

with the user, applications, and hardware is

called

application

software

word processor

33

Programs that coordinate computer resources,

provide an interface between users and the

computer,

utilities operating

systems

34

Specialized programs that allow particular input

or output devices to communicate with the rest

of the computer system are called

operating systems utilities

35

Also known as a service program, this type of

program performs specific tasks related to

managing computer resources.

utility operating

system

36

In order for a computer to understand a

program, it must be converted into machine

language by

operating system utility

37

Which of the following is not a function of the

operating system?

Manage resources Internet access

38

The items that a computer can use in its

functioning are collectively called its

resources stuff

39

Programs that coordinate all of the computer’s

resources including memory, processing,

storage, and devices such as printers are

collectively referred to as

language

translators

resources

40

A compiler is a software tool that translates

___________that the computer can

understand.

Algorithm into data Source code

into data

41

The object code is then passed through a

program called a ___________ which turns it

into an executable program.

Integer Source code

42

When a computer is first turned on or

restarted, a special type of absolute loader is

executed, called a

Compile and Go

loader

Boot loader

43 What is memory in Computer ?

is a sequence of

instructions

is the device

where

information is

stored

44 A program -

is a sequence of

instructions

is the device

where

information is

stored

45

The __ of a system includes the program s or

instructions.

icon software

46

Various applications and documents are

represented on the Windows desktop by __.

icons labels

47

The coordination of processor operation in

CPU is controled by

CU ALU

48 The name of the first microprocessor chip was

Intel1004 Intel2004

49 ntel introduced first 32 bit processor in 1985 1987

50

In a microprocessor there are 120 instructions,

how many bits needed to implement this

5 6

51

Which device can understand the difference

data and programs?

ALU Registers

52

A memory bus is used for communication

between

ALU and Register Processor and

Memory

53

The fourth generation computer was made up

of

chips transistor

54

The number of clock cycles necessary to

complete 1 fetch cycle in 8085 is

3 or 4 4 or 5

opt3 opt4
Answer

Zeroeth pass
Not done by

assembler
Second pass

three pass load and go three pass

Second pass

and first

respectively

Both first pass Both first pass

not evaluated

by the

assembler

None of above Pass 1

Two pass

assembler
Compiler

Load and go

assembler

Linker Loader Assembler

machine

dependant
data dependant

machine

dependant

Indicates an

action to be

performed

during

optimization

None of the

above

Indicates an

action to be

performed

during

execution of

assembled

program

construct

intermediate

code.

synthesize the

target program.

synthesize the

target program.

Translation of

instructions

information

Translation of

information

instruction

Table of

incomplete

instructions

Linker Loader Loader

Connecting a

number of

controller to

devices

All of above

Connecting a

number of

devices to a

controller

Desktop

publishing

UNIX Word

processing

monitors all of above all of above

A language

compile itself

All of above A language

compile itself

System

software

Application

software

UNIX

Procedure Function Process

Unstructured None of the

above

Structured into

two halves

called top half

and bottom half

is a sequence

of instructions

is a

computational

unit to perform

specific

functions

is the device

where

information is

stored

indirect mode index mode immediate

mode

indirect mode index mode indirect mode

allocated

storage

uninitialized

storage

allocated

storage with all

across path to it

destroyed

Spooler All of the above Spooler

Left-Right

development

All of the above Top-down

development

Networking

software

Security

software

Utility program

operating

system

assembler loader

the information

management

support to a

programmer

using the

system

both a and b both a and b

Program All of the above Program

Instruction

execution

Instruction

program

Instruction

execution

Left most

derivation

Left most

derivation in

reverse

Right most

derivation in

reverse

Translation of

high-level

language into

machine

language

None of the

mentioned

Translation of

high-level

language into

machine

language

system

software

database

software

system software

device drivers language

translators

operating

systems

device drivers language

translators

device drivers

language

translator

device driver utility

device driver language

translator

language

translator

Provide a user

interface

Load and run

applications

Internet access

capital properties resources

applications interfaces resources

Computer

language into

data

None of the

above

Source code

into data

Linker None of the

above

Linker

Bootstrap

loader

Relating loader Bootstrap

loader

is an device

that performs a

sequence of

operations

specified by

instructions in

memory

none of these is the device

where

information is

stored

is a device that

performs a

sequence of

operations

specified by

instructions in

memory

none of these is a sequence of

instructions

hardware information software

graphs symbols icons

Registers All of the above CU

Intel3004 Intel4004 Intel4004

1989 1993 1985

7 8 7

Motherboard Microprocessor Microprocessor

Input and

Output devices

All of the above Processor and

Memory

vaccume tubes microprocessor

chips

microprocessor

chips

4 or 6 6 or 7 4 or 6

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 1/11

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.SC CS COURSE NAME: System Programming

COURSE CODE: 16CSU601B BATCH: 2016-2019

UNIT II: ROLE OF A LEXICAL ANALYZER

UNIT II

SYLLABUS

Lexical Analysis:

Role of a Lexical analyzer, Specification and recognition of tokens, Symbol table

OVER VIEW OF LEXICAL ANALYSIS

To identify the tokens we need some method of describing the possible tokens

that can appear in the input stream. For this purpose we introduce regular expression, a

notation that can be used to describe essentially all the tokens of programming language.

Secondly, having decided what the tokens are, we need some mechanism to recognize

these in the input stream. This is done by the token recognizers, which are designed using

transition diagrams and finite automata.

ROLE OF LEXICAL ANALYZER

The LA is the first phase of a compiler. It main task is to read the input character and

produce as output a sequence of tokens that the parser uses for syntax analysis.

Upon receiving a ‘get next token’ command form the parser, the lexical analyzer reads

the input character until it can identify the next token. The LA return to the parser

representation for the token it has found. The representation will be an integer code, if the

token is a simple construct such as parenthesis, comma or colon.

 LA may also perform certain secondary tasks as the user interface. One such task is

striping out from the source program the commands and white spaces in the form of

Lexical

Analyzer

Symbol Table

Parser
token

getNextTokenm

Source

program

to Semantic analysis

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 2/11

blank, tab and new line characters. Another is correlating error message from the

compiler with the source program.

LEXICAL ANALYSIS VS PARSING:

Lexical analysis Parsing

A Scanner simply turns an input String (say

a file) into a list of tokens. These tokens

represent things like identifiers,

parentheses, operators etc.

The lexical analyzer (the "lexer") parses

individual symbols from the source code

file into tokens. From there, the "parser"

proper turns those whole tokens into

sentences of your grammar

A parser converts this list of tokens into a

Tree-like object to represent how the

tokens fit together to form a cohesive

whole (sometimes referred to as a

sentence).

 A parser does not give the nodes any

meaning beyond structural cohesion. The

next thing to do is extract meaning from

this structure (sometimes called contextual

analysis).

TOKEN, LEXEME, PATTERN:

Token: Token is a sequence of characters that can be treated as a single logical entity.

Typical tokens are, 1) Identifiers 2) keywords 3) operators 4) special symbols 5)constants

Pattern: A set of strings in the input for which the same token is produced as output.

This set of strings is described by a rule called a pattern associated with the token.

Lexeme: A lexeme is a sequence of characters in the source program that is matched by

the pattern for a token. Example:

Token lexeme pattern

const const const

if if if

relation <,<=,= ,<>,>=,> < or <= or = or <> or >= or letter followed by

letters & digit

i pi any numeric constant

nun 3.14 any character b/w “and “except"

literal "core" pattern

A pattern is a rule describing the set of lexemes that can represent a particular token in

source program.

LEXICAL ERRORS:

Lexical errors are the errors thrown by your lexer when unable to continue. Which means

that there's no way to recognise a lexeme as a valid token for you lexer. Syntax errors, on

the other side, will be thrown by your scanner when a given set of already recognised

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 3/11

valid tokens don't match any of the right sides of your grammar rules. simple panic-mode

error handling system requires that we return to a high-level parsing function when a

parsing or lexical error is detected.

 Error-recovery actions are:

 Delete one character from the remaining input.

 Insert a missing character in to the remaining input.

 Replace a character by another character.

 Transpose two adjacent characters.

DIFFERENCE BETWEEN COMPILER AND INTERPRETER

 A compiler converts the high level instruction into machine language while an

interpreter converts the high level instruction into an intermediate form.

 Before execution, entire program is executed by the compiler whereas after

translating the first line, an interpreter then executes it and so on.

 List of errors is created by the compiler after the compilation process while

aninterpreter stops translating after the first error.

 An independent executable file is created by the compiler whereas interpreter is

required by an interpreted program each time.

 The compiler produce object code whereas interpreter does not produce object code.

 In the process of compilation the program is analyzed only once and then the code is

generated whereas source program is interpreted every time it is to be executed and

every time the source program is analyzed. hence interpreter is less efficient than

compiler.

 Examples of interpreter: A UPS Debugger is basically a graphical source level

debugger but it contains built in C interpreter which can handle multiple source files.

example of compiler: Borland c compiler or Turbo C compiler compiles the programs

written in C or C++.

Specification and recognition of tokens:

There are 3 specifications of tokens:

1)Strings

2) Language

3)Regular expression

Strings and Languages

 An alphabet or character class is a finite set of symbols.

 A string over an alphabet is a finite sequence of symbols drawn from that alphabet.

 A language is any countable set of strings over some fixed alphabet.

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 4/11

In language theory, the terms "sentence" and "word" are often used as synonyms for

"string." The length of a string s, usually written |s|, is the number of occurrences of

symbols in s. For example, banana is a string of length six. The empty string, denoted ε,

is the string of length zero.

Operations on strings

The following string-related terms are commonly used:

1. A prefix of string s is any string obtained by removing zero or more symbols from the

end of string s. For example, ban is a prefix of banana.

2. A suffix of string s is any string obtained by removing zero or more symbols from the

beginning of s. For example, nana is a suffix of banana.

3. A substring of s is obtained by deleting any prefix and any suffix from s. For example,

nan is a substring of banana.

4. The proper prefixes, suffixes, and substrings of a string s are those prefixes,

suffixes, and substrings, respectively of s that are not ε or not equal to s itself.

5. A subsequence of s is any string formed by deleting zero or more not necessarily

consecutive positions of s

6. For example, baan is a subsequence of banana.

Operations on languages:

The following are the operations that can be applied to languages:

1. Union

2. Concatenation

3. Kleene closure

4. Positive closure

The following example shows the operations on strings: Let L={0,1} and S={a,b,c}

Regular Expressions

· Each regular expression r denotes a language L(r).

· Here are the rules that define the regular expressions over some alphabet Σ

and the languages that those expressions denote:

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 5/11

1.ε is a regular expression, and L(ε) is { ε }, that is, the language whose sole member is

the empty string.

2. If ‘a’ is a symbol in Σ, then ‘a’ is a regular expression, and L(a) = {a}, that is, the

language with one string, of length one, with ‘a’ in its one position.

3.Suppose r and s are regular expressions denoting the languages L(r) and L(s). Then, a)

(r)|(s) is a regular expression denoting the language L(r) U L(s).

b) (r)(s) is a regular expression denoting the language L(r)L(s). c) (r)* is a regular

expression denoting (L(r))*.

d) (r) is a regular expression denoting L(r).

4.The unary operator * has highest precedence and is left associative.

5.Concatenation has second highest precedence and is left associative.

6. | has lowest precedence and is left associative.

Regular set

A language that can be defined by a regular expression is called a regular set. If two

regular expressions r and s denote the same regular set, we say they are equivalent and

write r = s.

There are a number of algebraic laws for regular expressions that can be used to

manipulate into equivalent forms.

For instance, r|s = s|r is commutative; r|(s|t)=(r|s)|t is associative.

Regular Definitions

Giving names to regular expressions is referred to as a Regular definition. If Σ is an

alphabet of basic symbols, then a regular definition is a sequence of definitions of the

form

dl → r 1

d2 → r2

………

dn → rn

1.Each di is a distinct name.

2.Each ri is a regular expression over the alphabet Σ U {dl, d2,. . . , di-l}.

Example: Identifiers is the set of strings of letters and digits beginning with a letter.

Regular

definition for this set:

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 6/11

letter → A | B | …. | Z | a | b | …. | z | digit → 0 | 1 | …. | 9

id → letter (letter | digit) *

Shorthands

Certain constructs occur so frequently in regular expressions that it is convenient to

introduce notational short hands for them.

1. One or more instances (+):

- The unary postfix operator + means “ one or more instances of” .

- If r is a regular expression that denotes the language L(r), then (r)+ is a regular

expression that denotes the language (L (r))+

- Thus the regular expression a+ denotes the set of all strings of one or more a’s.

- The operator + has the same precedence and associativity as the operator *.

2. Zero or one instance (?):

- The unary postfix operator ? means “zero or one instance of”.

- The notation r? is a shorthand for r | ε.

- If ‘r’ is a regular expression, then (r)? is a regular expression that denotes the language

3. Character Classes:

- The notation [abc] where a, b and c are alphabet symbols denotes the regular expression

a | b | c.

- Character class such as [a – z] denotes the regular expression a | b | c | d | ….|z.

- We can describe identifiers as being strings generated by the regular expression, [A–

Za–z][A– Za–z0–9]*

Non-regular Set

 A language which cannot be described by any regular expression is a non-regular set.

Example: The set of all strings of balanced parentheses and repeating strings cannot be

described by a regular expression. This set can be specified by a context-free grammar.

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 7/11

Symbol table

Symbol table is an important data structure created and maintained by compilers in order

to store information about the occurrence of various entities such as variable names,

function names, objects, classes, interfaces, etc. Symbol table is used by both the

analysis and the synthesis parts of a compiler.

Symbol table is an important data structure created and maintained by compilers in order

to store information about the occurrence of various entities such as variable names,

function names, objects, classes, interfaces, etc. Symbol table is used by both the

analysis and the synthesis parts of a compiler.

A symbol table may serve the following purposes depending upon the language in hand:

 To store the names of all entities in a structured form at one place.

 To verify if a variable has been declared.

 To implement type checking, by verifying assignments and expressions in the

source code are semantically correct.

 To determine the scope of a name (scope resolution).

A symbol table is simply a table which can be either linear or a hash table. It maintains

an entry for each name in the following format:

<symbol name, type, attribute>

For example, if a symbol table has to store information about the following variable

declaration:

static int interest;

then it should store the entry such as:

<interest, int, static>

The attribute clause contains the entries related to the name.

Implementation

If a compiler is to handle a small amount of data, then the symbol table can be

implemented as an unordered list, which is easy to code, but it is only suitable for small

tables only. A symbol table can be implemented in one of the following ways:

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 8/11

 Linear (sorted or unsorted) list

 Binary Search Tree

 Hash table

Among all, symbol tables are mostly implemented as hash tables, where the source code

symbol itself is treated as a key for the hash function and the return value is the

information about the symbol.

Operations

A symbol table, either linear or hash, should provide the following operations.

insert()

This operation is more frequently used by analysis phase, i.e., the first half of the

compiler where tokens are identified and names are stored in the table. This operation is

used to add information in the symbol table about unique names occurring in the source

code. The format or structure in which the names are stored depends upon the compiler

in hand.

An attribute for a symbol in the source code is the information associated with that

symbol. This information contains the value, state, scope, and type about the symbol.

The insert() function takes the symbol and its attributes as arguments and stores the

information in the symbol table.

For example:

int a;

should be processed by the compiler as:

insert(a, int);

lookup()

lookup() operation is used to search a name in the symbol table to determine:

 if the symbol exists in the table.

 if it is declared before it is being used.

 if the name is used in the scope.

 if the symbol is initialized.

 if the symbol declared multiple times.

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 9/11

The format of lookup() function varies according to the programming language. The

basic format should match the following:

lookup(symbol)

This method returns 0 (zero) if the symbol does not exist in the symbol table. If the

symbol exists in the symbol table, it returns its attributes stored in the table.

Scope Management

A compiler maintains two types of symbol tables: a global symbol table which can be

accessed by all the procedures andscope symbol tables that are created for each scope in

the program.

To determine the scope of a name, symbol tables are arranged in hierarchical structure

as shown in the example below:

. . .

int value=10;

void pro_one()

 {

 int one_1;

 int one_2;

 { \

 int one_3; |_ inner scope 1

 int one_4; |

 } /

 int one_5;

 { \

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 10/11

 int one_6; |_ inner scope 2

 int one_7; |

 } /

 }

void pro_two()

 {

 int two_1;

 int two_2;

 { \

 int two_3; |_ inner scope 3

 int two_4; |

 } /

 int two_5;

 }

. . .

The above program can be represented in a hierarchical structure of symbol tables:

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 11/11

The global symbol table contains names for one global variable (int value) and two

procedure names, which should be available to all the child nodes shown above. The

names mentioned in the pro_one symbol table (and all its child tables) are not available

for pro_two symbols and its child tables.

This symbol table data structure hierarchy is stored in the semantic analyzer and

whenever a name needs to be searched in a symbol table, it is searched using the

following algorithm:

 first a symbol will be searched in the current scope, i.e. current symbol table.

 if a name is found, then search is completed, else it will be searched in the parent

symbol table until,

 either the name is found or global symbol table has been searched for the name.

KARPAGAM ACADEMY OF HIGHER EDUCATION

DEPARTMENT OF CS, CA & IT

SUBJECT: SYSTEM PROGRAMMING

SUBJECT CODE: 16CSU601B

MULTIPLE CHOICE QUESTIONS

UNIT-2

sno Questions opt1 opt2

1

Which of the following electronic component

are not found in ordinary ICs? Diodes Resistors

2 Intel 486 is___ bit microprocessor. 8 Bit 16 Bit

3

The graph that shows basic blocks and their

successor relationship is called DAG Flow graph

4

When a computer is first turned on or

resrarted, a special type of absolute loader is

executed called Boot loader Relating loader

5

Sotware that measures, monitors, analyzes

and controls real world events is called System software Business software

6 The root directory of a disk should be placed

at a fixed address in

main memory

at a fixed location

on the disk

7 Linker and Loader are the _______. Utility programs Sub-Task

8

Dividing a project into segments and smaller

units in order to simplify analysis, design and

programming efforts is called Left right approach Modular approach

9 System generation is always quite simple

is always very

difficult

10

While running DOS on a PC, command which

can be used to duplicate the entire diskette

is COPY DISKCOPY

11

A system program which sets up an

executable program in main memory ready

for execution, is assembler linker

12

Operating system for the laptop computer

called MacLite is windows DOS

13

Computer general-purpose software is

basically a system software data base software

14 Special purpose software are application softwares system softwares

15

In computers, operating system and utility

programs are examples of system software device drivers

16

Control, usage and allocation of different

hardware components of computer is done

by address bus system software

17

Computer software which is designed only

for the use of particular customer or

organization is called program application

18

Computer software designed for the use of

sale to general public is called package software application software

19 The linker ? is same as the loader

is required to create

a load module

20

A system program that combines the

separately compiled modules of a program

into a form suitable for execution ? Assembler Linking loader

21

Loading process can be divided into two

separate programs, to solve some problems.

The first is binder the other is ? Linkage editor Module Loader

22

Load address for the first word of the

program is called Linker address origin Load address origin

23 A linker program

places the program in

the memory for the

purpose of execution.

relocates the

program to execute

from the specific

memory area

allocated to it.

24

Resolution of externally defined symbols is

performed by Linker Loader

25 Relocatable programs

cannot be used with

fixed partitions

can be loaded

almost anywhere in

memory

26

Static memory allocation is typically

performed during _____________. compilation execution

27

Dynamic memory allocation is typically

performed during _______________. loading of the program

compilation of the

program

28

Dynamic memory allocation is implementing

using ________________. queue and stacks trees

29

________________ are used for reduce the

main memory requirements of program. Heaps Overlays

30

________________is used for reducing

relocation requirements. Relocation register Track register

31 Linking is process of binding

Internal part of a

program

external functional

call

32

If load origin is not equal to linked origin

then relocation is performed by Loader Linker

33

If linked origin is not equal to translated

address then relocation is performed

by____________. Absolute Loader Loader

34 Which is not a funciton of a loader allocation translation

35

A system program that set up an executable

program in main memory ready for

execution is assembler linker

36 Linker and Loader are the Utility programs Sub-Task

37

_______ converts assembly language

programs into object files Compiler Assembler

38

______ loads the executable module to the

main memory. Interpreter Linker

39 _______ is the type of linker. Informal Linkage Editor

40

_______ header describes the size and

position of the other pieces of the file. Object file Donald Knuth

41

_______ assemblers perform single scan over

the source code. Two pass One pass

42 “opcode” is otherwise called as ______. operation code operable code

43

The mnemonic used to move data from

"register to register" is ______. L R

44

Relocating Loader is otherwise called as

_______ loader. Relative Relational

45

DLL files that support specific device

operation are known as _______. Bootstrap device drivers

46

Source files are converted into a stream of

tokens by ______. Scanner Memory

47

_______ is a sequence of characters that can

be treated as a single logical entity. Function Method

48

A ________ is a sequence of characters in the

source program that is matched by the Pattern. lexagon lexeme

49

A _______ converts the high level instruction

into machine language. Loader Assembler

https://en.wikipedia.org/wiki/Opcode

50

NASM, MASM are the examples for

________. Analyser Assembler

51

Resolving references among files is done by

_________. Linker Unicode

52

_______ files contain a combination of

machine instructions, data, and information. Source Register

53

_______ pass reads each line and records

labels in a symbol table. First Second

54

_______ takes executable module generated

by a linker. Assembler Linker editor

55

______ segment contains binary

representation of data in assembly file. Data Text

opt3 opt4 Answer

Inductors Transistors Inductors

32 Bit 64 Bit 32 Bit

Control graph

Hamiltonion

graph Flow graph

Boot strap

loader

" Compile

and GO "

loader

Boot strap

loader

Scientific

software

Real time

software

Real time

software

anywhere on the

disk

none of

these

at a fixed

location on

the disk

 Sub-problems Process

Utility

programs

Top down

approach

Bottom up

approach

Modular

approach

varies in

difficulty

between

systems

requires

extensive

tools to be

understanda

ble

requires

extensive

tools to be

understanda

ble

CHKDSK TYPE DISKCOPY

loader compiler loader

MS-DOS OZ OZ
package

software

application

software

system

software

utility softwares

Bespoke

softwares

application

softwares
application

software

customized

software

system

software

application

software data bus

system

software

customized

software

system

software

customized

software

system software

customized

software

package

software

is always used

before programs

are executed

None of

above

is required

to create a

load module

Cross compiler Load and Go

Linking

loader

Relocator

None of

these

Module

Loader

Phase library

Absolute

library

Load

address

origin

links the

program with

other programs

needed for its

execution.

interfaces

the program

with the

entities

generating

its input

data.

links the

program

with other

programs

needed for

its

execution.

Compiler Editor Linker

do not need a

linker

can be

loaded only

at one

specific

location

can be

loaded

almost

anywhere in

memory

loading linking compilation

execution of the

program

None of the

above

execution of

the program

stack and heaps graphs

stack and

heaps

Graphs

None of the

above Overlays

Binding register

Segment

Register

Segment

Register

External

reference to the

correct link time

address

None of the

above

External

reference to

the correct

link time

address

By program itself

Relocation

not

performed Loader

Linker

None of the

above Linker

relocation loading translation

loader text-editor loader

Sub-problems Process

Utility

programs

 Linker Loader Assembler

Compiler Loader Loader

 Assembler Loader

 Linkage

Editor

Source file Obj file Object file

Three pass All of these One pass

ope code Obj code

operation

code

LRU LR LR

Redo Recursive Relative

Parsing Scheduling

device

drivers

Register Unicode Scanner

Definition Token Token

Analyser combine lexeme

Interpreter compiler compiler

Compiler Linker Assembler

Source file All of these Linker

Object Obj code Object

Third

First &

Second First

Loader Compiler Loader

Object file Header Data

Prepared By Dr. T. GENISH, Dr. B. FirdausBegam, Department of CS, CA & IT, KAHEPage 1/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : III B.SC CS COURSE NAME: System Programming

COURSE CODE: 16CSU601B BATCH: 2016-2019

UNIT III: PARSING

UNIT III

SYLLABUS

Parsing:

Bottom up parsing- LR parser, yaCSU. Intermediate representations: Three address

code generation, syntax directed translation, translation of types, control Statements.

Parsing

A syntax analyzer or parser takes the input from a lexical analyzer in the form of token

streams. The parser analyzes the source code (token stream) against the production rules

to detect any errors in the code. The output of this phase is a parse tree.

 Working principle Syntax Analyzer

 In this way, the parser accomplishes two tasks, i.e., parsing the code and looking

forerrors. Finally a parse tree is generated as the output of this phase. Parsers are

expected to parse the whole code even if some errors exist in the program.Parsers use

error recovering strategies.

Limitations of Syntax Analyzers

Syntax analyzers receive their inputs, in the form of tokens, from lexical

analyzers.Lexical analyzers are responsible for the validity of a token supplied by the

syntaxanalyzer. Syntax analyzers have the following drawbacks:

 it cannot determine if a token is valid,

 it cannot determine if a token is declared before it is being used,

 it cannot determine if a token is initialized before it is being used,

 It cannot determine if an operation performed on a token type is valid or not.

Prepared By Dr. T. GENISH, Dr. B. FirdausBegam, Department of CS, CA & IT, KAHEPage 2/15

These tasks are accomplished by the semantic analyzer, which we shall study inSemantic

Analysis.

Types of Parsing

Syntax analyzers follow production rules defined by means of context-free grammar.The

way the production rules are implemented (derivation) divides parsing into two types:top-

down parsing and bottom-up parsing.

Top-down Parsing

When the parser starts constructing the parse tree from the start symbol and thentries to

transform the start symbol to the input, it is called top-down parsing.

Recursive descent parsing: It is a common form of top-down parsing. It is

calledrecursive, as it uses recursive procedures to process the input. Recursive

descentparsing suffers from backtracking.

Backtracking: It means, if one derivation of a production fails, the syntax analyser

restarts the process using different rules of same production. This technique mayprocess

the input string more than once to determine the right production.

Bottom-up Parsing

As the name suggests, bottom-up parsing starts with the input symbols and tries

toconstruct the parse tree up to the start symbol.

Note:

In both the cases the input to the parser is being scanned from left to right, onesymbol at

a time.

The bottom-up parsing method is called “Shift Reduce” parsing. The top-down parsingis

called “Recursive Decent” parsing.

Bottom-up parsing starts from the leaf nodes of a tree and works in upward directiontill it

reaches the root node. Here, we start from a sentence and then apply productionrules in

reverse manner in order to reach the start symbol. The image given below depictsthe

bottom-up parsers available

An operator-precedence parser is one kind of shift reduce parser and predictive parseris

one kind of recursive descent parser.

Prepared By Dr. T. GENISH, Dr. B. FirdausBegam, Department of CS, CA & IT, KAHEPage 3/15

Shift reduce parsing methods

 It is called as bottom up style of parsing. Shift-reduce parsing uses two unique steps for

bottom-up parsing. These steps are known as shift-step and reduce-step.

Shift step

 The shift step refers to the advancement of the input pointer to the next input symbol,

which is called the shifted symbol. This symbol is pushed onto the stack. The

shifted symbol is treated as a single node of the parse tree.

Reduce step

 When the parser finds a complete grammar rule (RHS) and replaces it to (LHS), it

is known as reduce-step. This occurs when the top of the stack contains a handle.

To reduce, a POP function is performed on the stack which pops off the handle and

replaces it with LHS non-terminal symbol.

Reducing a string W to the start symbol S of a grammar.

 At each step a string matching the right side of a production is replaced by the symbol

on the left.

Example:

 Each replacement of the right side of the production the left side in the process above is

called reduction .by reverse of a right most derivation is called Handle

in partition following is a handle of αβw. The string w

to the right of the handle contains only terminal symbol.

 A rightmost derivation in reverse often called a canonical reduction sequence, is

obtained by “Handle Pruning”.

Prepared By Dr. T. GENISH, Dr. B. FirdausBegam, Department of CS, CA & IT, KAHEPage 4/15

LR Parser

 The LR parser is a non-recursive, shift-reduce, bottom-up parser. It uses a wide classof

context-free grammar which makes it the most efficient syntax analysis technique. LR

parsers are also known as LR(k) parsers, where L stands for left-to-right scanning of the

input stream; R stands for the construction of right-most derivation in reverse, and

k denotes the number of look ahead symbols to make decisions.

 An LL Parser accepts LL grammar. LL grammar is a subset of context-free grammar

but with some restrictions to get the simplified version, in order to achieve easy

implementation. LL grammar can be implemented by means of both algorithms, namely,

recursive-descent or table-driven.

 LL parser is denoted as LL(k). The first L in LL(k) is parsing the input from left to right,

the second L in LL(k) stands for left-most derivation and k itself represents the number of

look aheads. Generally k = 1, so LL(k) may also be written as LL(1).

LL LR

Does a leftmost derivation. Does a rightmost derivation in reverse.

Starts with the root nonterminal on the

stack

Ends with the root nonterminal on the

stack.

Ends when the stack is empty Starts with an empty stack.

Uses thestack for designating what is still

to be expected.

Uses the stack for designating what is

already seen

Builds the parse tree top-down. Builds the parse tree bottom-up.

Continuously pops a nonterminal off the

stack, and pushes the corresponding right

hand side.

Tries to recognize a right hand side on

thestack, pops it, and pushes the

corresponding nonterminal.

Expands the non-terminals Reduces the non-terminals.

Reads the terminals when it pops one

off

the stack.

Reads the terminalswhile itpushes them on

the stack.

 Pre-order traversal of the parse tree. Post-order traversal of the parse tree

Prepared By Dr. T. GENISH, Dr. B. FirdausBegam, Department of CS, CA & IT, KAHEPage 5/15

INTERMEDIATE CODE GENERATION

Intermediate code forms:

An intermediate code form of source program is an internal form of a program created by

the compiler while translating the program created by the compiler while translating the

program from a high –level language to assembly code(or)object code(machine code).an

intermediate source form represents a more attractive form of target code than does

assembly. An optimizing Compiler performs optimizations on the intermediate source

form and produces an object module.

Analysis + syntheses=translation

Creates an generate target code

Intermediate code

In the analysis –synthesis model of a compiler, the front-end translates a source program

into anintermediate representation from which the back-end generates target code, in

many compilers thesource code is translated into a language which is intermediate in

complexity between a HLL andmachine code .the usual intermediate code introduces

symbols to stand for various temporaryquantities.

Intermediate representations span the gap between the source and target languages.

• High Level Representations

 closer to the source language

 easy to generate from an input program

 code optimizations may not be straightforward

• Low Level Representations

 closer to the target machine

 Suitable for register allocation and instruction selection

 easier for optimizations, final code generation

There are several options for intermediate code. They can be either Specific to the

language being implemented

 P-code for Pascal

 Byte code for Java

We assume that the source program has already been parsed and statically checked.. the

variousintermediate code forms are:

a) Polish notation

b) Abstract syntax trees(or)syntax trees

c) Quadruples

d) Triples three address code

e) Indirect triples

f) Abstract machine code(or)pseudocopde

Prepared By Dr. T. GENISH, Dr. B. FirdausBegam, Department of CS, CA & IT, KAHEPage 6/15

Postfix

The ordinary (infix) way of writing the sum of a and b is with the operator in the middle:

a+b. thepostfix (or postfix polish)notation for the same expression places the operator at

the right end, as ab+.In general, if e1 and e2 are any postfix expressions, and Ø to the

values denoted by e1 and e2 isindicated in postfix notation nby e1e2Ø.no parentheses are

needed in postfix notation because theposition and priority (number of arguments) of the

operators permits only one way to decode apostfix expression.

Example:

1. (a+b)*c in postfix notation is ab+c*,sinceab+ represents the infix expression(a+b).

2. a*(b+c)is abc+* in postfix.

3. (a+b)*(c+d) is ab+cd+* in postfix.

Postfix notation can be generalized to k-ary operators for any k>=1.if k-ary operator Ø is

applied topostfix expression e1,e2,……….ek, then the result is denoted by e1e2…….ek

Ø. if we know thepriority of each operator then we can uniquely decipher any postfix

expression by scanning it fromeither end.

Example:

Consider the postfix string ab+c*.

The right hand * says that there are two arguments to its left. since the next –to-rightmost

symbol isc, simple operand, we know c must be the second operand of *.continuing to the

left, we encounterthe operator +.we know the sub expression ending in + makes up the

first operand of

.continuing in this way ,we deduce that ab+c is “parsed” as (((a,b)+),c)*.

b. syntax tree:

The parse tree itself is a useful intermediate-language representation for a source

program,especially in optimizing compilers where the intermediate code needs to

extensively restructure.

A parse tree, however, often contains redundant information which can be eliminated,

Thusproducing a more economical representation of the source program. One such

variant of a parse treeis what is called an (abstract) syntax tree, a tree in which each leaf

represents an operand and eachinterior node an operator.

Exmples: 1) Syntax tree for the expression a*(b+c)/d

c.Three-Address Code: • In three-address code, there is at most one operator on the

right side of aninstruction; that is, no built-up arithmetic expressions are permitted.

x+y*z t1 = y * z t2 = x + t1 • Example

Prepared By Dr. T. GENISH, Dr. B. FirdausBegam, Department of CS, CA & IT, KAHEPage 7/15

LANGUAGE INDEPENDENT 3-ADDRESS CODE

IR can be either an actual language or a group of internal data structures that are shared

by the phases of the compiler. C used as intermediate language as it is flexible, compiles

into efficient machine code and its compilers are widely available.In all cases, the

intermediate code is a linearization of the syntax tree produced during syntax and

semantic analysis. It is formed by breaking down the tree structure into sequential

instructions, each of which is equivalent to a single, or small number of machine

instructions.

 Machine code can then be generated (access might be required to symbol tables etc).

TAC can range from high- to low-level, depending on the choice of operators. In general,

it is a statement containing at most 3 addresses or operands. The general form is x := y op

z, where “op” is an operator, x is the result, and y and z are operands. x, y, z are

variables, constants, or “temporaries”. A three-address instruction consists of at most 3

addresses for each statement.

It is a linear zed representation of a binary syntax tree. Explicit names correspond to

interiornodes of the graph. E.g. for a looping statement , syntax tree represents

components of thestatement, whereas three-address code contains labels and jump

instructions to represent theflow-of-control as in machine language. A TAC instruction

has at most one operator on theRHS of an instruction; no built-up arithmetic expressions

are permitted.

e.g. x + y * z can be translated as

t1 = y * z

t2 = x + t1

Where t1 & t2 are compiler–generated temporary names.

Since it unravels multi-operator arithmetic expressions and nested control-flow

statements,it is useful for target code generation and optimization.

Addresses and Instructions
• TAC consists of a sequence of instructions, each instruction may have up to

threeaddresses, prototypically t1 = t2 op t3

• Addresses may be one of:

 A name. Each name is a symbol table index. For convenience, we write the names as

 the identifier.

Prepared By Dr. T. GENISH, Dr. B. FirdausBegam, Department of CS, CA & IT, KAHEPage 8/15

 A constant.

 A compiler-generated temporary. Each time a temporary address is needed,

thecompiler generates another name from the stream t1, t2, t3, etc.

 Temporary names allow for code optimization to easily move Instructions

 At target-code generation time, these names will be allocated to registers or to

memory.

 TAC Instructions

 Symbolic labels will be used by instructions that alter the flow of control.

The instruction addresses of labels will be filled in later.

L: t1 = t2 op t3

 Assignment instructions: x = y op z

 Includes binary arithmetic and logical operations

 Unary assignments: x = op y

 Includes unary arithmetic op (-) and logical op (!) and typeconversion

 Copy instructions: x = y

 Unconditional jump: goto L

 • L is a symbolic label of an instruction

 Conditional jumps:

if x goto L If x is true, execute instruction L next

ifFalse x goto L If x is false, execute instruction L next

 Conditional jumps:

if x relop y goto L

– Procedure calls. For a procedure call p(x1, …,xn)

param x1

…

paramxn

call p, n

– Functioncalls : y= p(x1, …, xn) y = call p,n , return y

Types of three address code

There are different types of statements in source program to which three address code has

to

be generated. Along with operands and operators, three address code also use labels to

provide flow of control for statements like if-then-else, for and while. The different types

of

three address code statements are:

Assignment statement

a = b op c

In the above case b and c are operands, while op is binary or logical operator. The result

of

applying op on b and c is stored in a.

Unary operation

a = op b This is used for unary minus or logical negation.

Example: a = b * (- c) + d

Three address code for the above example will be

t1 = -c

Prepared By Dr. T. GENISH, Dr. B. FirdausBegam, Department of CS, CA & IT, KAHEPage 9/15

t2 = t1 * b

t3 = t2 + d

a = t3

Copy Statement

a=b

The value of b is stored in variable a.

Unconditional jump

goto L

Creates label L and generates three-address code ‘goto L’

v. Creates label L, generate code for expression exp, If the exp returns value true then go

to

the statement labelled L. exp returns a value false go to the statement immediately

following

the if statement.

Function call

For a function fun with n arguments a1,a2,a3….an ie.,

fun(a1, a2, a3,…an),

the three address code will be

Param a1

Param a2

…

Param an

Call fun, n

Where param defines the arguments to function.

Array indexing

In order to access the elements of array either single dimension ormultidimension, three

address code requires base address and offset value. Base addressconsists of the address

of first element in an array. Other elements of the array can beaccessed using the base

address and offset value.

Example: x = y[i]

Memory location m = Base address of y + Displacement i

x = contents of memory location m

similarly x[i] = y

Memory location m = Base address of x + Displacement i

The value of y is stored in memory location m

Pointer assignment

x = &y x stores the address of memory location y

x = *y y is a pointer whose r-value is location

*x = y sets r-value of the object pointed by x to the r-value of y

Intermediate representation should have an operator set which is rich to implement.

Theoperations of source language. It should also help in mapping to restricted instruction

set oftarget machine.

QUADRUPLES-

Quadruples consists of four fields in the record structure. One field to store operator op,

twofields to store operands or arguments arg1and arg2 and one field to store result res.

res = arg1op arg2

Prepared By Dr. T. GENISH, Dr. B. FirdausBegam, Department of CS, CA & IT, KAHEPage 10/15

Example: a = b + c

b is represented as arg1, c is represented as arg2, + as op and a as res.

Unary operators like ‘-‘do not use agr2. Operators like param do not use agr2 nor result.

Forconditional and unconditional statements res is label. Arg1, arg2 and res are pointers

tosymbol table or literal table for the names.

Example: a = -b * d + c + (-b) * d

Three address code for the above statement is as follows

t1 = - b

t2 = t1 * d

t3 = t2 + c

t4 = - b

t5 = t4 * d

t6 = t3 + t5

a = t6

Quadruples for the above example is as follows

TRIPLES

Triples uses only three fields in the record structure. One field for operator, two fields

foroperands named as arg1 and arg2. Value of temporary variable can be accessed by

theposition of the statement the computes it and not by location as in quadruples.

Example: a = -b * d + c + (-b) * d

Triples for the above example is as follows

Prepared By Dr. T. GENISH, Dr. B. FirdausBegam, Department of CS, CA & IT, KAHEPage 11/15

Arg1 and arg2 may be pointers to symbol table for program variables or literal table

forconstant or pointers into triple structure for intermediate results.Example: Triples for

statement x[i] = y which generates two records is as follows

INDIRECT TRIPLES
Indirect triples are used to achieve indirection in listing of pointers. That is, it uses

pointers totriples than listing of triples themselves.

Example: a = -b * d + c + (-b) * d

Prepared By Dr. T. GENISH, Dr. B. FirdausBegam, Department of CS, CA & IT, KAHEPage 12/15

Conditional operator and operands. Representations include quadruples, triples and indirect

triples

SYNTAX DIRECTED TRANSLATION

 The Principle of Syntax Directed Translation states that the meaning of an

input sentence is related to its syntactic structure, i.e., to its Parse-Tree.

 By Syntax Directed Translations we indicate those formalisms for specifying

translations for programming language constructs guided by context-free grammars.

o We associate Attributes to the grammar symbols representing the language

constructs.

o Values for attributes are computed by Semantic Rules associated with

grammar productions.

 Evaluation of Semantic Rules may:

o Generate Code;

o Insert information into the Symbol Table;

o Perform Semantic Check;

o Issue error messages;

o etc.

There are two notations for attaching semantic rules:

1. Syntax Directed Definitions. High-level specification hiding many

implementationdetails (also called Attribute Grammars).

2. Translation Schemes. More implementation oriented: Indicate the order in

whichsemantic rules are to be evaluated.

Syntax Directed Definitions

• Syntax Directed Definitions are a generalization of context-free grammars in which:

1. Grammar symbols have an associated set of Attributes;

2. Productions are associated with Semantic Rules for computing the values of attributes.

Prepared By Dr. T. GENISH, Dr. B. FirdausBegam, Department of CS, CA & IT, KAHEPage 13/15

 Such formalism generates Annotated Parse-Trees where each node of the tree

is a record with a field for each attribute (e.g.,X.a indicates the attribute a of the

grammarsymbol X).

 The value of an attribute of a grammar symbol at a given parse-tree node is

defined bya semantic rule associated with the production used at that node.

We distinguish between two kinds of attributes:

1. Synthesized Attributes. They are computed from the values of the attributes of

thechildren nodes.

2. Inherited Attributes. They are computed from the values of the attributes of both

thesiblings and the parent nodes

Syntax Directed Definitions: An Example

• Example. Let us consider the Grammar for arithmetic expressions. TheSyntax Directed

Definition associates to each non terminal a synthesizedattribute called val.

S-ATTRIBUTED DEFINITIONS

Definition. An S-Attributed Definition is a Syntax Directed Definition that usesonly

synthesized attributes.

• Evaluation Order. Semantic rules in a S-Attributed Definition can beevaluated by a

bottom-up, or PostOrder, traversal of the parse-tree.

• Example. The above arithmetic grammar is an example of an S-AttributedDefinition.

The annotated parse-tree for the input 3*5+4n is:

Prepared By Dr. T. GENISH, Dr. B. FirdausBegam, Department of CS, CA & IT, KAHEPage 14/15

L-attributed definition

 A SDD its L-attributed if each inherited attribute of Xi in the RHS of A !X1 :

:Xn depends only on

1. attributes of X1;X2; : : : ;Xi􀳦1 (symbols to the left of Xi in the RHS)

2. inherited attributes of A.

Restrictions for translation schemes:

1. Inherited attribute of Xi must be computed by an action before Xi.

2. An action must not refer to synthesized attribute of any symbol to the right of that

action.

3. Synthesized attribute for A can only be computed after all attributes it references have

been completed (usually at end of RHS).

Applications of Syntax-Directed Translation

• Construction of syntax Trees

– The nodes of the syntax tree are represented by objects with a suitable number of fields.

– Each object will have an op field that is the label of the node.

– The objects will have additional fields as follows

• If the node is a leaf, an additional field holds the lexical value for the leaf. A constructor

function Leaf (op, val) creates a leaf object.

• If nodes are viewed as records, the Leaf returns a pointer to a new record for a leaf.

• If the node is an interior node, there are as many additional fields as the node has

children in the syntax tree. A constructor function

Node takes two or more arguments:

Node (op , c1,c2,…..ck) creates an object with first field op and k additional fields for the

k children c1,c2,…..ck

Syntax-Directed Translation Schemes

A SDT scheme is a context-free grammar with program fragments embedded within

production bodies .The program fragments are called semantic actions and can appear at

any position within the production body.

Any SDT can be implemented by first building a parse tree and then pre-forming the

actions in a left-to-right depth first order. i.e during preorder traversal.

The use of SDT’s to implement two important classes of SDD’s

Prepared By Dr. T. GENISH, Dr. B. FirdausBegam, Department of CS, CA & IT, KAHEPage 15/15

1. If the grammar is LR parsable, then SDD is S-attributed.

2. If the grammar is LL parsable, then SDD is L-attributed.

Postfix Translation Schemes

The postfix SDT implements the desk calculator SDD with one change: the action for the

first production prints the value. As the grammar is LR, and the SDD is S-attributed.

L →E n {print(E.val);}

E → E1 + T { E.val = E1.val + T.val }

E → E1 - T { E.val = E1.val - T.val }

E → T { E.val = T.val }

T → T1 * F { T.val = T1.val * F.val } T → F { T.val = F.val }

F → (E) { F.val = E.val }

F → digit { F.val = digit.lexval }

KARPAGAM ACADEMY OF HIGHER EDUCATION

DEPARTMENT OF CS, CA & IT

SUBJECT: SYSTEM PROGRAMMING

SUBJECT CODE: 16CSU601B

MULTIPLE CHOICE QUESTIONS

UNIT-3

sno Questions opt1 opt2

1 _______ is considered as a sequence of

characters in a token.

Texeme Pattern

2 What is the name of the process that

determining whether a string of tokens

can be generated by a grammar?

 Analysing Recognizing

3 A _________ is a software utility that

translates code written in higher language

into a low level language.

Converter Compiler

4 Which of the following derivations does a

top-down parser use while parsing an

input string?

 Leftmost derivation Leftmost derivation

in reverse

5

6 The process of assigning load addresses

to the various parts of the program and

adjusting the code and data in the

program to reflect the assigned addresses

is called ______________

 Assembly Parsing

7 . Which of the following statements is

false?

 Left as well as right

most derivations can be

in Unambiguous

grammar

 An LL (1) parser is a

top-down parser

8 Given the following expression

grammar:E -> E * F | F+E | F

F -> F-F | id which

of the following is true?

* has higher

precedence than +

 – has higher

precedence than *

9 Which of the following grammers are not

phase-structured?

regular context free grammer

10 LR stands for ___________ left to right left to right reduction

11 Which of thefoloowing parsersare more

powefull

linear list search tree

12 Which of the following cannot be used as

intermediate form?

Postfix notation Three address code

13 Which of the following symbol table

implementation is based on ptoperty of

locality of reference

search tree

14 Synthenized attribute can be easily

simulated by _________

LL grammer ambiguious grammer

15 A pictorial representation of value

computed by each statement in basic

block is __________

tree DAG

16 Three address code involves __________ excatly 3 address at the most 3 address

17 When is type checking is done ? during syntax directed

translation

during lexical analysis

18 Which of the following is/are grouped

together into sematic structures?

Syntax analyzer Semantic analyzer

19 Which of the following describes a

handle (as applicable to LR-parsing)

appropriately?

It is the position in a

sentential form where

the next shift or reduce

operation will occur

It is non-terminal

whose production will

be used for reduction

in the next step

20 Which one of the following is a top-down

parser?

Recursive descent

parser

Operator precedence

parse

21 Which of the following suffices to

convert an arbitrary CFG to an LL(1)

grammar?

Removing left

recursion alone

Factoring the grammar

alone

22 In a bottom-up evaluation of a syntax

directed definition, inherited attributes

can

always be evaluated be evaluated only if

the definition is L-

­attributed

23 Consider the grammar shown below.

S → C C C

→ c C | d The grammar is

LL(1) SLR(1) but not LL(1)

24 Which of the following statements is

false?

An unambiguous

grammar has same

leftmost and rightmost

derivation

An LL(1) parser is a

top-down parser

25 Which one of the following is True at any

valid state in shift-reduce parsing?

Viable prefixes appear

only at the bottom of

the stack and not inside

Viable prefixes appear

only at the top of the

stack and not inside

26 In the context of abstract-syntax-tree

(AST) and control-flow-graph (CFG),

which one of the following is True?

In both AST and CFG,

let node N2 be the

successor of node N1.

In the input program,

the code corresponding

to N2 is present after

the code corresponding

to N1

For any input

program, neither AST

nor CFG will contain

a cycle

27 Some code optimizations are carried out

on the intermediate code because

they enhance the

portability of the

compiler to other target

processors

program analysis is

more accurate on

intermediate code than

on machine code

28 One of the purposes of using intermediate

code in compilers is to ________

make parsing and

semantic analysis

simpler

improve error

recovery and error

reporting

29 What is the maximum number of reduce

moves that can be taken by a bottom-up

parser for a grammar with no epsilon-

and unit-production (i.e., of type A -> є

and A -> a) to parse a string with n

tokens?

n/2 n-1

30 The grammar S → aSa | bS | c is LL(1) but not LR(1) LR(1)but not LL(1)

31 For predictive parsing the grammar A-

>AA I (A) I ε is not suitable because

The grammar is right

recursive

The grammar is left

recursive

32 How many tokens are there in the

following C statement?

printf (―j=%d, &j=%x‖, j&j)

4 5

33 In a compiler, the data structure

responsible for the management of

information about variables and their

attributes is

Semantic stack Parser table

34 One of the purposes of using intermediate

code in compilers is to

make parsing and

semantic analysis

simpler.

improve error

recovery and error

reporting

35 Syntax directed translation scheme is

desirable because

It is based on the

syntax

Its description is

independent of any

implementation

36 A top down parser generates Right most derivation Right most derivation

in reverse

37 Intermediate code generation phase gets

input from

Lexical analyzer Syntax analyzer

38 An intermediate code form is Postfix notation Syntax trees

39 Input to code generator Source code Intermediate code

40 A grammar is meaningless If terminal set and non

terminal set are not

disjoint

If left hand side of a

production is a single

terminal

41 Pee hole optimization Loop optimization Local optimization

42 Which is not true about syntax and

semantic parts of a computer language

syntax is generally

checked by the

programmer

semantics is the

responsibility of the

programmer

43 Which of the following grammers are not

phase structured ?

regular context free gramm

44 Any syntactic constrct that can be

described by a regular expression can

also be described by a ________

context sensitive

grammar

non-context free

grammar

45 In which addressing mode, the operand is

given explicitly in the instruction itself?

absolute mode immediate mode

46 YACC stands for ________________ yet accept compiler

constructs

.yet accept compiler

compiler

47 An ideal computer should a) be small in

size b) produce object code that is smaller

in size and executes into tokens in a

compiler

parser cose optimize

48 A lex program consists of __________ declarations .auxillary procedure

49 Which of the following pairs is the most

powerful?

 SLR, LALR Canonical LR ,LALR

50 Which phase of compiler is Syntax

Analysis?

First Second

51 What is Syntax Analyser also known as ? Hierarchical Analysis Hierarchical Parsing

52 Syntax Analyser takes Groups Tokens of

source Program into Grammatical

Production

TRUE FALSE

53 Parsers are expected to parse the whole

code

TRUE FALSE

54 A grammar for a programming language

is a formal description of _________

Syntax Semantics

55 An LR-parser can detect a syntactic error

as soon as _________

The parsing starts It is possible to do so

a left-to-right scan of

the input.

56 Which of the following is incorrect for

the actions of A LR-Parser I) shift s ii)

reduce A->ß iii) Accept iv) reject?

 Only I) I) and ii)

57 If a state does not know whether it will

make a shift operation or reduction for a

terminal is called

Shift/reduce conflict Reduce /shift conflict

58 When there is a reduce/reduce conflict? If a state does not

know whether it will

make a shift operation

using the production

rule i or j for a

terminal.

If a state does not

know whether it will

make a shift or

reduction operation

using the production

rule i or j for a

terminal.

59 Which of these is also known as look-

head LR parser?

SLR LR

60 What is the similarity between LR, LALR

and SLR?

Use same algorithm,

but different parsing

table

Same parsing table,

but different

algorithm.

opt3 opt4 Answer

Lexeme Mexeme Lexeme

 Translating Parsing Parsing

 Text editor Code optimizer Compiler

Rightmost derivation Rightmost

derivation in

reverse

 Leftmost derivation

 Relocation Symbol resolute Relocation

 LALR is more

powerful than SLR

 Ambiguous

grammar can’t be

LR (k)

 Left as well as right

most derivations can be

in Unambiguous

grammar

 + and — have same

precedence

 + has higher

precedence than *

 – has higher

precedence than *

context senstive none none

right to left left to right and

right most

derivation in

reverse

left to right and right

most derivation in

reverse

hash table self-organizing list self-organizing list

Syntax trees qudraples qudraples

hash table self-organizing list self-organizing list

LR grammer RR grammer LR grammer

Graph none DAG

no unary operators none at the most 3 address

during syntax

analysis

during code

optimization

during syntax directed

translation

Lexical analyzer Intermediate code

generation

Lexical analyzer

It is a production that

may be used for

reduction in a future

step along with a

position in the

sentential form where

the next shift or

reduce operation will

occur

It is the production

p that will be used

for reduction in the

next step along

with a position in

the sentential form

where the right

hand side of the

production may be

found

It is the production p

that will be used for

reduction in the next

step along with a

position in the

sentential form where

the right hand side of

the production may be

found

An LR(k) parser An LALR(k) parser Recursive descent

parser

Removing left

recursion and

factoring the

grammar

None of these None of these

be evaluated only if

the definition has

synthesized attributes

never be evaluated be evaluated only if the

definition is L-

­attributed

LALR(1) but not

SLR(1)

LR(1) but not

LALR(1)

LL(1)

LALR is more

powerful than SLR

An ambiguous

grammar can never

be LR(k) for any k

An unambiguous

grammar has same

leftmost and rightmost

derivation

The stack contains

only a set of viable

prefixes

The stack never

contains viable

prefixes

The stack contains only

a set of viable prefixes

The maximum

number of successors

of a node in an AST

and a CFG depends

on the input program

Each node in AST

and CFG

corresponds to at

most one statement

in the input

program

The maximum number

of successors of a node

in an AST and a CFG

depends on the input

program

the information from

dataflow analysis

cannot otherwise be

used for optimization

the information

from the front end

cannot otherwise

be used for

optimization

they enhance the

portability of the

compiler to other target

processors

increase the chances

of reusing the

machine-independent

code optimizer in

other compilers

improve the

register allocation

increase the chances of

reusing the machine-

independent code

optimizer in other

compilers

2n-1 2n n-1

Both LL(1)and LR(1) Neither LL(1)nor

LR(1

Both LL(1)and LR(1)

The grammar is

ambiguous

The grammar is an

operator grammar

The grammar is left

recursive

9 10 10

Symbol table Abstract syntax-

tree

Symbol table

increase the chances

of reusing the

machine-independent

code optimizer in

other compilers.

improve the

register allocation.

increase the chances of

reusing the machine-

independent code

optimizer in other

compilers.

It is easy to modify All of these It is easy to modify

Left most derivation Left most

derivation in

reverse

Left most derivation

Semantic analyzer Error handling Semantic analyzer

Three address code All of these All of these

Target code All of the above Intermediate code

If left hand side of a

production has no

non terminal

All of these If terminal set and non

terminal set are not

disjoint

Constant folding Data flow analysis Constant folding

semantics is

checeked

mechanically by a

computer

both (b) and (c) both (b) and (c)

context sensitive none of these none of these

context free grammar none of these context free grammar

.indirect mode index mode immediate mode

yet another compiler

constructs

yet another

compiler compiler

yet another compiler

compiler

.code generator .scanner .scanner

.translation rules .all of these .all of these

 SLR canonical LR LALR canonical

LR

 SLR canonical LR

Third Fourth Second

None of the

mentioned

Hierarchical

Analysis & Parsing

Hierarchical Analysis

& Parsing

NULL None TRUE

NULL None TRUE

Structure Library Structure

 It is possible to do so

a right-to-left scan of

the input.

Parsing ends It is possible to do so a

left-to-right scan of the

input.

 I), ii) and iii) I), ii) , iii) and iv) I), ii) and iii)

 Shift conflict Reduce conflict Shift/reduce conflict

If a state does not

know whether it will

make a reduction

operation using the

production rule i or j

for a terminal.

None of the

mentioned

If a state does not know

whether it will make a

reduction operation

using the production

rule i or j for a

terminal.

LLR None LLR

Their Parsing tables

and algorithm are

similar but uses top

down approach.

Both Parsing tables

and algorithm are

different.

Use same algorithm,

but different parsing

table

1

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established under section 3 of UGC Act,1956

CLASS : II B.SC IT COURSE NAME: System Programming

COURSE CODE:16ITU603B BATCH: 2016-2019

UNIT II: STORAGE ORGANIZATION

UNIT -4

SYLLABUS

Storage organization: Activation records stack allocation.

RUNTIME ENVIRONMENT

 A program as a source code is merely a collection of text (code, statements etc.) and to

make it alive, it requires actions to be performed on the target machine. A program needs

memory resources to execute instructions. A program contains names for procedures,

identifiers etc., that require mapping with the actual memory location at runtime.

By runtime, we mean a program in execution. Runtime environment is a state of the target

machine, which may include software libraries, environment variables, etc., to provide

services to the processes running in the system.

Runtime support system is a package, mostly generated with the executable program itself

and facilitates the process communication between the process and the runtime environment.

It takes care of memory allocation and de-allocation while the program is being executed.

 Runtime organization of different storage locations

 Representation of scopes and extents during program execution.

 Components of executing program reside in blocks of memory (supplied by OS).

 Three kinds of entities that need to be managed at runtime (code, variables and

procedures)

Generated code for various procedures and programs. forms text or code segment

of your program: size known at compile time.

Data objects:

 Global variables/constants: size known at compile time

 Variables declared within procedures/blocks: size known

 Variables created dynamically: size unknown.

2

Stack to keep track of procedure activations.

Subdivide memory conceptually into code (program) and data areas

STATIC VERSUS DYNAMIC STORAGE ALLOCATION

 Much (often most) data cannot be statically allocated. Either its size is not known at

compile time or its lifetime is only a subset of the program's execution.

 Early versions of Fortranused only statically allocated data. This required that each

array had a constant size specified in the program. Another consequence of supporting

only static allocation was that recursion was forbidden (otherwise the compiler could

not tell how many versions of a variable would be needed).

 Modern languages, including newer versions of Fortran, support both static and

dynamic allocation of memory.

 The advantage supporting dynamic storage allocation is the increased flexibility and

storage efficiency possible (instead of declaring an array to have a size adequate for

the largest data set; just allocate what is needed). The advantage of static storage

allocation is that it avoids the runtime costs for allocation/deallocation and may

permit faster code sequences for referencing the data.

 An (unfortunately, all too common) error is a so-called memory leak where a long

running program repeated allocates memory that it fails to delete, even after it can no

longer be referenced. To avoid memory leaks and ease programming, several

programming language systems employ automatic garbage collection. That means the

runtime system itself can determine if data can no longer be referenced and if so

automatically deallocates it.

STORAGE ALLOCATION:

 Compiler must do the storage allocation and provide access to variables and data

 Memory management

 Stack allocation

 Heap management

 Garbage collection

Storage Allocation Strategies

• Static allocation (Code): lays out storage at compile time for all data objects

3

• Stack allocation(Procedures): manages the runtime storage as a stack

• Heap allocation (Variables): allocates and deallocates storage as needed at runtime from

heap

STORAGE ORGANIZATION

 Assumes a logical address space

 Operating system will later map it to physical addresses, decide how touse cache

memory, etc.

 Memory typically divided into areas for

 Program code

 Other static data storage, including global constants and compiler generated data

 Stack to support call/return policy for procedures

 Heap to store data that can outlive a call to a procedure

4

STATIC ALLOCATION

Statically allocated names are bound to storage at compile time. Storage bindings of statically

allocated names never change, so even if a name is local to a procedure, its name is always

bound to the same storage. The compiler uses the type of a name (retrieved from the symbol

table) to determine storage size required. The required number of bytes (possibly aligned) is

set aside for the name.The address of the storage is fixed at compile time.

Limitations:

 The size required must be known at compile time.

 Recursive procedures cannot be implemented as all locals are statically allocated.

 No data structure can be created dynamically as all data is static.

 Stack-dynamic allocation

 Storage is organized as a stack.

 Activation records are pushed and popped.

 Locals and parameters are contained in the activation records for the call.

 This means locals are bound to fresh storage on every call.

5

 If we have a stack growing downwards, we just need a stack_top pointer.

 To allocate a new activation record, we just increase stack_top.

 To deallocate an existing activation record, we just decrease stack_top.

RUN-TIME STACK AND HEAP

The STACK is used to store:

o Procedure activations.

o The status of the machine just before calling a procedure, so that the status can be

restored when the called procedure returns.

o The HEAP stores data allocated under program control (e.g. by malloc() in C).

ACTIVATION RECORDS

Any information needed for a single activation of a procedure is stored in the ACTIVATION

RECORD (sometimes called the STACK FRAME). Today, we’ll assume the stack grows

DOWNWARD, as on, e.g., the Intel architecture. The activation record gets pushed for each

procedure call and popped for each procedure return.

A program is a sequence of instructions combined into a number of procedures. Instructions

in a procedure are executed sequentially. A procedure has a start and an end delimiter and

everything inside it is called the body of the procedure. The procedure identifier and the

sequence of finite instructions inside it make up the body of the procedure.The execution of

a procedure is called its activation. An activation record contains all the necessary

information required to call a procedure.

Each time the flow of control enters a function or procedure, we update its procedure

activation record. This maintains the values of the function arguments and all local variables

defined inside the function, and pointers to the start of the code segment, the current location

in the code segment, and the segment of code to which we return on exit.

Whenever a procedure is executed, its activation record is stored on the stack, also known as

control stack. When a procedure calls another procedure, the execution of the caller is

suspended until the called procedure finishes execution. At this time, the activation record of

the called procedure is stored on the stack.

We assume that the program control flows in a sequential manner and when a procedure is

called, its control is transferred to the called procedure. When a called procedure is

6

executed, it returns the control back to the caller. This type of control flow makes it easier to

represent a series of activations in the form of a tree, known as the activation tree.

Example:

Consider the quick sort program

Activation for Quicksort:

7

Activation tree representing calls during an execution of quicksort:

Activation records

 Procedure calls and returns are usually managed by a run-time stack called the control

stack.

 Each live activation has an activation record (sometimes called a frame)

 The root of activation tree is at the bottom of the stack

 The current execution path specifies the content of the stack with the last

 Activation has record in the top of the stack.

A General Activation Record

8

Activation Record

Fields Elements

Temporaries Stores temporary and intermediate values of

an expression.

Local Data Stores local data of the called procedure.

Machine Status Stores machine status such as Registers,

Program Counter etc., before the procedure is

called.

Control Link Stores the address of activation record of the

caller procedure.

Access Link Stores the information of data which is

outside the local scope.

Actual Parameters Stores actual parameters, i.e., parameters

which are used to send input to the called

procedure.

Return Value Stores return values.

9

Downward-growing stack of activation records:

Address generation in stack allocation

The position of the activation record on the stack cannot be determined statically. Therefore

the compiler must generate addresses RELATIVE to the activation record. If we have a

downward-growing stack and a stack_top pointer, we generate addresses of the form

stack_top + offset

HEAP ALLOCATION

Some languages do not have tree-structured allocations. In these cases, activations have to be

allocated on the heap. This allows strange situations, like callee activations that live longer

than their callers’ activations. This is not common Heap is used for allocating space for

objects created at run timeFor example: nodes of dynamic data structures such as linked lists

and trees

 Dynamic memory allocation and deallocation based on the requirements of the

programmalloc() and free() in C programs

 new()and delete()in C++ programs

 new()and garbage collection in Java programs

10

 Allocation and deallocation may be completely manual (C/C++), semi-automatic(Java),

or fully automatic (Lisp)

PARAMETERS PASSING

The communication medium among procedures is known as parameter passing. The values

of the variables from a calling procedure are transferred to the called procedure by some

mechanism. Before moving ahead, first go through some basic terminologies pertaining to

the values in a program.

r-value

The value of an expression is called its r-value. The value contained in a single variable also

becomes an r-value if it appears on the right-hand side of the assignment operator. r-values

can always be assigned to some other variable.

l-value

The location of memory (address) where an expression is stored is known as the l-value of

that expression. It always appears at the left hand side of an assignment operator.

A language has first-class functions if functions can be declared within any scope passed as

arguments to other functions returned as results of functions.

 In a language with first-class functions and static scope, a function value is generally

represented by a closure.

 A pair consisting of a pointer to function code a pointer to an activation record.

 Passing functions as arguments is very useful in structuring of systems using upcalls

Formal Parameters

Variables that take the information passed by the caller procedure are called formal

parameters. These variables are declared in the definition of the called function.

Actual Parameters

Variables whose values or addresses are being passed to the called procedure are called

actual parameters. These variables are specified in the function call as arguments.

Formal parameters hold the information of the actual parameter, depending upon the

parameter passing technique used. It may be a value or an address.

11

Pass by Value

In pass by value mechanism, the calling procedure passes the r-value of actual parameters

and the compiler puts that into the called procedure’s activation record. Formal parameters

then hold the values passed by the calling procedure. If the values held by the formal

parameters are changed, it should have no impact on the actual parameters.

Pass by Reference

In pass by reference mechanism, the l-value of the actual parameter is copied to the

activation record of the called procedure. This way, the called procedure now has the

address (memory location) of the actual parameter and the formal parameter refers to the

same memory location. Therefore, if the value pointed by the formal parameter is changed,

the impact should be seen on the actual parameter as they should also point to the same

value.

Pass by Copy-restore

This parameter passing mechanism works similar to ‘pass-by-reference’ except that the

changes to actual parameters are made when the called procedure ends. Upon function call,

the values of actual parameters are copied in the activation record of the called procedure.

Formal parameters if manipulated have no real-time effect on actual parameters (as l-values

are passed), but when the called procedure ends, the l-values of formal parameters are

copied to the l-values of actual parameters.

Pass by Name

Languages like Algol provide a new kind of parameter passing mechanism that works like

preprocessor in C language. In pass by name mechanism, the name of the procedure being

called is replaced by its actual body. Pass-by-name textually substitutes the argument

expressions in a procedure call for the corresponding parameters in the body of the

procedure so that it can now work on actual parameters, much like pass-by-reference.

12

Designing Calling Sequences:

 Values communicated between caller and callee are generally placed at the beginning of

callee’s activation record

 Fixed-length items: are generally placed at the middle

 Items whose size may not be known early enough: are placed at the end of activation

record We must locate the top-of-stack pointer judiciously: a common approach is to

have it point to the end of fixed length fields

An example:

main()

{ int x = 4;

int f (int y) {

return x*y;

}

int g (int →int h){

int x = 7;

return h(3) + x;

}

g(f);//returns 12

}

Passing Functions as Parameters – Implementation with

Static Scope

13

Access to dynamically allocated arrays:

Memory Manager:

 Two basic functions:

 Allocation

 Deallocation

 Properties of memory managers:

 Space efficiency

 Program efficiency

 Low overhead

Typical Memory Hierarchy Configurations

14

Locality in Programs:

The conventional wisdom is that programs spend 90% of their time executing 10% of the

code:

 Programs often contain many instructions that are never executed.

 Only a small fraction of the code that could be invoked is actually executed in typical

run of the program.

 The typical program spends most of its time executing innermost loops and tight

recursive cycles in a program.

KARPAGAM ACADEMY OF HIGHER EDUCATION

DEPARTMENT OF CS, CA & IT

SUBJECT: SYSTEM PROGRAMMING

SUBJECT CODE: 16CSU601B

MULTIPLE CHOICE QUESTIONS

UNIT-4

sno Questions opt1

1 The average time required to reach a

storage location in memory and obtain

its contents is called the _____

Seek time

2 What characteristic of RAM memory

makes it not suitable for permanent

storage?

Too slow

3 Assembly language ________ Uses alphabetic codes in place of

binary numbers used in machine

language

4 Select a Machine Independent phase of

the compiler

Syntax Analysis

5 Which of the following system

software resides in the main memory

always

Text Editor

6 Which of these features of assembler

are Machine-Dependent

Instruction formats

7 Which of these is not true about

Symbol Table

All the labels of the instructions are

symbols

8 In Reverse Polish notation, expression

A*B+C*D is written as

AB*CD*+

9 The circuit converting binary data in to

decimal is_____

Encoder

10 In computers, subtraction is carried out

generally by____

1’s complement method

11 The identification of common sub-

expression and replacement of run-time

computations by compile-time

computations is

local optimization

12 The graph that shows basic blocks and

their successor relationship is called

DAG

13 The specific task storage manager

performs

allocation/ deallocation of storage

to programs

14 When a computer is first turned on or

resrarted, a special type of absolute

loader is executed called

" Compile and GO " loader

15 Function of the storage assignment is assign storage to all variables

referenced in the source program

16 Relocation bits used by relocating

loader are specified by

relocating loader itself

17 Running time of a program depends on the way the registers and

addressing modes are use

18 Advantage of panic mode of error

recovery is that

it is simple to implement

19 Which of the following can be accessed

by transfer vector approach of linking ?

external data segments

20 Generation of intermediate code based

on a abstract machine model is useful

in compilers because

it makes implementation of lexical

analysis and syntax analysis easier

21 Which of the following module does

not incorporate initialization of values

changed by the module ?

non reusable module

22 A self-relocating program is one which cannot be made to execute in any

area of storage other than the one

designated for it at the time of its

coding or translation

23 The string (a)|((b)*(c)) is equivalent to Empty

24 Which one of the following statements

is FALSE ?

Context-free grammar can be used

to specify both lexical and syntax

rules.

25 Some code optimizations are carried

out on the intermediate code because

they enhance the portability of the

compiler to other target processors

26 A non relocatable program is the one

which

cannot be made to execute in any

area of storage other than the one

designated for it at the time of its

coding or translation

27 A relocatable program form is one

which

cannot be made to execute in any

area of storage other than the one

designated for it at the time of its

coding or translation

28 A self-relocating program is one which cannot be made to execute in any

area of storage other than the one

designated for it at the time of its

coding or translation

29 In which storage allocation stragey size

is required at compile time

static allocation

30 Which field is not present in activation

record

saved machine status

31 Which of the following are activation

records?

return value

32 which of the following are storage

allocation stratagey

stack allocation

33 ___________ tree is used to depict the

way control enters and leaves activation

Activation tree

34 In activation tree each node represent activation of main program

35 ________ can be used to keep track of

live procedures activations

control stack

36 if the occurance of the name in the

procedure is in the scope of declaration

within the procedure then it is said to

be

local

37 subdivision of runtime memory consists

of

code

38 In activation record, optional control

link points to

activation record of caller

39 The field of actual parameter in

activation record is used by which

procedure?

calling procedure

40 Allocation of activation record and

entering information into fields is done

by

return sequence

41 call by reference is also called as call-by-address

42 In which allocation, names are bound to

storage as program is compiled?

static

43 Flow of control in a program

corresponds to which traversal of

activation tree ?

Depth first traversal

44 Which is the correct sequence of

compilation process?

Assembler → Compiler →

Preprocessor → Linking

45 Why is calloc() function used for? allocates the specified number of

bytes

46 The instruction ‘ORG O’ is a______ Machine Instruction

47 Memory unit accessed by content is

called______

 Read only memory

48 ________ register keeps tracks of the

instructions stored in program stored in

memory.

AR (Address Register)

49 The circuit converting binary data in to

decimal is_____

Encoder

50 In computers, subtraction is generally

done by ________

1's complement method

51 PSW is saved in stack when there is a

Interrupt recognized

52 Memory unit accessed by content is

called______

 Read only memory

53 ‘Aging registers’ are _______ Counters which indicate how long

ago their associated pages have

been Referenced.

54 The size of the activation record can be

determined at ___________

Run time

55 Which of the following are parameter

passing method

call by value

56 Which one of the following

statement is false for the SLR (1)

and LALR (1) parsing tables for a

context free grammar?

The reduce entries in both the

tables may be different

opt2 opt3 opt4

Turn around time transfer time access time

Unreliable It is volatile Too bulky

Is the easiest language to

write programs

 Need not be translated into

machine language

None of the mentioned

Intermediate Code

generation

Lexical analysis all the above

Assembler Linker Loader

Addressing modes Program relocation All of the mentioned

Table has entry for

symbol name address

value

Perform the processing of

the assembler directives

Created during pass 1

A*BCD*+ AB*CD+* A*B*CD+

Multiplexer Decoder Code converter

2’s complement method signed magnitude method BCD subtraction method

loop optimization constant folding data flow analysis

Hamiltonion graph Flow graph control graph

protection of storage

area allocated to a

program from illegal

access by othere

programs in the system

the status of each program both (a) and (b)

Boot loader Boot strap loader Relating loader

assign storage to all

temporary locations that

are necessary for

intermediate results

assign storage to literals,

and to ensure that the

storage is allocated and

appropriate locations are

initialized

all of these

linker assembler macro processor

the order in which

computations are

performed

the usage of machine idioms all of these

it never gets into an

infinite loop

both (a) and (b) none of these

external sub-routines data located in other

procedure

all of these

syntax directed

translations can be

written for intermediate

code generation

it enhances the portability of

the front end of the compiler

it is not possible to generate code for

real machines directly from high level

language programs

serially reusable module re-enterable module all of these

consists of a program

and relevant information

for its relocation

can itself perform the

relocation of its address

sensitive portions

all of these

abcabc b*c|a None of the mentioned

Type checking is done

before parsing.

High-level language

programs can be translated

to different Intermediate

Representations.

Arguments to a function can be passed

using the program stack.

program analysis is more

accurate on intermediate

code than on machine

code

the information from

dataflow analysis cannot

otherwise be used for

optimization

the information from the front end

cannot otherwise be used for

optimization

consists of a program

and relevant information

for its relocation

can itself perform the

relocation of its address

sensitive portions

all of these

consists of a program

and relevant information

for its relocation

can be processed to relocate

it to a desired area of

memory

all of these

consists of a program

and relevant information

for its relocation

can itself perform the

relocation of its address

sensitive portions

all of these

dynamic allocation stack allocation all

register allocation optional control link temporaries

local data temporaries all

static allocation heap allocation all

tree parse tree none

activaiton of procedure both (a) and (b) none

activation tree activation node none

nonlocal global none

static data stack all

activation record of

callee

both (a) and (b) none

called procedure both (a) and (b) none

call sequence both (a) and (b) none

call-by-location both (a) and (b) none

heap stack none

Breadth first traversal both (a) and (b) none

Compiler → Assenbler

→ Preprocessor →

Linking

Preprocessor → Compiler

→ Assembler → Linking

Assembler → Compiler → Linking →

Preprocessor

increases or decreases the

size of the specified block

of memory and reallocates it

if needed

calls the specified block of memory for

execution.

Pseudo instruction High level instruction Memory instruction

Programmable Memory Virtual Memory Associative Memory

XR (Index Register) PC (Program Counter) AC (Accumulator)

Multiplexer Decoder Code converter

2's complement method BCD subtraction method signed magnitude method

 Execution of RST

instruction

Execution of CALL

instruction

All of these

Programmable Memory Virtual Memory Associative Memory

Registers which keep

track of when the

program was last

accessed

Counters to keep track of

last accessed instruction

Counters to keep track of the latest data

structures referred

Compile time both (a) and (b) none of these

call by reference call by restore all

The error entries in

both the tables may be

different

The go to part of both

tables may be different

The shift entries in both the tables

may be identical

Answer

access time

It is volatile

Uses alphabetic codes in place of

binary numbers used in machine

language

all the above

Loader

All of the mentioned

Perform the processing of the

assembler directives

AB*CD*+

Code converter

2’s complement method

constant folding

Flow graph

both (a) and (b)

Boot strap loader

all of these

linker

all of these

both (a) and (b)

external sub-routines

it makes implementation of

lexical analysis and syntax

analysis easier

non reusable module

can itself perform the relocation

of its address sensitive portions

b*c|a

Type checking is done before

parsing.

they enhance the portability of

the compiler to other target

processors

cannot be made to execute in any

area of storage other than the one

designated for it at the time of its

coding or translation

can be processed to relocate it to

a desired area of memory

can itself perform the relocation

of its address sensitive portions

static allocation

register allocation

all

all

Activation tree

local

stack

activation record of caller

calling procedure

call sequence

both (a) and (b)

static

Depth first traversal

Preprocessor → Compiler →

Assembler → Linking

allocates the specified number of

bytes and initializes them to zero

Pseudo instruction

Associative Memory

PC (Program Counter)

Code converter

2's complement method

Interrupt recognized

Associative Memory

Counters which indicate how

long ago their associated pages

have been Referenced.

both (a) and (b)

all

The go to part of both tables

may be different

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established under section 3 of UGC Act,1956

CLASS : III B.SC – CS A & B COURSE NAME: System Programming

COURSE CODE: 16CSU601B BATCH: 2016-2019

UNIT II: Code Generation

UNIT -5

SYLLABUS

Code Generation: Object code generation

CODE GENERATION

Introduction

Optimization is a program transformation technique, which tries to improve the code

by making it consume less resources (i.e. CPU, Memory) and deliver high speed.

1. The term “code optimization” refers to techniques, a compiler can employ in an

attempt to produce a better object language program than the most obvious for a given

source program.

2. The quality of the object program is generally measured by its size (for small

computation) or its running time (for large computation).

3. It is theoretically impassible for a compiler to produce the best possible object program

for every source program under any reasonable cast function.

4. The accurate term for “code optimization” is “code improvement”.

5. There are many aspects to code optimization.

a. Cast

b. Quick & straight forward translation (time).

The Principal Sources Of Optimization

It consists of detecting patterns in the program and replacing these patterns by equivalent and

more efficient construct.

The optimization can be done by

1) Programmer- Write source program (user can write)

2) Compiler -e.g.: array references are made by indexing, rather than by pointer or

address calculation prevents the programmer from dealing with offset calculations in

arrays.

Example:

 A [i+1]:=B [i+1] is easier.

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 2

 J: =i+1

 A[j]:=B[j]

I. Local optimization-performed within a straight line and no jump.

II. Loop optimization

III. Data flow analysis-the transmission of useful information from one part of

the program to another.

Optimization

 Optimization is a program transformation technique, which tries to improve the code by

making it consume less resource (i.e. CPU, Memory) and deliver high speed. In optimization,

high-level general programming constructs are replaced by very efficient low-level

programming codes. A code optimizing process must follow the three rules given below:

 The output code must not, in any way, change the meaning of the program.

 Optimization should increase the speed of the program and if possible, the program

should demand less number of resources.

 Optimization should itself be fast and should not delay the overall compiling process.

Efforts for an optimized code can be made at various levels of compiling the process.

 At the beginning, users can change/rearrange the code or use better algorithms to

write the code.

 After generating intermediate code, the compiler can modify the intermediate code by

address calculations and improving loops.

 While producing the target machine code, the compiler can make use of memory

hierarchy and CPU registers.

Optimization can be categorized broadly into two types : machine independent and machine

dependent.

What Is a Loop?

Before we discuss loop optimizations, we should discuss what we identify as a loop. In our

source language, this is rather straightforward, since loops are formed with while or for,

where it is convenient to just elaborate a for loop into its corresponding while form.

The key to a loop is a back edge in the control-flow graph from a node l to a node h that

dominates l. We call h the header node of the loop. The loop itself then consists of the nodes

on a path from h to l. It is convenient to organize the code so that a loop can be identified

with its header node. We then write loop(h, l) if line l is in the loop with header h.

When loops are nested, we generally optimize the inner loops before the outer loops. For one,

inner loops are likely to be executed more often. For another, it could move computation to

an outer loop from which it is hoisted further when the outer loop is optimized and so on

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 3

Machine-dependent Optimization
Machine-dependent optimization is done after the target code has been generated and when

the code is transformed according to the target machine architecture. It involves CPU

registers and may have absolute memory references rather than relative references. Machine-

dependent optimizers put efforts to take maximum advantage of memory hierarchy.

For example:
do

{

 item = 10;

 value = value + item;

} while(value<100);

This code involves repeated assignment of the identifier item, which if we put this way:

Item = 10;

do

{

 value = value + item;

} while(value<100);

should not only save the CPU cycles, but can be used on any processor.

Basic Blocks

Source codes generally have a number of instructions, which are always executed in sequence

and are considered as the basic blocks of the code. These basic blocks do not have any jump

statements among them, i.e., when the first instruction is executed, all the instructions in the

same basic block will be executed in their sequence of appearance without losing the flow

control of the program.

A program can have various constructs as basic blocks, like IF-THEN-ELSE, SWITCH-

CASE conditional statements and loops such as DO-WHILE, FOR, and REPEAT-UNTIL,

etc.

Basic block identification

We may use the following algorithm to find the basic blocks in a program:

 Search header statements of all the basic blocks from where a basic block starts:

o First statement of a program.

o Statements that are target of any branch (conditional/unconditional).

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 4

o Statements that follow any branch statement.

 Header statements and the statements following them form a basic block.

 A basic block does not include any header statement of any other basic block.

Basic blocks are important concepts from both code generation and optimization point of

view.

Basic blocks play an important role in identifying variables, which are being used more than

once in a single basic block. If any variable is being used more than once, the register

memory allocated to that variable need not be emptied unless the block finishes execution.

Advantages of Code Optimization-

 Optimized code has faster execution speed

 Optimized code utilizes the memory efficiently

 Optimized code gives better performance

Techniques for Code Optimization-

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 5

1. Compile Time Evaluation

2. Common sub-expression elimination

3. Dead Code Elimination

4. Code Movement

5. Strength Reduction

1.Compile Time Evaluation-

 Two techniques that falls under compile time evaluation are-

A) Constant folding-

 As the name suggests, this technique involves folding the constants by evaluating the

expressions that involves the operands having constant values at the compile time.

 Example-

Circumference of circle = (22/7) x Diameter

Here, this technique will evaluate the expression 22/7 and will replace it with its result 3.14 at

the compile time which will save the time during the program execution.

 B) Constant Propagation-

 In this technique, if some variable has been assigned some constant value, then it replaces

that variable with its constant value in the further program wherever it has been used during

compilation, provided that its value does not get alter in between.

 Example-

pi = 3.14

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 6

radius = 10

Area of circle = pi x radius x radius

Here, this technique will substitute the value of the variables „pi‟ and „radius‟ at the compile

time and then it will evaluate the expression 3.14 x 10 x 10 at the compile time which will

save the time during the program execution.

2. Common sub-expression elimination-

 The expression which has been already computed before and appears again and again in the

code for computation is known as a common sub-expression.

As the name suggests, this technique involves eliminating the redundant expressions to avoid

their computation again and again. The already computed result is used in the further

program wherever its required.

Example-

Code before Optimization Code after Optimization

S1 = 4 x i

S2 = a[S1]

S3 = 4 x j

S4 = 4 x i // Redundant Expression

S5 = n

S6 = b[S4] + S5

S1 = 4 x i

S2 = a[S1]

S3 = 4 x j

S5 = n

S6 = b[S1] + S5

3. Code Movement-

 As the name suggests, this technique involves the movement of the code where the code is

moved out of the loop if it does not matter whether it is present inside the loop or it is present

outside the loop.

Such a code unnecessarily gets executed again and again with each iteration of the loop, thus

wasting the time during the program execution.

 Example-

Code before Optimization Code after Optimization

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 7

for (int j = 0 ; j < n ; j ++)

{

x = y + z ;

a[j] = 6 x j;

}

x = y + z ;

for (int j = 0 ; j < n ; j ++)

{

a[j] = 6 x j;

}

 4. Dead code elimination-

 As the name suggests, this technique involves eliminating the dead code where those

statements from the code are eliminated which either never executes or are not reachable or

even if they get execute, their output is never utilized.

Example-

Code before Optimization Code after Optimization

i = 0 ;

if (i == 1)

{

a = x + 5 ;

}

i = 0 ;

Dead code is one or more than one code statements, which are:

 Either never executed or unreachable,

 Or if executed, their output is never used.

Thus, dead code plays no role in any program operation and therefore it can simply be

eliminated. First fig. depicts partial dead code, second fig. depicts complete dead code.

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 8

5. Strength reduction-

 As the name suggests, this technique involves reducing the strength of the expressions by

replacing the expensive and costly operators with the simple and cheaper ones.

 Example-

Code before Optimization Code after Optimization

B = A x 2 B = A + A

Here, the expression “A x 2” has been replaced with the expression “A + A” because the cost

of multiplication operator is higher than the cost of addition operator.

Loop Optimization

Most programs run as a loop in the system. It becomes necessary to optimize the loops in

order to save CPU cycles and memory. Loops can be optimized by the following techniques:

 Invariant code: A fragment of code that resides in the loop and computes the same

value at each iteration is called a loop-invariant code. This code can be moved out of

the loop by saving it to be computed only once, rather than with each iteration.

 Induction analysis: A variable is called an induction variable if its value is altered

within the loop by a loop-invariant value.

 Strength reduction: There are expressions that consume more CPU cycles, time, and

memory. These expressions should be replaced with cheaper expressions without

compromising the output of expression. For example, multiplication (x * 2) is

expensive in terms of CPU cycles than (x << 1) and yields the same result.

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 9

PEEPHOLE OPTIMIZATION

 A statement-by-statement code-generations strategy often produce target code that contains

redundant instructions and suboptimal constructs .The quality of such target code can be

improved by applying “optimizing” transformations to the target program.

 A simple but effective technique for improving the target code is peephole optimization, a

method for trying to improving the performance of the target program by examining a short

sequence of target instructions (called the peephole) and replacing these instructions by a

shorter or faster sequence, whenever possible.

 The peephole is a small, moving window on the target program. The code in the peephole

need not contiguous, although some implementations do require this.it is characteristic of

peephole optimization that each improvement may spawn opportunities for additional

improvements.

 We shall give the following examples of program transformations that are characteristic of

peephole optimizations:

 Redundant-instructions elimination

 Flow-of-control optimizations

 Algebraic simplifications

 Use of machine idioms

 Unreachable Code

Code Generator

A code generator is expected to have an understanding of the target machine‟s runtime

environment and its instruction set.

 The code generator should take the following things into consideration to generate the code:

 Target language : The code generator has to be aware of the nature of the target

language for which the code is to be transformed. That language may facilitate some

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 10

machine-specific instructions to help the compiler generate the code in a more

convenient way. The target machine can have either CISC or RISC processor

architecture.

 IR Type: Intermediate representation has various forms. It can be in Abstract Syntax

Tree (AST) structure, Reverse Polish Notation, or 3-address code.

 Selection of instruction: The code generator takes Intermediate Representation as

input and converts (maps) it into target machine‟s instruction set. One representation

can have many ways (instructions) to convert it, so it becomes the responsibility of

the code generator to choose the appropriate instructions wisely.

 Register allocation: A program has a number of values to be maintained during the

execution. The target machine‟s architecture may not allow all of the values to be

kept in the CPU memory or registers. Code generator decides what values to keep in

the registers. Also, it decides the registers to be used to keep these values.

 Ordering of instructions: At last, the code generator decides the order in which the

instruction will be executed. It creates schedules for instructions to execute them.

Descriptors

The code generator has to track both the registers (for availability) and addresses (location of

values) while generating the code. For both of them, the following two descriptors are used:

 Register descriptor: Register descriptor is used to inform the code generator about

the availability of registers. Register descriptor keeps track of values stored in each

register. Whenever a new register is required during code generation, this descriptor

is consulted for register availability.

 Address descriptor: Values of the names (identifiers) used in the program might be

stored at different locations while in execution. Address descriptors are used to keep

track of memory locations where the values of identifiers are stored. These locations

may include CPU registers, heaps, stacks, memory or a combination of the

mentioned locations.

Code generator keeps both the descriptor updated in real-time. For a load statement, LD R1,

x, the code generator:

 updates the Register Descriptor R1 that has value of x and

 updates the Address Descriptor (x) to show that one instance of x is in R1.

Code Generation

Basic blocks comprise of a sequence of three-address instructions. Code generator takes

these sequence of instructions as input.

Prepared By Dr. T. GENISH, Asst.Prof, Department of CS, CA & IT, KAHE Page 11

Note : If the value of a name is found at more than one place (register, cache, or memory),

the register‟s value will be preferred over the cache and main memory. Likewise cache‟s

value will be preferred over the main memory. Main memory is barely given any preference.

getReg : Code generator uses getReg function to determine the status of available registers

and the location of name values. getReg works as follows:

 If variable Y is already in register R, it uses that register.

 Else if some register R is available, it uses that register.

 Else if both the above options are not possible, it chooses a register that requires

minimal number of load and store instructions.

For an instruction x = y OP z, the code generator may perform the following actions. Let us

assume that L is the location (preferably register) where the output of y OP z is to be saved:

 Call function getReg, to decide the location of L.

 Determine the present location (register or memory) of yby consulting the Address

Descriptor of y. If y is not presently in register L, then generate the following

instruction to copy the value of y to L:

MOV y‟, L

where y’ represents the copied value of y.

 Determine the present location of z using the same method used in step 2 for y and

generate the following instruction:

OP z‟, L

where z’ represents the copied value of z.

 Now L contains the value of y OP z that is intended to be assigned to x. So, if L is a

register, update its descriptor to indicate that it contains the value of x. Update the

descriptor of x to indicate that it is stored at location L.

 If y and z has no further use, they can be given back to the system.

Other code constructs like loops and conditional statements are transformed into assembly

language in general assembly way.

KARPAGAM ACADEMY OF HIGHER EDUCATION

DEPARTMENT OF CS, CA & IT

SUBJECT: SYSTEM PROGRAMMING

SUBJECT CODE: 16CSU601B

MULTIPLE CHOICE QUESTIONS

UNIT-5

sno Questions opt1 opt2

1

Which of the following

comment about peep-hole

optimization is true?

they enhance the portability

of the compiler to other

target processors

program analysis is

more accurate on

intermediate code

than on machine code

2

The method which merges

the bodies of two loops is

Loop rolling Loop jamming

3

Running time of a program

depends on

 Addressing mode Order of

computations

4

Which of the following is

the fastest logic

TTL ECL

5

he optimization which

avoids test at every

iteration is

Loop unrolling Loop jamming

6

Scissoring enables A part of data to be

displayed

Entire data to be

displayed

7

Compiler should report the

presence of ________in

source program, in

translation process.

data object

8

Compiler can check

_______ error

syntax logical

9

Reduction in strength

means

Replacing run time

computation by compile

time computation

emoving loop

invariant computation

10

A optimizing compiler Is optimized to occupy less

space

Is optimized to take

less time for

execution

11 Code can be optimized at Source from user Target code

12

In which way(s) a

macroprocessor for

assembly language can be

implemented ?

Independent two-pass

processor

Independent one-pass

processor

13

A compiler for a high level

language that runs on one

machine and produce code

for different machine is

called

Optimizing compiler One pass compiler

14

Local and loop

optimization in turn

provide motivation for

Data flow analysis Constant folding

15

What is responsible for

generation of final

machine code tailored to

target system?

Interpreter Semantic analyzer

16

Which programming

language use compiler as

well as interpreter to

produce output?

C language C++

17

Optimization of program

that works within a single

basic block is called

A. Local optimization A. Global optimization

18

Variable that can be

accessed through out

program is known as

A. Local variable A. Global Variable

19

Gcc level of procedure

integration, can be

calculated as

1 2

20

Which languages

necessarily need heap

allocation in the runtime

environment?

Those that support

recursion

Those that use

dynamic scoping

21

Some code optimizations

are carried out on the

intermediate code because They enhance the portability of the compiler to other target processorsProgram analysis is more accurate on intermediate code than on machine code

22 Input buffer is symbol table

divided into two

halves

23

Daisy chain is a device for

?

Interconnecting a number of

devices to number of

controllers

Connecting a number

of devices to a

controller

24

Which of the following

type of software should be

used if you need to

create,edit and print

document ?

Word processing Spreadsheet

25 What is bootstraping?

A language interpreting

other language program

A language compiling

other language

program

26

Shell is the exclusive

feature of

UNIX DOS

27

A program in execution is

called

Process Instruction

28 A UNIX device driver is

Structured into two halves

called top half and bottom

half

Three equal partitions

29 Memory

is an device that performs a

sequence of operations

specified by instructions in

memory

is the device where

information is stored

30

In what module multiple

instances of execution will

yield the same result even

if one instance has not

terminated before the next

one has begun ?

Serially usable Re-entrable module

31

The segment base is

specified using the register

named is

ORG instructions TITLE instruction

32

If special forms are needed

for printing the output, the

programmer specifies

these forms through

IPL JCL

33

Register or main memory

location which contains

the effective address of the

operand is known as

pointer indexed register

34

Name given to the

organized collection of

software that controls the

overall operation of a

computer is

working system peripheral system

35

Which of the following is

not a function of the

operating system?

Manage resources Internet access

36

The items that a computer

can use in its functioning

are collectively called its

resources stuff

37

Programs that coordinate

all of the computer’s

resources including

memory, processing,

storage, and devices such

as printers are collectively

referred to as

language translators resources

38

A compiler is a software

tool that translates

___________that the

computer can understand.

Algorithm into data Source code into data

39

The object code is then

passed through a program

called a ___________

which turns it into an

executable program.

Integer Source code

40

What is memory in

Computer ?

is a sequence of instructions is the device where

information is stored

41 A program -

is a sequence of instructions is the device where

information is stored

42

The __ of a system

includes the program s or

instructions.

icon software

43 System generation

is always quite simple is always very

difficult

44

While running DOS on a

PC, command which can

be used to duplicate the

entire diskette is

COPY DISKCOPY

45

Operating system for the

laptop computer called

MacLite is

windows DOS

46

In computers, application

software executes

all the time when required

47

To perform specific tasks

or calculations in the

computer we use

system software application software

48 Computer can run without application software system software

49

Computer software which

is also known as Off-the-

shelf software is

customized software package software

50

The number of clock

cycles necessary to

complete 1 fetch cycle in

8085 is

3 or 4 4 or 5

51

Which of the following

electronic component are

not found in ordinary ICs?

Diodes Resistors

52

The root directory of a

disk should be placed

at a fixed address in main

memory

at a fixed location on

the disk

53

In a two pass assembler

the object code generation

is done during the ?

Second pass First pass

54

Which of the following is

not a type of assembler ?

one pass two pass

55

In a two pass assembler,

adding literals to literal

table and address

resolution of local symbols

are done using ?

First pass and second

respectively

Both second pass

56

In a two pass assembler

the pseudo code EQU is to

be evaluated during ?

Pass 1 Pass 2

opt3 opt4 Answer

the information from

dataflow analysis

cannot otherwise be

used for optimization

the information from

the front end cannot

otherwise be used for

optimization

they enhance the

portability of the

compiler to other target

processors

Constant folding None of the

mentioned

Loop jamming

The usage of machine

idioms

All of the mentioned All of the mentioned

CMOS LSI ECL

Constant folding None of the

mentioned

Loop unrolling

None of the mentioned No data to be

displayed

 A part of data to be

displayed

errors text errors

content both a and b syntax

Removing common

sub expression

Replacing a costly

operation by a

relatively cheaper

one

Replacing run time

computation by

compile time

computation

Optimized the code None of the above. Optimized the code

Intermediate code All of the above Source from user

Expand macrocalls

and substitute

arguments

All of the above All of the above

Cross compiler Multipass compiler Cross compiler

Pee hole optimization DFA and constant

folding

Data flow analysis

Code generator Code optimizer Code generator

Java Cobol Java

A. Loop un-controlling A. Loop controlling A. Local optimization

A. Integer A. Constant A. Global Variable

3 4 3

hose that allow

dynamic data

structures

Those that use global

variables

hose that allow

dynamic data structures

 The information from dataflow analysis cannot otherwise be used for optimizatio

The information from

the front end cannot

otherwise be used for

optimization

They enhance the

portability of the

compiler to other target

processors

 divided into Three

halves not divided divided into two halves

Connecting a number

of controller to

devices

all of these Connecting a number of

devices to a controller

Desktop publishing UNIX Word processing

A language compile

itself

All of above A language compile

itself

System software Application software UNIX

Procedure Function Process

Unstructured None of the above Structured into two

halves called top half

and bottom half

is a sequence of

instructions

is a computational

unit to perform

specific functions

is the device where

information is stored

Non reusable module None of these Re-entrable module

ASSUME instruction SEGMENT

instruction

ORG instructions

Load modules Utility programs JCL

special location scratch pad pointer

operating system controlling system operating system

Provide a user

interface

Load and run

applications

Internet access

capital properties

applications interfaces resources

Computer language

into data

None of the above Source code into data

Linker None of the above Linker

is an device that

performs a sequence

of operations specified

by instructions in

memory

none of these is the device where

information is stored

is a device that

performs a sequence

of operations specified

by instructions in

memory

none of these is a sequence of

instructions

hardware information software

varies in difficulty

between systems

requires extensive

tools to be

understandable

requires extensive tools

to be understandable

CHKDSK TYPE DISKCOPY

MS-DOS OZ OZ

any time for few hours when required

customized software package software application software

operating system windows application software

system software utility program package software

4 or 6 6 or 7 4 or 6

Inductors Transistors Inductors

anywhere on the disk none of these at a fixed location on

the disk

Zeroeth pass Not done by

assembler

Second pass

three pass load and go three pass

Second pass and first

respectively

Both first pass Both first pass

not evaluated by the

assembler

None of above Pass 1

	1.pdf (p.1-2)
	OBJECTIVES
	ESE MARKS ALLOCATION

	2.pdf (p.3-7)
	3.pdf (p.8-30)
	Number of passes
	High-level assemblers
	Parse and Enter
	Annotation Processing
	Analyse and Generate
	Lexical Analysis
	Syntax Analysis
	Semantic Analysis
	Intermediate Code Generation
	Code Optimization
	Code Generation
	Symbol Table

	4.pdf (p.31-38)
	5.pdf (p.39-49)
	Implementation
	Operations
	insert()
	lookup()

	Scope Management

	6.pdf (p.50-57)
	7.pdf (p.58-72)
	8.pdf (p.73-82)
	9.pdf (p.83-96)
	10.pdf (p.97-108)
	11.pdf (p.109-119)
	12.pdf (p.120-129)

