2017-2020 Batch

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University) (Established Under Section 3 of UGC Act 1956) Coimbatore-641 021 (For the candidates admitted from 2017 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

SUBJECT CODI	E : 16CSU602B	SUBJECT : COM	PUTER GRA	PHICS
SEMESTER	: VI	CLASS : III B.Sc. CS	L T P C	= 4 0 0 4

Course Outcome

This course presents an introduction to computer graphics designed to give the student an overview of fundamental principles. The course will include an overview of common graphics hardware, 2D and 3D transformations and viewing, and basic raster graphics concepts such as scan-conversion, and clipping. Methods for modeling objects as polygonal meshes or smooth surfaces, and as rendering such as hidden-surface removal, shading, illumination, and shadows will be investigated.

Learning outcome

- Have a knowledge and understanding of the structure of an interactive computer graphics system, and the separation of system components.
- Have a knowledge and understanding of geometrical transformations and 3D viewing.
- Be able to create interactive graphics applications.
- Have a knowledge and understanding of techniques for representing 3D geometrical objects.
- Have a knowledge and understanding of the fundamental principles of local and global illumination models.

UNIT-I

Introduction : Basic elements of Computer graphics, Applications of Computer Graphics.

UNIT-II

Department of CS, CA & IT

Graphics Hardware : Architecture of Raster and Random scan display devices, input/output devices.

UNIT-III

Fundamental Techniques in Graphics : Raster scan line, circle and ellipse drawing, thick primitives, Polygon filling, line and polygon clipping algorithms, 2D and 3D Geometric Transformations, 2D and 3D Viewing Transformations (Projections- Parallel and Perspective), Vanishing points.

UNIT-IV

Geometric Modeling : Representing curves & Surfaces.

UNIT V

Visible Surface determination : Hidden surface elimination. **Surface rendering :** Illumination and shading models. Basic color models and Computer Animation.

TEXT BOOKS:

T1: Donald Hearn, Computer Graphics C Version, Second edition, Pearson Edition, 2011.

SUGGESTED READINGS

R1:Foley, J.D., Van Dan, A.,& Feiner Hughes. (1990). Computer Graphics Principles & Practice (2nd ed.). Addison Wesley.

R2:Hearn D. Baker. (2008). Computer Graphics. New Delhi: Prentice Hall of India.

R3: Rogers, D.F. (1997). Procedural Elements for Computer Graphics. McGraw Hill.

R4: Rogers, D.F. Adams. (1989). Mathematical Elements for Computer Graphics(2nd ed.). McGraw Hill.

WEBSITES:

W1: study.com/academy/lesson/what-are-the-seven-elements

W2: www.linkedin.com/pulse/application-computer-graphics-niropam-das

W3: en.wikipedia.org/wiki/Graphics_hardware

W4:en.wikipedia.org/wiki/Hidden_surface_determination

ESE MARKS ALLOCATION									
Section A	20								
$20 \ge 1 = 20$									
Section B	10								
$5 \ge 2 = 10$									
Section C	30								
5 x 6= 30									
Either 'A' or 'B' choice									
Total	60								
	Section A $20 \ge 1 = 20$ Section B $5 \ge 2 = 10$ Section C $5 \ge 6 = 30$ Either 'A' or 'B' choice								

ESE MARKS ALLOCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2017 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

SUBJECT : COMPUTER GRAPHICS

SEMESTER :VI

SUBJECT CODE:16CSU602B

CLASS :III B.Sc CS

LECTURE PLAN

L T P C 4 0 0 4

STAFF NAME: D.MANJULA

S.No	Lecture Duration (Hr)	Topics	Support Materials
	·	UNIT-I	
1.	1	Introduction	T1:22
2.	1	A Survey of Computer Graphics	T1:22-54
3.	1	Basic elements of Computer graphics-Line, Shape	W1
4.	1	Basic elements of Computer graphics-Color, Texture	W1
5.	1	Basic elements of Computer graphics-Value, Space	W1
6.	1	Applications of Computer Graphics	W2
7.	1	Applications of Computer Graphics[Cont]	W2
8.	1	Recapitulation and Discussion of Important	
		Questions	
		Total No of Hours Planned For Unit – I	8
	×	UNIT-II	
1.	1	Graphics Hardware	W3
2.	1	Raster Scan Displays	T1:60
3.	1	Random Scan Displays	T1:61-62,
4.	1	Input devices :Keyboards, Mouse	T1:81
5.	1	Track Ball and space ball, Joysticks, Data Glove,	T1:82-84,

Department of Computer Science, KAHE

LECTURE PLAN

		digitizers	
6.		Output devices: Hard Copy Devices: Printers and	T1.0 2
		Plotters	T1:92
7.		Recapitulation and Discussion of Important	
		Questions	
		Total No of Hours Planned For Unit – II	7
1		UNIT-III	1
1.	1	Fundamental Techniques in Graphics	T1:104-105
		Raster scan line	
2.	1	Line Drawing Algorithms	T1:106-107
3.	1	DDA Algorithm	T1:107-108
4.	1	Circle Generating Algorithms	T1:117-118
5.	1	Mid Point Circle Algorithm	T1:118—121
6	1	ellipse drawing	T1:122
7	1	thick primitives	T1:122
8	1	Polygon filling	T1:257
9	1	line and polygon clipping algorithms	T1:245-255
10	1	Two Dimensional Geometric Transformations: Basic	T1.204 209
		Transformations	T1:204-208
11	1	2D,3D Viewing transformations	T1:237
12	1	Recapitulation and Discussion of Important	
		Questions	
		Total No of Hours Planned For Unit – III	12
		UNIT-IV	
1.	1	Geometric Modeling	T1:427
2.	1	Representing curves	T1:330
3.	1	Surfaces	T1:330-331
4.	1	Recapitulation and Discussion of Important Questions	
		Total No of Hours Planned For Unit – IV	4
		UNIT-V	·
1.	1	Visible Surface determination	T1:490
2.	1	Hidden surface elimination	W4
3.	1	Surface rendering	T1:514
4.	1	Illumination and shading models	T1:543
5.	1	Basic color models and Computer Animation.	T1:584
6.	1	Recapitulation and Discussion of Important Questions	
7.	1	Discussion of Previous ESE Question Papers	
8.	1	Discussion of Previous ESE Question Papers	
9.	1	Discussion of Previous ESE Question Papers	
		Total No of Hours Planned For Unit – V	9

	Total No. of Hours Planned:	40

TEXT BOOKS:

T1: Donald Hearn, Computer Graphics C Version, Second edition, Pearson Edition, 2011.

SUGGESTED READINGS

R1:Foley, J.D., Van Dan, A.,& Feiner Hughes. (1990). Computer Graphics Principles & Practice (2nd ed.). Addison Wesley.

R2:Hearn D. Baker. (2008). Computer Graphics. New Delhi: Prentice Hall of India.

R3: Rogers, D.F. (1997). Procedural Elements for Computer Graphics. McGraw Hill.

R4: Rogers, D.F. Adams. (1989). Mathematical Elements for Computer Graphics(2nd ed.). McGraw Hill.

WEBSITES:

W1: study.com/academy/lesson/what-are-the-seven-elements

W2: www.linkedin.com/pulse/application-computer-graphics-niropam-das

W3: en.wikipedia.org/wiki/Graphics_hardware W4:en.wikipedia.org/wiki/Hidden surface determination

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT I: INTRODUCTION BATCH: 2016-2019

UNIT-I

SYLLABUS

Introduction : Basic elements of Computer graphics, Applications of Computer Graphics.

INTRODUCTION:

Computer Graphic is the discipline of producing picture or images using a computer which include modeling, creation, manipulation, storage of geometric objects, rendering, converting a scene to an image, the process of transformations, rasterization, shading, illumination, animation of the image, etc.

Computer Graphics has been widely used in graphics presentation, paint systems, computer-aided design (CAD), image processing, simulation, etc.

From the earliest text character images of a non-graphic mainframe computers to the latest photographic quality images of a high resolution personal computers, from vector displays to raster displays, from 2D input, to 3D input and beyond, computer graphics has gone through its short, rapid changing history.

From games to virtual reality, to 3D active desktops, from unobtrusive immersive home environments, to scientific and business, computer graphics technology has touched almost every concern of our life. Before we get into the details, we have a short tour through the history of computer graphics

BASIC ELEMENTS OF COMPUTER GRAPHICS:

There are in total six elements of a design which you need to be aware of: the line, the shape, the color, the texture, the value and the space.

1. The line

The line is usually present in every design, even if it is a solid border of 1px or a dotted one of 5px. Every website has lines, but the minimalistic style which became more

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT I: INTRODUCTION BATCH: 2016-2019

popular in the past couple of years tries to erase the lines from the layouts, or at least to decrease the use of them.

The lines can be long, red, straight, thin, blue, dashed, short, black or curved, they are all into the same category. They are most of the time used for delimitation between different sections of a design, or are used to direct a viewer's vision in a specific direction.

The lines can create different effects and visual impact. While a thick, bold line draws attention because of its visual power, the thin lines tend to go the other way. The color has an impact too, dark colors are easier to see and draw more attention than light or pale colors.

And this is not all. The style of a line can also influence the way the user sees it. This style can easily be defined through CSS and can be solid, dotted and dashed among others. The solid lines have a different impact than the dotted ones, because they are more imposing.

The minimalistic style which I've talked about earlier uses either less solid lines or more curved lines, because they give a dynamic and fluid look to a design, which is also the purpose of the style. They indicate energy, keep the user interested and, if combined with illustration, are very powerful to the human eye.

Many years ago solid lines were very popular because they determined the style of the design: rigid, solid and organized. The web changed in the past years and this style is not very popular anymore, especially for designers' portfolios and other pages with a strong need of a personal touch.

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT I: INTRODUCTION BATCH: 2016-2019

The solid lines are used to separate different parts of the website.

2. The shape

The shape, or the form, is the second most used element of a web design. They are actually lines combined in different shapes. The forms are still popular and this is because if there is something that needs to stand out, forms are one of the ways to do it.

There can be circles, squares, rectangles, triangles or any other abstract shape; most of the designs include at least one of these. Minimalistic designs use it a lot, because they are often based on illustrations and drawings.

The old style of designing websites included shapes too, so they remained popular throughout the time and will probably continue being like that.

Like lines, shapes are also associated by the human mind with different movements. For example, circles are associated with movement and nature, while squares are often seen as structured, basic designs. Just like with the lines, the color, style, background or texture of a shape can totally change the viewer's perception.

3. Textures

The textures were not very popular a couple of years ago, but they tend to become more and more used. They replaced (or compete with, if we can call it a competition) the single-colored backgrounds.

Textures can look similar to solid background colors, but if they are analyzed closer, small but effective differences can be noticed.

Texture styles include paper, stone, concrete, brick, fabric and natural elements, among flat or smooth colors. Textures can also be subtle or pronounced and can be used sparingly or liberally. They work with pretty much everything.

Even if they do not seem important, the textures can totally change a website and offer a totally different visual impact.

COURSE CODE: 16CSU602B UNIT I: INTRODUCTION BATCH: 2016-2019

Color

The color may even be the most important element of a design, because it offers the most powerful visual impact at a single glance. Color is obvious and does not need basic graphic skills to be noticed.

While lines and shapes mean the same thing as in the reality, only at a little more profound level, the color means exactly the same thing as in the nature. Color creates emotions – red is passionate, blue is calm, green is natural.

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT I: INTRODUCTION BATCH: 2016-2019

Even if you don't realize this, colors have a clear effect on your mind.

Studies have been done and a person who lives in a red environment has a higher heartbeat and pulse than a person living in a blue environment. The human brain sees this and influences the rest of the body.

Therefore color theory is very important to know, because not many designers can call themselves experts in this field. Being a master of colors might make the difference between a good design and a stunning one.

I am not saying you have to know all of them, but knowing how hue, saturation, shade, tint, tone or chroma work together is crucial for a graphic designer.

lever		In Februs Send Perchase Your	
because you can't k	ader is full of unread tems about the time of the second temp of the second temp of the second tends altogether	Т 103.6°	10-
Fever takes the tem and shows you what	perature of your slice of the web ts hot.		100
Features			
106.7°	When the Hold Transmark you finded and picts within most hispathy failed atom bins hims pathonacian time partial. UNRep traditional appropriates, Pewer works before the more flepdy you follow.		
Lines	No Presserve (b) default flower ficture unional sounds to open you unclearly unread them pull but sumations one world to twop an eve	C C C Postal Marco	From integrates with the 5.X simple alle treasure factory total number of serviced dema to Dock in reaching Prove scient for Flack and
Personal 4 Eliment	is those climbing humbers. Control unwast sounds on a global, group or feed level.		in an and the second second

5. Value

I did not specify value above, even if it is closely related to color, because value is more general and represents how dark or light a design is. Value has a lot to do with mood too, only at a more profound level.

Understanding colors will take you close to perfection, but knowing how value works will take you beyond this. Lighter designs offer a different impact and feeling than the dark ones and you need an expert eye to notice differences and decide which one is the best.

COURSE CODE: 16CSU602B UNIT I: INTRODUCTION BATCH: 2016-2019


6. Space

The space and how it is used is crucially important in design. Lately the "white space" (also called negative space) became used widely because it allows the human eye to read easier.

For whoever is not familiar with the term "white space", it does not mean precisely space filled with white, but every area of the design which is only filled with the background color. You can see several examples below to better understand the concept.

If there is a lot of negative space in your web design, it offers light and an open feeling. The lack of white space will turn your design into an old-fashioned, cluttered one. The space has also a lot to do with how the design is perceived by the human eye.

Even if I said the color is maybe the most important element of a design, the space is definitely present in the top, because it is also very easy to notice by the untrained eye. It can turn a design to your advantage and get the best out of your layout.

APPLICATIONS OF COMPUTER GRAPHICS

Computers have become a powerful tool for the rapid and economical production of pictures. There is virtually no area in which graphical displays cannot be used to some advantage, and so it is not surprising to find the use of computer graphics so widespread. Although early applications in engineering and science had to rely on expensive and cumbersome equipment, advances in computer technology have made interactive computer graphics a practical tool. Today, we find computer graphics used routinely in such diverse areas as science, engineering,

COURSE CODE: 16CSU602B UNIT I: INTRODUCTION BATCH: 2016-2019

medicine, business, industry, government, art, entertainment, advertising, education, and training.

1.1.1 Computer-Aided Design

A major use of computer graphics is in design processes, particularly for engineering and architectural systems, but almost all products are now computer designed. Generally referred to as CAD, computer-aided design methods are now routinely used in the design of buildings, automobiles, aircraft, watercraft, spacecraft, computers, textiles, and many, many other products.

For some design applications, object are first displayed in a wire frame outline form that shows the overall sham and internal features of objects. Wire frame displays also allow designers to quickly see the effects of interactive adjustments to design shapes.

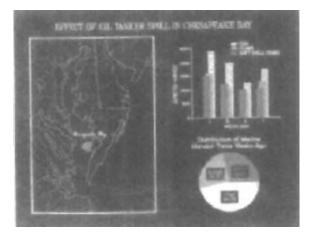
Software packages for CAD applications typically provide the designer with a multiwindow environment. Circuits such as the one shown in below Figure and networks for communications, water supply, or other utilities are constructed with repeated placement of a few graphical shapes. The shapes used in a design represent the different network or circuit components. Standard shapes for electrical, electronic, and logic Circuits are often supplied by the design package. For other applications, a designer can create personalized symbols that are to be used to construct the network or circuit. The system is then designed by successively placing components into the layout, with the graphics package automatically providing the connections between components. This allows the designer t~ quickly try out alternate circuit schematics for minimizing the number of components or the space required for the system.

Fig: A circuit design application using

COURSE CODE: 16CSU602B UNIT I: INTRODUCTION BATCH: 2016-2019

Animations are often used in CAD applications. Real-time animations using wire frame displays on a video monitor are useful for testing performance of a vehicle or system, When we do not display objects with rendered surfaces, the calculations for each segment of the animation can be performed quickly to produce a smooth real-time motion on the screen. Also, wire frame displays allow the designer to **see** into the interior of the vehicle and to watch the behavior of inner components during motion. Animations in virtual reality environments are used to determine how vehicle operators are affected by certain motions. As the tractor operator manipulates the controls, the Headset presents a stereoscopic view of the front-loader bucket or the backhoe, just as if the operator were in the tractor seat. This allows the designer to explore various positions of the bucket or backhoe that might obstruct the operator's view, which can then be taken into account in the overall hector design.

1.1.2 Presentation Graphics


Another major application area is presentation graphics, used to produce illustrations for reports or to generate 35-mm slides or transparencies for use with projectors. Presentation graphics is commonly used to summarize financial, statistical, Mathematical, scientific, and economic data for research reports, managerial reports, consumer information bulletins, and other types of reports. Workstation devices and service bureaus exist for converting screen displays into 35-mm slides or overhead transparencies for use in presentations. Typical examples of

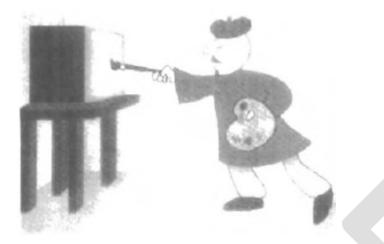
Presentation graphics are bar charts, line graphs, surface graphs, pie charts, and other displays showing relationships between multiple parameters. In below Figure gives examples of twodimensional graphics combined with geographical information. This illustration shows three color coded bar charts combined

Onto one graph and a pie chart with three sections. Similar graphs and charts can be displayed in three dimensions to provide additional information. Three-dimensional graphs are sometime used simply for effect; they can provide a more dramatic or more attractive presentation of data relationships.

(Fig: Two dimensional bar chart and pie chart)

CLASS: III B.Sc CS A & BCOURSE CODE: 16CSU602BUNIT I: INTRODUCTIONBATCH: 2016-2019

1.1.3 Computer Art


Computer graphics methods are widely used in both fine art and commercial art applications. Artists use a variety of computer methods, including special-purpose hardware, artist's paintbrush (such as Lumens), other paint packages (such as Pixel paint and Super paint), specially developed software, symbolic mathematics packages (such as Mathematics), CAD packages, desktop publishing software, and animation packages that provide facilities for designing object shapes and specifying object motions.

Fine artists use a variety of other computer technologies to produce images. For many applications of commercial art (and in motion pictures and other applications), photorealistic techniques are used to render images of a product. A common graphics method employed in many commercials is morphing,

where one object is transformed (metamorphosed) into another. This method has been used in TV commercials to turn an oil can into an automobile engine, an automobile into a tiger, a puddle of water into a tiger, and one person's face into another

face

CLASS: III B.Sc CS A & B COURSE CODE: 16CSU602B UNIT I: INTRODUCTION BATCH: 2016-2019

(Fig: Cartoon drawing produced with a paintbrush program)

In above figure illustrates the basic idea behind a paintbrush program that allows artists to "paint" pictures on the screen of a video monitor. Actually, the picture is usually painted electronically on a graphics tablet (digitizer) using a stylus, Which can simulate different brush strokes, brush widths, and colors. A paintbrush program was used to create the characters.

1.1.4 Entertainment

Computer graphics methods are now commonly used in making motion pictures, music videos, and television shows. Sometimes the graphics scenes are displayed by themselves, and sometimes graphics objects are combined with the actors and live scenes.

A graphics scene generated for the movie Star Trek-the Wrath of Khan is shown in below figure.

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT I: INTRODUCTION BATCH: 2016-2019

(Fig: Graphics developed for the paramount picture movie)

The planet and spaceship are drawn in wire fame form and will be shaded with rendering methods to produce solid surfaces. Many TV series regularly employ computer graphics methods.

Music videos use graphics in several ways. Graphics objects can be combined with the live action, or graphics and image processing techniques can be used to produce a transformation of one person or object into another (morphing). An example of morphing is shown in the sequence of scenes in below Figure, produced for the David Byme video She's Mad.

1.1.5 Education and Training

Computer-generated models of physical, financial, and economic systems are often used as educational aids. Models of physical systems, physiological systems, population trends, or equipment, such as the color coded diagram in below figure, can help trainees to understand the operation of the system. For some training applications, special systems are designed. Examples of Such specialized systems are the simulators for practice sessions or training of ship captains, aircraft pilots, heavy-equipment operators, and air traffic control personnel. Some simulators

COURSE CODE: 16CSU602B UNIT I: INTRODUCTION BATCH: 2016-2019

have no video screens; for example, a flight simulator with only a control panel for instrument flying. But most simulators provide graphics screens for visual operation.

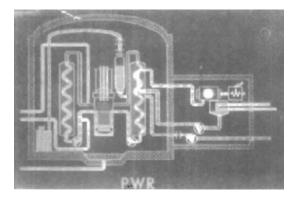


Fig: color coded diagram

1.1.6 Visualization

Scientists, engineers, medical personnel, business analysts, and others often need to analyze large amounts of information or to study the behavior of certain processes. Numerical simulations carried out on supercomputers frequently produce data files containing thousands and even millions of data values. initially,

Satellite cameras and other sources are amassing large data files faster than they can be interpreted. Scanning these large sets of number to determine trends and relationships is a tedious and ineffective process. But if the data are converted to a visual form, the trends and patterns are often immediately apparent. In below Figure shows an example of a large data set that has been converted to a color-coded display of relative heights above a ground plane.

Once we have plotted the density values in this way, we can see easily the overall pattern of the data. Producing Graphical representations for scientific, engineering, and medical data sets and processes are generally referred to as scientific visualization. And the term business visualization is used in connection with data sets related to commerce, industry, and other nonscientific areas. There are many different kinds of data sets, and effective visualization schemes depend on the characteristics of the data. A collection of data can contain scalar values, vectors, higher-order tensors, or any combination of these data types.

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT I: INTRODUCTION BATCH: 2016-2019

Data sets can be two-dimensional or three-dimensional. Color coding is just one way to visualize a data set. Additional techniques include contour plots, graphs and charts, surface renderings, and visualizations of volume interiors. In addition, image processing techniques are combined with computer graphics to produce many of the data visualizations.

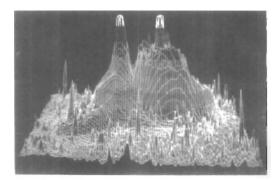


Fig: A color coded path with 16 million density points

1.1.7 Image Processing

Although methods used in computer graphics and Image processing overlap, the two areas with fundamentally different operations. In computer graphics, a computer is used to create a picture. Image processing, on the other hand. Applies techniques to modify or interpret existing picture, such as photographs and TV scans. Two principal applications of image processing are (1) improving picture quality and (2) machine perception of visual information, as used in robotics. To apply image processing methods, we first digitize a photograph or other Picture into an image file. Then digital methods can be applied to rearrange picture parts, to enhance color separations, or to improve the quality of shading. An example of the application of image processing methods to enhance the quality of a picture is shown in Fig. 1-70.

These techniques are used extensively in commercial art applications that involve the retouching and rearranging of sections of photographs and other artwork. Similar methods are used to analyze satellite photos of the earth and photos of galaxies. Medical applications also make extensive use of image processing techniques for picture enhancements, in tomography and in simulations of operations.

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT I: INTRODUCTION BATCH: 2016-2019

Tomography is a technique of X-ray photography that allows cross-sectional views of physiological systems to be displayed. Both computed X-rav tomography (CT) and position emission tomography (PET) use projection methods to reconstruct cross sections from digital data.

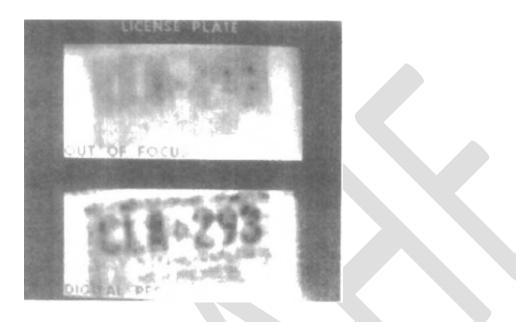


Fig. 1-70 (the blurred photograph of a license plate)

1.1.8 Graphical User Interfaces

It is common now for software packages to provide a graphical interface. A major component of a graphical interface is a window manager that allows a user to display multiple-window areas. Each window can contain a different process that can contain graphical or no graphical displays. To make a particular window active, we simply click in that window using an interactive pointing device. Interfaces also display menus and icons for fast selection of processing options or parameter values.

An icon is a graphical symbol that is designed to look

Like the processing option it represents. The advantages of icons are that they take up less screen space than corresponding textual descriptions and they can be understood more quickly if well designed. Menus contain lists of textual descriptions and icons.

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT I: INTRODUCTION BATCH: 2016-2019

Fig: A Graphical user interface showing multiple window areas, menus and icons.

In above figure illustrates a typical graphical interface, containing a window manager, menu displays, and icons. In this example, the menus allow selection of processing options, color values, and graphics parameters. The icons represent options for painting, drawing, zooming, typing text strings, and other operations connected with picture construction.

UNIT I

POSSIBLE QUESTIONS

2 MARKS

- 1. What is computer graphics?
- 2. What are the basic elements used in computer graphics?
- 3. Define texture.
- 4. What is Computer Aided Design?
- 5. Mention some applications of computer graphics.

POSSIBLE QUESTIONS

8 MARKS

1. Explain the basic elements of computer graphics.

COURSE CODE: 16CSU602B UNIT I: INTRODUCTION BATCH: 2016-2019

- 2. Describe about applications of computer graphics.
- 3. Write a note on computer graphics.

KARPAGAM ACADEMY OF HIGHER EDUCATION DEPARTMENT OF COMPUTER SCIENCE, CA & IT II B.Sc CS (Batch 2016-2019) KARPAGAM **COMPUTER GRAPHICS PART - A OBJECTIVE TYPE/MULTIPLE CHOICE QUESTIONS ONLINE EXAMINATIONS UNIT-I** Opt3 Sno Questions Opt1 Opt2 Opt4 Opt5 Opt6 Answer The DVST cathode cathode storage laser display is used in tolovision

1

television							
sets				scan			ray tube
A 	application	graphics	hardware	subprogra			graphics
is a							
set of							
subroutine							
s that							
		naakana					nackana
	rocolution		oizo				package
	resolution	raster	size	aspect			aspect
-							
-							
-							
called							
_							ratio
	persistanc	phophores	fluorescen	existence			persistanc
	е	cence	ce				е
	sets A	sets application A application is a set of subroutine subroutine s set of subroutine s baset of subroutine s set of subroutine s that provide high level access to graphics input output hardware The ratio resolution of image's width to its height, measured in unit length or length or no of pixels is called	setstubeAapplicationgraphicsis aaset ofaset ofsubroutinesubroutineaset ofsubroutines thataccess tographicsaccess toaccess tographicsaccess topackageThe ratioresolutionrasterof image'swidth to itsheight,measuredaccess isin unitaccessaccessDurationpackageDurationpersistancphosphorescenceexhibitedby thephosphoraccesis calledaccesin unitaccesin unitaccesaccesaccesin unitaccesby theaccesby theaccesby theaccesby theaccesby theaccesa	setstuberay tubeAapplicationgraphicshardwareis aapplicationgraphicshardwareis aset ofsubroutineset ofsubroutines thatapplicationresolutionresolutionresolutions thatprovideprovideprovideprovidehigh levelaccess topackageprovidegraphicsinputpackagepackageThe ratioresolutionrastersizeof image'swidth to itsheight,measuredheight,measuredin unitlength orno ofpixels iscalledphophoresDurationpersistancphophoresof phosphorescencephophoresscenceexhibitedphophoresby thephosphorlineis calledlineline	setstuberay tubescanAapplicationgraphicshardwaresubprograis aset ofsubroutineset ofsubroutineset ofsubroutines thatset ofsubroutines thatst hatsubroutines thatset ofprovidest hatset ofsubroutineset ofhigh levelaccess toset ofset ofgraphicssinputset ofset ofgraphicssinputpackagemoutputhardwarepackagemfinage'ssizeaspectof image'ssizesizewidth to itsset ofsizeheight,set ofsizeno ofset ofset ofpixels isset ofset ofcalled	setstuberay tubescanAapplicationgraphicshardwaresubprograis aset ofsubroutineset ofsubroutines set ofsubroutinesubroutinesthatsubroutines thatsthatsubroutinesubroutinesubroutinegraphicssthatsubroutineset ofsubroutinegraphicssubroutinesubroutinesubroutinesubroutines thatsthatsthatsubroutinesubroutinegraphicssthatsthatsthatsthatprovidehigh levelaccess tosthatsthatgraphicssthatsthatsthatsthatgraphicssthatsthatsthatsthatgraphicssthatsthatsthatsthatgraphicssthatsthatsthatsthatgraphicssthatsthatsthatsthatgraphicssthatsthatsthatsthataccess tosthatsthatsthatsthatgraphicsresolutionrasterstizeaspectof image'sstatstizestizestizewidth to itsstisestizestizestizeheight,stizestizestizestizescalledstizestizestizestizepixels isstizestizestizestizescalledstizestizestize<	setstuberay tubescanAapplicationgraphicshardwaresubprograis agraphicshardwaresubprograis aset ofsubroutinehardwaresubprograis aset ofsubroutinehardwarehardwaresubroutinesthathardwarehardwarehardwareprovidehigh levelaccess tographicsinputaccess tographicspackagemgraphicsresolutionrastersizeaspectof image'swidth to itshardwaresizeaspectof image'sresolutionrastersizeaspectmeasuredin unitnuitnuitnuitlength orno ofpixels isprophorescalledprosphoreprophoresfluorescenexistencephosphorescencesizesizeaspectphosphorescencephophoresfluorescenexistencescalled

5	The	dot	pixel	bit	point		pixel
5		uui	pixei	DIL	point		ріхеі
	smallest						
	picture						
	unit						
	accepted						
	by display						
	is termed						
	as a						
6		linear	group	multiple	matrix		matrix
	a digits is						
	formed by						
	of						
_	pixels				A		A
7		Animated	General	Multimedi	Computer		Computer
	is a						
	branch of						
	computer						
	science						
	that deals						
	with theory			а			
	and			~			
	technology						
	for						
	computeri						
	zed image						
	synthesis	Graphics	Graphics	Graphics	Graphics		Graphics
8	The area	scan	transforma	representa	translation		scan
	of						
	computer						
	graphics						
	that is						
	responsibl e for						
	converting						
	a	conversio					conversio
	a continuou	501101310					301101310
	s figure						
	into						
	discrete						
	approxima						
	tion is						
	called						
		n	tion	tion			n
9	The	Hidden	Hidden	Obscured	Removed		Hidden
	Surface						
	area that						
	are		surface				surface
	obscured						
	from our	-		a f	a f		
	eyesight.	surface	removal	surface	surface		removal

10	Pixel is	A memory	An input	A data	Smallest	Smallest
			-		addressab	addressab
					le point on	le point on
		block	device	structure	the screen	the screen
11	Resolution		The	The	The	The
			number of			number of
		pixels in	pixels in	pixels in	pixels in	pixels in
		the	the vertical	the	the vertical	the
		horizontal	direction -	horizontal	direction x	horizontal
	is defined	direction +		direction x		direction x
		the	number of		number of	the
		number of	-	number of		number of
		pixels in	the	pixels in	the	pixels in
		the vertical		the vertical		the vertical
10	as	direction	direction	direction	direction	direction
12	Aspect	The ratio	The ratio	The ration	The ration	The ratio
		of image's	of image's	of image's		of image's
		Ű	width to its	-	to viewport	width to its
	Ratio is	height	height	levels	height	height
13	Refresh	The	The rate	The rate	The	The
		frequency	at which		frequency	frequency
		noquonoy	the		at which	at which
		at which	number of	at which	the	the
		the	bit planes		contents of the	contents of the
					frame	frame
		aliasing	are	the picture	buffer is	buffer is
			accessed		sent to the	sent to the
		takes	at a given		display	display
	rate is	place	time	is redrawn		monitor
14	World	The	The	The	The	The
		coordinate	coordinate	coordinate	coordinate	coordinate
		system in	system in	system in	system in	system in
	coordinate	-	-	-	which the	-
		which the	which the	which the	transforma	which the
		image is	object is	surface is	tion are	object is
	system is	defined	defined	defined	defined	defined
15	Frame	The	The	The	The	The
		device	memory	device	memory	memory
		used for	area in	which	area in	area in
		displaying	which the		which the	which the
		the colors	graphics	controls	image, boing	image,
		of an	package is	the refresh	being diaplayed	being
	bufforio				displayed,	displayed,
16	buffer is Aliasing	image Cueing	stored Cumming	rate Staircase	is stored Rendering	is stored Staircase
10	-	-	-		-	
	means	effect	effect	effect	effect	effect

17	is	discrete	continuou	object			object
17		uisciele	continuou	object	air space		object
	an						
	abstract,						
	continuou						
	s space						
	which						
	defines						
	the object.	space	s space	space			space
18	The	display	digital	digital	display		display
	purpose of						
	the						
	is to						
	convert						
	electrical						
	signals						
	into visible						
	images	controller	device	controller	device		device
19	The	digital	display	digital	display		display
		aigitai	alopidy	aigitai	alopidy		alopidy
	receive						
	informatio						
	n from the						
	computer						
	and						
	convert it						
	into						
	signals						
	acceptabl						
	e to the						
	device	device	controller	controller	device		controller
20	The	DVST	laser scan	CRT	plasma		CRT
20	THE	0,01			plasma		OIT
	_ convert						
	computer'						
	s electrical						
	signals						
	into visible						
	images at						
	high						
01	speed	ala chira in	nh e sult su	value.	panel		alactrac
21	The	electron	phosphor	yoke	sulphur		electron
	in CRT						
	emits on						
	high						
	velocity						
	fine focus						

22	1	volco	alastran	aulahur	nhoonhor		nhoonhor
22		yoke	electron	sulphur	phosphor		phosphor
	is coated						
	on inside						
	CRT,						
	which						
	glow when						
	the						
	electron						
	beam						
	strikes on						
	it.		gun				
23	The	electron	sulphur	deflection	phosphor		deflection
	in CRT,						
	deflect the						
	electron						
	beam to						
	different						
	parts of						
	tube face						
	when						
	current						
	pass						
	through						
		aun		plataa			plates
24	the coils A steady	gun refresh	clear	plates clean	erase		refresh
27	picture is	Telleon	Cical	ciean	erase		renesii
	-						
	maintaine						
	d by						
	tracing the						
	electron						
	beam						
	rapidly						
	and						
	repeatedly						
	is called						
25	process	ooth ord -	oontrol	filoment	onede		oontrol
25	The	cathode	control	filament	anode		control
	brightness						
	of the						
	image is						
	controlled						
	by altering						
	the						
	ule						
	in electron						
	gun		grid				grid
	10 · ·	8	U "			1	J -

26	Area of	scan	transforma	representa	translation		transforma
20	Graphics	30011	transforma	representa			lansionna
	which						
	deals with						
	placement						
	of object						
	in various	conversio					
	size,						
	orientation						
	or location						
	is called						
		n	tion	tion			tion
27	The	Aliasing	anti	clipping	viewing		Aliasing
	distortion						
	introduced						
	by						
	conversio						
	n from						
	continuou						
	s space to discrete						
	space is						
	referred to						
	as						
	as		aliasing				
28	The area	scan		representa	translation		scan
	of CG that						
	converts a						
	continuou						
	s figure to	conversio					conversio
	its discrete						
	approxima						
	tion is						
	called	n	tion	tion			n
29	Which of	(0.4,0.5,0.	0.2,1.0,0.0	(1,0,0)	(0.5,0.5,0.		(0.5,0.5,0.
	these						
	RGB value						
	represent						
	a grey		l,		E)		E)
30	colour	0) XYZ) BGR	CMY	5) ABC	+ +	5) CMY
	is the						51
	_ is the						
	ntary color						
	model to						
	RGB						

The	dithor	color	imaga	nivel			dither
	ultrei	0001	inage	рілеі			aitrei
called							
· · · · · · · · · · · ·							
<u> </u>							patterns direct
	соокир	RGB COIOF	airect	CIVIT COLOR			direct
wide							
range of							
colors							
							coding
		Intensity	volume	brightness			pitch
between							
the center							
of two							
adjacent							
dot							
patterns is							
-							
In	printing	halftoning	dithering	error			dithering
			, , , , , , , , , , , , , , , , , , ,				J. J
, the							
size of the							
dots are							
inversely							
proportioal							
to the							
intended							
intensity							
level				diffusion			
	getValue(getIndex()	getColor()	getPixel()			getPixel()
pixel)						
	24 bit representa tion provides a wide range of colors (16.7 million colours) In colour display the distace between the center of two adjacent dot patterns is called the , the size of the dots are inversely proportioal to the intended intensity level protocol is used to return the colour or index value of a	halftone grid patterns are also calledpatternspatternspatternsLookup	halftone grid patterns patterns are also patterns called patterns 24 bit patterns representa Lookup RGB color 24 bit representa space iron provides a wide wide range of space In colours) table space In colour pitch intensity display the intensity distace between the space the center of two adjacent dot patterns is called the called the proportical space inversely proportical getValue(getIndex() getIndex() yature, or a	halftone grid patterns patterns patterns patterns patterns patterns 24 bit cookup RGB color direct 24 bit representation provides a awide arange of cookup RGB color direct 24 bit representation provides a wide arange of cookup texterns range of colors (16.7 million coding texterns texterns In colour pitch intensity volume texterns texterns texterns In colour pitch intensity volume texterns texterns texterns dot patterns is called the patterns texterns texterns texterns	halftone grid patterns are also called patterns patterns patterns pattern patterns patterns patterns pattern patterns patterns patterns pattern patterns patterns patterns pattern RGB color direct CMY color CMY color range of colors (16.7 million colours) table space coding cube In colour pitch intensity volume brightness display the distace between the center of two adjacent dot patterns is called the , the size of the dots are inversely proportical to the intensity level getValue(getValue(getValue(getIndex() getColor() getPixel() getPixel()	halftone grid patterns are also called patterns patterns patterns pattern Abit representation provides a wide range of colors (16.7 million colours) (16.7 (16.7 million colours) (16.7 million colours) (16.7 million colours) (16.7 million colours) (16.7 million colours) (16.7 million colours) (16.7 million colours) (16.7 million colours) (16.7 million colours) (16.7 million colours) (16.7 million colours) (16.7 million colours) (16.7 million colours) (16.7 million colours) (16.7 million colours) (16.7 million colours) (16.7 million colours) (16.7 million colours) (16.7 million colours) (16.7 million co	halftone grid patterns reare also called

36	The	Printer	Pixel	CRT	Dither		Printer
50	is the				Dithei		rintei
	most						
	popular						
	and						
	successful						
	image						
	presentati						
	on device.						
37	In Error	all the	neighborin	yet to be	neighborin		yet to be
	Diffusion						
	technique						
	the error		a pixels in	processed			processed
	term is		5 p	p			p
	propagate	neighborin			g pixel at		
	d to		the next	noighborin			naiabharin
			the next	neighborin			neighborin
	for						
	compensa						
	tion.	g pixels	scan line	g pixels	the left		g pixels
38		binary files	Unicode	text files	ASCII files		binary files
	image is						
	often						
	encoded						
	in the form						
	of						
			files				
39	A 512 x	218	212	210	28		218
	512 raster						
	requires						
	-						
	bits						
	in a bit						
	plane						
40	What is	Dots per	Digits per	Division	None of		Dots per
	dpi	inch	inch	per inch	the above		inch
41	A gray-	1	4	8	24		8
	scale						
	image is						
	typically						
	coded with						
	bits per						
	pixel						
42	The	Real color	Bright	True color	brightness		True color
	bit format		Bright		Singhanooo		
	is						
	commonly						
	referred to						
	as the						
	re						
	presentati						
	on		color				

43	The look	Gives no	Removes	Increase	Decrease			Increase
40	up table	Gives no	Removes	Increase	Decrease			Increase
	technique							
	toorniquo							
	the							
	number of							
	intensity							
	levels	effect						
44	A simple 3-	4	24	16	8			8
	bit plane							
	frame							
	buffer can							
	have							
	number of							
	color							
	combinati							
	on							
45	Image	Value	order	Precedenc	Successiv			order
	data							
	format							
	specifies							
	the							
	in							
	which							
	pixel							
	values are							
	stored in							
	the image data							
	section			<u> </u>	00000			
46	TIFF	Tiff-Image	Triggered	e Tagged	eness Tilled			Tagged
-10		rin inage			Image			
			Image File	Image File	Formatted			Image File
	refers to	file format	format	Format	File			Format
47	JPEG	Joint	Join	Joint	join			Joint
		Picture	picture	Photograp	picture			Photograp
		Expert	Expert	hic	externel			hic
	roforo to			Experts				Experts
48	refers to RGB	Group Resolution-	Group Resolution	Group Red-	group red			Group Red-
		Global-	of Green	Green-	resolution			Green-
	refers to	Bright	and Blue	Blue	blue			Blue
49	Which of	.doc	.xls	.http	.jpeg			.jpeg
	the							
	following							
	are image							
50	file	1 bit nor	0 hit nor	1 bit nor	0 hit not			1 bit set
50	The color black and	1 bit per	2 bit per	4 bit per	8 bit per			1 bit per
	white							
	occupies	pixel	pixel	pixel	pixel			pixel
1	00000000			17.70		1	1	P.7.01

51	The	6x2y4z	8xy4z	6x2y4z	12xyz		6x2y4z
51	character	0x2y42	0Xy4Z	0XZY4Z	TZXYZ		0x2y42
	string						
	"xxxxxxyyz						
	zzz" can						
	be						
	converted						
	and						
	compress						
	ed to						
52	The	Unit	Pitch	Persistenc	vector		Pitch
	distance						
	between						
	the center						
	of the dot						
	patterns is						
	-						
	called the						
	_ of the						
	color CRT			е			
53	In a 3-bit	Red	Cyan	Black	Green		Cyan
	plane						
	frame						
	buffer 011						
	represents						
	•						
	color						
54		Fluoresce	Phosphor	Persistenc	Durability		Fluoresce
-	given off				,		
	by the						
	phosphor						
	during						
	exposure						
	to the						
	electron						
	beam is	nce	000000	0			nce
55		nce remain	escence Slight	e No	Vary		nce Vary
			Sign		vary		vary
	of the light						
	and time						
	period						
	may						
	from one						
	type of						
	phosphor						
			doviation	difference			
	to another	same	deviation	difference			

56	The	Day		Simson-	Floyd		
90		Roy-	Joycox-	Simson-	Floyd-		Floyd-
	technique						
	for						
	continuou						
	s-tone						
	reproducti						
	on without						
	sacrificing						
	spatial						
	resolution						
	is called						
	error						
	diffusion	Steinberg	steinberg	steinberg	steinberg		steinberg
57	In a 3-bit	101	100	111	11		101
57	plane	101	100	' ' '			101
	frame						
	buffer the						
	color of						
	magenta						
	is						
	represente						
	d by						
58	The dots	35°	180°	45°	90°		45°
	are						
	arranged						
	in a						
	pattern						
	that forms						
	a						
	screen						
	angle with						
	the						
	horizon						
59	In	120 – 200	20 – 40	40 - 60	60 – 80		60 – 80
	practice,	120 - 200	_0 = +0	10 - 00	00 - 00		00 - 00
	news						
	paper						
	halftones						
	use						
60	_ dpi	1	10	101	110		110
60	If Blue is	1	10	101	110		110
	represente						
	d a 001						
	then						
	yellow is						
	represente						
1	d as						

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B

UNIT II: GRAPHICS HARDWARE

BATCH: 2016-2019

UNIT-II

SYLLABUS

Graphics Hardware : Architecture of Raster and Random scan display devices, input/output devices.

Graphics Hardware

Graphics hardware is computer hardware that generates computer graphics and allows them to be shown on a display, usually using a graphics card (video card) in combination with a device driver to create the images on the screen.

Types

Graphics Cards

The most important piece of graphics hardware is the graphics card, which is the piece of equipment that renders out all images and sends them to a display. There are two types of graphics cards: integrated and dedicated. An integrated graphics card, usually by Intel to use in their computers, is bound to the motherboard and shares RAM(Random Access Memory) with the CPU, reducing the total amount of RAM available. This is undesirable for running programs and applications that use a large amount of video memory. A dedicated graphics card has its own RAM and Processor for generating its images, and does not slow down the computer. Dedicated graphics cards also have higher performance than integrated graphics cards. It is possible to have both^[2] dedicated and integrated graphics, however once a dedicated graphics card is installed, the integrated card will no longer function until the dedicated card is removed.

Parts of a Graphics Card

The GPU, or graphics processing unit, is the unit that allows the graphics card to function. It performs a large amount of the work given to the card. The majority of video playback on a computer is controlled by the GPU. Once again, a GPU can be either integrated or dedicated.

Video Memory is built in RAM installed on the video card that provides the graphics card with its own RAM and allows it to run smoothly without having to take resources from the computer. However, if one uses an integrated graphics card, the chip will take resources from the computer as it does not have its own built in memory. That is how it is made.

Display Drivers

A display driver is a piece of software which allows your graphics hardware to communicate with your operating system. Drivers in general allow your computer to utilize parts of itself, and

Prepared by Manjula.D, Asst.prof, Dept of CS,CA & IT, KAHE

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B

UNIT II: GRAPHICS HARDWARE BATCH: 2016-2019

without them, the machine would not function. This is because usually a graphics device communicates in its own language, which is more sophisticated, and a computer communicates in its own language, which largely deals with general commands. Therefore, a driver is required to translate between the two, and convert general commands into specific commands, and vice versa, so that each of the devices can understand the instructions and results.

ARCHITECTURE OF RASTER AND RANDOM SCAN DISPLAY DEVICES

Raster-Scan Displays

The most common type of graphics monitor employing a CRT is the raster-scan display, based on television technology. In a raster-scan system, the electron beam is swept across the screen, one row at a time from top to bottom. As the electron beam moves across each row, the beam intensity is turned on and off to create a pattern of illuminated spots.

Picture definition is stored in a memory area called the refresh buffer or frame buffer. This memory area holds the set of intensity values for all the screen points. Stored intensity values are then retrieved from the refresh buffer and "painted" on the screen one row (scan line) at a time (in above Figure). Each screen point is referred to as a pixel or pel (shortened forms of picture element). The capability of a raster-scan system to store intensity information for each screen point makes it well suited for the realistic display of scenes containing subtle shading and color

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT II: GRAPHICS HARDWARE BATCH: 2016-2019

patterns. Home television sets and printers are examples of other systems using raster-scan methods.

Intensity range for pixel positions depends on the capability of the raster system. In a simple black-and-white system, each screen point is either on or off, so only one bit per pixel is needed to control the intensity of screen positions. For

a bi-level system, a bit value of 1 indicates that the electron beam is to be turn4 on at that position, and a value of 0 indicates that the beam intensity is to be off. Additional bits are needed when color and intensity variations can be displayed. Up to 24 bits per pixel are included in high-quality systems, which can require several megabytes of storage for the frame buffer, depending on the resolution of the system. A system with 24 bits per pixel and a screen resolution of 1024 by 1024 requires 3 megabytes of storage for the frame buffer. On a black-and-white system with one bit per pixel, the frame buffer is commonly called a bitmap. For systems with multiple bits per pixel, the frame buffer is often referred to as a pixmap.

Refreshing on raster-scan displays is carried out at the rate of 60 to 80 frames per second, although some systems are designed for higher refresh rates. Sometimes, refresh rates are described in units of cycles per second, or Hertz (Hz), where a cycle corresponds to one frame. Using these units, we would describe

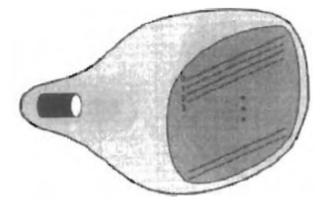
a refresh rate of *60* frames per second as simply 60 Hz. At the end of each scan line, the electron beam returns to the left side of the screen to begin displaying the next scan line. The return to the left of the screen, after refreshing each scan line, is called the horizontal retrace of the electron beam. And at the end of

each frame (displayed in 1/80th to 1/60th of a second), the electron beam returns (vertical retrace) to the top left comer of the screen to begin the next frame.

Random-Scan Displays

When operated as a random-scan display unit, a CRT has the electron beam directed only to the parts of the screen where a picture is to be drawn. Random scan monitors draw a picture one line at a time and for this reason are also referred to as vector displays *(or stroke-writing or calligraphic displays)*. The

Component lines of a picture can be drawn and refreshed by a random-scan system in any specified order which is shows in below figure.


CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B

UNIT II: GRAPHICS HARDWARE

BATCH: 2016-2019

(Fig: Interlacing scan lines on the raster scan system)

A pen plotter operates in a similar way and is an example of a random-scan, hard-copy device. Refresh rate on a random-scan system depends on the number of lines to be displayed. Picture definition is now stored as a set of line drawing commands in

an area of memory r e f e d to as the refresh display file. Sometimes the refresh display file is called the display list, display program, or simply the refresh buffer. To display a specified picture, the system cycles through the set of commands

in the display file, drawing each component line in turn. After all line drawing commands have been processed, the system cycles back to the first line command in the list. Random-scan displays are designed to draw all the component lines of a picture 30 to 60 times each second. High quality vector systems are capable of handling approximately 100,000 "short" lines at this refresh rate. When a small set of lines is to be displayed, each refresh cycle is delayed to avoid refresh rates greater than 60 frames per second. Otherwise, faster refreshing of the set of lines could bum out the phosphor.

Random-scan systems are designed for line drawing applications and cannot display realistic shaded scenes. Since picture definition is stored as a set of line drawing instructions and not as a set of intensity values for all screen points, vector displays generally have higher resolution than raster systems. Also, vector displays produce smooth line drawings because the CRT beam directly follows the line path. A raster system, in contrast, produces jagged lines that are plotted as discrete point sets.

INPUT DEVICES:

Input devices

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B

UNIT II: GRAPHICS HARDWARE BATCH: 2016-2019

Various devices *are* available for data input on graphics workstations. Most systems have a keyboard and one or more additional devices specially designed for iterative input. These include a mouse, trackball, space ball, joystick, digitizers, dials, and button boxes. Some other inputs devices are used In particular applications are data gloves, touch panels, image scanners, and voice systems.

Keyboards

An alphanumeric keyboard on a graphics system is used primarily as a device for entering text strings. The keyboard is an efficient device for inputting such non graphic data as picture labels associated with a graphics display. Keyboards can also be provided with features to facilitate entry of screen coordinates, menu selections, or graphics functions. Cursor-control keys and function keys are common features on general purpose keyboards. Function keys allow users to enter frequently used operations in a single keystroke, and cursor-control keys can be used to select displayed objects or coordinate positions by positioning the screen cursor. Other types of cursor-positioning devices, such as a trackball or joystick, are included on some keyboards. Additionally, a numeric keypad is, often included on the keyboard for fast entry of numeric data. Typical examples of general-purpose keyboards are given in below Fig.

(Fig: Keyboard with removable palm rests)

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B

UNIT II: GRAPHICS HARDWARE BATCH: 2016-2019

Х

For specialized applications, input to a graphics application may come from a set of buttons, dials, or switches that select data values or customized graphics operations. In below Figure gives an example of a button box and a set of input dials. Buttons and switches are often used to input predefined functions, and dials are common devices for entering scalar values. Real numbers within some defined range are selected for input with dial rotations. Potenhometers are used to measure dial rotations, which are then converted to deflection voltages for cursor movement.

(Fig: A Button box)

Mouse

A mouse is small hand-held box used to position the screen cursor. Wheels or rollers on the bottom of the mouse can be used to record the amount and direction of movement. Another method for detecting mouse motion is with an optical sensor. For these systems, the mouse is moved over a special mouse pad that has a grid of horizontal and vertical lines. The optical sensor detects movement across the lines in the grid. Since a mouse can be picked up and put down at another position without change in cursor movement, it is used for making relative change in the position of the screen cursor. One, two, or three button usually included on the top of the mouse for signaling the execution of some operation, such as recording cursor position or

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT II: GRAPHICS HARDWARE BATCH: 2016-2019

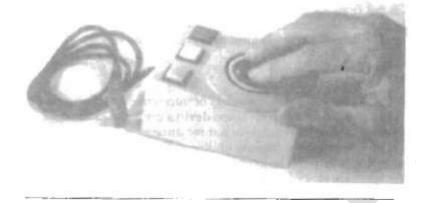
invoking a function. Mast general-purpose graphics systems now include a mouse and a keyboard as the major input devices.

Additional devices can be included in the basic mouse design to increase the number of allowable input parameters. The Z mouse in Fig. includes three buttons, a thumbwheel on the side, a trackball on the top, and a standard mouse ball underneath. This design provides six degrees of freedom to select Input Devices spatial positions, rotations, and other parameters. With the Z mouse, we can pick up an object, rotate it, and move it in any direction, or we can navigate our viewing position and orientation through a three-dimensional scene. Applications of the Z mouse include virtual reality, CAD, and animation.

(Fig: Z-Mouse)

Trackball and Space ball

As the name implies, a trackball is a ball that can be rotated with the fingers or palm of the hand, as in Fig, to produce screen-cursor movement. Potentiometers, attached to the ball, measure the amount and direction of rotation. Trackballs are often mounted on keyboards or other devices such as the Z mouse.


(Fig: A Three Button Track Ball)

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B

UNIT II: GRAPHICS HARDWARE

BATCH: 2016-2019

While a trackball is a two-dimensional positioning device, a space ball provides six degrees of freedom. Unlike the trackball, a space ball does not actually move. Strain gauges measure the amount of pressure applied to the space ball to provide input for spatial positioning and orientation as the ball is pushed or pulled in various directions. Space balls are used for three-dimensional positioning and selection operations in virtual-reality systems, modeling, animation, CAD, and other applications.

Joysticks

A joystick consists of a small, vertical lever (called the stick) mounted on a base that is used to steer the screen cursor around. Most joysticks select screen positions with actual stick movement; others respond to pressure on the stick. Some joysticks are mounted on a keyboard; others function as stand-alone units. The distance that the stick is moved in any direction from its center position corresponds to screen-cursor movement in that direction. Potentiometers mounted at the base of the joystick measure the amount of movement, and springs return the stick to the center position when it is released. One or more buttons can be programmed to act as input switches to signal certain actions once a screen position has been selected.

In another type of movable joystick, the stick is used to activate switches that cause the screen cursor to move at a constant rate in the direction selected. Eight switches, arranged in a circle, are sometimes provided, so that the stick can select any one of eight directions for cursor

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT II: GRAPHICS HARDWARE BATCH: 2016-2019

movement. Pressure sensitive joysticks, also called isometric joysticks, have a non movable stick. Pressure on the stick is measured with strain gauges and converted to movement of the cursor in the direction specified.

Data Glove

From the below figure shows a data glove that can be used to grasp a "virtual" object. The glove is constructed with a series of sensors that detect hand and finger motions. Electromagnetic coupling between transmitting antennas and receiving antennas is used to provide information about the position and orientation of the hand. The transmitting and receiving antennas can each be structured as a set of three mutually perpendicular coils, forming a three-dimensional Cartesian coordinate system. Input from the glove can be used to position or manipulate objects in a virtual scene. A two-dimensional projection of the scene can be viewed on a video monitor, or a three-dimensional projection can be viewed with a headset.

(Fig: A virtual reality screen displayed on a 2-D video monitor with input from data glove and a space ball)

Digitizers

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B

UNIT II: GRAPHICS HARDWARE BATCH: 2016-2019

A common device for drawing, painting, or interactively selecting coordinate positions on an object is a digitizer. These devices can be used to input coordinate values in either a two-dimensional or a three-dimensional space. Typically, a digitizer is used to scan over a drawing or object and to input a set of discrete coordinate positions, which can be joined with straight-line segments to approximate the curve or surface shapes. One type of digitizer *is* the graphics tablet (also referred to as a data tablet), which is used to input two-dimensional coordinates by activating a hand cursor or stylus at selected positions on a flat surface. A hand cursor contains cross hairs for sighting positions, while a stylus is a pencil-shaped device that is pointed at positions on the tablet.

Many graphics tablets are constructed with a rectangular grid of wires embedded in the tablet surface. Electromagnetic pulses are generated in sequence along the wires, and an electric signal is induced in a wire coil in an activated stylus or hand cursor to record a tablet position. Depending on the technology, signal strength, coded pulses, or phase shifts can be used to determine the position on the tablet. - Acoustic (or sonic) tablets use sound waves to detect a stylus position. Either strip microphones or point microphones can be used to detect the sound emitted by an electrical spark from a stylus tip. The position of the stylus is calculated by timing the arrival of the generated sound at the different microphone positions. An advantage of twodimensional acoustic tablets is that the microphones can be placed on any surface to form the "tablet" work area. This can be convenient for various applications, such as digitizing drawings in a book.

Three-dimensional digitizers use sonic or electromagnetic transmissions to word positions. One electromagnetic transmission method is similar to that used in the data glove: A coupling between the transmitter and receiver is used to compute the location of a stylus as it moves over the surface of an object.

Image Scanners

Drawings, graphs, color and black-and-white photos, or text can be stored for computer processing with an image scanner by passing an optical scanning mechanism over the information to be stored. The gradations of gray scale or color are then recorded and stored in an array. Once we have the internal representation of a picture, we can apply transformations to rotate, scale, or crop the picture to a particular screen area. We can also apply various image-processing methods to modify the array representation of the picture. For scanned text input,

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT II: GRAPHICS HARDWARE BATCH: 2016-2019

various editing operations can be performed on the stored documents. Some scanners are able to scan either graphical representations or text, and they Come in a variety of sizes and capabilities.

Touch Panels

As the name implies, touch panels allow displayed objects or screen positions to be selected with the touch of a finger. A typical application of touch panels is for the selection of processing options that are represented with graphical icons. Some systems, such as the plasma panels are designed with Touch screens. Other systems can be adapted for touch input by fitting a transparent device with a touch sensing mechanism over the video monitor screen. Touch input can be recorded using optical, electrical, or acoustical methods. Optical touch panels employ a line of infrared light-emitting diodes (LEDs)

Along one vertical edge and along one horizontal edge of the frame. The opposite vertical and horizontal edges contain light detectors. These detectors are used to record which beams are interrupted when the panel is touched.

The two crossing beams that are interrupted identify the horizontal and vertical coordinates of the screen position selected. Positions tin be selected with an accuracy of about ¹/₄ inch With closely spaced LEDs, it is possible to break two horizontal or two vertical beams simultaneously. In this case, an average position between the two interrupted beams is recorded. The LEDs operate at infrared frequencies, so that the light is not visible to a user. The arrangement of LEDs in an optical touch panel that is designed to match the color and contours of the system to which it is to be fitted. An electrical touch panel is constructed with two transparent plates separated by a small distance. One of the plates is coated with a conducting material, and the other plate is coated with a resistive material. When the outer plate is touched, it is f o d into contact with the inner plate. This contact creates a voltage drop across the resistive plate that is converted to the coordinate values of the selected *screen* position.

In acoustical touch panels, high-frequency sound waves are generated in the horizontal and vertical directions across a glass plate. Touching the screen causes part of each wave to be reflected from the finger to the emitters. The screen position at the point of contact is calculated from a measurement of the time interval between the transmission of each wave and its reflection to the emitter.

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B

UNIT II: GRAPHICS HARDWARE BATCH: 2016-2019

Light Pens

In the below figure shows the design of one type of light pen. Such pencil-shaped devices are used to select screen positions by detecting the light coming from points on the CRT screen They are sensitive to *the* short burst of light emitted from the

Phosphor coating at the instant the electron beam strikes a particular point. Other Light sources, such as the background light in the room, are usually not detected by a light pen. An activated light pen, pointed at a spot on the screen as the electron beam lights up that spot, generates an electrical pulse that causes the coordinate position of the electron beam to be recorded. As with cursor-positioning devices, recorded Light-pen coordinates can be used to position an object or to select a processing option.

(Fig: Light pen)

Although Light pens are still with us, they are not as popular as they once were since they have several disadvantages command to other input devices that have been developed. For one, when a light pen is pointed at the screen, part of the screen image is obscured by the hand and pen. And prolonged use of the light pen can cause arm fatigue. Also, light pens require special implementations for some applications because they cannot detect positions within black areas. To be able to select positions in any screen area with a light pen, we must have some nonzero intensity assigned to each screen pixel. In addition, light pens. Sometimes give false readings due to background lighting in a room.

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B

UNIT II: GRAPHICS HARDWARE BATCH: 2016-2019

Voice Systems

Speech recognizers are used in some graphics workstations as input devices to accept voice commands The voice-system input can be used to initiate graphics operations or to enter data. These systems operate by matching an input against predefined dictionary of words and phrases. A dictionary is set up for a particular operator by having, the operator speak the command words to be used into the system. Each word is spoken Several times, and the system analyzes the word and establishes a frequency pattern for that word in the dictionary along with the corresponding function to be performed.

Later, when a voice command is given, the system searches the dictionary for a frequencypattern match. Voice input is typically spoken into a microphone mounted on a headset, as in below Fig. The microphone is designed to minimize input of other background sounds. If a different operator is to use the

System, the dictionary must be reestablished with that operator's voice patterns. Voice systems have some advantage over other input devices, since the attention of the operator does not have to be switched from one device to another to enter a command.

(Fig : A speech recognition system)

Hard-Copy Devices

We can obtain hard-copy output for our images in several formats. For presentations or archiving, we can send image files to devices or service bureaus that will produce 35-mm slides

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT II: GRAPHICS HARDWARE BATCH: 2016-2019

or overhead transparencies. To put images on film, we can simply photograph a scene displayed on a video monitor. And we can put our pictures on paper by directing graphics output to a printer or plotter.

The quality of the pictures obtained from a device depends on dot size and the number of dots per inch, or Lines per inch, that can be displayed. To produce smooth characters in printed text strings, higher-quality printers shift dot positions so that adjacent dots overlap.

Printers produce output by either impact or nonimpact methods. Impact printers' press formed character faces against an inked ribbon onto the paper. A line printer is an example of an impact device, with the typefaces mounted on bands, chains, drums, or wheels. Nonimpact printers and plotters use laser techniques, ink-jet sprays, xerographic processes (as used in photocopying machines), electrostatic methods, and electro thermal methods to get images onto Paper.

Character impact printers often have a dot-matrix print head containing a rectangular array of protruding wire pins, with the number of pins depending on the quality of the printer. Individual characters or graphics patterns are obtained by retracting certain pins so that the remaining pins form the pattern to be printed. In a laser device, a laser beam mates a charge distribution on a rotating drum coated with a photoelectric material, such as selenium. Toner is applied to the drum and then transferred to paper.

Ink-jet methods produce output by squirting ink in horizontal rows across a roll of paper wrapped on a drum. The electrically charged ink stream is deflected by an electric field to produce dot-matrix patterns. A desktop ink-jet plotter with

a resolution of 360 dot per inch. An electrostatic device places a negative charge on the paper, one complete row at a time along the length of the paper. Then the paper is exposed to a toner. The toner is positively charged and so is attracted to the negatively charged areas, where it adheres to produce the specified output. Electro thermal methods use heat in a dot matrix print head to output patterns on heat sensitive paper.

OUTPUT DEVICES

- Monitors
- Graphic Plotter
- Printer

Monitors

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT II: GRAPHICS HARDWARE BATCH: 2016-2019

Monitors, commonly called as **Visual Display Unit** (VDU), are the main output device of a computer. It forms images from tiny dots, called pixels that are arranged in a rectangular form. The sharpness of the image depends upon the number of pixels.

There are two kinds of viewing screen used for monitors.

- Cathode-Ray Tube (CRT)
- Flat-Panel Display

Cathode-Ray Tube (CRT) Monitor

The CRT display is made up of small picture elements called pixels. The smaller the pixels, the better the image clarity or resolution. It takes more than one illuminated pixel to form a whole character, such as the letter 'e' in the word help.

A finite number of characters can be displayed on a screen at once. The screen can be divided into a series of character boxes - fixed location on the screen where a standard character can be placed. Most screens are capable of displaying 80 characters of data horizontally and 25 lines vertically.

There are some disadvantages of CRT -

- Large in Size
- High power consumption

Flat-Panel Display Monitor

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT II: GRAPHICS HARDWARE BATCH: 2016-2019

The flat-panel display refers to a class of video devices that have reduced volume, weight and power requirement in comparison to the CRT. You can hang them on walls or wear them on your wrists. Current uses of flat-panel displays include calculators, video games, monitors, laptop computer, and graphics display.

The flat-panel display is divided into two categories -

- Emissive Displays Emissive displays are devices that convert electrical energy into light. For example, plasma panel and LED (Light-Emitting Diodes).
- Non-Emissive Displays Non-emissive displays use optical effects to convert sunlight or light from some other source into graphics patterns. For example, LCD (Liquid-Crystal Device).

Printers

Printer is an output device, which is used to print information on paper.

There are two types of printers -

- Impact Printers
- Non-Impact Printers

Impact Printers

Impact printers print the characters by striking them on the ribbon, which is then pressed on the paper.

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602BUNIT II: GRAPHICS HARDWAREBATCH: 2016-2019

Characteristics of Impact Printers are the following -

- Very low consumable costs
- Very noisy
- Useful for bulk printing due to low cost
- There is physical contact with the paper to produce an image

These printers are of two types -

- Character printers
- Line printers

Character Printers

Character printers are the printers which print one character at a time.

These are further divided into two types:

- Dot Matrix Printer(DMP)
- Daisy Wheel

Dot Matrix Printer

In the market, one of the most popular printers is Dot Matrix Printer. These printers are popular because of their ease of printing and economical price. Each character printed is in the form of pattern of dots and head consists of a Matrix of Pins of size (5*7, 7*9, 9*7 or 9*9) which come out to form a character which is why it is called Dot Matrix Printer.

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B

UNIT II: GRAPHICS HARDWARE

BATCH: 2016-2019

Advantages

- Inexpensive
- Widely Used
- Other language characters can be printed

Disadvantages

- Slow Speed
- Poor Quality

Daisy Wheel

Head is lying on a wheel and pins corresponding to characters are like petals of Daisy (flower) which is why it is called Daisy Wheel Printer. These printers are generally used for word-processing in offices that require a few letters to be sent here and there with very nice quality.

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B

UNIT II: GRAPHICS HARDWARE

BATCH: 2016-2019

Advantages

- More reliable than DMP
- Better quality
- Fonts of character can be easily changed

Disadvantages

- Slower than DMP
- Noisy
- More expensive than DMP

Line Printers

Line printers are the printers which print one line at a time.

These are of two types -

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B

UNIT II: GRAPHICS HARDWARE BATCH: 2016-2019

- Drum Printer
- Chain Printer

Drum Printer

This printer is like a drum in shape hence it is called drum printer. The surface of the drum is divided into a number of tracks. Total tracks are equal to the size of the paper, i.e. for a paper width of 132 characters, drum will have 132 tracks. A character set is embossed on the track. Different character sets available in the market are 48 character set, 64 and 96 characters set. One rotation of drum prints one line. Drum printers are fast in speed and can print 300 to 2000 lines per minute.

Advantages

• Very high speed

Disadvantages

- Very expensive
- Characters fonts cannot be changed

Chain Printer

In this printer, a chain of character sets is used, hence it is called Chain Printer. A standard character set may have 48, 64, or 96 characters.

Advantages

- Character fonts can easily be changed.
- Different languages can be used with the same printer.

Disadvantages

• Noisy

Non-impact Printers

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT II: GRAPHICS HARDWARE BATCH: 2016-2019

Non-impact printers print the characters without using the ribbon. These printers print a complete page at a time, thus they are also called as Page Printers.

These printers are of two types –

- Laser Printers
- Inkjet Printers

Characteristics of Non-impact Printers

- Faster than impact printers
- They are not noisy
- High quality
- Supports many fonts and different character size

Laser Printers

These are non-impact page printers. They use laser lights to produce the dots needed to form the characters to be printed on a page.

Advantages

• Very high speed

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B

UNIT II: GRAPHICS HARDWARE BA

BATCH: 2016-2019

- Very high quality output
- Good graphics quality
- Supports many fonts and different character size

Disadvantages

- Expensive
- Cannot be used to produce multiple copies of a document in a single printing

Inkjet Printers

Inkjet printers are non-impact character printers based on a relatively new technology. They print characters by spraying small drops of ink onto paper. Inkjet printers produce high quality output with presentable features.

They make less noise because no hammering is done and these have many styles of printing modes available. Color printing is also possible. Some models of Inkjet printers can produce multiple copies of printing also.

Advantages

- High quality printing
- More reliable

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B

UNIT II: GRAPHICS HARDWARE

BATCH: 2016-2019

Disadvantages

- Expensive as the cost per page is high
- Slow as compared to laser printer

POSSIBLE QUESTIONS

PART-B

2 MARKS

- 1. What is Graphics hardware?
- 2. Mention some Input devices and Output devices.
- 3. What is Raster Scan systems?

PART-C

6 MARKS

- 1) Discuss about Random Scan Systems.
- 2) Discuss about Raster Scan Systems.
- 3) Explain in detail about Digitizers and Joysticks.
- 4) Describe Impact Printer and its types.
- 5) Explain in detail about image scanners and mouse.
- 6) Explain hard copy device in details
- 7) Explain in detail about any 4 input devices with its operations.
- 8) Explain about Character printer and Inkjet printer
- 9) Explain in detail about image scanners and Voice Systems.
- 10) Explain in detail about any 4 input devices with its operations
- 11) Describe Printer and its types.

KARPAGAM ACADEMY OF HIGHER EDUCATION DEPARTMENT OF COMPUTER SCIENCE, CA & IT

II B.Sc CS (Batch 2016-2019) COMPUTER GRAPHICS

PART - A OBJECTIVE TYPE/MULTIPLE CHOICE QUESTIONS

ONLINE EXAMINATIONS

	UNIT II							
Sno	Questions	Opt1	Opt2	Opt3	Opt4	Opt5	Opt6	Answer
	One type of							
	digitizer is the	-						Graphics
1		tablet	joystick	dataglove	keyboard			tablet
	Drawings,							
	graphs, color							
	and black-							
	white photos							
	or text can be							
	stored for							
	computer							
	processing							
	with an		Image					Image
2		keyboard	Scanners	joystick	mouse			Scanners
	allow							
	displayed							
	objects or							
	screen							
	positions to be							
	selected with							
	the touch of a			Touch				
3	finger	Trackball	Joystick	panels	glove			Touch panels
	A is a							
	ball that can							
	be rotated with							
	the fingers or							
	palm of the				data			
4	hand	Trackball	Joystick	mouse	glove			Trackball

	The						
	is an efficient						
	device for						
	inputing such						
	non graphic						
	data as picture						
	labels						
	associated wit						
	a graphic		data				
	display.	joystick		keyboard	mouse		keyboard
	A A	JOYSCICK	51010	Reyoouru	mouse		Reybourd
	provides six						
	-				data		
	degrees of	T	T 4 : - 1-	space			
6	freedom	Trackball	Joystick	ball	glove		space ball
	The						
	input can be						
	used to initiate						
	graphics						
	operations or	Voice		space	data		Voice
7	to enter data	systems	Joystick	ball	glove		systems
	devices						
	are used to						
	select screen						
	positions by						
	detecting the						
	-						
	light coming						
	from points on	р ¹		D	1 (
	the CRT	Pencil		Pen			
8		shaped	Joystick	shaped	glove		Pencil shaped
	is an			space			
9	output device.	Trackball	Joystick	ball	Printer		Printer
					Cannot		
					detect		
	What is the		They		positions		Cannot detect
	disadvantage		cannot		within		positions
	of the light		detect	Accurate	black		within black
10	pen?	It's shape		reading	areas		areas
	r		1	0			
	is						
	used in						
	graphics						
	workstation as		G 1				
	input devices		Speech		4.11 0		a i
	to accept voice		recognize		All of		Speech
11	commands.	panels	rs	Only a	these		recognizers

		То					
	What voice the						
	use of voice	graphics	To enter	Neither a	Both a		
12	system?	operation	data	nor b	and b		Both a and b
12	When a voice	operation	uata				Dotti a alla U
	command is						
	given, the						
	system						
	searches the						
	_for a						
	frequency-		Input	Dictionar			
13	±	Memory	data	у	Hard disk		Dictionary
	The device						
	which is						
	designed to						
	minimize the						
	background	Micropho		Data			
14	sound is	ne	Digitizers	glove	Joy stick		Microphone
	The quality of						
	a picture						
	obtained from		Number	Number			
	a device		of dots	of lines	All the		
15	depends on	Dot size	per inch	per inch	above		All the above
	Which of the		1	1			
	following						
	device is not	Trackball					
	the input	and space	Data	Impact			Impact
16	device?	ball	glove	printers	Keyboard		printers
	Which device	oun	51010	princers	ilojoouru		princers
	contains						
	thumbwheel,						
	trackball and a						
	standard						
17	mouse ball?	Z mouse	Joystick	Mouse	Trackball		Z mouse
1/			JUYSUCK	IVIOUSE	TIACKUAII		
	Virtual reality,						
	CAD, and						
	animations are			Data	Image		
10	the application	7		Data	Image		7
18	of The use of	Z mouse	Digitizers	ladiets	scanners		Z mouse
	The most						
	widely used						
	input device is	17 1 1	N	N ·	л · .		17 1 1
19	the	Keyboard	Modem	Monitor	Printer		Keyboard

	T1 / 1			C1 1			
	The term used			Shared			
	to define all			resources			
	input and						
	output devices						
	in a computer						
	system is	Monitor					
20			Software		Hardware		Hardware
	Information						
	that comes						
	from an						
	external						
	source and is						
	fed into						
	computer						
	software is			Throughp			
21	called	Input	Output	ut	Reports		Input
21	The most	mput	Output	at	Reports		Input
	common						
	method of	D1 - 44 - 11		Duinten			
	entering text	Plotter		Printer			
	and numerical						
	data into a						
	computer						
	system is						
	through the						
22	use of a		Scanner		Keyboard		Keyboard
	Which of the						
	following is						
	not an output			Scanner			
23	device?	Plotter	Printer		Monitor		Scanner
		Input					
		1		Туре			
				51			
	Devices that						
	let the						
	computer						
	communicate						
24	with you		Output		Print		Output
_ 24	with you		Juipui		1 1 1 1 1 1	l	Output

25	Devices that allow you to put information into the computer	Input	Output	Type Scan data	Print		Input
26	Using output devices one can	data	Store data		View or print data		View or print data
27	The wheel located between the two standard buttons on a mouse is used to	Click on web pages	Shutdow n	Click and select items	Scroll		Scroll
28	A mouse,touch screen, and a trackball are all examples of	Scanning Device	Voice- Input Devices	Pointing Device	Output Device		Pointing Device
29	The input device that has the monitor screen covered with a flexible layer is the	Touch Screen	Light Pen	Digitizer	Mouse		Touch Screen

	The device						
	that would be						
	used to read a						
	mark-sense				Character		Character or
	answer sheet				or mark		mark
	for this test	Image	Bar-code	Facsimile	recogniti		recognition
30	would be	Scanner	reader	machine	on device		device
	The most						
	popular input						
	device for						
	computer						
	games is		Touch		Pointing		
31	called	Trackball	Screen	Joystick	stick		Joystick

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

<u>UNIT III</u>

SYLLABUS

Fundamental Techniques in Graphics : Raster scan line, circle and ellipse drawing, thick primitives, Polygon filling, line and polygon clipping algorithms, 2D and 3D Geometric Transformations, 2D and 3D Viewing Transformations (Projections- Parallel and Perspective), Vanishing points.

FUNDAMENTAL TECHNIQUES IN GRAPHICS

RASTER SCAN LINE

Line drawing algorithm

The Cartesian slope-intercept equation for a straight line is

 $y = m \cdot x + b$ (3-1) with m representing the slope of the line and b as they intercept. Given that the two endpoints of a h e segment are specified at positions (x,, y,) and (x, y), as shown in Fig. 3-3, we can determine values for the slope m and y intercept b with the following calculations:

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

$$m = \frac{y_2 - y_1}{x_2 - x_1} \tag{3-2}$$

 $b = y_1 - m \cdot x_1 \tag{3-3}$

Fig: Line path between end point position (x_1, y_1) and (x_2, y_2) .

Algorithms for displaying straight h e s are based on the line equation 3-1 and the calculations given in Eq. 3-2 and 3-3. For any given x interval Δx along a line, we can compute the corresponding y interval Δy from Eq. 3-2 as,

 $\Delta y = m \Delta x$ corresponding to a specified as Δy (3-4) Similarly, we can obtain the x interval Δx

 $\Delta x = \frac{\Delta y}{m} \tag{3-5}$

These equations form the basis for determining deflection voltages in analog devices. For lines with slope magnitudes |m| < 1, Δx can be set proportional to a Δy as calculated from the equation 3-4 small horizontal deflection voltage and the corresponding vertical deflection is then set proportional to Ay as calculated from Eq. 3-4. For lines whose slopes have magnitudes 1 m I > 1, Δy can be set proportional to a small vertical deflection voltage with the corresponding horizontal deflection voltage set proportional to Δx , calculated from Eq. 3-5. For lines with m = 1, $\Delta x = \Delta y$ and the horizontal and vertical deflections voltages are equal. In each case, a smooth line with slope m is

CLASS: III B.Sc CS A & B


BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

generated between the specified endpoints. On raster systems, lines are plotted with pixels, and step sizes in the horizontal and vertical directions are constrained by pixel separations. That is, we must "sample" a line at discrete positions and determine the nearest pixel to the line at each sampled position. This scan conversion process for straight lines is illustrated in below Fig, for a near horizontal line with discrete sample positions

along the *x* axis.

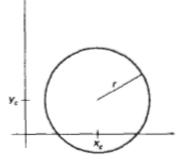
Fig: Straight line segment with five sampling positions along the x axis between x_1 and x_2 .

Circle generating algorithm

Since the circle is a frequently used component in pictures and graphs, a procedure for generating either full circles or circular arcs is included in most graphics packages. More generally, a single procedure can be provided to display either circular or elliptical curves.

Properties of Circles

A circle is defined as the set of points that are all at a given distance r from a center position (x, y) (Fig.1). This distance relationship is expressed by the Pythagorean theorem in Cartesian coordinates as


$$(x - x_c)^2 + (y - y_c)^2 = r^2$$
(3-24)

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

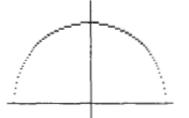
Fig: 1 Circle with central coordinate (x_{er}, y_{e}) and radius r.

We could use this equation to calculate the position of points on a circle circumference by stepping along the x axis in unit steps from $x_r - r \log x_r + r$ and calculating the corresponding y values at each position as

$$y = y_c \pm \sqrt{r^2 - (x_c - x)^2}$$
(3-25)

But this is not the best method for generating a circle. One problem with this approach is that it involves considerable computation at each step. Moreover, the spacing between plotted pixel positions is not uniform, as demonstrated in below Figure2. We could adjust the spacing by interchanging x and y (stepping through y values and calculating x values) whenever the absolute value of the slope of the circle is greater than 1. But this simply increases the computation and processing required by the algorithm.

Another way to eliminate the unequal spacing shown in Fig. below Figure2 is to calculate points along the circular boundary using polar coordinates r and θ (Fig.1). Expressing the circle equation in parametric polar form yields the pair of equations


CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

$$x = x_c + r \cos\theta$$
$$y = y_c + r \sin\theta$$

Fig2:Positive half of a circle

When a display is generated with these equations using a fixed angular step size, a circle is plotted with equally spaced points along the circumference. The step size chosen for $\boldsymbol{8}$ depends on the application and the display device. Larger angular separations along the circumference can be connected with straight line segments to approximate the circular path. For a more continuous boundary on a raster display, we can set the step size at l/r. This plots pixel positions that are approximately one unit

apart.

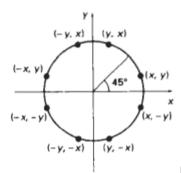
Computation can be reduced by considering the symmetry of circles. The shape of the circle is similar in each quadrant. We can generate the circle section in (he second quadrant of the xy plane by noting that the two circle sections are symmetric with respect to they axis. And circle sections in the third and fourth

quadrants can be obtained from sections in the first and second quadrants by considering symmetry about the x axis. We can take this one step further and note that there is also symmetry between octants. Circle sections in adjacent *oc*tants within one quadrant are symmetric with respect to the 45° line dividing the

two octants. These symmetric conditions are illustrated in Fig.3, where a point at position (x, y) on a one-eighth circle sector is mapped into the seven circle points in the other octants of the xy plane. Taking advantage of the circle symmetry in this way we can generate all pixel positions around a circle by calculating

only the points within the sector from x = 0 to x = y.

Determining pixel positions along a circle circumference using either Eq. 3-24 or Eq. 3-26 still requires a good deal of computation time. The Cartesian equation 3-24 involves multiplications and square-root calculation, while the parametric equations contain multiplications and trigonometric calculations. More efficient circle algorithms are based on


CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

incremental calculation of decision parameters, as in the Bresenham line algorithm, which involves only simple integer operations,

Fig3: Symmetry of a circle. Calculation pf a circle point (x,y) in one octant yields circle points shown for the other seven octant.

Ellipse-Generating Algorithms

Ellipse-Generating Algorithms An ellipse is an elongated circle. Therefore, elliptical curves can be generated by modifying circle-drawing procedures to take into account the different dimensions of an ellipse along the major and minor axes.

Properties of ellipses An ellipse can be given in terms of the distances from any point on the ellipse to two fixed positions called the foci of the ellipse. The sum of these two distances is the same values for all points on the ellipse. If the distances to the two focus positions from any point p=(x,y) on the ellipse are labeled d1 and d2, then the general equation of an ellipse can be stated as d1+d2=constant Expressing distances d1 and d2 in terms of the focal coordinates F1=(x1,y2) and F2=(x2,y2) sqrt((x-x1) 2 +(y-y1) 2)+sqrt((x-x2) 2 +(y-y2) 2)=constant By squaring this equation isolating the remaining radical and squaring again. The general ellipse equation in the form

Ax2 +By2 +Cxy+Dx+Ey+F=0 The coefficients A,B,C,D,E, and F are evaluated in terms of the focal coordinates and the dimensions of the major and minor axes of the ellipse. The major axis is the straight line segment extending from one side of the ellipse to the other through the foci.

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

The minor axis spans the shorter dimension of the ellipse, perpendicularly bisecting the major axis at the halfway position (ellipse center) between the two foci. An interactive method for specifying an ellipse in an arbitrary orientation is to input the two foci and a point on the ellipse boundary. Ellipse equations are simplified if the major and minor axes are oriented to align with the coordinate axes. The major and minor axes oriented parallel to the x and y axes parameter rx for this example labels the semi major axis and parameter ry labels the semi minor axis

((x-xc)/rx) 2 + ((y-yc)/ry) 2 = 1 Using polar coordinates r and θ , to describe the ellipse in Standard position with the parametric equations x=xc+rxcos θ

 $y=yc+rxsin \theta$ Angle θ called the eccentric angle of the ellipse is measured around the perimeter of a bounding circle. We must calculate pixel positions along the elliptical arc throughout one quadrant, and then we obtain positions in the remaining three quadrants by symmetry

Midpoint ellipse Algorithm The midpoint ellipse method is applied throughout the first quadrant in two parts. The below figure show the division of the first quadrant according to the slope of an ellipse with rx<ry.

THICK PRIMITIVES

Drawing with Thick Primitives • How do we thicken the line stroke width? • Ideas: – Place the center of the circular "brush" on the pixel – Place the upper corner of the square "marker" on the pixel (issues of orientation) – Then do scan conversion algorithm

Three Basic Methods

- 1. Column Replication Use >1 pixel per col/row
- 2. Trace brush outline across 1-pixel primitive
- 3. Trace two copies, t apart, and fill in

Column(Row) Replication

Idea: duplicate pixels in – Columns, when -1 < slope < 1 - Rows, otherwise

• Thickness t is from primitive's boundaries perpendicular to its tangent

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

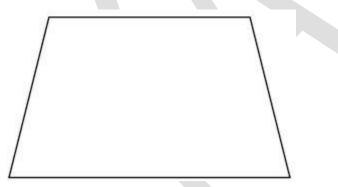
• What happens for even t?

• Issues when lines meet at angles, when octants merge, brightness for sloped lines, etc.

Moving the Pen

Example: - a rectangular pen - Center or corner follows scan algorithm

• How to implement? –


Idea 1: fill the box at each point –

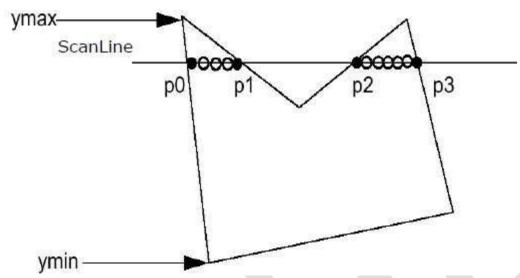
Problem: pixels get colored more than once -

Idea 2: fill by using a span of the pen primitive at each step

POLYGON FILLING:

Polygon is an ordered list of vertices as shown in the following figure. For filling polygons with particular colors, you need to determine the pixels falling on the border of the polygon and those which fall inside the polygon. In this chapter, we will see how we can fill polygons using different techniques.

Scan Line Algorithm


This algorithm works by intersecting scanline with polygon edges and fills the polygon between pairs of intersections. The following steps depict how this algorithm works.

Step 1 – Find out the Ymin and Ymax from the given polygon.

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

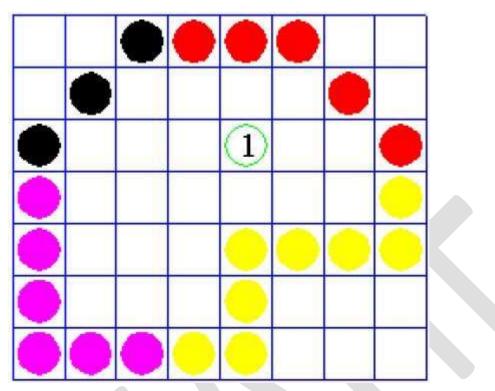
Step 2 – ScanLine intersects with each edge of the polygon from Ymin to Ymax. Name each intersection point of the polygon. As per the figure shown above, they are named as p0, p1, p2, p3.

Step 3 – Sort the intersection point in the increasing order of X coordinate i.e. (p0, p1), (p1, p2), and (p2, p3).

Step 4 – Fill all those pair of coordinates that are inside polygons and ignore the alternate pairs.

Flood Fill Algorithm

Sometimes we come across an object where we want to fill the area and its boundary with different colors. We can paint such objects with a specified interior color instead of searching for particular boundary color as in boundary filling algorithm.


Instead of relying on the boundary of the object, it relies on the fill color. In other words, it replaces the interior color of the object with the fill color. When no more pixels of the original interior color exist, the algorithm is completed.

Once again, this algorithm relies on the Four-connect or Eight-connect method of filling in the pixels. But instead of looking for the boundary color, it is looking for all adjacent pixels that are a part of the interior.

CLASS: III B.Sc CS A & B

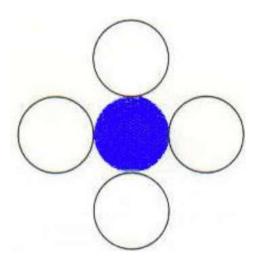
BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

Boundary Fill Algorithm

The boundary fill algorithm works as its name. This algorithm picks a point inside an object and starts to fill until it hits the boundary of the object. The color of the boundary and the color that we fill should be different for this algorithm to work.

In this algorithm, we assume that color of the boundary is same for the entire object. The boundary fill algorithm can be implemented by 4-connected pixels or 8-connected pixels.


4-Connected Polygon

In this technique 4-connected pixels are used as shown in the figure. We are putting the pixels above, below, to the right, and to the left side of the current pixels and this process will continue until we find a boundary with different color.

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

Algorithm

Step 1 – Initialize the value of seed point (seedx, seedy), fcolor and dcol.

Step 2 – Define the boundary values of the polygon.

Step 3 – Check if the current seed point is of default color, then repeat the steps 4 and 5 till the boundary pixels reached.

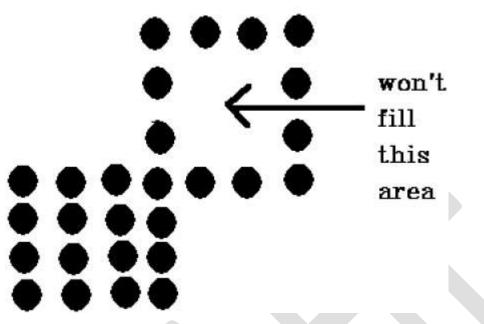
If getpixel(x, y) = dcol then repeat step 4 and 5

Step 4 – Change the default color with the fill color at the seed point.

setPixel(seedx, seedy, fcol)

Step 5 – Recursively follow the procedure with four neighborhood points.

FloodFill (seedx – 1, seedy, fcol, dcol) FloodFill (seedx + 1, seedy, fcol, dcol) FloodFill (seedx, seedy - 1, fcol, dcol) FloodFill (seedx – 1, seedy + 1, fcol, dcol)


Step 6 – Exit

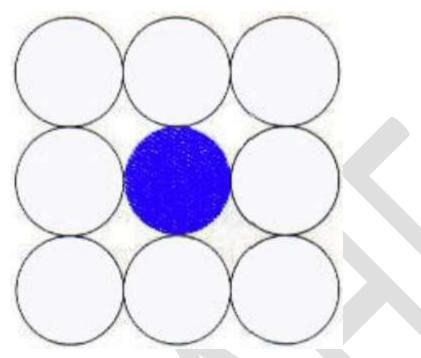
There is a problem with this technique. Consider the case as shown below where we tried to fill the entire region. Here, the image is filled only partially. In such cases, 4-connected pixels technique cannot be used.

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

8-Connected Polygon


In this technique 8-connected pixels are used as shown in the figure. We are putting pixels above, below, right and left side of the current pixels as we were doing in 4-connected technique.

In addition to this, we are also putting pixels in diagonals so that entire area of the current pixel is covered. This process will continue until we find a boundary with different color.

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

Algorithm

Step 1 – Initialize the value of seed point (seedx, seedy), fcolor and dcol.

Step 2 – Define the boundary values of the polygon.

Step 3 – Check if the current seed point is of default color then repeat the steps 4 and 5 till the boundary pixels reached

If getpixel(x,y) = dcol then repeat step 4 and 5

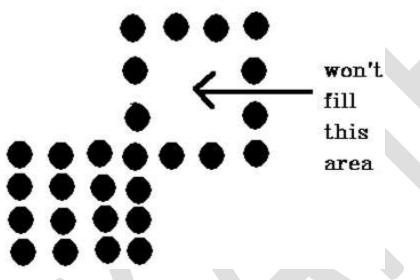
Step 4 – Change the default color with the fill color at the seed point.

setPixel(seedx, seedy, fcol)

Step 5 – Recursively follow the procedure with four neighbourhood points

FloodFill (seedx – 1, seedy, fcol, dcol) FloodFill (seedx + 1, seedy, fcol, dcol) FloodFill (seedx, seedy - 1, fcol, dcol) FloodFill (seedx, seedy + 1, fcol, dcol) FloodFill (seedx – 1, seedy + 1, fcol, dcol)

CLASS: III B.Sc CS A & B


BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

FloodFill (seedx + 1, seedy + 1, fcol, dcol) FloodFill (seedx + 1, seedy - 1, fcol, dcol) FloodFill (seedx - 1, seedy - 1, fcol, dcol)

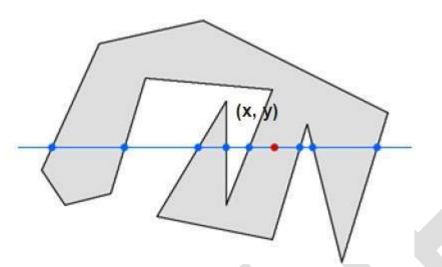
Step 6 – Exit

The 4-connected pixel technique failed to fill the area as marked in the following figure which won't happen with the 8-connected technique.

Inside-outside Test

This method is also known as **counting number method**. While filling an object, we often need to identify whether particular point is inside the object or outside it. There are two methods by which we can identify whether particular point is inside an object or outside.

- Odd-Even Rule
- Nonzero winding number rule


Odd-Even Rule

In this technique, we will count the edge crossing along the line from any point (x,y) to infinity. If the number of interactions is odd, then the point (x,y) is an interior point; and if the number of interactions is even, then the point (x,y) is an exterior point. The following example depicts this concept.

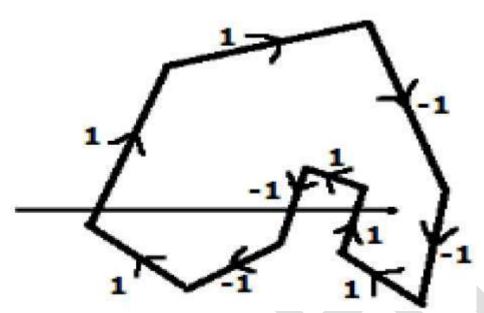
CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

From the above figure, we can see that from the point (x,y), the number of interactions point on the left side is 5 and on the right side is 3. From both ends, the number of interaction points is odd, so the point is considered within the object.

Nonzero Winding Number Rule


This method is also used with the simple polygons to test the given point is interior or not. It can be simply understood with the help of a pin and a rubber band. Fix up the pin on one of the edge of the polygon and tie-up the rubber band in it and then stretch the rubber band along the edges of the polygon.

When all the edges of the polygon are covered by the rubber band, check out the pin which has been fixed up at the point to be test. If we find at least one wind at the point consider it within the polygon, else we can say that the point is not inside the polygon.

CLASS: III B.Sc CS A & B

BATCH:2016-2019

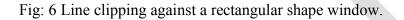
COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

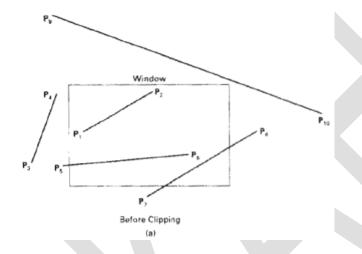
In another alternative method, give directions to all the edges of the polygon. Draw a scan line from the point to be test towards the left most of X direction.

- Give the value 1 to all the edges which are going to upward direction and all other -1 as direction values.
- Check the edge direction values from which the scan line is passing and sum up them.
- If the total sum of this direction value is non-zero, then this point to be tested is an **interior point**, otherwise it is an **exterior point**.
- In the above figure, we sum up the direction values from which the scan line is passing then the total is 1 1 + 1 = 1; which is non-zero. So the point is said to be an interior point.

LINE AND POLYGON CLIPPING ALGORITHM

Line clipping

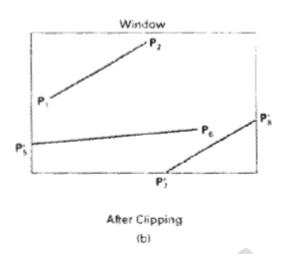

Figure6 illustrates possible relationships between line positions and a standard rectangular clipping region. A line clipping procedure involves several parts. First, we can test a given line segment to determine whether it lies completely inside the clipping window. If it does not, we try to determine whether it lies completely outside the window. Finally, if we cannot identify a line


CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

as completely inside or completely outside, we must perform intersection calculations with one or more clipping boundaries. We process lines through the "inside-outside" tests by checking the line endpoints. A line with both endpoints inside all clipping boundaries, such as the line from P_1 to P_2 is saved. A line with both endpoints outside any one of the clip boundaries in Fig.6) is outside the window.



All other lines cross one or more clipping boundaries, and may require calculation of multiple intersection points. to minimize calculations, we try to devise clipping algorithms that can efficiently identify outside lines and reduce intersection calculations.

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

For a line segment with endpoints (x_1, y_1) and (x_2, y_2) and one or both endpoints outside the clipping rectangle, the parametric representation.

$$\begin{aligned} x = x_1 + u(x_2 - x_1) \\ y = y_1 + u(y_2 - y_1), \quad 0 \le u \le 1 \end{aligned} \tag{6-6}$$

could be used to determine values of parameter u for intersections with the clipping boundary coordinates. If the value of u for an intersection with a rectangle boundary edge is outside the range 0 to 1, the line does not enter the interior of the window at that boundary. If the value of u is with in the range from 0 to 1, the line segment does indeed cross into the clipping area. This method can be applied to each clipping boundary edge in turn to determine whether any part of the line segment is to be displayed. Line segments that are parallel to window edges can be handled as special cases.

Clipping line segments with these parametric tests requires a good deal of

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

Computation and faster approaches to clipping are possible. A number of efficient line clippers have been developed, and we survey the major algorithms in the next section. Some algorithm are designed explicitly for two-dimensional

Pictures and some are easily adapted to three-dimensional applications.

Cohen-Sutherland line clipping

This is one of the oldest and most popular line-clipping procedures. Generally, the method speeds up the processing of line segments performing initial tests that reduce the number of intersections that must he calculated. Every line end Point in a picture is assigned a four-digit binary code, called a region code that identifies the location of the point relative to the boundaries of the clipping rectangle. Regions are set up in reference to the boundaries as shown in Fig.7. Each bit position in the region code is used to indicate one of the four relative coordinate positions of the point with respect to the clip window: to the left, right, top, or bottom. By numbering the bit positions in the region code as 1 through 4 from right to left, the coordinate regions can be correlated with the bit positions as

bit 1: left

bit 2: right

bit 3: below

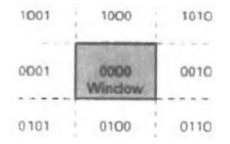

bit 4: above

Fig7: Binary region codes assigned to line endpoints according to relative position with respect to the clipping rectangle.

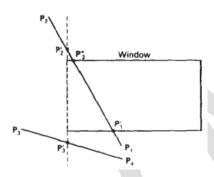
CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

A value of 1 in any bit position indicates that the point is in that relative position; Otherwise, the bit position is set to 0. If a point is within the clipping rectangle, the region code is 0000. A point that is below and to the left of the rectangle has a region code of 0101. Bit values in the region code are determined by comparing endpoint Coordinate values (x, y) to the clip boundaries. Bit 1 is set to 1 if $x < xw_{min}$. The other three bit values can be determined using similar comparisons. For languages in which bit manipulation is possible, region-code bit values can be determined with the following two steps: (1) Calculate differences between endpoint coordinates and clipping boundaries. (2) Use the resultant sign bit of each difference calculation to set the corresponding value in the region code. Bit 1 is the sign bit of x - bit 2 is the sign bit of $x - yw_{max} - x$; bit 3 is the sign bit of $y - yw_{min}$; and bit 4 is the sign bit of $yw_{max} - y$.

Once we have established region codes for all line endpoints, we can quickly determine which lines are completely inside the clip window and which are clearly outside. Any lines that are completely contained within the window boundaries have a region code of 0000 for both endpoints, and we trivially accept these lines. Any lines that have a 1 in the same bit position in the region codes for each endpoint are completely outside the clipping rectangle, and we trivially reject these lines. We would discard the line that has a region code of 1001 for one endpoint and a code of 0101 for the other endpoint. Both endpoints of this line are left of the clipping rectangle, as indicated by the 1 in the first bit position of each region code. A method that can be used to test lines for total clipping is to perform the logical and operation with both region codes. If the result is not 0000, the line is completely outside the clipping region.


CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

Lines that cannot be identified as completely inside or completely outside a Clip window by these tests are checked for intersection with the window boundaries. As shown in Fig.8, such lines may or may not cross into the window interior. We begin the clipping process for a line by comparing an outside endpoint to a clipping boundary to determine how much of the line can be discarded. Then the remaining part of the Line is checked against the other boundaries, and we continue until either the line is totally discarded or a section is found inside the window. We set up our algorithm to check line endpoints against clipping boundaries in the order left, right, bottom, top.

Fig8: Lines extending from one coordinate region to another may pass through the clip window, or they may intersect clipping boundaries without entering the window.

To illustrate the specific steps in clipping lines against rectangular boundaries using the Cohen-Sutherland algorithm, we show how the lines in Fig.8 could be processed. Starting with the bottom endpoint of the line from P_1 to P_2 .

We check P, against the left, right, and bottom boundaries in turn and find that this point is below the clipping rectangle. We then find the intersection point Pi with the bottom boundary and discard the line section from P_1 to P_1 . The line now has been reduced to the section from P_1 to P_2 Since P_2 is outside the clip window, we check this endpoint against the boundaries and find that it is to the left of the window. Intersection point P_2 is calculated, but this point is above the window. So the final intersection calculation yields P_2 and the line from P_1 to P_2 is saved. This completes processing for this line, so we save this part and go on to the next line. Point P_3 and

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

eliminate the line section from P_3 to P_3 By checking region codes for the line section from P_3 to P_4 we find that the remainder of the line is below the clip window and can be discarded also.

Intersection points with a clipping boundary can be calculated using the

Slope-intercept form of the line equation. For a line with endpoint coordinates (x,y) and (x^2, y^2) , they coordinate of the intersection point with a vertical boundary can be obtained with the calculation.

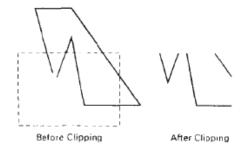
$$y = y_1 + m(x - x_1)$$
 (6-7)

where the x value is set either to xw_{min} or to xw_{max} and the slope of the line is calculated as $m = (y_2 - y_1)/(x_2 - x_1)$. Similarly, if we are looking for the intersection with a horizontal boundary, the x coordinate can be calculated as

$$x = x_1 + \frac{y - y_1}{m} \tag{6-8}$$

with y set either to yw_{min} or to yw_{max} .

Polygon clipping


To clip polygons, we need to modify the line-clipping procedures discussed in the previous section. A polygon boundary processed with a line clipper may be displayed as a series of unconnected line segments (Fig.9), depending on the Orientation of the polygon to the clipping window.

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

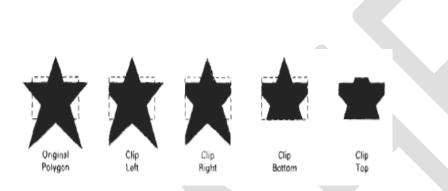
Fig9: Display of a polygon processed by a line-dipping algorithm.

What we really want to display is a bounded area after clipping, as in Fig. 10. For polygon clipping, we require an algorithm that will generate one or more closed areas that are then scan converted for the appropriate area fill. The output of a polygon clipper should be a sequence of vertices that defines the clipped polygon boundaries.

Fig10: display of a correctly clipped polygon.

Sutherland-Hodgeman polygon clipping

We can correctly clip a polygon by processing the polygon boundary as a whole against each window edge. This could be accomplished by processing all polygon vertices against each clip rectangle boundary in turn. Beginning with the initial set of polygon vertices, we could first clip the polygon against the left rectangle boundary to produce a new sequence of vertices. The new set of vertices could then k successively passed to a right boundary clipper, a bottom boundary


CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

clipper, and a top boundary clipper, as in Fig.11. At each step, a new sequence of output vertices is generated and passed to the next window boundary clipper.

Fig11: Clipping a polygon against successive window boundaries.

There are four possible cases when processing vertices in sequence around the perimeter of a polygon. As each pair of adjacent polygon vertices is passed to a window boundary clipper, we make the following tests: (1) If the first vertex is

Outside the window boundary and the second vertex is inside, both the intersection point of the polygon edge with the window boundary and the second vertex are added to the output vertex list. (2) If both input vertices are inside the window boundary, only the second vertex is added to the output vertex list. (3) if the first vertex is inside the window boundary and the second vertex is outside, only the edge intersection with the window boundary is added to the output vertex list. (4) If both input vertices are outside the window boundary, nothing is added to the output list. These four cases are illustrated in Fig.12, for successive pairs of polygon vertices. Once all vertices have been processed for one clip window boundary; the output list of vertices is clipped against the next window boundary.

Successive processing of pairs of polygon vertices against the left window boundary. Fig12:

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

2D GEOMETRIC TRANSFORMATION

Two dimensional geometric transformation

With the procedures for displaying output primitives and their attributes, we can create variety of pictures and graphs. In many applications, there is also a need for altering or manipulating displays. Design applications and facility layouts are created by arranging the orientations and sizes of the component parts of the scene. And animations are produced by moving the "camera" or the objects in a scene along animation paths. Changes in orientation, size, and shape are accomplished with geometric transformations that alter the coordinate descriptions of objects. The basic geometric transformations are translation, rotation, and scaling. Other transformations that are often applied to objects include reflection and shear. We first discuss methods for performing geometric transformations and then consider how transformation functions can be incorporated into graphics packages.

Basic transformation

Here, we first discuss general procedures for applying translation, rotation, and scaling parameters to reposition and resize two-dimensional objects. Then, we consider how

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

transformation equations can be expressed in a more convenient matrix formulation that allows efficient combination of object transformations.

Translation

A translation is applied to an object by repositioning it along a straight-line path from one coordinate location to another. We translate a two-dimensional point by adding translation distances, t_r and $t_{y'}$ to the original coordinate position (x, y) to move the point to a new position (x', y'). (Fig.1).

 $x' = x + t_x, \quad y' = y + t_x$ (5.1)

The translating and distance pair (t_x, t_y) is called a translation vector or shift vector. We can express the translation equations 5-1 as a single matrix equation by using column vectors to represent coordinate positions and the translation vector:

$$\mathbf{P} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \qquad \mathbf{P}' = \begin{bmatrix} x_1' \\ x_2' \end{bmatrix}, \qquad \mathbf{T} = \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$
(5-2)

This allows us to write the two-dimensional translation equations in the matrix form:

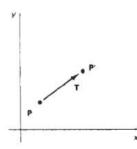
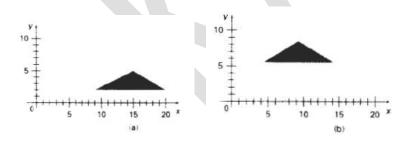

 $\mathbf{P}' = \mathbf{P} + \mathbf{T} \tag{5-3}$

Fig1: Translating a point from position P to the position p' with translation vector V.

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS



Sometimes matrix-transformation equations are expressed in terms of coordinate row vectors instead of column vectors. In this case, we would write the matrix representations as,

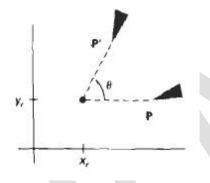
$\mathbf{P} = [x y]$ and $\mathbf{T} = [t_x t_y]$.

Translation is a rigid-body transformation that moves objects without deformation. That is, every point on the object is translated by the same amount. A straight Line segment is translated by applying the transformation equation 5-3 to each of the line endpoints and redrawing the line between the new endpoint positions. Polygons are translated by adding the translation vector to the coordinate position of each vertex and regenerating the polygon using the new set of vertex coordinates and the current attribute settings. Figure 2 illustrates the application of a specified translation vector to move an object from one position to another.

Fig2: Moving polygon from position (a) to position (b) with the translation vector.

Similar methods are used to translate curved objects. To change the position of a circle or ellipse, we translate the center coordinates and redraw the figure in the new location. We translate other curves (for example, splines) by displacing the coordinate positions defining the objects, then we reconstruct the curve paths using the translated coordinate points.

CLASS: III B.Sc CS A & B


BATCH:2016-2019

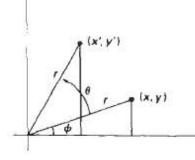
COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

Rotation

A two-dimensional rotation is applied to an object by repositioning it along a circular path in the xy plane. To generate a rotation, we specify a rotation angle θ and the position (x_r, y_r) of the rotation point (or pivot point) about which the object is to be rotated (Fig.3). Positive values for the rotation angle define counterclockwise Rotations about the pivot point, as in Fig.3, and negative values rotate objects in the clockwise direction. This transformation can also be described as a rotation about a rotation axis that is perpendicular to the xy plane and passes through the pivot point.

Fig 3: Rotation of an object through angle θ about the pivot point

We first determine the transformation equations for rotation of a point position P when the pivot point is at the coordinate origin. The angular and coordinate relationships of the original and transformed point positions are shown in Fig.4. In this figure r is the constant distance of the point from the origin, angle ϕ is the original angular position of the point from the horizontal, and θ is the rotation angle. Using standard trigonometric identities, we can express the transformed coordinates in terms of angles θ and ϕ as,


Fig 4: Rotation of a point from position (x, y) to position (x', y')

Through an angle θ relative to the coordinate origin.

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

 $x' = r\cos(\phi + \theta) = r\cos\phi\cos\theta - r\sin\phi\sin\theta$ $y' = r\sin(\phi + \theta) = r\cos\phi\sin\theta + r\sin\phi\cos\theta$ (5-4)

The original coordinates of the point in polar coordinates are

 $x = r \cos \phi, \quad y = r \sin \phi$

(5-5)

Substituting expressions 5-5 into 5-4, we obtain the transformation equations for rotating a point at position (x, y) through an angle 9 about the origin:

 $x' = x \cos \theta - y \sin \theta$ $y' = x \sin \theta + y \cos \theta$ (5-6)

With the column-vector representations 5-2 for coordinate positions, we can write the rotation equations in the matrix form:

$$\mathbf{P}' = \mathbf{R} \cdot \mathbf{P} \tag{5.7}$$

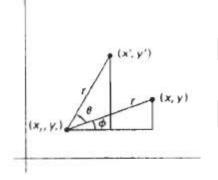
where the rotation matrix is

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

$$\mathbf{R} = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$
(5-8)


When coordinate positions are represented as row vectors instead of column vectors, the matrix product in rotation equation 5-7 is transposed so that the transformed row coordinate vector (x' y') is calculated as

$$\mathbf{P}^{\prime \mathsf{T}} = (\mathbf{R} \cdot \mathbf{P})^{\mathsf{T}}$$
$$= \mathbf{P}^{\mathsf{T}} \cdot \mathbf{R}^{\mathsf{T}}$$

Where $\mathbf{P}^T = [x y]$, and the transpose \mathbf{R}^T of matrix R is obtained by interchanging rows and columns. For a rotation matrix, the transpose is obtained by simply changing the sign of the sine terms.

Rotation of a point about an arbitrary pivot position is illustrated in Fig. 5. Using the trigonometric relationships in this figure, we can generalize Eqs. 5-6 to obtain the transformation equations for rotation of a point about any specified mutation position (x_i, y_i) :

Fig 5: Rotating a point from position (x,y) to position (x', y') through an angle θ about rotation point (x, y_i) .

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

 $x' = x_i + (x - x_i) \cos \theta - (y - y_i) \sin \theta$ $y' = y_i + (y - y_i) \sin \theta + (y - y_i) \cos \theta$ (5-9)

These general rotation equations differ from Eqs. 5-6 by the inclusion of additive terms, as well as the multiplicative factors on the coordinate values. Thus, the matrix expression 5-7 could be modified to include pivot coordinates by matrix addition of a column vector whose elements contain the additive (translational) terms In Eqs. 5-9.

Scaling

A scaling transformation alters the size of an object. This operation can be carried out for polygons by multiplying the coordinate values (x, y) of each vertex by scaling factors s, and s, to produce the transformed coordinates (x', y'):

 $x' = x \cdot s_x$, $y' = y \cdot s_y$ (5-10)

Scaling factor s, scales objects in the x direction, while 5_x scales in the x direction. The transformation equations 5-10 can also be written in the matrix form:

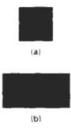
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$
(5-11)
Or

С

 $\mathbf{P}' = \mathbf{S} \cdot \mathbf{P}$ (5.12)

Where S is the 2 by 2 scaling matrix in Eq. 5-11.

Any positive numeric values can be assigned to the scaling factors s_x and s_y . Values less than 1 reduce the size of objects; values greater than 1 produce an enlargement. Specifying a value of 1 for both s, and s, leaves the size of objects unchanged When ^{s, and s,} are assigned the same


CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

value; a uniform scaling is produced that maintains relative object proportions. Unequal values for s_x and s_y result in a differential scaling that is often used in design applications, whew pictures are constructed from a few basic shapes that can be adjusted by scaling and positioning transformations (Fig.6).

Fig 6: Turning a square(a) into rectangle (b) with scaling factor $s_1 = 2$ and $s_2 = 1$.

Matrix representation of homogeneous coordinate

Many graphics applications involve sequences of geometric transformations. An animation, for example, might require an object to be translated and rotated at each increment of the motion. In design and picture construction applications, we perform translations, rotations, and scaling to tit the picture components into their proper positions. Here we consider how the matrix representations discussed in the previous sections can be reformulated, so that such transformation sequences can be efficiently processed. The term homogeneous coordinate used in mathematics to refer to the effect of this representation on Cartesian equations when a Cartesian point (x, y) is converted to a homogeneous representation (x_h, y_h, h) , equations containing x and y such as

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

f(x, y) = 0, become homogeneous equations in the three parameters x_h , y_r , and h. This just means that if each of that three parameters is replaced by any value *n* times that parameter.

Coordinates are represented with three-element column vectors, and transformation operations are written as 3 by 3 matrices. For translation, we have

x	1	0	t,		x	
$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} =$	0	1	t,	·	У	(5-17)
1	0	0	1		1	

which we can write in the abbreviated form

$$\mathbf{P}' = \mathbf{T}(t_x, t_y) \cdot \mathbf{P}$$

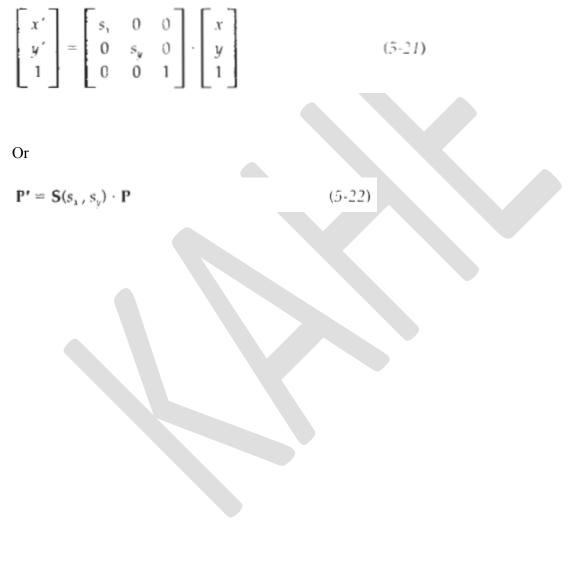
With $T(t_x, t_y)$ as the 3 by 3 translation matrix in Eq. 5-17. The inverse of the translation matrix is obtained by replacing the translation parameters t_x and t_y , with their negatives: $-t_x$ and $-t_y$.

(5 - 18)

Similarly, rotation transformation equations about the coordinate origin are now written as

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
(5-19)

Or


 $\mathbf{P'} = \mathbf{R}(\theta) \cdot \mathbf{P} \tag{5.20}$

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

Finally, a scaling transformation relative to the coordinate origin is now expressed as the matrix multiplication

3D GEOMETRIC TRANSFORMATION:

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

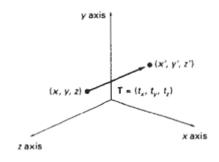
Methods for geometric transformations and object modeling in three dimensions are extended from two-dimensional methods by including considerations for the z coordinate. We now translate an object by specifying a three-dimensional translation vector, which determines how much the object is to be moved in each of the three coordinate directions. Similarly, we scale an object with three coordinate scaling factors. The extension for three-dimensional rotation is less straightforward. When we discussed two-dimensional rotations in the xy plane, we needed to consider only rotations about axes that were perpendicular to the xy plane. In three-dimensional space, we can now select any spatial orientation for three rotation axis. Most graphics packages handle three-dimensional rotation as a composite of three rotation matrix, given the orientation of the axis and the q u i r e d rotation angle. As in the two-dimensional case, we express geometric transformations in matrix form. Any sequence of transformations is then represented as, a single matrix, formed by concatenating the matrices for the individual transformations in the sequence.

Translation

In a three-dimensional homogeneous coordinate representation, a point is translated (Fig.1) from position P = (x, y, z) to position P' = (x', y', z') with the matrix operation

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
(11-1)
Or
$$\mathbf{P'} = \mathbf{T} \cdot \mathbf{P}$$
(11-2)

Parameters t_x , t_y , and t_z , specifying translation distances for the coordinate directions x, y, and z, are assigned any real values. The matrix representation in Eq. 11-1 is equivalent to the three equations,


CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

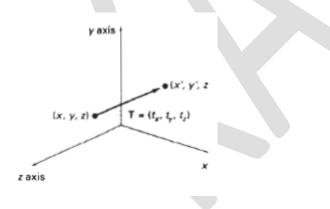

$$x' = x + t_x, \quad y' = y + t_y, \quad z' = z + t_z$$
 (11-3)

Fig1: Translating a point with translation vector $\mathbf{T} = (t_x, t_y, t_z)$.

An object is translated in three dimensions by transforming each of the defining points of the object. For an object represented as a set of polygon surfaces, we translate each vertex of each surface (Fig. 2) and redraw the polygon facets in the new position.

Fig: 2 Translating an object with translation vector T.

We obtain the inverse of the translation matrix in Eq. 11-1 by negating the translation distances t,, t,, and t,. This produces a translation in the opposite direction, and the product of a translation matrix and its inverse produces the identity Matrix.

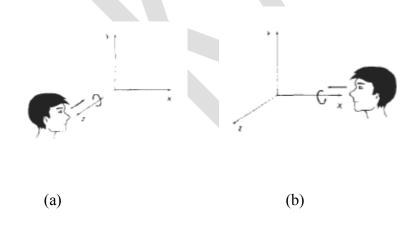
CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

Rotation

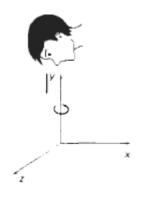
To generate a rotation transformation for an object, we must designate an axis of rotation (about which the object is to be rotated) and the amount of angular rotation. Unlike two- dimensional applications, where all transformations are carried


out in the xy plane, a three-dimensional rotation can be specified around any line in space. The easiest rotation axes to handle are those that are parallel to the coordinate axes. Also, we can use combinations of coordinate axis rotations (along with appropriate translations) to specify any general rotation.

By convention, positive rotation angles produce counterclockwise rotations about a coordinate axis, if we are looking along the positive half of the axis toward the coordinate origin (Fig.3). This agrees with our earlier discussion of

Rotation in two dimensions, where positive rotations in the xy plane are counterclockwise about axes parallel to the z axis.

Fig3: Positive rotation directions about the coordinate axes are


Counterclockwise, when looking toward the origin from a positive coordinate position on each axis.

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

(c)

Coordinate-Axes Rotations

The two-dimensional z-axis rotation equations are easily extended to three dimensions:

```
\begin{aligned} x' &= x \cos \theta - y \sin \theta \\ y' &= x \sin \theta + y \cos \theta \\ z' &= z \end{aligned} \tag{11-4}
```

Parameter 6 specifies the rotation angle. In homogeneous coordinate form, the threedimensional z-axis rotation equations are expressed as,

$\begin{bmatrix} x \\ y \end{bmatrix}$	=	$\cos \theta$ $\sin \theta$	$-\sin\theta$ $\cos\theta$	0 0	0	$\begin{bmatrix} x \\ y \end{bmatrix}$	(11-5)
2'		0	0	1	0	2	11-57
[1]		L 0	0	0	1	L1]	

which we can write more compactly as,

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

 $\mathbf{P}' \simeq \mathbf{R}_{\mathbf{z}}(\theta) \cdot \mathbf{P}$

(11-6)

Figure 4, illustrates rotation of an object about the z axis.

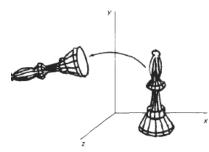


Fig: 4 Rotation of an object about the z axis

Transformation equations for rotations about the other two coordinate axes can be obtained with a cyclic permutation of the coordinate parameters x, y, and z in Eqs. 11-4. That is, we use the replacements

 $x \rightarrow y \rightarrow z \rightarrow x$ (11-7)

as illustrated in Fig.5.

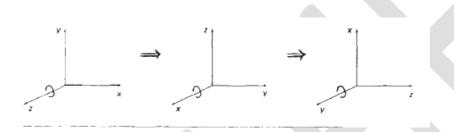
Substituting permutations 11-7 in Eq. 11-4, we get the equations for an x-axis rotation:

```
y' = y \cos \theta - z \sin \theta

z' = y \sin \theta + z \cos \theta (11-8)

x' = x
```

which can be written in the homogeneous coordinate form


CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
(11-9)

Fig5: Cyclic permutation of the Cartesian-coordinate axes to produce the three sets of coordinate-axis rotation equations.

Cyclically permuting coordinates in Eq. 11-8 give us the transformation equations for a y-axis rotation:

 $z' = z \cos \theta - x \sin \theta$ $x' = z \sin \theta + x \cos \theta$ (11.11) y' = y

The matrix representation for y-axis rotation is

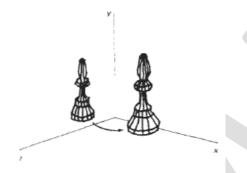
$$\begin{bmatrix} x'\\y'\\z'\\1 \end{bmatrix} = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0\\0 & 1 & 0 & 0\\ -\sin\theta & 0 & \cos\theta & 0\\0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x\\y\\z\\1 \end{bmatrix}$$
(11-12)

Prepared by Manjula.D, Asst.Prof, Dept of CS, CA & IT, KAHE

Page 40/47

CLASS: III B.Sc CS A & B

BATCH:2016-2019


COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

Or

 $\mathbf{P}' = \mathbf{R}_{y}(\theta) \cdot \mathbf{P} \tag{11-13}$

An example of y-axis rotation is shown in Fig.5.

Fig: 5 Rotation of an object about the y axis.

An inverse rotation matrix is formed by replacing the rotation angle 0 by $-\theta$. Negative values for rotation angles generate rotations in a clockwise direction, so the identity matrix is produced when any rotation matrix is multiplied by its inverse. Since only the sine function is affected by the change in sign of the rotation angle, the inverse matrix can also be obtained by interchanging rows and columns. That is, we can calculate the inverse of any rotation matrix R by evaluating its transpose ($\mathbf{R}^{-1} = \mathbf{R}^{T}$). This method for obtaining an inverse matrix holds also for any composite rotation matrix.

General Three-Dimensional Rotations

A rotation matrix for any axis that does not coincide with a coordinate axis can be set up as a composite transformation involving combinations of translations and the coordinate-axes rotations. We obtain the required composite matrix by first setting up the transformation sequence that moves the selected rotation axis onto one of the coordinate axes. Then we set up

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

the rotation matrix about that coordinate axis for the specified rotation angle. The last step is to obtain the inverse transformation sequence that returns the rotation axis to its original position.

In the special case where an object is to be rotated about an axis that is parallel to one of the coordinate axes, we can attain that

desired rotation with the following transformation sequence.

1. Translate the object so that the rotation axis coincides with the parallel coordinate axis.

- 2. Perform the specified rotation about that axis.
- 3. Translate the object so that the rotation axis is moved back to its original position.

The steps in this sequence are illustrated in Fig. 6. Any coordinate position P on the object in this figure is transformed with the sequence shown as,

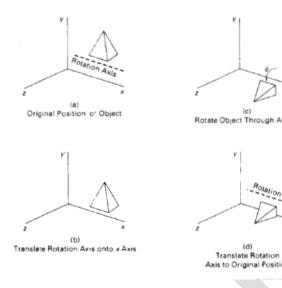

 $\mathbf{P}' = \mathbf{T}^{+1} \cdot \mathbf{R}_i(\theta) \cdot \mathbf{T} \cdot \mathbf{P}$

Fig 6: Sequence of transformations for rotating an object about an axis that is parallel to the x axis

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

where the composite matrix for the transformation is,

$$\mathbf{R}(\theta) = \mathbf{T}^{-1} \cdot \mathbf{R}_{1}(\theta) \cdot \mathbf{T}$$

which is of the same form as the two-dimensional transformation sequence for rotation about an arbitrary pivot point.

When an object is to be rotated about an axis that **is** not parallel to one of the coordinate axes, we need to perform some additional transformations. In this case, w also need rotations lo align the axis with a selected coordinate axis and to bring the axis hack to its original orientation. Given the specifications for the rotation axis and the rotation angle, we can accomplish the required rotation in five steps.

1 Translate the object so that the rotation axis pass= through the coordinate origin.

2. Rotate the object so that the axis of rotation coincides with one of the coordinate axes.

3. Perform the specified rotation about that coordinate axis.

4. Apply inverse rotations to bring the rotation axis back to its

original orientation.

CLASS: III B.Sc CS A & B

BATCH:2016-2019

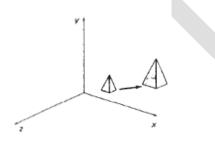
COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

5. Apply the inverse translation to bring the rotahon axis back to its original position.

Scaling

The matrix expression for the scaling transformation of a position P = (x, y, z) relative to the coordinate origin can be written as

$\begin{bmatrix} x'\\y'\\z'\\1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0\\0 & s_y & 0 & 0\\0 & 0 & s_z & 0\\0 & 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} $ (11-42)
--	---


Or

$$P' = S \cdot P$$
 (11-43)

Where scaling parameters $s_{11}s_{22}$ and s_{2} are assigned any positive values. Explicit expressions for the coordinate transformations for scaling relative to the origin are

 $x' = x \cdot s_x, \quad y' = y \cdot s_y, \quad z' = z \cdot s_z$ (11-44)

Fig7: Doubling the sue of an object with transformation 11-42 also moves the object farther from the origin

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

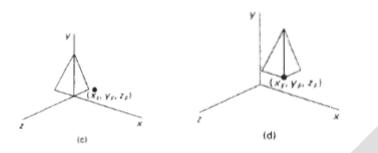
Scaling an object with transformation 11-42 changes the size of the object and repositions the object relative to the coordinate origin. Also, if the transformation parameters are not all equal, relative dimensions in the object are changed: We preserve the original shape of an object with a uniform scaling $(s_r = s_u = s_u)$. The result of scaling an object uniformly with each scaling parameter set to 2 is shown in Fig.7.


Scaling with respect to a selected fixed position $(x_{\mu}, y_{\mu}, z_{\ell})$ can be represented with the following transformation sequence:

- 1. Translate the fixed point to the origin.
- 2. Scale the object relative to the coordinate origin using Eq. 11-42.
- 3. Translate the fixed point back to its original position.

This sequence of transformations is demonstrated in Fig. 8. The matrix representation for an arbitrary fixed-point scaling can then be expressed as the concatenation of these translate-scale-translate transformations as

$$\mathbf{T}(x_{\mu}, y_{\mu}, z_{i}) \cdot \mathbf{S}(s_{x}, s_{y}, s_{z}) \cdot \mathbf{T}(-x_{\mu} - y_{\mu} - z_{j}) = \begin{bmatrix} s_{1} & 0 & 0 & (1 - s_{y})x_{j} \\ 0 & s_{y} & 0 & (1 - s_{y})y_{j} \\ 0 & 0 & s_{z} & (1 - s_{z})z_{j} \\ 0 & 0 & 0 & 1 \end{bmatrix} (11 \cdot 45)$$


Fig8: Scaling an object relative to the selected fixed point is equivalent to the sequence of transformations shown.

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

We form the inverse scaling matrix for either Eq. 11-42 or Eq. 11-45 by replacing the scaling parameters s_1, s_2 and s_3 with their reciprocals. The inverse matrix generates an opposite scaling transformation, so the concatenation of any scaling matrix and its inverse produces the identity matrix.

VANISHING POINTS:

Certain set of parallel lines appear to meet at a different point – The Vanishing point for this direction

• Principal vanishing points are formed by the apparent intersection of lines parallel to one of the three principal x, y, z axes.

• The number of principal vanishing points is determined by the number of principal axes intersected by the view plane.

• Sets of parallel lines on the same plane lead to collinear vanishing points. – The line is called the horizon for that plane

Classes of Perspective Projection • One-Point Perspective • Two-Point Perspective • Three-Point Perspective

POSSIBLE QUESTIONS

2 MARKS

1. Distinguish between Scaling and Rotation in 2D Geometric transformation.

CLASS: III B.Sc CS A & B

BATCH:2016-2019

COURSE CODE: 16CSU602B UNIT III: FUNDAMENTAL TECHNIQUES IN GRAPHICS

- 2. Explain the methods of line drawing algorithm
- 3. What is vanishing points?

POSSIBLE QUESTIONS

6 MARKS

- 1. Explain in detail about the two dimensional viewing transformation pipeline.
- 2. Explain in detail about Circle and ellipse drawing algorithm
- 3. Describe line and polygon clipping algorithm in detail
- 4. Explain in detail about the three dimensional transformation with neat sketch.

	KARPAGAM ACADEMY OF HIGHER EDUCATION												
	DEPARTMENT OF COMPUTER SCIENCE, CA & IT II B.Sc CS (Batch 2016-2019)												
K.	ARPAG						,						
(Estat	COMPUTER GRAPHICS												
	PART - A OBJECTIVE TYPE/MULTIPLE CHOICE QUESTIONS												
	ONLINE EXAMINATIONS												
	Sno	Questions	-	Opt2	Opt3	Opt4	Opt5	Opt6	Answer				
1		In	absolute	relative	Cartesian	basic			Cartesian				
		<u> </u>											
		coordinate											
		system,											
		the points											
		are											
		addressed											
		by x and y coordinate											
		s											
2		The	resolution	revolution	screen	window			resolution				
		number of											
		visible distinct											
		dots											
		displayed											
		in a unit area on	of the	of the					of the				
		the screen											
		is called											
			screen	image	size	size			screen				
3			clipping	Bresenha	display	interlacing			Bresenha				
		is an											
		increment		ms line					ms line				
		al computing		drawing					drawing				
		technique		5					J				
		S.	algorithm	algorithm	technique				algorithm				
4		A line	left	right	middle	addressab			addressab				
		segment											
		starts and											
		finishes at											
		points				le			le				

5	То	equally	less	more	not equally		equally
Ŭ	maintain a	oquany	1000		not oqualiy		oqualiy
	constant						
	density in						
	a line, dots						
	are						
	arc						
	spaced						
6	The digital	iterative	integration	differential	simple		differential
•	differential				ep.e		
	analyzer						
	generates						
	lines from						
	equation						
7	The	it is an	error	it uses	it performs		error
			accumulat	10000	n portorino		accumulat
	disadvanta		es due to	a			es due to
	ge of DDA		limited	floating	calculation		limited
	-	increment	precision				precision
	is		in floating	point	at each		in floating
			point				point
		al mathad	representa		atan		representa
8	Circle	al method bilateral	tion four way	addition eight way	step linear		tion eight way
0		bilateral	iour way	cignt way	inical		cigiit way
	exhibits						
	symmetry						
9	In Circle	positive	negative	zero	one		positive
	drawing						
	algorithm						
	if						
	D(T)+D(S)						
	is						
	_ choose						
	S (point						
	inside the						
10	true circle)	a a la ur		ragion	onti		ragion
10		colour	scan	region	anti		region
	is a						
	process of						
	"colouring		conversio				
	in" a						
	definite						
	image						
	area.	model	n	filling	aliasing		filling

11	The	Ceil()	Round()	Int()	Floor()		Floor()
· ·	mathemati						
	cal						
	function						
	returns						
	the largest						
	integer						
	that is less						
	than or						
	equal to						
	the						
	argument.						
12	In the	х	у	b	m		m
	equation						
	of line						
	y=mx+b, is						
	called the						
	slope of						
	the line						
13	The region	boundary	interior	pixel	boundary		interior
	described						
	as the						
	totality of						
	pixels that	defined	defined	defined	region		defined
	comprises						
	it is called						
		region	region	region	filling		region
14	The	boundary	interior fill		flood fill		flood fill
	collection						
	algorithms used to fill						
	the the	<u></u>					
	interior	fill					
	defined						
	region is						
	called	algorithm	algorithm	algorithm	algorithm		algorithm
15	The	index	initial	seed	neighbor	L	seed
	starting						
	pixel to fill						
	a region is						
	called						
	-						
B			-	-			-

16		boundary	interior fill	scan line	flood fill		scan line
10		boundary		Souri inte			oouri inte
	– algorithm						
	is used to						
	fill regions	fill					
	that are						
	geometric						
	ally						
	defined.	algorithm	algorithm	algorithm	algorithm		algorithm
17	In	addition	subtractio	multiplicati	division		division
	Bresenha						
	m's						
	algorithm						
	floating						
	point						
	is avoided.		n	on			
18	In scanline	active	inactive	minimum	maximum		active
	algorithm						
	the Edges						
	in the						
	edge list						
	becomes						
	when the y						
	co-						
	ordinate of						
	the current						
	scanline						
	matches						
	their Y-						
	min value						
19	The data	linked list	edge list	vertices	matrix		edge list
	structure						
	used in						
	scanline algorithm						
	is called						
				-			
20	lf a	staircase	connected	continuou	discontinu		discontinu
	regions						
	"interior" is						
	connected						
	to its "ovtorior"						
	"exterior"						
	pixel then it forms a						
	 boundary			s	ous		ous
	Soundary	L	1	<u>ا</u>	340	1	 540

21	In circle	Pi	Pi/2	Pi/4	Pi/8		Pi/4
21			P#2	P1/4	PI/8		P1/4
	generation						
	the theta						
	value is						
	stepped						
	from						
	Theta to						
22	Some	flickering	interlacing	doubling	persistenc		interlacing
	monitors	mercening	Internaeing	doubling	persistence		intendenig
	use a						
	technique						
	called						
	ounou						
	to						
	double						
	their						
	refreshing						
	rate.				е		
23	Bresenha	Two	One octet	Three	Four		One octet
	m's circle						
	generating						
	algorithm						
	will take						
	reflections						
	of						
24	Light wov	octets		octets	octets		0
24	Eight-way	35°	180°	45°	90°		45°
	symmetry						
	is used by						
	reflecting						
	each						
	calculated						
	point						
	around						
	each						
	axis						
25	In	Х	X – 1	X + 1	X + 2		X + 1
	Bresenha						
	m's circle						
	generating						
	algorithm,						
	if(x,y) is						
	the current						
	pixel						
	position						
	-						
	then the x-						
	value of						
	the next						
	1	I	1	1			
	pixel						
	pixel position is						
	pixel position is						

00	T.	Vary 1	Valana	VII and	Vary 1		Vary 1
26	In	Y or y + 1	Y alone	Y + 1 or y	Y OF Y – 1		Y or y – 1
	Bresenha						
	m's circle						
	generating						
	algorithm,						
	if(x,y) is						
	the current						
	pixel						
	position						
	-						
	then the y-						
	value of						
	the next						
	pixel						
	position is						
				1			
27	The	Area	Spatial	Scan line	Pixel		Spatial
	property						
	that						
	adjacent						
	(neighbour						
	ing) pixels						
	are likely						
	to have						
	the same						
	characteri						
	stics is						
	called			coherence		 	coherence
28	The	Area	Spatial	Scan line	Pixel		Scan line
	property						
	that						
	adjacent						
	pixels on a						
	scan line						
	are likely						
	to have						
	the same						
	characteri						
	stics is	acharara	a a h a r a r a -	a a h a ra ra a a	a a h a ra ra a		aabaraaa
30	called The		coherence Font size	coherence	coherence None of		
30	design	туретасе	I UNI SIZE	Font style			Typeface
	style of set						
	of						
	character						
	is referred						
	to as its				the above	 	
31	Character	1/12 inch	¾ inch	2/5 inch	1/2 inch		1/12 inch
	sizes						
	approxima						
	tely						
	ranges to	<u> </u>					

32		Ditte e sine er	Danth	Developing			
32	The	Dithering	Depth	Rendering	Haintoning		Halftoning
	technique						
	of using a						
	minimum						
	number of						
	intensity						
	levels to						
	obtain						
	increased						
	visual						
	resolution						
	is called						
			cueing				
33	In	D(T)+D(S)	∆x(s-t)	Both a and	None of		D(T)+D(S)
	Bresenha						
	m's line						
	generating						
	algorithm,						
	the						
	decision						
	variable is						
	_			b	the above		
34	In	D(T)+D(S)	∆x(s-t)	Both a and	None of		D(T)+D(S)
	Bresenha						
	m's circle						
	generating						
	algorithm,						
	the						
	decision						
	variable is						
	_			b	the above		
35	Character	10 point	11 points	12 points	14 points		12 points
	sizes						
	approxima						
	tely						
	ranges to						
36	Α	Frame	Mask	Display	Shadow		Mask
	is a small						
	raster						
	containing						
	the						
	relative						
	locations						
	of the						
	pixels that						
	are used						
	to						
	represent						
	the						
•	character	buffer					

37	In Line	Integration	Black box	Unit	Minmax		Minmax
57	display of	Integration	DIGCK DOX		WIIIIIIAA		WIIIIIIax
	characters						
	characters						
	test is						
	used to						
	determine						
	the						
	intersectin						
	g lines						
38	When	Private	local	Global	Public		local
00	When	i iivate	local	Ciobai			10001
	is						
	used for a						
	picket						
	fence						
	problem,						
	the						
	distance						
	between						
	pickets						
	are kept close to						
	their true						
	distance	aliasing	aliasing	aliasing	aliasing		aliasing
39	When	Private	local	Global	Public		Global
	is						
	used for a						
	picket						
	fence						
	problem,						
	the overall						
	length of						
	the picket						
	fence is						
	approxima						
	tely						
	correct	aliasing	aliasing	aliasing	aliasing		aliasing
40		Staircase	Picket	Unequal	Asymmetri		Picket
	occurs						
	when an						
	object is						
	not						
	aligned		Fence				Fence
	with, or						
	does not						
	fit into, the						
	pixel grid						
	properly.		problem	Brightness	c location		problem

41	А	Post-	Pre-	Area	Super		Pre-
41	~	FUSI-	FIE-	Alea	Super		FIE-
	technique						
	works on						
	the true						
	signal in						
	the						
	continuou						
	s space to						
	derive						
	proper						
	values for						
	individual						
	pixels	filtering	filtering	filtering	filtering		filtering
42	А	Post-	Pre-	Area	Super		Post-
	technique takes						
	discrete						
	samples						
	of the						
	continuou						
	s signal						
	and uses						
	the						
	samples						
	to						
	computer						
	pixel	<i>.</i>	.		<i>.</i>		
40	values	filtering	filtering	filtering	filtering		filtering
43	Pixel	Mindware	Humanwa	Hardware	Software		Hardware
	phasing is						
	а						
	based anti-	-					
	aliasing						
	technique		re				
44	The filter	Pre Filter	Guassian	Weighted	2D Filter		Guassian
	with its						
	weight						
	values						
	conformin						
	g to a 2D						
	Gaussian						
	distribution						
	is called		filter	Filter			filter
45		Super	Area	Low pass	High pass		Super
	is a						
	post-						
	filtering						
	technique	sampling	sampling	sampling	sampling		sampling

46	When the character is represente d by the on pixel in a bilevel pixel grid It is		Outline	Italics	Courier	Bitmap
	called	font	font	Font	Font	font
48		Outline	Italics	Courier	Raster	Raster
	- representa tion is simple and effective since Character s are defined in already scan converted form.	font	Font	Font	Font	Font
49	In representa tion of characters , lines and arcs define a character.	Outline	Italics Font	Vector	Font	Outline
50	Outline fonts are otherwise called	Italics	Vector	Raster	Bitmap	Vector
		Font	Font	Font	font	 Font

51	In using	infinite	ellipse	staircase	floating		infinite
51	methods	mmme	empse	StallCase	noating		mmme
	like						
	Bresenha						
	ms						
	algorithm						
	to scan						
	convert						
	arcs there						
	is a				point		
	danger of				-		
	missing						
	the end						
	points of						
	the arc.						
	This may						
	result in						
		loon		effect	calculation		loop
52	is a	loop Circle	Sector	Ellipse	Curve		Sector
02	arc with		000101	Linhac			000101
	two lines						
	drawn						
	from the						
	center to						
	the end						
	points of						
	the arc.						
53	Ellipse	two	four	six	eight		four
	exhibits						
	·····						
	_ way						
	symmetry.						
54	Polynomia	floating	logarithmi	square	integration		square
	l method						
	of scan						
	converting	addition	<u> </u>	and	and		and
	an ellipse		С		and		
	is	and		square			square
	inefficient			Square			equal o
	because it		calculation		differentiat		
	uses	subtractio		root			root
	u365						
		n	c	operations	ion		operations
55	_ In	major axis	s x and y	x and y	slope of		slope of
33			A anu y		Siope OI		Siope OI
	Midpoint						
	algorithm,						
	we split		coordinate	coordinate			
	the ellipse						
	into two	= minor			the curve		the curve
	parts at a		values are	values are			
	point Q						
	where						
		axis	equal	distinct	= -1		= -1
							-

56	In	inside	outside	equidistant	above		outside
50		INSIDE	outside	equiuistalit	above		
	midpoint						
	ellipse algorithm,						
	algorithm, if the						
	decision						
	parameter						
	is greater						
	than zero						
	the						
	midpoint is						
	the curve			from			
57	In	inside	outside	equidistant	middle		inside
01	midpoint	monao	outorao	oquiaiotant	maalo		
	ellipse						
	algorithm,						
	if the						
	decision						
	parameter						
	p< 0 the						
	midpoint is						
				_			
58	the curve For scan	x is	y is	from x is	both x and		x is
50		X 15	-		DULLI X allu		X 15
	converting		decrement	increment			increment
	of ellipse, the first	increment	ed and x	ed and y is			ed and y is
			is chosen	chosen	y are		chosen
	part of the	ed and y is					
	curve the		the point	the point	inereret		the point
	x and y	decrement	close to	close to	increment		close to
	values are		the true	the true			the true
	obtained	ad			ad		
59	by For scan	ed x is	curve y is	curve x is	ed both x and		curve y is
	converting	X 10	-				-
	of ellipse,		decrement	increment			decrement
	the	increment	ed and x	ed and y is			ed and x
				-	y are		
	second part of the ed and y	ed and vie	is chosen	chosen			is chosen
	curve the	ed and y is ti	the point	the point			the point
	x and y		-	-	increment		-
	-	decrement C	close to	close to			close to
values are obtained		the true	the true			the true	
		od			od		
1	by	ed	curve	curve	ed		curve

60	In	major axis	minor axis	center	point on		center
	trigonomet						
	rically						
	defining						
	the ellipse						
	x= a cos θ						
	+ h and y						
	= b sin θ +						
	k; then the						
	point (h,k)						
	is the						
	of the						
	ellipse.				the curve		

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT IV: GEOMETRIC MODELLING BATCH:2016-2019

UNIT-IV

SYLLABUS

Geometric Modeling : Representing curves & Surfaces.

GEOMETRIC MODELLING

CURVES:

Types of Curves

A curve is an infinitely large set of points. Each point has two neighbors except endpoints. Curves can be broadly classified into three categories – explicit, implicit, and parametric curves.

Implicit Curves

Implicit curve representations define the set of points on a curve by employing a procedure that can test to see if a point in on the curve. Usually, an implicit curve is defined by an implicit function of the form -

f(x, y) = 0

It can represent multivalued curves (multiple y values for an x value). A common example is the circle, whose implicit representation is

$$\mathbf{x}^2 + \mathbf{y}^2 - \mathbf{R}^2 = \mathbf{0}$$

Explicit Curves

A mathematical function y = f(x) can be plotted as a curve. Such a function is the explicit representation of the curve. The explicit representation is not general, since it cannot represent vertical lines and is also single-valued. For each value of x, only a single value of y is normally computed by the function.

Parametric Curves

CLASS: III B.Sc CS A & B COURSE CODE: 16CSU602B UNIT IV: GEOMETRIC MODELLING BATCH:2016-2019

Curves having parametric form are called parametric curves. The explicit and implicit curve representations can be used only when the function is known. In practice the parametric curves are used. A two-dimensional parametric curve has the following form –

P(t) = f(t), g(t) or P(t) = x(t), y(t)

The functions f and g become the (x, y) coordinates of any point on the curve, and the points are obtained when the parameter t is varied over a certain interval [a, b], normally [0, 1].

Bezier Curves

Bezier curve is discovered by the French engineer **Pierre Bézier**. These curves can be generated under the control of other points. Approximate tangents by using control points are used to generate curve. The Bezier curve can be represented mathematically as –

 $\sum k=0$ nPiBni(t) $\sum k=0$ nPiBin(t)

Where pipi is the set of points and Bni(t)Bin(t) represents the Bernstein polynomials which are given by –

$$Bni(t)=(ni)(1-t)n-itiBin(t)=(ni)(1-t)n-iti$$

Where \mathbf{n} is the polynomial degree, \mathbf{i} is the index, and \mathbf{t} is the variable.

The simplest Bézier curve is the straight line from the point P0P0 to P1P1. A quadratic Bezier curve is determined by three control points. A cubic Bezier curve is determined by four control points.

 B(1/2)
 Image: Constrained and the second and the s

CLASS: III B.Sc CS A & B COURSE CODE: 16CSU602B UNIT IV: GEOMETRIC MODELLING BATCH:2016-2019

- They generally follow the shape of the control polygon, which consists of the segments joining the control points.
- They always pass through the first and last control points.
- They are contained in the convex hull of their defining control points.
- The degree of the polynomial defining the curve segment is one less that the number of defining polygon point. Therefore, for 4 control points, the degree of the polynomial is 3, i.e. cubic polynomial.
- A Bezier curve generally follows the shape of the defining polygon.
- The direction of the tangent vector at the end points is same as that of the vector determined by first and last segments.
- The convex hull property for a Bezier curve ensures that the polynomial smoothly follows the control points.
- No straight line intersects a Bezier curve more times than it intersects its control polygon.
- They are invariant under an affine transformation.
- Bezier curves exhibit global control means moving a control point alters the shape of the whole curve.
- A given Bezier curve can be subdivided at a point t=t0 into two Bezier segments which join together at the point corresponding to the parameter value t=t0.

B-Spline Curves

The Bezier-curve produced by the Bernstein basis function has limited flexibility.

- First, the number of specified polygon vertices fixes the order of the resulting polynomial which defines the curve.
- The second limiting characteristic is that the value of the blending function is nonzero for all parameter values over the entire curve.

The B-spline basis contains the Bernstein basis as the special case. The B-spline basis is nonglobal.

CLASS: III B.Sc CS A & B COURSE CODE: 16CSU602B UNIT IV: GEOMETRIC MODELLING BATCH:2016-2019

A B-spline curve is defined as a linear combination of control points Pi and B-spline basis function Ni,Ni, k (t) given by

 $C(t) = \sum n = 0 \text{PiNi}, k(t), C(t) = \sum i = 0 \text{PiNi}, k(t), n \ge k-1, n \ge k-1, t \in [tk-1, tn+1] \text{t} \in [tk-1, tn+1]$ Where,

- {pipi: i=0, 1, 2....n} are the control points
- k is the order of the polynomial segments of the B-spline curve. Order k means that the curve is made up of piecewise polynomial segments of degree k 1,
- the Ni,k(t)Ni,k(t) are the "normalized B-spline blending functions". They are described by the order k and by a non-decreasing sequence of real numbers normally called the "knot sequence".

The N_i, k functions are described as follows -

Ni,1(t)=
$$\{1,0,ifu\in[ti,ti+1)OtherwiseNi,1(t)=\{1,ifu\in[ti,ti+1)0,OtherwiseNi,1(t)],OtherwiseNi,1(t)=\{1,ifu\in[ti,ti+1)0,OtherwiseNi,1(t)],OtherwiseNi,1(t)=\{1,ifu\in[ti,ti+1)0,OtherwiseNi,1(t)],OtherwiseNi,1(t)=\{1,ifu\in[ti,ti+1)0,OtherwiseNi,1(t)],OtherwiseNi,1(t)=\{1,ifu\in[ti,ti+1)0,OtherwiseNi,1(t)],OtherwiseNi,1(t)],OtherwiseNi,1(t)=\{1,ifu\in[ti,ti+1)0,OtherwiseNi,1(t)],OtherwiseNi,1(t)],OtherwiseNi,1(t)=\{1,ifu\in[ti,ti+1)0,OtherwiseNi,1(t)],$$

and if k > 1,

$$\label{eq:Nik} \begin{split} \text{Nik}(t) = t - titi + k - 1 \text{Ni}, k - 1(t) + ti + k - tti + k - ti + 1 \text{Ni} + 1, k - 1(t) \text{Nik}(t) = t - titi + k - 1 \text{Ni}, k - 1(t) + ti + k - tti + k - ti + 1 \text{Ni} + 1, k - 1(t) \end{split}$$

and

$$t \in [tk-1,tn+1)t \in [tk-1,tn+1)$$

Properties of B-spline Curve

B-spline curves have the following properties -

- The sum of the B-spline basis functions for any parameter value is 1.
- Each basis function is positive or zero for all parameter values.
- Each basis function has precisely one maximum value, except for k=1.
- The maximum order of the curve is equal to the number of vertices of defining polygon.
- The degree of B-spline polynomial is independent on the number of vertices of defining polygon.

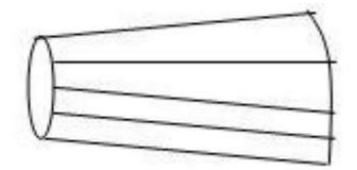
CLASS: III B.Sc CS A & B COURSE CODE: 16CSU602B UNIT IV: GEOMETRIC MODELLING BATCH:2016-2019

- B-spline allows the local control over the curve surface because each vertex affects the shape of a curve only over a range of parameter values where its associated basis function is nonzero.
- The curve exhibits the variation diminishing property.
- The curve generally follows the shape of defining polygon.
- Any affine transformation can be applied to the curve by applying it to the vertices of defining polygon.
- The curve line within the convex hull of its defining polygon.

SURFACES:

Polygon Surfaces

Objects are represented as a collection of surfaces. 3D object representation is divided into two categories.

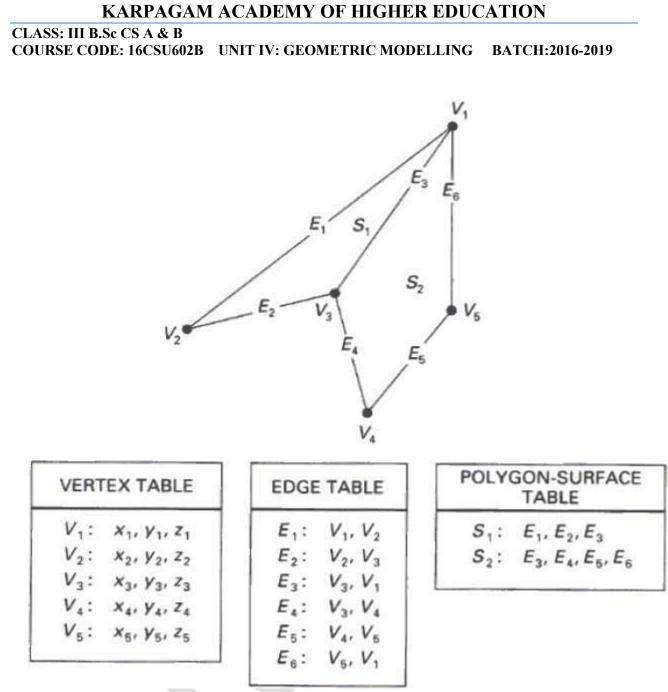

- **Boundary Representations (B-reps)** It describes a 3D object as a set of surfaces that separates the object interior from the environment.
- **Space-partitioning representations** It is used to describe interior properties, by partitioning the spatial region containing an object into a set of small, non-overlapping, contiguous solids (usually cubes).

The most commonly used boundary representation for a 3D graphics object is a set of surface polygons that enclose the object interior. Many graphics system use this method. Set of polygons are stored for object description. This simplifies and speeds up the surface rendering and display of object since all surfaces can be described with linear equations.

The polygon surfaces are common in design and solid-modeling applications, since their **wireframe display** can be done quickly to give general indication of surface structure. Then realistic scenes are produced by interpolating shading patterns across polygon surface to illuminate.

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT IV: GEOMETRIC MODELLING BATCH:2016-2019



A 3D object represented by polygons

Polygon Tables

In this method, the surface is specified by the set of vertex coordinates and associated attributes. As shown in the following figure, there are five vertices, from v_1 to v_5 .

- Each vertex stores x, y, and z coordinate information which is represented in the table as v₁: x₁, y₁, z₁.
- The Edge table is used to store the edge information of polygon. In the following figure, edge E_1 lies between vertex v_1 and v_2 which is represented in the table as E_1 : v_1 , v_2 .
- Polygon surface table stores the number of surfaces present in the polygon. From the following figure, surface S₁ is covered by edges E₁, E₂ and E₃ which can be represented in the polygon surface table as S₁: E₁, E₂, and E₃.

Plane Equations

The equation for plane surface can be expressed as -

$$Ax + By + Cz + D = 0$$

Where (x, y, z) is any point on the plane, and the coefficients A, B, C, and D are constants describing the spatial properties of the plane. We can obtain the values of A, B, C, and D by solving a set of three plane equations using the coordinate values for three non collinear points in the plane. Let us assume that three vertices of the plane are (x_1, y_1, z_1) , (x_2, y_2, z_2) and (x_3, y_3, z_3) Z3).

CLASS: III B.Sc CS A & B COURSE CODE: 16CSU602B UNIT IV: GEOMETRIC MODELLING BATCH:2016-2019

Let us solve the following simultaneous equations for ratios A/D, B/D, and C/D. You get the values of A, B, C, and D.

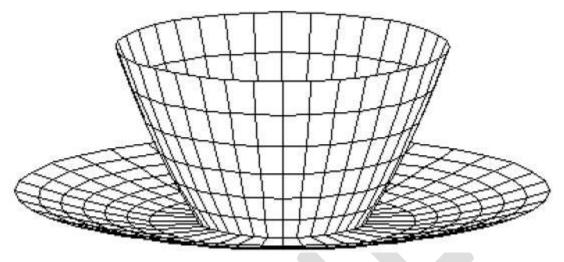
 $(A/D) x_1 + (B/D) y_1 + (C/D) z_1 = -1$ $(A/D) x_2 + (B/D) y_2 + (C/D) z_2 = -1$ $(A/D) x_3 + (B/D) y_3 + (C/D) z_3 = -1$

To obtain the above equations in determinant form, apply Cramer's rule to the above equations.

For any point (x, y, z) with parameters A, B, C, and D, we can say that -

- $Ax + By + Cz + D \neq 0$ means the point is not on the plane.
- Ax + By + Cz + D < 0 means the point is inside the surface.
- Ax + By + Cz + D > 0 means the point is outside the surface.

Polygon Meshes


3D surfaces and solids can be approximated by a set of polygonal and line elements. Such surfaces are called **polygonal meshes**. In polygon mesh, each edge is shared by at most two polygons. The set of polygons or faces, together form the "skin" of the object.

This method can be used to represent a broad class of solids/surfaces in graphics. A polygonal mesh can be rendered using hidden surface removal algorithms. The polygon mesh can be represented by three ways –

- Explicit representation
- Pointers to a vertex list
- Pointers to an edge list

CLASS: III B.Sc CS A & B COURSE CODE: 16CSU602E

COURSE CODE: 16CSU602B UNIT IV: GEOMETRIC MODELLING BATCH:2016-2019

Advantages

- It can be used to model almost any object.
- They are easy to represent as a collection of vertices.
- They are easy to transform.
- They are easy to draw on computer screen.

Disadvantages

- Curved surfaces can only be approximately described.
- It is difficult to simulate some type of objects like hair or liquid.

POSSIBLE QUESTIONS

2 MARKS

- 1. What is geometrics modeling?
- 2. Define representing curves?
- 3. What is surfaces in computer graphics?

8 MARKS

- 1. Explain in detail about representing curves with neat sketch.
- 2. Describe about surface sin computer graphics with neat diagram.

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

II B.Sc CS (Batch 2016-2019)

COMPUTER GRAPHICS

PART - A OBJECTIVE TYPE/MULTIPLE CHOICE QUESTIONS

ONLINE EXAMINATIONS

UNIT IV

	UNITIV											
Sno	Questions	Opt1	Opt2	Opt3	Opt4	Opt5	Opt6	Answer				
1	The simulated spacial manipulati on of objects is	scan conversio	transform	distortion	clipping			transformation				
	called	n	ation									
2	To position several objects defined in its own coordinate system into a common scene we need	flickering	ation	distortion	clipping			transformation				
3	object is transform ed relative to a stationary coordiant e system or back ground it is called	geometric	coordinat	instance	composite			geometric				
	transform ation		e									

4	When the object is held stationary and the coordiante system is transforme d it is called 		e	instance	composite	coordinate
5	An Object in a plane is a set of	pictures	images	points	lines	images
6	Every point P in a 2D coordinat e system consists of	an x value	a y value	an ordered	z axis	a y value
7	Which of these is not a basic type of transforma tion	translatio n	rotation	pair x,y scaling	clipping	clipping
8	In the object is displaced a given distance and direction form its original position	translatio	rotation	scaling	clipping	translation
9	v = tx l + ty J is called the	translatio	translatio	translatio n coordinat	translatio n	translation vector
		n vortor	n matriv	۵۵	constants	

10	Applying	x+tx,y-ty	x/tx,y/tx	x+tx,y+ty	x.tx,y.ty	x+tx,y+ty
10	the	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>λ</i> , τλ, γ, τλ	<u>Λ· (Λ, γ</u> · (γ	<i>Λ.ι.</i> , γ.ι γ	x · cx, y · cy
	translatio					
	n, v = tx l					
	+tyJ to a					
	point					
	P(x,y) the					
	new point					
	P' has					
	coordinat					
	е					
	values					
	_					
11	If the	positive	negative	equal to	Not equal	positive
	direction					
	of					
	rotation is					
	countercl					
	ockwise					
	then angle					
	is said to					
	be					
				7010	to zoro	
12	_ If the	clockwise	anticlockw	zero counter	to zero no	clockwise
16	direction	ciocitwise		counter		clockwise
	of rotation					
	is then angle					
	is said to					
	be					
13	negative	translating	ise rotation	clockwise scaling	rotation Mirror	scaling
15		translating	TOLALION	scalling		scalling
	is a process of					
	•					
	altering					
	the dimension					
	dimension					
	of an				a flastic	
14	object	tranclating	rotation	scaling	reflection Mirror	Mirror reflection
14	is a	translating		scaling		
	special					
	case of				reflection	
	Scanna	I			renection	

15	In Scaling	scaling	scaling	scaling	scaling	9	scaling constants
	transform						
	ation						
	S(sx,sy), sx						
	and sy are						
	called						
	cuncu	vector	matrix	constants	axis		
16	Applying	1	x+sx,y+sy	x.1/sx,y.1/)	x.sx,y.sy
	Scaling to		., ,	, .			
	a point						
	P(x,y) the						
	new point						
	P' has						
	coordinat						
	e						
	values						
	_			sx			
17	In Scaling transforma	origin	center of	point to	center of	C	origin
	tion the						
	only point			which			
	that						
	remains fixed is the			scaling is			
			the image		the pixcel		
18	A scaling	compressi	distortion	magnificat	dislocatio	ľ	magnification
	constant						
	greater than 1						
	results in						
	of						
	the object	on		ion	n		
19	A scaling		distortion	magnificat	dislocatio	(compression
	constant						
	less than 1						
	results in						
	of						
		on		ion	n		
	the object	011		ion	n		

20	If both scaling constants have the same value then the transforma tion is said to be		dimetric	homogen	orthograp	homogeneous
21	Applying	e v=v+Mv v	<u> </u>	eous	hic	<u> </u>
21	Applying	x=x+Mx,y	x=x,y= -y	x= - x, y =	x= -x y= y	х=х,у= -у
	Mirror					
	reflection					
	Mx about					
	x axis to a					
	point P					
	result in P'					
	= Mx(P)					
	where	=y+Mx		- y		
22	is	viewing	scaling	Instance	Inverse	Inverse
	the opposite operation performed by the transforma			transform		
23	tion Complex	ation	ation	ation	ation	 transformation
25	Complex	addition	compositi	Instance	Inverse	composition of
	transform	of				
	ations can	transcorm	on of	transform	transform	
	be built by		c			
24		ations	functions	ation matrix	ation linked list	functions matrix
24		scalar	vector	matrix	iniked list	IIIdUIX
	representa ion of transforma tions is very useful to build complex transforma tion					

25	Compositi	addition	inverse of	multiplicat	subtractio		multiplication of
	on of						
	transform						
	ations is						
		of		ion of	n of		
	brought						
	about by						
		matrices	matrix	matrices	matrices		matrices
26	The	addition	compositi	Instance	concatena		concatenation of
	process of						
	multiplyin						
	g basic						
	transform	of	on of	transform	tion of		
	ation	01					
	matrices						
	is called						
		matrices		ation	matrices		matrices
27	The	Resultant	Composit	Final	Unit		Composite
	resultant						
	matrix		е	Tuonoformo			
	after concatena			Transform			
	tion of		Transform				Transformation
	matrices			ation			
	is called		ation				
		matix	Matrix	Matrix	Matrix		Matrix
28	СТМ	Common	Composit	Coordinat	control		Composite
		transform	е	е			
			Transform	transform	transform		Transformation
		ation	ation	ation			
	stands for	matrix	Matrix	Matrix	ation		Matrix
29	stands for	geometric		instance	composite		instance
25		Sconcerie	coordinat	moturiee	composite		instance
	transform						
	ation is						
	used to						
	create an						
	instance						
	of an						
	object in						
	the						
	picture						
	coordinat						
			1	1		I I	

30	Instance	several	several	several	several	several
	transform					
	ation is					
	applied					
	when the	subpicture	dimension	transform		
	picture is					
	composed					
	of	s	S	ations	points	subpictures
31	Transfora	-	three	viewing	instance	two dimensional
	mtion in a	dimension		0		
	plane is		al	transform	transform	
	called					
			transform			
32		mtion	ation	ation	ation	transforamtion
32	 · .	World	device	viewing	cartesian	World coordinate
	is					
	the	coordinat	corodinat	coordinat	coordinat	
	Master					
	coordinat					
	e system		e system	e system	e system	system
33	Objects	viewing	modeling	mapping	normalize	modeling
	are places					
	into a					
	scene by				d	
		transform	transform	transform		
		transform	transform	transform		
	to				transform	
	the World					
	coordinat					
	e system.	ation	ation	ation	ation	transformation
34	The	Raster	viewport	window	display	window
	rectangula					
	r area					
	with its					
	edges					
	parallel to					
	the WCS is					
	called					
					device	

35	The	Raster	viewport	window	display		viewport
	rectangula		mempere				
	r area with						
	its edges						
	parallel to						
	the NDCS						
	is called						
					device		
36		World	Normalise	viewing	cartesian		Normalised
	is a						
	device		d device				
	independe		u uevice				
	nt tool to	coordinat		coordinat	coordinat		device corodinate
	describe		corodinat				
	the						
	display						
	area.	e system	e system	e system	e system		system
37	In NDCS	virtual	window	viewport	workstati		virtual display
	the 1 x 1						
	unit						
	square at						
	the origin						
	of the						
	coordinat						
	e system	display					
	defines						
	the						
	display						
	area of						
	the						
		device			on.		device

38	The	viewing	modeling	mapping	normalizat		normalization
	process						
	that						
	converts						
	object				ion		
	coordinat						
	es in WCS	transform	transform	transform			
	to	transform	transform	transform			
	normalize						
	d device				transform		
	coordinat						
	es is called						
		ation	ation	ation	ation		transformation
39	Normalizat ion	window to	mapping	workstati	clipping		window to
	transforma			on			
	tion is also		transform				
	called	-		transform			
40	 The	mapping	ation	ation workstati	normalizat		viewport mapping workstation
40		viewing	modeling	WUIKSLALI	normalizat		WORKSLALION
	process						
	that maps						
	normalise						
	d device			on	ion		
	coordinat						
	es to	transform	transform				
	discrete						
	device/			transform	transform		
	image						
	coordinat						
	es is called						
	<u></u>	ation	ation	ation	ation		transformation

tion and Workstati on transform ations collective known as transform ation transform ation transform ation transform ation transform ation 42 Workstati on transform ation is dependen t on the display device / frame buffer dimension dimension color resolution 43 When the display area of the virtual device is mapped to a physical device that does clipping transform geometric geometric geometric	41	Normaliza	viewing	modeling	window to	mapping		viewing
on transform ations collective known as transform ation transform transform transform transform 42 Workstati on transform ation is dependen t on the height dimension dimension color resolution resolution 42 Workstati on transform ation is dependen t on the height dimension dimension color resolution resolution 43 When the display device / frame buffer flickering clipping transform geometric geometric 43 When the display area of the virtual device is mapped to a physical device flickering clipping transform geometric geometric			Ŭ					~
transform ations collective known as		Workstati						
ations transform transform viewport transform transform 2 ation ation ation mapping ation transformation 42 Workstati height dimension color resolution resolution ation is dependen dimension color resolution resolution		on						
ations collective mapping ation transformation ation ation mapping ation transformation 42 Workstati height dimension color resolution resolution 42 Workstati height dimension color resolution resolution 42 Workstati height dimension color resolution resolution 43 When the flickering clipping transform geometric geometric 43 the virtual device is in apped in apped in apped in apped in apped in apped ico a physical ico a in apped in apped in apped in apped in apped in apped in app		transform						
known as ation ation mapping ation transformation 42 Workstati on the transform ation is dependen t on the to the display device / frame buffer height dimension color resolution resolution resolution 43 When the flickering display area of the virtual device is mapped to a physical device clipping transform transform ation is dependent to n the the virtual device is mapped transform ation is dependent to n the the virtual device is mapped transform ation is dependent to n the the virtual device is mapped transform ation is dependent to a physical device transform ation is dependent to n the the virtual device is mapped transform ation is dependent to a physical device transform ation is dependent to a physical device transform ation is dependent to n the to a physical device transform ation is dependent to a phy		ations	transform	transform	viewport	transform		
ation ation mapping ation transformation 42 Workstati on transform ation is dependen t on the height dimension color resolution resolution Image: solution is dependen t on the image: solution is dependen t on the image: solution is dependen image: solution is image: solution is dependen image: solution is image: solution is dependen image: solution is image: solution		collective						
42 Workstati height on transform ation is dependen t on the dimension color resolution resolution 43 When the flickering buffer clipping transform geometric geometric geometric 43 When the flickering display area of the virtual device is mapped to a physical device clipping transform geometric geometric geometric		known as						
42 Workstati height on transform ation is dependen t on the dimension color resolution resolution 43 When the flickering buffer clipping transform geometric geometric geometric 43 When the flickering display area of the virtual device is mapped to a physical device clipping transform geometric geometric geometric								
on transform ation is dependen t on the		-						
transform ation is dependen t on the	42		height	dimension	color	resolution		resolution
ation is dependen ation tis dependen ton the								
t on the								
Image: space of the display device / frame buffer clipping transform geometric geometric 43 When the flickering display area of the virtual device is mapped to a physical device clipping transform geometric geometric 43 When the flickering display area of the virtual device is clipping transform geometric geometric								
the the display display device / frame buffer buffer line 43 When the flickering clipping transform geometric geometric whole display area of intervirtual intervirtual intervirtual intervirtual intervirtual device is mapped intervirtual intervirtual intervirtual intervirtual intervirtual device intervirtual intervirtual intervirtual intervirtual intervirtual intervirtual device intervirtual intervirtual intervirtual intervirtual intervirtual intervirtual inter		t on the						
the the display display device / frame buffer buffer line 43 When the flickering clipping transform geometric geometric whole display area of intervirtual intervirtual intervirtual intervirtual intervirtual device is mapped intervirtual intervirtual intervirtual intervirtual intervirtual device intervirtual intervirtual intervirtual intervirtual intervirtual intervirtual device intervirtual intervirtual intervirtual intervirtual intervirtual intervirtual inter		of						
device / frame bufferendendendendendend43When the flickeringclippingtransformgeometricgeometric43When the displayflickeringclippingtransformgeometricgeometricarea of the virtualInternet device is mappedInternet internetInternet internetInternet internetInternet internetInternet internetto a physical deviceInternet internetInternet internetInternet internetInternet internetInternet internetdeviceInternet internetInternet internetInternet internetInternet internetInternet internetdeviceInternet internetInternet internetInternet internetInternet internetInternet internetdeviceInternet internetInternet internetInternet internetInternet internetInternet internetdeviceInternet internetInternet internetInternet internetInternet internetInternet internetinternet internetInternet internetInternet internetInternet internetInternet internetinternet internetInternet internetInternet internetInternet internetInternet internetinternet internetInternet internetInternet internetInternet internetInternet internetinternet internetInternet inte								
frame bufferclippingtransformgeometricgeometric43When the flickeringclippingtransformgeometricgeometricwholeImage: state of the virtualImage: state of the virtualdevice isImage: state of the virtualImage: state of the virtualdevice isImage: state of the virtualImage: state of the virtualdevice isImage: state of the virtualImage: state of the virtualdevice isImage: state of the virtualImage: state of the virtualImage: state of the virtualImage: state of the virtualImage: state of the virtualdevice isImage: state of the virtualImage: state of the virtualImage: state of the virtualImage: state of the virtualImage: state of the virtualdevice isImage: state of the virtualImage: state of the virtualImage: state of the virtualImage: state of the virtualdeviceImage: state of the virtualImage: state of the virtualImage: state of the virtualImage: state of the virtualImage: state of the virtualdeviceImage: state of the virtual <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
bufferlowlowlowlow43When the flickering wholeclippingtransformgeometricgeometricwholeisplayisplayisplayisplayisplayisplayisplayarea ofisplayisplayisplayisplayisplayisplayisplaydevice isisplayisplayisplayisplayisplayisplayisplaydevice isisplayisplayisplayisplayisplayisplayisplaydevice isisplayisplayisplayisplayisplayisplayisplayto aisplayisplayisplayisplayisplayisplayisplayphysicalisplayisplayisplayisplayisplayisplayisplaydeviceisplayisplayisplayisplayisplayisplayisplaydeviceisplayisplayisplayisplayisplayisplayisplaydeviceisplayisplayisplayisplayisplayisplayisplaydeviceisplayisplayisplayisplayisplayisplayisplaydeviceisplay <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
43 When the flickering clipping transform geometric geometric geometric whole display area of the virtual device is mapped to a physical device i limit and the								
displayarea ofthe virtualdevice ismappedto aphysicaldevicedevice	43	When the	flickering	clipping	transform	geometric		geometric
area of the virtual device isImage: Constraint of the virtual device isImage: Constraint of the virtual deviceImage: Constraint of the virtual deviceImage		whole						
the virtual device is mappedImage: Comparison of the second of the		display						
device ismappedto aphysicaldevice		area of						
mappedImage: second		the virtual						
to a physical device		device is						
physical device		mapped						
device		to a						
		physical						
that does		device						
		that does						
not have a		not have a						
1/1 aspect		1/1 aspect						
ratio it								
may								
introduce								
ation distortion distortion					ation	distortion		distortion

44		Window	Apparture	Workstati	Viewport	Window
	is		, ippartare	in or not del	nempore	
	used to					
	specify a					
	localized					
	view in					
	the WCS			on		
45		flickering	clipping	transform	geometric	clipping
	eliminates					
	the					
	objects or					
	its portion					
	that are					
	nor visible					
	through					
	the					
	window			ation	distortion	
46	The	Workstati	Viewport	Clipping	Apparture	Clipping Window
	window					
	that is					
	used to					
	clip the					
	objects is					
	called					
		on		Window		
47		on Workstati	Viewport	Window	Raster	Window
- /	is	WORKStati	viewpore	window	Naster	WINGOW
	specified					
	by four					
	World coordinate					
	S.	on				
48		Workstati	Viewport	Window	Raster	Viewport
	is					
	specified					
	by four					
	Normalise					
	d device					
	coordinat					
	es	on				

49	If Xmin,	inside	outside	on the	on the		outside
	Xmax,Ymi						
	n and						
	Ymax						
	define the						
	clipping						
	window a						
	point (x,y)						
	is said to						
	be				left		
	_the						
	clipping						
	window if						
	Xmin <x<x< td=""><td></td><td></td><td></td><td></td><td></td><td></td></x<x<>						
	max but						
	not						
	Ymin <y<y< td=""><td></td><td></td><td></td><td></td><td></td><td></td></y<y<>						
	max			diagonal	border of		
50							
50	If Xmin,	at the	on the top	on the	on the		at the bottom left
50	Xmax,Ymi	at the	on the top	on the	on the		at the bottom left
50	Xmax,Ymi n and	at the	on the top	on the	on the		at the bottom left
50	Xmax,Ymi n and Ymax	at the	on the top	on the	on the		at the bottom left
50	Xmax,Ymi n and Ymax define the	at the	on the top	on the	on the		at the bottom left
50	Xmax,Ymi n and Ymax define the clipping	at the	on the top	on the	on the		at the bottom left
50	Xmax,Ymi n and Ymax define the clipping window a		on the top	on the	on the		at the bottom left
50	Xmax,Ymi n and Ymax define the clipping window a point (x,y)		on the top	on the	on the		at the bottom left
50	Xmax,Ymi n and Ymax define the clipping window a		on the top	on the	on the right		at the bottom left
50	Xmax,Ymi n and Ymax define the clipping window a point (x,y)		on the top	on the			at the bottom left
50	Xmax,Ymi n and Ymax define the clipping window a point (x,y) is said to be		on the top	on the			at the bottom left
50	Xmax,Ymi n and Ymax define the clipping window a point (x,y) is said to		on the top	on the			at the bottom left
50	Xmax,Ymi n and Ymax define the clipping window a point (x,y) is said to be		on the top	on the			at the bottom left
50	Xmax,Ymi n and Ymax define the clipping window a point (x,y) is said to be of the		on the top	on the			at the bottom left
50	Xmax,Ymi n and Ymax define the clipping window a point (x,y) is said to be of the clipping		on the top	on the			at the bottom left
50	Xmax,Ymi n and Ymax define the clipping window a point (x,y) is said to be 		on the top	on the			at the bottom left

51	Lines that	intersect	parallels	doesnot	above or		doesnot intersect
	the						
	clipping						
	window						
	are either						
	completel		the				
	y inside or						
	completel						
	y outside						
	the						
	window		borders of		below		
52	If both the	a clipping	uneven	visible	invisible		visible
	endpoints						
	of the line						
	lies inside						
	the						
	clipping						
	window						
	the line is						
		candidate					
53	The lines	clipping	segments	visible	invisible		clipping candidate
	intersectin						
	g the						
	edges of						
	the						
	clipping window						
	are called						
		candidate					

54	In	5	10	20	15	10
	Midpoint					
	Subdivisio					
	n method					
	of line					
	clipping if					
	maximum					
	number of					
	pixels on					
	line is (M					
	=) 1024,					
	we need					
	atmost (N					
	=)					
	subdivis					
	ions to					
	clip it.					
55	In Cohen	a clipping	visible	invisible	a clipping	a clipping
	Sutherlan					
	d					
	Algorithm,					
	if the					
	bitwise					
	logical AND of					
	the region				coordinat	
	codes of					
	the					
	endpoints					
	is 0000,					
	then the					
	line is					
		candidate			e	candidate

56	A polygon	plannar	polyline	concave	convex		convex
	is called						
	if the line						
	joining						
	any two						
	interior						
	points of						
	the						
	polygon						
	lies						
	completel						
	y insdie						
	the						
	polygon.						
57	A polygon	concave	convex	positively	negatively		negatively
	is said to						
	be						
	if a tour of						
	vertices in						
	the given						
	order						
	produces						
	а						
	clockwise						
	circuit.			oriented	oriented		oriented
58	The	clipping	subject	plannar	convex		subject polygon
	polygon to						
	be clipped						
	is called						
		polygon	polygon	polygon	polygon		

59	At the	colour	viewing	object	scan	object data
	beginning		-	-		
	of the					
	Graphics				conversio	
	Pipeline					
	we have					
			parameter		n	
	stored in					
	applicatio				technique	
	n specific				teeninque	
	data					
	structures	attributes	S	data	S	
60	In	panning	Interlacing	high	Double	Double bufering
	animated					
	sequence					
	of images					
				resolution		
	is used					
	to reduce					
	flickering			monitor	bufering	
61	In Weiler-	enters the	leaves the		intersects	enters the
	Atherton					
	Algorithm					
	, If the					
	edge					
	, record				the	
	_, record					
	intersectio	clipping	clipping	another		
	n point					
	and				subject	
	continue					
	to trace					
	the					
	subject polygon.	window	window	edge	polygon	clipping window
	Polygon.	WINGOW	WINGOW	CUBC	POISON	

62	If a point	on the	below	outside	inside		inside
02	P is to the	on the	Sciew	outside	morae		inside
	left of						
	every						
	edge of a						
	positively						
	oriented						
	polygon it						
	is						
	the						
	polygon	edge					
63	In Ploygon	extra	parallel	positive	clipping		extra egdes
	clipping the edges						
	that are						
	drawn						
	twice in						
	opposite						
	direction						
	are called	egdes	edges	edges	edges		
64	In the 4	left of	right of	above	below		above
	bit region						
	code of						
	Cohen						
	Sutherlan						
	d's line						
	clipping						
	algorithm,						
	the first bi						
	correspon						
	ds to he						
	region						
	the						
	uie						

65	In Liang-	pk<0	pk>0	pk=0	pk!=0		pk=0
	Barsky's						
	Line						
	clipping						
	algorithm						
	if						
	then						
	the line is						
	parallel to						
	the						
	correspon						
	ding						
	boundary.						

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B

U602B UNIT V: VISIBLE SURFACE DETERMINATION BATCH:2016-2019

UNIT-V

SYLLABUS

Visible Surface determination : Hidden surface elimination. **Surface rendering :** Illumination and shading models. Basic color models and Computer Animation.

VISIBLE SURFACE DETERMINATION

When we view a picture containing non-transparent objects and surfaces, then we cannot see those objects from view which are behind from objects closer to eye. We must remove these hidden surfaces to get a realistic screen image. The identification and removal of these surfaces is called **Hidden-surface problem**.

There are two approaches for removing hidden surface problems – **Object-Space method** and **Image-space method**. The Object-space method is implemented in physical coordinate system and image-space method is implemented in screen coordinate system.

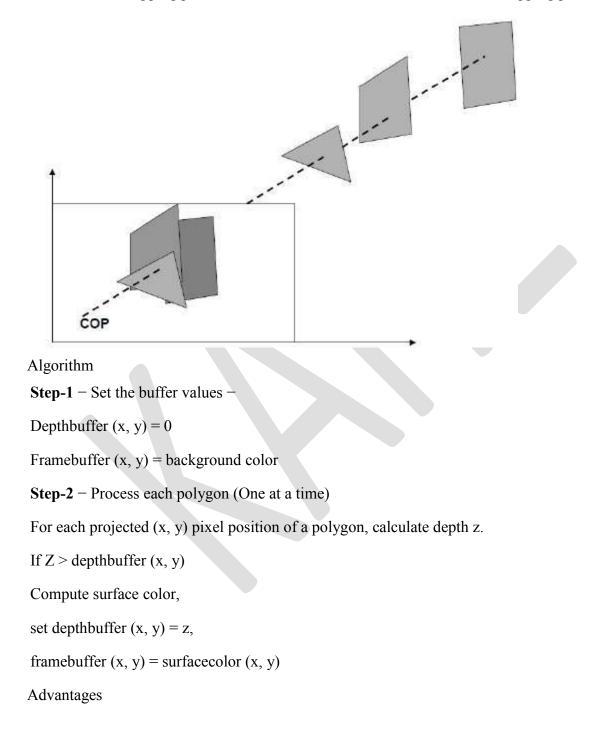
When we want to display a 3D object on a 2D screen, we need to identify those parts of a screen that are visible from a chosen viewing position.

Depth Buffer (Z-Buffer) Method

This method is developed by Cutmull. It is an image-space approach. The basic idea is to test the Z-depth of each surface to determine the closest (visible) surface.

In this method each surface is processed separately one pixel position at a time across the surface. The depth values for a pixel are compared and the closest (smallest z) surface determines the color to be displayed in the frame buffer.

It is applied very efficiently on surfaces of polygon. Surfaces can be processed in any order. To override the closer polygons from the far ones, two buffers named **frame buffer** and **depth buffer**, are used.


Depth buffer is used to store depth values for (x, y) position, as surfaces are processed $(0 \le \text{depth} \le 1)$.

The **frame buffer** is used to store the intensity value of color value at each position (x, y).

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT V: VISIBLE SURFACE DETERMINATION BATCH:2016-2019

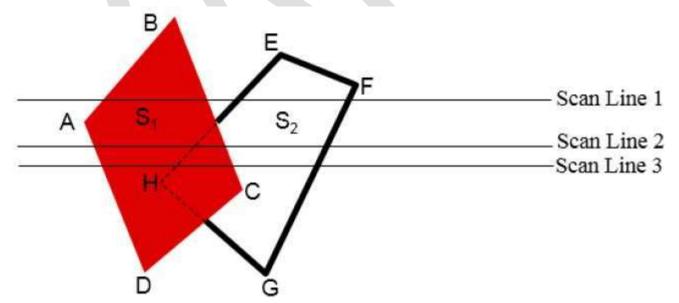
The z-coordinates are usually normalized to the range [0, 1]. The 0 value for z-coordinate indicates back clipping pane and 1 value for z-coordinates indicates front clipping pane.

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT V: VISIBLE SURFACE DETERMINATION BATCH:2016-2019

- It is easy to implement.
- It reduces the speed problem if implemented in hardware.
- It processes one object at a time.

Disadvantages


- It requires large memory.
- It is time consuming process.

Scan-Line Method

It is an image-space method to identify visible surface. This method has a depth information for only single scan-line. In order to require one scan-line of depth values, we must group and process all polygons intersecting a given scan-line at the same time before processing the next scan-line. Two important tables, **edge table** and **polygon table**, are maintained for this.

The Edge Table – It contains coordinate endpoints of each line in the scene, the inverse slope of each line, and pointers into the polygon table to connect edges to surfaces.

The Polygon Table – It contains the plane coefficients, surface material properties, other surface data, and may be pointers to the edge table.

To facilitate the search for surfaces crossing a given scan-line, an active list of edges is formed. The active list stores only those edges that cross the scan-line in order of increasing x. Also a

CLASS: III B.Sc CS A & B

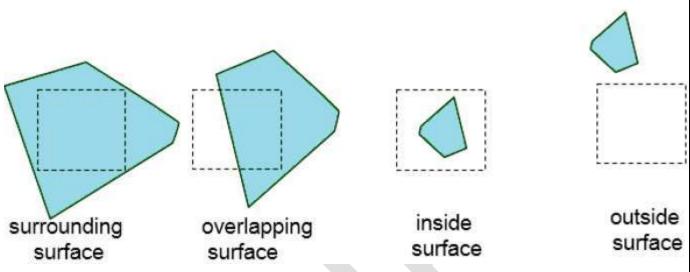
COURSE CODE: 16CSU602B UNIT V: VISIBLE SURFACE DETERMINATION BATCH:2016-2019

flag is set for each surface to indicate whether a position along a scan-line is either inside or outside the surface.

Pixel positions across each scan-line are processed from left to right. At the left intersection with a surface, the surface flag is turned on and at the right, the flag is turned off. You only need to perform depth calculations when multiple surfaces have their flags turned on at a certain scan-line position.

Area-Subdivision Method

The area-subdivision method takes advantage by locating those view areas that represent part of a single surface. Divide the total viewing area into smaller and smaller rectangles until each small area is the projection of part of a single visible surface or no surface at all.


Continue this process until the subdivisions are easily analyzed as belonging to a single surface or until they are reduced to the size of a single pixel. An easy way to do this is to successively divide the area into four equal parts at each step. There are four possible relationships that a surface can have with a specified area boundary.

- Surrounding surface One that completely encloses the area.
- **Overlapping surface** One that is partly inside and partly outside the area.
- Inside surface One that is completely inside the area.
- **Outside surface** One that is completely outside the area.

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B

UNIT V: VISIBLE SURFACE DETERMINATION BATCH:2016-2019

The tests for determining surface visibility within an area can be stated in terms of these four classifications. No further subdivisions of a specified area are needed if one of the following conditions is true -

- All surfaces are outside surfaces with respect to the area.
- Only one inside, overlapping or surrounding surface is in the area.
- A surrounding surface obscures all other surfaces within the area boundaries.

Back-Face Detection

A fast and simple object-space method for identifying the back faces of a polyhedron is based on the "inside-outside" tests. A point (x, y, z) is "inside" a polygon surface with plane parameters A, B, C, and D if When an inside point is along the line of sight to the surface, the polygon must be a back face (we are inside that face and cannot see the front of it from our viewing position).

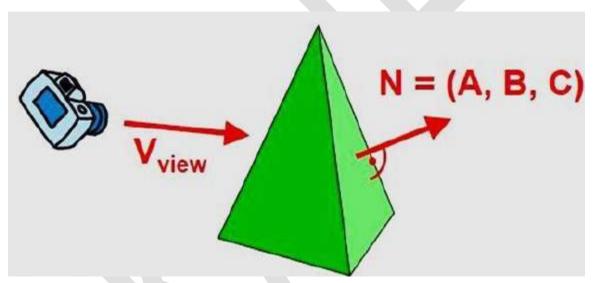
We can simplify this test by considering the normal vector **N** to a polygon surface, which has Cartesian components (A, B, C).

In general, if V is a vector in the viewing direction from the eye (or "camera") position, then this polygon is a back face if

V.N > 0

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT V: VISIBLE SURFACE DETERMINATION BATCH:2016-2019

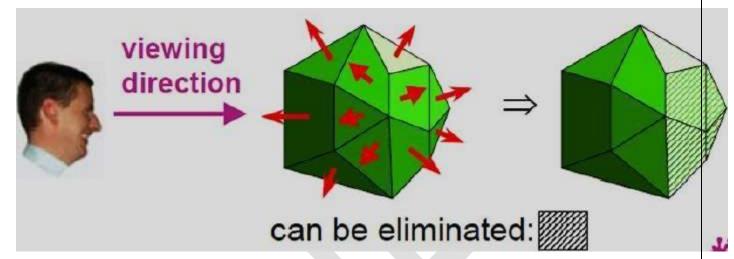

Furthermore, if object descriptions are converted to projection coordinates and your viewing direction is parallel to the viewing z-axis, then –

 $V = (0, 0, V_z)$ and $V.N = V_Z C$

C <= 0

So that we only need to consider the sign of C the component of the normal vector N.

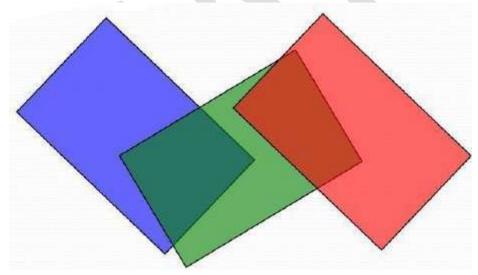
In a right-handed viewing system with viewing direction along the negative ZVZV axis, the polygon is a back face if C < 0. Also, we cannot see any face whose normal has z component C = 0, since your viewing direction is towards that polygon. Thus, in general, we can label any polygon as a back face if its normal vector has a z component value –


Similar methods can be used in packages that employ a left-handed viewing system. In these packages, plane parameters A, B, C and D can be calculated from polygon vertex coordinates specified in a clockwise direction (unlike the counterclockwise direction used in a right-handed system).

Also, back faces have normal vectors that point away from the viewing position and are identified by $C \ge 0$ when the viewing direction is along the positive ZvZv axis. By examining parameter C for the different planes defining an object, we can immediately identify all the back faces.

CLASS: III B.Sc CS A & B

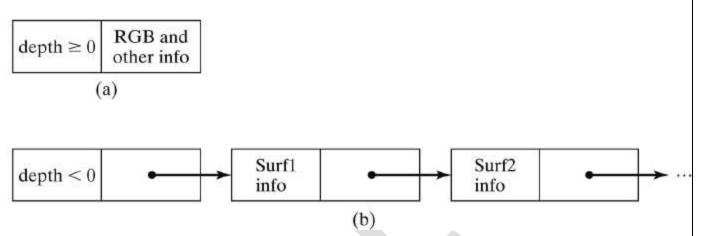
COURSE CODE: 16CSU602B


UNIT V: VISIBLE SURFACE DETERMINATION BATCH:2016-2019

A-Buffer Method

The A-buffer method is an extension of the depth-buffer method. The A-buffer method is a visibility detection method developed at Lucas film Studios for the rendering system Renders Everything You Ever Saw (REYES).

The A-buffer expands on the depth buffer method to allow transparencies. The key data structure in the A-buffer is the accumulation buffer.


Each position in the A-buffer has two fields -

- Depth field It stores a positive or negative real number
- Intensity field It stores surface-intensity information or a pointer value

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B

B UNIT V: VISIBLE SURFACE DETERMINATION BATCH:2016-2019

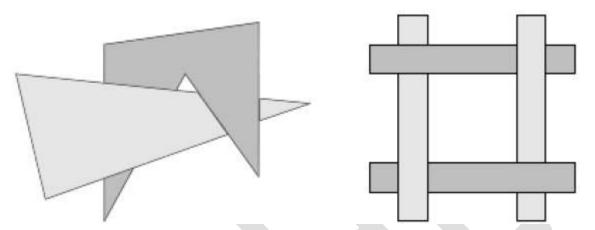
If depth ≥ 0 , the number stored at that position is the depth of a single surface overlapping the corresponding pixel area. The intensity field then stores the RGB components of the surface color at that point and the percent of pixel coverage.

If depth < 0, it indicates multiple-surface contributions to the pixel intensity. The intensity field then stores a pointer to a linked list of surface data. The surface buffer in the A-buffer includes

- RGB intensity components
- Opacity Parameter
- Depth
- Percent of area coverage
- Surface identifier

The algorithm proceeds just like the depth buffer algorithm. The depth and opacity values are used to determine the final color of a pixel.

Depth Sorting Method


Depth sorting method uses both image space and object-space operations. The depth-sorting method performs two basic functions –

- First, the surfaces are sorted in order of decreasing depth.
- Second, the surfaces are scan-converted in order, starting with the surface of greatest depth.

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT V: VISIBLE SURFACE DETERMINATION BATCH:2016-2019

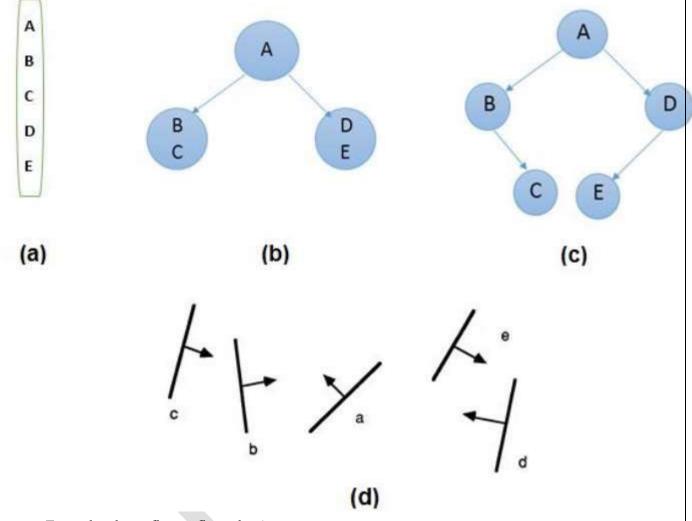
The scan conversion of the polygon surfaces is performed in image space. This method for solving the hidden-surface problem is often referred to as the **painter's algorithm**. The following figure shows the effect of depth sorting –

The algorithm begins by sorting by depth. For example, the initial "depth" estimate of a polygon may be taken to be the closest z value of any vertex of the polygon.

Let us take the polygon P at the end of the list. Consider all polygons Q whose z-extents overlap P's. Before drawing P, we make the following tests. If any of the following tests is positive, then we can assume P can be drawn before Q.

- Do the x-extents not overlap?
- Do the y-extents not overlap?
- Is P entirely on the opposite side of Q's plane from the viewpoint?
- Is Q entirely on the same side of P's plane as the viewpoint?
- Do the projections of the polygons not overlap?

If all the tests fail, then we split either P or Q using the plane of the other. The new cut polygons are inserting into the depth order and the process continues. Theoretically, this partitioning could generate $O(n^2)$ individual polygons, but in practice, the number of polygons is much smaller.


Binary Space Partition (BSP) Trees

Binary space partitioning is used to calculate visibility. To build the BSP trees, one should start with polygons and label all the edges. Dealing with only one edge at a time, extend each edge so

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT V: VISIBLE SURFACE DETERMINATION BATCH:2016-2019

that it splits the plane in two. Place the first edge in the tree as root. Add subsequent edges based on whether they are inside or outside. Edges that span the extension of an edge that is already in the tree are split into two and both are added to the tree.

- From the above figure, first take A as a root.
- Make a list of all nodes in figure (a).
- Put all the nodes that are in front of root A to the left side of node Aand put all those nodes that are behind the root A to the right side as shown in figure (b).
- Process all the front nodes first and then the nodes at the back.

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT V: VISIBLE SURFACE DETERMINATION BATCH:2016-2019

- As shown in figure (c), we will first process the node **B**. As there is nothing in front of the node **B**, we have put NIL. However, we have node **C** at back of node **B**, so node **C** will go to the right side of node **B**.
- Repeat the same process for the node **D**.

SURFACE RENDERING :

Illumination and shading models:

Illumination Models

• Motivation: In order to produce realistic images, we must simulate the appearance of surfaces under various lighting conditions

• Illumination Model: Given the illumination incident at a point on a surface, quantifies the reflected light

Lighting effects are described with models that consider the interaction of light sources with object surfaces

- The factors determining the lighting effects are: The light source parameters:
- Positions
- Electromagnetic Spectrum
- Shape The surface parameters
- Position
- Reflectance properties
- Position of nearby surfaces

The eye (camera) parameters

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT V: VISIBLE SURFACE DETERMINATION BATCH:2016-2019

- Position
- Sensor spectrum sensitivities

An illumination model is used to calculate the intensity of the light that is reflected at a given point on a surface

• A rendering method uses intensity calculations from the illumination model to determine the light intensity at all pixels in the image

Light Source Models

• Point Source (a): All light rays originate at a point and radially diverge. A reasonable approximation for sources whose dimensions are small compared to the object size

• Parallel source (b): Light rays are all parallel. May be modeled as a point source at infinite distance (the sun)

• Distributed source (c): All light rays originate at a finite area in space. It models a nearby source, such as a fluorescent light

Simplified and fast methods for calculating surfaces intensities, mostly empirical

• Calculations are based on optical properties of surfaces and the lighting conditions (no reflected sources nor shadows)

- Light sources are considered to be point sources
- Reasonably good approximation for most scenes

Assume there is some non-directional light in the environment (background light)

• The amount of ambient light incident on each object is constant for all surfaces and over all directions • Very simple model, not very realistic

• OpenGL default

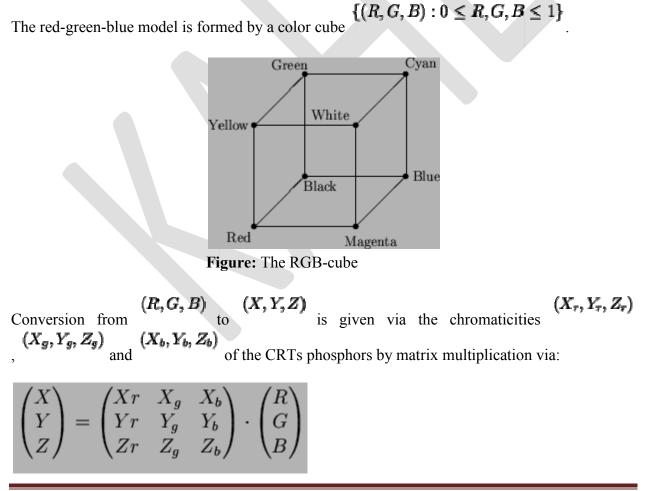
Flat Shading

- A single intensity is calculated for each surface polygon
- Fast and simple method

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT V: VISIBLE SURFACE DETERMINATION BATCH:2016-2019

• Gives reasonable result only if all of the following assumptions are valid: – The object is a polyhedron – Light source is far away from the surface so that N


•L is constant over each polygon – Viewing position is far away from the surface so that V

•R is constant over each polygon

Renders the polygon surface by linearly interpolating intensity values across the surface Gouraud Shading Algorithm: 1. Determine the normal at each polygon vertex 2. Apply an illumination model to each vertex to calculate the vertex intensity 3. Linearly interpolate the vertex intensities over the surface polygon.

BASIC COLOR MODELS AND COMPUTER ANIMATION:

The RGB Color Model

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B **UNIT V: VISIBLE SURFACE DETERMINATION BATCH:2016-2019**

Then

$$X_r = x_r \cdot C_r$$

This can be calculated from $X = \frac{x}{y}Y$, Y = Y, $Z = \frac{1-x-y}{y}$

The CMY Color Model

This stands for cyan-magenta-yellow and is used for hardcopy devices. In contrast to color on the monitor, the color in printing acts subtractive and not additive. A printed color that looks red absorbs the other two components G and B and reflects R. Thus its (internal) color is G+B=CYAN. Similarly R+B=MAGENTA and R+G=YELLOW. Thus the C-M-Y coordinates are just the complements of the R-G-B coordinates:

$$\begin{pmatrix} C \\ M \\ Y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

If we want to print a red looking color (i.e. with R-G-B coordinates (1.0.0)) we have to use C-M-Y values of (0,1,1). Note that M absorbs G, similarly Y absorbs B and M+Y

absorbs all but R. hence

(R,G,B) = (0,0,0)) corresponds to (C,M,Y) = (1,1,1) which should in principle Black (absorb **R**, **G** and **B**. But in practice this will appear as some dark gray. So in order to be able to produce better contrast printers often use black as 4th color. This is the CMYK-model. Its $K := \max(C, M, Y)$ C := C - Kcoordinates are obtained from that of the CMY-model by Y := Y - KM := M - Kand

The YIQ Color Model

This is used for color TV. Here Y is the luminance (the only component necessary for B&W-TV). The conversion from RGB to YIQ is given by

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT V: VISIBLE SURFACE DETERMINATION BATCH:2016-2019

$$\begin{pmatrix} Y\\I\\Q \end{pmatrix} = \begin{pmatrix} 0.30 & 0.59 & 0.11\\ 0.60 & -0.28 & -0.32\\ 0.21 & -0.52 & 0.31 \end{pmatrix} \cdot \begin{pmatrix} R\\G\\B \end{pmatrix}$$

for standard NTSC RGB phosphor with chromaticity values

	R	G	В	
x	0.67	0.21	0.14	
y	0.33	0.71	0.08	

The advantage of this model is that more bandwidth can be assigned to the Y-component (luminance) to which the human eye is more sensible than to color information. So for NTSC TV

there are 4MHz assigned to Y, 1.5MHz to I and 0.6MHz to

The HSV color model

All color models treated so far are hardware oriented. The Hue-Saturation-Value model is oriented towards the user/artist. The allowed coordinates fill a six sided pyramid the 3 top faces of the color cube as base. Note that at the same height colors of different perceived brightness are positioned. Value is given by the height, saturation is coded in the distance from the axes and hue by the position on the boundary.

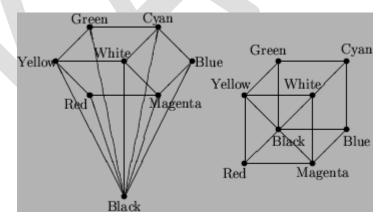


Figure: The HSV-model versus the RGB-model

Note that conversion from RGB to HSV is given by affine coordinate changes on each of the 3 four-sided sub-pyramids corresponding each to 1/3 of the color cube.

```
Prepared by Manjula.D, Asst.Prof, Dept of CS,CA & IT, KAHE
```

CLASS: III B.Sc CS A & B

COURSE CODE: 16CSU602B UNIT V: VISIBLE SURFACE DETERMINATION BATCH:2016-2019

The HLS Color Model

Here the RGB-cube is deformed in such a way that a six sided double pyramid results with the same base as in the HSV-model, but with two tips at black and at white.

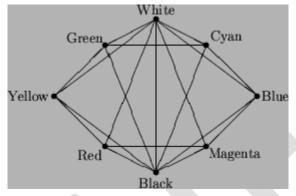


Figure: The HLS-model

POSSIBLE QUESTIONS

2 MARKS

- 1. What is Visible Surface determination?
- 2. Define hidden surface elimination.
- 3. What is rendering?

8 MARKS

- 1. Explain about visible surface determination in detail.
- 2. Describe surface rendering in detail with neat sketch.
- 3. Explain about illumination and shading model.

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

II B.Sc CS (Batch 2016-2019)

COMPUTER GRAPHICS

PART - A OBJECTIVE TYPE/MULTIPLE CHOICE QUESTIONS

ONLINE EXAMINATIONS

Sno	Questions	Opt1	Opt2	Opt3	Opt4	Opt5	Opt6	Answer
1	is	Transform	Viewing	Clipping	Projection			Projection
	defined as a							
	mapping of a							
	point P to its							
	image P' in							
	the view							
	plane.	ation						
2		projector	normal	vetor	axes			projector
	is determined							
	by a line that							
	passes							
	through point							
	P and							
	intersects the							
	view plane,							
	this line is							
	called							
3	Which of	parallel	perspectiv	Both	no			Both
	these are							
	basic types		е					
	of							
	projections	projection			projection			
4		Parallel	Perspectiv	Isometric	Axonomet			Perspective
	projection is called							
	converging							
	projectors.		e		ric			
5		Parallel	Perspectiv	Isometric	Axonomet			Perspective
	drawings are							
	characterised							
	by vanishing							
	points.		е		ric			

6	The	view point	projection	vanishing	reference	vanishing point
	perspective			U		01
	projection					
	gives the					
	illusion that					
	certain set of					
	parallel lines					
	appear to					
	meet at a					
	point called					
	point called		noint	noint	noint	
7		Parallel	point Perspectiv	point both	point projection	 Parallel
	projection					
	preserves the shape					
	and size of					
	the projected					
	object.		e		point	
8		Cohen	Bresenha		DDA	Bresenham
	algorithm	Sutherlan		Sutherlan		
	does not suit	Sutherian	m	d		
	for 3	d		Hodgman		
	dimensional			_		
9	clipping.		algorithm	algorithm	view	algorithm view volume
9	defines the	view point	VIEW	viewport	view	view volume
	spatial					
	extent that is					
	visible					
	through the					
	rectangular					
	window of					
	the view					
	plane.		volume		region	
10	The view plane is also	projection	view	mapping	reference	projection plan
	called					
11	The Court of	plan view neint	direction	funtion	vector	 uiou point
11	The Center	view point	view	viewport	reference	view point
	of projection					
	is called the					
			volume		vector	

12	Three	view	reference	view	view	view plane
	dimensional					
	viewing of					
	objects					
	requires the					
	specification					
	of	plane	vector	volume	ragion	
13	The unit	0	vector 1	2	region 3	1
	normal					
	vector N =					
	n1l + n2J +					
	n3 K , N =					
14	N = n1I + n2J	Reference	Translatio	Unit	Up vector	Unit Normal vector
	+ n3 K in 3D					
	viewing is			Normal		
	called the					
		vector	n Vector	vector		
15	Reference	Co-	Translatio	Unit	Up vector	Up vector
	Vector U is	ordinate		Normal		
	also known	Vector	n Voetor	vector		
16	as The triad	Vector Cartesian	n Vector Vector	vector Viewing	x & y	Viewing coordinate
10	formed by		Vector	vie wing	∧ ⊂ y	
	vectors lp,	CO-	Coordinat	coordinat		
		ordinate	coordinat	coordinat		
	Jp and N is called	system	e system	o system	cordinate	system
17		Left	Right	e system Cartesian	3	Left handed
	 coordinate					
	system is					
	choosen					
	because the					
	p and q coordinate				dimension	
	axes are					
	superimpose					
	d on the					
	display					
1	device	handed	handed		al	

18	In Left	towards	away from	the right	left side of		away from the
	handed		-	-			-
	coordinate						
	system the						
	normal			side of the			
	vector N						
	point						
	,fa						
	cing the	the viewer	the viewer	viewer	the viewer		viewor
19	display. In Left	lp	Jp	N	the viewer Up		viewer N
15	handed	ιþ	γþ		Οp		
	coordinate						
	system						
	increasing						
	distance						
	away from						
	the observer						
	is measured						
	along						
	0.010						
20	If the xy plan	x	У	z	orgin		z coordinate
	is the view						
	plane then						
	measures	coordinat	coordinat	coordinat			
	the depth or						
	distance of						
	the point						
	from the						
	view plan.	е	е	е			
21	If the view	Np	-К	-N	z		-К
	plan is the xy						
	plane then Ip						
	= I, Jp = J and						
	N =						
L							

22	The right	Z	-Z	k	-k		-Z
22		2	-2	ĸ	-K		-2
	handed						
	world						
	coordinates						
	(x,y,z) can be						
	changed to						
	left handed						
	view plane						
	coordinates						
	(x',y',z') by						
	performing						
	the						
	transformati						
	on where						
	x'=x,y'=y and						
	z' =						
	2 -						
23	 The	view point	view	viewport	view		view volume
	bounds a						
	region in						
	world						
	coordinate						
	space that is						
	clipped and						
	projected to						
	the view						

24	plan. The region	transform	volume	clipped	region clipped		clipped and
24	bounded by	transioni	mappeu	ciippeu	ciippeu		ciippeu aliu
	the view						
	volume				and		
	is to the						
	viewplane.	ed			projected		projected
25	For a	parallel	prespectiv	Axanomet			prespective view
	<u> </u>						
	, the view						
	volume						
	correspondin						
	g to the given window is a						
	semi-infinite						
	pyramid.	view	e view	ric view	hic view		
		-					

26	For parallel	a semi	finite	infinite	finite	infinite
	projected					
		infinite	parallelog	parallelopi		
	view volume					
	is	pyramid	ram	ped	polygon	parallelopiped
27	The view	finite	infinite	invisible	fixed	infinite
	volumes are					
	in extent					
28	For	a semi	infinite	disjointed	indistingui	indistinguishable
	perspective					
	views, very					
	distant	infinite	parallelopi		shable	
	objects					
	appear as					
		pyramid	ped		spots	spots
29	For	disjointed	indistingui	infinite	finite	disjointed structure
	perspective					
	views,					
	objects very					
	close to the		shable	parallelopi		
	center of					
	projection					
	appear as	structure	spots	ped	polygon	
30	A finite	perpendic		similar	normal	parallel
	volume is					ľ
	delimited by					
	front and back clipping					
	planes					
	to					
	the view					
31	plane In	ular canonical	normalize	tranforma	direct	direct
51		cariornear	normanze	tranionna	uncer	
	clipping					
	strategy,					
	clipping is					
	done against					
	the original					
	view volume		d	I		

32	In	canonical	normalize	tranforma	direct	canonical
	clipping					
	strategy, a					
	normalizing					
	transformati					
	on is applied					
	to the					
	original view					
	volume					
	before					
	clipping is					
22	done.		d			
33	When	canonical	normalize	tranforma	airect	canonical
	normalizing					
	transformati					
	on is applied					
	to the					
	original view					
	volume it is					
	called					
	view volume		d			
34	The	infinte	infinte	unit cube	truncated	unit cube
	canonical					
	view volume					
	for a parallel		parallelopi			
	projection is					
	the					
		pyramid	ped		pyramid	
35	The	infinte	infinte	unit cube	truncated	truncated pyramid
	canonical					
	view volume					
	for a		parallelopi			
	perspectivel		paraneiopi			
	projection is					
	the					
		pyramid	ped		pyramid	

36	After clipping	clipping	projector	World	screen	screen projection
50	in viewing	ciipping	projector	wond	3010011	screen projection
	coordinates,					
	the resulting					
	structure is			Coordinat	projection	
	projected					
	onto the					
		window		e system	plane	plane
37	In 3D	viewing	projecting	transformi	colour	viewing
	graphics					
	pipeline,					
	viewing					
	transformati					
	on and					
	projection					
	are carried					
	out					
	according to					
	the					
	parameters					
	set by the					
	application.			ng		
38	In 3D	3D	2D	scaling	Rotation	2D viewing
	graphics					
	pipeline, the result of	viewing	viewing			
	projection is			transform	transform	
	mapped to	transform	transform			
	workstation					
	viewport via	ation	ation	ation	ation	transformation
39	Which of	point	line	curves	polygon	curves
	these is a					
	complex					
	geometric form.					
40		points and	lines and	points and	polylines	points and lines
	and					
					and	
	are the basic					
	building				curves	
	blocks of				surface	
	computer					
	graphics.	lines	curves	curves	patches	
41	is	points	curves	quadric	polylines	polylines
	a chain of					
	connected					
	line					

42		points	curves	quadric	polygon	polygon
	is a closed					
	polyline			surfaces		
43	Α	convex	concave	planar	curves	planar polygon
	is a polygon					
	in which all					
	vertices lie					
	on the same					
	plane	polygon	polygon	polygon		
44	The	planar	wireframe	polyline	quadric	wireframe model
	is					
	also called					
	polygonal					
	net or					
	polygonal					
	mesh.	polygon	model		surface	
45	Α	curved	polyline	polyhedro	quadric	polyhedron
	is a closed					
	polygonal					
	net in which					
	each polygon					
	is planar.	surface		n	surface	
46		Explicit	polyline	quadric	polyhedro	Explicit vertex and
	is a method					
	of	vertex and				
	representing	edge				
	a polygonal	cubc				
	net model.	listing		surface	n	edge listing
47	The polygons	edges	vertices	faces	sides	faces
	are called					
	the					
	of the					
	polyhedron					
48	Which of	constructi	representi	applying	applying	representing
	these is	ng		geometic	coordinat	
	complex in	wireframe	ng curved	transform	e	
	wire frame		surfaces		transform	curved surfaces
	models	models	surfaces	ation	ation	curved surfaces

49	A model	Wirefram	Solid	Block	object	Solid object
	constructed	wirenam	50110	DIOCK	object	Sond Object
	using solid					
	objects as					
	building	е	object			
	blocks is					
	called					
	canca	modeling	modeling	modeling	modeling	modeling
50	is	Additive	_	Destructiv		Additive modeling
	a process of					C C
	building					
	model by		e	e	ve	
	assembling					
	simpler	modeling	Modeling	modeling	modeling	
51	objects. is	modeling Additive	-	modeling Destructiv	modeling Constructi	Subtractive
51		Additive	Subtractiv	Destructiv	constructi	Subtractive
	a process of					
	removing					
	pieces from		е	e	ve	
	a given		C	C	vc	
	object to					
	create a new					
	object.	modeling	Modeling	modeling	modeling	Modeling
52	A curve is	polylines	curved	a set of	two	a set of control
	specified by		surface	control		
					o n din o insta	n ainta
53	The Control	length	pathes shape	points slope	endpoints width	points shape
55	points control	length	Shape	31000	width	Shape
	the					
	of the curve.					
54	Curves are	single	bi-valued	multi-	axis level	multi-valued
	generally					
	with respect					
	to any					
	coordinate					
	system.	valued		valued		

55	If the	Coordinat	Variation	Versatility	Local		Local
	movement			,			
	of the						
	control point						
	affects the	е					
	shape of the						
	curve only in		diminishin		controllab		
	a small		c				
	neighbourho						
	od of the	independe					
	control point						
	it is called						
		nce	g effect		ility.		controllability.
56	The	image	view	light	color		light
	perception						
	of color						
	arises from						
	entering our						
	visual						
	system.		volume				
57	Light is a	electrical	mechanic	kinetic	electroma		electromagnetic
	energy.		al		gnetic		
58	The	100 to	400 to	30 to 90	600 to		400 to 700
	wavelength						
	of the visual						
	light ranges						
	form						
	nan						
	ometer.	500	700		1400		
59	Which of	brightness		saturation	luminance		brightness
	these is the	,hue,satur					
	characteristi						
60	cs of light	ation		anti inti			,hue,saturation
60	 coresponds	brightness	nue	saturation	purity		brightness
	to the						
	physical						
	property						
	called						
	luminance.						

61		brightness	hue	saturation	purity	hue
	property				p	
	distinguishes					
	a white light					
	from a red or					
	green light.					
62	green igne.	brightness	hue	saturation	luminance	saturation
	coresponds	U				
	to the					
	physical					
	property					
	called excitation					
	purity.					
63		brightness	hue	saturation	luminance	saturation
	describes the					
	degree of					
	vividness.					
64	Hue	excitation	dominant	brightness	luminance	dominant
	corresponds					
	to another					
	physical		wavelengt			
	property					
	called the					
65		purity	h		P	wavelength
65	The receptor	roas	cones	cubes	lines	cones
	cells in the					
	retina of the					
	eye, that are					
	sensitive to					
	color is					
66	The receptor	rods	cones	cubes	lines	rods
	cells in the					
	retina of the					
	eye, that are					
	sensitive to					
	color is					
		l		l		

67	The international	RGB	СМҮ	XYZ	YIQ	XYZ
	Commission					
	on					
	Illumination					
	defined the					
	colour model.					
68	XYZ colors	Wavelet	Gamut	3	Affine	Affine
	were the					
	result of an					
				dimention		
	transformati					
	on applied to					
	three real					
	primaries			al		
69		dominant	luminous	excitation	Wavelet	luminous efficiency
	of human					
	eye					
	coresponds					
	to the eye's	wavelengt				
	response to light of					
	constant					
	luminance.	h	efficiency	purity		
70	The curved	Whole	only the	all	all	all perceivable
	triangular				perceivabl	
	figure of CIE			perceivabl	e colors	
	Chromaticity	Light		e colors	by	colors by ignoring
	Diagram			and their	ignoring	
	encompases			and their	the	
		spectrum	-	luminance	luminance	the luminance
71		National	National	National	National	National Television
		Telecomm	Telecastin	Television	Tel-	
	refers	unication	g system	System	system	
		System		-	-	
		committe	committe	committe	Committe	
	to NTSC	е	е	е	е	System committee

72		Global	Local	Specular	diffuse		Local Illumination
	Model ,						
	main focus is						
	on the direct						
	impact of	Illuminati	Illuminati	Illuminati	Illuminati		
	the light						
	coming from						
	the light						
	source	on	on	on	on		
73		Global	Specular	Local	diffuse		Global Illumination
	Model,						
	attempts to						
	include						
	secondary						
	effects as						
	light going						
	through						
	transparent /	Illuminati	Illuminati	Illuminati	Illuminati		
	translucent						
	material and						
	light						
	bouncing						
	from one						
	object						
	surface to						
	another	on	on	on	on		
74	In	Global	Local	Specular	diffuse		diffuse reflection
	reflection,						
	light energy						
	from the						
	light source						
	gets reflectd						
	/ bounced						
	off equally in						
	all the						
	direction	reflection	reflection	reflection	reflection		

75		diffuse	Local	Specular	Global	Specular reflection
	reflection,					
	attempts to					
	capture the					
	, characteristi					
	cs of a shiny					
	or mirror-like					
	surface		reflection	reflection	reflection	
76	In	Phong	constant	Gouraud	sutherlan	Phong
						-
	_ shading,					
	Instead of					
	color values,					
	normal					
	vector is					
	found					
	Interpolative					
	ly				d	
77	Regular or	watermar	glomming	surface	scaleable	surface texture
	Irregular					
	surface					
	feature details are					
	colectively					
	referred to					
	as					
		k texture	texture	texture	texture	
78	When an	black	white	red	magenta	magenta
	AND					
	operation is					
	used, a					
	texture area					
	with					
	shades will					
	appear					
	unaltered if					
	the original					
	color is					
	white					

79	When an	black	white	red	maganta		red
79		DIACK	white	reu	magenta		reu
	AND						
	operation is						
	used, a						
	texture area						
	with						
	shades will						
	appear						
	unaltered if						
	the original						
	color is						
80	yellow	projected	colid	manning	interpolati		projected
80		projecteu	soliu	mapping	merpolati		projected
	texture is an						
	effective tool						
	when target						
	surface are						
	relatively flat						
	and facing						
	the						
	reference						
	plane				ve		
81	In	projected	solid	texture	interpolati		texture mapping
	texture, we						
	can wrap						
	around the						
	surface of an						
	object,						
	stretch or						
	shrink it so						
	as to follow						
	the shape of						
	the object			mapping	ve		
82		projected	solid	texture	interpolati		solid
	is a 3D representatio						
	n of the						
	internal						
	structure of						
	some nonhomogen						
	eous						
	material.			mapping	ve	1	

83	A Global	Light	Ray	basic	wave	Ray Tracing
	illumination					
	model that					
	accounts for					
	the transport					
	of light					
	energy					
	beyond the					
	direct					
	contribution					
	from the					
	light sources	-	Tracing	-	tracing	
84	Which	local	reflected	transmitte	refracted	refracted
	among the					
	following is NOT, the					
	three					
	components					
	of the					
	surface					
	shading used					
	in several					
	secondary					
	ray			d		
85	A Vector is	direction	direction	only	direction	direction and
	defined by	and	and end		and	
	its	starting point	point	direction	magnitud e	magnitude
86	A Ray is	direction	direction	only	e direction	direction and
		and			and	
	determined	starting	and end		magnitud	
	by its	point	point	direction	е	starting point