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Scope: On successful completion of this course the learner gains good knowledge about the
concept of algebraic structures, lattices and its special categories, graph theory which play an
important role in the field of computers.

Objectives: To be familiar with Algebraic Structures, Lattices, connected and disconnected
graphs and be thorough with trees, spanning trees.

UNIT I

Algebraic Structures: Introduction- Algebraic Systems: Examples and General Properties:
Definition and examples - Some Simple Algebraic Systems and General properties -
Homomorphism and isomorphism - congruence relation - Semigroups and Monoids: Definitions
and Examples - Homomorphism of Semigroups and Monoids.

UNIT Il

Lattices: Lattices as Partially Ordered Sets: Definition and Examples - Principle of duality -
Some Properties of Lattices - Lattices as Algebraic Systems — Sublattices - Direct product, and
Homomorphism.

UNIT 111

Some special Lattices - e.g. Complete, Complemented and Distributive Lattices - Boolean
Algebra: Definition and Examples - Subalgebra - Direct product and Homomorphism - join
irreducible - atoms and antiatoms.

UNIT IV

Graph Theory: Definition of a graph - applications, Incidence and degree - Isolated and pendant
vertices - Null graph, Path and Circuits: Isomorphism - Subgraphs, Walks -Paths and circuits -
Connected graphs, disconnected graphs — components - Euler graph.

UNIT V

Trees: Trees and its properties - minimally connected graph - Pendant vertices in a tree - distance
and centers in a tree - rooted and binary tree. Levels in binary tree - height of a tree - Spanning
trees - rank and nullity.



SUGGESTED READINGS
TEXT BOOKS

1. Tremblay J. P. and Manohar, R., (1997). Discrete Mathematical Structures with
Applications to Computer Science, McGraw-Hill Book Co.(for unit 1,11,111).

2. Deo N., (2000). Graph Theory with Applications to Engineering and Computer
Sciences, Prentice Hall of India. (for unit 1V,V)

REFERENCES

1. Liu C.L., (2000). Elements of Discrete Mathematics, McGraw-Hill Publishing Company Ltd,
New Delhi.

2. Wiitala S., (2003),Discrete Mathematics- A Unified Approach, McGraw-Hill Book Co, New
Delhi.

3. Seymour Lepschutz, (2007) ,Discrete Mathematics, Schaum Series, McGraw-Hill
Publishing Company Ltd, New Delhi.

4..Advance Discrete Mathematics Paperback — 2011 by G.C.Sharma (Author), Madhu
Jain (Author) Publisher: Laxmi Publications; Second edition (2011)
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KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Post)
Coimbatore -641 021

SUBJECT: ADVANCED DISCRETE MATHEMATICS SEMESTER: | LTP C
SUBJECT CODE: 17MMP105A 4004
Lecture
S.No | Duratio Topics to be covered Support Materials
n (Hr)
UNIT-I
1 1 Algebraic structures :Introduction and | T1: Chap: 3: Pg. No :270-271
basic concepts ;Definition,
General properties and Examples.
2 1 Continuation of Algebraic structures
General properties and Examples T1:Chap :3:pg.N0:272-274
3 1 Some Simple Algebraic Systems and | T1: Chap: 3: Pg. N0:274-276
General properties:
Homomaorphism and isomorphism
4 1 Continuation of Homomorphism and | T1:Chap:3:pg.No:277-279
isomorphism
5 1 Congruence Relation T1: Chap: 3: Pg. No: 279-282
6 1 Continuation of Congruence Relation | T1: Chap: 3: Pg. No: 279-282
7 1 Semigroups and Monoids : T1: Chap: 3: Pg. No : 282-286
Definitions and Problems.
8 1 Continuation of Problems on T1: Chap: 3: Pg. No: 284-286
Semigroups and Monoids
9 1 Homomorphism of Semigroups and | T1: Chap: 3: Pg. N0:287-292
Monoids — Problems.
10 1 Continuation of Problems on T1: Chap: 3: Pg. N0:290-292
Homomorphism of Semigroups and
Monoids
11 1 Recapitulation and discussion of
possible questions on unit |
Total 11 HOURS
T1.J.P.Tremblay & R. Manohar,
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1997.Discrete Mathematical
Structures with Applications to
Computer Science, McGraw-Hill

Book Co.(for unit I11,111)
UNIT-II
1 Introduction of Lattices T1: Chap: 4: Pg. No: 378-
Lattices as Partial Ordered Sets: 3782
Definition and Examples
2 Continuation of lattice of partial order | T1:Chap :4:pg.N0:383-386
sets
3 Principle of duality R3: Chap: 15: Pg. No: 478-
479
4 Continuation of Principle of duality | R3: Chap: 15: Pg. No: 480-
484
5 Properties of Lattices T1: Chap: 4: Pg. No: 382-385
6 Continuation of Properties of Lattices | R2: Chap: 6: Pg. N0:413-415
7 Lattices as Algebraic Systems T1: Chap: 4: Pg. No: 385-386
8 Continuation of Lattices as Algebraic | R2: Chap: 6: Pg. N0:416-419
Systems
9 Sublattices , Direct product, and T1: Chap: 4: Pg. No: 387-389
Homomorphism- Problems
10 Continuation of problems on T1: Chap: 4: Pg. No: 390-391
Sublattices , Direct product, and
Homomorphism
11 Recapitulation and discussion of
possible questions on unit-I|
Total 11 HOURS

T1.J.P.Tremblay & R. Manohar,
1997.Discrete Mathematical
Structures with Applications to
Computer Science, McGraw-Hill
Book Co.(for unit I,I1,111)

R2. S. Wiitala, Discrete Mathematics-
A Unified Approach, McGraw-Hill
Book Co, New Delhi.

R3. Seymour Lepschutz, Discrete

Prepared by : M.Sangeetha ,Department of Mathematics /KAHE

Page 2




KAHE/ LESSON PLAN/2017 BATCH

Mathematics, Schaum Series,
McGraw-Hill Publishing
Company Ltd, New Delhi.

UNIT-I11

Introduction of Some special Lattices

T1: Chap: 4: Pg. No: 392-394

Complete, Complemented and
Distributive Lattices - Problems

T1: Chap: 4: Pg. N0:395-399

Continuation of Complete,
Complemented and Distributive
Lattices - Problems

R3: Chap: 14: Pg. No: 454-
458

Boolean Algebra: Definition and
Problems

T1: Chap: 4: Pg. No: 398-400

Sub algebra , Direct product and
Homomorphism

T1: Chap: 4: Pg. No: 401-406

Continuation of Sub algebra , Direct
product and Homomorphism

T1: Chap: 4: Pg. No: 401-406

Join irreducible , atoms and
antiatoms - Problems

T1: Chap: 4: Pg. No: 407-410

Continuation of Join irreducible ,
atoms and
antiatoms - Problems

R3: Chap: 14: Pg. No: 411-
415

Recapitulation and discussion of
possible questions on unit 111

Total

9 HOURS

T1.J .P.Tremblay & R. Manohar,
1997.Discrete Mathematical
Structures with Applications to
Computer Science, McGraw-Hill
Book Co.(for unit II1,111)

R3. Seymour Lepschutz, Discrete
Mathematics, Schaum Series,
McGraw-Hill Publishing
Company Ltd, New Delhi.

UNIT-IV

Introduction and basic definition of a
graph and
applications of graph theory

T2: Chap: 1: Pg. No: 1-3
T2:Chap:1:pg.No:3-6

2

1

Incidence and degree

T2: Chap: 1: Pg. No: 7-10
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3 1 Continuation of Incidence and degree | R1: Chap: 4: Pg. No: 190-193
4 1 Isolated and pendant vertices , Null T2: Chap: 1: Pg. No: 11-13
graph,
5 1 Path and Circuits: Isomorphism- sub | T2: Chap: 2: Pg. No: 14-16
graphs
6 1 Continuation of Path and Circuits: R1: Chap: 4: Pg. No: 196-198
Isomorphism- sub graphs
7 1 Walks, Paths and circuits - Problems | T2: Chap: 2: Pg. No: 17-21
8 1 Connected graphs , disconnected T2: Chap: 2: Pg. No: 21-23
graphs, components - Problems
9 1 Continuation of Connected graphs , T2: Chap: 2: Pg. No: 24-26
disconnected graphs, components -
Problems
10 1 Euler graph — Introduction and T2: Chap: 2: Pg. No: 28-32
examples
11 Continuation of Euler graph — T2: Chap: 2: Pg. No: 33-37
Introduction and examples
12 1 Recapitulation and discussion of
possible questions on unit IV
Total 12 HOURS
T2. N. Deo, 2000. Graph Theory with
Applications to Engineering and
Computer Sciences, Prentice Hall of
India. (for unit 1V,V)
R1. C. L. Liu, 2000. Elements of
Discrete Mathematics, McGraw-
Hill Publishing Company Ltd, New
Delhi.
UNIT-V
1 1 Introduction of Trees and its T2: Chap: 3: Pg. No: 39-41
properties R1: Chap: 5: Pg. No: 255-257
2 1 Minimally connected graph T2: Chap: 3: Pg. N0:41-43
3 1 Continuation of minimally connected | T2: Chap: 3: Pg. N0:48-48
graph theorems
4 1 Pendant vertices in a tree — T2: Chap: 3: Pg. No: 43-44
introduction and examples
5 1 Pendant vertices in a tree — theorems | R2: chap : 7:pg: 156-158
6 1 Distance and centers in a tree T2: Chap: 3: Pg. No: 45-47
7 1 Continuation of Distance and centers | R2: chap : 7:pg: 162-165
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in a tree
8 Rooted and binary tree and T2: Chap: 3: Pg. No: 48-
Levels in binary tree, height of a tree- | 49,T2:Chap:3:pg.N0:50-54
Problem.
9 continuation of Rooted and binary R1: Chap: 5: Pg. No: 262-264
tree and
Levels in binary tree, height of a tree-
Problem.
10 Spanning trees- Problems T2: Chap: 3: Pg. No: 55-56
11 Continuation of Spanning trees- R1: Chap: 5: Pg. No: 272-276
Problems
12 Rank and nullity-Introduction T2: Chap: 3: Pg. No: 57-58
13 Rank and nullity-Problems T2: Chap: 3: Pg. No: 59-60
14 Recapitulation and discussion of
possible questions on unit V
15 Discussion of Previous year ESE
question paper
16 Discussion of Previous year ESE
question paper
17 Discussion of Previous year ESE
question paper
Total 17 HOURS

T2. N. Deo, 2000. Graph Theory with
Applications to Engineering and
Computer Sciences, Prentice Hall of
India. (for unit 1V,V)

R1. C. L. Liu, 2000. Elements of
Discrete Mathematics, McGraw-
Hill Publishing Company Ltd, New
Delhi.
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TEXT BOOKS

T1.J .P.Tremblay & R. Manohar, 1997.Discrete Mathematical Structures with
Applications to Computer Science, McGraw-Hill Book Co.(for unit I,11,111)

T2. N. Deo, 2000. Graph Theory with Applications to Engineering and Computer
Sciences, Prentice Hall of India. (for unit 1V,V)
REFERENCES

R1. C. L. Liu, 2000. Elements of Discrete Mathematics, McGraw-Hill Publishing
Company Ltd, New Delhi.

R2. S.Wiitala, Discrete Mathematics- A Unified Approach, McGraw-Hill Book
Co,New Delhi.

R3. Seymour Lepschutz, Discrete Mathematics, Schaum Series, McGraw-Hill
Publishing Company Ltd, New Delhi.

R4. Advance Discrete Mathematics Paperback — 2011 by G.C.Sharma (Author), Madhu
Jain (Author) Publisher: Laxmi Publications; Second edition (2011)
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UNIT |

Algebraic Structures: Introduction- Algebraic Systems: Examples and General
Properties: Definition and examples - Some Simple Algebraic Systems and General
properties - Homomorphism and isomorphism - congruence relation - Semigroups
and Monoids: Definitions and Examples - Homomorphism of Semigroups and
Monoids.

TEXT BOOKS

1. Tremblay J. P. and Manohar, R., (1997). Discrete Mathematical
Structures with Applications to Computer Science, McGraw-Hill Book
Co.(for unit LI11L11I).

REFERENCES

2.Advance Discrete Mathematics Paperback — 2011 by G.C.Sharma (Author), Madhu
Jain (Author) Publisher: Laxmi Publications; Second edition (2011)
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ALGEBRAIC SYSTEMS

INTRODUCTION:

The algebraic systems contained two binary operations which were
denoted by + and X in each case. The choice of these examples was dictated by our
familiarity with the systems of integers and real numbers. These algebraic system
are not simplest ones. In this section we give examples of algebraic systems
consisting of a single unary or binary operation. It is possible to obtain such
algebraic systems form those given earlier by simply considering one of the two
binary operations; for example, (I,+) and (R,X) are perfectly.

Semigroups are the simplest algebraic structures which satisfy the
properties of closure and associativity.They are very important in the theory of
sequential machines, formal languages, and in certain applications relating to
computer arithmetic such as multiplication.

A Monoid in addition to being a semigroup,also satisfies the identity
property. Monoids are used in a number of applications but most particularly in the
area of syntactic analysis and formal language.

For such algebraic systems , certain properties are taken as axioms of
the system. Any result that is valid for an abstract systems holds for all those
algebraic systems for which the axioms are true.

Definition:

A non-empty set together with a number of binary operations on it is called
an algebraic system.

In what follows,
we shall define some algebraic systems :

Definition: A non-empty set S is said to be a semigroup if in S there is
defined a binary operation » satisfying the following property :

Ifa,b,ceS,thena«(bxc)=(a~b)«c (Associative Law)
Thus

A non-empty set S together with an associative binary operation = defined on S is
called a Semi-group.

We denote the semi group by (S, «).

Definition. A semi group (S, ) is called commutative if the binary operation = isa
commutative  operation, i.e.,if ab=b=~afora b eS.

Prepared by: M.Sangeetha, Department of Mathematics, KAHE 20f 29



ALGEBRAIC STRUCTURES / 2017 BATCH

Examples. 1. Let Z be the set of all integers. Then (Z, +) is a
commutative semigroup. In fact, ifa, b, ¢ € Z, then

a.a = b =a+b is an integer. Therefore, the operation + on Z is a binary
operation.

b.a + (b+c) = (a+b) + ¢, because associative law holds in the set of
integers.

c.a+b=Db+a, because addition in Z is commutative.

2.The set Z of integers with the binary operation of subtraction is not a
semi- group since subtraction is not associative in Z.

3.Let S be a finite set and let F(S) be the collection of all functions f: S
— S under the operation of composition of functions. We know that

composition of functions is associative, i.e fo(goh) = (fog)oh wheref, g, h
e F(S).

Hence F(s) is a semigroup.

4.The set P(S), where S is a set, together with the operation of union is
a commutative semigroup.

5.The integers modulo m, denoted by Z., refer to the set 2. = {0, 1, 2,..., m-1}.

6. The addition in Zn is defined as a + b =r, where r is the remainder when a+b is
divided by m.

7.The multiplication in Znis defined by a.b =r, where r is the remainder when a+
b is divided by m.

Prepared by: M.Sangeetha, Department of Mathematics, KAHE 30f 29
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For example, consider Z,={0, 1, 2,3}

The addition table is

We note

(1+42)+43 = 3+3=2 and 1+(2+3)=1+1=2
Hence (142)+3 =1+(2+3)
In general, (a+b)+c=a+(b+c) ,a,b,cEZ4

Hence Z, is a semigroup.

Definition. A non-empty set S is said to be a monoid if in S there is
defined a binary operation » satisfying the following properties :

1.1fa,b,c €8S, then a+(b+c)=(a=b)+c (Associative Law)

2.There exists an element e € Ssuch that e-a=a+e=a foralla eS (Existence of

identity element)
Thus
An algebraic system (S, «) is said to be a monoid if

« 1S a binary operation on non-empty setS

«is an associative binary operation onS

There exists an identity element e in S.

Prepared by: M.Sangeetha, Department of Mathematics, KAHE
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It, therefore, follows that A monoid is a semi-group (S, +) that has an identity
element.

Example.l. In example 3 above, identity function is an identity element
for F(S).

Hence F(S) is a monoid.

Let M be the set of all n x n matrices and let the binary operation = of M
be taken as addition of matrices. Then (M, =) is a monoid. In fact,

(i)The sum of two n x n matrices is again a matrix of order n x n. Thus
the operation of matrix addition is a binary operation.

(ii)if A, B, C € M, then A+ (B+C) = (A+B) + C (Associative Law)
(iii)The zero matrix acts as additive identity of this monoid because

A+0=0+ A=AforAe M.

Definition. Let A be a non-empty set. Aword w on A is a finite sequence of its
elements.

For example ,
w = ab ab bb = ab ab?

isaword on A ={a, b}.
Definition. The number of elements in a word w is called its length and
is denoted by /(w).

For example, length of w in the above example is
I(w) =6

Definition. Let u and v be two words on a set A. Then the word obtained by
writing down the elements of u followed by the elements of v is called the
concatenation of the words u and v on A.

For example, if A= {a, b, c} and

u=ababbbandv=acbhab

then w = ab abbb ac bab = abab3acbab is the concatenation of u and v.

Prepared by: M.Sangeetha, Department of Mathematics, KAHE 50of 29
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HOMOMORPHISM AND ISOMORPHISM:

A homomorphism is a map between two algebraic structures of the same type (that
is of the same name), that preserves the operations of the structures. This means a map

f: A —» B between two sets A, B equipped with the same structure such that, if * is an operation
of the structure (supposed here, for simplification, to be a binary operation), then f(x * y)=f(x) *
f(y)

For example

A group hos o sSnoke binany operotiom:

a* b
S group RdoMmanmonohismm pressnsas Thee Ooaromhon:
e ™, f P T
| J -~ |
n a
""-\-\.._\__'__,_.-"""-. lk\_\_\_‘____d_,.-r
=

fla*bl="I[a)*f o

A wvector spoce has two apanations

seianshor additkam W W
sCakar il tlpdbe-ation KW

A liriear tronsformmation prasenvas the oparations:

Ir’-f- -H\'\.. L r"',df‘-_'__\-\\'-'
| )| S |
Hh___#f e /I
x b
Liwv -+ wj=L{w]<+ LMw]

Likw)=kL[v)

Isomorphism, in modern algebra, a one-to-one correspondence (mapping) between
two sets that preserves binary relationships between elements of the sets. For example,
the set of natural numbers can be mapped onto the set of even natural numbers by
multiplying each natural number by 2. The binary operation of adding two numbers is
preserved—that is, adding two natural numbers and then multiplying the sum by 2 gives
the same result as multiplying each natural number by 2 and then adding the products
together—so the sets are isomorphic for addition.

Theorem:

The algebraic system (N,+) and (Z4 ,+) where N is the set of natural numbers
and + is the operation of addition on N, show that there exists a homomorphism
from (N,+) to (Z4,+)

Proof:
Define g:N — Z, given by g(a) = [a(mod 4)] for any ae N
Fora, b € N, let g(a)=[i] and g(b)=[j] ;then

g(at+b) =[(i+))(mod 4)] = [i +4[ ] ] = g(a) +4 g(b)

observe that g(0) =[0] ; that is, the mapping g also preserves the identity
element.

Prepared by: M.Sangeetha, Department of Mathematics, KAHE 6 of 29
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CONGRUENCE RELATION:

If two numbers b and cchave the property that their difference b-c is integrally divisible
by a number m (i.e., (b-c)/m is an integer), then b and c are said to be "congruent
modulo m. The number m is called the modulus, and the statement b is congruent

to ¢ (modulo m,) is written mathematically as

b= c(mod m)

If b-c is not integrally divisible by m, then it is said that b is not congruent
to ¢ (modulo m), which is written

b= c(mod m)

The explicit "(mod m)" is sometimes omitted when the modulus m is understood by
context, so in such cases, care must be taken not to confuse the symbol = with
the equivalence sign.

— m [(a-b) + (b—c)]
— mj|(a—c)
— a=c (mod m), which means that a R c. Definition:

An equivalence relation R on a semigroup (S, =) is called a congruence relation ifaR a’ and b R
b imply (a«b) R (@’ «b’).

Examples:

1.Let (Z, +) be the semigroup of integers. Consider the relation R defined on Z by A
R b if and only if a=b (mod m).

We know that a = b (mod m) if m divides a—b. We note that

(i)For any integer a, we have a=a (mod m), i.e.,aRa

(ii)iffaRb,thena=b (mod m) —» m | (a—b) — m|(b—a) and so b =a(mod m) which meansbR a.

(iii)iffaR band b R ¢, then

a =b(mod m) and b =c(mod m)

— m|(a—b) and m|(b—c)

Prepared by: M.Sangeetha, Department of Mathematics, KAHE 7 of 29


http://mathworld.wolfram.com/Modulus.html
http://mathworld.wolfram.com/Modulus.html

ALGEBRAIC STRUCTURES / 2017 BATCH

Thus R is reflexive, symmetric and transitive and so is an equivalence
relation. Further, if

Then a=c(modm)andb =d(modm),
m| (a—c) and m | (b—d)
—m | [(a-c) + (b—d)]|

—m|[(a+b) — (c+d)]
—(a+b) = (c+d) (mod m)
—(a+b) R (c+d)

Hence R is a congruence relation.

SEMIGROUPS AND MONOID

Binary Operation and its Properties

Definition. Let A be a non-empty set. Then a mapping f: A x A — A is called a binary
operation. Thus, a binary operation is a rule that assigns to each ordered pair (a, b) € AxA an
element of A.

Examples. 1. Let Z be the set of integers. Then f: Z x Z — Z defined by f(a,b) =a « b=a+h,
a, b € Z is a binary operation on Z because the sum of two integers a and b is again an integer.

Thus, addition of integers is a binary operation.

2. Let N be the set of positive integers. Then f: N x N — N defined by fla,b)=a.b=a-bis
not a binary operation because difference of two positive integers need not be positive
integer. For example 2-5 is not a positive integer.

a
3. For the set N of positive integers, let f: N x N — N be defined by f(a,b) = -}:—) . Then fis
not a binary operation. For example, ifa=2,b=7,then — = 5 is not a positive integer.

4. Let Z be the set of all integers. Then f: Z x Z — Z defined by
f(a,b) = max (a, b)
is a binary operation. For example,

fi2,4)=2.4= max(24)=4 e Z.
5. Let A= {a, b, c}. Define . by

X«Yy=X, X, YEA.
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Then the table given below defines the operation .

% a b c
a a a a
b b b b
c c c c

Further, if we define . by

XY=y, X, YeEA,

then the table given below defines the operation .

. a b c
a a b C
b a b C
c a b C

Prepared by: M.Sangeetha, Department of Mathematics, KAHE 9 of 29
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6. IfA={0,1}. Then the binary operations » and \ are defined by the following tables :

A 0 1

0 0 0

1 0 0
and

\V; 0 1

0 0 |

1 1 1

Properties of Binary Operation

1. Commutative Law :- A binary operation - on a set A is said to be commutative if

31b=bta

for any elements a and b in A.

For example, consider the set Z of integers. Since
atb=b+a and a.b = b.a,
for a, b € Z, the addition and multiplication operations on Z are commutative.

But, on the other hand, subtraction in Z is not commutative since, for example,

2-3%3-2

Prepared by: M.Sangeetha, Department of Mathematics, KAHE 10 of 29
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Theorem. Let - be a binary operation on a set A. Then any product a, « a; « ...  a, requires no
parenthesis, that is, all possible products are equal.

Proof. We shall prove this result by induction on n. Since « is associative, the theorem holds
forn=1,2and 3. Suppose [a; a ... a,] denote any product and

(araz ... a,) =(... (a; ax)as...)a,

It is sufficient then to show that

[a125...2,] = (2132 ... ;)
Since [a, a, ... a,] denote arbitrary product, there is an m < n such that induction yields

[al dz ... an] = [31 dz ... aml [am*-l ven an]
= [31 2 ... am] I:amﬂ an)

=[a1 8, ... an] ((@me1 --- 8n1)ay)
=([a; a ... ) (Ams1 .- 8ny))ay
=[a;...a,]a,

=(ay ... p-1)ay

=(a| dy ... an):

which proves the result.

Definition. Let « be a binary operation on a set A. An element e in A is called an identity
element for - if for any element a € A,

d+x€=¢€=+a = a.

Further e is called right identity if a - e = a and left identity ife - a=a foranya € A.

Let e, the left identity and e, be the right identity for a binary operation . Then

ee;=e,  since e is left identity
and
e e;=e; since e, is right identity

Hence e, = e, and so identity element for a binary operation is unique.
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Definition. Let « be a binary operation on a set A and let A has identity element e. Then
inverse of an element a in A is an element b such that

a:b=bsa=e.

We shall see later on that if « is associative, then the inverse of an element, if it exits, is unique.

Definition. A binary operation -on a set A is said to satisfy the left cancellation law if

a:b=a.c=b=c

A binary operation = on a set A is said to obey right cancellation law if
b:sa=c.a=b=c

Let Z be the set of integers. Since

a+tb=at+tc=b=c
and
b+a=c+a=b=c fora,b,c e Z,

it follows that addition of integers in Z obeys both cancellation laws.

On the other hand, matrix multiplication does not obey cancellation
laws. To see it, let

1 1 I | 0 -3
A= , B= , C=
0 0 0 1 1 5
Then
1 2
AB=AC=
0
butB#C.

Proposition 2. Let (M., -, e) be a monoid. If an element x in M is invertible, then there
is a unique inverse element, ie., vz’ =r'r=eNxzx” =2"r=e= 1 = 2".
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Proof. Let x be invertible and ' and =7 be its two inverses, i.e., 72’ = =’z = e and
g2 =22 = . Then we hive ¥’ = #le = 2/(28”) = (F'g)e” = ex” =2"- O

In order to make all operations explicit in the flavor of universal algebra, the follow-
ing equivalent alternative definition is sometimes preferred.

Definition 2. A group is an algebra (G,-,(—)"1, e) with a carrier set G and three
operations: a binary operation -: G* — G, a unary operation (=)"': G — G, and
constant (nullary operation) e € G that satisfy the following identities'

[Associativity ] z(yz) = (zy)z
[Unit] eET=TE=1T

[Inverse element] o TRl X R

As the notation suggests, the image of an element x € G under the unary operation
(=)' is denoted by x~'. In this notation, common elsewhere a well, (—) denotes a

hole to be replaced by an argument. A group (G, -, (=)"', €) is commutative or abelian
if also Ty = yz.

Example 3. Examples of groups are (Z, +, —(—),0), (Q, +, —(=),0), (R, +, —(=), 0),
(@\{0},-,1/(=),1), (R\ {0}.-.1/(—=), 1). Convince yourselves that these are indeed
groups! Note that the monoid (N, +, 0) is not a group, since there are no inverse ele-
ments with respect to addition. The additive inverse of an element = of a group, ine.g.,
(Z,+,—(=),0), is denoted as usual by —z. The monoid (Z, -, 1) is not a group since
there are no inverse elements with respect to multiplication.

Let A be a set and let P(A) denote the set of all permutations on A, i.e.,

P(A)={f: A— A| f is bijective}.

Then (P(A),o,(=)"",id4) is a group, known as the group of permutations on A.
Convince yourself in this as well. Here, as usual, o denotes function composition, f~! is

the inverse function of a bijection f, and id4: A — A is the identity function mapping
every element to itself.

Let A be a set and let + denote the operation of symmetric difference of sets, i.e,
for two subsets B and C' of A, we have

B+C=(B\C)U(C\B)=(BNC)U(CnNB).

Then (P(A). +. idp( ), D) is a group.
In the sequel we will use both ways to denote a group as convenient. The following

simple property shows the relationship between the unary operation (inverse elements)
and the binary operation of a group.
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Proposition 3. Ler G(-) be a group. Then for any x,y € G it holds that

(z9) " =y~ 2L,

Proof. Let x,y € (. We have, applying associativity and unit law,

(Iy]{y_lr_l) = I{yy_l);][?_l = -_}_‘:EI_I —_ iI.‘.'IT_l =¢

and
(e ey =y @y =y ey =y ly =e.

We next show that every group is cancellative.
Theorem 1. Let G1(*, (=)', e1) and Ga(-, (=), e2) be two groups and h: Gy —
G2 a (group) homomorphism. Then the following three statements hold

(1) ker(h) = {(z,y) | h(z) = h(y)} C G1 x G,
is a congruence of G (x, (=)', e1),

(2) h(G,) is a subgroup of G2, and

(3) G1/ker(h) = h(G1).

where G/ ker(h) denotes the quotient group of G1(*,(—)"",e1) under the congru-
ence ker(h). Since the operations of a quotient group and a subgroup are canonical,
we do not write them in (3).

Theorem.  Let (S, <) and (T, ") be monoids with identities e and e’
respectively. Let F: § — T be a homomorphism from (S +) onto (T, +"). Then
f(e)=¢".

Proof. Let b be any element of T. Since f is surjective, there is an element a
€ S such that f(a) =b. Since e 1s identity of S, we have

a:e=a=e+4a (1)

and so
b=f(a)=f(a-e).by (i)

=f(a) +" f(e) , because f is homomorphism
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=b+' f(e)
Also,
b=1f(a)=f(e +a)
= fle) <" f(a)
=f(e)+b
Hence

b+ fle)=1fle)« b=Db

and so f(e) 1s identity for T. Thus, fle)=e".
Remark. The converse of the above theorem is not true.

Theorem. If f is a homomorphism from a commutative semigroup (S, =) onto
a semigroup (T, =), then (T, «) is also commutative, that is, homomorphic
image of an abelian (commutative) semigroup is abelian.

Proof. Lett;, tz € T. Since fis onto, there exist s, s> € S such that
f(s)=t and f(s2) =t
Then
ti <" ta =f(s;) + fis2)
= f(sy « 83), since f 1s homomorphism
= f(s» +s1), since S 1s abelian
= f(s2) +" f(s1). since f is homomorphism

=tr+ 1.

Hence (T, ') is abelian.

Remark. The converse of the above theorem is not true.
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Theorem. Let f : (S, <) — (T, +') be semigroup homomorphism. If § is a
subsemigroup of (S. +), then the image of 8" under f is a subsemigroup of (T,
).

Proof. Let f (S") be the image of S’ under f and let t;, t; be in f (S§). Then
there are 5y and s; in §” such that

L= f{Sﬂ and tr = f(S:}
We claim that f(S") is closed under the binary operation -". It is sufficient to
show that t; <" tz € f(§). We have, in this direction,

ti « ta= f(s1) + f(s2)

= f(sy = 82), because f is homomorphism.

Now since S" is a semigroup and s;, s2 € §’, we have s; = 53 € S'(due to
closeness of the peration «). Hence f(s; = s;) € f(§"). It follows, therefore, that
t; = 2 e f(S).

Further, since the associativity hold in T. it also holds in f(S"). Hence f(S") is a
subsemigroup of (T, +).

Theorem. The intersection of two subsemigroups of a semigroup (S, =) is
subsemigroup of (S, +).

Proof. Let (Sy, <) and (S2, «) be two subsemigroups of the semigroup (S, =).
Letac S;~Szand be S;~Sz. Then

ac 5115 =ac Siand ae §;

be S5, = be S;andbe §;

Since §; is a subsemigroup, therefore, a, b £ S| implies a - b §;. Similarly,
since S; 1s a subsemigroup, a, b € Sy implies a « be S2. Hence

a:be S5 S

Hence S; m S; is closed under the operation . Further associativity in S; and
S: implies the associativity of S; m Sz since S;1 m S2 = Sy and §1 n S; < Ss.
Hence S; m S; is a subsemigroup of (S, «).

Corollary.  Intersection of two submonoids of a monoid (S, =) is a
semimonoid of (S, +).
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Proof follows the same line as that in the above Theorem.

Remark. Union of two subsemigroups of a semigroup (S, =) need not be
subsemigroup of (8, «).

For example,

(814 = {0,234 F6; +....]
and

(52,+)={0,+3, +6, £9, 1, ...}
are subsemigroups of the semigroup (Z, +) of integers. But

Siwul= .t 4% 44 +64 3
is not a subsemigroup of (Z, +), because

2e S1L_JSj, Je SgLJ'SJ .

but 243 =35 & §; w S, showing that §; . S; is not closed under addition.

Theorem. Let R be a congruence relation on the semigroup (S, ). Then ® :
S/R x §/R — S/R defined by

@ ([al,[b])=[a]® [b]=[a+b],a,be §
is a binary operation on S/R and (S8/R, @) is a semigroup.

Proof. Suppose that ([a], [b] )=[a"]. [b] ). ThenaR a"and b R b". Since R
is congruence relation, this impliesa=b R a" «b’. Thus[a:b]=[a" = b’], that
is, @ is a well defined function. Hence @ 1s a binary operation S/R.

Further we note that

[a] @ ([b] @ |[c]) =[al]® [b=c] (bydefinitionof ® )

=la=(bsc)] (by definitionof ® )

= [(a+b)=c] (Associativity of = in S)

= la+b] @ [c] (by definition of ®)

= ([a] ® [b]) ® [c] (by definition of ® )

Hence @ is an associative operation. This implies that (S/R, ®) is a
semigroup.

Prepared by: M.Sangeetha, Department of Mathematics, KAHE 17 of 29



ALGEBRAIC STRUCTURES / 2017 BATCH

The operation @ is called quotient binary relation on S/R constructed from
the given binary relation - on S by the congruence relation R.

The semigroup (S/R, ®) is called Quotient Semigroup or Factor
Semigroup or the Quotient of S by R.

Theorem. Let R be the congruence relation on the monoid (S, *), then (S/R,
@) is a monoid.

Proof. We have shown above that (S§/R, ®) is a semigroup. Further if e is
identity element in(S, « ), then [e] is the identity in (S/R, ® ). Thus (S/R, @ )
is semigroup having identity element [e] and so 1s a monoid.

Theorem. Let R be a congruence relation on a semigroup (S.+) and let (S/R.

®) be the corresponding quotient semigroup. Then the mapping ¢ : S — S/R
(called the natural mapping) defined by

o(a) = [a]
is an onto homomorphism, known as Natural homomorphism.

Proof. According to definition of ¢, to each [a] in S/R, there is a € § such that
0la] = [a]. Hence o is subjective. Now leta, be §. Then

o(a * b)=[a * b]
= [a] ® [b]
=o0(a) @ ol(b)

Hence ¢ 1s homomorphism onto.
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Theorem (Fundamental Theorem of Semi-group Homomorphism). Let f :

S — T be a homomorphism of the semigroup (S, +) onto the semigroup (T, =").
Let R be the relation on S defined by

aRb iff(ay=f(b)fora,be §
Then

(1) R is a congruence relation on §

(il)  (S/R, @) is isomorphic to (T, +").

(If f is not onto, them (ii) shall be **S/R is isomorphic to f(S)™.
Proof. First we show that R is an equivalence relation. We note that
(1) Since f (a) =f(a), we have aR a.

(1) If aRb,thenfla)=f(b)orf(b)= f(a)and hence b R a.
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(ii1) IfaRbandbR c.then

flfa)=f(byand f (b)=f(c)
and hence
f{a)=1(c)

andsoaRc

Thus the relation R is reflexive, symmetric and transitive and so an equivalenct
relation.

Suppose now that
aRa and bRD.
Then
f(a)=1f(a’)and f(b)=1(b")

Since f is homomorphism,

ﬂﬂ * b_] == HE) s ﬂ_b}

=f(a")+" f(b")
=f(a" + b)
Hence
(a=b)R(a"+b")
and so R is a congruence relation.
Define
yv:SR =T
by

v ( [a] )= f(a).

We claim that w 1s well defined. Suppose [a] = [b]. w will be well defined 1
f(a) = f(b). Now [a] = [b] implies a R b, that is, f(a) = f(b). Hence w is :
function (well defined).

Further, if [a], [b] € S/R, then
w(la] ® [b] )= w(la-b]), a,be S
=f(a-b)

=f(a) " f(b), because f is homomorphism
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vifa]® [b])=w([a«b]) a.be S
=f(a+b)

=f(a) +" f(b), because f is homomorphism

= [a] «" wib]
So y 1s semigroup homomorphism.

Also
v ([al= w([b]) = f(a) = f(b)
=akRb
= [a] = [b].

and so y 18 one — o — one .

Thus w, as a map, is bijective and homomorphism. Hence w is an
isomorphism and

SR =T
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Remark. We have proved that the mapping ¢ : S — S/R is natural

homomorphism. Also, we proved that the mapping v : S/R — T is an
isomorphism. Thus diagram of the situation becomes

f
S T T
@ L o
S/R
Also, we note that
(woo)(a) = wio(a)
=y ([a] )

=fla)forallae §S.
Hence
woo=f
Direct product of semigroups :

Let (S, «) and (T, +") be two semigroups. Consider the cartesian product
S x« T . Define a binary operation +” on S x T by

(81, t1) #" (82, t2) = (81 + 82, 4y + [2)

In what follows, we prove that (S = T, <) 1s a semigroup.
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Theorem. Let (S, <) and (T, +") be semigroups. Then (S x T, ) is a
semigroup under the binary operation + defined by

(81, 01) + (82, )= (S1 =582, 1 + t2).

Proof. If (s, 1), (s2, t2) and (s3,t3) € S x T, then

[ (s1,t1) «" (82, t2) ] " (83, ta) = (81 =82, t1 =" t2) =" (83, t3)
=((81+(S2+83). 11 +" (12) " 13))
=(5y = (S2=83). 4y « (L2 t3))
=(81, 1)+ (85483, 1r +" 13)

=(81, t1)+" [(s2, 12) " (53, t3) ]

Hence +” 1s associative and so (S x T, ") is a semigroup.

Corollary. If (S, +) and (T. +") are monoids, then (S x T, +”) is also a
monoid.

Proof. We have proved above that (S x T, <) is a semigroup. We further note
that if es is identity of (S, <) and et is identity of (T, +"), then for (s;. t;) € S x T,
we have

(es,er)” (si. ti) =(es =51, er+ ty)

=(s1, )
and
(81, ;) +" (es. ey) = (8; < €5, ty <" ey)
=(s81. 1)
Thus

(s1, ty) <" (es. er) = (es, er) + (s, ;) = (81, ty)

showing that (es, er) is identity element of (S x T, <), that is. (§ x T, =") 1s a
semigroup with identity (eg, et) and hence i1s a monoid.
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Theorem. The inverse of every element in a semigroup with identity e is
unique.

Proof. We shall use associativity of the binary operation + to prove the
uniqueness of the inverse element.

So, suppose that b and ¢ are two inverses of an element a in a monoid (S, =).
Therefore, we have

a*b:bta:‘a [I}

dsC=C=:a=¢@ (11)

We note that
b:(asc)= b=+e, byf(ii)
=b, because e is identity (111)

and

(b=a)+c=e=c, by (i)
=c, because e is identity  (iv)

But associativity of binary operation « implies
b«(a=c)=(b=a)-c
Hence, from (1i1) and (iv) it follows that
b=c

proving that inverse, if exist, of every element in a monoid is unique.

Theorem :

If (S,*) and (T,°) are commutative semigroups then their product is also
commutative semigroup.

Proof:

We have already shown that if (S,*) and (T,o) are semigroups then their
product is semigroup.

we now show that product SxT is commutative.

Prepared by: M.Sangeetha, Department of Mathematics, KAHE 24 of 29



ALGEBRAIC STRUCTURES / 2017 BATCH

Let (a,b) ,(c,d) be any two elements in SxT .
Then
(a,b) + (c,d) = (a*c ,beod)
=(c*a, dob)
Because both * and o are commutative
=(c,d) (a,b)
Thus + is a commutative operation on S*T.
Hence (SxT, + ) is commutative semigroup.
Theorem:

Let f: s— T be an onto mapping from a semigroup (S,*) to an algebraic
structure (T,o) where o is a binary operation on T .If f is semigroup
homomorphism then (T,o) is a semigroup.

Proof:
In order to prove that (T,o) is a semigroup.
we must show that o is an associative operationon T.
Let x,y,z be any three elements in T.
Since f onto mapping the exists a,b,c is S such that x=f(a) , y=f(b) and z=f(c)

Now (xoy)z=f(a)of(b)of(c)

=f(a*b)of(c) f is homomorphism
=f(a*b)*c) fis homomorphism
=f(a*(b*c)) * is associative
=f(a)of(b*c) f is homomorphism
=f(a) o(f(b)<f(c)) fis homomorphism
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=xo (yoz)
Hence o is associative and So(T,e) is a semigroup.
Theorem:

If (M,*) is a commutative monoid then the set of all idempotent elements
of M forms a submonoid.

Proof:

Let S be the set of all idempotent element of M>.

That is S={ xeM ; x? = x}

Since the identity element eeM is idempotent, We have eeS.
We now show that S is closed with respect to *.

Let a,b be any two elements of S.

Then a?=a andb?=Db

Now

(a*b)?= (a*b)(a*b)

=a*(b*a)*b * is associative
=a*(a*b)*b *is commutative
= (a*a)*(b*b) * is associative
=32 * h2

=a*b a?2=a andb?=b

Thus a*b is idempotent element of M .

Hence a*beS and so(S,*) is a submonoid.
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Theorem:

Let (M,*) and (T,°) be two monoids with identity e and e respectively. If
is an onto mapping from M onto T such that f(a*b) =f(a) o f(b) Va,be M
then f(e) =€’

Proof:
Let y be any element of T.

Since f is onto,there exists an element xeM such that f(x) =y.

Now, Y=f(x)=f(x*e) (e is the identity of (M,*))
=f(x) o f(e)
=yef(e)

Similarly

Y=f(x) = f(e*x)
=f(e)of(x)
=f(e)oy
Thus f(e) oy =y of(e) =y
Which implies f(e) is the identity for T.

Since Identity element in a monoid is unique, we have e’ =f(e).
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PART - B
POSSIBLE QUESTIONS - SIX MARKS

1. Prove that under the semigroup homomorphism the properties associativity , idempotency
and commutative are preserved.

2. Show that every monoid <M, *, e> is isomorphic to a submonoid of <MM,o | A > where
A is the identity mapping of M.

3. Given the algebraic system <N, +> and <Z4, +4>, where N is the set of natural numbers ,
show that there exists a homomorphism from <N, +> to <Za, +4>.

4.Show that the set of all the invertible elements of a monoid form a group under the
same operation as that of the monoid.

5. Show that the intersection of any two congruence relations on a set is also a
congruence relation.

6. Let <S, *> be a given semigroup. There exists a homomorphism g: S— S5, where < S5 ,° >
is a semigroup of functions from S to S under the operation of (left) composition.

7. Show that the set of all semigroup endomorphisms of a semigroup is a semigroup
under the operation of left composition.

8. Define homomorphism with example.
9. Show that the composition of two homomorphisms is also a homomorphism.

10. Let <S, *>, <T, A> and <V, +> be semigroups and g: S—T and h: T —V be semigroup
homomorphisms. Then (h © g): S— V is a semigroup homomorphism from <S, *> to
<V, +>.

11. Let I be the set of integers and - denote the operation of multiplication so that <I, -, 1> is
a monoid. Show that <{0}, -> is a semigroup but not a submonoid.

PART -C
POSSIBLE QUESTIONS - TEN MARKS
1. State and prove the function theorem of semigroup homomorphism.

2.Let (M, *) be a monoid .Then there exists a subset T =M™ such that (M, *) is isomorphic
to the monoid (T, o).

3.Prove that every finite semigroup has an idempotent element.(That is an element a such
that a=a).

4.Let f: S— T be an onto mapping from a semigroup (S,*) to an algebraic structure (T,0) , where o0 is
a binary operation on T. If f is semigroup homomorphism then (T,0) is a semigroup.
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PART-A Multiple Choice Questions (Each Question Carries One Mark)

Subject Name: Advanced Discrete Mathematics Subject Code: 17MMP105A
UNIT-I
Question Option-1 Option-2 Option-3 Option-4 Answer

The mathematical structure (G, *) is said to be a --------
--------- If binary operation * satisfies closure property
only. Semigroup Quasigroup Abelian Group Monoid Quasigroup
The algebraic structure (G, *) is said to be a -------------
---- if binary operation * satisfies closure and
associative property only. Semigroup Quasigroup Abelian Group Monoid Semigroup
An equivalence relation R defined on the semigroup
(S, *) is called a ifaRb
and cRd thena*cRb *d. equivalence classes |Monoid congruence relation|relation congruence relation
A semigroup with more than one idempotent
element is ----------------- group semigroup not a group subgroup not a group
An operation * is said to be commutative law if --------
--------- a*b=Db*a a+b=b+a a*(b*c)= (a*b)*c |a*b=a*c a*b=b*a
The semigroup S/~ is called the

of S by ~. relation equivalence class quotient remainder quotient
A function f: (S, *)> (S',+ ) is called a

if f(@a*b) =f(a) + f(b) homomorphism automorphism iIsomorphism epimorphism homomorphism
Let g: <X,°> =><Y, *> is a homomorphism and if g is
onto then g s called --------------=-=------ homomorphism automorphism iIsomorphism epimorphism epimorphism
Let g: <X,°> =><Y, *> is a homomorphism and if g is
one to one then gis called ------------------—-——- homomorphism monomorphism iIsomorphism epimorphism monomorphism
Let g: <X,°> =><Y, *> is a homomorphism and if g is
one to one and onto then gis called ------------------—---
- homomorphism monomorphism isomorphism epimorphism iIsomorphism
The intersection of two congruence relation is --------- Not a congruence
-------- relation congruence relation |subalgebra Directproduct congruence relation

A function f: (S, *)- (S',+) is called a homomorphism
if

f(a*b) =f(a) + f(b)

f(a+b) = f(a) + f(b)

f(a+b) = f(a) * f(b)

f(a*b) =f(a) *f(b)

f(a*b) =f(a) + f(b)

Let g: <X,°> =><Y, *> is a homomorphism and if g is ---

--------------- then g is called epimorphism constant one to one and onto | onto one to one onto

Let g: <X,°> =><Y, *> is a homomorphism and if g is ---

------------- then g is called monomorphism constant one to one and onto | onto one to one one to one

Let g: <X,°> =><Y, *> is a homomorphism and if g is ---

———————————————— then gis called isomorphism constant one to one and onto onto one to one one to one and onto
The algebraic structure (G, *) is said to be a closure and associativity and

semigroup if binary operation * satisfies --------------

closure and identity

Identity and inverse

associativity

identity

closure and associativity

The set of all semigroup endomorphisms of a

semigroup is a -------------- group Monoid semigroup Not a group semigroup
Every semigroup homomorphism induces a --------------
------ semigroup congruence relation |Monoid subalgebra congruence relation
semigroup semigroup
Every congruence relation induces a --------------------- homomorphism congruence relation [semigroup homomorphism homomorphism
If <S, *>, <T, A> are both commutative groups then
their direct product is --------------- commutative associative Identity closure commutative
A set together with a number of operations on the set
is called an ---------------- Monoid semigroup group . Algebraic system  |Algebraic system
The semigroup (S, *) which has also an identity
element with respect to * is called
Semigroup Quasigroup Abelian Group Monoid Monoid
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LATTICES

Definitions and Examples

Definition: A lattice is a partially ordered set (L, <) in which every subset
{a, b} consisting of two element has a least upper bound and a greatest
lower bound.

We denote lub({a, b}) by a v b and call it join or sum of a and b.
Similarly,

we denote GLB({a, b}) by a A b and call it meet or product of a and b.
Other symbol used are:

LUB:®, +, U

GLB:+.,N

Thus Lattice is a mathematical structure with two binary operations, join
and meet. Lattice structures often appear in computing and mathematical
applications.

A totally ordered set is obviously a lattice but not all partially ordered sets are
lattices.

Example 1. Let A be any set and P(A) be its power set. The partially ordered
set (P(A), <) is a lattice in which the meet and join are the same as the
operations m and U respectively. If A has single element, say a, then P(A) =
{p, {a}} and

LUB({ o, {a}) = {a}

GLB({p.{a}) = ¢

The Hasse diagram of (P(A), ©) is a chain containing two elements ¢ and {a}
as shown below:
I lal
l.|"

If A has two elements, say a and b. Then P(A) = {o, {a}, {b}, {a, b}}. The

2|23
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Hasse diagram of {P(A), <) is then as shown below :

ta.b}

(a (b}

We note that

1. LUB exists for every two subsets andis L U M

2. GLB exists for every two subsets and isinL "M for L, M € P(A).
Hence P(A) in a lattice.

Example 2. Consider the poset (N, <), where < is relation of divisibility. Then
N is a lattice in which

joinofaandb=avb=LC M(a, b)

meetofaandb=aAb=GCD (a,b)fora, b eN.

Example 3. Let n be a positive integer and let Dn be the set of all positive
divisors of n. Then Dnis a lattice under the relation of divisibility. The Hasse
diagram of the lattices Ds, D20 and Da3o are respectively.

3123
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and

Dy = (1,2, 3,5,6, 10, 15, 30).

The TransiDefinition: The Transitive closure of a relation R is the

LATTICES / 2017 BATCH

smallest transitive relation containing R. It is denoted by R.

Example: LetA={1, 2, 3,4} and R =[(1, 2), (2, 3), (3, 4), (2, 1)] Find the

transitive closure of R.
Solution: The digraph of R is

Prepared by : M.Sangeetha , Department of Mathematics , KAHE

4123



UNIT Il LATTICES / 2017 BATCH

'®) 4

We note that from vertex 1, we have paths to the vertices 2, 3, 4 and 1. Note
that path from 1 to 1proceeds from 1 to 2 to 1. Thus we see that the ordered

pairs (1, 1), (1, 2), (1, 3) and (1, 4) are in R«. Starting from vertex 2, we have
paths to vertices 2, 1, 3 and 4 so the ordered pairs (2, 1), (2, 2), (2, 3) and (2,
4)

are in Rw. The only other path is from vertex 3 to 4, so we have

R-={(1,1), (1, 2),(1,3),(1,4),(2,1), (2 2),(2,3), (2, 4), 34)}

Example: Let R be the set of all equivalence relations on a set A. As such R

consists of subsets of A x A and so R is a partially ordered set under the
partial order of set inclusion. If R and S are equivalence relations on A, the
same property may be expressed in relational notations as follows:

RcSifandonlyifxRy xSyforallxy e A.

Then (R, ©) is a poset. R is a lattice, where the meet of the equivalence

relations R and S is their intersection R N S and their join is (R U S)«, the
transitive closure of their union.

Definition: Let (L, <) be a poset and let (L, >) be the dual poset. If (L, <) is a

lattice, we can show that (L, >) is also a lattice. In fact, foranyaand b in L,
the

LUBofaandbin (L, <)is equal to the GLB of a and b in (L, >). Similarly,
the GLBofaandbin (L, <)isequalto LU B in (L, ).
The operation v and A are called dual of each other.

Example: Let S be asetand L = P(S). Then (L, <) is a lattice and its dual
lattice is (L, D), where D represents “contains”. We note that in the poset
(L, ), the join A v B is the set A m B and the meet A A B is the set A U B.

Cartesian Product of Lattices

Theorem: If (L1, <) and (L2, <) are lattices, then (L, <) is a lattice, where
L = L1 x L2and the partial order < of L is the product partial order.

Proof: We denote the join and meet in L1 by v1, and A1 and the join and meet

5123
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in L2 by v2 and A2 respectively.
We know that Cartesian product of two posets is a poset.

Therefore L = L1 x L2is a poset. Thus all we need to show is that if

(a1, b1) and (a2, b2) € L,

Then (a1, b1) v (a2, b2)and (a1, b1) A (a2, b2) existin L.

Further, we know that

(a1, b1) v (a2, b2) = (a1 v az, b1v b2) and

and

(a1, b1) A (a2, b2) = (a1 A a2z, b1 A b2)

Since Liis lattice, a1 v 1a2and a1 A 1 a2 exist. Similarly, since L2is a lattice,
bi1v bzand b1 A bzexist. Hence (a1, b1) v (a2, b2) and (a1, b1) A (a2, b2)
both exist and therefore (L, <) is a lattice, called the direct product of
(L1, ) and (L2, ).

(11, I2)

{11‘ d) {[1.h}l

N
1,0y

/ (01, b)
(04, 0n)

L=L1}<L3

(04, a)

Properties of Lattices:
Let (L, <) be alattice and let a, b, ¢ € L. Then, from the definition of v (join)
and A (meet)

we have

(a<avbandb<avb;avbisanupper bound of aand b.
(ifa<cand b <c,thenavb<c;avbisthe least bound of a and b.
(ianb<aandaaAb<b;anabisalowerbound of aand b.

(iv)ifc<aand c<b,thenc<anab;anbisthe greatest lower bound of a
and b

6|23
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Theorem:
Let L be a lattice. Then for everyaand b in L,

(havb=Dbifandonlyifa<hb

(anb=aifandonlyifa<hb

(ianb=aifandonlyifavb=>b

Proof:

(i) Letav b =Dh. Sincea<avb,wehave a<b.

Conversely, if a < b, then since b < b, it follows that b is an upper bound of a
and b. Therefore, by the definition of least upper bound, a v b <b. Alsoavb
being an upper bound, b <a v b. Hencea v b =bh.

(i) Leta A b = a. Since a A b < b, we have a <b. Conversely, ifa <b and

since a< a, ais a lower bound of a and b and so, by the definition of greatest
lower bound, we have

aanab
Since a A b is lower bound,
anb<a
Hence
anb=a.
(i) From (ii )
anb=a<a<gb....... (iv)
From (i)
a<b«<avb=b.......... (V)

Hence, combining (iv) and (v),

we have
anb=a< avb=bh.

Example: Let L be a linearly (total) ordered set. Therefore a, b € L imply
either a < b or b < a. Therefore, the above theorem implies that
avb=a

anb=a

Thus for every pair of elements a, binL, a v b and a A b exist. Hence a
linearly ordered set is a lattice.

Theorem :
Let (L, <) be a lattice and let a, b, ¢ € L. Then we have

L1: Idempotent property
(hava=a
(lana=a

7123
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L2: Commutative property
(lavb=bva
(Danb=bAaa

L3: Associative property
av(bvec)=(avb)yvec
(iJar(barc)=(@arb)Ac

L4: Absorption property
(hav(aab)=a
(ilan(avb)=a

Proof: L1: The idempotent property follows from the definition of LUB and
GLB.

L2 : Commutativity follows from the symmetry of a and b in the definition of
LUB and GLB.

L3 : (i) From the definition of LUB, we have

a<av((bbve) ... (1)
bvc<av(bvo)...... (2)
Also b <b v candc<b v cand so transitivity implies
b<av®vVve)aa..... (3)
and
c<av(bve) ... (4)

Now, (1) and (3) imply that a v (b v c¢) is an upper bound of a and b and hence
by the definition of least upper bound, we have

avb<avbve) o (5)

Also by (4) and (5), a v (b v c) is an upper bound of c and a v b . Therefore
(avb)vc<av(bvo)....... (6)

Similarly
av(pvec)<(avb)vec..... (7)

Hence, by antisymmetry of the relation <, (6) and (7) yield
av(pvc)=(avb)vec
The proof of (ii) is analogous to the proof of part (i).

L4: (i) Since a A b <aanda<a, it follows that a is an upper bound of a A b
and a. Therefore, by the definition of least upper bound

av@ab)<a..iiiinnnnn, (8)

On the other hand, by the definition of LUB, we have
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a<av@Aab) (9)
The expression (8) and (9) yields

av(@anb)=a.
(i) Sincea<av banda<a, it follows that a is a lower bound of a v b

and a.
Therefore, by the definition of GLB,

a<an@vDb) .. (10)
Also, by the definition of GLB, we have
an(@avb)<a . (11)

Then (10) and (11) imply
an(avb)=a
and the proof is completed.

In view of L3, we can writeav (bvc)and(avb)vcasavbvec.
Thus, we can express

LUB ({a1, a2,....an) as a1 v az v...... V an
GLB ({a1, a2,....an) as a1 A az A...... A an

Remark:
Using commutativity and absorption property, part (ii) of previous
Theorem can be proved as follows :

LetaAnb=a.
We note that
bv(@ab)=bva
= a v b (Commutativity)
But
b v (a A b)=Db (Absorption property)
Hence
avb=Db
and so by part (i),a<b. HenceaAb =aifand onlyifa<b.

Theorem: Let (L, <) be a lattice. Then for any a, b, ¢ € L, the following
properties hold :

1. (Isotonicity) : If a < b, then
(avc<bvc
(ijJanc<bAac

This property is called “Isotonicity”.

2.a<candb<cifandonlyifavb<c

3.c<aandc<bifandonlyifc<anab

9123
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4. Ifa<bandc<d,then
()avec<bvd
(ilanc<bad.

Proof : 1 (i). We know that
avb=Dbifandonlyifa<hb.

Therefore, to show that a v ¢ < b v ¢, we shall show that
(avecv(bvcec)=bve.
We note that
(avc)v(bbvce)=[(ave)vblvec=av(cvbve

—av(bvecve
=(avbv(bvece
=bvc(@®avb=bandcvc=c)

The part 1 (ii) can be proved similarly.

2. If a < c, then 1(i) implies

avb<cvb
But

b<c&o bvce=c
< ¢ Vv b = ¢ (commutativity)
Hencea<candb<cifandonlyifavb<c

3.Ifc<a, then 1(ii) impliescAb<aAb

But
c<b&<cAab=c

Hence
c<aandc<bifandonlyifc<aAb.

4 (i) We note that 1(i) implies thatifa<b,thenavc<bvc=cvb

fc<d,thencvb<dvb=bvd

Hence, by transitivity
avc<bwvd

(i) We note that 1(ii) implies that
ifa<b,thenaAnc<bAc=cADb

Prepared by : M.Sangeetha , Department of Mathematics , KAHE
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fc<d,thencAab<dAb=bAd.
Therefore transitivity implies

anc<bnad.

Theorem:

Let (L, <) be a lattice. If a, b, c € L, then
(Davbac)<(avb)a(avrc)
(2)an(bvc)=z(@anb)v(anac

These inequalities are called “Distributive Inequalities”.

Proof: We have

a<avbanda<avc()

Also, by the above theorem, if x <y and x < z in a lattice, then x < y A z.
Therefore (i) yields

a<(avb)a(@Vveo)........ (i)
Also

bac<b<avhb
and

bac<c<Lavec,

thatis,bAc<awvbandbAc<avcand so, by the above argument,
we have

bAac<(avb)A (avc) (i)
Also, again by the above theorem if x < zand y < z in a lattice, then
Xvy<z
Hence, (ii) and (iii) yield
ac(bac<(avb)a(avc
This proves (1).
The second distributive inequality follows by using the principle of
duality.

Theorem: (Modular Inequality) : Let (L, <) be a lattice. If a, b, c € L,
then

a<cifandonlyifav(bac)<(avb)ac
Proof: We knowthat a<c<avcec=cC......... (1)

Also, by distributive inequality,

11123
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avbac<(avb)a(avc)
Therefore using (1) a < c if and only if
avbac<(avecec) Ac,

which proves the result.

The modular inequalities can be expressed in the following way
also:

(@anb)v@aanc)<an[bv(anc)]
(avbA(avec)zavibAa(avo)]

Example: Let (L, <) be alattice and a, b,c € L. Ifa<b <c, then
()avb=bAac,(i)(arnb)v(bac)=(avb)A(avec)

Solution: (i) We know that
a<bsavb=b
and

b<c&os bAac=b
Hencea<b<cimplies avb=bAc.
(i) Since a< b and b < c, we have

anb=aandbAc=Db
Thus

(@nb)v(bAac)=avhb
= b,
sinceas<b< avb=h.
Also, a<b < c__a<c by transitivity. Then
a<banda<c _avb=b,avc=c
and so
(avb)aA(avec=bAc
=bsinceb<c< bAc=h.
Hence
(@nb)vbAac)=b=(avb)A(avc),
which proves (ii).

12|23
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1.21. Lattices as Algebraic System
Definition. A Lattice is an algebraic system (L, v , A ) with two binary

operations v and A , called join and meet respectively, on a non-empty
setL

which satisfy the following axioms for a, b, c € L:

1. Commutative Law :

avb=bvaandaanb=bAaa.
2. Associative Law :

(avbyvc=av(bvc
and
(@anbAac=an(bAac)

3. Absorption Law :

(Jav(anb)=a

(Dan(avb)=a

We note that Idempotent Law follows from axiom 3 above. In fact,

ava=avVvaa(avb)using.......... 3(ii)
=ausing ................. 3(i)

The proof of a A a = a follows by principle of duality.
1.22 Partial Order Relations on a Lattice

A patrtial order relation on a lattice (L) follows as a consequence of the
axioms for the binary operations v and A .
We define a relation < on L such thatfora, b € L,

as<b<savb=b
or analogously,

) a<b&< aanb=a.
We note that

(i) Foranya e L
a v a = a (idempotent law),
therefore a < a showing that < is reflexive.

(i) Let a < b and b < a. Therefore

13|23
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avb=>b

bva=a
But

a Vv b=Dbyva(Commutative Law in lattice)
Hence

a=Db,
showing that < is antisymmetric.

(ilf) Suppose thata<band b <c. Thereforeavb=bandbvc=c.
Then

avc=av((bvco
= (a v b) v ¢ (Associativity in lattice)
=bvc
=cCc,
showing that a < ¢ and hence < is transitive.

This shows that a lattice is a partially ordered set

1.23 Least Upper Bounds and Latest Lower Bounds in a
Lattice

Let (L, v, A) be a lattice and let a, b € L. We now show that LUB of
{a, b} < L with respect to the partial order introduced above is a v b and
GLB of {a, b}isa A b.

From absorption law
an(avb)=a
bAa(avb)=Db

Therefore a<a v band b <av b, showing that a v b is upper bound for
{a,b}. Suppose that there exists ¢ € L such thata < c, b <c. Thus we
have avc=candbvc=c

and then
(avb)vc=av(bvc=avc=c

implying that a v b < c.
Hence a v b is the least upper bound of a and b.
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Similarly, we can show that a A b is GLB of a and b.

The above discussion shows that the two definitions of lattice
given

so far are equivalent.

Sublattices

Definition: Let (L, <) be a lattice. A non-empty subset S of L is called a
sublatticeof Lifavbe SandaAnb € Swheneverae S,b € S.

(Or)
Let (L, v, A ) be alattice and let S — L be a subset of L. Then (S, v, A)
is
called a sublattice of (L, v, A) if and only if S is closed under both
operations of join(v ) and meet( A ).

From the definition it is clear that sublattice itself is a lattice.
However, any subset of L which is a lattice need not be a sublattice.
For example, consider the lattice shown in the diagram:

1

o
—_

We note that

(1) the subset S shown by the diagram below is not a sublattice of L, since
a~beS§Sand avbesS.
I
e f
a b
S
15123
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(11) the set T shown below is not a sublattice of L since a v be T.

N
NP

However, T is a lattice when considered as a poset by itself.

(111) the subset . of L shown below is a sublattice of L:
C
a / >h
*0
U

Example: Let A be any set and P(A) its power set. Then (P(A), v, A ) is

a
lattice in which join and meet are union of sets and intersection of sets

respectively.

A family _ of subsets of AsuchthatS U Tand SN Tarein _for S,

T € _is a sublattice of (P(A), v, A). Such a family _is called aring
of

subsets of A and is denoted by (R(A), v, A) (This is not a ring in the
sense of algebra). Some author call it lattice of subsets.

16|23
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Example: The lattice (Dn, <) is a sublattice of (N, <), where < is the
relation of divisibility.

Definition: Let (B, A1, v, ,, 01, 1)) and (By, A2, Vva, 7, 05, 12) be two
Boolean algebras. The Direct Product of the two Boolean algebras is defined
to be a Boolean algebra, denoted by, (B; X Ba, Aa, v, 7, 05 1) 1n
which the operations are defined for any (a;, bi) and (a», b») € By X Bo as

(ai, b)) Az(az,b2)=(ar A1azb; A2b2)
(a1, b1) vi(aa,by)=(ar viasbi vaby)
(a;, b)) =(a/, b))
03 =(04, 02) and 3 = (11, Ip)

Thus, from a Boolean algebra B, we can generate B>=B x B, B°’=BxBxB
etc.

Lattice Isomorphism

Definition: Let (L1, v 1, A 1) and (L2, Vv 2, A 2) be two lattices. A mapping
f:

L1 — L2is called a lattice homomorphism from the lattice the lattice
(L1, V 1,

A1) to (L2, v 2, A2)if foranya, b € Li,

fav 1b) =f(a) v 2f(b) and f(a A 1b) = f(a) A 2f(b)

Thus, here both the binary operations of join and meet are preserved.
There

may be mapping which preserve only one of the two operations.
Such mapping are not lattice homomorphism

Let <1 and <2 be partial order relations on (L1, v 1, A 1) and
(L2, Vv 2, A 2) respectively. Let f : L1 — L2 be lattice homomorphism. If
a, b € L1, then

aib&savib=b
and so

f(b) =f(a v 1b)
=f(a) v 2f(b)

< f(a) <21(b)
Thus

a<ib < f(a) <21(b)
Thus order relations are also preserved under lattice homomorphism.
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If a lattice homomorphism f: L1 — L2is one-to-one and onto, then it is
called lattice isomorphism.

If there exists an isomorphism between two lattices, then the lattices are
called isomorphic.

Since lattice isomorphism preserves order relation, therefore
iIsomorphic lattices can be represented by the same diagram in
which nodes are replaced by images .

Theorem: Let A ={as, a2,....,an} and B = {b1, b2,...... bn} be any two finite
sets with n elements. Then the lattices (P(A), <) and (P(B), <) are
iIsomorphic

and so have identical Hasse-diagram.

Proof: Consider the mapping f: P(A) = P(B)
defined by

f({an} = {bn}, f({a1, a2,....,am}) = {ba, bo,...... bn} form<n.

Then f is bijective mapping and L < M < f(L) < f(M) for subsets L and
M of P(A).

Hence P(A) and P(B) are isomorphic.
For example,
let A ={a, b, c}, B={2, 3, 5}. The Hasse-diagram of

P(A) and P(B) are then given below:

18|23
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Define a mapping f : P(A) — P(B) by

f(9) = o, f({a}) = {2}, f({b}) = {3}, f({c}) = {5}
f({a, b}) = {2, 3}, f({b, c}) = {3, 5}, f({a, c}) = {2, 5}

and
f({a, b, c}) = {2, 3, 5}.

This is a bijective mapping satisfying the condition thatif S and T are
subsets

of A, then S — T if and only if f(S) < f(T). Hence f is isomorphism and
(P(A),

<) and (P(B), <) are isomorphic.

Thus, foreachn =0, 1, 2,...., there is only one type of lattice and this
lattice

depends only on n, the number of elements in the set A, and not on A. It
has 2n

elements. Also, we know that if A has n elements, then all subsets of A
can be

represented by sequences of 0’s and 1’s of length n. We can therefore
label the

19|23
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Hasse diagram of a lattice (IIDl(,]A), <) by such sequence of 0’s and 1’s.

[ ]
ll(}./\ 011

100

001
000

The lattice so obtained is named By, The properties of the partial order in By
can be described directly as follows:

Let x = aj a;.....ap and y = by bs.....b, be any two elements of B,. Then

(I)x £yifand only if ax < b, k=1, 2.......n, where ax and by are O or 1.

(2) X A y=c1C2....Cn, Where ¢k = min(ay, by).
(3)x v y=d; dz....dn, where dx = max(ag, hg).

(4) x has a complement X" = 7y 75...... Zn Where zp = 1 if xy = 0 and zg = 0 1f x;
= 1.

Remark: (B,. £) under the partial order £ defined above is isomorphic to
(P(A), ©). when A has n elements. In such a case x =y correspondsto S = T, x
vy corresponds to S W T and x” corresponds to A,

Example : Let Dg = {1, 2. 3. 6}. set of divisors of 6. Then De is isomorphic to
Bs. In fact f: Dg — B; defined by
f(1)=00,1(2)=10,13)=01,1(6) =11

is an isomorphism.

S

00

De, BQ

Bounded, Complemented and Distributive Lattices
Definition: A lattice L is said to be bounded if it has a greatest element | and a
least element 0.

For the lattice (L, v, A ) with L = {a1, a2,....,an},
aiv azv..... van=landaiaaza....... Aan=0.

20123
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Example : The lattice Z+

of all positive integers under partial order of

divisibility is not a bounded lattice since it has a least element (the integer 1)
but no greatest element.

Example: The lattice Z of integers under partial order < (less than or equal to)
is not bounded since it has neither a greatest element nor a least element.
Example: Let A be a non-empty set. Then the lattice (P(A), <) is bounded.

Its greatest element is A and the least element is empty set ¢.

If (L, <) is a bounded Lattice, then foralla € L

O<ax<l
av0=a,an0=0
avi=l,anl=a

Thus 0 acts as identity of the operation v and | acts as identity of the operation
N

Definition: Let (L v, A, O, I) be a bounded lattice with greatest element | and
the least element 0. Leta € L. Then an element b € L is called a complement
of a if

avb=landaanb=0

It follows from this definition that

0 and | are complement of each other.

Further, 1 is the only complement of 0. For suppose that ¢ # | is a complement
of 0 and c € L, then

Ovc=land0OAc=0

But O v ¢ = c. Therefore ¢ = | which contradicts ¢ # I.

Similarly, 0 is the only complement of I.

Definition: A lattice (L, v, A, 1, 0) is called complemented if it is bounded
and if every element of L has at least one complement.

Example:

The lattice (P(A), <) of the power set of any set A is a bounded

lattice, where meet and join operations on e(A) are N and U respectively. Its
bounds are ¢ and A. The lattice (P(A), <) is complemented in which the
complement of any subset B of AisA-b

Definition:

A lattice (L, v, A) is called a distributive lattice if for any elements a, b and cin L,
(Daan(bvec)=(aanb)v(anac)

(2)av(bac)=(avb)a(avc)

Properties (1) and (2) are called distributive properties.

Thus, in a distributive lattice, the operations A and v are distributive over
each other.

We further note that, by the principle of duality, the condition (1) holds if and
only if (2) holds. Therefore it is sufficient to verify any one of these two
equalities for all possible combinations of the elements of a lattice.

21123
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If a lattice L is not distributive, we say that L is non-distributive.

Example: For a set S, the lattice (P(S), <) is distributive. The meet and join
operation in P(S) are n and U respectively. Also we know, by set

theory, that for A, B, C € P(S),
An(BuC)=(AnB)U(AnC)
AuBNC)=(AuB)n(AuUC).

Example:

The five elements lattices given in the following diagrams are non

distributive.

.I
;1( q
b \ C

(8] (1

i)

0

(11)

In fact for the lattice (i), we notethataan(bvc)=anl=a,

while
(@anrb)v(@aanc)=bv0=b
Hence
an(bvec)#(aanb)v(anc),
showing that (i) is non-distributive.

For the lattice (ii) ,
we have

an(bvc)=anl=a,
while

(anb)v(@aac)y=0v0=0.
Hence

an(bvc)(aanb)v(anac),

showing that (ii) is also non-distributive

Prepared by : M.Sangeetha , Department of Mathematics , KAHE
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POSSIBLE QUESTIONS (SIX MARKS)
1.Define sublattice, lattice homomorphism, order isomorphic.

2. Show that in a bounded distributive lattice, the elements which have complements
form a sublattice.

3. Show that a lattice is distributive iff (a *b) + (b*c)+ (c*a)=(a+b) *
(b +c) * (c+ a).

4. Define complete, distributive lattice, Complemented lattice.

5.Every chain is a distributive lattice.

6. Show that every distributive lattice is modular but not conversely.

7. Show that a lattice is distributive iff (a* b) + (b*c) + (c *a) =(a+b) * (b +c) * (c+ a).

8. Show that a lattice homomorphism on a Boolean algebra which preserves 0 and 1 is
Boolean homomorphism.

9. The direct product of any two distributive lattices is a distributive lattice.

10. Prove that two bounded lattices A and B are complemented iff A XB is complemented.

11.Prove that two lattices A and B are relatively complemented iff AxB is relatively
complemented.

POSSIBLE QUESTIONS (TEN MARKS)

1. If the meet operation is distributive over the join operation in a lattice, then the
join operation is also distributive over the meet operation. If the join operation is
distributive over the meet operation, then the meet operation is also distributive over the
join operation.

2. Let L be a finite distributive lattice. Then every a in L can be written uniquely (except
for order) as the join of irredundant join irreducible elements.

3. In a distributive lattice, if an element has a complement then this complement is unique.

4.Every finite lattice is a complete .

23123
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UNIT-II

Question Option-1 Option-2 Option-3 Option-4 ANSWER
The least member is denoted by ------- 0 1 -1 2 0
The greatest member is denoted by ------- 0 1 -1 2 1
The greatest lower bound of a,be L is denoted
by ------- and is also called meet. a*b a+b a-b a/b a*b
The least upper bound of a,be L is denoted by
-------- and is also called join. a*b atb a-b a/b atb
The greatest lower bound of a,be L is denoted
by a*b and is also called ----- join sum meet multiply meet
The least upper bound of a,be L is denoted by
a+ b and is also called ------ join product meet multiply join
Idempotent law is -------- aVa=a avVb=bVa av(bVvc)=(avb)Vc [aV(aAb)=a aVa=a
Commutative law is -------- aVa=a avVb=bVa avV(bVve)=(avb)Vvec |av(aAb)=a avVb=bVa
Associative law is ------- avVa=a avb=bVa av(bVvc)=(avb)Vvc [aV(aAb)=a av(bVvc)=(avb)Vece
Absorption law is ------ aVa=a avVb=bVa avV(bvec)=(avb)Vvc |av(aAb)=a aV(aAb)=a

a vV a = a this law is called -------

Idempotent law

Commutative law

Associative law

Absorption law

Idempotent law

aVb=D>bV a,this law 1s called -------

Idempotent law

Commutative law

Associative law

Absorption law

Commutative law

aV(bVc)=(aVb)Vc, this law is called ------

Idempotent law

Commutative law

Associative law

Absorption law

Associative law

aV (aADb)=a, this law is called ------

Idempotent law

Commutative law

Associative law

Absorption law

Absorption law

a A a = a, this law is called ------

Idempotent law

Commutative law

Associative law

Absorption law

Idempotent law

a/Ab=DbA a, this law 1s called ------

Idempotent law

Commutative law

Associative law

Absorption law

Commutative law

aA(bAc)=(aAb)Ac, this law is called------

Idempotent law

Commutative law

Associative law

Absorption law

Associative law

a A (aVb)=a, this law is called -------

Idempotent law

Commutative law

Associative law

Absorption law

Absorption law

A lattice which has both a least element and a

greatest element is called ------ sub lattice bounded lattice complement lattice lattice homomaorphism bounded lattice
A ----- IS a poset in which every pair of
element has a greatest lower bound and least
upper bound. lattice sub lattice bounded lattice complement lattice lattice
A partially ordered set { L, <} in which every
pair of elements has a least upper bound and
greatest lower bound is called ------------ Lattice Boolean algebra sub lattice duals Lattice
In a lattice, < denotes -------------- addition of multiple of divisor of subtraction of divisor of
In a lattice, > denotes -------------- addition of multiple of divisor of subtraction of multiple of
The lattices { L, <} and { L, >} are called the -
----------- each other duals one to one unique exist duals
For a totally ordered set ( p, <), the hasse
diagram consists of -------- one below the other.|dot Cross circles arrow circles
B is a finite, B is a finite, distributive B is a finite,

If B is a Boolean Algebra, then which of the
following is true

B is a finite but not
complemented lattice

complemented and
distributive lattice

but not complemented
lattice

B is not distributive lattice.

complemented and
distributive lattice

A partial ordered relation is transitive,

reflexive and antisymmetric bisymmetric antireflexive asymmetric antisymmetric
Which of the following pair is not congruent

modulo 7........... 10, 24 25, 56 -31,11 -64, -15 25, 56

A lattices which is commplemented and

distributive is called a --------------- sub algebra Boolean algebra sub lattice duals Boolean algebra
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Introduction: SOME SPECIAL LATTICES

In this chapter we will consider mathematical objects known as Lattices. Lattices is a set of
points in n dimensional space with a periodic structure.More recently,Lattices have become a
topic of active research in computer science .They are used as an algorithmic tool to solve a
wide variety of problems ; and they have have some unique properties from a computational
complexity point of view.

Bounded, Complemented and Distributive Lattices

Definition: A lattice L is said to be bounded if it has a greatest element [ and a
least element 0.

For the lattice (L, v, ») with L = {aj, as......an}.

v av....va=landa; n aan.......n 3,=0
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Definition: Let (L v, ~, 0, I) be a bounded lattice with greatest element I and

the least element 0. Let a € L. Then an element b £ L is called a complement
of aif

a vb=Ianda ~ b=0
[t follows from this definition that
0 and I are complement of each other.

Further, 1 is the only complement of 0. For suppose that ¢ # [ is a complement
of 0 and c € L, then

Ov c=land0 A c=0
But 0 v ¢ =c. Therefore ¢ = I which contradicts c = L.
Similarly, 0 is the only complement of L.

Definition: A lattice (L, v, ~, 1, 0) is called complemented if it is bounded
and if every element of L has at least one complement.

Example: The lattice (P(A), ) of the power set of any set A is a bounded
lattice, where meet and join operations on e(A) are m and w respectively. Its
bounds are ¢ and A. The lattice (P(A), <) is complemented in which the
complement of any subset B of A 1s A —b.

Example: Let L" be the lattice of n tuples of 0 and 1, where partial ordering is
defined for a=(ay, as,...,an) , b=(by, by, .....,by) € L" by

a<;bsa<h foralli=1,2,....n,

where < means less than or equal to. Then (L, <,) is lattice which is bounded.
For example, the bounds are (0, 0, 0) and (1, 1, 1) for i

Prepared by : M.Sangeetha , Department of Mathematics , KAHE 20f29
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(1,1.0) (0,1.1)
(1,0,0) (0,0.1)
(0,0,0)
The complement of an element of L" can be obtained by interchanging 1 by 0
and 0 by I in the n-tuple representing the element. For example,

complement of (1,0, 1) in L is (0, 1, 0).
Definition: A lattice (L, v, ~) is called a distributive lattice if for any
elements a,band cin L,

(Daanbwvc)=(anb)vianc)
@avbac=(av b)) a{av c)

Properties (1) and (2) are called distributive properties.

Thus, in a distributive lattice, the operations ~ and v are distributive over
each other.

We further note that, by the principle of duality, the condition (1) holds if and
only if (2) holds. Therefore it 1s sufficient to verify any one of these two
equalities for all possible combinations of the elements of a lattice.

If a lattice L 1s not distributive, we say that L is non-distributive.

Example: For a set S, the lattice (P(S), ©) is distributive. The meet and join
operation in P(S) are m and w respectively. Also we know, by set
theory, that for A, B, C € P(S),

An(BuO=AnBuUuAnO

AUuBnO=(AuB)n(AuC).

Example: The five elements lattices given in the following diagrams are non
distributive.
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D R

0 (1)

In fact for the lattice (1), we note that

anibvcl=anl=a,
while

fanb)viaac=bwv 0=b
Hence

anbveclz(anb)vi(anac,
showing that (i) is non-distributive.

For the lattice (ii) , we have

anfbvely=an I=a;

while

(arnb)vianc=0v 0=0 .
Hence

an(bvez(anb)vi(anc,

showing that (i1) is also non-distributive
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Example: Is the following lattice a distributive lattice

1

Solution: The given lattice is not distributive since {0, a, d, e, I} is a
sublattice which is isomorphic to the five-element lattice shown below :

0

Theorem: Every chain is a distributive lattice.

Proof: Let (L, <) be a chain and a, b, c € L. We shall show that distributive
law holds for any a, b, c € L. Two cases arise :

Prepared by : M.Sangeetha, Department of Mathematics , KAHE 5 of 29
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Theorem: The direct product of any two distributive lattices is a distributive
lattice.

Proof: Let (L;, <) and (L3, =2) be two lattices in which meet and join are A i,
vand a2, v, respectively. Then meet and join in L; x L, are defined by

(a1, b1) A (az. b2) =(a; Ay az, by Azbo) (1)
and
(ar, by) v (az, ba)=(a; viay by vaby) (2)
Since L; 1s distributive,
ay Aa vy a3)=(a; Aja) vila Apas)  (3)
Since L is distributive,
by Aalby va b3)=(by A2ba) valby Aabs) (4)
Therefore
(a3, by) A f(ag, by) v (a3, bs)]
= (a1, by) A (a2 v1as, by viba)]
=[(a1 A1 (a2 via), by Az (b2 vabs)]

=[(a; Aja) vi(a; Aqas), (by Azby) va(by Agba)]
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(using (3) and (4))
and using (1) and (2), we have
[(a;, by) A (ay,by) ] v [((ag, by) A (a3, ba)]

=(a1 Araz by Aaba) v (a1 Ay a3, b A2ba)

=[(a; n1ay) vi(a; Aqas), (by Aaby) va(by Apba)]
Hence
(a1, by) A [(az, ba) v (a3, b3)] = [(a1, bi) A (az, by) Jv [((a1, bi) A (as, b3)l,
proving that L; x L; is distributive.

Theorem: Let L be a bounded distributive lattice. If a complement of any
element exists, it is unique.

Proof: Suppose on the contrary that b and ¢ are complements of the element a

e L. Then

av b=1 awv.ic=1
a Ab=0 a ae="0
Using distributive law, we have
b=bwv 0
=b v(a A c)

=(bwv a) n(bwvc)
=(av b) a(bwvc)
=Ian (v

=bwve
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Similarly,
e=e U

=¢'v(a A bj
=(cv a)a (cv b)
={avecya (cv b)
=la(cv b
=1 A (bwv )
=b v

Hence b=¢.

BOOLEAN ALGEBRA

Definitions and Examples

Definition: A non-empty set B with two binary operations v and ~, a unary
operation °, and two distinct elements 0 and [ is called a Boolean Algebra if

the following axioms holds for any elements a, b, c € B:
[Bi]: Commutative Laws:

avb=bwva and anb=bna
[B:2]: Distributive Law:

asnbwvcec)=(aab)viaaclandavibac)=(av b)a (avc)
[B:]: Identity Laws:
av D=a and a ~l=a
[Bs]: Complement Laws:

ava=l and ana=0
We shall call 0 as zero element, 1 as unit element and a” the complement of a.

We denote a Boolean Algebra by (B, v, A, - 0,1).

Example 1. Let A be a non-empty set and P(A) be its power set. Then the set
algebra (P(A), U, m, — ¢. A) is a Boolean algebra.
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Example 2 : Let B= {0, 1} be the set of bits (binary digits) with the binary

operations v and » and the unary operation °~ defined by the following
tables:

v, 1l 0 x|l @ 11 B

L1 E i g L £ @ 0 1

011 0 0 A A

Here the operations v and ~ are logical operations and complement of 1 is 0

whereas complement of Ois 1. Then (B, v, A, " , 0, 1) is a Boolean Algebra.
It is the simplest example of a two-element algebra.

Further, a two element Boolean algebra is the only Boolean algebra whose
diagram is a chain.

Example 3 : Let B, be the set of n tuples whose members are either 0 or 1. Let
a = (a;, as,....,ay,) and b = (by, b,,....,b,) be any two members of B,. Then we
define
avib=(a v bj,az v ba,......an v byp)
anib=(a; A bpa A ba,.....an A by) ,
where v and ~ are logical operations on {0, 1}, and
a'=(~ay,~a,...,~a,) ,

where~0=1and ~1=0.

If 0, represents (0, 0,.....,0) and 1, = (1, 1,...... 1), then (Bp, v1, A1, 7, Op, 1)
1s a Boolean algebra.

Example 4. The poset Diy = {1, 2, 3, 5, 6. 10, 15, 30} has eight element.
Define v . ~ and “on Dsy by

3
av b=Ilem(a,b) , a A b=ged(a, b) and a= —0
ol

Then Dsg 1s a Boolean Algebra with 1 as the zero element and 30 as the unit
element.
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Example 3: Let S be the set of statement formulas involving n statement
variables. The algebraic system (S, A, v. ~, F. T) 1s a Boolean algebra in
which ~ v, ~ denotes the operations of conjunction, disjunction and negation
respectively. The element F and T denotes the formulas which are
contradictions and Tautologies respectively. The partial ordering
corresponding to A, v is implication = .

We have seen that B, 1s a Boolean algebra. Using this fact, we can also define
Boolean algebra as follows:

Definition: A finite lattice is called a Boolean Algebra if it is isomorphic with
B, for some non-negative integer n.

For example, D3y is isomorphic to Ba. In fact, the mapping f: D3y — Bs defined
by

f(1) =000, f(2)=100, f(3)=010, f(5)=001,
f(l6)=110, f(10)=101, f(15)=011, f(30)=111
is an isomorphism. Hence Dy is a Boolean algebra.

If a finite L does not contain 2" elements for some non-negative integer n,
then L. cannot be a Boolean Algebra.

For example, consider Dy = {1, 2, 4, 5, 10, 20} that has 6 elements and 6 = 2"
for any integer n = 0. Therefore, D, 1s not a Boolean algebra.

If | L | =2" then L may or not be a Boolean Algebra. If L is
isomorphic to B, then it is Boolean algebra, otherwise it is not.

For large value of n, we use the following theorem for determining
whether D, 1s a Boolean Algebra or not.
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Theorem: Let

where p; are distinct primes, known as set of atoms. Then D, is a Boolean
algebra.

Proof: Let A = {pi, p2......px}. If B — A and ag is the product of primes in B,
then “gn. Also any divisor of n must be of the form “g for some subset B of A,
where we assume that a, = 1. Further, if C and B are subsets of A, then C — B
if and only if “cIp. Also

a a A H a a
CAB= C g=gcd(c ,7g)

and
cos="c ¥ s=lem (c,"p)
Thus the function f: P(A) — D, defined by

f(B) ="g

is an 1somorphism. Since P(A) is a Boolean algebra., it follows that D), is also a
Boolean algebra.

For example, consider D2y, Dap. D21o, Dees. Dess. We notice that

(1) 20 cannot be represented as product of distinct primes and so Dy is not a
Boolean algebra.

(1) 30 = 2.3.5, where 2, 3, 5 are distinct primes. Hence Ds; is a Boolean
Algebra.

(i11) 210 = 2.3.5.7 (all distinct primes) and so D2jq is a Boolean algebra.

(1v) 66 = 2.3.11 (product of distinct primes) and so Dgs 1s a Boolean algebra.
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(v) 646 = 2.17.19 (product of distinct primes) and so Degss is a Boolean
Algebra.

Duality: The dual of any statement in a Boolean algebra B is obtained
by interchanging v and ~ and interchanging the zero element and unit
element in the original statement.

For example, the dualof a ~ 0=0 1s a » I=1

Principle of duality: The dual of any theorem in a Boolean Algebra is
also a theorem.
(Thus, dual theorem is proved by using the dual of each step of the proof of
the original statement).

Properties of a Boolean Algebra

Theorem: Let a, b and c be any elements in a Boolean algebra (B, v. A .,

0. I). Then

I. Idempotent Laws:

(i)ava=a (ii)a ~ a=a
2. Boundedness Laws:

(i)av I=1 (ii)a A0=0
3. Absorption Laws:

(i)avi(a~ b)=a (ii)a A{a vb)=a
4. Associative Laws:

Wavbvec=avibvecl@aab)ac=aal A c)

Proof: It is sufficient to prove first part of each law since second part follows
from the first by principle of duality.
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1. (1). We have
a=a v 0 (by identity law in a Boolean algebra)

=a v(a na’) (by complement law)
=(a va) n(a v a’) (by distributive law)
=(a va) al (complement law)

= a v a (identity law) .
which proves 1(i).

2(1) : We have
av I=(awv I) ~I (identity law)

=(av I) »n (a v a) (complement law )
=a v (I~ a") (Distributive law)

=a v a (identity law)

=1 (complement law).

3(1) : we note that
av(anb)=(anl)v (ab)(identity law)

=a ~ (I v b)(distributive law)
=a A (b v I) (commutativity)
=a » [ (Identity law)

= a (identity law)
4(i) Let
L=(av b)vec, R=a v(b v c)

Then
anlL=aaAf(av b) v c]

=la a(a v b)] v (a ac) (distributive Law)
=a v (a a c)( absorption law)

= a (absorption law)
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and
anR=anlavdvc)

=(a »~ a) v (a A(b vc)] (distributive law)
=av (aa (b v ¢)] (idempotent law)
= a (absorption Law)

Thusa ~ L=a ~ R and so, by duality,a vL=a vR.

Further,
a’AnL=a af(avb)vc]

=[a" A (av b)] v (a" » c) (distributive law)

=[(a" A a) v(a A b)]v (@ A c)(distributive law)
=[0, v(a" ~ b)] v (@ A c)(complement Law)
=(a" A b)] v (a" ~ c) (Identity law)

=a (b v ¢) (distributive law)
On the other hand.
aAnR=a aAlfav (bv )]

=(a" ~ a) v[a" A (b v c)] (distributive law)

=0 v [a A (b v ¢)] (complement law)

=a" a (b v c)] (identity law)

Hence
a AnL=a A R andsobydualitya” vL=a" vR

Therefore
L=(awvb)wvc

=0 v [(a v b) v c]=0 v L (identity law)

=(ana)v [(avb)vel=(ana)v L(complement law)
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=(awv L) A (@ v L) (distributive law)
=(@ vR) A (@ v R)(usingA vL=a v Randa" v L=a" v R]
=(a ~ a’) v R (distributive law)
=0 v R (complement law )
= R (identity law)
Hence
(avbwve=avibwvec),

which completes the proof of the theorem.

Theorem: Let a be any element of a Boolean algebra B. Then

(1) Complement of a 1s unique (uniqueness of complement)

(11)(a") = a (Involution law)

(iii))0’=1and 1"=0

Proof: (1) Let a" and x be two complements of a € B. Then
ava=I and aaAa=0 (1)
avx=I and a A x=0 (11)

and we have

a=a v 0 (Identity law)

=a" v {aax) by (i1)
=(a"wv a) A (8" v x) (Distributive law)
=] a(a v x) by (1)

#

=g WK [Identity law ]
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Also
X =X v 0 (Identity law)
=xv(anaa), by (i)
=(x v a) A (x v a) [Distributive law]
=TaEsval) , ( by (ii))
=XV & =4 % X (Identity and commutative law)
Hence a’ = x and so complement of any element in B is unique.

(i1) Let a” be a complement of a. Then
g v =1 and ana=0
or , by commutativity .
v a=l and a A a=0
This implies that a is complement of a’, that 1s,
a=(a’)"
(111) By boundedness law,

D W ] = ]
and by identity law
0'A 1=0

These two relations imply that 1 is the complement of 0, thatis 1 =0".

By principle of duality, we have then

D=1
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Theorem: Let a, b be elements of a Boolean Algebra. Then (a vb) =a” A b’
and (a A by =a" vb"

Proof: we have
favbwvi@aDb)=(bwva v(@ab) (commutative)

=bwv(av (@ A b’)) (associative)

=b v[(awv a A (awv b)] (distributive)

=bwv[IA(avDb) (complement)
=hv{avh) (identity)

=b v (b’ v a) (commutative)
=(bvb)va (associative law)
=1va (complement law)
4| (Identity law)

Also
(avba(@ab)=[(av b)aal]ab (associativity)

=flana)vibaa) aAb=[0v (baa)] ab

(complement) (distributive)

=(b A a)Aab (1dentity)

=b A-B A a'=0nE=1
Hence a’ ~ b’ is complementofa v b,ie.(a v b)’=a" A b'.

The second part follows by principle of duality.
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We have proved already that Boolean algebra (B, v, A, ", 0, I) satisfies
associative laws, commutative law and absorption law. Hence every Boolean
algebra is a lattice with join as v and meet as »~. Also boundedness law hold
in a Boolean algebra. Thus Boolean algebra becomes a bounded lattice. Also
Boolean algebra obeys distributive law and is complemented. Conversely,
every bounded, distributive and complemented lattice satisfied all the axiom of
a Boolean algebra. Hence we can define a Boolean algebra as

Definition: A Boolean Algebra is a hounded distributive and complemented
lattice.

Now, being a lattice, a Boolean algebra must have a partial ordering. Recall

that in case of lattice we had defined partial ordering<bya<bifa v b=bor
aAb=a

The following result yields much more than these required conditions:
Theorem: If a, b are in a Boolean algebra, then the following are equivalent:
()av b=>b
(2)a A~ b=a
(3)a" v b=1

4)a A b'=0
Proof: (1) < (2) already proved.

(1) = (3): Supposea v b=b, then
avb=a viavh)
=@ wvawvh (associativity)

=] ] (complement & boundedness)
Conversely, suppose a° v b=1, then
avb=1a(avb)=( v b)a(avb) (byassumption of (3))

=(a’nawvh (distributivity)
=0 vb=b (complement & identity)
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Thus (1) = (3).
Now we show that (3) = (4).

Suppose first that (3) holds. Then, using De-Morgan Law and involution, we
have
0=T=("vb)Y=a"Abd
=a ~ b (Involution)
Conversely, if (4) holds, then
I=0=@Aaby=d"v =g vb
Thus (3) = (4)

Hence all the four condition are equivalent.

Example: Show that the lattice whose diagram is

|
a f
e '-d_
b \ /c
e
0

1s not a Boolean algebra.

Solution: Elements a and e are both complementsof csincec v a=1¢c A a=
Oandec ve=Lcae=0

But in a Boolean algebra complement of an element is unique. Hence the given
lattice 1s not a Boolean algebra.
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Definition: Let (B, v, A, ", 0, 1) be a Boolean algebra and S  B. If S
contains the elements 0 and 1 and is closed under the operation v, ~ and 1.
then (S. A, v.",0, 1) is called Sub-Boolean Algebra.

In practice, it is sufficient to check closure with respect to the set of operations
(A, )or(v,” ) forproving a subset S of B as the sub-Boolean algebra.
The definition of sub-Boolean implies that it is a Boolean algebra.

But a subset of Boolean algebra can be a Boolean algebra, but not necessarily a
Boolean subalgebra because it is not closed with respect to the operations in B.
For any Boolean algebra (B, ~, v, ", 0, 1), the subsets {0, 1} and the set B are
both sub-Boolean algebras.

In addition to these sub-Boolean algebras, consider now any element a € B
such that a = 0 and a = 1 and consider the set {a, a’, 0, 1]. Obviously this set is
a sub-Boolean algebra of the given Boolean algebra.

For example D7o= {1, 2. 5. 7. 10, 14, 35, 70} 1s a Boolean algebra and
{1, 2, 35,70} is a subalgebra of Dyy.

Every element of a Boolean algebra generates a sub-Boolean algebra,
More generally, any subset of B generates a sub-Boolean algebra.

Example: Consider the Boolean algebra given in the diagram below:

|
a-4\ b
a v
| >0
b \l a
0
Verify whether the following subsets are Boolean algebras or not :
Si=[a,a’,0,1)}

S;={a vb,an b, 01}
S;={aanb,b,a 1)
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S;=({b,ab,a.0}

S_-,: {ﬂ.bJ. D. 1}

Solution: The subset §; and S; are sub-Boolean algebras. The subsets S; and
S4 are Boolean algebras but not sub-Boolean algebras of the given Boolean
algebra. The subset Ss is not even a Boolean algebra.

LATTICES OF DIRECT PRODUCT:

Definition: Let (Bi, A1, v, ', 01, 11) and (B1, A2, vz, 7, 02, 12) be two
Boolean algebras. The Direct Product of the two Boolean algebras is defined
to be a Boolean algebra, denoted by, (Bix Ba, A3, vi3,”, 05 1)) in
which the operations are defined for any (a;, by) and (ax. b2) € By x Baas

(a;.by) As(ar,b)=(a; Ayanby Aaby)
(ar.bi) va(az,b2)=(a1 viap b1 vaba)
(a1, b)) =(ar". by")
0: = (04, 0p) and I; = (1y, 1)

Thus, from a Boolean algebra B, we can generate B’=Bx B. B'=BxB x B
elc.

Boolean Homomorphism

Definition: Let (B, A, v, ", 0, 1) and (P, n, uw, —, @, ) be two Boolean
Algebras. A mapping f: B — P is called a Boolean Homomorphism if all the
operations of the Boolean Algebra are preserved , thatis , foranya,be B

fla ~ b)=f{a) N f(b)
f(a v b)=f(a) U f(b)

f(a’) = f(a)
f(0)= o
f(1)=P
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Representation Theorem

Let B be a finite Boolean algebra. We know that an element a in B 1s called an
atom (or min term) if a immediately succeed the least element 0. Let A be
the set of atoms of B and let P(A) be the Boolean algebra of all subsets of the
set A of atoms. Then (as proved in chapter on lattices) each x = 0 in B can be

expressed uniquely (except for order) as the join of atoms (i.e. elements of A).
So, let

X=a; Vv a3 V ...... vV a,
Consider the function

f:B— P(A)
defined by

f(x)= {ay, az,......, a, )

foreachx=a; v az v....v a,.

Stone's Representation Theorem: Any Boolean Algebra is isomorphic to a
power set algebra (P(S), m, v, ~, ¢, S) for some set S.

Restricting our discussion to finite Boolean Algebra B, the
representation theorem can be stated as :
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Theorem: Let B be a finite Boolean Algebra and let A be the set of atoms of
B. It P(A) is the Boolean Algebra of all subsets of the set A of atoms. then the

mapping f : B— P(A) is an isomorphism.

Proof: Suppose B is finite Boolean algebra and P(A) is the Boolean algebra of
all subsets of the set A of atoms of B. Consider the mapping

f:B— PA)
defined by
f(x) = {ay, a»,....,an} .

where x = a; v az v ....v a,1s the unique representation of x £ B as the join of
atoms ai, a2,.....ap € A. If a; are atoms, then we know that a;
» a;=a; but a; A a;= 0 for a; # a;.

Let x and y are in the Boolean algebra B and suppose

X =8y Viwa aev by vaaaavbg

where
A= { diy, d7..... dr. b]. bg.,,..b;, Cly---:C0 d1dk}
15 the set of atoms of B. Then

X W N=dp Ve VD Nl VBV

Hence
fix v }f} = [ Ay, B, dr. b].. bg,. bL Cy, Cg.....C[}
= @saa i bssiskl @ iibi: bbb o eaiiig]

= f(x) u f(y)
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and
A ¥ =000
= [ 8y, 89.:005 B DigeniasBs} O3 By i D By iinsCi}

= f(x) n f(y)

Then
xvy=l andx A y=0
and so y =x". Thus
fxX }=H1¥y)= {€ywvix Gy dy }
=§ 815 By B Bry Do Bs)®

= (f(x))".

Since the representation is unique, f is one-to-one and onto. Hence f is a
Boolean algebra isomorphism. Thus, every finite Boolean algebra is
structurally the same as a Boolean algebra of sets.

If a set A has n elements, then its power set P(A) has 2" elements. Thus we
have

JOIN IRREDUCIBLE:

Definition: Let (L, ~, v ) be a lattice. An element a £ L is said to be join-
irreducible if it cannot be expressed as the join of two distinct elements of L.

In other words, a € L is join-irreducible if for any b,c e L
d=bwv c=a=bota=c

For example, prime number under multiplication have this property. In fact if p
1s a prime number, thenp=ab=paorp=h.
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Clearly 0 is join — irreducible.

Further, if a has at least two immediate predecessors, say b and ¢ as in the
diagram below:

da

W

Thena=Db v c and so a is not join — irreducible.

On the other hand if a has a unique immediate predecessor c, then

a = sup(by, b;) = by v b, for any other elements b, and b, because c
would lie between by, b, and a.

b by

In other words, a # 0 is join irreducible if and only if a has a unique
predecessor.
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Definition: Those elements, which immediately succeed 0, are called atoms.
From the above discussion, it follows that the atoms are join-irreducible.

a b

y

However, lattices can have other join-irreducible elements. For example, the
element c in five-element lattice is not an atom, even then it is join irreducible
because it has only one immediate predecessor, namely a.

C

Let a be an element of a finite lattice which is not join irreducible, then we can
write

a=bwve

If b and c are not join irreducible, then we can write them as the join of other
elements. Since L is finite we shall finally have

a=dyvdyvdiwv..... S, (1)

where d;, 1= 1, 2, ...,n are join-irreducible. If d; precedes d;, then d; v d; = d;,
so we delete d; from the expression. Thus d’s are irredundant, ie., no d
precedes any other d.
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The expression (1) need not be unique. For example, in lattice shown above
I=av bandI=b v c.

Theorem: Let (L, ~, v ) be a finite distributive lattice. Then every a in L can
written uniquely (except for order) as the join of irredundant join irreducible
elements.

Proof: Let a € L. Since L is finite, we can express a as the join of irredundant
join irreducible elements (as discussed above). To prove uniqueness let

a=bhivbhv...vbgp=civerv...vCh.,

where b; are irredundant join-irrducible and c¢; are irrdundant and join-
irreducible. For any given i, we have

b<(b; v by vo..ov by)=¢p v e v..... NG
Hence
bi=bi A (c1 V €2 Vii.i V Ci)
= A cp) v by A ) Ve v (by A Cp)

Since b; 1s join-irreducible, there exists j such that b;=b; ~ ¢; and so b; < ¢;.
Similarly, for c; there exists a by such that ¢; < by, . Hence
bisc=hbg ,

which gives bi = ¢j = by since b; are irredundant. Hence b; and ¢; may be paired
off. Hence the representation for a is unique except for order.

PART - B

POSSIBLE QUESTIONS - SIX MARKS

1.Define sublattice, lattice homomorphism, order isomorphic.

2.Show that in a bounded distributive lattice, the elements which have complements form
sublattice.

3.Show that a lattice is distributive iff (a* b) + (b*c) + (c *a) = (a+ b) * (b +c) * (c+ a).
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4. Define complete, distributive lattice, Complemented lattice.

5.1f (L, A,v) is a complemented and distributive lattice , then the complement a of any element
aeL is unique.

6.Every chain is a distributive lattice.

7.Show that every distributive lattice is modular but not conversely.

8.Show that a lattice is distributive iff (a* b) + (b*c) + (c *a) = (a+ b) * (b +¢) * (c+ a).
9. In a distributive lattice, if an element has a complement then this complement is unique.

10.Show that a lattice homomorphism on a Boolean algebra which preserves 0 and 1 is a Boolean
homomorphism.

11.The direct product of any two distributive lattices is a distributive lattice.

12.Prove that two bounded lattices A and B are complemented iff A XB is complemented.

13.Prove that two lattices A and B are relatively complemented iff AXB is relatively
complemented.

PART -C

POSSIBLE QUESTIONS — TEN MARKS

1. If the meet operation is distributive over the join operation in a lattice, then the join operation is
also distributive over the meet operation. If the join operation is distributive over the meet
operation, then the meet operation is also distributive over the join operation.

2. Let L be a finite distributive lattice. Then every a in L can be written uniquely (except for order)
as the join of irredundant join irreducible elements.

3. If (A,<) and (B, <) are posets , then (AXB, <) is a poset with partial order defined
by (ab)<(a, b)ifa < aand b< b.

4.Every finite lattice is complete.
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UNIT-I11I
Question Option-1 Option-2 Option-3 Option-4 Answer
If a variable x takes on only the values 0 and 1 it is called a simply variable decision variable boolean variable dual variable boolean variable

If C is a non empty subset of a boolean algebra such that C itself is a Boolean

algebra with respect to the operations of B, then C is called a ------------ sub algebra Boolean algebra sub lattice duals sub algebra
A e if n boolean variables is a boolean product of the n lierals in

which each literal appears exactly once. middle term max term min term sub term min term

A - of n boolean variables is a boolean sum of the n literals in

which each literal appears exactly once. middle term max term min term sub term max term

When a boolean function is expressed as a product of maxterms, it is called its

Product of sums expansion

Sums of product expansion

product of sums canonical form

sums of product canonical form

Product of sums expansion

Product of sums expansion

Sums of product expansion

product of sums canonical form

sums of product canonical form

Sums of product expansion

Boolean function expresses in the DNF or CNF are said to be in --------------

standard form

iterative form

canonical form

direct form

standard form

If a boolean function in n variables is expressed as the sum of all the 2 power n
minterms it is said to be in -----------

Complete CNF

Complete DNF

Complete PDNF

complete PCNF

Complete DNF

Boolean function expressed in complete DNF or complete CNF are said to be

canonical form

standard form

complete standard form

complete canonical form

complete canonical form

In a boolean function sums of products expansion is said to be in the --------- DNF CNF PDNF PCNF DNF

In a boolean function products of sums expansion is said to be in the ------------ DNF CNF PDNF PCNF CNF

The dual ofa + a (b+1) = ais ---------- ae(atbel)=a at(at+tbel)=a a-(atbel)=a ae(a-bel)=a ae(atbel)=a
The dual of (a @b)' = --—-—-——--- ab' a -b' a+b a'l/b a+b

In a boolean algebra, the operation + is called the ------------ boolean sum boolean product boolean variable boolean symbol boolean sum

In a boolean algebra, the operation e is called the ------------ boolean sum boolean product boolean variable boolean symbol boolean product
Every lattices is a -------------- bounded unbounded poset empty poset

Every poset is ------------------- lattice not lattice bounded unbounded not lattice

Every finite lattice is ----------------- bounded unbounded poset empty bounded

If every element of L has atleast one complement then it is called ------------------

-- finite lattice infinte lattice distributive lattice complemented lattice complemented lattice
In any boolean algebra, the immediate successors of the O - element are called -

— atom empty unique well defined atom

Ifa+x=1 and a @ x =0, therefore x = ~-—----——--- a" a a 0 a

A lattice (L, <) which has both a least element denoted by 0 and the greast

element by 1 is called a ------------ lattice bounded unbounded poset empty bounded

Let D3y ={1, 2, 3,5, 6, 10, 15, 30} and relation | be a partial ordering on

D3o. The lub of 10 and 15 respectively is ---- 30 15 10 6 30

Principle of duality is defined as ------

< is replaced by >

LUB becomes GLB

are all properties unaltered when <is
replaced by >

all properties are unaltered when
<is replaced by > other than 0
and 1 element

all properties are unaltered when <is

replaced by > other than 0 and 1 element

If lattice (C ,<) is a complemented chain, then --------------- |IC|<1 |C|<2 IC| >1 C doesn't exist |C|<2
Different partially ordered sets may be represented by the same Hasse diagram
if they are ------ same lattices with same order isomorphic order - isomorphic order - isomorphic

A self-complemented, distributive lattice is called -------

Boolean algebra

Modular lattice

Complete lattice

Self dual lattice

Boolean algebra

If a Boolean algebra, then the following is true -------------

B is a finite but not complemented
lattice

B is a finite, complemented
and distribtive lattice

B is a finite, distributive but not
complemented lattice

B is not distributive lattice

B is a finite, complemented and distribtive
lattice

Let L be a lattice. Then for every a and b in L which one of the following is

correct? avb=a’b avV(bVec)y=(@avb)vece av(bac)=a avV(bVvc)=a avV(bVvc)y=(@avb)ve
The Boolean expression XY + XY'+X'Z + XZ'is independent of the Boolean

variable ----- Y X z X' Y

Thedualof (0.a)+(b.1) = - (1.a)+(b+0) =D (1+a).(b+0) =b (1+a).(b.0) (1.a).(b.0) =a (1+a).(b+0) =b

A lattice (L, <) is said to be----------- ifa<cimpliesaV(bAc)=(aVb)Ac unbounded lattice bounded lattice modular lattice complemented lattice modular lattice
GLB {a, b} = -----—-- is called the meet of aand b a’b a&b avb a=b a’b

LUB {a,b} = -----------—-- is called the joint of aand b a’b a&hb avb a=b avb

An element a in a lattice (A, <) is called a if for every

elementbe A,a<b. lower bound universal lower bound upper bound universal upper bound Universal lower bound
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INTRODUCTION : GRAPH THEORY

Graph theory is used to analyses problems of combinatorial nature that
arise in computer science, operations research , physical science and economics .
The term graph is familiar to you because it has been used in the context of
straight lines and linear in equalities .In this chapter, first we will combine the
concepts of graph theory with digraph of a relation to define a more general type
of graph that has more than one edge between a pair of vertices. Second , we will
identify basic components of a graph ,its features any many applications of
graphs.

Definitions and Examples

Definition: A graph G = (V.E) is a mathematical structure consisting of two
finite sets V and E. The elements of V are called Vertices (or nodes) and the
elements of E are called Edges. Each edge

is associated with a set consisting of either one or two vertices called its
endpoints.

The correspondence from edges to endpoints is called edge-endpoint
function. This function is generally denoted by y. Due to this function, some
author denote graph by G = (V. E. v).

Definition: A graph consisting of one vertex and no edges is called a trivial
graph.

Definition: A graph whose vertex and edge sets are empty is called a null
graph.

Definition: An edge with just one end point is called a loop or a self loop.
Thus, a loop is an edge that joins a single endpoint to itself.

Definition: An edge that is not a self-loop is called a proper edge.
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Definition: If two or more edges of a graph G have the same vertices, then
these edges are said to be
parallel or multi-edges.

Definition: Two vertices that are connected by an edge are called adjacent.
Definition: An endpoint of a loop is said to be adjacent to itself.

Definition: An edge is said to be incident on each of its endpoints.

Definition: Two edges incident on the same endpoint are called adjacent
edges.

Definition: The number of edges in a graph G which are incident on a vertex is
called the degree of
that vertex.

Definition: A vertex of degree zero is called an isolated vertex.

Thus. a vertex on which no edges are incident is called isolated.

Definition: A graph without multiple edges (parallel edges) and loops is
called Simple graph.

Notation: In pictorial representations of a graph, the vertices will be denoted
by dots and edges by line segments.

€5
2

1
or €3 €4
3 -

€2
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The edges e, and e3 are adjacent edges because they are incident on the same
vertex B.

2. Consider the graph with the vertices A, B , C, D and E pictured in the figure
below.

D o}
In this graph, we note that
No. of edges =3
Degree of vertex A=4
Degree of vertex B =2
Deegrec of vertex © =3

Degree of vertex D = 1
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Degree of vertex E=0

Sum of the degree of vertices=4+2+3+1+0=10
Thus, we observe that

5
>, deg(vi)=2e ,
i=1

where deg(v;) denotes the degree of vertex v; and e denotes the number of
edges.

Euler’s Theorem: (The First Theorem of Graph Theory): The sum of the
degrees of the vertices of a graph G is equal to twice the number of edges
in G.

(Thus, total degree of a graph is even)

Proof: Each edge in a graph contributes a count of 1 to the degree of two
vertices (end points of

the edge). That is, each edge contributes 2 to the degree sum. Therefore the
sum of degrees of the

vertices is equal to twice the number of edges.

Corollary: There must be an even number of vertices of odd degree in a given
graph G.
Proof: We know, by the Fundamental Theorem, that

1

> deg(vi) = 2 x no. of edges

i=1

Thus the right hand side is an even number. Hence to make the left-hand side
an even number there
can be only even number of vertices of odd degree.

Theorem: A non-trivial simple graph G must have at least one pair of vertices
whose degrees are
equal.

Proof: Let the graph G has n vertices. Then there appear to be n possible
degree values, namely O, I, .....n — 1. But there cannot be both a vertex of
degree 0 and a vertex of degree n — | because if there is a vertex of degree 0
then each of the remaining n — 1 vertices is adjacent to atmost n—2 other
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vertices. Hence the n vertices of G can realize atmost n—1 possible values for
their degrees. Hence the pigeonhole principle implies that at least two of the
vertices have equal degree.

Definition: A graph G is said to simple if it has no parallel edges or loops. In a
simple graph, an edge with endpoints v and w is denoted by {v, w}.
Definition: For each integer n = 1, let D, denote the graph with n vertices and
no edges. Then D, is called the discrete graph on n vertices.

For example, we have

[ ° ] and ° @ . @ .

Ds Ds

Definition: Let n > 1 be an integer. Then a simple graph with n vertices in
which there is an edge between each pair of distinct vertices is called the
complete Graph on n vertices. It is denoted by K.

For example, the complete graphs K,;, K3 and K4 are shown in the
figures below:

Vi Vo Vi V2 Vi V2

Definition: If each vertex of a graph G has the same degree as every other
vertex, then G is called a regular graph.
A Kk-regular graph is a regular graph whose common degree is k.

But this graph is not complete because v, and v4 have not been connected
through an edge. Similarly, v; and v3 are not connected by any edge.
Thus

A Complete graph is always regular but a regular graph need not

be complete.

Subgraphs
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Definition: A graph H is said to be a subgraph of a graph G if and only if
every vertex in H is also a vertex in G, every edge in H is also an edge in G
and every edge in H has the same endpoints as in G.

€1
Vi Va
co ca
1."1 1-".
_ es 4

Similarly, the graph

A B

D 0

is a subgraph of the graph given below:

Ae B3

De oC

Definition: A subgraph H is said to be a proper subgraph of a graph G if
vertex set Vy of H is a proper subset of the vertex set Vg of G or edge set Ey is
a proper subset of the edge set Eg.

For example, the subgraphs in the above examples are proper subgraphs

of the given graphs.
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Definition: Let G = (V. E) be a graph. Then the complement of a subgraph
G" = (V’, E’) with respect to the graph G is another subgraph G = (V" E™)
such that E'"= E — E” and V"~ contains only the vertices with which the edges
in E”" are incident.

For example, the subgraph

Ve o\

is the complement of the subgraph

V3 V4

with respect to the graph G shown in the figure below:
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Definition: If G is a simple graph, the complement of G, (Edge
complement), denoted by G” or G° is a graph such that

(i) The vertex set of G is identical to the vertex set of G, that is Vg = Vg

(ii) Two distinct vertices v and w of G” are connected by an edge if and only if
v and w are not connected by an edge in G.
For example. consider the graph G

Y2
¥i V3
V4
G

Then complement G” of G is the graph

oy,

Ve V3

Vq
G »

Isomorphisms of Graphs

We know that shape or length of an edge and its position in space are not part
of specification of a graph. For example, the figures

V3 e Vi € V

Vq .Y/, and v

€2 €3

[E=]

e3
V3
represent the same graph.
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Definition: Let G and H be graphs with vertex sets V(G) and v(H) and Edge
sets E(G) and E(H) respectively. Then G is said to isomorphic to H iff there
exist one-to-one correspondences g : V(G) — v(H) and h : E(G) — E(H) such
that for all ve V(G) and e € E(G),

v 1s an endpoint of e < g(v) is an endpoint of h(e).

Definition: The property of mapping endpoints to endpoints is called
preserving incidence or the

continuity rule for graph mappings.

As a consequence of this property, a self-loop must map to a selt-loop.

Thus, two isomorphic graphs are same except for the labeling of their vertices
and edges.

Example: Show that the graphs

(S V3
& 172
Vi ej Ce €2 €3
Vs
(¥} V4
G

and

are 1somorphic.
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Solution: To solve this problem. we have to find g: V(G) — V(H) and h : E(G)
— E(H) such that for all ve V(G) and e € E(G),

v is an endpoint of e & g(v) i1s an endpoint of h(e).

Since ez and e3 are parallel (have the same endpoints), h(ez) and h(es) must also
be parallel. Thus we have
h(e,) = f; and h(e3) = f; or h(e,) = 1, and h(e;) = f;.

Also the endpoints of e; and e3 must correspond to the endpoints of f; and f;
and so

g(v3)=wj and g(vq) = ws or g(v3) = ws and g(v4) = wy.

Further, we note that v; is the endpoint of four distinct edges ey, e7. es

and e4 _and so g(v) should be the endpoint of form distinct edges. We observe
that w; is the vertex having four edges and so g(vy) = wa. If g(v3) = wy, then
since vy and vs are endpoints of ey in G, g(vy) = wz and g(v3) = w; must be
endpoints of h(ey) in H. This implies that h(e;) = f3.

Continuing in this way we can find g and h to define the isomorphism

between G and H.
One such pair of functions (of course there exist several) is shown

below:

V(G) V(H)

=]
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E(G) E(H)

Remark: Each of the following properties is invariant under graph
isomorphism, where n, m and h are all non-negative integers:

has n vertices

has m edges

has a vertex of degree k

4. has m vertices of degree k

Walks, Paths and Circuits

Definition: In a graph G. a walk from vertex v, to vertex v, is a finite alternating

.
2,
8

sequence:

(V0. €1. V1. €2,......Vn-1. €, Vn}
of vertices and edges such that v; ; and v; are the endpoints of e;.

The trivial walk from a vertex v to v consists of the single vertex v.
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Definition: In a graph G, a path from the vertex vq to the vertex v, is a walk
from vg to v, that does not contain a repeated edge.

Thus a path from vy to v, is a walk of the form
{ ¥, €1, V1, €3; V2,000 Vit € Vi) s
where all the edges ey are distinct.
Definition: In a graph. a simple path from vp to v, is a path that does not contain a
repeated vertex.
Thus a simple path is a walk of the form
{Vo, €1,V1, €2, V2,e0vurns Vids s Vi )

where all the e; are distinct and all the v; are distinct.

Definition: A walk in a graph G that starts and ends at the same vertex is
called a closed walk.
Definition: A closed walk that does not contain a repeated edge is called a
circuit.
Thus, closed a closed path is called a circuit (or a cycle) and so a circuit is a
walk of the form

Vo, €1 Vi, 88, Ve wwwssVils G Val

where vgp = v, and all the e; are distinct.

Definition: In a graph the number of edges in the path {vg. ey, vi.es....... =]
vn) from vp to vy, is called the length of the path.

Theorem: If there is a path from vertex v; to v, in a graph with n vertices, then
there does not exist a path of more than n-1 edges from vertex vy to va.
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Proof: Suppose there is a path from v; to va. Let
WilaseunsaWsansaiesssNg

be the sequence of vertices which the path meets between the vertices v and
va. Let there be m edges in the path. Then there will be m + 1 vertices in the
sequence. Therefore if m > n—1, then there will be more than n vertices in the
sequence. But the graph is with n vertices. Therefore some vertex, say v,
appears more than once in the sequence. So the sequence of vertices shall be

Wi sorinmnnag ¥ ismsnsmnea¥ ogosnnon ¥ fos s s 4 O

Deleting the edges in the path that lead vg back to vg we have a path from v; to
v, that has less edges than the original one. This argument is repeated untill we
get a path that has n-1 or less edges.

CONNECTED AND DISCONNECTED GRAPHS :
Definition: Two vertices vy and v, of a graph G are said to be connected if and
only if there is a walk from v; to va.

Definition: A graph G is said to be connected if and only if given any two
vertices vy and v, in G, there is a walk from vy to v,.

Thus, a graph G is connected if there exists a walk between every two
vertices in the graph.
Definition: A graph which is not connected is called Disconnected Graph.
Example: Which of the graph below are connected?

Definition: If a graph G is disconnected, then the various connected pieces of
G are called the connected components of the graph.

Example: Consider the graph given below:

Vi
€4
V4 Cs
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This graph is disconnected and have two connected components:

€1
H1 : V@ *\H
with vertex set {vi, vo, v3} and edge set {ey, e, e3}
€2 €3
oy,
H>: €4 LA
vy es with vertex set {vy, vs, v} and edge set {ey, es, eg}.
Ce LA

Solution: The connected components are :

and

Example: Find the number of connected components in the graph

XX
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Eulerian Paths And Circuits

Definition: A path in a graph G is called an Euler Path if it includes every
edge exactly once.

Definition: A graph is called Eulerian graph if there exists a Euler circuit for

that graph.

Definition: A circuit in a graph G is called an Euler Circuit if it includes
every edge exactly once. Thus, an Euler circuit (Eulerian trail) for a graph G is
a sequence of adjacent vertices and edges in G that starts and ends at the same
vertex, uses every vertex of G at least once, and uses every edge of G exactly
once.

Theorem 1. If a graph has an Euler circuit, then every vertex of the graph has
even degree.

Proof: Let G be a graph which has an Euler circuit. Let v be a vertex of G. We
shall show that degree of v is even. By definition, Euler circuit contains every
edge of graph G. Therefore the Euler circuit contains all edges incident on v.
We start a journey beginning in the middle of one of the edges adjacent to the
start of Euler circuit and continue around the Euler circuit to end in the middle
of the starting edge. Since Euler circuit uses every edge exactly once, the edges
incident on v occur

Starting point

in entry / exist pair and hence the degree of v is a multiple of 2. Therefore the
degree of v is even. This completes the proof of the theorem.

We know that contrapositive of a conditional statement is logically equivalent
to statement. Thus the above theorem is equivalent to:
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Theorem:2. If a vertex of a graph is not of even degree, then it does not have
an Euler circuit.

or
“If some vertex of a graph has odd degree, then that graph does not have an

Euler circuit™.

Example: Show that the graphs below do not have Euler circuits.
(a)

vy Vs

V3 V4

Vn

Vi

Solution: In graph (a). degree of each vertex is 3. Hence this does not have a

Euler circuit.
In graph (b), we have
deg(vy) =3
deg(va) =3
Since there are vertices of odd degree in the given graph. therefore it does not

have an Euler circuit.
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are graphs in which each vertex has degree 2 but these graphs do not have
Euler circuits since there is no path which uses each vertex at least once.
Theorem 3. If G is a connected graph and every vertex of G has even degree,
then G has an Euler circuit.

Proof: Let every vertex of a connected graph G has even degree. If G consists
of a single vertex. the trivial walk from v to v is an Euler circuit. So suppose G
consists of more than one vertices. We start from any verted v of G. Since the
degree of each vertex of G is even, if we reach each vertex other than v by
travelling on one edge, the same vertex can be reached by travelling on another
previously unused edge. Thus a sequence of distinct adjacent edges can be
produced indefinitely as long as v is not reached. Since number of edges of the
graph is finite (by definition of graph), the sequence of distinct edges will
terminate. Thus the sequence must return to the starting vertex. We thus obtain
a sequence of adjacent vertices and edges starting and ending at v without
repeating any edge. Thus we get a circuit C.

If C contains every edge and vertex of G, then C is an Eular circuit.

If C does not contain every edge and vertex of G, remove all edges of C from
G and also any vertices that become isolated when the edges of C are removed.
Let the resulting subgraph be G". We note that when we removed edges of C,
an even number of edges from each vertex have been removed. Thus degree of
each remaining vertex remains even.

Further since G is connected, there must be at least one vertex common to both
C and G’. Let it be w(in fact there are two such vertices). Pick any sequence of
adjacent vertices and edges of G starting and ending at w without repeating an
edge. Let the resulting circuit be C”.

Join C and C’ together to create a new circuit C”. Now, we observe that if we
start from v and follow C all the way to reach w and then follow C” all the way
to reach back to w. Then continuing travelling along the untravelled edges of
C, we reach v.

Prepared by : M. Sangeetha , Department of Mathematics , KAHE 18 of 26



UNIT IV GRAPH THEORY / 2017 BATCH

Theorem 5. If a graph G has more than two vertices of odd degree, then there
can be no Euler path in G.

Proof : Let vy. v, and v3 be vertices of odd degree. Since each of these vertices
had odd degree, any possible Euler path must leave (arrive at) each of vy, va, v3
with no way to return (or leave). One vertex of these three vertices may be the

beginning of Euler path and another the end but this leaves the third vertex at
one end of an untravelled edge. Thus there 1s no Euler path.

(Graphs having more than two vertices of odd degree).
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Theorem 6. If G is a connected graph and has exactly two vertices of odd
degree, then there is an Euler path in G. Further, any Euler path in G must
begin at one vertex of odd degree and end at the other.

Proof: Let u and v be two vertices of odd degree in the given connected graph

G.
u u
c
v A%
G G

If we add the edge e to G, we get a connected graph G” all of whose vertices
have even degree. Hence there will be an Euler circuit in G”. If we omit e from
Euler circuit, we get an Euler path beginning at u(or v) and edning at v(or u).

Examples. Has the graph given below an Eulerian path?

B

= &

Ae + &
&D

Solution: In the given graph,

deg(A)=1
deg(B)=2
deg(C)= 2

deg(D) =3
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Thus the given connected graph has exactly two vertices of odd degree. Hence,
it has an Eulerian path.

If it starts from A(vertex of odd degree). then it ends at D(vertex of odd
degree). If it starts from D(vertex of odd degree), then it ends at A(vertex of
odd degree).

But on the other hand if we have the graph as given below :
€1 B €4

€2
D
€3

Ae o(

then deg(A) = 1, deg(B) = 3 deg(C) = 1, degree of D = 3 and so we have four
vertices of odd degree. Hence it does not have Euler path.

Example: Does the graph given below possess an Euler circuit?

Va
€4

Vi ®

=

€]
Solution: The given graph is connected. Further

deg(vy)=3

Since this connected graph has vertices with odd degree, it cannot have Euler
circuit. But this graph has Euler path, since it has exactly two vertices of odd
degree. For example, vi3es vae7 vaee V21 Vi €4 V4€3 V3€5 V]
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Example:  Consider the graph

V4
Here, deg(vy) = 4, deg(va) = 4, deg(v3) = 2, deg(v4) = 2. Thus degree of each
vertex is even. But the graph is not Eulerian since it is not connected.

Example 4:. The bridges of Konigsberg: The graph Theory began in 1736
when Leonhard Euler solved the problem of seven bridges on Pregel river in
the town of Konigsberg in Prussia (now Kaliningrad in Russia). The two
islands and seven bridges are shown below:

Bridge [ Bridge
S Bridge
D
Bridge Bridge
Bridge—] — Bridge
} :
River
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The people of Konigsgerg posed the following question to famous Swiss
Mathematician Leonhard Euler:

“Beginning anywhere and ending any where, can a person walk through the
town of Konigsberg crossing all the seven bridges exactly once?

Euler showed that such a walk is impossible. He replaced the islands A, B and
the two sides (banks) C and D of the river by vertices and the bridges as edges
of a graph. We note then that

Thus the graph of the problem is

A(island)

(side of the river) C(side of the river)

B(Island)
(Euler’s graphical representation of seven bridge problem)

The problem then reduces to

“Is there any Euler’s path in the above diagram?”.

To find the answer, we note that there are more than two vertices having odd
degree. Hence there exist no Euler path for this graph.

Definition: An edge in a connected graph is called a Bridge or a Cut Edge if
deleting that edge creates a disconnected graph.
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In this graph, if we remove the edge e;, then the graph breaks into two
Connected Component given below:

€1

Vi ® »y
1 es 2
€2

Vi

V4 ’-ﬂ.
Vs

Hence the edge e3 is a bridge in the given graph.

METHOD FOR FINDING EULER CIRCUIT

We know that if every vertex of a non empty connected graph has even degree,
then the graph has an Euler circuit. We shall make use of this result to find an
Euler path in a given graph.

Consider the graph

We note that
deg(v,) = deg(vy) = deg(ve) = deg(vg) =2
deg(vy) = deg(vs) = deg(vs) = deg(vy) =4

Hence all vertices have even degree. Also the given graph is connected. Hence
the given has an Euler circuit. We start from the vertex vy and let C be

B Vi V2 Vi Vi

Prepared by : M. Sangeetha , Department of Mathematics , KAHE 24 of 26



UNIT IV GRAPH THEORY /2017 BATCH

Then C is not an Euler circuit for the given graph but C intersect the rest of the
graph at vy and vs. Let C’ be
C’ : V{V4 V3 V5 V7 Vg V5 Vg V7 Vy

(In case we start from vs, then C” will be v3 v4 Vi V7 Vg Vs V7 Vg Vs)
Path C into C and obtain

C”: ViV V3 V1 V4 V3 V5 V7 V6 V5 Vg V7 V]
Or we can write

C”:ejerezeqeseqe7e5€9e10e1] €12

(If we had started from v,, then C” : v{Va V3 V4 V| V7 Vg V5 V7 Vg V5 V3 V| OT
e1ex e5€e4 €128 €9 €7 €11 €106 €3 )

In C” all edges are covered exactly once. Also every vertex has been covered at
least once. Hence C” is a Euler circuit.

PART - B

POSSIBLE QUESTIONS - SIX MARKS

1.Show that if a graph G(either connected (or) disconnected) has exactly two
vertices of odd degree there is a path joining these two vertices.

2.In a (directed or undirected) graph with n vertices, if there is a path from
vertex vi to vertex vp,then there is a path of no more than n-1 edges from
vertex vi to vertex vy,

3. Show that a simple graph with n vertices and k-components can have at most
mn—k¥n—-—k+ 1)
2
4.State and prove the Handshaking theorem.

5.Show that the sum of the degree of all vertices in a graph equal to twice in a
number of edges incidence in G.

6.Show that if there is a (u, v )- walk in G, then there is also a (u, v)- path in G.

7.In a connected graph G with exactly 2k odd vertices, there exist k edge-disjoint
subgraphs such that they together contain all edges of G and that each is a
unicursal graph.

8.The number of vertices of odd degree in a graph is even.

9.Draw all possible simple graph of one, two, three, four, five vertices .

10. Prove that a connected graph is Euler graph iff it has even degree.
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PART -C
POSSIBLE QUESTIONS - TEN MARKS

1. A non- empty connected graph G is Eulerian if and only if G is the union of

some edges disjoint circuits.
2.Show that a connected graph G is an Euler graph if and only if the degree of

every vertex in G is even.
3. A connected graph G is an Euler graph iff it can be decomposed into circuits.
4.1f the intersection of two paths in a graph G disconnected then their union has

atleast one circuit.
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UNIT-IV
Question Option-1 Option-2 Option-3 Option-4 Answer
A consists of set of vertices and edges suchthat each edge is
incident with vertices. graph tree complete graph network graph
An edge having the same vertex as both its end vertices is called graph tree self-loop trival self-loop
Edges that have the same end vertices are . same parallel null graph connected parallel
A graph is if it has no parallel edges or self-loops. simple directed adjacent self-loop simple
A graph with no edges is null graph trival empty parallel empty
A graph with no verticesis a null graph trival empty parallel null graph
A graph with only one vertex is . null graph trival empty parallel trival
A is a vertex whose degree is . one two three four one
A graph in which every vertex has the same degree is called . null graph regular graph complete graph simple graph regular graph
A simple graph G with n vertices is said to be a if the degree of every
vertex is n-1. null graph regular graph complete graph simple graph complete graph
A graph in which some edges are directed and some are undirected is
called mixed graph regular graph complete graph simple graph mixed graph
Every graph is its own mixed graph sub graph complete graph simple graph sub graph
The maximum number of edges in a simple graph with n vertices is n (n-2)/2 n-1 (n-1)/2 (n-1)/2
A vertex having no edge incident on it is called end vertex isolated vertex pendant vertex null graph isolated vertex
Any vertex having degree one is called a null vertex isolated vertex pendant vertex null graph pendant vertex
walk is also called . chain edge vertex graph chain
A finite alternating sequence of vertices and edges of a graph G beginning and ending
with vertices is called : walk sub graph circuit path walk
Vertices with which a walk begins or ends are called its end vertex isolated vertex pendant vertex terminal vertices terminal vertices
If a walk begins and end with the same vertex then it is called a walk closed walk circuit path closed walk
If no vertex appears more than once in an open walk then it is called a walk closed walk circuit path path
The number of edges in a path is called the of the path. length same walk trival length
is defined as a closed walk in which no vertex and final vertex

appears more than once. walk closed walk circuit path circuit
A is a closed , non intersecting walk. circuit closed walk walk path circuit

is also called cycle. walk closed walk circuit path circuit
A graph in which weights or distance are assigned to each adge is called a

. complete graph simple graph mixed graph weighed graph weighed graph

A is a path in a digraph in which the edges are all distinct. simple path elementary path node self path simple path
An is a path in which all the nodes through which it travels are distinct. |simple path elementary path node self path elementary path
A path orginates and ends in the same node is called a walk closed walk circuit path circuit
A is a graph whose components are all trees. tree graph forest walk forest
A tree in which one vertex is distinguished from all others is called a . tree rooted tree connected pendant vertex rooted tree
In adjacency matrix of graph all the entries along the leading diagonal are iff
the grah has no self-loops. zZero one two three zero
The determinant of every square sub matrix of an incidence matrix is lor-lor0 lor2or3 2or3or4 lor-2or-1 lor-lor0
The rank of an incidence matrix of a digraph with n vertices is n n+1 2n n-1 n-1
In graph has 3 vertices then iit has chromatic 3|atleast3 atmost3 more than3 atleast3
A graph consistng one circuit with greater than or equal to vertices is 2 chromatic if
nis even odd even and odd equalto 3 even
A graph cooonsisting one circuit with n greatthan or equal to 3 vertices if n is odd
then it has 1-chromatic 2-chromatic 3-chromatic d.atleast 2-chromatic 3-chromatic
A graph consisting of only ------------- vertices is 1-chromatics isolated pendenat odd even isolated
A graph consisting of only isolated vertices is 4-chromatic 3-chromatic 2-chromatic 1-chromatic 1-chromatic
A graph with one or more edges is ------------ 2-chromatic atleast atmost exactly not atleast3
A graph with one or more edges is atleast 4-chromatic 3-chromatic 2-chromatic 1-chromatic 2-chromatic
A complete graph with n vertices is-------------- 4-chromatic 3-chromatic 2-chromatic n-chromatic n-chromatic
Every graph having ----------- is atleast 3-chromatic triangle square odd vertices even vertices triangle
Every graph having triangle is atleast ------------------ 4-chromatic 3-chromatic 2-chromatic n-chromatic 3-chromatic
A complete graph with 5 vertices is-------------- 4-chromatic 3-chromatic 2-chromatic 5-chromatic 5-chromatic
A graph consisting of simply one circuit with greater than or equal to 3 vertices is -----
-------- if nis even 4-chromatic 3-chromatic 2-chromatic 5-chromatic 2-chromatic
A graph consisting of simply one circuit with greater than or equal to 3 vertices is 2-
chromatic if n is ---------- even odd even
A graph consisting of simply one circuit with greater than or equal to 3 vertices is -----
-------- if nis odd 4-chromatic 3-chromatic 2-chromatic 5-chromatic 3-chromatic
A graph consisting of simply one circuit with greater than or equal to 3 vertices is 3-
chromatic if nis ------—--- even odd odd
A graph with ------- one edge is 2-chromatic if it has no circuits of odd length atleast atmost exactly atleast
A graph with atleast ---------- edge is 2-chromatic if it has no circuits of odd length 1
A graph with atleast one edge is 2-chromatic if it has no circuits of -------- length |odd even odd
A graph with atleast one edge is 2-chromatic if it has ---------- circuits of odd
length 0




A graph with atleast one edge is ------------- if it has no circuits of odd length 4-chromatic 3-chromatic 2-chromatic 5-chromatic 2-chromatic
A star graph is ---------=------ 4-chromatic 3-chromatic 2-chromatic 5-chromatic 2-chromatic
Every ------------ graph is 2-chromatic bipartiate complete regular connected bipartiate
Every Dbiparitate graph is ------------------ 4-chromatic 3-chromatic 2-chromatic 5-chromatic 2-chromatic
Two regions are said to be adjacent if they have a common ----------- between them |edge vertex edge and vertex neither edge nor vertex  |edge

Two are said to be adjacent if they have a common egde between

them faces regions egdes vertices regions
Cover of a graph is a sub set of vertices edges both vertices and edges [neither edge nor vertex vertices
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Introduction:

The graphs that we come across in most of the applications are connected.
Among the connected graphs, trees are probably the most important ones. In this
chapter ,We shall study trees and its properties. The relationships among circuits,
trees and other associated concepts in a graph are also explored.

TREES:
Definition:
A connected graph without any circuits is called a Tree.

Example: Trees with one ,two three and four vertices are shown below

] =

(Figure 5.1)

Since parallel edges and self — loops both form circuits , a tree can not have
parallel edges and elf loops. Thus a tree has to be a simple graph.
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Theorem 5.1:

A graph G is a tree iff there is one and only one path between any two vertices of
G.

Proof:

First suppose that the graph G is a tree. Then by definition of a tree ,G is a
connected graph. Therefore ,there must exist atleast one path between any two
vertices in G. Now suppose that there are two distinct paths between vertices a
and b of G. Then the union of these two paths will contain a circuit and G can not
be a tree. Thus there is one and only one path between any two vertices of G.

Conversely, suppose that there is one and only path between any two
vertices of G. We shall show G is a tree. Since there exists a path between any two
vertices of G, therefore G is connected. A circuit in a graph with two or more
vertices implies that there exists a pair of vertices a, b such that there are two
distinct paths between a and b. Since G has one and only one path between any
two vertices, G can have no circuits. Thus G is a tree.

Theorem 5.2:
A tree with n vertices has n-1 edges.
Proof:

We shall prove the theorem by induction on the number of vertices .Clearly,
the theorem is true for trees with one or two vertices(see Fig.5.1).Assume that
the theorem is true for all trees with fewer than n vertices.

Let us consider a tree G with n vertices .Let ex be any edge in G with end
vertices v; and v;.
According to theorem 1 above , the edge e is the only path between v; and v;.
Hence deletion of ex from G will disconnect the graph. Thus G-ei is not connected.
Further ,G-e will contain exactly two components ,for otherwise the graph G will
not be connected. Let these two components of G-e¢ be G; and G; respectively.
Since n1 <n and n,<n, we have by the induction hypothesis
Number of edges in G; =n; -1
and
Number of edges in G, =n, -1

Thus , number of edges in G —eis equal to (n; -1 )+( ny-1)=(ny+ny)-2=n-2.
Hence G has exactly n-1 edges.
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Theorem 5.3:
Every connected graph with n vertices and n-1 edges is a tree.
Proof:

Let G be a connected graph with n vertices and n-1 edges. The theorems will
be proved if we show that G has no circuit. Suppose that G contains atleast one
circuit. Since removing an edge from a circuit does not disconnect a graph, we
may remove edges, but no vertices from circuits in G until the resulting graph G”
is a circuit free.

Now G" is a connected graph with n vertices and contains no circuit .Thus G™ is a
tree with n vertices .Hence G™ has n-1 edges (by theorem 2).But now the graph G
has more than n-1 edges, a contradiction.

Hence G has no circuit.This completes the proof.

Theorem 5.4: A graph G with n vertices ,n-1 edges and no circuit is tree.
Proof:

Let G be a graph with n vertices, n -1 edges and has no circuit. It wii be a tree
if we show that it is connected .If possible, suppose that G is disconnected. Then
G will consist of two or more circuitless components.Without loss of generality
let G consist of two components G; and G, .

we add an edge e between a vertex vy in G; and v, in G,. Since vi and v, are in
different components of G, there is no path between v; and v, in G.Thus addition
of edge e will not create a circuit.Thus GU e is a circuitless,connected graph (and
therefore a tree)of n vertices and n edges,which is not possible because of
theorem 2.This completes the proof.
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Definition: A collection of disjoint trees 1s called a forest.
Thus a graph is a forest if and only if it is circuit free.

Definition: A vertex of degree 1 in a tree is called a leaf or a terminal node or
a terminal vertex.

Definition: A vertex of degree greater than 1 in a tree is called a Branch node
or Internal node or Internal vertex.

Consider the tree shown below:

In this tree the vertices b, c, d, f, g, and i are leaves whereas the vertices a, e, h
are branch nodes.
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CHARACTERIZATION OF TREES

We have the following interesting characterization of trees:
Lemma 1: A tree that has more than one vertex has at least one vertex of
degree 1.

Proof: Let T be a particular but arbitrary chosen tree having more than one
vertex.

. Choose a vertex v of T. Since T is connected and has at least two vertices, v
1s not isolated and there is an edge e incident on v.

2. If deg (v) > 1. there is an edge e” # e because there are, in such a case, at
least two edges incident on v. Let v’ be the vertex at the other end of e”. This is
possible because e is not a loop by the definition of a tree.

3. If deg(v") > 1, then there are at least two edges incident on v'. Let e” be the

other edge different from e" and v” be the vertex at other end of e”. This is
again possible because T is acyclic.

4. If deg(v”) > 1, repeat the above process. Since the number of vertices of a
tree is finite and T is circuit free, the process must terminate and we shall
arrive at a vertex of degree 1.

Remark: In the proof of the above lemma, after finding a vertex of degree 1, if
we return to v and move along a path outward from v starting with e, we shall
reach to a vertex of degree 1 again. Thus it follows that *“*Any tree that has
more than one vertex has at least two vertices of degree 1™,
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Lemma 2: There is a unique path between every two vertices in a tree.

Proof: Suppose on the contrary that there are more than one path between any
two vertices in a given tree T. Then T has a cycle which contradicts the
definition of a tree because T is acyclic. Hence the lemma is proved.

Lemma 3: The number of vertices is one more than the number of edges in a

tree.

Or

For any positive integer n, a tree with n vertices has n-1 edges.
Proof: We shall prove the lemma by mathematical induction.

Let T be a tree with one vertex. Then T has no edges, that is, T has 0 edge. But
0=1- 1. Hence the lemma is true forn = 1.

Suppose that the lemma is true for k > 1. We shall show that it is then true for k
+ I also. Since the lemma is true for k, the tree has k vertices and k-1 edges.
Let T be a tree with k +1 vertices. Since k i1s +ve, k+1 = 2 and so T has more
than one vertex. Hence, by Lemma 1. T has a vertex v of degree 1. Also there
is another vertex w and so there is an edge e connecting v and w. Define a

subgraph T" of T so that
V(T) =V(T)- {v}
E(T')=E(T) - {e}

Then number of vertices in T" = (k+1) — 1 = k and since T is circuit free and T’
has been obtained on removing one edge and one vertex, it follows that T is
acyclic. Also T" is connected. Hence T is a tree having k vertices and therefore
by induction hypothesis, the number of edges in T" 1s k-1. But then

No. of edges in T = number of edges in T" + 1

=k-1+1=k
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Thus the Lemma is true for tree having k + 1 vertices. Hence the lemma is true
by mathematical induction.

Corollary 1. Let C(G) denote the number of components of a graph. Then a
forest G on n vertices has n — C(G) edges.

Proof: Apply Lemma 3 to each component of the forest G.
Corollary 2. Any graph G on n vertices has at least n — C(G) edges.

Proof: If G has cycle-edges, remove them one at a time until the resulting
eraph G* is acyclic. Then G* has n — C(G*) edges by corollary 1. Since we
have removed only circuit, C(G*) = C(G). Thus G* has n — C(G) edges. Hence
G has at least n — C(G) edges.

Lemma 4: A graph in which there i1s a unique path between every pair of
vertices 1s a tree

(This lemma is converse of Lemma 2).

Proof: Since there is a path between every pair of points, therefore the graph is
connected. Since a path between every pair of points is unique, there does not
exist any circuit because existence of circuit implies existence of distinct paths

between pair of vertices. Thus the graph is connected and acyclic and so is a
tree.

Lemma 5. (converse of Lemma 3) A connected graph G withe =v — 1 is a tree
Proof: The given graph is connected and

e=v-—1.

To prove that G is a tree, it is sufficient to show that G is acyclic. Suppose on
the contrary that G has a cycle. Let m be the number of vertices in this cycle.
Also, we know that number of edges in a cycle is equal to number of
vertices in that cycle. Therefore number of edges in the present case is m.
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Since the graph is connected, every vertex of the graph which is not in cycle
must be connected to the vertices in the cycle.

Now each edge of the graph that is not in the cycle can connect only one vertex
to the vertices in the cycle. There are v-m vertices that are not in the cycle. So
the graph must contain at least v — m edges that are not in the cycle. Thus we
have

e = v-m+m=yV,

which is a contradiction to our hypothesis. Hence there is no cycle and so the
eraph in a tree.

ROOTED AND BINARY TREE :

Definition: A directed tree is called a rooted tree if there is exactly one vertex
whose incoming degree is 0 and the incoming degrees of all other vertices are
1.

The vertex with incoming degree 0 is called the root of the rooted tree.

A tree T with root vy will be denoted by (T, vp).

Definition: In a rooted tree, a vertex, whose outgoing degree is 0 is called a

leaf or terminal node, whereas a vertex whose outgoing degree is non - zero is
called a branch node or an internal node.

Definition: Let u be a branch node in a rooted tree. Then a vertex v is said to

be child (son or offspring) of u if there is an edge from u to v. In this case u is
called parent (father) of v.

Definition: Two vertices in a rooted tree are said to be siblings (brothers) if
they are both children of same parent.
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Definition: A vertex v is said to be a descendent of a vertex u if there is a
unique directed path from u to v.
In this case u is called the ancestor of v.

Definition: The level (or path length) of a vertex u in a rooted tree is the
number of edges along the unique path between u and the root.

Definition: The height of a rooted tree is the maximum level to any vertex of
the tree.
As an example of these terms consider the rooted tree shown below:

level 0

Here y 1s a child of x; x 1s the parent of y and z. Thus y and z are siblings. The
descendents of u are v, w, t and s. Levels of vertices are shown in the figure.
The height of this rooted tree is 3.

Definition: Let u be a branch node in the tree T = (V, E). Then the subgraph T
=(V", E") of T such that the vertices set V' contains u and all of its descendents

and E’ contains all the edges in all directed paths emerging from u 1s called a
subtree with u as the root.
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Theorem: If T is a full binary tree with 1 internal vertices, then T has 1+1
terminal vertices (leaves) and 2i+1 total vertices.

Proof: The vertices of T consists of the vertices that are children (of some
parent) and the vertices that are not children (of any parent). There is nonchild
— the root, Since there are 1 internal vertices, each having two children, there
are 21 children. Thus the total number of vertices of T 1s 2i+1 and the number
of terminal vertices 1s

i+ 1) —-i=1i+1
This completes the proof.

In the context of above example, we have

No. of leaves=p =1+ 1

Or
i=p-1
Remark: In case of full n-ary tree, if 1 denotes the number of branch nodes,
then total number of vertices of T i1s ni1 + | and the number of terminal
vertices 1s
ni+l-i1=1n-1)+1

If p is the number of terminal vertices, then

p=in—-1)+1
or
m-1i=p-1
SPANNING TREE:

Definition: A spanning tree for a graph G is a subgraph of G that contains
every vertex of G and is a tree.

Or

“A spanning tree for a graph G 1s a spanning subgroup of G which is a
tree”.
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Example: Determine a tree and a spanning tree for the connected graph given
below:

G
Solution: The given graph G contains circuits and we know that removal of the
circuits gives a tree. So, we note that the figure below is a tree.

And the figure below is a spanning tree of the graph G.

Example: Find all spanning trees for the graph G shown below:

V12 P V3 Vi

V1 Vi Vs

Solution: The given graph G has a circuit v; vz va vi. We know that removal of
any edge of the circuit gives a tree. So the spanning trees of G are
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Vs P Vs Ve Vs V3 Vs

Vo Vi Ve

Vi vy Vs
T,

Remark: We know that a tree with n vertices has exactly n — 1 edges.
Therefore if G is a connected graph with n vertices and m edges, a spanning
tree of G must have n — 1 edges. Hence the number of edges that must be
removed before a spanning tree is obtained must be

m—-in—-1l=m-n+1.

For Illustration, in the above example, n = 6, m = 6, so, we had to remove one
edge to obtain a spanning tree.

Theorem: A graph G has a spanning tree if and only if G is connected.

Proof: Suppose first that a graph G has a spanning tree T. If v and w are
vertices of G, then they are also vertices in T and since T is a tree there is a

path from v to w in T. This path is also a path in G. Thus every two vertices are
connected in G. Hence G is connected.

Conversely, suppose that G is connected. If G is acyclic, then G is its own
spanning tree and we are done. So suppose that G contains a cycle C;. If we
remove an edge from the cycle, the subgraph of G so obtained is also
connected. If it is acyclic, then it is a spanning tree and we are done. If not, it
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has at least one circuit, say C» . Remc-vi-ng Dne_edge from C; we get a subgraph
of G which is connected. Continuing in this way, we obtain a connected circuit
free subgraph T of G. Since T contains all vertices of G, it is a spanning tree of

G.

Cayley’s Formula : The number of spanning trees of the complete

graph K,, n = 2 is n"2,

(Proof of this formula is out of scope of this book)

Example: Find all the spanning trees of K.

Solution: According to Cayley’s formula, K4 has 4** = 4> = 16 different

spanning trees.

Va "; ] V3
Vi V2
K4

Here n = 4, so the number of edges in any tree should ben—-1=4 -1 = 3. But
here number of edges is equal to 6. So to get a tree, we have to remove three
edges of Ky. The 16 spanning trees so obtained are shown below:

Vi ><j V3 V4 LE!
Vi Vs Vi V3
Vy >< V3 vy V3
Vi Vs Vi \'b
Vi 11; Ve Vi
Vi V3 Vi V7
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H{ V3 V4 LAk
Vi * Vo Vi 1\,
Vi & V1 Ve V3
‘r'._tN Y3 V4 Mvg
Vi Va Vi V3
Vi p * V3 H:A v;
Vi Va Vi Va

V4 Vi V4 V V3
Vi® Va Vi ¥ Va
Minimal Spanning Tree

Definition : Let G be a weighted graph. A spanning tree of G with minimum
weight 1s called minimal spanning tree of G.
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Minimally connected graph :

A connected graph G is said to be minimally connected if removal of any edge
from G disconnected the graph G.

Theorem:
A graph G is a tree iff it is minimally connected .
Proof:

Suppose that G is a tree.

We show G is minimally connected. Since G is a tree,it is connected .if G is not
minimally connected then there must exist an edge e in G such that G-e is
connected .

Therefore, e is an some circuit , which implies that G is not a tree, a
contradiction.Thus G is minimally connected .

Conversely, suppose that G is a minimally connected graph.Then G is connected
and cannot have a circuit; otherwise , we could remove one of the edge in the
circuit and still leave the graph connected.Thus a minimally connected graph is a
tree.

Minimum number of pendent vertices in a tree.

Recall that a pendent vertex in a graph is that vertex whose degree is
one .In general,trees have several pendent vertices.The minimum
number of pendent vertices ina tree is given by the following theorem .
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Theorem

In any tree ( with two or more vertices ) there are atleast two
pendent vertices .

Proof:

Let G be any tree having n vertices.Then G has n-1 edges.since each
edge contributes two degrees,the sum of the degrees of all vertices in G
is 2(n-1).

Now 2(n-1) degrees are to be divided amoung n vertices in G.
Let the number of vertices of degree one in G be x.

Since no vertex in a tree can be of zero degree,we have

2(n-1)—x

n—x

>2

- Xx22
Thus , we must atleast two vertices of degree one is tree.
Distance and centre in a tree:

Let G be a connected graph. We know that the distance between two vertices
vy and v;, denoted by d(vy, v2). 1s the length of the shortest path.

Definition: The diameter of a connected graph G, denoted by diam (G), 1s the
maximum distance between any two vertices in G.
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For example, in graph G shown below, we have

ae b

G

d(a,e)=3, d(a, c)=2, d(b, e) =2 and diam (G) = 3.

Definition: A vertex in a connected graph G is called a cut point if G — v 1s
disconnected, where G — v is the graph obtained from G by deleting v
and all edges containing v.

For example, in the above graph, d is a cut point.
Definition: An edge e of a connected graph G is called a bridge (or cut edge)

if G — e is disconnected, where G — e is the graph obtained by deleting the edge
e.

For example, consider the graph G shown below :
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We observe that G — e5 is disconnected. Hence the edge e; 1s a bridge.

Definition: A minimal set C of edges in a connected graph G 1s said to be a cut
set (or minimal edge - cut) if the subgraph G — C has more connected
components than G has.

For example, in the above graph, if we delete the edge (b, d) = es, the

resulting subgraph G — e; 1s as shown below :
€1
a & b
€4
C
€5
g

Thus G —e3 has two connected components

€1
a & b
and
€4
C e

So, in this example, the cut set consists of single edge (b, d) = es, which is
called edge or bridge.
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Theorem: Let G be a connected graph with n vertices. Then G is a tree if and
only if every edge of G is a bridge (cut edge).
(This theorem asserts that every edge in a tree is a bridge).

Proof: Let G be a tree. Then it is connected and has n — 1 edges (proved
already). Let e be an arbitrary edge of G. Since G — e has n — 2 edges, and also
we know that a graph G with n vertices has at least n — ¢(G) edges, it follows
that n — 2 = n — (G — e). Thus G — e has at least two components. Thus
removal of the edge e created more components than in the graph G. Hence e is
a cut edge. This proves that every edge in a tree is a bridge.

Conversely, suppose that G is connected and every edge of G is a
bridge. We have to show that G is a tree. To prove it, we have only to show
that G is circuit — free. Suppose on the contrary that there exists a cycle
between two points X and y in G. Then any edge on this cycle is

— >

X y
not a cut edge which contradicts the fact that every edge of G is a cut edge.
Hence G has no cycle. Thus G is connected and acyclic and so is a tree.

Rank and Nullity:

Consider a graph G with n vertices , e edges and k components .The
rank of graph G is defined as

Rank r = n-k
And the nullity of the graph G is defined as
Nullity p=e-n+k
=e-r
We note that

Rank +nullity = no. of edges in a graph
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The nullity of a graph is also called cyclomalic number or first Betti
number.

If a graph G is connected then k=1 and therefore rank of a connected
graph is n-1 and the nullity is e-n+1.

It follows from the definition of spanning tree that

Rank of a connected graph G = number of branches in any spanning
tree of G

Nullity of connected graph G = number of chords in G
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POSSIBLE QUESTIONS ( SIX MARKS)

1.Show that a tree with n-vertices has (n-1) edges.

2.The number of pendent vertices (leaf) of a tree is equal to "Zi

3. Show that every connected graph with n-vertices has (n-1) edges is a tree.
4.Show that a graph G is a tree if and only if it is minimally connected.

5.Show that an arborescence is a tree in which every vertex other than the root has an indegree
of exactly one.

6. Show that a tree with n-vertices has (n-1) edges.
7.Define Centre and Eccentricity of vertex with example.

8. Show that a graph G is a tree if and only if there is one and only one path between any 2
vertices of G

9.Explain the properties of binary tree
10.Prove that in a tree, any two vertices are connected by exactly one path.

11.Show that every tree has one (or) two centre’s.

POSSIBLE QUESTIONS ( TEN MARKS)

1. In any tree (with two or more vertices), there are atleast two pendant vertices.
2.Prove that the number of labeled trees on ‘n’ vertices is n"2.

3.Show that the minimum height of a n-vertex binary tree is equal to [logz (n+1)-1].
4.Show that in any tree with two (or) more vertices there are at least two pendent vertex

5.Show that every tree with two or more vertices is 2 chromatic.
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UNIT-V
Question Option-1 Option-2 Option-3 Option-4 Answer
A tree with no nodes is a . forest graph rooted tree ordered tree rooted tree
A single node with no children is a forest graph rooted tree ordered tree rooted tree
A binary tree has a unique node is called the of the tree. [graph edge root node root
Two nodes having the same parent are called . graph siblings root node siblings
A graph is said to be if there exists at least one path
between every pair of vertices in G. connected disconnected null graph hamiltonian connected
A tree with vertices has at least two vertices of degree 1. 2 3 n 0 n
A tree with n vertices has edges. n 2 0 n-1 n-1
A is connected graph without circuit. graph directed graph undirected graph |tree tree
The total number of degrees of an isolated node is 0 1 2 3 0
The number of vertices of odd degree in a graph is always . |odd even zero same number even
The sum of the degrees of all vertices of a graph is equal to
the number of edges. twice thrice same any twice

Atree is an graph. cyclic directed null acyclic acyclic
The number of internal vertices in a binary tree with n vertices is

: n (n-2)/2 n-1 (n-1)/2 (n-1)/2
A has at least two pendant vertices. graph tree rooted tree digraph tree
A can have more than one centre. tree graph digraph graph rooted tree tree
Each column of an incidence matrix of a graph G has exactly . |[two 1s three 1s four 1s five 1s two 1s
A node with no children is called leaf siblings root node leaf
Every tree with two or more vertices is------------ 4-chromatic 3-chromatic 2-chromatic 5-chromatic 2-chromatic

greater than or greater than or equal

Every tree with ---------—-—--- vertics is 2-chromatic greater than 2 less than 2 equalto 2 equal to 2 to2
Every pendantedge ina graphincluded in ---------- covering of the
graph no some all finite number of |all
A covering exists for a graph if the graph has no isolated vertex odd vertex even vertex pendant vertex isolated vertex
Every ----------m-memmo in a graph included in every covering of the graph [pendant edge odd vertex even vertex pendant vertex pendant edge
Every -------- with 2 or more vertics is 2-chromatic tree complete connected disconnected tree
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Answer All The Questions:
1.The Mathematical structure (G, *) is said to be a ----------------- if binary operation
* satisfies closure property only.

a. Semigroup b. Quasigroup

c. Abelian Group d. Monoid
2. An equivalence relation R defined on the semigroup (S, *) is called ------- if

aRbandcRd

thena*c R b*d.

a. congruence relation b. equivalence relation

c. Monoid d. Relation
3. The semigroup S/~ is called the --------- of S by ~.

a. equivalence class b. relation

C. quotient d. remainder

4. A function f: (S, *)— (S',+) is called -------
if f(a*b) = f(a) + f(b)

a. Homomorphism b. automorphism
c. Isomorphism d. Relation
5. A set together with a number of operations on the set is called an ----------- :
a. Monoid b. Group
c. Algebraic system d. Semigroup

6. The intersection of two congruence relation is ----------- :
a. Not a congruence relation  b. congruence relation
c. Direct product d. subalgebra

7. A function f: (S, *)— (S',+) is called a homomorphism if
a. f(a*b) = f(a) + f(b) b. f(a+b) = f(a) + f(b)
c. fla+b) = f(a) * f(b) d. f(a*b) = f(a) *f(b)

8. The algebraic structure (G, *) is said to be a semigroup if binary operation * satisfies ------- .
a. closure and identity b. identity and inverse
c. closure and associativity d. associativity and identity



9. A lattice which has both a least element and a greatest element is called ------
a. sub lattice b. bounded lattice
c. complement lattice  d. lattice homomorphism

10. The dual ofa + a (b+1) = ais ----------

a.ae(atbel)=a b.a+t(a+tbe0)=a
c.a-(a+tbel)=a d.ae(a-be0)=a
11. Agraphis if it has no parallel edges or self- loops.
a. simple b. directed
c. adjacent d. self-loop
12. The least member is denoted by -------
a.0 b.1
c.-1 dz2
13. The greatest lower bound of a,b € L is denoted by a*b and is also called -----
a. join b. sum
C. meet d. multiply
14. In a lattice, > denotes --------------
a. addition of b. multiple of
c. divisor of d. subtraction of
15. A graph with only one vertex is ----------- .
a. null graph b. trivial
c.empty d. Parallel
16. A simple graph G with n vertices is said to be a------------ if the degree of every vertex is n-1.
a. null graph b. regular graph

c. complete graph  d. simple graph
17. If every element of L has atleast one complement then it is called --------------------
a. finite lattice b. infinte lattice
c. distributive lattice d. complemented lattice
18. Principle of duality is defined as ------
a. <is replaced by > b. LUB becomes GLB
c. are all properties unaltered when <is replaced by >
d. all properties are unaltered when <is replaced by > other
than 0 and 1 element
19. An edge having the same vertex as both its end vertices is called ----------- :

a. graph b. tree
c. self-loop d. trival
20. A graph with no edges is :
a. null graph b. trival
c. empty d. Parallel

Part — B (3x2= 6 Marks)
Answer All The Questions:
21.Define semigroup Homomorphism.
22. Show that in any Boolean algebra , (a+b)(a’+c)= act+a’b+bc.
23. Write the some properties of lattices.



Part — C (3x8=24 Marks)

Answer All The Questions:
24. a) Show that the intersection of any two congruence relations on a set is also a congruence
relation.
(OR)
b) Prove that under the semigroup homomorphism the properties associativity ,idempotency
and commutative are preserved.

25. a) If a,b,c are elements of a distributive lattice (L, A,V) then aVb =aVc and aAb=aAc
show that b=c .
(OR)
b) Show that a sublattice of a
) distributive lattice is distributive
ii)modular lattice is modular

26. Show that a lattice is distributive iff  (a*b)+(b*c)+(c*a) = (a+b)*(b+c)*(c+a).
(OR)
b) Prove that every chain is a distributive lattice .
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PART-A(20x1=20 Marks)
Answer All The Questions:

1.An element a in a lattice (A, <) is called a
every elementb e A, a <b.
a. lower bound
c. Upper bound

b. Universal lower bound
d. Universal upper bound

2. A lattice is said to be ------------------ if the meet operation
distributes over the join operation.

a. Complemented b. Complete
c. Distributive d. Direct product
3. A lattice (L, <) is said to be----------- if a < c implies

av(bAc)=(@Vb)Ac
a. unbounded lattice b. bounded lattice
c. modular lattice d. complemented lattice
4. A self-complemented, distributive lattice is called -------
a. Boolean algebra b. Modular lattice
c. Complete lattice d. Self dual lattice

- if for

5 A is a graph whose components are all trees.

a. tree b. graph
c. forest d. walk
6. A graph is if it has no parallel edges or self-loops.
a. simple b. directed
c. adjacent d. self-loop

7. A graph in which some edges are directed and some are undirected
is called
a. mixed graph
c. complete graph

b: regular graph
d. simple graph

8. Every graph is its own
a . mixed graph
c . complete graph

b. sub graph
d. simple graph

9. A tree in which one vertex is distinguished from all others is
called a
a. tree
c. connected

b. rooted tree
d. pendant vertex

10. is also called cycle
a. walk b. closed walk
C. circuit d. path
11. If no vertex appears more than once in an open walk then it is
called a .
a. walk b. closed walk
c. circuit d. path
12. The number of edges in a path is called the of the
path
a. length b. same
c. walk d. circuit



13. A graph in which weights or distance are assigned to each edge is
called a
a. complete graph  b. simple graph
c. mixed graph d. weighed graph
14. Two nodes having the same parent are called
a. graph b. siblings
C. root d. node
15. The total number of degrees of an isolated node is
a.0 b.1

c.2 d.3
16. Atreeis an graph.
a. cyclic b. directed
c. null d. Acyclic
17. A tree with vertices has at least two vertices of degree
a.2 b.3
c.n d.o
18. A is connected graph without circuit.
a. graph b. directed graph

c. undirected graph d. tree

19. A graph is said to be if there exists at least one path
between every pair of vertices in G.
a. connected b. disconnected

c.Null graph d. Hamiltonian

20. A binary tree has a unique node is called the __ of the tree.
a. graph b. edge
c.Root d. Node

Part — B (3x2= 6 Marks)
Answer All The Questions:

21.Define Graph Isomorphism.
22. Define Connected Graph with Example.
23. Define a tree.

Part — C (3x8=24 Marks)
Answer All The Questions:

24. ) If (L, A,v) is a complemented and distributive lattice , then the
complement a of any element aeL is unique.

(OR)
b) Prove that join and meet operations are associative.

25. a) Show that a simple graph with n vertices and k-component
can have at most
m—k¥n—-—k+ 1)
2

(OR)
b) The number of vertices of odd degree in a graph is even.

26. a) Show that a tree with n-vertices has (n-1) edges.
(OR)
b). (i).Show that a graph G is a tree if and only if it is
minimally connected.
ii)Define Centre and Eccentricity of vertex with example.
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