MONGODB | (2018-2020

Batch)
KARPAGAM ACADEMY OF HIGHER EDUCATION
& (Deemed to be University)
== (Established Under Section 3 of UGC Act, 1956)
DDAR (For the candidates admitted from 2017 onwards)
rlxgﬂérf&%&%ﬁrm DEPARTMENT OF CS,CA & IT
SUBJECT NAME : MONGODB
SEMESTER i
SUBJECT CODE : 18CSP203 CLASS: I M.Sc CS

Instruction Hours /week: L: 4 T:0P: 0 Marks: Internal:40 External:60 Total: 100
End Semester Exam : 3 Hours

Course Objectives

To provide students the knowledge and skills to master the NoSQL database mongoDB.

Course Outcomes(COs)
1. To provide students the right skills and knowledge needed to develop Applications on
mongoDB

2. To provide students the right skills and knowledge needed to run Applications on
mongoDB

Unit I - GETTING STARTED

A database for the modern web — MongoDB through the JavaScript shell — Writing programs
using MongoDB.

Unit Il - APPLICATION DEVELOPMENT

Document-oriented data — Principles of schema design — Designing an e-commerce data model —
Nuts and bolts on databases, collections, and documents. Queries and aggregation — E-commerce

queries — MongoDB"s query language — Aggregating orders — Aggregation in detail.

Unit 11l - UPDATES, ATOMIC OPERATIONS, AND DELETES

A brief tour of document updates — E-commerce updates — Atomic document processing —
MongoDB updates and deletes. Indexing and query optimization: Indexing theory — Indexing in

practice — Query optimization.

Unit IV — REPLICATION

Department of Computer Science, KAHE Page 1/ 2

MONGODB | (2018-2020
Batch)

Overview — Replica sets — Master-slave replication — Drivers and replication. Shading: Overview
— A sample shard cluster — Querying and indexing a shard cluster — Choosing a shard key —
sharding in production.

Unit V - DEPLOYMENT AND ADMINISTRATION
Deployment — Monitoring and diagnostics — Maintenance — Performance troubleshooting

SUGGESTED READINGS
Kyle Banker. (2012). MongoDB in Action. Manning Publications Co.

2. Rick Copeland. (2013). MongoDB Applied Design Patterns, 1% Edition, O“Reilly
Media Inc.

3. Gautam Rege, (2012). Ruby and MongoDB Web Development Beginner's Guide.
Packt Publishing Ltd

4. Mike Wilson.. (2013). Building Node Applications with MongoDB and

Backbone, O"Reilly Media Inc.

5. David Hows. (2009). The definitive guide to MongoDB, 2™ edition, Apress
Publication, 8132230485

6. Shakuntala Gupta Edward. 2016. Practical Mongo DB , 2" edition, Apress
Publications, 2016, ISBN 1484206487

WEBSITES
1. http://www.mongodb.org/about/production-deployments/
2. http://docs.mongodb.org/ecosystem/drivers/
3. http://www.mongodb.org/about/applications/
4. http://www.mongodb.org/

Department of Computer Science, KAHE Page 2/ 2

MONGODB | (2018-2020
Batch)
KARPAGAM ACADEMY OF HIGHER EDUCATION
& (Deemed to be University)
=_— (Established Under Section 3 of UGC Act, 1956)
KARPAGAM (For the candidates admitted from 2017 onwards)
ACADEMY OF HIGHER EDUCATION
DEPARTMENT OF CS, CA & IT
LESSON PLAN
SUBJECT NAME : MONGODB (18CSP203)
SEMESTER |
UNIT I
Lecture SUDDOF
SI.NO | Duratio Topics to be covered PP .
Materials
n (Hr)
1 1 Getting Started T1:1
2 1 A database for the modern web T1:3
3 1 A database for the modern web T1:18
4 1 MongoDB through the JavaScript shell T1:29
5 1 MongoDB through the JavaScript shell T1:39, W1
6 1 Writing programs using MongoDB T1:52
T1:59
7 1 Writing programs using MongoDB R1:112
8 1 Recapitulation and Discussion of Important Question
Total no. of Hours Planned for Unit | 8
Prepared by Dr.S.Veni, Department of CS, CA & IT, KAHE Page 1/5

MONGODB | (2018-2020
Batch)
UNIT I
Lecture
I.N . .
S Duration | Topics to be covered Suppo_rt
o) Materials
(Hr)
1 1 APPLICATION DEVELOPMENT - Document-
oriented data T1:71
2 1 Principles of schema design T1:74
3 1 T1:75,
Designing an e-commerce data model R2:169
4 1 Nuts and bolts on databases, collections, and
documents T1:84
5 1 Queries and aggregation- E-commerce queries T1:99, W2
6 1 MongoDB*s query language T1:103
7 1 Aggregating orders, Aggregation in detail T1:120
8 1 Recapitulation and Discussion of Important Question
Total Periods Planned for Unit 11 8
UNIT 11
Lecture
SIN Duration Topics to be covered Supp(?rt
O Materials
(Hr)
1 UPDATES, ATOMIC OPERATIONS, AND
1 DELETES - A brief tour of document updates T1:158
Prepared by Dr.S.Veni, Department of CS, CA & IT, KAHE Page 2/ 5

MONGODB | (2018-2020
Batch)
2 T1:162,
1 E-commerce updates R1:193
3 1 Atomic document processing T1:171
4 1 MongoDB updates and deletes T1:179
5 1 Indexing and query optimization: Indexing theory T1:198
6 1 Indexing in practice T1:207
Query optimization T1:216,
7
1 W2
8 1 Recapitulation and Discussion of Important Question | 8
Total Periods Planned for Unit 111
UNIT IV
Lecture
SIN Duration Topics to be covered Supp(?rt
O Materials
(Hr)
1 1 REPLICATION- Overview, Replica sets T1:297
2 1 Master Slave Replication — Drivers and Replication T1:324
T1:334
3
1 Shading: Overview R3:312
4 1 A sample shard cluster T1:343
Prepared by Dr.S.Veni, Department of CS, CA & IT, KAHE Page 3/5

MONGODB | (2018-2020
Batch)
5 T1:355,w
1 Querying and indexing a shard cluster 2
T1:359,
6
1 Choosing a shard key w2
7 2 Sharding in production T1:365
8 1 Recapitulation and Discussion of Important Question
Total Periods Planned for Unit IV 8
UNIT V
Lecture
I.N . .
S Duration Topics to be covered Suppgrt
0] Materials
(Hr)
1 DEPLOYMENT AND ADMINISTRATION -
1 Deployment
2 1 Monitoring and diagnostics
3 1 Monitoring and diagnostics
4 1 Maintenance
S 1 Maintenance
6 1 Performance troubleshooting
7 2 Performance troubleshooting
8 1 Recapitulation and Discussion of Important Question
9 1 Discussion of Previous ESE Question Papers
Prepared by Dr.S.Veni, Department of CS, CA & IT, KAHE Page 4/ 5

MONGODB | (2018-2020

Batch)
10 1 Discussion of Previous ESE Question Papers
11 1 Discussion of Previous ESE Question Papers
Total Periods Planned for Unit V 12
Total Periods 44
Text Book
Kyle Banker. (2012). MongoDB in Action. Manning Publications Co.
T1
References
R1 Rick Copeland. (2013). MongoDB Applied Design Patterns, 1st Edition,
O“Reilly Media Inc.
R2 Mike Wilson.(2013). Building Node Applications with MongoDB and
Backbone, O“Reilly Media Inc.
Shakuntala Gupta Edward. 2016. Practical Mongo DB , 2nd edition, Apress
R3 Publications, 2016, ISBN 1484206487
Web Sites
http://www.mongodb.org/
wl
w2 W3schools.com/mongodb
Journals :

Prepared by Dr.S.Veni, Department of CS, CA & IT, KAHE Page 5/5

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

CLASS : 11 M.ScCS BATCH :2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
B UNIT I
SYLLABUS

Getting Started: A database for the modern web — MongoDB through the
JavaScript shell — Writing programs using MongoDB.

Getting Started: A database for the modern web

MongoDB is a database management system designed to rapidly develop web
appli- cations and internet infrastructure. The data model and persistence
strategies are built for high read-and-write throughput and the ability to scale
easily with automatic failover. Whether an application requires just one
database node or dozens of them, MongoDB can provide surprisingly good
performance. If you've experienced difficul- ties scaling relational databases,
this may be great news. But not everyone needs to operate at scale. Maybe all
you've ever needed is a single database server.

MongoDB stores its information in documents rather than rows.
What’s adocument? Here’s an example:

_id: 10,
username: 'peter’,
email: 'pbbakkum@gmail.com’

}

This is a pretty simple document; it’s storing a few fields of information
about a user (he sounds cool). What’s the advantage of this model?
Consider the case where you’d like to store multiple emails for each user. In
the relational world, you might create a separate table of email addresses
and the users to which they’re associated. MongoDB gives you another way
to store these:

_id: 10,

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 1 of 42

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

]

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

username: 'peter’,

email: |
'‘pbbakkum@gmail
.com’',
'pbb7c@virginia.ed
u

MongoDB’s document format is based on JSON, a popular scheme for
storingarbi- trary data structures. JSON is an acronym for JavaScript Object
Notation. As you just saw, JSON structures consist of keys and values, and
they can nest arbitrarily deep. They’re analogous to the dictionaries and
hash maps of other programming languages.

A document-based data model can represent rich, hierarchical data
structures. It’s often possible to do without the multitable joins common
to relational databases mnormalized relational data model, the
information for any one product might be divided among dozens of
tables.

Built for the internet

The history of MongoDB is brief but worth recounting, for it was born out of
a much more ambitious project. In mid-2007, a startup in New York City
called 10gen began work on a platform-as-a-service (PaaS), composed of an
application server and a data- base, that would host web applications and
scale them as needed. Like Google’s App Engine, 10gen’s platform was
designed to handle the scaling and management of hardware and software
infrastructure automatically, freeing developers to focus solely on their

application code. 10gen ultimately discovered that most developers didn’t
feel comfortable giving up so much control over their technology stacks, but

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

CLASS : 11 M.ScCS BATCH : 2017- 2019

ke | g | v OURSE NAME : MONGODB COURSE CODE:18CSP203

(Deemed to be University)
J Established Under Section 3 of UGC Act, 1956 |

& KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

usersdid

10gen has since changed its name to MongoDB, Inc. and continues to
sponsor the database’s development as an open source project. The code is
publicly available and free to modify and use, subject to the terms of its
license, and the community at large is encouraged to file bug reports and
submit patches. Still, most of MongoDB’s core developers are either
founders or employees of MongoDB, Inc., and the project’s roadmap
continues to be determined by the needs of its user community and the
overarching goal of creating a database that combines the best features of
relational databases and distributed key-value stores.

MongoDB’s key features

A database is defined in large part by its data model. In this section, you'll
look at the document data model, and then you’ll see the features of
MongoDB that allow you to operate effectively on that model.

Document data model

MongoDB’s data model is document-oriented. If you’re not familiar with
documents in the context of databases, the concept can be most easily
demonstrated by an exam- ple. A JSON document needs double quotes
everywhere except for numeric values. The following listing shows the
JavaScript version of a JSON document where double quotes aren’t
necessary.

Listing 1.1 A document representing an entry on a social news sit:

{
_id: ObjectID('4bd9e8e17cefd644108961bb'), title: 'Adventures in

Databases',
url: 'http://example.com/databases.txt’, author: 'msmith’,

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 1 of 42

http://example.com/databases.txt%27

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION
(Deermed to be University)

B vote_count: 20,
tags: ['databases', 'mongodb’, 'indexing'], image: {
url: 'http:/ /example.com/db.jpg', caption: 'A database.’,
type: 'jpg', size: 75381, data: 'Binary'

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

5
comments: |
{
user: 'bjones’,
text: 'Interesting article.'
18
{
user: 'sverch’,
text: 'Color me skeptical!'
h
]
H

SCHEMA-LESS MODEL ADVANTAGES

This lack of imposed schema confers some advantages. First, your
application code, and not the database, enforces the data’s structure. This
can speed up initial applica- tion development when the schema is
changing frequently.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

http://example.com/db.jpg%27

]

Enabie | mamn unmr

KARP

CLASS

L)

(Deermed to be University)

J Established Under Section 3 of UGC Act, 1956 |

KARPAGAM ACADEMY OF HIGHER EDUCATION

211 M.Sc CS
hﬁ:OURSE NAME : MONGODB

CADEMY OF HIGHEI! EDUCATION

catalog product entit

entity id
entity type id

attribute set id

int (11)
int (5)
int (5)

BATCH : 2017- 2019
COURSE CODE:18CSP203

type id varchar (32)
catalog product entity datetime
value id int (11)
entity type id smallint (5)
attribute id smallint (5)
store id smallint (5)
entity id int (10)
catalog product entity decimal
value id int (11)
entity type id smallint (5)
O={ attribute_ id smallint (5)
store_id smallint (5)
entity id int (10)
catalog product entity int
value_id int (11)
entity type id smallint (5)
——O=<] attribute_id smallint (5)
store_id smallint (5)
entity id int (10)
catalog product entity text
value_id int (11)
entity type id smallint (5)
——O< attribute_id smallint (5)
store_id smallint (5)
entitv id int (10)
catalog product entity varchar
value_id int (11)
entity type id smallint (5)
——————O<q attribute_id smallint (5)

store_id
entitv id

smallint (5)
int (10)

product catalog. There’s no way of knowing in advance what attributes a
product will have, so the application willneed to account for that variability.

Ad hoc queries

Ad hoc queries are easy to take for granted if the only databases you've

Prepared by Dr.S.Veni. Dept. of CS, CA & IT

Page 1 of 42

KARPAGA

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

Prepared by Dr.S.Veni. Dept. of CS, CA & IT

KARPAGAM ACADEMY OF HIGHER EDUCATION

\&; CLASS : 11 M.ScCS BATCH : 2017- 2019
I\iﬁOURSE NAME : MONGODB COURSE CODE:18CSP203

ever used have been relational. But not all databases support dynamic
queries. For instance, key-value stores are queryable on one axis only: the
value’s key.

A SQL query would look like this:

SELECT * FROM posts

INNER JOIN posts_tags ON posts.id =
posts_tags.post_id INNER JOIN tags ON
posts_tags.tag id == tags.id

WHERE tags.text = 'politics' AND posts.vote_count > 10;

The equivalent query in MongoDB is specified using a document as a
matcher. The special $gtkey indicates the greater-than condition:

db.posts.find({'tags": 'politics', 'vote_count': {'$gt': 10}});

Indexes

A critical element of ad hoc queries is that they search for values that
you don’t know when you create the database.

Indexes in MongoDB are implemented as a B-tree data structure. B-

tree indexes, also used in many relational databases, are optimized for a
variety of queries, includ- ing range scans and queries with sort clauses. But
WiredTiger has support for log- structured merge-trees (LSM) that’s expected
tobeavailablein the MongoDB 3.2 pro- duction release.

Replication

MongoDB provides database replication via a topology known as a replica
set. Replica sets distribute data across two or more machines for
redundancy and automate failover in the event of server and network
outages. Additionally, replication is used to scale database reads. If you

Page 4 of 42

& KARPAGAM ACADEMY OF HIGHER EDUCATION

B=ZE) CLASS @ 11 M.ScCS BATCH :2017- 2019
KE“P"K"GETA I&OURSE NAME : MONGODB COURSE CODE:18CSP203

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

have a read-intensive application, as is commonly the case on the web, it’s
possible to spread database reads across machines in the replica set

cluster.

Speed and durability
To understand MongoDB’s approach to durability, it pays to consider a few idgas
first. In the realm of database systems there exists an inverse relationship betwden
write speed and durability. Write speed can be understood as the volume of inseifts,
updates, and deletes that a database can process in a given time frame. Durabifity
refers tolevel of assurance that these write operations have been made permanent.

<y > < R
“
< > < >

< >

<
Scaling

It then makes sense to consider scaling horizontally, or scaling out (see
figure 1.4). Instead of beefing up a single node, scaling horizontally means
distributing the data- base across multiple machines. A horizontally scaled
architecture can run on many smaller, less expensive machines, often
reducing your hosting costs.

MongoDB was designed to make horizontal scaling manageable. It does
so via a range-based partitioning mechanism, known as sharding, which
automatically manages

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 1 of 42

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

CLASS : Il M.Sc CS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
Original database 68 GB of RAM
1690 GB of storage

Scaling up Scaling out
increases the adds more
capacity of a machines of
single machine. similar size.

—
3

68 GB of RAM 68 GB of RAM 68 GB of RAM

1690 GB of storage 1690 GB of storage 1690 GB of storage

200 GB of RAM
5000 GB of storage

_//

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

& KARPAGAM ACADEMY OF HIGHER EDUCATION
'"Z8) CLASS : 11M.ScCS BATCH :2017- 2019

S ? , NAME : MONGODB COURSE CODE:18CSP203
KAR E g’ﬁﬁ

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

MongoDB’s core server and tools
MongoDB is written in C++ and actively developed by MongoDB, Inc.
The project compiles on all major operating systems, including Mac OS X,
Windows, Solaris, and most flavors of Linux. Precompiled binaries are
available for each of these platforms at http://mongodb.org. MongoDB is
open source and licensed under the GNU-Affero General Public License
(AGPL).

Core server

The core database server runs via an executable called mongod
(mongodb.exe on Win- dows). The mongod server process receives
commands over a network socket using a custom binary protocol. All the
datafiles fora mongodprocess are stored by defaultin

/data/db on Unix-like systems and in c:\data\db on Windows. Command-
line tools

MongoDB is bundled with several command-line utilities:

» mongodump and mongorestore—Standard utilities for backing up and
restoring a database. mongodump saves the database’s data in its
native BSON format and thus is best used for backups only; this tool
has the advantage of being usable for hot backups, which can easily
be restored with mongorestore.

» mongoexport and mongoimport—Export and import JSON, CSV, and

TSV’ data; this is useful if you need your data in widely supported
formats. mongoimport can also be good for initial imports of large data
sets, although before importing, it’s often desirable to adjust the data
model to take best advantage of MongoDB. In such cases, it’s easier to
import the data through one of the drivers using a custom script.

» mongosniff—A wire-sniffing tool for viewing operations sent to the
database. It essentially translates the BSON going over the wire to
human-readable shell statements.

» mongostat—Similar to iostat, this utility constantly polls MongoDB
and the system to provide helpful stats, including the number of
operations per second (inserts, queries, updates, deletes, and so on),
the amount of virtual memory allocated, and the number of
connections to the server.

PreparedbyDrSVeniDeptof €S CA&IF—— pasegofgo |

http://mongodb.org/

]

L)

KARPAGA

CLASS
hﬁ:OURSE NAME : MONGODB

CADEMY OF HIGHER EDUCATION

(Deermed to be University)

JEstabilished Under Section 3 of UGC Act, 1956 |

Prepared by Dr.S.Veni. Dept. of CS, CA & IT

KARPAGAM ACADEMY OF HIGHER EDUCATION
211 M.Sc CS BATCH : 2017- 2019
COURSE CODE:18CSP203

» mongotop—Similar to top, this utility polls MongoDB and shows the
amount of time it spends reading and writing data in each
collection.

» mongoperf—Helps you understand the disk operations happening in a
running MongoDB instance.

» mongooplog—Shows what’s happening in the MongoDB oplog.
+ Bsondump—Converts BSON files into human-readable formats
including JSON. MongoDB versus other databases

The number of available databases has exploded, and weighing one against
another can be difficult. Fortunately, most of these databases fall under
one of a few catego- ries. In table 1.1, and in the sections that follow, we
describe simple and sophisticated key-value stores, relational databases,
and document databases, and show how these compare with MongoDB.

Table 1.1 Database families
Examples| Data Scalability Use cases
model model
Simple key-| Memcached | Key-value, | Variable. Caching.
value stores where the Mem- Web ops.
value is a cached can
binary scale
blob. across
nodes,
converting
all available
RAM into a
single,
mono-
lithic

Page 4 of 42

& KARPAGAM ACADEMY OF HIGHER EDUCATION

- CLASS : Il M.Sc CS BATCH : 2017- 2019
" Aﬁ“&?&‘iﬁ NAME : MONGODB COURSE CODE:18CSP203
CADEMY OF HIGHER EDUCATION
eamed e Urversi]
datastore.
Sophisticat | HBase, Variable. Eventually | High-
ed key- Cassan- Cassan- consis- throughput
value stores| dra, Riak dra uses a | tent, verticals
KV, Redis, | key- value | multinode | (activity
CouchDB structure distributio | feeds,
known as a | n for high | message
col- umn. availability | queues).
HBase and | and easy Caching.
Redis store | failover. Web ops.
binary
blobs.
CouchDB
stores
JSON
documents
Relational | Oracle Tables. Vertical System
data- bases| Database, scaling. requiring
IBM DB2, Limited transaction
Micro- soft support for | s (banking,
SQL Server, clustering | finance) or
MySQL, and SQL.
PostgreSQL manual Normal-
partition- ized data
ing. model.

RELATIONAL DATABASES

Popular relational databases include MySQL, PostgreSQL, Microsoft SQL
Server, Oracle Database, IBM DB2, and so on; some are open-source and
some are proprietary. MongoDB and rela- tional databases are both capable
of representing a rich data model. Where relational databases use fixed-

PreparedbyDrSVeniDeptof €S CA&IF—— pasegofgo |

]

L)

KARPAGA

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS : 11 M.ScCS BATCH : 2017- 2019
I\ﬁ:OURSE NAME : MONGODB COURSE CODE:18CSP203

CADEMY OF HIGHER EDUCATION

(Deermed to be University)

JEstabilished Under Section 3 of UGC Act, 1956 |

schema tables, MongoDB has schema-free documents. Most rela- tional
databases support secondary indexes and aggregations.

DOCUMENT DATABASES

Few databases identify themselves as document databases. As of this writing,
the clos- est open-source database comparable to MongoDB is Apache’s
CouchDB. CouchDB’s document model is similar, although data is stored
in plain text as JSON, whereas MongoDB uses the BSON binary format.
Like MongoDB, CouchDB supports secondary indexes; the difference is that
the indexes in CouchDB are defined by writing map- reduce functions, a
process that’s more involved than using the declarative syntax used by
MySQL and MongoDB. They also scale differently.

Use cases and production deployments

wEB APPLICATIONS

MongoDB can be a useful tool for powering a high-traffic website. This is
the case with The Business Insider (TBI), which has used MongoDB as its
primary datastore since January 2008. TBI is a news site, although it gets
substantial traffic, serving more than a million unique page views per day.

History of MongoDB

When the first edition of MongoDB in Action was released, MongoDB 1.8.x
was the most recent stable version, with version 2.0.0 just around the

corner. With this second edi- tion, 3.0.x is the latest stable version. 11

A list of the biggest changes in each of the official versions is shown
below. You should always use the most recent version available, if possible, in
which case this list isn’t particularly useful. If not, this list may help you
determine how your version dif- fers from the content of this book. Thisis by
nomeansanexhaustivelist, and because of space constraints, we’ve listed
only the topfourorfiveitems foreachrelease.

VERSION 1.8.X (NO LONGER OFFICIALLY SUPPORTED)

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

& KARPAGAM ACADEMY OF HIGHER EDUCATION
'"Z8) CLASS : 11M.ScCS BATCH :2017- 2019

S ? , NAME : MONGODB COURSE CODE:18CSP203
KAR E gﬁ\l}:r

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

v Sharding—Shardingwas moved from “experimental” to production-ready
status.

' Replica sets—Replica sets were made production-ready.

v Replicapairs deprecated—Replica set pairsare nolonger supported by
MongoDB, Inc.

' Geo search—Two-dimensional geo-indexing with coordinate pairs
(2D indexes) was introduced.

VERSION 2.0.X (NO LONGER OFFICIALLY SUPPORTED)

v Journaling enabled by default—This version changed the default
for new data- bases to enable journaling. Journaling is an important
function that prevents data corruption.

v $and queries—This version added the $andquery operator to compleme]
the
$oroperator.

v Sparse indexes—Previous versions of MongoDB included nodes in
an index for every document, even if the document didn’t contain
any of the fields being tracked by the index. Sparse indexing adds
only document nodes that have rel- evant fields. This feature
significantly reduces index size. In some cases this can improve
performance because smaller indexes can result in more efficient use
of memory.

» Replica set priorities—This version allows “weighting” of replica set
members to ensure thatyour best servers get priority when electinga
New primary server.

v Collection level compact/repair—Previously you could perform
compact/repair only on a database; this enhancement extends it to
individual collections.

VERSION 2.2.X (NO LONGER OFFICIALLY SUPPORTED)

v Aggregation framework—This version features the first iteration of a
facility to make analysis and transformation of data much easier and

nt

PreparedbyDrSVeniDeptof €S CA&IF—— pasegofgo |

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

more efficient. In many respects this facility takes over where
map/reduce leaves off; it’s built on a pipeline paradigm, instead of the
map/reduce model (which some find diffi- cult to grasp).

v TTL collections—Collections in which the documents have a time-
limited lifespan are introduced to allow you to create caching models
such asthose provided by Memcached.

» DB level locking—This version adds database level locking to take the
place of the global lock, which improves the write concurrency by
allowing multiple opera- tions to happen simultaneously on
different databases.

v Tag-aware sharding—This version allows nodes to be tagged with IDs
that reflect their physical location. In this way, applications can control
where data is stored in clusters, thus increasing efficiency (read-only
nodes reside in the same data center) and reducing legal
jurisdiction issues (you store data required to remain in a specific
country only on servers in that country).

VERSION 2.4.X (OLDEST STABLE RELEASE)

v Enterprise version —The first subscriber-only edition of MongoDB, the
Enterprise version of MongoDB includes an additional authentication
module that allows the use of Kerberos authentication systems to
manage database login data. The free version has all the other
features of the Enterprise version.

v Aggregation framework performance —Improvements are made in the
performance of the aggregation framework to support real-time
analytics; chapter 6 explores the Aggregation framework.

v Text search —An enterprise-class search solution is integrated as an
experimental feature in MongoDB; chapter 9 explores the new text
search features.

v Enhancements to geospatial indexing —This version includes
support for polygon intersection queries and GeoJSON, and features

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

& KARPAGAM ACADEMY OF HIGHER EDUCATION
'"Z8) CLASS : 11M.ScCS BATCH :2017- 2019

S ? , NAME : MONGODB COURSE CODE:18CSP203
KAR g g’ﬁﬁ

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

animproved spherical model supporting ellipsoids.

v V8 JavaScript engine—MongoDB has switched from the Spider Monkey
JavaScript engine to the Google V8 Engine; this move improves
multithreaded operation and opens up future performance gains in
MongoDB’s JavaScript-based map/ reduce system.

VERSION 2.6.X (STABLE RELEASE)

v $text queries—This version added the $textquery operator to support
textsearch in normal find queries.

v Aggregation improvements—Aggregation has various improvements
in this ver- sion. It can stream data over cursors, it can output to
collections, and it has many new supported operators and pipeline
stages, among many other features and performance improvements.

Additional resources

v Improved wire protocol for writes—Now bulk writes will receive more
granular and detailed responses regarding the success or failure of
individual writes in a batch, thanks to improvements in the way
errorsarereturned overthe network for write operations.

» New update operators—New operators have been added for update
operations, such as $mul, which multiplies the field value by the
given amount.

» Sharding improvements—Improvements have been made in
sharding to better handle certain edge cases. Contiguous chunks can
now be merged, and dupli- cate data that wasleft behind after achunk
migration can be cleaned up auto- matically.

v Security improvements—Collection-level access control is supported
in this ver- sion, as well as user-defined roles. Improvements have
also been made in SSL and x509 support.

» Query system improvements —Much of the query system has been
refactored. This improves performance and predictability of
queries.

v Enterprise module—The MongoDB Enterprise module has
improvements and extensions of existing features, as well as
support for auditing.

PreparedbyDrSVeniDeptof €S CA&IF—— pasegofgo |

]

L)

KARPAGA

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS : 11 M.ScCS BATCH : 2017- 2019
I\ﬁ:OURSE NAME : MONGODB COURSE CODE:18CSP203

CADEMY OF HIGHER EDUCATION

(Deermed to be University)

JEstabilished Under Section 3 of UGC Act, 1956 |

Prepared by Dr.S.Veni. Dept. of CS, CA & IT

VERSION 3.0.X (NEWEST STABLE RELEASE)

» The MMAPv1 storage engine now has support for collection-level locking

» Replica sets can now have up to 50 members.

» Support for the WiredTiger storage engine; WiredTiger is only
available in the 64-bit versions of MongoDB 3.0.

» The 3.0 WiredTiger storage engine provides document-level
locking and compression.

» Pluggable storage engine API that allows third parties to develop storage
engines for MongoDB.

» Improved explain functionality.

+ SCRAM-SHA-1 authentication mechanism.

» The ensurelndex() function has been replaced by the createlndex()
function and should no longer be used.

This topic covers

m Using CRUD operations in the MongoDB shell
® Building indexes and using explain ()

1 Understanding basic administration

1 Getting help

Diving into the MongoDB shell

MongoDB’s JavaScript shell makes it easy to play with data and get a
tangible sense of documents, collections, and the database’s particular
query language. Think of the following walkthrough as a practical
introduction to MongoDB.

Starting the shell

Follow the instructions in appendix A and you should quickly have a working
MongoDB installation on your computer, as well as a running mongod
instance. Once you do, start the MongoDB shell by running the mongo
executable:

Page 4 of 42

& KARPAGAM ACADEMY OF HIGHER EDUCATION
aN""Z8)) CLASS : 11 M.ScCS BATCH :2017- 2019

“SCOL NAME : MONGODB COURSE CODE:18CSP203
kARFREAN

[Deemed to be University)
JEstablished Under Section 3 of UGC Act, 1955

mongo

If the shell program starts successfully, your screen will look like figure 2.1.
The shell heading displays the version of MongoDB you’re running, along
with some additional information about the currently selected
database.

10:25 $ mongo
MongoDB shell version: 3.0.4
connecting to: test

>

Databases, collections, and documents
MongoDB divides collections into separate databases. Unlike the usual

overhead that databases produce in the SQL world, databases in MongoDB
are just namespaces to distinguish between collections. To query MongoDB,
you'll need to know the data- base (or namespace) and collection you
want to query for documents. If no other database is specified on startup,
the shell selects a default database called test. As a way of keeping all the
subsequent tutorial exercises under the same namespace, let’s start by
switching to the tutorial database:

> use tutorial
switched to db tutorial

The document contains a single key and value for storing Smith’s username.

Inserts and queries

To save this document, you need to choose a collection to save it to.

PreparedbyDrSVeniDeptof €S CA&IF—— pasegofgo |

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

Appropriately enough, you'll save it to the userscollection. Here’s how:

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

> db.users.insert({username:
"smith"}) WriteResult({ "nInserted"

1 1))

NOTE Note thatin our examples, we’ll preface MongoDB shell
commands with a >so thatyou can tell the difference between the
command and its output.

You may notice a slight delay after entering this code. At this point, neither
the tuto- rial database nor the userscollection has been created on disk. The
delayiscaused by the allocation of the initial data files for both.

Ifthe insert succeeds, you've just saved your first document. In the default
MongoDB configuration, this data is now guaranteed to be inserted even if
you kill the shell or suddenly restart your machine. You can issue a query
to see the new document:

> db.users.find()

Sincethe dataisnow partofthe users collection, reopening the shelland
running the query will show the same result. The response will look
something like this:

{"_id" : Objectld("'552e458158cd52bcb257c324"), "username" : "smith" }

PASS A QUERY PREDICATE

Now that you have more than one document in the collection, let’s look
at some slightly more sophisticated queries. As before, you can still query
for all the docu- ments in the collection:

> db.users.find()
{"_id" : Objectld("552e458158cd52bcb257c324"), "username" : "smith" }
{"_id" : Objectld("552e542a58cd52bcb257c325"), "username" : "jones"

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

& KARPAGAM ACADEMY OF HIGHER EDUCATION
'"Z8) CLASS : 11M.ScCS BATCH :2017- 2019

“SCOL NAME : MONGODB COURSE CODE:18CSP203
kARFREAN

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

You can also pass a simple query selector to the find method. A query
selector is a document that’s used to match against all documents in the
collection. To query for all documents where the username is jones, you pass
a simple document that acts as your query selector like this:

> db.users.find({username: "jones"})
{"_id" : Objectld("552e542a58cd52bcb257c325"), "username" : "jones"

Updating documents

> db.users.find({username: "smith"})
{"_id" : Objectld("552e458158cd52bcb257¢c324"), "username" : "smith" }

OPERATOR UPDATE
The first type of update involves passing a document with some kind of
operator description as the second argument to the update function. In
this section, you'll see an example of how to use the $setoperator, which
sets a single field to the spec- ified value.

Suppose that user Smith decides to add her country of residence. You
canrecord this with the following update:

> db.users.update(fusername: "smith"}, {$set: {country:
"Canada"}}) WriteResult({ "nMatched" : 1, "nUpserted" : O,
"nModified" : 1})

Deleting data
If given no parameters, a remove operation will clear a collection of all

its docu- ments. To get rid of, say, a foocollection’s contents, you enter:

> db.foo.remove()

You often need to remove only a certain subset of a collection’s documents,
and for that, you can pass a query selector to the remove() method. If you
want to remove all users whose favorite city is Cheyenne, the expression
is straightforward:

PreparedbyDrSVeniDeptof €S CA&IF—— pasegofgo |

L)

KARPAGA

I&OURSE NAME : MONGODB

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS : 11 M.ScCS BATCH : 2017- 2019
COURSE CODE:18CSP203

CADEMY OF HIGHER EDUCATION

]

(Deermed to be University)

JEstabilished Under Section 3 of UGC Act, 1956 |

> db.users.remove({'favorites.cities":
"Cheyenne'}) WriteResult({ "'nRemoved" : 1 })

Note that the remove()operation doesn’t actually delete the collection; it
merely removes documents from a collection. You can think of it as being
analogous to SQL’s DELETEcommand.
If your intent is to delete the collection along with all of its indexes, use th
drop()
method:

> db.users.drop()

Basic administration
Getting database information
showdbsprints a list of all the databases on the system:

> show dbs
admin (empty)
local

0.078
GB tutorial
0.078GB

showcollectionsdisplays a list of all the collections defined on the current

data- base.? If the tutorialdatabase is still selected, you'll see a list of the
collections you worked with in the preceding tutorial:

> show
collections
numbers
system.indexes
users

The one collection that you may not recognize is system.indexes. This is a
special collection that exists for every database. Each entry in

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

19%

& KARPAGAM ACADEMY OF HIGHER EDUCATION
'"Z8) CLASS : 11M.ScCS BATCH :2017- 2019

“SCOL NAME : MONGODB COURSE CODE:18CSP203
kARFREAN

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

system.indexes defines an index for the database, which you can view
using the getIndexes()method, as you saw earlier.

But MongoDB 3.0 deprecates direct access to the system.indexes collec-
tions; you should use createlndexes and listindexes instead. The getlndexes|()
Java- Script method can be replaced by the db.runCommand({listindexes":
"numbers"}) shell command.

For lower-level insight into databases and collections, the stats()method
proves useful. When you run it on a database object, you’ll get the
following output:

> db.stats|()

{
"db" : "tutorial",
"collections" : 4,
"objects" : 20010,
"avgODbjSize" : 48.0223888055972,
"dataSize" : 960928,
"storageSize" : 2818048,
"numExtents" : 8,
"indexes" : 3,
"indexSize" : 1177344,
"fileSize" : 67108864,
"nsSizeMB" : 16,
"extentFreeList" :

{
"num" : O,
"totalSize" : O
s
"dataFileVersion" :
{"major" : 4,
"minor" : 5
|3
"ok" : 1

]

L)

KARPAGA

CADEMY OF HIGHER EDUCATION

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS : 11 M.ScCS BATCH : 2017- 2019
I\ﬁ:OURSE NAME : MONGODB COURSE CODE:18CSP203

(Deermed to be University)

JEstabilished Under Section 3 of UGC Act, 1956 |

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

This topic covers

8 Introducing the MongoDB API through Ruby
8 Understanding how the drivers work

® Using the BSON format and MongoDB network
protocol

® Building a complete sample application

MongoDB through the Ruby lens

Installing and connecting
Once you have RubyGems installed, run:

gem install mongo

Youllstart by connectingto MongoDB. First, make sure that mongodis runninjg
by running the mongoshell to ensure you can connect. Next, create a file called
connect.rb and enter the following code:

require
'Tubygems'
require 'mongo’

$client = Mongo::Client.new(['127.0.0.1:27017' |, :database =>
'tutorial') Mongo::Logger.logger.level = ::Logger:: ERROR
Susers =

$client[:users] puts

'connected!'

The first two require statements ensure that you've loaded the driver. The
next three lines instantiate the client to localhost and connect to the tutorial
database, store aref- erence to the userscollection in the $usersvariable, and
print the string connected!. We place a $in front of each variable to make it
global so that it'll be accessible out- side of the connect.rb script. Save

& KARPAGAM ACADEMY OF HIGHER EDUCATION
'"Z8) CLASS : 11M.ScCS BATCH :2017- 2019

“SCOL NAME : MONGODB COURSE CODE:18CSP203
kARFREAN

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

the file and run it:

$ ruby connect.rb

D, [2015-06-05T12:32:38.843933 #33946] DEBUG -- : MONGODB | Adding
127.0.0.1:27017 to the cluster. | runtime: 0.0031ms

D, [2015-06-05T12:32:38.847534 #33946] DEBUG -- : MONGODB

COMMAND |

namespace=admin.$cmd selector={:ismaster=>1} flags=|]

limit=-1 skip=0 project=nil | runtime: 3.4170ms
connected!

Inserting documents in Ruby

To run interesting MongoDB queries you first need some data, so let’s
create some (this is the C in CRUD). All of the MongoDB drivers are
designed to use the most natu- ral document representation for their
language. In JavaScript, JSON objects are the obvious choice, because
JSON is a document data structure; in Ruby, the hash data structure
makes the most sense. The native Ruby hash differs from a JSON object in
only a couple of small ways; most notably, where JSON separates keys and

values with a colon, Ruby uses a hash rocket (=>) 2
Here’s an example:

$ irb -r ./connect.rb

irb(main):017:0> id = $users.insert_one({'last_name" => "mtsouk"})
=> #<Mongo::Operation::Result:70275279152800
documents=[{"ok"=>1, "n"=>1}]> irb(main):014:0>
$users.find().each do |user|

irb(main):015:1* puts user

irb(main):016:1> end

{'_id"=>BSON::Objectld('55e3ee1c5ae119511d000000'),
"last_name"=>"knuth"}
{"_id"=>BSON::Objectld('55e3f13d5ae119516a000000'),
"last_name"=>"mtsouk"}

=> #<Enumerator: #<Mongo::Cursor:0x70275279317980
@view=#<Mongo::Collection::View:0x70275279322740

PreparedbyDrSVeniDeptof €S CA&IF—— pasegofgo |

L)

KARPAGA

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS : 11 M.ScCS BATCH : 2017- 2019
I\iﬁOURSE NAME : MONGODB COURSE CODE:18CSP203

CADEMY OF HIGHER EDUCATION

(Deermed to be University)

Prepared by

JEstabilished Under Section 3 of UGC Act, 1956 |

namespace='tutorial.users @selector={ @options={>>:each>

Updates and deletes

Susers.find({"last_name" => "smith"}).update_one({"$set" =>
{"city" => "Chicago"}})

This update finds the first user with a last_nameof smithand, if found, sets
the value of cityto Chicago. This update uses the $setoperator. You can run
aquery to show the change:

Susers.find({"last_name" => "smith"}).to_a

Database commands

First, you instantiate a Ruby database object referencing the admin
database. You then pass the command’s query specification to the
commandmethod:

$admin_db = $client.use('admin’)
$admin_db.command({"listDatabases" => 1})

Note that this code still depends on what we put in the connect.rb
script above because it expects the MongoDB connection to be in $client.
The response is a Ruby hash listing all the existing databases and their
sizes on disk:

#<Mongo::Operation::Result:70112905054200 documents=[{"databases"=>|

{

"name"=>"local",
"sizeOnDisk"=>83886
080.0, "empty"=>false

"name"=>"tutorial",
"sizeOnDisk"=>83886
080.0, "empty"=>false

Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

& KARPAGAM ACADEMY OF HIGHER EDUCATION

'"Z8) CLASS : 11M.ScCS BATCH :2017- 2019
“SCOL NAME : MONGODB COURSE CODE:18CSP203
kARFREAN
%,
{

"name"=>"admin",
"sizeOnDisk"=>1.0,
"empty"=>true
}], "totalSize"=>167772160.0, "ok"=>1.0}]>
=> nil

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

How the drivers work

All MongoDB drivers perform three major functions. First, they
generate Mon- goDB object IDs. These are the default values stored in the
_idfield of all documents. Next, the drivers convert any language-specific
representation of documents to and from BSON, the binary data format
used by MongoDB. In the previous examples, the driver serializes all the
Ruby hashes into BSON and then deserializes the BSON that’s returned
from the database back to Ruby hashes.

The drivers’ final function is to communicate with the database over a
TCP socket using the MongoDB wire protocol. The details of the protocol are
beyond the scope of this discussion. But the style of socket communication, in
particular whether writes on the socket wait for aresponse, is important, and
we’llexplore the topicin this section.

Object ID generation

Every MongoDB document requires a primary key. That key, which must be
unique for all documents in each collection, is stored in the document’s _id
field. Developers are free to use their own custom values as the _id, but
when not provided, a MongoDB object ID will be used. Before sending a
document to the server, the driver checks whether the _idfield is present.
If the field is missing, an object ID will be generated and stored as_id.

MongoDB object IDs are designed to be globally unique, meaning they'’re
guaran- teed to be unique within a certain context. How can this be
guaranteed? Let’s exam- ine this in more detail.

You've probably seen object IDs in the wild if you've inserted
documents into MongoDB, and at first glance they appear to be a string
of mostly random text, like 4c291856238d3b19b2000001.

4-byte
timest Process ID

amp

/_MA

4c291856 238d3b 19b2 000001

W_JW_/

Machine ID
PreparedbyDrS-Veni-—PeptofcS—CA GG IF——————————— DPase 1 of 43

]

Figure 3.1 MongoDB object
ID format

Prepared by Dr.S.Veni. Dept. of CS, CA & IT

Page 4 of 42

& KARPAGAM ACADEMY OF HIGHER EDUCATION
'"Z8) CLASS : 11M.ScCS BATCH :2017- 2019

S ? , NAME : MONGODB COURSE CODE:18CSP203
KAR g g’ﬁﬁ

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

representation of 12 bytes, and actually stores some useful information.
These bytes have a specific structure, as illustrated in figure 3.1.
The most significant four bytes carry a standard Unix (epoch)

timestamp3. The next three bytes store the machine ID, which is
followed by a two-byte process ID. The final three bytes store a process-
local counter that’s incremented each time an object ID is generated. The
counter means thatids generated in the same process and second won’t be
duplicated.

Why does the object ID have this format? It’s important to understand
that these IDs are generated in the driver, not on the server. This is different
than many RDBMSs, which increment a primary key on the server, thus
creating a bottleneck for the server generating the key. If more than one
driver is generating IDs and inserting docu- ments, they need a way of
creating unique identifiers without talking to each other. Thus, the
timestamp, machine ID, and process ID are included in the identifier itself
to make it extremely unlikely that IDs will overlap.

You may already be considering the odds of this happening. In practice,
you would encounter other limits before inserting documents at the rate

required to overflow the counter for a given second (224 million per
second). It’s slightly more conceivable (though still unlikely) to imagine that
ifyou had many drivers distributed across many machines, two machines
could have the same machine ID. For example, the Ruby driver uses the
following:

@@machine_id = Digest::MDS.digest(Socket.gethostname)|[0, 3]

For this to be a problem, they would still have to have started the MongoDB
driver’s process with the same process ID, and have the same counter value
in a given second. In practice, don’t worry about duplication; it’s
extremely unlikely.

One of the incidental benefits of using MongoDB object IDs is that they
include a timestamp. Most of the drivers allow you to extract the timestamp,
thus providing the document creation time, with resolution to the nearest
second, for free. Using the Ruby

Prepared-by-De-S-Veni—Dept—ofCSCAIF—— Dase 00 of4a |

& KARPAGAM ACADEMY OF HIGHER EDUCATION
'"Z8) CLASS : 11M.ScCS BATCH :2017- 2019

S ? , NAME : MONGODB COURSE CODE:18CSP203
KAR g g’ﬁﬁ

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

driver, you can call an object ID’s generation_timemethod to get that ID’s
creation time as a Ruby Timeobject:

irb> require 'mongo'

irb> id = BSON::Objectld.from_string('4c291856238d3b19b2000001")
=> BSON::Objectld('4c291856238d3b19b2000001")

irb> id.generation_time

=> 2010-06-28 21:47:02 UTC

Naturally, you can also use object IDs to issue range queries on object
creation time. Forinstance, ifyou wanted to query for all documents created
during June 2013, you could create two object IDs whose timestamps
encode those dates and then issue a range query on _id. Because Ruby
provides methods for generating object IDs from any Timeobject, the code

for doing this is trivial:*

jun_id = BSON::Objectld.from_time(Time.utc(2013, 6, 1))
jul_id = BSON::Objectld.from_time(Time.utc(2013, 7,

1)) @users.find({_id' => {$gte' => jun_id, '$it' =>

jul_id})

As mentioned before, you can also set your own value for _id. This might
make sense in cases where one of the document’s fields is important and
always unique. For instance, in a collection of users you could store the
username in _id rather than on object ID. There are advantages to both
ways, anditcomes down toyour preference as a developer.

Building a simple application

Next you’ll build a simple application for archiving and displaying Tweets.
You can imagine this being a component in a larger application that allows
users to keep tabs on search terms relevant to their businesses. This example
will demonstrate how easy it is to consume JSON from an API like Twitter’s

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

& KARPAGAM ACADEMY OF HIGHER EDUCATION
'"Z8) CLASS : 11M.ScCS BATCH :2017- 2019

“SCOL NAME : MONGODB COURSE CODE:18CSP203
kARFREAN

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

and convert that to MongoDB docu- ments. If you were doing this with a
relational database, you'd have to devise a schema in advance, probably
consisting of multiple tables, and then declare those tables. Here, none of
that’s required, yet you'll still preserve the rich structure of the Tweet docu-
ments, and you’ll be able to query them effectively.

Let’s call the app TweetArchiver. TweetArchiver will consist of two
components: the archiver and the viewer. The archiver will call the Twitter
search API and store the relevant Tweets, and the viewer will display the
results in aweb browser.

Setting up

This application requires four Ruby libraries. The source code repository for
this chap- ter includes a file called Gemfile, which lists these gems. Change
yourworkingdirectory

gem install bundler bundle install

This will ensure the bundler gem is installed. Next, install the other
gems using Bundler’s package management tools. This is a widely used
Ruby tool for ensuring that the gems you use match some predetermined
versions: the versions that match our code examples.

Our Gemfile lists the mongo, twitter, bsonand sinatragems, so these
will be installed. The mongogem we’ve used already, but we include it to be
sure we have the right version. The twittergem is useful for communicating
with the Twitter APIL.

We provide the source code for this example separately, but introduce it
gradually to help you understand it. We recommend you experiment and
try new things to get the most out of the example.

[t'll be useful to have a configuration file that you can share between the
archiver and viewer scripts. Create a file called config.rb (or copy it from the
source code) that looks like this:

DATABASE HOST =
'localhost'

Prepared-by-De-S-Veni—Dept—ofCSCAIF—— Dase 00 of4a |

An

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS : 11 M.ScCS BATCH : 2017- 2019

‘fr??g’-n NAME : MONGODB COURSE CODE:18CSP203
KARP gﬁ\l):r

CADEMY OF HIGHER EDUCATION

]

(Deermed to be University)

Prepared by Dr.S.Veni. Dept. of CS, CA & IT

JEstabilished Under Section 3 of UGC Act, 1956 |

DATABASE_PORT =

27017

DATABASE_NAME = "twitter-

archive" COLLECTION_NAME

= "tweets"

TAGS = ["#MongoDB", "#Mongo"]

CONSUMER_KEY =

"replace me

CONSUMER_SECRET =

"replace me" TOKEN
= 'replace

me" TOKEN_SECRET =

"replace me"

Firstyou specify the names of the database and collection youll use for your
applica- tion. Then you define an array of search terms, which you’ll send to
the Twitter APIL.

Twitter requires that you register a free account and an application for
accessing the API, which can be accomplished at http://apps.twitter.com.
Once you've regis- tered an application, you should see a page with its
authentication information, per- hapsonthe APl keystab. Youwillalso have
toclick the buttonthat creates your access token. Use the values shown to
fillin the consumer and API keys and secrets.

Gathering data

The next step is to write the archiver script. You start with a TweetArchiver
class. You'll instantiate the class with a search term. Then you'll call the
update method on the TweetArchiverinstance, which issues a Twitter API
call, and save the results toa MongoDB collection.

Let’s start with the class’s constructor:

def initialize(tag)
connection = Mongo::Connection.new(DATABASE_HOST,
DATABASE_PORT) db = connection[DATABASE_NAME]
@tweets = db[COLLECTION_NAME]
@tweets.ensure_index([['tags’, 1], ['id', -1]])

Page 4 of 42

http://apps.twitter.com/
http://apps.twitter.com/

& KARPAGAM ACADEMY OF HIGHER EDUCATION
'"Z8) CLASS : 11M.ScCS BATCH :2017- 2019

“SCOL NAME : MONGODB COURSE CODE:18CSP203
kARFREAN

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

@tag = tag
@tweets_found = 0

@client = Twitter::REST::Client.new do
| config| config.consumer_key =
API_KEY config.consumer_secret
API_SECRET config.access_token
ACCESS_TOKEN
config.access_token_secret =
ACCESS_TOKEN_SECRET

en

d
end

The initialize method instantiates a connection, a database object, and the
collec- tion object you’ll use to store the Tweets.

You're creating a compound index on tags ascending and id descending.
Because you’re going to want to query for a particular tag and show the
results from newest to oldest, an index with tags ascending and id
descending will make that query use the index both for filtering results and
for sorting them. As you can see here, youindicate index direction with 1for
ascending and -1for descending. Don’t worry if this doesn’t make sense
now—we discuss indexes with much greater depthin chapter 8.

Youre also configuring the Twitter client with the authentication
information from config.rb. This step hands these values to the Twitter gem,
which will use them when callingthe Twitter API. Ruby has somewhatunique
syntax often used for this sort of con- figuration; the configvariable is passed
to a Ruby block, in which you setits values.

Prepared-by-De-S-Veni—Dept—ofCSCAIF—— Dase 00 of4a |

& KARPAGAM ACADEMY OF HIGHER EDUCATION
'"Z8) CLASS : 11M.ScCS BATCH :2017- 2019

S ? , NAME : MONGODB COURSE CODE:18CSP203
KAR g gﬁﬁ

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

In the future, Twitter may change its API so that different values are returned,
which will likely require a schema change if you want to store these additional
values. Not so with MongoDB. Its schema-less design allows you to save the
document you get from the Twitter API without worrying about the exact
format.

The Ruby Twitter library returns Ruby hashes, so you can pass these
directly to your MongoDB collection object. Within your TweetArchiver, you
add the following instance method:

def save_tweets_for(term)
@client.search(term).each do
| tweet |
@tweets_found += 1
tweet_doc =
tweet.to_h
tweet_doc|[:tags] =
term
tweet_doc|[:_id] =
tweet_doc[:id]
@tweets.insert_one(tweet_do
c)
en
d
end

Before saving each Tweet document, make two small modifications. To
simplify later queries, add the search term to a tagsattribute. You also set
the _id field to the ID of the Tweet, replacing the primary key of your
collection and ensuring that each Tweet is added only once. Then you pass
the modified document to the savemethod.

To use this code in a class, you need some additional code. First, you
must config- ure the MongoDB driver so that it connects to the correct
mongodand uses the desired database and collection. This is simple code
that you’ll replicate often as you use MongoDB. Next, you must configure
the Twitter gem with your developer credentials. This step is necessary
because Twitter restricts its API to registered developers. The next listing

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

& KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS : 11 M.ScCS BATCH : 2017- 2019
_—n

AR S ?g% NAME : MONGODB COURSE CODE:18CSP203

(Deemed to be University)
J Established Under Section 3 of UGC Act, 1956 |

also provides an update method, which gives the user feedback and calls
save_tweets_for.

Listing 3.1 archiver.rb—A class for fetching Tweets and archiving
them in MongoDB

S$LOAD_PATH << File.dirname(_
FILE) require 'rubygems'
require 'mongo’

require 'twitter'

require 'config'

class TweetArchiver

def initialize(tag)

client =
Mongo::Client.new(["#{DATABASE_HOST}:#{DATABASE_PORT}"],:
database => "#{DATABASE_NAME}")
@tweets =
client["#{COLLECTION_NAME}"|
@tweets.indexes.drop_all
@tweets.indexes.create_many(|
{:key => {tags: 1 }},

{:key =>{id: -1 }}

)

(@tag = tag

@tweets_found = 0

client = Twitter::REST::Client.new do |config| config.consumer_key =
"#{API_KEY}" config.consumer_secret = "#{AP]_SECRET}"
config.access_token = "#{ACCESS_TOKEN}"
config.access_token_secret = "#{ACCESS_TOKEN SECRET}"

end end

Configure the Twitter client using the values found in config.rb.

Prepared-byDrSVepPept—ot-co- A& H—————————Page 2005 42—

& KARPAGAM ACADEMY OF HIGHER EDUCATION

'"Z8) CLASS : 11M.ScCS BATCH :2017- 2019
“SCOL NAME : MONGODB COURSE CODE:18CSP203
kARFREAN

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

def update

puts "Starting Twitter search for '#{@tag}'..." save_tweets_for(@tag)
print "#{@tweets_found} Tweets saved.\n\n" end

private

A user facing method to wrap save_tweets_for

def save_tweets_for(term) @client.search(term).each do |tweet |
@tweets_found += 1 tweet_doc = tweet.to_h tweet_doc[:tags] =
term
tweet_doc|:_id] = tweet_doc[:id] @tweets.insert_one(tweet_doc)
end end
end

Search with the Twitter client and save the results to
Mongo.

All that remains is to write a script to run the TweetArchiver code against
each of the search terms. Create a file called update.rb (or copy it from the
provided code) con- taining the following:

$LOAD_PATH << File.dirname(
FILE) require 'config'
require 'archiver'

TAGS.each do |tag]
archive =
Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

& KARPAGAM ACADEMY OF HIGHER EDUCATION
'"Z8) CLASS : 11M.ScCS BATCH :2017- 2019

“SCOL NAME : MONGODB COURSE CODE:18CSP203
kARFREAN

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

TweetArchiver.new(tag)

archive.update
end

Next, run the update script:
ruby update.rb

You'll see some status messages indicating that Tweets have been found and
saved. You can verify that the script works by opening the MongoDB shell
and querying the col- lection directly:

> use twitter-archive
switched to db twitter-archive
> db.tweets.coun

t() 30

What’simportanthereis thatyou've managedto store Tweets from Twitter

searchesin only a few lines of code. S Next comes the task of displaying
the results.

Viewing the archive

Youlluse Ruby’s Sinatra web framework to build a simple app to display the
results. Sinatra allows you to define the endpoints for a web application
and directly specify the response. Its power lies in its simplicity. For
example, the content of the index page for your application can be
specified with the following:

get'/' do
"respons

e
end

This code specifies that GETrequests to the / endpoint of your application
return the

Prepared-by-De-S-Veni—Dept—ofCSCAIF—— Dase 00 of4a |

& KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS : 11 M.ScCS BATCH : 2017- 2019
_—n

AR S ?g% NAME : MONGODB COURSE CODE:18CSP203

CADEMY OF HIGHER EDUCATION

|

(Deemed to be University)
J Established Under Section 3 of UGC Act, 1956 |

value of response to the client. Using this format, you can write full web
applications with many endpoints, each of which can execute arbitrary Ruby
code before returning a response. You can find more information, including
Sinatra’s full documentation, at http:/ /sinatrarb.com.

We’ll now introduce a file called viewer.rb and place it in the same
directory as the other scripts. Next, make a subdirectory called views, and
place a file there called tweets.erb. After these steps, the project’s file
structure should look like this:

- config.rb
- archiver.rb
- update.rb
- viewer.rb
- [views
- tweets.erb

Again, feel free to create these files yourself or copy them from the code
examples. Now edit viewer.rb with the code in the following listing.

Listing 3.2 viewer.rb—Sinatra application for displaying the Twee

$LOAD_PATH << File.dirname(_
FILE) require 'rubygems'
require 'mongo’

require 'sinatra’

require 'config'

require 'open-uri'

Required
j libraries

configure do
client = Mongo::Client.new(["#{DATABASE_HOST}:#{DATABASE_PORT}"],
:database

=> "#{DATABASE_NAME}")

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

http://sinatrarb.com/

& KARPAGAM ACADEMY OF HIGHER EDUCATION
'"Z8) CLASS : 11M.ScCS BATCH :2017- 2019

S ? , NAME : MONGODB COURSE CODE:18CSP203
KAR g gﬁﬁ

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

TWEETS = client["#{COLLECTION_NAME}"|
end

get'/' do
if params|'tag']
selector = {itags => params|'tag']} else
selector = {} end

Instantiate collection a
c for tweets

d Dynamically build = | query selector...

...Or use <'—y

e blank selector

@tweets = TWEETS. find(selector).sort(["id", -1]) erb :tweets
end o

The first lines require the necessary libraries along with your config file
B. Next there’s a configuration block that creates a connection to MongoDB

and stores a refer- ence to your tweets collection in the constant
TWEETSc.

The real meat of the application is in the lines beginning with get'/'do. The
codeinthisblockhandlesrequeststotheapplication’sroot URL. First, you build your

query selector. Ifa tagsURL parameter has been provided, you create aquery
selector thatrestricts the result set to the given tags d. Otherwise, you create
a blank selector, which returns all documents in the collection e. You then

Page 33 of 42

|

& KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS : 11 M.ScCS BATCH : 2017- 2019
‘:if‘?’f NAME : MONGODB COURSE CODE:18CSP203
|§AﬁM¥ROF HIGH E%TION - -

(Deemed to be University)
J Established Under Section 3 of UGC Act, 1956 |

issue the query . By now, you should know that what gets assigned to the
@tweetsvariable isn’t a result set but a

cursor. You'll iterate over that cursor in your view.

The last line g renders the view file tweets.erb (see the next listing).

Listing 3.3 tweets.erb—HTML with embedded Ruby for renderir.g

<IDOCTYPE html>
<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<style>
body
{
width: 1000px;
margin: SOpx
auto;
font-family: Palatino,
serif; background-color:
#dbd4c2; color: #555050;
}
h2 {
margin-top: 2em;
font-family: Arial, sans-
serif; font-weight: 100;
}
</style>
</head>
<body>
<h1>Tweet Archive</h1>
<% TAGS.each do |tag| %>
<a href="/?tag=<%= URIl::encode(tag) %>"><%= tag %>
<% end %>
Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

& KARPAGAM ACADEMY OF HIGHER EDUCATION
'"Z8) CLASS : 11M.ScCS BATCH :2017- 2019

S ? , NAME : MONGODB COURSE CODE:18CSP203
KAR g g’ﬁﬁ

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

<% @tweets.each do |tweet| %>
<h2><%-= tweet['text'| %></h2>
<p>
<a href="http:/ /twitter.com/ <%= tweet['user']|['screen_name'] %>">
<%= tweet['user']|['screen_name'] %>

on <%= tweet['created_at'] %>
</p>
<img src="<%-= tweet['user'|['profile_image_url'| %>" width="48" />
<% end %>
</body>
</html>

Most of the code is just HTML with some ERB (embedded Ruby) mixed in.
The Sinatra app runs the tweets.erb file through an ERB processor and
evaluates any Ruby code between <% and %> in the context of the
application.

The important parts come near the end, with the two iterators. The first
of these cyclesthrough thelistoftagstodisplaylinksforrestrictingtheresult
settoagiventag.

The second iterator, beginning with the @tweets.eachcode, cycles through each
Tweet to display the Tweet’s text, creation date, and user profile image. You can see
results by running the application:

$ ruby viewer.rb

If the application starts without error, youll see the standard Sinatra startup
message that looks something like this:

$ ruby viewer.rb
[2013-07-05 18:30:19] INFO WEBrick 1.3.1
[2013-07-05 18:30:19] INFO ruby 1.9.3 (2012-04-20) [x86_64-darwin10.8.0]
== Sinatra/1.4.3 has taken the stage on 4567 for development with
backup from WEBTrick

[2013-07-05 18:30:19] INFO WEBrick::HTTPServer#start: pid=18465
Page 33 of 42

http://twitter.com/

]

& KARPAGAM ACADEMY OF HIGHER EDUCATION
'"Z8) CLASS : 11M.ScCS BATCH :2017- 2019

S ? , NAME : MONGODB COURSE CODE:18CSP203
KAR g g’ﬁﬁ

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

port=4567

You can then point your web browser to http://localhost:4567. The page
should look something like the screenshot in figure 3.2. Try clicking on the
links at the top of the screen to narrow the results to a particular tag.

Activities @ Google-chrome-stable ~

localhost: 4567

localhost

Tweet Archive

#£MoneoDB #Mongo

Jeez, you can't trust the world with a silly side blog. Lesson learned, I'll put that #MongoDB
password before going live.

1 Diaz30
Bsoneer 0.1.0 released! @MongoDB 3.0 #mongodb #java library to generate codecs for

beans. -> http://t.co/GQDdfdWGua

RT @hayquesaberweb: @CEASOFT #MongoDb Inicia Lunes 24 de Agosto de 5:30pm a
8:30pm, avalado por #EmacsConsultores http://t.co/sgFRsqdazl ...

Js_digest on Sun Jul

RT @guicamest: Bsoneer 0.1.0 released! @MongoDB 3.0 #mongodb #java library to
generate codecs for beans. -> http://t.co/GQDdfdWGua

ameanmbot on Sun Jul 26
me
onN

Figure 3.2 Tweet Archiver output rendered in a web browser
69

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

CLASS : 11 M.ScCS BATCH :2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
B UNIT II
SYLLABUS

Application Development: Document-oriented data — Principles of schema design —
Designing an e-commerce data model — Nuts and bolts on databases, collections,

and documents. Queries and aggregation — E-commerce queries — MongoDB"s quer}
language — Aggregating orders — Aggregation in detail.

This topic covers

® Schema design
®» Data models for e-commerce

» Nuts and bolts of databases, collections, and
documents

Principles of schema design

Database schema design is the process of choosing the best representation
for a data set, given the features of the database system, the nature of the
data, and the applica- tion requirements. The principles of schema design
for relational database systems are well established. With RDBMSs, you're

encouraged to shoot for a normalized data model,1 which helps to ensure
generic query ability and avoid updates to data that might result in
inconsistencies. Moreover, the established patterns prevent developers from
wondering how to model, say, one-to-many and many-to-many relationships.

What are your application access patterns?
What’s the basic unit of data?

What are the capabilities of your database?
What makes a good unique id or primary key for a record?

Designing an e-commerce data model

E-commerce has the advantage of including a large number of famil- iar

data modeling patterns. Plus, it’s not hard to imagine how products,

categories, product reviews, and orders are typically modeled in an

RDBMS.

E-commerce has typically been done with RDBMSs for a couple of reasons.

The first is that e-commerce sites generally require transactions, and
transactions are an RDBMS staple.

<

Prepared-by-De-S-Veni—Dept—ofCSCAIF—— Dase 05 0f 36—

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

The second is that, until recently, domains that require rich data models
and sophisticated queries have been assumed to fit best within the realm
of the RDBMS.

Schema basics

Products and categories are the mainstays of any e-commerce site. Products,
in a nor- malized RDBMS model, tend to require a large number of tables.
There’s a table for basic product information, such as the name and SKU,
but there will be other tables to relate shipping information and pricing
histories.

This multitable schema will be facil- itated by the RDBMS’s ability to join
tables.

More concretely, listing 4.1 shows a sample product from a gardening store.
It’s advis- able to assign this document to a variable before inserting it to
the database using db.products.insert(yourVariable) to be able to run the
queries discussed over the next several pages.

{
_id: Objectld("4c4b1476238d3b4dd5003981"), slug: "wheelbarrow-9092",

sku: "9092",
name: "Extra Large Wheelbarrow", description: "Heavy duty
wheelbarrow...", details: {
weight: 47, weight_units: "lbs", model_num: 4039283402,
manufacturer: "Acme", color: "Green"
5
total_reviews: 4,

average_review: 4.5, pricing: {
retail: 589700,
sale: 489700,

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

|8
price_history: |
{
retail: 529700,
sale: 429700,
start: new Date(2010, 4, 1),
end: new Date(2010, 4, 8)

}7

{
retail: 529700,

sale: 529700,
start: new Date(2010, 4, 9),
end: new Date(2010, 4, 16)

b Unique object ID +—
c Unique slug -

Nested]
d document

e One-to-many relationship

2
I,

primary_category: Objectld("6a5b1l 476238d3b4dd56?0048") ,
category_ids: |
Objectld("6a5b1476238d3b4dd5000048"),
Objectld("6a5b1476238d3b4dd5000049")

lﬁain cat_id: Objectld('6a5b1476238d3b4dd5000848"),
tags: ["tools", "gardening", "soil"],

}

Prepared-by-De-S-Veni—Dept—ofCSCAIF—— Dase 05 0f 36—

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

[Deemed to be University)
JEstablished Under Section 3 of UGC Act, 1955

Many-to-many relationship

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R,_J

ONE-TO-MANY RELATIONSHIPS

This is a one-to-many relationship, since a product only has one primary
category, but a category can be the primary for many products.

MANY-TO-MANY RELATIONSHIPS

MongoDB doesn’t support joins, so you need a different many-to-many
strategy. We've defined a field called category_idsf containing an array of
object IDs. Each object ID acts as a pointer to the _id field of some
category document.

A RELATIONSHIP STRUCTURE

The next listing shows a sample category document. You can assign it to a new
variable and insert it into the categories collection using
db.categories.insert(newCategory). This will help you usingitin forthcoming
querieswithouthavingto typeitagain.

Listing 4.2 A category document

id:
Objectld("6a5b1476238d3b4dd 50000
48"), slug: "gardening-tools",
name: "Gardening Tools",
description: "Gardening gadgets galore!”,
parent_id:
Objectld("55804822812cb336b78728f9"),

ancestors: |

{

name: "Home",

_id:
Objectld("558048f0812cb336b78728f
a"), slug: "home"

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

& KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

CLASS : 11 M.ScCS BATCH :2017- 2019
KAQMBOEQEE%}@A&EOURSE NAME : MONGODB COURSE CODE:18CSP203
{
name: "Outdoors",
_id:
Objectld("55804822812cb336b78728
f9"), slug: "outdoors"
h
]
h

Nuts and bolts: On databases,
collections, and documents

Databases

A database is a namespace and physical grouping of collections and their
indexes. In this section, we'll discuss the details of creating and deleting
databases. Well also jump down a level to see how MongoDB allocates
space for individual databases on the filesystem.

MANAGING DATABASES

There’s no explicit way to create a database in MongoDB. Instead, a
database is cre- ated automatically once you write to a collection in that
database. Have alook at this Ruby code:

connection = Mongo::Client.new(['127.0.0.1:27017"], :database =>
'garden') db = connection.database

Recall that the JavaScript shell performs this connection when you start it,
and then allows you to select a database like this:

use garden

Assuming that the database doesn’t exist already, the database has yet to be
created on disk even after executing this code. All you've done is instantiate
an instance of the class Mongo::DB, which represents a MongoDB database.
Only when you write to a col- lection are the data files created.
Continuing on in Ruby,

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

products = db['products']
products.insert_one({{name => "Extra Large Wheelbarrow"})

When you call insert_one on the products collection, the driver tells
MongoDB to insert the product document into the garden.products
collection. If that collec- tion doesn’t exist, it’'s created; part of this
involves allocating the garden database on disk.

You can delete all the data in this collection by calling:

products.find({}).delete_many

This removes all documents which match the filter {}, which is all
documents in the collection. This command doesn’t remove the collection
itself; it only empties it. To remove a collection entirely, you use the drop
method, like this:

products.drop

To delete a database, which means dropping all its collections, you issue a
special com- mand. You can drop the garden database from Ruby like so:

db.drop

From the MongoDB shell, run the dropDatabase()method using JavaScript:

use garden
db.dropDatabas

e();
Be careful when dropping databases; there’s no way to undo this operation

since it erases the associated files from disk. Let’s look in more detail at how
databases store their data.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

L)

KARPAGA

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS : 11 M.ScCS BATCH : 2017- 2019

I\iﬁOURSE NAME : MONGODB COURSE CODE:18CSP203

CADEMY OF HIGHER EDUCATION

(Deermed to be University)

JEstabilished Under Section 3 of UGC Act, 1956 |

DATA FILES AND ALLOCATION

When you create a database, MongoDB allocates a set of data files on disk.
All collec- tions, indexes, and other metadata for the database are stored in
these files. The data files reside in whichever directory you designated as the
dbpathwhen starting mongod. When left unspecified, mongod stores all its

files in /data/ db.3 Let’s see how this direc- tory looks after creating the
garden database:

$ cd /data/db

$ 1s -lah
drwxr- 31 admi 2. /K 11042 .
Xr-X pbakkum n u
drwxr- S root admi 170B 19 2012 ..
XIr-X n Sep
-TW----—-- 1 admi 64M Jul 1 10:43 garden.O
pbakkum n
-TW------- 1 admi 128M 1 10:42 garden.1
pbakkum n Jul
-TW------- 1 admi 16MJul 1 10:43
pbakkunil nd -y garden.ns
-I'WXr-Xr- admi u :
Xx X pbakkum n mongo%l.lock
Collections

Collections are containers for structurally or conceptually similar
documents. Here,

MANAGING COLLECTIONS

As you saw in the previous section, you create collections implicitly by
inserting docu- ments into a particular namespace. But because more than
one collection type exists, MongoDB also provides a command for creating
collections. It provides this com- mand from the JavaScript shell:

db.createCollection("users")

When creating a standard collection, you have the option of preallocating a
specific number of bytes. This usually isn’t necessary but can be done like
this in the Java- Script shell:

db.createCollection("users", {size: 20000})

L)

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS : 11 M.ScCS BATCH : 2017- 2019

hﬁ:OURSE NAME : MONGODB COURSE CODE:18CSP203

CADEMY OF HIGHER EDUCATION

]

(Deemed to be University)

J Established Under Section 3 of UGC Act, 1956 |

Collection names may contain numbers, letters, or . characters, but must
beginwith a letter or number. Internally, a collection name is identified
by its namespace name, which includes the name of the database it
belongs to. Thus, the products collection is technically referred to as
garden.productswhen referenced in a mes- sage toor fromthe core server.
This fully qualified collection name can’t belonger than 128 characters.

It’s sometimes useful to include the . character in collection names to
provide a kind of virtual namespacing. For instance, you can imagine a series
of collections with titles like the following:

products.categor
ies

products.images
products.reviews

Keep in mind that this is only an organizational principle; the database
treats collec- tions named with a .like any other collection.

Collections can also be renamed. As an example, you can rename the
productscol- lection with the shell’s renameCollectionmethod:

db.products.renameCollection("store_products")

Listing 4.6 Simulating the logging of user actions to a capped
collection

require 'mongo’

VIEW_PRODUCT = 0 # action type constants ADD_TO_CART = 1
CHECKOUT =2

PURCHASE =3

client = Mongo::Client.new(['127.0.0.1:27017"'], :database => 'garden’)

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

client[:user_actions|.drop

actions = client[:user_actions, :capped => true, :size => 16381ﬂ

actions.create

500.times do |n| # loop 500 times, using n as the iterator doc = {
:username => "kbanker",

:action_code => rand(4), # random value between 0 and 3, inclusive
:time => Time.now.utc,

n =3
}
actions.insert_one(d
oc) end

First, youcreate a 16 KB capped collection called user_actionsusing client. 6
Next, you insert 500 sample log documents B. Each document contains a

username, an action code (represented as a random integer from O
through 3), and a timestamp. You've included an incrementing integer, n,
sothatyou canidentify which documents have aged out. Now you’'ll query
the collection from the shell:

> use garden
> db.user_actions.coun
t(); 160

Eventhoughyou'veinserted 500 documents, only 160 documents existin

the collec- tion.” If you query the collection, you'll see why:

db.user_actions.find().pretty();

{
"id"
Objectld("51d1c69878b10e1a0e000040"
), "username" : "kbanker",
"action_code" : 3,
"time" : [SODate("2013-07-
01T18:12:40.443Z"), "n" : 340

Prepared-by-De-S-Veni—Dept—ofCSCAIF—— Dase 05 0f 36—

& KARPAGAM ACADEMY OF HIGHER EDUCATION

\) CLASS : 11 M.Sc CS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203

KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

"id"
Objectld("51d1c69878b10e1a0e000041"),
"username" : "kbanker",

"action_code" : 2,

"time" : ISODate("2013-07-
01T18:12:40.444Z"), "'n" : 341

ll_idll :
Objectld("51d1c69878b10e1a0e000042"),

"username" : "kbanker",

"action_code" : 2,

"time" : ISODate("2013-07-
01T18:12:40.445Z"), "n" : 342

TTL COLLECTIONS

MongoDB also allows you to expire documents from a collection after a
certain amountoftime has passed. These are sometimes called time-to-live
(TTL) collections, though this functionality is actually implemented using a
special kind of index. Here’s how you would create such a TTL index:

>
>
>

> db.reviews.createlndex({time_field: 1}, {expireAfterSeconds: 3600})

This command will create an index on time_field.

between time_field and the current time is greater than your
expireAfterSeconds setting, then the document will be removed
automatically. In this example, review documents will be deleted after
an hour.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

Using a TTL index in this way assumes that you store a timestamp in
time_field.
Here’s an example of how to do this:

> db.reviews.insert({
time_field: new
Date(),

)

SYSTEM COLLECTIONS

Part of MongoDB’s design lies in its own internal use of collections. Two of
these spe- cial system collections are system.namespaces and
system.indexes. You can query the former to see all the namespaces
defined for the current database:

> db. system namespaces.find();

"name" : "garden.system.indexes" }

"name" : "garden.products.$_id_"}

"name" : "garden.products" }

"name" : "garden.user_actions.$_id_" }

"name" : "garden.user_actions", "options" : { "create" :
"user_actions", "capped" : true, "size" : 1024 }}

The first collection, system.indexes, stores each index definition for the
current database. To see a list of indexes you've defined for the garden

database, query the collection:

> db. system.indexes.ﬁnd() ;

{"v": 1, "key": {"_id" : 1}, "ns" : "garden.products"’, "name" : "_id_" }
{"v": 1, "key" : {"_id" : 1}, "ns" : "garden.user_actions", "name" :

n 1d n

{"v": 1, "key" : { "time_field" : 1}, "name" : "time_field_1", "ns

non

garden reviews", "expireAfterSeconds" : 3600 }

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

Documents and insertion

DOCUMENT SERIALIZATION, TYPES, AND LIMITS
All documents are serialized to BSON before being sent to MongoDB;
they’re later deserialized from BSON. The driver handles this process and
translates it from and to the appropriate data types in its programming
language. Most of the drivers provide a simple interface for serializing from
and to BSON; this happens automatically when reading and writing
documents. You don’t need to worry about this normally, but we’ll
demonstrate it explicitly for educational purposes.

In the previous capped collections example, it was reasonable to assume
that the sample document size was roughly 102 bytes. You can check this
assumption by using the Ruby driver’s BSON serializer:

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

doc = {
:_id => BSON::Objectld.new,
:username => "kbanker",
:action_code => rand(5),
:time => Time.now.utc,
mn=>1
H
bson = doc.to_bson
puts "Document #{doc.inspect} takes up #{bson.length} bytes as BSON"

Deserializing BSON is as straightforward with a little help from the
StringlOclass.
Try running this Ruby code to verify that it works:

string io = StringlO.new(bson)
deserialized_doc =
String.from_bson(string _io)

puts "Here's our document deserialized from
BSON:" puts deserialized_doc.inspect

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

STRINGS
All string values must be encoded as UTF-8. Though UTF-8 is quickly
becoming the standard for character encoding, there are plenty of
situations when an older encod- ing is still used. Users typically encounter
issues with this when importing data gener- ated by legacy systems into
MongoDB.

NUMBERS

BSON specifies three numeric types: double, int, and long. This means that
BSON can encode any IEEE floating-point value and any signed integer up
to 8 bytes in length. When serializing integers in dynamic languages, such as
Ruby and Python, the driver will automatically determine whether to
encode as an int or a long. In fact, there’s only one common situation
where a number’s type must be made explicit: when you’re inserting
numeric data via the JavaScript shell. JavaScript, unhappily, natively

supports only a single numeric type called Number, which is equivalent to an
[EEE 754 Double. Consequently, ifyouwant to save anumeric value from the
shell as an integer, you need to be explicit, using either NumberLong() or
NumberInt(). Try this example:

db.numbers.save({n: 5});
db.numbers.save({n:
NumberLong(5)});

You've saved two documents to the numbers collection, and though their
values are equal, the first is saved as a double and the second as a long
integer. Querying for all documents where n is 5 will return both
documents:

> db.numbers.find({n: 5});
{"_id" : Objectld("4c581c98d5bbeb2365a838f9"), "'n" : 5 }
{"_id" : Objectld("4c581c9bdSbbeb2365a838fa"), "n" : NumberLong(5) }

DATETIMES
The BSON datetime type is used to store temporal values. Time values are
represented using a signed 64-bit integer marking milliseconds since the

Prepared-by-De-S-Veni—Dept—ofCSCAIF—— Dase 05 0f 36—

]

L)

KARPAGA

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS : 11 M.ScCS BATCH : 2017- 2019
I\iﬁOURSE NAME : MONGODB COURSE CODE:18CSP203

CADEMY OF HIGHER EDUCATION

(Deermed to be University)

JEstabilished Under Section 3 of UGC Act, 1956 |

Unix epoch. A negative value marks milliseconds prior to the epoch. 10

VIRTUAL TYPES

What if you must store your times with their time zones? Sometimes the
basic BSON types don’t suffice. Though there’s no way to create a
custom BSON type, you can compose the various primitive BSON values
to create your own virtual type in a sub- document. For instance, if you
wanted to store times with zone, you might use a docu- ment structure like
this, in Ruby:

{
time_with_zone:
{ time: new
Date(), zone:
"EST"

It’s not difficult to write an application so that it transparently handles these
compos- ite representations. This is usually how it’s done in the real
world. For example, Mongo-Mapper, an object mapper for MongoDB
written in Ruby, allows you to define to_mongoand from_mongomethods for
any object to accommodate these sorts of cus- tom composite types.

LIMITS ON DOCUMENTS

BSON documents in MongoDB v2.0 and later are limited to 16 MB in size.
The limit exists for two related reasons. First, it’s there to prevent
developers from creating ungainly data models. Though poor data models
are still possible with this limit, the 16 MB limit helps discourage schemas
with oversized documents.

If you find yourself needing to store documents greater than 16 MB,
consider whether your schema should split data into smaller documents,
or whether a MongoDB document is even the right place to store such
information—it may be better managed as afile.

The second reason for the 16 MB limit is performance-related. On the

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

L)

KARPAGA

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS : 11 M.ScCS BATCH : 2017- 2019
I\i:OURSE NAME : MONGODB COURSE CODE:18CSP203

CADEMY OF HIGHER EDUCATION

(Deermed to be University)

JEstabilished Under Section 3 of UGC Act, 1956 |

server side, querying a large document requires that the document be
copied into a buffer before being sent to the client. This copying can get
expensive, especially (as is often the case) when the client doesn’t need

the entire document.12 In addition, once sent, there’s the work of
transporting the document across the network and then deserializ- ing it on
the driver side. This can become especially costly if large batches of multi-
megabyte documents are being requested at once.

MongoDB documents are alsolimited toa maximum nestingdepthof 100.
Nesting occurs whenever you store a document within a document. Using
deeply nested docu- ments—for example, if you wanted to serialize a tree
data structure to a MongoDB

document—results in documents that are difficult to query and can cause problems
during access. These types of data structures are usually accessed through recursive
function calls, which can outgrow their stack for especially deeply nested documents.

BULK INSERTS

All of the drivers make it possible to insert multiple documents at once.
This can be extremely handy if you're inserting lots of data, as in an initial
bulk import or a migra- tionfrom anotherdatabase system. Here’s a simple
Rubyexampleofthisfeature:

docs = | # define an array of documents
{ username => 'kbanker' },
{ username => 'pbakkum’ },
{ :username => 'sverch'}
|
@col = @db['test_bulk_insert']
@ids = @col.insert_many(docs) # pass the entire array to
insert puts "Here are the ids from the bulk insert:
#{@ids.inspect}"

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R,_J

Constructing Queries

This topic covers

1 Querying an e-commerce data model
» The MongoDB query language in detail
m Query selectors and options

E-commerce queries

For instance, _idlookups shouldn’t be a mystery at this point. But we’ll also
show you a few more sophisticated patterns, including querying for and dis-
playing a category hierarchy, as well as providing filtered views of product
listings.

Products, categories, and reviews

Most e-commerce applications provide at least two basic views of products and
catego- ries. First is the product home page, which highlights a given
product, displays reviews, and gives some sense of the product’s categories.
Second is the product listing page, which allows users to browse the category
hierarchy and view thumbnails of all the products within a selected
category. Let’s begin with the product home page, in many ways the
simpler of the two.

Imagine that your product page URLs are keyed on a product slug (you
learned about these user-friendly permalinks in chapter 4). In that case,
you can get all the data you need for your product page with the
following three queries:

roduct = db.products.findOne({'slug': 'wheel-barrow-
9092'") db.categories.findOne({_id":
product['main_cat_id']}) db.reviews.find({'product_id":
product|'_id'[})

FINDONE VS. FIND QUERIES
The findOnemethod is similar to the following, though a cursor is returned
even when you apply a limit:

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R,_J

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

db.products.find({'slug": 'wheel-barrow-9092").limit(1)

SKIP, LIMIT, AND SORT QUERY OPTIONS
Most applications paginate reviews, and for enabling this MongoDB provides
skipand
limitoptions. You can use these options to paginate the review document like
this:

db.reviews.find({'product_id": product|'_id']}).skip(0).limit(12)

db.reviews.find({product_id": product|'_id']}).
sort({helpful_votes': -1}).
limit(12)

page_number = 1
product = db.products.findOne({'slug': 'wheel-barrow-
9092'}) category = db.categories.findOne({_id":
product['main_cat_id']}) reviews_count =
db.reviews.count({'product_id": product|_id']}) reviews =
db.reviews.find({product_id": product|['_id']}).

skip((page_number - 1) *

12). limit(12).

sort({helpful votes': -1})

MongoDB’s query language

Query criteria and selectors

Query criteria allow you to use one or more query selectors to specify the
query’s results. MongoDB gives you many possible selectors. This section
provides an overview.

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R,_J

SELECTOR MATCHING

The simplest way to specify a query is with a selector whose key-value pairs
literally match against the document you’re looking for. Here are a
coupleofexamples:

db.users.find({last_name': "Banker"})
db.users.find({first_name" "Smith", birth_year:
1975})

RANGES
Table 5.1 shows the range query operators most commonly used in
MongoDB.

Table 5.1 Summary of range query operators

Operator Description
Slt Less than
gt Greater than
Slte Less than or equal
Sgte Greater than or equal

Beginners sometimes struggle with combining these operators. A common
mistake is to repeat the search key:

db.users.find({birth_year': {$gte': 1985}, 'birth_year": {$lte': 2015}})

The aforementioned query only takes into account the last condition. You
can prop- erly express this query as follows:

db.users.find({birth_year": {$gte': 1985, '$lte': 2015}})

SET OPERATORS

Three query operators—3$in, $all, and $nin—take a list of one or more
values as their predicate, so these are called set operators. $inreturns a
document if any of the given values matches the search key.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

& KARPAGAM ACADEMY OF HIGHER EDUCATION

\) CLASS : 11 M.Sc CS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203

KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

Table 5.2 Summary of set operators

Operator Descri
ption
$in Matches if any of the arguments are in the referenced
set
$all

Matches if all of the arguments are in the referenced

$nin set and is used in documents that contain arrays

Matches if none of the arguments are in the referenced
set

If the following list of category IDs

Objectld("6a5b1476238d3b4dd5
000048"),
Objectld("6a5b1476238d3b4dd5
000051"),
Objectld("6a5b1476238d3b4dd5
000057")

corresponds to thelawnmowers, hand tools, and work clothing categories,
the query to find all products belonging to these categories looks like
this:

db.products.find({
'main_cat_id"
{

'$in'": |
Objectld("6aSb1476238d3b4dd5
000048"),
Objectld("6aSb1476238d3b4dd5
000051"),

Prepared-by-De-S-Veni—Dept—ofCSCAIF—— Dase 05 0f 36—

& KARPAGAM ACADEMY OF HIGHER EDUCATION

\) CLASS : 11 M.Sc CS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203

KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

Objectld("6a5b1476238d3b4dd5
000057")

]
}
)

Table 5.3 Summary of Boolean operators

Operator Descri
ption
$ne Matches if the argument is not equal to
the element
$not Inverts the result of a match
Sor Matches if any of the supplied set of
query terms is true
$nor Matches if none of the supplied set of
query terms are true
$and Matches if all of the supplied set of
query terms are true
Pexists Matches if the element exists in the
document.

QUERYING FOR A DOCUMENT WITH A SPECIFIC KEY

The final operator we’ll discuss in this section is $exists. This operator is
necessary because collections don’t enforce a fixed schema, so you
occasionally need a way to query for documents containing a particular
key. Recall that you’d planned to use

each product’s detailsattribute to store custom fields. You might, for instance,
store a color field inside the details attribute. But if only a subset of all
products specify a set of colors, then you can query for the ones that
don’t like this:

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

db.products.find({details.color': {$exists: false}})

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

The opposite query is also possible:

db.products.find({'details.color': {$exists: true}})

ARRAYS
Arrays give the document model much of its power. As you've seen in the e-

commerce example, arrays are used to store lists of strings, object IDs,
and even other docu- ments.

Arrays afford rich yet comprehensible documents; it stands to reason that
MongoDB would let you query and index the array type with ease. And it’s
true: the simplest array queries look like queries on any other document
type, asyou can see in table 5.4.

Table 5.4 Summary of array operators

Operator Descri
ption
$elemMatc | Matches if all supplied terms are in the same
h subdocument
Psize

Matches if the size of the array subdocument is the
same as the supplied literal value

Let’s look at these arrays in action. Take product tags again. These tags
are repre- sented as a simple list of strings:

{
_id:
Objectld("4c4b1476238d3b4dd5003981
"), slug: "wheel-barrow-9092",
sku: "9092",

tags: ["tools", "equipment", "soil"]

Prepared-by-De-S-Veni—Dept—ofCSCAIF—— Dase 05 0f 36—

]

KARPAGA

KARPAGAM ACADEMY OF HIGHER EDUCATION

\&; CLASS : 11 M.ScCS BATCH : 2017- 2019
I\iﬁOURSE NAME : MONGODB COURSE CODE:18CSP203

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

Querying for products with the tag "soil"is trivial and uses the same syntax as
query- ing a single document value:

db.products.find({tags: "soil"})

Importantly, this query can take advantage of an index on the tagsfield. If
you build the required index and run your query with explain(), you'll see

thataB-tree cursorS is used:
db.products.ensurelndex({tags: 1})

db.products.find({tags:
"soil"}).explain()

When you need more control over your array queries, you can use dot
notation to query for avalue ata particular position within the array. Here’s
howyou’drestrict the previous query to the first of a product’s tags:

db.products.find({tags.0'": "soil"})

REGULAR EXPRESSIONS

The $regexoperator is summarized here:

» $regex Match the element against the supplied regex term

Prepared by Dr.S.Veni. Dept. of CS, CA & IT

MongoDB is a case-sensitive system, and when using a regex, unless you
use the /i modifier (that is, /best|worst/i), the search will have to exactly
match the case of the fields being searched. But one caveat is that if you
douse /i, it willdisable the use of indexes. If you want to do indexed case-
insensitive search of the contents of string fields in documents, consider
either storing a duplicate field with the contents forced to lowercase
specifically for searching or using MongoDB’s text search capabili- ties,
which can be combined with other queries and does provide an indexed
case- insensitive search.

Page 34 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

MISCELLANEOUS QUERY OPERATORS

Two more query operators aren’t easily categorized and thus deserve their
own sec- tion. The first is $mod, which allows you to query documents
matching a given modulo operation, and the second is $type, which
matches values by their BSON type. Both are detailed in table 5.5.

Table 5.5 Summary of miscellaneous operators

Oper Descri

ator ption
$mod [(quotient),(result)] | Matches if the element matches the
result when divided by the quotient

$type Matches if the element type matches a
Stext specified BSON type

Allows you to performs a text search
on the content of the fields indexed
with a text index

For instance, $modallows you to find all order subtotals that are evenly
divisible by 3 using the followingquery:

db.orders.find({subtotal: {$mod: [3, O]})

You can see that the $modoperator takes an array having two values. The
first is the divisor and the second is the expected remainder. This query
technically reads, “Find all documents with subtotals that return a
remainder of 0 when divided by 3.” This is a contrived example, but it
demonstrates the idea. If you end up using the $mod opera- tor, keep in
mind that it won’t use an index.

The second miscellaneous operator, $type, matches values by their
BSON type. I don’t recommend storing multiple types for the same field
within a collection, but if the situation ever arises, you have a query
operator thatlets you test against type.

Prepared-by-De-S-Veni—Dept—ofCSCAIF—— Dase 05 0f 36—

& KARPAGAM ACADEMY OF HIGHER EDUCATION
\) CLASS : 11 M.Sc CS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
K A RPAGA I\i:
CADEMY OF HIGHER EDUCATION
s o Setion 31 UG Ac, 1955)
Table 5.6 BSON types
BSON type| $ty numb Exam
pe er ple
Double 1 123.456
String (UTF-8) | 2 “Now is the time”
Object 3
Array 4 { name:"Tim",age:"myob" }
Binary 5 [123,2345,"string"]
Objectld 7 BinData(2," DgAAAE-IHNvbWUgYmlu
Boolean 8
Date 9 YXJ5)
Null 10 Objectld("4e1bdda65025ea6601560b
Regex 11 50") true
JavaScript 13
Symbol 14 ISODate("2011-02-24T21:26:00Z")
Scoped 15 null
JavaScript /test/i
32-bit integer | 16 .
. function() {return false;}
Timestamp 17
Not used; deprecated in
64-bit integer | 18 the standard function
Mg 127 (){return false;}
Minkey 255 0
Maxkey 128
{ ”tlv .
1371429067, "i"
:0
}
NumberLong(10)
Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R,_J

CLASS : Il M.Sc CS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
{"$maxKey": 1}
{"$minKey" : 1}
{'maxkey" : { "$maxKey" : 1 }}
PROJECTIONS
» Projections are most commonly defined as a set of
fieldstoreturn:
db.users.find({}, {username": 1})
SORTING

db.reviews.find({}).sort({rating": -1})

Naturally, it might be more useful to sort by helpfulness and then by rating:

db.reviews.find({}).sort({'helpful_votes':-1, 'rating': -1})

SKIP AND LIMIT

db.docs.find({}).skip(500000).limit(10).sort({date: -1})

becomes this:

previous_page_date = new Date(2013, 05, 095)
db.docs.find({'date": {'$gt': previous_page_date}}).limit(10).sort({'date": -1})

This topic covers

® Aggregation on the e-commerce data model
. Aggregation framework details

1 Performance and limitations

m Other aggregation capabilities

Prepared-by-De-S-Veni—Dept—ofCSCAIF—— Dase 05 0f 36—

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

Aggregation framework overview
A call to the aggregation framework defines a pipeline (figure 6.1), the
aggregation pipeline, where the output from each step in the pipeline
provides input to the next step. Each step executes a single operation on
the input documents to transform the input and generate output
documents.

Aggregation pipeline operations include the following:

» $project—Specify fields to be placed in the output document (projected).
1 $match—Select documents to be processed, similar to find().

Input Operation 1 ts

e O1 Operation 2 — -~ Operation n —
- documents

+ $limit—Limit the number of documents to be passed to the next step.
» $skip—Skip a specified number of documents.
» $unwind—Expand an array, generating one output document for
each array entry.
+ $group—Group documents by a specified key.
1 $sort—Sort documents.
» $geoNear—Select documents near a geospatial location.

» $out—Write the results of the pipeline to a collection (new in v2.6).
1 $redact—Control access to certain data (new in v2.6).

Most of these operators will look familiar if you've read the previous chapter
on con- structing MongoDB queries. Because most of the aggregation
framework operators work similarly to a function used for MongoDB
queries, you should make sure you have a good understanding of section
5.2 onthe MongoDB querylanguage before continuing.

This code example defines an aggregation framework pipeline that
consists of a match, a group, and then a sort:

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

& KARPAGAM ACADEMY OF HIGHER EDUCATION

\) CLASS : 11 M.Sc CS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203

KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

db.products.aggregate([{$match: ...}, {$group: ...}, {$sort: ...} |)

This series of operations is illustrated in figure 6.2.

— 1 1

— Smatch .. $group .. $sort ..

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R,_J

CLASS : 11 M.ScCS BATCH :2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
- Produ
2 2 Output q
3 3 ocuments

Table 6.1 SQL versus aggregation framework comparison

SQL Aggregation framework
command operator
SELECT $project
$group functions: $sum, $min, $avg,
etc.
FROM
db.collectionName.aggregate(...)
JOIN)
$unwind
RLIER $match
E $group
GROU $match
PBY
HAVING

Products, categories, and reviews

Now let’s look at a simple example of how the aggregation framework can be
used to summarize information about a product. Chapter 5 showed an
example of counting the number of reviews for a given product using
this query:

product = db.products.findOne({'slug': 'wheelbarrow-

]

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

Select documents to be process¢

ts

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

9092') reviews_count = db.reviews.count({ product_id"
product|'_id'[})

Let’s see how to do this using the aggregation framework. First, we’ll look at
aquery that will calculate the total number of reviews for all products:

. Group the input
db.reviews.aggregate(| documents by
{$group : { _ product_id.
_id:'$product_id’, :

count:{$sum:1} fl::::;)te:l:)ef
Y reviews for

1)s each product.

& KARPAGAM ACADEMY OF HIGHER EDUCATION

N , CLASS : 11 M.ScCS BATCH :2017- 2019
. J.a=_ COURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

This single operator pipeline returns one document for each product in
your data- base that has a review, as illustrated here:

{"_id" : Objectld("4c4b1476238d3b4dd5003982"), "count" : 2 }
{"_id" : Objectld("4c4b1476238d3b4dd5003981"), "count" : 3 }

Outputs one document for each product

Next, add one more operator to your pipeline so that you select only the
one prod- uct you want to get a count for:

product = db.products.findOne({'slug': 'wheelbarrow-9092'})

.

ratingSummary = db.reviews.ag regate(|
Bmaich { Requctdd: prgtuctiidy

Select only a single product.

|)-next();
Count:{$sum:1} }}

Return the first document in the results.

is example returns the one product you're interested in and assigns it to the
vari- able ratingSummary. Note that the result from the aggregation
pipeline is a cursor, a pointer to your results that allows you to process
results of almost any size, one docu- ment at a time. To retrieve the single
document in the result, you use the next() func- tion to return the first
document from the cursor:

{"_id" : Objectld("4c4b1476238d3b4dd5003981"), "count" : 3 }

M IT D 22 £ 24
e 0 .) TI T ASC IT OT OO

]

& KARPAGAM ACADEMY OF HIGHER EDUCATION

\) CLASS : 11 M.Sc CS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203

KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

The parameters passed to the $matchoperator, { product_id":product|'_id']},
should look familiar. They’re the same as those used for the query taken
from chap- ter 5 to calculate the count of reviews for a product:

db.reviews.count({'product_id'": product['_id']})

CALCULATING THE AVERAGE REVIEW
To calculate the average review for a product, you use the same pipeline as in
the pre- vious example and add one more field:

product = db.products.findOne({'slug': 'wheelbarrow-9092'})

ratingSummary = db.reviews.aggregate(|
{$match : {product_id": product|_id'[},

{$group : { _id:'$product_id', average:{$avg:'$rating’}, count:
$sum:1}}}
]).next();

Calculate the average rating for a product.

The previous example returns a single document and assignsit to the variable
rating- Summarywith the content shown here:

{
"id"
Objectld("4c4b1476238d3b4dd5003981
"), "average" : 4.333333333333333,
"count" : 3

H

This example uses the $avgfunction to calculate the average rating for the
product. Notice also that the field being averaged, rating, is specified using
'$rating'in the

$avgfunction. Thisis the same convention usedfor specifying the field for the $grouj
_idvalue, where you used this:

_id:'$product_id'.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

=4

& KARPAGAM ACADEMY OF HIGHER EDUCATION
\) CLASS : 11 M.Sc CS BATCH : 2017- 2019

OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\% j j

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

count:{$sum:1}}}

])-‘@?rraﬂ);

As shown in this snippet, you've once again produced a count using the
$sum func- tion; this time you counted the number of reviews for each
rating. Also note that the result of this aggregation call is a cursor that
you've converted to an array and assigned to the variable
countsByRating.

SQL query
For those familiar with SQL, the equivalent SQL query would look something like this:

SELECT RATING, COUNT(*) AS COUNT
FROM REVIEWS

WHERE PRODUCT_ID = '4c4b1476238d3b4dd5003981"
GROUP BY RATING

This aggregation call would produce an array similar to this:

[{".id" : 5, "count" : S5},
{"_id" : 4, "count" : 2 },
{".id" : 3, "count" : 1}]

JOINING COLLECTIONS

Next, suppose you want to examine the contents of your database and count
the num- ber of products for each main category. Recall that a product has
onlyone main cate- gory. The aggregation command looks like this:

db.products.aggregate(|
{$group : { _id:'$main_cat_id',
count:{$sum:1}}}

1);

This command would produce a list of output documents. Here’s an exampld:

{"_id" : Objectld("6a5b1476238d3b4dd5000048"), "count" : 2 }

I M IT D 22 £ 24
e 0 .) TI T ASC IT OT OO

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

optionis to use the forEachfunction to process the cursor returned from the
aggre- gation command and add the name using a pseudo-join. Here’s an
example:

b.mainCategorySummary.remove({});

db.products.aggregate(|
{$group : { _id:'$main_cat_id',
count:{$sum:1}}}
]).-forEach(function(doc){

Remove existing documents from mainéﬂegorySummary
collection

Read category for a result J

var category = db.categories.findOne({_id:doc._id});
if (category !== null) {

doc.category_name = category.name;
}
else {
doc.category_name = 'not found’;

}

db.mainCategorySummary.insert(doc);

)

mainCategorySummary:

db.products.aggregate(|
{$group : { __id:'$main_cat_id',
count:{$sum:1}}},
{$out : 'mainCategorySummary'}

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

)

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

User and order

When the first edition of this book was written, the aggregation framework,
firstintro- duced in MongoDB v2.2, hadn’tyet been released. The first edition
used the MongoDB map-reducefunction in two examples, grouping reviews
by users and summarizing sales by month. The example grouping reviews by
user showed how many reviews each reviewer had and how many helpful
votes each reviewer had on average. Here’s what this looks like in the
aggregation framework, which provides a much simpler and more
intuitive approach:

db.reviews.aggregate(|
{$group :
{id : '$user_id’,
count : {$sum : 1},
avg_helpful : {$avg : '$helpful votes'}}

)

The result from this call looks like this:

{"id":
Objectld("4c4b1476238d3b4ddS50000
03"), "count" : 1, "avg_helpful" : 10}

{"_id":
Objectld("4c4b1476238d3b4dd50000
02"), "count" : 2, "avg_helpful" : 4 }

{"id":
Objectld("4c4b1476238d3b4dd50000
01"), "count" : 2, "avg_helpful" : 5}

FINDING BEST MANHATTAN CUSTOMERS

Now let’s extend that query to find the highest spenders in Upper
Manhattan. This pipeline is summarized in figure 6.5. Notice that the
$matchis the first step in the pipeline, greatly reducing the number of
documents your pipeline has to process.

I M IT D 22 £ 24
e 0 .) TI T ASC IT OT OO

& KARPAGAM ACADEMY OF HIGHER EDUCATION

\) CLASS : 11 M.Sc CS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203

KAR PAGAI\%

CADEMY OF HIGHER EDUCATION

(Deermed to be University)
JEstabilished Under Section 3 of UGC Act, 1956 |

e

$match $Sgroup Smatch $sort
orders shipped sum customer by desending L,
to Upper orders by total greater customer order
Manhattan customer than $100 total

The query includes these steps:

» $match—Find orders shipped to Upper Manhattan.

1 $group—Sum the order amounts for each customer.

+ $match—Select those customers with order totals greater than $100.
» P$sort—Sort the result by descending customer order total.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R,_J

CLASS : 11 M.ScCS BATCH :2017- 2019
e ek OURSE NAME : MONGODB COURSE CODE:18CSP203
UNIT III
SYLLABUS

Updates, atomic operations, and deletes: A brief tour of document updates — E-
commerce updates - Atomic document processing - MongoDB updates and
deletes. Indexing and query optimization: Indexing theory — Indexing in practice -
Query optimization.

This Topic covers

» Updating documents
® Processing documents atomically

1 Applying complex updates to a real-world
example

® Using update operators
1 Deleting documents

Toupdate is to write to existing documents. Doing this effectively requires a thor-
ough understanding of the kinds of document structures available and of the
query expressions made possible by MongoDB. Having studied the e-commerce
data model in the last two chapters, you should have a good sense of the ways in
which schemas are designed and queried. We'll use all of this knowledge in our
study of updates.

Brief tour of document updates

Ifyou need to update a document in MongoDB, you have two ways of going about it.
You can either replace the document altogether, or you can use update operators to
modify specific fields within the document. As a way of setting the stage for the more
detailed examples to come, we’ll begin this chapter with a simple demonstration of
these two techniques. We'll then provide reasons for preferring one over the other.

To start, recall the sample user document we developed in chapter 4. The docu-
mentincludes a user’s first and last names, email address, and shipping addresses.
Here’s a simplifiedexample:

{
_1d: ObjectId("4c4bl1476238d3b4dd5000001"™),
username: "kbanker",

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION

(Deermed to be University)
(Established Under Section 3 of UGC Act, 1956 |

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

email: "kylebanker@gmail.com",
first _name: "Kyle",
last name: "Banker",
hashed password: "bdlcfal94c3a603e7186780824b04419",
addresses: [
{

name: "work",

street: "1 E. 23rd Street",

city: "New York",

state: "NY",

zip: 10010

Modify by replacement

To replace the document altogether, you first query for the document, modify it on
the client side, and then issue the update with the modified document. Here’s how
that looks in the JavaScript shell:

user_id = ObjectId("4c4b1476238d3b4dd5003981")
doc = db.users.findOne ({_id: user_id})
doc['email'] = 'mongodb-user@mongodb.com'
print ('updating ' + user id)
db.users.update({_id: user id}, doc)

With the user’s _id at hand, you first query for the document. Next you modify the
documentlocally,inthis case changingthe email attribute. Thenyoupass the modi-
fied document to the update method. The final line says, “Find the document in the
users collection with the given id, and replace that document with the one we’ve
provided.” The thing to remember is that the update operation replaces the entire
document, which is why it must be fetched first. If multiple users update the same doc-
ument, the last write will be the one that will be stored.

Modify by operator
That’s how you modify by replacement; now let’s look at modification by operator:

user id = ObjectId("4c4bl476238d3b4dd5000001")
db.users.update ({_id: user_id},
{$set: {email: 'mongodb-user2@mongodb.com'}})

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

mailto:kylebanker@gmail.com

CLASS : 11 M.ScCS BATCH : 2017- 2019

e ek OURSE NAME : MONGODB COURSE CODE:18CSP203

IDwmrdmb Universi ty)
(Established Under 3of UGC Act, 1956]

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R,_J

The example uses $set, one of several special update operators, to modify the email
addressinasingle requesttothe server. In this case, the update requestis much
more targeted: find the given user document and set its email field to mongodb-
user2@mongodb.com.

Both methods compared

Howaboutanotherexample? Thistime youwanttoincrementthenumberofreviews
on aproduct. Here’s how you’d do that as a document replacement:

product_id = ObjectId("4c4b1476238d3b4dd5003982")

doc = db.products.findOne ({_id: product id})

doc['total reviews'] += 1 // add 1 to the value in total reviews
db.products.update ({_id: product id}, doc)

And here’s the targeted approach:

db.products.update ({_id: product _id}, {$inc: {total reviews: 1}})

The replacement approach, as before, fetches the user document from the server,
modifies it, and then resends it. The update statement here is similar to the one you
used to update the email address. By contrast, the targeted update uses a different
update operator, $inc, toincrement the valuein total reviews.

Deciding: replacement vs. operators

Modification by replacement is the more generic approach. Imagine that your appli-
cation presents an HTML form for modifying user information. With document replace-
ment, data from the form post, once validated, can be passed right to MongoDB; the
code to perform the updateis the same regardless of which user attributes are modi-
fied. For instance, if you were going to build a MongoDB object mapper that needed

to generalize updates, then updates by replacement would probably make for a sensi-
ble default.!of concurrent updates, each $inc will be applied in isola- tion, all or
nothing.?

AVERAGE PRODUCT RATINGS

Products are amenable to numerous update strategies. Assuming that administrators
are provided with an interface for editing product information, the easiest update
involves fetching the current product document, merging that data with the user’s
edits, and issuing a document replacement. At other times, you may only need to

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

mailto:user2@mongodb.com

CLASS : 11 M.ScCS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION

IDwmrdmb Universi ity)
(Established Under 3of UGC Act, 1956)

update a couple of values, where atargeted update is clearly the way to go. Thisis the
case with average product ratings. Because users need to sort product listings based
on average product rating, you store that rating in the product document itself and
update the value whenever a review is added or removed.

Here’s one way of issuing this update in JavaScript:

& KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

product id = ObjectId("4c4b1476238d3b4dd5003981")

count = 0
total = 0
db.reviews.find({product id: product id}, {rating: 4}).forEach(

function (review) {
total += review.rating
count++
1)
average = total / count
db.products.update ({_id: product_id},

{$set: {total reviews: count, average review: average}})

This code aggregates and produces the rating field from each product review and
then produces an average. You also use the fact that you’reiterating over each rating
to count the total ratings for the product. This saves an extra database call to the
count function. With the total number of reviews and their average rating, the code
issues a targeted update, using $Sset.

Ifyoudon’twantto hardcode an Object1d,youcanfind aspecificObjectidasfol-
lows and use it afterwards:

product id = db.products.findOne ({sku: '9092'}, {'_id': 1})

Performance-conscious users may balk at the idea of re-aggregating all product
reviews for each update. Much ofthis dependsontheratioofreads to writes;it’slikely
that more users will see product reviews than write their own, so it makes sense to
re-aggregateonawrite. Themethod provided here, though conservative, willlikely be
acceptable for most situations, but other strategies are possible. For instance, you
could store an extra field on the product document that caches the review ratings
total, makingit possible to compute the average incrementally. After inserting anew
review, you’d first query for the product to get the current total number of reviews
and the ratings total. Then you’d calculate the average and issue an update using a
selector like thefollowing:

db.products.update ({_id: product_ id},

{
Sset: {
average review: average,

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION

(Deermed to be University)
(Established Under Section 3 of UGC Act, 1956 |

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

ratings total: total
}I
Sinc: {
total reviews: 1
}
3]

With many databases, there’s no easy way to represent a category hierarchy. This is
true of MongoDB, although the document structure does help the situation some-
what. Documents encourage a strategy that optimizes for reads because each category
can contain alist ofits denormalized ancestors. The one tricky requirement is keep-
ing allthe ancestor lists up to date. Let’slook at an example to see how this is done.

First you need a generic method for updating the ancestor list for any given cate-
gory. Here’s one possible solution:

var generate ancestors = function(id, parent id) {
ancestor list = []
var cursor = db.categories.find({_id: parent id})
while (cursor.size() > 0) {
parent = cursor.next()
ancestor list.push(parent)
parent id = parent.parent id
cursor = db.categories.find({_id: parent id})
}
db.categories.update ({_id: _id}, {$set: {ancestors: ancestor list}})

}

This method works by walking backward up the category hierarchy, making successive
queries to each node’s parent id attribute until reaching the root node (where
parent idisnull). All the while, it builds an in-order list of ancestors, storing that
result in the ancestor list array. Finally, it updates the category’s ancestors attri-
bute using $set.

Now thatyou have that basic building block, let’slook at the process ofinserting a
new category.Imagine you have a simple category hierarchy thatlooksliketheonein
figure 7.1.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
R,_J

CLASS : 11 M.ScCS BATCH :2017- 2019
e et OURSE NAME : MONGODB COURSE CODE:18CSP203
Home
Outdoors
Tools Seedlings Planters Lawn care Figure 7.1 An initial
category hierarchy

Supposeyouwanttoaddanew category called Gardeningand place itunderthe
Home category. Youinsert the new category document and then run your method to
generate its ancestors:

parent_id = ObjectId("8b87fb1476238d3b4dd50003")
category = ({
parent_id: parent id,
slug: "gardening",
name: "Gardening",
description: "All gardening implements, tools, seeds, and soil."
}
db.categories.save (category)
generate ancestors(category. id, parent id)

Home
Outdoors Gardening
Tools Seedlings Planters Lawn care Figure 7.2 Adding a
Gardening category

That’seasyenough. Butwhatifyou nowwant to place the Outdoors category
underneath Gardening? This is potentially complicated because it alters the ancestor
listsofanumber of categories. You can start by changingthe parent idofOutdoors

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

L)

inakie | Erfighten | Enrich

KARPAGA

ACADEMY OF HIGHER EDUCATION

(Deemed to be
(Established Under Section

Prepared by Dr.S.Veni. Dept. of CS, CA & IT

University)
3 of UGC Act, 1956 |

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : 11 M.ScCS BATCH : 2017- 2019
hﬁ:OURSE NAME : MONGODB COURSE CODE:18CSP203

tothe idof Gardening. This turns out to be not too difficult provided that you
already have both an outdoors idandagardening idavailable:

db.categories.update ({ id: outdoors id}, {$set: {parent id: gardening id}})

Because you've effectively moved the Outdoors category, all the descendants of Out-
doors are going to have invalid ancestor lists. You can rectify this by querying for all
categories with Outdoors in their ancestor lists and then regenerating those lists.
MongoDB’s power to query into arrays makes this trivial:
db.categories.find({'ancestors.id': outdoors_id}).forEach(

function (category) {

generate ancestors(category. id, outdoors_id)

b

That’'showyouhandleanupdatetoacategory’sparent idattribute,andyoucansee
the resulting category arrangement in figure 7.3.

But what if you update a category name? If you change the name of Outdoors to
The Great Outdoors, you also have to change Outdoors wherever it appears in the
ancestorlists ofother categories. Youmay bejustifiedin thinking, “See? Thisis where
denormalization comes to bite you,” but it should make you feel better to know that
you can perform this update without recalculating any ancestor list. Here’s how:

doc = db.categories.findOne ({_id: outdoors id})
doc.name = "The Great Outdoors"
db.categories.update ({_id: outdoors_id}, doc)

db.categories.update (
{'ancestors._id': outdoors_id},
{$set: {'ancestors.$': doc}},
{multi: true})

Home

Gardening

QOutdoors

[

Tools Seedlings Planters Lawn care Figure 7.3 The category

Page 3 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION

IDwmrdmb Universi ity)
(Established Under 3of UGC Act, 1956)

& KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

tree In Its flnal state

Youfirst grab the Outdoors document, alter the name attributelocally, and then update
viareplacement. Now you use the updated Outdoors document to replace its occur-
rences in the various ancestor lists. The multi parameter {multi: true} is easy to
understand; it enables multi-updates causing the update to affect all documents match-
ingthe selector—without {multi: true} anupdate will only affect the first matching
document. Here, you want to update each category that has the Outdoors categoryin
its ancestor list.

The positional operatoris more subtle. Consider that you have noway ofknowing
whereinagivencategory’sancestorlistthe Outdoors category willappear. Youneed a
way for the update operator to dynamically target the position of the Outdoors cate-
goryinthearray for any document. Enter the positional operator. This operator (here
the$inancestors.$)substitutesthe arrayindex matched by the query selector with
itself, and thus enables the update.

Here’s another example of this technique. Say you want to change a field of auser
address (the example document shown in section 7.1) that has been labeled as
“work.” You can accomplish this with a query like the following:

db.users.update ({
_id: ObjectId("4c4bl1476238d3b4dd5000001"),
'addresses.name': 'work'},
{$set: {'addresses.S$.street': '1l55 E 31st St.'}})

Because ofthe need to updateindividual subdocuments within arrays, you'll always
want to keep the positional operator at hand. In general, these techniques for updat-
ing the category hierarchy will be applicable whenever you’re dealing with arrays of
subdocuments.

Reviews

Notallreviews are created equal, whichiswhythis application allows usersto voteon
them. These votes are elementary; they indicate that the given review is helpful.
You've modeled reviews so that they cache the total number ofhelpful votes and keep
alistofeachvoter’sID. Therelevant section of each review document looks like this:

{

helpful votes: 3,
voter ids: [

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION

(Deermed to be University)
(Established Under Section 3 of UGC Act, 1956 |

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

ObjectId("4c4b1476238d3b4dd5000041"),

ObjectId("7a4£0376238d3b4dd5000003"),

ObjectId("92c21476238d3b4dd5000032")
]

You can record user votes using targeted updates. The strategy is to use the $Spush
operator to add the voter’s ID to the list and the $inc operator toincrement the total
numberofvotes, both in the same JavaScript console update operation:

db.reviews.update ({ id: ObjectId("4c4b1476238d3b4dd5000041")}, |
Spush: {
voter ids: ObjectId("4c4bl1476238d3b4dd5000001")
}I
S$inc: {
helpful votes: 1
}
})

Thisisalmost correct. Butyouneedto ensurethattheupdate happensonlyifthe vot-
inguser hasn’tyetvoted onthis review, soyoumodify the query selectortomatchonly
whenthevoter idsarraydoesn’tcontaintheID you're about toadd. Youcan easily
accomplish this using the $ne query operator:

query_ selector = {
_id: ObjectId("4c4bl1476238d3b4dd5000041"),

voter ids: {
Sne: ObjectId("4c4bl1476238d3b4dd5000001")
}
}

db.reviews.update (query selector, {
Spush: {
voter ids: ObjectId("4c4bl1476238d3b4dd5000001")
bo
Sinc : {
helpful votes: 1

}
b

This is an especially powerful demonstration of MongoDB’s update mechanism and
how it can be used with a document-oriented schema.

atomic and efficient. The updateis atomic because selection and modification occur
inthe same query. The atomicity ensures that, even in a high-concurrency environ-
ment, it will beimpossible for any one user to vote more than once. The efficiency lies

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION

(Deermed to be University)
(Established Under Section 3 of UGC Act, 1956 |

inthe fact that the test for voter membership and the updates to the counter and the
voter list all occur in the same request to the server.

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

Orders

The atomicity and efficiency of updates that you sawin reviews can also be applied to
orders. Specifically, you’re going to see the MongoDB calls needed to implement an
add_to cart function using a targeted update. This is a three-step process. First, you
construct the product document thatyou'll storein the order’s line-item array. Then
youissueatargeted update,indicatingthatthisisto be anupsert—anupdate that will
insert a new document if the document to be updated doesn'’t exist.

doesn’t yet exist, seamlessly handling both initial and subsequent additions to the
shopping cart.?
Let’s begin by constructing a sample document to add to the cart:

cart_item = {
_id: ObjectId("4c4bl476238d3b4dd5003981"),
slug: "wheel-barrow-9092",
sku: "9092",
name: "Extra Large Wheel Barrow",
pricing: {
retail: 5897,
sale: 4897
}
}

You'll most likely build this document by querying the products collection and then
extracting whichever fields need to be preserved as a line item. The product’s _id,
sku, slug, name, and price fields should suffice. Next you'll ensure that there’s an
order for the customer with a status of ' CART ' usingthe parameter {upsert: true}.
This operation will also increment the order sub_total usingthe $inc operator:

selector = {
user id: ObjectId("4c4bl476238d3b4dd5000001"),
state: 'CART'
}
update = {
Sinc: {
sub_total: cart item['pricing']['sale']
}
}

db.orders.update (selector, update, {upsert: true})

INITIAL UPSERT TO CREATE ORDER DOCUMENT

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019

e ek OURSE NAME : MONGODB COURSE CODE:18CSP203

(Deermed to be University)
(Established Under Section 3 of UGC Act, 1956 |

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
R,_J

Tomake the code clearer, you’re constructing the query selector and the update doc-
ument separately. The update document increments the order subtotal by the sale
priceofthe cartitem. Ofcourse, the first time auserexecutes the add to cartfunc-
tion, no shopping cart will exist. That’s why you use an upsert here. The upsert will
construct the document implied by the query selector including the update. There-
fore, the initial upsert will produce an order document like this:

{

user id: ObjectId("4c4bl476238d3b4dd5000001"),

state: 'CART',
subtotal: 9794

s You then perform an update of the order document to add the line item ifit’s not

already on theorder:

selector = {user_id: ObjectId("4c4b1476238d3b4dd5000001"),
state: 'CART',
'line_items._id':
{'Sne': cart item. id}
}
update = {'Spush': {'line items': cart item}}
db.orders.update (selector, update)

ANOTHER UPDATE FOR QUANTITIES

Nextyou'llissue another targeted update to ensure that the item quantities are cor-
rect. Youneed this update to handle the case where the user clicks Add to Cart on an
itemthat’salreadyinthecart.Inthiscasethe previousupdatewon’tadd anewitemto
the cart, but you'll still need to adjust the quantity:

selector = {
user id: ObjectId("4c4bl476238d3b4dd5000001"),
state: 'CART',
'line items. id': ObjectId("4c4bl1476238d3b4dd5003981")

update = {
Sinc: {
'line items.$.quantity': 1
}
}

db.orders.update (selector, update)

We use the $inc operator toupdate the quantity on the individual line item. The
update s facilitated by the positional operator, $, introduced previously. Thus, after

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION

IDwmrdmb Universi ity)
(Established Under 3of UGC Act, 1956)

the user clicks Add to Cart twice on the wheelbarrow product, the cart should look
like this:

& KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

{
user id: ObjectId("4c4bl1476238d3b4dd5000001"),
state: 'CART',
line_items: [
{
_id: ObjectId("4c4bl476238d3b4dd5003981"),
quantity: 2,
slug: "wheel-barrow-9092",
sku: "9092",
name: "Extra Large Wheel Barrow",
pricing: {
retail: 5897,
sale: 4897
}
}
] r
subtotal: 9794

Atomic document processing

One toolyou won’t want to do without is MongoDB’s findAndModi fy command.*
This command allows you to atomically update a document and return it in the
same round-trip. An atomic update is one where no other operation can interrupt
or interleave itself with the update. What if another user tries to change the docu-
mentafteryou find it but before you modify it? The find might nolongerapply. An
atomic update prevents this case; all other operations must wait for the atomic update
to finish.

EveryupdateinMongoDBisatomic, butthedifference with findAndModi fyisthat
it also atomically returns the document to you. Why is this useful? If you fetch and
then update a document (or update then fetchit), there can be changes made to the
document by another MongoDBuserin between those operations. Thusit’simpossi-
ble to know the true state of the document you updated, before or after the update,
eventhoughtheupdateisatomic,unlessyouuse findAndModi fy. Theotheroptionis
to use the optimistic locking mentioned in section 7.1, but that would require addi-
tional application logic to implement.

This atomic update capability is a big deal because of what it enables. For instance,
youcanuse findAndModifytobuildjobqueuesandstatemachines. Youcanthenuse
these primitive constructs to implement basic transactional semantics, which greatly
expand the range of applications you can build using MongoDB. With these transac-

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019

e ek OURSE NAME : MONGODB COURSE CODE:18CSP203

IDwmrdmb Universi ity)
(Established Under 3of UGC Act, 1956)

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R,_J

tion-like features, you can construct an entire e-commerce site on MongoDB—not
just the product content, but the checkout mechanism and the inventory manage-
ment as well.

To demonstrate, we’ll look at two examples of the findAndModify command in
action. First, we’ll show how to handle basic state transitions on the shopping cart.
Then we’lllook at a slightly more involved example of managing alimited inventory.

ring a valid initial state, and an update thateffects the change ofstate. Let’s skip forward a

fewstepsintheorder process and assumethattheuserisabouttoclickthePayNowbuttonto
authorizethe purchase.If you’re going to authorize the user’s credit card synchronously on the
application side, you need to ensure these four things:

1

You authorize for the amount that the user sees on the checkout screen.

2 Thecart’s contents never change whileinthe process of authorization.

3 Errorsintheauthorization processreturnthecarttoitspreviousstate.

4 Ifthe credit cardis successfully authorized, the paymentinformationis posted
tothe order, and that order’s state is transitioned to PRE-SHIPPING.

The state transitions that you’ll use are shown in figure 7.5.

PREPARE THE ORDER FOR CHECKOUT

Thefirststepistogetthe orderinto the new PRE-AUTHORIZE state. Youuse find-
AndModi fy to find the user’s current order object and ensure that the object is in a
CART state:

newDoc = db.orders.findAndModify ({
query: {
user id: ObjectId("4c4bl476238d3b4dd5000001"),
state: 'CART'

b
update: {
Sset: {
state: 'PRE-AUTHORIZE'
}
by
'new': true

b

contents. Thisis because allupdates to the cart always ensure a state of CART. find-
AndModifyisusefulhere becauseyouwantto knowthe state ofthe document exactly
when you changed its state to PRE-AUTHORIZE. What would happen to the total cal-
culationsifanotherthread was also attempting to move the user through the check-

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION

(Deermed to be University)
(Established Under Section 3 of UGC Act, 1956 |

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

out process?

VERIFY THE ORDER AND AUTHORIZE

Now, in the preauthorization state, you take the returned order object and recalculate
the various totals. Once you have those totals, youissue anew findAndModify that
only transitions the document’s state to AUTHORIZING ifthe new totals match the old
totals. Here’s what that findAndModi £y looks like:

oldDoc = db.orders.findAndModify ({
query: {
user id: ObjectId("4c4b1476238d3b4dd5000001"),
total: 99000,
state: "PRE-AUTHORIZE"
}I
update: {
'Sset': {
state: "AUTHORIZING"
}
}
1)

Ifthissecond findandModi fyfails,thenyoumustreturntheorder’s stateto CARTand
report the updated totals to the user. Butifit succeeds, you know that the total to be
authorized isthe sametotal that was presented to the user. This means you can move
ontotheactualauthorization API call. Thus, the application nowissues a credit card
authorization request on the user’s credit card. If the credit card fails to authorize,
you record the failure and, as before, return the order to its CART state.

FINISHING THE ORDER

If the authorization is successful, you write the authorization information to the order
andtransitionit to the next state. The following strategy does bothin the same find-
AndModify call. Here, the example uses a sample document representing the authori-
zation receipt, which is attached to the original order:

auth _doc = {
ts: new Date(),
cc: 3432003948293040,
id: 29238382910293844839493438,
gateway: "Authorize.net"
}
db.orders.findAndModify ({
query: {
user id: ObjectId("4c4b1476238d3b4dd5000001"),
state: "AUTHORIZING"
}l

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R,_J

CLASS : 11 M.ScCS BATCH :2017- 2019
e et OURSE NAME : MONGODB COURSE CODE:18CSP203
update: {
Sset: {

state: "PRE-SHIPPING",
authorization: auth doc

Inventory management

Not every e-commerce site needs strict inventory management. Most commodity items
canbereplenished in enough time to allow any order to go through regardless of the
actual number of items on hand. In cases like these, managing inventory is easily han-
dled by managing expectations; as soon as only a few items remain in stock, adjust the
shipping estimates.

One-of-a-kind items present a different challenge. Imagine you're selling concert
tickets with assigned seats or handmade works of art. These products can’t be hedged;
users will always need a guarantee that they can purchase the products they've
selected. Here we'll present a possible solution to this problem using MongoDB. This
will further illustrate the creative possibilities in the findAndModify command and the
judicious use of the document model. It will also show how to implement transac-
tional semantics across multiple documents. Although youll only see afew ofthe key
MongoDB calls used by this process, the full source code for the InventoryFetcher
class is included with this book.

inventory collection. Ifthereare 10 shovelsinthe warehouse, thereare 10shoveldoc-
umentsinthedatabase. Eachinventoryitemislinked toaproduct by sku,and eachof
these items can be in one of four states: AVAILABLE (0), IN CART (1), PRE_ORDER (2),
or PURCHASED (3).

Here’s a method that inserts three shovels, three rakes, and three sets of clippers as
available inventory. The examples in this section are in Ruby, since transactions
require more logic, so it’s useful to see a more concrete example of how an applica-
tion would implementthem:

3.times do

Sinventory.insert one({:sku => 'shovel', :state => AVAILABLE})

Sinventory.insert one({:sku => 'rake', :state => AVAILABLE})

Sinventory.insert one({:sku => 'clippers',6 :state => AVAILABLE})
end

We'll handle inventory management with a special inventory fetching class. We’ll
firstlookathow thisfetcherworks andthenwe’ll peelback the coverstorevealits

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION

(Deermed to be University)
(Established Under Section 3 of UGC Act, 1956 |

implementation.

& KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

INVENTORY FETCHER

Theinventory fetcher can add arbitrary sets of products to ashopping cart. Here you
create anew order object and a new inventory fetcher. Youthen ask the fetcher toadd
three shovels and one set of clippers to a given order by passing an order ID and two
documents specifying the products and quantities you want to the add to cart
method. The fetcher hides the complexity ofthis operation, whichis altering two col-
lections at once:

Sorder_id = BSON::0bjectId('561297¢c5530a69dbc9000000")
Sorders.insert one ({

: id => sorder id,

:username => 'kbanker',

ritem ids => []

b

@fetcher = InventoryFetcher.new ({
:orders => Sorders,
:inventory => $inventory

b

@fetcher.add to cart (Gorder_ id,
[
{:sku => "shovel", :quantity => 3},
{:sku => "clippers", :quantity => 1}

1

Sorders.find({"_id" => Sorder id}).each do |order|
puts "\nHere's the order:"
p order

end

The add to cart method will raise an exception ifit fails to add every item to a cart.
Ifit succeeds, the order should look like this:

{

" id" => BSON::ObjectId('4cdf3668238d3b6e3200000a"),

"username" => "kbanker",

"item ids" => [
BSON: :ObjectId
BSON: :ObjectId
BSON: :ObjectId
BSON: :ObjectId

1

'4cdf3668238d3b6e32000001"),
'4cdf3668238d3b6e32000004"),
'4cdf3668238d3b6e32000007"),
'4cdf3668238d3b6e32000009")

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
\) CLASS : 11 M.Sc CS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION

(Deermed to be University)
(Established Under Section 3 of UGC Act, 1956 |

The idofeachphysicalinventoryitem willbe storedintheorder document. Youcan
query for each of these items like this:

puts "\nHere's each item:"

order['item ids'].each do |item id]|
item = Qinventory.find({" id" => item id}).each do |myitem]|
p myitem
end
end

" id" => BSON::0ObjectId('4cdf3668238d3b6e32000001"),
"sku"=>"shovel",

"state"=>1,

"ts"=>"Sun Nov 14 01:07:52 UTC 2010"

" id"=>BSON::0ObjectId('4cdf3668238d3b6e32000004"),
"sku"=>"shovel",

"state"=>1,

"ts"=>"Sun Nov 14 01:07:52 UTC 2010"

" 1d"=>BSON::0bjectId('4cdf3668238d3b6e32000007"),
"sku"=>"shovel",
"state"=>1,
"ts"=>"Sun Nov 14 01:07:52 UTC 2010"
}

INVENTORY MANAGEMENT

command resides at its core. The full source code for the InventoryFetcheris
included with the source code of this book. We’re not going to look atevery line of
code, but we'll highlight the three key methods that make it work.

First, whenyou pass alistofitemsto be added toyour cart, the fetcher attemptsto
transitioneachitem fromthe state of AVATLABLE to IN CART.Ifatanypointthisopera-
tion fails (if any one item can’t be added to the cart), the entire operation is rolled
back.Have alook atthe add_to_ cart methodthatyouinvoked earlier:

def add to cart (order id, *items)
item selectors = []
items.each do |item|
item[:quantity].times do
item selectors << {:sku => item[:sku]}
end
end
transition state(order id, item selectors,

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION

(Deermed to be University)
(Established Under Section 3 of UGC Act, 1956 |

& KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

{:from => AVAILABLE, :to => IN CART})
end

The *items syntaxinthe method arguments allows the user to passin any number of
objects, which are placed in an array called i tems. This method doesn’t do much. It
takes the specification foritems to add to the cart and expands the quantities so that
one item selector exists for each physical item that will be added to the cart. For
instance, this document, which says thatyou want to add two shovels

{:sku => "shovel", :quantity => 2}
becomes this:
[{:sku => "shovel"}, {:sku => "shovel"}]

You need a separate query selector for each item you want to add to your cart. Thus,
the method passes the array of item selectors to another method called transition
_state. For example, the previous code specifies that the state should be transitioned
from AVAILABLEtO IN CART:

def transition state(order id, selectors, opts={})
items transitioned = []
begin # use a begin/end block so we can do error recovery

for selector in selectors do
query = selector.merge ({:state => opts[:from]})
physical item = @inventory.find and modify ({
iquery => query,
:update => {
'$set!' => {
:state => opts[:to], # target state
:ts => Time.now.utc # get the current client time

if physical item.nil?
raise InventoryFetchFailure

end
items_transitioned << physical item[' id'] # push item into array
@orders.update one({:_id => order id}, {

'Spush' => {
:item ids => physical item[' id']
}

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

& KARPAGAM ACADEMY OF HIGHER EDUCATION
\) CLASS : 11 M.Sc CS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION

(Deermed to be University)
(Established Under Section 3 of UGC Act, 1956 |

})
end # of for loop

rescue Mongo::OperationFailure, InventoryFetchFailure
rollback (order id, items transitioned, opts[:from], opts[:to])
raise InventoryFetchFailure, "Failed to add #{selector[:sku]}"
end

return items transitioned.size
end

To transition state, each selector gets an extra condition, {:state => AVAILABLE}, and
the selector is then passed to findAndModify, which, if matched, sets a timestamp
and the item’s new state. The method then saves the list of items transitioned and
updates the order with the ID of the item just added.

GRACEFUL FAILURE

Ifthe findAndModi fy command fails and returns ni 1, thenyouraisean Inventory-
FetchFailure exception. If the command fails because of networking errors, you res-
cue the inevitable Mongo: : OperationFailure exception. In both cases, you rescue by
rolling back all the items transitioned thus far and then raise an InventoryFetch-
Failure,whichincludesthe SKUoftheitemthatcouldn’tbeadded.Youcanthenres-
cue this exception on the application layer to fail gracefully for the user.

All that now remains is to examine the rollback code:

def rollback(order id, item ids, old state, new_state)
@orders.update one({"_id" => order_ id},
{"SpullAll™ => {:item ids => item ids}})

item ids.each do [id|
@inventory. find one_ and update ({
rquery => {
"id" => id,
:state => new_state

rupdate => {
"Sset" => {
:state => old state,
:ts => Time.now.utc

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION

IDeemrdboII University)
(Established Under Section 3 of UGC Act, 1955

& KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

This topic covers

® Basic indexing concepts and theory

® Practical advice for managing indexes

1 Using compound indexes for more complex
queries

m Optimizing queries

n All the MongoDB indexing options

Indexes are enormously important. With the right indexes in place, MongoDB
can use its hardware efficiently and serve your application’s queries quickly. But the
wrong indexes produce the opposite result: slow queries, slow writes, and poorly
utilized hardware. It stands to reason that anyone wanting to use MongoDB effec-
tively must understand indexing.

A cCOMPOUND INDEX

Thisindexisgoodifallyouneedisalistofrecipes foragiveningredient. Butifyou
want toinclude any other information about the recipe in your search, you still have
some scanning to do—once you know the page numbers where cauliflower is refer-
enced,youthenneedto gotoeachofthose pagesto getthe name ofthe recipe and
what type of cuisineitis. This is better than paging through the whole book, but you
can do better.

Whatcanyoudo?Happily, there’sasolutiontothelong-lost cauliflowerrecipe,andits

answer lies in the use of compound indexes.
The two indexes you've created so far are Caikews
single-key indexes: they both order only one Cashew Marinade
key from each recipe. You’re going to build 1,215
yet anotherindex for The Cookbook Omega, but Chicken with Cashews
this time, instead of using one key per index, 88
you’ll use two. Indexes that use more than R”l;:'"y RN
one key like this are called compound indexes.
This compound index uses both ingredi- AT ——
ents and recipe name, in that order. You'll Bacon Cauliflower Salad
notatetheindexlike this: ingredient-name. 875
Lemon-baked Cauliflower
89
Prepared by Dr.S.Veni. Dept. of CS, CA & IT Spicy Cauliflower Cheese Soup " 36
47
Currants
| | Cersamad Scnnea with Cueranta

CLASS : 11 M.ScCS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION

IDwmrdmb Universi ity)
(Established Under Section 3 of UGC Act, 1956 |

& KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

Part of this index would look like what
you see in figure8.1.

The value of this index for a human is
obvious. You can now search by ingredient
and probably find therecipe you want, evenif
you remember only the initial part of the
name. For a machine, it’s still valuable for this
use case and will keep the database from hav-
ing to scan every recipe name listed for that
ingredient. This compound index would be
especially useful if, as with The Cookbook Omega,
there were several hundred (or thousand)
cauliflower recipes. Canyou see why?

One thing to notice: with compound
indexes, order matters. Imagine the reverse

INDEXING RULES
The goal of this section was to present an extended metaphorto provide you with a bet-
ter mental model ofindexes. From this metaphor, you can derive a few simple concepts:

1 Indexes significantly reduce the amount of work required to fetch documents.
Without the properindexes, the only way to satisfy a queryis to scan alldocu-
ments linearly until the query conditions are met. This frequently means scan-
ning entire collections.

2 Only one single-key index will be used to resolve a query.! For queries contain-
ing multiple keys (say, ingredient and recipe name), a compound index con-
taining those keys will best resolve the query.

3Anindexon ingredient can and should be eliminated ifyou have a second
index on ingredient-name. More generally, if you have a compound index on
a-b,thenasecondindexon a alone will be redundant, butnotoneonb.

4The order of keys in a compound index matters.

Bearin mind that this cookbook analogy can be taken only so far. It’s a model for
understanding indexes, but it doesn’t fully correspond to the way MongoDB’s indexes
work.

The preceding thought experiment hinted at a number of core indexing concepts.
Here and throughout the rest of the chapter, wellunpack those ideas.

SINGLE-KEY INDEXES
With a single-key index, each entry in the index corresponds to a single value from

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION
(Deermed to be University)
(Established Under Section 3 of UGC Act, 1956 |
each of the documents indexed. The defaultindexon idisagood example ofa
single-key index. Because this field isindexed, each document’s idalsolivesinan

index for fast retrieval by that field.

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

! COMPOUND-KEY INDEXES
Although when starting with MongoDB 2.6 you can use more than one index for a

query,it’sbestifyou use only a single index. Butyou often need to query on more
thanoneattribute,andyouwantsuchaquerytobeasefficientaspossible. Forexam-
ple,imagine that you've built two indexes on the products collection from this book’s
e-commerce example: one index on manufacturer and another on price. In this
case, you've created two entirely distinct data structures that, when traversed, are
ordered like the lists you see in figure 8.2.

Traversal
Ace Ox12 7999 OxFF
Acme OxFF 7500 Ox12
Acme OxAl 7500 OxEE
Acme Ox0B 7500 OxA1l
Acme OoxiC 7499 Ox0B
Biz OxEE 7499 Ox1C
Manufacturers and disk locations Sale prices and disk locations

Figure 8.2 Single-key index traversal

Now, imagine your query looks like this:

db.products.find({
'details.manufacturer': 'Acme',
'pricing.sale': {
$1lt: 7500
}
})

This query says to find all Acme products costing less than $75.00. If you issue this query
with single-key indexes on manufacturer and

price, only one of them will be used. grab the list of disk locations that match and calculate
theirintersection.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R,_J

CLASS : 11 M.ScCS BATCH :2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
Ace — 8000 Ox12
Acme — 7999 OxFF
Acme — 7500 OxA1l
Acme — 7499 Ox0B
Acme — 7499 Ox1C
Biz — 8999 OxEE

The order of keys in a compound index matters. If that seems clear, the second
thing you should understand is why we've chosen the first ordering over the second.
This may be obvious from the diagrams, but there’s another way to look at the prob-
lem. Look again at the query: the two query terms specify different kinds of matches.
On manufacturer, you want to match the term exactly. But on price, you want to
match a range of values, beginning with 7500. As a general rule, a query where one
term demands an exact match and another specifies a range requires a compound
index where the range key comes second. We'll revisit this idea in the section on
query optimization.

INDEX EFFICIENCY

Althoughindexes are essential for good query performance, each newindex imposes
asmall maintenance cost. Wheneveryou add adocument to a collection, eachindex
on that collection must be modified to include the new document. If a particular col-
lection has 10 indexes, that makes 10 separate structures to modify on each insert, in
addition to writing the document itself.

For read-intensive applications, the cost of indexes is almost always justified. Just
realize that indexes do impose a cost and that they therefore must be chosen with
care. This means ensuring that all your indexes are used and that none are redun-
dant.Youcandothisinpartbyprofilingyourapplication’s queries; we’lldescribe this
process later in the chapter.

Butthere’s asecond consideration. Evenwith alltherightindexesinplace, it’sstill
possible that those indexes won'’t result in faster queries. This occurs when indexes
and a working data set don’t fit in RAM.

Youmay recall from chapter 1 that MongoDB tells the operating system to map all
data files to memory using the mmap () system call when the MMAPv1 default storage
engineisused. Asyou’lllearnin chapter 10, the WiredTiger storage engine works dif-
ferently. From this point on, the data files, which include all documents, collections,
andtheirindexes, are swapped in and out of RAM by the operating systemin 4 KB
chunks called pages.? Whenever data from a given page is requested, the operating

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019
OURSE NAME : MONGODB COURSE CODE:18CSP203
KAR PAGAI\%

ACADEMY OF HIGHER EDUCATION

IDwmrdNb Universi ity)
(Established Under 3of UGC Act, 1956)

system must ensure that the page is available in RAM. Ifit’s not, a kind of exception
known as a page fault is raised, and this tells the memory manager to load the page
from disk intoRAM.

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R,_J

will eventually be loaded into mem- ory. Whenever that memory is altered, asin
the case of a write, those changes will be flushed to disk asynchronously by the OS.
The write, however, will be fast because it occurs directly in RAM; thus the number
of disk accesses is reduced to a minimum. But if the working data set can't fit into
RAM, page faults will start to creep up. This means that the operating system will
be going to disk frequently, greatly slowing read and write operations. In the worst
case, as data size becomes much larger than available RAM, a situation can occur
where for any read or write, data must be paged to and from disk. This is known as
thrashing, and it causes performance to take a severe dive.

Fortunately, this situation is relatively easy to avoid. At a minimum, you need to make
sure thatyourindexes will fitinRAM. Thisis onereason why it’simportant to avoid cre-
ating any unneeded indexes. With extraindexes in place, more RAM will be required
tomaintainthoseindexes. Alongthesamelines,eachindexshould haveonlythekeys
itneeds. Atriple-key compound index might be necessary attimes, but be aware that
it'lluse more space than a simple single-keyindex. One example of where it might be
valuable to create anindex with more than one or two fields is if you can create a cov-
ering index for a frequent query.

Bear in mind that indexes are stored separately in RAM from the data they index
and aren’t clustered. In a clustered index, the order ofthe index corresponds directly
tothe order ofthe underlying data; ifyou index recipes by namein a clustered index,
then all of the recipes starting with A will be stored together, followed by B, C, and so
on. This isn’t the case in MongoDB. Every name in the recipe index is essentially
duplicated in theindex, and the order of these names has no bearing on the order of
the data. Thisisimportant when you scan through a collection sorted with an index
because it means that every document fetched could be anywhere in the data set.
There’s no guaranteed locality with the previously fetched data.

Ideally, indexes and a working data set fit in RAM. But estimating how much RAM
this requires for any given deployment isn’t always easy. You can always discover total
index size bylookingatthe resultsofthe stats command. The working setis the sub-
set of total data commonly queried and updated, which is different for every applica-
tion. Suppose you have a million users for which you have data. If only half of them
are active (thus halfthe user documents are queried), then your working set for the

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION

IDwmrdmb Universi ity)
(Established Under Section 3 of UGC Act, 1956 |

& KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

user collection is half the total data size. If these documents are evenly distributed
throughout the entire data set, though, it’s likely that untouched user documents are
also being loaded into memory, which imposes a cost.

B-trees have two overarching traits that make them ideal for database indexes.
First, they facilitate a variety of queries, including exact matches, range conditions,
sorting, prefix matching, and index-only queries. Second, they’re able to remain bal-
anced in spite of the addition and removal of keys.

We'lllook at a simple representation of a B-tree and then discuss some principles
thatyou’ll want to keep in mind. Imagine that you have a collection of users and that

AB-tree,asyoumight guess,is atree-likedatastructure. Eachnodeinthetreecan
contain multiple keys. You can see in the example that the root node contains two
keys, each ofwhich isin the form ofa BSON object representing an indexed value
from the users collection. In reading the contents of the root node, you can see the
keys for two documents, indicating last names Edwards and Perry, with ages of 21 and
18, respectively. Each of these keys includes two pointers: one to the data file it
belongs to and another to the child node. Additionally, the node itself points to
another node with values less than the node’s smallest value.

In MongoDB’s B-treeimplementation, anew nodeis allocated 8,192 bytes, which
means that in practice, each node may contain hundreds of keys. This depends on
the average index key size; in this case, that average key size might be around 30
bytes. The maximumkey size since MongoDBv2.0is 1024 bytes. Add to thisaper-key
overhead of 18 bytes and a per-node overhead of 40 bytes, and this results in about
170keys per node.* One thing to notice is that each node has some empty space (not
to scale).

This is relevant because users frequently want to know why index sizes are what
they are. Younow know that each nodeis 8 KB, and you can estimate how many keys
will fit into each node. To calculate this, keep in mind that B-tree nodes are usually
intentionally kept around 60% full by default.

Given this information, you should now see why indexes aren'’t free, in terms of
space or time required to update them. Use this information to help decide when to
create indexes on your collections and when to avoid them.

Indexing in practice

With most of the theory behind us, we’ll now look at some refinements on our con-
cept of indexing in MongoDB. We’ll then proceed to some of the details of index
administration.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019

e ek OURSE NAME : MONGODB COURSE CODE:18CSP203

IDwmrdmb Universi ity)
(Established Under 3of UGC Act, 1956)

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R,_J

Index types
MongoDB uses B-trees forindexes and allows you to apply several characteristics to
these indexes. This section should give you an overview of your options when creat-
ing indexes.

UNIQUE INDEXES
Often you want to ensure that a field in your document, suchas idorusername,is

uniquetothatdocument. Uniqueindexes areawayto enforcethischaracteristic,and
infactare used by MongoDB toensure that idisaunique primary key.

Tocreate auniqueindex, specify the unique option:
db.users.createlIndex ({username: 1}, {unique: true})

Uniqueindexes enforce uniquenessacross alltheirentries. Ifyoutrytoinsertadocu-
mentinto this book’s sample application’s users collection with an already-indexed
username value, the insert will fail with the following exception:

E11000 duplicate key error index:
gardening.users.$username 1 dup key: { : "kbanker" }

Ifusingadriver, this exception will be caught onlyifyou performthe insert using
your driver’s safe mode, which is the default. You may have also encountered this
error if you attempted to insert two documents with the same id—every MongoDB
collection has aunique index on this field because it’s the primary key.

Ifyouneed aunique index on a collection, it’s usually best to create the index
before inserting any data. If you create the index in advance, you guarantee the
uniqueness constraint from the start. When creating a unique index on a collection
thatalready contains data,you runtheriskoffailure becauseit’s possible that dupli-
cate keys may already exist in the collection. When duplicate keys exist, the index cre-
ation fails.

Ifyou do find yourself needing to create a unique index on an established collec-
tion, you have a couple of options. The first is to repeatedly attempt to create the
unique index and use the failure messages to manually remove the documents with
duplicate keys. But if the data isn’t so important, you can also instruct the database to
drop documents with duplicate keys automatically using the dropDups option. For
example,ifyouruserscollectionalready contains data, andifyoudon’tcarethatdoc-
uments with duplicatekeys are removed, you canissue theindex creation command
like this:

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION

IDwmrdmb Universi ity)
(Established Under 3of UGC Act, 1956)

& KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

db.users.createlIndex ({username: 1}, {unique: true, dropDups: true})

SPARSE INDEXES

Indexes are dense by default. This means that for every document in an indexed col-
lection, a corresponding entry exists in the index, even if the document lacks the
indexed key. For example, recall the products collection from your e-commerce data
model, and imagine that you've built an index on the product attribute category ids.
Now supposethatafew products haven’t been assigned to any categories. Foreach of
these category-less products, there will still exist a null entry in the category ids
index. You can query for those null values like this:

db.products.find({category ids: null})

Here, when searching forall products lacking a category, the query optimizer will still
beabletousetheindexoncategory idstolocatethecorrespondingproducts.

Butintwo casesadenseindexisundesirable. The firstis whenyou want aunique
indexonafield thatdoesn’tappearin every documentin the collection. Forinstance,
you definitely want auniqueindex on every product’s sku field. But suppose that, for
some reason, products are entered into the system before a SKU is assigned. If you
have a unique index on sku and attempt to insert more than one product without a
SKU, the first insert will succeed, but all subsequent inserts will fail because there will
alreadybe anentryintheindexwhere skuisnull.This is acase where adenseindex
doesn’t serve your purpose. Instead you want aunique and sparse index.

Inasparseindex,onlythosedocuments havingsomevalue fortheindexed key will
appear. I[fyouwant to create asparse index, allyou have todois specify { sparse:
true}.Forexample,you cancreate aunique sparse index on sku like this:

db.products.createIndex ({sku: 1}, {unique: true, sparse: true})

There’s anothercase whereasparseindexis desirable: whenalarge numberofdocu-
ments in a collection don’t contain the indexed key. For example, suppose you
allowed anonymous reviews on your e-commerce site. In this case, halfthe reviews
mightlackauser idfield, andifthatfield were indexed, halfthe entries in that
indexwouldbenull.Thiswouldbeinefficient fortworeasons.

the sizeoftheindex. Second, it'd requireupdatestothe index when adding and remov-
ing documents with null user id fields.
Ifyou rarely (or never) expect queries on anonymous reviews, you might elect to

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION

IDwmrdmb Universi ity)
(Established Under 3of UGC Act, 1956)

build asparseindexonuser id.Again,settingthe sparseoptionissimple:

& KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

db.reviews.createIndex ({user id: 1}, {sparse: true, unique: false})

Now only those reviews linked to a user via the user idfield will be indexed.

MULTIKEY INDEXES

In earlier chapters you saw several examples of indexing fields whose values are
arrays.® This is made possible by what’s known as a multikey index, which allows multi-
pleentriesin the index to reference the same document. This makes sense if we look
atasimple example. Supposeyouhave aproductdocument with a few tagslike this:

{

name: "Wheelbarrow",
tags: ["tools", "gardening", "soil"]

}

Ifyou create anindexon tags, theneachvalueinthisdocument’s tags array will
appearintheindex. This meansthat aquery onanyone ofthese arrayvalues can use
theindex tolocate the document. Thisis the idea behind a multikey index: multiple
index entries, or keys, end up referencing the same document.

Multikeyindexes are always enabled in MongoDB, with a few exceptions, such as
with hashed indexes. Whenever anindexed field contains an array, each array value
will be given its own entry in the index.

The intelligent use of multikey indexes is essential to proper MongoDB schema
design. This should be evident from the examples presented in chapters 4 through 6;
several more examples are provided inthe design patterns section ofappendix B. But
creating, updating, or deleting multikey indexes is more expensive than creating,
updating, or deleting single-key indexes.

HASHED INDEXES

In the previous examples of B-tree indexes, we showed how MongoDB builds the
indextree outofthe valuesbeingindexed. Thus,inanindexofrecipes, the “Apple
Pie” entryis near the “Artichoke Ravioli” entry. This may seem obvious and natural,
but MongoDBalso supports hashed indexeswhere the entries are first passed througha
hash function.® This means the hashed values will determine the ordering, so these
recipes will likely not be near each other in the index.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION

IDwmrdmb Universi ity)
(Established Under 3of UGC Act, 1956)

& KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

Indexes ofthis kind can be created in MongoDB by passing 'hashed' astheindex
sorting direction. Forexample:

db.recipes.createlndex ({recipe name: 'hashed'})

Because the indexed value is a hash of the original, these indexes carry some
restrictions:

» Equality queries willwork much the same, butrange queries aren’t supported.
» Multikey hashed indexes aren’t allowed.

Given these restrictions and peculiarities, you may wonder why anyone would use a
hashedindex. Theanswerliesinthefactthatthe entriesinahashedindex are evenly
distributed. In other words, when you have a non-uniform distribution of key data,
then a hashed index will create uniformity if you can live with its restrictions. Recall
that “Apple Pie” and “Artichoke Ravioli” are no longer next to each other in the
hashedindex;thedatalocalityoftheindexhaschanged. Thisis usefulin sharded col-
lections where the shard index determines which shard each document will be
assigned to. Ifyour shard indexis based on an increasing value, such as a MongoDB
OIDs,”thennewdocuments created willonlybeinserted toasingle shard—unlessthe
index is hashed.

Let’sdiginto that statement. Unless explicitly set, a MongoDB document will use
an OID as its primary key. Here are a few sequentially generated OIDs:

5247ae72defd45aldaba9dad
5247ae73defd45aldaba9daa
5247ae73defd45aldaba9dab

Notice howsimilarthevaluesare;the mostsignificant bitsarebased onthetime when
they were generated. When new documents are inserted with these IDs, their index
entries arelikely to be neareachother.IftheindexusingtheseIDsisbeingusedto
decide which shard (and thus machine) a document should reside on, these docu-
ments arealsolikelytobeinserted ontothe same machine. Thiscan bedetrimentalif
acollectionisreceivingheavywriteload, becauseonlyasinglemachineis beingused.
Hashed indexes solve this issue by distributing these documents evenly in a name-
space, and thus across shards and machines. To fully understand this example, wait
until you read chapter 12.

Fornow, theimportant thing to rememberis that hashed indexes change thelocality

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019

e ek OURSE NAME : MONGODB COURSE CODE:18CSP203

IDwmrdmb Universi ty)
(Established Under 3of UGC Act, 1956]

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R,_J

ofindex entries, which can be useful in sharded collections.

GEOSPATIAL INDEXES

Anotheruseful query capabilityistofind documents “close”toagivenlocation, based
onlatitude and longitude values stored in each document. If you store a directory of
restaurants in a MongoDB collection, for example, users are probably most eager to
find restaurants located near their home. One answer to this is to run a query to find
every restaurant within a 10-mile radius. Executing this query requires an index that
can efficiently calculate geographic distances, including the curvature of the earth.
Geospatial indexes can handle this and other types of queries.

Index administration

We've discussed simple index administration, such as creating indexes, in this and in
previous chapters. When you use indexes in real-world applications, however, it’s use-
ful to understand this topicin greater depth. Here we’ll see index creation and dele-
tionindetailand address questions surrounding compaction and backups.

CREATING AND DELETING INDEXES

Bynowyou've created quite a fewindexes, so this should be easy. Simplycallcreate-
Index () eitherinthe shell or with your language of choice. Please note that in Mon-
goDB v3.0, ensureIndex (), which was previously used for creating indexes, has been
replaced bythecreateIndex () commandandshouldn’tbeused anymore. Whatyou
may not know is that this method works by creating a document defining the new
index and putting it into the special system. indexes collection.

Though it’s usually easier to use a helper method to create anindex, you can also
insertanindex specification manually (thisis what the helper methods do). Youneed
to be sure you've specified the minimum set of keys: ns, key, and name. ns is the
namespace, keyisthe field or combination offields toindex, and name isaname used
to refer to the index. Any additional options, like sparse, can also be specified here.
For example, let’s create a sparse index on the users collection:

use green
spec = {ns: "green.users", key: {'addresses.zip': 1}, name: 'zip'}
db.system.indexes.insert (spec, true)

Ifno errors are returned oninsert, the index now exists, and you can query the sys-
tem.indexes collection to prove it:

db.system.indexes.find () .pretty ()
{

"ns" : "green.users",

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
\) CLASS : -

211 M.Sc CS

e s hﬁ:OURSE NAME : MONGODB

KARPAGA

ACADEMY OF HIGHER EDUCATION

(Deermed to be University)
(Established Under Section 3 of UGC Act, 1956 |

BATCH : 2017- 2019
COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT

"key" |
"addresses.zip" : 1

}I

"name" : "zip",

"v" oo 1

The v field was added in MongoDB v2.0 to store the version of the index. This version
field allows for future changesin theinternalindex format but should be oflittle con-
cern to applicationdevelopers.

Todelete an index, you might think that all you need to do is remove the index
document from system.indexes, but this operation is prohibited. Instead, you must
delete indexes using the database command deleteIndexes. As with index creation,
there are helpers for deletingindexes, butif you want to run the command itself, you
candothat, too. The command takes asits argument adocument containingthe col-
lection name and either the name of the index to drop or * to drop all indexes. To
manually drop the index you created, issue the command like this:

use green
db.runCommand ({deleteIndexes: "users", index: "zip"})

In most cases, you’ll use the shell’s helpers to create and drop indexes:

use green
db.users.createIndex ({zip: 1})

You can then check the index specifications with the get IndexSpecs () method:

> db.users.getIndexes ()
[
{

"V" . 1,
"key" . {
" id" . 1
b
"ns" : "green.users",
"name" : "_id_"
by
{
"V" . 1,
"key" |
"Zip" . 1
by
"ns" : "green.users",
"name" : "zip 1"

Page 3 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION

IDwmrdmb Universi ity)
(Established Under 3of UGC Act, 1956)

& KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

Finally, you can drop the index using the dropIndex () method. Note that you must
supply the index’s name as specified in the spec:

use green
db.users.dropIndex ("zip 1")

You can also supply your own name while creating an index using the name parameter.
Those are the basics of creating and deletingindexes. For what to expect when an
index is created, read on.

BUILDING INDEXES

Most of the time, you'll want to declare your indexes before putting your application
into production. This allowsindexes tobebuiltincrementally, asthe dataisinserted.
But there are two cases where you might choose to build an index after the fact. The
first case occurs when you need to import a lot of data before switching into produc-
tion. For instance, you might be migrating an application to MongoDB and need to
seed the database with userinformation from adatawarehouse. Youcould createthe
indexes onyour user datainadvance, butdoingso after you'veimported the data will
ensureanideallybalanced and compactedindex from the start.It’ll also minimize the
net time to build the index.

The second (and more obvious) case for creating indexes on existing data sets is
whenyou have to optimize for new queries. This occurs whenyou add or change func-
tionalityinyourapplication,andithappens morethanyoumightthink. Supposeyou
allow users to log in using their username, so you index that field. Then you modify
your applicationto also allow your users tologin usingtheir email; now you probably
need a second index on the emai 1 field. Watch out for cases like these because they
require rethinking yourindexing.

Regardless of whyyou’re creating newindexes, the process isn’t always pleasing.
Forlargedatasets, building anindex cantake hours, even days. Butyou can monitor
the progress of an index build from the MongoDB logs. Let’s take an example from a
datasetthatwe’lluseinthenextsection. First,youdeclare anindexto be built:

db.values.createIndex ({open: 1, close: 1})

The index builds in two steps. In the first step, the values to be indexed are sorted. A
sorted data set makes for a much more efficient insertion into the B-tree. If you look
atthe MongoDB serverlog, you'll see the progress printed for long index builds. Note
thatthe progress ofthe sortisindicated by the ratio of the number of documents

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019

— m - OURSE NAME : MONGODB COURSE CODE:18CSP203

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R,_J

sorted to the total number of documents:

[connl] building new index on { open: 1.0, close: 1.0 } for stocks.values
1000000/4308303 23%
2000000/4308303 46%
3000000/4308303 69%
4000000/4308303 92%

Tue Jan 4 09:59:13 [connl] external sort used : 5 files in 55 secs

Forsteptwo, thesorted values areinsertedinto theindex. Progressisindicated inthe
same way, and when complete, the time it took to complete the index build is indi-
cated as the insert time into system. indexes:

1200300/4308303 27%
2227900/4308303 51%
2837100/4308303 65%
3278100/4308303 76%
3783300/4308303 87%
4075500/4308303 94%
Tue Jan 4 10:00:16 [connl] done building bottom layer, going to commit
Tue Jan 4 10:00:16 [connl] done for 4308303 records 118.942secs
Tue Jan 4 10:00:16 [connl] insert stocks.system.indexes 118942ms

In addition to examining the MongoDB log, you can check the index build progress
byrunningtheshell’s currentOp () method. This command’s output varies from ver-
sion to version, butit will probably look somethinglike the next listing.®

Listing 8.1 Checking the Index bulld process with the shell currentOP () method

> db.currentOp ()
{

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

SQ KARPAGAM ACADEMY OF HIGHER EDUCATION
==

CLASS : Il M.Sc CS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION
(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

"inprog", : [
{
"opid" : 83695, "active" : , "secs_ running" : 55, "op" : "insert",
"ns" : "stocks.system.indexes", "insert" : {
"v" o 1,
"key" : {
"desc" : 1
}I
"ns" : "stocks.values",
"name" : "desc 1"
}I
"client" : "127.0.0.1:56391",
"desc" : "connl2", "threadId" : "0x10f20c000", "connectionId" : 12, "locks" :
{
mavo "w",
"*stocks" : "W"
}I
"waitingForLock" : false,
"msg" : "index: (1/3) external sort Index: (1/3)
External Sort Progress: 3999999/4308303 92%",
8
"progress" : {
"done" : 3999999,
"total" : 4308303
s
"numYields" : O,
"lockStats" : {
"timeLockedMicros" : {1},
"timeAcquiringMicros" : {
"r" : NumberLong(0),
"w" : NumberLong(723)

Themsgfield describes the build’s progress. Note also the 1ocks element, which indi-
catesthattheindex build takes awritelockonthe stocks database. This meansthat
no other client can read or write from the database at this time. If you’re running in
production, thisisobviouslyabadthing,andit’sthereasonwhylongindex builds can
be so vexing. Let’s explore two possible solutions to this problem.

BACKGROUND INDEXING
If you’re running in production and can’t afford to halt access to the database, you
can specify that an index be built in the background. Although the index build will

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

still take awritelock, the job will yield to allow other readers and writers to access the
database. If your application typically exerts a heavy load on MongoDB, a background
index build will degrade performance, but this may be acceptable under certain cir-
cumstances. Forexample, ifyou know that the index can be built within a time win-
dow where application traffic is at a minimum, background indexing in this case
might be a good choice.

Tobuild anindexinthe background, specify {background: true} whenyoudeclare
the index. The previous index can be built in the background like this:

db.values.createIndex ({open: 1, close: 1}, {background: true})

OFFLINE INDEXING

Buildinganindexinthebackground maystillputanunacceptableamountofload on
aproduction server.Ifthisisthe case, youmayneed toindex the dataoffline. This will
usuallyinvolve taking areplicanode offline, buildingtheindex on that node by itself,
and then allowing the node to catch up with the master replica. Once it’s caught up,
you can promote the node to primary and then take another secondary offline and
buildits version oftheindex. This tactic presumes that yourreplication oplogislarge
enough to prevent the offline node from becoming stale during the index build.
Chapter 10 covers replicationin detail and should helpyou plan for amigration such

as this.

BAckups
Because indexes are hard to build, you may want to back them up. Unfortunately,
not all backup methods include indexes. For instance, you might be tempted to use
mongodump and mongorestore, but these utilities preserve collections and index decla-
rations only. This means that when you runmongorestore, all the indexes declared
for any collections you've backed up will be re-created. As always, if your data set is
large, the time it takes to build these indexes may be unacceptable.
Consequently, if you want your backups to include indexes, you’ll want to opt for
backing up the MongoDB data files themselves. More details about this, as well as gen-
eral instructions for backups, can be found in chapter 13.

DEFRAGMENTING

If your application heavily updates existing data or performs a lot of large deletions,
you may end up with a highly fragmented index. B-trees will coalesce on their own
somewhat, but thisisn’t always sufficient to offset a high delete volume. The primary
symptom of a fragmented index is an index size much larger than you’d expect for
the given data size. This fragmented state canresultinindexes using more RAM than
necessary. Inthese cases, you may want to consider rebuilding one or more indexes.
You can do this by dropping and re-creating individual indexes or by running the
reIndex command, which will rebuild all indexes for a given collection:

db.values.relIndex () ;

Be careful about reindexing: the command will take out a write lock for the duration
ofthe rebuild, temporarily rendering your MongoDB instance unusable. Reindexing
is best done offline, as described earlier for building indexes on a secondary. Note

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
ﬁ//zj

CLASS : Il M.ScCS BATCH : 2017- 2019
=-~=' COURSE NAME : MONGODB COURSE CODE:18CSP203
KARFAGAM

thatthe compact command, discussed in chapter 10, will also rebuild indexes forthe
collection on which it’s run.

We've discussed how to create and manage yourindexes, but despite this knowl-
edge,you may still find yourselfin a situation where your queries aren’t fast enough.
This can occur as you add data, traffic, or new queries. Let’s learn how to identify
these queries that could be faster and improve the situation.

Query optimization

Queryoptimizationis the process ofidentifying slow queries, discoveringwhytheyre
slow,and thentaking stepsto speed them up.Inthissection, wellllook at each step of
the query optimization process in turn so that by the time you finish reading, you'll
have aframework foraddressing problematic queries on any MongoDB installation.
Before diving in, we must warn you that the techniques presented here can’t be
used to solve every query performance problem. The causes of slow queries vary too
much. Poor application design, inappropriate data models, and insufficient physical
hardware are all common culprits, and their remedies require a significant time
investment. Here we’ll look at ways to optimize queries by restructuring the queries

themselves and by building the most useful indexes. We’ll also describe other avenues
for investigation when these techniques fail to deliver.
ed is 0.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
ﬁ//‘g

CLASS : 11 M.ScCS BATCH : 2017- 2019
e COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM
e)
' UNIT-IV
SYLLABUS

Replication: Overview — Replica sets — Master-slave replication — Drivers
and replication. Shading: Overview — A sample shard cluster — Querying
and indexing a shard cluster — Choosing a shard key — sharding in production.

Replication overview

Replication is the distribution and maintenance of data across multiple MongoDB
servers (nodes). MongoDB can copy your data to one or more nodes and constantly
keepthemin syncwhen changesoccur. This type of replicationis provided through a
mechanism called replica sets, in which a group of nodes are configured to automati-
cally synchronize their data and fail over when a node disappears. MongoDB also
supports an older method of replication called master-slave, which is now considered
deprecated, but master-slave replication is still supported and can be used in MongoDB
v3.0.Forbothmethods, asingle primarynodereceives allwrites,and thenall second-
ary nodes read and apply those writes to themselves asynchronously.

Why replication matters

» The network connection between the application and the database is lost.
» Planned downtime prevents the server from coming back online as expected.
Most hosting providers must schedule occasional downtime, and the results of
this downtime aren’t always easy to predict. A simple reboot will keep a data-
base server offline for atleast a few minutes. Then there’s the question of what
happenswhentherebootiscomplete. Forexample, newlyinstalled softwareor

hardware can prevent MongoDB or even the operating system from starting
up properly.

» There’salossofpower. Although most modern datacenters feature redundant
power supplies, nothing prevents user error within the datacenter itself or an
extended brownout or blackout from shutting down your database server.

» Aharddrivefailson the database server. Hard drives have amean time to failure
ofafewyears and fail more often than you might think.2 Even ifit’s acceptable
tohave occasional downtime foryour MongoDB, it’s probably not acceptable to
loseyourdataifahard drive fails. It’'sagoodideato have atleast one copyof
your data, which replication provides.

Replication use cases and limitations
In addition to providing redundancy and failover, replication simplifies mainte-
nance, usually by allowing you to run expensive operations on anode other than the
primary. For example, it’s common practice to run backups on a secondary node to

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

SQ KARPAGAM ACADEMY OF HIGHER EDUCATION
==

CLASS : Il M.Sc CS BATCH : 2017- 2019
<= .~ = COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM
iciD:T}EeEFﬂ?«IﬂE}EEL:ch:T keep unnecessary load off the primary and to avoid downtime. Building large

indexes is another example. Because index builds are expensive, you may opt to
build on a secondary node first, swap the secondary with the existing primary, and
then build again on the new secondary.

Finally, replication allows you to balance reads across replicas. For applications
whose workloads are overwhelmingly read-heavy, this is the easiest, or if you prefer,
the most naive, way to scale MongoDB. But for all its promise, a replica set doesn’t
help much if any of the following apply:

» The allotted hardware can'’t process the given workload. As an example, we
mentioned working sets in the previous chapter. If your working data set is
muchlargerthantheavailableRAM,thensendingrandomreadsto the second-
arieslikelywon’timproveyour performanceas muchasyoumighthope.Inthis
scenario, performance becomes constrained by the number of1/O operations
persecond (IOPS)your disk can handle—generally around 80-100 fornon-SSD
hard drives. Reading from a replica increases your total IOPS, but going from
100 to 200 I0PS may not solve your performance problems, especially if writes
areoccurring atthe sametime and consuming a portion ofthat number.Inthis
case, sharding may be a better option.

» The ratio of writes to reads exceeds 50%. This is an admittedly arbitrary ratio,
butit’s areasonable place to start. Theissue hereis that every write to the pri-
mary must eventually be written to all the secondaries as well. Therefore, direct-
ing reads to secondaries that are already processing a lot of writes can
sometimes slow the replication process and may not result in increased read
throughput.

Replica sets

Replica sets are the recommended MongoDB replication strategy. We'll start by con-
figuring a sample replica set. We’ll then describe how replication works because this
knowledge is incredibly important for diagnosing production issues. We’'ll end by
discussing advanced configuration details, failover and recovery, and best deploy-
ment practices.

Setup

The minimum recommended replica set configuration consists of three nodes,
becauseinareplica set with only two nodes you can’t have a majority in case the pri-
mary server goes down. A three-member replica set can have either three members
that hold data ortwo members that hold data and an arbiter. The primaryis the only
memberinthe setthatcan accept write operations. Replica set members go through
aprocessinwhich they “elect” anew master by voting. Ifa primary becomes unavail-
able, elections allow the set to recover normal operations without manual interven-
tion. Unfortunately, if a majority of the replica set isinaccessible or unavailable, the
replica set cannot accept writes and all remaining members become read-only.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

SQ KARPAGAM ACADEMY OF HIGHER EDUCATION
==

CLASS : Il M.Sc CS BATCH : 2017- 2019
= .%~= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION
(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

You may consider adding an arbiter to a replica set if it has an equal number of
nodes in two places where network partitions between the places are possible. In
such cases, the arbiter will break the tie between the two facilities and allow the
set to elect a new primary.

Primary datacenter Secondary datacenter

Secondary [™-..

]
Replication Ping '

L Figure 11.1 A basic
Primary replica set consisting of
a primary, a secondary,
and an arbiter

Begin by creating a data directory for each replica set member:

mkdir ~/nodel
mkdir ~/node2
mkdir ~/arbiter

Next, start each member as a separate mongod. Because you'll run each process on the
same machine,it’seasiesttostarteachmongodinaseparate terminalwindow:
mongod --replSet myapp --dbpath ~/nodel --port 40000

mongod --replSet myapp --dbpath ~/node2 --port 40001
mongod --replSet myapp --dbpath ~/arbiter --port 40002

Note howwe tell each mongod that it will be amember ofthemyapp replica set and that
we start each mongod on a separate port. If you examine the mongod log output, the
firstthingyou'llnotice are error messages saying thatthe configuration can’t be found.
This is completelynormal:
[rsStart] replSet info you may need to run replSetInitiate

-- rs.initiate() in the shell -- if that is not already done

[rsStart] replSet can't get local.system.replset config from self
or any seed (EMPTYCONFIG)

On MongoDB v3.0 the log message will be similar to the following:

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

KARPAGAM ACADEMY OF HIGHER EDUCATION

Sa CLASS : Il M.Sc CS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203

KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

2015-09-15T16:27:21.088+0300 I REPL [initandlisten] Did not find 1local
replica set configuration document at startup; NoMatchingDocument Did not
find replica set configuration document in local.system.replset

To proceed, you need to configure the replica set. Do so by first connecting to one of
the non-arbiter mongods just started. These instances aren’t running on MongoDB’s
default port, so connect to one by running

mongo --port 40000

Theseexamples were produced runningthesemongodprocesseslocally, soyoulllsee the
nameofthe examplemachine, i ron, popupfrequently; substituteyourownhostname.

>
{

Connect, and then run the rs.initiate () command:®

rs.initiate ()

"info2" : "no configuration explicitly specified -- making one",
"me" : "iron.local:40000",

"info" : "Config now saved locally. Should come online in about a
minute.",

"ok" : 1

On MongoDB v3.0 the output will be similar to the following:

{

"info2" : "no configuration explicitly specified -- making one",
"me" : "iron.local:40000",
"ok" : 1

Within aminute orso,you’llhave aone-memberreplica set. Youcannowadd the
other two members using rs.add () :

~ VvV — V

rs.add("iron.local:40001")

"ok"™ : 1 }
rs.add("iron.local:40002", {arbiterOnly: true})
"ok" : 1 }

On MongoDB v3.0 you can also add an arbiter with the following command:

>
{

rs.addArb ("iron.local:40002")
"ok"™ - 1 }

Note that for the second node, you specify the arbiterOnly option to create an arbi-
ter. Within aminute, allmembers should beonline. Toget a briefsummary ofthe rep-
lica set status, run the db.isMaster () command:

>
{

Prepared by Dr.S.Veni. Dept. of CS, CA & IT

db.isMaster ()

"setName" : "myapp",
"ismaster" : true,
"secondary" : false,
"hosts" : [

Page 3 of 36

S@ KARPAGAM ACADEMY OF HIGHER EDUCATION
==

CLASS : Il M.Sc CS BATCH : 2017- 2019
= .%~= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM
A e 2% w4 7on.local: 40001,
(Estabished Under Section 3 of UGC Act, 1956 | "iron.local:40000"
] r
"arbiters" : [

"iron.local:40002"

] 4

"primary" : "iron.local:40000",

"me" : "iron.local:40000",

"maxBsonObjectSize" : 16777216,
"maxMessageSizeBytes" : 48000000,

"localTime" : ISODate("2013-11-06T05:53:25.5382"),
"ok" : 1

The same command produces the following output on a MongoDB v3.0 machine:

myapp:PRIMARY> db.isMaster ()
{

"setName" : "myapp",
"setVersion" : 5,
"ismaster" : true,
"secondary" : false,
"hosts" : [

"iron.local:40000",

"iron.local:40001"
I
"arbiters" : [

"iron.local:40002"
1,
"primary" : "iron.local:40000",
"me" : "iron.local:40000",
"electionId" : ObjectId("55f81dd44a50a0le0el3bdede"),
"maxBsonObjectSize" : 16777216,
"maxMessageSizeBytes" : 48000000,
"maxWriteBatchSize" : 1000,
"localTime" : ISODate("2015-09-15T13:37:13.798z"),
"maxWireVersion" : 3,
"minWireVersion" : O,
"ok" : 1

Amoredetailed view of the systemis provided bythe rs.status () method. Youllsee
state information for each node. Here’s the complete status listing:

> rs.status()

{

"set" : "myapp",
"date" : ISODate("2013-11-07T17:01:292"),
"myState" : 1,
"members" : [
{
" id" : 0O,
"name" : "iron.local:40000",

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

KARPAGAM ACADEMY OF HIGHER EDUCATION

Sa CLASS : 11 M.ScCS
=

BATCH : 2017- 2019

- .~ — COURSE NAME : MONGODB COURSE CODE:18CSP203
KAREASAM
o e 90 I
. r
"stateStr" : "PRIMARY",
"uptime" : 1099,
"optime" : Timestamp (1383842561,
"optimeDate" : ISODate("2013-11-07T16:42:41z"),
"self" : true
}l
{
"oid" o1,
"name" : "iron.local:40001",
"health" : 1,
"state" : 2,
"stateStr" : "SECONDARY",
"uptime" : 1091,
"optime" : Timestamp (1383842561,
"optimeDate" : ISODate("2013-11-07T16:42:41z"),
"lastHeartbeat" : ISODate("2013-11-07T17:01:292"),
"lastHeartbeatRecv" : ISODate ("2013-11-07T17:01:292"),
"pingMs" : 0,
"lastHeartbeatMessage" : "syncing to: iron.local:40000",
"syncingTo" : "iron.local:40000"
s
{
"oid" o 2,
"name" : "iron.local:40002",
"health" : 1,
"state" : 7,
"stateStr" : "ARBITER",
"uptime" : 1089,
"lastHeartbeat" : ISODate("2013-11-07T17:01:292"),
"lastHeartbeatRecv" : ISODate ("2013-11-07T17:01:292"),
"pingMs" : O
}
1,
"ok" : 1

The rs.status () command produces a slightly different output on aMongoDB v3.0

SEerver:
{
"set" : "myapp",
"date" : ISODate("2015-09-15T13:41:58.772z2"),
"myState" : 1,
"members" : [
{
" id" : 0,
"name" : "iron.local:40000",
"health" : 1,
"state" : 1,
"stateStr" : "PRIMARY",

Prepared by Dr.S.Veni. Dept. of CS, CA & IT

Page 3 of 36

KARPAGAM ACADEMY OF HIGHER EDUCATION

Sa CLASS : Il M.Sc CS
= .%~= COURSE NAME : MONGODB
KARPAGAM

ACADEMY OF HIGHER EDUCATION

BATCH : 2017- 2019
COURSE CODE:18CSP203

[Deemed to be University) "uptime " . 878 ’
Esabled underSection 3o UGC e 1558 "optime" : Timestamp (1442324156, 1),
"optimeDate" ISODate ("2015-09-15T13:35:562"),
"electionTime" Timestamp (1442323924, 2),
"electionDate" ISODate ("2015-09-15T13:32:042"),
"configVersion" : 5,
"self" : true
} r
{
"oid" o1,
"name" : "iron.local:40001",
"health" : 1,
"state" : 2,
"stateStr" "SECONDARY",
"uptime" : 473,
"optime" Timestamp (1442324156, 1),
"optimeDate" ISODate ("2015-09-15T13:35:562"),
"lastHeartbeat" ISODate ("2015-09-15T13:41:56.8192"),
"lastHeartbeatRecv" ISODate ("2015-09-15T13:41:57.39%962"),
"pingMs" : 0,
"syncingTo" "iron.local:40000",
"configVersion" : 5
by
{
"oid" o 2,
"name" : "iron.local:40002",
"health" : 1,
"state" : 7,
"stateStr" "ARBITER",
"uptime" : 360,
"lastHeartbeat" ISODate ("2015-09-15T13:41:57.6762"),
"lastHeartbeatRecv" ISODate ("2015-09-15T13:41:57.6762"),
"pingMs" : 10,
"configVersion" : 5

Unless your MongoDB database contains a lot of data, the replica set should come
online within 30 seconds. During this time, the stateStr field of each node should
transition from RECOVERING to PRIMARY, SECONDARY, or ARBITER.

Now evenifthe replicaset status claims thatreplication isworking, you may want
to see some empirical evidence of this. Go ahead and connect to the primary node

with the shell and insert a document:

$ mongo --port 40000
myapp : PRIMARY> use bookstore
switched to db bookstore

myapp : PRIMARY> db.books.insert ({title:

myapp : PRIMARY> show dbs
bookstore 0.203125GB

Prepared by Dr.S.Veni. Dept. of CS, CA & IT

"Oliver Twist"})

Page 3 of 36

KARPAGAM ACADEMY OF HIGHER EDUCATION

Sa CLASS : Il M.Sc CS
= .%= COURSE NAME : MONGODB
KARPAGAM

ACADEMY OF HIGHER EDUCATION
[Deemed to be University) local 0.203125GB

(Established Under Section 3 of UGC Act, 1956 |

BATCH : 2017- 2019
COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT

Notice how the MongoDB shell prints out the replica set membership status of the
instance it’s connected to.

Initial replication of your data should occur almost immediately. In another termi-
nal window, open a new shell instance, but this, time point it to the secondary node.
Query for the document just inserted; it should have arrived:

$ mongo --port 40001

myapp : SECONDARY> show dbs

bookstore 0.203125GB

local 0.203125GB

myapp : SECONDARY> use bookstore

switched to db bookstore

myapp : SECONDARY> rs.slaveOk ()

myapp : SECONDARY> db.books.find ()

{ "_id" : ObjectId("4d42ebf28e3c0c32c06bdf20"), "title" : "Oliver Twist" }

~/nodelandrunkill-3<processid>.Youcanalsoconnecttotheprimaryusingthe
shell and run commands to shut down the server:

$ mongo --port 40000

PRIMARY> use admin
PRIMARY> db.shutdownServer ()

Once you've killed the primary, note that the secondary detects the lapse in the pri-
mary’s heartbeat. The secondary then elects itself primary. This election is possible
because a majority of the original nodes (the arbiter and the original secondary) are
still able to pingeach other. Here’s an excerpt from the secondary node’s log:

Thu Nov 7 09:23:23.091 [rsHealthPoll] replset info iron.local:40000
heartbeat failed, retrying

Thu Nov 7 09:23:23.091 [rsHealthPoll] replSet info iron.local:40000
is down (or slow to respond):

Thu Nov 7 09:23:23.091 [rsHealthPoll] replSet member iron.local:40000
is now in state DOWN

Thu Nov 7 09:23:23.092 [rsMgr] replSet info electSelf 1

Thu Nov 7 09:23:23.202 [rsMgr] replSet PRIMARY

Ifyouconnecttothenewprimarynodeandcheckthereplicaset status,youllseethat
the old primary is unreachable:

$ mongo --port 40001

> rs.status()

"oid" : 0,

"name" : "iron.local:40000",
"health" : O,

"state" : 8,

Page 3 of 36

BATCH : 2017- 2019

SQ KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS : Il M.Sc CS
==

S T ——

Enakie. | Eriighten | Enrich

COURSE NAME : MONGODB

COURSE CODE:18CSP203

ACADEMY OF HIGHER EDUCATION
[Deemed to be University) "stateStr" : " (not reachable/healthy)",

(Established Under Section 3 of UGC Act, 1956 | .
"uptime" : 0,
"optime" : Timestamp (1383844267, 1),
"optimeDate" : ISODate("2013-11-07T17:11:072"),
"lastHeartbeat" : ISODate("2013-11-07T17:30:002"),
"lastHeartbeatRecv" : ISODate("2013-11-07T17:23:21z2"),
"pingMs" : 0

Prepared by Dr.S.Veni. Dept. of CS, CA & IT

Post-failover, the replica set consists of only two nodes. Because the arbiter has no
data, your application will continue to function aslong asit communicates with the
primary node only.* Even so, replication isn’t happening, and there’s now no possibil-
ity of failover. The old primary must be restored. Assuming that the old primary was
shutdown cleanly,youcan bringitbackonline, andit’ll automatically rejointherep-
licasetasasecondary. Goahead andtrythatnowbyrestartingtheold primarynode.
That’s a quick overview of replica sets. Some of the details are, unsurprisingly,
messier. Inthe next two sections, you’ll see how replica sets work and look at deploy-
ment, advanced configuration, and how to handle tricky scenarios that may arisein

production.

Tobetter see how this works, let’slook more closely at areal oplog and at the oper-
ations recorded in it. First connect with the shell to the primary node started in the
previous section and switch to the 1ocal database:

myapp : PRIMARY> use local
switched to db local

The local database stores all the replica set metadata and the oplog. Naturally, this
databaseisn’treplicateditself. Thusitlivesuptoitsname;datainthe 1ocal database
issupposed tobeuniqueto thelocalnode and therefore shouldn’tbereplicated.

Ifyouexaminethe local database,you’llseeacollectioncalledoplog.rs,whichis
where every replica set storesitsoplog. You'llalso see a few system collections. Here’s
the complete output:

myapp : PRIMARY> show collections
me

oplog.rs

replset.minvalid

slaves

startup_ log

system.indexes

system.replset

replset.minvalid contains information for the initial sync of a given replica set
member,and system. replset stores the replicaset configdocument.

Page 3 of 36

SQ KARPAGAM ACADEMY OF HIGHER EDUCATION
==

CLASS : Il M.Sc CS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION . .
[oeemedtobe Urvrsty) Not all of your mongod servers will have the replset.minvalid collection. me and

' o slaves are used to implement write concerns, described at the end of this
chapter,and system. indexes is the standard index spec container.

First we’ll focus on the oplog. Let’s query for the oplog entry corresponding to the

book document you added in the previous section. To do so, enter the following

query. Theresulting document will have four fields, and we’ll discuss eachin turn:

> db.oplog.rs.findOne ({op: "i"})
{

"ts" : Timestamp (1383844267, 1),

"h" : NumberLong ("-305734463742602323"),
nynos o2,

"Op" . llill,

"ns" : "bookstore.books",

"om
" id" : ObjectId("527bc%aac2595£18349e4154"),
"title" : "Oliver Twist"

The first field, ts, stores the entry’s BSON timestamp. The timestamp includes two
numbers; the first representing the seconds since epoch and the second representing
acountervalue—1 inthis case. Toquerywith atimestamp, youneed to explicitly con-
struct a timestamp object. All the drivers have their own BSON timestamp construc-
tors, and so does JavaScript. Here’s how to use it:

db.oplog.rs.findOne ({ts: Timestamp (1383844267, 1)})

Returning to the oplog entry, the op field specifies the opcode. This tells the second-
arynode whichoperationtheoplogentryrepresents. Hereyouseean i, indicatingan
insert. After op comes ns to signify the relevant namespace (database and collection)
and then the lowercase letter o, which for insert operations contains a copy of the
inserted document.

myapp: PRIMARY> use bookstore

myapp: PRIMARY> db.books.insert ({title: "A Tale of Two Cities"})
myapp : PRIMARY> db.books.insert ({title: "Great Expectations"})

Nowwith four booksin the collection, let’sissue amulti-update to setthe author’sname:
myapp: PRIMARY> db.books.update ({}, {$set: {author: "Dickens {multi:true})

How does this appear in the oplog?

myapp : PRIMARY> use local
myapp : PRIMARY> db.oplog.rs.find({op: "u"})
{

"ts" : Timestamp (1384128758, 1),

"h"™ : NumberLong("5431582342821118204"),
"v" o 2,

"op" : "u",

"ns" : "bookstore.books",

"02" . {

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

SQ KARPAGAM ACADEMY OF HIGHER EDUCATION
==

CLASS : 11 M.Sc CS BATCH :2017- 2019
= .7~ COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM
ACMEEﬁLﬂEﬁi:HCMDN " id"™ : ObjectId("527bc%aac2595£18349e4154")
(Established Under Section 3 of UGC Act, 1956] }, -
"o" : {
"$set" : {
"author" : "Dickens"
}
}
}
{
"ts" : Timestamp (1384128758, 2),
"h" : NumberLong ("3897436474689294423"),
"w" o 2,
"op" : "u",
"ns" : "bookstore.books",
"o2" |

" id" : ObjectId("528020a9f3f61863aba207e7")
}I

"om s

"Sset" : {
"author" : "Dickens"
}
}
}
{
"ts" : Timestamp (1384128758, 3),
"h" : NumberLong("2241781384783113"),
"v" o 2,
"op" : "u",
"ns" : "bookstore.books",

"o2" |

" id" : ObjectId("528020a9f3f61863aba207e8")
by
"o" : {

"Sset" : {

"author" : "Dickens"

}

}
}

Asyoucansee,eachupdated documentgetsitsownoplogentry. Thisnormalizationis
done as part ofthe more general strategy ofensuring that secondaries always end up
withthe samedataasthe primary.

To guarantee this, every applied operation must be idempotent—it can’t matter how
many times a given oplog entry is applied. The result must always be the same. But
the secondaries must apply the oplog entries in the same order as they were
generated for the oplog. Other multidocument operations, like deletes, will
exhibit the same behavior. You can try different operations and see how they
ultimately appear in the oplog.

To get some basic information about the oplog’s current status, you can run the
shell’s db.getReplicationInfo () method:

myapp : PRIMARY> db.getReplicationInfo ()

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

SQ KARPAGAM ACADEMY OF HIGHER EDUCATION
==

CLASS : 11 M.Sc CS BATCH :2017- 2019
— =
. COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM
ACADEMY OF HIGHER EDUCATION
(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956] "logSiZeMB" . 1 92
"usedMB" : 0.01,
"timeDiff" : 286197,
"timeDiffHours" : 79.5,
"tFirst" : "Thu Nov 07 2013 08:42:41 GMT-0800 (PST)",
"tLast"™ : "Sun Nov 10 2013 16:12:38 GMT-0800 (PST)",
"now" : "Sun Nov 10 2013 16:19:49 GMT-0800 (PST)"

}

Here you see the timestamps of the first and last entries in this oplog. You can find
these oplog entries manually by using the $natural sort modifier. For example, the
following query fetches the latest entry:

db.oplog.rs.find() .sort ({$natural: -1}) .limit (1)

wantto avoid having to completely resync any node, and increasingthe oplog size will
buy you time in the event of network failures and the like.

Ifyou want to change the default oplog size, you must do so the first time you start
each member node usingmongod’s --oplogSize option. The value is in megabytes.
Thus you can start mongod with a 1 GB oplog like this:”

mongod --replSet myapp --oplogSize 1024

CONFIGURATION DETAILS
Here we’ll present the mongod startup options pertaining to replica sets, and we’ll
describe the structure of the replica set configuration document.
Replication options
Earlier,youlearned how to initiate areplica set using the shell’srs.initiate () and
rs.add () methods. These methods are convenient, but they hide certain replica set
configuration options. Let’s look at how to use a configuration document to initiate
and update a replica set’s configuration.

A configuration document specifies the configuration of the replica set. Tocreate
one, first add a value for id that matches the name you passed to the --replSet

parameter:
> config = {_id: "myapp", members: []}
{ "_id" : "myapp", "members" : [] }

The individual memberscan be defined as part of the configuration document as follows:

config.members.push ({_ id: 0, host: 'iron.local:40000'})
config.members.push ({_id: 1, host: 'iron.local:40001"'})
config.members.push ({_id: 2, host: 'iron.local:40002', arbiterOnly: true})

Asnoted earlier, i ronisthe name ofourtest machine; substitute yourown hostname
as necessary. Your configuration document should now look like this:

> config

{

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

SQ KARPAGAM ACADEMY OF HIGHER EDUCATION
==

CLASS : 11 M.Sc CS BATCH :2017- 2019
- .~ — COURSE NAME : MONGODB COURSE CODE:18CSP203
AR AGAM
;Esub‘_hIDEeml’ﬂ_tnhle:\ivers\t!J_ _ "7id" H "myapp",
{ shed Under Section 3 of UGC Act, 1956] "members " . [
{
"oid" : 0,
"host" : "iron.local:40000"
} 4
{
"oid" o:o1,
"host" : "iron.local:40001"
} 4
{
"oid" o 2,
"host" : "iron.local:40002",
"arbiterOnly" : true

You can then pass the document as the first argument to rs.initiate () toinitiate the
replica set.

configuration parameters, plus the optional arbiterOnly setting. Please keep in
mind that although areplica set can have up to 50 members, it can only haveup to 7
voting members.

The documentrequiresan idthatmatchesthereplicaset’sname. Theinitiation
command will verify that each member node has been started with the --replset
optionwiththatname. Eachreplicasetmemberrequiresan idconsistingofincreas-
ingintegers starting from 0. Also, members require a host field with a hostname and
optional port.

Hereyouinitiatethereplicasetusingthers.initiate () method. Thisisasimple
wrapper for the replSetInitiate command. Thus you could have started the replica
set like this:

db.runCommand ({replSetInitiate: config});

configis avariable holding your configuration document. Once initiated, each set
member stores a copy of this configuration document in the 1ocal database’s
system.replset collection. If you query the collection, you'll see that the document
now has aversion number. Whenever you modify the replica set’s configuration, you
must also increment this version number. The easiest way to access the current config-
uration documentis torun rs.conf ().

To modify a replica set’s configuration, there’s a separate command, replSet-
Reconfig, which takes a new configuration document. Alternatively, you can use
rs.reconfig () which also uses replSetReconfig. The new document can specify the
addition or removal of set members along with alterations to both member-specific
and global configuration options. The process of modifying a configuration document,
incrementing the version number, and passingitaspartofthe replSetReconfigcan
be laborious, so a number of shell helpers exist to ease the way. To see alist of them

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
ﬁ//‘g

CLASS : 11 M.ScCS BATCH :2017- 2019
S e, COURSE NAME : MONGODB COURSE CODE:18CSP203
KARFAGAM
N o all, enter rs.help () at the shell.

Bearin mind that whenever areplica set reconfigurationresultsin the election of
anew primary node, all client connections will be closed. This is done to ensure that
clients willnolonger attempt to send writes to a secondary node unless they’re aware
of the reconfiguration.

Ifyou’reinterested in configuring areplica set from one of the drivers, you can see
how by examining the implementationofrs.add () . Enter rs. add (the method with-
out the parentheses) at the shell prompt to see how the method works.
Configuration document options
Until now, we've limited ourselves to the simplest replica set configuration document.
But these documents support several options for both replica set members and for the
replica set as a whole. We'll begin with the member options. You've seen id, host,
and arbiterOnly. Here are these plus the rest, in all their gritty detail:

» id(required)—A uniqueincrementing integer representing the member’s ID.
These idvaluesbeginatOandmustbeincrementedbyoneforeachmem-
ber added.

' ost (required)—A string storing the hostname of this member along with an
optional port number. If the port is provided, it should be separated from the
hostname by a colon (for example, i ron:30000). If no port number is specified,
the default port, 27017, will be used. We've seen it before, but here’s a simple
document with a replica set idand host:

{

" id" : 0,

"host" : "iron:40000"
}

' arbiterOnly—ABooleanvalue, true or false,indicating whether this mem-
ber is an arbiter. Arbiters store configuration data only. They’re lightweight
members that participate in primary election but not in the replication itself.
Here’s an example of using the arbiterOnly setting:

{
" id" : 0,
"host" : "iron:40000",
"arbiterOnly": true

}

» priority—Adecimal numberfrom 0to 1000 that helpsto determine therela-
tive eligibility that this node will be elected primary. For both replica set initia-
tion and failover, the set will attempt to elect as primary the node with the
highest priority, aslongasit’sup todate. This might be usefulifyou have arep-
lica set where some nodes are more powerful than the others;it makes senseto
prefer the biggest machine as the primary.

There are also cases where you might want anode never to be primary (say, a
disasterrecovery noderesidingin a secondary data center). Inthose cases, set

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
ﬁ//‘zj

CLASS : 1l M.Sc CS BATCH : 2017- 2019
S . COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM
ﬁto:?};e?nﬂ?f%;::;\flc: the priority to 0. Nodes with a priority of O will be marked as passive in the

resultstothe isMaster () command and will never be elected primary. Here’s
an example of setting the member’s priority:

{

" id" : 0,
"host" : "iron:40000",
"priority" : 500

}

» votes—Allreplica set members get one vote by default. The votes setting
allows you to give more than one vote to an individual member.

This option should be used with extreme care, ifat all. For one thing, it’s dif-
ficult to reason about replica set failover behavior when not all members have
the same number of votes. Moreover, the vast majority of production deploy-
ments will be perfectly well served with one vote per member. If you do choose
to alter the number of votes for a given member, be sure to think through and

simulate the various failure scenarios carefully. This member has an increased
number of votes:

{

"_id" : 0,
"host"™ : "iron:40000",
"votes" : 2

}

» hidden—ABooleanvaluethat,whentrue,willkeepthis member from showing
up in the responses generated by the isMaster command. Because the MongoDB
driversrely on isMaster for knowledge of the replica set topology, hiding a
member keeps the drivers from automatically accessingit. This setting can be
used in conjunction with buildIndexes and must be used with slaveDelay.
This member is configured to be hidden:

{

"_id" . O,
"host™ : "iron:40000",
"hidden" : true

}

' buildIndexes—ABooleanvalue,defaultingto true,thatdetermines whether
this member will build indexes. You'll want to set this value to false only on
members that will never become primary (those with a priority of 0).

This option was designed for nodes used solely as backups. If backing up
indexes is important, you shouldn’t use this option. Here’s a member config-
ured not to build indexes:

{
"_id" : 0,

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

SQ KARPAGAM ACADEMY OF HIGHER EDUCATION
==

CLASS : 11 M.Sc CS BATCH :2017- 2019
= .7~ COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM
#CADEﬂlgfnﬂiﬁlﬁ::mmN "host" : "iron:40000",
el e St 31 UG i 45561 "buildIndexes" : false

}

» slaveDelay—The number of seconds that a given secondary should lag behind
the primary. This option can be used only with nodes that will never become pri-
mary. Tospecifya slaveDelay greater than 0, be sure to also set a priority of 0.

You can use a delayed slave as insurance against certain kinds of user errors.
For example, if you have a secondary delayed by 30 minutes and an administra-
tor accidentally drops a database, you have 30 minutes to react to this event
beforeit’s propagated. This member has been configured witha slaveDelayof

one hour:

{
" id" : 0,
"host" : "iron:40000",
"slaveDelay" : 3600

» tags—Adocument containing a set ofkey-value pairs, usually used toidentify
thismember’slocationin a particular datacenter or server rack. Tags are used
for specifying granular write concern and read settings, and they’re discussed in
section 11.3.4. In the tag document, the values entered must be strings. Here’s a
member with twotags:

{

" id" : 0,

"host" : "iron:40000",

"tags" : {
"datacenter" : "NY",
"rack" : "B"

}

That sumsup the options forindividual replica set members. There are also two
globalreplica set configuration parameters scoped underasettingskey.Intherep-
lica set configuration document, they appear like this:

{
_id: "myapp",
members: [... 1,
settings: {
getLastErrorDefaults: {
w: 1
by
getLastErrorModes: {
multiDC: {
dc: 2
}
}
}
}

» getlastErrorDefaults—A document specifying the default arguments to be

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

SQ KARPAGAM ACADEMY OF HIGHER EDUCATION
==

CLASS : Il M.Sc CS BATCH : 2017- 2019
==~ =~ COURSE NAME : MONGODB COURSE CODE:18CSP203
KAREASAN
[owemed b Uiy used when the client calls getLastError with no arguments. This option should

(Established Under Section 3 of UGC Act, 1956 |

betreatedwith carebecauseit’salsopossibletosetglobaldefaultsforgetLast-
Error within the drivers, and you can imagine a situation where application
developers call getLastError not realizing that an administrator has specified a
default on theserver.

For more details on getLastError, see its documentation at http://docs
.mongodb.org/manual/reference/command/getLastError. Briefly, to specify
that all writes are replicated to at least two members with atimeout of 500 ms,
you’d specify this value in the config like this:
settings: {

getLastErrorDefaults: {

w: 2,
wtimeout: 500

' etlastErrorModes—A document defining extra modes for the getlLastError
command. This featureis dependent on replica set tagging and is described in
detail in section11.3.4.

Table 11.1 Replica set states

State State string Notes

0 STARTUP Indicates that the replica set is negotiating with other nodes by pinging all set
members and sharing config data.

1 PRIMARY This is the primary node. A replica set will always have at most one
primary node.

2 SECONDARY This is a secondary, read-only node. This node may become a primary in the
event of a failover if and only if its priority is greater than O and it’s not
marked as hidden.

3 RECOVERING | Thisnodeis unavailable for reading and writing. You usually see this state after
afailover or upon adding a new node. While recovering, a data file syncis often
in progress; you can verify this by examining the recovering node’s logs.

4 FATAL A network connection is still established, but the node isn’t responding to
pings. This usually indicates a fatal error on the machine hosting the node
marked FATAL.

5 STARTUP2 An initial data file sync is in progress.

6 UNKNOWN A network connection has yet to be made.

7 ARBITER This node is an arbiter.

8 DOWN The node was accessible and stable at some point butisn’t currently

responding to heartbeat pings.
9 ROLLBACK A rollback is in progress.

10 REMOVED The node was once a member of the replica set but has since been removed.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

http://docs.mongodb.org/manual/reference/command/getLastError
http://docs.mongodb.org/manual/reference/command/getLastError

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
ﬁ//‘g

CLASS : 1l M.ScCS BATCH : 2017- 2019
S weon. COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

8

FAILOVER AND RECOVERY
Inthe sample replica set you saw a couple examples of failover. Here we summarize
the rules of failover and provide some suggestions on handling recovery.

Areplicasetwill come online when allmembers specified inthe configuration can
communicate with one another. Each node is given one vote by default, and those
votesareusedtoformamajorityandelectaprimary. This meansthatareplicasetcan
be started with as few as two nodes (and votes). But the initial number of votes also
decides what constitutes a majority in the event of a failure.

Let’s assume that you've configured a replica set of three complete replicas (no
arbiters)and thushavetherecommended minimum for automated failover. Ifthe pri-
mary fails, and theremaining secondaries can see each other,thenanew primary can
be elected. As for deciding which one, the secondary with the most up-to-date oplog
with the higher priority will be elected primary.

Failure modes and recovery

Recoveryisthe processofrestoring the replica set toits original state following a fail-
ure. There are two overarching failure categories to be handled. The first is called
clean failure, where a given node’s data files can still be assumed to be intact. One
example ofthisis anetwork partition. Ifanodelosesits connections to the rest ofthe
set, you need only wait for connectivity to be restored, and the partitioned node will
resume as a set member. A similar situation occurs when a given node’s mongod pro-
cess is terminated for any reason but can be brought back online cleanly.® Again, once
the process is restarted, it can rejoin the set.

The second typeis called categorical failure, where anode’s datafiles either nolonger
existormustbe presumed corrupted. Unclean shutdowns ofthe mongod process with-
outjournalingenabled and hard drive crashes are both examples of this kind of failure.
The only ways to recover a categorically failed node are to completely replace the data
filesvia aresyncortorestorefromarecent backup. Let’slook at both strategiesin turn.

To completely resync, start a mongod with an empty data directory on the failed
node. As long as the host and port haven’t changed, the new mongod will rejoin the
replicasetandthenresyncalltheexistingdata.Ifeitherthe host or port haschanged,
then after bringing the mongod back online you’ll also have to reconfigure the replica
set. Asan example, suppose the node atiron:40001isrendered unrecoverable and
you bring up a new node at foobar:40000. You can reconfigure the replica set by
grabbing the configuration document, modifying the host for the second node, and

then passing that to the rs.reconfig() method:

> config = rs.conf ()

{

Hiid" . "myapp",
"version" : 1,
"members" : [

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

SQ KARPAGAM ACADEMY OF HIGHER EDUCATION
==

CLASS : 11 M.Sc CS BATCH :2017- 2019
- .~ — COURSE NAME : MONGODB COURSE CODE:18CSP203
AR AGAM
FEslzbI\sheltf:r::?;;::lr;i::e‘?t‘-?a.ﬂc. 1956] {
' "oidv :o0,
"host" : "iron:40000"
}l
{
"oid" o:o1,
"host" : "iron:40001"
}I
{
"oidn o2,
"host" : "iron:40002",
"arbiterOnly" : true
}
1
}
> config.members[1l].host = "foobar:40000"

foobar:40000
> rs.reconfig(config)

Drivers and replication

Ifyou’re building an application using MongoDB’s replication, you need to know
about several application-specific topics. The first is related to connections and
failover. Next comes the write concern, which allows you to decide to what degree a
given write should be replicated before the application continues. The next topic,
read scaling, allows an application to distribute reads across replicas. Finally, we’ll dis-
cuss tagging, away to configure more complexreplica set reads and writes.

Connections and failover

The MongoDB drivers present a relatively uniform interface for connecting to rep-
lica sets.

SINGLE-NODE CONNECTIONS
You'll always have the option of connecting to a single node in a replica set. There’s

no difference between connecting to a node designated as a replica set primary and
connecting to one of the vanilla stand-alone nodes we’ve used for the examples
throughout the book. In both cases, the driver will initiate a TCP socket connection
and then run the isMaster command. For a stand-alone node, this command returns
a document like the following:

{

"ismaster" : true,

"maxBsonObjectSize" : 16777216,
"maxMessageSizeBytes" : 48000000,

"localTime" : ISODate("2013-11-12T05:22:54.317z"),
"ok" : 1

}

What’s most important to the driver is that the isMaster field be set to true, which
indicates that the given node is a stand-alone, a master running master-slave replica-

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

SQ KARPAGAM ACADEMY OF HIGHER EDUCATION
==

CLASS : 11 M.Sc CS BATCH :2017- 2019
- .~ — COURSE NAME : MONGODB COURSE CODE:18CSP203
AR AGAM
e~ tion, or a replica set primary.'! In all of these cases, the node can be written to,

and the user of the driver can perform any CRUD operation.

But when connecting directly to a replica set secondary, you must indicate that you
knowyou’re connecting to such anode (for most drivers, atleast). In the Ruby driver,
youaccomplishthiswiththe: read parameter. Toconnect directly to the first second-
aryyou created earlier in the chapter, the Ruby code would look like this:

@con = Mongo::Client.new(['iron: 40001'], {:read => {:mode => :secondary}})

REPLICA SET CONNECTIONS
You can connect to any replica set member individually, but you'll normally want to
connect to the replica set as a whole. This allows the driver to figure out which node
is primary and, in the case of failover, reconnect to whichever node becomes the
new primary.

Mostofthe officially supported drivers provide ways of connecting to areplica set.
InRuby,youconnect by creatinganewinstanceofMongo: :Client, passinginalistof
seed nodes as well as the name of the replica set:

Mongo::Client.new(['iron:40000', 'iron:40001'], :replica_set => 'myapp')

Internally, the driver will attempt to connect to each seed node and then call the
isMaster command. Issuing this command to areplica set returns a number of
important setdetails:

> db.isMaster ()
{
"setName" : "myapp",
"ismaster" : false,
"secondary" : true,
"hosts" : [
"iron:40001",
"iron:40000"
1,

"arbiters" : [
"iron:40002"
1,
"me" : "iron:40000",
"maxBsonObjectSize" : 16777216,
"maxMessageSizeBytes" : 48000000,
"localTime" : ISODate("2013-11-12T05:14:42.009z2"),
"ok"™ : 1

Read scaling

Replicated databases are great for read scaling. If a single server can’t handle the
application’s read load, you have the option to route queries to more than one rep-
lica. Most ofthe drivers have built-in support for sending queries to secondary nodes
through aread preference configuration. With the Ruby driver, thisis provided as an

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

SQ KARPAGAM ACADEMY OF HIGHER EDUCATION
==

CLASS : 11 M.ScCS BATCH :2017- 2019
= .~ — COURSE NAME : MONGODB COURSE CODE:18CSP203
KARFAGAM
Tt option on the Mongo: :Client constructor:

Mongo::Client.new(
['"iron:40000', 'iron:40001'],
{:read => {:mode => :secondary})

Note in the connection code that we configure which nodes the new client will read
from. When the :read argument is set to {{mode => :secondary}, the connection
object will choose a random, nearby secondary to read from. This configuration is
called the read preference, and it can be used to direct your driver to read from cer-
tainnodes. Most MongoDBdrivers have these available read preferences:

v primary—Thisisthedefaultsettingandindicatesthat reads will always be from
the replica set primary and thus will always be consistent. Ifthe replica set is
experiencing problems and there’s no secondary available, an error will be
thrown.

v primaryPreferred—Drivers with this setting will read from the primary unless for
somereasonit’sunavailableorthere’s no primary,inwhichcasereadswillgoto
asecondary.Thismeansthatreadsaren’tguaranteed tobe consistent.

v secondary—This setting indicates the driver should always read from the second-
ary.Thisisusefulincases whereyouwanttobesurethat yourreadswillhaveno
impactonthewrites thatoccuronthe primary. Ifno secondaries are available,
the read will throw an exception.

v secondaryPreferred—This is a more relaxed version of the previous setting. Reads
willgoto secondaries, unless no secondaries are available,inwhich casereads
will go to the primary.

» nearest—Adriver configured withthis settingwillattempttoread fromthenear-
est member of the replica set, as measured by network latency. This could be
eitheraprimary orasecondary. Thus, reads will go to the memberthatthe
driver believes it can communicate with the quickest.

For the Ruby driver, this configuration might look like this:

Mongo::Client.new (
['iron:40000', 'iron:40001'],
:read => {:mode => :secondary}, :local threshold => '0.0015")

The :1ocal thresholdoption specifies the maximum latency in seconds as a float.

Tagging

If you’re using either write concerns or read scaling, you may find yourself wanting
more granular control over exactly which secondaries receive writes or reads. For
example, supposeyou've deployed a five-node replica set across two data geographi-
cally separate centers, NY and FR. The primary datacenter, NY, contains three nodes,
and the secondary datacenter, FR, contains the remaining two. Let’s say that you want
touseawrite concernto blockuntil acertain write has beenreplicated to atleastone

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

211 M.Sc CS

BATCH : 2017- 2019

S@ KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS
==

S T ——

Enakie. | Eriighten | Enrich

KARFASAN

(Deemed ta be University)
(Established Under Section 3 of UGC Act, 1956 |

COURSE NAME : MONGODB

Here’s an example:

"A")

nano

"R" O}

"AY)

ngn

{
"_id" : "myapp",
"version" 1,
"members" [
{
"oidn 0,
"host" "nyl.myapp.com:30000",
"tags": { "dc": "NY", "rackNY":
}I
{
"oid" 1,
"host" "ny2.myapp.com:30000",
"tags": { "dc": "NY", "rackNY":
}I
{
"oid" o 2,
"host" "ny3.myapp.com:30000",
"tags": { "dc": "NY", "rackNY":
}I
{
"oidn 3,
"host" "frl.myapp.com:30000",
"tags": { "dc": "FR", "rackFR":
s
{
"oidv 4,
"host" "fr2.myapp.com:30000",
"tags": { "dc": "FR", "rackFR":
}
1,
settings: {

getlLastErrorModes: {

multiDC: {
multiRack: {

dc: 2 } },
rackNY: 2 } },

Prepared by Dr.S.Veni. Dept. of CS, CA & IT

}

COURSE CODE:18CSP203

Page 3 of 36

& KARPAGAM ACADEMY OF HIGHER EDUCATION

Ny CLASS : 11 M.ScCS BATCH : 2017- 2019

e s hﬁ:OURSE NAME : MONGODB COURSE CODE:18CSP203

KARPAGA
Shards store appW ?

ACADEMY OF HIGHER EDUCATION
mongos reads/writes application data from/to shards

(Deermed to be University)
(Established Under Section 3 of UGC Act, 1956 |

mongos routes queries and collects result

Application sends queries to single mongos

mongos router
(in-memory copy of

cluster metadata)

Application

Figure 12.1 Components In a MongoDB shard cluster

A sharded cluster consists of shards, mongos routers, and config servers, as shown in
figure 12.1.

Let’s examine each component in figure 12.1:

v Shards(upperleft) store the application data. In a sharded cluster, only themongos
routers or system administrators should be connecting directly to the shards.
Like an unsharded deployment, each shard can be a single node for develop-
ment and testing, but should be a replica set in production.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

KARPAGAM ACADEMY OF HIGHER EDUCATION

\&/ CLASS : 1l M.Sc CS BATCH : 2017- 2019
S e hﬁ:OURSE NAME : MONGODB COURSE CODE:18CSP203

KARPAGA

ACADEMY OF HIGHER EDUCATION

IDwmrdmb Universi ty)

(Established Under 3of UGC Act, 1956]

* mongos routers (center) cache the cluster metadata and use it to route opera-
tions to the correct shard or shards.

v Config servers (upper right) persistently store metadata about the cluster, includ-
ing which shard has what subset of the data.

Now,let’sdiscussinmoredetail theroleeachofthese components playsinthe cluster

as awhole.

replicaset, butifyou try torun operations onthat shard directly, you’ll see only a por-
tion of the cluster’s total data.

Mongos router: router of operations

Because each shard contains only part of the cluster’s data, you need something to
route operations to the appropriate shards. That’s where mongos comesin. The mongos
process, shown in the center of figure 12.1, is a router that directs all reads, writes, and
commands to the appropriate shard. In this way, mongos provides clients with a single
point of contact with the cluster, which is what enables a sharded cluster to present
the same interface as an unsharded one.

mongos processes are lightweight and nonpersistent.! Because of this, they’re often
deployed on the same machines as the application servers, ensuring that only one net-
work hopisrequired for requests to any given shard. In otherwords, the application con-
nectslocallyto amongos,and themongos manages connectionstotheindividualshards.

fapredetermined field or set of fields called a shard key. It’s the user’s responsibility
to choose the shard key, and we’ll cover how to do this in section 12.8.
For example, consider the following document from a spreadsheet management

application:
{

_id: ObjectId("4d6e9b89b600c2c196442¢21™M)

filename: "spreadsheet-1",

updated at: ISODate("2011-03-02T19:22:54.8452"),

username: "banks",

data: "raw document data"

}

Ifall the documentsin our collection have this format, we can, for example, choose a
shard key ofthe id field and the username field. MongoDB will then use that infor-
mationineach documenttodetermine what chunkthe document belongs to.

CLASS : 11 M.ScCS BATCH : 2017- 2019

e i OURSE NAME : MONGODB
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION

IDwmrdmb Universi ity)
(Established Under Section 3 of UGC Act, 1956 |

& KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

COURSE CODE:18CSP203

How does MongoDB make this determination? Atits core, MongoDB’s shardingis
range-based; this means that each “chunk” represents a range of shard keys. When
MongoDBlooks at adocument to determine what chunkit belongs to, it first extracts
thevaluesfortheshardkeyandthenfindsthechunkwhoseshardkeyrange contains
the given shard key values.

To see a concrete example of what this looks like, imagine that we chose a shard
key of username for this spreadsheets collection, and we have two shards, “A” and
“B.” Our chunk distribution may look something like table 12.1.

Table 12.1 Chunks and shards

Start End Shard
<0 Abbot
Abbot Dayton
Dayton Harris
Harris Norris
Norris)

Lookingatthetable, it becomes abit clearer what purpose chunks serveinasharded
cluster. If we gaveyouadocument with ausername field of "Babbage", you’d immedi-
atelyknowthatit should beonshard A, just bylooking atthe table above. In fact, ifwe
gaveyouanydocumentthathad ausername field, whichin this caseis our shard key,
you’d be able touse table 12.1 todetermine which chunk the document belonged to,
and from there determine which shard it should be sent to.

Building a sample shard cluster

The best way to get ahandle on shardingis to see howit worksin action. Fortunately,
it’s possible to set up a sharded cluster on a single machine, and that’s exactly what
we’ll do now.?

The full process of setting up a sharded cluster involves three phases:

1 Starting the mongod and mongos servers—The first step is to spawn all the indi-
vidual mongod and mongos processes that make up the cluster. In the cluster
we’re setting up in this chapter, we’ll spawn nine mongod servers and one
mongos Server.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

& KARPAGAM ACADEMY OF HIGHER EDUCATION
R,_J

CLASS : 1l M.ScCS BATCH :2017- 2019
ot g OURSE NAME : MONGODB COURSE CODE:18CSP203
(st dn Seo f UO e, 055] 2 Configuring the cluster—The next step is to update the

configuration so that the replica sets areinitialized and the shards are added
to the cluster. After this, the nodes will all be able to communicate with
each other.

3 Sharding collections—The last stepis to shard a collection so that it can be spread
across multiple shards. The reason this exists as a separate step is because
MongoDB can have both sharded and unsharded collections in the same clus-
ter, so you must explicitly tell it which ones you want to shard. In this chapter,
we’ll shard our only collection, whichis the spreadsheets collection of the
cloud-docs database.

We'll cover each of these steps in detail in the next three sections. We'll then simu-
late the behavior of the sample cloud-based spreadsheet application described in
the previous sections. Throughout the chapter we’ll examine the global shard con-
figuration, and in the last section, we’ll use this to see how datais partitioned based
on the shard key.

Starting the mongod and mongos servers

The first step in setting up a sharded cluster is to start all the required mongod and
mongos processes. The shard cluster you'll build will consist oftwo shards and three
config servers. You'll also start a single mongos to communicate with the cluster. Fig-
ure 12.3 shows amap ofallthe processes that you’lllaunch, with their port numbers
in parentheses.

You'llruna bunch of commands to bring the cluster online, so ifyou find yourself
unable to see the forest because of the trees, refer back to this figure.

mongod mongod
(port 30000) (port 30100)

mongod

(port 30000)

mongod

(port 30101) arbiter

(port 30102)

arbiter
(port 30002)

Shard-a Shard-b

ST —

[Deemed to be University)
(Estabilished Under Section 3 of UGC Act, 185

(port 27020)

Config
server
(port 27019)

CS
- MONGODB

Config
server
(port 27021)

Config servers

ACADEMY OF H

mongos router

(port 40000)

Ruby application (load.rb)

Application and router

Flgure 12.3 A map of processes comprising the sample shard cluster

STARTING THE SHARDING COMPONENTS
Let’s start by creating the data directories for the two replica sets that will serve as
our shards:

O U U

mkdir /data/rs-a-1
mkdir /data/rs-a-2
mkdir /data/rs-a-3
mkdir /data/rs-b-1
mkdir /data/rs-b-2
mkdir /data/rs-b-3

Next, start each mongod. Because you’re running so many processes, you'll use the --fork
option to run them in the background.* The commands for starting the first replica
set are asfollows:

$ mongod
—-—-port
$ mongod
—-—port

--shardsvr --replSet shard-a

30000 --logpath /data/rs-a-1.

--shardsvr --replSet shard-a

30001 --logpath /data/rs-a-2.

--dbpath /data/rs-a-1 \
log —-fork
--dbpath /data/rs-a-2 \
log --fork

$ mongod --shardsvr --replSet shard-a --dbpath /data/rs-a-3
--port 30002 --logpath /data/rs-a-3.log --fork

Here are the commands for the second replica set:

$ mongod
—-—-port
$ mongod
—--port
$ mongod
—--port

—--shardsvr --replSet shard-b

30100 --logpath /data/rs-b-1.

—--shardsvr --replSet shard-b

30101 --logpath /data/rs-b-2.

--shardsvr --replSet shard-b

30102 --logpath /data/rs-b-3.

--dbpath /data/rs-b-1
log --fork
--dbpath /data/rs-b-2
log —--fork
--dbpath /data/rs-b-3
log —--fork

s usual, you now need to initiate these replica sets. Connect to each one individually,
runrs.initiate (),andthenaddtheremainingnodes. The first should looklikethis:

$ mongo localhost:30000
> rs.initiate()

Prepared by Dr.S.Veni. Dept. of CS, CA & IT

Page 3 of 36

CLASS : 11 M.ScCS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION
et You'll have to wait a minute or so before the initial node becomes primary. During

the process, the prompt will change from shard-a:SECONDARY> to shard-
a:PRIMARY. Using the rs.status() command will also reveal more information
about what’s going on behind the scenes. Once it does, you can add the
remainingnodes: J

localhost as the machine name might cause problems in the long run because it
only works if you’re going to run all processes on a single machine. If you know your
hostname, use it to get out of trouble. On a Mac, your hostname should look some-
thinglikeMacBook-Pro.local.Ifyoudon’tknowyour hostname, make sure thatyou
use localhosteverywhere!

Configuringareplicasetthatyoulluseasashardis exactlythe same asconfigur-
ingareplicasetthatyoulluseonits own, sorefer backtochapter 10ifany ofthis rep-
lica set setup looks unfamiliar to you.

Initiating the second replica set is similar. Again, wait a minute after running
rs.initiate():

& KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

> rs.add("localhost:30001")
> rs.addArb ("localhost:30002")

mongo localhost:30100
rs.initiate ()

rs.add ("localhost:30100")
rs.addArb ("localhost:30101")

vV V. V »n

Finally,verify thatbothreplicasetsareonline byrunningthers.status () command
from the shell on each one. If everything checks out, you're ready to start the config

servers.® Now you create each config server’s data directory and then start amongod for
each one using the configsvr option:

$ mkdir /data/config-1

$ mongod --configsvr --dbpath /data/config-1 --port 27019 \
--logpath /data/config-1l.log --fork --nojournal

$ mkdir /data/config-2

$ mongod --configsvr --dbpath /data/config-2 --port 27020 \
--logpath /data/config-2.log --fork --nojournal

$ mkdir /data/config-3

$ mongod --configsvr --dbpath /data/config-3 --port 27021 \
--logpath /data/config-3.log --fork --nojournal

Ensure that each config server is up and running by connecting with the shell, or by
tailingthelogfile(tail-f<log file path>)andverifyingthateachprocessislisten-
ing on the configured port. Looking at the logs for any one config server, you should
see something like this:

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
\) CLASS : 11 M.Sc CS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION

(Deermed to be University)
(Established Under Section 3 of UGC Act, 1956 |

Wed Mar 2 15:43:28 [initandlisten] waiting for connections on port 27020
Wed Mar 2 15:43:28 [websvr] web admin interface listening on port 28020

If each config server is running, you can go ahead and start the mongos. The mongos
must be started with the configdb option, which takes a comma-separated list of con-
fig database addresses:®

$ mongos --configdb localhost:27019,localhost:27020,localhost:27021 \
--logpath /data/mongos.log --fork --port 40000

Configuring the cluster

Now that you've started all the mongod and mongos processes that we’ll need for this
cluster (see figure 12.2), it’s time to configure the cluster. Start by connecting to the
mongos. Tosimplify thetask, youlluse theshardinghelper methods. These are meth-
ods run on the global sh object. To see alist of all available helper methods, run
sh.help().

You'll enter a series of configuration commands beginning with the addShard com-
mand. The helper for this command is sh.addShard () . This method takes a string
consisting of the name of a replica set, followed by the addresses of two or more seed

nodes forconnecting. Here you specify the tworeplica sets you created along with the
addresses of the two non-arbiter members of each set:

$ mongo localhost:40000
> sh.addShard ("shard-a/localhost:30000, localhost:30001")

{ "shardAdded" : "shard-a", "ok" : 1 }
> sh.addShard ("shard-b/localhost:30100, localhost:30101")
{ "shardAdded" : "shard-b", "ok" : 1 }

If successful, the command response will include the name of the shard just added.
You can examine the config database’s shards collection to see the effect of your
work. Instead of using the use command, you'll use the getSiblingDB () method to
switch databases:

> db.getSiblingDB ("config") .shards.find ()
{ " _id" : "shard-a", "host" : "shard-a/localhost:30000,localhost:30001" }
{ " _id" : "shard-b", "host" : "shard-b/localhost:30100,localhost:30101" }

As a shortcut, the 1istshards command returns the same information:

> use admin
> db.runCommand ({listshards: 1})

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

L)

inakie | Erfighten | Enrich

KARPAGA

ACADEMY OF HIGHER EDUCATION

(Deemed to be
(Established Under Section

University)
3 of UGC Act, 1956 |

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : 11 M.ScCS BATCH : 2017- 2019
hﬁ:OURSE NAME : MONGODB COURSE CODE:18CSP203

While we’re on the topic of reporting on sharding configuration, the shell’s sh. sta-
tus () methodnicely summarizesthe cluster. Goahead and tryrunningitnow.

Sharding collections

The next configuration stepis toenable shardingon adatabase. Thisdoesn’t do any-
thingonits own, butit’s a prerequisite for sharding any collection within a database.
Your application’s database will be called cloud-docs, so you enable sharding like this:

> sh.enableSharding ("cloud-docs")

As before, you can check the config data to see the change you just made. The config
database holds a collection called databases that contains alist of databases. Each
document specifies the database’s primary shard location and whether it’s partitioned
(whether sharding isenabled):

> db.getSiblingDB ("config") .databases.find()
{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "cloud-docs", "partitioned" : true, "primary" : "shard-a" }

Now all you need to do is shard the spreadsheets collection. When you shard a col-
lection, you define a shard key. Here you'll use the compound shard key {username:
1, id: 1} becauseit’sgood for distributing data and makesit easy to view and com-
prehend chunk ranges:

> sh.shardCollection("cloud-docs.spreadsheets", {username: 1, id: 1})

Again, you can verify the configuration by checking the config database for sharded
collections:

db.getSiblingDB ("config") .collections.findOne ()

" id" : "cloud-docs.spreadsheets", '~—J
"lastmod" : ISODate("1970-01-16T00:50:07.2682"),
"dropped" : false,
"key" |

"username" : 1,

"oid" o1

}I

"unique" : false

}

Don’t worry too much about understanding all the fields in this document. This is
internal metadata that MongoDB uses to track collections, and it isn’t meant to be
accessed directly byusers.

CLASS : 11 M.ScCS BATCH : 2017- 2019

e e 7 OURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAI\%

ACADEMY OF HIGHER EDUCATION

(Deermed to be University)
(Established Under Section 3 of UGC Act, 1956 |

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N—=—7

SHARDING AN EMPTY COLLECTION

This sharded collection definition may remind you of something: it looks a bit like an
index definition, especially withits unique key. Whenyou shard an empty collection,
MongoDB creates an index corresponding to the shard key on each shard.” Verify
this for yourself by connecting directly to a shard and running the getIndexes ()
method.

Here you connect to your first shard, and the output contains the shard key index,
as expected:

$ mongo localhost:30000

> use cloud-docs

> db.spreadsheets.getIndexes ()
[

"name"

"

. Il_id_ll’
"cloud-docs.spreadsheets", "key" : {
"oid" o1

ns" :

SEEING DATA ON MULTIPLE SHARDS

The picture has definitely changed. As you can see in figure 12.4, you now have 10

chunks. Naturally, each chunk represents a contiguous range of data.
Youcanseeinfigure 12.4thatshard-ahasachunkthatrangesfromoneofAbdul’s

documents to one of Buettner’s documents, just as you saw in our output. This means

that allthe documents with a shard key thatlies between these two values will either

beinserted into,orfoundon, shard-a.8Youcanalsoseeinthefigure thatshard-bhas

{"username":"Abdul",”_id”m)7> {"username":"Lee","_' "L =>

{"username":"Hawkins", ..} {"username":"Stewart", ..}

Now the split threshold willincrease. You can see how the splitting slows down, and

how chunks start to grow toward their max size, by doing a more massive insert. Try adding
another 800 MB to the cluster. Once again, we’ll use the Ruby script, remem- bering that it
inserts about 1 MB on each iteration:

$ ruby load.rb 800

This will take alot oftime to run, soyou may want to step away and grab a snack after
starting this load process. By the time it’s done, you’ll have increased the total data

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

L)

inakie | Erfighten | Enrich

KARPAGA

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS : 11 M.ScCS BATCH : 2017- 2019
hﬁ:OURSE NAME : MONGODB COURSE CODE:18CSP203

ACADEMY OF HIGHER EDUCATION

(Deemed to be
(Established Under Section 3 of

v e Size by afactor of 8. Butifyou check the chunking status, you’ll see that there are

only around twice as many chunks:

> use config
> db.chunks.count ()
21

Giventhatthere aremore chunks, the average chunkrangeswillbe smaller, buteach
chunk will include more data. For example, the first chunk in the collection spans
from Abbott to Bender but it’s already nearly 60 MBin size. Because the max chunk
size is currently 64 MB by default, you’d soon see this chunk split if you were to con-
tinue inserting data.

Another thing to note is that the distribution still looks pretty even, as it did
before:

> db.chunks.count ({"shard": "shard-a"})
11
> db.chunks.count ({"shard": "shard-b"})
10

Although the number of chunks has increased during the last 800 MB insert round,
you can probably assume that no migrations occurred; a likely scenario is that each of
the original chunks split in two, with a single extra split somewhere in the mix. You
can verify this by querying the config database’s changelog collection:

> db.changelog.count ({what: "split"})

20

> db.changelog.find ({what: "moveChunk.commit"}) .count ()
6

Thisisinline with these assumptions. A total of 20 splits have occurred, yielding 20
chunks, but only 6 migrations have taken place. For an extra-deep look at what’s going
on here,you canscanthechangelogentries. Forinstance, here’s the entry recording
the first chunkmove:

> db.changelog.findOne ({what: "moveChunk.commit"})

" id" : "localhost-2011-09-01T20:40:59-2",
"server" : "localhost",

"clientAddr" : "127.0.0.1:55749",

"time" : ISODate("2011-03-01T20:40:59.035z2"),
"what" : "moveChunk.commit",

"ns" : "cloud-docs.spreadsheets",

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
R,_J

CLASS : 11 M.ScCS BATCH :2017- 2019
e et OURSE NAME : MONGODB COURSE CODE:18CSP203
FEslsbI\shEI::r::i:::nU;i:ﬁTC‘}EJM‘.. 1056 "min" : {
. "username" : { S$minKey : 1 },
" id" : { S$minKey : 1 }
}I
"max" : |
"username" : "Abbott",

" id" : ObjectId("4d6d57f£61d41c851ee000092")

} 4
"from" : "shard-a", <
Shard-a (re%lca set)

"to" : "shard-b"

Cj)

Queries only the shard with the chunk containing documents with “Abbott” as the shard key

find ({username:"Abbott"}) find ({filename:"sheet-1"})

in an unsharded deployment, indexing is an important part of optimizing per-
formance. There are only afew key points to keepinmind aboutindexing thatare
specific to a sharded cluster:

» Each shard maintains its own indexes. When you declare an index on a sharded
collection, each shard builds a separate index for its portion of the collection.
For example, when you issue the db.spreadsheets.createIndex () command
while connected to a mongos router, each shard processes the index creation
command individually.

& KARPAGAM ACADEMY OF HIGHER EDUCATION

=) CLASS : 11 M.ScCS BATCH : 2017- 2019
Nt I\ﬁ:OURSE NAME : MONGODB COURSE CODE:18CSP203
ﬁaﬁm&oﬁésﬁ:@mu v It follows that the sharded collections on each shard
(tbished nds S 30 USLAc, 155) should have the same indexes. If this ever isnt the case, you'll see

inconsistent query performance.

» Sharded collections permit unique indexes on the id field and on the shard
key only. Unique indexes are prohibited elsewhere because enforcing them
would require inter-shard communication, which is against the fundamental
design of sharding in MongoDB.

Onceyouunderstand howqueriesarerouted and howindexing works, youshould be
inagood positiontowrite smart queries andindexes for your sharded cluster. Most of
the advice on indexing and query optimization from chapter 8 will apply.

Inthe next section, we’ll cover the powerful explain () tool, which you can use to
see exactly what path is taken by a query against your cluster.

The explain() tool in a sharded cluster

Theexplain () toolisyour primary way to troubleshoot and optimize queries. It can
showyou exactly howyour query would be executed, including whether it can be tar-
geted and whetherit canuse anindex. The followinglisting shows an example of
what this output might look like.

Listing 12.1 Index and query to return latest documents updated by a user

mongos> db.spreadsheets.createIndex ({username:1, updated at:-1})
{
"raw" : {
"shard-a/localhost:30000,localhost:30001" : {

"createdCollectionAutomatically" : false,
"numIndexesBefore" : 3,
"numIndexesAfter" : 4,
"ok" : 1
by
"shard-b/localhost:30100,localhost:30101" : {
"createdCollectionAutomatically" : false,
"numIndexesBefore" : 3,
"numIndexesAfter" : 4,
"ok™ : 1
}
}7
"ok" 1
}
mongos> db.spreadsheets.find({username: "Wallace"}).sort ({updated at:-
1}) .explain()
{
"clusteredType" : "ParallelSort",
"shards" : {

"shard-b/localhost:30100,localhost:30101"™ : [
{

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

"cursor" : "BtreeCursor username_1 updated_at -1",
"n" : 100,

"nscannedObjects" : 100,

"nscanned" : 100,

"nscannedObjectsAllPlans" : 200,

"nscannedAllPlans" : 200, "scanAndOrder" false,

false, "nYields" : 1,

"nChunkSkips" : O,

"millis"™ : 3, "indexBounds" : {

"username" : [[

"Wallace",

"Wallace"
]
]I
"updated at" : [
[
{
"SmaxElement" : 1
}I
{
"SminElement" : 1
}
]
]
by
"server" : "localhost:30100",
"filterSet" : false
}
]
by
"cursor" : "BtreeCursor username 1 updated at -1",
"n" : 100,
"nChunkSkips" : O,
"nYields" : 1,
"nscanned" : 100,
"nscannedAllPlans" : 200,
"nscannedObjects" : 100,
"nscannedObjectsAllPlans" : 200,
"millisShardTotal" : 3,
"millisShardAvg" : 3,
"numQueries" : 1,
"numShards" : 1, "indexBounds" : {

"isMultiKey"

"indexOnly"

false,

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N——

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM
b o S 5 e 15561
' UNIT-V
SYLLABUS

Deployment and administration: Deployment — Monitoring and diagnostics —
Maintenance — Performance troubleshooting

Cluster topology
In total, there are three different types of clusters in MongoDB:

» Single node—Asyou can see at the top of figure 13.1, MongoDB can berunas
a single server to support testing and staging environments. But for production
deployments, asingle server isn’trecommended, evenif journaling isenabled.
Having only one machine complicates backup and recovery, and when there’s a
server failure, there’snothing tofail overto. That said, ifyou don’t needreli-
abilityand have asmallenoughdataset, thisisalways anoption.

» Replica set—As shown in the middle of figure 13.1, the minimum
recommended deployment topology for areplicaset is three nodes, at least
two of which should be data-storing nodes rather than arbiters. A replica set is
necessary for automatic failover, easier backups, and not having a single
point of failure. Refer to chapter 10 for more details on replica sets.

» Sharded cluster—As you can see at the bottom of figure 13.1, the
minimum recommended deployment for a sharded cluster has two shards
because deploying a sharded cluster with only one shard would add
additional over- head without any of the benefits of sharding. Each shard
should also be a replica set and there should be three config servers to ensure
that there’s no single point of failure. Note that there are also two mongos
processes. Loss of all mongosprocesses doesn’t lead to any data loss, but it
does lead to down- time, so we have two here as part of the minimum
production topology to ensurehighavailability.

» Asharded cluster isnecessary whenyouwanttoscale up the capacity of your
cluster by pooling together the capacity of a number of less powerful
commodityservers.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
g/fzj

CLASS : Il M.ScCS BATCH : 2017- 2019
=-~=' COURSE NAME : MONGODB COURSE CODE:18CSP203

KARFAGAM

\:Eil3bl\il‘\!ldn:r::?;;::lr;ir:e‘fc"?n.’\('.. 1956] C)

N T

Replica set

In&reased performance

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

__

Deployment environment

Here we’ll present considerations for choosing good deployment environments for
MongoDB. We’ll discuss specific hardware requirements, such as CPU, RAM, and
disks, and provide recommendations for optimizing the operating system environment.

g ongoDB internals or

MongoDB server O configuration Hardware
I ’\V\I‘I l’\’\lfl‘l\nl’\lff\
CPU (64 bit, little endian) MongoDB read/write locks
I configuration Operating
RAM (>working set) Accurate system time (NTP)
MongoDB data files (journal on separate disk, directoryperdb)

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N——

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

MongoDB isn’t particularly CPU-intensive; database operations are rarely CPU-
bound, sothisisn’tthe first place to look when diagnosing a performance issue. Your
first pri- ority when optimizing for MongoDB is to ensure operations aren’t 1/O-
bound (we’1l discuss I/O-bound issues more inthe next two sectionson RAM and
disks).

But once your indexes and working set fit entirely in RAM, you may see some
CPU- boundedness. If you have a single MongoDB instance serving tens (or
hundreds) of thousands of queries per second, you can realize performance increases
by providing more CPU cores.

If you do happen to see CPU saturation, check your logs for slow query warnings.
There may be some types of queries that are inherently more CPU-intensive, or you
may have an index issue that the logs will help you diagnose. But if that’s not the case
and you’re still seeing CPU saturation, it’s likely due to lock contention, which
we’ll briefly touch onhere.

RAM

As with any database, MongoDB performs best with sufficient RAM. Be sure to
select hardware withenoughRAM to containyour frequently used indexes, plusyour
work- ing dataset. Thenasyour datagrows, keepaclose eye on the ratio of RAM-to—
working setsize. Ifyouallowworking setsize to grow beyond RAM, you may start to
see signifi- cant performance degradation. Paging from disk in and of itself isn’t a
problem—it’s a necessary step in loading data into memory.

DISKS

When choosing disks, you need to consider cost, IOPS (input/output operations per
second), seek time, and storage capacity. The differences between runningonasingle
consumer-grade harddrive, running inthe cloud inavirtual disk (say, EBS), and run-
ning against a high-performance SAN can’t be overemphasized.

perform acceptably against a single network-attached EBS volume, but demanding
applications will require something more.
Disk performance is important for a few reasons:

» High write workloads—As you’re writing to MongoDB, the server must
flush the databacktodisk.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N——

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

» With awrite-intensive app and a slow disk, the flushing may be slow enough
to negatively affect overall system performance.

» Afast disk allows a quicker server warm-up—Any time you need to restart a
server, you also have to load your datasetinto RAM. This happens lazily; each
succes- sive read orwriteto MongoDB will load a new virtual memory page
into RAM until the physical memory is full. A fast disk will make this process
muchfaster, whichwill increase MongoDB’s performance following acold
restart.

» A fast disk alters the required ratio of working set size to RAM for your
application— Using, say, a solid-state drive, you may be able to run with
much lessRAM (or much greater capacity) than you would otherwise.

Regardless of the type of disk used, serious deployments will generally use, not a single
disk, but a redundant array of disks (RAID) instead. Users typically manage a
RAID cluster using Linux’s logical volume manager, LVM, with a RAID level of
10. RAID 10 provides redundancy while maintaining acceptable performance, and

it’s commonly used in MongoDB deployments.4 Note that this is more expensive
than a single disk, which illustrates the tradeoff between cost and performance.
Even more advanced deployments will use a high-performance self-managed SAN,
where the disksareall virtual and the idea of RAID may not even apply.

LOCKS
MongoDB’s locking model is a topic unto itself. We won’t discuss all the nuances

of concurrency and performance in MongoDB here, but we’ll cover the basic
concur- rency models MongoDB supports. In practice, ensuring that you don’t have
lock con- tention will require careful monitoring or benchmarking because every
workload is different and may have completely different points of contention.

Inthe early days, MongoDB took aglobal lock on the entire server. This was soon
updated to a global lock on each database and support was added to release the lock
before disk operations.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N——

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

FILESYSTEMS
You’ll get the best performance from MongoDB if you run it on the right

filesystem. Two in particular, ext4 and xfs, feature fast, contiguous disk allocation.
Using these filesystemswill speed up MongoDB’s frequent preal locations.®

Onceyou mountyour fast filesystem, you can achieve another performance gain by
disabling updates to files’ last access time: atime. Normally, the operating system will
update a file’s atimeevery time the file is read or written. In a database environment,
thisamountstoalotofunnecessarywork. Disablingatimeon Linuxisrelativelyeasy:

1 First, make a backup of the filesystem config file:

sudo cp /etc/fstab /etc/fstab.bak

2 Open the original file in your favorite editor:

sudo vim /etc/fstab

3 For each mounted volume you’ll find inside /etc/fstab, you’ll see a list of set-
tingsalignedby column. Undertheoptionscolumn,addthenoatimedirective:

file-system mount type options dump pass
UUID=8309beda-bf62-43 /ssd extd
noatime 0 2

4 Save your work. The new settings should take effect immediately.7

Youcanseethelistofall mountedfilesystemswiththe help of the findmntcommand,
which exists on Linux machines:

$ findmnt -s

TARGET SOURCE FSTYPE OPTIONS

/proc proc proc defaults

/ /dev/xvda ext3 noatime,errors=remount-
ro none /dev/xvdb swap swW

The —soption makes findmntget its data from the /etc/fstab file. Running findmnt
without any command-line parameters shows more details yet more busy output.

FILE DESCRIPTORS
Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N——

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

Some Linux systems cap the number of allowable open file descriptors at 1024. This
is occasionallytoolowfor MongoDB and may resultinwarning messagesoreven
errors

when opening connections (whichyou’llsee clearly inthe logs). Naturally, MongoDB
requiresa file descriptor for each open file and network connection.

Assumingyoustoreyourdatafilesinafolderwiththeword“data ” init,youcansee
thenumber ofdatafiledescriptorsusing Isofanda few well-placed pipes:

Isof | grep mongo | grep data | wc -I
Counting the number of network connection descriptors is just as easy:
Isof | grep mongo | grep TCP | wc -I

When it comes to file descriptors, the best strategy is to start with a high limit so that
you never runoutin production. You can check the current limit temporarily with the
ulimitcommand:

ulimit -Hn

To raise the limit permanently, open your limits.conf file with your editor of choice:
sudo vim /etc/security/limits.conf

Thensetthe softandhard limits. These are specified onaper-user basis. Thisexam- ple

assumes that the mongodbuser will runthe mongodprocess:

mongodb soft nofile
2048 mongodb hard
nofile 10240

The new settings will take effect when that user logs in again.8

CLOCKS
It turns out that replication is susceptible to “clock skew,” which can occur if the clocks
onthemachineshostingthevariousnodesofareplicasetgetoutofsync. Replication

depends heavily ontime comparisons, so if different machines in the same replica set
disagree on the current time, that can cause serious problems. This isn’t ideal, but for-

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

& KARPAGAM ACADEMY OF HIGHER EDUCATION
N——

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION
(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

tunately there’s a solution. You need to ensure that each of your servers uses NTP
(Network Time Protocol) or some other synchronization protocol to keep their
clocks synchronized:

» OnUnix variants, this means running the ntpddaemon.
« OnWindows, the Windows Time Services fulfills this role.

JOURNALING
MongoDB v1.8 introduced journaling, and since v2.0 MongoDB enables journaling by
default. When journaling is enabled, MongoDB will commit all writes to a journal

beforewritingtothe coredatafiles. Thisallowsthe MongoDB serverto come back online
quickly and cleanly in the event of an unclean shutdown.
Journaling obviates the need for database repairs because MongoDB can use the

journal to restore the data files to a consistent state. In MongoDB v2.0 aswellasv3.0,
journalingisenabled by default, butyou candisable itwith the --nojournalflag:

$ mongod --nojournal

When enabled, the journal fileswill be keptin adirectory called journal, located just
below the main data path.

If you runyour MongoDB server with journaling enabled, keep aof couple points
in mind:

» First, journaling adds some additional overhead to writes.

» One way to mitigate this isto allocate a separate disk for the journal, and then

either create a symlink10 between the journal directory and the auxiliary vol-
ume or simply mount this disk where the journal directory should be. The aux-
iliary volume needn’t be large; a 120 GB disk is more than sufficient, and a
solid-state drive (SSD) of this size is affordable. Mounting a separate SSD
for the journal files will ensure that journaling runs with the smallest possible
per- formance penalty.

» Second, journaling by itself doesn’t guarantee that no write will be lost. It guar-
antees only that MongoDB will always come back online in a consistent state.
Journaling works by syncing a write buffer to disk every 100 ms, so anunclean
shutdown can result in the loss of up to the last 100 ms of writes. Ifthis isn’t
acceptable for any part of your application, you can change the write concern of
operations through any client driver. You’d run this as a safe mode option (just

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

& KARPAGAM ACADEMY OF HIGHER EDUCATION
N——

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

like wand wtimeout). For example, in the Ruby driver, you might use the joption
likethisinorderto have safe modeenabledallthetimeforoneoftheservers:

client = Mongo::Client.new(['127.0.0.1:270177], :write => {j
=> true}, :database => 'garden’)

Logging
Logging is the first level of monitoring; as such, you should plan on keeping logs for
all your deployments. This usually isn’ta problem because MongoDB requires that you
specify the --logpath option when running it in the background. But there are a few
extrasettingstobeaware of. Toenable verbose logging, startthe mongodprocess with
the -vvvvvoption (the more vs, the more verbose the output). This is handy if, for
instance, you need to debug some code and want to log every query. But do be aware
that verbose logging will make your logs quite large and may affect server perfor-
mance. If your logs become too unwieldy, remember that you can always store your
logs on a different partition.

Next you can start mongodwith the --logappendoption. This will append to an
existing log rather than moving it and appending a timestamp to the filename, which
is the defaultbehavior.

Finally, if you have a long-running MongoDB process, you may want to write a
script that periodically rotates the log files. MongoDB provides the logrotate com-
mand for this purpose. Here’s how to run it from the shell:

> use admin
> db.runCommand({logrotate: 1})
Sending the SIGUSR115 signal to the process also runs the logrotate command.

Here’s how to send that signal to process number 12345:

$ kill -SIGUSR1 12345

Youcanfindthe process ID ofthe process you want to send the signal to using the ps
command, like this:

$ ps —ef | grep mongo

Note that the killcommand isn’t always as dire as it sounds. Itonly sends asignal toa
running process, but was named in the days when most or all signals ended the pro-

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N—N— %

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION
(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

cess.16 But running killwith the -9command-line option will end a processinabru-
talwayandshould beavoidedas muchaspossible onproductionsystems.

MongoDB diagnostic commands

MongoDB has a number of database commands used to report internal state. These
underlie all MongoDB monitoring applications. Here’s a quick reference for a few
of the commands that you might find useful:

» Global server statistics: db.serverStatus()

» Stats for currently running operation: db.currentOp(

» Include stats for idle system operations: db.currentOp(true)
» Perdatabase countersand activity stats: db.runCommand({top:1})
» Memory and disk usage statistics: db.stats()

Theoutputforall of these commands improveswitheach MongoDB release, sodocu-
menting it in a semi-permanent medium like this book isn’t always helpful. Consult
the documentation for your versionofMongoDB to find out what each field inthe
output means.

MongoDB diagnostic tools
Inadditionto the diagnostic commands listed previously, MongoDB ships with a few
handy diagnostic tools. Most of these are built on the previous commands and could
be easily implemented using a driver or the mongo shell.

Here’s a quick introduction to what we’ll cover in this section:

» mongostat—Global system statistics

» mongotop—Global operationstatistics

» mongosniff(advanced)—Dump MongoDB network traffic

» bsondump—Display BSON files as JSON

MONGOSTAT

The db.currentOp() method shows only the operations queued or in progress at a
particular moment in time. Similarly, the serverStatus command provides a point-in-
time snapshot of various system fields and counters. But sometimes you need a view of
the system’s real-time activity, and that’s where mongostatcomes in. Modeled after
iostatand other similar tools, mongostat polls the server at a fixed interval and dis-
plays an array of statistics, from the number of inserts per second to the amount of res-
ident memory, to the frequency of B-tree page misses.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N—N— %

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

You can invoke the mongostatcommand on localhost, and the polling will occur
once asecond:

$ mongostat

Similar to the way mongostat is the external tool for the db.currentOp() and server-
Statuscommands, mongotop s the external tool for the topcommand. You can run
this in exactly the same way as mongostat, assuming you have a server running on the
local machine and listening on the default port:

$ mongotop

Aswithmongostat, you can run thiscommand with—helpto see anumber of useful
configuration options.

MONGOSNIFF
Thenextcommandwe’ll coverismongosniff, whichsniffspackets fromaclienttothe
MongoDB server and prints them intelligibly. If you happen to be writing a driver or
debugging an errant connection, then this is your tool. You can start it up like this to
listen on the local network interface at the default port:

sudo mongosniff --source NET 10

Thenwhenyou connectwithany client—say, the MongoDB shell—you’ll getan
easy- to-read stream of network chatter:

127.0.0.1:58022 -->> 127.0.0.1:27017 test.$cmd 61 bytes id:89ac9cld
2309790749 query: { isMaster: 1.0 } ntoreturn: -1

127.0.0.1:27017 <<-- 127.0.0.1:58022 87 bytes

reply n:1 cursorld: 0 { ismaster: true, ok: 1.0 }

Here you can see a client running the isMaster command, which is represented as a
queryfor{isMaster:1.0}againstthespecialtest. 5cmdcollection. Youcanalsosee that
the response document contains ismaster: true, indicating that the node that this
command was sent to was in fact the primary. You can see all the mongosniff
options by running it with --help.

BSONDUMP

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N—N— %

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

Another useful command is bsondump, which allows you to examine raw BSON
files. BSON files are generated by the mongodump command (discussed in section

13.3)and by replica set rollbacks.1? For instance, let’s say you’ve dumped a collection
with a sin- gledocument. Ifthat collection endsup in afile called users.bson, then can
examine the contents easily:

$ bsondump users.bson
{"_id" : Objectld("4d82836dc3efdb9915012b91"), "name" : "Kyle" }

As you can see, bsondump prints the BSON as JSON by default. If you’re doing
serious debugging, you’ll want to see the real composition of BSON types and sizes.
Forthat, runthe command in debug mode:

$ bsondump --type=debug users.bson
--- new object ---

size : 37

_id

type: 7 size: 17

name

type: 2 size: 15

Thisgivesyou the total size of the object (37 bytes), the types of the two fields (7 and 2),
and those fields’sizes.

THE WEB CONSOLE

Finally, MongoDB provides some access to statistics via a web interface and a
REST server. Asofv3.0, these systemsare old and under active development. Ontop
of that, they report the same information available via the other tools or database
commands presented earlier. If you want to use these systems, be sure to look at the
currentdocu- mentation and carefully consider the security implications.

MongoDB Monitoring Service

MongoDB, Inc. provides MMS Monitoring for free, which not only allows you to
view dashboards to help you understand your system, but also provides an easy way to
share your system information with MongoDB support, whichisindispensable if

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N——

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

you ever need helpwithyoursystem. MMS Monitoring canalso be licensed asa self-
hosted ver- sion for large enterprises with paid contracts. To get started, all you need
to do is cre- ate an account on the MMS Monitoring website at
https://mms.mongodb.com. Once you create an account, you’ll see instructions to
walk youthroughtheprocessofset- ting up MMS, which we won’t cover here.

External monitoring applications

Most serious deployments will require an external monitoring application. Nagios and
Munin are two popular open source monitoring systems used to keep an eye on many
MongoDB deployments. You can use each of these with MongoDB by installing a
sim- ple open sourceplug-in.

Writing aplug-infor any arbitrary monitoring application isn’tdifficult. It mostly
involves running various statistics commands against a live MongoDB database. The
serverStatus, dbstats, and collstats commands usually provide all the informa- tion
you might need, and you can get all of them straight from the HTTP REST inter-
face, avoiding the need for a driver.

Finally, don’t forget the wealth of tools available for low-level system
monitoring. For example, the iostat command can be helpful in diagnosing
MongoDB perfor- mance issues. Most of the performance issues in MongoDB
deployments can be traced to a single source: the hard disk.

In the following example, we use the -xoption to show extended statistics and
specify 2to display those stats at two-second intervals:

$ iostat -x 2
DevICe: I'Sec/S WSEC/S avgrg-sz avggu-sz await svctm Youtl
sdb 0.00 3101.12 10.09 X

2.83 101.39 1.34 2%3

Device: rsec/s WSsec/s avgr%-sz avggu-sz awalt svctm Y%util

sao 0.0V 29Y33.93 Bl TZ3.02 12523 L.41 34‘}{1
or adetailed description of each of these fields, or for details on your specific version
of iostat, consult your system’s man18 pages. For a quick diagnostic, you’ll be most
interested in two of the columns shown:

» The awaitcolumn indicates the average time in milliseconds for serving 1/0
requests. This average includes time spent in the 1/0 queue and time spent
actually servicing 1/Orequests.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

https://mms.mongodb.com/

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N——

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

%utilis the percentage of CPU during which 1/O requests were issued to the
device,whichessentiallytranslatestothebandwidthuseofthedevice.

Backups

Part of running a production database deployment is being prepared for disasters.
Backups play an important role in this. When disaster strikes, a good backup can save
the day, and in these cases, you’ll never regrethaving invested time and diligence ina
regular backup policy. Yet some users still decide that they can live without backups.
These users have only themselves to blame when they can’trecover their databases.

Don’t be one of these users.
Three general strategies for backing up a MongoDB database are as follows:

» Using mongodumpand mongorestore

» Copying the raw data files
» Using MMS Backups

We’ll go over each of these strategies in the next three sections.

mongodump and mongorestore

mongodumpwrites the contents of a database as BSON files. mongorestorereads these
files and restores them. These tools are useful for backing up individual collections
and databases as well as the whole server. They can be run against a live server (you
don’thaveto lock or shutdownthe server), or you can point themto a set of datafiles,

but only when the server is locked or shut down. The simplest way to run mongodump
is like this:19

$ mongodump -h localhost --port 27017

This will dump each database and collection from the server at localhostto a direc-

tory called dump.20 The dump directory will include all the documents from each
collec- tion, including the system collections that define users and indexes. But
significantly, the indexes themselves won’t be included in the dump. This means
that when you restore, any indexes will have to be rebuilt. If you have an especially
largedataset,ora large number of indexes, this will take time.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N—N— %

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION
(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

RESTORING BSON FILES
To restore BSON files, run mongorestoreand point it at the dump folder:

$ mongorestore -h localhost --port 27017 dump

Note thatwhen restoring, mongorestorewon’tdrop databy default, so if you’re restor-
ing to an existing database, be sure to run with the --dropflag.

Data file—based backups

Most users opt for a file-based backup, where the raw data files are copied to a new
location. This approach is often faster than mongodumpbecause the backups and resto-
rations require no transformation of the data.

The only potential problem with a file-based backup is that it requires locking the
database, but generally you’ll lock a secondary node and thus should be able to keep
your application online for the duration of the backup.

Tosafely copy the datafiles, you first need to make sure that they’re in a consistent
state, so you either have to shut down the database or lock it. Because shutting down
the database mightbe too involved for some deployments, most users opt for the lock-
ing approach. Here’s the command for syncing and locking:

> use admin
> db.fsyncLock()

Security

Security isan extremely important, and often overlooked, aspect of deploying a pro-
duction database. In this section, we’ll cover the main types of security, including
secure environments, network encryption, authentication, and authorization.

We’llendwithabriefdiscussionof whichsecurity featuresareonlyavailableinthe
enterpriseeditionof MongoDB. Perhaps morethan forany othertopic, it’s vital tostay
up to date with the current security tools and best practices, so treat this section as an
overview of what to consider when thinking about security, but consult the most
recent documentation at https://docs.mongodb.org/manual/security when putting it into
production.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

https://docs.mongodb.org/manual/security

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N——

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

Secure environments

MongoDB, like all databases, should be run in a secure environment. Production users
of MongoDB must take advantage of the security features of modern operating sys-
temstoensure the safety of their data. Probably the mostimportant of these features is
the firewall.

The only potential difficulty in using a firewall with MongoDB is knowing
which machines need to communicate with each other. Fortunately, the
communication rules are simple:

» Withareplicaset, each node must be able to reach every other node.

» Alldatabaseclientsmustbeabletoconnectwitheveryreplicasetnodethatthe
client might conceivably talk to.

» Allcommunication is done using the TCP protocol.

» For anode to be reachable, it means that it’s reachable on the port that it was
configured to listen on. For example, mongod listens on TCP port 27017
by default, so to be reachable it must be reachable on that port.

Network encryption

Perhaps the most fundamental aspect of securing your system is ensuring your net-
work traffic is encrypted. Unless your system is completely isolated and no one you
don’t trust can even see your traffic (for example, if all your traffic is already
encrypted over a virtual private network, or your network routing rules are set up such

thatno traffic can be sentto your machines from outside your trusted network23), you
should probably use MongoDB with encryption.

Fortunately, as of v2.4, MongoDB ships with a library that handles this
encryption—called the Secure Sockets Layer (SSL)—built in.

Here’s what the beginning of the output looks like on our machine:

$ ifconfig
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

CLASS : 11 M.Sc CS BATCH : 2017- 2019
=~"= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

[Deemed to be iniversity)
(Estabished Under Section 3 of UGC Act, 1956 |

For us, the loopback interface is lo. Now we can use the appropriate tcpdumpcom-
mand to dump all traffic on this interface:

$ sudo tcpdump -i lo —X

NOTE Reading network traffic using tcpdumprequires root permissions, so
if youcan’trunthiscommand, justreadalongwiththe example that follows.

Inanother terminal on the same machine, startamongodserver without SSL enabled
(change the data path as appropriate):

$ mongod --dbpath /data/db/

Then, connect to the database and insert a single document:

$ mongo

> db test.insert({ "message" :
bye

plaintext” }) >exit

Now, if you look atthe tcpdumpoutputinthe terminal, you’ll see anumber of packets
output, one of which looks something like this:

16:05:10.507867 IP localhost.localdomain.50891 >

localhost.localdomain.27017
0x0000: 4500 007f aad4a 4000 4006 922c¢ 7f00 0001 E...J@.@..,

0x0010: 7f00 0001 c6¢cb 6989 cfl7 1d67 d7e6 c88fi....Q....
0x0020: 8018 0156 fe73 0000 0101 080a 0018 062e ...V.s.

There’sourmessage, rightintheclear B! Thisshowshowimportantnetwork
encryptionis. Now, let’srunMongoDB with SSL and seewhat happens.

RUN MONGODB WITH SSL
First, generate the key for the server:

openssl req -newkey rsa:2048 -new -x509 -days 365 -nodes -out mongodbcert.crt
-keyout mongodb-cert.key
cat mongodb-cert.key mongodb-cert.crt > mongodb.pem

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
R/_J

CLASS : 11 M.Sc CS BATCH : 2017- 2019
=~"= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

[Deemed to be iniversity)
(Estabished Under Section 3 of UGC Act, 1956 |

Then, run the mongodserver with SSL, using the --ssSIPEMKeyFileand --ssIMode
options:

$ mongod --ssIMode requireSSL --ssIPEMKeyFile mongodb.pem

Now, connect the client with SSL and do exactly the same operation:

$ mongo --ssl

> db.test.insert({ "message" : "plaintext” }) >exit
bye

If you now go back to the window with tcpdump, you’11 see something
completely incomprehensible where the message used to be:

16:09:26.269944 IP localhost.localdomain.50899 >

localhost.localdomain.27017;
0x0000: 4500 009¢ 52¢3 4000 4006 €996 7f00 0001 E..R.@.@.

0x0010: 7f00 0001 c6d3 6989 c46a 4267 7ac5 5202i..jBgz.R.
0x0020: 8018 0173 fe90 0000 0101 080a 001b ed40 ..s............ @

SERVICE AUTHENTICATION
The first stage of authentication is verifying that the program on the other end of the

connection is trusted. Why is this important? The main attack that this is meant to pre-
vent is the man-in-the-middle attack, where the attacker masquerades as both the
client andthe serverto interceptall traffic between them.

As you can see in the figure, a man-in-the-middle attack is exactly what it sounds like:

» Amalicious attacker poses as a server, creating a connection with the client, and
then poses as the client and creates a connection with the server.

» Afterthat, itcan notonly decryptand encryptall the traffic between the client
andserver, butitcansendarbitrary messagestoboththeclientandtheserver.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N—N— %

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

Once you have a certificate, you can use it in MongoDB like this

mongod --clusterAuthMode x509 --ssIMode requireSSL --ssSIPEMKeyFile server.pem
--sSICAFile ca.pem
mongo --ssl --ssSIPEMKeyFile client.pem

where ca.pemcontains the root certificate chain from the CA and client.pemis
signed by that CA. The server will use the contents of ca.pemto verify that client.pem
was indeed signed by the CA and is therefore trusted.

Taking these steps will ensure that no malicious program can establish a connec-
tion to your database. In the next section, you’ll see how to make this more fine-
grained and authenticate individual users inasingle database.

straight into an example of how to set up basic authentication for a single
mongod.

SETTING UP BASIC AUTHENTICATION

First, you should start a mongodnode with authenabled. Note that if this node isin a
sharded cluster or a replica set, you also need to pass options to allow it to authenti-
cate with other servers. But for a single node, enabling authentication requires only
one flag:

$ mongod --auth

Now, the first time you connect to the server, you want to add an administrative user
account:

> use admin
> db.createUser(
{
user: "boss",
pwd: “supersecretpassword",
roles: [{ role: "userAdminAnyDatabase", db: "admin™ }]

¥
)

In our example, we gave this user a role of userAdminAnyDatabase, which essen-
tially gives the user complete access to the system, including the ability to add and
removenewusers,aswellaschangeuser privileges.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N—N— %

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION
(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

Thisisessentiallythesuperuser of MongoDB.
Now that we’ve created our admin user, we can log in as this user:

> use admin
> db.auth(*"boss", "supersecretpassword")

We can now create users for individual databases. Once again we use the createUser
method. The main differences here are the roles:

> use stocks
> db.createUser(
{
user: "trader",
pwd: "youlikemoneytoo”,
roles: [{ role: "readWrite", db: "stocks™ }]

}
)
> db.createUser(
{
user: "read-only-trader",
pwd: "weshouldtotallyhangout™,
roles: [{ role: "read", db: "stocks™ }]

¥
)

Now the traderuser has the readWriterole on the stocksdatabase, whereas the read-
only-traderonly has the readrole. This essentially means that the first user can read
andwrite stock data, and the second can only read it. Note that because we added these
users to the stocksdatabase, we need to authenticate using that database as well:

> use stocks
> db.auth("trader", "youlikemoneytoo™)

REMOVING A USER
To remove a user, use the dropUserhelper on the database it was added to:

> use stocks
> db.dropUser("trader")

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N——

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

This is a bit heavyweight, so note that you can also revoke user access without com-
pletely dropping them from the system using the revokeRolesFromUser helper, and
grantthemroles again using the grantRolesToUserhelper.

Toclose the session you don’t need to explicitly log out; terminating the connec-
tion (closing the shell) will accomplish that just fine. But there’s a helper for logging
out if you need it:

> db.logout()

Naturally,youcanusealltheauthentication logicwe’veexplored hereusing thedriv-
ers. Check your driver’s API for the details.

Replica set authentication

Replica sets support the same authentication API just described, but enabling authen-
tication for areplicaset requires extraconfiguration, because notonly do clients need
to be able to authenticate with the replica set, but replica set nodes also need to be
able to authenticate with each other.

Internal replica set authentication can be done via two separate mechanisms:

» Key fileauthentication
» X509 authentication

In both cases, each replica set node authenticates itself with the others as a special
internal user that has enough privileges to make replication work properly.

KEY FILE AUTHENTICATION
The simpler and less secure authentication mechanism is key file authentication. This

essentially involves creating a “key file” for each node that contains the password that
replica set node will use to authenticate with the other nodes in the replica set. The
upside of thisis that it’s easy to set up, but the downside is that if an attacker compro-
mises justone machine, you’ll have to change the password for every node inthe clus-
ter, which unfortunately can’t be done without downtime.

Tostart, create the file containing your secret. The contents of the file will serve as
the password that each replica set member uses to authenticate with the others. As an
example, you might create a file called secret.txt and fill it with the following (don’t
actually use this password in a real cluster):

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N—N— %

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM
tOps3cr3tpab5word

Place the file on each replica set member’s machine and adjust the permissions so
that it’s accessible only by the owner:

sudo chmod 600 /home/mongodb/secret.txt

Finally, start each replica set member by specifying the location of the password file
using the --keyFileoption:

mongod --keyFile /nome/mongodb/secret.txt

Authentication will now be enabled for the set. You’ll want to create an admin user in
advance, as you did in the previous section.

X509 AUTHENTICATION

X509 certificate authentication is built into OpenSSL, the library MongoDB uses to
encrypt network traffic. As we mentioned earlier, obtaining signed certificatesis out-
side the scope of this book. However, once you have them, you can start each node
like this

mongod --replSet myReplSet --ssIMode requireSSL --clusterAuthMode
x509 -- ssIClusterFile --ssSIPEMKeyFile server.pem --ssICAFile ca.pem

where server.pemis a key signed by the certificate authority that ca.pemcorre-
sponds to.

There’s a way to upgrade a system using key file authentication to use X509 certifi-
cates with no downtime. See the MongoDB docs for the details on how to do this, or
check in the latest MMS documentation to see whether support has been added to
MMS automation.

Sharding authentication

Sharding authentication is an extension of replica set authentication. Each replica set in
the cluster is secured as described in the previous section. In addition, all the config
servers and every mongosinstance can be set up to authenticate with the rest of the
clusterinexactlythesameway,

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N—N— %

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

using either a shared key file or using X509 certificate authentication. Once you’ve
donethis, thewhole cluster can use authentication.

Enterprise security features

Some security features exist only in MongoDB’s paid enterprise plug-in. For example,
the authentication and authorization mechanisms that allow MongoDB to interact
with Kerberos and LDAP are enterprise. Inaddition, the enterprise module adds
auditing support so that security-related events get tracked and logged. The MongoDB
docswill explicitly mention ifa particular feature isenterprise only.

Administrative tasks
In this section, we’1l cover some basic administrative tasks, including importing and
exportingdata, dealingwithdisk fragmentation,andupgrading your system.

Compaction and repair
MongoDB includesabuilt-intool for repairing a database. You caninitiate it fromthe
command line to repair all databases on the server:

$ mongod --repair

Or you can run the repairDatabasecommand to repair a single database:

> use cloud-docs
> db.runCommand({repairDatabase: 1})

To rebuild indexes, use the relndex()method:
> use cloud-docs
> db.spreadsheets.relndex()

Thismightbeuseful,butgenerally speaking,index spaceisefficientlyreused. Thedata file
spaceiswhatcanbeaproblem,sothecompactcommandisusuallyabetterchoice.

compactwill rewritethedatafilesandrebuild allindexesforonecollection. Here’s
how you run it from the shell:

> db.runCommand({ compact: "spreadsheets" })

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N——

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

This command has been designed to be run on a live secondary, obviating the

need for downtime. Once you’ve finished compacting all the secondaries in a replica
set, you can step down the primary and then compact that node. If you must run the
compact

command on the primary, you can do so by adding {force: true} to the command
object. Notethatifyougothisroute, the commandwill write lock the system:

> db.runCommand({ compact: "spreadsheets”, force: true })

OnWiredTiger databases, the compact() command will release unneeded disk space
to the operating system. Also note that the paddingFactor field, which is applicable
for the MMAPV1 storage engine, has no effect when used with the WiredTiger
stor- age engine.

Upgrading
As with any software project, you should keep your MongoDB deployment as up to
date as possible, because newer versions contain many important bug fixes and
improvements.

Oneofthe coredesign principlesbehind MongoDB isto alwaysensureanupgrade is
possible with no downtime. For a replica set, this means a rolling upgrade, and for a
sharded cluster, this means that mongosrouters can still function against mixed clusters.

Working set

We’ve covered the idea of the working set in various parts of this book, but we’ll
define it here again with a focus on your production deployment.

Imagineyouhaveamachinewith8 GB of RAM, runningadatabase withanon-disk
size of 16 GB, not including indexes. Your working set is how much data you’re
access- ing in a specified time interval. In this example, if your queries are all full
collection scans, your “working set” will be 16 GB because to answer those queries
your entire database must be paged into memory.

But if your queries are properly indexed, and you’re only querying for the most
recent quarter of the data, most of your database can stay on disk, and only the 2 GB
that you need, plus some extra space for indexes, needs to be in memory.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS : 1l M.ScCS BATCH : 2017- 2019
N—N— %

= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

Working set | | | | | | | | |
smaller
than RAM

Working
set larger
than
RAM

P b T Dbisk

Query interactions

Another side effect of the fact that MongoDB doesn’tenforce resource limitsis that one
badly behaving query can affect the performance of all other querieson the system.

It’sthe same drill as before. Assume you have a working set of 2 GB, witha64 GB
database. Everything may be going well, until someone runs a query that performs a
full collection scan. This query will not only place a huge amount of load on the disk,
but may also page out the data that was being used for the other queries on the sys-
tem, causing slowdown there as well. Figure 13.4 from earlier illustrates this issue,
where the top represents normal query load and the bottom represents the load after
the bad query.

This isactually another reason why access controls are important. Even if you get
everything else right, one table scan by an intern can hose your system. Make sure
everyone who has the ability to query your database understands the consequences of a

The sources of performance degradations are manifold and frequently idiosyncratic.
Anything from poor schema design to sneaky server bugs can negatively affect perfor-
mance.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N——

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

If you think you’ve tried every possible remedy and still can’t get results, con- sider
allowing someone experienced inthe ways of MongoDB to audityour system.

A book can take you far, but an experienced human being can make all the difference
in the world. When you’re at a loss for ideas and in doubt, seek professional assis-
tance. The solutions to performance issues are sometimes entirely unintuitive.

Whenorifyouseek help, be sureto provide all the information you have about
your system when the issue occurred. This is when the monitoring will pay off. The
official standard used by MongoDB is MMS Monitoring, so if you’re using
MongoDB support, being set up with MMS Monitoring will speed up the process
significantly.

Deployment checklist

We’vecoveredalotof topicsinthis chapter. It may seem overwhelming at first, but as
long as you have the main areas covered, your system will keep running smoothly. This
sectionisaquick reference formaking sureyou’ve gotthe important points covered:

» Hardware
- RAM—Enough to handle the expected working set.
- Disk space—Enough space to handle all your data, indexes, and
MongoDB internal metadata.
— Disk speed—Enough to satisfy your latency and throughput requirements. Con-
siderthisinconjunctionwithRAM—lessRAM usuallymeansmoredisk
usage.

— CPU—Usually not the bottleneck for MongoDB, but if you’re getting low
disk utilization but low throughput, you may have a CPU bound workload.
Check this as part of careful performance testing.

- Network—Make sure the network is fastand reliable enough to satisfy your
performance requirements. MongoDB nodes communicate with each other
internally, so be sure to test every connection, not just the ones fromyour cli-
ents to the mongosor mongodservers.

» Security

- Protection of network traffic—Either run in a completely isolated
environment or make sure your trafficisencrypted using MongoDB’s built-
inSSL support or some external method such as a VPN to prevent man-in-the-

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N——

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956 | m i dd Ie attac kS.

— Access control —Make sure only trusted users and clients programs can
oper- ate on the database. Make sure your interns don’t have the “root”
privilege.

» Monitoring

- Hardware usage (disks, CPU, network, RAM)—Make sure you have
some kind of monitoring setup for all your hardware resources that will
not only keep trackofthe usage, butalso alertyouifitgoesaboveacertain
threshold.

- Health checks—Periodically make sure your servers are up and
responsive, and will alert you if anyone stops calling back.

- MMS Monitoring —Monitor your services using MMS Monitoring.
Not only does this provide monitoring, health checks, and alerts, but it’s
what the MongoDB support team will use to help you if you run into
trouble. Histori- cally it’s been free to use, so don’t hesitate to add this to
your deployment.

— Client performance monitoring —Periodically run automated end-to-end
tests as a client to ensure that you’re still performing as well as you expect.
The last thing you want is for a client to be the first one to tell you that your
applica- tion isslow.

» Disaster recovery

- Evaluate risk—Imagine that you’ve lost all your data. How sad do you feel?
In all seriousness, losing your data may be worse in some applications than
oth- ers. If you’re analyzing Twitter trends, losing your data may cost a
week’s worth of time, whereas if you’re storing bank data, losing that may
cost quite abitmore. When you do this evaluation, assume that a disaster of
somekind will happen, and plan accordingly.

- Have a plan—Createa concrete plan for how you’ll recover ineach failure case.
Depending on how your system fails, you may react completely differently.

— Test your plan—Be sure to test your plan. The biggest mistake people
make with backups and disaster recovery is assuming that having a backup
or a plan is enough. It’s not enough. Maybe the backup is getting
corrupted. Maybe it’s in a format that’s impossible to reimport into your
productionsys- tems. Asinaproduction system, manythings cangowrong,
soit’simportant to make sure your recovery strategy works.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N——

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION
(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

- Have a backup plan—Your first disaster recovery plan might fail.
When it does, have a last resort available. This doesn’t have to be an
appealing option, but you’ll be happy it’s there if you get desperate.

» Performance

- Load testing—Make sure you load test your application with a realistic
work- load. Intheend, thisisthe only way to be sure thatyour performance is
what you expect.

MongoDB on Mac OS X

If you’re using Mac OS X, you have three options for installing MongoDB. You
can download the precompiled binaries directly from the mongodb.org website,
use a package manager, or compile manually from source. We’ll discuss the first two
options in the next sections, and then provide a few notes on compiling later in the
appendix.

Precompiled binaries
First navigate to www.mongodb.org/downloads. There you’ll see a grid with all the lat-
est downloadable MongoDB binaries. Select the download URL for the latest
stable version for your architecture. The following example uses MongoDB v3.0.6
compiled for a 64-bitsystem.

Downloadthe archive using yourweb browser or the curlutility. Youshould check
onthedownloads page forthe mostrecentrelease. Thenexpandthearchiveusingtar:

$ curl https://fastdl. mongodb.org/osx/mongodb-0sx-x86_64-

3.0.6.tgz > mongo.tgz
$ tar xzvf mongo.tgz

Torun MongoDB, you’ll need a data directory. By default, the mongoddaemon
will store its data files in/data/db. Go ahead and create that directory:

$ sudo mkdir -p /data/db/
$ sudo chown “id -u" /data/db

You’re now ready to start the server. Just change to the MongoDB bin directory and
launch the mongodexecutable:

$ cd mongodb-o0sx-x86_64-3.0.6/bin
Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

http://mongodb.org/
http://www.mongodb.org/downloads

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N——

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

$./mongod

Ifall goeswell, youshould see something like the following abridged startup log. The
first time you start the server it may allocate journal files, which takes several minutes,
before being ready for connections. Note the last lines, confirming that the server is
listening on the default port of 27017:

2015-09-19T08:51:40.214+0300 | CONTROL [initandlisten] MongoDB
starting : pid=41310 port=27017 dbpath=/data/db 64-bit
host=iron.local

2015-09-19T08:51:40.214+0300 I CONTROL [initandlisten] db version v3.0.6

2015-09-19T08:51:40.215+0300 I INDEX [initandlisten] allocating
new ns file /data/db/local.ns, filling with zeroes...

2015-09-19T08:51:40.240+0300 | STORAGE [FileAllocator]
allocating new datafile /data/db/local.0, filling with zeroes...

2015-09-19T08:51:40.240+0300 | STORAGE [FileAllocator] creating
directory / data/db/_tmp

2015-09-19T08:51:40.317+0300 | STORAGE [FileAllocator] done
allocating datafile /data/db/local.0, size: 64MB, took 0.077 secs

2015-09-19T08:51:40.344+0300 | NETWORK [initandlisten] waiting
for connections on port 27017

Youshould now be able to connect to the MongoDB server using the JavaScript con-
soleby running ./mongo. Iftheserver terminates unexpectedly, refer to section A.6.

Using a package manager

MacPorts (http://macports.org) and Homebrew (http://brew.sh/) are two package
managers for Mac OS X known to maintain up-to-date versions of MongoDB. To
install via MacPorts, run the following:

sudo port install mongodb

Note that MacPorts will build MongoDB and all its dependencies from scratch. Ifyou
go this route, be prepared for a lengthy compile.

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

http://macports.org/
http://brew.sh/

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N—N— %

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

Homebrew, rather than compiling, merely downloads the latest binaries, so it’s
muchfasterthan MacPorts. YoucaninstallMongoDB throughHomebrewasfollows:

$ brew update
$ brew install mongodb

After installing, Homebrew will provide instructions on how to start MongoDB
using the Mac OS X launch agent.

MongoDB on Windows

If you’re using Windows, you have two ways to install MongoDB. The easier,
pre- ferred way is to download the precompiled binaries directly from the
mongodb.org website. You can also compile from source, but this option is
recommended only for developers and advanced users. You can read about
compiling from source in the next section.

Precompiled binaries

First navigate to www.mongodb.org/downloads. There you’ll see a grid with all the
latest downloadable MongoDB binaries. Select the download URL for the latest
sta- ble version for your architecture. Here we’ll install MongoDB v2.6
compiled for 64-bit Windows.

Alternatively, you can use the command line. First navigate to your Downloads
directory. Then use the unziputility to extract the archive:

C:\> cd \Users\kyle\Downloads

C:\> unzip mongodb-win32-x86_64-2.6.7.zip

To run MongoDB, you’ll need a data folder. By default, the mongod daemon will
store its data files in C:\data\db. Open the Windows command prompt and create the
folder like this:

C:\> mkdir \data
C:\> mkdir

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

http://mongodb.org/
http://www.mongodb.org/downloads

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N——

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956 | \d ata\d b

You’re now ready to start the server. Change to the MongoDB bin directory and
launch the mongodexecutable:

C:\> cd \Users\kyle\Downloads

C:\Users\kyle\Downloads> cd mongodb-win32-x86_64-2.6.7\bin
C:\Users\kyle\Downloads\mongodb-win32-x86_64-2.6.7\bin>
mongod.exe

Ifall goeswell, youshould see something like the following abridged startup log. The
first time you start the server it may allocate journal files, which takes several minutes,
before being ready for connections. Note the last lines, confirming that the server is
listening on the default port of 27017:

Thu Mar 10 11:28:51 [initandlisten] MongoDB
starting : pid=1773 port=27017 dbpath=/data/db/ 64-

bit host=iron
Thu Mar 10 11:28:51 [initandlisten] db version v2.6.7

Thu Mar 10 11:28:51 [websvr] web admin console waiting for connections on

port 28017 . : - .
Thu Mar 10 11:28:51 [initandlisten] waiting for connections on port 27017

If the server terminates unexpectedly, refer to section A.6.
Finally, you’ll want to startthe MongoDB shell. Todo that, open asecond terminal
window, and then launch mongo.exe:

C:\> cd \Users\kyle\Downloads\mongodb-win32-x86_64-
2.6.7\bin C:\Users\kyle\Downloads\mongodb-win32-x86_64-
2.6.7\bin> mongo.exe

Compiling MongoDB from source
Compiling MongoDB from source is recommended only for advanced users
and developers. If all you want to do is operate on the bleeding edge, without
having to compile, you can always download the nightly binaries for the latest
revisions from the mongodb.org website.

That said, you may want to compile yourself. The trickiest part about compiling
Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

http://mongodb.org/

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N—N— %

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION
(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

MongoDB is managing the various dependencies. The latest compilation
instructions for each platform can be found at
www.mongodb.org/about/contributors/tutorial/ build-mongodb-from-source.

Troubleshooting
MongoDB is easy to install, but users occasionally experience minor problems.
These usually manifestaserror messages generated whentrying to startthe mongod

daemon. Here we provide a list of the most common of these errors along with their
resolutions.

Wrong architecture
Ifyoutrytorunabinary compiledfora64-bitsystemona32-bitmachine, you’ll see
an error like the following:

bash: ./mongod: cannot execute binary file

On Windows 7, the message is more helpful:

This version of
C:\Users\kyle\Downloads\mongodb-win32-x86_64-
2.6.7\bin\mongod.exe is not compatible with the version of
Windows you're running.

Check your computer's system information to see whether you
need a x86 (32-bit) or x64 (64-bit) version of the program, and
then contact the software publisher.

The solution in both cases is to download and then run the 32-bit binary instead. Bina- ries
forbotharchitecturesare available on the MongoDB download site (www.mongodb
.org/downloads).

Nonexistent data directory
MongoDB requires a directory for storing its data files. If the directory doesn’t exist,
you’ll see an error like the following:

dbpath (/data/db/) does not exist, terminating

Thesolutionistocreatethisdirectory. Toseehow,consultthe precedinginstructions
Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

http://www.mongodb.org/about/contributors/tutorial/build-mongodb-from-source
http://www.mongodb.org/about/contributors/tutorial/build-mongodb-from-source
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N—N— %

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

for your OS.

Lack of permissions

If you’re running on a Unix variant, you’ll need to make sure that the user running
the mongodexecutable has permissions to write to the data directory. Otherwise, you’ll
see thiserror

Permission denied: "/data/db/mongod.lock", terminating
or possibly this one:

Unable to acquire lock for lockfilepath: /data/db/mongod.lock, terminating

Ineithercase, youcansolvetheproblembyopeninguppermissionsinthedatadirec-
tory using chmodor chown.

Unable to bind to port

MongoDB runs by default on port 27017. If another process, or another mongod, is
bound to the same port, you’ll see this error:

listen(): bind() failed errno:98
Address already in use for socket: 0.0.0.0:27017

This issue has two possible solutions. The first is to find out what other process is
running on port 27017 and then terminate it, provided that it isn’t being used for
some other purpose. One way of finding which process listens to port number 27017
is the following:

sudo Isof -i :27017

The output of the Isofcommand will also reveal the process ID of the process that
listens to port number 27017, which can be used for killing the process using the
Killcommand.

Alternatively,runmongodonadifferentportusingthe--portflag, whichseemsto
be abetterand easier solution. Here’s howto runMongoDB onport 27018:

mongod --port 27018

Basic configuration options
Here’s a brief overview of the flags most commonly used when running MongoDB:

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N——

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

» --dbpath—The path to the directory where the data files are to be stored. This
defaults to /data/db and is useful if you want to store your MongoDB data
elsewhere.

v+ --logpath—The path to the file where log output should be directed. Log out-
put will be printed to standard output (stdout) by default.

» --port—The portthat MongoDB listens on. If not specified, it’s setto 27017.

v --rest—This flag enables a simple REST interface that enhances the server’s
default web console. The web console is always available 1000 port numbers
abovetheporttheserver listenson. Thusifthe server s listening at localhost on
port 27017, then the web console will be available at http:/localhost:28017.
Spend some time exploring the web console and the commands it exposes; you
candiscover a lotabout a live MongoDB server this way.

v --fork—Detaches the process to run as adaemon. Note that forkworks only on
Unix variants. Windows users seeking similar functionality should look at the
instructions for running MongoDB as a proper Windows service. Theseare
available at www.mongodb.org.

Those are the most important of the MongoDB startup flags. Here’s an example of
their use on the command line:

$ mongod --dbpath /var/local/mongodb --logpath /var/log/mongodb.log
--port 27018 --rest --fork

Note that it’s also possible to specify all of these options in a config file. Create anew

text file (we’ll call it mongodb.conf) and you can specify the config file equivalent1
of all the precedingoptions:

storage:

dbPath:
“/var/local/mongodb”
systemLog:

destination: file

path:
“/var/log/mongodb.log” net:

port:

27018

http:

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

http://www.mongodb.org/

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N——

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .Y = COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM
InumpﬂmheUnivers\th
s Sm REST InterfaceEnabled:
true processManagement:
fork: true

You can then invoke mongodusing the config file with the -foption:
$ mongod -f mongodb.conf

Ifyoueverfind yourself connected toaMongoDB and wondering which optionswere
usedatstartup, youcangetalistofthembyrunningthe getCmdLineOptscommand:

> use admin
> db.runCommand({getCmdLineOpts: 1})

Installing Ruby

A number of the examples in this book are written in Ruby, so to run them yourself,
you’ll need a working Ruby installation. This means installing the Ruby interpreter as
well as Ruby’s package manager, RubyGems.

Youshoulduse anewer versionof Ruby, suchas1.9.3or preferably 2.2.3, whichis
the current stable version. Version 1.8.7 is still used by many people, and it works well
with MongoDB, but the newer versions of Ruby offer advantages such as better charac-
ter encoding that make it worthwhile to upgrade.

Linux and Mac OS X

Ruby comes installed by default on Max OS X and onanumber of Linuxdistributions.
You may want to check whether you have a recent version by running

ruby -v

If the command isn’t found, or if you’re running a version older than 1.8.7, you’ll want
toinstall or upgrade. There are detailed instructions for installing Ruby on Mac OS X
aswell as on a number of Unix variants at https://www.ruby-lang.org/en/downloads/

In addition to the Ruby interpreter, you need the Ruby package manager, Ruby-
Gems, to install the MongoDB Ruby driver. Find out whether RubyGems is installed by
running the gemcommand:

gem -v

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

https://www.ruby-lang.org/en/downloads/

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N——

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION
(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

You can install RubyGems through a package manager, but most users download the
latest version and use the included installer. You can find instructions for doing this at
https://rubygems.org/pages/download.

Windows
By far, the easiest way to install Ruby and RubyGems on Windows is to use the Windows
Ruby Installer. The installer can be found here: http://rubyinstaller.org/downloads.
When you run the executable, awizard will guide you through the installation of both
Ruby and RubyGems.

Inaddition toinstalling Ruby, you can install the Ruby DevKit, which permits the
easy compilation of Ruby C extensions. The MongoDB Ruby driver’s BSON library
may optionally use these extensions.

Many-to-many

InRDBMSs, you use a join table to represent many-to-many relationships; in MongoDB,
you use array keys. You can see a clear example of this technique earlier in the book
where we relate products and categories. Each product contains an array of category
IDs, and both products and categories get their own collections. If you have two sim-
ple categorydocuments

{ _id:
Objectld("4d6574baa6b804ea563c132a")
, title: "Epiphytes”

}

{ id:
Objectld("4d6574baa6b804ea563c459d")
, title: "Greenhouse flowers"

}
then a product belonging to both categories will look like this:

{ id:
Objectld("4d6574baa6b804ea563ca982")

, hame: "Dragon Orchid",
category_ids: [Objectld("4d6574baa6b804ea563c132a"),

Objectld("4d6574baa6b804ea563c459d")]
}

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

https://rubygems.org/pages/download
http://rubyinstaller.org/downloads

SQ KARPAGAM ACADEMY OF HIGHER EDUCATION
==

CLASS : Il M.Sc CS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

For efficient queries, you should index the array of category IDs:
db.products.createlndex({category_ids: 1})

Then, to find all products in the Epiphytes category, match against the category_id
field:

db.products.find({category_id: Objectld(*"4d6574baa6b804ea563c132a™)})

Andtoreturnall category documents related tothe Dragon Orchid product, first get
the list of that product’s category IDs:

product = db.products.findOne({_id: Objectld("4d6574baacbh804ea563c132a™)})
Thenquerythecategoriescollectionusingthe$inoperator:
db.categories.find({_id: {$in: product['category_ids}})

You’ll notice that finding the categories requires two queries, whereas the product
search takes just one. This optimizes for the common case, as you’re more likely to
search for products in a category than the other way around.

The strategy there was to store a snapshot of the category’s ancestors within each cate-
gory document. This denormalization makes updates more complicated but greatly
simplifies reads.

A 5 points by kbanker 1 hour ago
Who was Alexander the Great's teacher?

A 2 points by asophist 1 hour ago
It was definitely Socrates.

A 10 points by daletheia 1 hour ago
Oh you sophist...It was actually Aristotle!

A 1 point by seuclid 2 hours ago
So who really discarded the parallel postulate?

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N——

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

Let’sseehowthesecommentslookasdocumentsorganized withamaterialized path.
The first is a root-level comment, so the pathis null:

{ _id:
Objectld(""4d692b5d59e212384d95001")
, depth: 0,
path: null,
created: ISODate(""2011-02-26T17:18:01.251Z2"),
username: "plotinus”,
body: "Who was Alexander the Great's
teacher?", thread_id:

) Objectld("4d692b50596212384095223a")

The other root-level question, the one by user seuclid, will have the same structure.
More illustrative are the follow-up comments to the question about Alexander the
Great’s teacher. Examine the first of these, and note that pathcontains the _idof the
immediate parent:

{ _id:
Objectld(""4d692b5d59e212384d951002"
), depth: 1,
path: "4d692b5d59e212384d95001",

created: ISODate(""2011-02-26T17:21:01.251Z2"),
username: "asophist",

body: "It was definitely Socrates.",

thread_id: Objectld("4d692b5d59e212384d95223a")

Thenextdeeper comment’s path containsboththe IDs of the original and immediate
parents, in that order and separated by a colon:

{ _id:
Objectld("4d692b5d59e212384d95003")
, depth: 2,
path:

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N——

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

"4d692b5d59e212384d95001:4d692b5d59e212384d951

002", created: 1SODate("2011-02-26T17:21:01.251Z"),
username: "daletheia”,

body: "Oh you sophist...It was actually Aristotle!",
thread_id:

) Objectld("4d692b50596212384095223a")

Ataminimum, you’llwantindexesonthethread idand pathfields,asyou’llalways
query on exactly one of these fields:

db.comments.createlndex({thread_id: 1})
db.comments.createlndex({path: 1})

Now the question is how you go about querying and displaying the tree. One of the
advantages of the materialized path pattern is that you query the database only once,
whether you’re displaying the entire comment thread or only a subtree within the
thread. The query for the first of these is straightforward:

db.comments.find({thread_id: Objectld(*4d692b5d59e212384d95223a™)})

Thequeryforaparticularsubtreeissubtler because itusesaprefixquery (discussed in
Chapter 5):

db.comments.find({path: /*4d692b5d59e212384d95001/})

The firstmethod, threaded_list, buildsalistof all root-level commentsand amap that keys
parent IDs to lists of child nodes:

def threaded_list(cursor, opts={})
list =]
child_map = {}
start_depth = opts[:start_depth] || 0
cursor.each do jcomment]|
if comment['depth’] ==
start_depth list.push(comment)
else
matches =
comment['path’].match(/([d|w]+)$/)
Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N—N— %

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION
(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

immediate_parent_id = matches[1]
if immediate_parent_id
child_map[immediate_parent_id] ||=[]
child_map[immediate_parent_id] <<
comment
en
d

end
end

assemble(list,
child_map) end

Theassemblemethod takes the list of root nodes and the child map and then builds a
new list in display order:

def assemble(comments,
map) list =[]
comments.each do
|comment|
list.push(comment)
child_comments =
map[comment['_id"].to_s] if
child_comments
list.concat(assemble(child_comments,
map)) end
end
list
end

To print the comments, you merely iterate over the list, indenting appropriately for
each comment’s depth:

def print_threaded_list(cursor, opts={})
threaded_list(cursor, opts).each do |item|
indent =" " * item['depth]
puts indent + item['body'] + " #{item['path']}"
end
end

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
N—N— %

CLASS : 11 M.ScCS BATCH : 2017- 2019
= .%= COURSE NAME : MONGODB COURSE CODE:18CSP203
KARPAGAM

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956 |

Querying for the comments and printing them is then straightforward:

cursor =
@comments.find.sort(*'created™)
print_threaded_list(cursor)

Worker queues

You can implement worker queues in MongoDB using either standard or capped col-
lections (discussed in chapter 4). In both cases, the findAndModify command will per-
mit you to process queue entries atomically.

A queue entry requires a state and a timestamp plus any remaining fields to con-
tain the payload. The state can be encoded as a string, but an integer is more space-
efficient. We’lluse O and 1 to indicate processed and unprocessed, respectively.
The timestampisthe standard BSON date. And the payload here isasimple plaintext
mes- sage but could be anything in principle:

{ state: 0,
created: ISODate(""2011-02-24T16:29:36.697Z"),
message: "hello world" }

You’ll need to declare an index that allows you to efficiently fetch the oldest unpro-
cessed entry (FIFO). Acompound index on stateand createdfits the bill:

db.queue.createlndex({state: 1, created: 1})

You then use findAndModifyto return the next entry and mark it as processed:
q = {state: 0}

s = {created: 1}

u = {$set: {state: 1}}
db.queue.findAndModify({query: q, sort: s, update: u})

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

	1.pdf (p.1-2)
	2.pdf (p.3-7)
	3.pdf (p.8-49)
	Indexes
	Replication
	Speed and durability
	Scaling
	MongoDB’s core server and tools
	Core server

	Diving into the MongoDB shell
	Starting the shell
	Inserts and queries
	Updating documents
	Deleting data

	Basic administration
	Getting database information

	MongoDB through the Ruby lens
	Installing and connecting
	Inserting documents in Ruby
	Updates and deletes
	Database commands

	How the drivers work
	Object ID generation

	Building a simple application
	Setting up
	Gathering data
	Viewing the archive

	4.pdf (p.50-85)
	Principles of schema design
	Designing an e-commerce data model
	Nuts and bolts: On databases, collections, and documents
	Databases
	Collections
	Documents and insertion

	E-commerce queries
	MongoDB’s query language
	Query criteria and selectors

	Aggregation framework overview
	Products, categories, and reviews
	User and order

	5.pdf (p.86-121)
	Brief tour of document updates
	Modify by replacement
	Modify by operator
	Both methods compared
	Deciding: replacement vs. operators
	Reviews
	Orders

	Atomic document processing
	Inventory management

	Indexing in practice
	Index types
	Index administration

	Query optimization

	6.pdf (p.122-157)
	Why replication matters
	Replication use cases and limitations
	Replica sets
	Setup

	Drivers and replication
	Connections and failover
	Read scaling
	Tagging
	Mongos router: router of operations

	Building a sample shard cluster
	Starting the mongod and mongos servers
	Configuring the cluster
	Sharding collections
	The explain() tool in a sharded cluster

	7.pdf (p.158-197)
	Cluster topology
	Deployment environment
	Logging
	MongoDB diagnostic commands
	MongoDB diagnostic tools
	MongoDB Monitoring Service
	External monitoring applications
	Backups
	mongodump and mongorestore
	Data file–based backups

	Security
	Secure environments
	Network encryption
	Replica set authentication
	Sharding authentication
	Enterprise security features

	Administrative tasks
	Compaction and repair
	Upgrading
	Working set
	Query interactions

	Deployment checklist
	MongoDB on Mac OS X
	Precompiled binaries
	Using a package manager

	MongoDB on Windows
	Precompiled binaries

	Compiling MongoDB from source
	Troubleshooting
	Wrong architecture
	Nonexistent data directory
	Lack of permissions
	Unable to bind to port

	Basic configuration options
	Installing Ruby
	Linux and Mac OS X
	Windows

	Many-to-many
	Worker queues

