

MONGODB (2018-2020
Batch)

Department of Computer Science, KAHE Page 1/ 2

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

 (For the candidates admitted from 2017 onwards)

DEPARTMENT OF CS, CA & IT

SUBJECT NAME : MONGODB

SEMESTER : II

SUBJECT CODE : 18CSP203 CLASS: I M.Sc CS

Instruction Hours / week: L: 4 T: 0 P: 0 Marks: Internal:40 External:60 Total: 100

 End Semester Exam : 3 Hours

Course Objectives

 To provide students the knowledge and skills to master the NoSQL database mongoDB.

Course Outcomes(COs)

1. To provide students the right skills and knowledge needed to develop Applications on

mongoDB

2. To provide students the right skills and knowledge needed to run Applications on

mongoDB

Unit I - GETTING STARTED

A database for the modern web – MongoDB through the JavaScript shell – Writing programs

using MongoDB.

Unit II - APPLICATION DEVELOPMENT

Document-oriented data – Principles of schema design – Designing an e-commerce data model –

Nuts and bolts on databases, collections, and documents. Queries and aggregation – E-commerce

queries – MongoDB‟s query language – Aggregating orders – Aggregation in detail.

Unit III - UPDATES, ATOMIC OPERATIONS, AND DELETES

A brief tour of document updates – E-commerce updates – Atomic document processing –

MongoDB updates and deletes. Indexing and query optimization: Indexing theory – Indexing in

practice – Query optimization.

Unit IV – REPLICATION

MONGODB (2018-2020
Batch)

Department of Computer Science, KAHE Page 2/ 2

Overview – Replica sets – Master-slave replication – Drivers and replication. Shading: Overview

– A sample shard cluster – Querying and indexing a shard cluster – Choosing a shard key –

sharding in production.

Unit V - DEPLOYMENT AND ADMINISTRATION

Deployment – Monitoring and diagnostics – Maintenance – Performance troubleshooting

SUGGESTED READINGS

1. Kyle Banker. (2012). MongoDB in Action. Manning Publications Co.

2. Rick Copeland. (2013). MongoDB Applied Design Patterns, 1st Edition, O‟Reilly

Media Inc.

3. Gautam Rege, (2012). Ruby and MongoDB Web Development Beginner's Guide.

Packt Publishing Ltd

4. Mike Wilson.. (2013). Building Node Applications with MongoDB and

Backbone, O‟Reilly Media Inc.

5. David Hows. (2009). The definitive guide to MongoDB, 2nd edition, Apress

Publication, 8132230485

6. Shakuntala Gupta Edward. 2016. Practical Mongo DB , 2nd edition, Apress

Publications, 2016, ISBN 1484206487

 WEBSITES

1. http://www.mongodb.org/about/production-deployments/

2. http://docs.mongodb.org/ecosystem/drivers/

3. http://www.mongodb.org/about/applications/

4. http://www.mongodb.org/

MONGODB (2018-2020

Batch)

Prepared by Dr.S.Veni, Department of CS, CA & IT, KAHE Page 1/ 5

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

 (For the candidates admitted from 2017 onwards)

DEPARTMENT OF CS, CA & IT

LESSON PLAN

SUBJECT NAME : MONGODB (18CSP203)

SEMESTER : II

UNIT I

SI.NO

Lecture

Duratio

n (Hr)

Topics to be covered
Support

Materials

1 1 Getting Started T1:1

2 1 A database for the modern web T1:3

3 1 A database for the modern web T1:18

4 1 MongoDB through the JavaScript shell T1:29

5 1 MongoDB through the JavaScript shell T1:39, W1

6 1 Writing programs using MongoDB T1:52

7 1 Writing programs using MongoDB

T1:59

R1:112

8 1 Recapitulation and Discussion of Important Question

Total no. of Hours Planned for Unit I 8

MONGODB (2018-2020

Batch)

Prepared by Dr.S.Veni, Department of CS, CA & IT, KAHE Page 2/ 5

UNIT II

SI.N

O

Lecture

Duration

(Hr)

Topics to be covered
Support

Materials

1 1
APPLICATION DEVELOPMENT - Document-

oriented data T1:71

2 1 Principles of schema design T1:74

3 1
Designing an e-commerce data model

T1:75,

R2:169

4 1
Nuts and bolts on databases, collections, and

documents T1:84

5 1 Queries and aggregation- E-commerce queries T1:99, W2

6 1 MongoDB‟s query language T1:103

7 1 Aggregating orders, Aggregation in detail T1:120

8 1 Recapitulation and Discussion of Important Question

Total Periods Planned for Unit II 8

 UNIT III

SI.N

O

Lecture

Duration

(Hr)

Topics to be covered
Support

Materials

1
1

UPDATES, ATOMIC OPERATIONS, AND

DELETES - A brief tour of document updates T1:158

MONGODB (2018-2020

Batch)

Prepared by Dr.S.Veni, Department of CS, CA & IT, KAHE Page 3/ 5

2

1 E-commerce updates

T1:162,

R1:193

3 1 Atomic document processing T1:171

4 1 MongoDB updates and deletes T1:179

5 1 Indexing and query optimization: Indexing theory T1:198

6
1 Indexing in practice T1:207

7
1

Query optimization

T1:216,

W2

8 1 Recapitulation and Discussion of Important Question 8

Total Periods Planned for Unit III

 UNIT IV

SI.N

O

Lecture

Duration

(Hr)

Topics to be covered
Support

Materials

1 1 REPLICATION- Overview, Replica sets T1:297

2 1 Master Slave Replication – Drivers and Replication T1:324

3
1 Shading: Overview

T1:334

R3:312

4 1 A sample shard cluster T1:343

MONGODB (2018-2020

Batch)

Prepared by Dr.S.Veni, Department of CS, CA & IT, KAHE Page 4/ 5

5
1 Querying and indexing a shard cluster

T1:355,w

2

6
1 Choosing a shard key

T1:359,

w2

7 2 Sharding in production T1:365

8 1 Recapitulation and Discussion of Important Question

Total Periods Planned for Unit IV 8

UNIT V

SI.N

O

Lecture

Duration

(Hr)

Topics to be covered
Support

Materials

1
1

DEPLOYMENT AND ADMINISTRATION -

Deployment

2 1 Monitoring and diagnostics

3 1 Monitoring and diagnostics

4 1 Maintenance

5 1 Maintenance

6 1 Performance troubleshooting

7 2 Performance troubleshooting

8 1 Recapitulation and Discussion of Important Question

9 1 Discussion of Previous ESE Question Papers

MONGODB (2018-2020

Batch)

Prepared by Dr.S.Veni, Department of CS, CA & IT, KAHE Page 5/ 5

Journals :

10 1 Discussion of Previous ESE Question Papers

11 1 Discussion of Previous ESE Question Papers

Total Periods Planned for Unit V 12

Total Periods 44

Text Book

T1

Kyle Banker. (2012). MongoDB in Action. Manning Publications Co.

References

R1 Rick Copeland. (2013). MongoDB Applied Design Patterns, 1st Edition,

O‟Reilly Media Inc.

R2 Mike Wilson.(2013). Building Node Applications with MongoDB and

Backbone, O‟Reilly Media Inc.

R3

Shakuntala Gupta Edward. 2016. Practical Mongo DB , 2nd edition, Apress

Publications, 2016, ISBN 1484206487

Web Sites

w1

http://www.mongodb.org/

w2 W3schools.com/mongodb

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 1 of 42

UNIT I
 SYLLABUS

 Getting Started: A database for the modern web – MongoDB through the
 JavaScript shell – Writing programs using MongoDB.

 Getting Started: A database for the modern web

MongoDB is a database management system designed to rapidly develop web
appli- cations and internet infrastructure. The data model and persistence
strategies are built for high read-and-write throughput and the ability to scale
easily with automatic failover. Whether an application requires just one
database node or dozens of them, MongoDB can provide surprisingly good
performance. If you’ve experienced difficul- ties scaling relational databases,
this may be great news. But not everyone needs to operate at scale. Maybe all
you’ve ever needed is a single database server.

MongoDB stores its information in documents rather than rows.

What’s a document? Here’s an example:

{

_id: 10,

username: 'peter',

email: 'pbbakkum@gmail.com'

}

This is a pretty simple document; it’s storing a few fields of information

about a user (he sounds cool). What’s the advantage of this model?

Consider the case where you’d like to store multiple emails for each user. In

the relational world, you might create a separate table of email addresses

and the users to which they’re associated. MongoDB gives you another way

to store these:

{

_id: 10,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

username: 'peter',

email: [

'pbbakkum@gmail

.com',

'pbb7c@virginia.ed

u'

]

}

MongoDB’s document format is based on JSON, a popular scheme for

storing arbi- trary data structures. JSON is an acronym for JavaScript Object

Notation. As you just saw, JSON structures consist of keys and values, and

they can nest arbitrarily deep. They’re analogous to the dictionaries and

hash maps of other programming languages.

A document-based data model can represent rich, hierarchical data

structures. It’s often possible to do without the multitable joins common

to relational databases normalized relational data model, the

information for any one product might be divided among dozens of

tables.

Built for the internet

The history of MongoDB is brief but worth recounting, for it was born out of

a much more ambitious project. In mid-2007, a startup in New York City

called 10gen began work on a platform-as-a-service (PaaS), composed of an

application server and a data- base, that would host web applications and

scale them as needed. Like Google’s App Engine, 10gen’s platform was

designed to handle the scaling and management of hardware and software

infrastructure automatically, freeing developers to focus solely on their

application code. 10gen ultimately discovered that most developers didn’t

feel comfortable giving up so much control over their technology stacks, but

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 1 of 42

users did

10gen has since changed its name to MongoDB, Inc. and continues to

sponsor the database’s development as an open source project. The code is

publicly available and free to modify and use, subject to the terms of its

license, and the community at large is encouraged to file bug reports and

submit patches. Still, most of MongoDB’s core developers are either

founders or employees of MongoDB, Inc., and the project’s roadmap

continues to be determined by the needs of its user community and the

overarching goal of creating a database that combines the best features of

relational databases and distributed key-value stores.

 MongoDB’s key features

A database is defined in large part by its data model. In this section, you’ll

look at the document data model, and then you’ll see the features of

MongoDB that allow you to operate effectively on that model.

Document data model

MongoDB’s data model is document-oriented. If you’re not familiar with

documents in the context of databases, the concept can be most easily

demonstrated by an exam- ple. A JSON document needs double quotes

everywhere except for numeric values. The following listing shows the

JavaScript version of a JSON document where double quotes aren’t

necessary.

 Listing 1.1 A document representing an entry on a social news site

{

_id: ObjectID('4bd9e8e17cefd644108961bb'), title: 'Adventures in

Databases',

url: 'http://example.com/databases.txt', author: 'msmith',

http://example.com/databases.txt%27

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

vote_count: 20,

tags: ['databases', 'mongodb', 'indexing'], image: {

url: 'http://example.com/db.jpg', caption: 'A database.',

type: 'jpg', size: 75381, data: 'Binary'

},

comments: [

{

user: 'bjones',

text: 'Interesting article.'

},

{

user: 'sverch',

text: 'Color me skeptical!'

}

]

}

SCHEMA-LESS MODEL ADVANTAGES

This lack of imposed schema confers some advantages. First, your

application code, and not the database, enforces the data’s structure. This

can speed up initial applica- tion development when the schema is

changing frequently.

http://example.com/db.jpg%27

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 1 of 42

.

product catalog. There’s no way of knowing in advance what attributes a

product will have, so the application will need to account for that variability.

 Ad hoc queries

Ad hoc queries are easy to take for granted if the only databases you’ve

int(11)

smallint(5)

smallint(5)

smallint(5)

int(10)

varchar(255)

value_id

entity_type_id

attribute_id

store_id

entity_id

value

catalog_product_entity_varchar

int(11)

smallint(5)

smallint(5)

smallint(5)

int(10)

text

value_id

entity_type_id

attribute_id

store_id

entity_id

value

catalog_product_entity_text

int(11)

smallint(5)

smallint(5)

smallint(5)

int(10)

int(11)

value_id

entity_type_id

attribute_id

store_id

entity_id

value

catalog_product_entity_int

int(11)

smallint(5)

smallint(5)

smallint(5)

int(10)

decimal(12, 4)

value_id

entity_type_id

attribute_id

store_id

entity_id

value

catalog_product_entity_decimal

int(11)

smallint(5)

smallint(5)

smallint(5)

int(10)

datetime

value_id

entity_type_id

attribute_id

store_id

entity_id

value

catalog_product_entity_datetime

entity_id int(11)

entity_type_id int(5)

attribute_set_id int(5)

type_id varchar(32)

sku ivarchar(64)

catalog_product_entity

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

ever used have been relational. But not all databases support dynamic

queries. For instance, key-value stores are queryable on one axis only: the

value’s key.

A SQL query would look like this:

SELECT * FROM posts

INNER JOIN posts_tags ON posts.id =

posts_tags.post_id INNER JOIN tags ON

posts_tags.tag_id == tags.id

WHERE tags.text = 'politics' AND posts.vote_count > 10;

The equivalent query in MongoDB is specified using a document as a

matcher. The special $gt key indicates the greater-than condition:

db.posts.find({'tags': 'politics', 'vote_count': {'$gt': 10}});

 Indexes

A critical element of ad hoc queries is that they search for values that

you don’t know when you create the database.

Indexes in MongoDB are implemented as a B-tree data structure. B-

tree indexes, also used in many relational databases, are optimized for a

variety of queries, includ- ing range scans and queries with sort clauses. But

WiredTiger has support for log- structured merge-trees (LSM) that’s expected

to be available in the MongoDB 3.2 pro- duction release.

 Replication

MongoDB provides database replication via a topology known as a replica

set. Replica sets distribute data across two or more machines for

redundancy and automate failover in the event of server and network

outages. Additionally, replication is used to scale database reads. If you

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 1 of 42

have a read-intensive application, as is commonly the case on the web, it’s

possible to spread database reads across machines in the replica set

cluster.

 Speed and durability

To understand MongoDB’s approach to durability, it pays to consider a few ideas

first. In the realm of database systems there exists an inverse relationship between

write speed and durability. Write speed can be understood as the volume of inserts,

updates, and deletes that a database can process in a given time frame. Durability

refers to level of assurance that these write operations have been made permanent.

 Scaling

It then makes sense to consider scaling horizontally, or scaling out (see

figure 1.4). Instead of beefing up a single node, scaling horizontally means

distributing the data- base across multiple machines. A horizontally scaled

architecture can run on many smaller, less expensive machines, often

reducing your hosting costs.

MongoDB was designed to make horizontal scaling manageable. It does

so via a range-based partitioning mechanism, known as sharding, which

automatically manages

Secondary Secondary

Primary

Secondary Primary

X

Primary

Secondary

Secondary

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

Original database

Scaling up

increases the

capacity of a

single machine.

Scaling out

adds more

machines of

similar size.

68 GB of RAM

1690 GB of storage

68 GB of RAM

1690 GB of storage

68 GB of RAM

1690 GB of storage

200 GB of RAM

5000 GB of storage

68 GB of RAM

1690 GB of storage

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 9 of 42

MongoDB’s core server and tools

MongoDB is written in C++ and actively developed by MongoDB, Inc.

The project compiles on all major operating systems, including Mac OS X,

Windows, Solaris, and most flavors of Linux. Precompiled binaries are

available for each of these platforms at http://mongodb.org. MongoDB is

open source and licensed under the GNU-Affero General Public License

(AGPL).

 Core server

The core database server runs via an executable called mongod

(mongodb.exe on Win- dows). The mongod server process receives

commands over a network socket using a custom binary protocol. All the

data files for a mongod process are stored by default in

/data/db on Unix-like systems and in c:\data\db on Windows. Command-

line tools

MongoDB is bundled with several command-line utilities:

■ mongodump and mongorestore—Standard utilities for backing up and

restoring a database. mongodump saves the database’s data in its

native BSON format and thus is best used for backups only; this tool

has the advantage of being usable for hot backups, which can easily

be restored with mongorestore.

■ mongoexport and mongoimport—Export and import JSON, CSV, and

TSV7 data; this is useful if you need your data in widely supported

formats. mongoimport can also be good for initial imports of large data

sets, although before importing, it’s often desirable to adjust the data

model to take best advantage of MongoDB. In such cases, it’s easier to

import the data through one of the drivers using a custom script.

■ mongosniff—A wire-sniffing tool for viewing operations sent to the

database. It essentially translates the BSON going over the wire to

human-readable shell statements.

■ mongostat—Similar to iostat, this utility constantly polls MongoDB

and the system to provide helpful stats, including the number of

operations per second (inserts, queries, updates, deletes, and so on),

the amount of virtual memory allocated, and the number of

connections to the server.

http://mongodb.org/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

■ mongotop—Similar to top, this utility polls MongoDB and shows the

amount of time it spends reading and writing data in each

collection.

■ mongoperf—Helps you understand the disk operations happening in a

running MongoDB instance.

■ mongooplog—Shows what’s happening in the MongoDB oplog.

■ Bsondump—Converts BSON files into human-readable formats

including JSON. MongoDB versus other databases

The number of available databases has exploded, and weighing one against

another can be difficult. Fortunately, most of these databases fall under

one of a few catego- ries. In table 1.1, and in the sections that follow, we

describe simple and sophisticated key-value stores, relational databases,

and document databases, and show how these compare with MongoDB.

Table 1.1 Database families

 Examples Data
model

Scalability
model

Use cases

Simple key-

value stores

Memcached Key-value,

where the

value is a

binary

blob.

Variable.

Mem-

cached can

scale

across

nodes,

converting

all available

RAM into a

single,

mono-

lithic

Caching.
Web ops.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 9 of 42

datastore.

Sophisticat

ed key-

value stores

HBase,

Cassan-

dra, Riak

KV, Redis,

CouchDB

Variable.

Cassan-

dra uses a

key- value

structure

known as a

col- umn.

HBase and

Redis store

binary

blobs.

CouchDB

stores

JSON

documents

.

Eventually

consis-

tent,

multinode

distributio

n for high

availability

and easy

failover.

High-

throughput

verticals

(activity

feeds,

message

queues).

Caching.

Web ops.

Relational

data- bases

Oracle

Database,

IBM DB2,

Micro- soft

SQL Server,

MySQL,

PostgreSQL

Tables. Vertical

scaling.

Limited

support for

clustering

and

manual

partition-

ing.

System

requiring

transaction

s (banking,

finance) or

SQL.

Normal-

ized data

model.

RELATIONAL DATABASES

Popular relational databases include MySQL, PostgreSQL, Microsoft SQL

Server, Oracle Database, IBM DB2, and so on; some are open-source and

some are proprietary. MongoDB and rela- tional databases are both capable

of representing a rich data model. Where relational databases use fixed-

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

schema tables, MongoDB has schema-free documents. Most rela- tional

databases support secondary indexes and aggregations.

DOCUMENT DATABASES

Few databases identify themselves as document databases. As of this writing,

the clos- est open-source database comparable to MongoDB is Apache’s

CouchDB. CouchDB’s document model is similar, although data is stored

in plain text as JSON, whereas MongoDB uses the BSON binary format.

Like MongoDB, CouchDB supports secondary indexes; the difference is that

the indexes in CouchDB are defined by writing map- reduce functions, a

process that’s more involved than using the declarative syntax used by

MySQL and MongoDB. They also scale differently.

Use cases and production deployments

wEB APPLICATIONS

MongoDB can be a useful tool for powering a high-traffic website. This is

the case with The Business Insider (TBI), which has used MongoDB as its

primary datastore since January 2008. TBI is a news site, although it gets

substantial traffic, serving more than a million unique page views per day.

History of MongoDB

When the first edition of MongoDB in Action was released, MongoDB 1.8.x

was the most recent stable version, with version 2.0.0 just around the

corner. With this second edi- tion, 3.0.x is the latest stable version.11

A list of the biggest changes in each of the official versions is shown

below. You should always use the most recent version available, if possible, in

which case this list isn’t particularly useful. If not, this list may help you

determine how your version dif- fers from the content of this book. This is by

no means an exhaustive list, and because of space constraints, we’ve listed

only the top four or five items for each release.

VERSION 1.8.X (NO LONGER OFFICIALLY SUPPORTED)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 9 of 42

■ Sharding—Sharding was moved from “experimental” to production-ready

status.

■ Replica sets —Replica sets were made production-ready.

■ Replica pairs deprecated—Replica set pairs are no longer supported by
MongoDB, Inc.

■ Geo search—Two-dimensional geo-indexing with coordinate pairs

(2D indexes) was introduced.

VERSION 2.0.X (NO LONGER OFFICIALLY SUPPORTED)

■ Journaling enabled by default—This version changed the default

for new data- bases to enable journaling. Journaling is an important

function that prevents data corruption.

■ $and queries—This version added the $and query operator to complement
the

$or operator.

■ Sparse indexes—Previous versions of MongoDB included nodes in

an index for every document, even if the document didn’t contain

any of the fields being tracked by the index. Sparse indexing adds

only document nodes that have rel- evant fields. This feature

significantly reduces index size. In some cases this can improve

performance because smaller indexes can result in more efficient use

of memory.

■ Replica set priorities —This version allows “weighting” of replica set

members to ensure that your best servers get priority when electing a

new primary server.

■ Collection level compact/repair—Previously you could perform

compact/repair only on a database; this enhancement extends it to

individual collections.

VERSION 2.2.X (NO LONGER OFFICIALLY SUPPORTED)

■ Aggregation framework—This version features the first iteration of a

facility to make analysis and transformation of data much easier and

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

more efficient. In many respects this facility takes over where

map/reduce leaves off; it’s built on a pipeline paradigm, instead of the

map/reduce model (which some find diffi- cult to grasp).

■ TTL collections—Collections in which the documents have a time-

limited lifespan are introduced to allow you to create caching models

such as those provided by Memcached.

■ DB level locking —This version adds database level locking to take the

place of the global lock, which improves the write concurrency by

allowing multiple opera- tions to happen simultaneously on

different databases.

■ Tag-aware sharding—This version allows nodes to be tagged with IDs

that reflect their physical location. In this way, applications can control

where data is stored in clusters, thus increasing efficiency (read-only

nodes reside in the same data center) and reducing legal

jurisdiction issues (you store data required to remain in a specific

country only on servers in that country).

VERSION 2.4.X (OLDEST STABLE RELEASE)

■ Enterprise version —The first subscriber-only edition of MongoDB, the

Enterprise version of MongoDB includes an additional authentication

module that allows the use of Kerberos authentication systems to

manage database login data. The free version has all the other

features of the Enterprise version.

■ Aggregation framework performance —Improvements are made in the

performance of the aggregation framework to support real-time

analytics; chapter 6 explores the Aggregation framework.

■ Text search —An enterprise-class search solution is integrated as an

experimental feature in MongoDB; chapter 9 explores the new text

search features.

■ Enhancements to geospatial indexing —This version includes

support for polygon intersection queries and GeoJSON, and features

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 9 of 42

an improved spherical model supporting ellipsoids.

■ V8 JavaScript engine —MongoDB has switched from the Spider Monkey

JavaScript engine to the Google V8 Engine; this move improves

multithreaded operation and opens up future performance gains in

MongoDB’s JavaScript-based map/ reduce system.

VERSION 2.6.X (STABLE RELEASE)

■ $text queries—This version added the $text query operator to support

text search in normal find queries.

■ Aggregation improvements—Aggregation has various improvements

in this ver- sion. It can stream data over cursors, it can output to

collections, and it has many new supported operators and pipeline

stages, among many other features and performance improvements.

 Additional resources

■ Improved wire protocol for writes—Now bulk writes will receive more

granular and detailed responses regarding the success or failure of

individual writes in a batch, thanks to improvements in the way

errors are returned over the network for write operations.

■ New update operators—New operators have been added for update

operations, such as $mul, which multiplies the field value by the

given amount.

■ Sharding improvements—Improvements have been made in

sharding to better handle certain edge cases. Contiguous chunks can

now be merged, and dupli- cate data that was left behind after a chunk

migration can be cleaned up auto- matically.

■ Security improvements—Collection-level access control is supported

in this ver- sion, as well as user-defined roles. Improvements have

also been made in SSL and x509 support.

■ Query system improvements —Much of the query system has been

refactored. This improves performance and predictability of

queries.

■ Enterprise module—The MongoDB Enterprise module has

improvements and extensions of existing features, as well as

support for auditing.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

VERSION 3.0.X (NEWEST STABLE RELEASE)

■ The MMAPv1 storage engine now has support for collection-level locking.

■ Replica sets can now have up to 50 members.

■ Support for the WiredTiger storage engine; WiredTiger is only

available in the 64-bit versions of MongoDB 3.0.

■ The 3.0 WiredTiger storage engine provides document-level

locking and compression.

■ Pluggable storage engine API that allows third parties to develop storage

engines for MongoDB.

■ Improved explain functionality.

■ SCRAM-SHA-1 authentication mechanism.

■ The ensureIndex() function has been replaced by the createIndex()

function and should no longer be used.

 Diving into the MongoDB shell

MongoDB’s JavaScript shell makes it easy to play with data and get a

tangible sense of documents, collections, and the database’s particular

query language. Think of the following walkthrough as a practical

introduction to MongoDB.

 Starting the shell

Follow the instructions in appendix A and you should quickly have a working

MongoDB installation on your computer, as well as a running mongod

instance. Once you do, start the MongoDB shell by running the mongo

executable:

This topic covers

■ Using CRUD operations in the MongoDB shell

■ Building indexes and using explain()

■ Understanding basic administration

■ Getting help

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 9 of 42

mongo

If the shell program starts successfully, your screen will look like figure 2.1.

The shell heading displays the version of MongoDB you’re running, along

with some additional information about the currently selected

database.

 Databases, collections, and documents

MongoDB divides collections into separate databases. Unlike the usual

overhead that databases produce in the SQL world, databases in MongoDB

are just namespaces to distinguish between collections. To query MongoDB,

you’ll need to know the data- base (or namespace) and collection you

want to query for documents. If no other database is specified on startup,

the shell selects a default database called test. As a way of keeping all the

subsequent tutorial exercises under the same namespace, let’s start by

switching to the tutorial database:

> use tutorial

switched to db tutorial

The document contains a single key and value for storing Smith’s username.

 Inserts and queries

To save this document, you need to choose a collection to save it to.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

Appropriately enough, you’ll save it to the users collection. Here’s how:

> db.users.insert({username:

"smith"}) WriteResult({ "nInserted"

: 1 })

NOTE Note that in our examples, we’ll preface MongoDB shell

commands with a > so that you can tell the difference between the
command and its output.

You may notice a slight delay after entering this code. At this point, neither

the tuto- rial database nor the users collection has been created on disk. The

delay is caused by the allocation of the initial data files for both.

If the insert succeeds, you’ve just saved your first document. In the default

MongoDB configuration, this data is now guaranteed to be inserted even if

you kill the shell or suddenly restart your machine. You can issue a query

to see the new document:

> db.users.find()

Since the data is now part of the users collection, reopening the shell and

running the query will show the same result. The response will look

something like this:

{ "_id" : ObjectId("552e458158cd52bcb257c324"), "username" : "smith" }

PASS A QUERY PREDICATE

Now that you have more than one document in the collection, let’s look

at some slightly more sophisticated queries. As before, you can still query

for all the docu- ments in the collection:

> db.users.find()

{ "_id" : ObjectId("552e458158cd52bcb257c324"), "username" : "smith" }

{ "_id" : ObjectId("552e542a58cd52bcb257c325"), "username" : "jones" }

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 9 of 42

You can also pass a simple query selector to the find method. A query

selector is a document that’s used to match against all documents in the

collection. To query for all documents where the username is jones, you pass

a simple document that acts as your query selector like this:

> db.users.find({username: "jones"})

{ "_id" : ObjectId("552e542a58cd52bcb257c325"), "username" : "jones" }

 Updating documents

> db.users.find({username: "smith"})

{ "_id" : ObjectId("552e458158cd52bcb257c324"), "username" : "smith" }

OPERATOR UPDATE

The first type of update involves passing a document with some kind of

operator description as the second argument to the update function. In

this section, you’ll see an example of how to use the $set operator, which

sets a single field to the spec- ified value.

Suppose that user Smith decides to add her country of residence. You

can record this with the following update:

> db.users.update({username: "smith"}, {$set: {country:

"Canada"}}) WriteResult({ "nMatched" : 1, "nUpserted" : 0,

"nModified" : 1 })

 Deleting data

If given no parameters, a remove operation will clear a collection of all

its docu- ments. To get rid of, say, a foo collection’s contents, you enter:

> db.foo.remove()

You often need to remove only a certain subset of a collection’s documents,

and for that, you can pass a query selector to the remove() method. If you

want to remove all users whose favorite city is Cheyenne, the expression

is straightforward:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

> db.users.remove({"favorites.cities":

"Cheyenne"}) WriteResult({ "nRemoved" : 1 })

Note that the remove() operation doesn’t actually delete the collection; it

merely removes documents from a collection. You can think of it as being

analogous to SQL’s DELETE command.

If your intent is to delete the collection along with all of its indexes, use the
drop()

method:

> db.users.drop()

 Basic administration

 Getting database information
show dbs prints a list of all the databases on the system:

> show dbs

admin (empty)

local

 0.078

GB tutorial

0.078GB

show collections displays a list of all the collections defined on the current

data- base.4 If the tutorial database is still selected, you’ll see a list of the

collections you worked with in the preceding tutorial:

> show

collections

numbers

system.indexes

users

The one collection that you may not recognize is system.indexes. This is a

special collection that exists for every database. Each entry in

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 9 of 42

system.indexes defines an index for the database, which you can view

using the getIndexes() method, as you saw earlier.

But MongoDB 3.0 deprecates direct access to the system.indexes collec-

tions; you should use createIndexes and listIndexes instead. The getIndexes()

Java- Script method can be replaced by the db.runCommand({"listIndexes":

"numbers"}) shell command.

For lower-level insight into databases and collections, the stats() method

proves useful. When you run it on a database object, you’ll get the

following output:

> db.stats()

{

"db" : "tutorial",

"collections" : 4,

"objects" : 20010,

"avgObjSize" : 48.0223888055972,

"dataSize" : 960928,

"storageSize" : 2818048,

"numExtents" : 8,

"indexes" : 3,

"indexSize" : 1177344,

"fileSize" : 67108864,

"nsSizeMB" : 16,

"extentFreeList" :

{
"num" : 0,
"totalSize" : 0

},

"dataFileVersion" :

{ "major" : 4,

"minor" : 5

},

"ok" : 1

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

 MongoDB through the Ruby lens

 Installing and connecting

Once you have RubyGems installed, run:

gem install mongo

 You’ll start by connecting to MongoDB. First, make sure that mongod is running
by running the mongo shell to ensure you can connect. Next, create a file called
connect.rb and enter the following code:

require

'rubygems'

require 'mongo'

$client = Mongo::Client.new(['127.0.0.1:27017'], :database =>

'tutorial') Mongo::Logger.logger.level = ::Logger::ERROR

$users =

$client[:users] puts

'connected!'

The first two require statements ensure that you’ve loaded the driver. The

next three lines instantiate the client to localhost and connect to the tutorial

database, store a ref- erence to the users collection in the $users variable, and

print the string connected!. We place a $ in front of each variable to make it

global so that it’ll be accessible out- side of the connect.rb script. Save

This topic covers

■ Introducing the MongoDB API through Ruby

■ Understanding how the drivers work

■ Using the BSON format and MongoDB network

protocol

■ Building a complete sample application

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 9 of 42

the file and run it:

$ ruby connect.rb

D, [2015-06-05T12:32:38.843933 #33946] DEBUG -- : MONGODB | Adding

127.0.0.1:27017 to the cluster. | runtime: 0.0031ms

D, [2015-06-05T12:32:38.847534 #33946] DEBUG -- : MONGODB |
COMMAND |

namespace=admin.$cmd selector={:ismaster=>1} flags=[]

limit=-1 skip=0 project=nil | runtime: 3.4170ms
connected!

 Inserting documents in Ruby

To run interesting MongoDB queries you first need some data, so let’s

create some (this is the C in CRUD). All of the MongoDB drivers are

designed to use the most natu- ral document representation for their

language. In JavaScript, JSON objects are the obvious choice, because

JSON is a document data structure; in Ruby, the hash data structure

makes the most sense. The native Ruby hash differs from a JSON object in

only a couple of small ways; most notably, where JSON separates keys and

values with a colon, Ruby uses a hash rocket (=>).2

Here’s an example:

$ irb -r ./connect.rb

irb(main):017:0> id = $users.insert_one({"last_name" => "mtsouk"})

=> #<Mongo::Operation::Result:70275279152800

documents=[{"ok"=>1, "n"=>1}]> irb(main):014:0>

$users.find().each do |user|
irb(main):015:1* puts user
irb(main):016:1> end

{"_id"=>BSON::ObjectId('55e3ee1c5ae119511d000000'),
"last_name"=>"knuth"}

{"_id"=>BSON::ObjectId('55e3f13d5ae119516a000000'),
"last_name"=>"mtsouk"}

=> #<Enumerator: #<Mongo::Cursor:0x70275279317980

@view=#<Mongo::Collection::View:0x70275279322740

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

namespace='tutorial.users @selector={} @options={}>>:each>

 Updates and deletes

$users.find({"last_name" => "smith"}).update_one({"$set" =>

{"city" => "Chicago"}})

This update finds the first user with a last_name of smith and, if found, sets

the value of city to Chicago. This update uses the $set operator. You can run

a query to show the change:

$users.find({"last_name" => "smith"}).to_a

 Database commands

First, you instantiate a Ruby database object referencing the admin

database. You then pass the command’s query specification to the

command method:

$admin_db = $client.use('admin')

$admin_db.command({"listDatabases" => 1})

Note that this code still depends on what we put in the connect.rb

script above because it expects the MongoDB connection to be in $client.

The response is a Ruby hash listing all the existing databases and their

sizes on disk:

#<Mongo::Operation::Result:70112905054200 documents=[{"databases"=>[

{

"name"=>"local",

"sizeOnDisk"=>83886

080.0, "empty"=>false

},

{

"name"=>"tutorial",

"sizeOnDisk"=>83886

080.0, "empty"=>false

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 9 of 42

},

{

"name"=>"admin",

"sizeOnDisk"=>1.0,

"empty"=>true

}], "totalSize"=>167772160.0, "ok"=>1.0}]>

=> nil

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 21 of 42

 How the drivers work

All MongoDB drivers perform three major functions. First, they

generate Mon- goDB object IDs. These are the default values stored in the

_id field of all documents. Next, the drivers convert any language-specific

representation of documents to and from BSON, the binary data format

used by MongoDB. In the previous examples, the driver serializes all the

Ruby hashes into BSON and then deserializes the BSON that’s returned

from the database back to Ruby hashes.

The drivers’ final function is to communicate with the database over a

TCP socket using the MongoDB wire protocol. The details of the protocol are

beyond the scope of this discussion. But the style of socket communication, in

particular whether writes on the socket wait for a response, is important, and

we’ll explore the topic in this section.

 Object ID generation

Every MongoDB document requires a primary key. That key, which must be

unique for all documents in each collection, is stored in the document’s _id

field. Developers are free to use their own custom values as the _id, but

when not provided, a MongoDB object ID will be used. Before sending a

document to the server, the driver checks whether the _id field is present.

If the field is missing, an object ID will be generated and stored as _id.

MongoDB object IDs are designed to be globally unique, meaning they’re

guaran- teed to be unique within a certain context. How can this be

guaranteed? Let’s exam- ine this in more detail.

You’ve probably seen object IDs in the wild if you’ve inserted

documents into MongoDB, and at first glance they appear to be a string

of mostly random text, like 4c291856238d3b19b2000001.

4-byte
timest
amp

Process ID

4c291856 238d3b 19b2 000001

Machine ID

 Counter

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

Figure 3.1 MongoDB object

ID format

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 29 of 42

representation of 12 bytes, and actually stores some useful information.

These bytes have a specific structure, as illustrated in figure 3.1.

The most significant four bytes carry a standard Unix (epoch)

timestamp3. The next three bytes store the machine ID, which is

followed by a two-byte process ID. The final three bytes store a process-

local counter that’s incremented each time an object ID is generated. The

counter means that ids generated in the same process and second won’t be

duplicated.

Why does the object ID have this format? It’s important to understand

that these IDs are generated in the driver, not on the server. This is different

than many RDBMSs, which increment a primary key on the server, thus

creating a bottleneck for the server generating the key. If more than one

driver is generating IDs and inserting docu- ments, they need a way of

creating unique identifiers without talking to each other. Thus, the

timestamp, machine ID, and process ID are included in the identifier itself

to make it extremely unlikely that IDs will overlap.

You may already be considering the odds of this happening. In practice,

you would encounter other limits before inserting documents at the rate

required to overflow the counter for a given second (224 million per

second). It’s slightly more conceivable (though still unlikely) to imagine that

ifyou had many drivers distributed across many machines, two machines

could have the same machine ID. For example, the Ruby driver uses the

following:

@@machine_id = Digest::MD5.digest(Socket.gethostname)[0, 3]

For this to be a problem, they would still have to have started the MongoDB

driver’s process with the same process ID, and have the same counter value

in a given second. In practice, don’t worry about duplication; it’s

extremely unlikely.

One of the incidental benefits of using MongoDB object IDs is that they

include a timestamp. Most of the drivers allow you to extract the timestamp,

thus providing the document creation time, with resolution to the nearest

second, for free. Using the Ruby

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

driver, you can call an object ID’s generation_time method to get that ID’s

creation time as a Ruby Time object:

irb> require 'mongo'

irb> id = BSON::ObjectId.from_string('4c291856238d3b19b2000001')

=> BSON::ObjectId('4c291856238d3b19b2000001')

irb> id.generation_time

=> 2010-06-28 21:47:02 UTC

Naturally, you can also use object IDs to issue range queries on object

creation time. For instance, if you wanted to query for all documents created

during June 2013, you could create two object IDs whose timestamps

encode those dates and then issue a range query on _id. Because Ruby

provides methods for generating object IDs from any Time object, the code

for doing this is trivial:4

jun_id = BSON::ObjectId.from_time(Time.utc(2013, 6, 1))

jul_id = BSON::ObjectId.from_time(Time.utc(2013, 7,

1)) @users.find({'_id' => {'$gte' => jun_id, '$lt' =>

jul_id}})

As mentioned before, you can also set your own value for _id. This might

make sense in cases where one of the document’s fields is important and

always unique. For instance, in a collection of users you could store the

username in _id rather than on object ID. There are advantages to both

ways, and it comes down to your preference as a developer.

 Building a simple application

Next you’ll build a simple application for archiving and displaying Tweets.

You can imagine this being a component in a larger application that allows

users to keep tabs on search terms relevant to their businesses. This example

will demonstrate how easy it is to consume JSON from an API like Twitter’s

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 29 of 42

and convert that to MongoDB docu- ments. If you were doing this with a

relational database, you’d have to devise a schema in advance, probably

consisting of multiple tables, and then declare those tables. Here, none of

that’s required, yet you’ll still preserve the rich structure of the Tweet docu-

ments, and you’ll be able to query them effectively.

Let’s call the app TweetArchiver. TweetArchiver will consist of two

components: the archiver and the viewer. The archiver will call the Twitter

search API and store the relevant Tweets, and the viewer will display the

results in a web browser.

 Setting up

This application requires four Ruby libraries. The source code repository for

this chap- ter includes a file called Gemfile, which lists these gems. Change

your working directory

gem install bundler bundle install

This will ensure the bundler gem is installed. Next, install the other

gems using Bundler’s package management tools. This is a widely used

Ruby tool for ensuring that the gems you use match some predetermined

versions: the versions that match our code examples.

Our Gemfile lists the mongo, twitter, bson and sinatra gems, so these

will be installed. The mongo gem we’ve used already, but we include it to be

sure we have the right version. The twitter gem is useful for communicating

with the Twitter API.

We provide the source code for this example separately, but introduce it

gradually to help you understand it. We recommend you experiment and

try new things to get the most out of the example.

It’ll be useful to have a configuration file that you can share between the

archiver and viewer scripts. Create a file called config.rb (or copy it from the

source code) that looks like this:

DATABASE_HOST =

'localhost'

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

DATABASE_PORT =

27017

DATABASE_NAME = "twitter-

archive" COLLECTION_NAME

= "tweets"
TAGS = ["#MongoDB", "#Mongo"]

CONSUMER_KEY =

"replace me"

CONSUMER_SECRET =

"replace me" TOKEN

 = "replace

me" TOKEN_SECRET =

"replace me"

First you specify the names of the database and collection you’ll use for your

applica- tion. Then you define an array of search terms, which you’ll send to

the Twitter API.

Twitter requires that you register a free account and an application for

accessing the API, which can be accomplished at http://apps.twitter.com.

Once you’ve regis- tered an application, you should see a page with its

authentication information, per- haps on the API keys tab. You will also have

to click the button that creates your access token. Use the values shown to

fill in the consumer and API keys and secrets.

 Gathering data

The next step is to write the archiver script. You start with a TweetArchiver

class. You’ll instantiate the class with a search term. Then you’ll call the

update method on the TweetArchiver instance, which issues a Twitter API

call, and save the results to a MongoDB collection.

 Let’s start with the class’s constructor:

def initialize(tag)

connection = Mongo::Connection.new(DATABASE_HOST,

DATABASE_PORT) db = connection[DATABASE_NAME]

@tweets = db[COLLECTION_NAME]

@tweets.ensure_index([['tags', 1], ['id', -1]])

http://apps.twitter.com/
http://apps.twitter.com/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 29 of 42

@tag = tag

@tweets_found = 0

@client = Twitter::REST::Client.new do

|config| config.consumer_key =

API_KEY config.consumer_secret =

API_SECRET config.access_token =

ACCESS_TOKEN

config.access_token_secret =

ACCESS_TOKEN_SECRET

en

d

end

The initialize method instantiates a connection, a database object, and the

collec- tion object you’ll use to store the Tweets.

You’re creating a compound index on tags ascending and id descending.

Because you’re going to want to query for a particular tag and show the

results from newest to oldest, an index with tags ascending and id

descending will make that query use the index both for filtering results and

for sorting them. As you can see here, you indicate index direction with 1 for

ascending and -1 for descending. Don’t worry if this doesn’t make sense

now—we discuss indexes with much greater depth in chapter 8.

You’re also configuring the Twitter client with the authentication

information from config.rb. This step hands these values to the Twitter gem,

which will use them when calling the Twitter API. Ruby has somewhat unique

syntax often used for this sort of con- figuration; the config variable is passed

to a Ruby block, in which you set its values.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

In the future, Twitter may change its API so that different values are returned,

which will likely require a schema change if you want to store these additional

values. Not so with MongoDB. Its schema-less design allows you to save the

document you get from the Twitter API without worrying about the exact

format.

The Ruby Twitter library returns Ruby hashes, so you can pass these

directly to your MongoDB collection object. Within your TweetArchiver, you

add the following instance method:

def save_tweets_for(term)

@client.search(term).each do

|tweet|

@tweets_found += 1

tweet_doc =

tweet.to_h

tweet_doc[:tags] =

term

tweet_doc[:_id] =

tweet_doc[:id]

@tweets.insert_one(tweet_do

c)

en

d

end

Before saving each Tweet document, make two small modifications. To

simplify later queries, add the search term to a tags attribute. You also set

the _id field to the ID of the Tweet, replacing the primary key of your

collection and ensuring that each Tweet is added only once. Then you pass

the modified document to the save method.

To use this code in a class, you need some additional code. First, you

must config- ure the MongoDB driver so that it connects to the correct

mongod and uses the desired database and collection. This is simple code

that you’ll replicate often as you use MongoDB. Next, you must configure

the Twitter gem with your developer credentials. This step is necessary

because Twitter restricts its API to registered developers. The next listing

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 29 of 42

also provides an update method, which gives the user feedback and calls

save_tweets_for.

 Listing 3.1 archiver.rb—A class for fetching Tweets and archiving
them in MongoDB

$LOAD_PATH << File.dirname(

FILE) require 'rubygems'

require 'mongo'

require 'twitter'

require 'config'

class TweetArchiver

def initialize(tag)

client =

Mongo::Client.new(["#{DATABASE_HOST}:#{DATABASE_PORT}"],:

database => "#{DATABASE_NAME}")

 @tweets =

client["#{COLLECTION_NAME}"]

@tweets.indexes.drop_all

@tweets.indexes.create_many([

{ :key => { tags: 1 }},

{ :key => { id: -1 }}

])

@tag = tag

@tweets_found = 0

client = Twitter::REST::Client.new do |config| config.consumer_key =

"#{API_KEY}" config.consumer_secret = "#{API_SECRET}"

config.access_token = "#{ACCESS_TOKEN}"

config.access_token_secret = "#{ACCESS_TOKEN_SECRET}"

end end

Configure the Twitter client using the values found in config.rb.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

 def update

puts "Starting Twitter search for '#{@tag}'..." save_tweets_for(@tag)

print "#{@tweets_found} Tweets saved.\n\n" end

private

A user facing method to wrap save_tweets_for

def save_tweets_for(term) @client.search(term).each do |tweet|

@tweets_found += 1 tweet_doc = tweet.to_h tweet_doc[:tags] =

term

tweet_doc[:_id] = tweet_doc[:id] @tweets.insert_one(tweet_doc)

end end

end

Search with the Twitter client and save the results to
Mongo.

All that remains is to write a script to run the TweetArchiver code against

each of the search terms. Create a file called update.rb (or copy it from the

provided code) con- taining the following:

$LOAD_PATH << File.dirname(

FILE) require 'config'

require 'archiver'

TAGS.each do |tag|

archive =

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 29 of 42

TweetArchiver.new(tag)

archive.update
end

Next, run the update script:

ruby update.rb

You’ll see some status messages indicating that Tweets have been found and

saved. You can verify that the script works by opening the MongoDB shell

and querying the col- lection directly:

> use twitter-archive

switched to db twitter-archive

> db.tweets.coun

t() 30

What’s important here is that you’ve managed to store Tweets from Twitter

searches in only a few lines of code.5 Next comes the task of displaying

the results.

 Viewing the archive

You’ll use Ruby’s Sinatra web framework to build a simple app to display the

results. Sinatra allows you to define the endpoints for a web application

and directly specify the response. Its power lies in its simplicity. For

example, the content of the index page for your application can be

specified with the following:

get '/' do

"respons

e"

end

This code specifies that GET requests to the / endpoint of your application

return the

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

value of response to the client. Using this format, you can write full web

applications with many endpoints, each of which can execute arbitrary Ruby

code before returning a response. You can find more information, including

Sinatra’s full documentation, at http://sinatrarb.com.

We’ll now introduce a file called viewer.rb and place it in the same

directory as the other scripts. Next, make a subdirectory called views, and

place a file there called tweets.erb. After these steps, the project’s file

structure should look like this:

- config.rb

- archiver.rb

- update.rb

- viewer.rb

- /views

- tweets.erb

Again, feel free to create these files yourself or copy them from the code

examples. Now edit viewer.rb with the code in the following listing.

 Listing 3.2 viewer.rb—Sinatra application for displaying the Tweet

archive

$LOAD_PATH << File.dirname(

FILE) require 'rubygems'

require 'mongo'

require 'sinatra'

require 'config'

require 'open-uri'

b Required
libraries

configure do

client = Mongo::Client.new(["#{DATABASE_HOST}:#{DATABASE_PORT}"],
:database

=> "#{DATABASE_NAME}")

http://sinatrarb.com/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Page 33 of 42

TWEETS = client["#{COLLECTION_NAME}"]

end

get '/' do

if params['tag']

selector = {:tags => params['tag']} else

selector = {} end

Instantiate collection

c for tweets

d Dynamically build query selector…

…or use

e blank selector

@tweets = TWEETS.find(selector).sort(["id", -1]) erb :tweets

end

The first lines require the necessary libraries along with your config file

B. Next there’s a configuration block that creates a connection to MongoDB

and stores a refer- ence to your tweets collection in the constant
TWEETS c.

The real meat of the application is in the lines beginning with get '/' do. The

code in this block handles requests to the application’s root URL. First, you build your

query selector. If a tags URL parameter has been provided, you create a query
selector that restricts the result set to the given tags d. Otherwise, you create

a blank selector, which returns all documents in the collection e. You then

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

issue the query f. By now, you should know that what gets assigned to the
@tweets variable isn’t a result set but a

cursor. You’ll iterate over that cursor in your view.

The last line g renders the view file tweets.erb (see the next listing).

 Listing 3.3 tweets.erb—HTML with embedded Ruby for rendering
the Tweets

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

<style>

body

{

width: 1000px;

margin: 50px

auto;

font-family: Palatino,

serif; background-color:

#dbd4c2; color: #555050;

}

h2 {

margin-top: 2em;

font-family: Arial, sans-

serif; font-weight: 100;

}

</style>

</head>

<body>

<h1>Tweet Archive</h1>

<% TAGS.each do |tag| %>

<a href="/?tag=<%= URI::encode(tag) %>"><%= tag %>

<% end %>

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Page 33 of 42

<% @tweets.each do |tweet| %>

<h2><%= tweet['text'] %></h2>

<p>

<a href="http://twitter.com/<%= tweet['user']['screen_name'] %>">

<%= tweet['user']['screen_name'] %>

on <%= tweet['created_at'] %>

</p>

<img src="<%= tweet['user']['profile_image_url'] %>" width="48" />

<% end %>

</body>

</html>

Most of the code is just HTML with some ERB (embedded Ruby) mixed in.

The Sinatra app runs the tweets.erb file through an ERB processor and

evaluates any Ruby code between <% and %> in the context of the

application.

The important parts come near the end, with the two iterators. The first

of these cycles through the list of tags to display links for restricting the result

set to a given tag.

The second iterator, beginning with the @tweets.each code, cycles through each
Tweet to display the Tweet’s text, creation date, and user profile image. You can see
results by running the application:

$ ruby viewer.rb

If the application starts without error, you’ll see the standard Sinatra startup

message that looks something like this:

$ ruby viewer.rb

[2013-07-05 18:30:19] INFO WEBrick 1.3.1

[2013-07-05 18:30:19] INFO ruby 1.9.3 (2012-04-20) [x86_64-darwin10.8.0]

== Sinatra/1.4.3 has taken the stage on 4567 for development with

backup from WEBrick

[2013-07-05 18:30:19] INFO WEBrick::HTTPServer#start: pid=18465

http://twitter.com/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

port=4567

You can then point your web browser to http://localhost:4567. The page

should look something like the screenshot in figure 3.2. Try clicking on the

links at the top of the screen to narrow the results to a particular tag.

Figure 3.2 Tweet Archiver output rendered in a web browser

 69

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

UNIT II
 SYLLABUS

Application Development: Document-oriented data – Principles of schema design –
Designing an e-commerce data model – Nuts and bolts on databases, collections,

and documents. Queries and aggregation – E-commerce queries – MongoDB‟s query

language – Aggregating orders – Aggregation in detail.

 Principles of schema design

Database schema design is the process of choosing the best representation

for a data set, given the features of the database system, the nature of the

data, and the applica- tion requirements. The principles of schema design

for relational database systems are well established. With RDBMSs, you’re

encouraged to shoot for a normalized data model,1 which helps to ensure

generic query ability and avoid updates to data that might result in

inconsistencies. Moreover, the established patterns prevent developers from

wondering how to model, say, one-to-many and many-to-many relationships.

What are your application access patterns?

What’s the basic unit of data?

 What are the capabilities of your database?

 What makes a good unique id or primary key for a record?

 Designing an e-commerce data model

E-commerce has the advantage of including a large number of famil- iar

data modeling patterns. Plus, it’s not hard to imagine how products,

categories, product reviews, and orders are typically modeled in an

RDBMS.

E-commerce has typically been done with RDBMSs for a couple of reasons.

The first is that e-commerce sites generally require transactions, and

transactions are an RDBMS staple.

This topic covers

■ Schema design

■ Data models for e-commerce

■ Nuts and bolts of databases, collections, and

documents

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

The second is that, until recently, domains that require rich data models

and sophisticated queries have been assumed to fit best within the realm

of the RDBMS.

Schema basics

Products and categories are the mainstays of any e-commerce site. Products,

in a nor- malized RDBMS model, tend to require a large number of tables.

There’s a table for basic product information, such as the name and SKU,

but there will be other tables to relate shipping information and pricing

histories.

This multitable schema will be facil- itated by the RDBMS’s ability to join

tables.

More concretely, listing 4.1 shows a sample product from a gardening store.

It’s advis- able to assign this document to a variable before inserting it to

the database using db.products.insert(yourVariable) to be able to run the

queries discussed over the next several pages.

 Listing 4.1 A sample product document

{

_id: ObjectId("4c4b1476238d3b4dd5003981"), slug: "wheelbarrow-9092",

sku: "9092",

name: "Extra Large Wheelbarrow", description: "Heavy duty

wheelbarrow...", details: {

weight: 47, weight_units: "lbs", model_num: 4039283402,

manufacturer: "Acme", color: "Green"

},

total_reviews: 4,

average_review: 4.5, pricing: {
retail: 589700,
sale: 489700,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

},

price_history: [

{

retail: 529700,

sale: 429700,

start: new Date(2010, 4, 1),

end: new Date(2010, 4, 8)

},

{

retail: 529700,

sale: 529700,

start: new Date(2010, 4, 9),

end: new Date(2010, 4, 16)

b Unique object ID

c Unique slug

Nested

d document

e One-to-many relationship

},

],

primary_category: ObjectId("6a5b1476238d3b4dd5000048"),

category_ids: [

ObjectId("6a5b1476238d3b4dd5000048"),

ObjectId("6a5b1476238d3b4dd5000049")

], f
main_cat_id: ObjectId("6a5b1476238d3b4dd5000048"),
tags: ["tools", "gardening", "soil"],

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

Many-to-many relationship

ONE-TO-MANY RELATIONSHIPS

This is a one-to-many relationship, since a product only has one primary
category, but a category can be the primary for many products.

MANY-TO-MANY RELATIONSHIPS
MongoDB doesn’t support joins, so you need a different many-to-many

strategy. We’ve defined a field called category_ids f containing an array of

object IDs. Each object ID acts as a pointer to the _id field of some
category document.

A RELATIONSHIP STRUCTURE

The next listing shows a sample category document. You can assign it to a new

variable and insert it into the categories collection using

db.categories.insert(newCategory). This will help you using it in forthcoming

queries without having to type it again.

 Listing 4.2 A category document

{

_id:

ObjectId("6a5b1476238d3b4dd50000

48"), slug: "gardening-tools",

name: "Gardening Tools",

description: "Gardening gadgets galore!",

parent_id:

ObjectId("55804822812cb336b78728f9"),

ancestors: [

{

name: "Home",

_id:

ObjectId("558048f0812cb336b78728f

a"), slug: "home"
},

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

{

name: "Outdoors",

_id:

ObjectId("55804822812cb336b78728

f9"), slug: "outdoors"

}

]

}

 Nuts and bolts: On databases,

collections, and documents

 Databases

A database is a namespace and physical grouping of collections and their

indexes. In this section, we’ll discuss the details of creating and deleting

databases. We’ll also jump down a level to see how MongoDB allocates

space for individual databases on the filesystem.

MANAGING DATABASES

There’s no explicit way to create a database in MongoDB. Instead, a

database is cre- ated automatically once you write to a collection in that

database. Have a look at this Ruby code:

connection = Mongo::Client.new(['127.0.0.1:27017'], :database =>

'garden') db = connection.database

Recall that the JavaScript shell performs this connection when you start it,

and then allows you to select a database like this:

use garden

Assuming that the database doesn’t exist already, the database has yet to be

created on disk even after executing this code. All you’ve done is instantiate

an instance of the class Mongo::DB, which represents a MongoDB database.

Only when you write to a col- lection are the data files created.

Continuing on in Ruby,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

products = db['products']

products.insert_one({:name => "Extra Large Wheelbarrow"})

When you call insert_one on the products collection, the driver tells

MongoDB to insert the product document into the garden.products

collection. If that collec- tion doesn’t exist, it’s created; part of this

involves allocating the garden database on disk.

You can delete all the data in this collection by calling:

products.find({}).delete_many

This removes all documents which match the filter {}, which is all

documents in the collection. This command doesn’t remove the collection

itself; it only empties it. To remove a collection entirely, you use the drop

method, like this:

products.drop

To delete a database, which means dropping all its collections, you issue a

special com- mand. You can drop the garden database from Ruby like so:

db.drop

From the MongoDB shell, run the dropDatabase() method using JavaScript:

use garden

db.dropDatabas

e();

Be careful when dropping databases; there’s no way to undo this operation

since it erases the associated files from disk. Let’s look in more detail at how

databases store their data.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

DATA FILES AND ALLOCATION

When you create a database, MongoDB allocates a set of data files on disk.

All collec- tions, indexes, and other metadata for the database are stored in

these files. The data files reside in whichever directory you designated as the

dbpath when starting mongod. When left unspecified, mongod stores all its

files in /data/db.3 Let’s see how this direc- tory looks after creating the

garden database:

$ cd /data/db

$ ls -lah
drwxr-
xr-x

81
pbakkum

admi
n

2.7K
Jul

1 10:42 .

drwxr-
xr-x

5 root admi
n

170B
Sep

19 2012 ..

-rw------- 1
pbakkum

admi
n

64M Jul 1 10:43 garden.0

-rw------- 1
pbakkum

admi
n

128M
Jul

1 10:42 garden.1

-rw------- 1
pbakkum

admi
n

16M Jul 1 10:43
garden.ns

-rwxr-xr-
x

1
pbakkum

admi
n

3B Jul 1 08:31
mongod.lock

 Collections

Collections are containers for structurally or conceptually similar

documents. Here,

MANAGING COLLECTIONS

As you saw in the previous section, you create collections implicitly by

inserting docu- ments into a particular namespace. But because more than

one collection type exists, MongoDB also provides a command for creating

collections. It provides this com- mand from the JavaScript shell:

db.createCollection("users")

When creating a standard collection, you have the option of preallocating a

specific number of bytes. This usually isn’t necessary but can be done like

this in the Java- Script shell:

db.createCollection("users", {size: 20000})

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

Collection names may contain numbers, letters, or . characters, but must

begin with a letter or number. Internally, a collection name is identified

by its namespace name, which includes the name of the database it

belongs to. Thus, the products collection is technically referred to as

garden.products when referenced in a mes- sage to or from the core server.

This fully qualified collection name can’t be longer than 128 characters.

It’s sometimes useful to include the . character in collection names to

provide a kind of virtual namespacing. For instance, you can imagine a series

of collections with titles like the following:

products.categor

ies

products.images

products.reviews

Keep in mind that this is only an organizational principle; the database

treats collec- tions named with a . like any other collection.

Collections can also be renamed. As an example, you can rename the

products col- lection with the shell’s renameCollection method:

db.products.renameCollection("store_products")

 Listing 4.6 Simulating the logging of user actions to a capped

collection

require 'mongo'

VIEW_PRODUCT = 0 # action type constants ADD_TO_CART = 1
CHECKOUT = 2
PURCHASE = 3

client = Mongo::Client.new(['127.0.0.1:27017'], :database => 'garden')

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

 client[:user_actions].drop

actions = client[:user_actions, :capped => true, :size => 16384]

actions.create

500.times do |n| # loop 500 times, using n as the iterator doc = {

:username => "kbanker",

:action_code => rand(4), # random value between 0 and 3, inclusive
:time => Time.now.utc,

:n => n

}

actions.insert_one(d

oc) end

First, you create a 16 KB capped collection called user_actions using client.6

Next, you insert 500 sample log documents B. Each document contains a

username, an action code (represented as a random integer from 0
through 3), and a timestamp. You’ve included an incrementing integer, n,
so that you can identify which documents have aged out. Now you’ll query
the collection from the shell:

> use garden

> db.user_actions.coun

t(); 160

Even though you’ve inserted 500 documents, only 160 documents exist in

the collec- tion.7 If you query the collection, you’ll see why:

db.user_actions.find().pretty();

{

"_id" :

ObjectId("51d1c69878b10e1a0e000040"

), "username" : "kbanker",

"action_code" : 3,

"time" : ISODate("2013-07-

01T18:12:40.443Z"), "n" : 340

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

"_id" :

ObjectId("51d1c69878b10e1a0e000041"),

"username" : "kbanker",

"action_code" : 2,

"time" : ISODate("2013-07-

01T18:12:40.444Z"), "n" : 341

"_id" :

ObjectId("51d1c69878b10e1a0e000042"),

"username" : "kbanker",
"action_code" : 2,
"time" : ISODate("2013-07-

01T18:12:40.445Z"), "n" : 342

TTL COLLECTIONS

MongoDB also allows you to expire documents from a collection after a

certain amount of time has passed. These are sometimes called time-to-live

(TTL) collections, though this functionality is actually implemented using a

special kind of index. Here’s how you would create such a TTL index:

>

>

>

> db.reviews.createIndex({time_field: 1}, {expireAfterSeconds: 3600})

This command will create an index on time_field.

between time_field and the current time is greater than your

expireAfterSeconds setting, then the document will be removed

automatically. In this example, review documents will be deleted after

an hour.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

Using a TTL index in this way assumes that you store a timestamp in
time_field.

Here’s an example of how to do this:

> db.reviews.insert({

time_field: new

Date(),
...

})

SYSTEM COLLECTIONS

Part of MongoDB’s design lies in its own internal use of collections. Two of

these spe- cial system collections are system.namespaces and

system.indexes. You can query the former to see all the namespaces

defined for the current database:

> db.system.namespaces.find();

{ "name" : "garden.system.indexes" }

{ "name" : "garden.products.$_id_" }

{ "name" : "garden.products" }

{ "name" : "garden.user_actions.$_id_" }

{ "name" : "garden.user_actions", "options" : { "create" :

"user_actions", "capped" : true, "size" : 1024 } }

The first collection, system.indexes, stores each index definition for the

current database. To see a list of indexes you’ve defined for the garden

database, query the collection:

> db.system.indexes.find();

{ "v" : 1, "key" : { "_id" : 1 }, "ns" : "garden.products", "name" : "_id_" }

{ "v" : 1, "key" : { "_id" : 1 }, "ns" : "garden.user_actions", "name" :

"_id_" }

{ "v" : 1, "key" : { "time_field" : 1 }, "name" : "time_field_1", "ns" :

"garden.reviews", "expireAfterSeconds" : 3600 }

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

 Documents and insertion

DOCUMENT SERIALIZATION, TYPES, AND LIMITS

All documents are serialized to BSON before being sent to MongoDB;

they’re later deserialized from BSON. The driver handles this process and

translates it from and to the appropriate data types in its programming

language. Most of the drivers provide a simple interface for serializing from

and to BSON; this happens automatically when reading and writing

documents. You don’t need to worry about this normally, but we’ll

demonstrate it explicitly for educational purposes.

In the previous capped collections example, it was reasonable to assume

that the sample document size was roughly 102 bytes. You can check this

assumption by using the Ruby driver’s BSON serializer:

doc = {

:_id => BSON::ObjectId.new,

:username => "kbanker",

:action_code => rand(5),

:time => Time.now.utc,

:n => 1

}

bson = doc.to_bson

puts "Document #{doc.inspect} takes up #{bson.length} bytes as BSON"

Deserializing BSON is as straightforward with a little help from the

StringIO class.

Try running this Ruby code to verify that it works:

string_io = StringIO.new(bson)

deserialized_doc =

String.from_bson(string_io)

puts "Here's our document deserialized from

BSON:" puts deserialized_doc.inspect

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

STRINGS

All string values must be encoded as UTF-8. Though UTF-8 is quickly

becoming the standard for character encoding, there are plenty of

situations when an older encod- ing is still used. Users typically encounter

issues with this when importing data gener- ated by legacy systems into

MongoDB.

NUMBERS

BSON specifies three numeric types: double, int, and long. This means that

BSON can encode any IEEE floating-point value and any signed integer up

to 8 bytes in length. When serializing integers in dynamic languages, such as

Ruby and Python, the driver will automatically determine whether to

encode as an int or a long. In fact, there’s only one common situation

where a number’s type must be made explicit: when you’re inserting

numeric data via the JavaScript shell. JavaScript, unhappily, natively

supports only a single numeric type called Number, which is equivalent to an

IEEE 754 Double. Consequently, if you want to save a numeric value from the

shell as an integer, you need to be explicit, using either NumberLong() or

NumberInt(). Try this example:

db.numbers.save({n: 5});

db.numbers.save({n:

NumberLong(5)});

You’ve saved two documents to the numbers collection, and though their

values are equal, the first is saved as a double and the second as a long

integer. Querying for all documents where n is 5 will return both

documents:

> db.numbers.find({n: 5});

{ "_id" : ObjectId("4c581c98d5bbeb2365a838f9"), "n" : 5 }

{ "_id" : ObjectId("4c581c9bd5bbeb2365a838fa"), "n" : NumberLong(5) }

DATETIMES

The BSON datetime type is used to store temporal values. Time values are

represented using a signed 64-bit integer marking milliseconds since the

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

Unix epoch. A negative value marks milliseconds prior to the epoch.10

VIRTUAL TYPES

What if you must store your times with their time zones? Sometimes the

basic BSON types don’t suffice. Though there’s no way to create a

custom BSON type, you can compose the various primitive BSON values

to create your own virtual type in a sub- document. For instance, if you

wanted to store times with zone, you might use a docu- ment structure like

this, in Ruby:

{

time_with_zone:

{ time: new

Date(), zone:

"EST"

}

}

It’s not difficult to write an application so that it transparently handles these

compos- ite representations. This is usually how it’s done in the real

world. For example, Mongo-Mapper, an object mapper for MongoDB

written in Ruby, allows you to define to_mongo and from_mongo methods for

any object to accommodate these sorts of cus- tom composite types.

LIMITS ON DOCUMENTS

BSON documents in MongoDB v2.0 and later are limited to 16 MB in size.

The limit exists for two related reasons. First, it’s there to prevent

developers from creating ungainly data models. Though poor data models

are still possible with this limit, the 16 MB limit helps discourage schemas

with oversized documents.

If you find yourself needing to store documents greater than 16 MB,

consider whether your schema should split data into smaller documents,

or whether a MongoDB document is even the right place to store such

information—it may be better managed as a file.

The second reason for the 16 MB limit is performance-related. On the

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

server side, querying a large document requires that the document be

copied into a buffer before being sent to the client. This copying can get

expensive, especially (as is often the case) when the client doesn’t need

the entire document.12 In addition, once sent, there’s the work of

transporting the document across the network and then deserializ- ing it on

the driver side. This can become especially costly if large batches of multi-

megabyte documents are being requested at once.

MongoDB documents are also limited to a maximum nesting depth of 100.

Nesting occurs whenever you store a document within a document. Using

deeply nested docu- ments—for example, if you wanted to serialize a tree

data structure to a MongoDB

document—results in documents that are difficult to query and can cause problems
during access. These types of data structures are usually accessed through recursive
function calls, which can outgrow their stack for especially deeply nested documents.

BULK INSERTS

All of the drivers make it possible to insert multiple documents at once.

This can be extremely handy if you’re inserting lots of data, as in an initial

bulk import or a migra- tion from another database system. Here’s a simple

Ruby example of this feature:

docs = [# define an array of documents

{ :username => 'kbanker' },

{ :username => 'pbakkum' },

{ :username => 'sverch' }

]

@col = @db['test_bulk_insert']

@ids = @col.insert_many(docs) # pass the entire array to

insert puts "Here are the ids from the bulk insert:

#{@ids.inspect}"

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

 E-commerce queries

For instance, _id lookups shouldn’t be a mystery at this point. But we’ll also

show you a few more sophisticated patterns, including querying for and dis-

playing a category hierarchy, as well as providing filtered views of product

listings.

Products, categories, and reviews

Most e-commerce applications provide at least two basic views of products and

catego- ries. First is the product home page, which highlights a given

product, displays reviews, and gives some sense of the product’s categories.

Second is the product listing page, which allows users to browse the category

hierarchy and view thumbnails of all the products within a selected

category. Let’s begin with the product home page, in many ways the

simpler of the two.

Imagine that your product page URLs are keyed on a product slug (you

learned about these user-friendly permalinks in chapter 4). In that case,

you can get all the data you need for your product page with the

following three queries:

roduct = db.products.findOne({'slug': 'wheel-barrow-

9092'}) db.categories.findOne({'_id':

product['main_cat_id']}) db.reviews.find({'product_id':

product['_id']})

FINDONE VS. FIND QUERIES

The findOne method is similar to the following, though a cursor is returned

even when you apply a limit:

Constructing Queries

This topic covers

■ Querying an e-commerce data model

■ The MongoDB query language in detail

■ Query selectors and options

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

db.products.find({'slug': 'wheel-barrow-9092'}).limit(1)

SKIP, LIMIT, AND SORT QUERY OPTIONS

Most applications paginate reviews, and for enabling this MongoDB provides
skip and

limit options. You can use these options to paginate the review document like
this:

db.reviews.find({'product_id': product['_id']}).skip(0).limit(12)

db.reviews.find({'product_id': product['_id']}).

sort({'helpful_votes': -1}).

limit(12)

page_number = 1

product = db.products.findOne({'slug': 'wheel-barrow-

9092'}) category = db.categories.findOne({'_id':

product['main_cat_id']}) reviews_count =

db.reviews.count({'product_id': product['_id']}) reviews =

db.reviews.find({'product_id': product['_id']}).

skip((page_number - 1) *

12). limit(12).

sort({'helpful_votes': -1})

 MongoDB’s query language

 Query criteria and selectors

Query criteria allow you to use one or more query selectors to specify the

query’s results. MongoDB gives you many possible selectors. This section

provides an overview.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

SELECTOR MATCHING

The simplest way to specify a query is with a selector whose key-value pairs

literally match against the document you’re looking for. Here are a

couple of examples:

db.users.find({'last_name': "Banker"})

db.users.find({'first_name': "Smith", birth_year:

1975})

RANGES

Table 5.1 shows the range query operators most commonly used in

MongoDB.

Table 5.1 Summary of range query operators

Operator Description

$lt Less than

$gt Greater than

$lte Less than or equal

$gte Greater than or equal

Beginners sometimes struggle with combining these operators. A common

mistake is to repeat the search key:

db.users.find({'birth_year': {'$gte': 1985}, 'birth_year': {'$lte': 2015}})

The aforementioned query only takes into account the last condition. You

can prop- erly express this query as follows:

db.users.find({'birth_year': {'$gte': 1985, '$lte': 2015}})

SET OPERATORS

Three query operators—$in, $all, and $nin—take a list of one or more

values as their predicate, so these are called set operators. $in returns a

document if any of the given values matches the search key.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

Table 5.2 Summary of set operators

Operator Descri

ption

$in

$all

$nin

Matches if any of the arguments are in the referenced
set

Matches if all of the arguments are in the referenced

set and is used in documents that contain arrays

Matches if none of the arguments are in the referenced
set

If the following list of category IDs

[

ObjectId("6a5b1476238d3b4dd5

000048"),

ObjectId("6a5b1476238d3b4dd5

000051"),

ObjectId("6a5b1476238d3b4dd5

000057")

]

corresponds to the lawnmowers, hand tools, and work clothing categories,

the query to find all products belonging to these categories looks like

this:

db.products.find({

'main_cat_id':

{

'$in': [

ObjectId("6a5b1476238d3b4dd5

000048"),

ObjectId("6a5b1476238d3b4dd5

000051"),

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

ObjectId("6a5b1476238d3b4dd5

000057")

]

}

})

Table 5.3 Summary of Boolean operators

Operator Descri
ption

$ne Matches if the argument is not equal to
the element

$not Inverts the result of a match

$or Matches if any of the supplied set of
query terms is true

$nor Matches if none of the supplied set of
query terms are true

$and Matches if all of the supplied set of
query terms are true

$exists Matches if the element exists in the
document.

QUERYING FOR A DOCUMENT WITH A SPECIFIC KEY

The final operator we’ll discuss in this section is $exists. This operator is

necessary because collections don’t enforce a fixed schema, so you

occasionally need a way to query for documents containing a particular

key. Recall that you’d planned to use

each product’s details attribute to store custom fields. You might, for instance,

store a color field inside the details attribute. But if only a subset of all

products specify a set of colors, then you can query for the ones that

don’t like this:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

db.products.find({'details.color': {$exists: false}})

The opposite query is also possible:

db.products.find({'details.color': {$exists: true}})

ARRAYS

Arrays give the document model much of its power. As you’ve seen in the e-

commerce example, arrays are used to store lists of strings, object IDs,

and even other docu- ments.

Arrays afford rich yet comprehensible documents; it stands to reason that

MongoDB would let you query and index the array type with ease. And it’s

true: the simplest array queries look like queries on any other document

type, as you can see in table 5.4.

Table 5.4 Summary of array operators

Operator Descri
ption

$elemMatc

h

$size

Matches if all supplied terms are in the same
subdocument

Matches if the size of the array subdocument is the
same as the supplied literal value

Let’s look at these arrays in action. Take product tags again. These tags

are repre- sented as a simple list of strings:

{

_id:

ObjectId("4c4b1476238d3b4dd5003981

"), slug: "wheel-barrow-9092",

sku: "9092",

tags: ["tools", "equipment", "soil"]

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

Querying for products with the tag "soil" is trivial and uses the same syntax as

query- ing a single document value:

db.products.find({tags: "soil"})

Importantly, this query can take advantage of an index on the tags field. If

you build the required index and run your query with explain(), you’ll see

that a B-tree cursor3 is used:

db.products.ensureIndex({tags: 1})

db.products.find({tags:

"soil"}).explain()

When you need more control over your array queries, you can use dot

notation to query for a value at a particular position within the array. Here’s

how you’d restrict the previous query to the first of a product’s tags:

db.products.find({'tags.0': "soil"})

REGULAR EXPRESSIONS

The $regex operator is summarized here:

■ $regex Match the element against the supplied regex term

MongoDB is a case-sensitive system, and when using a regex, unless you

use the /i modifier (that is, /best|worst/i), the search will have to exactly

match the case of the fields being searched. But one caveat is that if you

do use /i, it will disable the use of indexes. If you want to do indexed case-

insensitive search of the contents of string fields in documents, consider

either storing a duplicate field with the contents forced to lowercase

specifically for searching or using MongoDB’s text search capabili- ties,

which can be combined with other queries and does provide an indexed

case- insensitive search.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

MISCELLANEOUS QUERY OPERATORS

Two more query operators aren’t easily categorized and thus deserve their

own sec- tion. The first is $mod, which allows you to query documents

matching a given modulo operation, and the second is $type, which

matches values by their BSON type. Both are detailed in table 5.5.

Table 5.5 Summary of miscellaneous operators

Oper

ator

Descri

ption

$mod [(quotient),(result)]

$type

$text

Matches if the element matches the

result when divided by the quotient

Matches if the element type matches a
specified BSON type

Allows you to performs a text search

on the content of the fields indexed

with a text index

For instance, $mod allows you to find all order subtotals that are evenly

divisible by 3 using the following query:

db.orders.find({subtotal: {$mod: [3, 0]}})

You can see that the $mod operator takes an array having two values. The

first is the divisor and the second is the expected remainder. This query

technically reads, “Find all documents with subtotals that return a

remainder of 0 when divided by 3.” This is a contrived example, but it

demonstrates the idea. If you end up using the $mod opera- tor, keep in

mind that it won’t use an index.

The second miscellaneous operator, $type, matches values by their

BSON type. I don’t recommend storing multiple types for the same field

within a collection, but if the situation ever arises, you have a query

operator that lets you test against type.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

Table 5.6 BSON types

BSON type $ty
pe

numb
er

Exam
ple

Double 1 123.456

“Now is the time”

{ name:"Tim",age:"myob" }

[123,2345,"string"]

BinData(2,"DgAAAEltIHNvbWUgYmlu

YXJ5")

ObjectId("4e1bdda65025ea6601560b

50") true

ISODate("2011-02-24T21:26:00Z")

null

/test/i

function() {return false;}

Not used; deprecated in

the standard function

(){return false;}

10

{ "t" :

1371429067, "i"

: 0

}

NumberLong(10)

String (UTF-8) 2

Object 3

Array 4

Binary 5

ObjectId 7

Boolean 8

Date 9

Null 10

Regex 11

JavaScript 13

Symbol 14

Scoped
JavaScript

15

32-bit integer 16

Timestamp 17

64-bit integer

18

Maxkey 127

Minkey 255

Maxkey 128

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

{"$maxKey": 1}

{ "$minKey" : 1}

{"maxkey" : { "$maxKey" : 1 }}

PROJECTIONS

■ Projections are most commonly defined as a set of

fields to return:

db.users.find({}, {'username': 1})

SORTING

db.reviews.find({}).sort({'rating': -1})

Naturally, it might be more useful to sort by helpfulness and then by rating:

db.reviews.find({}).sort({'helpful_votes':-1, 'rating': -1})

SKIP AND LIMIT

db.docs.find({}).skip(500000).limit(10).sort({date: -1})

becomes this:

previous_page_date = new Date(2013, 05, 05)

db.docs.find({'date': {'$gt': previous_page_date}}).limit(10).sort({'date': -1})

This topic covers

■ Aggregation on the e-commerce data model

■ Aggregation framework details

■ Performance and limitations

■ Other aggregation capabilities

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

Operation n

 Aggregation framework overview

A call to the aggregation framework defines a pipeline (figure 6.1), the

aggregation pipeline, where the output from each step in the pipeline

provides input to the next step. Each step executes a single operation on

the input documents to transform the input and generate output

documents.

Aggregation pipeline operations include the following:

■ $project—Specify fields to be placed in the output document (projected).

■ $match—Select documents to be processed, similar to find().

Input documents

… Output
documents

■ $limit—Limit the number of documents to be passed to the next step.

■ $skip—Skip a specified number of documents.

■ $unwind—Expand an array, generating one output document for

each array entry.

■ $group—Group documents by a specified key.

■ $sort—Sort documents.

■ $geoNear—Select documents near a geospatial location.

■ $out—Write the results of the pipeline to a collection (new in v2.6).

■ $redact—Control access to certain data (new in v2.6).

Most of these operators will look familiar if you’ve read the previous chapter

on con- structing MongoDB queries. Because most of the aggregation

framework operators work similarly to a function used for MongoDB

queries, you should make sure you have a good understanding of section

5.2 on the MongoDB query language before continuing.

This code example defines an aggregation framework pipeline that

consists of a match, a group, and then a sort:

Operation 2

Operation 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

$sort …

db.products.aggregate([{$match: …}, {$group: …}, {$sort: …}])

This series of operations is illustrated in figure 6.2.

1 1

$group …

$match …

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

Products

2 2 Output
documents

3 3

Select documents to be processed.

Table 6.1 SQL versus aggregation framework comparison

SQL

command

Aggregation framework

operator

SELECT

FROM

JOIN

WHER

E

GROU

P BY

HAVING

$project

$group functions: $sum, $min, $avg,
etc.

db.collectionName.aggregate(...)

$unwind

$match

$group

$match

 Products, categories, and reviews

Now let’s look at a simple example of how the aggregation framework can be

used to summarize information about a product. Chapter 5 showed an

example of counting the number of reviews for a given product using

this query:

product = db.products.findOne({'slug': 'wheelbarrow-

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

9092'}) reviews_count = db.reviews.count({'product_id':

product['_id']})

Let’s see how to do this using the aggregation framework. First, we’ll look at

a query that will calculate the total number of reviews for all products:

db.reviews.aggregate([

{$group : {
_id:'$product_id',

count:{$sum:1}
}}

]);

Group the input
documents by
product_id.

Count the
number of
reviews for
each product.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 33 of 36

This single operator pipeline returns one document for each product in

your data- base that has a review, as illustrated here:

{ "_id" : ObjectId("4c4b1476238d3b4dd5003982"), "count" : 2 }

{ "_id" : ObjectId("4c4b1476238d3b4dd5003981"), "count" : 3 }

Outputs one document for each product

Next, add one more operator to your pipeline so that you select only the

one prod- uct you want to get a count for:

product = db.products.findOne({'slug': 'wheelbarrow-9092'})

ratingSummary = db.reviews.aggregate([
{$match : { product_id: product['_id']} },
{$group : { _id:'$product_id',

Select only a single product.

]).next();

Count:{$sum:1} }}

Return the first document in the results.

is example returns the one product you’re interested in and assigns it to the

vari- able ratingSummary. Note that the result from the aggregation

pipeline is a cursor, a pointer to your results that allows you to process

results of almost any size, one docu- ment at a time. To retrieve the single

document in the result, you use the next() func- tion to return the first

document from the cursor:

{ "_id" : ObjectId("4c4b1476238d3b4dd5003981"), "count" : 3 }

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

The parameters passed to the $match operator, {'product_id': product['_id']},

should look familiar. They’re the same as those used for the query taken

from chap- ter 5 to calculate the count of reviews for a product:

db.reviews.count({'product_id': product['_id']})

CALCULATING THE AVERAGE REVIEW

To calculate the average review for a product, you use the same pipeline as in

the pre- vious example and add one more field:

product = db.products.findOne({'slug': 'wheelbarrow-9092'})

 ratingSummary = db.reviews.aggregate([

{$match : {'product_id': product['_id']}},

{$group : { _id:'$product_id', average:{$avg:'$rating'}, count:

{$sum:1}}}

]).next();

Calculate the average rating for a product.

The previous example returns a single document and assigns it to the variable

rating- Summary with the content shown here:

{

"_id" :

ObjectId("4c4b1476238d3b4dd5003981

"), "average" : 4.333333333333333,
"count" : 3

}

This example uses the $avg function to calculate the average rating for the

product. Notice also that the field being averaged, rating, is specified using

'$rating' in the

$avg function. This is the same convention used for specifying the field for the $group

_id value, where you used this:

_id:'$product_id'.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 33 of 36

count:{$sum:1}}}

]).toArray();

As shown in this snippet, you’ve once again produced a count using the

$sum func- tion; this time you counted the number of reviews for each

rating. Also note that the result of this aggregation call is a cursor that

you’ve converted to an array and assigned to the variable

countsByRating.

This aggregation call would produce an array similar to this:

[{ "_id" : 5, "count" : 5 },

{ "_id" : 4, "count" : 2 },

{ "_id" : 3, "count" : 1 }]

JOINING COLLECTIONS

Next, suppose you want to examine the contents of your database and count

the num- ber of products for each main category. Recall that a product has

only one main cate- gory. The aggregation command looks like this:

db.products.aggregate([

{$group : { _id:'$main_cat_id',

count:{$sum:1}}}

]);

This command would produce a list of output documents. Here’s an example:

{ "_id" : ObjectId("6a5b1476238d3b4dd5000048"), "count" : 2 }

SQL query

For those familiar with SQL, the equivalent SQL query would look something like this:

SELECT RATING, COUNT(*) AS COUNT

FROM REVIEWS

WHERE PRODUCT_ID = '4c4b1476238d3b4dd5003981'

GROUP BY RATING

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

option is to use the forEach function to process the cursor returned from the

aggre- gation command and add the name using a pseudo-join. Here’s an

example:

b.mainCategorySummary.remove({});

db.products.aggregate([

{$group : { _id:'$main_cat_id',

count:{$sum:1}}}

]).forEach(function(doc){

Remove existing documents from mainCategorySummary
collection

Read category for a result

var category = db.categories.findOne({_id:doc._id});
if (category !== null) {

doc.category_name = category.name;

}

else {

doc.category_name = 'not found';

}

db.mainCategorySummary.insert(doc);

})

mainCategorySummary:

db.products.aggregate([

{$group : { _id:'$main_cat_id',

count:{$sum:1}}},

{$out : 'mainCategorySummary'}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 33 of 36

])

 User and order

When the first edition of this book was written, the aggregation framework,

first intro- duced in MongoDB v2.2, hadn’t yet been released. The first edition

used the MongoDB map-reduce function in two examples, grouping reviews

by users and summarizing sales by month. The example grouping reviews by

user showed how many reviews each reviewer had and how many helpful

votes each reviewer had on average. Here’s what this looks like in the

aggregation framework, which provides a much simpler and more

intuitive approach:

db.reviews.aggregate([

{$group :

{_id : '$user_id',

count : {$sum : 1},

avg_helpful : {$avg : '$helpful_votes'}}

}

])

The result from this call looks like this:

{ "_id" :

ObjectId("4c4b1476238d3b4dd50000

03"), "count" : 1, "avg_helpful" : 10 }

{ "_id" :

ObjectId("4c4b1476238d3b4dd50000

02"), "count" : 2, "avg_helpful" : 4 }

{ "_id" :

ObjectId("4c4b1476238d3b4dd50000

01"), "count" : 2, "avg_helpful" : 5 }

FINDING BEST MANHATTAN CUSTOMERS

Now let’s extend that query to find the highest spenders in Upper

Manhattan. This pipeline is summarized in figure 6.5. Notice that the

$match is the first step in the pipeline, greatly reducing the number of

documents your pipeline has to process.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

The query includes these steps:

■ $match—Find orders shipped to Upper Manhattan.

■ $group—Sum the order amounts for each customer.

■ $match—Select those customers with order totals greater than $100.

■ $sort—Sort the result by descending customer order total.

$sort

by desending

customer order

total

$match

customer

total greater

than $100

$group

sum

orders by

customer

$match

orders shipped

to Upper

Manhattan

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

UNIT III
 SYLLABUS

Updates, atomic operations, and deletes: A brief tour of document updates – E-

commerce updates – Atomic document processing – MongoDB updates and

deletes. Indexing and query optimization: Indexing theory – Indexing in practice –

Query optimization.

To update is to write to existing documents. Doing this effectively requires a thor-

ough understanding of the kinds of document structures available and of the

query expressions made possible by MongoDB. Having studied the e-commerce

data model in the last two chapters, you should have a good sense of the ways in

which schemas are designed and queried. We’ll use all of this knowledge in our

study of updates.

 Brief tour of document updates

If you need to update a document in MongoDB, you have two ways of going about it.

You can either replace the document altogether, or you can use update operators to

modify specific fields within the document. As a way of setting the stage for the more

detailed examples to come, we’ll begin this chapter with a simple demonstration of

these two techniques. We’ll then provide reasons for preferring one over the other.

To start, recall the sample user document we developed in chapter 4. The docu-

ment includes a user’s first and last names, email address, and shipping addresses.

Here’s a simplified example:

{

_id: ObjectId("4c4b1476238d3b4dd5000001"),

username: "kbanker",

This Topic covers

■ Updating documents

■ Processing documents atomically

■ Applying complex updates to a real-world

example

■ Using update operators

■ Deleting documents

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

email: "kylebanker@gmail.com",

first_name: "Kyle",

last_name: "Banker",

hashed_password: "bd1cfa194c3a603e7186780824b04419",

addresses: [

{

name: "work",

street: "1 E. 23rd Street",

city: "New York",

state: "NY",

zip: 10010

}

]

}

 Modify by replacement

To replace the document altogether, you first query for the document, modify it on

the client side, and then issue the update with the modified document. Here’s how

that looks in the JavaScript shell:

user_id = ObjectId("4c4b1476238d3b4dd5003981")

doc = db.users.findOne({_id: user_id})

doc['email'] = 'mongodb-user@mongodb.com'

print('updating ' + user_id)

db.users.update({_id: user_id}, doc)

With the user’s _id at hand, you first query for the document. Next you modify the

document locally, in this case changing the email attribute. Then you pass the modi-

fied document to the update method. The final line says, “Find the document in the

users collection with the given _id, and replace that document with the one we’ve

provided.” The thing to remember is that the update operation replaces the entire

document, which is why it must be fetched first. If multiple users update the same doc-

ument, the last write will be the one that will be stored.

 Modify by operator

That’s how you modify by replacement; now let’s look at modification by operator:

user_id = ObjectId("4c4b1476238d3b4dd5000001")

db.users.update({_id: user_id},

{$set: {email: 'mongodb-user2@mongodb.com'}})

mailto:kylebanker@gmail.com

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

The example uses $set, one of several special update operators, to modify the email

address in a single request to the server. In this case, the update request is much

more targeted: find the given user document and set its email field to mongodb-

user2@mongodb.com.

 Both methods compared

How about another example? This time you want to increment the number of reviews

on a product. Here’s how you’d do that as a document replacement:

product_id = ObjectId("4c4b1476238d3b4dd5003982")

doc = db.products.findOne({_id: product_id})

doc['total_reviews'] += 1 // add 1 to the value in total_reviews

db.products.update({_id: product_id}, doc)

And here’s the targeted approach:

db.products.update({_id: product_id}, {$inc: {total_reviews: 1}})

The replacement approach, as before, fetches the user document from the server,

modifies it, and then resends it. The update statement here is similar to the one you

used to update the email address. By contrast, the targeted update uses a different

update operator, $inc, to increment the value in total_reviews.

 Deciding: replacement vs. operators
Modification by replacement is the more generic approach. Imagine that your appli-

cation presents an HTML form for modifying user information. With document replace-

ment, data from the form post, once validated, can be passed right to MongoDB; the

code to perform the update is the same regardless of which user attributes are modi-

fied. For instance, if you were going to build a MongoDB object mapper that needed

to generalize updates, then updates by replacement would probably make for a sensi-

ble default.1of concurrent updates, each $inc will be applied in isola- tion, all or

nothing.2

AVERAGE PRODUCT RATINGS

Products are amenable to numerous update strategies. Assuming that administrators

are provided with an interface for editing product information, the easiest update

involves fetching the current product document, merging that data with the user’s

edits, and issuing a document replacement. At other times, you may only need to

mailto:user2@mongodb.com

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

update a couple of values, where a targeted update is clearly the way to go. This is the

case with average product ratings. Because users need to sort product listings based

on average product rating, you store that rating in the product document itself and

update the value whenever a review is added or removed.

Here’s one way of issuing this update in JavaScript:

product_id = ObjectId("4c4b1476238d3b4dd5003981")

count = 0

total = 0

db.reviews.find({product_id: product_id}, {rating: 4}).forEach(

function(review) {

total += review.rating

count++

})

average = total / count

db.products.update({_id: product_id},

{$set: {total_reviews: count, average_review: average}})

This code aggregates and produces the rating field from each product review and

then produces an average. You also use the fact that you’re iterating over each rating

to count the total ratings for the product. This saves an extra database call to the

count function. With the total number of reviews and their average rating, the code

issues a targeted update, using $set.

If you don’t want to hardcode an ObjectId, you can find a specific ObjectId as fol-

lows and use it afterwards:

product_id = db.products.findOne({sku: '9092'}, {'_id': 1})

Performance-conscious users may balk at the idea of re-aggregating all product

reviews for each update. Much of this depends on the ratio of reads to writes; it’s likely

that more users will see product reviews than write their own, so it makes sense to

re-aggregate on a write. The method provided here, though conservative, will likely be

acceptable for most situations, but other strategies are possible. For instance, you

could store an extra field on the product document that caches the review ratings

total, making it possible to compute the average incrementally. After inserting a new

review, you’d first query for the product to get the current total number of reviews

and the ratings total. Then you’d calculate the average and issue an update using a

selector like the following:

db.products.update({_id: product_id},

{

$set: {

average_review: average,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

ratings_total: total

},

$inc: {

total_reviews: 1

}

})

With many databases, there’s no easy way to represent a category hierarchy. This is

true of MongoDB, although the document structure does help the situation some-

what. Documents encourage a strategy that optimizes for reads because each category

can contain a list of its denormalized ancestors. The one tricky requirement is keep-

ing all the ancestor lists up to date. Let’s look at an example to see how this is done.

First you need a generic method for updating the ancestor list for any given cate-

gory. Here’s one possible solution:

var generate_ancestors = function(_id, parent_id) {

ancestor_list = []

var cursor = db.categories.find({_id: parent_id})

while(cursor.size() > 0) {

parent = cursor.next()

ancestor_list.push(parent)

parent_id = parent.parent_id

cursor = db.categories.find({_id: parent_id})

}

db.categories.update({_id: _id}, {$set: {ancestors: ancestor_list}})

}

This method works by walking backward up the category hierarchy, making successive

queries to each node’s parent_id attribute until reaching the root node (where

parent_id is null). All the while, it builds an in-order list of ancestors, storing that

result in the ancestor_list array. Finally, it updates the category’s ancestors attri-

bute using $set.

Now that you have that basic building block, let’s look at the process of inserting a

new category. Imagine you have a simple category hierarchy that looks like the one in

figure 7.1.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

Lawn care

Outdoors

Planters

Seedlings

Figure 7.1 An initial

category hierarchy

Suppose you want to add a new category called Gardening and place it under the

Home category. You insert the new category document and then run your method to

generate its ancestors:

parent_id = ObjectId("8b87fb1476238d3b4dd50003")

category = {

parent_id: parent_id,

slug: "gardening",

name: "Gardening",

description: "All gardening implements, tools, seeds, and soil."

}

db.categories.save(category)

generate_ancestors(category._id, parent_id)

Figure 7.2 Adding a

Gardening category

That’s easy enough. But what if you now want to place the Outdoors category

underneath Gardening? This is potentially complicated because it alters the ancestor

lists of a number of categories. You can start by changing the parent_id of Outdoors

Home

Home

Tools

Planters

Gardening

Lawn care

Seedlings

Outdoors

Tools

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

to the _id of Gardening. This turns out to be not too difficult provided that you

already have both an outdoors_id and a gardening_id available:

db.categories.update({_id: outdoors_id}, {$set: {parent_id: gardening_id}})

Because you’ve effectively moved the Outdoors category, all the descendants of Out-

doors are going to have invalid ancestor lists. You can rectify this by querying for all

categories with Outdoors in their ancestor lists and then regenerating those lists.

MongoDB’s power to query into arrays makes this trivial:

db.categories.find({'ancestors.id': outdoors_id}).forEach(

function(category) {

generate_ancestors(category._id, outdoors_id)

})

That’s how you handle an update to a category’s parent_id attribute, and you can see

the resulting category arrangement in figure 7.3.

But what if you update a category name? If you change the name of Outdoors to

The Great Outdoors, you also have to change Outdoors wherever it appears in the

ancestor lists of other categories. You may be justified in thinking, “See? This is where

denormalization comes to bite you,” but it should make you feel better to know that

you can perform this update without recalculating any ancestor list. Here’s how:

doc = db.categories.findOne({_id: outdoors_id})

doc.name = "The Great Outdoors"

db.categories.update({_id: outdoors_id}, doc)

db.categories.update(

{'ancestors._id': outdoors_id},

{$set: {'ancestors.$': doc}},

{multi: true})

Home

Gardening

Outdoors

Figure 7.3 The category

Lawn care

Planters

Seedlings

Tools

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

tree in its final state

You first grab the Outdoors document, alter the name attribute locally, and then update

via replacement. Now you use the updated Outdoors document to replace its occur-

rences in the various ancestor lists. The multi parameter {multi: true} is easy to

understand; it enables multi-updates causing the update to affect all documents match-

ing the selector—without {multi: true} an update will only affect the first matching

document. Here, you want to update each category that has the Outdoors category in

its ancestor list.

The positional operator is more subtle. Consider that you have no way of knowing

where in a given category’s ancestor list the Outdoors category will appear. You need a

way for the update operator to dynamically target the position of the Outdoors cate-

gory in the array for any document. Enter the positional operator. This operator (here

the $ in ancestors.$) substitutes the array index matched by the query selector with

itself, and thus enables the update.

Here’s another example of this technique. Say you want to change a field of a user

address (the example document shown in section 7.1) that has been labeled as

“work.” You can accomplish this with a query like the following:

db.users.update({

_id: ObjectId("4c4b1476238d3b4dd5000001"),

'addresses.name': 'work'},

{$set: {'addresses.$.street': '155 E 31st St.'}})

Because of the need to update individual subdocuments within arrays, you’ll always

want to keep the positional operator at hand. In general, these techniques for updat-

ing the category hierarchy will be applicable whenever you’re dealing with arrays of

subdocuments.

 Reviews

Not all reviews are created equal, which is why this application allows users to vote on

them. These votes are elementary; they indicate that the given review is helpful.

You’ve modeled reviews so that they cache the total number of helpful votes and keep

a list of each voter’s ID. The relevant section of each review document looks like this:

{

helpful_votes: 3,

voter_ids: [

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

ObjectId("4c4b1476238d3b4dd5000041"),

ObjectId("7a4f0376238d3b4dd5000003"),

ObjectId("92c21476238d3b4dd5000032")

]

}

You can record user votes using targeted updates. The strategy is to use the $push

operator to add the voter’s ID to the list and the $inc operator to increment the total

number of votes, both in the same JavaScript console update operation:

db.reviews.update({_id: ObjectId("4c4b1476238d3b4dd5000041")}, {

$push: {

voter_ids: ObjectId("4c4b1476238d3b4dd5000001")

},

$inc: {

helpful_votes: 1

}

})

This is almost correct. But you need to ensure that the update happens only if the vot-

ing user hasn’t yet voted on this review, so you modify the query selector to match only

when the voter_ids array doesn’t contain the ID you’re about to add. You can easily

accomplish this using the $ne query operator:

query_selector = {

_id: ObjectId("4c4b1476238d3b4dd5000041"),

voter_ids: {

$ne: ObjectId("4c4b1476238d3b4dd5000001")

}

}

db.reviews.update(query_selector, {

$push: {

voter_ids: ObjectId("4c4b1476238d3b4dd5000001")

},

$inc : {

helpful_votes: 1

}

})

This is an especially powerful demonstration of MongoDB’s update mechanism and

how it can be used with a document-oriented schema.

atomic and efficient. The update is atomic because selection and modification occur

in the same query. The atomicity ensures that, even in a high-concurrency environ-

ment, it will be impossible for any one user to vote more than once. The efficiency lies

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

in the fact that the test for voter membership and the updates to the counter and the

voter list all occur in the same request to the server.

.

 Orders

The atomicity and efficiency of updates that you saw in reviews can also be applied to

orders. Specifically, you’re going to see the MongoDB calls needed to implement an

add_to_cart function using a targeted update. This is a three-step process. First, you

construct the product document that you’ll store in the order’s line-item array. Then

you issue a targeted update, indicating that this is to be an upsert—an update that will

insert a new document if the document to be updated doesn’t exist.

doesn’t yet exist, seamlessly handling both initial and subsequent additions to the

shopping cart.3

Let’s begin by constructing a sample document to add to the cart:

cart_item = {

_id: ObjectId("4c4b1476238d3b4dd5003981"),

slug: "wheel-barrow-9092",

sku: "9092",

name: "Extra Large Wheel Barrow",

pricing: {

retail: 5897,

sale: 4897

}

}

You’ll most likely build this document by querying the products collection and then

extracting whichever fields need to be preserved as a line item. The product’s _id,

sku, slug, name, and price fields should suffice. Next you’ll ensure that there’s an

order for the customer with a status of 'CART' using the parameter {upsert: true}.

This operation will also increment the order sub_total using the $inc operator:

selector = {

user_id: ObjectId("4c4b1476238d3b4dd5000001"),

state: 'CART'

}

update = {

$inc: {

sub_total: cart_item['pricing']['sale']

}

}

db.orders.update(selector, update, {upsert: true})

INITIAL UPSERT TO CREATE ORDER DOCUMENT

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

To make the code clearer, you’re constructing the query selector and the update doc-

ument separately. The update document increments the order subtotal by the sale

price of the cart item. Of course, the first time a user executes the add_to_cart func-

tion, no shopping cart will exist. That’s why you use an upsert here. The upsert will

construct the document implied by the query selector including the update. There-

fore, the initial upsert will produce an order document like this:

{

user_id: ObjectId("4c4b1476238d3b4dd5000001"),

state: 'CART',

subtotal: 9794

}

3 You then perform an update of the order document to add the line item if it’s not

already on the order:

selector = {user_id: ObjectId("4c4b1476238d3b4dd5000001"),

state: 'CART',

'line_items._id':

{'$ne': cart_item._id}

}

update = {'$push': {'line_items': cart_item}}

db.orders.update(selector, update)

ANOTHER UPDATE FOR QUANTITIES

Next you’ll issue another targeted update to ensure that the item quantities are cor-

rect. You need this update to handle the case where the user clicks Add to Cart on an

item that’s already in the cart. In this case the previous update won’t add a new item to

the cart, but you’ll still need to adjust the quantity:

selector = {

user_id: ObjectId("4c4b1476238d3b4dd5000001"),

state: 'CART',

'line_items._id': ObjectId("4c4b1476238d3b4dd5003981")

}

update = {

$inc: {

'line_items.$.quantity': 1

}

}

db.orders.update(selector, update)

We use the $inc operator to update the quantity on the individual line item. The

update is facilitated by the positional operator, $, introduced previously. Thus, after

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

the user clicks Add to Cart twice on the wheelbarrow product, the cart should look

like this:

{

user_id: ObjectId("4c4b1476238d3b4dd5000001"),

state: 'CART',

line_items: [

{

_id: ObjectId("4c4b1476238d3b4dd5003981"),

quantity: 2,

slug: "wheel-barrow-9092",

sku: "9092",

name: "Extra Large Wheel Barrow",

pricing: {

retail: 5897,

sale: 4897

}

}

],

subtotal: 9794

}

Atomic document processing

One tool you won’t want to do without is MongoDB’s findAndModify command.4

This command allows you to atomically update a document and return it in the

same round-trip. An atomic update is one where no other operation can interrupt

or interleave itself with the update. What if another user tries to change the docu-

ment after you find it but before you modify it? The find might no longer apply. An

atomic update prevents this case; all other operations must wait for the atomic update

to finish.

Every update in MongoDB is atomic, but the difference with findAndModify is that

it also atomically returns the document to you. Why is this useful? If you fetch and

then update a document (or update then fetch it), there can be changes made to the

document by another MongoDB user in between those operations. Thus it’s impossi-

ble to know the true state of the document you updated, before or after the update,

even though the update is atomic, unless you use findAndModify. The other option is

to use the optimistic locking mentioned in section 7.1, but that would require addi-

tional application logic to implement.

This atomic update capability is a big deal because of what it enables. For instance,

you can use findAndModify to build job queues and state machines. You can then use

these primitive constructs to implement basic transactional semantics, which greatly

expand the range of applications you can build using MongoDB. With these transac-

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

tion-like features, you can construct an entire e-commerce site on MongoDB—not

just the product content, but the checkout mechanism and the inventory manage-

ment as well.

To demonstrate, we’ll look at two examples of the findAndModify command in

action. First, we’ll show how to handle basic state transitions on the shopping cart.

Then we’ll look at a slightly more involved example of managing a limited inventory.

ring a valid initial state, and an update that effects the change of state. Let’s skip forward a

few steps in the order process and assume that the user is about to click the Pay Now button to
authorize the purchase. If you’re going to authorize the user’s credit card synchronously on the
application side, you need to ensure these four things:

1

You authorize for the amount that the user sees on the checkout screen.

2 The cart’s contents never change while in the process of authorization.

3 Errors in the authorization process return the cart to its previous state.

4 If the credit card is successfully authorized, the payment information is posted

to the order, and that order’s state is transitioned to PRE-SHIPPING.

The state transitions that you’ll use are shown in figure 7.5.

PREPARE THE ORDER FOR CHECKOUT

The first step is to get the order into the new PRE-AUTHORIZE state. You use find-

AndModify to find the user’s current order object and ensure that the object is in a

CART state:

newDoc = db.orders.findAndModify({

query: {

user_id: ObjectId("4c4b1476238d3b4dd5000001"),

state: 'CART'

},

update: {

$set: {

state: 'PRE-AUTHORIZE'

}

},

'new': true

})

contents. This is because all updates to the cart always ensure a state of CART. find-

AndModify is useful here because you want to know the state of the document exactly

when you changed its state to PRE-AUTHORIZE. What would happen to the total cal-

culations if another thread was also attempting to move the user through the check-

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

out process?

VERIFY THE ORDER AND AUTHORIZE

Now, in the preauthorization state, you take the returned order object and recalculate

the various totals. Once you have those totals, you issue a new findAndModify that

only transitions the document’s state to AUTHORIZING if the new totals match the old

totals. Here’s what that findAndModify looks like:

oldDoc = db.orders.findAndModify({

query: {

user_id: ObjectId("4c4b1476238d3b4dd5000001"),

total: 99000,

state: "PRE-AUTHORIZE"

},

update: {

'$set': {

state: "AUTHORIZING"

}

}

})

If this second findAndModify fails, then you must return the order’s state to CART and

report the updated totals to the user. But if it succeeds, you know that the total to be

authorized is the same total that was presented to the user. This means you can move

on to the actual authorization API call. Thus, the application now issues a credit card

authorization request on the user’s credit card. If the credit card fails to authorize,

you record the failure and, as before, return the order to its CART state.

FINISHING THE ORDER

If the authorization is successful, you write the authorization information to the order

and transition it to the next state. The following strategy does both in the same find-

AndModify call. Here, the example uses a sample document representing the authori-

zation receipt, which is attached to the original order:

auth_doc = {

ts: new Date(),

cc: 3432003948293040,

id: 2923838291029384483949348,

gateway: "Authorize.net"

}

db.orders.findAndModify({

query: {

user_id: ObjectId("4c4b1476238d3b4dd5000001"),

state: "AUTHORIZING"

},

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

update: {

$set: {

state: "PRE-SHIPPING",

authorization: auth_doc

}

}

})

 Inventory management

Not every e-commerce site needs strict inventory management. Most commodity items

can be replenished in enough time to allow any order to go through regardless of the

actual number of items on hand. In cases like these, managing inventory is easily han-

dled by managing expectations; as soon as only a few items remain in stock, adjust the

shipping estimates.

One-of-a-kind items present a different challenge. Imagine you’re selling concert

tickets with assigned seats or handmade works of art. These products can’t be hedged;

users will always need a guarantee that they can purchase the products they’ve

selected. Here we’ll present a possible solution to this problem using MongoDB. This

will further illustrate the creative possibilities in the findAndModify command and the

judicious use of the document model. It will also show how to implement transac-

tional semantics across multiple documents. Although you’ll only see a few of the key

MongoDB calls used by this process, the full source code for the InventoryFetcher

class is included with this book.

inventory collection. If there are 10 shovels in the warehouse, there are 10 shovel doc-

uments in the database. Each inventory item is linked to a product by sku, and each of

these items can be in one of four states: AVAILABLE (0), IN_CART (1), PRE_ORDER (2),

or PURCHASED (3).

Here’s a method that inserts three shovels, three rakes, and three sets of clippers as

available inventory. The examples in this section are in Ruby, since transactions

require more logic, so it’s useful to see a more concrete example of how an applica-

tion would implement them:

3.times do

$inventory.insert_one({:sku => 'shovel', :state => AVAILABLE})

$inventory.insert_one({:sku => 'rake', :state => AVAILABLE})

$inventory.insert_one({:sku => 'clippers', :state => AVAILABLE})

end

We’ll handle inventory management with a special inventory fetching class. We’ll

first look at how this fetcher works and then we’ll peel back the covers to reveal its

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

implementation.

INVENTORY FETCHER

The inventory fetcher can add arbitrary sets of products to a shopping cart. Here you

create a new order object and a new inventory fetcher. You then ask the fetcher to add

three shovels and one set of clippers to a given order by passing an order ID and two

documents specifying the products and quantities you want to the add_to_cart

method. The fetcher hides the complexity of this operation, which is altering two col-

lections at once:

$order_id = BSON::ObjectId('561297c5530a69dbc9000000')

$orders.insert_one({

:_id => $order_id,

:username => 'kbanker',

:item_ids => []

})

@fetcher = InventoryFetcher.new({

:orders => $orders,

:inventory => $inventory

})

@fetcher.add_to_cart(@order_id,

[

{:sku => "shovel", :quantity => 3},

{:sku => "clippers", :quantity => 1}

])

$orders.find({"_id" => $order_id}).each do |order|

puts "\nHere's the order:"

p order

end

The add_to_cart method will raise an exception if it fails to add every item to a cart.

If it succeeds, the order should look like this:

{

"_id" => BSON::ObjectId('4cdf3668238d3b6e3200000a'),

"username" => "kbanker",

"item_ids" => [

BSON::ObjectId('4cdf3668238d3b6e32000001'),

BSON::ObjectId('4cdf3668238d3b6e32000004'),

BSON::ObjectId('4cdf3668238d3b6e32000007'),

BSON::ObjectId('4cdf3668238d3b6e32000009')

]

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

The _id of each physical inventory item will be stored in the order document. You can

query for each of these items like this:

puts "\nHere's each item:"

order['item_ids'].each do |item_id|

item = @inventory.find({"_id" => item_id}).each do |myitem|

p myitem

end

end

{

"_id" => BSON::ObjectId('4cdf3668238d3b6e32000001'),

"sku"=>"shovel",

"state"=>1,

"ts"=>"Sun Nov 14 01:07:52 UTC 2010"

}

{

"_id"=>BSON::ObjectId('4cdf3668238d3b6e32000004'),

"sku"=>"shovel",

"state"=>1,

"ts"=>"Sun Nov 14 01:07:52 UTC 2010"

}

{

"_id"=>BSON::ObjectId('4cdf3668238d3b6e32000007'),

"sku"=>"shovel",

"state"=>1,

"ts"=>"Sun Nov 14 01:07:52 UTC 2010"

}

INVENTORY MANAGEMENT

command resides at its core. The full source code for the InventoryFetcher is

included with the source code of this book. We’re not going to look at every line of

code, but we’ll highlight the three key methods that make it work.

First, when you pass a list of items to be added to your cart, the fetcher attempts to

transition each item from the state of AVAILABLE to IN_CART. If at any point this opera-

tion fails (if any one item can’t be added to the cart), the entire operation is rolled

back. Have a look at the add_to_cart method that you invoked earlier:

def add_to_cart(order_id, *items)

item_selectors = []

items.each do |item|

item[:quantity].times do

item_selectors << {:sku => item[:sku]}

end

end

transition_state(order_id, item_selectors,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

{:from => AVAILABLE, :to => IN_CART})

end

The *items syntax in the method arguments allows the user to pass in any number of

objects, which are placed in an array called items. This method doesn’t do much. It

takes the specification for items to add to the cart and expands the quantities so that

one item selector exists for each physical item that will be added to the cart. For

instance, this document, which says that you want to add two shovels

{:sku => "shovel", :quantity => 2}

becomes this:

[{:sku => "shovel"}, {:sku => "shovel"}]

You need a separate query selector for each item you want to add to your cart. Thus,

the method passes the array of item selectors to another method called transition

_state. For example, the previous code specifies that the state should be transitioned

from AVAILABLE to IN_CART:

def transition_state(order_id, selectors, opts={})

items_transitioned = []

begin # use a begin/end block so we can do error recovery

for selector in selectors do

query = selector.merge({:state => opts[:from]})

physical_item = @inventory.find_and_modify({

:query => query,

:update => {

'$set' => {

:state => opts[:to], # target state

:ts => Time.now.utc # get the current client time

}

}

})

if physical_item.nil?

raise InventoryFetchFailure

end

items_transitioned << physical_item['_id'] # push item into array

@orders.update_one({:_id => order_id}, {

'$push' => {

:item_ids => physical_item['_id']

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

})

end # of for loop

rescue Mongo::OperationFailure, InventoryFetchFailure

rollback(order_id, items_transitioned, opts[:from], opts[:to])

raise InventoryFetchFailure, "Failed to add #{selector[:sku]}"

end

return items_transitioned.size

end

To transition state, each selector gets an extra condition, {:state => AVAILABLE}, and

the selector is then passed to findAndModify, which, if matched, sets a timestamp

and the item’s new state. The method then saves the list of items transitioned and

updates the order with the ID of the item just added.

GRACEFUL FAILURE

If the findAndModify command fails and returns nil, then you raise an Inventory-

FetchFailure exception. If the command fails because of networking errors, you res-

cue the inevitable Mongo::OperationFailure exception. In both cases, you rescue by

rolling back all the items transitioned thus far and then raise an InventoryFetch-

Failure, which includes the SKU of the item that couldn’t be added. You can then res-

cue this exception on the application layer to fail gracefully for the user.

All that now remains is to examine the rollback code:

def rollback(order_id, item_ids, old_state, new_state)

@orders.update_one({"_id" => order_id},

{"$pullAll" => {:item_ids => item_ids}})

item_ids.each do |id|

@inventory. find_one_and_update({

:query => {

"_id" => id,

:state => new_state

}

},

{

:update => {

"$set" => {

:state => old_state,

:ts => Time.now.utc

}

}

})

end

end

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

Indexes are enormously important. With the right indexes in place, MongoDB

can use its hardware efficiently and serve your application’s queries quickly. But the

wrong indexes produce the opposite result: slow queries, slow writes, and poorly

utilized hardware. It stands to reason that anyone wanting to use MongoDB effec-

tively must understand indexing.

A COMPOUND INDEX

This index is good if all you need is a list of recipes for a given ingredient. But if you

want to include any other information about the recipe in your search, you still have

some scanning to do—once you know the page numbers where cauliflower is refer-

enced, you then need to go to each of those pages to get the name of the recipe and

what type of cuisine it is. This is better than paging through the whole book, but you

can do better.

What can you do? Happily, there’s a solution to the long-lost cauliflower recipe, and its

answer lies in the use of compound indexes.

The two indexes you’ve created so far are

single-key indexes: they both order only one

key from each recipe. You’re going to build

yet another index for The Cookbook Omega, but

this time, instead of using one key per index,

you’ll use two. Indexes that use more than

one key like this are called compound indexes.

This compound index uses both ingredi-

ents and recipe name, in that order. You’ll

notate the index like this: ingredient-name.

This topic covers

■ Basic indexing concepts and theory

■ Practical advice for managing indexes

■ Using compound indexes for more complex

queries

■ Optimizing queries

■ All the MongoDB indexing options

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

Part of this index would look like what

you see in figure 8.1.

The value of this index for a human is

obvious. You can now search by ingredient

and probably find the recipe you want, even if

you remember only the initial part of the

name. For a machine, it’s still valuable for this

use case and will keep the database from hav-

ing to scan every recipe name listed for that

ingredient. This compound index would be

especially useful if, as with The Cookbook Omega,

there were several hundred (or thousand)

cauliflower recipes. Can you see why?

One thing to notice: with compound

indexes, order matters. Imagine the reverse

INDEXING RULES

The goal of this section was to present an extended metaphor to provide you with a bet-

ter mental model of indexes. From this metaphor, you can derive a few simple concepts:

1 Indexes significantly reduce the amount of work required to fetch documents.

Without the proper indexes, the only way to satisfy a query is to scan all docu-

ments linearly until the query conditions are met. This frequently means scan-

ning entire collections.

2 Only one single-key index will be used to resolve a query.1 For queries contain-

ing multiple keys (say, ingredient and recipe name), a compound index con-

taining those keys will best resolve the query.

3 An index on ingredient can and should be eliminated if you have a second

index on ingredient-name. More generally, if you have a compound index on

a-b, then a second index on a alone will be redundant, but not one on b.

4 The order of keys in a compound index matters.

Bear in mind that this cookbook analogy can be taken only so far. It’s a model for

understanding indexes, but it doesn’t fully correspond to the way MongoDB’s indexes

work.

The preceding thought experiment hinted at a number of core indexing concepts.

Here and throughout the rest of the chapter, we’ll unpack those ideas.

SINGLE-KEY INDEXES

With a single-key index, each entry in the index corresponds to a single value from

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

each of the documents indexed. The default index on _id is a good example of a

single-key index. Because this field is indexed, each document’s _id also lives in an

index for fast retrieval by that field.

1 COMPOUND-KEY INDEXES

Although when starting with MongoDB 2.6 you can use more than one index for a

query, it’s best if you use only a single index. But you often need to query on more

than one attribute, and you want such a query to be as efficient as possible. For exam-

ple, imagine that you’ve built two indexes on the products collection from this book’s

e-commerce example: one index on manufacturer and another on price. In this

case, you’ve created two entirely distinct data structures that, when traversed, are

ordered like the lists you see in figure 8.2.

Traversal

Manufacturers and disk locations Sale prices and disk locations

Figure 8.2 Single-key index traversal

Now, imagine your query looks like this:

db.products.find({

'details.manufacturer': 'Acme',

'pricing.sale': {

$lt: 7500

}

})

This query says to find all Acme products costing less than $75.00. If you issue this query

with single-key indexes on manufacturer and

price, only one of them will be used. grab the list of disk locations that match and calculate

their intersection.

Ace Ox12

Acme OxFF

Acme OxA1

Acme Ox0B

Acme Ox1C

Biz OxEE

7999 OxFF

7500 Ox12

7500 OxEE

7500 OxA1

7499 Ox0B

7499 Ox1C

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

The order of keys in a compound index matters. If that seems clear, the second

thing you should understand is why we’ve chosen the first ordering over the second.

This may be obvious from the diagrams, but there’s another way to look at the prob-

lem. Look again at the query: the two query terms specify different kinds of matches.

On manufacturer, you want to match the term exactly. But on price, you want to

match a range of values, beginning with 7500. As a general rule, a query where one

term demands an exact match and another specifies a range requires a compound

index where the range key comes second. We’ll revisit this idea in the section on

query optimization.

INDEX EFFICIENCY

Although indexes are essential for good query performance, each new index imposes

a small maintenance cost. Whenever you add a document to a collection, each index

on that collection must be modified to include the new document. If a particular col-

lection has 10 indexes, that makes 10 separate structures to modify on each insert, in

addition to writing the document itself.

For read-intensive applications, the cost of indexes is almost always justified. Just

realize that indexes do impose a cost and that they therefore must be chosen with

care. This means ensuring that all your indexes are used and that none are redun-

dant. You can do this in part by profiling your application’s queries; we’ll describe this

process later in the chapter.

But there’s a second consideration. Even with all the right indexes in place, it’s still

possible that those indexes won’t result in faster queries. This occurs when indexes

and a working data set don’t fit in RAM.

You may recall from chapter 1 that MongoDB tells the operating system to map all

data files to memory using the mmap() system call when the MMAPv1 default storage

engine is used. As you’ll learn in chapter 10, the WiredTiger storage engine works dif-

ferently. From this point on, the data files, which include all documents, collections,

and their indexes, are swapped in and out of RAM by the operating system in 4 KB

chunks called pages.2 Whenever data from a given page is requested, the operating

Ace – 8000 Ox12

Acme – 7999 OxFF

Acme – 7500 OxA1

Acme – 7499 Ox0B

Acme – 7499 Ox1C

Biz – 8999 OxEE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

system must ensure that the page is available in RAM. If it’s not, a kind of exception

known as a page fault is raised, and this tells the memory manager to load the page

from disk into RAM.

will eventually be loaded into mem- ory. Whenever that memory is altered, as in

the case of a write, those changes will be flushed to disk asynchronously by the OS.

The write, however, will be fast because it occurs directly in RAM; thus the number

of disk accesses is reduced to a minimum. But if the working data set can’t fit into

RAM, page faults will start to creep up. This means that the operating system will

be going to disk frequently, greatly slowing read and write operations. In the worst

case, as data size becomes much larger than available RAM, a situation can occur

where for any read or write, data must be paged to and from disk. This is known as

thrashing, and it causes performance to take a severe dive.

Fortunately, this situation is relatively easy to avoid. At a minimum, you need to make

sure that your indexes will fit in RAM. This is one reason why it’s important to avoid cre-

ating any unneeded indexes. With extra indexes in place, more RAM will be required

to maintain those indexes. Along the same lines, each index should have only the keys

it needs. A triple-key compound index might be necessary at times, but be aware that

it’ll use more space than a simple single-key index. One example of where it might be

valuable to create an index with more than one or two fields is if you can create a cov-

ering index for a frequent query.

Bear in mind that indexes are stored separately in RAM from the data they index

and aren’t clustered. In a clustered index, the order of the index corresponds directly

to the order of the underlying data; if you index recipes by name in a clustered index,

then all of the recipes starting with A will be stored together, followed by B, C, and so

on. This isn’t the case in MongoDB. Every name in the recipe index is essentially

duplicated in the index, and the order of these names has no bearing on the order of

the data. This is important when you scan through a collection sorted with an index

because it means that every document fetched could be anywhere in the data set.

There’s no guaranteed locality with the previously fetched data.

Ideally, indexes and a working data set fit in RAM. But estimating how much RAM

this requires for any given deployment isn’t always easy. You can always discover total

index size by looking at the results of the stats command. The working set is the sub-

set of total data commonly queried and updated, which is different for every applica-

tion. Suppose you have a million users for which you have data. If only half of them

are active (thus half the user documents are queried), then your working set for the

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

user collection is half the total data size. If these documents are evenly distributed

throughout the entire data set, though, it’s likely that untouched user documents are

also being loaded into memory, which imposes a cost.

B-trees have two overarching traits that make them ideal for database indexes.

First, they facilitate a variety of queries, including exact matches, range conditions,

sorting, prefix matching, and index-only queries. Second, they’re able to remain bal-

anced in spite of the addition and removal of keys.

We’ll look at a simple representation of a B-tree and then discuss some principles

that you’ll want to keep in mind. Imagine that you have a collection of users and that

A B-tree, as you might guess, is a tree-like data structure. Each node in the tree can

contain multiple keys. You can see in the example that the root node contains two

keys, each of which is in the form of a BSON object representing an indexed value

from the users collection. In reading the contents of the root node, you can see the

keys for two documents, indicating last names Edwards and Perry, with ages of 21 and

18, respectively. Each of these keys includes two pointers: one to the data file it

belongs to and another to the child node. Additionally, the node itself points to

another node with values less than the node’s smallest value.

In MongoDB’s B-tree implementation, a new node is allocated 8,192 bytes, which

means that in practice, each node may contain hundreds of keys. This depends on

the average index key size; in this case, that average key size might be around 30

bytes. The maximum key size since MongoDB v2.0 is 1024 bytes. Add to this a per-key

overhead of 18 bytes and a per-node overhead of 40 bytes, and this results in about

170 keys per node.4 One thing to notice is that each node has some empty space (not

to scale).

This is relevant because users frequently want to know why index sizes are what

they are. You now know that each node is 8 KB, and you can estimate how many keys

will fit into each node. To calculate this, keep in mind that B-tree nodes are usually

intentionally kept around 60% full by default.

Given this information, you should now see why indexes aren’t free, in terms of

space or time required to update them. Use this information to help decide when to

create indexes on your collections and when to avoid them.

 Indexing in practice

With most of the theory behind us, we’ll now look at some refinements on our con-

cept of indexing in MongoDB. We’ll then proceed to some of the details of index

administration.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

 Index types

MongoDB uses B-trees for indexes and allows you to apply several characteristics to

these indexes. This section should give you an overview of your options when creat-

ing indexes.

UNIQUE INDEXES

Often you want to ensure that a field in your document, such as _id or username, is

unique to that document. Unique indexes are a way to enforce this characteristic, and

in fact are used by MongoDB to ensure that _id is a unique primary key.

To create a unique index, specify the unique option:

db.users.createIndex({username: 1}, {unique: true})

Unique indexes enforce uniqueness across all their entries. If you try to insert a docu-

ment into this book’s sample application’s users collection with an already-indexed

username value, the insert will fail with the following exception:

E11000 duplicate key error index:

gardening.users.$username_1 dup key: { : "kbanker" }

If using a driver, this exception will be caught only if you perform the insert using

your driver’s safe mode, which is the default. You may have also encountered this

error if you attempted to insert two documents with the same _id—every MongoDB

collection has a unique index on this field because it’s the primary key.

If you need a unique index on a collection, it’s usually best to create the index

before inserting any data. If you create the index in advance, you guarantee the

uniqueness constraint from the start. When creating a unique index on a collection

that already contains data, you run the risk of failure because it’s possible that dupli-

cate keys may already exist in the collection. When duplicate keys exist, the index cre-

ation fails.

If you do find yourself needing to create a unique index on an established collec-

tion, you have a couple of options. The first is to repeatedly attempt to create the

unique index and use the failure messages to manually remove the documents with

duplicate keys. But if the data isn’t so important, you can also instruct the database to

drop documents with duplicate keys automatically using the dropDups option. For

example, if your users collection already contains data, and if you don’t care that doc-

uments with duplicate keys are removed, you can issue the index creation command

like this:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

db.users.createIndex({username: 1}, {unique: true, dropDups: true})

SPARSE INDEXES

Indexes are dense by default. This means that for every document in an indexed col-

lection, a corresponding entry exists in the index, even if the document lacks the

indexed key. For example, recall the products collection from your e-commerce data

model, and imagine that you’ve built an index on the product attribute category_ids.

Now suppose that a few products haven’t been assigned to any categories. For each of

these category-less products, there will still exist a null entry in the category_ids

index. You can query for those null values like this:

db.products.find({category_ids: null})

Here, when searching for all products lacking a category, the query optimizer will still

be able to use the index on category_ids to locate the corresponding products.

But in two cases a dense index is undesirable. The first is when you want a unique

index on a field that doesn’t appear in every document in the collection. For instance,

you definitely want a unique index on every product’s sku field. But suppose that, for

some reason, products are entered into the system before a SKU is assigned. If you

have a unique index on sku and attempt to insert more than one product without a

SKU, the first insert will succeed, but all subsequent inserts will fail because there will

already be an entry in the index where sku is null. This is a case where a dense index

doesn’t serve your purpose. Instead you want a unique and sparse index.

In a sparse index, only those documents having some value for the indexed key will

appear. If you want to create a sparse index, all you have to do is specify {sparse:

true}. For example, you can create a unique sparse index on sku like this:

db.products.createIndex({sku: 1}, {unique: true, sparse: true})

There’s another case where a sparse index is desirable: when a large number of docu-

ments in a collection don’t contain the indexed key. For example, suppose you

allowed anonymous reviews on your e-commerce site. In this case, half the reviews

might lack a user_id field, and if that field were indexed, half the entries in that

index would be null. This would be inefficient for two reasons.

the size of the index. Second, it’d require updates to the index when adding and remov-

ing documents with null user_id fields.

If you rarely (or never) expect queries on anonymous reviews, you might elect to

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

build a sparse index on user_id. Again, setting the sparse option is simple:

db.reviews.createIndex({user_id: 1}, {sparse: true, unique: false})

Now only those reviews linked to a user via the user_id field will be indexed.

MULTIKEY INDEXES

In earlier chapters you saw several examples of indexing fields whose values are

arrays.5 This is made possible by what’s known as a multikey index, which allows multi-

ple entries in the index to reference the same document. This makes sense if we look

at a simple example. Suppose you have a product document with a few tags like this:

{

name: "Wheelbarrow",

tags: ["tools", "gardening", "soil"]

}

If you create an index on tags, then each value in this document’s tags array will

appear in the index. This means that a query on any one of these array values can use

the index to locate the document. This is the idea behind a multikey index: multiple

index entries, or keys, end up referencing the same document.

Multikey indexes are always enabled in MongoDB, with a few exceptions, such as

with hashed indexes. Whenever an indexed field contains an array, each array value

will be given its own entry in the index.

The intelligent use of multikey indexes is essential to proper MongoDB schema

design. This should be evident from the examples presented in chapters 4 through 6;

several more examples are provided in the design patterns section of appendix B. But

creating, updating, or deleting multikey indexes is more expensive than creating,

updating, or deleting single-key indexes.

HASHED INDEXES

In the previous examples of B-tree indexes, we showed how MongoDB builds the

index tree out of the values being indexed. Thus, in an index of recipes, the “Apple

Pie” entry is near the “Artichoke Ravioli” entry. This may seem obvious and natural,

but MongoDB also supports hashed indexes where the entries are first passed through a

hash function.6 This means the hashed values will determine the ordering, so these

recipes will likely not be near each other in the index.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

Indexes of this kind can be created in MongoDB by passing 'hashed' as the index

sorting direction. For example:

db.recipes.createIndex({recipe_name: 'hashed'})

Because the indexed value is a hash of the original, these indexes carry some

restrictions:

■ Equality queries will work much the same, but range queries aren’t supported.

■ Multikey hashed indexes aren’t allowed.

Given these restrictions and peculiarities, you may wonder why anyone would use a

hashed index. The answer lies in the fact that the entries in a hashed index are evenly

distributed. In other words, when you have a non-uniform distribution of key data,

then a hashed index will create uniformity if you can live with its restrictions. Recall

that “Apple Pie” and “Artichoke Ravioli” are no longer next to each other in the

hashed index; the data locality of the index has changed. This is useful in sharded col-

lections where the shard index determines which shard each document will be

assigned to. If your shard index is based on an increasing value, such as a MongoDB

OIDs,7 then new documents created will only be inserted to a single shard—unless the

index is hashed.

Let’s dig into that statement. Unless explicitly set, a MongoDB document will use

an OID as its primary key. Here are a few sequentially generated OIDs:

5247ae72defd45a1daba9da9

5247ae73defd45a1daba9daa

5247ae73defd45a1daba9dab

Notice how similar the values are; the most significant bits are based on the time when

they were generated. When new documents are inserted with these IDs, their index

entries are likely to be near eachother. If the index using these IDs is being used to

decide which shard (and thus machine) a document should reside on, these docu-

ments are also likely to be inserted on to the same machine. This can be detrimental if

a collection is receiving heavy write load, because only a single machine is being used.

Hashed indexes solve this issue by distributing these documents evenly in a name-

space, and thus across shards and machines. To fully understand this example, wait

until you read chapter 12.

For now, the important thing to remember is that hashed indexes change the locality

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

of index entries, which can be useful in sharded collections.

GEOSPATIAL INDEXES

Another useful query capability is to find documents “close” to a given location, based

on latitude and longitude values stored in each document. If you store a directory of

restaurants in a MongoDB collection, for example, users are probably most eager to

find restaurants located near their home. One answer to this is to run a query to find

every restaurant within a 10-mile radius. Executing this query requires an index that

can efficiently calculate geographic distances, including the curvature of the earth.

Geospatial indexes can handle this and other types of queries.

 Index administration

We’ve discussed simple index administration, such as creating indexes, in this and in

previous chapters. When you use indexes in real-world applications, however, it’s use-

ful to understand this topic in greater depth. Here we’ll see index creation and dele-

tion in detail and address questions surrounding compaction and backups.

CREATING AND DELETING INDEXES

By now you’ve created quite a few indexes, so this should be easy. Simply call create-

Index() either in the shell or with your language of choice. Please note that in Mon-

goDB v3.0, ensureIndex(), which was previously used for creating indexes, has been

replaced by the createIndex() command and shouldn’t be used anymore. What you

may not know is that this method works by creating a document defining the new

index and putting it into the special system.indexes collection.

Though it’s usually easier to use a helper method to create an index, you can also

insert an index specification manually (this is what the helper methods do). You need

to be sure you’ve specified the minimum set of keys: ns, key, and name. ns is the

namespace, key is the field or combination of fields to index, and name is a name used

to refer to the index. Any additional options, like sparse, can also be specified here.

For example, let’s create a sparse index on the users collection:

use green

spec = {ns: "green.users", key: {'addresses.zip': 1}, name: 'zip'}

db.system.indexes.insert(spec, true)

If no errors are returned on insert, the index now exists, and you can query the sys-

tem.indexes collection to prove it:

db.system.indexes.find().pretty()

{

"ns" : "green.users",

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

"key" : {

"addresses.zip" : 1

},

"name" : "zip",

"v" : 1

}

The v field was added in MongoDB v2.0 to store the version of the index. This version

field allows for future changes in the internal index format but should be of little con-

cern to application developers.

To delete an index, you might think that all you need to do is remove the index

document from system.indexes, but this operation is prohibited. Instead, you must

delete indexes using the database command deleteIndexes. As with index creation,

there are helpers for deleting indexes, but if you want to run the command itself, you

can do that, too. The command takes as its argument a document containing the col-

lection name and either the name of the index to drop or * to drop all indexes. To

manually drop the index you created, issue the command like this:

use green

db.runCommand({deleteIndexes: "users", index: "zip"})

In most cases, you’ll use the shell’s helpers to create and drop indexes:

use green

db.users.createIndex({zip: 1})

You can then check the index specifications with the getIndexSpecs() method:

> db.users.getIndexes()

[

{

"v" : 1,

"key" : {

"_id" : 1

},

"ns" : "green.users",

"name" : "_id_"

},

{

"v" : 1,

"key" : {

"zip" : 1

},

"ns" : "green.users",

"name" : "zip_1"

}

]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

Finally, you can drop the index using the dropIndex() method. Note that you must

supply the index’s name as specified in the spec:

use green

db.users.dropIndex("zip_1")

You can also supply your own name while creating an index using the name parameter.

Those are the basics of creating and deleting indexes. For what to expect when an

index is created, read on.

BUILDING INDEXES

Most of the time, you’ll want to declare your indexes before putting your application

into production. This allows indexes to be built incrementally, as the data is inserted.

But there are two cases where you might choose to build an index after the fact. The

first case occurs when you need to import a lot of data before switching into produc-

tion. For instance, you might be migrating an application to MongoDB and need to

seed the database with user information from a data warehouse. You could create the

indexes on your user data in advance, but doing so after you’ve imported the data will

ensure an ideally balanced and compacted index from the start. It’ll also minimize the

net time to build the index.

The second (and more obvious) case for creating indexes on existing data sets is

when you have to optimize for new queries. This occurs when you add or change func-

tionality in your application, and it happens more than you might think. Suppose you

allow users to log in using their username, so you index that field. Then you modify

your application to also allow your users to log in using their email; now you probably

need a second index on the email field. Watch out for cases like these because they

require rethinking your indexing.

Regardless of why you’re creating new indexes, the process isn’t always pleasing.

For large data sets, building an index can take hours, even days. But you can monitor

the progress of an index build from the MongoDB logs. Let’s take an example from a

data set that we’ll use in the next section. First, you declare an index to be built:

db.values.createIndex({open: 1, close: 1})

The index builds in two steps. In the first step, the values to be indexed are sorted. A

sorted data set makes for a much more efficient insertion into the B-tree. If you look

at the MongoDB server log, you’ll see the progress printed for long index builds. Note

that the progress of the sort is indicated by the ratio of the number of documents

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

sorted to the total number of documents:

[conn1] building new index on { open: 1.0, close: 1.0 } for stocks.values

1000000/4308303 23%

2000000/4308303 46%

3000000/4308303 69%

4000000/4308303 92%

Tue Jan 4 09:59:13 [conn1] external sort used : 5 files in 55 secs

For step two, the sorted values are inserted into the index. Progress is indicated in the

same way, and when complete, the time it took to complete the index build is indi-

cated as the insert time into system.indexes:

1200300/4308303 27%

2227900/4308303 51%

2837100/4308303 65%

3278100/4308303 76%

3783300/4308303 87%

4075500/4308303 94%

Tue Jan 4 10:00:16 [conn1] done building bottom layer, going to commit

Tue Jan 4 10:00:16 [conn1] done for 4308303 records 118.942secs

Tue Jan 4 10:00:16 [conn1] insert stocks.system.indexes 118942ms

In addition to examining the MongoDB log, you can check the index build progress

by running the shell’s currentOp() method. This command’s output varies from ver-

sion to version, but it will probably look something like the next listing.8

 Listing 8.1 Checking the index build process with the shell currentOP() method

> db.currentOp()

{

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

"inprog" : [

{

"opid" : 83695, "active" : true, "secs_running" : 55, "op" : "insert",

"ns" : "stocks.system.indexes", "insert" : {

"v" : 1,

"key" : {

"desc" : 1

},

"ns" : "stocks.values",

"name" : "desc_1"

},

"client" : "127.0.0.1:56391",

"desc" : "conn12", "threadId" : "0x10f20c000", "connectionId" : 12, "locks" :

{

"^" : "w",

"^stocks" : "W"

},

"waitingForLock" : false,

"msg" : "index: (1/3) external sort Index: (1/3)

External Sort Progress: 3999999/4308303 92%",

8

"progress" : {

"done" : 3999999,

"total" : 4308303

},

"numYields" : 0,

"lockStats" : {

"timeLockedMicros" : {},

"timeAcquiringMicros" : {

"r" : NumberLong(0),

"w" : NumberLong(723)

}

}

}

]

}

The msg field describes the build’s progress. Note also the locks element, which indi-

cates that the index build takes a write lock on the stocks database. This means that

no other client can read or write from the database at this time. If you’re running in

production, this is obviously a bad thing, and it’s the reason why long index builds can

be so vexing. Let’s explore two possible solutions to this problem.

BACKGROUND INDEXING

If you’re running in production and can’t afford to halt access to the database, you

can specify that an index be built in the background. Although the index build will

still take a write lock, the job will yield to allow other readers and writers to access the

database. If your application typically exerts a heavy load on MongoDB, a background

index build will degrade performance, but this may be acceptable under certain cir-

cumstances. For example, if you know that the index can be built within a time win-

dow where application traffic is at a minimum, background indexing in this case

might be a good choice.

To build an index in the background, specify {background: true} when you declare

the index. The previous index can be built in the background like this:

db.values.createIndex({open: 1, close: 1}, {background: true})

OFFLINE INDEXING

Building an index in the background may still put an unacceptable amount of load on

a production server. If this is the case, you may need to index the data offline. This will

usually involve taking a replica node offline, building the index on that node by itself,

and then allowing the node to catch up with the master replica. Once it’s caught up,

you can promote the node to primary and then take another secondary offline and

build its version of the index. This tactic presumes that your replication oplog is large

enough to prevent the offline node from becoming stale during the index build.

Chapter 10 covers replication in detail and should help you plan for a migration such

as this.

BACKUPS

Because indexes are hard to build, you may want to back them up. Unfortunately,

not all backup methods include indexes. For instance, you might be tempted to use

mongodump and mongorestore, but these utilities preserve collections and index decla-

rations only. This means that when you run mongorestore, all the indexes declared

for any collections you’ve backed up will be re-created. As always, if your data set is

large, the time it takes to build these indexes may be unacceptable.

Consequently, if you want your backups to include indexes, you’ll want to opt for

backing up the MongoDB data files themselves. More details about this, as well as gen-

eral instructions for backups, can be found in chapter 13.

DEFRAGMENTING

If your application heavily updates existing data or performs a lot of large deletions,

you may end up with a highly fragmented index. B-trees will coalesce on their own

somewhat, but this isn’t always sufficient to offset a high delete volume. The primary

symptom of a fragmented index is an index size much larger than you’d expect for

the given data size. This fragmented state can result in indexes using more RAM than

necessary. In these cases, you may want to consider rebuilding one or more indexes.

You can do this by dropping and re-creating individual indexes or by running the

reIndex command, which will rebuild all indexes for a given collection:

db.values.reIndex();

Be careful about reindexing: the command will take out a write lock for the duration

of the rebuild, temporarily rendering your MongoDB instance unusable. Reindexing

is best done offline, as described earlier for building indexes on a secondary. Note

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 36

that the compact command, discussed in chapter 10, will also rebuild indexes for the

collection on which it’s run.

We’ve discussed how to create and manage your indexes, but despite this knowl-

edge, you may still find yourself in a situation where your queries aren’t fast enough.

This can occur as you add data, traffic, or new queries. Let’s learn how to identify

these queries that could be faster and improve the situation.

 Query optimization

Query optimization is the process of identifying slow queries, discovering why they’re

slow, and then taking steps to speed them up. In this section, we’ll look at each step of

the query optimization process in turn so that by the time you finish reading, you’ll

have a framework for addressing problematic queries on any MongoDB installation.

Before diving in, we must warn you that the techniques presented here can’t be

used to solve every query performance problem. The causes of slow queries vary too

much. Poor application design, inappropriate data models, and insufficient physical

hardware are all common culprits, and their remedies require a significant time

investment. Here we’ll look at ways to optimize queries by restructuring the queries

themselves and by building the most useful indexes. We’ll also describe other avenues

for investigation when these techniques fail to deliver.

ed is 0.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

UNIT-IV
SYLLABUS

 Replication: Overview – Replica sets – Master-slave replication – Drivers

and replication. Shading: Overview – A sample shard cluster – Querying

and indexing a shard cluster – Choosing a shard key – sharding in production.

 Replication overview

Replication is the distribution and maintenance of data across multiple MongoDB

servers (nodes). MongoDB can copy your data to one or more nodes and constantly

keep them in sync when changes occur. This type of replication is provided through a

mechanism called replica sets, in which a group of nodes are configured to automati-

cally synchronize their data and fail over when a node disappears. MongoDB also

supports an older method of replication called master-slave, which is now considered

deprecated, but master-slave replication is still supported and can be used in MongoDB

v3.0. For both methods, a single primary node receives all writes, and then all second-

ary nodes read and apply those writes to themselves asynchronously.

 Why replication matters

■ The network connection between the application and the database is lost.

■ Planned downtime prevents the server from coming back online as expected.

Most hosting providers must schedule occasional downtime, and the results of

this downtime aren’t always easy to predict. A simple reboot will keep a data-

base server offline for at least a few minutes. Then there’s the question of what

happens when the reboot is complete. For example, newly installed software or

hardware can prevent MongoDB or even the operating system from starting

up properly.

■ There’s a loss of power. Although most modern datacenters feature redundant

power supplies, nothing prevents user error within the datacenter itself or an

extended brownout or blackout from shutting down your database server.

■ A hard drive fails on the database server. Hard drives have a mean time to failure

of a few years and fail more often than you might think.2 Even if it’s acceptable

to have occasional downtime for your MongoDB, it’s probably not acceptable to

lose your data if a hard drive fails. It’s a good idea to have at least one copy of

your data, which replication provides.

 Replication use cases and limitations
In addition to providing redundancy and failover, replication simplifies mainte-

nance, usually by allowing you to run expensive operations on a node other than the

primary. For example, it’s common practice to run backups on a secondary node to

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

keep unnecessary load off the primary and to avoid downtime. Building large

indexes is another example. Because index builds are expensive, you may opt to

build on a secondary node first, swap the secondary with the existing primary, and

then build again on the new secondary.

Finally, replication allows you to balance reads across replicas. For applications

whose workloads are overwhelmingly read-heavy, this is the easiest, or if you prefer,

the most naïve, way to scale MongoDB. But for all its promise, a replica set doesn’t

help much if any of the following apply:

■ The allotted hardware can’t process the given workload. As an example, we

mentioned working sets in the previous chapter. If your working data set is

much larger than the available RAM, then sending random reads to the second-

aries likely won’t improve your performance as much as you might hope. In this

scenario, performance becomes constrained by the number of I/O operations

per second (IOPS) your disk can handle—generally around 80–100 for non-SSD

hard drives. Reading from a replica increases your total IOPS, but going from

100 to 200 IOPS may not solve your performance problems, especially if writes

are occurring at the same time and consuming a portion of that number. In this

case, sharding may be a better option.

■ The ratio of writes to reads exceeds 50%. This is an admittedly arbitrary ratio,

but it’s a reasonable place to start. The issue here is that every write to the pri-

mary must eventually be written to all the secondaries as well. Therefore, direct-

ing reads to secondaries that are already processing a lot of writes can

sometimes slow the replication process and may not result in increased read

throughput.

 Replica sets

Replica sets are the recommended MongoDB replication strategy. We’ll start by con-

figuring a sample replica set. We’ll then describe how replication works because this

knowledge is incredibly important for diagnosing production issues. We’ll end by

discussing advanced configuration details, failover and recovery, and best deploy-

ment practices.

 Setup

The minimum recommended replica set configuration consists of three nodes,

because in a replica set with only two nodes you can’t have a majority in case the pri-

mary server goes down. A three-member replica set can have either three members

that hold data or two members that hold data and an arbiter. The primary is the only

member in the set that can accept write operations. Replica set members go through

a process in which they “elect” a new master by voting. If a primary becomes unavail-

able, elections allow the set to recover normal operations without manual interven-

tion. Unfortunately, if a majority of the replica set is inaccessible or unavailable, the

replica set cannot accept writes and all remaining members become read-only.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

You may consider adding an arbiter to a replica set if it has an equal number of

nodes in two places where network partitions between the places are possible. In

such cases, the arbiter will break the tie between the two facilities and allow the

set to elect a new primary.

Primary datacenter Secondary datacenter

Figure 11.1 A basic

replica set consisting of

a primary, a secondary,

and an arbiter

Begin by creating a data directory for each replica set member:

mkdir ~/node1

mkdir ~/node2

mkdir ~/arbiter

Next, start each member as a separate mongod. Because you’ll run each process on the

same machine, it’s easiest to start each mongod in a separate terminal window:

mongod --replSet myapp --dbpath ~/node1 --port 40000

mongod --replSet myapp --dbpath ~/node2 --port 40001

mongod --replSet myapp --dbpath ~/arbiter --port 40002

Note how we tell each mongod that it will be a member of the myapp replica set and that

we start each mongod on a separate port. If you examine the mongod log output, the

first thing you’ll notice are error messages saying that the configuration can’t be found.

This is completely normal:

[rsStart] replSet info you may need to run replSetInitiate

-- rs.initiate() in the shell -- if that is not already done

[rsStart] replSet can't get local.system.replset config from self

or any seed (EMPTYCONFIG)

On MongoDB v3.0 the log message will be similar to the following:

Ping

Ping

Arbiter

Primary

Ping Replication

Secondary

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

2015-09-15T16:27:21.088+0300 I REPL [initandlisten] Did not find local

replica set configuration document at startup; NoMatchingDocument Did not

find replica set configuration document in local.system.replset

To proceed, you need to configure the replica set. Do so by first connecting to one of

the non-arbiter mongods just started. These instances aren’t running on MongoDB’s

default port, so connect to one by running

mongo --port 40000

These examples were produced running these mongod processes locally, so you’ll see the

name of the example machine, iron, pop up frequently; substitute your own hostname.

Connect, and then run the rs.initiate() command:3

> rs.initiate()

{

"info2" : "no configuration explicitly specified -- making one",

"me" : "iron.local:40000",

"info" : "Config now saved locally. Should come online in about a

minute.",

"ok" : 1

}

On MongoDB v3.0 the output will be similar to the following:

{

"info2" : "no configuration explicitly specified -- making one",

"me" : "iron.local:40000",

"ok" : 1

}

Within a minute or so, you’ll have a one-member replica set. You can now add the

other two members using rs.add():

> rs.add("iron.local:40001")

{ "ok" : 1 }

> rs.add("iron.local:40002", {arbiterOnly: true})

{ "ok" : 1 }

On MongoDB v3.0 you can also add an arbiter with the following command:

> rs.addArb("iron.local:40002")

{ "ok" : 1 }

Note that for the second node, you specify the arbiterOnly option to create an arbi-

ter. Within a minute, all members should be online. To get a brief summary of the rep-

lica set status, run the db.isMaster() command:

> db.isMaster()

{

"setName" : "myapp",

"ismaster" : true,

"secondary" : false,

"hosts" : [

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

"iron.local:40001",

"iron.local:40000"

],

"arbiters" : [

"iron.local:40002"

],

"primary" : "iron.local:40000",

"me" : "iron.local:40000",

"maxBsonObjectSize" : 16777216,

"maxMessageSizeBytes" : 48000000,

"localTime" : ISODate("2013-11-06T05:53:25.538Z"),

"ok" : 1

}

The same command produces the following output on a MongoDB v3.0 machine:

myapp:PRIMARY> db.isMaster()

{

"setName" : "myapp",

"setVersion" : 5,

"ismaster" : true,

"secondary" : false,

"hosts" : [

"iron.local:40000",

"iron.local:40001"

],

"arbiters" : [

"iron.local:40002"

],

"primary" : "iron.local:40000",

"me" : "iron.local:40000",

"electionId" : ObjectId("55f81dd44a50a01e0e3b4ede"),

"maxBsonObjectSize" : 16777216,

"maxMessageSizeBytes" : 48000000,

"maxWriteBatchSize" : 1000,

"localTime" : ISODate("2015-09-15T13:37:13.798Z"),

"maxWireVersion" : 3,

"minWireVersion" : 0,

"ok" : 1

}

A more detailed view of the system is provided by the rs.status() method. You’ll see

state information for each node. Here’s the complete status listing:

> rs.status()

{

"set" : "myapp",

"date" : ISODate("2013-11-07T17:01:29Z"),

"myState" : 1,

"members" : [

{

"_id" : 0,

"name" : "iron.local:40000",

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

"health" : 1,

"state" : 1,

"stateStr" : "PRIMARY",

"uptime" : 1099,

"optime" : Timestamp(1383842561, 1),

"optimeDate" : ISODate("2013-11-07T16:42:41Z"),

"self" : true

},

{

"_id" : 1,

"name" : "iron.local:40001",

"health" : 1,

"state" : 2,

"stateStr" : "SECONDARY",

"uptime" : 1091,

"optime" : Timestamp(1383842561, 1),

"optimeDate" : ISODate("2013-11-07T16:42:41Z"),

"lastHeartbeat" : ISODate("2013-11-07T17:01:29Z"),

"lastHeartbeatRecv" : ISODate("2013-11-07T17:01:29Z"),

"pingMs" : 0,

"lastHeartbeatMessage" : "syncing to: iron.1ocal:40000",

"syncingTo" : "iron.local:40000"

},

{

"_id" : 2,

"name" : "iron.local:40002",

"health" : 1,

"state" : 7,

"stateStr" : "ARBITER",

"uptime" : 1089,

"lastHeartbeat" : ISODate("2013-11-07T17:01:29Z"),

"lastHeartbeatRecv" : ISODate("2013-11-07T17:01:29Z"),

"pingMs" : 0

}

],

"ok" : 1

}

The rs.status() command produces a slightly different output on a MongoDB v3.0

server:

{

"set" : "myapp",

"date" : ISODate("2015-09-15T13:41:58.772Z"),

"myState" : 1,

"members" : [

{

"_id" : 0,

"name" : "iron.local:40000",

"health" : 1,

"state" : 1,

"stateStr" : "PRIMARY",

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

"uptime" : 878,

"optime" : Timestamp(1442324156, 1),

"optimeDate" : ISODate("2015-09-15T13:35:56Z"),

"electionTime" : Timestamp(1442323924, 2),

"electionDate" : ISODate("2015-09-15T13:32:04Z"),

"configVersion" : 5,

"self" : true

},

{

"_id" : 1,

"name" : "iron.local:40001",

"health" : 1,

"state" : 2,

"stateStr" : "SECONDARY",

"uptime" : 473,

"optime" : Timestamp(1442324156, 1),

"optimeDate" : ISODate("2015-09-15T13:35:56Z"),

"lastHeartbeat" : ISODate("2015-09-15T13:41:56.819Z"),

"lastHeartbeatRecv" : ISODate("2015-09-15T13:41:57.396Z"),

"pingMs" : 0,

"syncingTo" : "iron.local:40000",

"configVersion" : 5

},

{

"_id" : 2,

"name" : "iron.local:40002",

"health" : 1,

"state" : 7,

"stateStr" : "ARBITER",

"uptime" : 360,

"lastHeartbeat" : ISODate("2015-09-15T13:41:57.676Z"),

"lastHeartbeatRecv" : ISODate("2015-09-15T13:41:57.676Z"),

"pingMs" : 10,

"configVersion" : 5

}

],

"ok" : 1

}

Unless your MongoDB database contains a lot of data, the replica set should come

online within 30 seconds. During this time, the stateStr field of each node should

transition from RECOVERING to PRIMARY, SECONDARY, or ARBITER.

Now even if the replica set status claims that replication is working, you may want

to see some empirical evidence of this. Go ahead and connect to the primary node

with the shell and insert a document:

$ mongo --port 40000

myapp:PRIMARY> use bookstore

switched to db bookstore

myapp:PRIMARY> db.books.insert({title: "Oliver Twist"})

myapp:PRIMARY> show dbs

bookstore 0.203125GB

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

local 0.203125GB

Notice how the MongoDB shell prints out the replica set membership status of the

instance it’s connected to.

Initial replication of your data should occur almost immediately. In another termi-

nal window, open a new shell instance, but this, time point it to the secondary node.

Query for the document just inserted; it should have arrived:

$ mongo --port 40001

myapp:SECONDARY> show dbs

bookstore 0.203125GB

local 0.203125GB

myapp:SECONDARY> use bookstore

switched to db bookstore

myapp:SECONDARY> rs.slaveOk()

myapp:SECONDARY> db.books.find()

{ "_id" : ObjectId("4d42ebf28e3c0c32c06bdf20"), "title" : "Oliver Twist" }

~/node1 and run kill -3 <process id>. You can also connect to the primary using the

shell and run commands to shut down the server:

$ mongo --port 40000

PRIMARY> use admin

PRIMARY> db.shutdownServer()

Once you’ve killed the primary, note that the secondary detects the lapse in the pri-

mary’s heartbeat. The secondary then elects itself primary. This election is possible

because a majority of the original nodes (the arbiter and the original secondary) are

still able to ping each other. Here’s an excerpt from the secondary node’s log:

Thu Nov 7 09:23:23.091 [rsHealthPoll] replset info iron.local:40000

heartbeat failed, retrying

Thu Nov 7 09:23:23.091 [rsHealthPoll] replSet info iron.local:40000

is down (or slow to respond):

Thu Nov 7 09:23:23.091 [rsHealthPoll] replSet member iron.local:40000

is now in state DOWN

Thu Nov 7 09:23:23.092 [rsMgr] replSet info electSelf 1

Thu Nov 7 09:23:23.202 [rsMgr] replSet PRIMARY

If you connect to the new primary node and check the replica set status, you’ll see that

the old primary is unreachable:

$ mongo --port 40001

> rs.status()

...

{

"_id" : 0,

"name" : "iron.local:40000",

"health" : 0,

"state" : 8,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

"stateStr" : "(not reachable/healthy)",

"uptime" : 0,

"optime" : Timestamp(1383844267, 1),

"optimeDate" : ISODate("2013-11-07T17:11:07Z"),

"lastHeartbeat" : ISODate("2013-11-07T17:30:00Z"),

"lastHeartbeatRecv" : ISODate("2013-11-07T17:23:21Z"),

"pingMs" : 0

},

...

Post-failover, the replica set consists of only two nodes. Because the arbiter has no

data, your application will continue to function as long as it communicates with the

primary node only.4 Even so, replication isn’t happening, and there’s now no possibil-

ity of failover. The old primary must be restored. Assuming that the old primary was

shut down cleanly, you can bring it back online, and it’ll automatically rejoin the rep-

lica set as a secondary. Go ahead and try that now by restarting the old primary node.

That’s a quick overview of replica sets. Some of the details are, unsurprisingly,

messier. In the next two sections, you’ll see how replica sets work and look at deploy-

ment, advanced configuration, and how to handle tricky scenarios that may arise in

production.

To better see how this works, let’s look more closely at a real oplog and at the oper-

ations recorded in it. First connect with the shell to the primary node started in the

previous section and switch to the local database:

myapp:PRIMARY> use local

switched to db local

The local database stores all the replica set metadata and the oplog. Naturally, this

database isn’t replicated itself. Thus it lives up to its name; data in the local database

is supposed to be unique to the local node and therefore shouldn’t be replicated.

If you examine the local database, you’ll see a collection called oplog.rs, which is

where every replica set stores its oplog. You’ll also see a few system collections. Here’s

the complete output:

myapp:PRIMARY> show collections

me

oplog.rs

replset.minvalid

slaves

startup_log

system.indexes

system.replset

replset.minvalid contains information for the initial sync of a given replica set

member, and system.replset stores the replica set config document.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

Not all of your mongod servers will have the replset.minvalid collection. me and

slaves are used to implement write concerns, described at the end of this

chapter, and system.indexes is the standard index spec container.

First we’ll focus on the oplog. Let’s query for the oplog entry corresponding to the

book document you added in the previous section. To do so, enter the following

query. The resulting document will have four fields, and we’ll discuss each in turn:

> db.oplog.rs.findOne({op: "i"})

{

"ts" : Timestamp(1383844267, 1),

"h" : NumberLong("-305734463742602323"),

"v" : 2,

"op" : "i",

"ns" : "bookstore.books",

"o" : {

"_id" : ObjectId("527bc9aac2595f18349e4154"),

"title" : "Oliver Twist"

}

}
5

The first field, ts, stores the entry’s BSON timestamp. The timestamp includes two

numbers; the first representing the seconds since epoch and the second representing

a counter value—1 in this case. To query with a timestamp, you need to explicitly con-

struct a timestamp object. All the drivers have their own BSON timestamp construc-

tors, and so does JavaScript. Here’s how to use it:

db.oplog.rs.findOne({ts: Timestamp(1383844267, 1)})

Returning to the oplog entry, the op field specifies the opcode. This tells the second-

ary node which operation the oplog entry represents. Here you see an i, indicating an

insert. After op comes ns to signify the relevant namespace (database and collection)

and then the lowercase letter o, which for insert operations contains a copy of the

inserted document.

myapp:PRIMARY> use bookstore

myapp:PRIMARY> db.books.insert({title: "A Tale of Two Cities"})

myapp:PRIMARY> db.books.insert({title: "Great Expectations"})

Now with four books in the collection, let’s issue a multi-update to set the author’s name:

myapp:PRIMARY> db.books.update({}, {$set: {author: "Dickens {multi:true})

How does this appear in the oplog?

myapp:PRIMARY> use local

myapp:PRIMARY> db.oplog.rs.find({op: "u"})

{

"ts" : Timestamp(1384128758, 1),

"h" : NumberLong("5431582342821118204"),

"v" : 2,

"op" : "u",

"ns" : "bookstore.books",

"o2" : {

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

"_id" : ObjectId("527bc9aac2595f18349e4154")

},

"o" : {

"$set" : {

"author" : "Dickens"

}

}

}

{

"ts" : Timestamp(1384128758, 2),

"h" : NumberLong("3897436474689294423"),

"v" : 2,

"op" : "u",

"ns" : "bookstore.books",

"o2" : {

"_id" : ObjectId("528020a9f3f61863aba207e7")

},

"o" : {

"$set" : {

"author" : "Dickens"

}

}

}

{

"ts" : Timestamp(1384128758, 3),

"h" : NumberLong("2241781384783113"),

"v" : 2,

"op" : "u",

"ns" : "bookstore.books",

"o2" : {

"_id" : ObjectId("528020a9f3f61863aba207e8")

},

"o" : {

"$set" : {

"author" : "Dickens"

}

}

}

As you can see, each updated document gets its own oplog entry. This normalization is

done as part of the more general strategy of ensuring that secondaries always end up

with the same data as the primary.

 To guarantee this, every applied operation must be idempotent—it can’t matter how

many times a given oplog entry is applied. The result must always be the same. But

the secondaries must apply the oplog entries in the same order as they were

generated for the oplog. Other multidocument operations, like deletes, will

exhibit the same behavior. You can try different operations and see how they

ultimately appear in the oplog.

To get some basic information about the oplog’s current status, you can run the

shell’s db.getReplicationInfo() method:

myapp:PRIMARY> db.getReplicationInfo()

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

{

"logSizeMB" : 192,

"usedMB" : 0.01,

"timeDiff" : 286197,

"timeDiffHours" : 79.5,

"tFirst" : "Thu Nov 07 2013 08:42:41 GMT-0800 (PST)",

"tLast" : "Sun Nov 10 2013 16:12:38 GMT-0800 (PST)",

"now" : "Sun Nov 10 2013 16:19:49 GMT-0800 (PST)"

}

Here you see the timestamps of the first and last entries in this oplog. You can find

these oplog entries manually by using the $natural sort modifier. For example, the

following query fetches the latest entry:

db.oplog.rs.find().sort({$natural: -1}) .limit(1)

want to avoid having to completely resync any node, and increasing the oplog size will

buy you time in the event of network failures and the like.

If you want to change the default oplog size, you must do so the first time you start

each member node using mongod’s --oplogSize option. The value is in megabytes.

Thus you can start mongod with a 1 GB oplog like this:7

mongod --replSet myapp --oplogSize 1024

CONFIGURATION DETAILS

Here we’ll present the mongod startup options pertaining to replica sets, and we’ll

describe the structure of the replica set configuration document.

Replication options

Earlier, you learned how to initiate a replica set using the shell’s rs.initiate() and

rs.add() methods. These methods are convenient, but they hide certain replica set

configuration options. Let’s look at how to use a configuration document to initiate

and update a replica set’s configuration.

A configuration document specifies the configuration of the replica set. To create

one, first add a value for _id that matches the name you passed to the --replSet

parameter:

> config = {_id: "myapp", members: []}

{ "_id" : "myapp", "members" : [] }

The individual members can be defined as part of the configuration document as follows:

config.members.push({_id: 0, host: 'iron.local:40000'})

config.members.push({_id: 1, host: 'iron.local:40001'})

config.members.push({_id: 2, host: 'iron.local:40002', arbiterOnly: true})

As noted earlier, iron is the name of our test machine; substitute your own hostname

as necessary. Your configuration document should now look like this:

> config

{

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

"_id" : "myapp",

"members" : [

{

"_id" : 0,

"host" : "iron.local:40000"

},

{

"_id" : 1,

"host" : "iron.local:40001"

},

{

"_id" : 2,

"host" : "iron.local:40002",

"arbiterOnly" : true

}

]

}

You can then pass the document as the first argument to rs.initiate() to initiate the

replica set.

configuration parameters, plus the optional arbiterOnly setting. Please keep in

mind that although a replica set can have up to 50 members, it can only have up to 7

voting members.

The document requires an _id that matches the replica set’s name. The initiation

command will verify that each member node has been started with the --replSet

option with that name. Each replica set member requires an _id consisting of increas-

ing integers starting from 0. Also, members require a host field with a hostname and

optional port.

Here you initiate the replica set using the rs.initiate() method. This is a simple

wrapper for the replSetInitiate command. Thus you could have started the replica

set like this:

db.runCommand({replSetInitiate: config});

config is a variable holding your configuration document. Once initiated, each set

member stores a copy of this configuration document in the local database’s

system.replset collection. If you query the collection, you’ll see that the document

now has a version number. Whenever you modify the replica set’s configuration, you

must also increment this version number. The easiest way to access the current config-

uration document is to run rs.conf().

To modify a replica set’s configuration, there’s a separate command, replSet-

Reconfig, which takes a new configuration document. Alternatively, you can use

rs.reconfig() which also uses replSetReconfig. The new document can specify the

addition or removal of set members along with alterations to both member-specific

and global configuration options. The process of modifying a configuration document,

incrementing the version number, and passing it as part of the replSetReconfig can

be laborious, so a number of shell helpers exist to ease the way. To see a list of them

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

all, enter rs.help() at the shell.

Bear in mind that whenever a replica set reconfiguration results in the election of

a new primary node, all client connections will be closed. This is done to ensure that

clients will no longer attempt to send writes to a secondary node unless they’re aware

of the reconfiguration.

If you’re interested in configuring a replica set from one of the drivers, you can see

how by examining the implementation of rs.add(). Enter rs.add (the method with-

out the parentheses) at the shell prompt to see how the method works.

Configuration document options

Until now, we’ve limited ourselves to the simplest replica set configuration document.

But these documents support several options for both replica set members and for the

replica set as a whole. We’ll begin with the member options. You’ve seen _id, host,

and arbiterOnly. Here are these plus the rest, in all their gritty detail:

■ _id (required) —A unique incrementing integer representing the member’s ID.

These _id values begin at 0 and must be incremented by one for each mem-

ber added.

■ ost (required)—A string storing the hostname of this member along with an

optional port number. If the port is provided, it should be separated from the

hostname by a colon (for example, iron:30000). If no port number is specified,

the default port, 27017, will be used. We’ve seen it before, but here’s a simple

document with a replica set _id and host:

{

"_id" : 0,

"host" : "iron:40000"

}

■ arbiterOnly—A Boolean value, true or false, indicating whether this mem-

ber is an arbiter. Arbiters store configuration data only. They’re lightweight

members that participate in primary election but not in the replication itself.

Here’s an example of using the arbiterOnly setting:

{

"_id" : 0,

"host" : "iron:40000",

"arbiterOnly": true

}

■ priority—A decimal number from 0 to 1000 that helps to determine the rela-

tive eligibility that this node will be elected primary. For both replica set initia-

tion and failover, the set will attempt to elect as primary the node with the

highest priority, as long as it’s up to date. This might be useful if you have a rep-

lica set where some nodes are more powerful than the others; it makes sense to

prefer the biggest machine as the primary.

There are also cases where you might want a node never to be primary (say, a

disaster recovery node residing in a secondary data center). In those cases, set

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

the priority to 0. Nodes with a priority of 0 will be marked as passive in the

results to the isMaster() command and will never be elected primary. Here’s

an example of setting the member’s priority:

{

"_id" : 0,

"host" : "iron:40000",

"priority" : 500

}

■ votes—All replica set members get one vote by default. The votes setting

allows you to give more than one vote to an individual member.

This option should be used with extreme care, if at all. For one thing, it’s dif-

ficult to reason about replica set failover behavior when not all members have

the same number of votes. Moreover, the vast majority of production deploy-

ments will be perfectly well served with one vote per member. If you do choose

to alter the number of votes for a given member, be sure to think through and

simulate the various failure scenarios carefully. This member has an increased

number of votes:

{

"_id" : 0,

"host" : "iron:40000",

"votes" : 2

}

■ hidden—A Boolean value that, when true, will keep this member from showing

up in the responses generated by the isMaster command. Because the MongoDB

drivers rely on isMaster for knowledge of the replica set topology, hiding a

member keeps the drivers from automatically accessing it. This setting can be

used in conjunction with buildIndexes and must be used with slaveDelay.

This member is configured to be hidden:

{

"_id" : 0,

"host" : "iron:40000",

"hidden" : true

}

■ buildIndexes—A Boolean value, defaulting to true, that determines whether

this member will build indexes. You’ll want to set this value to false only on

members that will never become primary (those with a priority of 0).

This option was designed for nodes used solely as backups. If backing up

indexes is important, you shouldn’t use this option. Here’s a member config-

ured not to build indexes:

{

"_id" : 0,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

"host" : "iron:40000",

"buildIndexes" : false

}

■ slaveDelay—The number of seconds that a given secondary should lag behind

the primary. This option can be used only with nodes that will never become pri-

mary. To specify a slaveDelay greater than 0, be sure to also set a priority of 0.

You can use a delayed slave as insurance against certain kinds of user errors.

For example, if you have a secondary delayed by 30 minutes and an administra-

tor accidentally drops a database, you have 30 minutes to react to this event

before it’s propagated. This member has been configured with a slaveDelay of

one hour:

{

"_id" : 0,

"host" : "iron:40000",

"slaveDelay" : 3600

}

■ tags—A document containing a set of key-value pairs, usually used to identify

this member’s location in a particular datacenter or server rack. Tags are used

for specifying granular write concern and read settings, and they’re discussed in

section 11.3.4. In the tag document, the values entered must be strings. Here’s a

member with two tags:

{

"_id" : 0,

"host" : "iron:40000",

"tags" : {

"datacenter" : "NY",

"rack" : "B"

}

That sums up the options for individual replica set members. There are also two

global replica set configuration parameters scoped under a settings key. In the rep-

lica set configuration document, they appear like this:

{

_id: "myapp",

members: [...],

settings: {

getLastErrorDefaults: {

w: 1

},

getLastErrorModes: {

multiDC: {

dc: 2

}

}

}

}

■ getLastErrorDefaults—A document specifying the default arguments to be

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

used when the client calls getLastError with no arguments. This option should

be treated with care because it’s also possible to set global defaults for getLast-

Error within the drivers, and you can imagine a situation where application

developers call getLastError not realizing that an administrator has specified a

default on the server.

For more details on getLastError, see its documentation at http://docs

.mongodb.org/manual/reference/command/getLastError. Briefly, to specify

that all writes are replicated to at least two members with a timeout of 500 ms,

you’d specify this value in the config like this:

settings: {

getLastErrorDefaults: {

w: 2,

wtimeout: 500

}

}

■ etLastErrorModes—A document defining extra modes for the getLastError

command. This feature is dependent on replica set tagging and is described in

detail in section 11.3.4.

Table 11.1 Replica set states

State State string Notes

0 STARTUP Indicates that the replica set is negotiating with other nodes by pinging all set

 members and sharing config data.

1 PRIMARY This is the primary node. A replica set will always have at most one

 primary node.

2 SECONDARY This is a secondary, read-only node. This node may become a primary in the
 event of a failover if and only if its priority is greater than 0 and it’s not

 marked as hidden.

3 RECOVERING This node is unavailable for reading and writing. You usually see this state after
 a failover or upon adding a new node. While recovering, a data file sync is often

 in progress; you can verify this by examining the recovering node’s logs.

4 FATAL A network connection is still established, but the node isn’t responding to
 pings. This usually indicates a fatal error on the machine hosting the node

 marked FATAL.

5 STARTUP2 An initial data file sync is in progress.

6 UNKNOWN A network connection has yet to be made.

7 ARBITER This node is an arbiter.

8 DOWN The node was accessible and stable at some point but isn’t currently

 responding to heartbeat pings.

9 ROLLBACK A rollback is in progress.

10 REMOVED The node was once a member of the replica set but has since been removed.

http://docs.mongodb.org/manual/reference/command/getLastError
http://docs.mongodb.org/manual/reference/command/getLastError

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

8

FAILOVER AND RECOVERY

In the sample replica set you saw a couple examples of failover. Here we summarize

the rules of failover and provide some suggestions on handling recovery.

A replica set will come online when all members specified in the configuration can

communicate with one another. Each node is given one vote by default, and those

votes are used to form a majority and elect a primary. This means that a replica set can

be started with as few as two nodes (and votes). But the initial number of votes also

decides what constitutes a majority in the event of a failure.

Let’s assume that you’ve configured a replica set of three complete replicas (no

arbiters) and thus have the recommended minimum for automated failover. If the pri-

mary fails, and the remaining secondaries can see each other, then a new primary can

be elected. As for deciding which one, the secondary with the most up-to-date oplog

with the higher priority will be elected primary.

Failure modes and recovery

Recovery is the process of restoring the replica set to its original state following a fail-

ure. There are two overarching failure categories to be handled. The first is called

clean failure, where a given node’s data files can still be assumed to be intact. One

example of this is a network partition. If a node loses its connections to the rest of the

set, you need only wait for connectivity to be restored, and the partitioned node will

resume as a set member. A similar situation occurs when a given node’s mongod pro-

cess is terminated for any reason but can be brought back online cleanly.9 Again, once

the process is restarted, it can rejoin the set.

The second type is called categorical failure, where a node’s data files either no longer

exist or must be presumed corrupted. Unclean shutdowns of the mongod process with-

out journaling enabled and hard drive crashes are both examples of this kind of failure.

The only ways to recover a categorically failed node are to completely replace the data

files via a resync or to restore from a recent backup. Let’s look at both strategies in turn.

To completely resync, start a mongod with an empty data directory on the failed

node. As long as the host and port haven’t changed, the new mongod will rejoin the

replica set and then resync all the existing data. If either the host or port has changed,

then after bringing the mongod back online you’ll also have to reconfigure the replica

set. As an example, suppose the node at iron:40001 is rendered unrecoverable and

you bring up a new node at foobar:40000. You can reconfigure the replica set by

grabbing the configuration document, modifying the host for the second node, and

then passing that to the rs.reconfig() method:

> config = rs.conf()

{

"_id" : "myapp",

"version" : 1,

"members" : [

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

{

"_id" : 0,

"host" : "iron:40000"

},

{

"_id" : 1,

"host" : "iron:40001"

},

{

"_id" : 2,

"host" : "iron:40002",

"arbiterOnly" : true

}

]

}

> config.members[1].host = "foobar:40000"

foobar:40000

> rs.reconfig(config)

 Drivers and replication
If you’re building an application using MongoDB’s replication, you need to know

about several application-specific topics. The first is related to connections and

failover. Next comes the write concern, which allows you to decide to what degree a

given write should be replicated before the application continues. The next topic,

read scaling, allows an application to distribute reads across replicas. Finally, we’ll dis-

cuss tagging, a way to configure more complex replica set reads and writes.

 Connections and failover

The MongoDB drivers present a relatively uniform interface for connecting to rep-

lica sets.

SINGLE-NODE CONNECTIONS

You’ll always have the option of connecting to a single node in a replica set. There’s

no difference between connecting to a node designated as a replica set primary and

connecting to one of the vanilla stand-alone nodes we’ve used for the examples

throughout the book. In both cases, the driver will initiate a TCP socket connection

and then run the isMaster command. For a stand-alone node, this command returns

a document like the following:

{

"ismaster" : true,

"maxBsonObjectSize" : 16777216,

"maxMessageSizeBytes" : 48000000,

"localTime" : ISODate("2013-11-12T05:22:54.317Z"),

"ok" : 1

}

What’s most important to the driver is that the isMaster field be set to true, which

indicates that the given node is a stand-alone, a master running master-slave replica-

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

tion, or a replica set primary.11 In all of these cases, the node can be written to,

and the user of the driver can perform any CRUD operation.

But when connecting directly to a replica set secondary, you must indicate that you

know you’re connecting to such a node (for most drivers, at least). In the Ruby driver,

you accomplish this with the:read parameter. To connect directly to the first second-

ary you created earlier in the chapter, the Ruby code would look like this:

@con = Mongo::Client.new(['iron: 40001'], {:read => {:mode => :secondary}})

REPLICA SET CONNECTIONS

You can connect to any replica set member individually, but you’ll normally want to

connect to the replica set as a whole. This allows the driver to figure out which node

is primary and, in the case of failover, reconnect to whichever node becomes the

new primary.

Most of the officially supported drivers provide ways of connecting to a replica set.

In Ruby, you connect by creating a new instance of Mongo::Client, passing in a list of

seed nodes as well as the name of the replica set:

Mongo::Client.new(['iron:40000', 'iron:40001'], :replica_set => 'myapp')

Internally, the driver will attempt to connect to each seed node and then call the

isMaster command. Issuing this command to a replica set returns a number of

important set details:

> db.isMaster()

{

"setName" : "myapp",

"ismaster" : false,

"secondary" : true,

"hosts" : [

"iron:40001",

"iron:40000"

],

"arbiters" : [

"iron:40002"

],

"me" : "iron:40000",

"maxBsonObjectSize" : 16777216,

"maxMessageSizeBytes" : 48000000,

"localTime" : ISODate("2013-11-12T05:14:42.009Z"),

"ok" : 1

}

 Read scaling

Replicated databases are great for read scaling. If a single server can’t handle the

application’s read load, you have the option to route queries to more than one rep-

lica. Most of the drivers have built-in support for sending queries to secondary nodes

through a read preference configuration. With the Ruby driver, this is provided as an

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

option on the Mongo::Client constructor:

Mongo::Client.new(

['iron:40000', 'iron:40001'],

{:read => {:mode => :secondary})

Note in the connection code that we configure which nodes the new client will read

from. When the :read argument is set to {:mode => :secondary}, the connection

object will choose a random, nearby secondary to read from. This configuration is

called the read preference, and it can be used to direct your driver to read from cer-

tain nodes. Most MongoDB drivers have these available read preferences:

■ primary—This is the default setting and indicates that reads will always be from

the replica set primary and thus will always be consistent. If the replica set is

experiencing problems and there’s no secondary available, an error will be

thrown.

■ primaryPreferred—Drivers with this setting will read from the primary unless for

some reason it’s unavailable or there’s no primary, in which case reads will go to

a secondary. This means that reads aren’t guaranteed to be consistent.

■ secondary—This setting indicates the driver should always read from the second-

ary. This is useful in cases where you want to be sure that your reads will have no

impact on the writes that occur on the primary. If no secondaries are available,

the read will throw an exception.

■ secondaryPreferred—This is a more relaxed version of the previous setting. Reads

will go to secondaries, unless no secondaries are available, in which case reads

will go to the primary.

■ nearest —A driver configured with this setting will attempt to read from the near-

est member of the replica set, as measured by network latency. This could be

either a primary or a secondary. Thus, reads will go to the member that the

driver believes it can communicate with the quickest.

For the Ruby driver, this configuration might look like this:

Mongo::Client.new(

['iron:40000', 'iron:40001'],

:read => {:mode => :secondary},:local_threshold => '0.0015')

The :local_threshold option specifies the maximum latency in seconds as a float.

 Tagging

If you’re using either write concerns or read scaling, you may find yourself wanting

more granular control over exactly which secondaries receive writes or reads. For

example, suppose you’ve deployed a five-node replica set across two data geographi-

cally separate centers, NY and FR. The primary datacenter, NY, contains three nodes,

and the secondary datacenter, FR, contains the remaining two. Let’s say that you want

to use a write concern to block until a certain write has been replicated to at least one

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

Here’s an example:

{

"_id" : "myapp",

"version" : 1,

"members" : [

{

"_id" : 0,

"host" : "ny1.myapp.com:30000",

"tags": { "dc": "NY", "rackNY": "A" }

},

{

"_id" : 1,

"host" : "ny2.myapp.com:30000",

"tags": { "dc": "NY", "rackNY": "A" }

},

{

"_id" : 2,

"host" : "ny3.myapp.com:30000",

"tags": { "dc": "NY", "rackNY": "B" }

},

{

"_id" : 3,

"host" : "fr1.myapp.com:30000",

"tags": { "dc": "FR", "rackFR": "A" }

},

{

"_id" : 4,

"host" : "fr2.myapp.com:30000",

"tags": { "dc": "FR", "rackFR": "B" }

}

],

settings: {

getLastErrorModes: {

multiDC: { dc: 2 } },

multiRack: { rackNY: 2 } },

}

}

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

Shards store application data

mongos reads/writes application data from/to shards

mongos routes queries and collects result

Application sends queries to single mongos

mongos router

(in-memory copy of cluster metadata)

Figure 12.1 Components in a MongoDB shard cluster

A sharded cluster consists of shards, mongos routers, and config servers, as shown in

figure 12.1.

Let’s examine each component in figure 12.1:

■ Shards (upper left) store the application data. In a sharded cluster, only the mongos

routers or system administrators should be connecting directly to the shards.

Like an unsharded deployment, each shard can be a single node for develop-

ment and testing, but should be a replica set in production.

Application

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

■ mongos routers (center) cache the cluster metadata and use it to route opera-

tions to the correct shard or shards.

■ Config servers (upper right) persistently store metadata about the cluster, includ-

ing which shard has what subset of the data.

Now, let’s discuss in more detail the role each of these components plays in the cluster

as a whole.

replica set, but if you try to run operations on that shard directly, you’ll see only a por-

tion of the cluster’s total data.

 Mongos router: router of operations

Because each shard contains only part of the cluster’s data, you need something to

route operations to the appropriate shards. That’s where mongos comes in. The mongos

process, shown in the center of figure 12.1, is a router that directs all reads, writes, and

commands to the appropriate shard. In this way, mongos provides clients with a single

point of contact with the cluster, which is what enables a sharded cluster to present

the same interface as an unsharded one.

mongos processes are lightweight and nonpersistent.1 Because of this, they’re often

deployed on the same machines as the application servers, ensuring that only one net-

work hop is required for requests to any given shard. In other words, the application con-

nects locally to a mongos, and the mongos manages connections to the individual shards.

f a predetermined field or set of fields called a shard key. It’s the user’s responsibility

to choose the shard key, and we’ll cover how to do this in section 12.8.

For example, consider the following document from a spreadsheet management

application:

{

_id: ObjectId("4d6e9b89b600c2c196442c21")

filename: "spreadsheet-1",

updated_at: ISODate("2011-03-02T19:22:54.845Z"),

username: "banks",

data: "raw document data"

}

If all the documents in our collection have this format, we can, for example, choose a

shard key of the _id field and the username field. MongoDB will then use that infor-

mation in each document to determine what chunk the document belongs to.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

How does MongoDB make this determination? At its core, MongoDB’s sharding is

range-based; this means that each “chunk” represents a range of shard keys. When

MongoDB looks at a document to determine what chunk it belongs to, it first extracts

the values for the shard key and then finds the chunk whose shard key range contains

the given shard key values.

To see a concrete example of what this looks like, imagine that we chose a shard

key of username for this spreadsheets collection, and we have two shards, “A” and

“B.” Our chunk distribution may look something like table 12.1.

Table 12.1 Chunks and shards

Start End Shard

- Abbot B

Abbot Dayton A

Dayton Harris B

Harris

Norris

Norris



A

B

Looking at the table, it becomes a bit clearer what purpose chunks serve in a sharded

cluster. If we gave you a document with a username field of "Babbage", you’d immedi-

ately know that it should be on shard A, just by looking at the table above. In fact, if we

gave you any document that had a username field, which in this case is our shard key,

you’d be able to use table 12.1 to determine which chunk the document belonged to,

and from there determine which shard it should be sent to.

 Building a sample shard cluster

The best way to get a handle on sharding is to see how it works in action. Fortunately,

it’s possible to set up a sharded cluster on a single machine, and that’s exactly what

we’ll do now.3

The full process of setting up a sharded cluster involves three phases:

1 Starting the mongod and mongos servers —The first step is to spawn all the indi-

vidual mongod and mongos processes that make up the cluster. In the cluster

we’re setting up in this chapter, we’ll spawn nine mongod servers and one

mongos server.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

2 Configuring the cluster—The next step is to update the

configuration so that the replica sets are initialized and the shards are added

to the cluster. After this, the nodes will all be able to communicate with

each other.

3 Sharding collections —The last step is to shard a collection so that it can be spread

across multiple shards. The reason this exists as a separate step is because

MongoDB can have both sharded and unsharded collections in the same clus-

ter, so you must explicitly tell it which ones you want to shard. In this chapter,

we’ll shard our only collection, which is the spreadsheets collection of the

cloud-docs database.

We’ll cover each of these steps in detail in the next three sections. We’ll then simu-

late the behavior of the sample cloud-based spreadsheet application described in

the previous sections. Throughout the chapter we’ll examine the global shard con-

figuration, and in the last section, we’ll use this to see how data is partitioned based

on the shard key.

 Starting the mongod and mongos servers

The first step in setting up a sharded cluster is to start all the required mongod and

mongos processes. The shard cluster you’ll build will consist of two shards and three

config servers. You’ll also start a single mongos to communicate with the cluster. Fig-

ure 12.3 shows a map of all the processes that you’ll launch, with their port numbers

in parentheses.

You’ll runa bunch of commands to bring the cluster online, so if you find yourself

unable to see the forest because of the trees, refer back to this figure.

Shard-a Shard-b

mongod

(port 30100)

mongod

(port 30101)

mongod

arbiter

(port 30102)

mongod

(port 30000)

mongod

(port 30000)

mongod

arbiter

(port 30002)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

Config servers Application and router

Figure 12.3 A map of processes comprising the sample shard cluster

STARTING THE SHARDING COMPONENTS

Let’s start by creating the data directories for the two replica sets that will serve as

our shards:

$ mkdir /data/rs-a-1

$ mkdir /data/rs-a-2

$ mkdir /data/rs-a-3

$ mkdir /data/rs-b-1

$ mkdir /data/rs-b-2

$ mkdir /data/rs-b-3

Next, start each mongod. Because you’re running so many processes, you’ll use the --fork

option to run them in the background.4 The commands for starting the first replica

set are as follows:

$ mongod --shardsvr --replSet shard-a --dbpath /data/rs-a-1 \

--port 30000 --logpath /data/rs-a-1.log --fork

$ mongod --shardsvr --replSet shard-a --dbpath /data/rs-a-2 \

--port 30001 --logpath /data/rs-a-2.log --fork

$ mongod --shardsvr --replSet shard-a --dbpath /data/rs-a-3 \

--port 30002 --logpath /data/rs-a-3.log --fork

Here are the commands for the second replica set:

$ mongod --shardsvr --replSet shard-b --dbpath /data/rs-b-1 \

--port 30100 --logpath /data/rs-b-1.log --fork

$ mongod --shardsvr --replSet shard-b --dbpath /data/rs-b-2 \

--port 30101 --logpath /data/rs-b-2.log --fork

$ mongod --shardsvr --replSet shard-b --dbpath /data/rs-b-3 \

--port 30102 --logpath /data/rs-b-3.log --fork

s usual, you now need to initiate these replica sets. Connect to each one individually,

run rs.initiate(), and then add the remaining nodes. The first should look like this:

$ mongo localhost:30000

> rs.initiate()

Config

server

(port 27019)

Config

server

(port 27020)

Config

server

(port 27021)

mongos router

(port 40000)

Ruby application (load.rb)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

You’ll have to wait a minute or so before the initial node becomes primary. During

the process, the prompt will change from shard-a:SECONDARY> to shard-

a:PRIMARY. Using the rs.status() command will also reveal more information

about what’s going on behind the scenes. Once it does, you can add the

remaining nodes:

> rs.add("localhost:30001")

> rs.addArb("localhost:30002")

 localhost as the machine name might cause problems in the long run because it

only works if you’re going to run all processes on a single machine. If you know your

hostname, use it to get out of trouble. On a Mac, your hostname should look some-

thing like MacBook-Pro.local. If you don’t know your hostname, make sure that you

use localhost everywhere!

Configuring a replica set that you’ll use as a shard is exactly the same as configur-

ing a replica set that you’ll use on its own, so refer back to chapter 10 if any of this rep-

lica set setup looks unfamiliar to you.

Initiating the second replica set is similar. Again, wait a minute after running

rs.initiate():

$ mongo localhost:30100

> rs.initiate()

> rs.add("localhost:30100")

> rs.addArb("localhost:30101")

Finally, verify that both replica sets are online by running the rs.status() command

from the shell on each one. If everything checks out, you’re ready to start the config

servers.5 Now you create each config server’s data directory and then start a mongod for

each one using the configsvr option:

$ mkdir /data/config-1

$ mongod --configsvr --dbpath /data/config-1 --port 27019 \

--logpath /data/config-1.log --fork --nojournal

$ mkdir /data/config-2

$ mongod --configsvr --dbpath /data/config-2 --port 27020 \

--logpath /data/config-2.log --fork --nojournal

$ mkdir /data/config-3

$ mongod --configsvr --dbpath /data/config-3 --port 27021 \

--logpath /data/config-3.log --fork --nojournal

Ensure that each config server is up and running by connecting with the shell, or by

tailing the log file (tail –f <log_file_path>) and verifying that each process is listen-

ing on the configured port. Looking at the logs for any one config server, you should

see something like this:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

Wed Mar 2 15:43:28 [initandlisten] waiting for connections on port 27020

Wed Mar 2 15:43:28 [websvr] web admin interface listening on port 28020

If each config server is running, you can go ahead and start the mongos. The mongos

must be started with the configdb option, which takes a comma-separated list of con-

fig database addresses:6

$ mongos --configdb localhost:27019,localhost:27020,localhost:27021 \

--logpath /data/mongos.log --fork --port 40000

 Configuring the cluster

Now that you’ve started all the mongod and mongos processes that we’ll need for this

cluster (see figure 12.2), it’s time to configure the cluster. Start by connecting to the

mongos. To simplify the task, you’ll use the sharding helper methods. These are meth-

ods run on the global sh object. To see a list of all available helper methods, run

sh.help().

You’ll enter a series of configuration commands beginning with the addShard com-

mand. The helper for this command is sh.addShard(). This method takes a string

consisting of the name of a replica set, followed by the addresses of two or more seed

nodes for connecting. Here you specify the two replica sets you created along with the

addresses of the two non-arbiter members of each set:

$ mongo localhost:40000

> sh.addShard("shard-a/localhost:30000,localhost:30001")

{ "shardAdded" : "shard-a", "ok" : 1 }

> sh.addShard("shard-b/localhost:30100,localhost:30101")

{ "shardAdded" : "shard-b", "ok" : 1 }

If successful, the command response will include the name of the shard just added.

You can examine the config database’s shards collection to see the effect of your

work. Instead of using the use command, you’ll use the getSiblingDB() method to

switch databases:

> db.getSiblingDB("config").shards.find()

{ "_id" : "shard-a", "host" : "shard-a/localhost:30000,localhost:30001" }

{ "_id" : "shard-b", "host" : "shard-b/localhost:30100,localhost:30101" }

As a shortcut, the listshards command returns the same information:

> use admin

> db.runCommand({listshards: 1})

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

While we’re on the topic of reporting on sharding configuration, the shell’s sh.sta-

tus() method nicely summarizes the cluster. Go ahead and try running it now.

 Sharding collections

The next configuration step is to enable sharding on a database. This doesn’t do any-

thing on its own, but it’s a prerequisite for sharding any collection within a database.

Your application’s database will be called cloud-docs, so you enable sharding like this:

> sh.enableSharding("cloud-docs")

As before, you can check the config data to see the change you just made. The config

database holds a collection called databases that contains a list of databases. Each

document specifies the database’s primary shard location and whether it’s partitioned

(whether sharding is enabled):

> db.getSiblingDB("config").databases.find()

{ "_id" : "admin", "partitioned" : false, "primary" : "config" }

{ "_id" : "cloud-docs", "partitioned" : true, "primary" : "shard-a" }

Now all you need to do is shard the spreadsheets collection. When you shard a col-

lection, you define a shard key. Here you’ll use the compound shard key {username:

1, _id: 1} because it’s good for distributing data and makes it easy to view and com-

prehend chunk ranges:

> sh.shardCollection("cloud-docs.spreadsheets", {username: 1, _id: 1})

Again, you can verify the configuration by checking the config database for sharded

collections:

> db.getSiblingDB("config").collections.findOne()

{

"_id" : "cloud-docs.spreadsheets",

"lastmod" : ISODate("1970-01-16T00:50:07.268Z"),

"dropped" : false,

"key" : {

"username" : 1,

"_id" : 1

},

"unique" : false

}

Don’t worry too much about understanding all the fields in this document. This is

internal metadata that MongoDB uses to track collections, and it isn’t meant to be

accessed directly by users.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

SHARDING AN EMPTY COLLECTION

This sharded collection definition may remind you of something: it looks a bit like an

index definition, especially with its unique key. When you shard an empty collection,

MongoDB creates an index corresponding to the shard key on each shard.7 Verify

this for yourself by connecting directly to a shard and running the getIndexes()

method.

Here you connect to your first shard, and the output contains the shard key index,

as expected:

$ mongo localhost:30000

> use cloud-docs

> db.spreadsheets.getIndexes()

[

{

"name" : "_id_",

"ns" : "cloud-docs.spreadsheets", "key" : {

"_id" : 1

SEEING DATA ON MULTIPLE SHARDS

The picture has definitely changed. As you can see in figure 12.4, you now have 10

chunks. Naturally, each chunk represents a contiguous range of data.

You can see in figure 12.4 that shard-a has a chunk that ranges from one of Abdul’s

documents to one of Buettner’s documents, just as you saw in our output. This means

that all the documents with a shard key that lies between these two values will either

be inserted into, or found on, shard-a.8 You can also see in the figure that shard-b has

Now the split threshold will increase. You can see how the splitting slows down, and

how chunks start to grow toward their max size, by doing a more massive insert. Try adding
another 800 MB to the cluster. Once again, we’ll use the Ruby script, remem- bering that it
inserts about 1 MB on each iteration:

$ ruby load.rb 800

This will take a lot of time to run, so you may want to step away and grab a snack after

starting this load process. By the time it’s done, you’ll have increased the total data

Shard-a

{"username":"Abdul","_id"…}->

{"username":"Hawkins",…}

Shard-b

{"username":"Lee","_id"…}->

{"username":"Stewart",…}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

size by a factor of 8. But if you check the chunking status, you’ll see that there are

only around twice as many chunks:

> use config

> db.chunks.count()

21

Given that there are more chunks, the average chunk ranges will be smaller, but each

chunk will include more data. For example, the first chunk in the collection spans

from Abbott to Bender but it’s already nearly 60 MB in size. Because the max chunk

size is currently 64 MB by default, you’d soon see this chunk split if you were to con-

tinue inserting data.

Another thing to note is that the distribution still looks pretty even, as it did

before:

> db.chunks.count({"shard": "shard-a"})

11

> db.chunks.count({"shard": "shard-b"})

10

Although the number of chunks has increased during the last 800 MB insert round,

you can probably assume that no migrations occurred; a likely scenario is that each of

the original chunks split in two, with a single extra split somewhere in the mix. You

can verify this by querying the config database’s changelog collection:

> db.changelog.count({what: "split"})

20

> db.changelog.find({what: "moveChunk.commit"}).count()

6

This is in line with these assumptions. A total of 20 splits have occurred, yielding 20

chunks, but only 6 migrations have taken place. For an extra-deep look at what’s going

on here, you can scan the change log entries. For instance, here’s the entry recording

the first chunk move:

> db.changelog.findOne({what: "moveChunk.commit"})

{

"_id" : "localhost-2011-09-01T20:40:59-2",

"server" : "localhost",

"clientAddr" : "127.0.0.1:55749",

"time" : ISODate("2011-03-01T20:40:59.035Z"),

"what" : "moveChunk.commit",

"ns" : "cloud-docs.spreadsheets",

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

"details" : {

"min" : {

"username" : { $minKey : 1 },

"_id" : { $minKey : 1 }

},

"max" : {

"username" : "Abbott",

"_id" : ObjectId("4d6d57f61d41c851ee000092")

},

"from" : "shard-a",

"to" : "shard-b"

}

}

Shard-a (replica set)

Queries only the shard with the chunk containing documents with “Abbott” as the shard key

find({username:"Abbott"}) find({filename:"sheet-1"})

 in an unsharded deployment, indexing is an important part of optimizing per-

formance. There are only a few key points to keep in mind about indexing that are

specific to a sharded cluster:

■ Each shard maintains its own indexes. When you declare an index on a sharded

collection, each shard builds a separate index for its portion of the collection.

For example, when you issue the db.spreadsheets.createIndex() command

while connected to a mongos router, each shard processes the index creation

command individually.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 36

■ It follows that the sharded collections on each shard

should have the same indexes. If this ever isn’t the case, you’ll see

inconsistent query performance.

■ Sharded collections permit unique indexes on the _id field and on the shard

key only. Unique indexes are prohibited elsewhere because enforcing them

would require inter-shard communication, which is against the fundamental

design of sharding in MongoDB.

Once you understand how queries are routed and how indexing works, you should be

in a good position to write smart queries and indexes for your sharded cluster. Most of

the advice on indexing and query optimization from chapter 8 will apply.

In the next section, we’ll cover the powerful explain() tool, which you can use to

see exactly what path is taken by a query against your cluster.

 The explain() tool in a sharded cluster

The explain() tool is your primary way to troubleshoot and optimize queries. It can

show you exactly how your query would be executed, including whether it can be tar-

geted and whether it can use an index. The following listing shows an example of

what this output might look like.

 Listing 12.1 Index and query to return latest documents updated by a user

mongos> db.spreadsheets.createIndex({username:1, updated_at:-1})

{

"raw" : {

"shard-a/localhost:30000,localhost:30001" : {

"createdCollectionAutomatically" : false,

"numIndexesBefore" : 3,

"numIndexesAfter" : 4,

"ok" : 1

},

"shard-b/localhost:30100,localhost:30101" : {

"createdCollectionAutomatically" : false,

"numIndexesBefore" : 3,

"numIndexesAfter" : 4,

"ok" : 1

}

},

"ok" : 1

}

mongos> db.spreadsheets.find({username: "Wallace"}).sort({updated_at:-

1}).explain()

{

"clusteredType" : "ParallelSort",

"shards" : {

"shard-b/localhost:30100,localhost:30101" : [

{

"cursor" : "BtreeCursor username_1_updated_at_-1", "isMultiKey" : false,

"n" : 100,

"nscannedObjects" : 100,

"nscanned" : 100,

"nscannedObjectsAllPlans" : 200,

"nscannedAllPlans" : 200, "scanAndOrder" : false, "indexOnly" :

false, "nYields" : 1,

"nChunkSkips" : 0,

"millis" : 3, "indexBounds" : {

"username" : [[

"Wallace",

"Wallace"

]

],

"updated_at" : [

[

{

"$maxElement" : 1

},

{

"$minElement" : 1

}

]

]

},

"server" : "localhost:30100",

"filterSet" : false

}

]

},

"cursor" : "BtreeCursor username_1_updated_at_-1",

"n" : 100,

"nChunkSkips" : 0,

"nYields" : 1,

"nscanned" : 100,

"nscannedAllPlans" : 200,

"nscannedObjects" : 100,

"nscannedObjectsAllPlans" : 200,

"millisShardTotal" : 3,

"millisShardAvg" : 3,

"numQueries" : 1,

"numShards" : 1, "indexBounds" : {

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

UNIT-V

SYLLABUS

Deployment and administration: Deployment – Monitoring and diagnostics –

Maintenance – Performance troubleshooting

 Cluster topology
In total, there are three different types of clusters in MongoDB:

■ Single node—As you can see at the top of figure 13.1, MongoDB can be run as

a single server to support testing and staging environments. But for production

deployments, a single server isn’t recommended, even if journaling is enabled.

Having only one machine complicates backup and recovery, and when there’s a

server failure, there’s nothing to fail over to. That said, if you don’t need reli-

ability and have a small enough data set, this is always an option.

■ Replica set—As shown in the middle of figure 13.1, the minimum

recommended deployment topology for a replica set is three nodes, at least

two of which should be data-storing nodes rather than arbiters. A replica set is

necessary for automatic failover, easier backups, and not having a single

point of failure. Refer to chapter 10 for more details on replica sets.

■ Sharded cluster—As you can see at the bottom of figure 13.1, the

minimum recommended deployment for a sharded cluster has two shards

because deploying a sharded cluster with only one shard would add

additional over- head without any of the benefits of sharding. Each shard

should also be a replica set and there should be three config servers to ensure

that there’s no single point of failure. Note that there are also two mongos

processes. Loss of all mongos processes doesn’t lead to any data loss, but it

does lead to down- time, so we have two here as part of the minimum

production topology to ensure high availability.

■ A sharded cluster is necessary when you want to scale up the capacity of your

cluster by pooling together the capacity of a number of less powerful

commodity servers.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Replica set

Increased performance

Shared cluster

 Deployment environment

Here we’ll present considerations for choosing good deployment environments for

MongoDB. We’ll discuss specific hardware requirements, such as CPU, RAM, and

disks, and provide recommendations for optimizing the operating system environment.

ongoDB internals or

configuration Hardware

and hardware

configuration Operating

CPU

C

C C

C

MongoDB data files (journal on separate disk, directoryperdb)

Accurate system time (NTP) RAM (>working set)

MongoDB read/write locks CPU (64 bit, little endian)

MongoDB server

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

MongoDB isn’t particularly CPU-intensive; database operations are rarely CPU-

bound, so this isn’t the first place to look when diagnosing a performance issue. Your

first pri- ority when optimizing for MongoDB is to ensure operations aren’t I/O-

bound (we’ll discuss I/O-bound issues more in the next two sections on RAM and

disks).

But once your indexes and working set fit entirely in RAM, you may see some

CPU- boundedness. If you have a single MongoDB instance serving tens (or

hundreds) of thousands of queries per second, you can realize performance increases

by providing more CPU cores.

If you do happen to see CPU saturation, check your logs for slow query warnings.

There may be some types of queries that are inherently more CPU-intensive, or you

may have an index issue that the logs will help you diagnose. But if that’s not the case

and you’re still seeing CPU saturation, it’s likely due to lock contention, which

we’ll briefly touch on here.

RAM

As with any database, MongoDB performs best with sufficient RAM. Be sure to

select hardware with enough RAM to contain your frequently used indexes, plus your

work- ing data set. Then as your data grows, keep a close eye on the ratio of RAM-to–

working set size. If you allow working set size to grow beyond RAM, you may start to

see signifi- cant performance degradation. Paging from disk in and of itself isn’t a

problem—it’s a necessary step in loading data into memory.

DISKS

When choosing disks, you need to consider cost, IOPS (input/output operations per

second), seek time, and storage capacity. The differences between running on a single

consumer-grade hard drive, running in the cloud in a virtual disk (say, EBS), and run-

ning against a high-performance SAN can’t be overemphasized.

perform acceptably against a single network-attached EBS volume, but demanding

applications will require something more.

Disk performance is important for a few reasons:

■ High write workloads—As you’re writing to MongoDB, the server must

flush the data back to disk.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

■ With a write-intensive app and a slow disk, the flushing may be slow enough

to negatively affect overall system performance.

■ A fast disk allows a quicker server warm-up —Any time you need to restart a

server, you also have to load your data set into RAM. This happens lazily; each

succes- sive read or write to MongoDB will load a new virtual memory page

into RAM until the physical memory is full. A fast disk will make this process

much faster, which will increase MongoDB’s performance following a cold

restart.

■ A fast disk alters the required ratio of working set size to RAM for your

application— Using, say, a solid-state drive, you may be able to run with

much less RAM (or much greater capacity) than you would otherwise.

Regardless of the type of disk used, serious deployments will generally use, not a single

disk, but a redundant array of disks (RAID) instead. Users typically manage a

RAID cluster using Linux’s logical volume manager, LVM, with a RAID level of

10. RAID 10 provides redundancy while maintaining acceptable performance, and

it’s commonly used in MongoDB deployments.4 Note that this is more expensive

than a single disk, which illustrates the tradeoff between cost and performance.

Even more advanced deployments will use a high-performance self-managed SAN,

where the disks are all virtual and the idea of RAID may not even apply.

LOCKS

MongoDB’s locking model is a topic unto itself. We won’t discuss all the nuances

of concurrency and performance in MongoDB here, but we’ll cover the basic

concur- rency models MongoDB supports. In practice, ensuring that you don’t have

lock con- tention will require careful monitoring or benchmarking because every

workload is different and may have completely different points of contention.

In the early days, MongoDB took a global lock on the entire server. This was soon

updated to a global lock on each database and support was added to release the lock

before disk operations.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

FILESYSTEMS

You’ll get the best performance from MongoDB if you run it on the right

filesystem. Two in particular, ext4 and xfs, feature fast, contiguous disk allocation.

Using these filesystems will speed up MongoDB’s frequent preallocations.6

Once you mount your fast filesystem, you can achieve another performance gain by

disabling updates to files’ last access time: atime. Normally, the operating system will

update a file’s atime every time the file is read or written. In a database environment,

this amounts to a lot of unnecessary work. Disabling atime on Linux is relatively easy:

1 First, make a backup of the filesystem config file:

sudo cp /etc/fstab /etc/fstab.bak

2 Open the original file in your favorite editor:

sudo vim /etc/fstab

3 For each mounted volume you’ll find inside /etc/fstab, you’ll see a list of set-

tings aligned by column. Under the options column, add the noatime directive:

file-system mount type options dump pass

UUID=8309beda-bf62-43 /ssd ext4

 noatime 0 2

4 Save your work. The new settings should take effect immediately.7

You can see the list of all mounted filesystems with the help of the findmnt command,

which exists on Linux machines:

$ findmnt -s

TARGET SOURCE FSTYPE OPTIONS

/proc proc proc defaults

/ /dev/xvda ext3 noatime,errors=remount-

ro none /dev/xvdb swap sw

The –s option makes findmnt get its data from the /etc/fstab file. Running findmnt

without any command-line parameters shows more details yet more busy output.

FILE DESCRIPTORS

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Some Linux systems cap the number of allowable open file descriptors at 1024. This

is occasionally too low for MongoDB and may result in warning messages or even

errors

when opening connections (which you’ll see clearly in the logs). Naturally, MongoDB

requires a file descriptor for each open file and network connection.

Assuming you store your data files in a folder with the word “data” in it, you can see

the number of data file descriptors using lsof and a few well-placed pipes:

lsof | grep mongo | grep data | wc -l

Counting the number of network connection descriptors is just as easy:

lsof | grep mongo | grep TCP | wc -l

When it comes to file descriptors, the best strategy is to start with a high limit so that

you never run out in production. You can check the current limit temporarily with the

ulimit command:

ulimit -Hn

To raise the limit permanently, open your limits.conf file with your editor of choice:

sudo vim /etc/security/limits.conf

Then set the soft and hard limits. These are specified on a per-user basis. This exam- ple

assumes that the mongodb user will run the mongod process:

mongodb soft nofile

2048 mongodb hard

nofile 10240

The new settings will take effect when that user logs in again.8

CLOCKS

It turns out that replication is susceptible to “clock skew,” which can occur if the clocks

on the machines hosting the various nodes of a replica set get out of sync. Replication

depends heavily on time comparisons, so if different machines in the same replica set

disagree on the current time, that can cause serious problems. This isn’t ideal, but for-

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

tunately there’s a solution. You need to ensure that each of your servers uses NTP

(Network Time Protocol) or some other synchronization protocol to keep their

clocks synchronized:

■ On Unix variants, this means running the ntpd daemon.

■ On Windows, the Windows Time Services fulfills this role.

JOURNALING

MongoDB v1.8 introduced journaling, and since v2.0 MongoDB enables journaling by

default. When journaling is enabled, MongoDB will commit all writes to a journal

before writing to the core data files. This allows the MongoDB server to come back online

quickly and cleanly in the event of an unclean shutdown.

Journaling obviates the need for database repairs because MongoDB can use the

journal to restore the data files to a consistent state. In MongoDB v2.0 as well as v3.0,

journaling is enabled by default, but you can disable it with the --nojournal flag:

$ mongod --nojournal

When enabled, the journal files will be kept in a directory called journal, located just

below the main data path.

If you run your MongoDB server with journaling enabled, keep a of couple points

in mind:

■ First, journaling adds some additional overhead to writes.

■ One way to mitigate this is to allocate a separate disk for the journal, and then

either create a symlink10 between the journal directory and the auxiliary vol-

ume or simply mount this disk where the journal directory should be. The aux-

iliary volume needn’t be large; a 120 GB disk is more than sufficient, and a

solid-state drive (SSD) of this size is affordable. Mounting a separate SSD

for the journal files will ensure that journaling runs with the smallest possible

per- formance penalty.

■ Second, journaling by itself doesn’t guarantee that no write will be lost. It guar-

antees only that MongoDB will always come back online in a consistent state.

Journaling works by syncing a write buffer to disk every 100 ms, so an unclean

shutdown can result in the loss of up to the last 100 ms of writes. If this isn’t

acceptable for any part of your application, you can change the write concern of

operations through any client driver. You’d run this as a safe mode option (just

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

like w and wtimeout). For example, in the Ruby driver, you might use the j option

like this in order to have safe mode enabled all the time for one of the servers:

client = Mongo::Client.new(['127.0.0.1:27017'], :write => {:j

=> true}, :database => 'garden')

 Logging

Logging is the first level of monitoring; as such, you should plan on keeping logs for

all your deployments. This usually isn’t a problem because MongoDB requires that you

specify the --logpath option when running it in the background. But there are a few

extra settings to be aware of. To enable verbose logging, start the mongod process with

the -vvvvv option (the more vs, the more verbose the output). This is handy if, for

instance, you need to debug some code and want to log every query. But do be aware

that verbose logging will make your logs quite large and may affect server perfor-

mance. If your logs become too unwieldy, remember that you can always store your

logs on a different partition.

Next you can start mongod with the --logappend option. This will append to an

existing log rather than moving it and appending a timestamp to the filename, which

is the default behavior.

Finally, if you have a long-running MongoDB process, you may want to write a

script that periodically rotates the log files. MongoDB provides the logrotate com-

mand for this purpose. Here’s how to run it from the shell:

> use admin

> db.runCommand({logrotate: 1})

Sending the SIGUSR115 signal to the process also runs the logrotate command.

Here’s how to send that signal to process number 12345:

$ kill -SIGUSR1 12345

You can find the process ID of the process you want to send the signal to using the ps

command, like this:

$ ps –ef | grep mongo

Note that the kill command isn’t always as dire as it sounds. It only sends a signal to a

running process, but was named in the days when most or all signals ended the pro-

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

cess.16 But running kill with the -9 command-line option will end a process in a bru-

tal way and should be avoided as much as possible on production systems.

 MongoDB diagnostic commands

MongoDB has a number of database commands used to report internal state. These

underlie all MongoDB monitoring applications. Here’s a quick reference for a few

of the commands that you might find useful:

■ Global server statistics: db.serverStatus()

■ Stats for currently running operation: db.currentOp(

■ Include stats for idle system operations: db.currentOp(true)

■ Per database counters and activity stats: db.runCommand({top:1})

■ Memory and disk usage statistics: db.stats()

The output for all of these commands improves with each MongoDB release, so docu-

menting it in a semi-permanent medium like this book isn’t always helpful. Consult

the documentation for your version of MongoDB to find out what each field in the

output means.

 MongoDB diagnostic tools

In addition to the diagnostic commands listed previously, MongoDB ships with a few

handy diagnostic tools. Most of these are built on the previous commands and could

be easily implemented using a driver or the mongo shell.

Here’s a quick introduction to what we’ll cover in this section:

■ mongostat—Global system statistics

■ mongotop—Global operation statistics

■ mongosniff (advanced)—Dump MongoDB network traffic

■ bsondump—Display BSON files as JSON

MONGOSTAT

The db.currentOp() method shows only the operations queued or in progress at a

particular moment in time. Similarly, the serverStatus command provides a point-in-

time snapshot of various system fields and counters. But sometimes you need a view of

the system’s real-time activity, and that’s where mongostat comes in. Modeled after

iostat and other similar tools, mongostat polls the server at a fixed interval and dis-

plays an array of statistics, from the number of inserts per second to the amount of res-

ident memory, to the frequency of B-tree page misses.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

You can invoke the mongostat command on localhost, and the polling will occur

once a second:

$ mongostat

Similar to the way mongostat is the external tool for the db.currentOp() and server-

Status commands, mongotop is the external tool for the top command. You can run

this in exactly the same way as mongostat, assuming you have a server running on the

local machine and listening on the default port:

$ mongotop

As with mongostat, you can run this command with –help to see a number of useful

configuration options.

MONGOSNIFF

The next command we’ll cover is mongosniff, which sniffs packets from a client to the

MongoDB server and prints them intelligibly. If you happen to be writing a driver or

debugging an errant connection, then this is your tool. You can start it up like this to

listen on the local network interface at the default port:

sudo mongosniff --source NET I0

Then when you connect with any client—say, the MongoDB shell—you’ll get an

easy- to-read stream of network chatter:

127.0.0.1:58022 -->> 127.0.0.1:27017 test.$cmd 61 bytes id:89ac9c1d

2309790749 query: { isMaster: 1.0 } ntoreturn: -1

127.0.0.1:27017 <<-- 127.0.0.1:58022 87 bytes

reply n:1 cursorId: 0 { ismaster: true, ok: 1.0 }

Here you can see a client running the isMaster command, which is represented as a

query for { isMaster: 1.0 } against the special test.$cmd collection. You can also see that

the response document contains ismaster: true, indicating that the node that this

command was sent to was in fact the primary. You can see all the mongosniff

options by running it with --help.

BSONDUMP

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Another useful command is bsondump, which allows you to examine raw BSON

files. BSON files are generated by the mongodump command (discussed in section

13.3) and by replica set rollbacks.17 For instance, let’s say you’ve dumped a collection

with a sin- gle document. If that collection ends up in a file called users.bson, then can

examine the contents easily:

$ bsondump users.bson

{ "_id" : ObjectId("4d82836dc3efdb9915012b91"), "name" : "Kyle" }

As you can see, bsondump prints the BSON as JSON by default. If you’re doing

serious debugging, you’ll want to see the real composition of BSON types and sizes.

For that, run the command in debug mode:

$ bsondump --type=debug users.bson

--- new object ---

size : 37

_id

type: 7 size: 17

name

type: 2 size: 15

This gives you the total size of the object (37 bytes), the types of the two fields (7 and 2),

and those fields’ sizes.

THE WEB CONSOLE

Finally, MongoDB provides some access to statistics via a web interface and a

REST server. As of v3.0, these systems are old and under active development. On top

of that, they report the same information available via the other tools or database

commands presented earlier. If you want to use these systems, be sure to look at the

current docu- mentation and carefully consider the security implications.

 MongoDB Monitoring Service

MongoDB, Inc. provides MMS Monitoring for free, which not only allows you to

view dashboards to help you understand your system, but also provides an easy way to

share your system information with MongoDB support, which is indispensable if

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

you ever need help with your system. MMS Monitoring can also be licensed as a self-

hosted ver- sion for large enterprises with paid contracts. To get started, all you need

to do is cre- ate an account on the MMS Monitoring website at

https://mms.mongodb.com. Once you create an account, you’ll see instructions to

walk you through the process of set- ting up MMS, which we won’t cover here.

 External monitoring applications

Most serious deployments will require an external monitoring application. Nagios and

Munin are two popular open source monitoring systems used to keep an eye on many

MongoDB deployments. You can use each of these with MongoDB by installing a

sim- ple open source plug-in.

Writing a plug-in for any arbitrary monitoring application isn’t difficult. It mostly

involves running various statistics commands against a live MongoDB database. The

serverStatus, dbstats, and collstats commands usually provide all the informa- tion

you might need, and you can get all of them straight from the HTTP REST inter-

face, avoiding the need for a driver.

Finally, don’t forget the wealth of tools available for low-level system

monitoring. For example, the iostat command can be helpful in diagnosing

MongoDB perfor- mance issues. Most of the performance issues in MongoDB

deployments can be traced to a single source: the hard disk.

In the following example, we use the -x option to show extended statistics and

specify 2 to display those stats at two-second intervals:

$ iostat -x 2
Device: rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sdb 0.00 3101.12 10.09 32.83 101.39 1.34 29.3

6
Device: rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sdb 0.00 2933.93 9.87 23.72 125.23 1.47 34.1

3

or a detailed description of each of these fields, or for details on your specific version

of iostat, consult your system’s man18 pages. For a quick diagnostic, you’ll be most

interested in two of the columns shown:

■ The await column indicates the average time in milliseconds for serving I/O

requests. This average includes time spent in the I/O queue and time spent

actually servicing I/O requests.

https://mms.mongodb.com/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

%util is the percentage of CPU during which I/O requests were issued to the

device, which essentially translates to the bandwidth use of the device.

 Backups

Part of running a production database deployment is being prepared for disasters.

Backups play an important role in this. When disaster strikes, a good backup can save

the day, and in these cases, you’ll never regret having invested time and diligence in a

regular backup policy. Yet some users still decide that they can live without backups.

These users have only themselves to blame when they can’t recover their databases.

Don’t be one of these users.

Three general strategies for backing up a MongoDB database are as follows:

■ Using mongodump and mongorestore

■ Copying the raw data files

■ Using MMS Backups

We’ll go over each of these strategies in the next three sections.

 mongodump and mongorestore

mongodump writes the contents of a database as BSON files. mongorestore reads these

files and restores them. These tools are useful for backing up individual collections

and databases as well as the whole server. They can be run against a live server (you

don’t have to lock or shut down the server), or you can point them to a set of data files,

but only when the server is locked or shut down. The simplest way to run mongodump

is like this:19

$ mongodump -h localhost --port 27017

This will dump each database and collection from the server at localhost to a direc-

tory called dump.20 The dump directory will include all the documents from each

collec- tion, including the system collections that define users and indexes. But

significantly, the indexes themselves won’t be included in the dump. This means

that when you restore, any indexes will have to be rebuilt. If you have an especially

large data set, or a large number of indexes, this will take time.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

RESTORING BSON FILES

To restore BSON files, run mongorestore and point it at the dump folder:

$ mongorestore -h localhost --port 27017 dump

Note that when restoring, mongorestore won’t drop data by default, so if you’re restor-

ing to an existing database, be sure to run with the --drop flag.

 Data file–based backups

Most users opt for a file-based backup, where the raw data files are copied to a new

location. This approach is often faster than mongodump because the backups and resto-

rations require no transformation of the data.

The only potential problem with a file-based backup is that it requires locking the

database, but generally you’ll lock a secondary node and thus should be able to keep

your application online for the duration of the backup.

To safely copy the data files, you first need to make sure that they’re in a consistent

state, so you either have to shut down the database or lock it. Because shutting down

the database might be too involved for some deployments, most users opt for the lock-

ing approach. Here’s the command for syncing and locking:

> use admin

> db.fsyncLock()

 Security

Security is an extremely important, and often overlooked, aspect of deploying a pro-

duction database. In this section, we’ll cover the main types of security, including

secure environments, network encryption, authentication, and authorization.

We’ll end with a brief discussion of which security features are only available in the

enterprise edition of MongoDB. Perhaps more than for any other topic, it’s vital to stay

up to date with the current security tools and best practices, so treat this section as an

overview of what to consider when thinking about security, but consult the most

recent documentation at https://docs.mongodb.org/manual/security when putting it into

production.

https://docs.mongodb.org/manual/security

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

 Secure environments

MongoDB, like all databases, should be run in a secure environment. Production users

of MongoDB must take advantage of the security features of modern operating sys-

tems to ensure the safety of their data. Probably the most important of these features is

the firewall.

The only potential difficulty in using a firewall with MongoDB is knowing

which machines need to communicate with each other. Fortunately, the

communication rules are simple:

■ With a replica set, each node must be able to reach every other node.

■ All database clients must be able to connect with every replica set node that the

client might conceivably talk to.

■ All communication is done using the TCP protocol.

■ For a node to be reachable, it means that it’s reachable on the port that it was

configured to listen on. For example, mongod listens on TCP port 27017

by default, so to be reachable it must be reachable on that port.

 Network encryption

Perhaps the most fundamental aspect of securing your system is ensuring your net-

work traffic is encrypted. Unless your system is completely isolated and no one you

don’t trust can even see your traffic (for example, if all your traffic is already

encrypted over a virtual private network, or your network routing rules are set up such

that no traffic can be sent to your machines from outside your trusted network23), you

should probably use MongoDB with encryption.

 Fortunately, as of v2.4, MongoDB ships with a library that handles this

encryption—called the Secure Sockets Layer (SSL)—built in.

Here’s what the beginning of the output looks like on our machine:

$ ifconfig

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

inet 127.0.0.1 netmask 255.0.0.0

...

...

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

For us, the loopback interface is lo. Now we can use the appropriate tcpdump com-

mand to dump all traffic on this interface:

$ sudo tcpdump -i lo –X

NOTE Reading network traffic using tcpdump requires root permissions, so
if you can’t run this command, just read along with the example that follows.

In another terminal on the same machine, start a mongod server without SSL enabled

(change the data path as appropriate):

$ mongod --dbpath /data/db/

Then, connect to the database and insert a single document:

$ mongo

...

> db.test.insert({ "message" : "plaintext" }) > exit

bye

Now, if you look at the tcpdump output in the terminal, you’ll see a number of packets

output, one of which looks something like this:

16:05:10.507867 IP localhost.localdomain.50891 >
➥ localhost.localdomain.27017 …
0x0000: 4500 007f aa4a 4000 4006 922c 7f00 0001 E....J@.@..,....

0x0010: 7f00 0001 c6cb 6989 cf17 1d67 d7e6 c88f i....g....

0x0020: 8018 0156 fe73 0000 0101 080a 0018 062e ...V.s.

There’s our message, right in the clear B! This shows how important network

encryption is. Now, let’s run MongoDB with SSL and see what happens.

RUN MONGODB WITH SSL

First, generate the key for the server:

openssl req -newkey rsa:2048 -new -x509 -days 365 -nodes -out mongodbcert.crt

-keyout mongodb-cert.key

cat mongodb-cert.key mongodb-cert.crt > mongodb.pem

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Then, run the mongod server with SSL, using the --sslPEMKeyFile and --sslMode

options:

$ mongod --sslMode requireSSL --sslPEMKeyFile mongodb.pem

Now, connect the client with SSL and do exactly the same operation:

$ mongo --ssl

...

> db.test.insert({ "message" : "plaintext" }) > exit

bye

If you now go back to the window with tcpdump, you’ll see something

completely incomprehensible where the message used to be:

16:09:26.269944 IP localhost.localdomain.50899 >
➥
 localhost.localdomain.27017: …

0x0000: 4500 009c 52c3 4000 4006 e996 7f00 0001 E...R.@.@.
0x0010: 7f00 0001 c6d3 6989 c46a 4267 7ac5 5202 i..jBgz.R.

0x0020: 8018 0173 fe90 0000 0101 080a 001b ed40 ...s.@

SERVICE AUTHENTICATION

The first stage of authentication is verifying that the program on the other end of the

connection is trusted. Why is this important? The main attack that this is meant to pre-

vent is the man-in-the-middle attack, where the attacker masquerades as both the

client and the server to intercept all traffic between them.

As you can see in the figure, a man-in-the-middle attack is exactly what it sounds like:

■ A malicious attacker poses as a server, creating a connection with the client, and

then poses as the client and creates a connection with the server.

■ After that, it can not only decrypt and encrypt all the traffic between the client

and server, but it can send arbitrary messages to both the client and the server.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Once you have a certificate, you can use it in MongoDB like this

mongod --clusterAuthMode x509 --sslMode requireSSL --sslPEMKeyFile server.pem

--sslCAFile ca.pem

mongo --ssl --sslPEMKeyFile client.pem

where ca.pem contains the root certificate chain from the CA and client.pem is

signed by that CA. The server will use the contents of ca.pem to verify that client.pem

was indeed signed by the CA and is therefore trusted.

Taking these steps will ensure that no malicious program can establish a connec-

tion to your database. In the next section, you’ll see how to make this more fine-

grained and authenticate individual users in a single database.

straight into an example of how to set up basic authentication for a single

mongod.

SETTING UP BASIC AUTHENTICATION

First, you should start a mongod node with auth enabled. Note that if this node is in a

sharded cluster or a replica set, you also need to pass options to allow it to authenti-

cate with other servers. But for a single node, enabling authentication requires only

one flag:

$ mongod --auth

Now, the first time you connect to the server, you want to add an administrative user

account:

> use admin

> db.createUser(

{

user: "boss",

pwd: "supersecretpassword",

roles: [{ role: "userAdminAnyDatabase", db: "admin" }]

}

)

In our example, we gave this user a role of userAdminAnyDatabase, which essen-

tially gives the user complete access to the system, including the ability to add and

remove new users, as well as change user privileges.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

This is essentially the superuser of MongoDB.

Now that we’ve created our admin user, we can log in as this user:

> use admin

> db.auth("boss", "supersecretpassword")

We can now create users for individual databases. Once again we use the createUser

method. The main differences here are the roles:

> use stocks

> db.createUser(

{

user: "trader",

pwd: "youlikemoneytoo",

roles: [{ role: "readWrite", db: "stocks" }]

}

)

> db.createUser(

{

user: "read-only-trader",

pwd: "weshouldtotallyhangout",

roles: [{ role: "read", db: "stocks" }]

}

)

Now the trader user has the readWrite role on the stocks database, whereas the read-

only-trader only has the read role. This essentially means that the first user can read

and write stock data, and the second can only read it. Note that because we added these

users to the stocks database, we need to authenticate using that database as well:

> use stocks

> db.auth("trader", "youlikemoneytoo")

REMOVING A USER

To remove a user, use the dropUser helper on the database it was added to:

> use stocks

> db.dropUser("trader")

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

This is a bit heavyweight, so note that you can also revoke user access without com-

pletely dropping them from the system using the revokeRolesFromUser helper, and

grant them roles again using the grantRolesToUser helper.

To close the session you don’t need to explicitly log out; terminating the connec-

tion (closing the shell) will accomplish that just fine. But there’s a helper for logging

out if you need it:

> db.logout()

Naturally, you can use all the authentication logic we’ve explored here using the driv-

ers. Check your driver’s API for the details.

 Replica set authentication

Replica sets support the same authentication API just described, but enabling authen-

tication for a replica set requires extra configuration, because not only do clients need

to be able to authenticate with the replica set, but replica set nodes also need to be

able to authenticate with each other.

Internal replica set authentication can be done via two separate mechanisms:

■ Key file authentication

■ X509 authentication

In both cases, each replica set node authenticates itself with the others as a special

internal user that has enough privileges to make replication work properly.

KEY FILE AUTHENTICATION

The simpler and less secure authentication mechanism is key file authentication. This

essentially involves creating a “key file” for each node that contains the password that

replica set node will use to authenticate with the other nodes in the replica set. The

upside of this is that it’s easy to set up, but the downside is that if an attacker compro-

mises just one machine, you’ll have to change the password for every node in the clus-

ter, which unfortunately can’t be done without downtime.

To start, create the file containing your secret. The contents of the file will serve as

the password that each replica set member uses to authenticate with the others. As an

example, you might create a file called secret.txt and fill it with the following (don’t

actually use this password in a real cluster):

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

tOps3cr3tpa55word

Place the file on each replica set member’s machine and adjust the permissions so

that it’s accessible only by the owner:

sudo chmod 600 /home/mongodb/secret.txt

Finally, start each replica set member by specifying the location of the password file

using the --keyFile option:

mongod --keyFile /home/mongodb/secret.txt

Authentication will now be enabled for the set. You’ll want to create an admin user in

advance, as you did in the previous section.

X509 AUTHENTICATION

X509 certificate authentication is built into OpenSSL, the library MongoDB uses to

encrypt network traffic. As we mentioned earlier, obtaining signed certificates is out-

side the scope of this book. However, once you have them, you can start each node

like this

mongod --replSet myReplSet --sslMode requireSSL --clusterAuthMode

x509 -- sslClusterFile --sslPEMKeyFile server.pem --sslCAFile ca.pem

where server.pem is a key signed by the certificate authority that ca.pem corre-

sponds to.

There’s a way to upgrade a system using key file authentication to use X509 certifi-

cates with no downtime. See the MongoDB docs for the details on how to do this, or

check in the latest MMS documentation to see whether support has been added to

MMS automation.

 Sharding authentication

Sharding authentication is an extension of replica set authentication. Each replica set in

the cluster is secured as described in the previous section. In addition, all the config

servers and every mongos instance can be set up to authenticate with the rest of the

cluster in exactly the same way,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

using either a shared key file or using X509 certificate authentication. Once you’ve

done this, the whole cluster can use authentication.

 Enterprise security features

Some security features exist only in MongoDB’s paid enterprise plug-in. For example,

the authentication and authorization mechanisms that allow MongoDB to interact

with Kerberos and LDAP are enterprise. In addition, the enterprise module adds

auditing support so that security-related events get tracked and logged. The MongoDB

docs will explicitly mention if a particular feature is enterprise only.

 Administrative tasks

In this section, we’ll cover some basic administrative tasks, including importing and

exporting data, dealing with disk fragmentation, and upgrading your system.

 Compaction and repair

MongoDB includes a built-in tool for repairing a database. You can initiate it from the

command line to repair all databases on the server:

$ mongod --repair

Or you can run the repairDatabase command to repair a single database:

> use cloud-docs

> db.runCommand({repairDatabase: 1})

To rebuild indexes, use the reIndex() method:

> use cloud-docs

> db.spreadsheets.reIndex()

This might be useful, but generally speaking, index space is efficiently reused. The data file

space is what can be a problem, so the compact command is usually a better choice.

compact will rewrite the data files and rebuild all indexes for one collection. Here’s
how you run it from the shell:

> db.runCommand({ compact: "spreadsheets" })

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

This command has been designed to be run on a live secondary, obviating the

need for downtime. Once you’ve finished compacting all the secondaries in a replica

set, you can step down the primary and then compact that node. If you must run the

compact

command on the primary, you can do so by adding {force: true} to the command

object. Note that if you go this route, the command will write lock the system:

> db.runCommand({ compact: "spreadsheets", force: true })

On WiredTiger databases, the compact() command will release unneeded disk space

to the operating system. Also note that the paddingFactor field, which is applicable

for the MMAPv1 storage engine, has no effect when used with the WiredTiger

stor- age engine.

 Upgrading

As with any software project, you should keep your MongoDB deployment as up to

date as possible, because newer versions contain many important bug fixes and

improvements.

One of the core design principles behind MongoDB is to always ensure an upgrade is

possible with no downtime. For a replica set, this means a rolling upgrade, and for a

sharded cluster, this means that mongos routers can still function against mixed clusters.

 Working set

We’ve covered the idea of the working set in various parts of this book, but we’ll

define it here again with a focus on your production deployment.

Imagine you have a machine with 8 GB of RAM, running a database with an on-disk

size of 16 GB, not including indexes. Your working set is how much data you’re

access- ing in a specified time interval. In this example, if your queries are all full

collection scans, your “working set” will be 16 GB because to answer those queries

your entire database must be paged into memory.

But if your queries are properly indexed, and you’re only querying for the most

recent quarter of the data, most of your database can stay on disk, and only the 2 GB

that you need, plus some extra space for indexes, needs to be in memory.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

RAM

Working set

smaller

than RAM

RAM

Working

set larger

than

RAM

Disk

 Query interactions

Another side effect of the fact that MongoDB doesn’t enforce resource limits is that one

badly behaving query can affect the performance of all other queries on the system.

It’s the same drill as before. Assume you have a working set of 2 GB, with a 64 GB

database. Everything may be going well, until someone runs a query that performs a

full collection scan. This query will not only place a huge amount of load on the disk,

but may also page out the data that was being used for the other queries on the sys-

tem, causing slowdown there as well. Figure 13.4 from earlier illustrates this issue,

where the top represents normal query load and the bottom represents the load after

the bad query.

This is actually another reason why access controls are important. Even if you get

everything else right, one table scan by an intern can hose your system. Make sure

everyone who has the ability to query your database understands the consequences of a

The sources of performance degradations are manifold and frequently idiosyncratic.

Anything from poor schema design to sneaky server bugs can negatively affect perfor-

mance.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

If you think you’ve tried every possible remedy and still can’t get results, con- sider

allowing someone experienced in the ways of MongoDB to audit your system.

A book can take you far, but an experienced human being can make all the difference

in the world. When you’re at a loss for ideas and in doubt, seek professional assis-

tance. The solutions to performance issues are sometimes entirely unintuitive.

When or if you seek help, be sure to provide all the information you have about

your system when the issue occurred. This is when the monitoring will pay off. The

official standard used by MongoDB is MMS Monitoring, so if you’re using

MongoDB support, being set up with MMS Monitoring will speed up the process

significantly.

 Deployment checklist

We’ve covered a lot of topics in this chapter. It may seem overwhelming at first, but as

long as you have the main areas covered, your system will keep running smoothly. This

section is a quick reference for making sure you’ve got the important points covered:

■ Hardware

– RAM—Enough to handle the expected working set.

– Disk space—Enough space to handle all your data, indexes, and

MongoDB internal metadata.

– Disk speed—Enough to satisfy your latency and throughput requirements. Con-

sider this in conjunction with RAM—less RAM usually means more disk

usage.

– CPU —Usually not the bottleneck for MongoDB, but if you’re getting low

disk utilization but low throughput, you may have a CPU bound workload.

Check this as part of careful performance testing.

– Network—Make sure the network is fast and reliable enough to satisfy your

performance requirements. MongoDB nodes communicate with each other

internally, so be sure to test every connection, not just the ones from your cli-

ents to the mongos or mongod servers.

■ Security

– Protection of network traffic—Either run in a completely isolated

environment or make sure your traffic is encrypted using MongoDB’s built-

in SSL support or some external method such as a VPN to prevent man-in-the-

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

middle attacks.

– Access control —Make sure only trusted users and clients programs can

oper- ate on the database. Make sure your interns don’t have the “root”

privilege.

■ Monitoring

– Hardware usage (disks, CPU, network, RAM)—Make sure you have

some kind of monitoring setup for all your hardware resources that will

not only keep track of the usage, but also alert you if it goes above a certain

threshold.

– Health checks—Periodically make sure your servers are up and

responsive, and will alert you if anyone stops calling back.

– MMS Monitoring —Monitor your services using MMS Monitoring.

Not only does this provide monitoring, health checks, and alerts, but it’s

what the MongoDB support team will use to help you if you run into

trouble. Histori- cally it’s been free to use, so don’t hesitate to add this to

your deployment.

– Client performance monitoring —Periodically run automated end-to-end

tests as a client to ensure that you’re still performing as well as you expect.

The last thing you want is for a client to be the first one to tell you that your

applica- tion is slow.

■ Disaster recovery

– Evaluate risk—Imagine that you’ve lost all your data. How sad do you feel?

In all seriousness, losing your data may be worse in some applications than

oth- ers. If you’re analyzing Twitter trends, losing your data may cost a

week’s worth of time, whereas if you’re storing bank data, losing that may

cost quite a bit more. When you do this evaluation, assume that a disaster of

some kind will happen, and plan accordingly.

– Have a plan—Create a concrete plan for how you’ll recover in each failure case.

Depending on how your system fails, you may react completely differently.

– Test your plan—Be sure to test your plan. The biggest mistake people

make with backups and disaster recovery is assuming that having a backup

or a plan is enough. It’s not enough. Maybe the backup is getting

corrupted. Maybe it’s in a format that’s impossible to reimport into your

production sys- tems. As in a production system, many things can go wrong,

so it’s important to make sure your recovery strategy works.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

– Have a backup plan—Your first disaster recovery plan might fail.

When it does, have a last resort available. This doesn’t have to be an

appealing option, but you’ll be happy it’s there if you get desperate.

■ Performance

– Load testing—Make sure you load test your application with a realistic

work- load. In the end, this is the only way to be sure that your performance is

what you expect.

 MongoDB on Mac OS X

If you’re using Mac OS X, you have three options for installing MongoDB. You

can download the precompiled binaries directly from the mongodb.org website,

use a package manager, or compile manually from source. We’ll discuss the first two

options in the next sections, and then provide a few notes on compiling later in the

appendix.

 Precompiled binaries

First navigate to www.mongodb.org/downloads. There you’ll see a grid with all the lat-

est downloadable MongoDB binaries. Select the download URL for the latest

stable version for your architecture. The following example uses MongoDB v3.0.6

compiled for a 64-bit system.

Download the archive using your web browser or the curl utility. You should check

on the downloads page for the most recent release. Then expand the archive using tar:

$ curl https://fastdl.mongodb.org/osx/mongodb-osx-x86_64-

3.0.6.tgz > mongo.tgz
$ tar xzvf mongo.tgz

To run MongoDB, you’ll need a data directory. By default, the mongod daemon

will store its data files in /data/db. Go ahead and create that directory:

$ sudo mkdir -p /data/db/

$ sudo chown `id -u` /data/db

You’re now ready to start the server. Just change to the MongoDB bin directory and

launch the mongod executable:

$ cd mongodb-osx-x86_64-3.0.6/bin

http://mongodb.org/
http://www.mongodb.org/downloads

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

$./mongod

If all goes well, you should see something like the following abridged startup log. The

first time you start the server it may allocate journal files, which takes several minutes,

before being ready for connections. Note the last lines, confirming that the server is

listening on the default port of 27017:

2015-09-19T08:51:40.214+0300 I CONTROL [initandlisten] MongoDB

starting : pid=41310 port=27017 dbpath=/data/db 64-bit

host=iron.local

2015-09-19T08:51:40.214+0300 I CONTROL [initandlisten] db version v3.0.6

...

2015-09-19T08:51:40.215+0300 I INDEX [initandlisten] allocating

new ns file /data/db/local.ns, filling with zeroes...

2015-09-19T08:51:40.240+0300 I STORAGE [FileAllocator]

allocating new datafile /data/db/local.0, filling with zeroes...

2015-09-19T08:51:40.240+0300 I STORAGE [FileAllocator] creating

directory / data/db/_tmp

2015-09-19T08:51:40.317+0300 I STORAGE [FileAllocator] done

allocating datafile /data/db/local.0, size: 64MB, took 0.077 secs

2015-09-19T08:51:40.344+0300 I NETWORK [initandlisten] waiting

for connections on port 27017

You should now be able to connect to the MongoDB server using the JavaScript con-

sole by running ./mongo. If the server terminates unexpectedly, refer to section A.6.

 Using a package manager

MacPorts (http://macports.org) and Homebrew (http://brew.sh/) are two package

managers for Mac OS X known to maintain up-to-date versions of MongoDB. To

install via MacPorts, run the following:

sudo port install mongodb

Note that MacPorts will build MongoDB and all its dependencies from scratch. If you

go this route, be prepared for a lengthy compile.

http://macports.org/
http://brew.sh/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Homebrew, rather than compiling, merely downloads the latest binaries, so it’s

much faster than MacPorts. You can install MongoDB through Homebrew as follows:

$ brew update

$ brew install mongodb

After installing, Homebrew will provide instructions on how to start MongoDB

using the Mac OS X launch agent.

 MongoDB on Windows

If you’re using Windows, you have two ways to install MongoDB. The easier,

pre- ferred way is to download the precompiled binaries directly from the

mongodb.org website. You can also compile from source, but this option is

recommended only for developers and advanced users. You can read about

compiling from source in the next section.

 Precompiled binaries

First navigate to www.mongodb.org/downloads. There you’ll see a grid with all the

latest downloadable MongoDB binaries. Select the download URL for the latest

sta- ble version for your architecture. Here we’ll install MongoDB v2.6

compiled for 64-bit Windows.

Alternatively, you can use the command line. First navigate to your Downloads

directory. Then use the unzip utility to extract the archive:

C:\> cd \Users\kyle\Downloads

C:\> unzip mongodb-win32-x86_64-2.6.7.zip

To run MongoDB, you’ll need a data folder. By default, the mongod daemon will

store its data files in C:\data\db. Open the Windows command prompt and create the

folder like this:

C:\> mkdir \data

C:\> mkdir

http://mongodb.org/
http://www.mongodb.org/downloads

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

\data\db

You’re now ready to start the server. Change to the MongoDB bin directory and

launch the mongod executable:

C:\> cd \Users\kyle\Downloads

C:\Users\kyle\Downloads> cd mongodb-win32-x86_64-2.6.7\bin

C:\Users\kyle\Downloads\mongodb-win32-x86_64-2.6.7\bin>

mongod.exe

If all goes well, you should see something like the following abridged startup log. The

first time you start the server it may allocate journal files, which takes several minutes,

before being ready for connections. Note the last lines, confirming that the server is

listening on the default port of 27017:

Thu Mar 10 11:28:51 [initandlisten] MongoDB

starting : pid=1773 port=27017 dbpath=/data/db/ 64-

bit host=iron
Thu Mar 10 11:28:51 [initandlisten] db version v2.6.7
...
Thu Mar 10 11:28:51 [websvr] web admin console waiting for connections on
➥ port 28017

Thu Mar 10 11:28:51 [initandlisten] waiting for connections on port 27017

If the server terminates unexpectedly, refer to section A.6.

Finally, you’ll want to start the MongoDB shell. To do that, open a second terminal

window, and then launch mongo.exe:

C:\> cd \Users\kyle\Downloads\mongodb-win32-x86_64-

2.6.7\bin C:\Users\kyle\Downloads\mongodb-win32-x86_64-

2.6.7\bin> mongo.exe

 Compiling MongoDB from source

Compiling MongoDB from source is recommended only for advanced users

and developers. If all you want to do is operate on the bleeding edge, without

having to compile, you can always download the nightly binaries for the latest

revisions from the mongodb.org website.

That said, you may want to compile yourself. The trickiest part about compiling

http://mongodb.org/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

MongoDB is managing the various dependencies. The latest compilation

instructions for each platform can be found at

www.mongodb.org/about/contributors/tutorial/ build-mongodb-from-source.

 Troubleshooting

MongoDB is easy to install, but users occasionally experience minor problems.

These usually manifest as error messages generated when trying to start the mongod

daemon. Here we provide a list of the most common of these errors along with their

resolutions.

 Wrong architecture

If you try to run a binary compiled for a 64-bit system on a 32-bit machine, you’ll see

an error like the following:

bash: ./mongod: cannot execute binary file

On Windows 7, the message is more helpful:

This version of

C:\Users\kyle\Downloads\mongodb-win32-x86_64-

2.6.7\bin\mongod.exe is not compatible with the version of

Windows you're running.

Check your computer's system information to see whether you

need a x86 (32-bit) or x64 (64-bit) version of the program, and

then contact the software publisher.

The solution in both cases is to download and then run the 32-bit binary instead. Bina- ries

for both architectures are available on the MongoDB download site (www.mongodb

.org/downloads).

 Nonexistent data directory

MongoDB requires a directory for storing its data files. If the directory doesn’t exist,

you’ll see an error like the following:

dbpath (/data/db/) does not exist, terminating

The solution is to create this directory. To see how, consult the preceding instructions

http://www.mongodb.org/about/contributors/tutorial/build-mongodb-from-source
http://www.mongodb.org/about/contributors/tutorial/build-mongodb-from-source
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

for your OS.

 Lack of permissions

If you’re running on a Unix variant, you’ll need to make sure that the user running

the mongod executable has permissions to write to the data directory. Otherwise, you’ll

see this error

Permission denied: "/data/db/mongod.lock", terminating

or possibly this one:

Unable to acquire lock for lockfilepath: /data/db/mongod.lock, terminating

In either case, you can solve the problem by opening up permissions in the data direc-

tory using chmod or chown.

 Unable to bind to port

MongoDB runs by default on port 27017. If another process, or another mongod, is

bound to the same port, you’ll see this error:

listen(): bind() failed errno:98

Address already in use for socket: 0.0.0.0:27017

This issue has two possible solutions. The first is to find out what other process is

running on port 27017 and then terminate it, provided that it isn’t being used for

some other purpose. One way of finding which process listens to port number 27017

is the following:

sudo lsof -i :27017

The output of the lsof command will also reveal the process ID of the process that

listens to port number 27017, which can be used for killing the process using the

kill command.

Alternatively, run mongod on a different port using the --port flag, which seems to

be a better and easier solution. Here’s how to run MongoDB on port 27018:

mongod --port 27018

 Basic configuration options

Here’s a brief overview of the flags most commonly used when running MongoDB:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

■ --dbpath—The path to the directory where the data files are to be stored. This

defaults to /data/db and is useful if you want to store your MongoDB data

elsewhere.

■ --logpath—The path to the file where log output should be directed. Log out-

put will be printed to standard output (stdout) by default.

■ --port—The port that MongoDB listens on. If not specified, it’s set to 27017.

■ --rest—This flag enables a simple REST interface that enhances the server’s

default web console. The web console is always available 1000 port numbers

above the port the server listens on. Thus if the server is listening at localhost on

port 27017, then the web console will be available at http://localhost:28017.

Spend some time exploring the web console and the commands it exposes; you

can discover a lot about a live MongoDB server this way.

■ --fork—Detaches the process to run as a daemon. Note that fork works only on

Unix variants. Windows users seeking similar functionality should look at the

instructions for running MongoDB as a proper Windows service. These are

available at www.mongodb.org.

Those are the most important of the MongoDB startup flags. Here’s an example of

their use on the command line:

$ mongod --dbpath /var/local/mongodb --logpath /var/log/mongodb.log

--port 27018 --rest --fork

Note that it’s also possible to specify all of these options in a config file. Create a new

text file (we’ll call it mongodb.conf) and you can specify the config file equivalent1

of all the preceding options:

storage:

dbPath:

“/var/local/mongodb”

systemLog:

destination: file

path:

“/var/log/mongodb.log” net:

port:

27018

http:

http://www.mongodb.org/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

RESTInterfaceEnabled:

true processManagement:
fork: true

You can then invoke mongod using the config file with the -f option:

$ mongod -f mongodb.conf

If you ever find yourself connected to a MongoDB and wondering which options were

used at startup, you can get a list of them by running the getCmdLineOpts command:

> use admin

> db.runCommand({getCmdLineOpts: 1})

 Installing Ruby

A number of the examples in this book are written in Ruby, so to run them yourself,

you’ll need a working Ruby installation. This means installing the Ruby interpreter as

well as Ruby’s package manager, RubyGems.

You should use a newer version of Ruby, such as 1.9.3 or preferably 2.2.3, which is

the current stable version. Version 1.8.7 is still used by many people, and it works well

with MongoDB, but the newer versions of Ruby offer advantages such as better charac-

ter encoding that make it worthwhile to upgrade.

 Linux and Mac OS X

Ruby comes installed by default on Max OS X and on a number of Linux distributions.

You may want to check whether you have a recent version by running

ruby -v

If the command isn’t found, or if you’re running a version older than 1.8.7, you’ll want

to install or upgrade. There are detailed instructions for installing Ruby on Mac OS X

as well as on a number of Unix variants at https://www.ruby-lang.org/en/downloads/

In addition to the Ruby interpreter, you need the Ruby package manager, Ruby-

Gems, to install the MongoDB Ruby driver. Find out whether RubyGems is installed by

running the gem command:

gem -v

https://www.ruby-lang.org/en/downloads/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

You can install RubyGems through a package manager, but most users download the

latest version and use the included installer. You can find instructions for doing this at

https://rubygems.org/pages/download.

 Windows

By far, the easiest way to install Ruby and RubyGems on Windows is to use the Windows

Ruby Installer. The installer can be found here: http://rubyinstaller.org/downloads.

When you run the executable, a wizard will guide you through the installation of both

Ruby and RubyGems.

In addition to installing Ruby, you can install the Ruby DevKit, which permits the

easy compilation of Ruby C extensions. The MongoDB Ruby driver’s BSON library

may optionally use these extensions.

 Many-to-many

In RDBMSs, you use a join table to represent many-to-many relationships; in MongoDB,

you use array keys. You can see a clear example of this technique earlier in the book

where we relate products and categories. Each product contains an array of category

IDs, and both products and categories get their own collections. If you have two sim-

ple category documents

{ _id:

ObjectId("4d6574baa6b804ea563c132a")

, title: "Epiphytes"

}

{ _id:

ObjectId("4d6574baa6b804ea563c459d")

, title: "Greenhouse flowers"

}

then a product belonging to both categories will look like this:

{ _id:

ObjectId("4d6574baa6b804ea563ca982")

, name: "Dragon Orchid",
category_ids: [ObjectId("4d6574baa6b804ea563c132a"),

ObjectId("4d6574baa6b804ea563c459d")]

}

https://rubygems.org/pages/download
http://rubyinstaller.org/downloads

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

For efficient queries, you should index the array of category IDs:

db.products.createIndex({category_ids: 1})

Then, to find all products in the Epiphytes category, match against the category_id

field:

db.products.find({category_id: ObjectId("4d6574baa6b804ea563c132a")})

And to return all category documents related to the Dragon Orchid product, first get

the list of that product’s category IDs:

product = db.products.findOne({_id: ObjectId("4d6574baa6b804ea563c132a")})

Then query the categories collection using the $in operator:

db.categories.find({_id: {$in: product['category_ids']}})

You’ll notice that finding the categories requires two queries, whereas the product

search takes just one. This optimizes for the common case, as you’re more likely to

search for products in a category than the other way around.

The strategy there was to store a snapshot of the category’s ancestors within each cate-

gory document. This denormalization makes updates more complicated but greatly

simplifies reads.

 5 points by kbanker 1 hour ago

Who was Alexander the Great's teacher?

 2 points by asophist 1 hour ago

It was definitely Socrates.

 10 points by daletheia 1 hour ago

Oh you sophist...It was actually Aristotle!

 1 point by seuclid 2 hours ago

So who really discarded the parallel postulate?

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Let’s see how these comments look as documents organized with a materialized path.

The first is a root-level comment, so the path is null:

{ _id:

ObjectId("4d692b5d59e212384d95001")

, depth: 0,

path: null,

created: ISODate("2011-02-26T17:18:01.251Z"),

username: "plotinus",

body: "Who was Alexander the Great's

teacher?", thread_id:

ObjectId("4d692b5d59e212384d95223a")
}

The other root-level question, the one by user seuclid, will have the same structure.

More illustrative are the follow-up comments to the question about Alexander the

Great’s teacher. Examine the first of these, and note that path contains the _id of the

immediate parent:

{ _id:

ObjectId("4d692b5d59e212384d951002"

), depth: 1,

path: "4d692b5d59e212384d95001",

created: ISODate("2011-02-26T17:21:01.251Z"),

username: "asophist",

body: "It was definitely Socrates.",

thread_id: ObjectId("4d692b5d59e212384d95223a")

}

The next deeper comment’s path contains both the IDs of the original and immediate

parents, in that order and separated by a colon:

{ _id:

ObjectId("4d692b5d59e212384d95003")

, depth: 2,

path:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

"4d692b5d59e212384d95001:4d692b5d59e212384d951

002", created: ISODate("2011-02-26T17:21:01.251Z"),
username: "daletheia",

body: "Oh you sophist...It was actually Aristotle!",

thread_id:

ObjectId("4d692b5d59e212384d95223a")
}

At a minimum, you’ll want indexes on the thread_id and path fields, as you’ll always

query on exactly one of these fields:

db.comments.createIndex({thread_id: 1})

db.comments.createIndex({path: 1})

Now the question is how you go about querying and displaying the tree. One of the

advantages of the materialized path pattern is that you query the database only once,

whether you’re displaying the entire comment thread or only a subtree within the

thread. The query for the first of these is straightforward:

db.comments.find({thread_id: ObjectId("4d692b5d59e212384d95223a")})

The query for a particular subtree is subtler because it uses a prefix query (discussed in

Chapter 5):

db.comments.find({path: /^4d692b5d59e212384d95001/})

The first method, threaded_list, builds a list of all root-level comments and a map that keys

parent IDs to lists of child nodes:

def threaded_list(cursor, opts={})

list = []

child_map = {}

start_depth = opts[:start_depth] || 0

cursor.each do |comment|

if comment['depth'] ==

start_depth list.push(comment)

else

matches =

comment['path'].match(/([d|w]+)$/)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

immediate_parent_id = matches[1]

if immediate_parent_id

child_map[immediate_parent_id] ||= []

child_map[immediate_parent_id] <<

comment

en

d

end
end
assemble(list,

child_map) end

The assemble method takes the list of root nodes and the child map and then builds a

new list in display order:

def assemble(comments,

map) list = []

comments.each do

|comment|

list.push(comment)

child_comments =

map[comment['_id'].to_s] if

child_comments

list.concat(assemble(child_comments,

map)) end

end

list
end

To print the comments, you merely iterate over the list, indenting appropriately for

each comment’s depth:

def print_threaded_list(cursor, opts={})

threaded_list(cursor, opts).each do |item|

indent = " " * item['depth']

puts indent + item['body'] + " #{item['path']}"

end

end

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 3 of 40

Querying for the comments and printing them is then straightforward:

cursor =

@comments.find.sort("created")

print_threaded_list(cursor)

 Worker queues

You can implement worker queues in MongoDB using either standard or capped col-

lections (discussed in chapter 4). In both cases, the findAndModify command will per-

mit you to process queue entries atomically.

A queue entry requires a state and a timestamp plus any remaining fields to con-

tain the payload. The state can be encoded as a string, but an integer is more space-

efficient. We’ll use 0 and 1 to indicate processed and unprocessed, respectively.

The timestamp is the standard BSON date. And the payload here is a simple plaintext

mes- sage but could be anything in principle:

{ state: 0,

created: ISODate("2011-02-24T16:29:36.697Z"),

message: "hello world" }

You’ll need to declare an index that allows you to efficiently fetch the oldest unpro-

cessed entry (FIFO). A compound index on state and created fits the bill:

db.queue.createIndex({state: 1, created: 1})

You then use findAndModify to return the next entry and mark it as processed:

q = {state: 0}

s = {created: 1}

u = {$set: {state: 1}}

db.queue.findAndModify({query: q, sort: s, update: u})

	1.pdf (p.1-2)
	2.pdf (p.3-7)
	3.pdf (p.8-49)
	Indexes
	Replication
	Speed and durability
	Scaling
	MongoDB’s core server and tools
	Core server

	Diving into the MongoDB shell
	Starting the shell
	Inserts and queries
	Updating documents
	Deleting data

	Basic administration
	Getting database information

	MongoDB through the Ruby lens
	Installing and connecting
	Inserting documents in Ruby
	Updates and deletes
	Database commands

	How the drivers work
	Object ID generation

	Building a simple application
	Setting up
	Gathering data
	Viewing the archive

	4.pdf (p.50-85)
	Principles of schema design
	Designing an e-commerce data model
	Nuts and bolts: On databases, collections, and documents
	Databases
	Collections
	Documents and insertion

	E-commerce queries
	MongoDB’s query language
	Query criteria and selectors

	Aggregation framework overview
	Products, categories, and reviews
	User and order

	5.pdf (p.86-121)
	Brief tour of document updates
	Modify by replacement
	Modify by operator
	Both methods compared
	Deciding: replacement vs. operators
	Reviews
	Orders

	Atomic document processing
	Inventory management

	Indexing in practice
	Index types
	Index administration

	Query optimization

	6.pdf (p.122-157)
	Why replication matters
	Replication use cases and limitations
	Replica sets
	Setup

	Drivers and replication
	Connections and failover
	Read scaling
	Tagging
	Mongos router: router of operations

	Building a sample shard cluster
	Starting the mongod and mongos servers
	Configuring the cluster
	Sharding collections
	The explain() tool in a sharded cluster

	7.pdf (p.158-197)
	Cluster topology
	Deployment environment
	Logging
	MongoDB diagnostic commands
	MongoDB diagnostic tools
	MongoDB Monitoring Service
	External monitoring applications
	Backups
	mongodump and mongorestore
	Data file–based backups

	Security
	Secure environments
	Network encryption
	Replica set authentication
	Sharding authentication
	Enterprise security features

	Administrative tasks
	Compaction and repair
	Upgrading
	Working set
	Query interactions

	Deployment checklist
	MongoDB on Mac OS X
	Precompiled binaries
	Using a package manager

	MongoDB on Windows
	Precompiled binaries

	Compiling MongoDB from source
	Troubleshooting
	Wrong architecture
	Nonexistent data directory
	Lack of permissions
	Unable to bind to port

	Basic configuration options
	Installing Ruby
	Linux and Mac OS X
	Windows

	Many-to-many
	Worker queues

