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PO: This course provides a strong foundation in understanding the concepts of mechanics and to
know how the friction is regulating the motion of objects, deep knowledge about the motion of
particles under the influence of various forces like gravitational force, central force, impulsive
force etc., which plays a vital role in Applied Mathematics.

PLO:To be familiar with D’Alembert’s principle, Lagrange’s equations, Extension of
Hamilton’s principle, Cyclic coordinates, and Canonical transformations and to be exposed with
Hamilton Jacobi Theory.

UNIT I

Survey of Elementary principles: Constraints - Generalized coordinates, Holonomic and non-
holonomic systems, Scleronomic and Rheonomic systems. D’ Alembert’s principle and
Lagrange’s equations — Velocity — dependent potentials and the dissipation function — some
applications of the Lagrange formulation.

UNIT Il

Variation principles and Lagrange’s equations: Hamilton’s principle — Some techniques of
calculus of variations — Derivation of Lagrange’s Equations from Hamilton’s principle —
Extension of Hamilton’s principle to non-holonomic systems — Conservation theorems and
symmetry properties.

UNIT 111

Hamilton Equations of motion: Legendre Transformations and the Hamilton Equations of
motion-canonical equations of Hamilton — Cyclic coordinates and conservation theorems —
Routh’s procedure - Derivation of Hamilton’s equations from a variational principle — The
principle of least action.

UNIT IV

Canonical transformations: The equations of canonical transformation — Examples of Canonical
transformations — Poission Brackets and other Canonical invariants — integral invariants of
Poincare, Lagrange brackets.

UNIT V

Hamilton Jacobi Theory: Hamilton Jacobi equations for Hamilton’s principle function —
Harmonic oscillator problem - Hamilton Jacobi equation for Hamilton’s characteristic function

— Separation of variables in the Hamilton-Jacobi equation.
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Lecture
S.No | Duration Topics to be covered Support Materials
(Hr)
UNIT-I
1 1 Survey of Elementary principles T1: Chl: P.No: 1-3
2 1 Continuation ~ of  Survey  of | T1:Ch2: P.No: 4-6
Elementary principles
3 1 Continuation ~ of  Survey  of | T1:Ch2: P.No: 7-10
Elementary principles
4 1 Constraints T1:Ch2: P.No:11-12
5 1 Generalized coordinates T1:Ch2: P.No: 12-13
6 1 Holonomic and non- T1:Ch2: P.No: 13-15

holonomic systems, Scleronomic and
Rheonomic systems

7 1 D’ Alembert’s principle T1:Ch2: P.No: 16-17

8 1 Lagrange’s equations T1:Ch3: P.No: 17-21

9 1 Velocity- dependent potentials and the T1:Ch3: P.No: 21-22
dissipation function

10 1 Continuation of Velocity- dependent T1:Ch3: P.No: 23-24
potentials and the dissipation function

11 1 some applications of the Lagrange T1:Ch3: P.No0:25-26
formulation.

12 1 Continuation of some applications of the T1:Ch3: P.No: 27-29

Lagrange formulation.

Prepared By: A.Neerajah, Department of Mathematics, KAHE Pagel/6



MECHANICS
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13 1 Recapitulation and Discussion of possible
questions
Total 13 hrs
TEXT BOOK
T1. Goldstein, H. (2001),Classical Mechanics Second Edition, Narosa Publishing House, New
Delhi.
REFERENCES

R1:Gantmacher, F., (2013). Lectures in Analytic Mechanics, MIR Publishers, Moscow.
R2:Gelfand, I. M., and Fomin, S. V., (2003),Calculus of Variations, Prentice Hall, New Delhi.
R3: Loney, S. L., (1979). An elementary treatise on Statics, Kalyani Publishers, New Delhi.

UNIT-II

1 1 Variation principles and Lagrange’s T1:Ch2: P.No: 35-37
equations Hamilton’s principle

2 1 Some techniques of calculus of variations T1:Ch2: P.No: 37-39

3 1 Continuation of Some techniques of T1:Ch2: P.No: 40-41
calculus of variations

4 1 Continuation of Some techniques of T1:Ch2: P.No: 41-43
calculus of variations

5 1 Derivation of Lagrange’s Equations from T1:Ch2: P.No: 43-45
Hamilton’s principle

6 1 Extension of Hamilton’s principle to non- T1:Ch2: P.No: 45-47
holonomic systems

7 1 Continuation of Extension of Hamilton’s T1:Ch2: P.No: 47-48
principle to non-holonomic systems

8 1 Continuation of Extension of Hamilton’s T1:Ch2: P.No: 48-50
principle to non-holonomic systems

9 1 Conservation theorems and symmetry T1:Ch2: P.No: 54-56
properties.

10 1 Continuation of Conservation theorems T1:Ch2: P.No: 56-58
and symmetry properties.

11 1 Continuation of Conservation theorems T1:Ch2: P.No: 58-60
and symmetry properties.
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12 1 Continuation of Conservation theorems T1:Ch2: P.No: 61-63
and symmetry properties.
13 1 Recapitulation and Discussion of possible
questions
Total 13 hrs
TEXT BOOK
T1. Goldstein, H. (2001),Classical Mechanics Second Edition, Narosa Publishing House, New
Delhi.
REFERENCES

R1:Gantmacher, F., (2013). Lectures in Analytic Mechanics, MIR Publishers, Moscow.
R2:Gelfand, I. M., and Fomin, S. V., (2003),Calculus of Variations, Prentice Hall, New Delhi.
R3: Loney, S. L., (1979). An elementary treatise on Statics, Kalyani Publishers, New Delhi.

UNIT-III

1 1 Legendre Transformations T1:Ch8: P.No: 339-341

2 1 Continuation of Legendre Transformations | T1: Ch8: P.No: 341-343

3 1 Hamilton Equations of motion T1: Ch8: P.No: 343-345

4 1 Continuation of Hamilton Equations of T1: Ch8: P.No: 345-347
motion

5 1 canonical equations of Hamilton T1:Ch8 P.No: 347-348

6 1 Continuation of canonical equations of T1: Ch8: P.No: 349-350
Hamilton

7 1 Cyclic coordinates and conservation T1: Ch8: P.No: 351-353
theorems

8 1 Routh’s procedure T1: Ch8: P.No: 353-356

9 1 Derivation of Hamilton’s equations froma | T1: Ch8: P.No: 362-363
variational principle

10 1 Continuation of Derivation of Hamilton’s T1: Ch8: P.No: 364-365
equations from a variational principle

11 1 The principle of least action. T1: Ch8: P.No: 365-367

12 1 Continuation of The principle of least T1: Ch8: P.No: 368-371
action.
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13 1 Recapitulation and Discussion of possible
questions
Total 13 hrs
TEXT BOOK

T1. Goldstein, H. (2001),Classical Mechanics Second Edition, Narosa Publishing House, New
Delhi.

REFERENCES

R1:Gantmacher, F., (2013). Lectures in Analytic Mechanics, MIR Publishers, Moscow.
R2:Gelfand, I. M., and Fomin, S. V., (2003),Calculus of Variations, Prentice Hall, New Delhi.
R3: Loney, S. L., (1979). An elementary treatise on Statics, Kalyani Publishers, New Delhi.

UNIT-IV

1 1 The equations of canonical transformation T1:Ch9: P.No: 373-375

2 1 Continuation of the equations of canonical | T1:Ch9: P.No: 375-377
transformation

3 1 Examples of Canonical | T1:Ch9: P.No: 379-381
transformations

4 1 Examples of Canonical transformations T1:Ch9: P.No: 382-384

5 1 Poission Brackets and other Canonical | R1:Ch7: P.No: 292-294
invariants

6 1 Continuation of Poission Brackets and T1:Ch9: P.No: 385-387
other Canonical invariants

7 1 integral invariants of Poincare T1:Ch9: P.No: 388-390

8 1 Continuation of integral invariants of R3:Ch2: P.No: 56-58
Poincare

9 1 Lagrange brackets T1:Ch9: P.No: 391-393

10 1 Continuation of Lagrange brackets T1:Ch9: P.No: 395-397

11 1 Recapitulation and Discussion of possible

questions
Total 9 hrs
TEXT BOOK

Ti1. Goldstein, H. (2001),Classical Mechanics Second Edition, Narosa Publishing House, New
Delhi.
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REFERENCES

R1:Gantmacher, F., (2013). Lectures in Analytic Mechanics, MIR Publishers, Moscow.
R2:Gelfand, I. M., and Fomin, S. V., (2003),Calculus of Variations, Prentice Hall, New Delhi.
R3: Loney, S. L., (1979). An elementary treatise on Statics, Kalyani Publishers, New Delhi.

UNIT-V

1 1 Hamilton Jacobi Theory T1:Ch10: P.N0:400-401

2 1 Hamilton Jacobi equations for Hamilton’s T1:Ch10: P.No: 402-404
principle function

3 1 Continuation of Hamilton Jacobi equations | T1:Ch10: P.No: 406-408
for Hamilton’s principle function

4 1 Harmonic oscillator problem R2:Ch5: P.No: 76-78

5 1 Continuation of Harmonic oscillator R2:Ch5: P.No: 79-81
problem

6 1 Continuation of Harmonic oscillator T1:Ch10: P.No: 410-412
problem

7 1 Hamilton Jacobi equation for Hamilton’s T1:Ch10: P.No: 413-414
characteristic function

8 1 Separation of variables in the Hamilton-
Jacobi equation.

9 1 Recapitulation and discussion of possible
questions on unit V

10 1 Discussion of Previous year ESE question
paper

11 1 Discussion of Previous year ESE question
paper

12 1 Discussion of Previous year ESE question
paper

Total 12 hrs
TEXT BOOK

T1. Goldstein, H. (2001),Classical Mechanics Second Edition, Narosa Publishing House, New
Delhi.

REFERENCES

R1:Gantmacher, F., (2013). Lectures in Analytic Mechanics, MIR Publishers, Moscow.
R2:Gelfand, I. M., and Fomin, S. V., (2003),Calculus of Variations, Prentice Hall, New Delhi.
R3: Loney, S. L., (1979). An elementary treatise on Statics, Kalyani Publishers, New Delhi.
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Unit-  Mathematical Modelling Through ODE of first order/2016 Batch

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),

Coimbatore —641 021

DEPARTMENT OF MATHEMATICS

Subject: Mathematical Modeling Subject Code: 16MMP303 LTPC
Class:11 M.Sc Semester:I11 4104
UNIT I

Mathematical Modeling through Ordinary Differential Equations of First order: Linear

Growth and Decay Models — Non-Linear Growth and Decay Models — Compartment

Models — Dynamics problems — Geometrical problems.

SUGGESTED READINGS

TEXT BOOK

T1: J.N. Kapur, (2015). Mathematical Modeling, Wiley Eastern Limited, New Delhi.

REFERENCES

R1:Kapur, J. N., (1985). Mathematical Models in Biology and Medicine, Affiliated
East —West Press Pvt Limited, New Delhi.

R3:Frank. R. Giordano, Maurice. D.Weir, WilliamP. Fox, (2003). A first course in
Mathematical Modelling, Vikash Publishing House, UK.
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Unit-  Mathematical Modelling Through ODE of first order/2016 Batch

MATHEMATICAL MODELLING THROUGH DIFFERENTIAF

EQUATIONS : ) » .
Mathematical Modelling in terms of differential equations arises wiel toe
situation modelled involves some continuous variable(s) varying with res-
pect to some other continuous variable(s) and we have some feasonable_
hypotheses about the rates of change of dependent variable(s) with respect

to independent variable(s). ARG ;
When we have one dependent variable x (say population size) depending

on one independent variable (say time £), we get a mathematical model in
terms of an ordinary differential equation of the first order, if the hypothesis
is about the rate of change dx/dt. The model will be in terms of an ordinary

differential equation of the second order if the hypothesis involves the rate of

change of dx/dt.
If there are a number of dependent continuous variables and only one

independent variable, the hypothesis may give a mathematical model in
terms of a system of first or higher order ordinary differential equations.

If there is one dependent continuous variable (say velocity of fluid u) and
a number of independent continuous variables (say space coordinates
X, », zand time 1), we get a mathematical model in terms of g partial differ-
ential equation./If there are a number of dependent continuous variables ld
a number of independent continuous variables, we can get a math - i
model in terms of systems of partial differential equations. G

LINEAR GROWTH AND DECAY MODELS

Populational Growth Models

— = —w~

Let x(1) be the population size at time
i tan
death rates, i.e. the number of indiv:dugsleltml;nand d be the birth and

per unit time, then in time interval (¢, r + 4¢), the numbers of births and
deaths would be bx 4t -|- 0(4¢) and dx 4t + 0(4¢) where 0(d¢)is an in-
finitesimal which approaches zero as 4¢ approaches zero, so that

(1)

o (5 A;)‘ — x(1) = (bx(1) — dx()4t + 0(41),
so that dividing by 4¢ and proceeding to the limit as 4¢ = 0, we get
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L~ b —d)x=ax (say) @)

Integrating (2), we get
x(t) = x(0) exp (at), (3)

so that the population grows exponentially if a > 0, decays exponentially
if @ < 0 and remains constant if @ = 0 (Figure 2.1)

x(t)y 5oy KON : X(ﬂ/r

x(0) J x(0) \\ x(0)

> 1 >t >t
Q>0 a<o a=o

Figure 2.1

(i) If a > 0, the population will become double its present size at time
7T, where

2x(0) = x(0) exp (a7) or ecxp (aT) = 2

or 7= In2=(0.69314118)a”! @)

T is called the doubling period of the population and it may be noted that
this doubling period is independent of x(0). It depends only on & and is such
that greater the value of a (i.e. greater the difference between birth and
. death rates), the smaller is the doubling period.
(ii) If a < 0, the population will become half its present size in time T’
when

—;—x(O) = x(0) exp (aT') or exp (aT") = —%-

1 -
= 5 '——(0.693141 18) a~! (5)
It may be noted that T” is also independent of x(0) and since a < 0, T >0.
T’ may be called the half-life (period) of the population and it decreases as
the excess of death rate over birth rate increases.

or T = —1n

Growth of Science and Scientists
Let S(t) denote the number of scientists at time ¢, bS(1)4t =~ U4!) be the
number of new sciantists trained in time interval (f # -+ 41) and let
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A A - ———

dS()dt  + 0(d¢) be the number of scientists who retire from science in .the
same period, then the above model applies and the number of scientists
should grow exponentially. .
The same model applies to the growth of Science, Mafhematlcs and
Technology. Thus if M(f) is the amount of Mathematics at time £, then the
rate of growth of Mathematics is proportional to the amount of Mathe-
matics, so that ;

dMjdt = aM ~ or  M(r) = M(0) exp (at) (6)

Thus according to this model, Mathematics, Science and Technology grow
at an exponential rate and double themselves in a certain period of time,
During the last two centuries this doubling period has been about ten years,
This implies that if in 1900, we had one unit of Mathematics, then in 1910,
1920, 1930, 1940, .. . 1980 we have 2, 4, 8, 16, 32, 64, 128, 256 unit of
Mathematics and in 2000 AD we shall have about 1000 units of Mathematics.
This implies that 99.9% of Mathematics that would exist at the end of the
present century would have been created in this century and 99.9% of all
mathematicians who ever lived, would have lived in this century.

The doubling period of mathematics is 10 years and the doubling period
of the human population is 30-35 years. These doubling periods cannot
obviously be maintained indefinitely because then at some point of time, we
shall have more mathematicians than human beings. Ultimately the doubling
period of both will be the same, but hopefully this is a long way away.

This model also shows that the doubling period can be shortened by hav-
ing more intensive training programmes for mathematicians and scientists
and by creating conditions in which they continue to do creative work for
longer durations in life.

!Effects of Immigration and Emigration on
Population Size

D SRR S TR el e et v

If there is immigration into the population from outside at a rate propor-
tional to the population size, the effect is equivalent to increasing the birth
rate. Similarly if there is emigration from the population at a rate propor-
tional to the population size, the effect is the same as that of increase in the
death rate.
If however immigration and emigration take place at constant rate ; and
e respectively, equation (3) is modified to
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Integrating (7) we get

*(@) + LA (;(0) +l;_)eu

)

(3)

“The model also applies to growth of populations of bacteria and micro-
organisms, to the increase of volume of timber in forest, to the growth of
malignant cells etc. In the case of forests, planting of new plants will
correspond to immigration and cutting of trees will correspond to emigration.

Radio-Active Decay

Many substances undergo radio-active decay at a rate proportional to the
amount of the radioactive substance present at any time and each of them
has a half-life period. For uranium 238 it is 4.55 billion years. For potassium
it is 1.3 billion years. For thorium it is 13.9 billion years. For rubidium it
is 50 billion years while for carbonl4,itis only 5568 years and for white

lead it is only 22 years.

In radiogeology, these results are used for radioactive dating. Thus the
ratio of radio-carbon to ordinary carbon (carbon 12) in.dead plants and
animals enables us to estimate their time of death. Radioactive dating has
-also been used to estimate the age of the solar system and of earth as

4% billion years.

2.2,7 Diffusion e of movement of 2 solute

According to Fick’s law of diffusion, the time rat

across a thin membrane is proportiona
to the difference in concentrations of th
membrane,

If the area of the membran .
on one side is kept fixed at a and the concentration
other side initially is co < a, then Fick's law gives

1 of the arca of the me :
e solute on the two sl

mbrane and
des of the

e is constant and the concentration of solute
of the solution on the

(15)'

% — ka— o), (0) = co,
so that
a — c(t) = (@ — c(0))e ™™ (16)
and c(t) = a as t — o, whatever be the value of co.
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Change of Price of a Commeodity

Let p(7) be the price of a commodity at time 7, then its rate of change is

proportional to the difference between the demand d(f) and the supply s(7)
of the commodity in the market so that

gg — k(d(r) — s(1)), (17

where k > 0, since if demand is more than the supply, the price increases
If d(1) and s(7) are assumed linear functions of p(¢), i.e. if '

dt) = di + &p(0), s(1) =51+ 52p(), dr < 0,5, > 0 (18)

we get
B e il iy '
dt PG sp(0) = k@ — Bp(r)), B>0 (19
or :
dp
7 = K(pe — p(¢
where p. is the equilibrium price, so that
pe — p(1) = (pe — p(0))e~* 21)

and

pt)—>p. as t—>
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Logistic Law of Population Growth

: tonic increas-
(i) x(0) < alb = x(0) < alb = dx[dt > 0 = x(¢) is a mono

- 00,
ing function of ¢ which appronches alb ns : > 15 amotone desrgas
(i) x(0) > a/b = x(1) > alb = dx/dt <0 @D.\
' H . - 0,
ing function of # which approaches alb as t —>

Now from (23)

d*x :

LL e g — 2hx,

dr? 1

: ' wth curve

so that @2x/dr? % 0 according as x 2 af2b. Thus in case (3 t,ltlehsgoa soitit of
is convex if x < a/2b and is concave if X = a/2b and 1

: i iven in
inflexion at x == a/2b. Thus the graph of x(1) agamstl FIRER &

(25)

Figure 2.2,
X(t)A

l(t)“ !(t)“ x(0) el B

alb a/b ERE D
x(0) /
Concave

algb- ==

x(o)}—"Cornvex -

> >t -
x(o)=zar2b o a/2b<x(o)<alb x(o)>alb

Figure 2.2

—If x(0) < af2b, x(1) increases at an increasing rate till x(r) reaches a/2b and then it
. increases at a decreasing rate and approaches a/b at ¢ —

—If af2b < x(0) < a/b, x(t) increases at a decreasing rate and approaches a/b as
’-> o

—If x(0) == a/b, x(¢) is always equal to a/b

—If x(0) > a/b, x(t) decreases at a decreasing absolute rate and approaches a/b as
)

Spread'of Technological Innovations and
Infectious Diseasas
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Let N(7) be the number of companies which have adopted a technological
innovation till time ¢, then the rate of change of the number of these com-
panies depends both on the number of companies which have adopted this
innovation and on the number of those which have not yet adopted it, so
that if R is the total number of companies in the region '

dN

5 = KN(R — N), | (26)

which is the logistic law and shows that u(timate.?y all companies will adopt
this innovation,

Similarly i'f N(1) is th;: number of infected persons, the rate at which the
number of infected persons increases depends on the product of the num- -

pers of infected and susceptible persons. As such we again get (26), where R
is the total number of persons in the system. ' ‘

It may be noted that in both the examples, while N(f) is essentially an
integes-valued variable, we have treated it as a continuous variable. This
can be regarded as an idealisation of the situation or as an approximation to
reality. :

Rate of Dissolution

Let x(t) be the amount of undissolved solute in a solvent at time ¢ and let
co be the maximum concentration or saturation concentration, i.e. the maxi-
mum amount of the solute that can be dissolved in a unit volume of the
solvent. Let ¥ be the volume of the solvent. It is found that the rate at which
the solute is dissolved is proportional to the amount of undissolved solute
and to the difference between the concentration of the solute at time ¢ and
the maximum §o§§ible concentration, so that we get

% = katy (X220 —ar) = O (G - V) = x(e) @D

Prepared by:A.Neerajah,Department of Mathematics, KAHE Page 8 of 13



Unit-  Mathematical Modelling Through ODE of first order/2016 Batch

Law of Mass Action: Chemical Reactions

Two chemical substances combine in the ratio a: bto form a third substance
Z. 1f z(t) is the amount of the third substance at time f, then a proportion
az(t)/(a + b) of it consists of the first substance and a proportion bz(f)/
(a 4 b) of it consists of the second substance. The rate of formation of the
third substance is proportional to the product of the amount of the two
component substances which have not yet combined together. If 4 and B
are the initial amounts of the two substances, then we get

dz az bz

bV BRIy =
This is the non-linear differential equation for a second order reaction.
Similarly for an nth order reaction, we get the non-linear equation

Z_f = k(41 — mz)(d2 — @2) .. . (4n — an2), G

where a1 + a2+ ... +an= 1.

EXERCISE

4 If in (24), a = 0.03134, b= (1.5887)(10)1, x(0) = 39105, show
that ' : '

313,400,000
1.5887 + 78,7703—0.03134:)

This is Verhulst model for thie population of USA when time zero corresponds
to 1790. Estimate the population of USA in 1800, 1850, 1900 and 1950.
Show that the point of inflexion should have occurred in about 1914. Find
also the limiting population of USA on the basis of this maodel. .

In (26) k = 0.007, R = 1000, N(0) = 50, find N(10)/and find when
N(f) = 500.

x(1) =
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COMPARTMENT MODELS

In the last two sections, we got mathematical models in terms of ordinary
differential equations of the first order, in all of which variables were sepa-
rable. In the present section, we get models in terms of linear differential
equations of first order.

We also use here the principle of continuity i.e. that the gain in amount
of a substance in a medium in any time is equal to the excess of the amount

that has entered the medium in the time over the amount that has left the
medium in this time.

A Simple Compartment Model

Let a vessel contain a volume V of asolution with concentration c(t) of a
substance at time 7 (Figure 2.3) Let
a solution with constant concentra-
tion C in an overhead tank enter the
vessel at a constant rate R and after
mixing thoroughly with the solution
in the vessel, let the mixture with
concentration ¢(t) leave the vessel at
the same rate R so that the volume
of the solution in the vessel remains

Y. Figure 2.3
Using the principle of continuity, %
we get
V(e(t + A1) — (1)) = RCAt — Re(t)4t + 0(dt)
giving
de X
V{?t_ + Rec = RC (30)
Integrating
e(t) = ¢(0) cxp(—- %t) : C(l — exp (— —ﬁ-t) (31)

As t = o, c(t) = C, so that ultimately the vessel' has the same concentra-
tion as the overhead tank. Since 3

c(t) = C — (C — co) exp (—%—l). (32)
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if C > co, the concentration in the vessel increases to C; on the other

hand if C < co, the concentration in C“)A

the vessel decreases to C (Figure 2.4).
If the rate R’ at which the solution

leaves the vessel is less than R, the c(o)p

equations of continuity gives | T o-—-——-=- — ——

4 i
%[(,,o + (R — R)Ne(®) cf

= RC — R'(ct) - (33)

’ =1 k10 - — 1
where V is the initial volume of the
solution in the vessel. This is also a Figure 2.4

linear differential equation of the first
order.

Diffusion of Glucose or a Medicine in the Blood
Stream

- a L
— W WPRAETER

Let the volume of blood in the human body be ¥ and let the initial concen-
tration of glucose in the blood stream be ¢(0). Let glucose be introduced in
the blood stream at a constant rate /. Glucose is also removed from the
blood stream due to the physiological needs of the human body at a rate
proportional to ¢(7), so that the continuity principle gives

dc 3
Vd—,t' = J — ke (34)

which is similar to (30).

Now let a dose D of a medicine be given to a patient at regular inter-
vals of duration T each. The medicine also disappears from the system at a
rate proportional to ¢(t), the concentration of the medicine in the blood
stream, then the differential equation given by the continuity principle is

V‘—i-c- = —kc

dt (35)
Integrating

o k
0 =Dew(-51), 0<r<T (36)
At time T, the residue of the first dose is D exp (

k
' - VT) and now another
dose D is given so that we get :

Prepared by:A.Neerajah,Department of Mathematics, KAHE Page 11 of 13



Unit-  Mathematical Modelling Through ODE of first order/2016 Batch

e(t) = (D exp (— LV T) - D) exp (— -%(t —-T) ), (37)

i 1 ‘il il k
D eXp ( Vt) '.'}“ D EXp (— ~—V—(t v T))’ (38)
T i<2r

The first term gives the residual of the first dose and the second term

gives the residual of the second dose. Proceeding in the same way, we get
after n doses have been given

«(t) = D exp (— —lf;t) 4+ D exp (—— -§-(l — T))

+D eXP(—’—"V-(t - 2T)) + ...+ Dexp (— %(z —n_'—m)
' (39)
= D exp (— %t)(l + exp (—kV—T) + exp (%ér)

+ . owteexp ((n— l)-%,-T))

L\ EXP (n-l‘—c;T) ==}
= Dexp (— ——t)
v

,(n— DI <t <aT (40)
k
exp( T)——l

f == exp(——f;nT) 2
- (I%') " (4D

exp (’—i—;) — exp ( == %nT)
cnT +0)=D = (42)
exp (7) — 1

Thus the concentration never exceeds D/(l = exp( k,f)) The graph of

~ c(2) is shown in Figure 2.5.
c(t) o
1

cnT — 0)=pD

pi1-e” KT/ Vyl

NNSRN

T T 5 SR >
Figure 2.5
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n decreases. In any interval, the

Thus in each interval, concentratio es. :
ing of this interval and thus maxi-

concentration is maximum at the beginning. : .
mum concentration at the beginning of an interval goes on increasing as

the number of intervals increases, but the maximum value 1s always l?eIO\v
D/(1 — e kTI¥). The minimum value in an interval occurs at the end of each

i t lies below D/(exp (kT/V) — 1)

interval. This also increases, but i ' 1 s
The concentration curve is piecewise continuous and has points of dis-

continuity at T, 2T, 37, «s ‘
lin in blood and fitting curve (36) to the

By injecting glucose or penicil : cury
data, we can estimate the value of kand V. In particular this givesa method

for finding the volume of blood in the human body.

2.4.3 The Case of a Succession of Compartments

Let a solution with concentration ¢(?) of a solute pass. successively into n
tanks in which the initial concentrations of the solution are ¢1(0), 2(0), . - -
¢:(0). The rates of inflow in each tank is the same as the rate of outflow

from the tank. We have to find the concentrations cr(0), ex(t) . .. calr) at
time ¢. We get the equations
der
V T = Rc — Rc
dca
VE = Rec1 — Rea (43)
dc
V?If = RCn-1 — RCa

By solving the ﬁr§t of‘" these equations, we get ci(r). Substituting the value of
c1(?) and proceeding in the same way, we can find c;3(z) ; (0
P n .

MATHEMATICAL MODELLING IN DY -
NAMICS TH
ORD!NARY _DlFfERENTIAL EQUATIONS OF FlRS:ggggR

T T m v swrsmw Wl fSEIWE WILLJL

Leta partiélé travel a distance x in ti i
La] € x In time 7 in a straight line i i
v is given by dx/dt and its acceleration is given b%r g g

dojdt = (do]dx)(dx|di) = vdojdx = dx/di?
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Question Opt 1 Opt 2 Opt3 Opt 4 Answer
If the total external force is zero,then the total lionear momentum of
the system is Zero non-zero conserved rigid conserved
Conservation of total angular momentu in the absence
of requires strong law of action and reaction Applied force torque force applied torque applied torque
The equation of motion of the form is always a suitable
way to construct a lagrangian for a conservative system L=T+V L=V-T L=T-V L=T L=T-V
The - doesn't deform under the action of loads Force Rigid body varied path applied torque rigid body
A bead sliding on a rigid wire on space is subject to constraint  |Scheleronomous Rheonomous holonomic non holonomic Scheleronomous
magnetic
The space around the magnet is called the magnetic field electric field induction flux magnetic field
number of
The number of coordinates minus the number of independent number of degrees generalized number of degrees of
equations of constraint is units of freedom dimensions coordinates freedom
___ have no effect on the motion of the centre of mass applied torque internal force external force force internal force
The total kinetic energy of the system can be wriiten as T=To+Ty T=T+T, T=To+T, T=To+T1+T, T=To+T1+T,
the equation of motion is the differential equation of order [Fourth first second third second
To linearize the motion for small oscillation,we assume that cos(y-e)=1 sin(y-0)=1 cos(¢4-0)=0 sin(4-8)=0 cos(y-8)=1
The total amount of electric field lines or the magnetic field lines
passing through an area is called a Flux density torque current flux
rotational
The motion of a body in a straight line is knownas____ linear motion linear displacement [motion moment of force linear motion
is the quantity of matter contained in the body velocity mass force weight mass
Kinetic energy of a body is th energy possessed by the body of virtue
ofits___ position energy constant motion motion
of a body is defined as the product of mass of a body and its
velocity density momentum force acceleration momentum
Physical forces like gravity obeys____ of gravitational force weak law strong law Maxwell's law  |none of the above |Strong law

of a body is the energy it posses by the virtue of its position

kinetic energy

total energy

potential energy

energy

potential energy

___ ofabody is the energy possessed by the virtue of its motion potential energy energy kinetic energy  |total energy kinetic energy
generalised generalised generalised

The lagrangian L=T-U where U is called a generalise force potential momentum acceleration generalised potential

The is denoted by the basic field vector B flux magnetic induction |electric field magnetic field magnetic induction

The is a measure of the number of magnetic flux lines passing |magnetic flux magnetic

per unit are through a surface normal to the lines density electric field induction magnetic field maghnetic flux density

If the external torque applied is zero,then is conserved N L p F L

The lagrangian for a charged particle in an electromagentic field can

be written as L=V-T L=T-U L=T+V L=V L=T-U

A sytem of particle is called a statical system dynamical system  [kinematics mechanics dynamical system

The set of positions of all the particles is known as of the

dynamical sytem torque linear motion configuration acceleration configuration
The angular momentum of the particle about the point O denoted by

vector L is defined as rXP rXL rXm rXN rXP

Any restriction on the motion of a sytem is known as energy constraint moment of force |torque constraint

are used in electrical and magnetic field

equation of motion

maxwell equation

conservation
equation

lagrange equation

maxwell equation

A particle is constrained to move along a curve or on a surface is
example of

Holonomic

Scheleronomous

non holonomic

rheonomous

holonomic

the walls of a gas container constitute a constraint scheleronomous rheonomous holonomic non holonomic non holonomic
A is one which has only fixed constraints rheonomous non holonomic Scheleronomous |holonomic Scheleronomous
A has moving constraints non holonomic scheleronomous holonomic rheonomous rheonomous
The work due to virtual displacement is known as maxwell's law acceleration virtual work dynamical system |virtual work
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The number of generalised coordinates required to desribe the

number of degrees

number of
generalisd

linear

number of degrees of

configuration of a system is called the of freedom coordinates displacement moment of force  |freedom
A particle is constrained to move on a surface,the force of constraint
is perpendicular to the surface,while the virtual displacement must be
tangent to it,and hence the vanishes Force virtual displacement |virtual work acceleration virtual work
In a simple dynamicl system T+V= constant zero one conserved constant
Lagrange's method |velocity dependent |D'Alemberts principle of virtual |Lagrange's method of
is used to solve the holonomic problem of multiplier potential principle work multiplier
is defined as the force with which a body is attracted
towards the centre of the earth mass acceleration weight velocity weight
A dynamical system is called if it is possible to give
arbitrary and independent variations to the generalised coordinates
of the system without violating constraints rheonomous non holonomic holonomic scheleronomous holonomic
the degrees of freedom is given by 3N-K N-3K N+3K 3N+K 3N-K
Potential energy of a body is the energy it possess by the virtue of
its. constant motion position energy position
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2.1 W HAMILTON’S PRINCIPLE

The derivation of Lagrange’s equations presented in Chapter | started from a
consideration of the instantaneous state of the system and small virtual displace-
ments about the instantaneous state, i.e., from a “differential principle” such as
D’ Alembert’s principle. It is also possible Lo obtain I.agrange’s equations from a
principle that considers the entire motion of the system between times 7} and f,
and small virtual variations of this motion from the actual motion. A principle of
this nature is known as an “integral principle.”

Before presenting the integral principle, the meaning attached to the phrase
“motion of the system between times #; and #;” must first be stated in more pre-
cise language The insiantaneous configuration of a system is described by the
values of the n generalized coordinates gy, .. ., gn, and corresponds to a particu-
lar point in a Cartesian hyperspace where the ¢’s form the » coordinate axes. This
n-dimensional space is therefore known as configuration space. As time goes on,
the state of the system changes and the system point moves in configuration space
tracing out a curve, described as “the path of motion of the system.” The “motion
of the system,” as used above, then refers to the motion of the system point along
this path in configuration space. Time can be considered formally as a parame-
ter of the curve; to each point on the path there is associated one or more values
of the time. Note that configuration space has no necessary connection with the
physical three-dimensional space, just as the generalized coordinates are not nec-
essarily position coordinates. The path of motion in configuration space has no
resemblance to the path in space of any actual particle; each point on the path
represents the enfire system configuration at some given instant of time.

The integral Hamilton’s principle describes the motion of those mechanical
systems for which all forces (except the forces of constraint) are derivable from a
generalized scalar potential that may be a function of the coordinates, velocities,
and time. Such systems will be denoted as monogenic. Where the potential is an
explicit function of position coordinates only, then @ monogenic system is also
conservative (cf. Section 1.2).

For monogenic systems, Hamilion’s principle can be stated as

The motion of the system from time i to time t; is such that the line
integral (called the action or the action integral),

Prepared by:A.Neerajah,Department of Mathematics, KAHE Page 2 of 22
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f2
I=f L dt, (2.1)
h

where L = T — V, has a stationary value for the actual paih of the
motion.

That is, out of all possible paths by which the system point could travel from
its position at time #; to its position at time f2, it will actuzlly travel along that
path far which the value of the integral (2.1) is stationary. By the term “station-
ary value” for a line integral, we mean that the integral along the given path has
the same value to within first-order infinircsimals as that along all neighboring
paths (1.e., those that differ from it by infinitesimal displacements). (Cf. Fig. 2.1.)
The notion of a stationary value for a line integral thus corresponds in ordinary
function theory to the vanishing of the first derivative.

We can summarize Hamilton’s principle by saying that the motion is such that
the variation of the line integral 7 for fixed #; and f, is zero:

A
81 =46 LGy, s GnaGlse. - Gn,t)dt =0. 22)

n

Where the system constraints are holonomic, Hamilton's principle, Eq. (2.2),
is both a necessary and sufficient condition for Lagrange’s equations, Eqgs. (1.57).
Thus, it can be shown that Hamilton’s principle follows directly from Lagrange’s
equations. Instead, however, we shall prove the converse, namely, that Lagrange’s
equations follow from Hamilton’s principle, as being the more important theorem.
That Hamilton’s principle is a sufficient condition for deriving the equations of
motior enables us to construct the mechanics of monogenic systems from Hamil-
ton's principle as the basic postulate rather than Newton’s laws of motion. Such
a formulation has advantages; e g, since the integral 7 is obviously invariant to
the system of generalized coordinates used to express L, the equations of motion
must always have the Lagrangian form no matter how the generalized coordinates

X

FIGURE 2,1 Path of the system point in configuration space.
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are transformed, More important, the formulation in terms of a variational prin-
ciple 15 the route that is generally followed when we try to describe apparently
nonmechanical systems in the mathematical clothes of classical mechanics, as in
the theory of fields.
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2.2 B SOME TECHNIQUES OF THE CALCULUS OF VARIATIONS

Before demonstrating that Lagrange’s equations do follow from (2.2), we must
first examine the methods of the calculus of variations, for a chief problem of this
calculus is to find the curve for which some given line integral has a stationary
value.

Consider first the problem in an essentially one-dimensional form: We have a
function f(y.y, x) defined on a path y = y(x) between two values x; and x,
where y is the derivative of y with respect to x. We wish to find a particular path
y(x) such that the line integral J of the function f between x) and x3,

4

Y= dx
X3

J=[ f@, y,x)dx, (2.3)
x

has a stationary value relative to paths differing infinitesimally from the correct
funetion y(x). The variable x here plays the role of the parameter ¢, and we con-
sider only such varied paths for which y(x1) = y1, y(x2) = y2. (Cf Fig. 2.2)
Note that Fig. 2.2 does not represent configuration space. In the one-dimensional
configuration space, both the correct and varied paths are the segment of the
straight line connecting y; and y»; the paths differ only in the functional rela-
tion between y and x. The problem is one-dimensional. v is a function of x not a
coordinate.

¥ (3. 3)

xy.0p)

X

FIGURE 2.2 Varied paths of the function of y(x) in the one-dimensional extremum
problem.
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We put the problem in a form that enables us to use the familiar apparatus of
the differential calculus for finding the stationary points of a function. Since J
must have a stationary value for the correct path relative to any neighboring path,
the variation must be zero relative to some particular set of neighboring paths
labeled by an infinitesimal parameter . Such a set of paths might be denoted by
y(x, @), with y(x, 0) representing the correct path. For example, if we select any
function n(x) that vanishes at x = x; and x = x3, then a possible set of varied
paths is given by

y(x,a) = y(x,0) + an(x). (2.4)

For simplicity, it is assumed that both the correct path y(x) and the auxiliary
function n{x) are well-behaved functions—continuous and nonsingular between
x1 and x2, with continuous first and second derivatives in the same interval. For
any such parametric family of curves, J in Eq. (2.3) is also a function of a:

xa
J@= [ 1 603,00, ) dx. 25)
x|
and the condition for obtaining a stationary point is the familiar one that
(ﬂ) =0. 2.6)
de a=0
By the usual methods of differentiating under the integral sign, we find that
d 2 /af p
aJ = (ﬂﬂ_}_‘rg_ﬂ_y) dx. 2.7
de Jy, \0y0a dyda

Consider the second ol these integrals.

%2 Bf 9y x2 2
f —Jf—ya'x=f EJ-F- oy dx
n 0y do 5y @) dx do

Integrating by parts, the integral becomes

X3 2 Xz X2
f F 3y 4 U -f 4 (ﬂ)a—ydx. 2.8)
x 0 dxda aydal, Jr dx \dy/ da

The conditions on all the varied curves are that they pass through the po:nts
(x1, y1), (x2, y2), and hence the partial derivative of y with respect to ¢ at x; and
x must vanish. Therefore. the first term of (2.8) vanishes and Eq. (2.7) reduces to

o[ Ly,
do y \dy dxdy/ da i

The condition for a stationary value, Eq. (2.6), is therefore equivalent to the equa-
tion
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| cpurcns wyr

f! (% B i?;) (aa) dx =0, @9)

Now, the partial derivative of y with respect to a occurring in Eq. (2.9) is a
function of x that is arbitrary except for continuity and end point conditions. For
example, for the particular parametric family of varied paths given by Eq. (2.4),
it is the arbitrary function n(x). We can therefore apply to Eq (2.9) the so-called
“fundamental lemma” of the calculus of variations, which says if

X
f ’ M(x)n(x)dx =0 (2.10)
X

for all arbitrary functions 7(x) continuous through the second derivative, then
M (x) must identically vanish in the interval (x1, x2). While a formal mathemat-
ical proof of the lemma can be found in texts on the calculus of variations, the
validity of the lemma is easily seen intuitively. We can imagine constructing a
function # that is positive In the immediate vicinity ot any chosen point in the
interval and zero everywhere else. Equation (2.10) can then hold only if M(x)
vanishes at that (arbitrarily) chosen point. which shows M must be zero through-
out the interval. From Eq. (2.9) and the fundamental lemma, it therefore follows
that J can have a stationary value only if

ar 8f
3y dx ( ) 0. (211)
The differential quantity,
dy
(E)U du = 5)‘, (2 12)

represents the infinitesimal departure of the varied path from the correct path y(x)
at the point x and thus corresponds to the virtual displacement introduced in Chap-
ter 1 (hence the notation 8y). Similarly, the infinitesimal variation of J about the

correct path can be designated

d

(—") do=3J. 2.13)
do 0

The assertion that J is stationary for the correct path can thus be written

d af
57 = 22 Vspdx —0,
ff( dxa')-”’xo

requiring that y(x) satisfy the differential equation (2.11). The §-notation, intro-
duced through Eqs. (2.12) and (2.13), may be used as a convenient shorthand
for treating the variation of integrals, remembering always that it stands for the
manipulation of parametric families of varied paths such as Eq. (2.4).
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2.3 M DERIVATION OF LAGRANGE'S EQUATIONS
FROM HAMILTON'S PRINCIPLE

The fundamental problem of the calculus of variations is easily generalized to the
case where f is a function of many independent variables );, and their dervatives
yi. (Of course, all these quantities are considered as functions of the parametric
variable x.) Then a variation of the integral J,

2
57 =5 ﬁ FO169; 3205, o 1) 200, .. 1) dx, @.14)

is obtained, as before, by considering J as a function of parameter o that labels a
possible set of curves yj (x, ). Thus, we may introduce o by setting

yilx, @) = yi1(x, 0) + ani(x),
y2(x, @) = y2(x, 0) + anz(x), (2.15)

where ¥ (x, 0), ¥2(x, 0), etc., are the solutions of the extremum problem (o be
obtained) and 7, 72, eic., are independent functions of x that vanish at the end
points and that are continuous through the second derivative, but otherwise are
completely arbitrary.

The calculation proceeds as before. The variation ot J 1s given 1n terms of

of o, Of ,
f Z(ay. 2 T 5 9 “) e GO

Again we integrate by parts the integral involved in the second sum of Eq. (2.16):

Poyd (Eji) dx

fﬁa_?» deo N
1 i dadx \ 9y

3y dadx - oy da,

where the first term vanishes because all curves pass through the fixed end paints.
Substituting in (2.16), 3J becomes

3f d af)
8] = - — = ) sy, dx, 2.17)
flz,:(ay, dx oy, )

where, in analogy with (2.12), the variation 8y; is

Since the y variables are independent, the variations 8y; are independent {e.g.,
the functions 7,(x) will be independent of each other). Hence, by an obvious
extension of the fundamental lemma (cf. Eq. (2.10)), the condition that §J is zero
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requires that the coefficients of the 8y; separately vanish:
=0, i=12...,n (2.18)

Equations (2.18) represent the appropriaie generalization of (2.11) to several
variables and are known as the Euler-Lagrange differential equations. Their so-
lutions represent curves for which the variation of an integral of the form given
in (2.14) vanishes. Further generalizations of the fundamental variational problem
are easily possible. Thus, we can take f as a function of higher derivatives y, ),
etc., leading to equations different from (2.18). Or we can extend it to cases where
there are several parameters x; and the integral is then multiple, with f also in-
volving as variables derivatives of y, with respect to each of the parameters x;.
Finally, 1t is possible to consider variations in which the end points are not held
fixed.

For present purposes, what we have derived here suffices, for the integral in
Hamilton’s principle,

2
I =f L(g:, q.1)dt, (2.19)
i

has just the form stipulated in (2.14) with the transformation
X —1

=4
f(yh.:‘.’i':-t) - L('qhq'lst}'

In deriving Eqs. (2.18), we assumed that the y, variables are independent. The
corresponding condition m connection with Hanulton’s principle is that the gen-
eralized coordinates ¢; be independent, which requires that the constraints be
holonomic, The Euler-Lagrange equations corresponding to the integral / then
become the Lagrange equations of motion,

d aL

——,—a—L=O, i=12,...,n,

dt aq, dg
and we have accomplished our original aim, to show that Lagrange’s equations
follow from Hamilton’s principle—for monogenic systems with holonomic con-
straints.

EXTENSION OF HAMILTON'S PRINCIPLE
TO NONHOLONOMIC SYSTEMS

It is possible to extend Hamilton’s principle, at least in a formal sense, to cover
certain types of nonholonomic systems. In deriving Lagrange’s equations from
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either Hamilton’s or D’ Alembert’s principle, the requirement of holonomic con-
straints does not appear until the last step, when the variations g, are considered
as independent of each other. With nonholonomic systems the generalized coor-
dinates are not independent of each other, and it is not possible to reduce them
further by means of equations of constraint of the form f(g1.42.....¢a. 1) =0,
Hence, it is no longer true that the g,'s are all independent.

Another difference that must be considered in treating the variational principle
is the manner in which the varied paths are constructed. In the discussion of Sec-
tion 2.2, we pointed out that 8y (or 3¢) represents a virtual displacement from a
point on the actual path to some point on the neighboring varied path. But, with
independent coordinates it is the final varied path that is significant, not how it is
constructed. When the coordinates are not independent, but subject to constraint
relations, it becomes important whether the varied path is or is not constructed by
displacements consistent with the constraints. Virtual displacements, in particular,
may or may not satisfy the constraints.

It appears that a reasonably straightforward treatment of nonholonomic sys-
tems by a variational principle is possible only when the equations of constraint
can be put in the form

fﬂ(ql"-wqh; él-'-aq-ﬂ)=0r (2'20)

when this can be done the constraints are called semi-holonomic. The index o
indicates that there may be more than one such equation. We will assume there
are m equations in all, i.e., @ = 1,2, ..., m. Equation (2.20) commonly appears
in the restricted form

2 aue dge + a dt =0, (2.20')
k

We might expect that the varied paths, or equivalently, the displacements con-
structing the varied path, should satisfy the constraints of Eq. (2.20). However, it
has been proven that no such varied path can be constructed unless Egs. (2.20)
are integrable, in which case the constraints are actually holonomic. A variational
principle leading to the correct equations of motion can nonetheless be obtained
when the varied paths are constructed from the actual motion by virtual displace-
ments.

The procedure for eliminating these extra virtual displacements is the method
of Lagrange undetermined multipliers. If Eqs. (2.20) hold, then it is also true that

i Ao fo =0, (221

=]

where the Ay, @ = 1, 2. ..., m, are some undetermined quantities, functions in
general of the coordinates and of the time 7. In addition, Hamilton’s principle,

i
Sf Ldr=0, (2.2)
h
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is assumed to hold for this semiholonomic system. Following the development of
Section 2.3, Hamilton’s principle then implies that

2 8L 4 oL
dt —— — —— | 8 = 0. 2.22
/ ;(aqk #34) @22)

The variation cannot be taken as before since the gy are not independent; however,
combining (2.21) with (2.2) gives

12 m
8 L+ rAafeldt=0 2.23
[1 ( 2 af) t (2.23)

a=1

The variation can now be performed with the n g, and m A, for m+n independent
variables. For the simplifying assumption that e = A (2), the resulting equations
from 84, become*

d (8L oL
1 \ddx ) da 224
dr (aék) b = 224)
where
_S[a [ _ 4 (0] _ dha e
Qk‘;[la [3@; dr (6Qk):| dt 34.!:}’ (2.25)

while the 84, give the equations of constraint (2.20). Equations (2.24) and (2.20)
together constitute » + m equations for n -+ m unknowns. The system can now
be interpreted as an m + n holonomic system with generalized forces ;. The
generalization 10 Ay = Ag(§1, ..+ @ni Gi, -« » §n; 1) is straightforward.

As an example, let us consider a particle whose Lagrangian is

L=im (245 +2)-V(xy2 (2.26)
subject to the constraint

fG ) )y=xy+ky=0 (2.27)

with & a constant. The resulting equations of motion are

. v
mf+lj5+l}'!+%-;=0, (2.28)

" . .. 3V
my+lx—kl+kx+73;=ﬂ, (2.29)
mZ + v, =0, (2.30)

az
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and the equation of constraint, (2.20), becomes
yx +ky=0.

In this process we have obtained more information than was originally sought.
Not only do we get the gx’s we set out to find, but we also get ma;’s. What is
the physical significance of the 2;’s? Suppose we remove the constraints on the
system, but instead apply external forces @} in such a manner as to keep the
motion of the system unchanged. The equations of motion likewise remain the
same. Clearly these extra applied forces must be equal to the forces of constraint,
for they are the forces applied to the system so as to satisfy the condition of
constraint. Under the influence of these forces (), the equations of motion are

!
dt gy dqp Q- (2.31)
But these must be identical with Eqs. (2.24). Hence, we can identify (2.25) with
Q.. the generalized forces of constraint. In this type of problem we really do not
eliminate the forces of constraint from the formulation. They are supplied as part
of the answer.

Although it is not obvious, the version of Hamilton’s principle adopted here
for semiholonomic systems also requires that the constraints do no work in virtual
displacements. This can be most easily seen by rewriting Hamilton's principle in
the form

2 n 2
3[ Ldr:ﬁf Tdt—Sf Udt=0. (2.32)
h h 1

If the variation of the integral over the generalized potential is carried out by the
procedures of Section 2.3, the principle takes the form

f2 2 U U
3 Tdt:f [— ———( )]6 dr; 233
j:, f Zk: dgc i \ogx J]°* @33)

or, by Eq. (1.58),

5 f Tdt = [ Z Qwdqrdt. (2.34)

In this dress, Hamilton’s principle says that the difference in the time integral of
the kinetic energy between two neighboring paths is equal to the negative of the
time integral of the work done in the virtal displacements between the paths.
The work involved is that done only by the forces derivable from the generalized
potential. The same Hamilton’s principle holds for both holonomic and semiholo-
nomic systems, it must be required that the additional forces of semiholonomic
constraints do no work in the displacements §gy. This restriction parallels the ear-
lier condition that the virtual work of the forces of holonomic constraint also be
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zero (cf. Section 1.4). In practice, the restriction presents little handicap to the
applications, as many problems in which the semiholonomic formalism is used
relate to rolling without slipping, where the constraints are obviously workless.

Note that Eq. (2.20) is not the most general type of nonholonomic constraint;
e.g., it does not include equations of constraint in the form of inequalities. On
the other hand, it does include holonomic constraints. A holonomic equation of
constraint,

f@1,92.93, ..., gun. 1) =0, (2.35)

is equivalent to (2.20) with no dependence on §;. Thus, the Lagrange multiplier
method can be used also for holonomic constraints when (1) it is inconvenient to
reduce all the ¢’s to independent coordinates or (2) we might wish to obtain the
forces of constraint.

As another example of the method, let us consider the following somewhat
trivial illustration—a hoop rolling, without slipping, down an inclined plane. In
this example, the constraint of “rolling” is actually holonomic, but this fact will
be immaterial to our discussion. On the other hand, the holonomic constraint that
the hoop be on the inclined plane will be contained implicitly in our choice of
generalized coordinates.

The two generalized coordinates are x, 8, as in Fig. 2.5, and the equation of
rolling constraint is

rdf =dx.

The kinetic energy can be resolved into kinetic energy of motion of the center
of mass plus the kinetic energy of motion about the center of mass:

T = {Mi* + §Mr2g.
The potential energy is
V = Mg(l — x)sing,

where { is the length of the inclined plane and the Lagrangian is

A

x

i

FIGURE 2.5 A hoop rolling down an inclined plane.
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L=T-V
_M:E2+Mr2§2
) 2

— Mg(l — x)sing. (2.36)

Since there is one equation of constraint, only one Lagrange multiplier A is
needed. The coefficients appearing in the consfraint equation are:

ag =r,

ay = —1.
The two Lagrange equations therefore are

MY — Mgsing + i1 =0, (2.37)
Mr*6 - =0, (2.38)

which along with the equation of constraint,
ré =%, (2.39)

constitutes three equations for three unknowns, 8, x, A.
Differentiating (2.39) with respect to time, we have

ré =%
Hence, from (2.38)
Mx=A,
and (2.37) becomes
. gsing
= 7
along with
_ Mgsing
A=
and
»  gsing
6= o

Thus, the hoop rolls down the incline with only one-half the acceleration it would
have slipping down a frictionless plane, and the friction force of constraint is
A= Mgsing/2.
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Although we can extend the original formulation of Hamilton’s principle (2.2) to
include some nonholonomic constraints, in practice this formulation of mechan-
ics is most useful when a Lagrangian of independent coordinates can be set up
for the system. The variational principle formulation has been justly described as
“elegant,” for in the compact Hamilton’s principle is contained all of the mechan-
ics of holonomic systems with forces derivable from potentials. The principle has
the further merit that it involves only physical quantities that can be defined with-
out reference to a particular set of generalized coordinates, namely, the kinetic
and potential energies. The formulation is therefore automatically invariant with
respect to the choice of coordinates for the system.

From the variational Hamilton’s principle, it is also obvious why the La-
grangian is always uncertain to a total time derivative of any function of the
coordinates and time, as mentioned at the end of Section 1.4. The time integral
of such a total derivative between points 1 and 2 depends only on the values of
the arbitrary function at the end points. As the variation at the end points is zero,
the addition of the arbitrary time derivative to the Lagrangian does not affect the
variational behavior of the integral.

Another advantage is that the Lagrangian formulation can be easily extended
to describe systems that are not normally considered in dynamics—such as
the elastic field, the electromagnetic field, and field properties of elementary
particles. Some of these generalizations will be considered later, but as three
simple examples of its application outside the usual framework of mechanics, let
us consider the cases of an RL circuit, an LC circuit, and coupled circuits,

We consider the physical system of a battery of voltage V in series with an
inductance L and a resistance of value R and choose the electric charge ¢ as
the dynamical variable. The inductor acts as the Kinetic energy term since the
inductive effect depends upon the time rate of change of the charge. The resistor
provides a dissipative term and the potential energy is g V. The dynamic terms in
Lagrange’s equation with dissipation (1.70) are

T=114%, F=1iR4%
and potential energy = g V. The equation of motion is
V=L§+Rg=LI+RI (2.40)

where /| = ¢ is the electric current. A solution for a battery connected to the
circuit at time # = 0 is

= Io(1 —e~R/Ly,

where Ip = V/R is the final steady-state current flow.
The mechanical analog for this is a sphere of radius @ and effective mass m’
falling in a viscous fluid of constant density and viscosity n under the force of
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gravity. The effective mass is the difference between the actual mass and the mass
of the displaced fluid, and the direction of motion is along the y axis. For this
system,

T =sm'§?,  F=3nnay’,

and potential energy = m’gy, where the frictional drag force, Fr = 67 nay, called
Stokes’ law, was given at the end of Section 1.5.
The equation of motion is given by Lagrange’s equations (1.70) as

m'g =m'$ +6xnay.
Using v = 7, the solution (if the motion starts from rest at ¢ = 0), is
v = v,(l — ey

where T = m’/(6zrna) is a measure of the time it takes for the sphere to reach
1/e of its terminal speed of vy = m'g /6 na.

Another example from electrical circuits is an inductance, L, in series with a
capacitance, C. The capacitor acts as a source of potential energy given by g2/C
where g is the electric charge. The Lagrangian produces the equation of motion,

. g
= =0, 2.41
Lg+ C 0 ( )

which has the solution
g = gocoswyt,

where g is the charge stored in the capacitor at r = 0, and the assumption is that
no charge is flowing at 1 = 0, The quantity

1
W="Jic

is the resonant frequency of the system.
The mechanical analog of this system is the simple harmonic oscillator de-
scribed by the Lagrangian L = £m:?— %kx?, which gives an equation of motion,

mi+kx =0,
whose solution for the same boundary conditions is
X = Xp COS wol with w0 = +k/m.

These two examples show that an inductance is an inertial term, the electrical
analog of mass. Resistance is the analog of Stokes’ law type of frictional drag,
and the capacitance term 1/ C represents a Hooke’s law spring constant, With this
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FIGURE 2.6 A system of coupled circuits to which the Lagrangian formulation can be
applied.

background, a system of coupled electrical circuits of the type shown in Fig. 2.6
has a Lagrangian of the form

2
1 2, 1 .. q;
L= 5 ;L,qj + EJZRMJM;% - ; E + ;ej(r)q;,
Ik
and a dissipation function
1 .
y

where the mutual inductance terms, M4, i, are added to take into account the
coupling between inductors. The Lagrange equations are

dq 9 _

dz‘i'; Z dqx b
J#k

where the £ (r) terms are the external emf’s.

This description of two different physical systems by Lagrangians of the same
form means that all the results and techniques devised for investigating one of the
systems can be taken over immediately and applied to the other. In this particular
case, the study of the behavior of electrical circuits has been pursued intensely
and some special techniques have been developed; these can be directly applied
to the corresponding mechanical systems. Much work has been done in formuiat-
ing equivalent electrical problems for mechanical or acoustical systems, and vice
versa. Terms hitherto reserved for electrical circuits (reactance, susceptance, etc.)
are now commonly found in treatises on the theory of vibrations of mechanical
systems.
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Additionally, one type of generalization of mechanics is due to a subtler form
of equivalence. We have seen that the Lagrangian and Hamilton’s principle to-
gether form a compact invariant way of obtaining the mechanical equations of
motion. This possibility is not reserved for mechanics only; in almost every field
of physics variational principles can be used to express the “equations of motion,”
whether they be Newton’s equations, Maxwell’s equations, or the Schridinger
equation. Consequently, when a variational principle is used as the basis of the for-
mulation, all such fields will exhibit, at least to some degree, a structural analogy.
When the results of experiments show the need for alterating the physical content
in the theory of one field, this degree of analogy has often indicated how similar
alterations may be carried out in other fields. Thus, the experiments performed
early in this century showed the need for quantization of both electromagnetic
radiation and elementary particles. The methods of quantization, however, were
first developed for particle mechanics, starting essentially from the Lagrangian
formulation of classical mechanics. By describing the electromagnetic field by a
Lagrangian and corresponding Hamilton's variational principle, it is possible to
cary over the methods of particle quantization to construct a quantum electrody-
namics (cf. Sections 13.5 and 13.6).

CONSERVATION THEOREMS AND SYMMETRY PROPERTIES

Thus far, we have been concerned primarily with obtaining the equations of mo-
tion, but little has been said about how to solve them for a particular problem
once they are obtained. In general, this is a question of mathematics. A system
of n degrees of freedom wili have n differential equations that are second order
in time. The solution of each equation will require two integrations resulting, ail
told, in 2 constants of integration. In a specific problem these constants will be
determined by the initial conditions, i.e., the initial values of the ng;’s and the
ng,’s. Sometimes the equations of motion will be integrable in terms of known
functions, but not always. In fact, the majority of problems are not completely
integrable. However, even when compiete solutions cannot be obtained, it is often
possible to extract a large amount of information about the physical nature of the
system motion. Indeed, such information may be of greater interest to the physi-
cist than the complete solution for the generalized coordinates as a function of
time. It is important, therefore, to see how much can be stated about the motion
of a given system without requiring a complete integration of the problem.*

In many problems a number of first integrals of the equations of motion ¢an be
obtained immediately; by this we mean relations of the type

fla1.q92,....41.42, ..., t) = constant, (2.43)
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which are first-order differential equations. These first integrals are of interest
because they tell us something physically about the system. They include, in fact,
the conservation laws obtained in Chapter 1.

Let us consider as an example a system of mass points under the influence of
forces derived from potentials dependent on position only. Then

s T T =mE = —n,;
0.5, ax;  dx ax; 9x; 2

= Mm%, = Pix.

L T 74 T 1

which is the x component of the linear momentum associated with the ith
particle. This result suggests an obvious extension to the concept of momentum.
The generalized momentum associated with the coordinate g, shall be defined as

aL

= —. 2.44

The terms canonical momentum and conjugate momentum are often also used for
p;. Notice that if g, is not a Cartesian coordinate, p, does not necessarily have
the dimensions of a linear momentum. Further, if there is a velocity-dependent
potential, then even with a Cartesian coordinate g, the associated generalized
momentum will not be identical with the usual mechanical momentum. Thus,
in the case of a group of particles in an electromagnetic field, the Lagrangian is
(cf. 1.63)

L= Z ‘%mrf}z - Z‘?x‘ﬁ(x:) ‘I"Z‘?:A(xz) 3 ¥

(g, here denotes charge) and the generalized momentum conjugate to x, is

aL

e 245
%, mx; +qAx ( )

Dix =

i.e., mechanical momentum plus an additional term.

If the Lagrangian of a system does not contain a given coordinate g, (although
it may contain the corresponding velocity 4,), then the coordinate is said to be
cyclic or ignorable. This definition is not universal, but it is the customary one
and will be used here. The Lagrange equation of motion,

d 8L 3L

dtdg, dq,
reduces, for a cyclic coordinate, to

4L _
drtdg, —
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or

which mean that
p; = constant. (2.46)

Hence, we can state as a general conservation theorem that the generalized mo-
mentum conjugate to a cyclic coordinate is conserved.

Note that the derivation of Eq. (2.46) assumes that g¢; is a generalized coordi-
nate; one that is linearly independent of all the other coordinates. When equations
of constraint exist, all the coordinates are not linearly independent. For exam-
ple, the angular coordinate 6 is not present in the Lagrangian of a hoop rolling
without slipping in a horizontal plane that was previously discussed, but the angle
appears in the constraint equations rd6 = dx. As aresult, the angular momentum,
ps = mr?6, 1s not a constant of the motion.

Equation (2.46) constitutes a first integrai of the form (2.43) for the equations
of motion. It can be used formally to eliminate the cyclic coordinate from the
probiem, which can then be solved entirely in terms of the remaining general-
ized coordinates. Briefly, the procedure, originated by Routh, consists in modify-
ing the Lagrangian so that it is no longer a function of the generalized velocity
corresponding to the cyclic coordinate, but instead involves only its conjugate
momentum. The advantage in so doing is that p, can then be considered one of
the constants of integration, and the remaining integrations involve only the non-
cyclic coordinates. We shall defer a detailed discussion of Routh’s method until
the Hamiltonian formulation (to which it is closely related) is treated.

Note that the conditions for the conservation of generalized momenta are more
general than the two momentum conservation theorems previously derived. For
example, they furnish a conservation theorem for a case in which the law of ac-
tion and reaction is violated, namely, when electromagnetic forces are present.
Suppose we have a single particie in a field in which neither ¢ nor A depends on
x. Then x nowhere appears in L and is therefore cyclic. The corresponding canon-
ical momentum p, must therefore be conserved. From (1.63) this momentum now
has the form

px = mx + gA, = constant. (2.47)

In this case, it is not the mechanical linear momentum mx that is conserved but
rather its sum with g A,.* Nevertheless, it should still be true that the conservation
theorems of Chapter 1 are contained within the general rule for cyclic coordinates;
with proper restrictions (2.46) should reduce to the theorems of Section 1.2.
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POSSIBLE QUESTIONS

Part B (6 Marks)

1.Define canonical momentum. Show that the generalized momentum conjugate to a cyclic co-
ordinate is conserved
. Write a short note on physical significance of the lagrangian undeterminant multiplier
. Derive the Brachistochrome problem
Find the curve for which some line integral has a stationary value
. State and prove Euler Lagrange differential equation

o Ok WwWN

. Find the equation of motion of a hoop or disc rolling without slipping down on the
inclined plane.
Part C (10 Marks)

. Find the minimum surface of revolution
. Derive the conservation theorem for total energy of system

. Show that the shortest curve between any two points in the plane is a straight line
. Derive the conservation theorem for dissipation function

A N B
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Part-A(20X1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)

Multiple Choice Questions

Question Opt 1 Opt 2 Opt3 Opt 4 Answer
UNIT Il
A principle where smalll variations of the entire motion from the cyclic D'Alemberts
actual motion take place is known as an Hamilton's principle|Lagrange's principle |coordinates principle Hamilton's principle
In total kinetic energy T=To+T:+T, Wher To is the function of generalised conjugate canonical
only coordinates cyclic coordinates  |momentum momentum generalised coordinates
The instantaneous configuration of a system is described by the values
of n generalised coordinates and corresponds to a particular point in configuration virtual
the n-dimensional space known as the cyclic coordinates |moment of force space displacement configuration space
As time goes on,the state of the system changes and the system point
moves in configuration space tracing out a curve known as
the projectory trajectory motion acceleration trajectory
lagrange's

The procedure for eliminating extra virtual displacement is the undetermined lagrange's undetermined
method of monogenic multipliers euler method Routhian multipliers
The line integral may also be denoted as J L X K J
The shortest distance between any two points in space are
called varied path geodesics curve circle geodesics
In the derivation of hamilton's principle for holonomic constraints,the
variation q; are considered of each other dependent independent neighbouring significant independent
All the generalized coordinates cannot be linear non cyclic non linear cyclic cyclic
If the lagrangian of the system does not contain the given co-ordinate conjugate angular
gi then it is said to be linear momentum [momentum momentum cyclic cyclic
A is a path traced by a point on the circumference of the
disc rolling with a constant speed straight line catenary varied path cycloid catenary
One of the first integrals of motion is referred to as integral [Jacobi Poisson Lagrange Euler Jacobi
In total kinetic energy T=To+T1+T, where T is the

generalised velocities constant quadratic linear nonl inear linear
A function f(x) is said to be statinary at x=a when f(a)=constant f(a)=0 f'(a)=constant  |f'(a)=0 f'(a)=0
In the derivation of hamilton's principle for non-Holonomic
constraints,the generalised co-ordinates qg; are considered of
each other neighboring significant dependent independent dependent
A sytem of mass points under the influence of force derived from
potentials depend on only energy constant position motion position
The generalized momentum associated with the co-ordinate q; shall canonical angular
be defined as the term linear momentum [momentum momentum momentum canonical momentum

constant conjugate

The canonical momentum is otherwise known as angular momentum|momentum momentum linear momentum |conjugate momentum
Lagrange's equationfollows from the principle Jacobi's Routh's Hamilton's D'Alemberts Hamilton's
If the system is invariant under the, along the given
direction then the corresponding angular momentum is conserved translation irrotation rotation constant rotation
The generalised momentum conjugate to the cyclic coordinate
is Zero motion conserved non zero conserved
A cyclic coordinate is also known as, constraint ignorable constant motion ignorable
In hamilton formulation,the 2n equations of motion describe the configuration virtual
behaviour of the system point in cyclic co-ordinates |projectory space displacement configuration space
The lagrangian multiplier method is used for constraints |Rheonomous non holonomic monogenic holonomic holonomic
In variation principle the integral must be evaluated over the configuration
trajectory of the system in phase space geometric space space space phase space
In total kinetic energy T=To+T1+T, where T, is function
of the generalised velocities quadratic non linear linear constant quadratic
If a component of the total applied forces then the
corresponding component of the total linear momentum is conserved |cyclic vanishes constant ignorable vanishes
gj a rotation coordinates a generalised force is the component of the
total about the axis of rotation applied force force torque applied torque applied torque
If the system is under the translation along the given
direction then the corresponding linear momentum is conserved constant invariant linear zero invariant
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is used to find the curve joining two points along which a
particle falling from rest under the influence of gravity in the least

brachistochrone

time geodesics projectory problem |problem Holonomic problem [brachistochrone problem

In conservation theorem for total energy of system the energy

function h is zero non zero conserved motion conserved

The which is pertained to the function h to be the total

energy of the system surface circumstence volume distance circumstence

If gj is not a cartesian co-ordinate then pj does not necessarily have canonical angular conjugate

the dimensions of momentum linear momentum [momentum momentum linear momentum
monogenic D'Alemberts

Hamilton's principle is also known as principle principle Integral principle|Lagrange's principle |Integral principle

The generalised momentum conjugate to the coordinate is

conserved momentum cyclic linear differential cyclic

If L=T-U, the enrgy function h depends on the and functional

form of the specific set of generalised co-ordinates force magnitude direction torque magnitude

The procedure for extra virtual displacement is the

method of Lagrange's undetermined multipliers eliminating adding multiplying subtracting eliminating

The fundamental problem of the calculus of variations is generalised

to the case where f is a function of many independent variables and

their. integrals dependent variables |derivatives components derivatives

The energy function h= L2-L0 L1-L0 L2-L1 L2+L1-LO L2-L0

L2 isthe ___ function of the generalised velocity cyclic cubic linear quadratic quadratic

A cyclic coordinate gj is the one which does not appear explicitly in

the Hamiltonian Lagrangian Eulerian routhian Lagrangian

A function f(x) is said to be at x=a when f'(a)=0 ignorable applied torque stationary constant stationary

Applied to the total energy function h,the lagrangian takes the

form h=T+V h=212+L1-L h=2L2+L1+L h=T-V h=212+L1-L
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LEGENDRE TRANSFORMATIONS AND THE
HAMILTON EQUATIONS OF MOTION

In the Lagrangian formulation (nonrelativistic), a system with n degrees of free-
dom possesses n equations of motion of the form

4 (E) _a =0. (8.1)
dt \ 9, oq,

As the equations are of second order, the motion of the system is determined for
all time only when 2n initial values are specified, for example, the n ¢;’s and n
¢,’s at a particular time ¢;, or then n g;’s at two times, #; and #;. We represent
the state of the system by a point in an n-dimensional configuration space whose
coordinates are the n generalized coordinates g; and follow the motion of the
system point in time as it traverses its path in configuration space. Physically, in
the Lagrangian viewpoint a system with n independent degrees of freedom is a

problem in »n independent variables g;(¢), and ¢, appears only as a shorthand for
the time derivative of ¢,. All n coordinates must be independent. In the Hamil-
tonian formulation there can be no constraint equations among the coordinates.
If the n coordinates are not independent, a reduced set of m coordinates, with

m < n, must be used for the formulation of the problem before proceeding with
the following steps.
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The Hamiltonian formulation is based on a fundamentally different picture.
We seek to describe the motion in terms of first-order equations of motion. Since
the number of initial conditions determining the motion must of course still be 27,
there must be 2z independent first-order equations expressed in terms of 2n inde-
pendent variables. Hence, the 2n equations of the motion describe the behavior
of the system point in a phase space whose coordinates are the 2n independent
variables. In thus doubling our set of independent quantities, it is natural (though
not inevitable) to choose half of them to be the n generalized coordinates g;. As
we shall see, the formulation is nearly symmetric if we choose the other haif of
the set to be the generalized or conjugate momenta p, already introduced by the
definition (cf. Eq. (2.44)):

— aL(g,.4,.t)

oG, (no sum on j) (8.2)

1

where the j index shows the set of ¢'s and §'s. The quantities (g, p) are known
as the canonical variables.*

From the mathematical viewpoint, it can however be claimed that the ¢’s and
g's have been treated as distinct variables. In Lagrange’s equations, Eq. (8.1), the
partial derivative of L with respect to ¢; means a derivative taken with all other g’s
and all ¢’s constant. Similarly, in the partial derivatives with respect to ¢, the g’s
are kept constant. Treated strictly as a mathematical problem, the fransition from
Lagrangian to Hamiltonian formulation corresponds to changing the variables in
our mechanical functions from (g, ¢, t) to (¢, p, t), where p is related to ¢ and
4 by Eqgs. (8.2). The procedure for switching variables in this manner is provided
by the Legendre transformation, which is tailored for just this type of change of

variable.
Consider a function of only two variables f(x, y), so that a differential of f
has the form
df =udx +vdy, (8.3)
where
af af
_u =% 8.4
e’ v By (8.4)
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We wish now to change the basis of description from x, y to a new distinct set of
variables #, y, so that differential quantities are expressed in terms of the differ-
entials du and dy. Let g be a function of « and y defined by the equation

g=f—ux (8.5)
A differential of g is then given as
dg =df —udx —xdu,
or, by (8.3), as
dg =vdy —xdu,

which is exactly in the form desired. The quantities x and v are now functions of
the variables u and y given by the relations

x=-28  ,_% (8.6)

which are the analogues of Eqgs. (8.4).

The Legendre transformation so defined is used frequently in thermodynamics.
The first law of thermodynamics relates the differential change in energy, dU/, to
the corresponding change in heat content, dQ, and the work done, dW:

dU =dQ —dWw. (8.7
For a gas undergoing a reversible process, Eq. (8.7) can be written as
dU =TdS — PdV. (8.8)

where U(S, V) is written as a function of the entropy, S, and the volume, V,
where the temperature, T, and the gas pressure, P, ate given by

aUu al
r= p-_27 9
35 av @.9)

The enthalpy, H (S, P) is generated by the Legendre transformation

H=U+PV, (8.10)
which gives
dH=TdS+VdP. (8.11)
where
dH dH
T = —_— = —
s M V=55
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Additional Legendre transformations,

F=U-TS
(8.12)
G=H-TS§,

generate the Helmholtz free energy, 7 (T, V), and the Gibbs free energy, G(T', P).

The transformation from (g, ¢, t) to (g, p, t} differs from the type considered
in Eqs. (8.3) to (8.12) only in that more than one variable is to be transformed.
We begin by writing the differential of the Lagrangian, L(g, 4, t), as

L aL oL
dL = —d —dg, + —dt. 8.13
agl ql’ + aq-‘ QI + ar ( )
The canonical momentum was defined in Eq. (2.44) as p; = 9L /d4,; substituting
this into the Lagrange equation (8.1), we obtain

oL
=, (8.14)
7=
so Eq. (8.13) can be written as
. . dL ,
dL = p,dg; + p. dg, + —di. (8.13)

a1
The Hamiltonian A (g, p, t) is generated by the Legendre transformation

H(Q: P:t)=‘j’tpl —_L(q:é: r)} (8'15)

which has the differential

aL

FTR (8.16)

dH =g, dp, — p, dgi —
where the term p, d¢; is removed by the Legendre transformation. Since d H can
also be written as

oOH OH oH
= —d —d, 8.17
dH ” dg, + o, D + Y dr (8.17)

we obtain the 2n + 1 relations

P oH
= —
op;
Nl
. aH (8.18)
b= 9q,
oL 9H (8.19)

T ot
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Equations (8.18) are known as the canonical equations of Hamilton; they consti-
tute the desired set of 2n first-order equations of motion replacing the » second-
order Lagrange equations.*

The first half of Hamilton’s equations give the ¢,’s as functions of (g, p. 1).
They form therefore the inverse of the constitutive equations (8.2), which define
the momenta p, as functions of (¢, 4. 7). It may therefore be said that they provide
no new information. In terms of solving mechanical problems by means of the
canonical equations, the statement is correct. But within the framework of the
Hamiltonian picture, where H (g, p. 1) is some given function obtained no matter
how, the two halves of the set of Hamiltonian equations are equally independent
and meaningful. The first half says how g depends on g, p, and 7; the second says
the same thing for p.

Of course, the Hamiltonian A is constructed in the same manner, and has iden-
tically the same value, as k, the energy function defined in Eq. (2.53). But they
are functions of different variables: Like the Lagrangian, 4 is a function of g, ¢
(and possibly ¢), while H must always be expressed as a function of ¢, p (and
possibly 7). It is to emphasize this difference in functional behavior that differ-
ent symbols have been given to the quantities even though they have the same
numerical values,

Nominally, the Hamiltonian for each problem must be constructed via the La-
grangian formulation. The formal procedure calls for a lengthy sequence of steps:

1. With a chosen set of generalized coordinates, ¢;, the Lagrangian L(¢;. g,, f)
=T — V is constructed.

2, The conjugate momenta are defined as functions of ¢;, 4,, and ¢ by
Eqs. (8.2).

3. Equation (8.15) is used to form the Hamiltonian. At this stage we have some
mixed function of ¢,, §;, pr, and .

4. Equations (8.2) are then inverted to obtain ¢, as functions of (g, p, #). Pos-
sible difficulties in the inversion will be discussed below.

5. The results of the previous step are then applied to eliminate § from H so
as to express it solely as a function of (g, p, 7).

Now we are ready to use the Hamiltonian in the canonical equations of motion.
For many physical systems it is possible to shorten this drawn-out sequence

quite appreciably. As has been described in Section 2.7, in many problems the

Lagrangian is the sum of functions each homogeneous in the generalized veloc-
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ities of degree 0, 1, and 2, respectively. In that case, H by the prescription of
Eq. (8.15) is given by (cf. Eqs. (2.53) and (2.55))

H=¢,p —L=q¢p —Lolg 1) + Li(q:, 4Gk + L2(q:, )Grgr]  (8.20)

(no sum on i in the square brackets) where L is the part of the Lagrangian that is
independent of the generalized velocities, L represents the coefficients of the part
of the Lagrangian that is homogeneous in g, in the first degree, and L is the part
that is homogeneous in ¢, in the second degree. Further, if the equations defining
the generalized coordinates don’t depend on time explicitly, then Lagigm = T
(the kinetic energy), and if the forces are derivable from a conservative potential
V (that is, work 1s independent of the path), then Ly = —V. When both these
conditions are satisfied, the Hamiltonian is automatically the total energy:

H=T+V=E. (8.21)

If either Eq. (8.20) or (8.21) holds, then much of the algebra in steps 3 and 4 above
is eliminated.

We can at times go further. In large classes of problems, it happens that Ls is a
quadratic function of the generalized velocities and L is a linear function of the
same variables with the following specific functional dependencies:

L(gi, ¢, 1) = Lo(q, 1) + G (g, £) + 42T, (g, 1), (8.22)

where the @,’s and the T;’s are functions of the ¢’s and ¢.

The algebraic manipulations required in steps 2-5 can then be carried out, at
least formally, once and for all. To show this, let us form the ¢;’s into a single
column matrix ¢. Under the given assumptions the Lagrangian can be written as

L(g.§,t) = Lo(g.2) + Ga + 34T, (8.23)

where the single row matrix E[ has been written explicitly as the transpose of a
single column matrix, . Here a is a column matrix, and T is a square rn X n matrix
(much like the corresponding matrix introduced in Section 6.2). The elements of
both are in general functions of ¢ and ¢. To illustrate this formalism, let us consider
the special case where ¢, = {x, y, z} and T is diagonal. We would then write

L. I m 0 O[]
SATq=0y) |0 m 0|1y =2G"+3"+2) (8.24a)
0 0 m Z
and
ga= (592 |ay | =i +ayy+az=a-t (8.24b)

az
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Tn this notation the Hamiltonian. H = gp — L, becomes
H = §(p—a) — 3474 — L,. (8.24¢)

The conjugate momenta, considered as a column matrix p, is then, by Eq. (8.2),
given as

p=Tq+a, (8.25)
which can be inverted (step 4) to the column vector §
q=Tl(p-a. (8.26a)
This step presupposes that T~! exists, which it normally does by virtue of the
positive definite property of kinetic energy.
The corresponding equation for q is
q=p-aT " (8.26b)

To obtain the correct functional form for the Hamiltonian, Eqs. (8.26) must be
used to replace q and g, yielding the final form for the Hamiltonian:

H(g, p,t)=3p—3T'(p—a) — Lo(g. 7). 8.27)

If the Lagrangian can be written in the form of Eq. (8.23), then we can imme-
diately skip the intervening steps and write the Hamiltonian as Eq. (8.27). The
inverse matrix T~! can usually most easily be obtained straightforwardly as

B

T (8.28)

=

l ¥
where T, is the cofactor matrix whose elements (T,),x are (—1)/ +* times the
determinant of the matrix obtained by striking out the jth row and the £th column

of T.
In the example Eq. (8.24a), these three matrices are given explicitly by

m 0 0 L 00

T=|0 m 0, T'=|0 % 0. and
1

[0 0 m 0 0 =

N_mz()O

T.=0 m2 0],

_'Ofilm2

and the determinant [T| = m>. It is easy to see that for the usual case when T is
diagonal, then T~! is also diagonal with elements that are just the reciprocals of
the corresponding elements of T.

CYCLIC COORDINATES AND CONSERVATION THEOREMS

Prepared by:A.Neerajah,Department of Mathematics, KAHE
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According to the definition given in Section 2.6, a cyclic coordinate g, is one that
does not appear explicitly in the Lagrangian; by virtue of Lagrange’s equations
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its conjugate momentum p; is then a constant. But comparison of Eq. (8.14) with
Eq. (8.16) has already told us that

p 0L _ _2H
! g, dq,

A coordinate that is cyclic will thus also be absent from the Hamiltonian.* Con-
versely if a generalized coordinate does not occur in H, the conjugate momentum
is conserved. The momentum conservation theorems of Section 2.6 can thus be
transferred to the Hamiltonian formulation with no more than a substitution of 4
for L. Tn particular, the connection between the invariance or symmetry proper-
ties of the physical system and the constants of the motion can also be derived in
terms of the Hamiltonian. For example, if a system is completely self-contained,
with only internal forces between the particles, then the system can be moved as
arigid ensemble without affecting the forces or subsequent motion. The system
is said to be invariant under a rigid displacement. Hence, a generalized coordinate
describing such a rigid motion will not appear explicitly in the Hamiltonian, and
the corresponding conjugate momentum will be conserved. If the rigid motion is
a translation along some particular direction, then the conserved momentum is the
corresponding Cartesian component of the total linear (canonical) momentum of
the system. Since the direction is arbitrary, the total vector linear momentum is
conserved, The rigid displacement may be a rotation, from whence it follows that
the total angular momentum vector is conserved. Even if the system interacts with
external forces, there may be a symmetry in the situation that leads to a conserved
canonical momentum. Suppose the system is symmetrical about a given axis so
that A is invariant under rotation about that axis. Then H obviously cannot in-
volve the rotation angle about the axis and the particular angle variable must be a
cyclic coordinate. It follows, as in Section 2.6, that the component of the angular
momentum about that axis is conserved.”

The considerations concerning / in Section 2.7 have already shown that if L
(and in consequence of Eq. (8.15), also H) is not an explicit function of z, then
H is a constant of motion. This can also be seen directly from the equations of
motion (8.18) by writing the total time derivative of the Hamiltonian as

dH 8H, 3H .  8H
- ' apgp' at.

dt  2q 4
In consequence of the equations of motion (8. 18), the first two sums on the right
cancel each other, and it therefore follows that

— == (8.41)
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Thus if £ doesn’t appear explicitly in L, it will also not be present in H, and H
will be constant in time.

Further, it was proved in Section 2.7 that if the equations of transformation that
define the generalized coordinates (1.38),

rm = rm(ql!" -a‘fn; I)n

do not depend explicitly upon the time, and if the potential is velocity indepen-
dent, then H is the total energy, T+ V. The identification of H as a constant of the
motion and as the total energy are two separate matters, and the conditions suffi-
cient for the one are not enough for the other. It can happen that the Eqs. (1.38)
do involve time explicitly but that H does not. In this case, H is a constant of
the motion but it is not the total energy. As was also emphasized in Section (2.6),
the Hamiltonian is dependent both in magnitude and in functional form upon the
initial choice of generalized coordinates. For the Lagrangian, we have a specific
prescription, L = T — V, and a change of generalized coordinates within that
prescription may change the functional appearance of L but cannot alter its mag-
nitude. On the other hand, use of a different set of generalized coordinates in the
definition for the Hamiltonian, Eq. (8.15), may lead to an entirely different quan-
tity for the Hamiltonian. It may be that for one set of generalized coordinates H
is conserved, but that for another it varies in time.

To illustrate some of these points in a simple example, we may consider a
somewhat artificial one-dimensional system. Suppose a point mass 1 is attached
to a spring, of force constant k, the other end of which is fixed on a massless cart
that is being moved uniformly by an external device with speed vy (cf. Fig. 8.1).
If we take as generalized coordinate the position x of the mass particle in the
stationary system, then the Lagrangian of the system is obviously

+2
Lix,#,) =T -V = %I— - g(x — w2 (8.42)

(For simplicity, the origin has been chosen so that the cart passes through it at
t = 0.) The corresponding equation of motion is clearly

mxX = —k(x — vyt).

—

oO—"00
»-—x~—‘

FIGURE 8.1 A harmonic oscillator fixed to a uniformly moving cart.
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An obvious way of solving this equation is to change the unknown to x'(r)
defined as

x'=x — vyt, (843)
and noting that X’ = X, the equation of motion becomes
mx’' = —kx'. (8.44)

From Eq. (8.43), x’ is the displacement of the particle relative to the cart;
Eq. (8.44) says that to an observer on the cart the particle exhibits simple har-
monic motion, as would be expected on the principle of equivalence in Galilean
relativity.

Having looked at the nature of the motion, let us consider the Hamiltonian
formulation. Since x is the Cartesian coordinate of the particle, and the potential
does not involve generalized velocities, the Hamiltonian relative to x is the sum
of the kinetic and potential energies, that is, the total energy. In functional form
the Hamiltonian is given by

H —rev=E ik 2 4
x,p,0)=T+ =5t 50— v (3.43)
The Hamiltonian is the total energy of the system, but since it is explicitly a func-
tion of ¢, it is not conserved. Physically this is understandable; energy must flow
into and out of the “extemal physical device” to keep the cart moving uniformly
against the reaction of the oscillating particle.*

Suppose now we formulated the Lagrangian from the start in terms of the rel-

ative coordinate x’. The same prescription gives the Lagrangian as

%2 mv  kx'?
L, ¥y =22 domivg + —2 — . 8.46
(", x) S tmiv+ — 5 (8.46)
In setting up the corresponding Hamiltonian, we note there is now 2 term linear
in &", with the single component of a being mvg. The new Hamiltonian is now
(P —mw)? | kx> mv}
2m 2 2

H'(', ph) = (8.47)
Note that the last term is a constant involving neither x’ nor p’; it could, if we
wished, be dropped from H’ without affecting the resultant equations of motion.
Now H' is not the total energy of the system, but it is conserved. Except for the
fast term, it can be easily identified as the total energy of motion of the particle
relative to the moving cart. The two Hamiltonian’s are different in magnitude.
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ROUTH’S PROCEDURE

Tt has been remarked that the Hamiltonian formulation is not particularly helpful
in the direct solution of mechanical problems. Often we can solve the 2n first-
order equations only by eliminating some of the variables, for example, the p
variables, which speedily leads back to the second-order Lagrangian equations of
motion. But an important exception should be noted. The Hamiltonian procedure
is especially adapted to the treatment of problems involving cyclic coordinates.

Let us consider the situation in Lagrangian formulation when some coordinate,
say ¢, is cyclic. The Lagrangian as a function of ¢ and ¢ can then be written

L=L(t’ﬂu--|?n—[; é['*":éﬁ; I)

All the generalized velocities still occur in the Lagrangian and in general will be
functions of the time. We still have to solve a problem of n degrees of freedom,
even though one degree of freedom corresponds to a cyclic coordinate. A cyclic
coordinate in the Hamiltonian formulation, on the other hand, truly deserves its ai-
ternative description as “ignorable,” for in the same situation p,, is some constant
e, and A has the form

H=H{q,....qn—1; P1,-.-» DPn—1; o t).

In effect, the Hamiltonian now describes a problem involving only n — 1 coordi-
nates, which may be solved completely ignoring the cyclic coordinate except as
it is manifested in the constant of integration «, to be determined from the initial
conditions. The behavior of the cyclic coordinate itself with time is then found by
integrating the equation of motion

R
T

The advantages of the Hamiltonian formulation in handling cyclic coordinates
may be combined with the Lagrangian conveniences for noncyclic coordinates by
a method devised by Routh. Essentially, we carry out a mathematical transforma-
tion from the g, ¢ basis to the ¢4, p basis only for those coordinates that are cyclic,
obtaining their equations of motion in the Hamiltonian form, while the remain-
ing coordinates are governed by Lagrange equations. If the cyclic coordinates are
labeled gy41, . ... qn, then a new function R (known as the Routhian) may be
introduced, defined as

dn
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n
R o @i GLyeei G Potloon P D= ) pgi—L, (848
=541

which is equivalent to writing
R(G1,---sGus G1s--sqss Psglse--r Pni 1) =
Hﬂ}’LI{PJ'I'I 1111 pﬂ)_ Lnﬂﬂf}"d(qli <oy sy él:--*!éi)- {849)

It is easy to show for the 5 nonignorable coordinates, the Lagrange equations

d (3R R
—|— | —— =0, i=1,...,5, .
dt (3c}f) g, I ) (80
are satisfied. while for the n —s ignorable coordinates, Hamilton's equations apply
as
aR . oR
e p = d —_— = | = S X :
2 o =0, an o a, i=s+1, n (8.51)

A simple, almost trivial, example may clarify Routh's procedure and the phys-
ical significance of the quantities involved. Consider the Kepler problem investi-

gated in Section 3.7, that of a single particle moving in a plane under the influence
of the inverse-square central force f (r) derived from the potential V (r) = —k/r".
The Lagrangian is then
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_m.z 229 k
L——z—(?‘ +f’9)+;‘?

As noted before, the ignorable coordinate is £, and if the constant conjugate mo-
mentum is denoted by pg, the corresponding Routhian (8.49) is

2
) Py 1 ., k
R(r,r,p.g) = m - Emr — ;n—
Physically we see that the Routhian is the equivalent one-dimensional potential
V'(r) minus the kinetic energy of radial motion.
Applying the Lagrange equation (8.50) to the noncyclic radial coordinate r,
we obtain the equation of motion (3.11)

pg nk

r——-—-

mr3  pntl

=0. (8.52)

Applying Hamilton’s equation (8.51) to the cyclic variable 6. we obtain the pair
of equations

Pe=0 and = =6, (8.53)

whose solution is the same as Eq. (3.8),
P = mrzé = | = constant.

Typically, Routh’s procedure does not add to the physics of the analysis pre-
sented earlier in Chapter 3, but it makes the analysis more automatic. In compli-
cated problems with many degrees of freedom, this feature can be a considerable
advantage. it is not surprising therefore that Routh’s procedure finds its greatest
usefulness in the direct solution of problems relating to engineering applications.
But as a fundamental entity, the Routhian is a sterile hybrid, combining some of
the features of both the Lagrangian and the Hamiltonian pictures. For the devel-
opment of various formalisms of classical mechanics, the complete Hamiltonian
formulation is more fruitful.
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DERIVATION OF HAMILTON’S EQUATIONS FROM
A VARIATIONAL PRINCIPLE

Lagrange’s equations have been shown to be the consequence of a variational
principle, namely, the Hamilton’s principle of Section 2.1, Indeed, the variational
method is often the preferable one for deriving Lagrange’s equations, for it is
applicable to types of systems not usually included within the scope of mechanics.
It would be similarly advantageous if a variational principle could be found that

leads directly to the Hamilton’s equations of motion. Hamilton’s principle,

2
61 Esf Ldr =0, (8.64)
h

lends itself to this purpose, but as formulated originally it refers to paths in con-
figuration space. The first modification therefore is that the integral must be eval-
uated over the trajectory of the system point in phase space, and the varied paths
must be in the neighborhood of this phase space trajectory. In the spirit of the
Hamiltonian formulation, both g and p must be treated as independent coordi-
nates of phase space, to be varied independently. To this end the integrand in the
action integral, Eq. (8.64), must be expressed as a function of both ¢ and p, and
their time derivatives, through Eq. (8.15). Equation (8.64) then appears as

el
81 = 6/ (p,(j, — H(q, p, t)) dt = 0. (8.65)
h

As a variational principle in phase space, Eq. (8.65) is sometimes referred to as
the modified Hamilton’s principle. Although it will be used most frequently in
connection with transformation theory (see Chapter 9), the main interest in it here
is to show that the principle leads to Hamilton’s canonical equations of motion.
The modified Hamilton’s principle is exactly of the form of the variational
problem in a space of 2»n dimensions considered in Section 2.3 (cf. Eq. (2.14)):

L)
5I=3f f(g.q,p, p,t)dt =0, (8.66)
n

for which the 2n Euler-Lagrange equations are
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d (af\ _of _ ,

el =1,..., .

dt (34';) ag, 7 " (.67
ap,) 3p} j=1,... n (8.68)

The integrand f as given in Eq. (8.65) contains §; only through the p,4, term,
and g; only in f. Hence, Eqgs. (8.67) lead to

aH
+ — =0. 8.69
P aq, ( )]

On the other hand, there is no explicit dependence of the integrand in Eq. (8.65)
on p;. Equations (8.68) therefore reduce simply to

. 8H
4y — 5=

(8.70)
ap;

Equations (8.69) and (8.70) are exactly Hamilton’s equations of motion. Egs.
(8.18). The Euler-Lagrange equations of the modified Hamilton’s principle are
thus the desired canonical equations of motion.

This derivation of Hamilton’s equations from the variational principle is so
brief as to give the appearance of a sleight-of-hand trick. One wonders whether
something extra has been sneaked in while we were being misdirected by the
magician’s patter. Is the modified Hamilton’s principle equivalent to Hamilton’s
principle, or does it contain some additional physics? The question is largely ir-
relevant; the primary justification for the modified Hamilton's principle is that it
leads to the canonical equations of motion in phase space. After all, no further
argument was given for the validity of Hamilton's principle than that it corre-
sponded to the Lagrangian equations of motion. So long as Hamiltonian can be
constructed, the Legendre transformation procedure shows that the Lagrangian
and Hamiltonian formulations, and therefore their respective variational princi-
ples, have the same physical content.

Nonetheless, there are advantages to requiring that the varied paths in the mod-
ified Hamilton's principle return to the same end points in both ¢ and p, for we
then have 4 more generalized condition for Hamilton’s equations of motion. As
with Hamilton’s principle, if there is no variation at the end points we can add a
total time derivative of any arbitrary (twice-differentiable) function F(q, p, t) to
the integrand without affecting the validity of the variational principle. Suppose,
for example. we subtract from the integrand of Eq. (8.65) the quantity

Prepared by:A.Neerajah,Department of Mathematics, KAHE Page 17 of 26



Unit -111 Hamilton Equations of motion /2017 Batch

d
E(%P;)-

The modified Hamilton’s principle would then read

i
Sf (—pgy —Hlg,p, 1)) dt =0. (8.71)
I

Here the f integrand of Eq. (8.66) is a function of p, and it is easily verified that
the Euler-Lagrange equations (8.67) and (8.68) with this f again correspond to
Hamilton’s equations of motion, Eqs. (8.18). Yet the integrand in Eq. (8.71) is
not the Lagrangian nor can it in general be simply related to the Lagrangian by a
point transformation in configuration space. By restricting the variation of both g
and p to be zero at the end points, the modified Hamilton's principle provides an
independent and general way of setting up Hamilton’s equations of motion with-
out a prior Lagrangian formulation. If you will, it does away with the necessity
of a linkage between the Hamiltonian canonical variables and a corresponding
Lagrangian set of generalized coordinates and velocities. This will be very impor-
tant to us in the next chapter where we examine transtormations of phase space
variables that preserve the Hamiltonian form of the equations of motion.

The requirement of independent variation of g and p, so essential for the above
derivation, highlights the fundamental difference between the Lagrangian and
Hamiltonian formulations. Neither the coordinates ¢, nor the momenta p, are
to be considered there as the more fundamental set of variables; both are equally
independent. Only by broadening the field of independent variables from n to 2n
quantities are we enabled to obtain equations of motion that are of first order. In
a sense, the names “coordinates” and “momenta” are unfortunate, for they bring
to mind pictures of spatial coordinates and linear, or at most, angnlar momenta. A
wider meaning must now be given to the terms. The division into coordinates and
momenta corresponds to no more than a separation of the independent variables
describing the motion into two groups having an almost symmetrical relationship
to each other through Hamilton’s equations.

THE PRINCIPLE OF LEAST ACTION

Another variational principle associated with the Hamiltonian formulation is
known as the principle of least action. It involves a new type of variation, which
we shall call the A-variation, requiring detailed explanation. In the &-variation
process used in the discussion of Hamilton’s principle in Chapter 2, the varied
path in configuration space always terminated at end points representing the
system configuration at the same time f; and r; as the correct path. To obtain
Lagrange’s equations of motion, we also required that the varied path return
to the same end points in configuration space, that is, 8g,(21) = 8q,(#2) = 0.
The A-variation is less constrained; in general, the varied path over which an
integral is evaluated may end at different times than the correct path, and there
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may be a variation in the coordinates at the end points. We can however use the
same parameterization of the varied path as in the §-variation. In the notation
of Section 2.3, a family of possible varied paths is defined by functions (cf. Eq.
(2.15)

QI(Iv a) =Qr(t: 0) +ﬂ'7h(f), (8'72)

where « is an infinitesimal parameter that goes to zero for the correct path. Here
the functions #; do not necessarily have to vanish at the end points, either the orig-
inal or the varied. All that is required is that they be continuous and differentiable,
Figure 8.3 illustrates the correct and varied path for a A-variation in configuration

space.
Let us evaluate the A-variation of the action integral:
L] for e st o) 2
a f Ldr = f Lerdr — [Tz ar. 8.73)
n 14y 1
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where L(e:) means the integral is evaluated along the varied path and L(0) cor
spondingly refers to the actual path of motion. The variation is clearly compo
of two parts. One arises from the change in the limits of the integral; to first-or
infinitesimals, this part is simply the integrand on the actual path times the dif}
ence in the limits in time. The second part is caused by the change in the integr:
on the varied path, but now between the same time limits as the original integ
We may therefore write the A-variation of the action integral as

L] 1
A f Ldt = L(t2) Atz — L) Aty + f 8L dt. (8.
H

n

Here the variation in the second integral can be carried out through a parar
terization of the varied path, exactly as for Hamilton’s principle except that

9

9

FIGURE 8.3 The A-variation in configuration space.
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variation in ¢; does not vanish at the end points. The end point terms arising in
the integration by parts must be retained, and the integral term on the right appears

as
2 hraL  d (aL aL _ |
8de=f [—-— — (-——)]6 dt+—38 l .
[, o Lag ~ar\3g. ) "% 7 g "0,
By Lagrange’s equations the quantities in the square brackets vanish, and the A-
variation therefore takes the form

L]
A f Ldr= (LAt + p.aq,)ﬁ. (8.75)
n

In Eq. (3.75), &g, refers to the variation in g, at the original end point times #; and
2. We would like to express the A-variation in terms of the change Ag, between
g at the end points of the actual path and g, at the end points of the varied path,
including the change in end point times. It is clear from Fig. 8.3 that these two
variations are connected by the relation®

Ag, = 8q, + g At (8.76)

Hence, Eq. (8.75) can be rewritten as

fa
. 2
Af Ldt = (LAt — p,g, At + p,Agy)|]
4]

2
A f Ldt = (p,Aq, — H An[2. &7
]

To obtain the principle of least action, we restrict our further considerations by
three important qualifications:

1. Only systems are considered for which L, and therefore H, are not explicit
functions of time, and in consequence H is conserved.

2. The variation is such that H is conserved on the varied path as well as on
the actual path.

3. The varied paths are further limited by requiring that Ag; vanish at the end
points (but not Ar).
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The nature of the resultant variation may be illustrated by noting that the varied
path satisfying these conditions might very well describe the same curve in con-
figuration space as the actual path. The difference will be the speed with which
the system point traverses this curve; that is. the functions g, (z) will be altered in
the varied path. In order then to preserve the same value of the Hamiltonian at all
points on the varied path, the times of the end points must be changed. With these
three qualifications satisfied, the A-variation of the action integral, Eq. (8.77),
reduces to

r
Af Ldt = —H (A — A1). (8.78)
I

But under the same conditions, the action integral itself becomes

2] t
[Trar=["pigai-n@-w,
fl 1
the A-variation of which is
7] L2
Af Ldt = Af PGy dt — H{A — An). (8.79)
51 151

Comparison of Eqs. (8.78) and (8.79) finally gives the principle of least action:*

]
Af PG dr=0. (8.80)
ft

By way of caution, note that the modified Hamilton’s principle can be written
in a form with a superficial resemblance to Eq. (8.80). If the trajectory of the sys-
tem point is described by a parameter @, as in Sections 7.10 and 8.4, the modified
Hamilton’s principle appears as

&
) (pigy — H)' d8 = 0. (8.81)
6

it will be recalled (cf. footnote on p. 351) that the momenta p, do not change
under the shift from ¢ to &, and that ¢;/' = g/. Further, the momentum conjugate
to ¢ is = H. Hence, Eq. (8.81) can be rewritten as

62 n+l
af Ep,q;ds =0, (8.82)
b1 =1

where ¢ has been denoted by g,+1. There should however be no confusion be-
tween Eq. (8.82) and the principle of least action. Equations (8.82) involve phase
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space of (2n + 2) dimensions, as is indicated by the explicit summation to | =
n + 1, whereas Eq. (8.80) is in the usual configuration space. But most important,
the principle of least action is in terms of a A-variation for constant H, while
Eq. (8.82) employs the §-variation, and H in principle could be a function of time.
Equation (8.82) is nothing more than the modified Hamilton’s principle, and the
absence of a Hamiltonian merely reflects the phenomenon that the Hamiltonian
vanishes identically for the “homogeneous problem.”

The least action principle itself can be exhibited in a variety of forms. In non-
relativistic mechanics, if the defining equations for the generalized coordinates do
not involve the time explicitly, then the kinetic energy is a quadratic function of
the g,’s (cf. Eq. (1.71)):

T = IM,(q)d 4k (8.83)

When in addition the potential is not velocity dependent, the canonical momenta
are derived from T only, and in consequence

Plér =2T.

The principle of least action for such systems can therefore be written as

L]
A f Tdt=0. (8.84)

fy

If, further, there are no external forces on the system, as, for example, a rigid body
with no net applied forces, then T is conserved along with the total energy H. The
least action principle then takes the special form

At —1)=0. (8.85)

Equation (8.85) states that of all paths possible between two points, consistent
with conservation of energy, the system moves along that particular path for which
the time of transit is the least (more strictly, an extremum). In this form the princi-
ple of least action recalls Fermat’s principle in geometrical optics that a light ray
travels between two points along such a path that the time taken is the least, We
discussed these considerations in Section 10-8 of the Second Edition when we
considered the connection between the Hamiltonian formulation and geometrical
optics.

In Section 7.4 we discussed the infinitesimal interval in a metric space giving
the interval as

ds* = gy dxtdx? (7.32)

where g,,,, was the metric of a possibly curvilinear space and ds? was the interval
traversed for displacements given by dx#. We can do something entirely similar
here whenever T is of the form of Eq. (8.83). A configuration space is therefore
constructed for which the M coefficients form the metric tensor. In general, the
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space will be curvilinear and nonorthogonal. The element of path length in the
space is then defined by (cf. Bq. (7.33'))

(dp)? = Mz dg, day (8.86)

so that the kinetic energy has the form

1 [dp\*
T=={— 8.8
2 (d:) ’ (8.87)
or equivalently
dp
dt = —. 8.88
o (8.38)

Equation (8.88) enables us to change the variable in the abbreviated action
integral from ¢ to p, and the principle of least action becomes

B Fir]
Af Tdi=0=A JT/2dp,
f L1

or, finally

n
Al JVH=-V(gdp=0. (8.89)
(]

Equation (8.89) is often called Jacobi’s form of the least action principle. Tt now
refers to the path of the system point in a special curvilinear configuration space
characterized by a metric tensor with elements M. The system point traverses
the path in this configuration space with a speed given by +/27. If there are no
forces acting on the body, T is constant, and Jacobi’s principle says the system
point travels along the shortest path length in the configuration space. Equiva-
lently stated, the motion of the system is then such that the system point travels
along the geodesics of the configuration space.

Note that the Jacobi form of the principle of least action is concerned with the
path of the system point rather than with its motion in firme. Equation (8.89) is a
statement about the element of path length dp; the time nowhere appears, since
H is a constant and V depends upon ¢, only. Indeed, it is possible to use the
Jacobi form of the principle to furnish the differential equations for the path, by a
procedure somewhat akin to that leading to Lagrange’s equations. In the form of
Fermat's principle, the Jacobi version of the principle of least action finds many
fruitful applications in geometrical optics and in electron optics. To go into any
detail here would lead us too far afield.

A host of other similar, variational principles for classical mechanics can be
derived in bewildering variety. To give one example out of many, the principle
of least action leads immediately to Hertz’s principle of least curvature, which
states that a particle not under the influence of external forces travels along the
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path of least curvature. By Jacobi’s principle such a path must be a geodesic,
and the geometrical property of minimum curvature is one of the well-known
characteristics of a geodesic. It has been pointed out that variational principles in
themselves contain no new physical content, and they rarely simplify the practical
solution of a given mechanical problem. Their value lies chiefly as starting points
for new formulations of the theoretical structure of classical mechanics. For this
purpose, Hamilton's principle is especially fruitful, and to a lesser extent, so also
is the principle of least action.

POSSIBLE QUESTIONS

Part B (6 Marks)

1.Define Cyclic coordinates and Explain conservation theorems.
2.Derive Hamilton’s canonical equation of motion
3.0btain the hamilton’s equation of motion considering a single non relativistic particle

moving in an electromagnetic field
4.Explain the principle of least action

5.Explain the construction of Hamilton through Lagrangian.

Part C (10 Marks)

1.Explain Routh’s procedure.

2.0btain the hamilton’s equation of motion using spherical polar co-ordinates considering
the spatial motion of a particle in the central force field

4.Derivation of Hamilton equation from a variational principle

5.Explain the principle of least action
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Subject: Mechanics Subject Code: 17MMP106
Hamilton Equations of motion
Part-A(20X1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Multiple Choice Questions
Question Opt 1 Opt 2 Opt3 Opt 4 Answer

canonical angular conjugate
If the rigid motion is a rotation then the total_____is conserved momentum linear momentum |momentum momentum angular momentum
The hamiltonian is the total energy of the system H2=T2+V2 H=T-V H=T+V T2=H2+V? H=T+V
In hamiltonian formulation,we have a set of 2n __equation of motion |[second order fourth order first order third order first order
The harmonic oscillator problem is an example of __equation Euler's hamilton lagrange's |hamilton jacobi's[Routh's Hamilton jacobi's
Tthe variational principle associated with the hamilton's formulation is principle of least monogenic Brachistrone
known as the holonomic problem |action principle problem principle of least action
Two particles connected bya rigid rod of length 'L' is given by the
equation(x2-x1)"2+(y2-y1)A2-L22=0 the constraint is Rheonomous non holonomic holonomic scheleronomous holonomic
The hamilton principle functiondiffers at most from the indefinite
integral of the lagrangian by the invariants time coordinates a constant a constant
In Lagrangian formulation,we have a set of n ___equation of motion |[second order fourth order first order third order second order
The important variational principle associated with hamiltonian principle of least Lagrange's monogenic
formulation is the Integral principle  |action principle principle principle of least action
If H is not an explicit function of t, then His a of the
motion energy constant position linear constant
If the equations of transformation do not depend explicitly on time
and if the potential energy is velocity independent,then H is the

of the system total force total work total energy total momentum  [total energy

The principle of least action states that the variation in A with time
vanishes on the actual path as compared with some neighbouring
paths, provided H is throughout the actual path inclined linear constant dependent constant
The end points are in both Hamilton's principle and
principle of least action fixed changed inclined ignorable fixed
All coordinates of a dynamical system of n degrees of freedom are

ignorable stationary non zero zero ignorable
In formulation, we have a set of n second order equations of
motion Hamiltonian Lagrangian Eulerian Lorentz relation Lagrangian
Routhian is the equivalent one -dimensional potential V'(r)minus the

energy of the radial motion potential scalar kinetic proportionate kinetic

The vanishes identically for the homogeneous problem Hamiltonian Lagrangian Eulerian Lorentz relation Hamiltonian
In Hamiltonian formulation,the momentum are also variables |dependent inclined independent single independent
For a conservative system, the Hamiltonian is and the
potential energy is independent of time energy constant the invariants linear constant
In Hamiltonian formulation the variables are the
generalised coordinates and the generalised momenta independent dependent constant fixed independent
The function H is known as the of the system Lorentz relation Eulerian Hamiltonian Lagrangian Hamiltonian
The function qi(t) will be changed in the actual path varied path phase path configuration path |varied path

contact Legendre canonical point

The enthalpy H(S,P) is generated by the

transformation

transformation

transformation

transformation

Legendre transformation

The advantage of the Hamiltonian formulation in handling cyclic
coordinates may be combined with the Lagrangian for non cyclic

coordinates by the method devised by Lorentz routh Eulerian Hamiltonian Routh
Variational method is often the preferable one for deriving monogenic
equation Lagrange's Hamiltonian principle Integral principle Lagrange's
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When applied in a straightforward manner, the Hamiltonian formulation usually
does not materially decrease the difficulty of solving any given problem in me-
chanics. We wind up with practically the same differential equations to be solved
as are provided by the Lagrangian procedure. The advantages of the Hamiltonian
formulation lie not in its use as a calculational tool, but rather in the deeper in-
sight it affords into the formal structure of mechanics. The equal status accorded
to coordinates and momenta as independent variables encourages a greater free-
dom in selecting the physical quantities 10 be designated as “coordinates” and
“momenta.” As a result we are led to newer, more abstract ways of presenting
the physical content of mechanics. While often of considerable help in practical
applications to mechanical problems, these more abstract formulations are primar-
1ly of interest to us today because of their essential role in constructing the more
modern theories of matter. Thus, one or another of these formulations of classical
mechanics serves as a point of departure for both statistical mechanics and quan-
tum theory. It is to such formulations, arising as outgrowths of the Hamiltonian
procedure, that this and the next chapter are devoted.

THE EQUATIONS OF CANONICAL TRANSFORMATION

There is one type of problem for which the solution of the Hamilton’s equations is
trivial. Consider a situation in which the Hamiltonian is a constant of the motion,
and where alf coordinates g, are cyclic. Under these conditions, the conjugate
moementa p; are all constant:

pl =ai’

and since the Hamiltonian cannot be an explicit function of either the time or the
cyclic coordinates, it may be written as

H=H{u,...,ap).

Consequently, the Hamilton’s equations for g, are simply

¢ = %, = w,, 9.1)
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where the @,’s are functions of the o;’s only and therefore are also constant in
time. Equations (9.1) have the immediate solutions

G = ot + B, 9.2)

where the §,’s are constants of integration, determined by the initial conditions.

It would seem that the solution to this type of problem, easy as it is, can only
be of academic interest, for it rarely happens that all the generalized coordinates
are cyclic. But a given system can be described by more than one set of general-
ized coordinates. Thus, to discuss motion of a particle in a plane, we may use as
generalized coordinates either the Cartesian coordinates

QI=xP q2=y3

or the plane polar coordinates
g1 =r a2 = 0.

Both choices are equally valid, but one of the other set may be more convenient
for the problem under consideration. Note that for central forces neither x nor y
is cyclic. while the second set does contain a cyclic coordinate in the angle #. The
number of cyclic coordinates can thus depend upon the choice of generalized co-
ordinates, and for each problem there may be one particular choice for which all
coordinates are cyclic. If we can find this set, the remainder of the job is trivial.
Since the obvious generalized coordinates suggested by the problem will not nor-
mally be cyclic, we must first derive a specific procedure for transforming from
one set of variables to some other set that may be more suitable.

The transformations considered in the previous chapters have involved going
from one set of coordinates g; to a new set @, by transformation equations of the
form

Q.= Q:i(g.1). 9.3)

For example, the equations of an orthogonal transformation, or of the change
from Cattesian to plane polar coordinates, have the general form of Eqs. (9.3).
As has been previously noted in Derivation 10 of Chapter 1, such transformations
are known as point transformations. But in the Hamiltonian formulation the mo-
menta are also independent variables on the same level as the generalized coordi-
nates. The concept of transformation of coordinates must therefore be widened to
include the simultaneous transformation of the independent coordinates and mo-
menta, g, p,, to a new set Q,. P,, with (invertible) equations of transformation:

@, =0.q,p.0),
P, =PF(q.p,1). %4

Thus, the new coordinates will be defined not only in terms of the old coordi-
nates but also in terms of the old momenta. Equations (9.3) may be said to define
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a point transformation of configuration space; correspondingly Eqs. (9.4) define
a point transformation of phase space.

In developing Hamiltonian mechanics, only those transformations can be of in-
terest for which the new @, P are canonical coordinates. This requirement will be
satisfied provided there exists some function K (Q, P, #) such that the equations
of motion in the new set are in the Hamiltonian form

0K . aK
= T F}I=_-_-
ap 30

The function K plays the role of the Hamiltonian in the new coordinate set.*
It is important for future considerations that the transformations considered be
problem-independent. That is to say, (Q. P) must be canonical coordinates not
only for some specific mechanical systems, but for all systems of the same nym-
ber of degrees of freedom. Equations (9.5) must be the form of the equations of
motion in the new coordinates and momenta no matter what the particular initial
form of H. We may indeed be incited to develop a particular transformation from
{g, p) to (Q, P) to handle, say, a plane harmonic oscillator. But the same trans-
formation must then also lead to Hamilton’s equations of motion when applied.
for example, to the two-dimensional Kepler problem.

As was seen in Section 8.5, if Q, and P, are to be canonical coordinates, they
must satisfy a modified Hamilton’s principle that can be put in the form

0, (9.5)

] .
| (RO —K(Q.P.1))dt =0, (9.6)

n

(where summation over the repeated index i is implied). At the same time the old
canonical coordinates of course satisfy a similar principle:

t2

8 (7~ H(g,p, 1) dt = 0. 9.7

n

The simultaneous validity of Egs. (9.6) and (9.7) does not mean of course that the
integrands in both expressions are equal. Since the general form of the modified
Hamilton’s principle has zero variation at the end points, both statements will be
satisfied if the integrands are connected by a relation of the form

. . dF
A(PIQI_'H)=PIQ1_K+'&?- 9.8)
Here F is any function of the phase space coordinates with continuous second
derivatives, and X is a constant independent of the canonical coordinates and the
time. The multiplicative constant A is related to a particularly simple type of trans-
formation of canonical coordinates known as a scale transformation.
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Suppose we change the size of the units used to measure the coordinates and
momenta so that in effect we transform them to a set (Q’, P’) defined by

Q, = 1q,, P/ =vp,. 9.9)

Then it is clear Hamilton’s equations in the form of Egs. (9.5) will be satisfied
for a transformed Hamiltonian K'(Q’, P’y = pvH(q, p). The integrands of the
corresponding modified Hamilton's principles are, also obviously, related as

pv(pig, — H) = P/ Q) — K/, (9.10)

which is of the form of Eq. (9.8) with A = pv. With the aid of suitable scale trans-
formation, it will always be possible to confine our aftention to transformations
of canonical coordinates for which A = 1. Thus, if we have a transformation of
canonical coordinates (g, p) — (@', P’) for some A # 1, then we can always
find an intermediate set of canonical coordinates (@, P) related to (Q’, P") by a
simple scale transformation of the form (9.9) such that uv also has the same value
A. The transformation between the two sets of canonical coordinates (g, p) and
(Q, P) will satisfy Eq. (9.8), but now with A = 1:

P;éz_H=PrQr_K+%}F" (9.11)
Since the scale transformation is basically trivial, the significant transformations
to be examined are those for which Eq. (9.11) holds.

A wansformation of canonical coordinates for which A s 1 will be called an
extended canonical transformation. Where A = 1, and Eq. (9.11) holds, we will
speak simply of a canonical transformation. The conclusion of the previous para-
graph may then be stated as saying that any extended canonical transformation
can be made up of a canonical transformation followed by a scale transforma-
tion. Except where otherwise stated, all future considerations of transformations
between canonical coordinates will involve only canonical transformations. It is
also convenient to give a specific name to canonical transformations for which the
equations of transformation Eqgs. (9.4) do not contain the time explicitly; they will
be called restricted canonical transformations.

The last term on the right in Eq. (9.11) contributes to the variation of the ac-
tion integral only at the end points and will therefore vanish if F is a function of
(@, p,t) or (Q, P,t) or any mixture of the phase space coordinates since these
have zero variation at the end points. Further, through the equations of transfor-
mation, Egs. (9.4) and their inverses F can be expressed partly in terms of the old
set of variables and partly of the new. Indeed, F is useful for specifying the exact
form of the canonical transformation only when half of the variables (beside the
time) are from the old set and half are from the new. It then acts, as it were, as
a bridge between the two sets of canonical variables and is called the generating
JSunction of the transformation.

To show how the generating function specifies the equations of transforma-
tion, suppose F were given as a function of the old and new generalized space
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coordinates:
F= Fi(g, Q,0). 9.12)
Equation (9.11) then takes the form
. . dF;
PG — H= Psz—K'Fd_tl

- aF, 8F,. 8F .
=P;Qr—K+-——l+—'q,+anQ;. (9.13)

ot 34,
Since the old and the new coordinates, g, and Q,, are separately independent,
Eq. (9.13) can hold identically only if the coefficients of §, and Q; each vanish:

aF
pi =, (9.14a)

g,

aF
P = =00, 9.14b
30, ( )
leaving finally

K=H+ ""_;l (9.14c)

Equations (9.14a) are n relations defining the p, as functions of ¢,, Q,, and .
Assuming they can be inverted, they could then be solved for the n Q;’s in terms
of ;. p,, and ¢, thus yielding the first half of the transformation equations (9.4),
Once the relations between the Q;’s and the old canonical variables (g, p) have
been established, they can be substituted into Egs. (9.14b) so that they give the n
F,’s as functions of ¢, p,, and ¢, that is, the second half of the transformation
equations (9.4). To complete the story, Eq. (9.14c) provides the connection be-
tween the new Hamiltonian, K, and the old one, . We must be careful to read
Eq. (9.14c) properly. First ¢ and p in H are expressed as functions of Q and P
through the inverses of Eqs. (9.4). Then the ¢, in 3 F) /3¢ are expressed in terms
of @, P in a similar manner and the two functions are added to yield K(Q, P, t).

The procedure described shows how, starting from a given generating function
£, the equations of the canonical transformation can be obtained. We can usually
reverse the process: Given the equations of transformation (9.4), an appropriate
generating function F; may be derived. Equations (9.4) are first inverted to ex-
press p; and P, as functions of g, O, and #. Equations (9.14a, b) then constitute
a coupled set of partial differential equations than can be integrated, in principle,
to find Fj providing the transformation is indeed canonical. Thus, Fi is always
uncertain to within an additive arbitrary function of # alone (which doesn’t affect
the equations of transformation), and there may at times be other ambiguities,

It sometimes happens that it is not suitable to describe the canonical transfor-
mation by a generating function of the type F\(q, Q. 1). For example, the trans-
formation may be such that p, cannot be written as functions of ¢, 0, and ¢, but
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rather will be functions of ¢, P, and z. We would then seek a generating func-
tion that is a function of the old coordinates ¢ and the new momenta P. Clearly
Eq. (9.13) must then be replaced by an equivalent relation involving 7; rather than
Q;. This can be accomplished by writing F in Eq. (9.11) as

F=Fg¢ P1)—QP. 9.15)

Substituting this F in Eq. (9.11) leads to

_ . d
PaQ:—H=—Q;Pz—K+EFz(q, P,r). (9]6)

Again, the total derivative of F> is expanded and the coefficients of 4, and A,
collected, leading to the equations

b= aFy
3 a{h ’
AR

0 = EE" {9.17b)

(9.17a)

with
K=H+ ﬁ-. (8.17¢)
at

As before, Eqs. (9.17a) are to be solved for P; as functions of ¢;, p;, and # to cor-
respond to the second half of the transformation equations (9.4). The remaining
half of the transformation equations is then provided by Eqgs. (9.17b).

The cotresponding procedures for the remaining two basic types of generating
functions are obvious, and the general results are displayed in Table 9.1.

Tt is tempting to lock upon the four basic types of generating functions as
being related to each other through Legendre transformations. For example, the

TABLE 9.1 FProperties of the Four Basic Canonical Transformations

Generating Function Generating Funclion Derivatives Trivial Special Case
aF aF

F=F.2.9 P = T P‘=_3_Q,- Fl=q@, Gi=p. PF==-g4
aF aF

F=FRlg P.t)-QiF n= Q= FB=qP, G =q9, PF=p
g, 0P
aF aF

F=Fp.on+tqp Q:=-—3 Pf:-—3 B=p@. Q@i=-a, F=-p
dp, a0,
3F, aF,

F=Fap. PV +qp — QP | g =—o Q = Fa=pP, Q@Qi=p, F=-9g
3}7‘ aPl
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transition from F} to F is equivalent to going from the variables g, Q to g, P
with the relation

3F
—P=_—. 9.18
P 30, (9.18)

Toisisjustine form reguired Tor alegendre wansiommahion of e basis vanaies,
as described in Section 8.1, and in analogy to Eq. (8.5) we would set

B4, P,.)=F(g 0.0+ PQ, (9.19)

which is equivalent to Eq. (9.15) combined with Eq. (9.12). All the other defining
equations for the generating functions can similarly be looked on, in combina-
tion with Eq. (9.12) as Legendre transformations from Fj, with the last entry in
Table 9.1 describing a double Legendre transformation. The only drawback to
this picture is that it might erroneously lead us to believe that any given canoni-
cal transformation can be expressed in terms of the four basic types of Legendre
transformations listed in Table 9.1. This is not always possible. Some transfor-
mations are just not suitable for description in terms of these or other elementary
forms of generating functions, as has been noted above and as will be illustrated
in the next section with specific examples. If we try to apply the Legendre trans-
formation process, we are then led to generating functions that are identically
zero or are indeterminate. For this reason, we have preferred to define each type
of generating function relative to F, which is some unspecified function of 2x
independent coordinates and momenta,

Finally, note that a suitable generating function doesn’t have to conform to
one of the four basic types for all the degrees of freedom of the system. It is
possible, and for some canonical transformations necessary. to use a generating
function that is a mixtre of the four types. To take a simple example, it may be
desirable for a particular canonical transformation with two degrees of freedom
to be defined by a generating function of the form

F'(g1. p2. Py, O, 1). (9.20)
This generating function would be related to F in Eq. (9.11) by the equation

F=Fl(q, p2 P, Q2. 1) — Qi P + @212, 9.21)

and the equations of transformation would be obtained from the relations

_E o
pl_aql! l_an’
aF’ aF’
=—0, =——, 9.22
O T ) 02
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with

oF’
K = H T »
+ » (9.23)

EXAMPLES OF CANONICAL TRANSFORMATIONS

Prepared by:A.Neerajah,Department of Mathematics, KAHE Page 10 of 23
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The nature of canonical transformations and the role played by the generating
function can best be illustrated by some simple yet important examples. Let us
consider, first, a generating function of the second type with the particular form

F,=gqiF (9.24)
found in column 3 of Table 9.1. From Egs. (9.17), the transformation equations
are

0F
=—Z=Pp,
27 3?: t
o
Ql - ﬁ;’ =4
K=H. (9.25)

The new and old coordinates are the same; hence F> merely generates the identity
transformation (cf. Table 9.1). We also note, referring to Table 9.1, that the par-
ticular generating function F3 = p, O, generates an identity transformation with
negative signs; that is, Q, = —gqi, P, = —p,.

A more general type of transformation is described by the generating function

= filgr,....qs )P, (9.26)

where the f; may be any desired set of independent functions. By Egs. (9.17b),
the new coordinates Q; are given by

dF

Q'=8_P,

= fil@, - qns 1) (9.27)

Thus, with this generating function the new coordinates depend only upon the
old coordinates and the time and do not involve the old momenta. Such a trans-
formation is therefore an example of the class of point transformations defined
by Egs. (9.3). In order to define a point transformation, the functions f; must be
independent and invertible, so that the g; can be expressed in terms of the Q,.
Since the f; are otherwise completely arbitrary, we may conclude that all point
transformations are canonical. Equation (9.17¢) furnishes the new Hamiltonian
in terms of the old and of the time derivatives of the f; functions.
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Note that F; as given by Eq. (9.26) is not the only generating function leading
to the point transformation specified by the f;. Clearly the same point transfor-
mation is implicit in the more general form

Fy= fi(q....

where g(g, ¢) is any (differentiable) function of the old coordinates and the time.
Equations (9.27), the transformation equations for the coordinates, remain unal-
tered for this generating function. But the transformation equations of the mo-
menta differ for the two forms. From Eqs. (9.17a), we have

vqn; DYP +8(q1, ..., qn; 1), (9.28)

(9.29)

using the form of F» given by Eq. (9.28). These equations may be inverted to give
P as a function of (¢, p), most easily by writing them in matrix notation:

_of dg
p= EP-'- 3—(]

Here p, P, and 8g/3q are n-elements of single-column matrices, and 3f/3q is a
square matrix whose ijth element is 3f; /3¢,. In two dimensions, Eq. (9.29') can
be wrilten as

(9.29")

o o %
[pl} | % g2 [Pl] 3
= +
pl=| s an|lr]T| 2
dq1 g2 32
It follows that P is a linear function of p given by
ofT" dg
P=|— -—=1. 9.30
[Bq] [p aq] 03
In two dimensions, (9.30) becomes
3 37" %
[Pi] _| % 3 [p;]_ 9g; ©.31)
Bl an an| |le] 7| 5 |
dq1 g2 dq2

R R NS Y

N LT S R e R I

Thus, the transformation equations (9.27) for Q are independent of g and depend
only upon the f(g, ?), but the transformation equations (9.29) for P do depend
upon the form of g and are in general functions of both the old coordinates and
momenta. The generating function given by Eq. (9.26) is only a special case of
Eq. (9.28) for which g = 0, with correspondingly specialized transformation
equations for P.

AL IV I AL VU N W e

T UYv e v e
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An instructive transformation is provided by the generating function of the first
kind, Fi(g, @, 1), of the form

Fi = g Qr.
The corresponding transformation equations, from (9.14a, b) are
aF,
pr = 3—qf =0, (9.32a)
aF
P=——==—q. 9.32
g 30, g (9.32b)

In effect, the transformation interchanges the momenta and the coordinates; the
new coordinates are the old mormenta and the new momenta are essentially the old
coordinates. Table 9.1 shows that the particular generating function of type Fy =
D P, produces the same transformation, These simple examples should emphasize
the independent status of generalized coordinates and momenta. They are both
needed to describe the motion of the system in the Hamiltonian formulation. The
distinction between them is basically one of nomenclature. We can shift the names
around with at most no more than a change in sign. There is no longer present in
the theory any lingering remnant of the concept of g, as a spatial coordinate and
p: as a mass times a velocity. Incidentally, we may see directly from Hamilton's
equations,
aH . o0H

== q =

8q, p’

that this exchange transformation is canonical. If g, is substituted for p,, the equa-
tions remain in the canonical form only if —p; is substituted for g;.

A transformation that leaves some of the (g, p) pairs unchanged, and inter-
changes the rest (with a sign change), is obviously a canonical transformation of
a “mixed” form. Thus, in a system of two degrees of freedom, the transformation

2\ =qi, Pr=p1,
Q2 = P2, PZ = —dq3,
is generated by the function
F=q P +q02 (9.33)

which is a mixture of the Fq and F; types.
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POISSON BRACKETS AND OTHER CANONICAL INVARIANTS

The Poisson bracket of two functions u, v with respect to the canonical variables
(g, p) is defined as

du dv  du v 067

b vler = 50 o~ 30

In this bilinear expression we have a typical symplectic structure, as in Hamilton’s
equations, where g is coupled with p, and p with —q. The Poisson bracket thus
lends itself readily to being written in matrix form, where it appears as

du_ dv
[, v]y = 8—:1 = (9.68)

The transpose sign is used on the first matrix on the right-hand side to indicate
explicitly that this matrix must be treated as a single-row matrix in the multi-
plication. On most occasions this specific reminder will not be needed and the
transpose sign may be omitted.

Suppose we choose the functions u, v out of the set of canocnical variables
(g, p) themselves. Then it follows trivially from the definition, either as Eq. (9.67)
or (9.68), that these Poisson brackets have the values

9, qklq.p =0=1[p;. qk)g.p-

and

4,2 Pkl p = S5k = — [Py ailg.p- (9.69)

We can summarize the relations of Egs. (9.69) in one equation by introducing
a square matrix Poisson bracket, [0, 9], whose Im element is [n, n]. Equa-
tions (9.69) can then be written as

. 0], =) (9.70)

Now let us take for u, v the members of the transformed variables (Q, P), or
¢, defined in terms of (g, p) by the transformation equations (9.59). The set of
all the Poisson brackets that can be formed out of (Q, P) comprise the matrix
Poisson bracket defined as

[g' C]'l] = ﬂ} ﬁ
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But we recognize the partial derivatives as defining the square Jacobian matrix of
the transformation, so that the Poisson bracket relation is equivalent to

£, {1g = MIM. ©.71)

If the transformation 3 — ¢ is canonical, then the symplectic condition holds
and Eq. (9.71) reduces to (cf. Eq. (9.58))

I.g-: g]'n = ]! (9.72)

and conversely, if Eq. (9.72) is valid, then the transformation is canonical.

Poisson brackets of the canonical variables themselves, such as Egs. (9.70)
or (9.72), are referred to as the fundamental Poisson brackets. Since we have
from Eq. (9.70) that

[£, &g =), (9.73)

Eq. (9.72) states that the fundamental Poisson brackets of the  variables have the
same value when evaluated with respect to any canonical coordinate set. In other
words, the fundamental Poisson brackets are invariant under canonical transfor-
mation. We have seen from Eq. (9.71) that the invariance is a necessary and suffi-
cient condition for the transformation matrix to be symplectic. The invariance of
the fundamental Poisson brackets is thus in all ways equivalent to the symplectic
condition for a canonical transformation.

It does not take many more steps to show that !/ Poisson brackets are invariant
under canonical transformation. Consider the Poisson bracket of two functions
u, v with respect to the n set of coordinates, Eq. (9.68). In analogy to Eq. (9.53),
the partial derivative of v with respect to %) can be expressed in terms of partial
derivatives with respect to { as

dv  ~ ov
2 M —
o G4

(that is, the partial derivative transforms as a 1-form). In a similar fashion,
an af al
Hence the Poisson bracket Eq. (9.68) can be written
du_dv  du., ~u

[, v]y = ﬁ]ﬁ = @Ml ﬁ.

If the transformation is canonical, the symplectic condition in the form of
Eq. (9.55) holds, and we then have

u 3
[u, v]y = :—21 é = [u. V] (9.74)
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Thus, the Poisson bracket has the same value when evaluated with respect to any
canonical set of variables—all Poisson brackets are canonical invariants. Tn writ-
ing the symbol for the Poisson bracket, we have so far been careful to indicate by
the subscript the set of variables in terms of which the brackets are defined. So
long as we use only canonical variables that practice is now seen to be unneces-
sary, and we shall in general drop the subscript.*

The hallmark of the canonical transformation is that Hamilton’s equations of
motion are invariant in form under the transformation. Similarly, the canonical in-
variance of Poisson brackets implies that equations expressed in terms of Poisson
brackets are invariant in form under canonical transformation. As we shall see, we
can develop a structure of classical mechanics, paralleling the Hamiltonian for-
mulation, expressed solely in terms of Poisson brackets. Historically this Poisson
bracket formulation, which has the same form in all canonical coordinates, was
especially useful for carrying out the original transition from classical to quantum
mechanics. There is a simple “correspondence principle” that says that the clas-
sical Poisson bracket is to be replaced by a suitably defined commutator of the
corresponding quantum operators.

The algebraic properties of the Poisson bracket are therefore of considerable
interest. We have already used the obvious properties

(w, 1) = 0, (9.752)
[, vl = —[v, ul. (antisymmetry) (9.75b)
Almost equally obvious are the characteristics
[au + by, w] = alu. w] + bv, w], (linearity) (9.75¢)
where a and b are constants, and
[uv, w] = [u, wlv + ulv, w). (9.754)

One other property is far from obvious, but is very important in defining the
nature of the Poisson bracket. It is usually given in the form of Jacobi’s iden-
tity, which states that if », v, and w are three functions with continuous second
derivatives, then

[, [v, w1l + [v, [w, #]] + [w, [u, v]] = 0; (9.75e)

that is, the sum of the cyclic permutations of the double Poisson bracket of three
functions is zero. There seems to be no simple way of proving Jacobi's identity for
the Poisson bracket without lengthy algebra. However, it is possible to mitigate
the complexity of the manipulations by introducing a special nomenclature. We
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shall use subscripts on u, v, w (or functions of them) to denote partial derivatives
by the corresponding canonical variable. Thus,

U, = Su and Uy = dv
I—anr’ i} = 3??'3?’)

In this notation the Poisson bracket of » and v can be expressed as
[u, U] = U; JIJUJ'

Here Ji), as usual, is simply the ijth element of }. In the proof, the only property
of J that we shall need is its antisymmetry.
Now let us consider the first double Poisson bracket in Eq. (9.75¢):

[u, [v, w]]l = 4, J;;[v, w]} = u, Jij (v Juwy),.

Because the elements Ji; are constants, the derivative with resect to 5 doesn’t act
on them, and we have

[, [v, wl] = w, J; (e Ty, + vy Jurwy). (9.76)

The other double Poisson brackets can be obtained from Eq. (9.76) by cyclic
permutation of u, v, w. There are thus six terms in all, each being a fourfold sum
over dummy indices i, j, k, and /. Consider the term in Eq. (9.76) involving a
second derivative of w:

Jij Jitusview, .

The only other second derivative of w will appear in evaluating the second double
Poisson bracket in (Eq. 9.75¢):

[v, [w,u]] = v Tkt (W Ju ).
Here the term in the second derivative in w is
J}J Jk[uri}kwﬂ.

Since the order of differentiation is immaterial, wy; = w,, and the sum of the
two terms is given by

(Ju + st)JkI“tvka =0,

by virtue of the antisymmetry of J. The remaining four terms are cyclic permuta-
tions and can similarly be divided in two pairs, one involving second derivatives
of u and the other of v. By the same reasoning, each of these pairs sums to zero,
and Jacobi’s identity is thus verified.

If the Poisson bracket of u, v is looked on as defining a “product™ operation
of the two functions, then Jacobi’s identity is the replacement for the associa-
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tive law of multiplication. Recall that the ordinary multiplication of arithmetic is
associative; that is, the order of a sequence of multiplications is immaterial:

a(be) = (ab)c.

Jacobi’s identity says that the bracket “product” is not associative and gives
the effect of changing the sequence of “multiplications.” Brackets that satisfy
Eqgs. (9.75), together with the expression

[, ;] = Zcﬁ Uk %97
3

constitute a generally noncommunitive algebra called a Lie algebra. For Poisson
brackets in three-dimensional space, either the structure constants c‘:‘ are all zero
or only one term in the right-hand side of Eq. (9.77) exists for any pair of indices.
Examples of this will be given later, and a more detailed discussion of Lie algebras
is given in Appendix B.

Poisson bracket operation is not the only type of “product” familiar to physi-
cists that satisfies the conditions for a Lie algebra. It will be left to the exercises
to show that that vector product of two vectors,

v[A,B] = Ax B, (9.78a)
and the commutator of two matrices,
Mm[A,B] = AB — BA, (9.78b)

satisfy the same Lie algebra conditions as the Poisson bracket. It is this last that
makes it feasible to replace the classical Poisson bracket by the commutator of the
quantum mechanical operators. In other words, the *“correspondence principle”
can work only because both the Poisson bracket and commutator are representa-
tions of a Lie algebra “product.”*

There are other canonical invariants besides the Poisson bracket. One, mainly
of historical interest now, is the Lagrange bracket, denoted by {u, v}. Suppose u
and v are two functions out of a set of 2n independent functions of the canonical
variables. By inversion, the canonical variables can then be considered as func-
tions of the set of 2 functions. On this basis, the Lagrange bracket of ¥ and v
with respect to the (g, p) variables is defined as
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d¢, 3p;  dp, Ogi
= 94 9P _ 9P 041 9.79
{w, vig.p u v Ou v’ ©.79)

or, in matrix notation,

am, om
= —) —. -80
u, vly Bu’ v (9-80)
Proof of the canonical invariance of the Lagrange bracket parallels that for the
Poisson bracket.
If for u and v we take two members of the set of canonical variables, then we
obtain the fundamental Lagrange brackets:

{@.4,3p =0=1{p1. Dj}ep {g:s Pilep = &y, (9.81)

or, in matnx notation,

=1L (9.82)

The Lagrange and Poisson brackets clearly stand in some kind of inverse rela-
tionship to each other, but the precise form of this relation is somewhat compli-
cated to express. Let w,, i = 1,...,2n, be a set of 2» independent functions of
the canonical variables, to be represented by a column (or row) matrix u. Then
{u, u} is the 27 x 2n matrix whose ijth element is {u,, u;}, with a similar descrip-
tion for [u, u]. The reciprocal character of the two brackets manifests itself in the
relation

{u, u}[u,u] = -1. (9.83)

If for u we choose the canonical set itself, 7, then Eq. (9.83) obviously fol-
lows from the fundamental bracket formulas, Eqs. (9.70) and (9.82), and the
properties of J. The proof for arbitrary # is not difficult if written in terms of
the matrix definitions of the brackets and is reserved for the exercises. While
the properties of the Lagrange and Poisson brackets parallel each other in
many aspects, note that the Lagrange brackets do nor obey Jacobi's identity.
Lagrange brackets therefore do not qualify as a “product” operation in a Lie
algebra,

Another important canonical invariant is the magnitude of a volume element in
phase space. A canonical transformation 1 — £ transforms the 2n-dimensional
phase space with coordinates #, to another phase space with coordinates ¢;. The
volume element

(dn) = dq1dqz .. .dgudp) ... dpy,
transforms to a new volume element

(d)=dQ1d0>»...d0OndPy...dP,.
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As is well known, the sizes of the two volume elements are related by the
absolute value of the Jacobian determinant ||M||;

(d¢) = M| (dn).

For example, in the two-dimensional transformation fromn, =g, pto, = Q, P,
this expression becomes

dg g
8Q 9P

dQdP = ap  op dgdp = [g, pl; dq dp. (9.84)
aQ apP

But, by taking the determinant of both sides of the symplectic condition, Eq. (9.58),
we have

IMIJ] = 1)) (9.85)

Thus, in a real canonical transformation the Jacobian determinant is 1, and the
absolute value is always unity, proving the canonical invariance of the volume
element in phase space. It follows, also, that the volume of any arbitrary region in

phase space,
g = f .. f dn, (9.86)

is a canonical invariant. In our two-dimensional example, the invariant is dn =
dgdp and J; = [dgdp.

The volume integral in Eq. (9.86) is the final member of a sequence of canon-
ical invariants known as the integral invariants of Poincaré, comprising integrals
over subspaces of phase space of different dimensions. The other members of the
sequence cannot be stated as simply as J,, and because they are not needed for
the further development of the theory, they will not be discussed here.

Finally, the invariance of the fundamental Poisson brackets now enables us to
outline a proof that the symplectic condition implies the existence of a generat-
ing function, as mentioned at the conclusion of the previous section. To simplify
considerations, we shall examine only a system with one degree of freedom; the
general method of the proof can be directly extended to systems with many de-
grees of freedom.™ We suppose that the first of the equations of transformation,

Q = 0(, p), P =P, p),
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is invertable so as to give p as a function g and Q, say

p=¢(g. Q). (9.87)

Substitution in the second equation of transformation gives P as some function
of ¢ and Q, say

P=y(. Q. (9.88)

In such a case, we would expect the transformation to be generated by a generating
function of the first kind,* Fj, with Eqgs. (9.87) and (9.88) appearing as

_ 9Fi(g, 0) _ _9F
If Eq. (9.89) holds, then it must be true that
o oy
1Q  dq’ 650

Conversely, if we can show that Eq. (9.90) is valid, then there must exist a function
Fy such that p and P are given by Eqgs. (9.89).

To demonstrate the validity of Eq. (9.90), we try to look on all quantities as
functions of ¢ and Q. Thus. we of course have the identity

4

==

Q"
but if Eq. (9.87) be substituted in the first transformation equation,
Q= Q(g.9(q. 9, (9.91)
the partial derivative can also be written

0 _ 3039
30~ 9p 90’
so that we have the relation

——=1. (9.92)
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The derivatives of P are derivatives of ¥ from Eq. (9.88) considered as a function
of ¢ and Q(g, p). Hence, the Poisson bracket can be written

_3QdyaQ 8Q(dy  dyaQ
[0, P] = (6q+agaq),

or, consolidating terms, as

(0, p1= ¥ (3_QQ _ Q*’_Q.) _0¥W
A0\ dq 3p dp dq ap aq
and therefore
1= -%%. (9.93)
Combining Eqgs. (9.92) and (9.93), we have
dQ 3¢ 0 Y

Since the partial derivative of Q with respect to p is the same on both sides of the
equation, that is, the other variable being held constant is g in both cases, and since
the derivative doesn’t vanish (else the Q equation could not be inverted), it follows
that Eq. (9.90) must be true. Thus, from the value of the fundamental Poisson
bracket [@, P], which we have seen is equivalent to the symplectic condition, we
are led to the existence of a generating function. The two approaches to canonical
transformations, though arrived at independently, are fully equivalent.
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POSSIBLE QUESTIONS

Part B (6 Marks)

1.Explain the canonical transformation with an example
. Explain Jacobi’s identity
. Explain the simple harmonic oscillator problem

. Explain the integral invariants of poincare

. Derive the Lagrange’s equation from Hamilton’s principle for holonomic system

. Derive an expression for 3¢ and &8

~N OO O B~ Wb

. Show that how the generating function specifies the equations of transformations
Part C (10 Marks)

1. Explain that the fundamental poisson brackets are invariant under canonical transformat
sinp
2. Show that the transformation P=q cotp, Q =log( 4 ) is canonical. Also find the generating
function.
3. Explain the Lagrange’s bracket

. Show that the transformation P=1/2 * L(pI* ~ g} Q = tan™(—1) (g/p) is canonical.

o
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KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),
Coimbatore —641 021
UNIT-1V
Subject: Mechanics Subject Code: 17MMP106
Canonical transformations
Part-A(20X1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Multiple Choice Questions
Question Opt 1 Opt 2 Opt3 Opt 4 Answer
contact point generating legendre

canonical transformation is otherwise known as transformation transformatiion function transformation contact transformation
Generalising the form,transformation from one set of co-ordinate gj |legendre point contact
to a new set Qj such transformation is called transformation generating function [transformatiion |transformation point transformatiion
point transformation are the transformations of space Configuration position phase co-ordinate Configuration
Canonical transformation are the transformations of space position co-ordinate Configuration phase phase
While deducing lagrangian equations,no _was give to any particularly
choice of co-ordinate system force stress work strain stress

equations of motion are invariant in form with respect to
the choice of the set of any generalised co-ordinates lagrangian Hamiltonian canonical legendre lagrangian
Lagrangian equations are_____ with respect to point transformation  [invariant constant covariant vanishes covariant
The canonical equations can also be covariant lagrange's Hamilton's point Legendre's Hamilton's

transformation is extended to hamiltonian formulation contact point canonical legendre point
In hamiltonian formulation,we admit the existence of one more
independent variable called velocity force momentum acceleration momentum
Qj,pj are to be canonical co-ordinates,they must also satisfy extended
the principle modified hamilton's|legendre's Hamilton's hamilton's modified hamilton's
Old coordinates gj,pj are already. zero non zero constant canonical canonical
Which is not a possible forms of function F F4(p,P,t) F1(g,Q,t) F3(p,q,t) F2(q,P,t) F3(p,q,t)
__isafunction of old and new set of co-ordinates F R H v F
Transformation relations can be derived by the knowledge of the generating generating
function F.It is thus termed as the generating velocity [generating force function acceleration generating function

conatct legendre canonical point

F4 and F1 can be connected by

transformation

transformation

transformation

transformation

legendre transformation

The way of to obtain solution of a mechanical problem is |point canonical legendre conatct
to transform old set of co-ordinates into new set of co-ordinates transformation transformation transformation [transformation canonical transformation
Canonical transformations are all cyclic point vanish constant cyclic
In a new set of co-ordinates Pj,Qj all co-ordinates Qj are cyclic so that
all momenta Pj are point cyclic constant vanish constant
If t cannot occur in K explicitly provided generating function F doesn't
contain__explicitly time mass point force time
contact identiity canonical point

The function f generatesthe _____if k=H transformation transformation transformation |[transformation identiity transformation

constitutes a special case of canonical transformation point inversion path inversion space inversion |inversion space inversion
If the expression to be an _then transformation from(qj,pj) to
(Qj,Pj)set is canonical exact differential integral exact integral differential exact differential

is the exact differential of F df dF Df DF dF
an exact differential pdg-PdQ=dF PdQ-pdg=dF pdqg-Pdqg=df pdq+PdQ=dF pdg-PdQ=dF
infinitesimal
are the transformation in which old and new co-ordinates  |legendre contact contact identiity infinitesimal contact

differ only slightly

transformation

transformation

transformation

transformation

transformation

a transformation that leaves some of the (q,p) pairs unchanged and restricted
interchanges the rst with the sign change is called a _transformation |extended canonical |[canonical canonical simple canonical
The lagrangian and poisson brackets stand in _realtionship to each
other direct converse inverse proportionate inverse
the property that [u,v]=[v,u]is known as symmetry anti symmetry transient reflexive anti symmetry
point transformation are the transformations of space (p,q) (q,p) (a,t) (p,t) (q,p)
Always q;'s are expressed as the linear function of the p's in the form
(a.p.t) (Qp.t) (a.P1) (Qp.t) (a.p,1)
The function g;(t)will be changed in the actual path varied path phase space configuration space |varied path
the point transformation is Q;=Qi(q,t) Q;=Qi(Q,t) Q;=Qi(p,t) Q;=Qi(P,t) Qi=Qi(q,t)
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A transformation of canonical coordinates for which lambda not equal
to one is calles

simple
transformation

canonical
transformation

extended
canonical

transformation

restricted canonical
transformation

extended canonical
transformation

The fundamental poisson brackets are under canonical

invariants real constant imaginary invariant invariant
[u,u]= 0 1 -1 2
[negative(u),negativ
[u,v]= e(v)] [negative(u),v] negative[v,u] [u,v] negative[v,u]
[uv,w]= [u,vlw [u,w]lv [u,w]v+ulv,w] [u,w]v-ul[v,w] [u,w]v+ulv,w]
the reciprocal character of lagrange's and poisson brackets
is {u,u}{u,u]=-1 {u,v}u,v]=-1 {u,v}v,ul=1 {u,u}fv,v]l=1 {u,u}[u,u]=-1
In a real canonical transformations the jacobian determinant is
IMI=i IMI=0 IMIA2=1 IMI=1 IMI*2=1
The generating function for canonical transformation is denoted
by H(a,p) H(g,Q) W(q,p) Ww(Q,p) W(a,p)
K plays the role of legendre's Lagrangian Hamiltonian point Hamiltonian
are treated single independent dependent inclined independent
provided that only q;,P; are trated independent F2(Q,P,t) F2(q,p,t) F2(q,P,t) F2(Q,p,t) F2(q,P,t)
F3(p,Q,t) provided that only are treated independent pi, Qi P, Qi pi,qi Pi,qi P, Qi
F4(p,P,t) provided that p;,P; are treated independent single inclined dependent independent
is a 2n dimensional space having coordinatesql,qg2,........ qn
and p1,p2,......pn actual path configuration space |phase space varied path phase space
The have the property of preserving the form of hamilton's |point conatct legendre canonical

equations of motion under the transformation

transformation

transformation

transformation

transformation

canonical transformation
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canonical transformation is otherwise known as

Generalising the form,transformation from one set of co-ordinate qj
to a new set Qj such transformation is called

point transformation are the transformations of

Canonical transformation are the transformations of

space

space

While deducing lagrangian equations,no _was give to any particularly
choice of co-ordinate system

equations of motion are invariant in form with respect to
the choice of the set of any generalised co-ordinates

Lagrangian equations are, with respect to point transformation

The

canonical equations can also be covariant

transformation is extended to hamiltonian formulation
In hamiltonian formulation,we admit the existence of one more
independent variable called
Qj,pj are to be canonical co-ordinates,they must also satisfy

the principle

Old coordinates qj,pj are already.

Which is not a possible forms of function F

__isafunction of old and new set of co-ordinates
Transformation relations can be derived by the knowledge of the
function F.It is thus termed as the

F4 and F1 can be connected by

The way of

to obtain solution of a mechanical problem is

to transform old set of co-ordinates into new set of co-ordinates
Canonical transformations are all
In a new set of co-ordinates Pj,Qj all co-ordinates Qj are cyclic so that

all momenta Pj are

If t cannot occur in K explicitly provided generating function F doesn't

contain__explicitly

The function f generates the if k=H

constitutes a special case of canonical transformation
If the expression to be an _then transformation from(qj,pj) to

(Qj,Pj)set is canonical

is the exact differential of F
an exact differential

are the transformation in which old and new co-ordinates

differ only slightly

a transformation that leaves some of the (g,p) pairs unchanged and
interchanges the rst with the sign change is called a _transformation
The lagrangian and poisson brackets stand in _realtionship to each

other

the property that [u,v]=[v,u]is known as

point transformation are the transformations of

space

Always g;'s are expressed as the linear function of the p's in the form

The function g;(t)will be changed in the
the point transformation is

contact
transformation

legendre
transformation
Configuration

position

force

lagrangian

invariant
lagrange's

contact

velocity

modified hamilton's
zero

F4(p,P,t)

F

generating velocity

conatct
transformation

point
transformation
cyclic
point

time

contact
transformation

point inversion
exact differential

df
pdg-PdQ=dF

legendre
transformation
extended canonical

direct
symmetry
(p,a)

(a,pt)

actual path
Q;i=Qi(q,t)

point
transformatiion

generating function
position
co-ordinate

stress

Hamiltonian

constant
Hamilton's

point
force
legendre's
non zero
Fl(q,Qt
R

generating force

legendre
transformation

canonical
transformation
point

cyclic

mass

identiity
transformation

path inversion
integral

dF
PdQ-pdg=dF

contact
transformation

canonical

converse
anti symmetry
(a,p)

(Qp.t)

varied path
Qi=Q (Qt)

Canonical transformations/2017 Batch

generating
function

point
transformatiion
phase

Configuration

work

canonical

covariant
point

canonical
momentum

Hamilton's
constant
F3(p,a,t)

H
generating
function

canonical
transformation

legendre
transformation
vanish
constant

point

canonical
transformation

space inversion

exact integral
Df
pdg-Pdqg=df

infinitesimal
contact
transformation

restricted
canonical

inverse
transient
(a,t)

(a,Pt)

phase space
Q;i=Qi(p,t)
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legendre
transformation

contact
transformation
co-ordinate

phase

strain

legendre

vanishes
Legendre's

legendre

acceleration
extended
hamilton's
canonical
F2(q,P,t)

v
generating
acceleration

point
transformation

conatct
transformation
constant
vanish

force

point
transformation

inversion
differential

DF
pdg+PdQ=dF

identiity
transformation
simple

proportionate
reflexive

(pt)
(Qp,t)

configuration space
Q;=Qi(P,t)

contact transformation
point transformatiion
Configuration

phase

stress

lagrangian

covariant
Hamilton's

point

momentum
modified hamilton's
canonical

F3(p,a,t)

F

generating function

legendre transformation

canonical transformation

cyclic

constant

time

identiity transformation
space inversion
exact differential

dF
pdg-PdQ=dF

infinitesimal contact
transformation
canonical

inverse
anti symmetry
(a,p)

(a,pt)

varied path
Qi=Qi(q,t)



A transformation of canonical coordinates for which lambda not equal simple

to one is calles,

The fundamental poisson brackets are

transformation

canonical
transformation

invariants real constant
lu,ul=

[negative(u),negativ
[u,v]= e(v)] [negative(u),v]
[uv,w]= [u,vlw [u,w]v
the reciprocal character of lagrange's and poisson brackets
is {u,u}{u,u]=-1 {u,v}u,v]=-1
In a real canonical transformations the jacobian determinant is

IMI=i IMI=0
The generating function for canonical transformation is denoted
by, H(a,p) H(q,Q)
K plays the role of legendre's Lagrangian
are treated single independent

provided that only g;,P; are trated independent F2(Q,P,t) F2(q,p,t)
F3(p,Q,t) provided that only are treated independent pi, Qi P, Qi
F4(p,P,t) provided that p;,P; are treated independent single
is a 2n dimensional space having coordinatesql,qg2,........ qn

and p1,p2,.......pn actual path configuration space
The have the property of preserving the form of hamilton's point conatct

equations of motion under the transformation

transformation transformation
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extended
canonical
transformation
imaginary
negative[v,u]
[u,wlv+ulv,w]
{uvilv,ul=1
IMIA2=1
W(q,p)
Hamiltonian
dependent

F2(q,P,t)

Pi, Qi
inclined

phase space

legendre
transformation
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restricted canonical extended canonical

transformation

invariant
-1

[u,v]
[u,w]v-ul[v,w]

{u,ulv,vl=1
IMI=1
w(Q,p)
point
inclined

F2(Qp.t)

Piai
dependent

varied path

canonical
transformation

transformation

invariant
2

negative[v,u]
[u,w]v+ulv,w]

{u,ulu,ul=-1
IMIn2=1
W(a,p)
Hamiltonian
independent

F2(q,P,t)

P Qi
independent

phase space

canonical transformation
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Hamilton Jacobi Theory:

It has already been mentioned that canonical transformations may be used to pro-
vide a general procedure for solving mechanical problems. Two methods have
been suggested. If the Hamiltonian is conserved, then a solution could be obtained
by transforming to new canonical coordinates that are all cyclic, thereby provid-
ing new equations of motion with trivial solutions. An alternative technique is to
seek a canonical transformation from the coordinates and momenta, (g, p), at the
time 7, to a new set of constant quantities, which may be the 2n initial values,
(go, po), at t = 0. With such a transformation, the equations of transformation
relating the old and new canonical variables are exactly the desired solution of the
mechanical problem:

q = q(qo, po. ),
p = p(qo. po. t).

They give the coordinates and momenta as a function of their initial values and the
time. This last procedure is the more general one, especially as it is applicable, in
principle at least, even when the Hamiltonian involves the time. We shall therefore
begin our discussion by considering how such a transformation may be found.
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THE HAMILTON-JACOBI EQUATION
FOR HAMILTON'S PRINCIPAL FUNCTION

We can automatically ensure that the new variables are constant in time by requir-
ing that the transformed Hamiltonian, X, shall be identically zero, for then the
equations of motion are

dK .
3P - Qi =0,
0K .
—_——— Pi = . 10-1
70, 0 (10.1)

As we have seen, K must be related to the old Hamiltonian and to the generating
function by the equation

K=H+ —,
+ar

and hence will be zero if F satisfies the equation

H(g,p,t)+ Z—f =0. (10.2)
It is convenient to take F as a function of the old coordinates g;, the new constant
momenta P;, and the time; in the notation of the previous chapter we would desig-
nate the generating function as Fz(q, P, r). To write the Hamiltonian in Eq. (10.2)
as a function of the same variables, use may be made of the equations of transfor-
mation (cf. Eq. (9.17a)),

so that Eq. (10.2) becomes

0F; dF 0F,
H(‘II,---,Qn; ;t)

e — =0. 10.3
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Equation (10.3), known as the Hamilton-Jacobi equation, constitutes a partial
differential equation in (n + 1) variables, g1, ..., gn; t, for the desired generating
function. It is customary to denote the solution F; of Eq. (10.3) by § and to call
it Hamilton’s principal function.

Of course, the integration of Eq. (10.3) only provides the dependence on the
old coordinates and time; it would not appear to tell how the new momenta are
contained in S. Indeed, the new momenta have not yet been specified except that
we know they must be constants. However, the nature of the solution indicates
how the new P;’s are to be selected.

Mathematically Eq. (10.3) has the form of a first-order partial differential equa-
tion in n + 1 variables. Suppose there exists a solution to Eq. (10.3) of the form

F=S=58q,..-..qn a1,...,0n41; 1), (10.4)

where the quantities a1, ..., @n41 are n + 1 independent constants of integration.
Such solutions are known as complete solutions of the first-order partial differen-
tial equation.* One of the constants of integration, however, is in fact irrelevant to
the solution, for it will be noted that § itself does not appear in Eq. (10.3); only
its partial derivatives with respect to g or ¢ are involved. Hence, if S is some so-
lution of the differential equation, then S + «, where « is any constant, must also
be a solution. One of the n + 1 constants of integration in Eq. (10.4) must there-
fore appear only as an additive constant tacked on to S. But by the same token,
an additive constant has no importance in a generating function, since only par-
tial derivatives of the generating function occur in the transformation equations.

Hence, for our purposes a complete solution to Eq. (10.3) can be written in the
form

S=38(q1,- - qn; 1,...,0n; 1), (10.5)

where none of the n independent constants is solely additive. In this mathematical
garb, § tallies exactly with the desired form for an F, type of generating func-
tion, for Eq. (10.5) presents § as a function of N coordinates, the time ¢, and n
independent quantities o;. We are therefore at liberty to take the n constants of
integration to be the new (constant) momenta:

P =a;. (10.6)
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Such a choice does not contradict the original assertion that the new momenta
are connected with the initial values of ¢ and p at time #y. The n transformation
equations (9.17a) can now be written as

_ 08(qg,a,t)
0qi

where ¢, o stand for the complete set of quantities. At the time f, these constitute
n equations relating the n a’s with the initial ¢ and p values, thus enabling us to
evaluate the constants of integration in terms of the specific initial conditions of
the problem. The other half of the equations of transformation, which provide the
new constant coordinates, appear as

, (10.7)

08(q, o, 1)
do; |

Qi =8 = (10.8)

The constant 8’s can be similarly obtained from the initial conditions, simply by
calculating the value of the right side of Eq. (10.8) at ¢ = # with the known initial
values of g;. Equations (10.8) can then be “turned inside out” to furnish g; in
terms of «, B, and ¢:

gj =4q;a, B, 1), (10.9)

which solves the problem of giving the coordinates as functions of time and the
initial conditions.* After the differentiation in Egs. (10.7) has been performed,

Egs. (10.9) may be substituted for the g’s, thus giving the momenta p; as functions
of the o, 8, and ¢:

pi = pi(a, B, 1). (10.10)

Equations (10.9) and (10.10) thus constitute the desired complete solution of
Hamilton’s equations of motion.
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Hamilton’s principal function is thus the generator of a canonical transforma-
tion to constant coordinates and momenta; when solving the Hamilton-Jacobi
equation, we are at the same time obtaining a solution to the mechanical prob-
lem. Mathematically speaking, we have established an equivalence between the
2n canonical equations of motion, which are first-order differential equations, to
the first-order partial differential Hamilton—Jacobi equation. This correspondence
is not restricted to equations governed by the Hamiltonian; indeed, the general
theory of first-order partial differential equations is largely concerned with the
properties of the equivalent set of first-order ordinary differential equations. Es-
sentially, the connection can be traced to the fact that both the partial differential
equation and its canonical equations stem from a common variational principle,
in this case Hamilton’s modified principle.

To a certain extent, the choice of the @;’s as the new momenta is arbitrary. We
could just as well choose any n quantities, y;, which are independent functions of
the «; constants of integration:

vi = vi(@®i, ..., 0n). (10.11)

By means of these defining relations, Hamilton’s principal function can be written
as a function of g;, yi, and ¢, and the rest of the derivation then goes through
unchanged. It often proves convenient to take some particular set of y;’s as the
new momenta, rather than the constants of integration that appear naturally in
integrating the Hamilton—Jacobi equation.

Further insight into the physical significance of Hamilton’s principal function
S is furnished by an examination of its total time derivative, which can be com-

puted from the formula
as aS. as
P
since the P;’s are constant in time. By Egs. (10.7) and (10.3), this relation can also
be written
ds
e =pmai-H=L, (10.12)

so that Hamilton’s principal function differs at most from the indefinite time inte-
gral of the Lagrangian only by a constant:

S = f L dt + constant. (10.13)
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Now, Hamilton’s principle is a statement about the definite integral of L, and from
it we obtained the solution of the problem via the Lagrange equations. Here the
same action integral, in an indefinite form, furnishes another way of solving the
problem. In actual calculations, the result expressed by Eq. (10.13) is of no help,
because we cannot integrate the Lagrangian with respect to time until g; and p;
are known as functions of time, that is, until the problem is solved.

When the Hamiltonian does not depend explicitly upon the time, Hamilton’s
principle function can be written in the form

S@q,a,t) =W(g.a)—at, (10.14)

where W(q, @) is called Hamilton’s characteristic function. The physical signifi-
cance of W can be understood by writing its total time derivative

aw _ow,
dt g %
Comparing this expression to the results of substituting Eq. (10.14) into Eq. (10.7),
it is clear that
ow
f= 10.15
pi o7 ( )
and hence,
aw .
- = Pigi. (10.16)
This can be integrated to give
W= f pigi dt = f pidq;, (10.17)

which is just the abbreviated action defined by Eq. (8.80).
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THE HARMONIC OSCILLATOR PROBLEM AS AN EXAMPLE
OF THE HAMILTON-JACOBI METHOD

To illustrate the Hamilton—Jacobi technique for solving the motion of mechanical
systems, we shall work out in detail the simple problem of a one-dimensional
harmonic oscillator. The Hamiltonian is

1 2,229
— =L, 10.18
2m(p +mw°'q?)=E ( )

@ = ‘/E, (10.19)
m

k being the force constant. We obtain the Hamilton-Jacobi equations for S by
setting p equal to 05/dg and substituting in the Hamiltonian; the requirement
that the new Hamiltonian vanishes becomes

1 s\?
— [(9—) + mzmzqz] + %% = 0. (10.20)

where

2m | \ 9q

Since the explicit dependence of § on ¢ is present only in the last term, Eq. (10.14)
can be used to eliminate the time from the Hamilton—Jacobi equation (10.20)

1 aw 2 2.2 2
5-”-1- [(3&") +miwgT | =a. (10.21)

The integration constant « is thus to be identified with the total energy E. This
can also be recognized directly from Eq. (10.14) and the relation (cf. Eq. (10.3))

as
~Z +H=0,
32+ 0
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which then reduces to
H=uw.

Equation (10.21) can be integrated immediately to

2.2
W = 2ma f dql/l ~ m;’a‘? , (10.22)
2
S = v2ma f dg\[1- "“’2’2" —at. (10.23)

While the integration involved in Eq. (10.23) is not particularly difficult, there
is no reason to carry it out at this stage, for what is desired is not S but its partial
derivatives. The solution for g arises out of the transformation equation (10.8):

so that

a

f = S [m /‘ dg _,
S V2 [ meg
20
which can be integrated without trouble to give

2
t+p = %arcsinq %%— (10.24)
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Equation (10.24) can be immediately “turned inside out” to furnish ¢ as a
function of ¢ and the two constants of integration « and 8 = f'w:

q= ,/ % sin(w? + B), (10.25)
mow

which is the familiar solution for a harmonic oscillator. Formally, the solution
for the momentum comes from the transformation equation (10.7), which, using
Eq. (10.22), can be written

Iw
- = —— = /2ma — miwq?. 10.26
p= 3q \/ mao q ( )

In conjunction with the solution for g, Eq. (10.25), this becomes

p = +/2ma(l — sin’(wt + B)),

P = v 2ma cos(wt + B) (10.27)

Of course, this result checks with the simple identification of p as mq.

To complete the story, the constants & and 8 must be connected with the initial
conditions go and pp at time ¢ = 0. By squaring Eqgs. (10.25) and (10.27), it is
clearly seen that & is given in terms of gp and pg by the equation

2ma = p% + mzwzqﬁ. (10.28)

The same result follows immediately of course from the previous identification of
« as the conserved total energy E. Finally, the phase constant g is related to g
and po by

tan B = mw 32 (10.29)
Po

The choice gg = 0 and hence 8 = 0 corresponds to starting the motion with the
oscillator at its equilibrium position g = 0.

Thus, Hamilton’s principle function is the generator of a canonical transforma-
tion to a new coordinate that measures the phase angle of the oscillation and to a
new canonical momentum identified as the total energy.

If the solution for g is substituted into Eq. (10.23), Hamilton’s principal func-
tion can be written as

$ =2« f cos?(t + B) dt — at = 2u f (cos* (ot + B) — $)dt.  (10.30)
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Now, the Lagrangian is
I = _1_(p2 — m?a?q?)
2m

= a(cos’(wt + B) — sin’ (ot + B))
= 2a(cos®(wt + B) — %),

so that § is the time integral of the Lagrangian, in agreement with the general
relation (10.13). Note that the identity could not be proved until gfter the solution
to the problem had been obtained.

As another illustration for the Hamilton—Jacobi method, it is instructive to con-
sider the two-dimensional anisotropic harmonic oscillator. If we let m be the mass
of the oscillating body and k, and k, be the spring constants in the x- and y-
directions, respectively, the Hamiltonian is

1 5, 2 2.2.2 2,22
E=5;(px+py+m wex” + mwyy”),

/ [k
Wy = "'ki and Q)y = '—y‘.
m m

Since the coordinates and momenta separate into two distinct sets, the principal
function can be written as a sum of the characteristic function for each pair. As-
suming that we solve the y-functional dependency first, this means

where

S(x.y, o, ay, 1) = Fe(x, @) + Fy(y, ay) — at, (10.31)

and the Hamilton—Jacobi equation assumes the form

1 awWN2 . o0 (3WN . 52,
5;[(—3?) + mwix +(?;) +miwly’ | =« (10.32)

in analogy with Eq. (10.18). Since the variables are separated, the y-part of the
Eq. (10.32) must be equal to a constant, which we call @y, so

1 oW\ 1, ,
ﬁ("a?) + smaly =a, (10.33)

and we replace the y-term in (10.32) with «y from (10.33), yielding

1 faw)\? 1
E(_37) ¥ mole = a, (10.34)

where we write @ — «, = o, showing the symmetry of Egs. (10.33) and (10.34).

rFaye L1 Ol £1
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Each equation has a solution analogous to Egs. (10.25) and (10.27), so

’ 20,
= _xz sin(wy? + Bx)
m(ﬂx

Px = v/ 2mai; cos(wxt + Br)

2o,
y = | —% sin(wyt + By)
ma)y

Py = /2may cos(wyt + By),

where the §;’s are phase constants and the total energy is given by

(10.35)

E=ay+ay=a.

As a third example of Hamilton-Jacobi theory, we again consider the two-
dimensional harmonic oscillator; only we will assume the oscillator is isotropic,
s0

ky =ky =k and Wy =Wy = o,
y Y

and use polar coordinates to write

x =rcosf r=,/x2+4y?

y =rsinf 6=tan'IZ
x (10.36)
Px =mx pr = mFr
Py =my pe = mr26.
The Hamiltonian now written as
1 2
= (p;’- + % + mzmzrz) (10.37)

is cyclic in the angular coordinate 6. The principle function can then be written as
S(r,6,a,ag) = W, (r,a) + W (@, ag) — at

= W,(r, a) + 6ap — at, (10.38)

where, as we show later, a cyclic coordinate ¢; always has the characteristic func-

tion component W, = g;o;. The canonical momentum pg associated with the
cyclic coordinate, 6, is calculated from the generating function

_e _,
Pe = 30 @

has its expected constant value.
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When this py is substituted into Eqs. (10.37) and (10.38), W, (r, a) satisfies

1 (aw,\> o2 1 ,,
Zm( . ) -+ mr? +§mw r‘=a. (10.39)

Rather than solving this equation directly for W,, we shall write the Cartesian
coordinate solution for these conditions as

x =,/ 2o sin{fw? + B8) Px = v 2ma cos(wt + B)
mw?*

o (10.35")
y=1/wsinwt Py = ~2ma cos wt,
and use these to get the polar counterparts,
[ 20 [ 2 . 9 . .
= —_— 4 t , = s
r o) \/sm wt + sin“(wt +'B) pr =mr
and (10.40)
sinwt .
f=tan"' | — |, = mrg.
[sin(wt + )3)] po =mr¢

There are two limiting cases. The linear case is when B = 0, for which

[4a
r= o smaot, Pr = ~2macos wt,
and (10.41)

(4
6=, 0.
4 Pe

The motion in an x-y plot will be an oscillation along a diagonal line as shown
in Fig. 10.1a. The other limiting case is when 8 = x /2, for which

2a
r=rop= W’ p,=0

6 = wt, Do = mrgw.

(10.42)

The motion in an x-y plot for this limiting case is a circle of radius ry as is shown
in Figure 10.1b. For other values of 8 (0 < 8 < m/2), the orbit in coordinate
space is an ellipse. The case for 8 = /4 is shown in Fig. 10.1c. The plots shown
in Fig. 10.1 are further examples of Lissajous figures.
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@p=0 ®B8=7 ©p=

aly

FIGURE 10.1 The two limiting cases (a) and (b) for the harmonic oscillator and an
intermediate example (c).

THE HAMILTON-JACOBI EQUATION FOR
HAMILTON'S CHARACTERISTIC FUNCTION

It was possible to integrate the Hamilton-Jacobi equation for the simple harmonic
oscillator primarily because S could be separated into two parts, one involving g
only and the other only time. Such a separation of variables using Hamilton’s
characteristic function W (g, ) (Eq. (10.14)) is always possible whenever the old
Hamiltonian does not involve time explicitly. This provides us with the restricted

Hamilton—Jacobi equation
aw
H{gi,— ) =a, 10.43

(q: aQ1) o ( )

which no longer involves the time. One of the constants of integration, namely
a1, is thus equal to the constant value of H. (Normally H will be the energy, but
remember that this need not always be the case, cf. Section 8.2.)

The time-independent function, Hamilton’s characteristic function W, appears
here merely as a part of the generating function S when H is constant. It can
also be shown that W separately generates its own contact transformation with
properties quite different from that generated by S. Let us consider a canonical
transformation in which the new momenta are all constants of the motion «;, and
where o) in particular is the constant of motion H. If the generating function for
this transformation be denoted by W(q, P), then the equations of transformation
are

oW ow 9w

= = = — 10.44
dg; < 3P, By (1044)

Pi
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While these equations resemble Egs. (10.7) and (10.8) respectively for Hamil-
ton’s principal function S, the condition now determining W is that H is the new
canonical momentum o;:

H(gi, pi) = a1.
aK
“30; = °

Because the new Hamiltonian depends upon only one of the momenta «;, the
equations of motion for Q; are

P =q. (10.45)

. 9K
i=— =1, =1,
Q; 9e; 1, i
=0, i#1,
with the immediate solutions
aw
Qi=t+p= %’
oW (10.46)
i = i=— [i#1L
Qi Bi B i #

The only coordinate that is not simply a constant of the motion is Q;, which is
equal to the time plus a constant. We have here another instance of the conjugate
relationship between the time as a coordinate and the Hamiltonian as its conjugate
momentum.

The dependence of W on the old coordinates g; is determined by the par-
tial differential equation (10.43), which, like Eq. (10.3), is also referred to as the
Hamilton—Jacobi equation. There will now be n constants of integration in a com-
plete solution, but again one of them must be merely an additive constant. The
n — 1 remaining independent constants. @, . . ., &, together with o) may then be
taken as the new constant canonical momenta. When evaluated at fo the first half
of Egs. (10.44) serve to relate the n constants «; with the initial values of g; and
pi- Finally, Egs. (10.45) and (10.46) can be solved for the g; as a function of o,
Bi, and the time ¢, thus completing the solution of the problem. It will be noted

that (n — 1) of the Eqgs. (10.46) do not involve the time at all. One of the g;’s can
be chosen as an independent variable, and the remaining coordinates can then be
expressed in terms of it by solving only these time-independent equations. We are
thus led directly to the orbit equations of the motion. In central force motion, for
example, this technique would furnish r as a function of 9, without the need for
separately finding r and 6 as functions of time.

Prepared by:A.Neerajah,Department of Mathematics, KAHE Page 15 of 21
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It is not always necessary to take ; and the constants of integration in W as
the new constant canonical momenta. Occasionally it is desirable rather to use
some particular set of n independent functions of the ¢;’s as the transformed mo-
menta. Designating these constants by y; the characteristic function W can then
be expressed in terms of ¢; and y; as the independent variables. The Hamiltonian
will in general depend upon more than one of the y;'s and the equations of motion
for Q; become

_ 9K _
i

where the v;’s are functions of y;. In this case, all the new coordinates are linear
functions of time:

Qi

v,

Qi = vit + Bi. (10.47)

The form of W cannot be found a priori without obtaining a complete integral of
the Hamilton—Jacobi equation. The procedures involved in solving a mechanical
problem by either Hamilton’s principal or characteristic function may now by
summarized in the following tabular form:

The two methods of solution are applicable when the Hamiltonian

is any general function of ¢, p, t: | is conserved:
H(q, p,1). H(g, p) = constant.

We seek canonical transformations to new variables such that

all the coordinates and momenta | all the momenta P; are constants.
Q;, P; are constants of the motion.

To meet these requirements it is sufficient to demand that the new Hamiltonian

shall vanish identically: shall be cyclic in all the coordi-
K =0. nates;
K=H(F)=0qa.
Under these conditions, the new equations of motion become
. oK . K
=— =0, = —— =y,
Qi 3P, Oi 3P, U
. oK . aK
Pi=— =0, Pi=——=0,
1) oA
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with the immediate solutions

Ql' = ﬁfv
Pi =y,

Qi = vt + B
P =y

which satisfy the stipulated requiréments.
The generating function producing the desired transformation is Hamilton’s

Principal Function: Characteristic Function:
S(g, P, 1), W(gq, P),

satisfying the Hamilton—Jacobi partial differential equation:
as as aw
Hlg,—,t — =0. Hlg,— )—a1=0.
(q dq )+3r I (q 3q) “

A complete solution to the equation contains

n nontrivial constants of integra- | » — 1 nontrivial constants of in-

tion ap, ..., Q. tegration, which together with a;
form a set of n independent con-
stants ¢, . .., 0.

The new constant momenta, P; = y;, can be chosen as any » independent func-
tions of the n constants of integration:

P =yilar, ..., ), | P =yilar, ..., o),

so that the complete solutions to the Hamilton—Jacobi equation may be considered
as functions of the new momenta:

S =38y, t). I W = W(qi, vi).

In particular, the y;’s may be chosen to be the «;’s themselves. One-half of the
transformations equations,

._BS l ._BW
pl_ aq{’ Pi = aqli

are fulfilled automatically, since they have been used in constructing the Hamilton—
Jacobi equation. The other half,

a
Qi = w = v (yj)t + Bi.

Qi=—=48;, ™

as I
i

can be solved for g; in terms of ¢ and the 2n constants §;, y;. The solution to the
problem is then completed by evaluating these 2n constants in terms of the initial

values, (g:0, pio), of the coordinates and momenta.
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When the Hamiltonian does not involve time explicitly, both methods are suit-
able, and the generating functions are then related to each other according to the
formula

S(q, P.t) = W(q, P) — a;t.

SEPARATION OF VARIABLES IN THE HAMILTON-JACOBI EQUATION

It might appear from the preceding section that little practical advantage has been
gained through the introduction of the Hamilton—-Jacobi procedure. Instead of
solving the 2n ordinary differential equations that make up the canonical equa-
tions of motion, we now must solve the partial differential Hamilton-Jacobi equa-
tion, and partial differential equations can be notoriously complicated to solve.
Under certain conditions, however, it is possible to separate the variables in the
Hamilton—Jacobi equation, and the solution can then always be reduced to quadra-
tures. In practice, the Hamilton—Jacobi technique becomes a useful computational
tool only when such a separation can be effected.

A coordinate g; is said to be separable in the Hamilton-Jacobi equation when
(say) Hamilton’s principal function can be split into two additive parts, one of
which depends only on the coordinate g; and the other is entirely independent of
q;- Thus, if gy is taken as a separable coordinate, then the Hamiltonian must be
such that one can write
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S(q1,....qn; a1,...,0, 1) = 81(q1; @1, ....0n; 1)
+Sf(42w--,4n; O1y .00y Up; t)s (10°48)

and the Hamilton—Jacobi equation can be split into two equations—one separately
for S; and the other for §’. Similarly the Hamilton—Jacobi equation is described as
completely separable (or simply, separable) if all the coordinates in the problem
are separable. A solution for Hamilton’s principal function of the form

S=2 S o ...r i 1) (10.49)

will then split the Hamilton—Jacobi equation into » equations of the type

aS; aS;
Hi(qj; —Lia1,...,ant)+—=L=0. 10.50
i(q; aq}_ g Oy )+ 9t ( )
If the Hamiltonian does not explicitly depend upon the time, then, for each §; we
have
Si(gj, a1, ..., 00 1) = Wi(gj; a1, ..., an5 1) — ait, (10.51)
which provide n restricted Hamilton—Jacobi equations,
aw;
H; (q;*; —; 0, .--,an) = 0. (10.52)
9gi

(No summation in Egs. (10.50) to (10.52)!)
The functions H; in Eqgs. (10.50) and (10.52) may or may not be Hamiltonians,

and the ; may be an energy, an angular momentum squared, or some other quan-
tity depending on the nature of ¢;.
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POSSIBLE QUESTIONS

Part B (6 Marks)

Derive Hamilton Jacobi equation from Hamilton’s characteristic function
Explain the physical significance of Hamilton Jacobi equation
Derive Jacobi’s theorem
Derive kepler’s problem solution by Hamilton Jacobi method
Derive the separation of variables in the Hamilton Jacobi equation
Part C (10 Marks)

agrwbE

1.Derive Harmonic oscillator problem by Hamilton Jacobi method

2. Derive Hamilton Jacobi equation from Hamilton’s characteristic function
3.Derive the Lagrange’s equation from Hamilton’s principle for holonomic system
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Question Opt 1 Opt 2 Opt 3 Opt 4 Answer
hamilton
The harmonic oscilllator problem is an example of____equation Euler's Hamilton lagrange's |jacobi's Routh's hamilton jacobi's
The variation principle in the phases space is reffered to as the modified
modified jacobi's  |modified lagrange's [Hamilton's modified euler modified Hamilton's
The solution of the Hamilton-jcobi eqaution is called Hamilton's
function hamilton principle |charecteristics jacobi Routhian hamilton principle
The hamilton principle function differs atmost from the indefinite
time integral of the lagrangian by The invariants time coordinates a constant a constant
completely
The hamilton jacobi equation can be, seperable quadratures dependent seperable completely seperable
two additive two multiplicative
The hamilton principle function can be split into Finitely many parts |infinite parts parts parts two additive parts
The Hamilton jacobi equation can hold if the two terms are constant equal and opposite
with equal value trial solution opposite value |value equal and opposite value
quadratic
The orthogonal coordinate system can be used to seperable condition|staeckel condition |function generating function |staeckel condition
hamilton's principle function S and Hamilton's charecteristic function
W for conservative system related as where E is the total Sis not relateed to
energy and t is the time S=W S=W-Et S=W+Et W S=W-Et
For a one-dimensional harmonic oscillator.the representative point always a straight
in two-dimensional phase space traces an ellipse a parabola a hyperbola line an ellipse
If a function F doesnot depend on time explicitly and is a constant of
motion, its poisson bracket with hamiltonian non zero conserved vanishes fixed vanishes
Poisson bracket and lagrange's bracket doesn't obey the Law
of algebra inverse commutative identity associative commutative
the of two constants of motion is itself a constant of
motion Lagrange's bracket |jacobi's inverse poisson bracket |jacobi's identity poisson bracket
The lagrange's bracket is under canonical transformation |real constant imaginary invariant invariant
The changing state of the system may be described by a curve r(t) in
the phase space is imaginary path circular path phase path constant path phase path
Poisson bracket of twoo dynamical variables is invariant under point canonical contact legendre
infinitesimal transformation transformation transformation |transformation canonical transformation
The generaloized coordinates conjugate to Jj are
called angle variables constant variables [fixed variables |action variables angle variables
__which is a partial differential equation of first order in (n+1) hamilton jacobi's  |hamilton lagrange's
variablesql,92,q9,3,,,,9n,t equation equation Euler's equation [Routh's equation  |hamilton jacobi's equation
function S is the generator of a canonical Hamilton's
transformation to constant co-ordinates and momenta hamilton principle |charecteristic jacobi Routhian hamilton principle
In solving the hamilton jacobi equation,we obtain simultaneously a
solution to the problem dynamical |geometrical mechanical physical mechanical
the force acting on the oscillator at a displacement q is F=-kq F=p F=q F=-Kp F=-kq
Additive constant C will__the transformation,because to obtain the
new position coordinate only partial derivative of S with respect tio a
is required increase not effect decrease vanish not effect
The constant alpha and beta are to be known from final condition fixed value initial condition |stationary value initial condition
For the Hamilton's principle function S,first part is the function of a Hamilton's
and q is called Function Hamilton Principle |characteristic Jacobi Routhian Hamilton's characteristic
Hamilton's characteristic function is denoted by H(qg,a) D(qg,a) E(q,a) W(q,a) W(q,a)
total energy of the
The new canonical momentum is identified as the harmonic oscillator |oscillator small oscillator |lagrange oscillator |total energy of the oscillator
For harmonic oscillator the hamilton's principle function is
the Integral of lagrangian mass velocity time distance time
method of method of
Separation of variables is always possible,if the Hamiltonian H does  |separation of method of point of |hamilton of method of method of separation of
not involve time t explicitly is called, variable variable variable lagrange of variable |variable
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The harmonic oscilllator problem is an example of equation
The variation principle in the phases space is reffered to as the

The solution of the Hamilton-jcobi eqaution is called

function
The hamilton principle function differs atmost from the indefinite
time integral of the lagrangian by

The hamilton jacobi equation can be,

The hamilton principle function can be split into
The Hamilton jacobi equation can hold if the two terms are constant
with

The orthogonal coordinate system can be used to

hamilton's principle function S and Hamilton's charecteristic function
W for conservative system related as where E is the total
energy and t is the time

For a one-dimensional harmonic oscillator.the representative point
in two-dimensional phase space traces

If a function F doesnot depend on time explicitly and is a constant of
motion,its poisson bracket with hamiltonian

Poisson bracket and lagrange's bracket doesn't obey the Law
of algebra

the of two constants of motion is itself a constant of
motion

The lagrange's bracket is under canonical transformation
The changing state of the system may be described by a curve r(t) in
the phase space is

Poisson bracket of twoo dynamical variables is invariant under
infinitesimal

Euler's

modified jacobi's
hamilton principle
The invariants

seperable

Finitely many parts
equal value

seperable condition

an ellipse

non zero
inverse

Lagrange's bracket
real

imaginary path

point
transformation
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hamilton

Hamilton lagrange's jacobi's

modified

modified lagrange's Hamilton's

Hamilton's
charecteristics

time

quadratures

infinite parts
trial solution

staeckel condition

S=W-Et

a parabola

conserved
commutative
jacobi's inverse
constant
circular path

canonical
transformation

jacobi

coordinates

dependent

two additive
parts

opposite value

quadratic
function

S=W+Et

a hyperbola

vanishes

identity

poisson bracket

imaginary

phase path

contact
transformation
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Routh's

modified euler
Routhian

a constant
completely
seperable

two multiplicative
parts

equal and opposite
value

generating function

Sis not relateed to
w

always a straight
line

fixed

associative
jacobi's identity
invariant
constant path

legendre
transformation

hamilton jacobi's

modified Hamilton's

hamilton principle

a constant

completely seperable

two additive parts

equal and opposite value

staeckel condition

S=W-Et

an ellipse

vanishes

commutative

poisson bracket

invariant

phase path

canonical transformation
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The generaloized coordinates conjugate to Jj are
called

__which is a partial differential equation of first order in (n+1)
variablesql,92,q,3,,,,,qn,t

function S is the generator of a canonical
transformation to constant co-ordinates and momenta
In solving the hamilton jacobi equation,we obtain simultaneously a
solution to the problem

the force acting on the oscillator at a displacement q is

Additive constant C will__the transformation,because to obtain the
new position coordinate only partial derivative of S with respect tio a
is required

The constant alpha and beta are to be known from

For the Hamilton's principle function S,first part is the function of a
and q is called Function

Hamilton's characteristic function is denoted by

The new canonical momentum is identified as the
For harmonic oscillator the hamilton's principle function is
the Integral of lagrangian

Separation of variables is always possible,if the Hamiltonian H does
not involve time t explicitly is called,

angle variables

hamilton jacobi's
equation

hamilton principle
dynamical

F=-kq

increase
final condition

Hamilton Principle
H(a,a)

harmonic oscillator

mass
method of
separation of
variable

constant variables

hamilton lagrange's

equation
Hamilton's
charecteristic

geometrical

F=p

not effect

fixed value
Hamilton's
characteristic
D(a,a)

total energy of the
oscillator

velocity

method of point of
variable
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fixed variables

Euler's equation
jacobi
mechanical

F=q

decrease
initial condition

Jacobi
E(a.a)

small oscillator

time
method of
hamilton of
variable
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action variables angle variables

Routh's equation  hamilton jacobi's equation

Routhian hamilton principle
physical mechanical

F=-Kp F=-kq

vanish not effect

stationary value initial condition
Routhian Hamilton's characteristic
W(g,a) W(q,a)

lagrange oscillator  total energy of the oscillator
distance time

method of method of separation of
lagrange of variable variable



) T s R Or
kupagMaE:nI?gd’::‘)' g;u;:;:{!‘i‘llu::a‘lion ‘b) Derive the Hamilton Jacobi equation for Hamilon's pry
(Established Under Section 3 of UGC Act 1956) PART C (1 x 10 = 10 Marks)
COIMBATORE - 641 021 Compulsory)
(For the candidates admitted from 2015 onwards) ¢ i =

M.Sc., DEGREE EXAMINATION, APRIL 2016
K Second Semester :
MATHEMATICS  atatoceaannd

MECHANICS

26. Derive the Lagrange's equation from Hamilton's principh

Time: 3 hours Maximum : 60 marks

PART - A (20 x I =20 Marks) (30 Minutes)

(Question Nos. 1 to 20 Online Examinations)
Part-B & C 2 % Hours
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Answer ALL the Questions

21. a. Derive the equation of motion of a single particle using plane poler co-

ordinates
Or

b.i)Show that T=To+ Ty + Tz
ii) Derive the Principle of virtual work

22. a. Find the minimum surface of revolution
Or
b. Derive the conservation theorem for total encrgy of system

23. a) Obtain the hamilton’s equation of motion considering a single non relativistic
particle moving in an electromagnetic field
Or
b) Explain the principle of least action
24. a) Explain the simple harmonic oscillator problem
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straight line
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b) Derive the conservation th for dissip i

23.a) Define Cyclic coordinates and Explain conservation theorems,
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21. a. (i) State and prove parallelogram of forces.
(ii) State and prove triangle of forces.
Or
b. Find the resultant of two like parallel forces acting on a rigid body.

22. a. State and prove Varigon's theorem of moments,
Or
b. Prove the equilibrium of a particle on a rough inclined plane.

23. a. Find the components of the acceleration of a particle in the tangential and
normal directions.
Or
b. Obtain the differential equation of a central orbit in polar coordinates.

24. a. Prove that the composition of two simple harmonic motion of the same period
in two perpendicular directions.
Or
b. Explain the seconds pendulum.
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PART- A (20x1 = 20 Marks)
ANSWER THE FOLLOWING

1. Point transformation are the transformations of space
a) Configuration b) position
C) phase d) co-ordinate

2. A function f(x) is said to be statinary at x=a when
a) f(@)=constant  b) f(a)=0 c) f'(a)=constant d) f'(a)=0

3.The number of coordinates minus the number of independent
equations of constraint is
a) units b) number of degrees of freedom
¢) dimensions d) number of generalized coordinates
4. The total kinetic energy of the system can be written
as
a) T=To+T, b) T=T4++T, C) T=To+T, d) T=To+T+T,
5. The sign is if F rotates in
anticlockwise direction.
a) Zero b) Positive

c) Negative d) Unity

6. The equation of motion is the differential equation of
order

a) Fourth  b) first ¢)second  d) third

7. The generalised momentum conjugate to the cyclic coordinate
is

a) Zero  b) motion c) non zero  d) conserved
8.The doesn't deform under the action of loads

a) Force b) Rigid body

c) varied path d) applied torque
9. The space around the magnet is called the

a) magnetic field b) electric field
C) magnetic induction d) flux
10. Frictionisa force.
a) Sliding b) Self adjusting ¢) Rolling d) Resultant

11. The space around the magnet is called the

a) Force b) Rigid body

¢) varied path d) applied torque
12. If the total external force is zero,then the total linear
momentum of the system is

a) Zero b) non-zero

c) conserved d) rigid

13. The equation of motion is the differential equation of
order
a) Fourth b) first c) second d) third
14.The force which opposes the sliding of one body over
another is called the
a) Sliding friction b) Coefficient of friction
¢) Rolling friction d) Cone of friction
15. The line integral may also be denoted as
aJ bL c) X d)K
16. All the generalized coordinates cannot be__
a) linear b) non cyclic c) non linear d) cyclic
17. Frictionisa force.




a) Sliding b) Self adjusting c¢) Rolling d) Resultant
18. A cyclic coordinate is also known as
a) constraint b) ignorable c) constant d) motion

19. is defined as the line along which the
force acts.
a) line of action of force
¢) Resultant of force
20.Force of friction is also called
a) Massive force
c) Coplanar force

b) Components of force
d) Direction of force

b) Passive force
d) Colinear force

PART- B (3 x 2 =6 Marks)
ANSWER ALL THE QUESTIONS
21.Explain the Rayleighs dissipation function .
22.Explain degrees of freedom.
23.Explain Hamiton’s principle.

PART- C (3 x 8 = 24 Marks)
ANSWER ALL THE QUESTIONS

24.a)) Derive the Lagrange’s equation of motion for holonomic
constraint.
(OR)
b) Derive the D’ Alembert’s principle
25.a)i)Showthat T=To+T1+ T>
if)Derive the Principle of virtual work
(OR)
b) Show that the shortest curve between any two points in
the plane is a straight line
26. a) State and prove Euler Lagrange differential equation.

(OR)

b) Define Cyclic coordinates and Explain conservation
theorems.
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PART-A (20x 1 =20 Marks)
ANSWER ALL THE QUESTIONS :

1.The generalised momentum conjugate to the cyclic coordinate
is
a) Zero b) motion c) non zero  d) conserved
2. All the generalized coordinates cannotbe
a) linear b) non cyclic c) non linear d) cyclic
3. The hamiltonian is the total energy of the
system
a) H=T2+V2 b) H=T-V ¢) H=T+V d) T2=H2+V?
4. The variational principle associated with the hamilton's
formulation is knownasthe
a) holonomic problem  b) principle of least action
¢) monogenic principle  d) Brachistrone problem
5. K plays the role of
a) Legendre's b) Lagrangian
¢) Hamiltonian d) point
6. A cyclic coordinate is also known as
a) constraint b) ignorable c) constant d) motion
7. All the generalized coordinates cannot be
a) linear b) non cyclic c) non linear d) cyclic

8. To linearize the motion for small oscillation,we assume
that
a) cos(o-0)=1 D) sin(,-0)~1
c) cos(y-0)=0  d) sin(,-0)=0
9. Lagrange's equationfollows from the principle
a) Jacobi's b) Routh's ¢) Hamilton's d) D'Alemberts
10. The polar equation of a conic is
a) l/r=1+ecosO b) r= 1+ecosb
c) r=1/(1+ecosf) d) r= 1- ecosd
11. The velocity of Simple Harmonic Motion is zero when

a) amplitude b) phase
c) period d) acceleration
12. A is a position of matter occupying finite space

a) Impact b) Body
¢) Momentum  d) Elastic body
13. The sign is if F rotates in
anticlockwise direction.
a) Zero b) Positive  ¢) Negative d) Unity
14. The important variational principle associated with
hamiltonian formulation is the
a) Integral principle b) principle of least action
c) Lagrange's principle d) monogenic principle
15. A cyclic coordinate is also known as
a) constraint b) ignorable c) constant d) motion
16. Hamilton's principle function S and Hamilton's
charecteristic function W for conservative system

related as .where E is the total energy and
t is the time

a) S=W b) S=W-Et

c) S=SW+Et d) S is not relateed to W



17. The hamilton jacobi equation can be

a) seperable b ) quadratures

c )dependent  d) completely seperable
18 . The equation of motion is the differential

equation of order
a) Fourth  b) first  ¢) second d) third
19.Friction is a force.

a) Sliding b) Self adjusting c¢) Rolling d) Resultant
20. Poisson bracket and lagrange's bracket doesn't obey the
law of algebra
a) inverse b ) commutative
c)identity  d) associative
PART B (3 X2=6Marks)
ANSWER ALL THE QUESTIONS
21. Define canonical momentum.
22. Write short notes on construction of Hamilton
through Lagrangian
23. Obtain the hamilton’s equation of motion using spherical
polar co-ordinates .
PART-C (3X8=24 Marks)
ANSWER ALL THE QUESTIONS
24. (a) Explain the canonical transformation with an example
(OR)
(b) Derive Hamilton’s canonical equation of motion
25. (a) Show that the transformation P=1/2 x(p? + ¢?),
Q = tan~(g/p) is canonical
(OR)
(b) Derive Jacobi’s theorem
26. (a) Show that the transformation P=q cotp, Q = Iog(S”; By

is canonical. Also find the generating function.
(OR)

(b) Derive Harmonic oscillator problem by Hamilton
Jacobi method
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