
PROGRAMMING FUNDAMENTALS USING C / C++ 2019 -2022 Batch

KARPAGAM ACADEMY OF HIGHER EDUCATION
 (Deemed to be University)

 (Established Under Section 3 of UGC Act, 1956)
DEPARTMENT OF CS, CA & IT

SYLLABUS
SUBJECT NAME: PROGRAMMING FUNDAMENTALS USING C / C++
SUBJECT CODE: 19CSU101
SEMESTER: I CLASS: I BSc CS -A

Instruction Hours / week: L: 5 T: 0 P: 0 Marks: Internal : 40 External : 60 Total: 100
 End Semester Exam : 3 Hours
Course Objectives

 To impart adequate knowledge on the need of programming languages and problem
solving techniques.

 To develop programming skills using the fundamentals and basics of C Language.
 To enable effective usage of arrays, structures, functions, pointers and to implement the

memory management concepts.
 To teach the issues in file organization and the usage of file systems.
 To learn the characteristics of an object-oriented programming language: data abstraction

and information hiding, inheritance, and dynamic binding of the messages to the
methods.

 Course Outcomes (COs)

After the completion of this course, a successful student will be able to do the following:

1. Obtain the knowledge about the number systems this will be very useful for bitwise
operations.

2. Develop programs using the basic elements like control statements, Arrays and Strings .
3. Solve the memory access problems by using pointers
4. understand about the dynamic memory allocation using pointers which is essential for

utilizing memory
5. Understand about the code reusability with the help of user defined functions.
6. Develop advanced applications using enumerated data types, function pointers and nested

structures.
7. Learn the basics of file handling mechanism that is essential for understanding the

concepts in database management systems.
8. Understand the uses of preprocessors and various header file directives.
9. Use the characteristics of an object-oriented programming language in a program.
10. Use the basic object-oriented design principles in computer problem solving.

Unit I - INTRODUCTION TO C AND C++

History of C and C++, Overview of Procedural Programming and Object-Orientation
Programming, Using main() function, Compiling and Executing Simple Programs in C++.
Data Types, Variables, Constants, Operators and Basic I/O:

PROGRAMMING FUNDAMENTALS USING C / C++ 2019 -2022 Batch

Declaring, Defining and Initializing Variables, Scope of Variables, Using Named
Constants, Keywords, Data Types, Casting of Data Types, Operators (Arithmetic, Logical and
Bitwise), Using Comments in programs, Character I/O (getc, getchar, putc, putcharetc),
Formatted and Console I/O (printf(), scanf(), cin, cout), Using Basic Header Files (stdio.h,
iostream.h, conio.hetc).
Expressions, Conditional Statements and Iterative Statements:

Simple Expressions in C++ (including Unary Operator Expressions, Binary Operator
Expressions), Understanding Operators Precedence in Expressions, Conditional Statements (if
construct, switch-case construct), Understanding syntax and utility of Iterative Statements
(while, do-while, and for loops), Use of break and continue in Loops, Using Nested Statements
(Conditional as well as Iterative)

Unit II - FUNCTIONS AND ARRAYS

Utility of functions, Call by Value, Call by Reference, Functions returning value, Void
functions, Inline Functions, Return data type of functions, Functions parameters, Differentiating
between Declaration and Definition of Functions, Command Line Arguments/Parameters in
Functions, Functions with variable number of Arguments.
Creating and Using One Dimensional Arrays (Declaring and Defining an Array, Initializing an
Array, Accessing individual elements in an Array, Manipulating array elements using loops),
Use Various types of arrays (integer, float and character arrays / Strings) Two-dimensional
Arrays (Declaring, Defining and Initializing Two Dimensional Array, Working with Rows and
Columns), Introduction to Multi-dimensional arrays.

Unit III - DERIVED DATA TYPES (STRUCTURES AND UNIONS)

Understanding utility of structures and unions, Declaring, initializing and using simple
structures and unions, Manipulating individual members of structures and unions, Array of
Structures, Individual data members as structures, Passing and returning structures from
functions, Structure with union as members, Union with structures as members.
Pointers and References in C++:

Understanding a Pointer Variable, Simple use of Pointers (Declaring and Dereferencing
Pointers to simple variables), Pointers to Pointers, Pointers to structures, Problems with Pointers,
Passing pointers as function arguments, Returning a pointer from a function, using arrays as
pointers, Passing arrays to functions. Pointers vs. References, Declaring and initializing
references, using references as function arguments and function return values

Unit IV - MEMORY ALLOCATION IN C++

 Differentiating between static and dynamic memory allocation, use of malloc, calloc and
free functions, use of new and delete operators, storage of variables in static and dynamic
memory allocation.
File I/O, Preprocessor Directives:

Opening and closing a file (use of fstream header file, ifstream, ofstream and fstream
classes), Reading and writing Text Files, Using put(), get(), read() and write() functions, Random
access in files, Understanding the Preprocessor Directives (#include, #define, #error, #if, #else,
#elif, #endif, #ifdef, #ifndef and #undef), Macros.

PROGRAMMING FUNDAMENTALS USING C / C++ 2019 -2022 Batch

Unit V - USING CLASSES IN C++
Principles of Object-Oriented Programming, Defining & Using Classes, Class

Constructors, Constructor Overloading, Function overloading in classes, Class Variables
&Functions, Objects as parameters, Specifying the Protected and Private Access, Copy
Constructors, Overview of Template classes and their use.
Overview of Function Overloading and Operator Overloading:

Need of Overloading functions and operators, Overloading functions by number and type
of arguments, Looking at an operator as a function call, Overloading Operators (including
assignment operators, unary operators).

Inheritance, Polymorphism and Exception Handling:

Introduction to Inheritance (Multi-Level Inheritance, Multiple Inheritance),
Polymorphism (Virtual Functions, Pure Virtual Functions), Basics Exceptional Handling (using
catch and throw, multiple catch statements), Catching all exceptions, Restricting exceptions,
Rethrowing exceptions.

SUGGESTED READINGS

1. Herbtz Schildt. (2003). C++: The Complete Reference (4th ed.) McGraw Hill, New Delhi.
2. Bjarne Stroustrup. (2013). The C++ Programming Language(4th ed.). Addison-Wesley, New

Delhi.
3. Bjarne Stroustroup. (2014). Programming, Principles and Practice using C++(2nd edAddison-

Wesley, New Delhi.
4. Balaguruswamy, E. (2008). Object Oriented Programming with C++. Tata McGraw-Hill

Education, New Delhi.
5. Paul Deitel., & Harvey Deitel. (2011). C++ How to Program (8th ed.). Prentice Hall, New

Delhi.
6. John, R. Hubbard. (2000). Programming with C++- (2nd ed.). Schaum's Series.
7. Andrew Koeni., Barbara, E. Moo. (2000). Accelerated C++. Addison-Wesley.
8. Scott Meyers. (2005). Effective C++ (3rd ed.).Addison-Wesley,.
9. Harry, H. Chaudhary. (2014). Head First C++ Programming: The Definitive Beginner's

Guide. LLC USA: First Create space Inc, O-D Publishing.
10. Walter Savitch.(2007) Problem Solving with C++, Pearson Education,.
11. Stanley, B. Lippman., Josee Lajoie., & Barbara, E. Moo. (2012). C++ Primer, 5th ed.).

Addison-Wesley

WEB SITES
1. http://www.cs.cf.ac.uk/Dave/C/CE.html
2. http://www2.its.strath.ac.uk/courses/c/
3. http://www.iu.hio.no/~mark/CTutorial/CTutorial.html
4. http://www.cplusplus.com/doc/tutorial/
5. www.cplusplus.com/
6. www.cppreference.com/

1

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2019 onwards)

DEPARTMENT OF CS,CA & IT

SUBJECT :PROGRAMMING FUNDAMENTALS USING C / C++ Class : I B.Sc (CS) B

 SEMESTER: I SUBJECT CODE: 19CSU101

 UNIT-I

Introduction to C and C++:

History of C and C++,

 Overview of Procedural Programming and Object-Orientation Programming,

 Using main() function,

 Compiling and Executing Simple Programs in C++.

Data Types, Variables, Constants, Operators and Basic I/O:

Declaring, Defining and Initializing Variables, Scope of Variables

Using Named Constants,

 Keywords,

 Data Types,

 Casting of Data Types,

 Operators (Arithmetic, Logical and Bitwise)

Using Comments in programs

Character I/O (getc, getchar, putc, putcharetc)

 Formatted and Console I/O (printf(), scanf(), cin, cout)

Using Basic Header Files (stdio.h, iostream.h, conio.hetc)

Expressions, Conditional Statements and Iterative Statements:

Simple Expressions in C++ (Unary and Binary Operator Expressions)

Understanding Operators Precedence in Expressions,

 Conditional Statements (if construct, switch-case construct),

Understanding syntax and utility of Iterative Statements (while, do-while, and for loops),

 Use of break and continue in Loops,

2

 Using Nested Statements (Conditional as well as Iterative)

Introduction C and History of C and C++,

C is a general-purpose, high-level language that was originally developed by Dennis M. Ritchie to

develop the UNIX operating system at Bell Labs. C was originally first implemented on the DEC PDP-11

computer in 1972.

In 1978, Brian Kernighan and Dennis Ritchie produced the first publicly available description of C, now

known as the K&R standard.

The UNIX operating system, the C compiler, and essentially all UNIX application programs have been

written in C. C has now become a widely used professional language for various reasons –

C programming language was developed in 1972 by Dennis Ritchie at bell laboratories of AT&T (American

Telephone & Telegraph), located in U.S.A.

Dennis Ritchie is known as the founder of c language.

It was developed to overcome the problems of previous languages such as B, BCPL etc.

Initially, C language was developed to be used in UNIX operating system. It inherits many features of

previous languages such as B and B-CPL.

 Easy to learn

 Structured language

 It produces efficient programs

 It can handle low-level activities

 It can be compiled on a variety of computer platforms

Facts about C

 C was invented to write an operating system called UNIX.

 C is a successor of B language which was introduced around the early 1970s.

 The language was formalized in 1988 by the American National Standard Institute (ANSI).

 The UNIX OS was totally written in C.

 Today C is the most widely used and popular System Programming Language.

 Most of the state-of-the-art software have been implemented using C.

3

 Today's most popular Linux OS and RDBMS MySQL have been written in C.

 Introduction -C++

C++ is a statically typed, compiled, general-purpose, case-sensitive, free-form programming

language that supports procedural, object-oriented, and generic programming.

C++ is regarded as a middle-level language, as it comprises a combination of both high-level and low-level

language features.

C++ was developed by BjarneStroustrup starting in 1979 at Bell Labs in Murray Hill, New Jersey, as an

enhancement to the C language and originally named C with Classes but later it was renamed C++ in 1983.

C++ is a superset of C, and that virtually any legal C program is a legal C++ program.

Note − A programming language is said to use static typing when type checking is performed during

compile-time as opposed to run-time.

A Brief History of C:

The C programming language was developed at Bell Labs during the early 1970's. Quite unpredictably it

derived from a computer language named B and from an earlier language BCPL. Initially designed as a system

programming language under UNIX it expanded to have wide usage on many different systems. The earlier

versions of C became known as K&R C after the authors of an earlier book, "The C Programming Language" by

Kernighan and Ritchie. As the language further developed and standardized, a version know as ANSI (American

National Standards Institute) C became dominant. As you study this language expect to see references to both

K&R and ANSI C. Although it is no longer the language of choice for most new development, it still is used for

some system and network programming as well as for embedded systems. More importantly, there is still a

tremendous amount of legacy software still coded in this language and this software is still actively maintained.

A Brief History of C++:

BjarneStroustrup at Bell Labs initially developed C++ during the early 1980's. It was designed to support

the features of C such as efficiency and low-level support for system level coding. Added to this were features

such as classes with inheritance and virtual functions, derived from the Simula67 language, and operator

overloading, derived from Algol68. Don't worry about understanding all the terms just yet, they are explained in

easyCPlusPlus's C++ tutorials. C++ is best described as a superset of C, with full support for object-oriented

programming. This language is in wide spread use.

4

Differences between C and C++:

Although the languages share common syntax they are very different in nature. C is a procedural

language. When approaching a programming challenge the general method of solution is to break the task into

successively smaller subtasks. This is known as top-down design. C++ is an object-oriented language. To solve a

problem with C++ the first step is to design classes that are abstractions of physical objects. These classes contain

both the state of the object, its members, and the capabilities of the object, its methods. After the classes are

designed, a program is written that uses these classes to solve the task at hand.

PROEDURE ORIENTED PROGRAMMIMG (POP)

 Procedural programming uses a list of instructions to tell the computer what to do step-by-step.
 It based upon the concept of the procedure call.
 Procedures, also known as routines, or functions (not to be confused with mathematical functions),

but similar to those used in functional programming.
 Procedural programming languages are also known as top-down languages.
 Procedural programming is intuitive in the sense that it is very similar to how you would expect a

program to work.
 If you want a computer to do something, you should provide step-by-step instructions on how to do

it.
 that most of the early programming languages are all procedural.
 Examples of procedural languages include FORTRAN, COBOL and C, Pascal which have been around

since the 1960s and 70s.

Characteristics of Procedural oriented programming:-

 It focuses on process rather than data.
 It takes a problem as a sequence of things to be done such as reading, calculating and printing. Hence,

a number of functions are written to solve a problem.
 A program is divided into a number of functions and each function has clearly defined purpose.
 Most of the functions share global data.
 Data moves openly around the system from function to function.

Drawback of Procedural oriented programming (structured programming):-

 Data is given a second class status even through data is the reason for the existence of the program.
 Since every function has complete access to the global variables, the new programmer can corrupt

the data accidentally by creating function. Similarly, if new data is to be added, all the function
needed to be modified to access the data.

5

 It is often difficult to design because the components function and data structure do not model the
real world.

OBJECT ORIENTED PROGRAMMING

The core of the pure object-oriented programming is to create an object, in code, that has certain

properties and methods. While designing C++ modules, we try to see whole world in the form of objects.

For example a car is an object which has certain properties such as color, number of doors, and the like. It

also has certain methods such as accelerate, brake, and so on.

There are a few principle concepts that form the foundation of object-oriented programming −

Object

Object is a real time entity .This is the basic unit of object oriented programming. That is both data

and function that operate on data are bundled as a unit called as object.

Class

Class is a blue print of an object.When you define a class, you define a blueprint for an object. This

doesn't actually define any data, but it does define what the class name means, that is, what an object of the

class will consist of and what operations can be performed on such an object.

Abstraction

Showing essential features and hiding background details is called abstraction.

Data abstraction refers to, providing only essential information to the outside world and hiding their

background details, i.e., to represent the needed information in program without presenting the details.

For example, a database system hides certain details of how data is stored and created and

maintained. Similar way, C++ classes provides different methods to the outside world without giving

internal detail about those methods and data.

Encapsulation

Encapsulation is data and function into a single unit is called encapsulation.placing the data and the

functions that work on that data in the same place. While working with procedural languages, it is not

always clear which functions work on which variables but object-oriented programming provides you

framework to place the data and the relevant functions together in the same object.

Inheritance

Inherit theproperties and (methods)behaviors from one class to another class. One of the most

useful aspects of object-oriented programming is code reusability. As the name suggests Inheritance is the

process of forming a new class from an existing class that is from the existing class called as base class, new

6

class is formed called as derived class. This is a very important concept of object-oriented programming

since this feature helps to reduce the code size.

Polymorphism

It ability to take more than one form.The ability to use an operator or function in different ways in

other words giving different meaning or functions to the operators or functions is called polymorphism.

Poly refers to many. That is a single function or an operator functioning in many ways different upon the

usage is called polymorphism.

Overloading

The concept of overloading is also a branch of polymorphism. When the exiting operator or function

is made to operate on new data type, it is said to be overloaded.

main() function

main() function is the entry point of any C++ program. It is the point at which execution of program

is started. When a C++ program is executed, the execution control goes directly to the main() function.

Every C++ program have a main() function.

Syntax

void main()

{

............

............

}

In above syntax;

 void: is a keyword in C++ language, void means nothing, whenever we use void as a function

return type then that function nothing return. here main() function no return any value.

 In place of void we can also use int return type of main() function, at that time main() return

integer type value.

 main: is a name of function which is predefined function in C++ library.

7

Simple example of main()

Example

#include<iostream>

Using namespace std;

void main()

{

cout<<"This is main function";

}

Output

This is main function

Compiling and executing simple program in c++

The C Compilation Model:

The C Compilation Model:

The Preprocessor

8

We will study this part of the compilation process in greater detail later

The Preprocessor accepts source code as input and is responsible for

 removing comments

 Interpreting special preprocessor directives denoted by #.

For example

 #include -- includes contents of a named file. Files usually called header files. e.g

o #include <math.h> -- standard library maths file.

o #include <stdio.h> -- standard library I/O file

 #define -- defines a symbolic name or constant. Macro substitution.

o #define MAX_ARRAY_SIZE 100

C Compiler:

The C compiler translates source to assembly code. The source code is received from the preprocessor.

Assembler:

The assembler creates object code. On a UNIX system you may see files with a .o suffix (.OBJ on MSDOS) to

indicate object code files.

Link Editor:

If a source file references library functions or functions defined in other source files the link editor combines

these functions (with main()) to create an executable file. External Variable references resolved here also.

Variables

While doing programming in any programming language, you need to use various variables to store

various information. Variables are nothing but reserved memory locations to store values. This means that when

you create a variable you reserve some space in memory. You may like to store information of various data types

like character, wide character, integer, floating point, double floating point, Boolean etc. Based on the data type

of a variable, the operating system allocates memory and decides what can be stored in the reserved memory.

9

What are Variables?

Variable are used in C++, where we need storage for any value, which will change in program. Variable

can be declared in multiple ways each with different memory requirements and functioning. Variable is the name

of memory location allocated by the compiler depending upon the datatype of the variable.

Basic types of Variables

Each variable while declaration must be given a data type, on which the memory assigned to the variable,

depends. Following are the basic types of variables,

bool - For variable to store boolean values(True or False)

char - For variables to store character types.

int - for variable with integral values

float and double are also types for variables with large and floating point values

Declaration and Initialization:

Variable must be declared before they are used. Usually it is preferred to declare them at the starting of the

program, but in C++ they can be declared in the middle of program too, but must be done before using them.

Example:

int i; // declared but not initialized

char c;

int i, j, k; // Multiple declaration

Initialization means assigning value to an already declared variable,

int i; // declaration

i = 10; // initialization

Initialization and declaration can be done in one single step also,

int i=10; //initialization and declaration in same step

int i=10, j=11;

If a variable is declared and not initialized by default it will hold a garbage value. Also, if a variable is once

declared and if try to declare it again, we will get a compile time error.

inti,j;

10

i=10;

j=20;

int j=i+j; //compile time error, cannot redeclare a variable in same scope

Scope of Variable

A scope is a region of the program and broadly speaking there are three places, where variables can be
declared −

 Inside a function or a block which is called local variables,
 In the definition of function parameters which is called formal parameters.
 Outside of all functions which is called global variables.

Local Variables

Variables that are declared inside a function or block are local variables. They can be used only by
statements that are inside that function or block of code. Local variables are not known to functions outside
their own. Following is the example using local variables −
 Live Demo

#include<iostream>
usingnamespacestd;

int main ()
{
// Local variable declaration:
int a, b;
int c;

// actual initialization
 a =10;
 b =20;
 c = a + b;

cout<< c;

return0;
}

Global Variables

Global variables are defined outside of all the functions, usually on top of the program. The global
variables will hold their value throughout the life-time of your program.

A global variable can be accessed by any function. That is, a global variable is available for use
throughout your entire program after its declaration. Following is the example using global and local
variables −

http://tpcg.io/QIjnPh

11

 Live Demo

#include<iostream>
usingnamespacestd;

// Global variable declaration:
int g;

int main ()
{
// Local variable declaration:
int a, b;

// actual initialization
 a =10;
 b =20;
 g = a + b;

cout<< g;

return0;
}

A program can have same name for local and global variables but value of local variable inside a function
will take preference. For example −
 Live Demo

#include<iostream>
usingnamespacestd;

// Global variable declaration:
int g =20;

int main ()
{
// Local variable declaration:
int g =10;

cout<< g;

return0;
}

When the above code is compiled and executed, it produces the following result −

10

Defining Constants

http://tpcg.io/dRHHpD
http://tpcg.io/dt7MP9

12

There are two simple ways in C++ to define constants −

 Using #define preprocessor.

 Using const keyword.

The #define Preprocessor

Following is the form to use #define preprocessor to define a constant −

#define identifier value

Following example explains it in detail −

 Live Demo

#include<iostream>

usingnamespacestd;

#define LENGTH 10

#defineWIDTH5

#define NEWLINE '\n'

intmain()

{

int area;

area= LENGTH * WIDTH;

cout<< area;

cout<< NEWLINE;

return0;

}

When the above code is compiled and executed, it produces the following result −

50

The constant –(const) Keyword

You can use const prefix to declare constants with a specific type as follows −

http://tpcg.io/N6xxDP

13

const type variable = value;

Following example explains it in detail −

 Live Demo

#include<iostream>

usingnamespacestd;

intmain()

{

constint LENGTH=10;

constint WIDTH=5;

constchar NEWLINE ='\n';

int area;

area= LENGTH * WIDTH;

cout<< area;

cout<< NEWLINE;

return0;

}

When the above code is compiled and executed, it produces the following result −

50

Data Types

While writing program in any language, you need to use various variables to store various

information. Variables are nothing but reserved memory locations to store values. This means that when

you create a variable you reserve some space in memory.

You may like to store information of various data types like character, wide character, integer,

floating point, double floating point, boolean etc. Based on the data type of a variable, the operating system

allocates memory and decides what can be stored in the reserved memory.

Primitive Built-in Types

C++ offers the programmer a rich assortment of built-in as well as user defined data types. Following

table lists down seven basic C++ data types −

http://tpcg.io/IA1cea

14

Type Keyword

Boolean bool

Character char

Integer int

Floating point float

Double floating point double

Valueless void

Wide character wchar_t

Several of the basic types can be modified using one or more of these type modifiers −

 signed

 unsigned

 short

 long

The following table shows the variable type, how much memory it takes to store the value in memory, and

what is maximum and minimum value which can be stored in such type of variables.

Type Typical Bit

Width

Typical Range

char 1byte -127 to 127 or 0 to 255

unsigned char 1byte 0 to 255

signed char 1byte -127 to 127

int 4bytes -2147483648 to 2147483647

unsigned int 4bytes 0 to 4294967295

signed int 4bytes -2147483648 to 2147483647

short int 2bytes -32768 to 32767

unsigned short

int

Range 0 to 65,535

signed short int Range -32768 to 32767

15

long int 4bytes -2,147,483,648 to

2,147,483,647

signed long int 4bytes same as long int

unsigned long int 4bytes 0 to 4,294,967,295

float 4bytes +/- 3.4e +/- 38 (~7 digits)

double 8bytes +/- 1.7e +/- 308 (~15 digits)

long double 8bytes +/- 1.7e +/- 308 (~15 digits)

The size of variables might be different from those shown in the above table, depending on the

compiler and the computer you are using.

Following is the example, which will produce correct size of various data types on your computer.

#include<iostream>

usingnamespacestd;

intmain()

{

cout<<"Size of char : "<<sizeof(char)<<endl;

cout<<"Size of int : "<<sizeof(int)<<endl;

cout<<"Size of short int : "<<sizeof(shortint)<<endl;

cout<<"Size of long int : "<<sizeof(longint)<<endl;

cout<<"Size of float : "<<sizeof(float)<<endl;

cout<<"Size of double : "<<sizeof(double)<<endl;

cout<<"Size of wchar_t : "<<sizeof(wchar_t)<<endl;

return0;

}

This example uses endl, which inserts a new-line character after every line and << operator is being

used to pass multiple values out to the screen. We are also using sizeof() operator to get size of various

data types.

16

When the above code is compiled and executed, it produces the following result which can vary from

machine to machine −

Size of char : 1

Size of int : 4

Size of short int : 2

Size of long int : 4

Size of float : 4

Size of double : 8

Size of wchar_t : 4

Keywords In C++

 The C++ Keywords are reserved words by the compiler. All keywords have been assigned a fixed meaning. They cannot be

used as variable names because they have been assigned fixed jobs.

C++ Keyword List :

asm else operator template

auto enum private this

break extern protected throw

case float public try

catch for register typedef

char friend return union

class goto short unsigned

const if signed virtual

continue inline sizeof void

default int static volatile

delete long struct while

double new switch -

Data Types

17

While writing program in any language, you need to use various variables to store various

information. Variables are nothing but reserved memory locations to store values. This means that when

you create a variable you reserve some space in memory.

You may like to store information of various data types like character, wide character, integer,

floating point, double floating point, boolean etc. Based on the data type of a variable, the operating system

allocates memory and decides what can be stored in the reserved memory.

Primitive Built-in Types

C++ offers the programmer a rich assortment of built-in as well as user defined data types. Following

table lists down seven basic C++ data types –

Type Keyword

Boolean bool

Character char

Integer int

Floating point float

Double floating point double

Valueless void

Wide character wchar_t

Several of the basic types can be modified using one or more of these type modifiers −

 signed

 unsigned

 short

 long

The following table shows the variable type, how much memory it takes to store the value in memory, and

what is maximum and minimum value which can be stored in such type of variables.

Type Typical Bit

Width

Typical Range

18

char 1byte -127 to 127 or 0 to 255

unsigned char 1byte 0 to 255

signed char 1byte -127 to 127

int 4bytes -2147483648 to 2147483647

unsigned int 4bytes 0 to 4294967295

signed int 4bytes -2147483648 to 2147483647

short int 2bytes -32768 to 32767

unsigned short

int

Range 0 to 65,535

signed short int Range -32768 to 32767

long int 4bytes -2,147,483,648 to

2,147,483,647

signed long int 4bytes same as long int

unsigned long int 4bytes 0 to 4,294,967,295

float 4bytes +/- 3.4e +/- 38 (~7 digits)

double 8bytes +/- 1.7e +/- 308 (~15 digits)

long double 8bytes +/- 1.7e +/- 308 (~15 digits)

The size of variables might be different from those shown in the above table, depending on the

compiler and the computer you are using.

Following is the example, which will produce correct size of various data types on your computer.

#include<iostream>

usingnamespacestd;

intmain()

{

cout<<"Size of char : "<<sizeof(char)<<endl;

cout<<"Size of int : "<<sizeof(int)<<endl;

19

cout<<"Size of short int : "<<sizeof(shortint)<<endl;

cout<<"Size of long int : "<<sizeof(longint)<<endl;

cout<<"Size of float : "<<sizeof(float)<<endl;

cout<<"Size of double : "<<sizeof(double)<<endl;

cout<<"Size of wchar_t : "<<sizeof(wchar_t)<<endl;

return0;

}

This example uses endl, which inserts a new-line character after every line and << operator is being

used to pass multiple values out to the screen. We are also using sizeof() operator to get size of various

data types.

When the above code is compiled and executed, it produces the following result which can vary from

machine to machine −

Size of char : 1

Size of int : 4

Size of short int : 2

Size of long int : 4

Size of float : 4

Size of double : 8

Size of wchar_t : 4

typedef Declarations

You can create a new name for an existing type using typedef. Following is the simple syntax to define a

new type using typedef −

typedef type newname;

For example, the following tells the compiler that feet is another name for int −

typedefint feet;

Now, the following declaration is perfectly legal and creates an integer variable called distance −

feet distance;

Enumerated Types

20

An enumerated type declares an optional type name and a set of zero or more identifiers that can be

used as values of the type. Each enumerator is a constant whose type is the enumeration.

Creating an enumeration requires the use of the keyword enum. The general form of an

enumeration type is −

enumenum-name { list of names } var-list;

Here, the enum-name is the enumeration's type name. The list of names is comma separated.

For example, the following code defines an enumeration of colors called colors and the variable c of

type color. Finally, c is assigned the value "blue".

enum color { red, green, blue } c;

c = blue;

By default, the value of the first name is 0, the second name has the value 1, and the third has the

value 2, and so on. But you can give a name, a specific value by adding an initializer. For example, in the

following enumeration, green will have the value 5.

enum color { red, green = 5, blue };

Here, blue will have a value of 6 because each name will be one greater than the one that precedes it.

Casting of Data Types-Typecasting

A cast is a special operator that forces one data type to be converted into another. As an operator, a

cast is unary and has the same precedence as any other unary operator. Typecasting is a conversion of

data in one basic type to another by applying external use of data type keywords.

Example: Program for Typecasting and displaying the converted values

#include<iostream>

using namespace std;

int main()

{

 inti = 69;

 float f = 4.5;

 char c = 'D';

 cout<<"Before Typecasting"<<endl;

 cout<<"---"<<endl;

 cout<<"i = "<<i<<endl;

21

 cout<<"f = "<<f<<endl;

 cout<<"c = "<<c<<endl<<endl;

 cout<<"After Typecasting"<<endl;

 cout<<"--"<<endl;

 cout<<"Integer(int) in Character(char) Format : "<<(char)i<<endl;

 cout<<"Float(float) in Integer(int) Format : "<<(int)f<<endl;

 cout<<"Character(char) in Integer(int) Format : "<<(int)c<<endl;

 return 0;

}

Output:

Before Typecasting

i = 69
f = 4.5
c = D

After Typecasting
--
Integer(int) in Character(char) Format : E
Float(float) in Integer(int) Format : 4
Character(char) in Integer(int) Format : 68

In the above example, the variables of integer(int), float(float) and character(char) are declared and
initialized i = 69, f = 4.5, c = 'D'.

In first cout statement, integer value converted into character according to ASCII character set and the
character E is displayed.

In second cout statement, float value is converted into integer format. The displayed value is 4 not 4.5,
because while performing typecasting from float to integer, it removes decimal part of float value and
considers only integer part.

In third cout statement, character converted into integer. The value of 'D' is 69, printed as an integer. The
integer format converts character into integer.

In the above diagram, 69 is an integer value and it is converted into character E by using typecasting format
(char).

OPERATORS in C++

22

An operator is a symbol that tells the compiler to perform specific mathematical or logical manipulations.

C++ is rich in built-in operators and provides the following types of operators −

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Misc Operators

This chapter will examine the arithmetic, relational, logical, bitwise, assignment and other operators one

by one.

Arithmetic Operators
There are following arithmetic operators supported by C++ language −

Assume variable A holds 10 and variable B holds 20, then −

Show Examples

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from

the first

A - B will give -10

* Multiplies both operands A * B will give 200

/ Divides numerator by de-

numerator

B / A will give 2

% Modulus Operator and

remainder of after an integer

division

B % A will give 0

++ Increment operator, increases

integer value by one

A++ will give 11

-- Decrement operator, decreases

integer value by one

A-- will give 9

Arithmetic operator example:

include<iostream.h>

int main()

{

https://www.tutorialspoint.com/cplusplus/cpp_arithmatic_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_increment_decrement_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_increment_decrement_operators.htm

23

intx,y,sum;

floataverage;

cout<<"Enter 2 integers : "<<endl;

cin>>x>>y;

sum=x+y;

average=sum/2;

cout<<"The sum of "<< x <<" and "<< y <<" is "<< sum <<"."<<endl;

cout<<"The average of "<< x <<" and "<< y <<" is "<< average <<"."<<endl;}

Output:

Enter 2 integers: 8 4

The sum of 4 and 8 is 12.

The average of 4 and 8 is 6.

Relational Operators
There are following relational operators supported by C++ language

Assume variable A holds 10 and variable B holds 20, then −

Show Examples

Operator Description Example

== Checks if the values of two operands are equal

or not, if yes then condition becomes true.

(A == B) is not true.

!= Checks if the values of two operands are equal

or not, if values are not equal then condition

becomes true.

(A != B) is true.

> Checks if the value of left operand is greater

than the value of right operand, if yes then

condition becomes true.

(A > B) is not true.

< Checks if the value of left operand is less than

the value of right operand, if yes then

condition becomes true.

(A < B) is true.

https://www.tutorialspoint.com/cplusplus/cpp_relational_operators.htm

24

>= Checks if the value of left operand is greater

than or equal to the value of right operand, if

yes then condition becomes true.

(A >= B) is not true.

<= Checks if the value of left operand is less than

or equal to the value of right operand, if yes

then condition becomes true.

(A <= B) is true.

Logical Operators
There are following logical operators supported by C++ language.

Assume variable A holds 1 and variable B holds 0, then –

Show Examples

Operator Description Example

&& Called Logical AND operator. If both the

operands are non-zero, then condition

becomes true.

(A && B) is false.

|| Called Logical OR Operator. If any of the two

operands is non-zero, then condition

becomes true.

(A || B) is true.

! Called Logical NOT Operator. Use to

reverses the logical state of its operand. If a

condition is true, then Logical NOT operator

will make false.

!(A && B) is true.

Logical operator example:

#include<iostream.h>

void main()

{

int a, b;

cout<<”\n Enter the a and b values:”;

cin>>a>>b;

if(a<b)&&(b>a)

cout<<”A is small”;

https://www.tutorialspoint.com/cplusplus/cpp_logical_operators.htm

25

else

cout<<”B is big”;

}

Output:

1) Enter the a and b values: 100 300 2) Enter the a and b values: 1 3

 A is small B is big

Bitwise Operators
Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |, and ^ are as

follows –

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume if A = 60; and B = 13; now in binary format they will be as follows −

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

The Bitwise operators supported by C++ language are listed in the following table. Assume variable A holds

60 and variable B holds 13, then –

26

Show Examples

Operator Description Example

& Binary AND Operator copies a bit to the result

if it exists in both operands. (A & B) will give 12 which is 0000 1100

| Binary OR Operator copies a bit if it exists in

either operand.

(A | B) will give 61 which is 0011 1101

^ Binary XOR Operator copies the bit if it is set

in one operand but not both. (A ^ B) will give 49 which is 0011 0001

~ Binary Ones Complement Operator is unary

and has the effect of 'flipping' bits.

(~A) will give -61 which is 1100 0011 in 2's

complement form due to a signed binary

number.

<< Binary Left Shift Operator. The left operands

value is moved left by the number of bits

specified by the right operand.
A << 2 will give 240 which is 1111 0000

>> Binary Right Shift Operator. The left operands

value is moved right by the number of bits

specified by the right operand.
A >> 2 will give 15 which is 0000 1111

Bitwise operator example:

#include<iostream.h>

void main()

{

unsignedint a =60; // 60 = 0011 1100

unsignedint b =13; // 13 = 0000 1101

int c =0;

 c = a & b; // 12 = 0000 1100

cout<<"Line 1 - Value of c is : "<< c <<endl;

 c = a | b; // 61 = 0011 1101

cout<<"Line 2 - Value of c is: "<< c <<endl;

 c = a ^ b ;// 49 = 0011 0001

cout<<"Line 3 - Value of c is: "<< c <<endl;

 c =~a; // -61 = 1100 0011

https://www.tutorialspoint.com/cplusplus/cpp_bitwise_operators.htm

27

cout<<"Line 4 - Value of c is: "<< c <<endl;

}

Output:

Line 1 - Value of c is: 12

Line 2 - Value of c is: 61

Line 3 - Value of c is: 49

Line 4 - Value of c is: -61

Assignment Operators- (optional)
There are following assignment operators supported by C++ language −

Show Examples

Operator Description Example

= Simple assignment operator, Assigns values from

right side operands to left side operand.
C = A + B will assign value of A + B into C

+= Add AND assignment operator, It adds right

operand to the left operand and assign the result

to left operand.

C += A is equivalent to C = C + A

-= Subtract AND assignment operator, It subtracts

right operand from the left operand and assign

the result to left operand.

C -= A is equivalent to C = C - A

*= Multiply AND assignment operator, It multiplies

right operand with the left operand and assign

the result to left operand.

C *= A is equivalent to C = C * A

/= Divide AND assignment operator, It divides left

operand with the right operand and assign the

result to left operand.
C /= A is equivalent to C = C / A

%= Modulus AND assignment operator, It takes

modulus using two operands and assign the

result to left operand.
C %= A is equivalent to C = C % A

<<= Left shift AND assignment operator.
C <<= 2 is same as C = C << 2

>>= Right shift AND assignment operator.
C >>= 2 is same as C = C >> 2

&= Bitwise AND assignment operator. C &= 2 is same as C = C & 2

https://www.tutorialspoint.com/cplusplus/cpp_assignment_operators.htm

28

^= Bitwise exclusive OR and assignment operator.
C ^= 2 is same as C = C ^ 2

|= Bitwise inclusive OR and assignment operator.
C |= 2 is same as C = C | 2

Operator Precedence

Operator precedence determines the grouping of terms in an expression. This affects how an

expression is evaluated. Certain operators have higher precedence than others; for example, the

multiplication operator has higher precedence than the addition operator −

For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher precedence

than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the lowest

appear at the bottom. Within an expression, higher precedence operators will be evaluated first.

Show Examples

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* &sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift <<>> Left to right

Relational <<= >>= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

https://www.tutorialspoint.com/cplusplus/cpp_operators_precedence.htm

29

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

Try the following example to understand operators precedence concept available in C++. Copy and paste

the following C++ program in test.cpp file and compile and run this program.

Check the simple difference with and without parenthesis. This will produce different results because (), /,

* and + have different precedence. Higher precedence operators will be evaluated first −

#include<iostream>
usingnamespacestd;

main(){
int a =20;
int b =10;
int c =15;
int d =5;
int e;

 e =(a + b)* c / d;// (30 * 15) / 5
cout<<"Value of (a + b) * c / d is :"<< e <<endl;

 e =((a + b)* c)/ d;// (30 * 15) / 5
cout<<"Value of ((a + b) * c) / d is :"<< e <<endl;

 e =(a + b)*(c / d);// (30) * (15/5)
cout<<"Value of (a + b) * (c / d) is :"<< e <<endl;

 e = a +(b * c)/ d;// 20 + (150/5)
cout<<"Value of a + (b * c) / d is :"<< e <<endl;

return0;
}

When the above code is compiled and executed, it produces the following result −

Value of (a + b) * c / d is :90
Value of ((a + b) * c) / d is :90
Value of (a + b) * (c / d) is :90
Value of a + (b * c) / d is :50

Comments in C++
Program comments are explanatory statements that you can include in the C++ code. These

comments help anyone reading the source code. All programming languages allow for some form of

comments.

30

C++ supports single-line and multi-line comments. All characters available inside any comment are ignored

by C++ compiler.

C++ comments start with /* and end with */. For example –

/* This is a comment */

/* C++ comments can also

 * span multiple lines

*/

A comment can also start with //, extending to the end of the line. For example −

#include<iostream>
usingnamespacestd;

main(){
cout<<"Hello World";// prints Hello World

return0;
}

When the above code is compiled, it will ignore // prints Hello World and final executable will produce

the following result −

Hello World

Within a /* and */ comment, // characters have no special meaning. Within a // comment, /* and */ have

no special meaning. Thus, you can "nest" one kind of comment within the other kind. For example −

/* Comment out printing of Hello World:

cout<< "Hello World"; // prints Hello World

*/

Conditional statements

If statement

Syntax

An if statement consists of a boolean expression followed by one or more statements.

Syntax

The syntax of an if statement in C++ is −

31

if(boolean_expression)

{

 // statement(s) will execute if the boolean expression is true

}

If the boolean expression evaluates to true, then the block of code inside the if statement will be

executed. If boolean expression evaluates to false, then the first set of code after the end of the if statement

(after the closing curly brace) will be executed.

Example

#include<iostream>
using name space std;

int main ()
{
// local variable declaration:
int a =10;

// check the boolean condition
if(a<20) 10<20
{
// if condition is true then print the following
cout<<"a is less than 20;"<<endl;
}
cout<<"value of a is : "<< a <<endl;

return0;
}

When the above code is compiled and executed, it produces the following result −

a is less than 20;
value of a is : 10

if and else Statement

If statement

Syntax

An if statement consists of a boolean expression followed by one or more statements.

Syntax

The syntax of an if statement in C++ is −

if(boolean_expression)

32

{

 // statement(s) will execute if the boolean expression is true

}

If the boolean expression evaluates to true, then the block of code inside the if statement will be

executed. If boolean expression evaluates to false, then the first set of code after the end of the if statement

(after the closing curly brace) will be executed.

Example

#include<iostream>
using name space std;

int main ()
{
// local variable declaration:
int a =10;

// check the boolean condition
if(a<20) 10<20
{
// if condition is true then print the following
cout<<"a is less than 20;"<<endl;
}
cout<<"value of a is : "<< a <<endl;

return0;
}

When the above code is compiled and executed, it produces the following result −

a is less than 20;
value of a is : 10

The syntax of if...else statement in C++ is –

An if else statement in programming is a conditional statement that runs a different set of statements

depending on whether an expression is true or false

 Syntax

The syntax of an if...else in C++

if(condition)

{

33

// Block For Condition Success

}

else

{

// Block For Condition Fail

}

If the boolean expression evaluates to true, then the if block of code will be executed, otherwise else

block of code will be executed.

Example

#include<iostream>

usingnamespacestd;

int main ()

{

// local variable declaration:

int a =100;

// check the boolean condition

if(a<20)

 {

// if condition is true then print the following

cout<<"a is less than 20;"<<endl;

 }

else

 {

// if condition is false then print the following

cout<<"a is not less than 20;"<<endl;

 }

cout<<"value of a is : "<< a <<endl;

return0;

}

34

When the above code is compiled and executed, it produces the following result −

a is not less than 20;
value of a is : 100

if...else and else….if Statement

An if statement can be followed by an optional else if...else statement, which is very usefull to test various

conditions using single if...else if statement.

When using if , else if , else statements there are few points to keep in mind.

 An if can have zero or one else's and it must come after any else if's.

 An if can have zero to many else if's and they must come before the else.

 Once an else if succeeds, none of he remaining else if's or else's will be tested.

Syntax

The syntax of an if...else if...else statement in C++ is −

if(boolean_expression 1)

{

 // Executes when the boolean expression 1 is true

}

else if(boolean_expression 2)

{

 // Executes when the boolean expression 2 is true

}

else if(boolean_expression 3)

 {

 // Executes when the boolean expression 3 is true

}

else

{

 // executes when the none of the above condition is true.

35

}

Example

#include<iostream>

usingnamespacestd;

int main ()

{

// local variable declaration:

int a =100;

// check the boolean condition

if(a==10)

{

// if condition is true then print the following

cout<<"Value of a is 10"<<endl;

}

else if(a==20)

{

// if else if condition is true

cout<<"Value of a is 20"<<endl;

}

else if(a==30)

{

// if else if condition is true

cout<<"Value of a is 30"<<endl;

}

else

{

// if none of the conditions is true

36

cout<<"Value of a is not matching"<<endl;

}

cout<<"Exact value of a is : "<< a <<endl;

return0;

}

When the above code is compiled and executed, it produces the following result −

Value of a is not matching
Exact value of a is : 100

Switch statement:

Switch case statements are a substitute for long if statements that compare a variable to several integral
values

 The switch statement is a multiway branch statement. It provides an easy way to dispatch
execution to different parts of code based on the value of the expression.

 Switch is a control statement that allows a value to change control of execution.

Syntax

The syntax for a switch statement in C++ is as follows –

switch(expression)

 {

case constant-expression :

statement(s);

break; //optional

case constant-expression :

statement(s);

break; //optional

 // you can have any number of case statements.

default : //Optional

statement(s);

}

37

The following rules apply to a switch statement –

 The expression used in a switch statement must have an integral or enumerated type, or be of a

class type in which the class has a single conversion function to an integral or enumerated type.

 You can have any number of case statements within a switch. Each case is followed by the value to

be compared to and a colon.

 The constant-expression for a case must be the same data type as the variable in the switch, and it

must be a constant or a literal.

 When the variable being switched on is equal to a case, the statements following that case will

execute until a break statement is reached.

 When a break statement is reached, the switch terminates, and the flow of control jumps to the next

line following the switch statement.

 Not every case needs to contain a break. If no break appears, the flow of control will fall through to

subsequent cases until a break is reached.

 A switch statement can have an optional default case, which must appear at the end of the switch.

The default case can be used for performing a task when none of the cases is true. No break is

needed in the default case.

Example

#include<iostream>
usingnamespacestd;

intmain()
{
char o;
float num1, num2;

cout<<"Enter an operator (+, -, *, /): ";
cin>> o;

cout<<"Enter two operands: ";
cin>> num1 >> num2;

switch (o)
 {
case'+':
cout<< num1 <<" + "<< num2 <<" = "<< num1+num2;
break;
case'-':
cout<< num1 <<" - "<< num2 <<" = "<< num1-num2;
break;
case'*':
cout<< num1 <<" * "<< num2 <<" = "<< num1*num2;
break;
case'/':
cout<< num1 <<" / "<< num2 <<" = "<< num1/num2;

38

break;
default:
// operator is doesn't match any case constant (+, -, *, /)
cout<<"Error! operator is not correct";
break;
 }

return0;
}

Output

Enter an operator (+, -, *, /): +

-

Enter two operands: 2.3

4.5

2.3 - 4.5 = -2.2

The - operator entered by the user is stored in o variable. And, two operands 2.3 and 4.5 are stored in

variables num1 and num2 respectively.

Then, the control of the program jumps to

cout<< num1 << " - " << num2 << " = " << num1-num2;

Finally, the break statement ends the switch statement.

If break statement is not used, all cases after the correct case is executed

39

C++ while Loop

 While loop is an entry controlled loop where the condition is checked at the beginning of the loop.

The condition to be checked can be changed inside it. The control can exit a loop in two ways, when the
condition becomes false or using break statement.

The syntax of a while loop is:

while (testExpression)
{
 // codes
}

where, testExpression is checked on each entry of the while loop.

How while loop works?

 The while loop evaluates the test expression.
 If the test expression is true, codes inside the body of while loop is evaluated.
 Then, the test expression is evaluated again. This process goes on until the test expression is false.
 When the test expression is false, while loop is terminated.

Example 1: C++ while Loop

// C++ Program to compute factorial of a number
// Factorial of n = 1*2*3...*n

#include<iostream>
usingnamespacestd;
int main()
{
int number, i =1, factorial =1;

cout<<"Enter a positive integer: ";
cin>> number;

while(i <= number)
 {
factorial*= i;//factorial = factorial * i;
++i;
 }

cout<<"Factorial of "<< number <<" = "<< factorial;
return0;
}

40

Output

Enter a positive integer: 4
Factorial of 4 = 24

In this program, user is asked to enter a positive integer which is stored in variable number. Let's suppose,
user entered .

Then, the while loop starts executing the code. Here's how while loop works:

1. Initially, i = 1, test expression i <= number is true and factorial becomes 1.
2. Variable i is updated to 2, test expression is true, factorial becomes 2.
3. Variable i is updated to 3, test expression is true, factorial becomes 6.
4. Variable i is updated to 4, test expression is true, factorial becomes 24.
5. Variable i is updated to 5, test expression is false and while loop is terminated.

Do-while loop

Do-while loop is a variant of while loop where the condition isn't checked at the top but at the end of the

loop, known as exit controlled loop. This means statements inside do-while loop are executed at least once and

exits the loop when the condition becomes false or break statement is used. The condition to be checked can be

changed inside the loop as well.

 do-while loop is similar to while loop, however there is a difference between them: In while

loop, condition is evaluated first and then the statements inside loop body gets executed, on the

other hand in do-while loop, statements inside do-while gets executed first and then the condition

is evaluated.

Syntax of do-while loop
do
{

 statement(s);

}
while (condition);

#include<iostream>

usingnamespacestd;

int main ()

{

http://www.programtopia.net/cplusplus/docs/while-loop

41

// Local variable declaration:

int a =10;

// do loop execution

do{

cout<<"value of a: "<< a <<endl;

 a = a +1;

}

while(a <20);

return0;

}

When the above code is compiled and executed, it produces the following result −

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

#include<iostream>
usingnamespacestd;
int main()
{
intnum=1;
do
{
cout<<"Value of num: "<<num<<endl;
num++;
 }
while(num<=6);
return0;
}
Output:

42

Value of num: 1
Value of num: 2
Value of num: 3
Value of num: 4
Value of num: 5
Value of num: 6

 While is entry control looping statements .

 Do…while is exit control looping statements.

 The most important difference between While and Do-While is that in Do-While, the block of
code is executed at least once. ...

 In While loop, the condition is first tested and then the block of code is executed if the test result
is true.

 In D0-While, the code is first executed and then the condition is checked.

for loop

for loop is an entry controlled loop, where entry controlled means the condition is checked at the

beginning of loop. For loop is suitable to use when the number of times a loop runs is known or fixed.

Syntax of for loop

for (initialization; condition; increment/decrement)
{
 statement(s);

}

For loop consists of three components

 Initialization

This is a part where a variable is initialized for the loop. It can be a simple numerical assignment or a

complex pointer to the start of a list array. However, it is not mandatory to assign a variable. Loops

without initialization would only have a semicolon ";".

43



For example:

 Condition

Here, condition for executing the loop is checked. It is evaluated on each loop and runs until the

condition is satisfied, otherwise the control exits the loop. This is the only mandatory part of for loop.

 Increment/Decrement

This part increments or decrements the value of a variable that is being checked. The control of a

program shifts to this part at the end of each loop and doesn't necessarily have to be an

increment/decrement statement as shown by the above diagram (Complex pointer assignment). It is

also not mandatory to have any statement here as shown by the above diagram (No assignment).

 A for loop terminates when a break, return, or goto (to a labeled statement outside thefor loop) within
statement is executed. A continue statement in a for loopterminates only the current iteration

#include<iostream>

usingnamespacestd;

int main()

{

for(int i=1; i<=6; i++)

 {

/* This statement would be executed

 * repeatedly until the condition

 * i<=6 returns false.

 */

cout<<"Value of variable i is: "<<i<<endl;

 }

return0;

}

Output:

Value of variable i is: 1

Value of variable i is: 2

Value of variable i is: 3

44

Value of variable i is: 4

Value of variable i is: 5

Value of variable i is: 6

Console I/O operations form:

Formatted and Console I/O

There are mainly two types of consol I/O operations form:

1. Unformatted consol input output
2. Formatted consol input output

C++ Basic Input/Output:

C++ I/O occurs in streams, which are sequences of bytes. If bytes flows from a device like a keyboard, a disk

drive, or a network connection etc. to main memory, this is called input operation and if bytes flow from main

memory to a device likes a display screen, a printer, a disk drive, or a network connection, etc, this is called

output operation.

I/O Library Header Files:

There are following header files important to C++ programs:

Header File Function and Description

<iostream> This file defines the cin, cout, objects, which correspond to the standard input stream, the standard

output stream.

Using in C-Language

<stdio> This files defines the printf(), scanf() functions, which correspond to the standard input, the

standard output

45

<conio> This header declares several useful library functions for performing "console input and output"

from a program like clrscr(),getch() functions.

The standard output stream (cout):

The predefined object cout is an instance of ostream class. The cout object is said to be "connected to"

thestandard output device, which usually is the display screen. The cout is used in conjunction with the stream

insertion operator, which is written as << which are two less than signs as shown in the following example.

#include <iostream.h>

int main()

{

charstr[] = "Hello C++";

cout<<"Value of str is : "<<str<<endl;

}

When the above code is compiled and executed, it produces the following result:

Value of stris : Hello C++

The C++ compiler also determines the data type of variable to be output and selects the appropriate stream

insertion operator to display the value. The << operator is overloaded to output data items of built-in types integer,

float, double, strings and pointer values.

The insertion operator << may be used more than once in a single statement as shown above and endl is used to

add a new-line at the end of the line.

The standard input stream (cin):

The predefined object cin is an instance of istream class. The cin object is said to be attached to the standard input

device, which usually is the keyboard. The cin is used in conjunction with the stream extraction operator, which is

written as >> which are two greater than signs as shown in the following example.

#include <iostream>

int main()

{

char name[50];

46

cout<<"Please enter your name: ";

cin>> name;

cout<<"Your name is: "<< name <<endl;

}

When the above code is compiled and executed, it will prompt you to enter a name. You enter a value and then hit

enter to see the result something as follows:

Please enter your name: cplusplus

Your name is: cplusplus

The C++ compiler also determines the data type of the entered value and selects the appropriate stream

extraction operator to extract the value and store it in the given variables.

The stream extraction operator >> may be used more than once in a single statement. To request more than one

datum you can use the following:

cin>> name >> age;

This will be equivalent to the following two statements:

cin>> name;

cin>> age;

Printf and Scanf:

Printf():

Printf is a predefined function in "stdio.h" header file, by using this function, we can print the data or user

defined message on console or monitor. While working with printf(), it can take any number of arguments

but first argument must be within the double cotes (" ") and every argument should separated with comma

(,) Within the double cotes, whatever we pass, it prints same, if any format specifies are there, then that

copy the type of value. The scientific name of the monitor is called console.

Syntax:

printf("user defined message");

Syntax:

47

prinf("Format specifers",value1,value2,..);

Example of printf() function:

int a=10;

double d=13.4;

printf("%f%d",d,a);

scanf():

scanf() is a predefined function in "stdio.h" header file. It can be used to read the input value from the keyword.

Syntax:

scanf("format specifiers",&value1,&value2,.....);

Example of scanf function:

int a;

float b;

scanf("%d%f",&a,&b);

In the above syntax format specifier is a special character in the C language used to specify the data type of

value.

Format specifier:

The address list represents the address of variables in which the value will be stored.

Example:

Format specifier Type of value

%d Integer

%f Float

%lf Double

%c Single character

%s String

%u Unsigned int

%ld Long int

%lf Long double

48

int a;

float b;

scanf("%d%f",&a,&b);

In the above example scanf() is able to read two input values (both int and float value) and those are stored in a

and b variable respectively.

Syntax :

double d=17.8;

char c;

longint l;

scanf("%c%lf%ld",&c&d&l);

1) Unformatted consol input output operations

These input / output operations are in unformatted mode. The following are operations of unformatted
consol input / output operations:

cin

It is the method to take input any variable / character / string.

Syntax:

cin>>variable / character / String / ;

Example:

#include<iostream>
Usingnamespacestd;

int main()
{
intnum;
charch;
stringstr;

cout<<"Enter Number"<<endl;
cin>>num; //Inputs a variable;
cout<<"Enter Character"<<endl;
cin>>ch; //Inputs a character;
cout<<"Enter String"<<endl;
cin>>str; //Inputs a string;

return 0;

49

}

Output

Enter Number
07
Enter Character
h
Enter String
Deepak

cout

This method is used to print variable / string / character.

Syntax:

cout<< variable / charcter / string;

Example:

#include<iostream>
usingnamespacestd;

int main()
{
intnum=100;
charch='X';
stringstr="Deepak";

cout<<"Number is "<<num<<endl; //Prints value of variable;
cout<<"Character is "<<ch<<endl; //Prints character;
cout<<"String is "<<str<<endl; //Prints string;

return 0;
}

Output

Number is 100
Character is X
String is Deepak

2) Formatted console input output operations

In formatted console input output operations we uses following functions to make output in perfect

50

alignment. In industrial programming all the output should be perfectly formatted due to this reason C++
provides many function to convert any file into perfect aligned format. These functions are available in

header file <iomanip>. iomanip refers input output manipulations.

Syntax:

Set width

cout<<setw(int n);

Example:

#include<iostream>
#include<iomanip>
usingnamespacestd;

int main()
{
 int x=10;
 cout<<setw(20)<<variable;

 return 0;
}

Output

 10

fill(char)

This function is used to fill specified character at unused space.

Syntax:

cout<<setfill('character')<<variable;

Example:

#include<iostream>
#include<iomanip>
usingnamespacestd;

51

int main()
{
 int x=10;
 cout<<setw(20);
 cout<<setfill('#')<<x;

 return 0;
}

Output

##################10

precison(n)

This method is used for setting floating point of the output.

Syntax:

cout<<setprecision('int n')<<variable;

Example:

#include<iostream>
#include<iomanip>
usingnamespacestd;

int main()
{
 float x=10.12345;
 cout<<setprecision(5)<<x;

 return 0;
}

Output

10.123

Header Files in C++

Header files contain definitions of Functions and Variables, which is imported or used into any C++ program by using

the pre-processor #include statement. Header file have an extension ".h" which contains C++ function declaration and macro

definition.

52

Each header file contains information (or declarations) for a particular group of functions. Like stdio.h header file contains

declarations of standard input and output functions available in C++ which is used for get the input and print the output.

Similarly, the header file math.h contains declarations of mathematical functions available in C++.

Types of Header files

 System header files: It is comes with compiler.

 User header files: It is written by programmer.

Header File Function and Description

<iostream> This file defines the cin, cout, objects, which correspond to the standard input stream, the standard

output stream.

Using in C-Language

<stdio> This files defines the printf(), scanf() functions, which correspond to the standard input, the

standard output

<conio> This header declares several useful library functions for performing "console input and output"

from a program like clrscr(),getch() functions.

53

Why need of header files

When we want to use any function in our C++ program then first we need to import their definition from C++ library, for

importing their declaration and definition we need to include header file in program by using #include. Header file include at

the top of any C++ program.

For example if we use clrscr() in C++ program, then we need to include, conio.h header file, because in conio.h header file

definition of clrscr() (for clear screen) is written in conio.h header file.

Syntax

#include<conio.h>

See another simple example why use header files

Syntax

#include<iostream>

int main()

{

usingnamespacestd;

cout<<"Hello, world!"<<endl;

return0;

}

In above program print message on scree hello world! by using cout but we don't define cout here actually already cout has

been declared in a header file called iostream.

How to use header file in Program

Both user and system header files are include using the pre-processing directive #include. It has following two forms:

Syntax

#include<file>

This form is used for system header files. It searches for a file named file in a standard list of system directives.

54

Syntax

#include"file"

This form used for header files of our own program. It searches for a file named file in the directive containing the current file.

continue Statements

The continue statement works somewhat like the break statement. Instead of forcing termination,

however, continue forces the next iteration of the loop to take place, skipping any code in between.

For the for loop, continue causes the conditional test and increment portions of the loop to execute. For

the while and do...while loops, program control passes to the conditional tests.

Syntax

The syntax of a continue statement in C++ is −

continue;

Example

#include<iostream>
usingnamespacestd;

int main ()
{
// Local variable declaration:
int a =10;
// do loop execution
Do
{
if(a ==15)
{
// skip the iteration.
 a = a +1;
continue;
}
cout<<"value of a: "<< a <<endl;
 a = a +1;
}
while(a <20);
return0;
}

When the above code is compiled and executed, it produces the following result −

value of a: 10
value of a: 11
value of a: 12

55

value of a: 13
value of a: 14
value of a: 16
value of a: 17
value of a: 18
value of a: 19

break

The break statement has the following two usages in C++ −

 When the break statement is encountered inside a loop, the loop is immediately terminated and

program control resumes at the next statement following the loop.

 It can be used to terminate a case in the switch statement (covered in the next chapter).

If you are using nested loops (i.e., one loop inside another loop), the break statement will stop the

execution of the innermost loop and start executing the next line of code after the block.

Syntax

The syntax of a break statement in C++ is −

break;

Flow Diagram

Example

#include<iostream>

usingnamespacestd;

56

int main (){

// Local variable declaration:

int a =10;

// do loop execution

do

{

cout<<"value of a: "<< a <<endl;

 a = a +1;

if(a >15)

{

// terminate the loop

break;

}

}

while(a <20);

return0;

}

When the above code is compiled and executed, it produces the following result −

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15

57

Character I/O (getc, getchar, putc, putchar)

Input means to provide the program with some data to be used in the program and Output means to

display data on screen or write the data to a printer or a file.

C programming language provides many built-in functions to read any given input and to display data on

screen when there is a need to output the result.

In this tutorial, we will learn about such functions, which can be used in our program to take input from

user and to output the result on screen.

All these built-in functions are present in C header files, we will also specify the name of header files in

which a particular function is defined while discussing about it.

scanf() and printf() functions

The standard input-output header file, named stdio.h contains the definition of the

functions printf()and scanf(), which are used to display output on screen and to take input from user

respectively.

#include<stdio.h>

voidmain()

{

// defining a variable

int i;

/*

displaying message on the screen

asking the user to input a value

 */

printf("Please enter a value...");

/*

reading the value entered by the user

 */

scanf("%d",&i);

/*

58

displaying the number as output

 */

printf("\nYou entered: %d", i);

}

When you will compile the above code, it will ask you to enter a value. When you will enter the value, it will

display the value you have entered on screen.

You must be wondering what is the purpose of %d inside the scanf() or printf() functions. It is known

as format string and this informs the scanf() function, what type of input to expect and inprintf() it is used

to give a heads up to the compiler, what type of output to expect.

Format String Meaning

%d Scan or print an integer as signed decimal number

%f Scan or print a floating point number

%c To scan or print a character

%s To scan or print a character string. The scanning ends at whitespace.

We can also limit the number of digits or characters that can be input or output, by adding a number with

the format string specifier, like "%1d" or "%3s", the first one means a single numeric digit and the second

one means 3 characters, hence if you try to input 42, while scanf() has "%1d", it will take only 4 as input.

Same is the case for output.

In C Language, computer monitor, printer etc output devices are treated as files and the same process is

followed to write output to these devices as would have been followed to write the output to a file.

NOTE : printf() function returns the number of characters printed by it, and scanf() returns the number of

characters read by it.

int i =printf("studytonight");

In this program printf("studytonight"); will return 12 as result, which will be stored in the variablei,

because studytonight has 12 characters.

59

getchar() & putchar() functions

The getchar() function reads a character from the terminal and returns it as an integer. This function reads

only single character at a time. You can use this method in a loop in case you want to read more than one

character. The putchar() function displays the character passed to it on the screen and returns the same

character. This function too displays only a single character at a time. In case you want to display more than

one characters, use putchar() method in a loop.

#include <stdio.h>

voidmain()

{

int c;

printf("Enter a character");

/*

 Take a character as input and

store it in variable c

 */

 c =getchar();

/*

display the character stored

in variable c

 */

putchar(c);

}

When you will compile the above code, it will ask you to enter a value. When you will enter the value, it will

display the value you have entered.

gets() & puts() functions

The gets() function reads a line from stdin(standard input) into the buffer pointed to by str pointer, until

either a terminating newline or EOF (end of file) occurs. The puts() function writes the string strand a

trailing newline to stdout.

str → This is the pointer to an array of chars where the C string is stored. (Ignore if you are not able to

understand this now.)

https://www.studytonight.com/c/loops-in-c.php
https://www.studytonight.com/pointers-in-c.php

60

#include<stdio.h>

voidmain()

{

/* character array of length 100 */

charstr[100];

printf("Enter a string");

gets(str);

puts(str);

getch();

}

When you will compile the above code, it will ask you to enter a string. When you will enter the string, it will

display the value you have entered.

Difference between scanf() and gets()

The main difference between these two functions is that scanf() stops reading characters when it

encounters a space, but gets() reads space as character too.

If you enter name as Study Tonight using scanf() it will only read and store Study and will leave the part

after space. But gets() function will read it completely.

UNIT-I

S.No
 Questions OPT1 OPT2 OPT3 OPT4 Answer

1
The decomposition of a problem into a number of
entities called___________

 objects classes methods messages objects

2
OOPS follows______________ approach in program
design

 bottom-up top-down middle top bottom-up

3 Objects take up ______________in the memory
 space address memory bytes space

4
 _________________is a collection of objects of
similar type

 Objects methods classes messages classes

5
We can create ____________of objects belonging to
that class

1 2 10 any
number any number

6
The wrapping up of data & function into a single unit is
known as _______________

 Polymorphism
encapsulation functions data

members encapsulation

7

__________________refers to the act of representing
essential features without including the background
details or explanations

 encapsulation inheritance Dynamic
binding

Abstractio
n

 Abstraction

(1 mark questions)
SUBJECT CODE: 19CSU101

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Part -A Online Examinations

COIMBATORE - 21
DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 CLASS : I B.Sc COMPUTER SCIENCE

BATCH : 2019-2022

SUBJECT: PROGRAMMING FUNDAMENTALS USING C/C++

8 Attributes are sometimes called______________
 data members methods messages functions data members

9
The functions operate on the datas are
called______________

 methods data
members messages classes methods

10
______________is the process by which objects of one
class acquire the properties of objects of another class

 polymorphism
encapsulation

 data
binding

Inheritance Inheritance

11
__________________means the ability to take more
than one form

 polymorphism
encapsulation

 data
binding none polymorphism

12

The process of making an operator to exhibit different
behaviors in different instances is known as

 function
overloading

 operator
overloading

 method
overloading

 message
overloadin
g

 operator
overloading

13
Single function name can be used to handle different
types of tasks is known as ___________

 function
overloading

 operator
overloading

polymorphi
sm

encapsulat
ion

 operator
overloading

14

_______________means that the code associated with
a given
 procedure call is not known until the time of the call

 late binding Dynamic
binding

 Static
binding none Dynamic

binding

15 Objects can be___________
 created created &

destroyed

permanent

temporary

 created &
destroyed

16
______________helps the programmer to build secure
programs

 Dynamic
binding Data hiding Data

building
 message
passing Data hiding

17

_________________techniques for communication
between objects makes the interface descriptions with
external systems much simpler

 message
passing

 Data
binding

Encapsulati
on

 Data
passing

 message
passing

18 Variables are declared in_________________
 only in main() anywhere in

the scope
 before the
main() only

 only at
the
beginning

 anywhere in
the scope

19 How many sections in C++?
2 4 1 5 4

20
____________________refers to permit initialization
of the variables at run time

 Dynamic
initialization

 Dynamic
binding

 Data
binding

 Dynamic
message

 Dynamic
initialization

21
_____________________provides an alias for a
previously defined variable

 static variable Dynamic
variable

 reference
variable

 address
of an
variable

 reference
variable

22
Reference variable must be initialized at the time of

 declaration assigning

initializatio
n

 running declaration

23 The ___________________is an exit-controlled loop
 while do-while for switch do-while

24 The ________________is an entry-entrolled loop
 while do-while for switch for

25 ____________________is an entry-controlled one
 while do-while for switch while

26
Error checking does not occur during compilation if we
are using_______________

 functions macros
 pre-
defined
functions

 operators macros

27
____________________is a function that is expanded
in line when it is invoked

 macros inline
function

 predefined
function

preprocess
or macros

 inline function

28
________________refers to the use of same thing for
different purposes

 overloading Dynamic
binding

 message
loading none overloading

29
_________________are extensively used for handling
class objects

 overloaded
functions methods objects messages overloaded

functions

30
____________________is used to reduce the number
of functions to be defined

 default
arguments methods objects classes default

arguments

31 Control structures are said to be_______________
 programs structured

programs statements case
statements

 structured
programs

32
________________________is a decision making
statement

 for jump break if if

33
The bool type data occupies ___________byte in
memory

 two one three four one

34 if-else-if ladder sometimes called________________
 if-else-if nested nested-if-

else-if
 if-else-if-
staircase if-else-if if-else-if-

staircase

35
How many statements are used to perform an
unconditional transfer?

2 3 4 5 4

36 The label must start with___________
 character __ number

alphanume
ric

 character

37
 ________________statement is frequently used to
terminate the loop in the switch case()

 jump goto continue break break

38
 ______________statement does not require any
condition

 for if goto while goto

39

 ____________statement is used to transfer the control
t pass on
 t the beginning of the block/loop

 break jump goto continue continue

40
________________statement is a multiway branch
statement

 for switch if while switch

41
Every case statement in switch case statement
terminates with

 ; : , >> :

42 How many types of loop control structure exist in c++?
1 3 2 4 3

43
The expression are separated by ____________in the
for loop

 : ; , ++ ;

44 Test is performed at the ____________of the for loop.
 top middle end program

terminates top

45
Condition is checked at the ____________of the loop
in the do-while statement.

 beginning end middle program
terminates end

46 Every expression always return____________
 0 or 1 1 or 2 -1 or 0 none 0 or 1

47 Which of the following loop statement uses 2 keyword?
 do-while loop for loop if loop while

loop do-while loop

48 The meaning of if(1) is________________
 always false always true both(a) &

(b) none always true

49 The for loop comprises of ______________actions
2 3 1 4 3

50
_____________statement present at the bottom of the
switch case statements

 default case label none default

51

__________________is an assignment statement that is
used
 to set the loop control variables

 Increment declaring

Initializatio
n

decrement Initialization

52
Which of the following control expressions are valid
for an of statement ?

 an integer
expression

 a Boolean
expression

 either A
or B

 Neither A
nor B

 a Boolean
expression

53

If the data is received from the input devices in
sequence then it is called________. Source stream Object

stream

Destination
stream

 Input
stream. Source stream

54

When the data is passed to the output devices it is
called_____ Source stream Object

stream

Destination
stream

 Input
stream.

 Destination
stream

55

The C++ have a number of stream classes that are used
to work with _________ operations. Console I/O Console and

file
 formatted
console

unformatte
d console

 Console and
file

56

The data accepted with default setting by I/O function
of the language is known as----- Formatted Unformatted

Argumente
d

files Unformatted

57

 _________ is used as the input stream to read data.
 Cout Printf Cin Scanf. Cin

58

cin and cout are ________ for input and output of data. user defined
stream

 system
defined
stream

 Pre
defined
stream

stream Pre defined
stream

59

.The data obtained or represented with some
manipulators are called ______. formatted data unformatted

data
 extracted
data None. formatted data

60

 The output formats can be controlled with
manipulators having the header file as iostream.h conio.h stdlib.h iomanip.h iomanip.h

61

The _____ and ______ are derived classes from ios
based class.

 istream and
ostream

 source and
destination
stream

 iostream
and source
stream

 None. istream and
ostream

62

 The manipulator << endl is equivalent to____
 ‘\t’ ’\r’ ’\n’ ’\b’ ’\n’

63 While loop is _______ statement.
entry controlled exit controlledbranching none entry controlled

64 Do.. While loop is _____ statement.
entry controlled exit controlledbranching none exit controlled

65 For loop is an _______ statement.
entry controlled exit controlledbranching none entry controlled

66 ______ statement causes loop to be continued with next iteration after skipping any statements between them.
continue goto break exit continue

1

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2019 onwards)

DEPARTMENT OF CS, CA& IT

SUBJECT :PROGRAMMING FUNDAMENTALS USING C / C++ Class : I B.Sc (CS) B

 SEMESTER: I SUBJECT CODE: 19CSU101

 UNIT-II

Functions and Arrays:

FUNCTIONS

Utility of functions,

Call by Value, Call by Reference,

Functions returning value,

 Void functions, Inline Functions

 Return data type of functions,

 Functions parameters,

 Differentiating between Declaration and Definition of Functions,

 Command Line Arguments/Parameters in Functions

Functions with variable number of Arguments.

ARRAYS :

Creating and Using One Dimensional Arrays

 (Declaring and Defining an Array,

 Initializing an Array,

 Accessing,

 Manipulating array

 elements using loops),

Use Various types of arrays

 (Integer,

 float and character arrays / Strings)

Two-dimensional Arrays

 (Declaring,

 Defining and Initializing Two Dimensional Array,

 Working with Rows and Columns)

Introduction to Multi-dimensional arrays.

2

Functions In C++

A function is a group of statements that together perform a task. Every C++ program has at

least one function, which is main(), and all the most trivial programs can define additional functions.

You can divide up your code into separate functions. How you divide up your code among different

functions is up to you, but logically the division usually is such that each function performs a specific

task.

A function declaration tells the compiler about a function's name, return type, and parameters. A

function definition provides the actual body of the function.

The C++ standard library provides numerous built-in functions that your program can call. For

example, function strcat() to concatenate two strings, function memcpy() to copy one memory

location to another location and many more functions.

A function is known with various names like a method or a sub-routine or a procedure etc.

Defining a Function

The general form of a C++ function definition is as follows −

return_typefunction_name(parameter list)
 {
body of the function
}

A C++ function definition consists of a function header and a function body. Here are all the parts of a

function −

 Return Type − A function may return a value. The return_type is the data type of the value

the function returns. Some functions perform the desired operations without returning a

value. In this case, the return_type is the keyword void.

 Function Name − This is the actual name of the function. The function name and the

parameter list together constitute the function signature.

 Parameters − A parameter is like a placeholder. When a function is invoked, you pass a value

to the parameter. This value is referred to as actual parameter or argument. The parameter

list refers to the type, order, and number of the parameters of a function. Parameters are

optional; that is, a function may contain no parameters.

 Function Body − The function body contains a collection of statements that define what the

function does.

Example

3

Following is the source code for a function called max(). This function takes two parameters num1

and num2 and return the biggest of both −

// function returning the max between two numbers

int max(int num1, int num2)
{
 // local variable declaration
int result;

if (num1 > num2)
result = num1;
else
result = num2;

return result;
}

Function Declarations

A function declaration tells the compiler about a function name and how to call the function. The

actual body of the function can be defined separately.

A function declaration has the following parts −

return_typefunction_name(parameter list);

For the above defined function max(), following is the function declaration −

int max(int num1, int num2);

Parameter names are not important in function declaration only their type is required, so following is

also valid declaration −

int max(int, int);

Function declaration is required when you define a function in one source file and you call that

function in another file. In such case, you should declare the function at the top of the file calling the

function.

Calling a Function

While creating a C++ function, you give a definition of what the function has to do. To use a function,

you will have to call or invoke that function.

When a program calls a function, program control is transferred to the called function. A called

function performs defined task and when it’s return statement is executed or when its function-

ending closing brace is reached, it returns program control back to the main program.

To call a function, you simply need to pass the required parameters along with function name, and if

function returns a value, then you can store returned value. For example −

 Live Demo

#include<iostream>
usingnamespace std;

// function declaration

http://tpcg.io/XuXfLz

4

intmax(int num1,int num2);

int main ()
{
// local variable declaration:
int a =100;
int b =200;
int ret;

// calling a function to get max value.
ret=max(a, b); // a,b are Actual Argument
cout<<"Max value is : "<< ret <<endl;

return0;
}

// function returning the max between two numbers
intmax(int num1,int num2) // num1 & num 2 are formals
{
// local variable declaration
int result;

if(num1 > num2)
result= num1;
else
result= num2;

return result;
}

I kept max() function along with main() function and compiled the source code. While running final

executable, it would produce the following result −

Max value is : 200

Function Arguments

If a function is to use arguments, it must declare variables that accept the values of the arguments.

These variables are called the formal parametersof the function.

The formal parameters behave like other local variables inside the function and are created upon

entry into the function and destroyed upon exit.

While calling a function, there are two ways that arguments can be passed to a function −

Sr.No Call Type & Description

1 Call by Value

This method copies the actual value of an argument into the formal parameter of

the function. In this case, changes made to the parameter inside the function

have no effect on the argument.

2 Call by Pointer

https://www.tutorialspoint.com/cplusplus/cpp_function_call_by_value.htm
https://www.tutorialspoint.com/cplusplus/cpp_function_call_by_pointer.htm

5

This method copies the address of an argument into the formal parameter.

Inside the function, the address is used to access the actual argument used in the

call. This means that changes made to the parameter affect the argument.

3 Call by Reference

This method copies the reference of an argument into the formal parameter.

Inside the function, the reference is used to access the actual argument used in

the call. This means that changes made to the parameter affect the argument.

By default, C++ uses call by value to pass arguments. In general, this means that code within a

function cannot alter the arguments used to call the function and above mentioned example while

calling max() function used the same method.

Default Values for Parameters

When you define a function, you can specify a default value for each of the last parameters. This value

will be used if the corresponding argument is left blank when calling to the function.

This is done by using the assignment operator and assigning values for the arguments in the function

definition. If a value for that parameter is not passed when the function is called, the default given

value is used, but if a value is specified, this default value is ignored and the passed value is used

instead. Consider the following example −

 L Demo

#include<iostream>
usingnamespace std;

intsum(inta,int b =20)
{
int result;
result= a + b;

return(result);
}
int main ()
{
// local variable declaration:
int a =100;
int b =200;
int result;

// calling a function to add the values.
result=sum(a, b);
cout<<"Total value is :"<< result <<endl;

// calling a function again as follows.
result= sum(a);
cout<<"Total value is :"<< result <<endl;

return0;
}

When the above code is compiled and executed, it produces the following result −

https://www.tutorialspoint.com/cplusplus/cpp_function_call_by_reference.htm
http://tpcg.io/KoJLUN

6

Total value is :300
Total value is :120

Call By Value

The call by value method of passing arguments to a function copies the actual value of an

argument into the formal parameter of the function. In this case, changes made to the parameter

inside the function have no effect on the argument.

By default, C++ uses call by value to pass arguments. In general, this means that code within a

function cannot alter the arguments used to call the function. Consider the function swap() definition

as follows.

// function definition to swap the values.
voidswap(intx,int y){
int temp;

temp= x;/* save the value of x */
 x = y;/* put y into x */
 y = temp;/* put x into y */

return;
}

Now, let us call the function swap() by passing actual values as in the following example −

#include<iostream>
usingnamespace std;

// function declaration
voidswap(intx,int y);

int main (){
// local variable declaration:
int a =100;
int b =200;

cout<<"Before swap, value of a :"<< a <<endl;
cout<<"Before swap, value of b :"<< b <<endl;

// calling a function to swap the values.

swap(a, b);

cout<<"After swap, value of a :"<< a <<endl;
cout<<"After swap, value of b :"<< b <<endl;

return0;
}

When the above code is put together in a file, compiled and executed, it produces the following result

−

Before swap, value of a :100
Before swap, value of b :200

7

After swap, value of a :100
After swap, value of b :200

Which shows that there is no change in the values though they had been changed inside the function.

Call By Reference

The call by reference method of passing arguments to a function copies the reference of an

argument into the formal parameter. Inside the function, the reference is used to access the actual

argument used in the call. This means that changes made to the parameter affect the passed

argument.

To pass the value by reference, argument reference is passed to the functions just like any other

value. So accordingly you need to declare the function parameters as reference types as in the

following function swap(), which exchanges the values of the two integer variables pointed to by its

arguments.

// function definition to swap the values.

void swap(int&x,int&y)

{

int temp;

temp= x;/* save the value at address x */

 x = y;/* put y into x */

 y = temp;/* put x into y */

return;

}

For now, let us call the function swap() by passing values by reference as in the following example −

#include<iostream>
usingnamespace std;

// function declaration
void swap(int&x,int&y);
int main ()
{
// local variable declaration:
int a =100;
int b =200;

cout<<"Before swap, value of a :"<< a <<endl;
cout<<"Before swap, value of b :"<< b <<endl;

/* calling a function to swap the values using variable reference.*/

8

swap(a, b);

cout<<"After swap, value of a :"<< a <<endl;
cout<<"After swap, value of b :"<< b <<endl;

return0;
}

When the above code is put together in a file, compiled and executed, it produces the following result

−

Before swap, value of a :100
Before swap, value of b :200
After swap, value of a :200
After swap, value of b :100

Command line arguments in C/C++
 It is possible to pass some values from the command line to your C or C++ programs when they

are executed. These values are called command line arguments and many times they are important

for your program especially when you want to control your program from outside instead of hard

coding those values inside the code.

 The command line arguments are handled using main() function arguments where argc refers

to the number of arguments passed, and argv[] is a pointer array which points to each argument

passed to the program.

The most important function of C/C++ is main() function. It is mostly defined with a return type of int
and without parameters :

int main()

 { /* ... */ }

 We can also give command-line arguments in C and C++. Command-line arguments are given
after the name of the program in command-line shell of Operating Systems.

 To pass command line arguments, we typically define main() with two arguments : first
argument is the number of command line arguments and second is list of command-line arguments.

int main(intargc, char *argv[]) { /* ... */ }

or

int main(intargc, char **argv) { /* ... */ }

 argc (ARGument Count) is int and stores number of command-line arguments passed by the

user including the name of the program. So if we pass a value to a program, value of argc would

be 2 (one for argument and one for program name)

 The value of argc should be non negative.

 argv(ARGument Vector) is array of character pointers listing all the arguments.

9

 If argc is greater than zero,the array elements from argv[0] to argv[argc-1] will contain

pointers to strings.

 Argv[0] is the name of the program , After that till argv[argc-1] every element is command -line

arguments.

For better understanding run this code on your linux machine.

// Name of program mainreturn.cpp

#include <iostream>

usingnamespacestd;

intmain(intargc, char** argv)

{

 cout<< "You have entered "<<argc

 << " arguments:"<< "\n";

 for(inti = 0; i<argc; ++i)

 cout<<argv[i] << "\n";

 return0;

}

Run on IDE

Input:

$ g++ mainreturn.cpp -o main

$./main geeks for geeks

Output:

You have entered 4 arguments:

./main

geeks

for

geeks

 Note : Other platform-dependent formats are also allowed by the C and C++ standards; for

example, Unix (though not POSIX.1) and Microsoft Visual C++ have a third argument giving the

program’s environment, otherwise accessible through getenv in stdlib.h: Refer C program to print

environment variables for details.

Properties of Command Line Arguments:

1. They are passed to main() function.

2. They are parameters/arguments supplied to the program when it is invoked.

http://quiz.geeksforgeeks.org/c-program-print-environment-variables/
http://quiz.geeksforgeeks.org/c-program-print-environment-variables/

10

3. They are used to control program from outside instead of hard coding those values inside the

code.

4. argv[argc] is a NULL pointer.

5. argv[0] holds the name of the program.

6. argv[1] points to the first command line argument and argv[n] points last argument.

https://ide.geeksforgeeks.org/index.php---ref

FUNCTION RETURNING VALUE

 C++ Value- FUNCTION RETURNING VALUE With void functions, we use the function

name as a statement in our program to execute the actions that function performs. With value-

returning functions, the actions result in the return of a value, and that value can be used in an

expression.

Here is the syntax template of a value-returning function prototype:

return DataTypefunctionName(DataTypeOfParameterList);

Here is the syntax template of a value-returning function definition:

return DataTypefunctionName(DataTypeWithParameterList)

{

 Statement

 .

 .

 .

 return value-returning-expression;

}

 With void functions, we use the function name as a statement in our program to

execute the actions that function performs. With value-returning functions, the actions result in the

return of a value, and that value can be used in an expression. For example, let's write a function that

returns the smallest of three input values.

Example

// Program PrintMin prints the smallest of three input values.

#include <iostream>

using namespace std;

int Minimum(int, int, int); // function prototype

// Post: Minimum returns the minimum of three distinct values.

11

int main()

{

int one, two, three;

int MIN;

cout<< "Input three integer values. Press return." <<endl;

cin>> one >> two >> three;

 MIN = Minimum(one, two, three); // function call

cout<< "The minimum value of the three numbers is " << MIN <<endl;

 return 0;

}

//**

//Function definition with 3 parameters

//**

int Minimum(int first, int second, int third)

// Post: Returns minimum of three distinct int values.

{

 if (first <= second && first < third)

 return first;

 else if (second <= first && second < third)

 return second;

 else

 return third;

}

 The function prototype declares a function of data type int. This means that the value

returned to the calling function is of type int. Because a value-returning function always sends one

value back to the calling function, we designate the type of the value before the name of the function.

We call this data type the function return data type or function type.

 In the above example, the function invocation/call occurs in the output statement of

the main function. The Minimum function is invoked/called and the returned value is immediately

sent to the output stream. There are three parameters first, second and third. The three arguments

sent from main are one, two and three. Note: in the function prototype, only the datatypes of the

parameter list are needed. In the function heading (or function definition), however, both the

parameters and their datatype are necessary.

12

Return from void functions in C++

Void functions are “void” due to the fact that they are not supposed to return values. True, but not

completely. We cannot return values but there is something we can surely return from void functions.

Some of cases are listed below.

Inline function

 C++ inline function is powerful concept that is commonly used with classes. If a

function is inline, the compiler places a copy of the code of that function at each point where the

function is called at compile time.

 Any change to an inline function could require all clients of the function to be

recompiled because compiler would need to replace all the code once again otherwise it will continue

with old functionality.

 To inline a function, place the keyword inline before the function name and define the

function before any calls are made to the function. The compiler can ignore the inline qualifier in case

defined function is more than a line.

 A function definition in a class definition is an inline function definition, even without

the use of the inline specifier.

Following is an example, which makes use of inline function to return max of two numbers −

 Live Demo

#include <iostream>

using namespace std;

inline int Max(int x, int y)

 {

 return (x > y)? x : y;

}

// Main function for the program

int main()

{

cout<< "Max (20,10): " <<Max(20,10) <<endl;

cout<< "Max (0,200): " <<Max(0,200) <<endl;

cout<< "Max (100,1010): " <<Max(100,1010) <<endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Max (20,10): 20

13

Max (0,200): 200

Max (100,1010): 1010

DIFFERENTIATING BETWEEN DECLARATION AND DEFINITION OF FUNCTIONS

A function declaration tells the compiler about a function's name, return type, and

parameters. A function definition provides the actual body of the function.

Function Types

 Function with no argument and no return value
 Function with no argument but return value
 Function with argument but no return value
 Function with argument and return value

Defining a Function

The general form of a C++ function definition is as follows −

return_typefunction_name(parameter list)
 {
body of the function
}

A C++ function definition consists of a function header and a function body. Here are all the parts of a

function −

 Return Type − A function may return a value. The return_type is the data type of the value

the function returns. Some functions perform the desired operations without returning a

value. In this case, the return_type is the keyword void.

 Function Name − This is the actual name of the function. The function name and the

parameter list together constitute the function signature.

 Parameters − A parameter is like a placeholder. When a function is invoked, you pass a value

to the parameter. This value is referred to as actual parameter or argument. The parameter

list refers to the type, order, and number of the parameters of a function. Parameters are

optional; that is, a function may contain no parameters.

 Function Body − The function body contains a collection of statements that define what the

function does.

Example

Following is the source code for a function called max(). This function takes two parameters num1

and num2 and return the biggest of both −

// function returning the max between two numbers

int max(int num1, int num2)
{
 // local variable declaration

https://www.programiz.com/cpp-programming/user-defined-function-types#no_argument_no_return
https://www.programiz.com/cpp-programming/user-defined-function-types#no_argument_yes_return
https://www.programiz.com/cpp-programming/user-defined-function-types#yes_argument_no_return
https://www.programiz.com/cpp-programming/user-defined-function-types#yes_argument_yes_return

14

int result;

if (num1 > num2)
result = num1;
else
result = num2;

return result;
}

Function Declarations

A function declaration tells the compiler about a function name and how to call the function. The

actual body of the function can be defined separately.

A function declaration has the following parts −

return_typefunction_name(parameter list);

For the above defined function max(), following is the function declaration −

int max(int num1, int num2);

Parameter names are not important in function declaration only their type is required, so following is

also valid declaration −

int max(int, int);

Function declaration is required when you define a function in one source file and you call that

function in another file. In such case, you should declare the function at the top of the file calling the

function.

A function declaration declares the identifier (i. e. the name) of the function. If the function
declaration specifies they types of the function's parameters, that is a function prototype. Modern C
and C++ do not allow function declarations that do not specify the types of the parameters.

A function definition is a function declaration that provides the code for the function itself.

Examples:

intsqr(int n);// declaration

intsqr(int n)

{
return n*n;// definition

}

A definition actually sets aside space for whatever the thing is that’s being defined. For a function, this
includes the function body, which says what a function will do when its called. For the above
declaration, the following is one potential definition/implementation:

intstrlen(char*s)
{
intlen=0;
while(s[len]!='\0')
++len;
returnlen;
}

15

Clearly, a definition is also a declaration. If you give a definition for a function, the compiler has all it
needs to compile any subsequent uses of the function. But a declaration may not be a definition
.Example:

void sum(int x, int y)

{

 int z;

 z = x + y;

cout<< z;

}

int main()

{

 int a = 10;

 int b = 20;

sum (a, b);

}

Here, a and b are sent as arguments, and x and y are parameters which will hold values of a and b

to

perform required operation inside function.

 Function body : is he part where the code statements are written.

Declaring, Defining and Calling Function

Function declaration, is done to tell the compiler about the existence of the function. Function's
return type, its name & parameter list is mentioned. Function body is written in its definition. Lets
understand this with help of an example.

#include < iostream>

using namespace std;

int sum (int x, int y); //declaring function

int main()

{

 int a = 10;

 int b = 20;

 int c = sum (a, b); //calling function

cout<< c;

}

16

int sum (int x, int y) //defining function

{

 return (X + y);

}

Here, initially the function is declared, without body. Then inside main() function it is called,
as the function returns sumation of two values, hence z is their to store the value of sum. Then, at last,
function is defined, where the body of function is mentioned. We can also, declare & define the
function together, but then it should be done before it is called.

Function-parameters

Formal Parameters

Formal parameters are written in the function prototype and function header of the
definition. Formal parameters are local variables which are assigned values from the arguments when
the function is called.

Actual Parameters or Arguments

When a function is called, the values (expressions) that are passed in the call are called
the arguments or actual parameters (both terms mean the same thing). At the time of the call each
actual parameter is assigned to the corresponding formal parameter in the function definition.

For value parameters (the default), the value of the actual parameter is assigned to the formal
parameter variable. For reference parameters, the memory address of the actual parameter is assigned
to the formal parameter.

Value Parameters

By default, argument values are simply copied to the formal parameter variables at the time of
the call. This type of parameter passing is called pass-by-value. It is the only kind of parameter passing
in Java and C. C++ also has pass-by-reference (see below).

Reference Parameters

A reference parameter is indicated by following the formal parameter name in the function
prototype/header by an ampersand (&). The compiler will then pass the memory address of the actual
parameter, not the value. A formal reference parameter may be used as a normal variable, without
explicit dereference - the compiler will generate the correct code for using an address. Reference
parameters are useful in two cases:

 To change the value of actual parameter variables.

 To more efficiently pass large structures.

Default Values for Parameters

When you define a function, you can specify a default value for each of the last parameters.

This value will be used if the corresponding argument is left blank when calling to the function.

This is done by using the assignment operator and assigning values for the arguments in the

function definition. If a value for that parameter is not passed when the function is called, the default

17

given value is used, but if a value is specified, this default value is ignored and the passed value is

used instead. Consider the following example −

 L Demo

#include<iostream>
usingnamespace std;

intsum(inta,int b =20)
{
int result;
result= a + b;

return(result);
}
int main ()
{
// local variable declaration:
int a =100;
int b =200;
int result;

// calling a function to add the values.
result=sum(a, b);
cout<<"Total value is :"<< result <<endl;

// calling a function again as follows.
result= sum(a);
cout<<"Total value is :"<< result <<endl;

return0;
}

When the above code is compiled and executed, it produces the following result −

Total value is :300
Total value is :120

Array

What is array?

An array is a collection of similar data-types & they are referenced by a common name.
[OR]

 An array is a collection of data that holds fixed number of values of same type.

The Various types of Array those are provided by c as Follows:-

1. Single Dimensional Array

2. Two Dimensional Array

3. Three Dimensional array(Multi)

Declaring Arrays
To declare an array in C++, the programmer specifies the type of the elements and the number

of elements required by an array as follows –

http://tpcg.io/KoJLUN

18

int age[100];

Here, the age array can hold maximum of 100 elements of integer type.

The size and type of arrays cannot be changed after its declaration.

How to declare an array in C++?

dataTypearrayName[arraySize];

For example,

float mark[5];

Here, we declared an array, mark, of floating-point type and size 5. Meaning, it can hold 5 floating-
point values.

Elements of an Array and accessing

You can access elements of an array by using indices.Suppose you declared an array mark as
above.

 The first element is mark[0],

second element is mark[1] and so on.

An element is accessed by indexing the array name. This is done by placing the index of the

element within square brackets after the name of the array. For example –

double salary = balance[9];

The above statement will take 10th element from the array and assign the value to salary
variable. Following is an example, which will use all the above-mentioned three concepts viz.
declaration, assignment and accessing arrays −

 Live o

#include<iostream>

usingnamespace std;

#include<iomanip>

usingstd::setw;

http://tpcg.io/QRe4fY

19

int main ()

{

intn[10];// n is an array of 10 integers

// initialize elements of array n to 0

for(inti=0;i<10;i++)

{

n[i]=i+100;// set element at location i to i + 100

}

cout<<"Element"<<setw(13)<<"Value"<<endl;

// output each array element's value

for(int j =0; j <10;j++)

{

cout<<setw(7)<< j <<setw(13)<< n[j]<<endl;

}

return0;

}

This program makes use of setw() function to format the output. When the above code is compiled
and executed, it produces the following result −

Element Value
 0 100
 1 101
 2 102
 3 103
 4 104
 5 105
 6 106
 7 107
 8 108
 9 109

Few key notes:

 Arrays have 0 as the first index not 1. In this example, mark[0] is the first element.
 If the size of an array is n, to access the last element, (n-1) index is used. In this

example, mark[4] is the last element.
 Suppose the starting address of mark[0] is 2120d. Then, the next address, a[1], will be 2124d,

address of a[2] will be 2128d and so on. It's because the size of a float is 4 bytes.

Initialize an array

It's possible to initialize an array during declaration. For example,

20

int mark[5] = {19, 10, 8, 17, 9};

double balance[5] = {1000.0, 2.0, 3.4, 17.0, 50.0};

The number of values between braces { }can not be larger than the number of elements that
we declare for the array between square brackets []. Following is an example to assign a single
element of the array −

If you omit the size of the array, an array just big enough to hold the initialization is created.
Therefore, if you write −

double balance[] = {1000.0, 2.0, 3.4, 17.0, 50.0};

Another method to initialize array during declaration:

int mark[] = {19, 10, 8, 17, 9};

Here,

mark[0] is equal to 19
mark[1] is equal to 10
mark[2] is equal to 8
mark[3] is equal to 17
mark[4] is equal to 9

 One dimensional Array

A dimensional is used representing the elements of the array for example

 int a[5]

The [] is used for dimensional or the sub-script of the array that is generally used for declaring the
elements of the array For Accessing the Element from the array we can use the Subscript of the Array
like this

 a[3]=100

This will set the value of 4th element of array

So there is only the single bracket then it called the Single Dimensional Array

This is also called as the Single Dimensional Array

Example: C++ Array One dimensional Array

C++ program to store and calculate the sum of 5 numbers entered by the user using arrays.

#include<iostream>
usingnamespace std;
intmain()
{
int numbers[5], sum =0;

21

cout<<"Enter 5 numbers: ";

// Storing 5 number entered by user in an array
// Finding the sum of numbers entered
for(inti=0;i<5;++i)
{
cin>> numbers[i];
 sum += numbers[i];
}
cout<<"Sum = "<< sum <<endl;
return0;
}

Output

Enter 5 numbers:
 3
4
5
4
2
Sum = 18

Two Dimensional Array

It is a collection of data elements of same data type arranged in rows and columns (that is, in

two dimensions).

The Two Dimensional array is used for representing the elements of the array in the form of
the rows and columns and these are used for representing the Matrix A Two Dimensional Array uses
the two subscripts for declaring the elements of the Array

 Like this int a[3][3]

So This is the Example of the Two Dimensional Array In this first 3 represents the total number of
Rows and the Second Elements Represents the Total number of Columns The Total Number of
elements are judge by Multiplying the Numbers of Rows * Number of Columns in The Array in the
above array the Total Number of elements are 9

Declaration of Two-Dimensional Array

Type arrayName[numberOfRows][numberOfColumn];

For example,

int Sales[3][5];

22

Initialization of Two-Dimensional Array

An two-dimensional array can be initialized along with declaration. For two-dimensional array

initialization, elements of each row are enclosed within curly braces and separated

by commas. All rows are enclosed within curly braces.

Here is the general form of a Multi dimensional array declaration −

type name[size1][size2]...[sizeN];

Here is the general form of a Three (Multi) array declaration −

int threedim[5][10][4];

int A[4][3] = { {22, 23, 10},

 {15, 25, 13},

 {20, 74, 67},

 {11, 18, 14} };

Referring to Array Elements

To access the elements of a two-dimensional array, we need a pair of indices: one for

the row position and one for the column position. The format is as simple as:

name[rowIndex][columnIndex]

Examples:

cout<<A[1][2]; //print an array element

A[1][2]=13; // assign value to an array element

cin>>A[1][2]; //input element

Using Loop to input an Two-Dimensional Array from user

int mat[3][5], row, col ;

for (row = 0; row < 3; row++)

for (col = 0; col < 5; col++)

cin>> mat[row][col];

Example 1:

Two Dimensional Array

C++ Program to display all elements of an initialisedtwo dimensional array.

#include<iostream>
usingnamespace std;

intmain()
{

inttest[3][2]={
{2,-5},
{4,0},

23

{9,1}
};

// Accessing two dimensional array using
// nested for loops
for(inti=0;i<3;++i)
{
for(int j =0; j <2;++j)
{
cou t<<"test["<<i<<"]["<< j <<"] = "<< test[i][j]<<endl;
}
}

return0;
}

Example : 2

In this program, user is asked to entered the number of rows r and columns c. The value
of r and c should be less than 100 in this program.The user is asked to enter elements of two matrices
(of order r*c).Then, the program adds these two matrices, saves it in another matrix (two-dimensional
array) and displays it on the screen.

Example: Add Two Matrices using Multi-dimensional Arrays

#include<iostream>
usingnamespace std;

intmain()
{
Int r, c, a[100][100], b[100][100], sum[100][100],i, j;

cout<<"Enter number of rows (between 1 and 100): ";
cin>> r;

cout<<"Enter number of columns (between 1 and 100): ";
cin>> c;

cout<<endl<<"Enter elements of 1st matrix: "<<endl;

// Storing elements of first matrix entered by user.
for(i=0;i< r;++i)
for(j =0; j < c;++j)
{
cout<<"Enter element a"<<i+1<< j +1<<" : ";
cin>> a[i][j];
}

// Storing elements of second matrix entered by user.
cout<<endl<<"Enter elements of 2nd matrix: "<<endl;
for(i=0;i< r;++i)
for(j =0; j < c;++j)
{
cout<<"Enter element b"<<i+1<< j +1<<" : ";
cin>> b[i][j];
}

24

// Adding Two matrices
for(i=0;i< r;++i)
for(j =0; j < c;++j)
 sum[i][j]= a[i][j]+ b[i][j];

// Displaying the resultant sum matrix.
cout<<endl<<"Sum of two matrix is: "<<endl;
for(i=0;i< r;++i)
for(j =0; j < c;++j)
{
cout<< sum[i][j]<<" ";
if(j == c -1)
cout<<endl;
}

return0;
}

Multi dimensional

The elements of an array can be of any data type, including arrays! An array of arrays is called
a multidimensional array.

The Multidimensional Array are used for Representing the Total Number of Tables of Matrix A
Three dimensional Array is used when we wants to make the two or more tables of the Matrix
Elements for Declaring the Array Elements we can use the way like this

 int a[3][3][3]

In this first 3 represents the total number of Tables and the second 3 represents the total
number of rows in the each table and the third 3 represents the total number of Columns in the Tables

 So this makes the 3 Tables having the three rows and the three columns

 The Main and very important thing about the array that the elements are stored always in the
Contiguous in the memory of the Computer

So, to initialize and print three(Multi) dimensional array, you have to use three for loops.
Third for loop (the innermost loop) forms 1D array, second for loop forms 2D array and the
third for loop (the outermost loop) forms 3D array, as shown here in the following program.

C++ Programming Code for Three(multi) Dimensional (3D) Array

A three dimensional (3D) array can be thought of as an array of arrays of arrays.

Following is a simple C++ program to initialize three-dimensional (3D) array of dimensions 3*4*2,
then it will access some elements present in the array and display the element on the screen :

/* C++ Program - Three Dimensional Array Program */
#include<iostream.h>
#include<conio.h>
void main()
{
 int arr[3][4][2] = {
 {
 {2, 4},
 {7, 8},
 {3, 4},

https://codescracker.com/cpp/index.htm

25

 {5, 6}
 },
 {
 {7, 6},
 {3, 4},
 {5, 3},
 {2, 3}
 },
 {
 {8, 9},
 {7, 2},
 {3, 4},
 {5, 1}
 }
 };
 cout<<"arr[0][0][0] = "<<arr[0][0][0]<<"\n";
 cout<<"arr[0][2][1] = "<<arr[0][2][1]<<"\n";
 cout<<"arr[2][3][1] = "<<arr[2][3][1]<<"\n";
 getch();
}

(https://codescracker.com/cpp/program/cpp-program-add-two-matrices.htm)

When the above C++ program is compile and executed, it will produce the following result:

Here, the outer array has three elements, each of which is a 2-D array of four 1-D arrays, each
of which contains two integers. It means, a 1-D array of two elements is constructed first. Then four
such 1-D arrays are placed one below the other to give a 2-D array containing four rows. Then, three
such 2-D arrays are placed one behind the other to yield a 3-D array containing three 2-D arrays.

(http://ecomputernotes.com)

SUBJECT: PROGRAMMING FUNDAMENTALS USING C/C++

UNIT-II

S.No Questions OPT1 OPT2 OPT3 OPT4 Answer

1
A member function can call another member function directly
 without using the _________ operator

Assignment equal dot greater than dot

2
A ______ member variable is initialized to zero when the
first object of its class is created

 Dynamic constant static protected static

3
_________ Variables are normally used to maintain values
common to the entire class.

 Private
protected Public static static

4
When a copy of the entire object is passed to the function it is
called as _________

 Pass by
reference

 pass by
function

 pass by
pointer pass by value pass by value

5
When the address of the object is transferred to the function it
is called as _________

 pass by
reference

 pass by
function

 pass by
pointer

 pass by
value pass by reference

6
A ________ function can be invoked like a normal function
without the help of any object

 Void friend inline none of the
above friend

KARPAGAM ACADEMY OF HIGHER EDUCATION

COIMBATORE - 21

DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 CLASS : I B.Sc COMPUTER SCIENCE

BATCH : 2019-2022

Part -A Online Examinations
SUBJECT CODE: 19CSU101

(1 mark questions)

7
The ________ member variables must be defined outside the
class.

 Static private public protected Static

8
A friend function, although not a member function, has full
access right to the ______ members of the class

 Static private public protected private

9

Function should return a _________.
value character both (a)

and (b) none value

10

_______________function is useful when calling function is
small Built-in Inline user-

defined none. Inline

11

c++ propouse a new future called _____________ function
overloading

polymorp
hism

Inline
function calling function Inline function

12 Which of the following cannot be passed to a function?

 reference
variables arrays class

objects header files header files

13 Function should return a _________.
value character both (a)

and (b) none value

14
_______________function is useful when calling function is
small

Built-in Inline user-
defined none. Inline

15 Inline function needs more_____________
variables functions memorysp

ace
control
structures memoryspace

16
Multiple function with the same name is known as

function
overloading

Encapsula
tion

inheritanc
e

operator
overloading

function
overloading

17
The ____________ function creates a new set of variables and
 copies the values of arguments into them.

calling
function

called
function function function

overloading called function

18 Function contained within a class is called a _____________
built-in member

function

user-
defined
function

calling function member function

19
In c++,Declarations can appear________________in the
body of the function

Only at the
top middle bottom anywhere anywhere

20 Modular structure of C language enables the program to be split into several modules called ________
structure union integers function function

21 The actual and formal arguments of functions must match in ____
 actual arguments formal arguments dummy parameters temporary variables actual arguments

22 Functions receives the values passed by the calling function and stores in_____
actual arguments formal arguments dummy parameters temporary variables formal arguments

23 In looping process first step is _________
intialise countertest for conditionincrement execution statementintialise counter

24 In case of for loop ______ section is executed before test condition is evaluated after every iteration.
increment intialise testing execution of statementsincrement

25 _____ statement is the mechanism for returning value to the calling function
return continue break goto return

26 A function can return ____ value per call
one zero two multiple one

27 ______ is a special case where a function calls itself.
recursion subroutine structure none recursion

28 ___ is a group of related data items that share a common name.
variables array function structure array

29 A ______ is an array of characters.
string variables function none string

30 Individual values in array is referred as _______.
subscript elements subelementsnone elements

31 Any subscript between _______ are valid for an array of fifty elements.
0-49 0-56 0-48 0-46 0-49

32 Value in a matrix can be represented by _______ subscript.
1 3 2 4 2

33 arrays that do not have their dimensions explicitly specified are called_____
unsized arraysundimensional arraysinitialized arraysto size arrays unsized arrays

34 In ASCII character set the uppercase alphabet represent codes _____
65 to 90 96 to 45 97 to 123 1 to 26 65 to 90

35 Modular structure of C language enables the program to be split into several modules called ________
structure union integers function function

36 The actual and formal arguments of functions must match in ____

 actual
arguments

formal
arguments

 dummy
parameters

 temporary
variables actual arguments

37 Functions receives the values passed by the calling function and stores in_____

actual
arguments

 formal
arguments

 dummy
parameters

 temporary
variables formal arguments

38 Process of calling a function using pointers to pass address of variable is known as ___________ .

 call by
value

 call by
reference

 call by
method call by address call by reference

39 The process of passing actual values of variable is known as ________.

 call by
value

 call by
reference

 call by
method call by address call by value

40 In pointers when function is called ______ are passed as actual arguments.
 values addresses operators none of the

above addresses

1

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2019 onwards)

DEPARTMENT OF CS,CA & IT

SUBJECT:PROGRAMMING FUNDAMENTALS USING C / C++ Class : I B. Sc (CS) B

SEMESTER: I SUBJECT CODE: 19CSU101

 UNIT-III

Derived Data Types (Structures and Unions):

Understanding utility of structures and unions

 Declaring, initializing and using simple structures and unions

 Manipulating individual members of structures and unions

 Array of Structures,

Individual data members as structures,

 Passing and returning structures from functions

Structure with union as members

 Union with structures as members.

 Pointers and References in C++:

Understanding a Pointer Variable,

Simple use of Pointers (Declaring and Dereferencing Pointers to simple variables),

Pointers to Pointers,

Pointers to structures,

Problems with Pointers,

Passing pointers as function arguments,

Returning a pointer from a function,

Using arrays as pointers,

Passing arrays to functions

Pointers vs. References,

Declaring and initializing references,

Using references as function arguments and function return values

2

Utility (introduction) of structures

Structure is a collection of variables of different data types under a single name. It is similar
to a class in that, both holds a collection of data of different data types.

For example: You want to store some information about a person: his/her name, citizenship
number and salary. You can easily create different variables name, citNo, salary to store these
information separately.

However, in the future, you would want to store information about multiple persons. Now,
you'd need to create different variables for each information per person:

 name1, citNo1, salary1, name2, citNo2, salary2

You can easily visualize how big and messy the code would look. Also, since no relation
between the variables (information) would exist, it's going to be a daunting task.

A better approach will be to have a collection of all related information under a single
name Person, and use it for every person. Now, the code looks much cleaner, readable and efficient as
well.

This collection of all related information under a single name Person is a structure.

Declaring a structure

The struct keyword defines a structure type followed by an identifier (name of the structure).
Then inside the curly braces, you can declare one or more members (declare variables inside curly
braces) of that structure. For example:

struct Person
{
char name[50];
int age;
float salary;
};

Here a structure person is defined which has three members: name, age and salary.

When a structure is created, no memory is allocated.

The structure definition is only the blueprint for the creating of variables. You can imagine it as a
datatype. When you define an integer as below:

int foo;

The int specifies that, variable foo can hold integer element only. Similarly, structure definition
only specifies that, what property a structure variable holds when it is defined.
Note: Remember to end the declaration with a semicolon (;)

https://www.programiz.com/cpp-programming/object-class

3

Define a structure variable
Once you declare a structure person as above. You can define a structure variable as:

Person bill;

Here, a structure variable bill is defined which is of type structure Person.
When structure variable is defined, only then the required memory is allocated by the compiler.

Considering you have either 32-bit or 64-bit system, the memory of float is 4 bytes, memory
of int is 4 bytes and memory of char is 1 byte.
Hence, 58 bytes of memory is allocated for structure variable bill.

Access the members of a structure

The members of structure variable is accessed using a dot (.) operator.
Suppose, you want to access age of structure variable bill and assign it 50 to it. You can perform this task
by using following code below:

bill.age = 50;

Example: C++ Structure
C++ Program to assign data to members of a structure variable and display it.

#include<iostream>
usingnamespace std;

structPerson
{
char name[50];
int age;
float salary;
};
int main()
{
struct Person p1;
cout <<"Enter Full name: ";
cin.get(p1.name, 50);
cout <<"Enter age: ";
cin >> p1.age;
cout <<"Enter salary: ";
cin >> p1.salary;

cout <<"\nDisplaying Information."<< endl;
cout <<"Name: "<< p1.name << endl;
cout <<"Age: "<< p1.age << endl;
cout <<"Salary: "<< p1.salary;

return0;
}

4

Output

Enter Full name: Magdalena Dankova
Enter age: 27
Enter salary: 1024.4

Displaying Information.
Name: Magdalena Dankova
Age: 27
Salary: 1024.4

Here a structure Person is declared which has three members name, age and salary.
Inside main() function, a structure variable p1 is defined. Then, the user is asked to enter information
and data entered by user is displayed.

Passing and returning structures from functions

Passing structure to function

Structure is a collection of variables of different data types under a single name. It is similar
to a class in that, both holds a collection of data of different data types.

A structure variable can be passed to a function in similar way as normal argument. Consider this
example:

Example 1: C++ Structure and Function

#include<iostream>
usingnamespace std;

structPerson
{
char name[50];
int age;
float salary;
};

void displayData(Person);// Function declaration

int main()
{
structPerson p;

cout <<"Enter Full name: ";
cin.get(p.name,50);
cout <<"Enter age: ";
cin >> p.age;
cout <<"Enter salary: ";
cin >> p.salary;

// Function call with structure variable as an argument

https://www.programiz.com/cpp-programming/function
https://www.programiz.com/cpp-programming/object-class

5

displayData(p);

return0;
}

void displayData(Person p)
{
cout <<"\nDisplaying Information."<< endl;
cout <<"Name: "<< p.name << endl;
cout <<"Age: "<< p.age << endl;
cout <<"Salary: "<< p.salary;
}

Output

Enter Full name: Bill Jobs
Enter age: 55
Enter salary: 34233.4

Displaying Information.
Name: Bill Jobs
Age: 55
Salary: 34233.4

In this program, user is asked to enter the name, age and salary of a Person inside main()function.

Then, the structure variable p is to passed to a function using.

displayData(p);

The return type of displayData() is void and a single argument of type structure Person is passed.

Then the members of structure p is displayed from this function.

Returning structure from function

Example 2: Returning structure from function

#include<iostream>
usingnamespace std;

structPerson
{
char name[50];
int age;
float salary;

6

};

Person getData(Person);
void displayData(Person);

int main()
{

Person p;

p = getData(p);
displayData(p);

return0;
}

Person getData(Person p)
{

cout <<"Enter Full name: ";
cin.get(p.name,50);

cout <<"Enter age: ";
cin >> p.age;

cout <<"Enter salary: ";
cin >> p.salary;

return p;
}

void displayData(Person p)
{
cout <<"\nDisplaying Information."<< endl;
cout <<"Name: "<< p.name << endl;
cout <<"Age: "<< p.age << endl;
cout <<"Salary: "<< p.salary;
}In this program, the structure variable p of type structure Person is defined under main()function.

The structure variable p is passed to getData() function which takes input from user which is then
returned to main function.p = getData(p);

Note: The value of all members of a structure variable can be assigned to another structure using
assignment operator = if both structure variables are of same type. You don't need to manually assign
each members.

Then the structure variable p is passed to displayData() function, which displays the information.

Manipulating individual members of structures

7

 A function that would change the values of the members of a struct type variable. However, it
produces an unexpected output and I can't figure out why this is happening. /Program to test struct
types/
#include<iostream>
#include<cstring>
usingnamespace std;
struct myStruct
{
string a;
string b;
int c;
float d;
};

void assignValues(myStruct myobj)
{
Strcpy(myobj.a,”foobar”);
Strcpy(myobj.a,”Foobar”);
myobj.c =12;
myobj.d =15.223;
return (myobj);
}
int main()
{
myStruct x;
mystruct asignvalues(mystruct);
cout << x.a <<endl;
x=assignValues(x);
cout << x.a<<endl;
cout << x.b << endl;
cout << x.c << endl;
cout << x.d << endl;
}

Individual data members as structures

A structure variable has been defined, its member can be accessed through the use of dot

(.) operator. For example, the following code fragment assigns 1740 to year element of birth_date

structure variable declared earlier:

 birth_date.year = 1740 ;

Syntax to Access Structure Member in C++

The structure variable name followed by a period or dot (.) and the element name references to

that individual structure element. The syntax to access structure element is shown here:

structure-name.element-name

https://codescracker.com/cpp/cpp-data-structures.htm
https://codescracker.com/cpp/cpp-variables.htm
https://codescracker.com/cpp/cpp-operators.htm

8

Remember that the first component or element of an expression involving the dot (.) operator is

the name of specific structure variable (birth_date in this case), not the name of structure specifier

(date).

The structure members are treated just like other variables. So, to print year of birth_date, you can

simply write:

cout << birth_date.year ;

In same fashion, to read day, month and year of joining_date, you can simply write :

cin >> joining_date.day >> joining_date.month >> joining_date.year ;

C++ Access Structure Members Example

Here is an example, demonstrating how to access members of a structure in C++

/* C++ Access Structure Member */

#include<iostream.h>
#include<conio.h>

struct st
{
 int a; // structure member
 int b; // structure member
 int sum; // structure member
} st_var; // structure variable

void main()
{
 clrscr();
 cout<<"Enter any two number:\n";
 // accessing structure member a and b
 cin>>st_var.a>>st_var.b;
 // accessing structure member sum, a, and b
 st_var.sum = st_var.a + st_var.b;
 // accessing structure member sum
 cout<<"\nSum of the two number is "<<st_var.sum;
 getch();
}

Here is the sample run of this C++ program:

9

Array Of Structure

The structure and the array both are C++ derived types. While arrays are collections of analogous

elements, structures assemble elements under one roof. Thus both the array and the structure allow

several values to be treated together as a single data object.

The arrays and structures can be combined together to form complex data objects. There may be

structures contained within an array ; also there may be an array as an element of a structure. Let's

discuss various combinations of arrays and structures.

Since an array can contain similar elements, the combination having structures within an array is

an array of structures. To declare an array of structures, you must first define a structure and then

declare an array variable of that type. For example, to store addresses of 100 members of the council,

you need to create an array.

Now, to declare a 100-element array of structures of type addr (defined in previous chapters), we will

write :

struct addr mem_addr [100];

This creates 100 sets of variables that are organised as defined in the structure addr. To access a

specific structure, index the structure name. For instance, to print the houseno of structure 8, write :

 cout << mem_add[7].houseno ;

Always remember for all arrays in C++, indexing begins at 0.

An array of structures may even contain nested structures. For example, you can even create an

array having structures emp type which is a nested structure (already defined in previous chapter) :

 emp sales_emp[100] ;

10

The above declaration creates an array sales_emp to store 100 structures of emp type.

C++ Structure Array Example

Here is an example program, demonstrating structure array (array of structure) in C++. This

program creates an array of structures

#include<iostream.h>

#include<conio.h>

void main ()

{
 struct student

 {

 int subject1 ;

 int subject2 ;

 int subject3 ;

 };
 int i , n, total;

 float av ;
 clrscr();
 struct student st[20];
 cout<<" \n Enter the Number of Students : " ;

 cin>> n ;

 for (i =0; i<n; i++)

 {

 cout<<"\nEnter Marks of three Subjects of "<<i+1<<" Student : " ;

 total = 0 ;

 cin>> st[i].subject1 >>st[i].subject2>>st[i].subject3;

 total = st[i].subject1+st[i].subject2+st[i].subject3;

 av = (float) total /3 ;

 cout<<"\nAVERAGE Marks of "<<i+1<<" Student is = "<< av ;

 }

 getch();
}

UNION

Union is also like a Structure means Unions is also used for Storing data of different data types
But the Difference b/w Structure and Union is that Structure Consume the Memory of addition of all
elements of Different Data Types but a Union Consume the Memory that is Highest among all variables.
It Consume Memory of highest variables and it will share the data among all the other Variables Suppose
that if a union Contains variables Like Int ,Float ,Char then the Memory Will be consumed of Float
variable because float is highest among all variables of data types etc. We can declare a Union in a
Structure and Vice-versa.

 A union is a user-defined type in which all members share the same memory location.
 This means that at any given time a union can contain no more than one object from its list of

members.

11

 It also means that no matter how many members a union has, it always uses only enough
memory to store the largest member.

 Unions can be useful for conserving memory when you have lots of objects and/or limited
memory.

 However they require extra care to use correctly because you are responsible for ensuring that
you always access the last member that was written to.

The union is declared as:

union union-type-name

{

union-list

} union-variable;

Difference between Structure and Union.

Unions:

Unions in C++ are a user defined data type that uses the same memory as other objects from a

list of objects. At an instance it contains only a single object.

Syntax:

union union-type-name

{

type member-name;

type member-name;

}union-variables;

12

Example :

#include <iostream.h>

union Emp

{

int num;

double sal;

};

int main()

{

Emp value;

value.num = 2;

cout <<"Employee Number::"<< value.num<<"\nSalary is:: "<< value.sal << endl;value.sal = 2000.0;

cout <<"Employee Number::"<< value.num<<"\nSalary is:: "<< value.sal << endl;

return 0;

}

Result :

Employee number is::2

Salary is::2.122e-314

Employee number is::0

Salary is::2000

In the above example, only "value.num" is assigned, but still the "val.sal" gets a value automatically, since
the memory locations are same.

Manipulating individual members unions

#include<conio.h>

#include<iostream.h>

void main()
{
 union student
 {
 char grade;
 int rollno;
 float marks;
 double fees;
 }s;
 clrscr();
 cout<<"Enter the Garde of the Student : ";
 cin>>s.grade;
 cout<<"Grade is :"<<s.grade<<endl;
 cout<<"Enter the RollNo of the Student : ";

13

 cin>>s.rollno;
 cout<<"Rollno is:"<<s.rollno<<endl;
 cout<<"Enter the Marks of the Student : ";
 cin>>s.marks;
 cout<<"Marks are :"<<s.marks<<endl;
 cout<<"Enter the Fees of the Student : ";
 cin>>s.fees;
 cout<<"Fees paid is: "<<s.fees;
 getch();
}

Understanding a Pointer Variable

What is a Pointer?

A pointer is a variable that holds a memory address where a value stored. Every variable is
located under unique location within a computer's memory and this unique location has its own unique
address, the memory address. However, pointer is a different beast, because it holds the memory
address as its value and has an ability to “point” (hence pointer) to certain value within a memory, by
use of its associated memory address.

A pointer is declared using the * operator before an identifier.

C++ Pointer Declaration

The general form of a pointer declaration is as follows :

 type ∗var_name ;

where type is any valid C++ data type and var_name is the name of the pointer variable. Following
declarations declares pointers of different types :

int ∗iptr ; //creates an integer pointer iptr

char ∗cptr ; //creates a character pointer cptr

float ∗fptr ; //creates a float pointer fptr

When we say that iptr is an integer pointer, it means that the memory location being pointer to by iptr

can hold only integer values. In other words, it can stated that iptr is a pointer to integer. However, all

pointer arithmetic is done relative to its base type, so it is important to declare the pointers correctly.

Two special operators ∗ and & are used with pointers. The & is a unary operator that returns the

memory address of its operand. For example,

int i = 25 ; // declares an int variable i

int ∗iptr ; // declares an int pointer iptr
iptr = &i ; // stores the memory address of i into iptr

14

The above given assignment statement stores the memory address of i (& returns memory address of its

operand) into iptr so that iptr is now pointing to the memory location of i. The expression &i will return

an int pointer value because i is an integer thus, &i will return a pointer to integer. Similarly, if ch is a

character variable, then &ch will return a char pointer value.

Note - The operand of & operator is as ordinary available but operand of ∗ is a pointer variable.

Using '∗' operator, changing/accessing value being pointed to by pointer (its state) is called

Dereferencing.

Dereferencing refers to changing/accessing state of the pointer.

The pointer operator ∗ (called "at address" sign) is the same sign as multiply operator ∗ and the pointer

operator & (called "address of" sign) is same as bitwise AND operator &. But these operators have no

relationship to each other, Both pointer operator & and ∗ have a higher precedence than all other

arithmetic operators except the unary minus, with which they have equal precedence.

Using Pointers in C++
There are few important operations, which we will do with the pointers very frequently. (a) We

define a pointer variable. (b)Assign the address of a variable to a pointer. (c) Finally access the value at

the address available in the pointer variable. This is done by using unary operator * that returns the

value of the variable located at the address specified by its operand. Following example makes use of

these operations −

#include <iostream>
using namespace std;
int main ()

{
 int var = 20; // actual variable declaration.
 int *ip; // pointer variable

 ip = &var; // store address of var in pointer variable

 cout << "Value of var variable: ";
 cout << var << endl;

 // print the address stored in ip pointer variable
 cout << "Address stored in ip variable: ";
 cout << ip << endl;

 // access the value at the address available in pointer
 cout << "Value of *ip variable: ";
 cout << *ip << endl;

 return 0;

15

}

When the above code is compiled and executed, it produces result something as follows −

Value of var variable: 20

Address stored in ip variable: 0xbfc601ac

Value of *ip variable: 20

As you know every variable is a memory location and every memory location has its address defined

which can be accessed using ampersand (&) operator which denotes an address in memory. Consider

the following which will print the address of the variables defined −

 Live Demo

#include <iostream>

using namespace std;
int main ()
{
 int var1;
 char var2[10];

 cout << "Address of var1 variable: ";
 cout << &var1 << endl;

 cout << "Address of var2 variable: ";
 cout << &var2 << endl;

 return 0;
}

When the above code is compiled and executed, it produces the following result −

Address of var1 variable: 0xbfebd5c0

Address of var2 variable: 0xbfebd5b6

Dereferencing a Pointer

The dereference operation follows a pointer's reference to get the value of it is pointing to.

When the dereference operation is used correctly, it's really simple. It just accesses the value of it points

to. The only restriction is that the pointer must have an object for the dereference to access. Almost all

bugs in pointer code involve violating that one restriction. A pointer must be assigned an object that it

refers before dereference operations will work.

We dereference a pointer by using *, the deference operator.

http://tpcg.io/fQ1InE

16

cout << "myScore = " << *ptr << endl;

Pointers to Pointers

A pointer to a pointer is a form of multiple indirections or a chain of pointers. Normally, a pointer

contains the address of a variable. When we define a pointer to a pointer, the first pointer contains the

address of the second pointer, which points to the location that contains the actual value as shown

below.

A variable that is a pointer to a pointer must be declared as such. This is done by placing an

additional asterisk in front of its name. For example, following is the declaration to declare a pointer to

a pointer of type int −

int **var;

When a target value is indirectly pointed to by a pointer to a pointer, accessing that value requires that

the asterisk operator be applied twice, as is shown below in the example −

ve Demo

#include <iostream>
 using namespace std;
 int main ()
{
 int var;
 int *ptr;
 int **pptr;

 var = 3000;

 // take the address of var
 ptr = &var;

 // take the address of ptr using address of operator &
 pptr = &ptr;

 // take the value using pptr
 cout << "Value of var :" << var << endl;
 cout << "Value available at *ptr :" << *ptr << endl;

http://tpcg.io/KEQl2G

17

 cout << "Value available at **pptr :" << **pptr << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Value of var :3000

Value available at *ptr :3000

Value available at **pptr :3000

Pointers to Structure
A pointer variable can be created not only for native types like (int, float,double etc.) but they can

also be created for user defined types like structure.

Example :

#include <iostream>
using namespace std;

struct Distance
{
 int feet;
 float inch;
};

int main()
{
 Distance *ptr, d;

 ptr = &d;

 cout << "Enter feet: ";
 cin >> (*ptr).feet;
 cout << "Enter inch: ";
 cin >> (*ptr).inch;

 cout << "Displaying information." << endl;
 cout << "Distance = " << (*ptr).feet << " feet " << (*ptr).inch << " inches";

 return 0;
}

Output

Enter feet: 4
Enter inch: 3.5
Displaying information.

https://www.programiz.com/cpp-programming/pointers
https://www.programiz.com/cpp-programming/structure

18

Distance = 4 feet 3.5 inches

In this program, a pointer variable ptr and normal variable d of type structure Distance is defined.

The address of variable d is stored to pointer variable, that is, ptr is pointing to variable d. Then, the

member function of variable d is accessed using pointer.

Note: Since pointer ptr is pointing to variable d in this program,(*ptr).inch and d.inch is exact same cell.

Similarly, (*ptr).feet and d.feetis exact same cell.

The syntax to access member function using pointer is ugly and there is alternative notation -> which is

more common.

ptr->feet is same as (*ptr).feet

ptr->inch is same as (*ptr).inch

Passing Pointers to Function

Passing an argument by reference or by address both enable the passed argument to be

changed in the calling function by the called function.
Let's first consider an example that will swap two numbers i.e., interchange the values of two numbers.

#include <iostream>
using namespace std;
void swap(int *a, int *b)
{
 int t;
 t = *a;
 *a = *b;
 *b = t;
}
int main()
{
 int num1, num2;
 cout << "Enter first number" << endl;
 cin >> num1;
 cout << "Enter second number" << endl;
 cin >> num2;
 swap(&num1, &num2);
 cout << "First number = " << num1 << endl;

19

 cout << "Second number = " << num2 << endl;
 return 0;
}

Swapping means to interchange the values. void swap(int *a, int *b) - It means our function

'swap' is taking two pointers as argument. So, while calling this function, we will have to pass the

address of two integers (call by reference). int t; t = *a; We took any integer t and gave it a value '*a'.

*a = *b - Now, *a is *b. This means that now the values of *a and *b will be equal to that of *b.

*b = t; - Since 't' has an initial value of '*a', therefore, '*b' will also contain that initial value of '*a'. Thus,

we have interchanged the values of the two variables.

Since we have done this swapping with pointers (we have targeted on address), so, this

interchanged value will also reflect outside the function and the values of 'num1' and 'num2' will also get

interchanged.

In the above example, we passed the address of the two variables (num1 and num2) to the swap

function. The address of num1 is stored in 'a' pointer and that of num2 in 'b' pointer. In the swap

function, we declared a third variable’t’ and the values of 'a' and 'b' (and thus that of num1 and num2)

gets swapped.

Returning Pointer from Functions

C++ allows a function to return a pointer to local variable, static variable and dynamically

allocated memory as well.

C++ allows returning an array from a function, similar way C++ allows you to return a pointer from a

function. To do so, you would have to declare a function returning a pointer as in the following example

−

int * myFunction()

{

 .

 .

 .

}

Second point to remember is that, it is not good idea to return the address of a local variable to outside

of the function, so you would have to define the local variable as static variable.

Now, consider the following function, which will generate 10 random numbers and return them using

an array name which represents a pointer i.e., address of first array element.

 Live Demo

https://www.tutorialspoint.com/cplusplus/cpp_return_pointer_from_functions.htm
http://tpcg.io/daPoMQ

20

#include <iostream>
#include <ctime>

using namespace std;

// function to generate and retrun random numbers.
int * getRandom()
{
 static int r[10];

 // set the seed
 srand((unsigned)time(NULL));

 for (int i = 0; i < 10; ++i)
 {
 r[i] = rand();
 cout << r[i] << endl;
 }

 return r;
}

// main function to call above defined function.
int main () {
 // a pointer to an int.
 int *p;

 p = getRandom();
 for (int i = 0; i < 10; i++)
 {
 cout << "*(p + " << i << ") : ";
 cout << *(p + i) << endl;
 }

 return 0;
}

When the above code is compiled together and executed, it produces result something as follows −

624723190

1468735695

807113585

976495677

613357504

1377296355

1530315259

1778906708

1820354158

667126415

*(p + 0) : 624723190

21

*(p + 1) : 1468735695

*(p + 2) : 807113585

*(p + 3) : 976495677

*(p + 4) : 613357504

*(p + 5) : 1377296355

*(p + 6) : 1530315259

*(p + 7) : 1778906708

*(p + 8) : 1820354158

*(p + 9) : 667126415

Using Arrays as Pointer

 Using Arrays as Pointer can define arrays to hold a number of pointers.Following is the
declaration of an array of pointers to an integer −

int *ptr[MAX];

This declares ptr as an array of MAX integer pointers. Thus, each element in ptr, now holds a

pointer to an int value. Following example makes use of three integers which will be stored in an array

of pointers as follows

Demo

#include <iostream>
using namespace std;
const int MAX = 3;

int main ()
{
 int var[MAX] = {10, 100, 200};
 int *ptr[MAX];

 for (int i = 0; i < MAX; i++)
 {
 ptr[i] = &var[i]; // assign the address of integer.
 }

 for (int i = 0; i < MAX; i++)
{
 cout << "Value of var[" << i << "] = ";
 cout << *ptr[i] << endl;
 }

 return 0;
}

When the above code is compiled and executed, it produces the following result −

http://tpcg.io/qgpsAZ

22

Value of var[0] = 10

Value of var[1] = 100

Value of var[2] = 200

Passing Arrays to functions

 C++ Program to display marks of 5 students bypassing one-dimensional array to a function.
When an array is passed as an argument to a function, only the name of an array is used as argument.
display(marks); Also notice the difference while passing array as an argument rather than a variable.

Arrays can be passed to a function as an argument. Consider this example to pass one-dimensional

array to a function:

Example 1: Passing One-dimensional Array to a Function

C++ Program to display marks of 5 students by passing one-dimensional array to a function.

#include <iostream>
using namespace std;

void display(int marks[5]);

int main()
{
 int marks[5] = {88, 76, 90, 61, 69};
 display(marks);
 return 0;
}

void display(int m[5])
{
 cout << "Displaying marks: "<< endl;

 for (int i = 0; i < 5; ++i)
 {
 cout << "Student "<< i + 1 <<": "<< m[i] << endl;
 }
}

Output

Displaying marks:
Student 1: 88
Student 2: 76
Student 3: 90
Student 4: 61
Student 5: 69

https://www.programiz.com/cpp-programming/arrays
https://www.programiz.com/cpp-programming/function

23

 When an array is passed as an argument to a function, only the name of an array is used as

argument.display(marks);

 Also notice the difference while passing array as an argument rather than a variable.

 void display(int m[5]);

 The argument marks in the above code represents the memory address of first element of

array marks[5].

 And the formal argument int m[5] in function declaration converts to int* m;. This pointer points

to the same address pointed by the array marks.

 That's the reason, although the function is manipulated in the user-defined function with

different array name m[5], the original array marks is manipulated.

 C++ handles passing an array to a function in this way to save memory and time.

Pointers vs References

Pointers vs References in C++ C and C++ supportpointers which is different from most of the

other programming languages. ... A pointer needs to be dereferenced with * operator to access the

memory location it points to. References : A reference variable is an alias, that is, another name for an

already existing variable.

Example :

Following example makes use of references on int and double −
 Live Demo

#include <iostream>

using namespace std;

int main ()
 {
 // declare simple variables
 int i;
 double d;

 // declare reference variables
 int& r = i;
 double& s = d;

 i = 5;
 cout << "Value of i : " << i << endl;
 cout << "Value of i reference : " << r << endl;

 d = 11.7;
 cout << "Value of d : " << d << endl;
 cout << "Value of d reference : " << s << endl;

http://tpcg.io/SS8zU0

24

 return 0;
}

When the above code is compiled together and executed, it produces the following result −

Value of i : 5

Value of i reference : 5

Value of d : 11.7

Value of d reference : 11.7

References are usually used for function argument lists and function return values. So following are two

important subjects related to C++ references which should be clear to a C++ programmer −

Declaring and initializing references.

On the surface, both references and pointers are very similar, both are used to have one variable
provide access to another. With both providing lots of same capabilities, it’s often unclear what is
different between these different mechanisms. In this article, I will try to illustrate the differences
between pointers and references.

Pointers: A pointer is a variable that holds memory address of another variable. A pointer needs to be
dereferenced with * operator to access the memory location it points to.

References : A reference variable is an alias, that is, another name for an already existing variable. A
reference, like a pointer is also implemented by storing the address of an object.
A reference can be thought of as a constant pointer (not to be confused with a pointer to a constant
value!) with automatic indirection, i.e the compiler will apply the * operator for you.

int i = 3;

// A pointer to variable i (or stores

// address of i)

int *ptr = &i;

// A reference (or alias) for i.

int &ref = i;

Example :

The syntax is as follow:

type &newName = existingName;
// or
type& newName = existingName;
// or
type & newName = existingName; // I shall adopt this convention

It shall be read as "newName is a reference to exisitngName", or "newNew is an alias of existingName".

You can now refer to the variable as newName orexistingName.

https://www.geeksforgeeks.org/pointers-in-c-and-c-set-1-introduction-arithmetic-and-array/
https://www.geeksforgeeks.org/references-in-c/

25

For example,

/* Test reference declaration and initialization (TestReferenceDeclaration.cpp) */
#include <iostream>
using namespace std;

int main()
{
 int number = 88; // Declare an int variable called number
 int & refNumber = number; // Declare a reference (alias) to the variable number
 // Both refNumber and number refer to the same value

 cout << number << endl; // Print value of variable number (88)
 cout << refNumber << endl; // Print value of reference (88)

 refNumber = 99; // Re-assign a new value to refNumber
 cout << refNumber << endl;
 cout << number << endl; // Value of number also changes (99)

 number = 55; // Re-assign a new value to number
 cout << number << endl;
 cout << refNumber << endl; // Value of refNumber also changes (55)
}

Function's Return Value

You can also pass the return-value as reference or pointer. For example,

/* Passing back return value using reference (TestPassByReferenceReturn.cpp) */
#include <iostream>
using namespace std;

int & squareRef(int &);
int * squarePtr(int *);

int main()
{
 int number1 = 8;
 cout << "In main() &number1: " << &number1 << endl; // 0x22ff14
 int & result = squareRef(number1);

26

 cout << "In main() &result: " << &result << endl; // 0x22ff14
 cout << result << endl; // 64
 cout << number1 << endl; // 64

 int number2 = 9;
 cout << "In main() &number2: " << &number2 << endl; // 0x22ff10
 int * pResult = squarePtr(&number2);
 cout << "In main() pResult: " << pResult << endl; // 0x22ff10
 cout << *pResult << endl; // 81
 cout << number2 << endl; // 81
}

int & squareRef(int & rNumber)
{
 cout << "In squareRef(): " << &rNumber << endl; // 0x22ff14
 rNumber *= rNumber;
 return rNumber;
}

int * squarePtr(int * pNumber)
{
 cout << "In squarePtr(): " << pNumber << endl; // 0x22ff10
 *pNumber *= *pNumber;
 return pNumber;
}

Reference as function argument

The reference as function argument method of passing arguments to a function copies the

reference of an argument into the formal parameter. Inside the function, the reference is used to access

the actual argument used in the call. This means that changes made to the parameter affect the passed

argument.

To pass the value by reference, argument reference is passed to the functions just like any other value.

So accordingly you need to declare the function parameters as reference types as in the following

function swap(), which exchanges the values of the two integer variables pointed to by its arguments.

For now, let us call the function swap() by passing values by reference as in the following example −

#include <iostream>
using namespace std;

// function declaration
void swap(int &x, int &y);

int main () {
 // local variable declaration:

27

 int a = 100;
 int b = 200;
 cout << "Before swap, value of a :" << a << endl;
 cout << "Before swap, value of b :" << b << endl;
 /* calling a function to swap the values using variable reference.*/
 swap(a, b);

 cout << "After swap, value of a :" << a << endl;
 cout << "After swap, value of b :" << b << endl;
 return 0;
}

When the above code is put together in a file, compiled and executed, it produces the following result −

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :200

After swap, value of b :100

Structure with union as members

Structures group members (data and functions) to create new data types. Structures encapsulate

data members (usually different data types), much like functions encapsulate program statements.

Unions are like structures, but data members overlay (share) memory, and unions may access members

as different types. We use structures and unions in applications that need user-defined types, such as

databases, windows, and graphics.

#include <iostream>
using namespace std;

union sab
{
int a;
}
struct stud
{
Int regno;
union sab x;
};
Struct stud s;
s.regno=10;
s.x.a=20;
cout<<s.regno<<s.x.a;
}

Union with structures as members

 Declaration and Initialization of structure starts with struct keyword. Declaration and

Initialization of union starts with union keyword.Structure allocates different memory locations for all

its members while union allocates common memory location for all its members. The memory occupied

by a union will be large enough to hold the largest member of the union.

28

#include<iostream.h>

 struct Employee1
 {
 int Id;
 char Name[25];
 long Salary;
 };

 union Employee2
 {
 int Id;
 char Name[25];
 long Salary;
 };

 void main()
 {

 cout << "\nSize of Employee1 is : " << sizeof(Employee1);
 cout << "\nSize of Employee2 is : " << sizeof(Employee2);

 }

 Output :

 Size of Employee1 is : 31
 Size of Employee2 is : 25

 Example 2:

#include <iostream>
using namespace std;

struct stud
{
int regno;
};
Union sample
{
struct stud x;
int a;
};

int main()
{
union sample s;
s.x.regno=10;
cout<<s.x.regno;
s.a=20;
cout<<s.a;
}

S.No Questions OPT1 OPT2 OPT3 OPT4 Answer

1
C++ supports all the features of
___________ as defined in C structures union objects classes structures

2
A structure can have both variable and
functions as ________ objects classes members arguments members

3
The class _________ describes the type and
scope of its members

calling
function

declaration objects

 none of the
above

declaration

4
The class __________ describes how the
class function are implemented

 Function
definition

declaration arguments

 none of the
above

 Function
definition

5
The keywords private and public are known
as _________ labels Static dynamic visibility const visibility

6

The class members that have been declared
as ________ can be
 accessed only from within the class Private public static protected Private

7

The class members that have been declared
as ________ can be
 accessed from outside the class also Private Public static protected Public

UNIT-III

(1 mark questions)
SUBJECT CODE: 19CSU101

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Part -A Online Examinations

COIMBATORE - 21
DEPARTMENT OF COMPUTER SCIENCE,CA & IT

 CLASS : I B.Sc COMPUTER SCIENCE

BATCH : 2019-2022

SUBJECT: PROGRAMMING FUNDAMENTALS USING C/C++

8
The variables declared inside the class are
called as _________

 Function
variables

 data
members

 member
function

data
variables

 data
members

9
The symbol ______ is called the scope
resolution operator >> :: << ::* ::

10

A member function can call another
member function directly
 without using the _________ operator

Assignmen
t equal dot

 greater
than dot

11

A ______ member variable is initialized to
zero when the first object of its class is
created Dynamic constant static protected static

12
_________ Variables are normally used to
maintain values common to the entire class. Private protected Public static static

13
When a copy of the entire object is passed
to the function it is called as _________

 Pass by
reference

 pass by
function

 pass by
pointer

 pass by
value

 pass by
value

14
The ________ member variables must be
defined outside the class. Static private public protected Static

15

A friend function, although not a member
function, has full
access right to the ______ members of the Static private public protected private

16
__________ enables an object to initialize
itself when it is created

Destructor

constructor overloading

 none of the
above

constructor

17
________ destroys the objects when they
are no longer required

Destructor

constructor overloading

 none of the
above

Destructor

18
The __________ is special because its name
is the same as the class name.

Destructor static constructor

 none of the
above

constructor

19
A constructor that accepts no parameters is
called the __________ constructor Copy default multiple

 none of the
above default

20
Constructors are invoked automatically
when the ________ are created Datas classes objects

 none of the
above objects

21 Constructors cannot be _________ Inherited destroyed both a & b
 none of the
above Inherited

22 Constructors cannot be _________ Destroyed virtual both a & b
 none of the
above virtual

23

Constructors make _________ calls to the
operators new and
delete when memory allocation is required Explicit implicit function

 none of the
above implicit

24
The constructors that can take arguments
are called _________ constructors Copy multiple

parameterize
d

 none of the
above

parameteri
zed

25
The constructor function can also be defined
as ________ function Friend inline default

 none of the
above inline

26

When a constructor can accept a reference
to its own
 class as a parameter, in such cases it is Multiple copy default

 none of the
above copy

27

When more than one constructor function is
defined in a class,
 then the constructor is said to be Multiple copy default overloaded

overloaded

28

C++ complier has a _________ constructor,
which creates objects, even though it was
not defined in the class. Explicit default implicit

 none of the
above implicit

29
A _________ constructor is used to declare
and initialize an object from another object Default copy multiple

parameterize
d copy

30

The process of initializing through a copy
constructor is known as ________
initialization

Overloaded multiple copy

 none of the
above copy

31

A ______ constructor takes a reference to
an object of the same class as itself as an
argument Delete new copy

 none of the
above copy

32

Allocation of memory to objects at the time
of their construction is known as ________
construction Static copy dynamic

 none of the
above dynamic

33

We can create and use constant objects
using ______ keyword before object
declaration. Static new const

 none of the
above const

34 A destructor is preceded by ______ symbol Dot asterisk colon tilde tilde

35
_________ is used to allocate memory in
the constructor Delete binding free new new

36 _________ is used to free the memory new delete clrscr()
 none of the
above delete

37
Which is a valid method for accessing the
first element of the array item? item(1) item[1] item[0] item(0) item[0]

38
Which of the following statements is valid
array declaration?

 int
number
(5);

 float
avg[5];

 double [5]
marks;

 counter
int[5];

 float
avg[5];

39 An object is an _________ unit group individual both a&b
 none of the
above individual

40
Public keyword is terminated by a

Semicolon comma dot colon colon

41
Private keyword is terminated by a
_________ semicolon comma dot colon colon

42
The memory for static data is allocated only
________ twice thrice once

 none of the
above once

43
Static member functions can be invoked
using ________ name class object data function class

44 The _________ doesn’t have any argument

constructor

 copy
constructor destructor

 none of the
above

destructor

45
The _________ also allocates required
memory .

constructor destructor both a & b

 none of the
above

constructor

46
Any constructor or destructor created by the
complier will be _______ private public protected

 none of the
above public

47
_________ releases memory space occupied
by the objects

constructor destructor both a & b

 none of the
above destructor

48
Constructors and destructors are
automatically inkoved by _________

 operating
system main() complier object complier

49 Constructors is executed when ________
 object is
destroyed

 object is
declared both a & b

 none of the
above

 object is
declared

50
The destructor is executed when

 object
goes out of
scope

 when
object is
not used

 when
object
contains

 none of the
above

 object
goes out of
scope

51
The members of a class are by default
________ protected private public

 none of the
above private

52

The ________ is executed at the end of the
function when objects are of no used or
goes out of scope destructor

constructor inheritance

 none of the
above destructor

1
Prepared By K.Kathirvel

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2019 onwards)

DEPARTMENT OF CS, CA & IT

SUBJECT :PROGRAMMING FUNDAMENTALS USING C / C++ Class : I B.Sc (CS) B

SEMESTER: I SUBJECT CODE: 19CSU101

 UNIT-IV

Memory Allocation in C++:

Differentiating between static and dynamic memory allocation

use of malloc, calloc and free functions,

use of new and delete operators,

storage of variables in static and dynamic memory allocation.

File I/O, Preprocessor Directives:

Opening and closing a file (use of fstream header file, ifstream, ofstream and fstream classes),

Reading and writing Text Files

Using put(),

get(),

read() and write() functions

 Random access in files,

 Understanding the Preprocessor Directives (#include, #define, #error, #if, #else, #elif, #endif, #ifdef,

#ifndef and #undef),

Macros.

2
Prepared By K.Kathirvel

Differentiating between static and dynamic memory allocation

Memory in your C++ program is divided into two parts −

 The stack − All variables declared inside the function will take up memory from the stack.

 The heap − This is unused memory of the program and can be used to allocate the memory
dynamically when program runs.

Many times, you are not aware in advance how much memory you will need to store particular
information in a defined variable and the size of required memory can be determined at run time.

You can allocate memory at run time within the heap for the variable of a given type using a special
operator in C++ which returns the address of the space allocated. This operator is called new operator.

If you are not in need of dynamically allocated memory anymore, you can use delete operator, which
de-allocates memory that was previously allocated by new operator.

Following are the differences between Static Memory Allocation and Dynamic Memory Allocation:

Static Memory Allocation Dynamic Memory Allocation

In static memory allocation, memory is
allocated before the execution of the
program begins.

In Dynamic memory allocation, memory is
allocated during the execution of the
program.

Memory allocation and deallocation actions
are not performed during the execution.

Memory allocation and deallocation
actions are performed during the
execution.

Static memory allocation, pointer is
required to access the variables.

It does not require pointers to allocate the
variables dynamically.

It performs execution of program faster
than dynamic memory.

It performs execution of program slower
than static.

It requires more memory space. It requires less memory space.

The data in static memory is allocated
permanently.

The data in dynamic memory is allocated
only when program unit is active.

New Operator

 New operator is used to dynamically allocate the memory.
 The new keyword is used to allocate the memory space dynamically followed by a data type

specifier.

Syntax:
newint; //dynamically allocates an integer
new float; //dynamically allocates an float

 For creating an array dynamically, use the same form but put the square brackets ([]) with a size

after the data type.

3
Prepared By K.Kathirvel

Syntax:
newint[10]; //dynamically allocates an array of 10 integers.
new float[10]; //dynamically allocates an array of 10 floats.

 In the above syntax, the allocated spaces have no names, but the new operator returns the starting

address of the allocated space and stored it in a pointer.

Syntax:
int *ptr; //declare a pointer ptr
ptr = new int; //dynamically allocate an int and load address into ptr

Delete Operator

 Delete operator is used to deallocate the memory.
 This operator deallocates the memory previously allocated by the new operator.

 If the memory allocated dynamically to a variable is not required anymore, you can free up the
memory with delete operator.

Syntax:
delete variable_name;

Example:
delete ptr; //Releases memory pointed to by ptr

 Using delete operator the memory becomes available again for other requests of dynamic memory.
Example : Demonstrating how new & delete operators work

#include <iostream>
using namespace std;

int main ()
{

 int *ptr = NULL; // Pointer initialized with null
 ptr = new int; // Request memory for the variable

 *ptr = 12345; // Store value at allocated address
 cout<< "Value of Pointer Variable *ptr : " << *ptr<<endl;

 delete ptr; // free up the memory.
 return 0;

}

OR

#include<iostream>
usingnamespace std;

int main ()
{
double*pvalue= NULL;// Pointer initialized with null
pvalue=newdouble;// Request memory for the variable

*pvalue=29494.99;// Store value at allocated address

4
Prepared By K.Kathirvel

cout<<"Value of pvalue : "<<*pvalue<<endl;

deletepvalue;// free up the memory.

return0;
}

If we compile and run above code, this would produce the following result −

Value of pvalue : 29495

Use of malloc, calloc and free functions:

Use of malloc

The malloc() function in C++ allocates a block of uninitialized memory and returns a void pointer to
the first byte of the allocated memory block if the allocation succeeds.

The malloc() function in C++ allocates a block of uninitialized memory and returns a void pointer to
the first byte of the allocated memory block if the allocation succeeds.

If the size is zero, the value returned depends on the implementation of the library. It may or may
not be a null pointer.
malloc() prototype

void* malloc(size_t size);

This function is defined in <cstdlib> header file.

malloc() Parameters

 size: An unsigned integral value which represents the memory block in bytes.
The malloc() function returns:

 a pointer to the uninitialized memory block allocated by the function.
 null pointer if allocation fails.


Example 1: How malloc() function works?

#include<iostream>
#include<cstdlib>
usingnamespace std;

int main()
{
 int*ptr;
 ptr=(int*)malloc(5*sizeof(int));

 if(!ptr)
 {
 cout<<"Memory Allocation Failed";
 exit(1);
 }
 cout<<"Initializing values..."<<endl<<endl;

https://www.programiz.com/cpp-programming/library-function/cstdlib

5
Prepared By K.Kathirvel

 for(int i=0; i<5; i++)
 {
 ptr[i]= i*2+1;
 }
 cout<<"Initialized values"<<endl;

 for(int i=0; i<5; i++)
 {
 /* ptr[i] and *(ptr+i) can be used interchangeably */
 cout<<*(ptr+i)<<endl;
 }

 free(ptr);
 return0;
}

When you run the program, the output will be:

Initializing values...

Initialized values
1
3
5
7
9

Calloc function

The calloc() function in C++ allocates a block of memory for an array of objects and
initializes all its bits to zero.

The calloc() function returns a pointer to the first byte of the allocated memory block if the
allocation succeeds.

If the size is zero, the value returned depends on the implementation of the library. It may or may
not be a null pointer.

calloc() prototype

void* calloc(size_tnum, size_t size);

The function is defined in <cstdlib> header file.

calloc() Parameters

 num: An unsigned integral value which represents number of elements.
 size: An unsigned integral value which represents the memory block in bytes.

https://www.programiz.com/cpp-programming/library-function/cstdlib

6
Prepared By K.Kathirvel

free

 (Free the memory allocated using malloc, calloc or realloc)

free functions frees the memory on the heap, pointed to by a pointer. Signature of free function is

void free(void* ptr);

 ptr must be pointing to a memory which is allocated using malloc, calloc or realloc.

 If ptr is called on a memory which is not on heap or on a dangling pointer, then the behavior is undefined.

 If ptr is NULL, then free does nothing and returns (So, its ok to call free on null pointers).

int x = 2;

int* ptr = &x;

free(ptr); //UNDEFINED.

int *ptr2; // UN initialized, hence dangling pointer

free(ptr2); //UNDEFINED

int *ptr3 = NULL;

free(ptr3); //OK.

 Crashes in malloc(), calloc(), realloc(), or free() are almost always related to heap corruption, such as

overflowing an allocated chunk or freeing the same pointer twice.

Opening and closing a file

 The iostream standard library, which provides cinand cout methods for reading from standard
input and writing to standard output respectively.

This tutorial will teach you how to read and write from a file. This requires another standard C++

library called fstream, which defines three new data types –

Sr.No Data Type & Description

1 ofstream
This data type represents the output file stream and is used to create files and to write
information to files.

7
Prepared By K.Kathirvel

2 ifstream
This data type represents the input file stream and is used to read information from files.

3 fstream
This data type represents the file stream generally, and has the capabilities of both
ofstream and ifstream which means it can create files, write information to files, and
read information from files.

To perform file processing in C++, header files <iostream> and <fstream> must be included in your C++
source file.

Opening a File

A file must be opened before you can read from it or write to it. Either ofstream or fstream object

may be used to open a file for writing. And ifstream object is used to open a file for reading purpose only.
Following is the standard syntax for open() function, which is a member of fstream, ifstream, and
ofstream objects.

void open(const char *filename, ios::openmode mode);

Here, the first argument specifies the name and location of the file to be opened and the second

argument of the open() member function defines the mode in which the file should be opened.

Sr.No Mode Flag & Description

1 ios::app
Append mode. All output to that file to be appended to the end.

2 ios::ate
Open a file for output and move the read/write control to the end of the file.

3 ios::in
Open a file for reading.

4 ios::out
Open a file for writing.

5 ios::trunc
If the file already exists, its contents will be truncated before opening the file.

You can combine two or more of these values by ORing them together. For example if you want to
open a file in write mode and want to truncate it in case that already exists, following will be the syntax −

ofstreamoutfile;
outfile.open("file.dat", ios::out | ios::trunc);

Similar way, you can open a file for reading and writing purpose as follows −

fstreamafile;

8
Prepared By K.Kathirvel

afile.open("file.dat", ios::out | ios::in);

Closing a File

When a C++ program terminates it automatically flushes all the streams, release all the allocated

memory and close all the opened files. But it is always a good practice that a programmer should close all
the opened files before program termination.

Following is the standard syntax for close() function, which is a member of fstream, ifstream, and
ofstream objects.

void close();

Writing to a File

While doing C++ programming, you write information to a file from your program using the stream

insertion operator (<<) just as you use that operator to output information to the screen. The only
difference is that you use an ofstream or fstream object instead of the cout object.

Reading from a File

You read information from a file into your program using the stream extraction operator (>>) just

as you use that operator to input information from the keyboard. The only difference is that you use
an ifstream or fstream object instead of the cin object.

Read and Write Example

Following is the C++ program which opens a file in reading and writing mode. After writing

information entered by the user to a file named afile.dat, the program reads information from the file and
outputs it onto the screen −
 Live Demo

#include<fstream>

#include<iostream>

usingnamespace std;

int main ()

{

char data[100];

// open a file in write mode.

ofstreamoutfile;

outfile.open("afile.dat");

cout<<"Writing to the file"<<endl;

cout<<"Enter your name: ";

http://tpcg.io/MLhc7C

9
Prepared By K.Kathirvel

cin.getline(data,100);

// write inputted data into the file.

outfile<< data <<endl;

cout<<"Enter your age: ";

cin>> data;

cin.ignore();

// again write inputted data into the file.

outfile<< data <<endl;

// close the opened file.

outfile.close();

// open a file in read mode.

ifstreaminfile;

infile.open("afile.dat");

cout<<"Reading from the file"<<endl;

infile>> data;

// write the data at the screen.

cout<< data <<endl;

// again read the data from the file and display it.

infile>> data;

cout<< data <<endl;

// close the opened file.

infile.close();

return0;

}

When the above code is compiled and executed, it produces the following sample input and output −

$./a.out
Writing to the file
Enter your name: Zara
Enter your age: 9
Reading from the file
Zara
9

Above examples make use of additional functions from cin object, like getline() function to read the line
from outside and ignore() function to ignore the extra characters left by previous read statement.

10
Prepared By K.Kathirvel

Random Access of Files (File Pointers)

Using file streams, we can randomly access binary files. By random access, you can go to any position in the

file as you wish (instead of going in a sequential order from the first character to the last). Earlier in this

chapter we discussed about a bookmarker that will keep moving as you keep reading a file.

This bookmarker will move sequentially but you can also make it move randomly using some functions.

Technically this bookmarker is a file pointer and it determines as to where to write the next character (or

from where to read the next character). We have seen that file streams can be created for input (ifstream)

or for output (ofstream).

For ifstream the pointer is called as ‘get’ pointer and for ofstream the pointer is called as ‘put’ pointer.

fstream can perform both input and output operations and hence it has one ‘get’ pointer and one ‘put’

pointer. The ‘get’ pointer indicates the byte number in the file from where the next input has to occur.

The ‘put’ pointer indicates the byte number in the file where the next output has to be made. There are two

functions to enable you move these pointers in a file wherever you want to:

seekg () - belongs to the ifstream class

seekp () - belongs to the ofstream class

We’ll write a program to copy the string "Hi this is a test file" into a file called mydoc.txt. Then we’ll attempt

to read the file starting from the 8th character (using the seekg() function).

Strings are character arrays terminated in a null character (‘\0’). If you want to copy a string of text into a

character array, you should make use of the function:

strcpy (character-array, text);

to copy the text into the character array (even blank spaces will be copied into the character array). To

make use of this function you might need to include the string.h header file.

#include <iostream.h>

11
Prepared By K.Kathirvel

#include <fstream.h>

#include <string.h>

int main()

{

ofstream out("c:/mydoc.txt",ios::binary);

char text[80];

strcpy(text,"Hi this is a test file");

out<<text;

out.close();

ifstream in("c:/mydoc.txt",ios::binary);

in.seekg(8);

cout<<endl<<"Starting from position 8 the contents are:"<<endl;

while (!in.eof())

{

charch;

in.get(ch);

if (!in.eof())

 {

cout<<ch;

 }

}

in.close();

return 0;

}

The output is:

Starting from position 8 the contents are:

is a test file

As you can see, the output doesn’t display, "Hi this " because they are the first 7 characters present in the

file. We’ve asked the program to display from the 8th character onwards using the seekg() function.

in.seekg(8);

will effectively move the bookmarker to the 8th position in the file. So when you read the file, you will start

reading from the 8th position onwards.

The following fragment of code is interesting:

12
Prepared By K.Kathirvel

while (!in.eof())

{

charch;

in.get(ch);

if (!in.eof())

 {

cout<<ch;

 }

}

You might be wondering as to why we need to check for the EOF again using an ‘if’ statement. To

understand the reason, try the program by removing the ‘if’ statement. The result will be surprising and

interesting. Think over it and you will be able to figure out the logic.

The syntax for seekg() or seekp() is:

seekg(position, ios::beg)

seekg(position, ios::cur)

seekg(position, ios::end)

By default (i.e. if you don’t specify ‘beg’ or ‘cur’ or ‘end’) the compiler will assume it as ios::beg.

ios::beg – means that the compiler will count the position from the beginning of the file.

ios::cur – means the compiler starts counting from the current position.

ios::end – it will move the bookmarker starting from the end of the file.

Just like we have 2 functions to move the bookmarker to different places in the file, we have another 2

functions that can be used to get the present position of the bookmarker in the file.

For input streams we have: tellg()

For output streams we have :tellp()

You would think that the value returned by tellg () and tellp () are integers. They are like integers but they

aren’t.

The actual syntax for these functions will be:

streampostellg ();

wherestreampos is an integer value that is defined in the compiler (it is actually a typedef).

Of course you can say:

int position = tellg ();

13
Prepared By K.Kathirvel

Now, the variable ‘position’ will have the location of the bookmarker. But you can also say:

streampos position = tellg();

This will also give the same result. ‘streampos’ is defined internally by the compiler specifically for file-

streams.

Similarly, the syntax of seekg () and seekp () was mentioned as:

seekg(position, ios::beg)

Again in the above syntax, ‘position’ is actually of type ‘streampos’.

preprocessors

The preprocessors are the directives, which give instructions to the compiler to preprocess the information

before actual compilation starts.

All preprocessor directives begin with #, and only white-space characters may appear before a

preprocessor directive on a line. Preprocessor directives are not C++ statements, so they do not end in a

semicolon (;).

You already have seen a #include directive in all the examples. This macro is used to include a header file

into the source file.

There are number of preprocessor directives supported by C++ like #include, #define, #if, #else, #line, etc.

Let us see important directives −

The #define Preprocessor

The #define preprocessor directive creates symbolic constants. The symbolic constant is called a macro

and the general form of the directive is −

#define macro-name replacement-text

When this line appears in a file, all subsequent occurrences of macro in that file will be replaced by

replacement-text before the program is compiled. For example −

#include <iostream>

using namespace std;

#define PI 3.14159

int main ()

{

14
Prepared By K.Kathirvel

cout<< "Value of PI :" << PI <<endl;

return 0;

}

Now, let us do the preprocessing of this code to see the result assuming we have the source code file. So let

us compile it with -E option and redirect the result to test.p. Now, if you check test.p, it will have lots of

information and at the bottom, you will find the value replaced as follows −

$gcc -E test.cpp >test.p

...

int main ()

 {

cout<< "Value of PI :" << 3.14159 <<endl;

return 0;

}

Function-Like Macros

You can use #define to define a macro which will take argument as follows −

 Live Demo

#include <iostream>

using namespace std;

#define MIN(a,b) (((a)<(b)) ? a : b)

int main () {

int i, j;

 i = 100;

 j = 30;

cout<<"The minimum is " << MIN(i, j) <<endl;

return 0;

}

If we compile and run above code, this would produce the following result −

The minimum is 30

Conditional Compilation

15
Prepared By K.Kathirvel

There are several directives, which can be used to compile selective portions of your program's source

code. This process is called conditional compilation.

The conditional preprocessor construct is much like the ‘if’ selection structure. Consider the following

preprocessor code −

#ifndef NULL

#define NULL 0

#endif

You can compile a program for debugging purpose. You can also turn on or off the debugging using a single

macro as follows −

#ifdef DEBUG

cerr<<"Variable x = " << x <<endl;

#endif

This causes the cerr statement to be compiled in the program if the symbolic constant DEBUG has been

defined before directive #ifdef DEBUG. You can use #if 0 statment to comment out a portion of the program

as follows −

#if 0

code prevented from compiling

#endif

Let us try the following example −

 Live Demo

#include <iostream>

using namespace std;

#define DEBUG

#define MIN(a,b) (((a)<(b)) ? a : b)

int main ()

{

int i, j;

 i = 100;

 j = 30;

#ifdef DEBUG

16
Prepared By K.Kathirvel

cerr<<"Trace: Inside main function" <<endl;

#endif

#if 0

 /* This is commented part */

cout<< MKSTR(HELLO C++) <<endl;

#endif

cout<<"The minimum is " << MIN(i, j) <<endl;

#ifdef DEBUG

cerr<<"Trace: Coming out of main function" <<endl;

#endif

return 0;

}

If we compile and run above code, this would produce the following result −

The minimum is 30

Trace: Inside main function

Trace: Coming out of main function

The # and ## Operators

The # and ## preprocessor operators are available in C++ and ANSI/ISO C. The # operator causes a

replacement-text token to be converted to a string surrounded by quotes.

Consider the following macro definition −

 Live Demo

#include <iostream>

using namespace std;

#define MKSTR(x) #x

int main ()

{

cout<< MKSTR(HELLO C++) <<endl;

return 0;

}

If we compile and run above code, this would produce the following result −

17
Prepared By K.Kathirvel

HELLO C++

Let us see how it worked. It is simple to understand that the C++ preprocessor turns the line −

cout<< MKSTR(HELLO C++) <<endl;

Above line will be turned into the following line −

cout<< "HELLO C++" <<endl;

The ## operator is used to concatenate two tokens. Here is an example –

#define CONCAT(x, y) x ## y

When CONCAT appears in the program, its arguments are concatenated and used to replace the macro. For

example, CONCAT(HELLO, C++) is replaced by "HELLO C++" in the program as follows.

 Live Demo

#include <iostream>

using namespace std;

#define concat(a, b) a ## b

int main() {

intxy = 100;

cout<<concat(x, y);

return 0;

}

If we compile and run above code, this would produce the following result −

100

Let us see how it worked. It is simple to understand that the C++ preprocessor transforms −

cout<<concat(x, y);

Above line will be transformed into the following line −

cout<<xy;

Predefined C++ Macros

C++ provides a number of predefined macros mentioned below –

Let us see an example for all the above macros −

 Live Demo

#include <iostream>

18
Prepared By K.Kathirvel

using namespace std;

int main () {

cout<< "Value of __LINE__ : " << __LINE__ <<endl;

cout<< "Value of __FILE__ : " << __FILE__ <<endl;

cout<< "Value of __DATE__ : " << __DATE__ <<endl;

cout<< "Value of __TIME__ : " << __TIME__ <<endl;

return 0;

}

If we compile and run above code, this would produce the following result −

Value of __LINE__ : 6

Value of __FILE__ : test.cpp

Value of __DATE__ : Feb 28 2011

Value of __TIME__ : 18:52:48

#line

When we compile a program and there happens any errors during the compiling process, the compiler

shows the error that have happened preceded by the name of the file and the line within the file where it

has taken place.

The #line directive allows us to control both things, the line numbers within the code files as well as the file

name that we want that it appears when an error takes place. Its form is the following one:

#line number "filename"

Where number is the new line number that will be assigned to the next code line. The line number of

successive lines will be increased one by one from this.

filename is an optional parameter that serves to replace the file name that will be shown in case of error

from this directive until other one changes it again or the end of the file is reached. For example:

#line 1 "assigning variable"

int a?;

This code will generate an error that will be shown as error in file "assigning variable", line 1.

#error

This directive aborts the compilation process when it is found returning the error that is specified as

parameter:

#ifndef __cplusplus

#error A C++ compiler is required

#endif

19
Prepared By K.Kathirvel

This example aborts the compilation process if the defined constant __cplusplus is not defined.

Macro Functions

#define can be used to make macro functions that will be substituted in the source before compilation. A

preprocessor function declaration comprises a macro name immediately followed by parentheses

containing the function's argument. Do not leave any space between the name and the parentheses. The

declaration is then followed by the function definition within another set of parentheses. For example, a

preprocessor macro function to give bigger value of the two looks like this:

#define MAX(a,b) (a > b ? a : b)

When we use macro functions, however, unlike regular functions, they do not perform any kind of type

checking. Because of this drawbacks, inline functions are usually preferable to macro functions. But

because macros directly substitute their code, they reduce the overhead of a function call.

#define MAX(a,b) (a > b ? a : b)

#include <iostream>

using namespace std ;

inlineint max(int a, int b) {return (a > b ? a: b);}

int main()

{

int x = 10, y = 20;

cout<< "Macro Max(x,y) = " << MAX(x,y) <<endl;

cout<< "inline max(x,y) = " << max(x,y) <<endl;

return 0;

}

Output is:

Macro Max(x,y) = 20

inline max(x,y) = 20

One of the common mistakes we make when we use Macro is to forget what Macro is suppose to do. In the

following example, if we miss parenthesis around it, it will give us unexpected result.

#include <stdio.h>

20
Prepared By K.Kathirvel

#define SQUARE(n) ((n)*(n))

int main()

{

int j = 64/SQUARE(4);

printf("j = %d",j);

return 0;

}

surprisingly, it prints out j = 64 instead of j = 4.

Why?

Because j = 64/4*4 but not j = 64/(4*4).

So, we need to use the following Macro to get intended answer.

#define SQUARE(n) (n*n)

Here is another example which may give unexpected results:

#include <stdio.h>

#define SQR(n)(n*n)

int main()

{

int a, b = 3;

 a = SQR(b+2); // a = (b+2*b+2) = 3+2*3+2 = 11 not 25

printf("%d\n", a);

return 0;

}

So, in this case, the macro should be:

#define SQR(n)((n)*(n))

S.No
 Questions OPT1 OPT2 OPT3 OPT4 Answer

1 _________ is used as the input stream to read data. Cout Printf Cin Scanf Cin

2
 cin and cout are ________ for input and output of
data.

 user
defined

 system
defined

 Pre defined
stream none system

defined

3
The data obtained or represented with some
manipulators are called ______.

 formatted
data

unformatted

 extracted
data None.

formatted

4
The output formats can be controlled with
manipulators having the header file as iostream.h conio.h stdlib.h iomanip.h

iomanip.

5
 The _____ and ______ are derived classes from ios
based class.

 istream and
ostream

 source and
destination

 iostream
and source None. istream

and

6 The manipulator << endl is equivalent to____ ‘\t’ ’\r’ ’\n’ ’\b’ ’\n’

7 Precision() is an __________ format function

Manipulator Istream ios user defined ios

8 Width of the output field is set using the ______ width() iomanip.h
Manipulator None width()

9
Stream and stream classes are used to implement its
I/O operations with the ______

 the console
and disk files

 cin and
cout

manipulators none the

console

SUBJECT: PROGRAMMING FUNDAMENTALS USING C/C++ SUBJECT CODE: 19CSU101

UNIT-IV

KARPAGAM ACADEMY OF HIGHER EDUCATION
COIMBATORE - 21

DEPARTMENT OF COMPUTER SCIENCE,CA & IT
 CLASS : I B.Sc COMPUTER SCIENCE

BATCH : 2019-2022

 Part -A Online Examinations (1 mark questions)

10
The interface supplied by an I/O system which is
independent of actual device is called _____ stream class object none. stream

11 A _____ is a sequence of bytes. Stream class object none Stream

12
The _____ streams automatically open when the
program begins its execution

 user
defined predefined input output

predefine

13
The class that is defined to various streams to deal
with both the console and disk files is called ________

 stream
class

 derived
class object none stream

class

14
 ____ provide an interface to physical devices through
buffers.

 stream
buffer iostream ostream istream stream

buffer

15 The _____ are called as overloaded operators >> and << + and – * and && – and . >> and
<<

16 The >> operator is overloaded in the _______ istream ostream iostream None istream

17
The ____ functions are used to handle the single
character I/O operation.

 get() and
put()

 clrscr() and
getch()

 cin and
cout None get()

and put()

18
 ____ functions are used to display text more
efficiently by using the line oriented i/o functions.

 getline()
and write()

 cin and
cout

 get() and
put() none getline()

and

19 The getline() reads character input to the ______ line datatype function variable none
variable

20 _____ is used to clear the flags specified. width() precision() setf() unsetf() unsetf()

21
_____ is used to specify the required field size for
displaying an output value width() self fill() none width()

22
By default the floating numbers are printed with
______ after the decimal point. 5 digits 6 7 8 6

23 ____ returns the setting in effect until it is reset width precision() setf() fill()
precision

24
A _______ is a collection of related data stored in a
particular area on a disk. Field File Row Vector File

25
File streams act as an ________ between programs
and files. interface converter translator operator

interface

26
Ifstram, Ofstream, Fstream are derived form
__________. iostream ostream streambuff fstreambase

fstreamb

27
Classes designed to manage the ________ files are
declared in fstream. random sequential disk tape

sequentia

28 _________ is to set the file buffer to read and write. filebuf filestream thread package filebuf

29
 ________ inherits get(), getline(), read(), seekg(), and
tellg() from istream. conio ifstream fstream iostream ifstream

30
 Put(), seekp(), tellp(), and write() functions are
inherited by ofstream from _______ ostream fstream ifstream istream ostream

31
______ inherits all functions from istream and ostream
through iostream file stream ofstream fstream ifstream fstream

32 The eof () stands for _____. end of file error
opening file error of file none of the

above
 end of

file

33
Command line arguments are used with ________
function main() member

function
 with all
function

 none of the
above main()

34 The close() function _________.
 closes the

file
 closes all

files opened
 closes only
read mode none closes

the file

35 The write() function writes ___________.
 single

character object string none of
these

 single
character

36 Feof function is used to test
End of file
condition

Beginning of
file

Middle of
the file

Previous file
position

End of
file

37 __________ is a another memory allocation function theta is normally used for requesting memory space for multiple block at run timeMalloc() Realloc() Calloc() Free() Calloc()

38 With the dynamic run time allocation it is responsible to release the space when it is not required.Malloc() Realloc() Calloc() Free() Free()

39 List , queue and stack are all inherently
One

dimensional
Two

dimensional
Multi-

dimensional Hierarchal One
dimensio

40 Program that processes the source code before it passes through the compilerPreprocessor Function Library
function

structure
function

Preproce
ssor

41 C preprocessor offers a special feature known as
Uncondition

al
Debugging
statement

Macro
compilation

Conditional
compilation

Conditio
nal

42 Fopen() is used for Create a file Close a file Read a file Write a file Create a
file

43 FILE is a Keyword Identifier Constant variable Keyword

44 FILE is a Function Structure Defined data
type I/O function Defined

data type

45 Getc() is used for
Write a

character
Read a

character
Append a
character

None of the
above

Read a
character

46 Fseek() is used for
Gives
current

Gives
previous

Sets the
position to

Sets desired
point

Sets
desired

47 Putw() is used for
Write a
integer

Read a
character

Append a
character

None of the
above

Write a
integer

48 FILE is a structure defined in---
Not defined
in I/O library I/O library Input library output library I/O

library

49 Filename specified in FILE concept should have
Primary

name and
Secondary
name and

Only
Primary

Only optional
period

Primary
name and

50 W mode is used for
Reading and

writing Only reading Only writing none Only
writing

51 Filename and mode should be specified in
Double

quotation
Single

quotation
With tilde

symbol None Double
quotation

52 Fprintf and fscanf function is used for
For printing
and reading

Only for
reading

Only for
writing

Scanning the
variables

For
printing

1

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2019 onwards)

DEPARTMENT OF CS, CA & IT

SUBJECT :PROGRAMMING FUNDAMENTALS USING C / C++ Class : I B. Sc (CS) B

SEMESTER: I SUBJECT CODE: 19CSU101

 UNIT-V

Using Classes in C++:

Principles of Object-Oriented Programming,

Defining & Using Classes,

Class Constructors,

Constructor Overloading,

Copy Constructors,

Function overloading in classes,

Class Variables &Functions,

Objects as parameters,

Specifying the Protected and Private access

Overview of Template classes and their use.

Overview of Function Overloading and Operator Overloading:

Overloading functions

 Operators Overloading

Overloading functions by number and type of arguments,

 Looking at an operator as a function call,

Overloading Operators (including assignment operators, unary operators)

Inheritance, Polymorphism and Exception Handling:

Introduction to Inheritance (Multi-Level Inheritance, Multiple Inheritance),

Polymorphism (Virtual Functions, Pure Virtual Functions),

Basics Exceptional Handling (using catch and throw, multiple catch statements),

Catching all exceptions, restricting exceptions, Rethrowing exceptions.

2

Principles of Object-Oriented Programming

Object oriented programming language is a feature that allows a mode of modularizing
programs by forming separate memory area for data as well as functions that is used as object for
making copies of modules as per requirement

Characteristics of OOPS

 Giving more importance to data than to function.
 Programs are divided into classes and their member function.
 New data items and functions can be added whenever essential.
 Data is private and prevented from accessing external functions.
 Objects can communicate with each other through functions.

The Key concepts of OOPS

 Objects

 Classes

 Abstraction

 Encapsulation

 Inheritance

 polymorphism

Object: Objects are basic run-time entities in an object-oriented system, objects are instances of a
class these are defined user defined data types.
ex:
Classperson
{
 Charname[20];
 intid;
public:
 voidgetdetails()
{

}
};

Intmain()
{
 person p1; //p1 is a object
}
Run on IDE

Object take up space in memory and have an associated address like a record in pascal or structure or
union in C.

3

When a program is executed the objects interact by sending messages to one another.

Each object contains data and code to manipulate the data. Objects can interact without having to know
details of each others data or code, it is sufficient to know the type of message accepted and type of
response returned by the objects.

Class: Class is a blueprint of data and functions or methods. Class does not take any space.
Syntax for class:

classclass_name
{
 private:
 //data members and member functions declarations
 public:
 //data members and member functions declarations
 protected:
 //data members and member functions declarations
};
Run on IDE

Class is a user defined data type like structures and unions in C.

By default class variables are private but in case of structure it is public. in above example person is a
class.

Encapsulation

 Wrapping up(combing) of data and functions into a single unit is known as encapsulation. The
data is not accessible to the outside world and only those functions which are wrapping in the class can
access it. This insulation of the data from direct access by the program is called data hiding or
information hiding.

Data abstraction:
Data abstraction refers to, providing only needed information to the outside world and hiding

implementation details. For example, consider a class Complex with public functions as getReal() and
getImag(). We may implement the class as an array of size 2 or as two variables. The advantage of
abstractions is, we can change implementation at any point, users of Complex class wont’t be affected as
out method interface remains same. Had our implementation be public, we would not have been able to
change it.

Inheritance: inheritance is the process by which objects of one class acquire the properties of objects
of another class. It supports the concept of hierarchical classification. Inheritance provides re usability.
This means that we can add additional features to an existing class without modifying it.

Polymorphism: polymorphism means ability to take more than one form. An operation may exhibit
different behaviors in different instances. The behavior depends upon the types of data used in the
operation.C++ supports operator overloading and function overloading. Operator overloading is the

4

process of making an operator to exhibit different behaviors in different instances is known as operator
overloading. Function overloading is using a single function name to perform different types of tasks.
Polymorphism is extensively used in implementing inheritance.

Dynamic Binding: In dynamic binding, the code to be executed in response to function call is decided
at runtime. C++ has virtual functions to support this.

Message Passing: Objects communicate with one another by sending and receiving information to
each other. A message for an object is a request for execution of a procedure and therefore will invoke a
function in the receiving object that generates the desired results. Message passing involves specifying
the name of the object, the name of the function and the information to be sent.

Defining & Using Classes

 A class is a logical method to organize data and functions in the same structure.

They are declared using keyword class, whose functionality is similar to that of the C keyword struct,

but with the possibility of including functions as members, instead of only data.

When you define a class, you define a blueprint for a data type. This doesn't actually define any

data, but it does define what the class name means, that is, what an object of the class will consist of

and what operations can be performed on such an object.

A class definition starts with the keyword class followed by the class name; and the class body,

enclosed by a pair of curly braces. A class definition must be followed either by a semicolon or a list of

declarations. For example, we defined the Box data type using the keyword class as follows −

class Box

{

 public:

double length; // Length of a box

double breadth; // Breadth of a box

double height; // Height of a box

};

OR

class classname

 {

 Access - Specifier :

 Member Varibale Declaration;

 Member Function Declaration;

https://www.geeksforgeeks.org/virtual-functions-and-runtime-polymorphism-in-c-set-1-introduction/

5

}

The keyword public determines the access attributes of the members of the class that follows it.

A public member can be accessed from outside the class anywhere within the scope of the class object.

You can also specify the members of a class as private or protected which we will discuss in a sub-

section.

#include <iostream>
#include<conio.h>
using namespace std;

// Class Declaration

class person
{
 //Access - Specifier
public:

 //Variable Declaration
 string name;
 int number;
};

//Main Function

int main()
 {
 // Object Creation For Class
 person obj;

 //Get Input Values For Object Varibales
cout<< "Enter the Name :";
cin>> obj.name;

cout<< "Enter the Number :";
cin>>obj.number;

 //Show the Output
cout<< obj.name << ": " <<obj.number<<endl;

getch();
 return 0;
}

Sample Output

Enter the Name :Byron
Enter the Number :100
Byron: 100

6

Class Variable and Functions
A member function of a class is a function that has its definition or its prototype within the class

definition like any other variable. It operates on any object of the class of which it is a member, and has

access to all the members of a class for that object.

Let us take previously defined class to access the members of the class using a member function

instead of directly accessing them −

class Box
{
public:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box
doublegetVolume(void);// Returns box volume
};

Member functions can be defined within the class definition or separately using scope resolution

operator,: −. Defining a member function within the class definition declares the function inline, even

if you do not use the inline specifier. So either you can define Volume() function as below −

class Box
 {
public:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box

doublegetVolume(void)
 {
return length * breadth * height;
 }
};

If you like, you can define the same function outside the class using the scope resolution operator (::)

as follows −

double Box::getVolume(void)
{
return length * breadth * height;
}

Here, only important point is that you would have to use class name just before :: operator. A member

function will be called using a dot operator (.) on a object where it will manipulate data related to that

object only as follows −

Box myBox; // Create an object

myBox.getVolume(); // Call member function for the object

7

Let us put above concepts to set and get the value of different class members in a class −

 Live Demo

#include<iostream>

usingnamespacestd;

classBox{
public:
double length;// Length of a box
double breadth;// Breadth of a box
double height;// Height of a box

// Member functions declaration
doublegetVolume(void);
voidsetLength(doublelen);
voidsetBreadth(doublebre);
voidsetHeight(doublehei);
};

// Member functions definitions
doubleBox::getVolume(void)
{
return length * breadth * height;
}

voidBox::setLength(doublelen)
{
length=len;
}
voidBox::setBreadth(doublebre)
{
breadth=bre;
}
voidBox::setHeight(doublehei)
{
height=hei;
}

// Main function for the program
int main()
{
BoxBox1;// Declare Box1 of type Box
BoxBox2; // Declare Box2 of type Box
double volume =0.0;// Store the volume of a box here

// box 1 specification

http://tpcg.io/ok5zpD

8

Box1.setLength(6.0);
Box1.setBreadth(7.0);
Box1.setHeight(5.0);

// box 2 specification
Box2.setLength(12.0);
Box2.setBreadth(13.0);
Box2.setHeight(10.0);

// volume of box 1
volume=Box1.getVolume();
cout<<"Volume of Box1 : "<< volume <<endl;

// volume of box 2
volume=Box2.getVolume();
cout<<"Volume of Box2 : "<< volume <<endl;
return0;
}

When the above code is compiled and executed, it produces the following result −

Volume of Box1 : 210
Volume of Box2 : 1560

https://books.google.co.in/books?id=rA0SWk4dQ-

0C&printsec=frontcover&source=gbs_ViewAPI&redir_esc=y#v=onepage&q&f=false

https://books.google.co.in/books?id=rA0SWk4dQ-0C&printsec=frontcover&source=gbs_ViewAPI&redir_esc=y#v=onepage&q&f=false
https://books.google.co.in/books?id=rA0SWk4dQ-0C&printsec=frontcover&source=gbs_ViewAPI&redir_esc=y#v=onepage&q&f=false

9

The Class Constructor
A class constructor is a special member function of a class that is executed whenever we create

new objects of that class.

A constructor will have exact same name as the class and it does not have any return type at all, not

even void. Constructors can be very useful for setting initial values for certain member variables.

SYNTAX

Constructor has the same name as that of the class and it does not have any return type. Also, the
constructor is always public.

...
class temporary
{
private:
 int x;
 float y;
public:
 // Constructor
 temporary(): x(5), y(5.5)
 {
 // Body of constructor
 }

};

int main()
{
 Temporary t1;

}

Above program shows a constructor is defined without a return type and the same name as the class.

10

#include<iostream>

usingnamespacestd;

classLine
{
public:
voidsetLength(doublelen);
doublegetLength(void);
Line();// This is the constructor
private:
double length;
};

// Member functions definitions including constructor

Line::Line(void)
{
cout<<"Object is being created"<<endl;
}
voidLine::setLength(doublelen)
{
length=len;
}
doubleLine::getLength(void)
{
return length;
}

// Main function for the program
int main()
{
Lineline;

// set line length
line.setLength(6.0);
cout<<"Length of line : "<<line.getLength()<<endl;

return0;
}

When the above code is compiled and executed, it produces the following result −

Object is being created

Length of line : 6

11

Constructor Overloading
Constructor can be overloaded in a similar way as function overloading.Overloaded constructors

have the same name (name of the class) but different number of arguments.Depending upon the
number and type of arguments passed, specific constructor is called. Since, there are multiple
constructors present, argument to the constructor should also be passed while creating an object.

Example Constructor overloading

// Source Code to demonstrate the working of overloaded constructors
#include<iostream>
usingnamespacestd;

classArea
{
private:
int length;
int breadth;

public:
// Constructor with no arguments
Area(): length(5), breadth(2){}

// Constructor with two arguments
Area(intl,int b): length(l), breadth(b){}

voidGetLength()
{
cout<<"Enter length and breadth respectively: ";
cin>> length >> breadth;
}

intAreaCalculation()
{
return length * breadth;
}

voidDisplayArea(int temp)
{
cout<<"Area: "<< temp <<endl;
}
};

int main()
{
Area A1,A2(2,1);
int temp;

https://www.programiz.com/cpp-programming/function-overloading

12

cout<<"Default Area when no argument is passed."<<endl;
temp= A1.AreaCalculation();
A1.DisplayArea(temp);

cout<<"Area when (2,1) is passed as argument."<<endl;
temp= A2.AreaCalculation();
A2.DisplayArea(temp);

return0;
}

For object A1, no argument is passed while creating the object.Thus, the constructor with no
argument is invoked which initializes length to 5 and breadth to 2. Hence, area of the object A1 will be
10.For object A2, 2 and 1 are passed as arguments while creating the object.Thus, the constructor with
two arguments is invoked which initializes lengthto l (2 in this case) and breadth to b (1 in this case).
Hence, area of the object A2 will be 2.
Output

Default Area when no argument is passed.
Area: 10
Area when (2,1) is passed as argument.
Area: 2

copy constructor

The copy constructor is a constructor which creates an object by initializing it with an object of the

same class, which has been created previously. The copy constructor is used to −

 Initialize one object from another of the same type.

 Copy an object to pass it as an argument to a function.

 Copy an object to return it from a function.

If a copy constructor is not defined in a class, the compiler itself defines one.If the class has pointer

variables and has some dynamic memory allocations, then it is a must to have a copy constructor. The

most common form of copy constructor is shown here –

Syntax

classname (constclassname&obj)
{
 // body of constructor
}

Here, obj is a reference to an object that is being used to initialize another object.

13

#include<iostream>

#include<conio.h>

using namespace std;

class Example

{

 // Member Variable Declaration

int a, b;

public:

 //Normal Constructor with Argument

Example(int x, int y)

 {

 // Assign Values In Constructor

 a = x;

 b = y;

cout<< "\nIm Constructor";

 }

 //Copy Constructor with Obj Argument

Example(constExample&obj)

{

 // Assign Values In Constructor

 a = obj.a;

 b = obj.b;

cout<< "\nIm Copy Constructor";

 }

void Display()

 {

cout<< "\nValues :" << a << "\t" << b;

 }

};

int main()

{

 //Normal Constructor Invoked

14

 Example Object(10, 20);

 //Copy Constructor Invoked - Method 1

 Example Object2(Object);

 //Copy Constructor Invoked - Method 2

 Example Object3 = Object;

Object.Display();

Object2.Display();

Object3.Display();

 // Wait For Output Screen

getch();

return 0;

}

Sample Output

Im Constructor

Im Copy Constructor

Im Copy Constructor

Values :10 20

Values :10 20

Values :10 20

15

INHERITANCE in C++

The capability of a class to derive properties and characteristics from another class is

called Inheritance. Inheritance is one of the most important features of Object Oriented Programming.

OR

The process of obtaining the data members and methods from one class to another class is known

as inheritance. It is one of the fundamental features of object-oriented programming.

Important points

 In the inheritance the class which is give data members and methods is known as base or

super or parent class.

 The class which is taking the data members and methods is known as sub or derived or child

class

Advantage of inheritance

If we develop any application using this concept than that application have following advantages,

 Application development time is less.

 Application takes less memory.

 Application execution time is less.

 Application performance is enhance (improved).

 Redundancy (repetition) of the code is reduced or minimized so that we get consistence

results and less storage cost.

Types of Inheritance

Based on number of ways inheriting the feature of base class into derived class it have five types they

are:

 Single inheritance

 Multiple inheritance

 Hierarchical inheritance

 Multilevel inheritance

 Hybrid inheritance

Sub Class: The class that inherits properties from another class is called Sub class or Derived Class.

Super Class:The class whose properties are inherited by sub class is called Base Class or Super class.

16

Modes of Inheritance(Access Specifiers)

1. Public mode: If we derive a sub class from a public base class. Then the public member of the

base class will become public in the derived class and protected members of the base class will

become protected in derived class.

2. Protected mode: If we derive a sub class from a Protected base class. Then both public member

and protected members of the base class will become protected in derived class.

3. Private mode: If we derive a sub class from a Private base class. Then both public member and

protected members of the base class will become Private in derived class.

Single Inheritance:
In single inheritance, a class is allowed to inherit from only one class. i.e. one sub class is

inherited by one base class only
Syntax:

classsubclass_name : access_modebase_class

{

 //body of subclass

17

};

// C++ program to explain
// Single inheritance
#include <iostream>
usingnamespacestd;

// base class
Class Vehicle
{
 public:
 Vehicle()
 {
 cout<< "This is a Vehicle"<<endl;
 }
};

// sub class derived from two base classes
classCar: publicVehicle
{

};

// main function
intmain ()
{
 // creating object of sub class will
 // invoke the constructor of base classes
 Car obj;
 return 0;
}
Run on IDE

Output:

This is a vehicle

Multiple Inheritances:

 Multiple Inheritance is a feature of C++ where a class can inherit from more than one classes. i.e
one sub class is inherited from more than one base classes.
Syntax:

classsubclass_name : access_mode base_class1, access_mode base_class2,

{

 //body of subclass

18

};

Here, the number of base classes will be separated by a comma (‘, ‘) and access mode for every base class
must be specified.

// C++ program to explain
// multiple inheritance
#include <iostream>
usingnamespacestd;

// first base class
ClassVehicle
 {
 public:
 Vehicle()
 {
 cout<< "This is a Vehicle"<<endl;
 }
};

// second base class
ClassFourWheeler
{
 public:
 FourWheeler()
 {
 cout<< "This is a 4 wheeler Vehicle"<<endl;
 }
};

// sub class derived from two base classes

Class Car: publicVehicle, publicFourWheeler
 {

};

// main function
Intmain()
{
 // creating object of sub class will
 // invoke the constructor of base classes
 Car obj;
 return0;
}
Run on IDE

19

Output:

This is a Vehicle

This is a 4 wheeler Vehicle

Multilevel Inheritance:

In this type of inheritance, a derived class is created from another derived class

// C++ program to implement
// Multilevel Inheritance
#include <iostream>
Usingnamespacestd;

// base class
ClassVehicle
{
 public:
 Vehicle()
 {
 cout<< "This is a Vehicle"<<endl;
 }
};
ClassfourWheeler: publicVehicle
{
public:
 fourWheeler()
 {
 cout<<"Objects with 4 wheels are vehicles"<<endl;
 }
};
// sub class derived from two base classes
ClassCar: publicfourWheeler
{
 public:
 car()
 {
 cout<<"Car has 4 Wheels"<<endl;
 }
};

// main function
Intmain()
{

20

 //creating object of sub class will
 //invoke the constructor of base classes
 Car obj;
 return0;
}

output:

This is a Vehicle

Objects with 4 wheels are vehicles

Car has 4 Wheels

Hierarchical Inheritance: In this type of inheritance, more than one sub class is inherited from a
single base class. i.e. more than one derived class is created from a single base class

./ C++ program to implement
// Hierarchical Inheritance
#include <iostream>
usingnamespacestd;

// base class
ClassVehicle
{
 public:
 Vehicle()
 {
 cout<< "This is a Vehicle"<<endl;
 }
};

// first sub class
classCar: publicVehicle
{

};

// second sub class
ClassBus: publicVehicle
{

};

// main function
intmain()

21

{
 // creating object of sub class will
 // invoke the constructor of base class
 Car obj1;
 Bus obj2;
 return0;

}
Run on IDE
Output:

This is a Vehicle
This is a Vehicle

Hybrid (Virtual) Inheritance:

Hybrid Inheritance is implemented by combining more than one type of inheritance. For example:
Combining Hierarchical inheritance and Multiple Inheritance.

Below image shows the combination of hierarchical and multiple inheritance:

// C++ program for Hybrid Inheritance

#include <iostream>
using namespace std;

// base class
class Vehicle
{
 public:
 Vehicle()
 {
 cout<< "This is a Vehicle" <<endl;
 }
};

//base class
class Fare
{
 public:
 Fare()
 {
 cout<<"Fare of Vehicle\n";
 }
};

// first sub class

22

class Car: public Vehicle
{

};

// second sub class
class Bus: public Vehicle, public Fare
{

};

// main function
int main()
{
 // creating object of sub class will
 // invoke the constructor of base class
 Bus obj2;
 return 0;
}
Output:

This is a Vehicle
Fare of Vehicle

Exception Handling in C++
Errors can be broadly categorized into two types. We will discuss them one by one.

1. Compile Time Errors

2. Run Time Errors

Compile Time Errors – Errors caught during compiled time is called Compile time errors. Compile
time errors include library reference, syntax error or incorrect class import.

Run Time Errors - They are also known as exceptions. An exception caught during run time creates
serious issues.

Errors hinder normal execution of program. Exception handling is the process of handling errors and
exceptions in such a way that they do not hinder normal execution of the system. For example, User
divides a number by zero, this will compile successfully but an exception or run time error will occur
due to which our applications will be crashed. In order to avoid this we'll introduce exception handling
technics in our code.

In C++, Error handling is done by three keywords:-

 Try

 Catch

23

 Throw

Syntax:

Try

{

//code

throw parameter;

}

catch(exceptionname ex)

{

//code to handle exception

}

Try

Try block is intended to throw exceptions, which is followed by catch blocks. Only one try block.

Catch

Catch block is intended to catch the error and handle the exception condition. We can have multiple
catch blocks.

Throw

It is used to throw exceptions to exception handler i.e. it is used to communicate information about
error. A throw expression accepts one parameter and that parameter is passed to handler.

Example of Exception

Below program compiles successful but the program fails during run time.

#include <iostream>

#include<conio.h>

using namespace std;

intmain()

{

int a=10,b=0,c;

c=a/b;

return0;

}

24

Implementation of try-catch, throw statement

Example of simple try-throw-catch

 #include<iostream.h>
 #include<conio.h>
void main()
 {
int n1,n2,result;

cout<<"\nEnter 1st number : ";
cin>>n1;

cout<<"\nEnter 2nd number : ";
cin>>n2;

try
 {
if(n2==0)
throw n2; //Statement 1
else
 {
result = n1 / n2;
cout<<"\nThe result is : "<<result;
 }
 }
catch(int x)
 {
cout<<"\nCan't divide by : "<<x;

25

 }

cout<<"\nEnd of program.";

 }

Output :

 Enter 1st number : 45
 Enter 2nd number : 0
 Can't divide by : 0
 End of program

The catch block contain the code to handle exception. The catch block is similar to function definition.

catch(data-type arg)
 {
 - - - - - - - - - -
 - - - - - - - - - -
 - - - - - - - - - -
 };

Data-type specifies the type of exception that catch block will handle, Catch block will recieve value,
send by throw keyword in try block.

Multiple Catch Statements

A single try statement can have multiple catch statements. Execution of particular catch block
depends on the type of exception thrown by the throw keyword. If throw keyword send exception of
integer type, catch block with integer parameter will get execute.

Example of multiple catch blocks

 #include<iostream.h>
 #include<conio.h>
void main()
 {
int a=2;

try
 {

if(a==1)

26

throw a; //throwing integer exception

else if(a==2)
throw 'A'; //throwing character exception

else if(a==3)
throw 4.5; //throwing float exception

 }
catch(int a)
 {
cout<<"\nInteger exception caught.";
 }
catch(char ch)
 {
cout<<"\nCharacter exception caught.";
 }
catch(double d)
 {
cout<<"\nDouble exception caught.";
 }

cout<<"\nEnd of program.";

 }

Output :

 Character exception caught.
 End of program.

Catch All Exceptions

The above example will caught only three types of exceptions that are integer, character and
double. If an exception occur of long type, no catch block will get execute and abnormal program
termination will occur. To avoid this, We can use the catch statement with three dots as parameter (...)
so that it can handle all types of exceptions.

Example to catch all exceptions

 #include<iostream.h>
 #include<conio.h>
void main()
 {
int a=1;

try

27

 {

if(a==1)
throw a; //throwing integer exception

else if(a==2)
throw 'A'; //throwing character exception

else if(a==3)
throw 4.5; //throwing float exception

 }
catch(...)
 {
cout<<"\nException occur.";
 }

cout<<"\nEnd of program.";

 }

Output :

Exception occur.
 End of program.

Rethrowing Exceptions

Rethrowing exception is possible, where we have an inner and outer try-catch statements (Nested try-
catch). An exception to be thrown from inner catch block to outer catch block is called rethrowing
exception.

Syntax of rethrowing exceptions

28

Example of rethrowing exceptions

 #include<iostream.h>
 #include<conio.h>
void main()
 {
int a=1;

try
 {
try
 {
throw a;
 }
catch(int x)
 {
cout<<"\nException in inner try-catch block.";

throw x;
 }

29

 }
catch(int n)
 {
cout<<"\nException in outer try-catch block.";
 }

cout<<"\nEnd of program.";

 }

Output :

Exception in inner try-catch block.
Exception in outer try-catch block.
 End of program.

Restricting Exceptions

We can restrict the type of exception to be thrown, from a function to its calling statement, by adding
throw keyword to a function definition.

Example of restricting exceptions

 #include<iostream.h>
 #include<conio.h>

void Demo() throw(int ,double)
 {
int a=2;

if(a==1)
throw a; //throwing integer exception

else if(a==2)
throw 'A'; //throwing character exception

else if(a==3)
throw 4.5; //throwing float exception

 }

void main()
 {

try
 {

30

Demo();
 }
catch(int n)
 {
cout<<"\nException caught.";
 }

cout<<"\nEnd of program.";

 }

The above program will abort because we have restricted the Demo() function to throw only integer
and double type exceptions and Demo() is throwing character type exception.

 Questions OPT1 OPT2 OPT3 OPT4 Answer

1
C++ supports all the features of ___________ as
defined in C

 structures union objects classes structures

2 A structure can have both variable and functions as objects classes members arguments members

3
The class _________ describes the type and scope
of its members

calling
function declaration objects none of the

above declaration

4
The class __________ describes how the class
function are implemented

 Function
definition declaration arguments none of the

above
 Function
definition

5
The keywords private and public are known as
_________ labels Static dynamic visibility const visibility

6

The class members that have been declared as
________ can be
 accessed only from within the class

 Private public static protected Private

7

The class members that have been declared as
________ can be
 accessed from outside the class also

 Private Public static protected Public

8
The variables declared inside the class are called as

 Function
variables data members member

function data variables data members

9
The functions which are declared inside the class are
known as ______

 Member
function

 member
variables data variables function

overloading
 Member
function

10 The class variables are known as ________
 Functions members objects none of the

above objects

SUBJECT: PROGRAMMING FUNDAMENTALS USING C/C++ SUBJECT CODE: 19CSU101

UNIT-V

KARPAGAM ACADEMY OF HIGHER EDUCATION
COIMBATORE - 21

DEPARTMENT OF COMPUTER SCIENCE,CA & IT
 CLASS : I B.Sc COMPUTER SCIENCE

BATCH : 2019-2022

 Part -A Online Examinations (1 mark questions)

11
The symbol ______ is called the scope resolution
operator

 >> :: << ::* ::

12
__________ enables an object to initialize itself when
it is created

 Destructor constructor overloading none of the
above constructor

13
The __________ is special because its name is the
same as the class name.

 Destructor static constructor none of the
above constructor

14
A constructor that accepts no parameters is called
the __________ constructor

 Copy default multiple none of the
above default

15
Constructors are invoked automatically when the
________ are created

 Datas classes objects none of the
above objects

16 Constructors cannot be _________
 Inherited destroyed both a & b none of the

above Inherited

17 Constructors cannot be _________
 Destroyed virtual both a & b none of the

above virtual

18

Constructors make _________ calls to the operators
new and
delete when memory allocation is required

 Explicit implicit function none of the
above implicit

19
The constructors that can take arguments are called
_________ constructors

 Copy multiple
parameterized

 none of the
above

parameterized

20
The constructor function can also be defined as
________ function

 Friend inline default none of the
above inline

21

When a constructor can accept a reference to its own
 class as a parameter, in such cases it is called as
_________ constructors

 Multiple copy default none of the
above copy

22

When more than one constructor function is defined
in a class,
 then the constructor is said to be _________

 Multiple copy default overloaded overloaded

23

C++ complier has a _________ constructor, which
creates objects, even though it was not defined in the
class.

 Explicit default implicit none of the
above implicit

24
A _________ constructor is used to declare and
initialize an object from another object

 Default copy multiple
parameterized copy

25
The process of initializing through a copy constructor
is known as ________ initialization

 Overloaded multiple copy none of the
above copy

26 _________ is used to free the memory
 new delete clrscr() none of the

above delete

27
Which is a valid method for accessing the first
element of the array item?

 item(1) item[1] item[0] item(0) item[0]

28
Which of the following statements is valid array
declaration?

 int number
(5); float avg[5]; double [5]

marks;
 counter
int[5]; float avg[5];

29 An object is an _________ unit
 group individual both a&b none of the

above individual

30 Public keyword is terminated by a ________
 Semicolon comma dot colon colon

31 Private keyword is terminated by a _________
 semicolon comma dot colon colon

32
The memory for static data is allocated only

 twice thrice once none of the
above once

33
Static member functions can be invoked using
________ name

 class object data function class

34
When a class is declared inside a function they are
called as ________ classes.

 global invalid local none of the
above local

35
_________ releases memory space occupied by the
objects

 constructor destructor both a & b none of the
above destructor

36
Constructors and destructors are automatically
inkoved by _________

 operating
system main() complier object complier

37 Constructors is executed when ________
 object is
destroyed

 object is
declared both a & b none of the

above
 object is
declared

38 The destructor is executed when __________
 object goes
out of scope

 when object is
not used

 when object
contains
nothing

 none of the
above

 object goes
out of scope

39 The members of a class are by default ________
 protected private public none of the

above 2

40
The ________ is executed at the end of the function
when objects are of no used or goes out of scope

 destructor constructor inheritance none of the
above destructor

41 The statement catches the exception _______ . catch try template throw. catch

42
In a multiple catch statement the number of
throw statements are .

 same as
catch

 twice than
catch only one none. only one

43 The exception is generated in _________block. try catch finally throw. try

44
The exception handling one of the function is
implicitly invoked. abort exit assert none. abort

45
The exception handling mechanism is basically
built upon ______ keyword try catch throw all the above all the above

46
The point at which the throw is executed is
called _________. try catch throw point exceptions throw point

47
A template function may be overloaded by
_______ function template normal stream exception template

48
________function returns true when an input or
output operation has failed eof() fail() bad() good() fail()

49
.In ________ inheritance, the base classes are
constructed in the order in which they appear in

 Hybrid Multipath Hierarchical Multiple Multiple

50
The ________ function takes no operator. Operator

+() Operator –() Friend Conversion operator -()

51
In overloading of binary operators, the ________
operand is used to invoke the operator function.

 Right-hand Arithmetic Left-hand
Multiplicatio

left-hand

52
________ functions may be used in place of
member functions for overloading a binary

 Inline Member Conversion Friend Friend

53
The operator that cannot be overloaded is

 Sizee of + - = single of

54
The friend functions cannot be used to overload
the ________ operator.

 :: ?: . = ::

55
________ is called compile time polymorphism. Operator

overloading
 Function
overloading

 Overloading
unary operator

Overloading

operator
overloading

56
________ feature can be used to add two user-
defined operator data types.

 Function Overloading Arrays Pointers overloading

57
________ operator cannot be overloaded. = + ?: – ?:

58
Operator overloading is done with the help of a
special function called ________ function.

Conversion Operator User-

defined In-built. operator

59
________ functions must either be member
functions or friend functions.

 Operator User-defined Static
Member

Overloading

operator

60
The overloading operator must have atleast
________ operand that is of user-defined data

 Two Three One Four one

61
________ operator function should be a class
member.

 Arithmetic Relational Casting
Overloading

casting

62
The casting operator must not have any

 Arguments Member Return type Operator arguments

63
The casting operator function must not specify a
________ type.

 User-
defined type Return Member In-built return

64
The operator that cannot be overloaded is
________.

 Casting Binary Unary Scope
resolution

scope
resolution

65
The friend function cannot be used to overload
________ operator.

 + - () :: ()

66
________ operator cannot be overloaded by
friend function.

 [] * . ?: ?:

67
The operator that cannot be overloaded by friend
function is ________

 . :: -> Single of ::

68
Operator overloading is called ________ Function

Overloading
 Compile
time

 Casting
operator

 Temporary
object

Compile time
polymorphism

69
Overloading feature can add two ________ data
types.

 In-built Enumerated User-
defined Static User-defined

70
The mechanism of deriving a new class from an
old one is called ________

 Operator
overloading Inheritance

Polymorphism
 Access
mechanism

polymorphism

	1.pdf (p.1-3)
	2.pdf (p.4-63)
	Facts about C
	Object
	Class
	Abstraction
	Showing essential features and hiding background details is called abstraction.
	Encapsulation
	Inheritance
	Polymorphism
	Overloading
	Syntax
	Simple example of main()

	Example
	Output
	The C Compilation Model:
	The Preprocessor
	C Compiler:
	Assembler:
	Link Editor:
	What are Variables?
	Basic types of Variables
	Declaration and Initialization:

	Local Variables
	Global Variables
	Defining Constants
	The #define Preprocessor
	The constant –(const) Keyword
	Primitive Built-in Types
	The C++ Keywords are reserved words by the compiler. All keywords have been assigned a fixed meaning. They cannot be used as variable names because they have been assigned fixed jobs.
	C++ Keyword List :
	Primitive Built-in Types (1)
	typedef Declarations
	Enumerated Types
	Casting of Data Types-Typecasting
	Example: Program for Typecasting and displaying the converted values

	Arithmetic Operators
	Relational Operators
	Logical Operators
	Bitwise Operators
	Assignment Operators- (optional)
	Syntax
	Syntax (1)
	Example
	Syntax (2)
	Syntax (3)
	Example (1)
	Syntax (4)
	Example (2)
	if...else and else….if Statement
	Syntax (5)
	Example (3)
	Syntax (6)
	Example (4)
	C++ while Loop
	While loop is an entry controlled loop where the condition is checked at the beginning of the loop. The condition to be checked can be changed inside it. The control can exit a loop in two ways, when the condition becomes false or using break statement.
	How while loop works?
	Example 1: C++ while Loop
	Syntax of do-while loop
	​Syntax of for loop

	C++ Basic Input/Output:
	I/O Library Header Files:
	Using in C-Language
	<stdio> This files defines the printf(), scanf() functions, which correspond to the standard input, the standard output
	The standard output stream (cout):
	The standard input stream (cin):

	Printf and Scanf:
	Printf():
	Printf is a predefined function in "stdio.h" header file, by using this function, we can print the data or user defined message on console or monitor. While working with printf(), it can take any number of arguments but first argument must be within t...
	Syntax:
	Syntax: (1)
	Example of printf() function:
	Syntax: (2)
	Example of scanf function:
	Format specifier:
	Example:
	Syntax :
	1) Unformatted consol input output operations
	2) Formatted console input output operations

	Header Files in C++
	Types of Header files
	Using in C-Language
	<stdio> This files defines the printf(), scanf() functions, which correspond to the standard input, the standard output
	Why need of header files

	Syntax
	Syntax (1)
	How to use header file in Program

	Syntax (2)
	Syntax (3)
	Syntax (4)
	Example
	Syntax (5)
	Flow Diagram
	Example (1)
	scanf() and printf() functions
	getchar() & putchar() functions
	gets() & puts() functions
	Difference between scanf() and gets()

	3.pdf (p.64-69)
	4.pdf (p.70-94)
	Defining a Function
	Example
	Function Declarations
	Calling a Function
	Function Arguments
	Default Values for Parameters
	Command line arguments in C/C++
	Defining a Function
	Example
	Function Declarations
	Declaring, Defining and Calling Function

	Formal Parameters
	Actual Parameters or Arguments
	Value Parameters
	Reference Parameters
	Default Values for Parameters
	Declaring Arrays
	How to declare an array in C++?
	Elements of an Array and accessing
	Few key notes:

	Initialize an array
	One dimensional Array
	Example: C++ Array One dimensional Array
	Two Dimensional Array
	Declaration of Two-Dimensional Array
	Initialization of Two-Dimensional Array
	Referring to Array Elements
	Using Loop to input an Two-Dimensional Array from user

	Example 1:
	Two Dimensional Array (1)
	Example: Add Two Matrices using Multi-dimensional Arrays
	C++ Programming Code for Three(multi) Dimensional (3D) Array

	5.pdf (p.95-101)
	6.pdf (p.102-129)
	Declaring a structure
	Define a structure variable
	Access the members of a structure
	Example: C++ Structure
	Passing structure to function
	Example 1: C++ Structure and Function
	Example 2: Returning structure from function

	Syntax to Access Structure Member in C++
	C++ Access Structure Members Example
	C++ Structure Array Example
	Unions:
	Syntax:
	Example :

	What is a Pointer?
	C++ Pointer Declaration
	Using Pointers in C++

	Pointers to Structure
	Passing Pointers to Function
	Passing an argument by reference or by address both enable the passed argument to be changed in the calling function by the called function.
	Example 1: Passing One-dimensional Array to a Function
	Function's Return Value

	7.pdf (p.130-135)
	Sheet1

	8.pdf (p.136-155)
	New Operator
	Delete Operator
	Example : Demonstrating how new & delete operators work

	malloc() prototype
	malloc() Parameters
	Example 1: How malloc() function works?
	calloc() prototype
	calloc() Parameters
	Opening a File
	Closing a File
	Writing to a File
	Reading from a File
	Read and Write Example

	9.pdf (p.156-159)
	10.pdf (p.160-189)
	Sample Output
	The Class Constructor
	Constructor Overloading
	Example Constructor overloading
	Sample Output
	Important points
	Advantage of inheritance

	Types of Inheritance
	Exception Handling in C++
	Try
	Catch
	Throw
	Example of Exception
	Implementation of try-catch, throw statement

	Example of simple try-throw-catch

	Multiple Catch Statements
	Example of multiple catch blocks

	Catch All Exceptions
	Example to catch all exceptions

	Rethrowing Exceptions
	Syntax of rethrowing exceptions
	Example of rethrowing exceptions

	Restricting Exceptions
	Example of restricting exceptions

	11.pdf (p.190-194)
	Sheet1

