
NETWORK PROGRAMMING 2017-2020
Batch

 KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2017 onwards)

DDeeppaarrttmmeenntt ooff CCoommppuutteerr SScciieennccee,, AApppplliiccaattiioonnss && IInnffoorrmmaattiioonn TTeecchhnnoollooggyy

SUBJECT : NETWORK PROGRAMMING

SEMESTER : V L T P C

SUBJECT CODE: 17CSU501B CLASS : III B.Sc .CS A & B 4 0 0 4

SCOPE

This course is to master the fundamentals of communications networks by gaining a working

knowledge of transport layer, understanding the operation of sockets, TCP/IP networking in

LAN.

COURSE OBJECTIVE

 To understand the concept of TCP, UDP and SCTP in the transport layer.

 To acquire knowledge on sockets and TCP client/server

 To gain knowledge on I/O multiplexing using sockets and its functions.

 To achieve knowledge on network applications like Telnet, Email.

 To understand the working of TCP/IP networking in LAN administration.

 To obtain knowledge on Network management and debugging.

COURSE OUTCOME

After completion of this course, students will be able to:

 1. Have a good understanding of the transport layer and in particular have a good knowledge of

TCP, UDP and SCTP.

 2. Have knowledge of the socket programming and its functions.

 3. Will be able to work with network programming

 4. Understanding of Linux and TCP/IP networking.

NETWORK PROGRAMMING 2017-2020
Batch

UNIT-I

Transport Layer Protocols: TCP, UDP, SCTP protocol.

UNIT-II

Socket Programming: Socket Introduction; TCP Sockets; TCP Client/Server Example; signal

handling

UNIT-III

I/O multiplexing using sockets: Socket Options - UDP Sockets; UDP client server example;

Address lookup using sockets.

UNIT-IV

Network Applications: Remote logging, Email, WWW and HTTP.

UNIT-V

LAN administration: Linux and TCP/IP networking: Network Management and Debugging.

Suggested Readings

1. Donahoo Michael J. and Calvert Kenneth L (2009), TCP/IP Sockets in C - Practical

Guide for Programmers.

2. Olivier Bonaventure, (2011) Computer Networking: Principles, Protocols and Practice,

1
st
 edition.

3. Douglas E.Comer,(2014), Internetworking With TCP/IP Volume 1: Principles Protocols,

and Architecture, 6th edition.

4. Richard Stevens, W., Bill Fenner., & Andrew, M. Rudoff. (2003). Unix Network

Programming, The sockets Networking API, Vol. 1, 3
rd

 edition, PHI, New Delhi.

5. Forouzan, B. A. (2003). Data Communications and Networking , 4
th

 edition,THM

Publishing, New Delhi

6. Nemeth Synder., & Hein. (2010). Linux Administration Handbook , 2
nd

 edition, Pearson

Education, New Delhi

7. Steven, R. (1990). Unix Network Programming, 2
nd

 edition, PHI, New Delhi.

Web References

1. https://www.tutorialspoint.com/ipv4/ipv4_subnetting.htm

2. https://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip

3. https://www.networkmanagementsoftware.com/snmp-tutorial/

4. https://en.wikipedia.org/wiki/NetFlow

 LECTURER PLAN 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE

KKAARRPPAAGGAAMM AACCAADDEEMMYY OOFF HHIIGGHHEERR EEDDUUCCAATTIIOONN

 ((DDeeeemmeedd ttoo bbee UUnniivveerrssiittyy))

 EEssttaabblliisshheedd UUnnddeerr SSeeccttiioonn 33 ooff UUGGCC AAcctt,, 11995566))

CCooiimmbbaattoorree –– 664411002211,, IINNDDIIAA

DDeeppaarrttmmeenntt ooff CCoommppuutteerr SScciieennccee,, AApppplliiccaattiioonnss && IInnffoorrmmaattiioonn TTeecchhnnoollooggyy

Lecture Plan

Subject Name: Network Programming Subject Code: 17CSU501B

Semester: V Class: III Bsc. CS A & B

Staff: Dr.P.Tamil Selvan

S.No Topics
No. of Periods

Required

Reference

Materials

Unit-I : Transport Layer Protocols

1 Transport Layer Protocols : TCP 1hr SR2: 715

2 TCP Services & Features 1hr SR2: 715-720

3 Segment, TCP connection 1hr SR2: 721-727

4 UDP - Well-Known Ports for UDP 1hr SR2: 709-710

5 User Datagram, operations 1hr SR2: 710-714

6 SCTP- Services and Features 1hr SR2: 736-741

7 Packet Format , SCTP Association 1hr SR2: 742-747

8 Recapitulation and Discussion of Important

Questions
1hr -

Total Hours 8 hrs

Unit-II : Socket Programming

1 Socket Programming: Socket Introduction 1hr SR1:67-74

2 Value Result Arguments 1hr SR1:74-77

3 Byte ordering and manipulation functions 1hr SR1:77-85

 LECTURER PLAN 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE

4 TCP Sockets - Introduction 1hr SR1:95,W2

5 socket, connect, bind function, listen and

accept function
1hr SR1:95-111

6 fork and exec functions, concurrent servers,

close function
1hr SR1:111-118

7 TCP Client/Server Example : TCP Echo

Server, client
1hr SR1:121-126

8 Signal handling 1hr SR1:127-140

9 Recapitulation and Discussion of Important

Questions
1hr -

Total Hours 9 hrs

Unit - III I/O Multiplexing using Socket

1 I/O multiplexing using sockets: Introduction 1hr SR1:153-154

2 select functions 1hr SR1:160-169

3 shutdown function 1hr SR1:172-174

4 pselect and poll function 1hr SR1:181-185

5 Socket Options 1hr SR1:191-

194,W2

6 Socket states and options 1hr SR1:198-214

7 ICMPv6, IPv6, TCP, SCTP Socket options 1hr SR1:216-222

8 UDP Sockets 1hr SR1:239-240

9 UDP Echo Server and client 1hr SR1:241-245

10 UDP client server example: Address lookup

using sockets.
1hr SR1:252-258

11 Recapitulation and Discussion of Important

Questions
1hr -

Total Hours 11 hrs

UNIT-IV : Network Application

1 Network Applications: Remote logging 1hr
SR2:817,W1

 LECTURER PLAN 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE

2
Telnet

1hr
SR2:817-824

3 Email 1hr SR2:824-828

4 Email-user agent 1hr SR2:828-834

5 Email: SMTP, POP, IMAP 1hr SR2:834-839

6 WWW and HTTP. 1hr SR2:861-869

7 Recapitulation and Discussion of Important

Questions
1hr

Total Hours 7 hrs

UNIT-V : LAN Administration

1 Linux and TCP/IP networking, Packet and

encapsulation
1hr

SR3:271-281

2
IP address, Routing

1hr
SR 3:281-295

3
DHCP

1hr
SR 3:311-313

4
Security issues

1hr
SR 3:316-319

5
Network Management and Debugging

1hr
SR 3:643-645

6
ping,traceroute,netstat

1hr
SR 3:645-653

7
packet snippers

1hr
SR 3:655-657

8
SNMP protocols

1hr SR 3:659-

661,W3

9
Network management applications

1hr
SR 3:662-666

10 Recapitulation and Discussion of Important

Questions
1hr

11
Discussion of Previous ESE Question Papers

1hr

12
Discussion of Previous ESE Question Papers

1hr

13
Discussion of Previous ESE Question Papers

1hr

Total Hours 13 hrs

Total Number of periods (8hr+9hr+11hr+7hr+13hr) 48 hrs

Suggested Readings

SR1: Richard Stevens, W., Bill Fenner., & Andrew, M. Rudoff. (2003). Unix Network

Programming, The sockets Networking API, Vol. 1(3rd ed.). New Delhi: PHI.

SR2: Forouzan, B. A. (2003). Data Communications and Networking(4th ed.). New Delhi:

 LECTURER PLAN 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE

THM Publishing Company Ltd.,

SR3: Nemeth Synder., & Hein. (2010). Linux Administration Handbook (2nd ed.), New

Delhi: Pearson Education.

SR4: Steven, R. (1990). Unix Network Programming (2nd ed.). New Delhi: PHI.

SR5: Donahoo Michael J. and Calvert Kenneth L (2009), TCP/IP Sockets in C - Practical

Guide for Programmers.

SR6: Olivier Bonaventure, (2011) Computer Networking: Principles, Protocols and

Practice, 1st edition.

SR7: Douglas E.Comer,(2014), Internetworking With TCP/IP Volume 1: Principles

Protocols, and Architecture, 6th edition.

Web References

W1: https://www.tutorialspoint.com/ipv4/ipv4_subnetting.htm

W2: https://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip

W3: https://www.networkmanagementsoftware.com/snmp-tutorial/

W4: https://en.wikipedia.org/wiki/NetFlow

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 1/34

UNIT-I

Transport Layer Protocols

The transport layer is responsible for process-to-process delivery of the entire message. A

process is an application program running on a host. Whereas the network layer oversees

source-to-destination delivery of individual packets, it does not recognize any

relationship between those packets. It treats each one independently, as though each piece

belonged to a separate message, whether or not it does. The transport layer, on the other

hand, ensures that the whole message arrives intact and in order, overseeing both error

control and flow control at the source-to-destination level.

Computers often run several programs at the same time. For this reason, source to-

destination delivery means delivery not only from one computer to the next but also from

a specific process on one computer to a specific process on the other. The transport layer

header must therefore include a type of address called a service-point address in the OSI

model and port number or port addresses in the Internet and TCP/IP protocol suite.

 A transport layer protocol can be either connectionless or connection-oriented. A

connectionless transport layer treats each segment as an independent packet and delivers

it to the transport layer at the destination machine. A connection-oriented transport layer

makes a connection with the transport layer at the destination machine first before

delivering the packets. After all the data is transferred, the connection is terminated. In

the transport layer, a message is normally divided into transmittable segments. A

connectionless protocol, such as UDP, treats each segment separately.

Transport Layer Protocols: TCP , UDP, SCTP protocol

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 2/34

 A connection oriented protocol, such as TCP and SCTP, creates a relationship between

the segments using sequence numbers. Like the data link layer, the transport layer may be

responsible for flow and error control. However, flow and error control at this layer is

performed end to end rather than across a single link. On the other hand, the other two

protocols, TCP and SCTP, use sliding windows for flow control and an acknowledgment

system for error control

TCP

The second transport layer protocol we are going to discuss is called Transmission

Control Protocol (TCP). TCP, like UDP, is a process-to-process (program-to-program)

protocol. TCP, therefore, like UDP, uses port numbers.

 Unlike UDP, TCP is a connection oriented protocol; it creates a virtual connection

between two TCPs to send data. In addition, TCP uses flow and error control mechanisms

at the transport level. In brief, TCP is called a connection-oriented, reliable transport

protocol. It adds connection-oriented and reliability features to the services of IP.

TCP Services

Before we discuss TCP in detail, let us explain the services offered by TCP to the

processes at the application layer.

Process-to-Process Communication TCP provides process-to-process communication

using port numbers. Table 1 lists some well-known port numbers used by TCP.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 3/34

Table 1: Port numbers used by TCP

Stream Delivery Service

TCP is a stream-oriented protocol. In UDP, a process (an application program) sends

messages, with predefined boundaries, to UDP for delivery. UDP adds its own header to

each of these messages and delivers them to IP for transmission. Each message from the

process is calIed a user datagram and becomes, eventually, one IP datagram. Neither IP

nor UDP recognizes any relationship between the datagrams.

TCP, on the other hand, allows the sending process to deliver data as a stream of bytes

and allows the receiving process to obtain data as a stream of bytes. TCP creates an

environment in which the two processes seem to be connected by an imaginary "tube"

that carries their data across the Internet.

This imaginary environment is depicted in Figure 1. The sending process produces

(writes to) the stream of bytes, and the receiving process consumes (reads from) them.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 4/34

Fig.1: Stream delivery

Sending and Receiving Buffers

Because the sending and the receiving processes may

not write or read data at the same speed, TCP needs buffers for storage. There are two

buffers, the sending buffer and the receiving buffer, one for each direction. One way to

implement a buffer is to use a circular array of I-byte locations as

shown in Figure 2. For simplicity, we have shown two buffers of 20 bytes each;

normally the buffers are hundreds or thousands of bytes, depending on the

implementation. We also show the buffers as the same size, which is not always the case.

Fig.2: Sending and receiving buffers

Figure 2 shows the movement of the data in one direction. At the sending site,

the buffer has three types of chambers. The white section contains empty chambers that

can be filled by the sending process (producer). The gray area holds bytes that have

been sent but not yet acknowledged. TCP keeps these bytes in the buffer until it receives

an acknowledgment. The colored area contains bytes to be sent by the sending TCP.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 5/34

However, as we will see later in this chapter, TCP may be able to send only part of this

colored section. This could be due to the slowness of the receiving process or perhaps

to congestion in the network. Also note that after the bytes in the gray chambers are

acknowledged, the chambers are recycled and available for use by the sending process.

This is why we show a circular buffer.

The operation of the buffer at the receiver site is simpler. The circular buffer is

divided into two areas (shown as white and colored). The white area contains empty

chambers to be filled by bytes received from the network. The colored sections contain

received bytes that can be read by the receiving process. When a byte is read by the

receiving process, the chamber is recycled and added to the pool of empty chambers.

Segments Although buffering handles the disparity between the speed of the producing

and consuming processes, we need one more step before we can send data. The IP layer,

as a service provider for TCP, needs to send data in packets, not as a stream of bytes. At

the transport layer, TCP groups a number of bytes together into a packet called a

segment.

TCP adds a header to each segment (for control purposes) and delivers the segment to the

IP layer for transmission. The segments are encapsulated in IP datagrams and transmitted.

This entire operation is transparent to the receiving process. Later we will see that

segments may be received out of order, lost, or corrupted and resent. All these are

handled by TCP with the receiving process unaware of any activities. Figure 3 shows

how segments are created from the bytes in the buffers.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 6/34

Fig.3: TCP Segments

Note that the segments are not necessarily the same size. In Figure 3, for simplicity, we

show one segment carrying 3 bytes and the other carrying 5 bytes. In reality,

segments carry hundreds, if not thousands, of bytes.

Full-Duplex Communication

TCP offers full-duplex service, in which data can flow in both directions at the same

time. Each TCP then has a sending and receiving buffer, and segments move in both

directions.

Connection-Oriented Service

TCP, unlike UDP, is a connection-oriented protocol. When a process at site A wants to

send and receive data from another process at site B, the following occurs:

1. The two TCPs establish a connection between them.

2. Data are exchanged in both directions.

3. The connection is terminated.

Note that this is a virtual connection, not a physical connection. The TCP segment is

encapsulated in an IP datagram and can be sent out of order, or lost, or corrupted, and

then resent. Each may use a different path to reach the destination. There is no physical

connection. TCP creates a stream-oriented environment in which it accepts the

responsibility of delivering the bytes in order to the other site. The situation is similar to

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 7/34

creating a bridge that spans multiple islands and passing all the bytes from one island to

another in one single connection. We will discuss this feature later in the chapter.

Reliable Service TCP is a reliable transport protocol. It uses an acknowledgment

mechanism to check the safe and sound arrival of data. We will discuss this feature

further in the section on error control.

TCP Features

 To provide the services mentioned in the previous section, TCP has several features that

are briefly summarized in this section and discussed later in detail.

Numbering System Although the TCP software keeps track of the segments being

transmitted or received, there is no field for a segment number value in the segment

header. Instead, there are two fields called the sequence number and the acknowledgment

number. These two fields refer to the byte number and not the segment number.

Byte Number TCP numbers all data bytes that are transmitted in a connection.

Numbering is independent in each direction. When TCP receives bytes of data from a

process, it stores them in the sending buffer and numbers them. The numbering does not

necessarily start from O. Instead, TCP generates a random number between 0 and 232 - 1

for the number of the first byte. For example, if the random number happens to be 1057

and the total data to be sent are 6000 bytes, the bytes are numbered from 1057 to 7056.

We will see that byte numbering is used for flow and error control.

Sequence Number After the bytes have been numbered, TCP assigns a sequence number

to each segment that is being sent. The sequence number for each segment is the number

of the first byte carried in that segment.

Flow Control

TCP, unlike UDP, provides flow control. The receiver of the data controls the amount of

data that are to be sent by the sender. This is done to prevent the receiver from being

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 8/34

overwhelmed with data. The numbering system allows TCP to use a byte-oriented flow

control.

Error Control

To provide reliable service, TCP implements an error control mechanism. Although error

control considers a segment as the unit of data for error detection (loss or corrupted

segments), error control is byte-oriented, as we will see later.

Congestion Control

TCP, unlike UDP, takes into account congestion in the network. The amount of data sent

by a sender is not only controlled by the receiver (flow control), but is also determined by

the level of congestion in the network.

Segment Before we discuss TCP in greater detail, let us discuss the TCP packets

themselves. A packet in TCP is called a segment.

Format The format of a segment is shown in Figure 4

Fig.4: TCP Segment Format

The segment consists of a 20- to 60-byte header, followed by data from the application

program. The header is 20 bytes if there are no options and up to 60 bytes if it contains

options. We will discuss some of the header fields in this section.

o Source port address. This is a 16-bit field that defines the port number of the

application program in the host that is sending the segment. This serves the same purpose

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 9/34

as the source port address in the UDP header.

o Destination port address. This is a 16-bit field that defines the port number of the

application program in the host that is receiving the segment. This serves the same

purpose as the destination port address in the UDP header.

o Sequence number. This 32-bit field defines the number assigned to the first byte of

data contained in this segment. As we said before, TCP is a stream transport protocol. To

ensure connectivity, each byte to be transmitted is numbered. The sequence number tells

the destination which byte in this sequence comprises the first byte in the segment.

During connection establishment, each party uses a random number generator to create

an initial sequence number (ISN), which is usually different in each direction.

o Acknowledgment number. This 32-bit field defines the byte number that the receiver

of the segment is expecting to receive from the other party. If the receiver of the segment

has successfully received byte number x from the other party, it defines x + I as the

acknowledgment number. Acknowledgment and data can be piggybacked together.

Header length. This 4-bit field indicates the number of 4-byte words in the TCP header.

The length of the header can be between 20 and 60 bytes. Therefore, the value of this

field can be between 5 (5 x 4 =20) and 15 (15 x 4 =60).

Reserved. This is a 6-bit field reserved for future use.

Control. This field defines 6 different control bits or flags as shown in Figure 5. One or

more of these bits can be set at a time.

Fig.5: Control field

These bits enable flow control, connection establishment and termination, connection

abortion, and the mode of data transfer in TCP. A brief description of each bit is shown in

Table 2. We will discuss them further when we study the detailed operation of TCP later

in the chapter.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 10/34

Table 2: Description of flags in the control field

Window size. This field defines the size of the window, in bytes, that the other party

must maintain. Note that the length of this field is 16 bits, which means that the

maximum size of the window is 65,535 bytes. This value is normally referred to as the

receiving window (rwnd) and is determined by the receiver. The sender must obey the

dictation of the receiver in this case.

 Checksum. This 16-bit field contains the checksum.. However, the inclusion of the

checksum in the UDP datagram is optional, whereas the inclusion of the checksum for

TCP is mandatory. The same pseudoheader, serving the same purpose, is added to the

segment. For the TCP pseudoheader, the value for the protocol field is 6.

Urgent pointer. This l6-bit field, which is valid only if the urgent flag is set, is used

when the segment contains urgent data. It defines the number that must be added to the

sequence number to obtain the number of the last urgent byte in the data section of the

segment.

Options. There can be up to 40 bytes of optional information in the TCP header.

 TCP Connection TCP is connection-oriented. A connection-oriented transport protocol

establishes a virtual path between the source and destination. All the segments belonging

to a message are then sent over this virtual path. Using a single virtual pathway for the

entire message facilitates the acknowledgment process as well as retransmission of

damaged or lost frames. You may wonder how TCP, which uses the services of IP, a

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 11/34

connectionless protocol, can be connection-oriented. The point is that a TCP connection

is virtual, not physical. TCP operates at a higher level. TCP uses the services of IP to

deliver individual segments to the receiver, but it controls the connection itself. If a

segment is lost or corrupted, it is retransmitted. Unlike TCP, IP is unaware of this

retransmission. If a segment arrives out of order, TCP holds it until the missing segments

arrive; IP is unaware of this reordering. In TCP, connection-oriented transmission

requires three phases: connection establishment, data transfer, and connection

termination.

Connection Establishment TCP transmits data in full-duplex mode. When two TCPs in

two machines are connected, they are able to send segments to each other simultaneously.

This implies that each party must initialize communication and get approval from the

other party before any data are transferred.

Three-Way Handshaking The connection establishment in TCP is called threeway

handshaking. In our example, an application program, called the client, wants to make a

connection with another application program, called the server, using TCP as the

transport layer protocol. The process starts with the server. The server program tells its

TCP that it is ready to accept a connection. This is called a request for a passive open.

Although the server TCP is ready to accept any connection from any machine in the

world, it cannot make the connection itself. The client program issues a request for an

active open. A client that wishes to connect to an open server tells its TCP that it needs to

be connected to that particular server. TCP can now start the three-way handshaking

process as shown in Figure 6. To show the process, we use two time lines: one at each

site.

Each segment has values for all its header fields and perhaps for some of its option fields,

too. However, we show only the few fields necessary to understand each phase. We show

the sequence number, the acknowledgment number, the control flags (only those that are

set), and the window size, if not empty.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 12/34

Fig.6: Connection establishment using three way handshaking

The three steps in this phase are as follows.

1. The client sends the first segment, a SYN segment, in which only the SYN flag is set.

This segment is for synchronization of sequence numbers. It consumes one sequence

number. When the data transfer starts, the sequence number is incremented by 1. We can

say that the SYN segment carries no real data, but we can think of it as containing 1

imaginary byte.

2. The server sends the second segment, a SYN + ACK segment, with 2 flag bits set:

SYN and ACK. This segment has a dual purpose. It is a SYN segment for

communication in the other direction and serves as the acknowledgment for the SYN

segment. It consumes one sequence number.

3. The client sends the third segment. This is just an ACK segment. It acknowledges the

receipt of the second segment with the ACK flag and acknowledgment number field.

Note that the sequence number in this segment is the same as the one in the SYN

segment; the ACK segment does not consume any sequence numbers.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 13/34

Simultaneous Open A rare situation, called a simultaneous open, may occur when both

processes issue an active open. In this case, both TCPs transmit a SYN + ACK segment

to each other, and one single connection is established between them.

SYN Flooding Attack The connection establishment procedure in TCP is susceptible to

a serious security problem called the SYN flooding attack. This happens when a

malicious attacker sends a large number of SYN segments to a server, pretending that

each of them is corning from a different client by faking the source IP addresses in the

datagrams. The server, assuming that the clients are issuing an active open, allocates the

necessary resources, such as creating communication tables and setting timers. The TCP

server then sends the SYN +ACK segments to the fake clients, which are lost. During this

time, however, a lot of resources are occupied without being used. If, during this short

time, the number of SYN segments is large, the server eventually runs out of resources

and may crash. This SYN flooding attack belongs to a type of security attack known as a

denial-of-service attack, in which an attacker monopolizes a system with so many service

requests that the system collapses and denies service to every request.

Some implementations of TCP have strategies to alleviate the effects of a SYN attack.

Some have imposed a limit on connection requests during a specified period of time.

Others filter out datagrams coming from unwanted source addresses. One recent strategy

is to postpone resource allocation until the entire connection is set up, using what is

called a cookie.

Data Transfer After connection is established; bidirectional data transfer can take place.

The client and server can both send data and acknowledgments. The acknowledgment is

piggybacked with the data.

Pushing Data We saw that the sending TCP uses a buffer to store the stream of data

coming from the sending application program. The sending TCP can select the segment

size. The receiving TCP also buffers the data when they arrive and delivers them to the

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 14/34

application program when the application program is ready or when it is convenient for

the receiving TCP. This type of flexibility increases the efficiency of TCP.

However, on occasion the application program has no need for this flexibility_ For

example, consider an application program that communicates interactively with another

application program on the other end. The application program on one site wants to send

a keystroke to the application at the other site and receive an immediate response.

Delayed transmission and delayed delivery of data may not be acceptable by the

application program. TCP can handle such a situation. The application program at the

sending site can request a push operation. This means that the sending TCP must not wait

for the window to be filled. It must create a segment and send it immediately. The

sending TCP must also set the push bit (PSH) to let the receiving TCP know that the

segment includes data that must be delivered to the receiving application program as soon

as possible and not to wait for more data to come. Although the push operation can be

requested by the application program, most current implementations ignore such requests.

TCP can choose whether or not to use this feature.

Urgent Data TCP is a stream-oriented protocol. This means that the data are presented

from the application program to TCP as a stream of bytes. Each byte of data has a

position in the stream. However, on occasion an application program needs to send

urgent bytes. This means that the sending application program wants a piece of data to be

read out of order by the receiving application program. As an example, suppose that the

sending application program is sending data to be processed by the receiving application

program. When the result of processing comes back, the sending application program

finds that everything is wrong. It wants to abort the process, but it has already sent a huge

amount of data. If it issues an abort command (control + C), these two characters will be

stored at the end of the receiving TCP buffer. It will be delivered to the receiving

application program after all the data have been processed.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 15/34

The solution is to send a segment with the URG bit set. The sending application program

tells the sending TCP that the piece of data is urgent. The sending TCP creates a segment

and inserts the urgent data at the beginning of the segment. The rest of the segment can

contain normal data from the buffer. The urgent pointer field in the header defines the

end of the urgent data and the start of normal data. When the receiving TCP receives a

segment with the URG bit set, it extracts the urgent data from the segment, using the

value of the urgent pointer, and delivers them, out of order, to the receiving application

program.

Connection Termination Any of the two parties involved in exchanging data (client or

server) can close the connection, although it is usually initiated by the client. Most

implementations today allow two options for connection termination: three-way

handshaking and four-way handshaking with a half-close option.

Three-Way Handshaking Most implementations today allow three-way handshaking

for connection termination as shown in Figure 6.

 1. In a normal situation, the client TCP, after receiving a close command from the client

process, sends the first segment, a FIN segment in which the FIN flag is set. Note that a

FIN segment can include the last chunk of data sent by the client, or it can be just a

control segment as shown in Figure 6. If it is only a control segment, it consumes only

one sequence number.

2. The server TCP, after receiving the FIN segment, informs its process of the situation

and sends the second segment, a FIN + ACK segment, to confirm the receipt of the FIN

segment from the client and at the same time to announce the closing of the connection in

the other direction. This segment can also contain the last chunk of data from the server.

If it does not carry data, it consumes only one sequence number.

3. The client TCP sends the last segment, an ACK segment, to confirm the receipt of the

FIN segment from the TCP server. This segment contains the acknowledgment number,

which is 1 plus the sequence number received in the FIN segment from the server. This

segment cannot carry data and consumes no sequence numbers.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 16/34

Half-Close In TCP, one end can stop sending data while still receiving data. This is

called a half-close. Although either end can issue a half-close, it is normally initiated by

the client. It can occur when the server needs all the data before processing can begin. A

good example is sorting. When the client sends data to the server to be sorted, the server

needs to receive all the data before sorting can start. This means the client, after sending

all the data, can close the connection in the outbound direction. However, the inbound

direction must remain open to receive the sorted data. The server, after receiving the data,

still needs time for sorting; its outbound direction must remain open.

Flow Control TCP uses a sliding window, to handle flow control. The sliding window

protocol used by TCP, however, is something between the Go-Back-N and Selective

Repeat sliding window. The sliding window protocol in TCP looks like the Go-Back-N

protocol because it does not use NAKs; it looks like Selective Repeat because the

receiver holds the out-of-order segments until the missing ones arrive. There are two big

differences between this sliding window and the one we used at the data link layer. First,

the sliding window of TCP is byte-oriented. Second, the TCP's sliding window is of

variable size. Figure 7 shows the sliding window in TCP. The window spans a portion of

the buffer containing bytes received from the process. The bytes inside the window are

the bytes that can be in transit; they can be sent without worrying about acknowledgment.

The imaginary window has two walls: one left and one right. The window is opened,

closed, or shrunk. These three activities, as we will see, are in the control of the receiver

(and depend on congestion in the network), not the sender. The sender must obey the

commands of the receiver in this matter. Opening a window means moving the right wall

to the right. This allows more new bytes in the buffer that are eligible for sending.

Closing the window means moving the left wall to the right. This means that some bytes

have been acknowledged and the sender need not worry about them anymore. Sluinking

the window means moving the right wall to the left. This is strongly discouraged and not

allowed in some implementations because it means revoking the eligibility of some bytes

for sending. This is a problem if the sender has already sent these bytes. Note that the left

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 17/34

wall cannot move to the left because this would revoke some of the previously sent

acknowledgments.

Fig.7: Sliding Window

The size of the window at one end is determined by the lesser of two values: receiver

window (rwnd) or congestion window (cwnd). The receiver window is the value

advertised by the opposite end in a segment containing acknowledgment. It is the number

of bytes the other end can accept before its buffer overflows and data are discarded. The

congestion window is a value determined by the network to avoid congestion.

Error Control TCP is a reliable transport layer protocol. This means that an application

program that delivers a stream of data to TCP relies on TCP to deliver the entire stream

to the application program on the other end in order, without error, and without any part

lost or duplicated. TCP provides reliability using error control. Error control includes

mechanisms for detecting corrupted segments, lost segments, out-of-order segments, and

duplicated segments. Error control also includes a mechanism for correcting errors after

they are detected. Error detection and correction in TCP is achieved through the use of

three simple tools: checksum, acknowledgment, and time-out.

Checksum Each segment includes a checksum field which is used to check for a

corrupted segment. If the segment is corrupted, it is discarded by the destination TCP and

is considered as lost. TCP uses a 16-bit checksum that is mandatory in every segment.

Acknowledgment TCP uses acknowledgments to confirm the receipt of data segments.

Control segments that carry no data but consume a sequence number are also

acknowledged. ACK segments are never acknowledged.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 18/34

Retransmission The heart of the error control mechanism is the retransmission of

segments. When a segment is corrupted, lost, or delayed, it is retransmitted. In modern

implementations, a segment is retransmitted on two occasions: when a retransmission

timer expires or when the sender receives three duplicate ACKs.

Retransmission After RTO

A recent implementation of TCP maintains one retransmission time-out (RTO) timer for

all outstanding (sent, but not acknowledged) segments. When the timer matures, the

earliest outstanding segment is retransmitted even though lack of a received ACK can be

due to a delayed segment, a delayed ACK, or a lost acknowledgment. Note that no time-

out timer is set for a segment that carries only an acknowledgment, which means that no

such segment is resent. The value of RTO is dynamic in TCP and is updated based on the

round-trip time (RTT) of segments. An RTI is the time needed for a segment to reach a

destination and for an acknowledgment to be received. It uses a back-off strategy.

Retransmission After Three Duplicate ACK Segments

The previous rule about retransmission of a segment is sufficient if the value of RTO is

not very large. Sometimes, however, one segment is lost and the receiver receives so

many out-of-order segments that they cannot be saved (limited buffer size). To alleviate

this situation, most implementations today follow the three-duplicate-ACKs rule and

retransmit the missing segment immediately. This feature is referred to as fast

retransmission, which we will see in an example shortly

USER DATAGRAM PROTOCOL (UDP)

The User Datagram Protocol (UDP) is called a connectionless, unreliable transport

protocol. It does not add anything to the services of IP except to provide process-to

process communication instead of host-to-host communication. Also, it performs very

limited error checking.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 19/34

UDP is a very simple protocol using a minimum of overhead. If a process wants to send a

small message and does not care much about reliability, it can use UDP. Sending a small

message by using UDP takes much less interaction between the sender and receiver than

using TCP or SCTP.

Well-Known Ports for UDP

Table 3 shows some well-known port numbers used by UDP. Some port numbers can be

used by both UDP and TCP.

Table 3 Well-known ports used with UDP

User Datagram

UDP packets, called user datagrams, have a fixed-size header of 8 bytes. Figure 8

shows the format of a user datagram. The fields are as follows:

o Source port number. This is the port number used by the process running on the

source host. It is 16 bits long, which means that the port number can range from 0 to

65,535. If the source host is the client (a client sending a request), the port number, in

most cases, is an ephemeral port number requested by the process and chosen by the

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 20/34

UDP software running on the source host. If the source host is the server (a server

sending a response), the port number, in most cases, is a well-known port number

Fig.8: User datagram format

Destination port number. This is the port number used by the process running on

the destination host. It is also 16 bits long. If the destination host is the server (a

client sending a request), the port number, in most cases, is a well-known port

number. If the destination host is the client (a server sending a response), the port

number, in most cases, is an ephemeral port number. In this case, the server copies

the ephemeral port number it has received in the request packet.

o Length. This is a 16-bit field that defines the total length of the user datagram,

header plus data. The 16 bits can define a total length of 0 to 65,535 bytes. However, the

total length needs to be much less because a UDP user datagram is stored

in an IP datagram with a total length of 65,535 bytes.

UDP Operation

UDP uses concepts common to the transport layer. These concepts will be discussed here

briefly, and then expanded in the next section on the TCP protocol.

Connectionless Services

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 21/34

As mentioned previously, UDP provides a connectionless service. This means that each

user datagram sent by UDP is an independent datagram. There is no relationship between

the different user datagrams even if they are coming from the same source process and

going to the same destination program. The user datagrams are not numbered. Also, there

is no connection establishment and no connection termination, as is the case for TCP.

This means that each user datagram can travel on a different path.

One of the ramifications of being connectionless is that the process that uses UDP cannot

send a stream of data to UDP and expect UDP to chop them into different related user

datagrams. Instead each request must be small enough to fit into one user datagram. Only

those processes sending short messages should use UDP.

Flow and Error Control

UDP is a very simple, unreliable transport protocol. There is no flow control and hence

no window mechanism. The receiver may overflow with incoming messages. There is no

error control mechanism in UDP except for the checksum. This means that the sender

does not know if a message has been lost or duplicated. When the receiver detects an

error through the checksum, the user datagram is silently discarded. The lack of flow

control and error control means that the process using UDP should provide these

mechanisms.

Encapsulation and Decapsulation

To send a message from one process to another, the UDP protocol encapsulates and

decapsulates messages in an IP datagram.

Queuing

We have talked about ports without discussing the actual implementation of them. In

UDP, queues are associated with ports (see Figure 11).

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 22/34

Fig.11 Queues in UDP

At the client site, when a process starts, it requests a port number from the operating

system. Some implementations create both an incoming and an outgoing queue

associated with each process. Other implementations create only an incoming queue

associated with each process. Note that even if a process wants to communicate with

multiple processes, it obtains only one port number and eventually one outgoing and one

incoming queue. The queues opened by the client are, in most cases, identified by

ephemeral port numbers.

The queues function as long as the process is running. When the process terminates, the

queues are destroyed. The client process can send messages to the outgoing queue by

using the source port number specified in the request. UDP removes the messages one by

one and, after adding the UDP header, delivers them to IP. An outgoing queue can

overflow. If this happens, the operating system can ask the client process to wait before

sending any more messages. When a message arrives for a client, UDP checks to see if an

incoming queue has been created for the port number specified in the destination port

number field of the user datagram.

If there is such a queue, UDP sends the received user datagram to the end of the queue. If

there is no such queue, UDP discards the user datagram and asks the ICMP protocol to

send a port unreachable message to the server. All the incoming messages for one

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 23/34

particular client program, whether coming from the same or a different server, are sent to

the same queue. An incoming queue can overflow. If this happens, UDP drops the user

datagram and asks for a port unreachable message to be sent to the server. At the server

site, the mechanism of creating queues is different. In its simplest form, a server asks for

incoming and outgoing queues, using its well-known port, when it starts running. The

queues remain open as long as the server is running.

When a message arrives for a server, UDP checks to see if an incoming queue has been

created for the port number specified in the destination port number field of the user

datagram. If there is such a queue, UDP sends the received user datagram to the end of

the queue. If there is no such queue, UDP discards the user datagram and asks the ICMP

protocol to send a port unreachable message to the client. All the incoming messages for

one particular server, whether coming from the same or a different client, are sent to the

same queue. An incoming queue can overflow. If this happens, UDP drops the user

datagram and asks for a port unreachable message to be sent to the client. When a server

wants to respond to a client, it sends messages to the outgoing queue, using the source

port number specified in the request. UDP removes the messages one by one and, after

adding the UDP header, delivers them to IP. An outgoing queue can overflow. If this

happens, the operating system asks the server to wait before sending any more messages.

Use of UDP

 The following lists some uses of the UDP protocol:

o UDP is suitable for a process that requires simple request-response communication with

little concern for flow and error control. It is not usually used for a process such as FrP

that needs to send bulk data.

o UDP is suitable for a process with internal flow and error control mechanisms. For

example, the Trivial File Transfer Protocol (TFTP) process includes flow and error

control. It can easily use UDP.

o UDP is a suitable transport protocol for multicasting. Multicasting capability is

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 24/34

embedded in the UDP software but not in the TCP software.

o UDP is used for management processes such as SNMP .

 o UDP is used for some route updating protocols such as Routing Information Protocol

(RIP).

SCTP

Stream Control Transmission Protocol (SCTP) is a new reliable, message-oriented

transport layer protocol. SCTP, however, is mostly designed for Internet applications that

have recently been introduced. These new applications, such as IUA (ISDN over IP),

M2UA and M3UA (telephony signaling), H.248 (media gateway control), H.323 (IP

telephony), and SIP (IP telephony), need a more sophisticated service than TCP can

provide. SCTP provides this enhanced performance and reliability.

We briefly compare UDP, TCP, and SCTP:

o UDP is a message-oriented protocol. A process delivers a message to UDP, which is

encapsulated in a user datagram and sent over the network. UDP conserves the

message boundaries; each message is independent of any other message. This is a

desirable feature when we are dealing with applications such as IP telephony and

transmission of real-time data, as we will see later in the text. However, UDP is

unreliable; the sender cannot know the destiny of messages sent. A message can be lost,

duplicated, or received out of order. UDP also lacks some other features, such as

congestion control and flow control, needed for a friendly transport layer protocol.

o TCP is a byte-oriented protocol. It receives a message or messages from a process,

stores them as a stream of bytes, and sends them in segments. There is no preservation of

the message boundaries. However, TCP is a reliable protocol. The duplicate segments are

detected, the lost segments are resent, and the bytes are delivered to the end process in

order. TCP also has congestion control and flow control mechanisms.

o SCTP combines the best features of UDP and TCP. SCTP is a reliable message oriented

protocol. It preserves the message boundaries and at the same time detects lost data,

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 25/34

duplicate data, and out-of-order data. It also has congestion control and flow control

mechanisms. Later we will see that SCTP has other innovative features unavailable in

UDP and TCP.

SCTP Services

 Before we discuss the operation of SCTP, let us explain the services offered by SCTP to

the application layer processes.

Process-to-Process Communication SCTP uses all well-known ports in the TCP space.

Table 4 lists some extra port numbers used by SCTP.

Multiple Streams We learned in the previous section that TCP is a stream-oriented

protocol. Each connection between a TCP client and a TCP server involves one single

stream. The problem with this approach is that a loss at any point in the stream blocks the

delivery of the rest of the data. This can be acceptable when we are transferring text; it is

not when we are sending real-time data such as audio or video. SCTP allows multistream

service in each connection, which is called association in SCTP terminology. If one of the

streams is blocked, the other streams can still deliver their data.The idea is similar to

multiple lanes on a highway. Each lane can be used for a different type of traffic. For

example, one lane can be used for regular traffic, another for car pools. If the traffic is

blocked for regular vehicles, car pool vehicles can still reach their destinations. Figure 12

shows the idea of multiple-stream delivery.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 26/34

Fig.12 Multiple-stream concept

Multihoming A TCP connection involves one source and one destination IP address.

This means that even if the sender or receiver is a multihomed host (connected to more

than one physical address with multiple IP addresses), only one of these IP addresses per

end can be utilized during the connection. An SCTP association, on the other hand,

supports multihoming service. The sending and receiving host can define multiple IP

addresses in each end for an association. In this fault-tolerant approach, when one path

fails, another interface can be used for data delivery without interruption. This fault-

tolerant feature is very helpful when we are sending and receiving a real-time payload

such as Internet telephony. Figure 13 shows the idea of multihoming.

Fig.13 Multihoming

In Figure 13, the client is connected to two local networks with two IP addresses. The

server is also connected to two networks with two IP addresses. The client and the server

can make an association, using four different pairs of IP addresses. However, note that in

the current implementations of SCTP, only one pair of IF addresses can be chosen for

normal communication; the alternative is used if the main choice fails. In other words, at

present, SCTP does not allow load sharing between different paths.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 27/34

Full-Duplex Communication Like TCP, SCTP offers full-duplex service, in which data

can flow in both directions at the same time. Each SCTP then has a sending and receiving

buffer, and packets are sent in both directions.

Connection-Oriented Service Like TCP, SCTP is a connection-oriented protocol.

However, in SCTP, a connection is called an association. When a process at site A wants

to send and receive data from another process at site B, the following occurs:

1. The two SCTPs establish an association between each other.

2. Data are exchanged in both directions.

3. The association is terminated.

Reliable Service SCTP, like TCP, is a reliable transport protocol. It uses an

acknowledgment mechanism to check the safe and sound arrival of data. We will discuss

this feature further in the section on error control.

SCTP Features

Let us first discuss the general features of SCTP and then compare them with those of

TCP.

Transmission Sequence Number The unit of data in TCP is a byte. Data transfer in TCP

is controlled by numbering bytes by using a sequence number. On the other hand, the unit

of data in SCTP is a DATA chunk which may or may not have a one-to-one relationship

with the message coming from the process because of fragmentation. Data transfer in

SCTP is controlled by numbering the data chunks. SCTP uses a transmission sequence

number (TSN) to number the data chunks. In other words, the TSN in SCTP plays the

analogous role to the sequence number in TCP. TSNs are 32 bits long and randomly

initialized between 0 and 232 - 1. Each data chunk must carry the corresponding TSN in

its header.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 28/34

Stream Identifier In TCP, there is only one stream in each connection. In SCTP, there

may be several streams in each association. Each stream in SCTP needs to be identified

by using a stream identifier (SI). Each data chunk must carry the SI in its header so that

when it arrives at the destination, it can be properly placed in its stream. The 51 is a 16-

bit number starting from O.

Stream Sequence Number When a data chunk arrives at the destination SCTP, it is

delivered to the appropriate stream and in the proper order. This means that, in addition

to an SI, SCTP defines each data chunk in each stream with a stream sequence number

(SSN).

Packets In TCP, a segment carries data and control information. Data are carried as a

collection of bytes; control information is defined by six control flags in the header. The

design of SCTP is totally different: data are carried as data chunks, control information is

carried as control chunks. Several control chunks and data chunks can be packed together

in a packet. A packet in SCTP plays the same role as a segment in TCP. Figure 14

compares a segment in TCP and a packet in SCTP. Let us briefly list the differences

between an SCTP packet and a TCP segment:

1. The control information in TCP is part of the header; the control information in SCTP

is included in the control chunks. There are several types of control chunks; each is used

for a different purpose.

Fig.14 Comparison between a TCP segment and an SCTP packet

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 29/34

2. The data in a TCP segment treated as one entity; an SCTP packet can carry several

data chunks; each can belong to a different stream.

3. The options section, which can be part of a TCP segment, does not exist in an SCTP

packet. Options in SCTP are handled by defining new chunk types.

4. The mandatory part of the TCP header is 20 bytes, while the general header in SCTP is

only 12 bytes.

The SCTP header is shorter due to the following:

 a. An SCTP sequence number (TSN) belongs to each data chunk and hence is located in

the chunk's header.

 b. The acknowledgment number and window size are part of each control chunk.

c. There is no need for a header length field (shown as HL in the TCP segment) because

there are no options to make the length of the header variable; the SCTP header length is

fixed (12 bytes).

d. There is no need for an urgent pointer in SCTP.

 5. The checksum in TCP is 16 bits; in SCTP, it is 32 bits.

6. The verification tag in SCTP is an association identifier, which does not exist in TCP.

In TCP, the combination of IP and port addresses defines a connection; in SCTP we may

have multihorning using different IP addresses. A unique verification tag is needed to

define each association.

7. TCP includes one sequence number in the header, which defines the number of the

first byte in the data section. An SCTP packet can include several different data chunks.

TSNs, SIs, and SSNs define each data chunk.

8. Some segments in TCP that carry control information (such as SYN and FIN) need to

consume one sequence number; control chunks in SCTP never use a TSN, SI, or SSN.

These three identifiers belong only to data chunks, not to the whole packet.

Acknowledgment Number TCP acknowledgment numbers are byte-oriented and refer to

the sequence numbers. SCTP acknowledgment numbers are chunk-oriented. They refer to

the TSN. A second difference between TCP and SCTP acknowledgments is the control

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 30/34

information. Recall that this information is part of the segment header in TCP. To

acknowledge segments that carry only control information, TCP uses a sequence number

and acknowledgment number (for example, a SYN segment needs to be acknowledged

by an ACK segment). In SCTP, however, the control information is carried by control

chunks, which do not need a TSN. These control chunks are acknowledged by another

control chunk of the appropriate type (some need no acknowledgment). For example, an

INIT control chunk is acknowledged by an INIT ACK chunk. There is no need for a

sequence number or an acknowledgment number.

Flow Control

Like TCP, SCTP implements flow control to avoid overwhelming the receiver.

Error Control

Like TCP, SCTP implements error control to provide reliability. TSN numbers and

acknowledgment numbers are used for error control.

Congestion Control

Like TCP, SCTP implements congestion control to determine how many data chunks

can be injected into the network.

Chunks

Control information or user data are carried in chunks. The first three fields are common

to all chunks; the information field depends on the type of chunk. The important

point to remember is that SCTP requires the information section to be a multiple of

4 bytes; if not, padding bytes (eight as) are added at the end of the section. See Table 6

for a list of chunks and their descriptions.

An SCTP Association

SCTP, like TCP, is a connection-oriented protocol. However, a connection in SCTP is

called an association to emphasize multihoming.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 31/34

Association Establishment

Association establishment in SCTP requires a four-way handshake. In this procedure, a

process, normally a client, wants to establish an association with another process,

normally a server, using SCTP as the transport layer protocol. Similar to TCP, the

SCTP server needs to be prepared to receive any association (passive open). Association

establishment, however, is initiated by the client (active open). SCTP association

establishment is shown in Figure 17. The steps, in a normal situation, are as follows:

1. The client sends the first packet, which contains an INIT chunk.

2. The server sends the second packet, which contains an INIT ACK chunk.

3. The client sends the third packet, which includes a COOKIE ECHO chunk. This

is a very simple chunk that echoes, without change, the cookie sent by the server.

SCTP allows the inclusion of data chunks in this packet.

4. The server sends the fourth packet, which includes the COOKIE ACK chunk that

acknowledges the receipt of the COOKIE ECHO chunk. SCTP allows the inclusion

of data chunks with this packet

Fig.17 Four-way handshaking

Data Transfer The whole purpose of an association is to transfer data between two ends.

After the association is established, bidirectional data transfer can take place. The client

and the server can both send data. Like TCP, SCTP supports piggybacking.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 32/34

There is a major difference, however, between data transfer in TCP and SCTP. TCP

receives messages from a process as a stream of bytes without recognizing any boundary

between them. The process may insert some boundaries for its peer use, but TCP treats

that mark as part of the text. In other words, TCP takes each message and appends it to its

buffer. A segment can carry parts of two different messages. The only ordering system

imposed by TCP is the byte numbers. SCTP, on the other hand, recognizes and maintains

boundaries. Each message coming from the process is treated as one unit and inserted

into a DATA chunk unless it is fragmented (discussed later). In this sense, SCTP is like

UDP, with one big advantage: data chunks are related to each other. A message received

from a process becomes a DATA chunk, or chunks if fragmented, by adding a DATA

chunk header to the message. Each DATA chunk formed by a message or a fragment of a

message has one TSN. We need to remember that only DATA chunks use TSNs and only

DATA chunks are acknowledged by SACK chunks.

Multihoming Data Transfer We discussed the multihoming capability of SCTP, a

feature that distinguishes SCTP from UDP and TCP. Multihoming allows both ends to

define multiple IP addresses for communication. However, only one of these addresses

can be defined as the primary address; the rest are alternative addresses. The primary

address is defined during association establishment. The interesting point is that the

primary address of an end is determined by the other end. In other words, a source

defines the primary address for a destination.

Multistream Delivery One interesting feature of SCTP is the distinction between data

transfer and data delivery. SCTP uses TSN numbers to handle data transfer, movement of

data chunks between the source and destination. The delivery of the data chunks is

controlled by SIs and SSNs. SCTP can support multiple streams, which means that the

sender process can define different streams and a message can belong to one of these

streams. Each stream is assigned a stream identifier (SI) which uniquely defines that

stream.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 33/34

Fragmentation Another issue in data transfer is fragmentation. Although SCTP shares

this term with IP, fragmentation in IP and in SCTP belongs to different levels: the former

at the network layer, the latter at the transport layer. SCTP preserves the boundaries of

the message from process to process when creating a DATA chunk from a message if the

size of the message (when encapsulated in an IP datagram) does not exceed the MTU of

the path. The size of an IP datagram carrying a message can be determined by adding the

size of the message, in bytes, to the four overheads: data chunk header, necessary SACK

chunks, SCTP general header, and IP header. If the total size exceeds the MTU, the

message needs to be fragmented.

Association Termination In SCTP, like TCP, either of the two parties involved in

exchanging data (client or server) can close the connection. However, unlike TCP, SCTP

does not allow a halfclose situation. If one end closes the association, the other end must

stop sending new data. If any data are left over in the queue of the recipient of the

termination request, they are sent and the association is closed. Association termination

uses three packets, as shown in Figure 18. Note that although the figure shows the case in

which termination is initiated by the client, it can also be initiated by the server. Note that

there can be several scenarios of association termination.

Fig.18 Association Termination

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: I -Introduction BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 34/34

Error Control SCTP, like TCP, is a reliable transport layer protocol. It uses a SACK

chunk to report the state of the receiver buffer to the sender. Each implementation uses a

different set of entities and timers for the receiver and sender sites. We use a very simple

design to convey the concept to the reader.

POSSIBLE QUESTIONS

SECTION B – 2 Marks

1. What is port number?

2. Give the differences between connection oriented and connectionless service.

3. What is UDP?

4. List the features of UDP.

5. Why UDP is called unreliable protocol?

6. Mention the functions of transport layer.

7. Define multihoming in SCTP.

8. Define Chunks.

SECTION C - 6 Marks

1 . Explain the services of TCP.

2 . Illustrate the four way handshaking of SCTP with a neat diagram.

3 . Describe the features of TCP.

4 . Explain the process of data transfer in SCTP.

5 . Describe the operation of UDP with a neat diagram.

6 . Enlighten the operation of SCTP.

7 . Elucidate the three states of TCP Connection establishment and termination

SUBJECT NAME: NETWORK PROGRAMMING

UNIT I SEMESTER: V

S.NO Question Choice1 Choice2 Choice3 Choice4 Ans

1

The _____ layer is responsible for process-to-

process delivery of the entire message transport data link application session transport

2

TCP provides _____communication using

 port numbers host –to-host

 process to

process port to port

interface to

 interface

 process to

 process

3

At the transport layer, TCP groups a number of

bytes together into a packet called frames bits segments datagrams segments

4

The _____ function is used by a TCP client to

 establish a connection with a TCP server bind open frame connect connect

5 The maximum size of the TCP header is 40 bytes 60 bytes 80 bytes 100 bytes 60 bytes

6

In Stream Control Transmission Protocol

 control information and data information are

carried in Flow Chunks

 Err-Control

Chunk

same

chunks

separate

chunks

separate

chunks

7 How many ports a computer may have 256 128 65535 1024 65535

DEPARTMENT OF CS, CA & IT

STAFF NAME: Dr.P.Tamil Selvan

SUB.CODE: 17CSU501B

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University)

Coimbatore – 641 021.

ONE MARK QUESTIONS

(Established Under Section 3 of UGC Act 1956)

8

In a TCP header source and destination header

contains 8 Bits 16 Bits 32 Bits 128 Bits 32 Bits

9 UDP and TCP are both____ layer protocols data link network transport interface transport

10 A ____ is an application program running on a host.process segment port interface process

11

The must include port number or port addresses

 in the Internet and TCP/IP protocol suite data link application session transport layer transport layer

12

A connection oriented protocol, such as____ ,

creates a relationship between the segments using

sequence numbers

TCP and

 UDP

TCP and

IP

TCP and

SCTP

TCP and

 IGMP TCP and SCTP

13 ___ uses flow and error control mechanisms at the transport leveTCP UDP SCTP IGMP TCP

14 ____ is a stream-oriented protocol UDP SCTP IGMP TCP TCP

15 TCP transmits data in ____mode half-duplex full-duplex semi-duplex

transparent-

duplex full-duplex

16 The connection establishment in TCP is called

two way

handshaking

multiway

handshaking

threeway

handshaking

fourway

handshaking

threeway

handshaking

17 The client program issues a request for an active open passive open client open server open active open.

18 The ____ is called a connectionless, unreliable transport protocolTCP UDP SCTP SMCT UDP

19

UDP packets, called user datagrams, have a

fixed-size header of ___ bytes 16 8 128 64 8

20 ___is a unreliable transport protocol TCP IGMP UDP SCTP UDP

21

The UDP protocol encapsulates and decapsulates

messages in an ___ IP datagram segments frames packets IP datagram

22 UDP is a suitable transport protocol for ___ unicast multicasting boardcasting

multiway

casting multicasting

23 UDP is used for some route updating protocols such as RIP DIP UIP ARP RIP

24

 ___is a new reliable, message-oriented transport

layer

 protocol. TCP IGMP UDP SCTP SCTP

25 ___ combines the best features of UDP and TCP TCP IGMP UDP SCTP SCTP

26 SCTP allows ____ service in each connection bytestream unistream multistream forwardstream multistream

27

A connection in SCTP iscalled an ______ to

emphasize multihoming distribution association identity axioms association

28

A connection in SCTP is called association to

emphasize ___ multistream multihoming multienvironmentmultilayered multihoming

29

The sending and receiving host can define multiple

 IP addresses is called as _____ multistream multihoming multienvironmentmultilayered multihoming

30

___ does not allow load sharing between different

 paths TCP IGMP UDP SCTP SCTP

31 TSN stands for ______

Transmission

Sequence

Number

Transfer

Sequence

Number

Traffic

 Sequence

Number

Total

Sequence

Number

Transmission

Sequence

Number

32 The unit of data in TCP is a bit frame byte segments byte

33

Data transfer in SCTP is controlled by numbering

 the segment chunksdata chunks frame chunks

datagram

 chunks data chunks

34 TSNs are ___ bits long 32 64 128 256 32

35

Each stream in SCTP needs to be identified by

using a byte identifier bit identifer client identifier

stream

 identifier stream identifier

36

SCTP defines each data chunk in each stream

 with a

byte sequence

number

stream

sequence

number

segment

sequence

number

frame

sequence

number

stream

sequence

number

37 SSN stands for _____

stream

sequence

number

string

segment

number

string

sequence

number

stream

segement

number

stream

sequence

number

38 In TCP, a ___carries data and control information frames segment packets datagrams segment

39 In SCTP, data are carried as ____

information

chunks frame chunks data chunks

segment

chunks data chunks

40 n SCTP, control information is carried as ____ information chunkscontrol chunksdata chunks

segement

 chunks control chunks

41

A ___ in SCTP plays the same role as a segment

in TCP packet frames datagrams chunks packet

42

SCTP uses a ___ chunk to report the state of the

 receiver buffer to the sender TACK PACK QACK SACK SACK

43 Only ___ chunks use TSNs FRAMES DATA SEGMENTS PACKET DATA

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 1/65

Socket Programming

Sockets allow communication between two different processes on the same or different machines.

Where is Socket Used?

A Unix Socket is used in a client-server application framework. A server is a process that performs

some functions on request from a client. Most of the application-level protocols like FTP, SMTP, and

POP3 make use of sockets to establish connection between client and server and then for exchanging

data.

Socket Types

There are four types of sockets available to the users. The first two are most commonly used and the

last two are rarely used.

Processes are presumed to communicate only between sockets of the same type but there is no

restriction that prevents communication between sockets of different types.

 Stream Sockets − Delivery in a networked environment is guaranteed. If you send through the

stream socket three items "A, B, C", they will arrive in the same order − "A, B, C". These

sockets use TCP (Transmission Control Protocol) for data transmission. If delivery is

impossible, the sender receives an error indicator. Data records do not have any boundaries.

 Datagram Sockets − Delivery in a networked environment is not guaranteed. They're

connectionless because you don't need to have an open connection as in Stream Sockets − you

build a packet with the destination information and send it out. They use UDP (User Datagram

Protocol).

 Raw Sockets − These provide users access to the underlying communication protocols, which

support socket abstractions. These sockets are normally datagram oriented, though their exact

UNIT-II

Socket Programming: Socket Introduction; TCP Sockets; TCP Client/Server

Example; signal handling

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 2/65

characteristics are dependent on the interface provided by the protocol. Raw sockets are not

intended for the general user; they have been provided mainly for those interested in developing

new communication protocols, or for gaining access to some of the more cryptic facilities of an

existing protocol.

 Sequenced Packet Sockets − They are similar to a stream socket, with the exception that record

boundaries are preserved. This interface is provided only as a part of the Network Systems (NS)

socket abstraction, and is very important in most serious NS applications. Sequenced-packet

sockets allow the user to manipulate the Sequence Packet Protocol (SPP) or Internet Datagram

Protocol (IDP) headers on a packet or a group of packets, either by writing a prototype header

along with whatever data is to be sent, or by specifying a default header to be used with all

outgoing data, and allows the user to receive the headers on incoming packets.

Sockets Introduction
Socket Address Structures

The name of socket address structures begin with sockaddr_ and end with a unique suffix for each

protocol suite.

IPv4 Socket Address Structure

An IPv4 socket address structure, commonly called an "Internet socket address structure", is

namedsockaddr_in and is defined by including the <netinet/in.h> header.

struct in_addr {

 in_addr_t s_addr; /* 32-bit IPv4 address */

 /* network byte ordered */

};

struct sockaddr_in {

 uint8_t sin_len; /* length of structure (16) */

 sa_family_t sin_family; /* AF_INET */

 in_port_t sin_port; /* 16-bit TCP or UDP port number */

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 3/65

 /* network byte ordered */

 struct in_addr sin_addr; /* 32-bit IPv4 address */

 /* network byte ordered */

 char sin_zero[8]; /* unused */

};

 sin_len: the length field. The four socket functions that pass a socket address structure from the

process to the kernel,bind, connect, sendto, and sendmsg, all go through the sockargs function in

a Berkeley-derived implementation. This function copies the socket address structure from the

process and explicitly sets its sin_len member to the size of the structure that was passed as an

argument to these four functions. The five socket functions that pass a socket address structure

from the kernel to the process, accept, recvfrom, recvmsg, getpeername, andgetsockname, all set

the sin_len member before returning to the process.

 POSIX requires only three members in the structure: sin_family, sin_addr, and sin_port. Almost

all implementations add the sin_zero member so that all socket address structures are at least 16

bytes in size.

 The in_addr_t datatype must be an unsigned integer type of at least 32 bits, in_port_t must be an

unsigned integer type of at least 16 bits, and sa_family_t can be any unsigned integer type. The

latter is normally an 8-bit unsigned integer if the implementation supports the length field, or an

unsigned 16-bit integer if the length field is not supported.

 Both the IPv4 address and the TCP or UDP port number are always stored in the structure

in network byte order.

 The sin_zero member is unused. By convention, we always set the entire structure to 0 before

filling it in.

 Socket address structures are used only on a given host: The structure itself is not communicated

between different hosts

Generic Socket Address Structure

A socket address structures is always passed by reference when passed as an argument to any socket

functions. But any socket function that takes one of these pointers as an argument must deal with socket

address structures from any of the supported protocol families.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 4/65

A generic socket address structure in the <sys/socket.h> header:

struct sockaddr {

 uint8_t sa_len;

 sa_family_t sa_family; /* address family: AF_xxx value */

 char sa_data[14]; /* protocol-specific address */

};

The socket functions are then defined as taking a pointer to the generic socket address structure.

int bind(int, struct sockaddr *, socklen_t);

This requires that any calls to these functions must cast the pointer to the protocol-specific socket

address structure to be a pointer to a generic socket address structure.

For example:

struct sockaddr_in serv; /* IPv4 socket address structure */

/* fill in serv{} */

bind(sockfd, (struct sockaddr *) &serv, sizeof(serv));

We have defined SA to be the string struct sockaddr, just to shorten the code that we must write to cast

these pointers.

 From an application programmer ’s point of view, the only use of these generic socket address

structures is to cast pointers to protocol-specific structures.

 From the kernel’s perspective, another reason for using pointers to generic socket address

structures as arguments is that the kernel must take the caller’s pointer, cast it to a struct

sockaddr *, and then look at the value of sa_family to determine the type of the structure.

IPv6 Socket Address Structure

The IPv6 socket address is defined by including the <netinet/in.h> header:

struct in6_addr {

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 5/65

 uint8_t s6_addr[16]; /* 128-bit IPv6 address */

 /* network byte ordered */

};

#define SIN6_LEN /* required for compile-time tests */

struct sockaddr_in6 {

 uint8_t sin6_len; /* length of this struct (28) */

 sa_family_t sin6_family; /* AF_INET6 */

 in_port_t sin6_port; /* transport layer port# */

 /* network byte ordered */

 uint32_t sin6_flowinfo; /* flow information, undefined */

 struct in6_addr sin6_addr; /* IPv6 address */

 /* network byte ordered */

 uint32_t sin6_scope_id; /* set of interfaces for a scope */

};

 The SIN6_LEN constant must be defined if the system supports the length member for socket

address structures.

 The IPv6 family is AF_INET6, whereas the IPv4 family is AF_INET

 The members in this structure are ordered so that if the sockaddr_in6 structure is 64-bit aligned,

so is the 128-bit sin6_addr member.

 The sin6_flowinfo member is divided into two fields:

o The low-order 20 bits are the flow label

o The high-order 12 bits are reserved

 The sin6_scope_id identifies the scope zone in which a scoped address is meaningful, most

commonly an interface index for a link-local address

New Generic Socket Address Structure

A new generic socket address structure was defined as part of the IPv6 sockets API, to overcome some

of the shortcomings of the existing struct sockaddr. Unlike the struct sockaddr, the newstruct

sockaddr_storage is large enough to hold any socket address type supported by the system. The

sockaddr_storage structure is defined by including the <netinet/in.h> header:

struct sockaddr_storage {

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 6/65

 uint8_t ss_len; /* length of this struct (implementation dependent) */

 sa_family_t ss_family; /* address family: AF_xxx value */

 /* implementation-dependent elements to provide:

 * a) alignment sufficient to fulfill the alignment requirements of

 * all socket address types that the system supports.

 * b) enough storage to hold any type of socket address that the

 * system supports.

 */

};

The sockaddr_storage type provides a generic socket address structure that is different from struct

sockaddr in two ways:

1. If any socket address structures that the system supports have alignment requirements,

thesockaddr_storage provides the strictest alignment requirement.

2. The sockaddr_storage is large enough to contain any socket address structure that the system

supports.

The fields of the sockaddr_storage structure are opaque to the user, except for ss_family and ss_len(if

present). The sockaddr_storage must be cast or copied to the appropriate socket address structure for the

address given in ss_family to access any other fields.

Comparison of Socket Address Structures

In this figure, we assume that:

 Socket address structures all contain a one-byte length field

 The family field also occupies one byte

 Any field that must be at least some number of bits is exactly that number of bits

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 7/65

To handle variable-length structures, whenever we pass a pointer to a socket address structure as an

argument to one of the socket functions, we pass its length as another argument.

Value-Result Arguments

When a socket address structure is passed to any socket function, it is always passed by reference (a

pointer to the structure is passed). The length of the structure is also passed as an argument.

The way in which the length is passed depends on which direction the structure is being passed:

1. From the process to the kernel

2. From the kernel to the process

From process to kernel

bind, connect, and sendto functions pass a socket address structure from the process to the kernel.

https://notes.shichao.io/unp/figure_3.6.png
https://notes.shichao.io/unp/figure_3.6.png

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 8/65

Arguments to these functions:

 The pointer to the socket address structure

 The integer size of the structure

struct sockaddr_in serv;

/* fill in serv{} */

connect (sockfd, (SA *) &serv, sizeof(serv));

The datatype for the size of a socket address structure is actually socklen_t and not int, but the POSIX

specification recommends that socklen_t be defined as uint32_t.

From kernel to process

accept, recvfrom, getsockname, and getpeername functions pass a socket address structure from the

kernel to the process.

Arguments to these functions:

 The pointer to the socket address structure

https://notes.shichao.io/unp/figure_3.7.png
https://notes.shichao.io/unp/figure_3.7.png

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 9/65

 The pointer to an integer containing the size of the structure.

struct sockaddr_un cli; /* Unix domain */

socklen_t len;

len = sizeof(cli); /* len is a value */

getpeername(unixfd, (SA *) &cli, &len);

/* len may have changed */

Value-result argument In the above figure the size changes from an integer to be a pointer to an integer

because the size is both a value when the function is called and a result when the function returns.

 As a value: it tells the kernel the size of the structure so that the kernel does not write past the

end of the structure when filling it in

 As a result: it tells the process how much information the kernel actually stored in the structure

https://notes.shichao.io/unp/figure_3.8.png
https://notes.shichao.io/unp/figure_3.8.png

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 10/65

For two other functions that pass socket address structures, recvmsg and sendmsg, the length field is not

a function argument but a structure member.

If the socket address structure is fixed-length, the value returned by the kernel will always be that fixed

size: 16 for an IPv4 sockaddr_in and 28 for an IPv6 sockaddr_in6. But with a variable-length socket

address structure (e.g., a Unix domain sockaddr_un), the value returned can be less than the maximum

size of the structure.

Though the most common example of a value-result argument is the length of a returned socket address

structure, we will encounter other value-result arguments in this text:

 The middle three arguments for the select function

 The length argument for the getsockopt function

 The msg_namelen and msg_controllen members of the msghdr structure, when used

withrecvmsg

 The ifc_len member of the ifconf structure

 The first of the two length arguments for the sysctl function

Byte Ordering Functions

For a 16-bit integer that is made up of 2 bytes, there are two ways to store the two bytes in memory:

 Little-endian order: low-order byte is at the starting address.

 Big-endian order: high-order byte is at the starting address.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 11/65

The figure shows the most significant bit (MSB) as the leftmost bit of the 16-bit value and the least

significant bit (LSB) as the rightmost bit. The terms "little-endian" and "big-endian" indicate which end

of the multibyte value, the little end or the big end, is stored at the starting address of the value.

Networking protocols must specify a network byte order. The sending protocol stack and the receiving

protocol stack must agree on the order in which the bytes of these multibyte fields will be

transmitted. The Internet protocols use big-endian byte ordering for these multibyte integers.

But, both history and the POSIX specification say that certain fields in the socket address structures

must be maintained in network byte order. We use the following four functions to convert between these

two byte orders:

unp_htons.h

#include <netinet/in.h>

uint16_t htons(uint16_t host16bitvalue);

uint32_t htonl(uint32_t host32bitvalue);

/* Both return: value in network byte order */

uint16_t ntohs(uint16_t net16bitvalue);

uint32_t ntohl(uint32_t net32bitvalue);

https://notes.shichao.io/unp/figure_3.9.png
https://notes.shichao.io/unp/figure_3.9.png
https://gist.github.com/shichao-an/27bb5bebddf78e36198e

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 12/65

/* Both return: value in host byte order */

 h stands for host

 n stands for network

 s stands for short (16-bit value, e.g. TCP or UDP port number)

 l stands for long (32-bit value, e.g. IPv4 address)

When using these functions, we do not care about the actual values (big-endian or little-endian) for the

host byte order and the network byte order. What we must do is call the appropriate function to convert a

given value between the host and network byte order. On those systems that have the same byte ordering

as the Internet protocols (big-endian), these four functions are usually defined as null macros.

We use the term "byte" to mean an 8-bit quantity since almost all current computer systems use 8-bit

bytes. Most Internet standards use the term octet instead of byte to mean an 8-bit quantity.

Bit ordering is an important convention in Internet standards, such as the first 32 bits of the IPv4 header

from RFC 791:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Version| IHL |Type of Service| Total Length |

+-+

This represents four bytes in the order in which they appear on the wire; the leftmost bit is the most

significant. However, the numbering starts with zero assigned to the most significant bit.

Byte Manipulation Functions

Two type’s functions differ in whether they deal with null-terminated C strings:

 The functions that operate on multibyte fields, without interpreting the data, and without

assuming that the data is a null-terminated C string. These types of functions deal with socket

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 13/65

address structures to manipulate fields such as IP addresses, which can contain bytes of 0, but are

not C character strings.

o The functions whose names begin with b (for byte) (from 4.2BSD)

o The functions whose names begin with mem (for memory) (from ANSI C)

 The functions that deal with null-terminated C character strings (beginning with str (for string),

defined by including the <string.h> header)

unp_bzero.h

#include <strings.h>

void bzero(void *dest, size_t nbytes);

void bcopy(const void *src, void *dest, size_t nbytes);

int bcmp(const void *ptr1, const void *ptr2, size_t nbytes);

/* Returns: 0 if equal, nonzero if unequal */

The memory pointed to by the const pointer is read but not modified by the function.

 bzero sets the specified number of bytes to 0 in the destination. We often use this function to

initialize a socket address structure to 0.

 bcopy moves the specified number of bytes from the source to the destination.

 bcmp compares two arbitrary byte strings. The return value is zero if the two byte strings are

identical; otherwise, it is nonzero

unp_memset.h

#include <string.h>

void *memset(void *dest, int c, size_t len);

void *memcpy(void *dest, const void *src, size_t nbytes);

int memcmp(const void *ptr1, const void *ptr2, size_t nbytes);

/* Returns: 0 if equal, <0 or >0 if unequal (see text) */

https://gist.github.com/shichao-an/4871b3026c68dc6c4140
https://gist.github.com/shichao-an/c229d6cc4ac8d310567b

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 14/65

 memset sets the specified number of bytes to the value c in the destination

 memcpy is similar to bcopy, but the order of the two pointer arguments is swapped

 memcmp compares two arbitrary byte strings

inet_aton, inet_addr, and inet_ntoa Functions

These functions convert Internet addresses between ASCII strings (what humans prefer to use) and

network byte ordered binary values (values that are stored in socket address structures).

unp_inet_aton.h

#include <arpa/inet.h>

int inet_aton(const char *strptr, struct in_addr *addrptr);

/* Returns: 1 if string was valid, 0 on error */

in_addr_t inet_addr(const char *strptr);

/* Returns: 32-bit binary network byte ordered IPv4 address; INADDR_NONE if error */

char *inet_ntoa(struct in_addr inaddr);

/* Returns: pointer to dotted-decimal string */

 inet_aton: converts the C character string pointed to by strptr into its 32-bit binary network byte

ordered value, which is stored through the pointer addrptr

 inet_addr: does the same conversion, returning the 32-bit binary network byte ordered value as

the return value. It is deprecated and any new code should use inet_aton instead

 inet_ntoa: converts a 32-bit binary network byte ordered IPv4 address into its corresponding

dotted-decimal string.

o The string pointed to by the return value of the function resides in static memory. This

means the function is not reentrant.

https://gist.github.com/shichao-an/af1102b95566ee43cde7

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 15/65

o This function takes a structure as its argument, not a pointer to a structure. (Functions that

take actual structures as arguments are rare. It is more common to pass a pointer to the

structure.)

inet_pton and inet_ntop Functions

These two functions are new with IPv6 and work with both IPv4 and IPv6 addresses. We use these two

functions throughout the text. The letters "p" and "n" stand for presentation and numeric. The

presentation format for an address is often an ASCII string and the numeric format is the binary value

that goes into a socket address structure.

unp_inet_pton.h

#include <arpa/inet.h>

int inet_pton(int family, const char *strptr, void *addrptr);

/* Returns: 1 if OK, 0 if input not a valid presentation format, -1 on error */

const char *inet_ntop(int family, const void *addrptr, char *strptr, size_t len);

/* Returns: pointer to result if OK, NULL on error */

Arguments:

 family: is either AF_INET or AF_INET6. If family is not supported, both functions return an

error witherrno set to EAFNOSUPPORT.

Functions:

 inet_pton: converts the string pointed to by strptr, storing the binary result through the

pointeraddrptr. If successful, the return value is 1. If the input string is not a valid presentation

format for the specified family, 0 is returned.

 inet_ntop does the reverse conversion, from numeric (addrptr) to presentation (strptr).

o len argument is the size of the destination. To help specify this size, the following two

definitions are defined by including the <netinet/in.h> header.

o If len is too small to hold the resulting presentation format, including the terminating null,

a null pointer is returned and errno is set to ENOSPC.

https://gist.github.com/shichao-an/a4f313716c78362d0b49

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 16/65

o The strptr argument to inet_ntop cannot be a null pointer. The caller must allocate

memory for the destination and specify its size. On success, this pointer is the return

value of the function.

Size definitions in <netinet/in.h> header for the len argument:

#define INET_ADDRSTRLEN 16 /* for IPv4 dotted-decimal */

#define INET6_ADDRSTRLEN 46 /* for IPv6 hex string */

The following figure summarizes the five functions on address conversion functions:

Replacing inet_addr to inet_pton

Replace:

foo.sin_addr.s_addr = inet_addr(cp);

with

inet_pton(AF_INET, cp, &foo.sin_addr);

https://notes.shichao.io/unp/figure_3.11.png
https://notes.shichao.io/unp/figure_3.11.png

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 17/65

Replacing inet_ntoa to inet_ntop

Replace:

ptr = inet_ntoa(foo.sin_addr);

with

char str[INET_ADDRSTRLEN];

ptr = inet_ntop(AF_INET, &foo.sin_addr, str, sizeof(str));

sock_ntop and Related Functions

A basic problem with inet_ntop is that it requires the caller to pass a pointer to a binary address. This

address is normally contained in a socket address structure, requiring the caller to know the format of the

structure and the address family.

For IPv4:

struct sockaddr_in addr;

inet_ntop(AF_INET, &addr.sin_addr, str, sizeof(str));

For IPv6:

struct sockaddr_in6 addr6;

inet_ntop(AF_INET6, &addr6.sin6_addr, str, sizeof(str));

This (above) makes our code protocol-dependent.

To solve this, we will write our own function named sock_ntop that takes a pointer to a socket address

structure, looks inside the structure, and calls the appropriate function to return the presentation format

of the address.

unp_sock_ntop.h

#include "unp.h"

https://gist.github.com/shichao-an/b0f21ce69e2b8024022e

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 18/65

char *sock_ntop(const struct sockaddr *sockaddr, socklen_t addrlen);

/* Returns: non-null pointer if OK, NULL on error */

sockaddr points to a socket address structure whose length is addrlen. The function uses its own static

buffer to hold the result and a pointer to this buffer is the return value. Notice that using static storage

for the result prevents the function from being re-entrant or thread-safe.

Related functions

There are a few other functions that we define to operate on socket address structures, and these will

simplify the portability of our code between IPv4 and IPv6.

 sock_bind_wild: binds the wildcard address and an ephemeral port to a socket.

 sock_cmp_addr: compares the address portion of two socket address structures.

 sock_cmp_port: compares the port number of two socket address structures.

 sock_get_port: returns just the port number.

 sock_ntop_host: converts just the host portion of a socket address structure to presentation

format (not the port number)

 sock_set_addr: sets just the address portion of a socket address structure to the value pointed to

byptr.

 sock_set_port: sets just the port number of a socket address structure.

 sock_set_wild: sets the address portion of a socket address structure to the wildcard

readn, writen, and readline Functions

Stream sockets (e.g., TCP sockets) exhibit a behavior with the read and write functions that differs from

normal file I/O. A read or write on a stream socket might input or output fewer bytes than requested, but

this is not an error condition. The reason is that buffer limits might be reached for the socket in the

kernel. All that is required to input or output the remaining bytes is for the caller to invoke

the read or write function again. This scenario is always a possibility on a stream socket with read, but is

normally seen with writeonly if the socket is nonblocking.

unp_readn.h

#include "unp.h"

ssize_t readn(int filedes, void *buff, size_t nbytes);

https://gist.github.com/shichao-an/26f53ad6de8d2e1a10b2

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 19/65

ssize_t writen(int filedes, const void *buff, size_t nbytes);

ssize_t readline(int filedes, void *buff, size_t maxlen);

/* All return: number of bytes read or written, –1 on error */

Elementary TCP Sockets

The elementary socket functions is required to write a complete TCP client and server, along with

concurrent servers, a common Unix technique for providing concurrency when numerous clients are

connected to the same server at the same time. Each client connection causes the server to fork a new

process just for that client. In this chapter, we consider only the one-process-per-client model using fork.

The figure below shows a timeline of the typical scenario that takes place between a TCP client and

server. First, the server is started, then sometime later, a client is started that connects to the server. We

assume that the client sends a request to the server, the server processes the request, and the server sends

a reply back to the client. This continues until the client closes its end of the connection, which sends an

end-of-file notification to the server. The server then closes its end of the connection and either

terminates or waits for a new client connection.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 20/65

socket Function

To perform network I/O, the first thing a process must do is call the socket function, specifying the type

of communication protocol desired (TCP using IPv4, UDP using IPv6, Unix domain stream protocol,

etc.).

#include <sys/socket.h>

https://notes.shichao.io/unp/figure_4.1.png
https://notes.shichao.io/unp/figure_4.1.png

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 21/65

int socket (int family, int type, int protocol);

/* Returns: non-negative descriptor if OK, -1 on error */

Arguments:

 family specifies the protocol family and is one of the constants in the table below. This argument

is often referred to as domain instead of family.

family Description

AF_INET IPv4 protocols

AF_INET6 IPv6 protocols

AF_LOCAL Unix domain protocols

AF_ROUTE Routing sockets)

AF_KEY Key socket

 The socket type is one of the constants shown in table below:

type Description

SOCK_STREAM stream socket

SOCK_DGRAM datagram socket

SOCK_SEQPACKET sequenced packet socket

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 22/65

type Description

SOCK_RAW raw socket

 The protocol argument to the socket function should be set to the specific protocol type found in

the table below, or 0 to select the system's default for the given combination of family and type.

protocol Description

IPPROTO_TCP TCP transport protocol

IPPROTO_UDP UDP transport protocol

IPPROTO_SCTP SCTP transport protocol

Not all combinations of socket family and type are valid. The table below shows the valid combinations,

along with the actual protocols that are valid for each pair. The boxes marked "Yes" are valid but do not

have handy acronyms. The blank boxes are not supported.

 AF_INET AF_INET6 AF_LOCAL AF_ROUTE AF_KEY

SOCK_STREAM TCP/SCTP TCP/SCTP Yes

SOCK_DGRAM UDP UDP Yes

SOCK_SEQPACKET SCTP SCTP Yes

SOCK_RAW IPv4 IPv6 Yes Yes

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 23/65

On success, the socket function returns a small non-negative integer value, similar to a file descriptor.

We call this a socket descriptor, or a sockfd. To obtain this socket descriptor, all we have specified is a

protocol family (IPv4, IPv6, or Unix) and the socket type (stream, datagram, or raw). We have not yet

specified either the local protocol address or the foreign protocol address.

AF_xxx Versus PF_xxx

The "AF_" prefix stands for "address family" and the "PF_" prefix stands for "protocol family."

Historically, the intent was that a single protocol family might support multiple address families and that

the PF_ value was used to create the socket and the AF_ value was used in socket address structures. But

in actuality, a protocol family supporting multiple address families has never been supported and

the <sys/socket.h>header defines the PF_ value for a given protocol to be equal to the AF_ value for that

protocol. While there is no guarantee that this equality between the two will always be true, should

anyone change this for existing protocols, lots of existing code would break.

To conform to existing coding practice, we use only the AF_ constants in this text, although you may

encounter the PF_ value, mainly in calls to socket.

connect Function

The connect function is used by a TCP client to establish a connection with a TCP server.

#include <sys/socket.h>

int connect(int sockfd, const struct sockaddr *servaddr, socklen_t addrlen);

/* Returns: 0 if OK, -1 on error */

 sockfd is a socket descriptor returned by the socket function.

 The servaddr and addrlen arguments are a pointer to a socket address structure (which contains

the IP address and port number of the server) and its size.

The client does not have to call bind before calling connect: the kernel will choose both an ephemeral

port and the source IP address if necessary.

In the case of a TCP socket, the connect function initiates TCP's three-way handshake. The function

returns only when the connection is established or an error occurs. There are several different error

returns possible:

1. If the client TCP receives no response to its SYN segment, ETIMEDOUT is returned.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 24/65

o For example, in 4.4BSD, the client sends one SYN when connect is called, sends another

SYN 6 seconds later, and sends another SYN 24 seconds later. If no response is received

after a total of 75 seconds, the error is returned.

o Some systems provide administrative control over this timeout.

2. If the server's response to the client's SYN is a reset (RST), this indicates that no process is

waiting for connections on the server host at the port specified (the server process is probably not

running). This is a hard error and the error ECONNREFUSED is returned to the client as soon

as the RST is received. An RST is a type of TCP segment that is sent by TCP when something is

wrong. Three conditions that generate an RST are:

o When a SYN arrives for a port that has no listening server.

o When TCP wants to abort an existing connection.

o When TCP receives a segment for a connection that does not exist.

3. If the client's SYN elicits an ICMP "destination unreachable" from some intermediate router, this

is considered a soft error. The client kernel saves the message but keeps sending SYNs with the

same time between each SYN as in the first scenario. If no response is received after some fixed

amount of time (75 seconds for 4.4BSD), the saved ICMP error is returned to the process as

either EHOSTUNREACHor ENETUNREACH. It is also possible that the remote system is not

reachable by any route in the local system's forwarding table, or that the connect call returns

without waiting at all. Note that network unreachables are considered obsolete, and applications

should just treat ENETUNREACH andEHOSTUNREACH as the same error.

Example: nonexistent host on the local subnet *

We run the client daytimetcpcli and specify an IP address that is on the local subnet (192.168.1/24) but

the host ID (100) is nonexistent. When the client host sends out ARP requests (asking for that host to

respond with its hardware address), it will never receive an ARP reply.

solaris % daytimetcpcli 192.168.1.100

connect error: Connection timed out

We only get the error after the connect times out. Notice that our err_sys function prints the human-

readable string associated with the ETIMEDOUT error.

Example: no server process running *

We specify a host (a local router) that is not running a daytime server:

solaris % daytimetcpcli 192.168.1.5

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 25/65

connect error: Connection refused

The server responds immediately with an RST.

Example: destination not reachable on the Internet *

Our final example specifies an IP address that is not reachable on the Internet. If we watch the packets

withtcpdump, we see that a router six hops away returns an ICMP host unreachable error.

solaris % daytimetcpcli 192.3.4.5

connect error: No route to host

As with the ETIMEDOUT error, connect returns the EHOSTUNREACH error only after waiting its

specified amount of time.

In terms of the TCP state transition diagram:

 connect moves from the CLOSED state (the state in which a socket begins when it is created by

thesocket function) to the SYN_SENT state, and then, on success, to the ESTABLISHED state.

 If connect fails, the socket is no longer usable and must be closed. We cannot call connect again

on the socket.

bind Function

The bind function assigns a local protocol address to a socket. The protocol address is the combination

of either a 32-bit IPv4 address or a 128-bit IPv6 address, along with a 16-bit TCP or UDP port number.

#include <sys/socket.h>

int bind (int sockfd, const struct sockaddr *myaddr, socklen_t addrlen);

/* Returns: 0 if OK,-1 on error */

 The second argument myaddr is a pointer to a protocol-specific addres

 The third argument addrlen is the size of this address structure.

With TCP, calling bind lets us specify a port number, an IP address, both, or neither.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 26/65

 Servers bind their well-known port when they start. If a TCP client or server does not do

this, the kernel chooses an ephemeral port for the socket when either connect or listen is called.

o It is normal for a TCP client to let the kernel choose an ephemeral port, unless the

application requires a reserved port.

o However, it is rare for a TCP server to let the kernel choose an ephemeral port, since

servers are known by their well-known port.

Exceptions to this rule are Remote Procedure Call (RPC) servers. They normally let the kernel

choose an ephemeral port for their listening socket since this port is then registered with the

RPC port mapper. Clients have to contact the port mapper to obtain the ephemeral port before

they can connect to the server. This also applies to RPC servers using UDP.

 A process can bind a specific IP address to its socket. The IP address must belong to an

interface on the host.

o For a TCP client, this assigns the source IP address that will be used for IP datagrams

sent on the socket. Normally, a TCP client does not bind an IP address to its socket. The

kernel chooses the source IP address when the socket is connected, based on the outgoing

interface that is used, which in turn is based on the route required to reach the server

o For a TCP server, this restricts the socket to receive incoming client connections destined

only to that IP address. If a TCP server does not bind an IP address to its socket, the

kernel uses the destination IP address of the client's SYN as the server's source IP

address.

As mentioned, calling bind lets us specify the IP address, the port, both, or neither. The following table

summarizes the values to which we set sin_addr and sin_port, or sin6_addr and sin6_port, depending on

the desired result.

IP address Port Result

Wildcard 0 Kernel chooses IP address and port

Wildcard nonzero Kernel chooses IP address, process specifies port

Local IP address 0 Process specifies IP address, kernel chooses port

https://en.wikipedia.org/wiki/Portmap

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 27/65

IP address Port Result

Local IP address nonzero Process specifies IP address and port

 If we specify a port number of 0, the kernel chooses an ephemeral port when bind is called.

 If we specify a wildcard IP address, the kernel does not choose the local IP address until either

the socket is connected (TCP) or a datagram is sent on the socket (UDP).

Wildcard Address and INADDR_ANY *

With IPv4, the wildcard address is specified by the constant INADDR_ANY, whose value is normally

0. This tells the kernel to choose the IP address.

 struct sockaddr_in servaddr;

 servaddr.sin_addr.s_addr = htonl (INADDR_ANY); /* wildcard */

While this works with IPv4, where an IP address is a 32-bit value that can be represented as a simple

numeric constant (0 in this case), we cannot use this technique with IPv6, since the 128-bit IPv6 address

is stored in a structure. In C we cannot represent a constant structure on the right-hand side of an

assignment. To solve this problem, we write:

struct sockaddr_in6 serv;

serv.sin6_addr = in6addr_any; /* wildcard */

The system allocates and initializes the in6addr_any variable to the constant IN6ADDR_ANY_INIT.

The<netinet/in.h> header contains the extern declaration for in6addr_any.

The value of INADDR_ANY (0) is the same in either network or host byte order, so the use of htonl is

not really required. But, since all the INADDR_constants defined by the <netinet/in.h> header are

defined in host byte order, we should use htonl with any of these constants.

If we tell the kernel to choose an ephemeral port number for our socket (by specifying a 0 for port

number),bind does not return the chosen value. It cannot return this value since the second argument

to bind has the const qualifier. To obtain the value of the ephemeral port assigned by the kernel, we must

callgetsockname to return the protocol address.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 28/65

Binding a non-wildcard IP address *

A common example of a process binding a non-wildcard IP address to a socket is a host that provides

Web servers to multiple organizations:

 First, each organization has its own domain name, such as www.organization.com.

 Next, each organization's domain name maps into a different IP address, but typically on the

same subnet.

For example, if the subnet is 198.69.10, the first organization's IP address could be 198.69.10.128, the

next 198.69.10.129, and so on. All these IP addresses are then aliased onto a single network interface

(using thealias option of the ifconfig command on 4.4BSD, for example) so that the IP layer will accept

incoming datagrams destined for any of the aliased addresses. Finally, one copy of the HTTP server is

started for each organization and each copy binds only the IP address for that organization.

An alternative technique is to run a single server that binds the wildcard address. When a connection

arrives, the server calls getsockname to obtain the destination IP address from the client, which in our

discussion above could be 198.69.10.128, 198.69.10.129, and so on. The server then handles the client

request based on the IP address to which the connection was issued.

One advantage in binding a non-wildcard IP address is that the demultiplexing of a given destination IP

address to a given server process is then done by the kernel.

listen Function

The listen function is called only by a TCP server and it performs two actions:

1. The listen function converts an unconnected socket into a passive socket, indicating that the

kernel should accept incoming connection requests directed to this socket. In terms of the TCP

state transition diagram ,the call to listen moves the socket from the CLOSED state to the

LISTEN state.

o When a socket is created by the socket function (and before calling listen), it is assumed

to be an active socket, that is, a client socket that will issue a connect.

2. The second argument backlog to this function specifies the maximum number of connections the

kernel should queue for this socket.

This function is normally called after both the socket and bind functions and must be called before

calling the accept function.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 29/65

Connection queues *

To understand the backlog argument, we must realize that for a given listening socket, the kernel

maintains two queues:

1. An incomplete connection queue, which contains an entry for each SYN that has arrived from a

client for which the server is awaiting completion of the TCP three-way handshake. These

sockets are in theSYN_RCVD state

2. A completed connection queue, which contains an entry for each client with whom the TCP

three-way handshake has completed. These sockets are in the ESTABLISHED state.

These two queues are depicted in the figure below:

When an entry is created on the incomplete queue, the parameters from the listen socket are copied over

to the newly created connection. The connection creation mechanism is completely automatic; the server

process is not involved.

Packet exchanges during connection establishment *

The following figure depicts the packets exchanged during the connection establishment with these two

queues:

https://notes.shichao.io/unp/figure_4.7.png
https://notes.shichao.io/unp/figure_4.7.png

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 30/65

 When a SYN arrives from a client, TCP creates a new entry on the incomplete queue and then

responds with the second segment of the three-way handshake: the server's SYN with an ACK of

the client's SYN.

 This entry will remain on the incomplete queue, until:

o The third segment of the three-way handshake arrives (the client's ACK of the server's

SYN), or

o The entry times out. (Berkeley-derived implementations have a timeout of 75 seconds for

these incomplete entries.)

 If the three-way handshake completes normally, the entry moves from the incomplete queue to

the end of the completed queue.

 When the process calls accept:

o The first entry on the completed queue is returned to the process, or

o If the queue is empty, the process is put to sleep until an entry is placed onto the

completed queue.

The backlog argument *

Several points to consider when handling the two queues:

 Sum of both queues. The backlog argument to the listen function has historically specified the

maximum value for the sum of both queues.

 Multiplied by 1.5. Berkeley-derived implementations add a fudge factor to the backlog: It is

multiplied by 1.5.

o If the backlog specifies the maximum number of completed connections the kernel will

queue for a socket, then the reason for the fudge factor is to take into account incomplete

connections on the queue.

 Do not specify value of 0 for backlog, as different implementations interpret this differently .If

you do not want any clients connecting to your listening socket, close the listening socket.

https://notes.shichao.io/unp/figure_4.8.png
https://notes.shichao.io/unp/figure_4.8.png

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 31/65

 One RTT. If the three-way handshake completes normally (no lost segments and no

retransmissions), an entry remains on the incomplete connection queue for one RTT.

 Configurable maximum value. Many current systems allow the administrator to modify the

maximum value for the backlog. Historically, sample code always shows a backlog of 5 (which

is adequate today).

 What value should the application specify for the backlog (5 is often inadequate)? There is no

easy answer to this.

o HTTP servers now specify a larger value, but if the value specified is a constant in the

source code, to increase the constant requires recompiling the server.

o Another method is to allow a command-line option or an environment variable to

override the default. It is always acceptable to specify a value that is larger than

supported by the kernel, as the kernel should silently truncate the value to the maximum

value that it supports, without returning an error.

SYN Flooding *

SYN flooding is a type of attack (the attacker writes a program to send SYNs at a high rate to the

victim) that attempts to fill the incomplete connection queue for one or more TCP ports. Additionally,

the source IP address of each SYN is set to a random number (called IP spoofing) so that the server's

SYN/ACK goes nowhere.This also prevents the server from knowing the real IP address of the attacker.

By filling the incomplete queue with bogus SYNs, legitimate SYNs are not queued, providing a denial

of service to legitimate clients.

The listen's backlog argument should specify the maximum number of completed connections for a

given socket that the kernel will queue. The purpose of to limit completed connections is to stop the

kernel from accepting new connection requests for a given socket when the application is not accepting

them. If a system implements this interpretation, then the application need not specify

huge backlog values just because the server handles lots of client requests or to provide protection

against SYN flooding. The kernel handles lots of incomplete connections, regardless of whether they are

legitimate or from a hacker. But even with this interpretation, scenarios do occur where the traditional

value of 5 is inadequate.

accept Function

accept is called by a TCP server to return the next completed connection from the front of the completed

connection queue. If the completed connection queue is empty, the process is put to sleep (assuming the

default of a blocking socket).

https://en.wikipedia.org/wiki/SYN_flood
https://en.wikipedia.org/wiki/IP_address_spoofing
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 32/65

#include <sys/socket.h>

int accept (int sockfd, struct sockaddr *cliaddr, socklen_t *addrlen);

/* Returns: non-negative descriptor if OK, -1 on error */

The cliaddr and addrlen arguments are used to return the protocol address of the connected peer process

(the client). addrlen is a value-result argument :

 Before the call, we set the integer value referenced by *addrlen to the size of the socket address

structure pointed to by cliaddr;

 On return, this integer value contains the actual number of bytes stored by the kernel in the

socket address structure.

If successful, accept returns a new descriptor automatically created by the kernel. This new descriptor

refers to the TCP connection with the client.

 The listening socket is the first argument (sockfd) to accept (the descriptor created by socket and

used as the first argument to both bind and listen).

 The connected socket is the return value from accept the connected socket.

It is important to differentiate between these two sockets:

 A given server normally creates only one listening socket, which then exists for the lifetime of

the server.

 The kernel creates one connected socket for each client connection that is accepted (for which

the TCP three-way handshake completes).

 When the server is finished serving a given client, the connected socket is closed.

This function returns up to three values:

 An integer return code that is either a new socket descriptor or an error indication,

 The protocol address of the client process (through the cliaddr pointer),

 The size of this address (through the addrlen pointer).

If we are not interested in having the protocol address of the client returned, we set

both cliaddr and addrlento null pointers..

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 33/65

Concurrent Servers

When a client request can take longer to service, we do not want to tie up a single server with one client;

we want to handle multiple clients at the same time. The simplest way to write a concurrent server under

Unix is to fork a child process to handle each client.

close Function

The normal Unix close function is also used to close a socket and terminate a TCP connection.

#include <unistd.h>

int close (int sockfd);

/* Returns: 0 if OK, -1 on error */

The default action of close with a TCP socket is to mark the socket as closed and return to the process

immediately. The socket descriptor is no longer usable by the process: It cannot be used as an argument

toread or write. But, TCP will try to send any data that is already queued to be sent to the other end, and

after this occurs, the normal TCP connection termination sequence takes place.

getsockname and getpeername Functions

 getsockname returns the local protocol address associated with a socket.

 getpeername returns the foreign protocol address associated with a socket.

#include <sys/socket.h>

int getsockname(int sockfd, struct sockaddr *localaddr, socklen_t *addrlen);

int getpeername(int sockfd, struct sockaddr *peeraddr, socklen_t *addrlen);

/* Both return: 0 if OK, -1 on error */

The addrlen argument for both functions is value-result argument: both functions fill in the socket

address structure pointed to by localaddr or peeraddr.

The term "name" in the function name is misleading. These two functions return the protocol address

associated with one of the two ends of a network connection, which for IPV4 and IPV6 is the

combination of an IP address and port number. These functions have nothing to do with domain names.

These two functions are required for the following reasons:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 34/65

 After connect successfully returns in a TCP client that does not call bind, getsockname returns

the local IP address and local port number assigned to the connection by the kernel.

 After calling bind with a port number of 0 (telling the kernel to choose the local port

number),getsockname returns the local port number that was assigned.

 getsockname can be called to obtain the address family of a socket.

 In a TCP server that binds the wildcard IP address, once a connection is established with a client

(accept returns successfully), the server can call getsockname to obtain the local IP address

assigned to the connection. The socket descriptor argument to getsocknamemust be that of the

connected socket, and not the listening socket.

 When a server is exceed by the process that calls accept, the only way the server can obtain the

identity of the client is to call getpeername. For example, inetd forks and execs a TCP server

(follwing figure):

o inetd calls accept, which return two values: the connected socket descriptor (connfd,

return value of the function) and the "peer's address" (an Internet socket address

structure) that contains the IP address and port number of the client.

o fork is called and a child of inetd is created, with a copy of the parent's memory image, so

the socket address structure is available to the child, as is the connected socket descriptor

(since the descriptors are shared between the parent and child).

o When the child execs the real server (e.g. Telnet server that we show), the memory image

of the child is replaced with the new program file for the Telnet server (the socket address

structure containing the peer's address is lost), and the connected socket descriptor

remains open across the exec. One of the first function calls performed by the Telnet

server is getpeername to obtain the IP address and port number of the client.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 35/65

In this example, the Telnet server must know the value of connfd when it starts. There are two common

ways to do this.

1. The process calling exec pass it as a command-line argument to the newly execed program.

2. A convention can be established that a certain descriptor is always set to the connected socket

before calling exec.

The second one is what inetd does, always setting descriptors 0, 1, and 2 to be the connected socket.

TCP Client/Server Example

We will now use the elementary functions from the previous sessions to write a complete TCP

client/server example. Our simple example is an echo server that performs the following steps:

1. The client reads a line of text from its standard input and writes the line to the server.

2. The server reads the line from its network input and echoes the line back to the client.

3. The client reads the echoed line and prints it on its standard output.

The figure below depcits this simple client/server:

https://notes.shichao.io/unp/figure_4.18.png
https://notes.shichao.io/unp/figure_4.18.png

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 36/65

Despite two arrows between the client and server in the above figure, it is really a full-duplex TCP

connection.fgets and fputs functions are from the standard I/O library. writen and readline functions

were shown in the above sessions.

The echo client/server is a valid, simple example of a network application. To expand this example into

your own application, all you need to do is change what the server does with the input it receives from

its clients.

Besides running the client/server in normal mode (type in a line and watch it echo), we examine lots of

boundary conditions:

 What happens when the client and server are started?

 What happens when the client terminates normally?

 What happens to the client if the server process terminates before the client is done?

 What happens to the client if the server host crashes?

In all these examples, we have "hard-coded" protocol-specific constants such as addresses and ports.

There are two reasons for this:

 We must understand exactly what needs to be stored in the protocol-specific address structures

 We have not yet covered the library functions that can make this more portable

TCP Echo Server: main Function

Our TCP client and server follow the flow of functions that we diagrammed in Figure 4.1. The below

code is the concurrent server program:

tcpcliserv/tcpserv01.c

#include "unp.h"

int

main(int argc, char **argv)

https://notes.shichao.io/unp/figure_5.1.png
https://notes.shichao.io/unp/figure_5.1.png
https://notes.shichao.io/unp/ch2/#transmission-control-protocol-tcp
https://notes.shichao.io/unp/ch3/#readn-writen-and-readline-functions
https://notes.shichao.io/unp/figure_4.1.png
https://github.com/shichao-an/unpv13e/blob/master/tcpcliserv/tcpserv01.c

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 37/65

{

 int listenfd, connfd;

 pid_t childpid;

 socklen_t clilen;

 struct sockaddr_in cliaddr, servaddr;

 listenfd = Socket(AF_INET, SOCK_STREAM, 0);

 bzero(&servaddr, sizeof(servaddr));

 servaddr.sin_family = AF_INET;

 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

 servaddr.sin_port = htons(SERV_PORT);

 Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));

 Listen(listenfd, LISTENQ);

 for (; ;) {

 clilen = sizeof(cliaddr);

 connfd = Accept(listenfd, (SA *) &cliaddr, &clilen);

 if ((childpid = Fork()) == 0) { /* child process */

 Close(listenfd); /* close listening socket */

 str_echo(connfd); /* process the request */

 exit(0);

 }

 Close(connfd); /* parent closes connected socket */

 }

}

The above code does the following:

 Create socket, bind server's well-known port

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 38/65

o A TCP socket is created.

o An Internet socket address structure is filled in with the wildcard address

(INADDR_ANY) and the server's well-known port (SERV_PORT, which is defined as

9877 in our unp.h header). Binding the wildcard address tells the system that we will

accept a connection destined for any local interface, in case the system is multihomed.

The socket is converted into a listening socket by listen.

 Wait for client connection to complete

o The server blocks in the call to accept, waiting for a client connection to complete.

 Concurrent server

o For each client, fork spawns a child, and the child handles the new client. The child

closes the listening socket and the parent closes the connected socket.

TCP Echo Server: str_echo Function

The function str_echo performs the server processing for each client: It reads data from the client and

echoes it back to the client.

lib/str_echo.c

#include "unp.h"

void

str_echo(int sockfd)

{

 ssize_t n;

 char buf[MAXLINE];

again:

 while ((n = read(sockfd, buf, MAXLINE)) > 0)

 Writen(sockfd, buf, n);

 if (n < 0 && errno == EINTR)

 goto again;

 else if (n < 0)

https://github.com/shichao-an/unpv13e/blob/master/lib/unp.h#L200
https://github.com/shichao-an/unpv13e/blob/master/lib/str_echo.c

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 39/65

 err_sys("str_echo: read error");

}

The above code does the following:

 Read a buffer and echo the buffer

o read reads data from the socket and the line is echoed back to the client by writen. If the

client closes the connection (the normal scenario), the receipt of the client's FIN causes

the child's read to return 0. This causes the str_echo function to return, which terminates

the child.

TCP Echo Client: main Function

tcpcliserv/tcpcli01.c

#include "unp.h"

int

main(int argc, char **argv)

{

 int sockfd;

 struct sockaddr_in servaddr;

 if (argc != 2)

 err_quit("usage: tcpcli <IPaddress>");

 sockfd = Socket(AF_INET, SOCK_STREAM, 0);

 bzero(&servaddr, sizeof(servaddr));

 servaddr.sin_family = AF_INET;

 servaddr.sin_port = htons(SERV_PORT);

 Inet_pton(AF_INET, argv[1], &servaddr.sin_addr);

 Connect(sockfd, (SA *) &servaddr, sizeof(servaddr));

https://github.com/shichao-an/unpv13e/blob/master/tcpcliserv/tcpcli01.c

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 40/65

 str_cli(stdin, sockfd); /* do it all */

 exit(0);

}

The above code does the following:

 Create socket, fill in Internet socket address structure

o A TCP socket is created and an Internet socket address structure is filled in with the

server's IP address and port number. The server's IP address is taken from the command-

line argument and the server's well-known port (SERV_PORT) is from our unp.h header.

 Connect to server

o connect establishes the connection with the server. The function str_cli handles the rest of

the client processing.

TCP Echo Client: str_cli Function

The str_cli function handles the client processing loop: It reads a line of text from standard input, writes

it to the server, reads back the server's echo of the line, and outputs the echoed line to standard output.

lib/str_cli.c

#include "unp.h"

void

str_cli(FILE *fp, int sockfd)

{

 char sendline[MAXLINE], recvline[MAXLINE];

 while (Fgets(sendline, MAXLINE, fp) != NULL) {

 Writen(sockfd, sendline, strlen(sendline));

 if (Readline(sockfd, recvline, MAXLINE) == 0)

 err_quit("str_cli: server terminated prematurely");

https://github.com/shichao-an/unpv13e/blob/master/lib/str_cli.c

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 41/65

 Fputs(recvline, stdout);

 }

}

The above code does the following:

 Read a line, write to server

o fgets reads a line of text and writen sends the line to the server.

 Read echoed line from server, write to standard output

o readline reads the line echoed back from the server and fputs writes it to standard output.

 Return to main

o The loop terminates when fgets returns a null pointer, which occurs when it encounters

either an end-of-file (EOF) or an error. Our Fgets wrapper function checks for an error

and aborts if one occurs, so Fgets returns a null pointer only when an end-of-file is

encountered.

Normal Startup

Although the TCP example is small, it is essential that we understand:

 How the client and server start and end,

 What happens when something goes wrong:

o the client host crashes,

o the client process crashes,

o network connectivity is lost

Only by understanding these boundary conditions, and their interaction with the TCP/IP protocols, can

we write robust clients and servers that can handle these conditions.

Start the server in the background

First, we start the server in the background:

linux % tcpserv01 &

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 42/65

[1] 17870

When the server starts, it calls socket, bind, listen, and accept, blocking in the call to accept.

Run netstat

Before starting the client, we run the netstat program to verify the state of the server's listening socket.

linux % netstat -a

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 *:9877 *:* LISTEN

This command shows the status of all sockets on the system. We must specify the -a flag to see listening

sockets.

In the output, a socket is in the LISTEN state with a wildcard for the local IP address and a local port of

9877.netstat prints an asterisk for an IP address of 0 (INADDR_ANY, the wildcard) or for a port of 0.

Start the client on the same host

We then start the client on the same host, specifying the server's IP address of 127.0.0.1 (the loopback

address). We could have also specified the server's normal (nonloopback) IP address.

linux % tcpcli01 127.0.0.1

The client calls socket, and connect which causes TCP's three-way handshake. When the three-way

handshake completes, connect returns in the client and accept returns in the server. The connection is

established. The following steps then take place:

1. The client calls str_cli, which will block in the call to fgets.

2. When accept returns in the server, it calls fork and the child calls str_echo. This function

callsreadline, which calls read, which blocks while waiting for a line to be sent from the client.

3. The server parent, on the other hand, calls accept again, and blocks while waiting for the next

client connection.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 43/65

Notes from the previous three steps:

 All three processes are asleep (blocked): client, server parent, and server child.

 We purposely list the client step first, and then the server steps when the three-way handshake

completes. This is because accept returns one-half of the RTT after connect returns :

o On the client side, connect returns when the second segment of the handshake is received

o On the server side, accept does not return until the third segment of the handshake is

received

Run netstat after connection completes

Since we are running the client and server on the same host, netstat now shows two additional lines of

output, corresponding to the TCP connection:

linux % netstat -a

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 local host:9877 localhost:42758 ESTABLISHED

tcp 0 0 local host:42758 localhost:9877 ESTABLISHED

tcp 0 0 *:9877 *:* LISTEN

 The first ESTABLISHED line corresponds to the server child's socket, since the local port is

9877.

 The second ESTABLISHED lines is the client's socket, since the local port is 42758

If we were running the client and server on different hosts, the client host would display only the client's

socket, and the server host would display only the two server sockets.

Run ps to check process status and relationship

linux % ps -t pts/6 -o pid,ppid,tty,stat,args,wchan

 PID PPID TT STAT COMMAND WCHAN

22038 22036 pts/6 S -bash wait4

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 44/65

17870 22038 pts/6 S ./tcpserv01 wait_for_connect

19315 17870 pts/6 S ./tcpserv01 tcp_data_wait

19314 22038 pts/6 S ./tcpcli01 127.0 read_chan

Very specific arguments to ps are used:

 The TT column (pts/6): client and server are run from the same window, pseudo-terminal

number 6.

 The PID and PPID columns show the parent and child relationships.

o The first tcpserv01 line is the parent and the second tcpserv01 line is the child since the

PPID of the child is the parent's PID.

o The PPID of the parent is the shell (bash).

 The STAT column for all three of our network processes is "S", meaning the process is sleeping

(waiting for something).

 The WCHAN column specifies the condition when a process is asleep.

o Linux prints wait_for_connect when a process is blocked in

either accept or connect,tcp_data_wait when a process is blocked on socket input or

output, or read_chan when a process is blocked on terminal I/O.

o In ps(1), WCHAN column indicates the name of the kernel function in which the process

is sleeping, a "-" if the process is running, or a "*" if the process is multi-threaded and ps

is not displaying threads.

Normal Termination

At this point, the connection is established and whatever we type to the client is echoed back.

linux % tcpcli01 127.0.0.1 # we showed this line earlier

hello, world # we now type this

hello, world # and the line is echoed

good bye

good bye

^D # Control-D is our terminal EOF character

http://man7.org/linux/man-pages/man1/ps.1.html

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 45/65

If we immediately execute netstat, we have:

linux % netstat -a | grep 9877

tcp 0 0 *:9877 *:* LISTEN

tcp 0 0 localhost:42758 localhost:9877 TIME_WAIT

This time we pipe the output of netstat into grep, printing only the lines with our server's well-known

port:

 The client's side of the connection (since the local port is 42758) enters the TIME_WAIT state

 The listening server is still waiting for another client connection.

The following steps are involved in the normal termination of client and server:

1. When we type our EOF character, fgets returns a null pointer and the function str_cli returns.

2. str_cli returns to the client main function which terminates by calling exit.

3. Part of process termination is the closing of all open descriptors, so the client socket is closed by

the kernel. This sends a FIN to the server, to which the server TCP responds with an ACK. This

is the first half of the TCP connection termination sequence. At this point, the server socket is in

the CLOSE_WAIT state and the client socket is in the FIN_WAIT_2 state

4. When the server TCP receives the FIN, the server child is blocked in a call to read , and

read then returns 0. This causes the str_echo function to return to the server child main.

5. The server child terminates by calling exit.

6. All open descriptors in the server child are closed.

o The closing of the connected socket by the child causes the final two segments of the

TCP connection termination to take place: a FIN from the server to the client, and an

ACK from the client.

7. Finally, the SIGCHLD signal is sent to the parent when the server child terminates.

o This occurs in this example, but we do not catch the signal in our code, and the default

action of the signal is to be ignored. Thus, the child enters the zombie state. We can

verify this with the pscommand.

linux % ps -t pts/6 -o pid,ppid,tty,stat,args,wchan

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 46/65

 PID PPID TT STAT COMMAND WCHAN

22038 22036 pts/6 S -bash read_chan

17870 22038 pts/6 S ./tcpserv01 wait_for_connect

19315 17870 pts/6 Z [tcpserv01 <defu do_exit

The STAT of the child is now Z (for zombie).

We need to clean up our zombie processes and doing this requires dealing with Unix signals. The next

section will give an overview of signal handling.

POSIX Signal Handling

A signal is a notification to a process that an event has occurred. Signals are sometimes called software

interrupts. Signals usually occur asynchronously, which means that a process doesn't know ahead of

time exactly when a signal will occur.

Signals can be sent:

 By one process to another process (or to itself)

 By the kernel to a process.

o For example, whenever a process terminates, the kernel send a SIGCHLD signal to the

parent of the terminating process.

Every signal has a disposition, which is also called the action associated with the signal. We set the

disposition of a signal by calling the sigaction function and we have three choices for the disposition:

1. Catching a signal. We can provide a function called a signal handler that is called whenever a

specific signal occurs. The two signals SIGKILL and SIGSTOP cannot be caught. Our function

is called with a single integer argument that is the signal number and the function returns

nothing. Its function prototype is therefore:

2. void handler (int signo);

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 47/65

For most signals, we can call sigaction and specify the signal handler to catch it. A few

signals,SIGIO, SIGPOLL, and SIGURG, all require additional actions on the part of the process

to catch the signal.

3. Ignoring a signal. We can ignore a signal by setting its disposition to SIG_IGN. The two signals

SIGKILL and SIGSTOP cannot be ignored.

4. Setting the default disposition for a signal. This can be done by setting its disposition

to SIG_DFL. The default is normally to terminate a process on receipt of a signal, with certain

signals also generating a core image of the process in its current working directory. There are a

few signals whose default disposition is to be ignored: SIGCHLD and SIGURG (sent on the

arrival of out-of-band data) are two that we will encounter in this text.

signal Function

The POSIX way to establish the disposition of a signal is to call the sigaction function, which is

complicated in that one argument to the function is a structure (struct sigaction) that we must allocate

and fill in.

An easier way to set the disposition of a signal is to call the signal function. The first argument is the

signal name and the second argument is either a pointer to a function or one of the

constants SIG_IGN orSIG_DFL.

However, signal is an historical function that predates POSIX. Different implementations provide

different signal semantics when it is called, providing backward compatibility, whereas POSIX

explicitly spells out the semantics when sigaction is called.

The solution is to define our own function named signal that just calls the POSIX sigaction function.

This provides a simple interface with the desired POSIX semantics. We include this function in our own

library, along with our err_XXX functions and our wrapper functions.

lib/signal.c

#include "unp.h"

Sigfunc *

signal(int signo, Sigfunc *func)

https://github.com/shichao-an/unpv13e/blob/master/lib/signal.c

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 48/65

{

 struct sigaction act, oact;

 act.sa_handler = func;

 sigemptyset(&act.sa_mask);

 act.sa_flags = 0;

 if (signo == SIGALRM) {

#ifdef SA_INTERRUPT

 act.sa_flags |= SA_INTERRUPT; /* SunOS 4.x */

#endif

 } else {

#ifdef SA_RESTART

 act.sa_flags |= SA_RESTART; /* SVR4, 44BSD */

#endif

 }

 if (sigaction(signo, &act, &oact) < 0)

 return(SIG_ERR);

 return(oact.sa_handler);

}

/* end signal */

Sigfunc *

Signal(int signo, Sigfunc *func) /* for our signal() function */

{

 Sigfunc *sigfunc;

 if ((sigfunc = signal(signo, func)) == SIG_ERR)

 err_sys("signal error");

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 49/65

 return(sigfunc);

}

Simplify function prototype using typedef

The normal function prototype for signal is complicated by the level of nested parentheses.

void (*signal (int signo, void (*func) (int))) (int);

To simplify this, we define the Sigfunc type in our unp.h header as

typedef void Sigfunc(int);

stating that signal handlers are functions with an integer argument and the function returns nothing

(void). The function prototype then becomes

Sigfunc *signal (int signo, Sigfunc *func);

A pointer to a signal handling function is the second argument to the function, as well as the return value

from the function.

Set handler

The sa_handler member of the sigaction structure is set to the func argument.

Set signal mask for handler

POSIX allows us to specify a set of signals that will be blocked when our signal handler is called. Any

signal that is blocked cannot be delivered to a process. We set the sa_mask member to the empty set,

which means that no additional signals will be blocked while our signal handler is running. POSIX

guarantees that the signal being caught is always blocked while its handler is executing.

Set SA_RESTART flag

SA_RESTART is an optional flag. When the flag is set, a system call interrupted by this signal will be

automatically restarted by the kernel.

https://github.com/shichao-an/unpv13e/blob/master/lib/unp.h#L243

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 50/65

If the signal being caught is not SIGALRM, we specify the SA_RESTART flag, if defined. This is

because the purpose of generating the SIGALRM signal is normally to place a timeout on an I/O

operation, in which case, we want the blocked system call to be interrupted by the signal.

Call sigaction

We call sigaction and then return the old action for the signal as the return value of the signal function.

Throughout this text, we will use the signal function from the above definition.

Handling SIGCHLD Signals

The zombie state is to maintain information about the child for the parent to fetch later, which includes:

 process ID of the child,

 termination status,

 information on the resource utilization of the child.

If a parent process of zombie children terminates, the parent process ID of all the zombie children is set

to 1 (the init process), which will inherit the children and clean them up (init will wait for them, which

removes the zombie).

Handling Zombies

Zombies take up space in the kernel and eventually we can run out of processes. Whenever

we forkchildren, we must wait for them to prevent them from becoming zombies. We can establish a

signal handler to catch SIGCHLD and call wait within the handler. We establish the signal handler by

adding the following function call after the call to listen (in server's main function; it must be done

before forking the first child and needs to be done only once.):

Signal (SIGCHLD, sig_chld);

The signal handler, the function sig_chld, is defined below:

#include "unp.h"

void

sig_chld(int signo)

https://notes.shichao.io/unp/ch5/#tcp-echo-server-main-function

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 51/65

{

 pid_t pid;

 int stat;

 pid = wait(&stat);

 printf("child %d terminated\n", pid);

 return;

}

Note that calling standard I/O functions such as printf in a signal handler is not recommended. We

callprintf here as a diagnostic tool to see when the child terminates.

Compiling and running the program on Solaris *

This program (tcpcliserv/tcpserv02.c) is compiled on Solaris 9 and uses the signal function from the

system library.

solaris % tcpserv02 & # start server in background

[2] 16939

solaris % tcpcli01 127.0.0.1 # then start client in foreground

hi there # we type this

hi there # and this is echoed

^D # we type our EOF character

child 16942 terminated # output by printf in signal handler

accept error: Interrupted system call # main function aborts

The sequence of steps is as follows:

1. We terminate the client by typing our EOF character. The client TCP sends a FIN to the server

and the server responds with an ACK.

2. The receipt of the FIN delivers an EOF to the child's pending readline. The child terminates.

https://github.com/shichao-an/unpv13e/blob/master/tcpcliserv/tcpserv02.c

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 52/65

3. The parent is blocked in its call to accept when the SIGCHLD signal is delivered.

The sig_chldfunction executes (our signal handler), wait fetches the child's PID and termination

status, andprintf is called from the signal handler. The signal handler returns.

4. Since the signal was caught by the parent while the parent was blocked in a slow system call

(accept), the kernel causes the accept to return an error of EINTR (interrupted system call). The

parent does not handle this error, so it aborts.

From this example, we know that when writing network programs that catch signals, we must be

cognizant of interrupted system calls, and we must handle them. In this example, the signal function

provided in the standard C library does not cause an interrupted system call to be automatically restarted

by the kernel. Some other systems automatically restart the interrupted system call. If we run the same

example under 4.4BSD, using its library version of the signal function, the kernel restarts the interrupted

system call and accept does not return an error. To handle this potential problem between different

operating systems is one reason we define our own version of the signal function.

As part of the coding conventions used, we always code an explicit return in our signal handlers, even

though this is unnecessary for a function returning void. This reads as a reminder that the return may

interrupt a system call.

Handling Interrupted System Calls

The term "slow system call" is used to describe any system call that can block forever, such as accept.

That is, the system call need never return. Most networking functions fall into this category. Examples

are:

 accept: there is no guarantee that a server's call to accept will ever return, if there are no clients

that will connect to the server.

 read: the server's call to read in server's str_echo function will never return if the client never

sends a line for the server to echo.

Other examples of slow system calls are reads and writes of pipes and terminal devices. A notable

exception is disk I/O, which usually returns to the caller (assuming no catastrophic hardware failure).

When a process is blocked in a slow system call and the process catches a signal and the signal handler

returns, the system call can return an error of EINT. Some kernels automatically restart some interrupted

https://notes.shichao.io/unp/ch5/#tcp-echo-server-str_echo-function

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 53/65

system calls. For portability, when we write a program that catches signals (most concurrent servers

catch SIGCHLD), we must be prepared for slow system calls to return EINTR.

To handle an interrupted accept, we change the call to accept in server's main function, the beginning of

the for loop, to the following:

 for (; ;) {

 clilen = sizeof (cliaddr);

 if ((connfd = accept (listenfd, (SA *) &cliaddr, &clilen)) < 0) {

 if (errno == EINTR)

 continue; /* back to for () */

 else

 err_sys ("accept error");

 }

Restarting the interrupted system call is fine for:

 accept

 read

 write

 select

 open

However, there is one function that we cannot restart: connect. If this function returns EINTR, we

cannot call it again, as doing so will return an immediate error. When connect is interrupted by a caught

signal and is not automatically restarted, we must call select to wait for the connection to complete.

wait and waitpid Functions

We can call wait function to handle the terminated child.

#include <sys/wait.h>

pid_t wait (int *statloc);

https://notes.shichao.io/unp/ch5/#tcp-echo-server-main-function

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 54/65

pid_t waitpid (pid_t pid, int *statloc, int options);

/* Both return: process ID if OK, 0 or–1 on error */

wait and waitpid both return two values: the return value of the function is the process ID of the

terminated child, and the termination status of the child (an integer) is returned through the statloc

pointer.

There are three macros that we can call that examine the termination status:

 WIFEXITED: tells if the child terminated normally

 WIFSIGNALED: tells if the child was killed by a signal

 WIFSTOPPED: tells if the child was just stopped by job control

Additional macros let us then fetch the exit status of the child, or the value of the signal that killed the

child, or the value of the job-control signal that stopped the child. We will use

the WIFEXITED and WEXITSTATUSmacros for this purpose.

If there are no terminated children for the process calling wait, but the process has one or more children

that are still executing, then wait blocks until the first of the existing children terminates.

waitpid has more control over which process to wait for and whether or not to block:

 The pid argument specifies the process ID that we want to wait for. A value of -1 says to wait for

the first of our children to terminate.

 The options argument specifies additional options. The most common option is WNOHANG,

which tells the kernel not to block if there are no terminated children.

Difference between wait and waitpid

The following example illustrates the difference between the wait and waitpid functions when used to

clean up terminated children.

We modify our TCP client as below, which establishes five connections with the server and then uses

only the first one (sockfd[0]) in the call to str_cli. The purpose of establishing multiple connections is to

spawn multiple children from the concurrent server.

tcpcliserv/tcpcli04.c

https://github.com/shichao-an/unpv13e/blob/master/tcpcliserv/tcpcli04.c

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 55/65

#include "unp.h"

int

main(int argc, char **argv)

{

 int i, sockfd[5];

 struct sockaddr_in servaddr;

 if (argc != 2)

 err_quit("usage: tcpcli <IPaddress>");

 for (i = 0; i < 5; i++) {

 sockfd[i] = Socket(AF_INET, SOCK_STREAM, 0);

 bzero(&servaddr, sizeof(servaddr));

 servaddr.sin_family = AF_INET;

 servaddr.sin_port = htons(SERV_PORT);

 Inet_pton(AF_INET, argv[1], &servaddr.sin_addr);

 Connect(sockfd[i], (SA *) &servaddr, sizeof(servaddr));

 }

 str_cli(stdin, sockfd[0]); /* do it all */

 exit(0);

}

When the client terminates, all open descriptors are closed automatically by the kernel (we do not

call close, only exit), and all five connections are terminated at about the same time. This causes five

FINs to be sent, one on each connection, which in turn causes all five server children to terminate at

about the same time. This causes five SIGCHLD signals to be delivered to the parent at about the same

time. This causes the problem under discussion.

We first run the server (tcpcliserv/tcpserv03.c) in the background and then our new client:

linux % tcpserv03 &

https://github.com/shichao-an/unpv13e/blob/master/tcpcliserv/tcpserv03.c

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 56/65

[1] 20419

linux % tcpcli04 127.0.0.1

hello # we type this

hello # and it is echoed

^D # we then type our EOF character

child 20426 terminated # output by server

Only one printf is output, when we expect all five children to have terminated. If we execute ps, we see

that the other four children still exist as zombies.

PID TTY TIME CMD

20419 pts/6 00:00:00 tcpserv03

20421 pts/6 00:00:00 tcpserv03 <defunct>

20422 pts/6 00:00:00 tcpserv03 <defunct>

20423 pts/6 00:00:00 tcpserv03 <defunct>

Establishing a signal handler and calling wait from that handler are insufficient for preventing

zombies. The problem is that all five signals are generated before the signal handler is executed, and the

signal handler is executed only one time because Unix signals are normally not queued.This problem is

nondeterministic. Dependent on the timing of the FINs arriving at the server host, the signal handler is

executed two, three or even four times.

The correct solution is to call waitpid instead of wait. The code below shows the version of

oursig_chld function that handles SIGCHLD correctly. This version works because we

call waitpid within a loop, fetching the status of any of our children that have terminated, with

the WNOHANG option, which tells waitpid not to block if there are running children that have not yet

terminated. We cannot call wait in a loop, because there is no way to prevent wait from blocking if there

are running children that have not yet terminated.

tcpcliserv/sigchldwaitpid.c

#include "unp.h"

https://github.com/shichao-an/unpv13e/blob/master/tcpcliserv/sigchldwaitpid.c

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 57/65

void

sig_chld(int signo)

{

 pid_t pid;

 int stat;

 while ((pid = waitpid(-1, &stat, WNOHANG)) > 0)

 printf("child %d terminated\n", pid);

 return;

}

The code below shows the final version of our server. It correctly handles a return

of EINTR from acceptand it establishes a signal handler (code above) that calls waitpid for all

terminated children.

tcpcliserv/tcpserv04.c

#include "unp.h"

int

main(int argc, char **argv)

{

 int listenfd, connfd;

 pid_t childpid;

 socklen_t clilen;

 struct sockaddr_in cliaddr, servaddr;

 void sig_chld(int);

 listenfd = Socket(AF_INET, SOCK_STREAM, 0);

 bzero(&servaddr, sizeof(servaddr));

 servaddr.sin_family = AF_INET;

https://github.com/shichao-an/unpv13e/blob/master/tcpcliserv/tcpserv04.c

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 58/65

 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

 servaddr.sin_port = htons(SERV_PORT);

 Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));

 Listen(listenfd, LISTENQ);

 Signal(SIGCHLD, sig_chld); /* must call waitpid() */

 for (; ;) {

 clilen = sizeof(cliaddr);

 if ((connfd = accept(listenfd, (SA *) &cliaddr, &clilen)) < 0) {

 if (errno == EINTR)

 continue; /* back to for() */

 else

 err_sys("accept error");

 }

 if ((childpid = Fork()) == 0) { /* child process */

 Close(listenfd); /* close listening socket */

 str_echo(connfd); /* process the request */

 exit(0);

 }

 Close(connfd); /* parent closes connected socket */

 }

}

The purpose of this section has been to demonstrate three scenarios that we can encounter with network

programming:

 We must catch the SIGCHLD signal when forking child processes.

 We must handle interrupted system calls when we catch signals.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 59/65

 A SIGCHLD handler must be coded correctly using waitpid to prevent any zombies from being

left around.

Connection Abort before accept Returns

There is another condition similar to the interrupted system call that can cause accept to return a nonfatal

error, in which case we should just call accept again. The sequence of packets shown below has been

seen on busy servers (typically busy Web servers), where the server receives an RST for

an ESTABLISHEDconnection before accept is called.

The three-way handshake completes, the connection is established, and then the client TCP sends an

RST (reset). On the server side, the connection is queued by its TCP, waiting for the server process to

call accept when the RST arrives. Sometime later, the server process calls accept.

An easy way to simulate this scenario is to start the server, have it call socket, bind, and listen, and then

go to sleep for a short period of time before calling accept. While the server process is asleep, start the

client and have it call socket and connect. As soon as connect returns, set the SO_LINGER socket

option to generate the RST and terminate.

Termination of Server Process

We will now start our client/server and then kill the server child process, which simulates the crashing of

the server process. We must be careful to distinguish between the crashing of the server process and the

crashing of the server host.

https://notes.shichao.io/unp/figure_5.13.png
https://notes.shichao.io/unp/figure_5.13.png

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 60/65

The following steps take place:

1. We start the server and client and type one line to the client to verify that all is okay. That line is

echoed normally by the server child.

2. We find the process ID of the server child and kill it. As part of process termination, all open

descriptors in the child are closed. This causes a FIN to be sent to the client, and the client TCP

responds with an ACK. This is the first half of the TCP connection termination.

3. The SIGCHLD signal is sent to the server parent and handled correctly.

4. Nothing happens at the client. The client TCP receives the FIN from the server TCP and

responds with an ACK, but the problem is that the client process is blocked in the call

to fgets waiting for a line from the terminal.

5. Running netstat at this point shows the state of the sockets.

6. linux % netstat -a | grep 9877

7. tcp 0 0 *:9877 *:* LISTEN

8. tcp 0 0 localhost:9877 localhost:43604 FIN_WAIT2

9. tcp 1 0 localhost:43604 localhost:9877 CLOSE_WAIT

10. We can still type a line of input to the client. Here is what happens at the client starting from

Step 1:

11. linux % tcpcli01 127.0.0.1 # start client

12. hello # the first line that we type

13. hello # is echoed correctly we kill the server child on the server host

14. another line # we then type a second line to the client

15. str_cli : server terminated prematurely

When we type "another line," str_cli calls writen and the client TCP sends the data to the server.

This is allowed by TCP because the receipt of the FIN by the client TCP only indicates that the

server process has closed its end of the connection and will not be sending any more data. The

receipt of the FIN does not tell the client TCP that the server process has terminated (which in

this case, it has).

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 61/65

When the server TCP receives the data from the client, it responds with an RST since the process

that had that socket open has terminated. We can verify that the RST was sent by watching the

packets withtcpdump.

16. The client process will not see the RST because it calls readline immediately after the call to

writen and readline returns 0 (EOF) immediately because of the FIN that was received in Step 2.

Our client is not expecting to receive an EOF at this point (str_cli) so it quits with the error

message "server terminated prematurely."

17. When the client terminates (by calling err_quit in str_cli), all its open descriptors are closed.

o If the readline happens before the RST is received (as shown in this example), the result

is an unexpected EOF in the client.

o If the RST arrives first, the result is an ECONNRESET ("Connection reset by peer")

error return from readline.

The problem in this example is that the client is blocked in the call to fgets when the FIN arrives on the

socket. The client is really working with two descriptors,the socket and the user input. Instead of

blocking on input from only one of the two sources, it should block on input from either source.

SIGPIPE Signal

The rules are:

 When a process writes to a socket that has received an RST, the SIGPIPE signal is sent to the

process. The default action of this signal is to terminate the process, so the process must catch

the signal to avoid being involuntarily terminated.

 If the process either catches the signal and returns from the signal handler, or ignores the signal,

the write operation returns EPIPE.

We can simulate this from the client by performing two writes to the server (which has sent FIN to the

client) before reading anything back, with the first write eliciting the RST (causing the server to send an

RST to the client). We must use two writes to obtain the signal, because the first write elicits the RST

and the second write elicits the signal. It is okay to write to a socket that has received a FIN, but it is an

error to write to a socket that has received an RST.

We modify our client as below:

https://notes.shichao.io/unp/ch5/#tcp-echo-client-str_cli-function
https://notes.shichao.io/unp/ch5/#tcp-echo-client-str_cli-function

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 62/65

tcpcliserv/str_cli11.c

#include "unp.h"

void

str_cli(FILE *fp, int sockfd)

{

 char sendline[MAXLINE], recvline[MAXLINE];

 while (Fgets(sendline, MAXLINE, fp) != NULL) {

 Writen(sockfd, sendline, 1);

 sleep(1);

 Writen(sockfd, sendline+1, strlen(sendline)-1);

 if (Readline(sockfd, recvline, MAXLINE) == 0)

 err_quit("str_cli: server terminated prematurely");

 Fputs(recvline, stdout);

 }

}

The writen is called two times. The intent is for the first writen to elicit the RST and then for the

secondwriten to generate SIGPIPE.

Run the program on the Linux host:

linux % tcpclill 127.0.0.1

hi there # we type this line

hi there # this is echoed by the server

 # here we kill the server child

bye # then we type this line

https://github.com/shichao-an/unpv13e/blob/master/tcpcliserv/str_cli11.c

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 63/65

Broken pipe # this is printed by the shell

We start the client, type in one line, see that line echoed correctly, and then terminate the server child on

the server host. We then type another line ("bye") and the shell tells us the process died with

a SIGPIPE signal.

The recommended way to handle SIGPIPE depends on what the application wants to do when this

occurs:

 If there is nothing special to do, then setting the signal disposition to SIG_IGN is easy, assuming

that subsequent output operations will catch the error of EPIPE and terminate.

 If special actions are needed when the signal occurs (writing to a log file perhaps), then the

signal should be caught and any desired actions can be performed in the signal handler.

 If multiple sockets are in use, the delivery of the signal will not tell us which socket encountered

the error. If we need to know which write caused the error, then we must either ignore the signal

or return from the signal handler and handle EPIPE from the write.

Crashing of Server Host

To simulate what happens when the server host crashes, we must run the client and server on different

hosts. We then start the server, start the client, type in a line to the client to verify that the connection is

up, disconnect the server host from the network, and type in another line at the client. This also covers

the scenario of the server host being unreachable when the client sends data (i.e., some intermediate

router goes down after the connection has been established).

The following steps take place:

1. When the server host crashes (which means it is not shut down by an operator), nothing is sent

out on the existing network connections.

2. We type a line of input to the client, it is written by writen (str_cli), and is sent by the client TCP

as a data segment. The client then blocks in the call to readline, waiting for the echoed reply.

3. With tcpdump, we will see the client TCP continually retransmitting the data segment, trying to

receive an ACK from the server. Berkeley-derived implementations retransmit the data segment

12 times, waiting for around 9 minutes before giving up. When the client TCP finally gives up

(assuming the server host has not been rebooted during this time, or the server host is still

https://notes.shichao.io/unp/ch5/#tcp-echo-client-str_cli-function

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 64/65

unreachable), an error is returned to the client process's readline. The error can be one of the

following:

o If the server host crashed and there were no responses at all to the client's data segments,

the error is ETIMEDOUT.

o If some intermediate router determined that the server host was unreachable and

responded with an ICMP "destination unreachable" message, the error is

either EHOSTUNREACH orENETUNREACH.

To detect that the peer is down or unreachable quicker than 9 minutes, we can place a timeout on the call

toreadline.This example detects that the server host has crashed only when we send data to that host. If

we want to detect the crashing of the server host even if we are not actively sending it data, another

technique is required: SO_KEEPALIVE socket option.

Crashing and Rebooting of Server Host

In the following example, we will establish a connection between the client and server and then assume

the server host crashes and reboots. The easiest way to simulate this is to establish the connection,

disconnect the server from the network, shut down the server host and then reboot it, and then reconnect

the server host to the network. We do not want the client to see the server host shut down.

As stated in the previous section, if the client is not actively sending data to the server when the server

host crashes, the client is not aware that the server host has crashed. The following steps take place:

1. We start the server and then the client. We type a line to verify that the connection is established.

2. The server host crashes and reboots.

3. We type a line of input to the client, which is sent as a TCP data segment to the server host.

4. When the server host reboots after crashing, its TCP loses all information about connections that

existed before the crash. Therefore, the server TCP responds to the received data segment from

the client with an RST.

5. Our client is blocked in the call to readline when the RST is received, causing readline to return

the error ECONNRESET.

If it is important for our client to detect the crashing of the server host, even if the client is not actively

sending data, then some other technique, such as the SO_KEEPALIVE socket option or some

client/server heartbeat function, is required.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 65/65

Shutdown of Server Host

This section discusses what happens if the server host is shut down by an operator while our server

process is running on that host.

When a Unix system is shut down, the following steps happen:

1. The init process normally sends the SIGTERM signal to all processes (we can catch this signal).

2. The init waits some fixed amount of time (often between 5 and 20 seconds).

3. The init sends the SIGKILL signal (which we cannot catch) to any processes still running.

This gives all running processes a short amount of time to clean up and terminate. When the process

terminates, all open descriptors are closed (the sequence of steps are same to Termination of Server

Process). We must use the select or poll function in our client to have the client detect the termination of

the server process as soon as it occurs.

Summary of TCP Example

Before any TCP client and server can communicate with each other, each end must specify the socket

pair for the connection: the local IP address, local port, foreign IP address, and foreign port. These four

values are shown as bullets in the two figures below.

https://notes.shichao.io/unp/ch5/#termination-of-server-process
https://notes.shichao.io/unp/ch5/#termination-of-server-process

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 66/65

Client's perspective

 connect. The foreign IP address and foreign port must be specified by the client in the call

toconnect. The two local values are normally chosen by the kernel as part of

the connect function.

 bind. The client has the option of specifying either or both of the local values, by calling bind

before connect, but this is not common.

 getsockname. The client can obtain the two local values chosen by the kernel by

callinggetsockname after the connection is established.

https://notes.shichao.io/unp/figure_5.15.png
https://notes.shichao.io/unp/figure_5.15.png

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 67/65

Server's perspective

 bind. The local port (the server's well-known port) is specified by bind. Normally, the server also

specifies the wildcard IP address in this call.

 getsockname. If the server binds the wildcard IP address on a multihomed host, it can determine

the local IP address by calling getsockname after the connection is established.

 accept. The two foreign values are returned to the server by accept.

 getpeername. If another program is execed by the server that calls accept, that program can

callgetpeername to determine the client's IP address and port, if necessary.

POSSIBLE QUESTIONS

SECTION B – 2 Marks

1. Define Socket

2. What is socket address?

3. What are concurrent servers?

4. Mention any five socket functions.

5. What are byte ordering functions?

6. Mention the difference between bind and connect.

7. List the rules for a SIGPIPE Signal

https://notes.shichao.io/unp/figure_5.16.png
https://notes.shichao.io/unp/figure_5.16.png

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
 COURSE CODE: 17CSU501B UNIT: II –Socket Programming BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Asst. Prof, Department of CS, CA & IT, KAHEPage 68/65

SECTION C - 6 Marks

1. Discuss about TCP Echo server functions.

2. Give a detailed explanation on Elementary socket functions

3. Write the syntax and explain each of the following socket functions.

a) Listen b) Close and relate c) Connect d) Bind

4. Explain Socket Address structure.

5. Compare the IPV4, IPV6 socket address structures. State your assumptions

6. Explain in detail about POSIX signal handling.

SUBJECT NAME: NETWORK PROGRAMMING

UNIT II SEMESTER: V

S.NO Question Choice1 Choice2 Choice3 Choice4 Ans

1 TCP Sockets are also called as virtual ports

realibale

 ports

communicabl

e

ports transfer ports virtual ports

2

Sockets is the combination of ____ and IP

address together serial number port number byte number

acknowledgement

number port number

3

The_____ function assigns a local protocol

address to a socket connect close bind frame bind

4

____ is called by a TCP server to return the

 next completed connection from the front

of the completed connection queue connect close accept frame accept

5 Stream Sockets use TCP UDP IGMP IP TCP

6 Datagram Sockets use TCP UDP IGMP IP UDP

7

The name of socket address structures begin

 with ___ sock_addr

socket

address_ sock_address sockaddr_ sockaddr_

8

An socket address structure, commonly

called an Internet socket address structure is ____ IPv6 IPv4 Unix datalink IPv4

9

IPv4 address and the TCP or UDP port number

are always stored in the structure in

network

 byte order

host byte

 order

binary

byte order

datalink

byte order

network

byte order

10 AF_INET stands for ____

Address

family

Argument

Family

Arrays

Family

Acknowldegemen

t

family

Address

family

11 PF_INET stands for _____

Protocol

family

Process

family

Productive

family

Progress

 Family

Protocol

 family

12

When a socket address structure is passed to any

 socket function, it is always passed by ____ value arguments reference pointers reference

DEPARTMENT OF CS, CA & IT

STAFF NAME: Dr.P.TAMIL SELVAN

SUB.CODE: 17CSU501B

KARPAGAM ACADEMY OF HIGHER EDUCATION
 (Deemed to be University)

Coimbatore – 641 021.

ONE MARK QUESTIONS

(Established Under Section 3 of UGC Act 1956)

13

bind, connect, and ___ functions pass a socket address

structure from the process to the kernel receiveto sendto frameto ackto sendto

14

 ___functions pass a socket address structure

 from the kernel to the process. getformname getlinkname getdataname getpeername getpeername

15

Little-endian order is a ___ byte at the

starting address high-order low-order precision string low-order

16

Big-endian order is a _____ byte is at the

 starting address. high-order low-order precision string high-order

17

sockaddr points to a socket address structure

whose length is lengthaddress addresslengthaddrlen addr_len addrlen

18 sock_get_port returns just the ___ socket number port number host number packet number port number

19

To perform network I/O, the first thing a

 process must do is call ___ the function socket bind connect open socket

20

The _____ and addrlen arguments are a pointer to a socket

address structure pointeraddr socklen servaddr clientaddr servaddr

21

The ____ function assigns a local protocol

address to a socket client bind connect server bind

22

With IPv4, the wildcard address is specified by

the constant ADDR_ANY

IPv4_

ADDR

IPv4_

ADDRESS

 INADDR_

ANY INADDR_ANY

23

The ____ function converts an unconnected

socket into a passive socket socket bind listen connect listen

24

 ___flooding is a type of attack that attempts to fill the

incomplete connection queue for one or more TCP ports ASYN SYN QUEUE SYN_ATTK SYN

25

 _____is called by a TCP server to return the next

 completed connection from the front of the completed

connection queue. accept bind listen connect accept

26

The ____ socket is the return value from accept the

connected socket bind connected listen connect connected

27

____ returns the local protocol address associated with a

socket getformname getsocknamegetdataname getpeername getsockname

28

The function _____ performs the server processing for

each client str_client str_server str_echo str_process str_echo

29 _____function establishes the connection with the server bind connect client server connect

30 The ____ function handles the client processing loop str_client str_cli str_echo str_client str_cli

31 ____reads a line of text fline getline fgets ftext fgets

32 ___sends the line to the server writeline writeserver writen serverwrite writen

33 ____reads the line echoed back from the server echoread readline echoline echoserver readline

34 ___writes it to standard output foutput fwrite fset fputs fputs

35

A ___ is a notification to a process that an event has

occurred fire signal trigger start signal

36 ____are sometimes called software interrupts Signals fire trigger start signal

37

Every signal has a disposition, which is also called the

____ associated with the signal fire signal trigger action action

38 We can ignore a signal by setting its disposition to ___ SIGNAL SIG_IGN SIGNAL_IGNSIGNAL_SET SIG_IGN

39 ____ allows us to specify a set of signals POSIX SET SIGNALS ALLOW POSIX

40 _____tells if the child terminated normally WIFSIGNALED WIFEXITED WIFSTOPPEDWIFCLOSED WIFEXITED

41 ___tells if the child was killed by a signal WIFSIGNALED WIFEXITED WIFSTOPPEDWIFCLOSED WIFSIGNALED

42 ___tells if the child was just stopped by job control WIFSIGNALED WIFEXITED WIFSTOPPEDWIFCLOSED WIFSTOPPED

43 ____argument specifies the process ID parg pid sid aid pid

44

When a process writes to a socket that has

 received an RST, the____ signal is sent to the process SIG SOCK WRITE SIGPIPE SIGPIPE

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 1/65

I/O multiplexing using sockets

When the TCP client is handling two inputs at the same time: standard input and a TCP socket, we

encountered a problem when the client was blocked in a call to fgets (on standard input) and the server

process was killed. The server TCP correctly sent a FIN to the client TCP, but since the client process

was blocked reading from standard input, it never saw the EOF until it read from the socket (possibly

much later).

We want to be notified if one or more I/O conditions are ready (i.e., input is ready to be read, or the

descriptor is capable of taking more output). This capability is called I/O multiplexing and is provided

by the select and poll functions, as well as a newer POSIX variation of the former, called pselect.

I/O multiplexing is typically used in networking applications in the following scenarios:

 When a client is handling multiple descriptors (normally interactive input and a network socket)

 When a client to handle multiple sockets at the same time (this is possible, but rare)

 If a TCP server handles both a listening socket and its connected sockets

 If a server handles both TCP and UDP

 If a server handles multiple services and perhaps multiple protocols

I/O Models

We first examine the basic differences in the five I/O models that are available to us under Unix:

 blocking I/O

 nonblocking I/O

 I/O multiplexing (select and poll)

 signal driven I/O (SIGIO)

 asynchronous I/O (the POSIX aio_ functions)

There are normally two distinct phases for an input operation:

1. Waiting for the data to be ready. This involves waiting for data to arrive on the network. When

the packet arrives, it is copied into a buffer within the kernel.

UNIT-III

I/O multiplexing using sockets; Socket Options; UDP Sockets; UDP client server

example; Address lookup using sockets.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 2/65

2. Copying the data from the kernel to the process. This means copying the (ready) data from the

kernel's buffer into our application buffer

Blocking I/O Model

The most prevalent model for I/O is the blocking I/O model (which we have used for all our examples in

the previous sections). By default, all sockets are blocking. The scenario is shown in the figure below:

We use UDP for this example instead of TCP because with UDP, the concept of data being "ready" to

read is simple: either an entire datagram has been received or it has not. With TCP it gets more

complicated, as additional variables such as the socket's low-water mark come into play.

We also refer to recvfrom as a system call to differentiate between our application and the kernel,

regardless of how recvfrom is implemented (system call on BSD and function that

invokes getmsg system call on System V). There is normally a switch from running in the application to

running in the kernel, followed at some time later by a return to the application.

In the figure above, the process calls recvfrom and the system call does not return until the datagram

arrives and is copied into our application buffer, or an error occurs. The most common error is the

system call being interrupted by a signal. We say that the process is blocked the entire time from when it

https://notes.shichao.io/unp/figure_6.1.png
https://notes.shichao.io/unp/figure_6.1.png

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 3/65

calls recvfrom until it returns. When recvfrom returns successfully, our application processes the

datagram.

Nonblocking I/O Model

When a socket is set to be nonblocking, we are telling the kernel "when an I/O operation that I request

cannot be completed without putting the process to sleep, do not put the process to sleep, but return an

error instead". The figure is below:

 For the first three recvfrom, there is no data to return and the kernel immediately returns an error

of EWOULDBLOCK.

 For the fourth time we call recvfrom, a datagram is ready, it is copied into our application buffer,

and recvfrom returns successfully. We then process the data.

When an application sits in a loop calling recvfrom on a nonblocking descriptor like this, it is

called polling. The application is continually polling the kernel to see if some operation is ready. This is

often a waste of CPU time, but this model is occasionally encountered, normally on systems dedicated to

one function.

https://notes.shichao.io/unp/figure_6.2.png
https://notes.shichao.io/unp/figure_6.2.png

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 4/65

I/O Multiplexing Model

With I/O multiplexing, we call select or poll and block in one of these two system calls, instead of

blocking in the actual I/O system call. The figure is a summary of the I/O multiplexing model:

We block in a call to select, waiting for the datagram socket to be readable. When select returns that the

socket is readable, we then call recvfrom to copy the datagram into our application buffer.

Comparing to the blocking I/O model

 Disadvantage: using select requires two system calls (select and recvfrom) instead of one

 Advantage: we can wait for more than one descriptor to be ready

Multithreading with blocking I/O *

Another closely related I/O model is to use multithreading with blocking I/O. That model very closely

resembles the model described above, except that instead of using select to block on multiple file

descriptors, the program uses multiple threads (one per file descriptor), and each thread is then free to

call blocking system calls like recvfrom.

Signal-Driven I/O Model

The signal-driven I/O model uses signals, telling the kernel to notify us with the SIGIO signal when the

descriptor is ready. The figure is below:

https://notes.shichao.io/unp/figure_6.3.png
https://notes.shichao.io/unp/figure_6.3.png

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 5/65

 We first enable the socket for signal-driven I/O and install a signal handler using

the sigaction system call. The return from this system call is immediate and our process

continues; it is not blocked.

 When the datagram is ready to be read, the SIGIO signal is generated for our process. We can

either:

o read the datagram from the signal handler by calling recvfrom and then notify the main

loop that the data is ready to be processed

o notify the main loop and let it read the datagram.

The advantage to this model is that we are not blocked while waiting for the datagram to arrive. The

main loop can continue executing and just wait to be notified by the signal handler that either the data is

ready to process or the datagram is ready to be read.

Asynchronous I/O Model

Asynchronous I/O is defined by the POSIX specification, and various differences in the real-

time functions that appeared in the various standards which came together to form the current POSIX

specification have been reconciled.

https://notes.shichao.io/unp/figure_6.4.png
https://notes.shichao.io/unp/figure_6.4.png

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 6/65

These functions work by telling the kernel to start the operation and to notify us when the entire

operation (including the copy of the data from the kernel to our buffer) is complete. The main difference

between this model and the signal-driven I/O model is that with signal-driven I/O, the kernel tells us

when an I/O operation can be initiated, but with asynchronous I/O, the kernel tells us when an I/O

operation is complete. See the figure below for example:

 We call aio_read (the POSIX asynchronous I/O functions begin with aio_ or lio_) and pass the

kernel the following:

o descriptor, buffer pointer, buffer size (the same three arguments for read),

o file offset (similar to lseek),

o and how to notify us when the entire operation is complete.

This system call returns immediately and our process is not blocked while waiting for the I/O to

complete.

 We assume in this example that we ask the kernel to generate some signal when the operation is

complete. This signal is not generated until the data has been copied into our application buffer,

which is different from the signal-driven I/O model.

https://notes.shichao.io/unp/figure_6.5.png
https://notes.shichao.io/unp/figure_6.5.png

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 7/65

Comparison of the I/O Models

The figure below is a comparison of the five different I/O models.

The main difference between the first four models is the first phase, as the second phase in the first four

models is the same: the process is blocked in a call to recvfrom while the data is copied from the kernel

to the caller's buffer. Asynchronous I/O, however, handles both phases and is different from the first

four.

Synchronous I/O versus Asynchronous I/O

POSIX defines these two terms as follows:

 A synchronous I/O operation causes the requesting process to be blocked until that I/O operation

completes.

 An asynchronous I/O operation does not cause the requesting process to be blocked.

Using these definitions, the first four I/O models (blocking, nonblocking, I/O multiplexing, and signal-

driven I/O) are all synchronous because the actual I/O operation (recvfrom) blocks the process. Only the

asynchronous I/O model matches the asynchronous I/O definition.

https://notes.shichao.io/unp/figure_6.6.png
https://notes.shichao.io/unp/figure_6.6.png

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 8/65

select Function

The select function allows the process to instruct the kernel to either:

 Wait for any one of multiple events to occur and to wake up the process only when one or more

of these events occurs, or

 When a specified amount of time has passed.

This means that we tell the kernel what descriptors we are interested in (for reading, writing, or an

exception condition) and how long to wait. The descriptors in which we are interested are not restricted

to sockets; any descriptor can be tested using select.

#include <sys/select.h>

#include <sys/time.h>

int select(int maxfdp1, fd_set *readset, fd_set *writeset, fd_set *exceptset,

conststructtimeval *timeout);

/* Returns: positive count of ready descriptors, 0 on timeout, –1 on error */

The timeout argument *

The timeout argument tells the kernel how long to wait for one of the specified descriptors to become

ready. A timeval structure specifies the number of seconds and microseconds.

structtimeval {

longtv_sec; /* seconds */

longtv_usec; /* microseconds */

};

There are three possibilities for the timeout:

1. Wait forever (timeout is specified as a null pointer). Return only when one of the specified

descriptors is ready for I/O.

2. Wait up to a fixed amount of time (timeout points to a timeval structure). Return when one of

the specified descriptors is ready for I/O, but do not wait beyond the number of seconds and

microseconds specified in the timeval structure.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 9/65

3. Do not wait at all (timeout points to a timeval structure and the timer value is 0, i.e. the number

of seconds and microseconds specified by the structure are 0). Return immediately after checking

the descriptors. This is called polling.

Note:

 The wait in the first two scenarios is normally interrupted if the process catches a signal and

returns from the signal handler. For portability, we must be prepared for select to return an error

of EINTR if we are catching signals. Berkeley-derived kernels never automatically restart select.

 Although the timeval structure has a microsecond field tv_usec, the actual resolution supported

by the kernel is often more coarse. Many Unix kernels round the timeout value up to a multiple

of 10 ms. There is also a scheduling latency involved, meaning it takes some time after the timer

expires before the kernel schedules this process to run.

 On some systems, the timeval structure can represent values that are not supported by select; it

will fail with EINVAL if the tv_sec field in the timeout is over 100 million seconds.

 The const qualifier on the timeout argument means it is not modified by select on return.

str_cli Function

The problem with earlier version of the str_cli was that we could be blocked in the call to fgets when

something happened on the socket. We can now rewrite our str_cli function using select so that:

 The client process is notified as soon as the server process terminates.

 The client process blocks in a call to select waiting for either standard input or the socket to be

readable.

The figure below shows the various conditions that are handled by our call to select:

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 10/65

Three conditions are handled with the socket:

1. If the peer TCP sends data, the socket becomes readable and read returns greater than 0 (the

number of bytes of data).

2. If the peer TCP sends a FIN (the peer process terminates), the socket becomes readable and read

returns 0 (EOF).

3. If the peer TCP sends an RST (the peer host has crashed and rebooted), the socket becomes

readable, read returns –1, and errno contains the specific error code.

Below is the source code for this new version.

select/strcliselect01.c

#include "unp.h"

void

str_cli(FILE *fp, intsockfd)

{

int maxfdp1;

fd_setrset;

https://notes.shichao.io/unp/figure_6.8.png
https://github.com/shichao-an/unpv13e/blob/master/select/strcliselect01.c
https://notes.shichao.io/unp/figure_6.8.png

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 11/65

charsendline[MAXLINE], recvline[MAXLINE];

 FD_ZERO(&rset);

for (; ;) {

 FD_SET(fileno(fp), &rset);

 FD_SET(sockfd, &rset);

 maxfdp1 = max(fileno(fp), sockfd) + 1;

Select(maxfdp1, &rset, NULL, NULL, NULL);

if (FD_ISSET(sockfd, &rset)) { /* socket is readable */

if (Readline(sockfd, recvline, MAXLINE) == 0)

err_quit("str_cli: server terminated prematurely");

Fputs(recvline, stdout);

 }

if (FD_ISSET(fileno(fp), &rset)) { /* input is readable */

if (Fgets(sendline, MAXLINE, fp) == NULL)

return; /* all done */

Writen(sockfd, sendline, strlen(sendline));

 }

 }

}

This code does the following:

 Call select.

o We only need one descriptor set (rset) to check for readability. This set is initialized

by FD_ZERO and then two bits are turned on using FD_SET: the bit corresponding to

the standard I/O file pointer, fp, and the bit corresponding to the socket, sockfd. The

function fileno converts a standard I/O file pointer into its corresponding descriptor,

since select (and poll) work only with descriptors.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 12/65

o select is called after calculating the maximum of the two descriptors. In the call, the

write-set pointer and the exception-set pointer are both null pointers. The final argument

(the time limit) is also a null pointer since we want the call to block until something is

ready.

 Handle readable socket. On return from select, if the socket is readable, the echoed line is read

with readline and output by fputs.

 Handle readable input. If the standard input is readable, a line is read by fgets and written to

the socket using writen.

Instead of the function flow being driven by the call to fgets, it is now driven by the call to select

shutdown Function

The normal way to terminate a network connection is to call the close function. But, there are two

limitations with close that can be avoided with shutdown:

1. close decrements the descriptor's reference count and closes the socket only if the count reaches

0. With shutdown, we can initiate TCP's normal connection termination sequence (the four

segments beginning with a FIN in Figure, regardless of the reference count.

2. close terminates both directions of data transfer, reading and writing. Since a TCP connection is

full-duplex, there are times when we want to tell the other end that we have finished sending,

even though that end might have more data to send us. This is the scenario we encountered in the

previous section with batch input to our str_cli function. The figure below shows the typical

function calls in this scenario.

https://notes.shichao.io/unp/figure_2.5.png

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 13/65

#include <sys/socket.h>

int shutdown(intsockfd, inthowto);

/* Returns: 0 if OK, –1 on error */

The action of the function depends on the value of the howto argument:

 SHUT_RD: The read half of the connection is closed. No more data can be received on the

socket and any data currently in the socket receive buffer is discarded. The process can no longer

issue any of the read functions on the socket. Any data received after this call for a TCP socket is

acknowledged and then silently discarded.

 SHUT_WR: The write half of the connection is closed. In the case of TCP, this is called a half-

close. Any data currently in the socket send buffer will be sent, followed by TCP's normal

connection termination sequence. As we mentioned earlier, this closing of the write half is done

regardless of whether or not the socket descriptor's reference count is currently greater than 0.

The process can no longer issue any of the write functions on the socket.

 SHUT_RDWR: The read half and the write half of the connection are both closed. This is

equivalent to calling shutdowntwice: first with SHUT_RD and then with SHUT_WR.

https://notes.shichao.io/unp/figure_6.12.png
https://notes.shichao.io/unp/figure_6.12.png

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 14/65

The three SHUT_xxx names are defined by the POSIX specification. Typical values for the howto

argument that you will encounter will be 0 (close the read half), 1 (close the write half), and 2 (close the

read half and the write half)

pselect Function

The pselect function was invented by POSIX and is now supported by many of the Unix variants.

#include <sys/select.h>

#include <signal.h>

#include <time.h>

intpselect (int maxfdp1, fd_set *readset, fd_set *writeset, fd_set *exceptset,

conststructtimespec *timeout, constsigset_t *sigmask);

/* Returns: count of ready descriptors, 0 on timeout, –1 on error */

pselect contains two changes from the normal select function:

1. pselect uses the timespec structure (another POSIX invention) instead of the timeval structure.

The tv_nsec member of the newer structure specifies nanoseconds, whereas the tv_usec member

of the older structure specifies microseconds.

structtimespec {

time_ttv_sec; /* seconds */

 long tv_nsec; /* nanoseconds */

};

2. pselect adds a sixth argument: a pointer to a signal mask. This allows the program to disable the

delivery of certain signals, test some global variables that are set by the handlers for these now-

disabled signals, and then call pselect, telling it to reset the signal mask.

With regard to the second point, consider the following example. Our program's signal handler

for SIGINT just sets the global intr_flag and returns. If our process is blocked in a call to select, the

return from the signal handler causes the function to return with errno set to EINTR. But when select is

called, the code looks like the following:

if (intr_flag)

handle_intr(); /* handle the signal */

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 15/65

/* signals occurring in here are lost */

if ((nready = select(...)) < 0) {

if (errno == EINTR) {

if (intr_flag)

handle_intr();

 }

 ...

}

The problem is that between the test of intr_flag and the call to select, if the signal occurs, it will be lost

if select blocks forever.

With pselect, we can now code this example reliably as:

sigset_tnewmask, oldmask, zeromask;

sigemptyset(&zeromask);

sigemptyset(&newmask);

sigaddset(&newmask, SIGINT);

sigprocmask(SIG_BLOCK, &newmask, &oldmask); /* block SIGINT */

if (intr_flag)

handle_intr(); /* handle the signal */

if ((nready = pselect (... , &zeromask)) < 0) {

if (errno == EINTR) {

if (intr_flag)

handle_intr ();

 }

Before testing the intr_flag variable, we block SIGINT. When pselect is called, it replaces the signal

mask of the process with an empty set (i.e., zeromask) and then checks the descriptors, possibly going

to sleep. But when pselect returns, the signal mask of the process is reset to its value before pselect was

called (i.e., SIGINT is blocked).

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 16/65

poll Function

poll provides functionality that is similar to select, but poll provides additional information when dealing

with STREAMS devices.

#include <poll.h>

int poll (structpollfd *fdarray, unsigned long nfds, int timeout);

/* Returns: count of ready descriptors, 0 on timeout, –1 on error */

Arguments:

The first argument (fdarray) is a pointer to the first element of an array of structures. Each element is

a pollfd structure that specifies the conditions to be tested for a given descriptor, fd.

structpollfd {

intfd; /* descriptor to check */

short events; /* events of interest on fd */

shortrevents; /* events that occurred on fd */

};

The conditions to be tested are specified by the events member, and the function returns the status for

that descriptor in the corresponding revents member. This data structure (having two variables per

descriptor, one a value and one a result) avoids value-result arguments (the middle three arguments

for select are value-result). Each of these two members is composed of one or more bits that specify a

certain condition. The following figure shows the constants used to specify the events flag and to test

the revents flag against.

https://notes.shichao.io/unp/figure_6.23.png
https://notes.shichao.io/unp/figure_6.23.png

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 17/65

The first four constants deal with input, the next three deal with output, and the final three deal with

errors. The final three cannot be set in events, but are always returned in revents when the corresponding

condition exists.

With regard to TCP and UDP sockets, the following conditions cause poll to return the specified revent.

Unfortunately, POSIX leaves many holes (optional ways to return the same condition) in its definition

of poll.

 All regular TCP data and all UDP data is considered normal.

 TCP's out-of-band data is considered priority band.

 When the read half of a TCP connection is closed (e.g., a FIN is received), this is also considered

normal data and a subsequent read operation will return 0.

 The presence of an error for a TCP connection can be considered either normal data or an error

(POLLERR). In either case, a subsequent read will return –1 with errno set to the appropriate

value. This handles conditions such as the receipt of an RST or a timeout.

 The availability of a new connection on a listening socket can be considered either normal data

or priority data. Most implementations consider this normal data.

 The completion of a nonblocking connect is considered to make a socket writable.

The number of elements in the array of structures is specified by the nfds argument.

The timeout argument specifies how long the function is to wait before returning. A positive value

specifies the number of milliseconds to wait. The constant INFTIM (wait forever) is defined to be a

negative value.

Return values from poll:

 –1 if an error occurred

 0 if no descriptors are ready before the timer expires

 Otherwise, it is the number of descriptors that have a nonzero revents member.

If we are no longer interested in a particular descriptor, we just set the fd member of the pollfd structure

to a negative value. Then the events member is ignored and the revents member is set to 0 on return.

TCP Echo Server (Revisited)

We now rewrite the TCP echo server as a single process that uses select to handle any number of clients,

instead of forking one child per client.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 18/65

Before first client has established a connection *

Before the first client has established a connection, the server has a single listening descriptor.

 The server maintains only a read descriptor set (rset), shown in the following figure. Assuming

the server is started in the foreground, descriptors 0, 1, and 2 are set to standard input, output,

and error, so the first available descriptor for the listening socket is 3.

 We also show an array of integers named client that contains the connected socket descriptor for

each client. All elements in this array are initialized to –1.

The only nonzero entry in the descriptor set is the entry for the listening sockets and the first argument

to select will be 4.

After first client establishes connection *

When the first client establishes a connection with our server, the listening descriptor becomes readable

and our server calls accept. The new connected descriptor returned by accept will be 4. The following

figure shows this connection:

The server must remember the new connected socket in its client array, and the connected socket must

be added to the descriptor set. The updated data structures are shown in the figure below:

https://notes.shichao.io/unp/figure_6.15.png
https://notes.shichao.io/unp/figure_6.16.png
https://notes.shichao.io/unp/figure_6.15.png
https://notes.shichao.io/unp/figure_6.16.png
https://notes.shichao.io/unp/figure_6.15.png
https://notes.shichao.io/unp/figure_6.16.png

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 19/65

After second client connection is established *

Sometime later a second client establishes a connection and we have the scenario shown below:

The new connected socket (which we assume is 5) must be remembered, giving the data structures

shown below:

After first client terminates its connection *

Next, we assume the first client terminates its connection. The client TCP sends a FIN, which makes

descriptor 4 in the server readable. When our server reads this connected socket, read returns 0. We then

close this socket and update our data structures accordingly. The value of client[0] is set to –1 and

descriptor 4 in the descriptor set is set to 0. This is shown in the figure below. Notice that the value

of maxfd does not change.

https://notes.shichao.io/unp/figure_6.17.png
https://notes.shichao.io/unp/figure_6.18.png
https://notes.shichao.io/unp/figure_6.19.png
https://notes.shichao.io/unp/figure_6.17.png
https://notes.shichao.io/unp/figure_6.18.png
https://notes.shichao.io/unp/figure_6.19.png
https://notes.shichao.io/unp/figure_6.17.png
https://notes.shichao.io/unp/figure_6.18.png
https://notes.shichao.io/unp/figure_6.19.png
https://notes.shichao.io/unp/figure_6.17.png
https://notes.shichao.io/unp/figure_6.18.png
https://notes.shichao.io/unp/figure_6.19.png

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 20/65

Summary of TCP echo server (revisited) *

 As clients arrive, we record their connected socket descriptor in the first available entry in the

client array (the first entry with a value of –1) and also add the connected socket to the read

descriptor set.

 The variable maxi is the highest index in the client array that is currently in use and the

variable maxfd (plus one) is the current value of the first argument to select.

 The only limit on the number of clients that this server can handle is the minimum of the two

values FD_SETSIZE and the maximum number of descriptors allowed for this process by the

kernel

Socket Options

There are various ways to get and set the options that affect a socket:

 The getsockopt and setsockopt functions.

 The fcntl function, which is the POSIX way to set a socket for nonblocking I/O, signal-driven

I/O, and to set the owner of a socket.

 The ioctl function.

getsockopt and setsockopt Functions

These two functions apply only to sockets:

#include <sys/socket.h>

intgetsockopt(intsockfd, int level, intoptname, void *optval, socklen_t *optlen);

intsetsockopt(intsockfd, int level, intoptname, const void *optvalsocklen_toptlen);

/* Both return: 0 if OK,–1 on error */

Arguments:

https://notes.shichao.io/unp/figure_6.20.png
https://notes.shichao.io/unp/figure_6.20.png

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 21/65

 sockfd must refer to an open socket descriptor.

 level specifies the code in the system that interprets the option: the general socket code or some

protocol-specific code (e.g., IPv4, IPv6, TCP, or SCTP).

 optval is a pointer to a variable from which the new value of the option is fetched by setsockopt,

or into which the current value of the option is stored by getsockopt. The size of this variable is

specified by the final argument optlen, as a value for setsockopt and as a value-result

for getsockopt.

Socket States

The following socket options are inherited by a connected TCP socket from the listening socket:

 SO_DEBUG

 SO_DONTROUTE

 SO_KEEPALIVE

 SO_LINGER

 SO_OOBINLINE

 SO_RCVBUF

 SO_RCVLOWAT

 SO_SNDBUF

 SO_SNDLOWAT

 TCP_MAXSEG

 TCP_NODELAY

Generic Socket Options

Generic socket options are protocol-independent (they are handled by the protocol-independent code

within the kernel, not by one particular protocol module such as IPv4), but some of the options apply to

only certain types of sockets. For example, even though the SO_BROADCAST socket option is called

"generic," it applies only to datagram sockets.

IPv4 Socket Options

SO_BROADCAST Socket Option

This option enables or disables the ability of the process to send broadcast messages. Broadcasting is

supported for only datagram sockets and only on networks that support the concept of a broadcast

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 22/65

message (e.g., Ethernet, token ring, etc.). You cannot broadcast on a point-to-point link or any

connection-based transport protocol such as SCTP or TCP.

Since an application must set this socket option before sending a broadcast datagram, it prevents a

process from sending a broadcast when the application was never designed to broadcast. For example, a

UDP application might take the destination IP address as a command-line argument, but the application

never intended for a user to type in a broadcast address. Rather than forcing the application to try to

determine if a given address is a broadcast address or not, the test is in the kernel: If the destination

address is a broadcast address and this socket option is not set, EACCES is returned.

SO_DEBUG Socket Option

This option is supported only by TCP. When enabled for a TCP socket, the kernel keeps track of

detailed information about all the packets sent or received by TCP for the socket. These are kept in

a circular buffer within the kernel that can be examined with the trpt program.

SO_DONTROUTE Socket Option

This option specifies that outgoing packets are to bypass the normal routing mechanisms of the

underlying protocol. The destination must be on a directly-connected network, and messages are

directed to the appropriate network interface according to the destination address. For example, with

IPv4, the packet is directed to the appropriate local interface, as specified by the network and subnet

portions of the destination address. If the local interface cannot be determined from the destination

address (e.g., the destination is not on the other end of a point-to-point link, or is not on a shared

network), ENETUNREACH is returned.

The equivalent of this option can also be applied to individual datagrams using

the MSG_DONTROUTE flag with the send, sendto, or sendmsg functions.

This option is often used by routing daemons (e.g., routed and gated) to bypass the routing table and

force a packet to be sent out a particular interface.

SO_ERROR Socket Option

This option is one that can be fetched but cannot be set.

When an error occurs on a socket, the protocol module in a Berkeley-derived kernel sets a variable

named so_error for that socket to one of the standard Unix Exxx values. This is called the pending

error for the socket. The process can be immediately notified of the error in one of two ways:

https://en.wikipedia.org/wiki/Circular_buffer

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 23/65

1. If the process is blocked in a call to select on the socket, for either readability or

writability, select returns with either or both conditions set.

2. If the process is using signal-driven I/O, the SIGIO signal is generated for either the process or

the process group.

The process can then obtain the value of so_error by fetching the SO_ERROR socket option. The

integer value returned by getsockopt is the pending error for the socket. The value of so_error is then

reset to 0 by the kernel.

 If so_error is nonzero when the process calls read and there is no data to return, read returns –1

with errno set to the value of so_error. The value of so_error is then reset to 0. If there is data

queued for the socket, that data is returned by read instead of the error condition.

 If so_error is nonzero when the process calls write, –1 is returned with errno set to the value

of so_error and so_error is reset to 0.

SO_KEEPALIVE Socket Option

When the keep-alive option is set for a TCP socket and no data has been exchanged across the socket in

either direction for two hours, TCP automatically sends a keep-alive probe to the peer. This probe is a

TCP segment to which the peer must respond. One of three scenarios results:

1. The peer responds with the expected ACK. The application is not notified (since everything is

okay). TCP will send another probe following another two hours of inactivity.

2. The peer responds with an RST, which tells the local TCP that the peer host has crashed and

rebooted. The socket's pending error is set to ECONNRESET and the socket is closed.

3. There is no response from the peer to the keep-alive probe. Berkeley-derived TCPs send 8

additional probes, 75 seconds apart, trying to elicit a response. TCP will give up if there is no

response within 11 minutes and 15 seconds after sending the first probe.

No response and errors *

 If there is no response at all to TCP's keep-alive probes, the socket's pending error is set

to ETIMEDOUT and the socket is closed.

 If the socket receives an ICMP error in response to one of the keep-alive probes, the

corresponding error is returned instead, and the socket is still closed.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 24/65

o A common ICMP error in this scenario is "host unreachable", where the pending error is

set to EHOSTUNREACH. This can occur because of either of the following:

 Network failure.

 The remote host has crashed and the last-hop router has detected the crash.

ICMPv6 Socket Option

This socket option is processed by ICMPv6 and has a level of IPPROTO_ICMPV6. ICMP6_FILTER

Socket Option This option lets us fetch and set an icmp6_filter structure that specifies which of the 256

possible ICMPv6 message types will be passed to the process on a raw socket

IPv6 Socket Options

These socket options are processed by IPv6 and have a level of IPPROTO_IPV6. We note that many of

these options make use of ancillary data with the recvmsg function.

IPV6_CHECKSUM Socket Option

This socket option specifies the byte offset into the user data where the checksum field is located. If this

value is non-negative, the kernel will: (i) compute and store a checksum for all outgoing packets, and (ii)

verify the received checksum on input, discarding packets with an invalid checksum. This option affects

all IPv6 raw sockets, except ICMPv6 raw sockets. (The kernel always calculates and stores the

checksum for ICMPv6 raw sockets.) If a value of -1 is specified (the default), the kernel will not

calculate and store the checksum for outgoing packets on this raw socket and will not verify the

checksum for received packets.

All protocols that use IPv6 should have a checksum in their own protocol header. These checksums

include a pseudoheader that includes the source IPv6 address as part of the checksum (which differs

from all the other protocols that are normally implemented using a raw socket with IPv4). Rather than

forcing the application using the raw socket to perform source address selection, the kernel will do this

and then calculate and store the checksum incorporating the standard IPv6 pseudoheader.

IPV6_DONTFRAG Socket Option

Setting this option disables the automatic insertion of a fragment header for UDP and raw sockets. When

this option is set, output packets larger than the MTU of the outgoing interface will be dropped. No error

needs to be returned from the system call that sends the packet, since the packet might exceed the path

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 25/65

MTU en-route. Instead, the application should enable the IPV6_RECVPATHMTU option to learn about

path MTU changes.

IPV6_NEXTHOP Socket Option

This option specifies the next-hop address for a datagram as a socket address structure, and is a

privileged operation.

IPV6_PATHMTU Socket Option

This option cannot be set, only retrieved. When this option is retrieved, the current MTU as determined

by path-MTU discovery is returned.

IPV6_RECVDSTOPTS Socket Option

Setting this option specifies that any received IPv6 destination options are to be returned as ancillary

data by recvmsg. This option defaults to OFF.

IPV6_RECVHOPLIMIT Socket Option

Setting this option specifies that the received hop limit field is to be returned as ancillary data

by recvmsg. This option defaults to OFF.

There is no way with IPv4 to obtain the received TTL field.

IPV6_RECVHOPOPTS Socket Option

Setting this option specifies that any received IPv6 hop-by-hop options are to be returned as ancillary

data by recvmsg. This option defaults to OFF.

IPV6_RECVPATHMTU Socket Option

Setting this option specifies that the path MTU of a path is to be returned as ancillary data

by recvmsg (without any accompanying data) when it changes.

IPV6_RECVPKTINFO Socket Option

Setting this option specifies that the following two pieces of information about a received IPv6 datagram

are to be returned as ancillary data by recvmsg: the destination IPv6 address and the arriving interface

index.

IPV6_RECVRTHDR Socket Option

Setting this option specifies that a received IPv6 routing header is to be returned as ancillary data

by recvmsg. This option defaults to OFF.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 26/65

IPV6_RECVTCLASS Socket Option

Setting this option specifies that the received traffic class (containing the DSCP and ECN fields) is to be

returned as ancillary data by recvmsg. This option defaults to OFF.

IPV6_UNICAST_HOPS Socket Option

This IPv6 option is similar to the IPv4 IP_TTL socket option. Setting the socket option specifies the

default hop limit for outgoing datagrams sent on the socket, while fetching the socket option returns the

value for the hop limit that the kernel will use for the socket. The actual hop limit field from a received

IPv6 datagram is obtained by using the IPV6_RECVHOPLIMIT socket option.

IPV6_USE_MIN_MTU Socket Option

Setting this option to 1 specifies that path MTU discovery is not to be performed and that packets are

sent using the minimum IPv6 MTU to avoid fragmentation. Setting it to 0 causes path MTU discovery to

occur for all destinations. Setting it to–1 specifies that path MTU discovery is performed for unicast

destinations but the minimum MTU is used when sending to multicast destinations. This option defaults

to –1.

IPV6_V6ONLY Socket Option

Setting this option on an AF_INET6 socket restricts it to IPv6 communication only. This option defaults

to OFF, although some systems have an option to turn it ON by default.

IPV6_XXX Socket Options

Most of the IPv6 options for header modification assume a UDP socket with information being passed

between the kernel and the application using ancillary data with recvmsg and sendmsg. A TCP socket

fetches and stores these values using getsockopt and setsockopt instead. The socket option is the same as

the type of the ancillary data, and the buffer contains the same information as would be present in the

ancillary data.

TCP Socket Options

There are two socket options for TCP. We specify the level as IPPROTO_TCP.

TCP_MAXSEG Socket Option

This socket option allows us to fetch or set the MSS for a TCP connection. The value returned is the

maximum amount of data that our TCP will send to the other end; often, it is the MSS announced by the

other end with its SYN, unless our TCP chooses to use a smaller value than the peer's announced MSS.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 27/65

If this value is fetched before the socket is connected, the value returned is the default value that will be

used if an MSS option is not received from the other end. Also be aware that a value smaller than the

returned value can actually be used for the connection if the timestamp option, for example, is in use,

because this option occupies 12 bytes of TCP options in each segment.

The maximum amount of data that our TCP will send per segment can also change during the life of a

connection if TCP supports path MTU discovery. If the route to the peer changes, this value can go up

or down.

TCP_NODELAY Socket Option

If set, this option disables TCP's Nagle algorithm .By default, this algorithm is enabled.

The purpose of the Nagle algorithm is to reduce the number of small packets on a WAN. The algorithm

states that if a given connection has outstanding data (i.e., data that our TCP has sent, and for which it is

currently awaiting an acknowledgment), then no small packets will be sent on the connection in

response to a user write operation until the existing data is acknowledged. The definition of a "small"

packet is any packet smaller than the MSS. TCP will always send a full-sized packet if possible; the

purpose of the Nagle algorithm is to prevent a connection from having multiple small packets

outstanding at any time.

The two common generators of small packets are the Rlogin and Telnet clients, since they normally send

each keystroke as a separate packet. On a fast LAN, we normally do not notice the Nagle algorithm with

these clients, because the time required for a small packet to be acknowledged is typically a few

milliseconds—far less than the time between two successive characters that we type. But on a WAN,

where it can take a second for a small packet to be acknowledged, we can notice a delay in the character

echoing, and this delay is often exaggerated by the Nagle algorithm.

Consider the following example: We type the six-character string "hello!" to either an Rlogin or Telnet

client, with exactly 250 ms between each character. The RTT to the server is 600 ms and the server

immediately sends back the echo of each character. We assume the ACK of the client's character is sent

back to the client along with the character echo and we ignore the ACKs that the client sends for the

server's echo. Assuming the Nagle algorithm is disabled, we have the 12 packets shown in Figure .

http://www.masterraghu.com/subjects/np/introduction/unix_network_programming_v1.3/ch07lev1sec9.html#ch07fig14

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 28/65

Figure. Six characters echoed by server with Nagle algorithm disabled.

Each character is sent in a packet by itself: the data segments from left to right, and the ACKs from right

to left.

If the Nagle algorithm is enabled (the default), we have the eight packets shown in Figure . The first

character is sent as a packet by itself, but the next two characters are not sent, since the connection has a

small packet outstanding. At time 600, when the ACK of the first packet is received, along with the echo

of the first character, these two characters are sent. Until this packet is ACKed at time 1200, no more

small packets are sent.

http://www.masterraghu.com/subjects/np/introduction/unix_network_programming_v1.3/ch07lev1sec9.html#ch07fig15

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 29/65

Figure . Six characters echoed by server with Nagle algorithm enabled.

The Nagle algorithm often interacts with another TCP algorithm: the delayed ACK algorithm. This

algorithm causes TCP to not send an ACK immediately when it receives data; instead, TCP will wait

some small amount of time (typically 50–200 ms) and only then send the ACK. The hope is that in this

small amount of time, there will be data to send back to the peer, and the ACK can piggyback with the

data, saving one TCP segment. This is normally the case with the Rlogin and Telnet clients, because the

servers typically echo each character sent by the client, so the ACK of the client's character piggybacks

with the server's echo of that character.

The problem is with other clients whose servers do not generate traffic in the reverse direction on which

ACKs can piggyback. These clients can detect noticeable delays because the client TCP will not send

any data to the server until the server's delayed ACK timer expires. These clients need a way to disable

the Nagle algorithm, hence the TCP_NODELAY option.

Another type of client that interacts badly with the Nagle algorithm and TCP's delayed ACKs is a client

that sends a single logical request to its server in small pieces. For example, assume a client sends a 400-

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 30/65

byte request to its server, but this is a 4-byte request type followed by 396 bytes of request data. If the

client performs a 4-byte write followed by a 396-byte write, the second write will not be sent by the

client TCP until the server TCP acknowledges the 4-byte write. Also, since the server application cannot

operate on the 4 bytes of data until it receives the remaining 396 bytes of data, the server TCP will delay

the ACK of the 4 bytes of data (i.e., there will not be any data from the server to the client on which to

piggyback the ACK). There are three ways to fix this type of client:

1. Use writev instead of two calls to write. A single call to writev ends up with one call to TCP

output instead of two calls, resulting in one TCP segment for our example. This is the preferred

solution.

2. Copy the 4 bytes of data and the 396 bytes of data into a single buffer and call write once for this

buffer.

3. Set the TCP_NODELAY socket option and continue to call write two times. This is the least

desirable solution, and is harmful to the network, so it generally should not even be considered.

SCTP Socket Options

The relatively large number of socket options for SCTP reflects the finer grain of control SCTP provides

to the application developer. We specify the level as IPPROTO_SCTP.

Several options used to get information about SCTP require that data be passed into the kernel (e.g.,

association ID and/or peer address). While some implementations of getsockopt support passing data

both into and out of the kernel, not all do. The SCTP API defines a sctp_opt_infofunction that hides this

difference. On systems on which getsockopt does support this, it is simply a wrapper around getsockopt.

Otherwise, it performs the required action, perhaps using a custom ioctl or a new system call. We

recommend always using sctp_opt_info when retrieving these options for maximum portability. These

options are marked with a dagger () in Figure 7.2 and include SCTP_ASSOCINFO,

SCTP_GET_PEER_ADDR_INFO, SCTP_PEER_ADDR_PARAMS, SCTP_PRIMARY_ADDR ,

SCTP_RTOINFO, and SCTP_STATUS

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 31/65

SCTP_ADAPTION_LAYER Socket Option

During association initialization, either endpoint may specify an adaption layer indication. This

indication is a 32-bit unsigned integer that can be used by the two applications to coordinate any local

application adaption layer. This option allows the caller to fetch or set the adaption layer indication that

this endpoint will provide to peers. When fetching this value, the caller will only retrieve the value the

local socket will provide to all future peers. To retrieve the peer's adaption layer indication, an

application must subscribe to adaption layer events.

 SCTP_ASSOCINFO Socket Option

 The SCTP_ASSOCINFO socket option can be used for three purposes: (i) to retrieve information about

an existing association, (ii) to change the parameters of an existing association, and/or (iii) to set defaults

for future associations. When retrieving information about an existing association, the sctp_opt_info

function should be used instead of getsockopt. This option takes as input the sctp_assocparams structure.

SCTP_AUTOCLOSE Socket Option

This option allows us to fetch or set the autoclose time for an SCTP endpoint. The autoclose time is the

number of seconds an SCTP association will remain open when idle. Idle is defined by the SCTP stack

as neither endpoint sending or receiving user data. The default is for the autoclose function to be

disabled.

SCTP_DEFAULT_SEND_PARAM Socket Option

SCTP has many optional send parameters that are often passed as ancillary data or used with the

sctp_sendmsg function call (which is often implemented as a library call that passes ancillary data for

the user). An application that wishes to send a large number of messages, all with the same parameters,

can use this option to set up the default parameters and thus avoid using ancillary data or the

sctp_sendmsg call. This option takes as input the sctp_sndrcvinfo structure.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 32/65

SCTP_DISABLE_FRAGMENTS Socket Option

SCTP normally fragments any user message that does not fit in a single SCTP packet into multiple

DATA chunks. Setting this option disables this behavior on the sender. When disabled by this option,

SCTP will return the error EMSGSIZE and not send the message. The default behavior is for this option

to be disabled; SCTP will normally fragment user messages. This option may be used by applications

that wish to control message sizes, ensuring that every user application message will fit in a single IP

packet. An application that enables this option must be prepared to handle the error case (i.e., its

message was too big) by either providing application-layer fragmentation of the message or a smaller

message.

SCTP_EVENTS Socket Option

 This socket option allows a caller to fetch, enable, or disable various SCTP notifications. An SCTP

notification is a message that the SCTP stack will send to the application. The message is read as normal

data, with the msg_flags field of the recvmsg function being set to MSG_NOTIFICATION. An

application that is not prepared to use either recvmsg or sctp_recvmsg should not enable events. Eight

different types of events can be subscribed to by using this option and passing ansctp_event_subscribe

structure. Any value of 0 represents a non-subscription and a value of 1 represents a subscription.

SCTP_GET_PEER_ADDR_INFO Socket Option

This option retrieves information about a peer address, including the congestion window, smoothed RTT

and MTU. This option may only be used to retrieve information about a specific peer address. The caller

provides a sctp_paddrinfo structure with the spinfo_address field filled in with the peer address of

interest, and should use sctp_opt_info instead of getsockopt for maximum portability

SCTP_INITMSG Socket Option

This option can be used to get or set the default initial parameters used on an SCTP socket when sending

out the INIT message.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 33/65

SCTP_MAXBURST Socket Option

This socket option allows the application to fetch or set the maximum burst size used when sending

packets. When an SCTP implementation sends data to a peer, no more than SCTP_MAXBURST

packets are sent at once to avoid flooding the network with packets. An implementation may apply this

limit by either: (i) reducing its congestion window to the current flight size plus the maximum burst size

times the path MTU, or (ii) using this value as a separate micro-control, sending at most maximum burst

packets at any single send opportunity.

 SCTP_MAXSEG Socket Option

This socket option allows the application to fetch or set the maximum fragment size used during SCTP

fragmentation. This option is similar to the TCP option TCP_MAXSEG

SCTP_NODELAY Socket Option

If set, this option disables SCTP's Nagle algorithm. This option is OFF by default (i.e., the Nagle

algorithm is ON by default). SCTP's Nagle algorithm works identically to TCP's except that it is trying

to coalesce multiple DATA chunks as opposed to simply coalescing bytes on a stream. For a further

discussion of the Nagle algorithm, see TCP_MAXSEG.

SCTP_PEER_ADDR_PARAMS Socket Option

This socket option allows an application to fetch or set various parameters on an association. The caller

provides the sctp_paddrparams structure, filling in the association identification.

SCTP_PRIMARY_ADDR Socket Option

This socket option fetches or sets the address that the local endpoint is using as primary. The primary

address is used, by default, as the destination address for all messages sent to a peer. To set this value,

the caller fills in the association identification and the peer's address that should be used as the primary

address. The caller passes this information in a sctp_setprim structure, which is defined as:

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 34/65

structsctp_setprim

{ sctp_assoc_tssp_assoc_id;

structsockaddr_storagessp_addr;

};

SCTP_RTOINFO Socket Option

 This socket option can be used to fetch or set various RTO information on a specific association or the

default values used by this endpoint. When fetching, the caller should use sctp_opt_info instead of

getsockopt for maximum portability. The caller provides a sctp_rtoinfo structure of the following form:

structsctp_rtoinfo {

sctp_assocsrto_assoc_id;

 uint32_t srto_initial;

uint32_t srto_max;

uint32_t srto_min; };

SCTP_SET_PEER_PRIMARY_ADDR Socket Option

Setting this option causes a message to be sent that requests that the peer set the specified local address

as its primary address. The caller provides ansctp_setpeerprim structure and must fill in both the

association identification and a local address to request the peer mark as its primary. The address

provided must be one of the local endpoint's bound addresses. The sctp_setpeerprim structure is defined

as follows:

structsctp_setpeerprim {

sctp_assoc_tsspp_assoc_id;

structsockaddr_storagesspp_addr; };

SCTP_STATUS Socket Option

This socket option will retrieve the current state of an SCTP association. The caller should use

sctp_opt_info instead of getaddrinfo for maximum portability. The caller provides ansctp_status

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 35/65

structure, filling in the association identification field, sstat_assoc_id. The structure will be returned

filled in with the information pertaining to the requested association. The sctp_status structure has the

following format:

structsctp_status {

sctp_assoc_tsstat_assoc_id;

int32_t sstat_state;

u_int32_t sstat_rwnd;

 u_int16_t sstat_unackdata;

 u_int16_t sstat_penddata;

 u_int16_t sstat_instrms;

 u_int16_t sstat_outstrms;

u_int32_t sstat_fragmentation_point;

structsctp_paddrinfosstat_primary; };

UDP Sockets

There are some fundamental differences between applications written using TCP versus those that use

UDP. These are because of the differences in the two transport layers: UDP is a connectionless,

unreliable, datagram protocol, quite unlike the connection-oriented, reliable byte stream provided by

TCP. Figure shows the function calls for a typical UDP client/server.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 36/65

recvfrom and sendto Functions

These two functions are similar to the standard read and write functions, but three additional arguments

are required.

#include <sys/socket.h>

ssize_trecvfrom(int sockfd, void *buff, size_t nbytes, int flags, structsockaddr

*from, socklen_t *addrlen);

ssize_tsendto(int sockfd, const void

*buff, size_t nbytes, int flags, conststructsockaddr *to, socklen_t addrlen);

Both return: number of bytes read or written if OK, –1 on error

The first three arguments, sockfd, buff, and nbytes, are identical to the first three arguments

for read and write: descriptor, pointer to buffer to read into or write from, and number of bytes to read or

write.

The to argument for sendto is a socket address structure containing the protocol address (e.g., IP address

and port number) of where the data is to be sent. The size of this socket address structure is specified

by addrlen. The recvfrom function fills in the socket address structure pointed to by from with the

protocol address of who sent the datagram. The number of bytes stored in this socket address structure is

also returned to the caller in the integer pointed to by addrlen. Note that the final argument to sendto is

an integer value, while the final argument to recvfrom is a pointer to an integer value (a value-result

argument).

The final two arguments to recvfrom are similar to the final two arguments to accept: The contents of

the socket address structure upon return tell us who sent the datagram (in the case of UDP) or who

initiated the connection (in the case of TCP). The final two arguments to sendto are similar to the final

two arguments to connect: We fill in the socket address structure with the protocol address of where to

send the datagram (in the case of UDP) or with whom to establish a connection (in the case of TCP).

Both functions return the length of the data that was read or written as the value of the function. In the

typical use of recvfrom, with a datagram protocol, the return value is the amount of user data in the

datagram received.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 37/65

Writing a datagram of length 0 is acceptable. In the case of UDP, this results in an IP datagram

containing an IP header (normally 20 bytes for IPv4 and 40 bytes for IPv6), an 8-byte UDP header, and

no data. This also means that a return value of 0 from recvfrom is acceptable for a datagram protocol: It

does not mean that the peer has closed the connection, as does a return value of 0 from read on a TCP

socket. Since UDP is connectionless, there is no such thing as closing a UDP connection.

If the from argument to recvfrom is a null pointer, then the corresponding length argument (addrlen)

must also be a null pointer, and this indicates that we are not interested in knowing the protocol address

of who sent us data.

Both recvfrom and sendto can be used with TCP, although there is normally no reason to do so.

UDP Echo Server: main Function

We will now redo our simple echo client/server using UDP. Figure shows the server main function.

Figure.Simple echo client/server using UDP

udpcliserv/udpserv01.c

1 #include "unp.h"

 2 int

 3 main(intargc, char **argv)

 4 {

 5 intsockfd;

 6 structsockaddr_inservaddr, cliaddr;

 7 sockfd = Socket(AF_INET, SOCK_DGRAM, 0);

 8 bzero(&servaddr, sizeof(servaddr));

 9 servaddr.sin_family = AF_INET;

10 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);

11 servaddr.sin_port = htons(SERV_PORT);

12 Bind(sockfd, (SA *) &servaddr, sizeof(servaddr));

http://www.masterraghu.com/subjects/np/introduction/unix_network_programming_v1.3/ch08lev1sec3.html#ch08fig03

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 38/65

13 dg_echo(sockfd, (SA *) &cliaddr, sizeof(cliaddr));

14 }

Create UDP socket, bind server's well-known port

We create a UDP socket by specifying the second argument to socket as SOCK_DGRAM (a datagram

socket in the IPv4 protocol). As with the TCP server example, the IPv4 address for the bind is specified

as INADDR_ANY and the server's well-known port is the constant SERV_PORT from

the unp.h header.

The function dg_echo is called to perform server processing.

UDP Echo Server: dg_echo Function

lib/dg_echo.c

 1 #include "unp.h"

 2 void

 3 dg_echo(intsockfd, SA *pcliaddr, socklen_tclilen)

 4 {

 5 int n;

 6 socklen_tlen;

 7 char mesg[MAXLINE];

 8 for (; ;) {

 9 len = clilen;

10 n = Recvfrom(sockfd, mesg, MAXLINE, 0, pcliaddr, &len);

11 Sendto(sockfd, mesg, n, 0, pcliaddr, len);

12 }

13 }

Read datagram, echo back to sender

8–12 This function is a simple loop that reads the next datagram arriving at the server's port

using recvfrom and sends it back using sendto.

Despite the simplicity of this function, there are numerous details to consider. First, this function never

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 39/65

terminates. Since UDP is a connectionless protocol, there is nothing like an EOF as we have with TCP.

Next, this function provides an iterative server, not a concurrent server as we had with TCP. There is no

call to fork, so a single server process handles any and all clients. In general, most TCP servers are

concurrent and most UDP servers are iterative.

There is implied queuing taking place in the UDP layer for this socket. Indeed, each UDP socket has a

receive buffer and each datagram that arrives for this socket is placed in that socket receive buffer.

When the process calls recvfrom, the next datagram from the buffer is returned to the process in a first-

in, first-out (FIFO) order. This way, if multiple datagrams arrive for the socket before the process can

read what's already queued for the socket, the arriving datagrams are just added to the socket receive

buffer. But, this buffer has a limited size.

Figure: Summary of TCP client/server with two clients.

There are two connected sockets and each of the two connected sockets on the server host has its own

socket receive buffer.

.

Figure: Summary of UDP client/server with two clients

There is only one server process and it has a single socket on which it receives all arriving datagrams

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 40/65

and sends all responses. That socket has a receive buffer into which all arriving datagrams are placed.

The main function in Figure is protocol-dependent (it creates a socket of protocol AF_INET and

allocates and initializes an IPv4 socket address structure), but the dg_echo function is protocol-

independent. The reason dg_echo is protocol-independent is because the caller (the main function in

our case) must allocate a socket address structure of the correct size, and a pointer to this structure,

along with its size, are passed as arguments to dg_echo. The function dg_echo never looks inside this

protocol-dependent structure: It simply passes a pointer to the structure

to recvfrom and sendto. recvfrom fills this structure with the IP address and port number of the client,

and since the same pointer (pcliaddr) is then passed to sendto as the destination address, this is how the

datagram is echoed back to the client that sent the datagram.

UDP Echo Client: main Function

The UDP client main function is shown

udpcliserv/udpcli01.c

 1 #include "unp.h"

 2 int

 3 main(intargc, char **argv)

 4 {

 5 intsockfd;

 6 structsockaddr_inservaddr;

 7 if(argc != 2)

 8 err_quit("usage: udpcli<IPaddress>");

 9 bzero(&servaddr, sizeof(servaddr));

10 servaddr.sin_family = AF_INET;

11 servaddr.sin_port = htons(SERV_PORT);

12 Inet_pton(AF_INET, argv[1], &servaddr.sin_addr);

13 sockfd = Socket(AF_INET, SOCK_DGRAM, 0);

14 dg_cli(stdin, sockfd, (SA *) &servaddr, sizeof(servaddr));

15 exit(0);

http://www.masterraghu.com/subjects/np/introduction/unix_network_programming_v1.3/ch08lev1sec3.html#ch08fig03

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 41/65

16 }

Fill in socket address structure with server's address

9–12 An IPv4 socket address structure is filled in with the IP address and port number of the server. This

structure will be passed to dg_cli, specifying where to send datagrams.

13–14 A UDP socket is created and the function dg_cli is called.

UDP Echo Client: dg_cli Function

lib/dg_cli.c

 1 #include "unp.h"

 2 void

 3 dg_cli(FILE *fp, intsockfd, const SA *pservaddr, socklen_tservlen)

 4 {

 5 int n;

 6 char sendline[MAXLINE], recvline[MAXLINE + 1];

 7 while (Fgets(sendline, MAXLINE, fp) != NULL) {

 8 Sendto(sockfd, sendline, strlen(sendline), 0, pservaddr, servlen);

 9 n = Recvfrom(sockfd, recvline, MAXLINE, 0, NULL, NULL);

10 recvline[n] = 0; /* null terminate */

11 Fputs(recvline, stdout);

12 }

13 }

7–12 There are four steps in the client processing loop: read a line from standard input using fgets, send

the line to the server using sendto, read back the server's echo using recvfrom, and print the echoed line

to standard output using fputs.

Our client has not asked the kernel to assign an ephemeral port to its socket. (With a TCP client, we said

the call to connect is where this takes place.) With a UDP socket, the first time the process calls sendto,

if the socket has not yet had a local port bound to it, that is when an ephemeral port is chosen by the

kernel for the socket. As with TCP, the client can call bind explicitly, but this is rarely done.

Notice that the call to recvfrom specifies a null pointer as the fifth and sixth arguments. This tells the

kernel that we are not interested in knowing who sent the reply. There is a risk that any process, on

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 42/65

either the same host or some other host, can send a datagram to the client's IP address and port, and that

datagram will be read by the client, who will think it is the server's reply. As with the server

function dg_echo, the client function dg_cli is protocol-independent, but the client main function is

protocol-dependent. The main function allocates and initializes a socket address structure of some

protocol type and then passes a pointer to this structure, along with its size, to dg_cli.

POSSIBLE QUESTIONS

SECTION B – 2 Marks

1. List the steps involved in client server communication using UDP socket

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: III –I/O Multiplexing using Sockets BATCH-2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 43/65

2. What is datagram socket?

3. What are the possibilities of select function?

4. Difference between close function and shutdown function.

5. Define poll functions.

6. Define Signal-Driven I/O Model

7. List out the socket options.

8. Mention the use of recfrom function.

SECTION C - 6 Marks

1. Discuss about ICMPv6 socket options in detail with suitable example.

2. Enlighten the UDP Echo server and client with neat diagram.

3. Describe about TCP Socket options.

4. What socket options are processed by IPv6? Explain.

5. Explain about various functions available for UDP sockets.

6. Elaborate the socket functions for UDP client server with an example.

7. Explain the IPv4 socket options.

SUBJECT NAME: NETWORK PROGRAMMING

UNIT III SEMESTER: V

S.NO Question Choice1 Choice2 Choice3 Choice4 Ans

1

When an application sits in a loop calling recvfrom on a

nonblocking descriptor like this, it is called discarding polling synchronous timeour polling

2

The signal-driven I/O model uses signals, telling the kernel

to notify us with the ____signal when the descriptor is SIGIO SICCIO SIOID SIDCOO SIGIO

3 read the datagram from the signal handler by calling ____ getfrom receivedfrom recvfrom reservedfrom recvfrom

4

A _____ operation causes the requesting process to be

 blocked until that I/O operation completes asynchronous I/O signal I/O designalling synchronous I/O synchronous I/O

5

The _____ function allows the process to instruct the

 kernel select deselect poll time select

6

The ________argument tells the kernel how long to wait

 for one of the specified descriptors to become ready timein comein timeout comout timeout

7

A ______structure specifies the number of seconds and

microseconds timeval timefunc timeinterval timeread timeval

8

 _____will Return only when one of the specified

descriptors is ready for I/O Wait Wait signal Wait forever Waiting Wait forever

9

The normal way to terminate a network connection is to

 call the ____ function close shut shutdown restart close

10

The close function decrements the descriptor's reference

count and closes the socket only if the count reaches____ 1 2 3 0 0

11

 _____terminates both directions of data transfer, reading

and writing shut close shutdown restart close

12

 pselect uses the ____ structure instead of the timeval

structure time timing timespec timefunc timespec

13

The ____member of the newer structure specifies

nanoseconds tv_sec tv_nsec n_sec sec_nano tv_nsec

14

______ member of the older structure specifies

 microseconds. tv_micro micro_sec tv_usec sec_tv tv_usec

DEPARTMENT OF CS, CA & IT

STAFF NAME: Dr.P.TAMIL SELVAN

SUB.CODE: 17CSU501B

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University)

Coimbatore – 641 021.

ONE MARK QUESTIONS

(Established Under Section 3 of UGC Act 1956)

15

poll function provides additional information when

dealing with ____ devices. STREAMS INPUT OUTPUT FILES STREAMS

16

____ specifies the presence of an error for a TCP

connection can be considered either normal data or an POLLERROR POLLING ERRORPOLL POLLERR POLLERR

17 The constant INFTIM (wait forever) is defined to be a _____ value.negative positive real natural negative

18 ______must refer to an open socket descriptor sockdes sockfd sockfile sockopen sockfd

19

____is a pointer to a variable from which the new value

of the option is fetched by setsockopt optimal optional optval optionalvalue optval

20 The size of this variable is specified by the final argument _____length optlen varlen finallen optlen

21 Generic socket options are _____ protocol-independent platform dependentprotocol-dependentcross platform protocol-independent

22

 ______Socket option enables or disables the ability of the

process to send broadcast messages SO_SOCKETS SO_BROADCASTSO-UNICAST SO_MULTICAST SO_BROADCAST

23 SO_DEBUG Socket Option is supported only by _____ TCP UDP SCTP IGMP TCP

24

_____ Socket Option specifies that outgoing packets are to

 bypass the normal routing mechanisms of the underlying

protocol SO_ROUTE SO_DONT SO_PASS

SO_

DONTROUTE

SO_

DONTROUTE

25

_____ Socket Option is one that can be fetched but cannot

be set

SO_ERR SO_ERROR SO_FETCH SO_BURST SO_ERROR

26 _____ Socket Option cannot be set, only retrieved

IPV6_

RECVTCLASS

IPV6_

PATHMTU

IPV6_

UNICAST_

HOPS IPV6_MSG

IPV6_

PATHMTU

27 ICMP is primarily used for

error and

diagnostic

functions addressing forwarding selecting

error and

diagnostic

functions

28

____Socket Option specifies that the received traffic class

is to be returned as ancillary data by recvmsg IPV6_

RECVTCLASS

IPV6_

PATHMTU

IPV6_

UNICAST_

HOPS IPV6_MSG

IPV6_

RECVTCLASS

29

 ______Socket Option is similar to the IPv4 IP_TTL socket

option

IPV6_

RECVTCLASS

IPV6_

PATHMTU

IPV6_

UNICAST_H

OPS IPV6_MSG

IPV6_

UNICAST_

HOPS

30

 _____Socket Option allows us to fetch or set the MSS for

a TCP connection TCP_MAXSEG

TCP_

MAXIMUM

TCP_

SEGEMENT TCP_MIN

TCP_

MAXSEG

31

The ______ socket option can be used to retrieve

information about an existing association

SCTP_

ASSOCIATION

SCTP_

INDEXING

SCTP_

MAXBURST

SCTP_

ASSOCINF

SCTP_

ASSOCINF

32

The____ time is the number of seconds an SCTP

association will remain open when idle autoopen autoclose autoin autoout autoclose

33

_______ Socket Option allows a caller to fetch, enable, or

disable various SCTP notifications

SCTP_

ASSOCIATION

SCTP_

EVENTS

SCTP_

MAXBURST

SCTP_

ASSOCINF

SCTP_

EVENTS

34

_____ Socket Option allows the application to fetch or set

the maximum burst size used when sending packets SCTP_ASSOCIATIONSCTP_TIME SCTP_MAXBURSTSCTP_ASSOCINFSCTP_MAXBURST

35

 _____Socket Option allows the application to fetch or set

the maximum fragment size used during SCTP

fragmentation

SCTP_ASSOCIATIONSCTP_MAXSEGSCTP_MAXBURSTSCTP_ASSOCINFSCTP_MAXSEG

36

SCTP_NODELAY Socket Option

if set, this option disables SCTP's ____ algorithm Nagle Fourier Aprior Filter Nagle

37

 _____Socket Option will retrieve the current state of an

SCTP association

SCTP_

ASSOCIATION

SCTP_

STATUS

SCTP_

MAXBURST

SCTP_

ASSOCINF

SCTP_

STATUS

38

The to argument for ____ is a socket address structure

containing the protocol address of where the data is to be sendto sendprotocol senddata sendaddr sendto

39 The size of the socket address structure is specified by _____addresslength addrlen sizelen socklen addrlen

40

We create a UDP socket by specifying the second

argument to socket as ____ SOCK_UDP

SOCK_

ARGU

SOCK_

DGRAM

SOCK_

SECOND

SOCK_

DGRAM

41

The client in socket programming must know which

information?

IP address of

Server

Port

 Number Host address Pin number

IP address of

Server

42 What does the java.net.InetAddress class represent? Socket IP Address Protocol MAC Address IP Address

43

The port number is “ephemeral port number”, if the source

host is NTP Echo Server Client Client

44

An IPv4 address uniquely and universally defines the

connection of a device to the Media Internet Monitoring devicesUser Internet

45

The size of IP address in IPv6 is

4bytes 128 bits 8 bytes 100 bits 128 bits

46

IPv6 doesnot use _________ type of address
broadcast multicast unicast tricast broadcast

47

Which of the following is not applicable for IP? Error reporting Handle

addressing

Datagram

format

Packet handling Error reporting

48

Which one of the following socket API functions converts

an unconnected active TCP socket into a passive socket.

bind listen connect close listen

49

An endpoint of an inter-process communication flow

across a computer network is called

socket pipe port host socket

50

A _____ is a TCP name for a transport service access

point.

port pipe node socket port

51

Identify the correct order in which a server process must

invoke the function calls accept, bind, listen, and recv

according to UNIX socket API.

listen, accept, bind

recv

bind, listen,

accept, recv

bind, accept,

listen, recv

accept, listen,

bind, recv

bind, listen,

accept, recv

protocol-independent

SO_BROADCAST

SCTP_MAXBURST

SCTP_MAXSEG

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 1/65

Network Applications: Remote logging

One of the initial motivations for building computer networks was to allow users to access remote

computers over the networks. In the 1960s and 1970s, the mainframes and the emerging minicomputers

were composed of a central unit and a set of terminals connected through serial lines or modems. The

simplest protocol that was designed to access remote computers over a network is probably telnet RFC

854. telnet runs over TCP and a telnet server listens on port 23 by default. The TCP connection used by

telnet is bidirectional, both the client and the server can send data over it. The data exchanged over such

a connection is essentially the characters that are typed by the user on the client machine and the text

output of the processes running on the server machine with a few exceptions (e.g. control characters,

characters to control the terminal like VT-100, ...) . The default character set for telnet is the ASCII

character set, but the extensions specified in RFC 5198 support the utilisation of Unicode characters.

Telnet

WHAT IS TELNET?

Telnet is a network text-only protocol that provides bidirectional interactive communications facility

using virtual terminal connection. Telnet is the method that allows connecting to a remote computer over

Internet and using programs and data as if they were on your local machine. User data is distributed in-

band with Telnet control information in an 8-bit byte data connection over the TCP.

Telnet was developed in 1969. It started as RFC 15, then extended in RFC 854, and standardized as

Internet Engineering Task Force Internet Standard STD 8.

Historical facts:

 Before March 5, 1973, Telnet was an ad-hoc protocol with no official definition.

 On March 5, 1973, a Telnet protocol standard was defined at UCLA.

 In mid-2010, the Telnet protocol itself has been mostly superseded for remote login.

Unit IV: Network Applications: Remote logging, E-Mail, WWW and HTTP

http://cnp3book.info.ucl.ac.be/2nd/html/glossary.html#term-telnet
https://tools.ietf.org/html/rfc854.html
https://tools.ietf.org/html/rfc854.html
http://cnp3book.info.ucl.ac.be/2nd/html/glossary.html#term-telnet
https://tools.ietf.org/html/rfc5198.html

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 2/65

Term Telnet:

The term telnet may also mean the software implementations of the client part of the protocol. Telnet

client applications are available for virtually all computer platforms. Sometimes telnet can be used as a

verb: to telnet is to establish connection with the Telnet protocol.

Where Telnet can be used:

 There are a number of text-based games available through Telnet.

 Enterprise networks to access host applications, e.g., on IBM Mainframes.

 For many years, multiple library catalogs were only reachable through Telnet, though you will

hardly find ones now.

 There was Delphi's Internet service, the first nationwide Internet service publically available, but

it closed Telnet access in 2001.

 Mobile data collection applications where Telnet runs over secure networks.

TELNET uses one TCP connection at port 23. Telnet operates in one of the three modes: default

mode, character mode and line mode. It has command line interface.

Time sharing environment:

 In this environment, a large (central) computer supports multiple users.

 Interaction between computer and user occurs through a terminal(including keyboard, monitor

etc.)

 All the processing is done by the central computer.

 When a user types a character on the keyboard, the character is sent to the computer and is

echoed to the monitor.

 Timesharing creates an environment in which each user has an illusion of a dedicated computer.

 The user can run a program, access the system resources, switch from one program to another

etc.

TELNET: Local Login

Login:

1. In time sharing environment, users are part of the system with some right to access resources.

2. To access the system, the user logs into the system by providing username and password.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 3/65

3. The user identification defines the user as a part of the system.

4. System facilitates password checking.

Local Login:

1. When a user logs into a local timesharing system, it is called Local Login.

2. User keystrokes are accepted by the terminal driver and passed on to the operating system.

3. Operating system interprets the combination of characters and invokes the desired application

programs or utility.

4. Operating system like Unix assigns special meanings to certain combination of characters. E.g. ctrl

Z, ctrl C etc.

Remote Login:

 When a user wants to access an application program or utility located on remote machine, it is

called Remote Login.

 It is facilitated by TELNET client/ server program.

 Special combinations of characters, assigned by the operating system can create a problem for

remote login, because they have to interpreted properly by the server side application.

 User sends the keystrokes to the terminal driver, where the local operating system accepts the

characters but does not interpret them.

 The characters are sent to the TELNET client, which transforms the characters to the universal

character set, called Network Virtual Terminal(NVT)characters and delivers them to the local

TCP/IP stack.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 4/65

Local and remote log-in

Concept of NVT

NETWORK VTRTUAL TERMTNAL (NVT) The mechanism to access a remote computer is complex.

This is because every computer and its operating system accepts a special combination of characters as

tokens. For example, the end-of-file token in a computer running the DOS operating system is Ctrl+z,

while the UNIX operating system recognizes Ctrl+d. We are dealing with heterogeneous systems. If we

want to access any remote computer in the world, we must first know what type of computer we will be

connected to, and we must also install the specific terminal emulator used by that computer. TELNET

solves this problem by defining a universal interface called the Network Virtual Terminal (NVT)

character set. Via this interface, the client TELNET translates characters (data or commands) that come

from the local terminal into NVT form and delivers them to the network. The server TELNET, on the

other hand, translates data and commands from NVT form into the form acceptable by the remote

computer. For an illustration ofthis concept, see Figure..

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 5/65

Some NVT control characters

 NVT uses two sets of characters, one for data and one for control. Both are 8-bit bytes.

Data characters:

1. For data, NVT uses NVT ASCII.

2. It’s a 8-bit character set, in which the seven lower order bits are the same as US ASCII and

the highest order bit is 0.

3. If the format is different it must be agreed upon between the client and server using option

negotiation.

 Remote control characters:

 To send control characters between computers (from client to server and vice versa), NVT uses an

8-bit character set in which the highest order bit is set to 1

 Data and control commands are dealt with separately to avoid confusion about whether an input

character should be treated as data or as a control function.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 6/65

Email

One of the most popular Internet services is electronic mail (e-mail). The designers of the Internet never

imagined the popularity of this application program. Its architecture consists of several components

Architecture

 To explain the architecture of e-mail, we give four scenarios. We begin with the simplest situation and

add complexity as we proceed. The fourth scenario is the most common in the exchange of email.

First Scenario

In the first scenario, the sender and the receiver of the e-mail are users (or application programs) on the

same system; they are directly connected to a shared system. The administrator has created one mailbox

for each user where the received messages are stored. A mailbox is part of a local hard drive, a special

file with permission restrictions. Only the owner of the mailbox has access to it. When Alice, a user,

needs to send a message to Bob, another user, Alice runs a user agent (VA) program to prepare the

message and store it in Bob's mailbox. The message has the sender and recipient mailbox addresses

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 7/65

(names of files). Bob can retrieve and read the contents of his mailbox at his convenience, using a user

agent. Figure shows the concept. This is similar to the traditional memo exchange between employees in

an office. There is a mailroom where each employee has a mailbox with his or her name on it.

Figure : First Scenario in electronic mail

When Alice needs to send a memo to Bob, she writes the memo and inserts it into Bob's mailbox. When

Bob checks his mailbox, he finds Alice's memo and reads it.

Second Scenario

 In the second scenario, the sender and the receiver of the e-mail are users (or application programs) on

two different systems.The message needs to be sent over the Internet. Here we need user agents (VAs)

and message transfer agents (MTAs), as shown in Figure.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 8/65

Figure: Second Scenario in electronic mail

Alice needs to use a user agent program to send her message to the system at her own site. The system

(sometimes called the mail server) at her site uses a queue to store messages waiting to be sent. Bob also

needs a user agent program to retrieve messages stored in the mailbox of the system at his site. The

message, however, needs to be sent through the Internet from Alice's site to Bob's site. Here two

message transfer agents are needed: one 'client and one server. Like most client/server programs on the

Internet, the server needs to run all the time because it does not know when a client will ask for a

connection. The client, on the other hand, can be alerted by the system when there is a message in the

queue to be sent.

Third Scenario

 In the third scenario, Bob, as in the second scenario, is directly connected to his system. Alice, however,

is separated from her system. Either Alice is connected to the system via a point-to-point WAN, such as

a dial-up modem, a DSL, or a cable modem; or she is connected to a LAN in an organization that uses

one mail server for handling e-mails-all users need to send their messages to this mail server. Figure

shows the situation.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 9/65

Figure: Third Scenario in electronic mail

Alice still needs a user agent to prepare her message. She then needs to send the message through the

LAN or WAN. This can be done through a pair of message transfer agents (client and server). Whenever

Alice has a message to send, she calls the user agent which, in tum, calls the MTA client. The MTA

client establishes a connection with the MTA server on the system, which is running all the time. The

system at Alice's site queues all messages received. It then uses an MTA client to send the messages to

the system at Bob's site; the system receives the message and stores it in Bob's mailbox. At his

convenience, Bob uses his user agent to retrieve the message and reads it. Note that we need two pairs of

MTA client/server programs.

Fourth Scenario

In the fourth and most common scenario, Bob is also connected to his mail server by a WAN or a LAN.

After the message has arrived at Bob's mail server, Bob needs to retrieve it. Here, we need another set of

client/server agents, which we call message access agents (MAAs). Bob uses an MAA client to retrieve

his messages. The client sends a request to the MAA server, which is running all the time, and requests

the transfer of the messages. The situation is shown in Figure.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 10/65

Figure: Fourth Scenario in electronic mail

There are two important points here. First, Bob cannot bypass the mail server and use the MTA server

directly. To use MTA server directly, Bob would need to run the MTA server all the time because he

does not know when a message will arrive. This implies that Bob must keep his computer on all the time

if he is connected to his system through a LAN. If he is connected through a-WAN, he must keep the

connection up all the time. Neither of these situations is feasible today.

Second, note that Bob needs another pair of client/server programs: message access programs. This is so

because an MTA client/server program is a push program: the client pushes the message to the server.

Bob needs a pull program. The client needs to pull the message from the server. Figure 26.10 shows the

difference.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 11/65

Figure: Push verus pull in electronic mail

User Agent

The first component of an electronic mail system is the user agent (VA). It provides service to the user

to make the process of sending and receiving a message easier.

 Services Provided by a User Agent

 A user agent is a software package (program) that composes, reads, replies to, and forwards messages.

It also handles mailboxes. Figure 26.11 shows the services of a typical user agent.

Figure: Services of user agent

Composing Messages

A user agent helps the user compose the e-mail message to be sent out. Most user agents provide a

template on the screen to be filled in by the user. Some even have a built-in editor that can do spell

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 12/65

checking, grammar checking, and other tasks expected from a sophisticated word processor. A user, of

course, could alternatively use his or her favorite text editor or word processor to create the message and

import it, or cut and paste it, into the user agent template.

Reading Messages

The second duty of the user agent is to read the incoming messages. When a user invokes a user agent, it

first checks the mail in the incoming mailbox. Most user agents show a one-line summary of each

received mail.

 Each e-mail contains the following fields.

 1. A number field.

2. A flag field that shows the status of the mail such as new, already read but not replied to, or read and

replied to. :).

The size of the message.

 4. The sender.

5. The optional subject field.

Replying to Messages

After reading a message, a user can use the user agent to reply to a message. A user agent usually allows

the user to reply to the original sender or to reply to all recipients of the message. The reply message

may contain the original message (for quick reference) and the new message.

 Forwarding Messages

Replying is defined as sending a message to the sender or recipients of the copy. Forwarding is defined

as sending the message to a third party. A user agent allows the receiver to forward the message, with or

without extra comments, to a third party.

Handling Mailboxes

A user agent normally creates two mailboxes: an inbox and an outbox. Each box is a file with a special

format that can be handled by the user agent. The inbox keeps all the received e-mails until they are

deleted by the user. The outbox keeps all the sent e-mails until the user deletes them. Most user agents

today are capable of creating customized mailboxes.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 13/65

 User Agent Types

 There are two types of user agents: command-driven and GUI-based.

Command-Driven

Command-driven user agents belong to the early days of electronic mail. They are still present as the

underlying user agents in servers. A command-driven user agent normally accepts a one-character

command from the keyboard to perform its task. For example, a user can type the character r, at the

command prompt, to reply to the sender of the message, or type the character R to reply to the sender

and all recipients. Some examples of command-driven user agents are mail, pine, and elm.

GUI-Based

Modem user agents are GUI-based. They contain graphical-user interface (GUI) components that allow

the user to interact with the software by using both the keyboard and the mouse. They have graphical

components such as icons, menu bars, and windows that make the services easy to access. Some

examples of GUI-based user agents are Eudora, Microsoft's Outlook, and Netscape.

Sending Mail

To send mail, the user, through the UA, creates mail that looks very similar to postal mail. It has an

envelope and a message

Figure : Format of e-Mail

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 14/65

Envelope

The envelope usually contains the sender and the receiver addresses.

Message

The message contains the header and the body. The header of the message defines the sender, the

receiver, the subject of the message, and some other information (such as encoding type, as we see

shortly). The body of the message contains the actual information to be read by the recipient.

 Receiving Mail

 The user agent is triggered by the user (or a timer). If a user has mail, the VA informs the user with a

notice. If the user is ready to read themail.alist is displayed in which each line contains a summary of the

information about a particular message in the mailbox. The summary usually includes the sender mail

address, the subject, and the time the mail was sent or received. The user can select any of the messages

and display its contents on the screen

Addresses

To deliver mail, a mail handling system must use an addressing system with unique addresses. In the

Internet, the address consists of two parts: a local part and a domain name, separated by an @ sign (see

Figure).

Figure: E-Mail address

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 15/65

Local Part

The local part defines the name of a special file, called the user mailbox, where all the mail received for

a user is stored for retrieval by the message access agent.

 Domain Name

 The second part of the address is the domain name. An organization usually selects one or more hosts to

receive and send e-mail; the hosts are sometimes called mail servers or exchangers. The domain name

assigned to each mail exchanger either comes from the DNS database or is a logical name (for example,

the name of the organization).

Mailing List

Electronic mail allows one name, an alias, to represent several different e-mail addresses; this is called a

mailing list. Every time a message is to be sent, the system checks the recipient's name against the alias

database; if there is a mailing list for the defined alias, separate messages, one for each entry in the list,

must be prepared and handed to the MTA. Ifthere is no mailing list for the alias, the name itselfis the

receiving address and a single message is delivered to the mail transfer entity.

MIME

 Electronic mail has a simple structure. Its simplicity, however, comes at a price. It can send messages

only in NVT 7-bit ASCII format. In other words, it has some limitations. For example, it cannot be used

for languages that are not supported by 7-bit ASCII characters (such as French, German, Hebrew,

Russian, Chinese, and Japanese). Also, it cannot be used to send binary files or video or audio data.

Multipurpose Internet Mail Extensions (MIME) is a supplementary protocol that allows non-ASCII data

to be sent through e-mail. MIME transforms non-ASCII data at the sender site to NVT ASCII data and

delivers them to the client MTA to be sent through the Internet. The message at the receiving side is

transformed back to the original data. We can think of MIME as a set of software functions that

transforms non-ASCII data (stream of bits) to ASCII data and vice versa, as shown in Figure 26.14.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 16/65

Figure: MIME

MIME defines five headers that can be added to the original e-mail header section to define the

transformation parameters:

1. MIME-Version

 2. Content-Type

 3. Content-Transfer-Encoding

4. Content-Id

 5. Content-Description

The following figure shows the MIME headers. We will describe each header in detail

.

Figure: MIME header

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 17/65

MIME-Version This header defines the version of MIME used. The current version is 1.1

Content-Type This header defines the type of data used in the body of the message. The content type

and the content subtype are separated by a slash. Depending on the subtype, the header may contain

other parameters.

 MIME allows seven different types of data. These are listed in Table .

Table: Data types and subtypes in MIME

Content-Transfer-Encoding This header defines the method used to encode the messages into Os and Is

for transport:

The five types of encoding methods are listed in Table.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 18/65

Table: Content-transfer encoding

Content-Id This header uniquely identifies the whole message in a multiple-message environment.

Message Transfer Agent:

 SMTP The actual mail transfer is done through message transfer agents. To send mail, a system must

have the client MTA, and to receive mail, a system must have a server MTA. The formal protocol that

defines the MTA client and server in the Internet is called the Simple Mail Transfer Protocol (SMTP).

As we said before, two pairs of MTA client/server programs are used in the most common situation

(fourth scenario). Figure shows the range of the SMTP protocol in this scenario.

Figure: SMTP range

SMTP is used two times, between the sender and the sender's mail server and between the two mail

servers. As we will see shortly, another protocol is needed between the mail server and the receiver.

SMTP simply defines how commands and responses must be sent back and forth. Each network is free

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 19/65

to choose a software package for implementation. We discuss the mechanism of mail transfer by SMTP

in the remainder of the section.

Commands and Responses SMTP uses commands and responses to transfer messages between an MTA

client and an MTA server (see Figure).

Figure: Commands and Reponses

Each command or reply is terminated by a two-character (carriage return and line feed) end-of-line

token.

 Commands

 Commands are sent from the client to the server. The fonnat of a command is shown in Figure. It

consists of a keyword followed by zero or more arguments. SMTP defines 14 commands. The first five

are mandatory; every implementation must support these five commands. The next three are often used

and highly recommended. The last six are seldom used.

Figure: Command format

The commands are listed in Table.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 20/65

Table: Commands

Responses

Responses are sent from the server to the client. A response is a threedigit code that may be followed by

additional textual information. Table lists some of the responses.

Table: Responses

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 21/65

Table: Responses

Mail Transfer Phases

 The process of transferring a mail message occurs in three phases: connection establishment, mail

transfer, and connection termination

Message Access Agent:

POP and IMAP The first and the second stages of mail delivery use SMTP. However, SMTP is not

involved in the third stage because SMTP is a push protocol; it pushes the message from the client to the

server. In other words, the direction of the bulk: data (messages) is from the client to the server. On the

other hand, the third stage needs a pull protocol; the client must pull messages from the server. The

direction of the bulk data is from the server to the client. The third stage uses a message access agent.

Currently two message access protocols are available: Post Office Protocol, version 3 (POP3) and

Internet Mail Access Protocol, version 4 (IMAP4). Figure shows the position of these two protocols in

the most common situation (fourth scenario).

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 22/65

Figure: POP3 and IMAP4

POP3

Post Office Protocol, version 3 (POP3) is simple and limited in functionality. The client POP3 software

is installed on the recipient computer; the server POP3 software is installed on the mail server. Mail

access starts with the client when the user needs to download e-mail from the mailbox on the mail

server.

The client opens a connection to the server on TCP port 110. It then sends its user name and password to

access the mailbox. The user can then list and retrieve the mail messages, one by one

Figure below shows an example of downloading using POP3. POP3 has two modes: the delete mode

and the keep mode. In the delete mode, the mail is deleted from the mailbox after each retrieval. In the

keep mode, the mail remains in the mailbox after retrieval. The delete mode is normally used when the

user is working at her permanent computer and can save and organize the received mail after reading or

replying. The keep mode is normally used when the user accesses her mail away from her primary

computer (e.g., a laptop). The mail is read but kept in the system for later retrieval and organizing.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 23/65

Figure: The exchange of commands and responses in POP3

IMAP4

Another mail access protocol is Internet Mail Access Protocol, version 4 (IMAP4). IMAP4 is similar to

POP3, but it has more features; IMAP4 is more powerful and more complex.

POP3 is deficient in several ways. It does not allow the user to organize her mail on the server; the user

cannot have different folders on the server. (Of course, the user can create folders on her own computer.)

In addition, POP3 does not allow the user to partially check the contents of the mail before

downloading. IMAP4 provides the following extra functions:

o A user can check the e-mail header prior to downloading.

o A user can search the contents of the e-mail for a specific string of characters prior to downloading.

o A user can partially download e-mail. This is especially useful if bandwidth is limited and the e-mail

contains multimedia with high bandwidth requirements.

o A user can create, delete, or rename mailboxes on the mail server.

o A user can create a hierarchy of mailboxes in a folder for e-mail storage.

Web-Based Mail

 E-mail is such a common application that some websites today provide this service to anyone who

accesses the site. Two common sites are Hotmail and Yahoo. The idea is very simple. Mail transfer from

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 24/65

Alice's browser to her mail server is done through HTTP (see Chapter 27). The transfer of the message

from the sending mail server to the receiving mail server is still through SMTP. Finally, the message

from the receiving server (the Web server) to Bob's browser is done through HTIP.

The last phase is very interesting. Instead of POP3 or IMAP4, HTTP is normally used. When Bob needs

to retrieve his e-mails, he sends a message to the website (Hotmail, for example). The website sends a

form to be filled in by Bob, which includes the log-in name and the password. If the log-in name and

password match, the e-mail is transferred from the Web server to Bob's browser in HTML format.

WWW and HTTP

The World Wide Web (WWW) is a repository of information linked together from points all over the

world. The WWW has a unique combination of flexibility, portability, and user-friendly features that

distinguish it from other services provided by the Internet. The WWW project was initiated by CERN

(European Laboratory for Particle Physics) to create a system to handle distributed resources necessary

for scientific research

ARCHITECTURE

The WWW today is a distributed client-server service, in which a client using a browser can access a

service using a server. However, the service provided is distributed over many locations called sites, as

shown in Figure .

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 25/65

Each site holds one or more documents, referred to as Web pages. Each Web page can contain a link to

other pages in the same site or at other sites. The pages can be retrieved and viewed by using browsers.

Let us go through the scenario shown in Figure. The client needs to see some information that it knows

belongs to site A. It sends a request through its browser, a program that is designed to fetch Web

documents. The request, among other information, includes the address of the site and the Web page,

called the URL, which we will discuss shortly. The server at site A finds the document and sends it to

the client. When the user views the document, she finds some references to other documents, including a

Web page at site B. The reference has the URL for the new site. The user is also interested in seeing this

document. The client sends another request to the new site, and the new page is retrieved

Client (Browser)

A variety of vendors offer commercial browsers that interpret and display a Web document, and all use

nearly the same architecture. Each browser usually consists of three parts: a controller, client protocol,

and interpreters. The controller receives input from the keyboard or the mouse and uses the client

programs to access the document. After the document has been accessed, the controller uses one ofthe

interpreters to display the document on the screen. The client protocol can be one ofthe protocols

described previously such as FfP or HTIP (described later in the chapter). The interpreter can be HTML,

Java, or JavaScript, depending on the type of document. We discuss the use of these interpreters based

on the document type later in the chapter (see Figure).

Figure: Browser

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 26/65

Server

The Web page is stored at the server. Each time a client request arrives, the corresponding document is

sent to the client. To improve efficiency, servers normally store requested files in a cache in memory;

memory is faster to access than disk. A server can also become more efficient through multithreading or

multiprocessing. In this case, a server can answer more than one request at a time.

Uniform Resource Locator

 A client that wants to access a Web page needs the address. To facilitate the access ofdocuments

distributed throughout the world, HTTP uses locators. The uniform resource

locator (URL) is a standard for specifying any kind ofinformation on the Internet. The URL defines four

things: protocol, host computer, port, and path (see Figure).

Figure: URL

The protocol is the client/server program used to retrieve the document. Many different protocols can

retrieve a document; among them are FTP or HTTP. The most common today is HTTP. The host is the

computer on which the information is located, although the name of the computer can be an alias. Web

pages are usually stored in computers, and computers are given alias names that usually begin with the

characters "www". This is not mandatory, however, as the host can be any name given to the computer

that hosts the Web page. The URL can optionally contain the port number of the server. If the port is

included, it is inserted between the host and the path, and it is separated from the host by a colon.

Path is the pathname ofthe file where the information is located. Note that the path can itself contain

slashes that, in the UNIX operating system, separate the directories from the subdirectories and file.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 27/65

Cookies

 The World Wide Web was originally designed as a stateless entity. A client sends a request; a server

responds. Their relationship is over. The original design ofWWW, retrieving publicly available

documents, exactly fits this purpose.

Today the Web has other functions; some are listed here.

I. Some websites need to allow access to registered clients only.

2. Websites are being used as electronic stores that allow users to browse through the store, select

wanted items, put them in an electronic cart, and pay at the end with a credit card.

3. Some websites are used as portals: the user selects the Web pages he wants to see.

 4. Some websites are just advertising.

Creation and Storage ofCookies

The creation and storage of cookies depend on the implementation; however, the principle is the same.

1. When a server receives a request from a client, it stores information about the client in a file or a

string. The information may include the domain name ofthe client, the contents ofthe cookie

(information the server has gathered about the client such as name, registration number, and so on), a

timestamp, and other information'depending on the implementation.

 2. The server includes the cookie in the response that it sends to the client.

 3. When the client receives the response, the browser stores the cookie in the cookie directory, which is

sorted by the domain server name.

Using Cookies

When a client sends a request to a server, the browser looks in the cookie directory to see if it can find a

cookie sent by that server. If found, the cookie is included in the request. When the server receives the

request, it knows that this is an old client, not a new one. Note that the contents ofthe cookie are never

read by the browser or disclosed to the user.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 28/65

 It is a cookie made by the server and eaten by the server. Now let us see how a cookie is used for the

four previously mentioned purposes:

 1. The site that restricts access to registered clients only sends a cookie to the client when the client

registers for the first time. For any repeated access, only those clients that send the appropriate cookie

are allowed.

2. An electronic store (e-commerce) can use a cookie for its client shoppers. When a client selects an

item and inserts it into a cart, a cookie that contains information about the item, such as its number and

unit price, is sent to the browser. Ifthe client selects a second item, the cookie is updated with the new

selection information. And so on. When the client finishes shopping and wants to check out, the last

cookie is retrieved and the total charge is calculated

3. A Web portal uses the cookie in a similar way. When a user selects her favorite pages, a cookie is

made and sent. If the site is accessed again, the cookie is sent to the server to show what the client is

looking for.

4. A cookie is also used by advertising agencies. An advertising agency can place banner ads on

some main website that is often visited by users. The advertising agency supplies only a URL that gives

the banner address instead ofthe banner itself. When a user visits the main website and clicks on the

icon ofan advertised corporation, a request is sent to the advertising agency. The advertising agency

sends the banner, a GIF file, for example, but it also includes a cookie with the ill ofthe user. Any

future use ofthe banners adds to the database that profiles the Web behavior of the user. The advertising

agency has compiled the interests of the user and can sell this information to other parties. This use of

cookies has made them very controversial. Hopefully, some new regulations will be devised to preserve

the privacy ofusers.

WEB DOCUMENTS

 The documents in the WWW can be grouped into three broad categories: static, dynamic, and active.

The category is based on the time at which the contents of the document are determined.

Static Documents

Static documents are fixed-content documents that are created and stored in a server. The client can get

only a copy of the document. In other words, the contents of the file are determined when the file is

created, not when it is used. Of course, the contents in the server can be changed, but the user cannot

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 29/65

change them. When a client accesses the document, a copy ofthe document is sent. The user can then

use a browsing program to display the document (see Figure).

Figure: Static document

HTML

Hypertext Markup Language (HTML) is a language for creating Web pages. The term markup language

comes from the book publishing industry. Before a book is typeset and printed, a copy editor reads the

manuscript and puts marks on it. These marks tell the compositor how to format the text. For example,

ifthe copy editor wants part of a line to be printed in boldface, he or she draws a wavy line under that

part. In the same way, data for a Web page are formatted for interpretation by a browser. Let us clarify

the idea with an example. To make part ofa text displayed in boldface with HTML, we put beginning

and ending boldface tags (marks) in the text, as shown in Figure.

Figure: Boldface tags

The two tags and are instructions for the browser. When the browser sees these two marks, it

knows that the text must be boldfaced (see Figure . A markup language such as HTML allows us to

embed formatting instructions in the file itself. The instructions are included with the text. In this way,

any browser can read the instructions and format the text according to the specific workstation. One

might ask why we do not use the fonnatting capabilities of word processors to create and save formatted

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 30/65

text. The answer is that different word processors use different techniques or procedures for formatting

text.

For example, imagine that a user creates formatted text on a Macintosh computer and stores it in a Web

page. Another user who is on an IBM computer would not be able to receive the Web page because the

two computers use different fonnatting procedures. HTML lets us use only ASCII characters for both the

main text and formatting instructions.

In this way, every computer can receive the whole document as an ASCII document. The main text is

the data, and the formatting instructions can be used by the browser to format the data. A Web page is

made up oftwo parts: the head and the body. The head is the first part of a Web page. The head contains

the title of the page and other parameters that the browser will use. The actual contents ofa page are in

the body, which includes the text and the tags. Whereas the text is the actual infonnation contained in a

page, the tags define the appearance ofthe document. Every HTML tag is a name followed by an

optional list of attributes, all enclosed between less-than and greater-than symbols « and >). An attribute,

ifpresent, is followed by an equals sign and the value ofthe attribute. Some tags can be used alone;

others must be used in pairs. Those that are used in pairs are called beginning and ending tags.

The beginning tag can have attributes and values and starts with the name ofthe tag. The ending tag

cannot have attributes or values but must have a slash before the name ofthe tag. The browser makes a

decision about the structure of the text based on the tags, which are embedded into the text. Figure

shows the format of a tag

Figure: Effect of boldface tags

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 31/65

Figure: Beginning and ending tags

One commonly used tag category is the text formatting tags such as and <!B>, which make the text

bold; <1> and <II>, which make the text italic; and <U> and <IV>, which underline the text.

Dynamic Documents

A dynamic document is created by a Web server whenever a browser requests the document. When a

request arrives, the Web server runs an application program or a script that creates the dynamic

document. The server returns the output of the program or script as a response to the browser that

requested the document. Because a fresh document is created for each request, the contents of a dynamic

document can vary from one request to another. A very simple example of a dynamic document is the

retrieval of the time and date from a server. Time and date are kinds of information that are dynamic in

that they change from moment to moment. The client can ask the server to run a program such as the

date program in UNIX and send the result ofthe program to the client.

Common Gateway Interface (CGI) The Common Gateway Interface (CGI) is a technology that creates

and handles dynamic documents. CGI is a set ofstandards that defines how a dynamic document is

written, how data are input to the program, and how the output result is used.

COl is not a new language; instead, it allows programmers to use any of several languages such as C,

C++, Boume Shell, Kom Shell, C Shell, Tcl, or Perl. The only thing that CGI defines is a set ofrules and

tenns that the programmer must follow. The tenncommon in COl indicates that the standard defines a set

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 32/65

of rules that is common to any language or platform. The term gateway here means that a COl program

can be used to access other resources such as databases, graphical packages, and so on. The term

interface here means that there is a set of predefined tenns, variables, calls, and so on that can be used in

any COl program. A COl program in its simplest fonn is code written in one ofthe languages supporting

COL Any programmer who can encode a sequence ofthoughts in a program and knows the syntax

ofoneofthe abovementioned languages can write a simple CGI program. Figure 27.8 illustrates the steps

in creating a dynamic program using COl technology.

Figure: Dynamic document using CGI

Scripting Technologies for Dynamic Documents The problem with CGI technology is the inefficiency

that results ifpart ofthe dynamic document that is to be created is fixed and not changing from request to

request. For example, assume that we need to retrieve a list of spare parts, their availability, and prices

for a specific car brand. Although the availability and prices vary from time to time, the name,

description, and the picture of the parts are fixed. If we use CGI, the program must create an entire

document each time a request is made. The solution is to create a file containing the fixed part ofthe

document using HTML and embed a script, a source code, that can be run by the server to provide the

varying availability and price section. Figure shows the idea.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 33/65

Figure: Dynamic document using server-side script

Active Documents

For many applications, we need a program or a script to be run at the client site. These are called active

documents. For example, suppose we want to run a program that creates animated graphics on the screen

or a program that interacts with the user. The program definitely needs to be run at the client site where

the animation or interaction takes place. When a browser requests an active document, the server sends a

copy ofthe document or a script. The document is then run at the client (browser) site.

Java Applets One way to create an active document is to use Java applets. Java is a combination ofa

high-level programming language, a run-time environment, and a class library that allows a programmer

to write an active document (an applet) and a browser to run it. It can also be a stand-alone program that

doesn't use a browser. An applet is a program written in Java on the server. It is compiled and ready to

be run. The document is in byte-code (binary) format. The client process (browser) creates an instance

of this applet and runs it. A Java applet can be run by the browser in two ways. In the first method, the

browser can directly request the Java applet program in the URL and receive the applet in binary form.

In the second method, the browser can retrieve and run an HTML file that has embedded the address

ofthe applet as a tag. Figure shows how Java applets are used in the first method; the second is similar

but needs two transactions.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 34/65

JavaScriptThe idea of scripts in dynamic documents can also be used for active documents. Ifthe active

part ofthe document is small, it can be written in a scripting language; then it can be interpreted and run

by the client at the same time. The script is in source code (text) and not in binary form. The scripting

technology used in this case is usually JavaScript. JavaScript, which bears a small resemblance to Java,

is a very high level scripting language developed for this purpose. Figure shows how JavaScript is used

to create an active document.

Figure: Active document using Java Script

Figure: Active document using client-site script

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 35/65

HTTP

The Hypertext Transfer Protocol (HTTP) is a protocol used mainly to access data on the World Wide

Web. HTTP functions as a combination ofFTP and SMTP. It is similar to FTP because it transfers files

and uses the services ofTCP. However, it is much simpler than FTP because it uses only one TCP

connection. There is no separate control connection; only data are transferred between the client and the

server. HTTP is like SMTP because the data transferred between the client and the server look like

SMTP messages. In addition, the format of the messages is controlled by MIME-like headers. Unlike

SMTP, the HTTP messages are not destined to be read by humans; they are read and interpreted by the

HTTP server and HTTP client (browser). SMTP messages are stored and forwarded, but HTTP

messages are delivered immediately. The commands from the client to the server are embedded in a

request message. The contents of the requested file or other information are embedded in a response

message. HTTP uses the services ofTCP on well-known port 80

HTTP Transaction

Figure illustrates the HTTP transaction between the client and server. Although HTTP uses the services

ofTCP, HTTP itselfis a stateless protocol. The client initializes the transaction by sending a request

message. The server replies by sending a response.

Figure: HTTP Transactions

Messages The formats ofthe request and response messages are similar; both are shown in Figure. A

request message consists ofa request line, a header, and sometimes a body. A response message consists

ofa status line, a header, and sometimes a body.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 36/65

Figure: Request and response messages

Request and Status Lines

 The first line in a request message is called a request line; the first line in the response message is called

the status line. There is one common field, as shown in Figure.

Figure: Request and status lines

Request type. This field is used in the request message. In version 1.1 of HTTP,

several request types are defined. The request type is categorized into methods as

defined in Table

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 37/65

Table: Methods

URL. We discussed the URL earlier in the chapter.

o Version. The most current version ofHTTP is 1.1.

o Status code. This field is used in the response message. The status code field issimilar to those in the

FTP and the SMTP protocols. It consists of three digits.Whereas the codes in the 100 range are only

informational, the codes in the 200range indicate a successful request. The codes in the 300 range

redirect the clientto another URL, and the codes in the 400 range indicate an error at the client site.

Finally, the codes in the 500 range indicate an error at the server site. We list the most common codes in

Table.

o Status phrase. This field is used in the response message. It explains the statuscode in text form

Table: Status codes

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 38/65

Table: Status codes

Header

The header exchanges additional information between the client and the server. For example, the client

can request that the document be sent in a special format, or the server can send extra information about

the document. The header can consist of one or more header lines. Each header line has a header name, a

colon, a space, and a header value (see Figure). We will show some header lines in the examples at the

end of this chapter. A header line belongs to one of four categories: general header, request header,

response header, and entity header. A request message can contain only general, request, and entity

headers. A response message, on the other hand, can contain only general, response, and entity headers.

Figure: Header format

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 39/65

General header The general header gives general information about the message and can be present in

both a request and a response. The below table lists some general headers with their descriptions.

Table: General headers

Request header The request header can be present only in a request message. It specifies the client's

configuration and the client's preferred document format. See below Table for a list ofsome request

headers and their descriptions.

Table: Request headers

Response headerThe response header can be present only in a response message.

It specifies the server's configuration and special information about the request. See below Table for a

list ofsome response headers with their descriptions.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 40/65

Table: Response headers

Entity headerThe entity header gives information about the body of the document. Although it is

mostly present in response messages, some request messages, such as POST or PUT methods, that

contain a body also use this type of header. See below table for a list ofsome entity headers and their

descriptions.

Table: Entity headers

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 41/65

Body The body can be present in a request or response message. Usually, it contains the document to be

sent or received.

Persistent Versus Nonpersistent Connection

HTTP prior to version 1.1 specified a nonpersistent connection, while a persistent connection is the

default in version 1.1.

Nonpersistent Connection

In a nonpersistent connection, one TCP connection is made for each request/response. The following

lists the steps in this strategy:

1. The client opens a TCP connection and sends a request.

 2. The server sends the response and closes the connection.

 3. The client reads the data until it encounters an end-of-file marker; it then closes the connection.

 In this strategy, for N different pictures in different files, the connection must be opened and closed N

times. The nonpersistent strategy imposes high overhead on the server because the server needs N

different buffers and requires a slow start procedure each time a connection is opened.

Persistent Connection

 HTTP version 1.1 specifies a persistent connection by default. In a persistent connection, the server

leaves the connection open for more requests after sending a response. The server can close the

connection at the request ofa client or ifa time-out has been reached. The sender usually sends the length

of the data with each response. However, there are some occasions when the sender does not know the

length of the data. This is the case when a document is created dynamically or actively. In these cases,

the server informs the client that the length is not known and closes the connection after sending the data

so the client knows that the end ofthe data has been reached.

Proxy Server

HTTP supports proxy servers. A proxy server is a computer that keeps copies of responses to recent

requests. The HTTP client sends a request to the proxy server. The proxy server checks its cache. If the

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: III B.Sc CS A & B COURSE NAME: NETWORK PROGRAMMING
COURSE CODE: 17CSU501B UNIT: IV –Network Applications BATCH-2017-2020

Prepared by Dr.P.Tamil selvan, Assistant Prof, Department of CS, CA & IT, KAHEPage 42/65

response is not stored in the cache, the proxy server sends the request to the corresponding server.

Incoming responses are sent to the proxy server and stored for future requests from other clients. The

proxy server reduces the load on the original server, decreases traffic, and improves latency. However,

to use the proxy server, the client must be configured to access the proxy instead of the target server.

POSSIBLE QUESTIONS

SECTION B – 2 Marks

1 What is telnet?

2 How is HTTP related with WWW?

3 Where Telnet can be used?

4 What are user agents?

5 Define Proxy server.

6 Give the difference between local login and remote login.

7 Mention the use of NVT.

8 Define MIME.

9 What is IMAP4?

10 List the use of cookies.

SECTION C - 6 Marks

1 Explain the architecture of E-Mail with a neat diagram.

2 Discuss the role of HTPP request and response with an example.

3 Explain the concept of Telnet with a neat diagram.

4 Explain (i) POP (ii) IMAP

5 Explain the role of SMTP with an example.

6 Describe MIME with examples.

SUBJECT NAME: NETWORK PROGRAMMING

UNIT IV SEMESTER: V

S.NO Question Choice1 Choice2 Choice3 Choice4 Ans

1 Telnet runs over _____ TCP UDP SCTP IGMP TCP

2 A telnet server listens on port ___ by default 12 23 25 30 23

3 The ____ connection used by telnet is bidirectional UDP SCTP TCP IP TCP

4

The default character set for telnet is the ____

character set Unicode ASCII BCD Binary ASCII

5 Telnet is a network ______ protocol image numeric-onlytext-only data-only text-only

6 Telnet was developed in ____ 1989 1979 1959 1969 1969

7

In ______ environment, users are part of the system

with some right to access resources multiprocess multi sharingunique time sharing time sharing

8

 The characters are sent to the TELNET client, which

transforms the characters to the

universal character set, called

Network Visual

Terminal

Network

Processing

Network

Virtual

Terminal

Network

Visual Task

Network

Virtual

Terminal

9 For ___ , NVT uses NVT ASCII control data frame segments data

10

To send ____characters between computers ,

NVT uses an 8-bit character set data frame segments control control

11

______ was designed at a time when most

operating systems, such as UNIX, were operating in a time-

sharing environment TELNET SSH PUTTY Email TELNET

DEPARTMENT OF CS, CA & IT

STAFF NAME: Dr.P.TAMIL SELVAN

SUB.CODE: 17CSU501B

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University)

Coimbatore – 641 021.

ONE MARK QUESTIONS

(Established Under Section 3 of UGC Act 1956)

12

When a user logs into a local time-sharing system of

TELNET , it is called _______ Local Login

Remote

 Login Login Logout Local Login

13

When a user wants to access an application program

or utility located on a remote machine, he performs

_______ Local Login

Remote

 Login Login Logout Remote Login

14 NVT refers to ____

Network Visual

Terminal

Network

 Virtual

Task

Network

Virtual

Terminal

Network Visual

Task

Network

 Virtual

Terminal

15 How many Character set dose NVT has? 3 2 5 4 2

16 EOF in NVT Character Set refers to ____ End of Filtering Exit on File End of File Exit on Filtering End of File

17 NOP in NVT Character Set refers to ____ No open Terminal

No

Operations

No

Open Host Non Operation No Operations

18 _____ is a command used to display the file in Unix Show Type ls cat cat

19

The ___ option of TELNET allows the receiver to

 interpret every 8-bit character received,except IAC, as

binary data. Echo Binary Supress Status Binary

20

Which of the following is not an negotiation option of

TELNET? WILL WONT DO DOES DOES

21 _____ command is used to enable options in TELNET WILL WONT DO DOES WILL

22 _____ is the reply for WILL command in TELNET Option. WONT DO DOES NOT DO

23 _____ is the reply for WILL command in TELNET Option. WONT DONT DOES NOT DONT

24

Which of the following is an suboption negotiation of

TELNET? SE SD SR SW SE

25

Which of the following Characters not used to control a

program running on remote server? IP AO AYT SX SX

26

What is the use of EL character that is used to control a

program running on server? Enter Line

Enter

Logical

Value

Erase

Logical

Value Erase Line Erase Line

27 IP character of TELNET refers to ____ Internet Process Intranet Process

Interrupt

program Interrupt Process Interrupt Process

28 AO character of TELNET refers to ____ Abort OFF Abort ON Abort Out Abort Output Abort Output

29

To make control characters effective in special situations,

TELNET uses _____ signaling. In-bound Out of Band Special Band Multiband Out of Band

30 SSH refers to ______ Security Shell Shell Script HelloSecure Shell Security Script Secure Shell

31 SSH Works in ____ layer Application Network Datalink Physical Application

32 Telnet Runs in ____ layer Application Network Datalink Physical Application

33

_____ is a program to prepare the message and store

 it in receivers mail box User Agent Mail Agent

Communicati

on

Agent compose agent User Agent

34 MTA in mailing refers to _____

Message Transist

Agent

Mail

Transist

Agent

Mail

Transfer

Agent

Message

Transfer Agent

Mail Transfer

Agent

35 UA in mailing refers to ____ Unit Agent

Universal

Agent User Agent Unicast Agent User Agent

36 MAA in mailing refers to_____

Mail Application

 Agent

Mail

 Access

Agent

Mail

Application

Access

Mail Access

Applicant

Mail Access

 Agent

37 Email address consists of ___ parts 3 4 5 2 2

38 ____part of email refers to the providers name Domain name Local local agent Provider Agent Domain name

39 SMTP refers to ____

Simple Mail

Transfer Protocol

Simple

 Mail

Transfer

Protocol

Single Mail

Transfer

Protocol

Switched Mail

Transfer Protocol

Simple Mail

 Transfer

Protocol

40

____ is a command used by the client in SMTP to

 check the status of the recipient. TURN NOOP RSET EXPN NOOP

41

____ is a SMTP command that lets the sender and the

 recipient switch positions, TURN NOOP RSET EXPN TURN

42

____ is the SMTP command that asks the recipient to

send information about the command sent as the argument. TURN NOOP HELP EXPN HELP

43

_____is the SMTP command that aborts the current mail

 transaction TURN NOOP RSET EXPN RSET

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 1/36

TCP/IP (Transmission Control Protocol / Internet Protocol) Networking:

Introduction:

TCP/IP is the networking protocol suite most commonly used with Linux/UNIX, Mac OS, Windows, and

most other operating systems. It is also the native language of the Internet. Devices that speak the TCP/IP

protocol can exchange data (―interoperate‖) despite their many differences. IP, the suite’s underlying

delivery protocol, is the workhorse of the Internet.

TCP is a connection-oriented protocol that facilitates a conversation between two programs. The

analogy of TCP/IP is a Telephone Call. TCP is a polite protocol that forces competing users to share

bandwidth and generally behave in ways that are good for the productivity of the overall network.

As the Internet becomes more popular and more crowded, we need the traffic to be mostly TCP to

avoid congestion and effectively share the available bandwidth. Today, TCP accounts for the vast

majority of Internet traffic, with UDP and ICMP checking in at a distant second and third, respectively.

TCP & Internet

TCP/IP and the Internet share a history that goes back several decades. The technical success of the

Internet is due largely to the elegant and flexible design of TCP/IP and to the fact that TCP/IP is an open

and nonproprietary protocol suite.

How the Internet is managed today? The Internet is the driving force in the world economy, several

sectors worry that it seems to be in the hands of a bunch of computer geeks, with perhaps a little direction

from the U.S. government.

Several organizations are involved in management of Internet:

 • ICANN, the Internet Corporation for Assigned Names and Numbers: if anyone can be said to be in

charge of the Internet, this group is it. (www.icann.org)

 • ISOC, the Internet Society: ISOC is a membership organization that represents Internet users.

(www.isoc.org)

• IETF, the Internet Engineering Task Force: this group oversees the development and standardization

of the technical aspects of the Internet. It is an open forum in which anyone can participate.

(www.ietf.org) of these groups, ICANN has the toughest job: establishing itself as the authority in charge

of the Internet, undoing the mistakes of the past, and foreseeing the future.

Unit V – LAN Administration: Linux and TCP/IP networking: Network Management

and Debugging

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 2/36

Network Standard & Documentation

The technical activities of the Internet community are summarized in documents known as RFCs; an

RFC is a Request for Comments. Protocol standards, proposed changes, and informational bulletins all

usually end up as RFCs. RFCs are numbered sequentially; currently, there are about 4,000. RFCs also

have descriptive titles (e.g., Algorithms for Synchronizing Network Clocks), but to forestall ambiguity

they are usually cited by number.

Not all RFCs are dry and full of boring technical details. Some of our favorites on the lighter side

(often written on April 1st) are RFCs 1118, 1149, 1925, 2324, and 2795: • RFC1118 – The Hitchhiker’s

Guide to the Internet • RFC1149 – A Standard for the Transmission of IP Datagrams on Avian Carriers1 •

RFC1925 – The Twelve Networking Truths • RFC2324 – Hyper Text Coffee Pot Control Protocol

(HTCPCP/1.0) • RFC2795 – The Infinite Monkey Protocol Suite (IMPS)

Networking Road Map

TCP/IP is a ―protocol suite,‖ a set of network protocols designed to work smoothly together. It

includes several components, each defined by a standards-track RFC or series of RFCs:

• IP, the Internet Protocol, which routes data packets from one machine to another (RFC791)

 • ICMP, the Internet Control Message Protocol, which provides several kinds of low-level support for

IP, including error messages, routing assistance, and debugging help (RFC792)

 • ARP, the Address Resolution Protocol, which translates IP addresses to hardware addresses

(RFC823)2

• UDP, the User Datagram Protocol, and TCP, the Transmission Control Protocol, which deliver data

to specific applications on the destination machine. UDP provides unverified, ―best effort‖ transport for

individual messages, whereas TCP guarantees a reliable, full duplex, flow-controlled, error-corrected

conversation between processes on two hosts. (RFCs 768 and 793)

TCP/IP is designed to work around the five layers namely Application Layer, Transport Layer,

Network Layer, Data Link Layer and Physical Layer. After TCP/IP had been implemented and deployed,

the International Organization for Standardization came up with its own seven-layer protocol suite called

OSI where Presentation and Session layers where added.

Packets and Encapsulation

Data travels on a network in the form of packets, bursts of data with a maximum length imposed by

the link layer. Each packet consists of a header and a payload. The header tells where the packet came

from and where it’s going. It can also include checksums, protocol-specific information, or other handling

instructions. The payload is the data to be transferred.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 3/36

The name of the primitive data unit depends on the layer of the protocol. At the link layer it is called a

frame, at the IP layer a packet, and at the TCP layer a segment. Here, we use ―packet‖ as a generic term

that encompasses all these cases.

As a packet travels down the protocol stack (from TCP or UDP transport to IP to Ethernet to the

physical wire) in preparation for being sent, each protocol adds its own header information. Each

protocol’s finished packet becomes the payload part of the packet generated by the next protocol. This

nesting is known as encapsulation. On the receiving machine, the encapsulation is reversed as the packet

travels back up the protocol stack.

The link layer:

The gap between the lowest layers of the networking software and the network hardware itself is bridged

are

Ethernet framing standards: One of the main chores of the link layer is to add headers to packets and to

put separators between them. The headers contain the packets’ link-layer addressing information and

checksums, and the separators ensure that receivers can tell where one packet stops and the next one

begin. The process of adding these extra bits is known generically as framing. The framing that a machine

uses is determined both by its interface card and by the interface card’s driver.

Ethernet cabling and signaling standards: The cabling options for the various Ethernet speeds (10 Mb/s,

100 Mb/s, 1 Gb/s, and now 10 Gb/s) are usually specified as part of the IEEE’s standardization efforts.

Often, a single type of cable with short distance limits will be approved as a new technology emerges

Wireless networking: The IEEE 802.11 standard attempts to define framing and signaling standards for

wireless links. One interoperability issue you may need to pay attention to is that of ―translation‖ vs.

―encapsulation.‖

Translation converts a packet from one format to another; Encapsulation wraps the packet with the

desired format.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 4/36

Maximum transfer unit: The size of packets on a network may be limited both by hardware

specifications and by protocol conventions. For example, the payload of a standard Ethernet frame can be

no longer than 1,500 bytes. The size limit is associated with the link-layer protocol and is called the

maximum transfer unit or MTU. The TCP protocol can determine the smallest MTU along the path to the

destination and use that size from the outset. In the TCP/IP suite, the IP layer splits packets to conform to

the MTU of a particular network link.

If a packet is routed through several networks, one of the intermediate networks may have a smaller

MTU than the network of origin. In this case, the router that forwards the packet onto the small-MTU

network further subdivides the packet in a process called fragmentation.

Packet addressing: Like letters or email messages, network packets must be properly addressed in order

to reach their destinations. Several addressing schemes are used in combination:

• MAC (medium access control) addresses for hardware

 • IP addresses for software

• Hostnames for people

A host’s network interface usually has a link-layer MAC address that distinguishes it from other

machines on the physical network, an IP address that identifies it on the global Internet, and a hostname

that’s used by humans. A 6-byte Ethernet address is divided into two parts: the first three bytes identify

the manufacturer of the hardware, and the last three bytes are a unique serial number that the

manufacturer assigns.

Sysadmins can often identify at least the brand of machine that is trashing the network by looking up

the 3-byte identifier in a table of vendor IDs. A current vendor table is available from

www.iana.org/assignments/ethernet-numbers. The mapping between IP addresses and hardware addresses

is implemented at the link layer of the TCP/IP model.

Ports: TCP and UDP extend IP addresses with a concept known as a ―port.‖ A port is 16-bit number that

supplements an IP address to specify a particular communication channel. Standard services such as

email, FTP, and the web all associate themselves with ―well known‖ ports defined in /etc/services.

Address types: Both the IP layer and the link layer define several different types of addresses: • Unicast –

addresses that refer to a single host (network interface, really) • Multicast – addresses that identify a

group of hosts • Broadcast – addresses that include all hosts on the local network

IP Addressing

The success of TCP/IP as the network protocol of the Internet is largely because of its ability to

connect together networks of different sizes and systems of different types. These networks are arbitrarily

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 5/36

defined into three main classes (along with a few others) that have predefined sizes, each of which can be

divided into smaller sub-networks by system administrators.

A subnet mask is used to divide an IP address into two parts. One part identifies the host (computer),

the other part identifies the network to which it belongs. To better understand how IP addresses and

subnet masks work, look at an IP (Internet Protocol) address and see how it is organized.

IP addresses: Networks and hosts

An IP address is a 32-bit number that uniquely identifies a host (computer or other device, such as a

printer or router) on a TCP/IP network. IP addresses are normally expressed in dotted-decimal format,

with four numbers separated by periods, such as 192.168.123.132. To understand how subnet masks are

used to distinguish between hosts, networks, and sub- networks, examine an IP address in binary notation.

For example, the dotted-decimal IP address 192.168.123.132 is (in binary notation) the 32 bit number

110000000101000111101110000100. This number may be hard to make sense of, so divide it into four

parts of eight binary digits. These eight bit sections are known as octets. The example IP address, then,

becomes 11000000.10101000.01111011.10000100. This number only makes a little more sense, so for

most uses, convert the binary address into dotted-decimal format (192.168.123.132). The decimal

numbers separated by periods are the octets converted from binary to decimal notation.

For a TCP/IP wide area network (WAN) to work efficiently as a collection of networks, the routers

that pass packets of data between networks do not know the exact location of a host for which a packet of

information is destined. Routers only know what network the host is a member of and use information

stored in their route table to determine how to get the packet to the destination host's network. After the

packet is delivered to the destination's network, the packet is delivered to the appropriate host.

For this process to work, an IP address has two parts. The first part of an IP address is used as a

network address, the last part as a host address. If you take the example 192.168.123.132 and divide it

into these two parts you get the following:

 192.168.123. Network .132 Host

 -or-

 192.168.123.0 - network address. 0.0.0.132 - host address.

 Subnet mask

The second item, which is required for TCP/IP to work, is the subnet mask. The subnet mask is

used by the TCP/IP protocol to determine whether a host is on the local subnet or on a remote network. In

TCP/IP, the parts of the IP address that are used as the network and host addresses are not fixed, so the

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 6/36

network and host addresses above cannot be determined unless you have more information. This

information is supplied in another 32-bit number called a subnet mask.

In this example, the subnet mask is 255.255.255.0. It is not obvious what this number means

unless you know that 255 in binary notation equals 11111111; so, the subnet mask is:

 11111111.11111111.11111111.0000000

 Lining up the IP address and the subnet mask together, the network and host portions of the address can

be separated:

 11000000.10101000.01111011.10000100 -- IP address (192.168.123.132)

 11111111.11111111.11111111.00000000 -- Subnet mask (255.255.255.0)

 The first 24 bits (the number of ones in the subnet mask) are identified as the network address,

with the last 8 bits (the number of remaining zeros in the subnet mask) identified as the host address. This

gives you the following:

 11000000.10101000.01111011.00000000 -- Network address (192.168.123.0)

 00000000.00000000.00000000.10000100 -- Host address (000.000.000.132)

 So now you know, for this example using a 255.255.255.0 subnet mask, that the network ID is

192.168.123.0, and the host address is 0.0.0.132. When a packet arrives on the 192.168.123.0 subnet

(from the local subnet or a remote network), and it has a destination address of 192.168.123.132, your

computer will receive it from the network and process it.

Almost all decimal subnet masks convert to binary numbers that are all ones on the left and all zeros on

the right. Some other common subnet masks are:

 Decimal Binary

 255.255.255.192 1111111.11111111.1111111.11000000

 255.255.255.224 1111111.11111111.1111111.11100000

Network classes

Internet addresses are allocated by the InterNIC (http://www.internic.net), the organization that

administers the Internet. These IP addresses are divided into classes. The most common of these are

classes A, B, and C. Classes D and E exist, but are not generally used by end users. Each of the address

classes has a different default subnet mask. You can identify the class of an IP address by looking at its

first octet. Following are the ranges of Class A, B, and C Internet addresses, each with an example

address:

http://www.internic.net/

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 7/36

 Class A networks use a default subnet mask of 255.0.0.0 and have 0-127 as their first octet. The

address 10.52.36.11 is a class A address. Its first octet is 10, which is between 1 and 126,

inclusive.

 Class B networks use a default subnet mask of 255.255.0.0 and have 128-191 as their first octet.

The address 172.16.52.63 is a class B address. Its first octet is 172, which is between 128 and

191, inclusive.

 Class C networks use a default subnet mask of 255.255.255.0 and have 192-223 as their first

octet. The address 192.168.123.132 is a class C address. Its first octet is 192, which is between

192 and 223, inclusive.

In some scenarios, the default subnet mask values do not fit the needs of the organization, because of the

physical topology of the network, or because the numbers of networks (or hosts) do not fit within the

default subnet mask restrictions. The next section explains how networks can be divided using subnet

masks.

Subnetting:

A Class A, B, or C TCP/IP network can be further divided, or subnetted, by a system

administrator. This becomes necessary as you reconcile the logical address scheme of the Internet (the

abstract world of IP addresses and subnets) with the physical networks in use by the real world.

A system administrator who is allocated a block of IP addresses may be administering networks

that are not organized in a way that easily fits these addresses. For example, you have a wide area

network with 150 hosts on three networks (in different cities) that are connected by a TCP/IP router. Each

of these three networks has 50 hosts. You are allocated the class C network 192.168.123.0. (For

illustration, this address is actually from a range that is not allocated on the Internet.) This means that you

can use the addresses 192.168.123.1 to 192.168.123.254 for your 150 hosts.

Two addresses that cannot be used in your example are 192.168.123.0 and 192.168.123.255

because binary addresses with a host portion of all ones and all zeros are invalid. The zero address is

invalid because it is used to specify a network without specifying a host. The 255 address (in binary

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 8/36

notation, a host address of all ones) is used to broadcast a message to every host on a network. Just

remember that the first and last address in any network or subnet cannot be assigned to any individual

host.

You should now be able to give IP addresses to 254 hosts. This works fine if all 150 computers

are on a single network. However, your 150 computers are on three separate physical networks. Instead of

requesting more address blocks for each network, you divide your network into subnets that enable you to

use one block of addresses on multiple physical networks.

In this case, you divide your network into four subnets by using a subnet mask that makes the

network address larger and the possible range of host addresses smaller. In other words, you are

'borrowing' some of the bits usually used for the host address, and using them for the network portion of

the address. The subnet mask 255.255.255.192 gives you four networks of 62 hosts each. This works

because in binary notation, 255.255.255.192 is the same as 1111111.11111111.1111111.11000000. The

first two digits of the last octet become network addresses, so you get the additional networks 00000000

(0), 01000000 (64), 10000000 (128) and 11000000 (192). (Some administrators will only use two of the

subnetworks using 255.255.255.192 as a subnet mask. For more information on this topic, see RFC

1878.) In these four networks, the last 6 binary digits can be used for host addresses.

Using a subnet mask of 255.255.255.192, your 192.168.123.0 network then becomes the four

networks 192.168.123.0, 192.168.123.64, 192.168.123.128 and 192.168.123.192. These four networks

would have as valid host addresses:

192.168.123.1-62

192.168.123.65-126

192.168.123.129-190

192.168.123.193-254

 Remember, again, that binary host addresses with all ones or all zeros are invalid, so you cannot use

addresses with the last octet of 0, 63, 64, 127, 128, 191, 192, or 255.

You can see how this works by looking at two host addresses, 192.168.123.71 and 192.168.123.133. If

you used the default Class C subnet mask of 255.255.255.0, both addresses are on the 192.168.123.0

network. However, if you use the subnet mask of 255.255.255.192, they are on different networks;

192.168.123.71 is on the 192.168.123.64 network, 192.168.123.133 is on the 192.168.123.128 network.

Default gateways

If a TCP/IP computer needs to communicate with a host on another network, it will usually

communicate through a device called a router. In TCP/IP terms, a router that is specified on a host, which

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 9/36

links the host's subnet to other networks, is called a default gateway. This section explains how TCP/IP

determines whether or not to send packets to its default gateway to reach another computer or device on

the network. When a host attempts to communicate with another device using TCP/IP, it performs a

comparison process using the defined subnet mask and the destination IP address versus the subnet mask

and its own IP address. The result of this comparison tells the computer whether the destination is a local

host or a remote host.

If the result of this process determines the destination to be a local host, then the computer will

simply send the packet on the local subnet. If the result of the comparison determines the destination to be

a remote host, then the computer will forward the packet to the default gateway defined in its TCP/IP

properties. It is then the responsibility of the router to forward the packet to the correct subnet.

Reserved Private Ranges

There are also some portions of the IPv4 space that are reserved for specific uses. One of the most useful

reserved ranges is the loopback range specified by addresses from 127.0.0.0 to 127.255.255.255. This

range is used by each host to test networking to itself. Typically, this is expressed by the first address in

this range: 127.0.0.1. Each of the normal classes also have a range within them that is used to designate

private network addresses. For instance, for class A addresses, the addresses from 10.0.0.0 to

10.255.255.255 are reserved for private network assignment. For class B, this range is 172.16.0.0 to

172.31.255.255. For class C, the range of 192.168.0.0 to 192.168.255.255 is reserved for private usage.

Any computer that is not hooked up to the internet directly (any computer that goes through a router or

other NAT system) can use these addresses at will.

Net-masks and Subnets

The process of dividing a network into smaller network sections is called sub-netting. This can be useful

for many different purposes and helps isolate groups of hosts together and deal with them easily.

As we discussed above, each address space is divided into a network portion and a host portion. The

amount the address that each of these take up is dependent on the class that the address belongs to. For

instance, for class C addresses, the first 3 octets are used to describe the network. For the

address 192.168.0.15, the 192.168.0 portion describes the network and the 15 describes the host.

By default, each network has only one subnet, which contains the entire host addresses defined within. A

net-mask is basically a specification of the amount of address bits that are used for the network portion. A

subnet mask is another net-mask within used to further divide the network.

Each bit of the address that is considered significant for describing the network should be represented as a

"1" in the netmask.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 10/36

For instance, the address we discussed above, 192.168.0.15 can be expressed like this, in binary:

1100 0000 - 1010 1000 - 0000 0000 - 0000 1111

As we described above, the network portion for class C addresses is the first 3 octets, or the first 24 bits.

Since these are the significant bits that we want to preserve, the net-mask would be:

 1111 1111 - 1111 1111 - 1111 1111 - 0000 0000

This can be written in the normal IPv4 format as 255.255.255.0. Any bit that is a "0" in the binary

representation of the netmask is considered part of the host portion of the address and can be variable.

The bits that are "1" are static, however, for the network or sub-network that is being discussed.

We determine the network portion of the address by applying a bitwise AND operation to between the

address and the net-mask. A bitwise AND operation will basically save the networking portion of the

address and discard the host portion. The result of this on our above example that represents our network

is:

 1100 0000 - 1010 1000 - 0000 0000 - 0000 0000

This can be expressed as 192.168.0.0. The host specification is then the difference between these original

value and the host portion. In our case, the host is "0000 1111" or 15.

The idea of sub-netting is to take a portion of the host space of an address, and use it as an additional

networking specification to divide the address space again.

For instance, a net-mask of 255.255.255.0 as we saw above leaves us with 254 hosts in the network (you

cannot end in 0 or 255 because these are reserved). If we wanted to divide this into two subnetworks, we

could use one bit of the conventional host portion of the address as the subnet mask.

So, continuing with our example, the networking portion is:

 1100 0000 - 1010 1000 - 0000 0000

The host portion is:

 0000 1111

We can use the first bit of our host to designate a sub-network. We can do this by adjusting the subnet

mask from this:

 1111 1111 - 1111 1111 - 1111 1111 - 0000 0000

To this:

 1111 1111 - 1111 1111 - 1111 1111 - 1000 0000

In traditional IPv4 notation, this would be expressed as 192.168.0.128. What we have done here is to

designate the first bit of the last octet as significant in addressing the network. This effectively produces

two sub-networks. The first sub-network is from 192.168.0.1 to 192.168.0.127. The second sub-network

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 11/36

contains the hosts 192.168.0.129 to 192.168.0.255. Traditionally, the subnet itself must not be used as an

address.

If we use more bits out of the host space for networking, we can get more and more sub-networks.

CIDR Notation

A system called Classless Inter-Domain Routing, or CIDR, was developed as an alternative to

traditional sub-netting. The idea is that you can add a specification in the IP address itself as to the

number of significant bits that make up the routing or networking portion.

For example, we could express the idea that the IP address 192.168.0.15 is associated with the net-

mask 255.255.255.0 by using the CIDR notation of 192.168.0.15/24. This means that the first 24 bits of

the IP address given are considered significant for the network routing.

This allows us some interesting possibilities. We can use these to reference "super-nets". In this case, we

mean a more inclusive address range that is not possible with a traditional subnet mask. For instance, in a

class C network, like above, we could not combine the addresses from the

networks 192.168.0.0 and 192.168.1.0 because the net-mask for class C addresses is 255.255.255.0.

However, using CIDR notation, we can combine these blocks by referencing this chunk

as 192.168.0.0/23. This specifies that there are 23 bits used for the network portion that we are referring

to.

So the first network (192.168.0.0) could be represented like this in binary:

 1100 0000 - 1010 1000 - 0000 0000 - 0000 0000

While the second network (192.168.1.0) would be like this:

 1100 0000 - 1010 1000 - 0000 0001 - 0000 0000

The CIDR address we specified indicates that the first 23 bits are used for the network block we are

referencing. This is equivalent to a net-mask of 255.255.254.0, or:

 1111 1111 - 1111 1111 - 1111 1110 - 0000 0000

As you can see, with this block the 24th bit can be either 0 or 1 and it will still match, because the

network block only cares about the first 23 digits.

Basically, CIDR allows us more control over addressing continuous blocks of IP addresses. This is much

more useful than the sub-netting we talked about originally.

Private addresses and NAT

Another temporary solution to address space depletion is the use of private IP address spaces,

described in RFC1918 (February 1996). In the CIDR era, sites normally obtain their IP addresses from

their Internet service provider. If a site wants to change ISPs, it may be held for ransom by the cost of

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 12/36

renumbering its networks. One alternative to using ISP-assigned addresses is to use private addresses that

are never shown to your ISP. RFC1918 sets aside 1 class A network, 16 class B networks, and 256 class

C networks that will never be globally allocated and can be used internally by any site. The catch is that

packets bearing those addresses must never be allowed to sneak out onto the Internet.

 To allow hosts that use these private addresses to talk to the Internet, the site’s border router

runs a system called NAT (Network Address Translation). NAT intercepts packets addressed with these

internal-only addresses and rewrites their source addresses, using a real external IP address and perhaps a

different source port number. It also maintains a table of the mappings it has made between internal and

external address/source-port pairs so that the translation can be performed in reverse when answering

packets arrive from the Internet. NAT’s use of port number mapping allows several conversations to be

multiplexed onto the same IP address so that a single external address can be shared by many internal

hosts. In some cases, a site can get by with only one ―real‖ IP address. A site that uses NAT must still

request address space from its ISP, but most of the addresses thus obtained are used for NAT mappings

and are not assigned to individual hosts. If the site later wants to choose another ISP, only the border

router and its NAT configuration need to change, not the configurations of the individual hosts.

An incorrect NAT configuration can let private-address-space packets escape onto the Internet. The

packets will get to their destinations, but answering packets won’t be able to get back. CAIDA, 13 an

organization that measures everything in sight about the backbone networks, finds that 0.1% to 0.2% of

the packets on the backbone have either private addresses or bad checksums. One disadvantage of NAT

(or perhaps an advantage) is that an arbitrary host on the Internet cannot connect directly to your site’s

internal machines. Some implementations (e.g., Linux and Cisco PIX) let you configure ―tunnels‖ that

support direct connections for particular hosts.

IPv6 addressing

An IPv6 address is 128 bits long. These long addresses were originally intended to solve the

problem of IP address exhaustion. Now that they’re here, however, they are being exploited to help with

issues of routing, mobility, and locality of reference. IP addresses have never been geographically

clustered in the way that phone numbers or zip codes are. Now, with the proposed segmentation of the

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 13/36

IPv6 address space, they will at least cluster to ISPs. The boundary between the network portion and the

host portion of an IPv6 address is fixed at /64; the boundary between public topology and a site’s local

topology is fixed at /48. Table 12.8 shows the various parts of an IPv6 address.

In IPv6, the MAC address is seen at the IP layer, a situation with both good and bad implications.

The brand and model of interface card are encoded in the first half of the MAC address, so hackers with

code for a particular architecture will be helped along. The visibility of this information has also worried

some privacy advocates. The IPv6 folks have responded by pointing out that site are not actually required

to use MAC addresses; they’re free to use whatever they want for the host address.

ARIN generally allocates IPv6 space only to large ISPs or to local Internet registries that plan to

dole out large chunks of address space in the near future. These organizations can then allocate subspaces

to their downstream customers. Here are some useful sources of IPv6 information:

• www.ipv6tf.net – An IPv6 information portal

• www.ipv6.org – FAQs and technical information

• www.ipv6forum.com – marketing folks and IPv6 propaganda

Routing:

Routing is the process of directing a packet through the maze of networks that stand between its source

and its destination. In the TCP/IP system, it is similar to asking for directions in an unfamiliar country.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 14/36

Routing information is stored in a table in the kernel. Each table entry has several parameters, including a

netmask for each listed network (once optional but now required if the default netmask is not correct). To

route a packet to a particular address, the kernel picks the most specific of the matching routes (that is, the

one with the longest netmask). If the kernel finds no relevant route and no default route, then it returns a

―network unreachable‖ ICMP error to the sender.

The word ―routing‖ is commonly used to mean two distinct things:

• Looking up a network address in the routing table to forward a packet toward its destination

• Building the routing table in the first place

Routing Table

You can examine a machine’s routing table with netstat -r. Use netstat -rn to avoid DNS lookups and to

present all the information numerically. Routing tables can be configured statically, dynamically, or with

a combination of the two approaches. A static route is one that you enter explicitly with the route

command. Static routes should stay in the routing table as long as the system is up; they are often set up at

boot time from one of the system start-up scripts. In a stable local network, static routing is an efficient

solution. It is easy to manage and reliable. However, it requires that the system administrator know the

topology of the network accurately at boot time and that the topology not change often. Most machines on

a local area network have only one way to get out to the rest of the network, so the routing problem is

easy. A default route added at boot time suffices to point toward the way out. For more complicated

network topologies, dynamic routing is required. Dynamic routing is typically performed by a daemon

process that maintains and modifies the routing table. Routing daemons on different hosts communicate

to discover the topology of the network and to figure out how to reach distant destinations. Several

routing daemons are available.

ARP (Address Resolution Protocol)

ARP, the Address Resolution Protocol, discovers the hardware address associated with a particular IP

address. It can be used on any kind of network that supports broadcasting but is most commonly

described in terms of Ethernet. If host A wants to send a packet to host B on the same Ethernet, it uses

ARP to discover B’s hardware address. If B is not on the same network as A, host A uses the routing

system to determine the next-hop router along the route to B and then uses ARP to find that router’s

hardware address. Since ARP uses broadcast packets, which cannot cross networks, it can only be used to

find the hardware addresses of machines directly connected to the sending host’s local network. Every

machine maintains a table in memory called the ARP cache, which contains the results of recent ARP

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 15/36

queries. Under normal circumstances, many of the addresses a host needs are discovered soon after

booting, so ARP does not account for a lot of network traffic.

The arp command examines and manipulates the kernel’s ARP cache, adds or deletes entries, and flushes

or shows the table. The command arp -a displays the contentsof the ARP cache. The arp command is

generally useful only for debugging and for situations that involve special hardware. Some devices are not

smart enough to speak ARP. To support such devices, you might need to configure another machine as a

proxy ARP server for your crippled hardware. That’s normally done with the arp command as well

ADDITION OF A MACHINE TO A NETWORK

Only a few steps are involved in adding a new machine to an existing local area network, but some

vendors hide the files you must modify and generally make the chore difficult. Others provide a setup

script that prompts for the networking parameters that are needed, which is fine until you need to undo

something or move a machine. Before bringing up a new machine on a network that is connected to the

Internet, you should secure it so that you are not inadvertently inviting hackers onto your local network.

The basic steps to add a new machine to a local network are as follows:

• Assign a unique IP address and hostname.

• Set up the new host to configure its network interfaces at boot time.

• Set up a default route and perhaps fancier routing.

• Point to a DNS name server, to allow access to the rest of the Internet.

Of course, you could add a debugging step to this sequence as well. After any change that might affect

booting, you should always reboot to verify that the machine comes up correctly. If your network uses

DHCP, the Dynamic Host Configuration Protocol, the DHCP server will do these chores for you.

ifconfig: configure network interfaces

ifconfig enables or disables a network interface, sets its IP address and subnet mask, and sets various

other options and parameters. It is usually run at boot time but it can also make changes on the fly. Be

careful if you are making ifconfig changes and are logged in remotely; many a sysadmin has been locked

out this way and had to drive in to fix things. An ifconfig command most commonly has the form

ifconfig interface address options …

for example:

ifconfig eth0 192.168.1.13 netmask 255.255.255.0 up

ifconfig interface displays the current settings for interface without changing them. Many systems

understand -a to mean ―all interfaces,‖ and ifconfig -a can therefore be used to find out what interfaces

are present on the system.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 16/36

route: configure static routes

The route command defines static routes, explicit routing table entries that never change (you hope), even

if you run a routing daemon. When you add a new machine to a local area network, you usually need to

specify only a default route;

Default routes

A default route causes all packets whose destination network is not found in the kernel’s routing table to

be sent to the indicated gateway. To set a default route, simply add the following line to your startup files:

route add default gw gateway-IP-address

Rather than hard coding an explicit IP address into the startup files, most vendors have their systems get

the gateway IP address from a configuration file. The way that local routing information is integrated into

the startup sequence is unfortunately different for each of our Linux systems

DNS configuration

To configure a machine as a DNS client, you need to edit only one or two files: all systems require

/etc/resolv.conf to be modified, and some require you to modify a ―service switch‖ file as well. The

/etc/resolv.conf file lists the DNS domains that should be searched to resolve names that are incomplete

(that is, not fully qualified, such as anchor instead of anchor. cs.colorado.edu) and the IP addresses of the

name servers to contact for name lookups.

Security Issues

IP forwarding

A UNIX or Linux system that has IP forwarding enabled can act as a router. That is, it can accept third-

party packets on one network interface, match them to a gateway or destination host on another interface,

and retransmit the packets. Unless your system has multiple network interfaces and is actually supposed

to function as a router, it’s advisable to turn this feature off. Hosts that forward packets can sometimes be

coerced into compromising security by making external packets appear to have come from inside your

network. This subterfuge can help an intruder’s packets evade network scanners and packet filters. It is

perfectly acceptable for a host to use multiple network interfaces for its own traffic without forwarding

third-party traffic.

ICMP redirects

ICMP redirects can maliciously reroute traffic and tamper with your routing tables. Most operating

systems listen to ICMP redirects and follow their instructions by default. It would be bad if all your traffic

were rerouted to a competitor’s network for a few hours, especially while backups were running. In such

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 17/36

case configure your routers (and hosts acting as routers) to ignore and perhaps log ICMP redirect

attempts.

Source routing: It was part of the original IP specification; it was intended primarily to facilitate testing.

It can create security problems because packets are often filtered according to their origin. If someone can

cleverly route a packet to make it appear to have originated within your network instead of the Internet, it

might slip through your firewall. We recommend that you neither accept nor forward source-routed

packets.

Broadcast pings and other directed broadcasts

Ping packets addressed to a network’s broadcast address (instead of to a particular host address) are

typically delivered to every host on the network. Such packets have been used in denial of service attacks;

for example, the so-called Smurf attacks. (The ―Smurf attacks‖ Wikipedia article has details.) Broadcast

pings are a form of ―directed broadcast‖ in that they are packets sent to the broadcast address of a distant

network. The default handling of such packets has been gradually changing.

IP spoofing

The source address on an IP packet is normally filled in by the kernel’s TCP/IP implementation and is the

IP address of the host from which the packet was sent. However, if the software creating the packet uses a

raw socket, it can fill in any source address it likes. This is called IP spoofing and is usually associated

with some kind of malicious network behaviour. The machine identified by the spoofed source IP address

(if it is a real address at all) is often the victim in the scheme. Error and return packets can disrupt or flood

the victim’s network connections. You should deny IP spoofing at your border router by blocking

outgoing packets whose source address is not within your address space. This precaution is especially

important if your site is a university where students like to experiment and may be tempted to carry out

digital vendettas.

Host-based firewalls

Traditionally, a network packet filter or firewall connects your local network to the outside world and

controls traffic according to a site-wide policy. The last few Windows releases all come with their own

personal firewalls, and they complain bitterly if you try to turn the firewall off. Our example systems all

include packet filtering software, but you should not infer from this that every UNIX or Linux machine

needs its own firewall. It does not. The packet filtering features are there to allow these machines to serve

as network gateways.

Virtual private networks Many organizations that have offices in several locations would like to have

all those locations connected to one big private network. Such organizations can use the Internet as if it

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 18/36

were a private network by establishing a series of secure, encrypted ―tunnels‖ among their various

locations. A network that includes such tunnels is known as a virtual private network or VPN. VPN

facilities are also needed when employees must connect to your private network from their homes or from

the field. A VPN system doesn’t eliminate every possible security issue relating to such ad hoc

connections, but it’s secure enough for many purposes.

PPP: The Point to Point Protocol

PPP represents an underlying communication channel as a virtual network interface. However, since the

underlying channel need not have any of the features of an actual network, communication is restricted to

the two hosts at the ends of the link—a virtual network of two. PPP has the distinction of being used on

both the slowest and the fastest IP links, but for different reasons. In its asynchronous form, PPP is best

known as the protocol used to provide dialup Internet service over phone lines and serial links. These

channels are not inherently packet oriented, so the PPP device driver encodes network packets into a

unified data stream and adds link-level headers and markers to separate packets. In its synchronous form,

PPP is the encapsulation protocol used on high-speed circuits that have routers at either end. It’s also

commonly used as part of the implementation of DSL and cable modems for broadband service. In these

latter situations, PPP not only converts the underlying network system (often ATM in the case of DSL) to

an IP-friendly form, but it also provides authentication and access control for the link itself. In addition to

specifying how the link is established, maintained, and torn down, PPP implements error checking,

authentication, encryption, and compression. These features make it adaptable to a variety of situations.

Network Management & Debugging

Introduction:

Network management is the art and science of keeping a network healthy. It generally includes the

following tasks:

• Fault detection for networks, gateways, and critical servers

• Schemes for notifying an administrator of problems

• General monitoring, to balance load and plan expansion

• Documentation and visualization of the network

• Administration of network devices from a central site

As your network grows, management procedures should become more automated. On a network

consisting of several different subnets joined with switches or routers, you may want to start automating

management tasks with shell scripts and simple programs. If you have a WAN or a complex local

network, consider installing a dedicated network management station.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 19/36

Network Troubleshooting

Network issues can also stem from problems with higher-level protocols such as DNS, NFS, and HTTP.

Troubleshooting requires strong commands like ping, traceroute, netstat, tcpdump, and Wireshark.

Before you attack your network, consider these principles:

• Make one change at a time, and test each change to make sure that it had the effect you

intended. Back out any changes that have an undesired effect.

• Document the situation as it was before you got involved, and document every change you

make along the way.

• Start at one ―end‖ of a system or network and work through the system’s critical components

until you reach the problem. For example, you might start by looking at the network

configuration on a client, work your way up to the physical connections, investigate the network

hardware, and finally, check the server’s physical connections and software configuration.

• Communicate regularly. Most network problems involve or affect lots of different people: users,

ISPs, system administrators, telco engineers, network administrators, etc. Clear, consistent

communication prevents you from hindering one another’s efforts to solve the problem.

• Work as a team. Years of experience show that people make fewer stupid mistakes if they have

a peer helping out.

• Use the layers of the network to negotiate the problem. Start at the ―top‖ or ―bottom‖ and work

your way through the protocol stack.

PING: Check to see if Host is Alive

The ping command is embarrassingly simple, but in many situations it is all you need. It sends an ICMP

ECHO_REQUEST packet to a target host and waits to see if the host answers back. Despite its simplicity,

ping is one of the workhorses of network debugging. You can use ping to check the status of individual

hosts and to test segments of the network. Routing tables, physical networks, and gateways are all

involved in processing a ping, so the network must be more or less working for ping to succeed. If ping

doesn’t work, you can be pretty sure that nothing more sophisticated will work either.

ping runs in an infinite loop unless you supply a packet count argument. Once you’ve had your fill of

pinging, type the interrupt character (usually <Control-C>) to get out. Here’s an example:

$ ping beast

PING beast (10.1.1.46): 56 bytes of data.

64 bytes from beast (10.1.1.46): icmp_seq=0 ttl=54 time=48.3ms

64 bytes from beast (10.1.1.46): icmp_seq=1 ttl=54 time=46.4ms

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 20/36

64 bytes from beast (10.1.1.46): icmp_seq=2 ttl=54 time=88.7ms

^C

--- beast ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2026ms

rtt min/avg/max/mdev = 46.490/61.202/88.731/19.481 ms

The output for beast shows the host’s IP address, the ICMP sequence number of each response packet,

and the round trip travel time. The most obvious thing that the output above tells you is that the server

beast is alive and connected to the network. On a healthy network, ping can allow you to determine if a

host is down. Conversely, when a remote host is known to be up and in good working order, ping can

give you useful information about the health of the network. Ping packets are routed by the usual IP

mechanisms, and a successful round trip means that all networks and gateways lying between the source

and destination are working correctly, at least to a first approximation.

To track down the cause of disappearing packets, first run traceroute to discover the route that packets

are taking to the target host. Then ping the intermediate gateways in sequence to discover which link is

dropping packets. To pin down the problem, you need to send a statistically significant number of

packets.

The round trip time reported by ping gives you insight into the overall performance of a path through a

network. Moderate variations in round trip time do not usually indicate problems. Packets may

occasionally be delayed by tens or hundreds of milliseconds for no apparent reason; that’s just the way IP

works.

The ping program can send echo request packets of any size, so by using a packet larger than the MTU of

the network (1,500 bytes for Ethernet), you can force fragmentation.

$ ping -s 1500 cuinfo.cornell.edu

Use the ping command with the following caveats in mind.

 First, it is hard to distinguish the failure of a network from the failure of a server with only the

ping command. In an environment where ping tests normally work, a failed ping just tells you

that something is wrong. (Network firewalls sometimes intentionally block ICMP packets.)

 Second, a successful ping does not guarantee much about the target machine’s state. Echo request

packets are handled within the IP protocol stack and do not require a server process to be running

on the probed host. A response guarantees only that a machine is powered on and has not

experienced a kernel panic.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 21/36

traceroute: Trace IP Packets:

traceroute, originally written by Van Jacobson, uncovers the sequence of gateways through which an IP

packet travels to reach its destination. All modern operating systems come with some version of

traceroute. The syntax is simply

traceroute hostname

There are a variety of options, most of which are not important in daily use. As usual, the hostname can

be specified with either a DNS name or an IP address. The output is simply a list of hosts, starting with

the first gateway and ending at the destination. For example, a traceroute from the host jaguar to the host

nubark produces the following output:

$ traceroute nubark

traceroute to nubark (192.168.2.10), 30 hops max, 38 byte packets 1 lab-gw (172.16.8.254) 0.840 ms

0.693 ms 0.671 ms 2 dmz-gw (192.168.1.254) 4.642 ms 4.582 ms 4.674 ms 3 nubark (192.168.2.10)

7.959 ms 5.949 ms 5.908 ms From this output we can tell that jaguar is exactly three hops away from

nubark, and we can see which gateways are involved in the connection. The round trip time for each

gateway is also shown—three samples for each hop are measured and displayed. A typical traceroute

between Internet hosts often includes more than 15 hops. traceroute works by setting the time-to-live field

(TTL, actually ―hop count to live‖) of an outbound packet to an artificially low number. As packets arrive

at a gateway, their TTL is decreased.

When a gateway decreases the TTL to 0, it discards the packet and sends an ICMP ―time

exceeded‖ message back to the originating host. The first three traceroute packets have their TTL set to

1. The first gateway to see such a packet (lab-gw in this case) determines that the TTL has been exceeded

and notifies jaguar of the dropped packet by sending back an ICMP message. The sender’s IP address in

the header of the error packet identifies the gateway; traceroute looks up this address in DNS to find the

gateway’s hostname. To identify the second-hop gateway, traceroute sends out a second round of

packets with TTL fields set to 2.

The first gateway routes the packets and decreases their TTL by 1. At the second gateway, the

packets are then dropped and ICMP error messages are generated as before. This process continues until

the TTL is equal to the number of hops to the destination host and the packets reach their destination

successfully. Since traceroute sends three packets for each value of the TTL field, you may sometimes

observe an interesting artifact. If an intervening gateway multiplexes traffic across several routes, the

packets might be returned by different hosts; in this case, traceroute simply prints them all.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 22/36

NETSTAT: GET NETWORK STATISTICS

netstat collects a wealth of information about the state of your computer’s networking software,

including interface statistics, routing information, and connection tables. There isn’t really a unifying

theme to the different sets of output, except that they all relate to the network.

The five most common uses of netstat are :

• Inspecting interface configuration information

• Monitoring the status of network connections

• Identifying listening network services

• Examining the routing table

• Viewing operational statistics for various network protocols

Inspecting interface configuration information

netstat -i displays information about the configuration and state of each of the host’s network

interfaces. You can run netstat -i as a good way to familiarize yourself with a new machine’s network

setup. Add the -e option for additional details.

For example:

This host has two network interfaces: one for regular traffic plus a second connection for system

management named eth1. RX packets and TX packets report the number of packets that have been

received and transmitted on each interface since the machine was booted. Many different types of errors

are counted in the error buckets, and it is normal for a few to show up. Errors should be less than 1% of

the associated packets. If your error rate is high, compare the rates of several neighboring machines. A

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 23/36

large number of errors on a single machine suggest a problem with that machine’s interface or

connection. A high error rate everywhere most likely indicates a media or network problem. One of the

most common causes of a high error rate is an Ethernet speed or duplex mismatch caused by a failure of

autosensing or auto negotiation.

Monitoring the status of network connections

With no arguments, netstat displays the status of active TCP and UDP ports. Inactive

(―listening‖) servers waiting for connections aren’t normally shown; they can be seen with netstat -a. The

output looks like this:

This example is from the host otter, and it has been severely pruned; for example, UDP and

UNIX socket connections are not displayed. The output above shows an inbound SSH connection, two

inbound IMAPS connections, one inbound HTTP connection, an outbound MySQL connection, and a

bunch of ports listening for other connections.

Addresses are shown as hostname.service, where the service is a port number. For well-known

services, netstat shows the port symbolically, using the mapping defined in the /etc/services file. You can

obtain numeric addresses and ports with the -n option. As with most network debugging tools, if your

DNS is broken, netstat is painful to use without the -n flag.

Send-Q and Recv-Q show the sizes of the send and receive queues for the connection on the local host;

the queue sizes on the other end of a TCP connection might be different. They should tend toward 0 and

at least not be consistently nonzero. Of course, if you are running netstat over a network terminal, the

send queue for your connection may never be 0.

Identifying listening network services

One common question in this security-conscious era is ―What processes on this machine are listening on

the network for incoming connections?‖ netstat -a shows all the ports that are actively listening (any TCP

port in state LISTEN, and potentially any UDP port), but on a busy machine those lines can get lost in the

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 24/36

noise of established TCP connections. Use netstat -l to see only the listening ports. The output format is

the same as for netstat -a.

You can add the -p flag to make netstat identify the specific process associated with each listening port.

The sample output below shows three common services (sshd, sendmail, and named), followed by an

unusual one:

Examining the routing table

netstat -r displays the kernel’s routing table. The following sample is from a Red Hat machine with two

network interfaces.

Destinations and gateways can be displayed either as hostnames or as IP addresses; the -n flag requests

numeric output. The Flags characterize the route: U means up (active), G is a gateway, and H is a host

route. U, G, and H together indicate a host route that passes through an intermediate gateway. The D flag

(not shown) indicates a route resulting from an ICMP redirect.

The remaining fields give statistics on the route: the current number of TCP connections using the route,

the number of packets sent, and the interface used. Use this form of netstat to check the health of your

system’s routing table.

Viewing operational statistics for network protocols

netstat -s dumps the contents of counters that are scattered throughout the network code. The output has

separate sections for IP, ICMP, TCP, and UDP. Below are pieces of netstat -s output from a typical

server;

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 25/36

Packet Sniffer:

tcpdump and Wireshark belong to a class of tools known as packet sniffers. They listen to the

traffic on a network and record or print packets that meet certain criteria specified by the user. For

example, all packets sent to or from a particular host or TCP packets related to one particular network

connection could be inspected.

Packet sniffers are useful both for solving problems you know about and for discovering entirely

new problems. It’s a good idea to take an occasional sniff of your network to make sure the traffic is in

order. Packet sniffers need to be able to intercept traffic that the local machine would not normally

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 26/36

receive (or at least, pay attention to), so the underlying network hardware must allow access to every

packet.

Broadcast technologies such as Ethernet work fine, as do most other modern local area networks.

Since packet sniffers need to see as much of the raw network traffic as possible, they can be thwarted by

network switches, which by design try to limit the propagation of ―unnecessary‖ packets. However, it can

still be informative to try out a sniffer on a switched network. Packet sniffers understand many of the

packet formats used by standard network services, and they can often print these packets in a human-

readable form. This capability makes it easier to track the flow of a conversation between two programs.

Some sniffers print the ASCII contents of a packet in addition to the packet header and so are useful for

investigating high-layer protocols. Since some of these protocols send information (and even passwords)

across the network as clear-text, you must take care not to invade the privacy of your users.

tcpdump: king of sniffers

tcpdump, yet another amazing network tool by Van Jacobson, is included in most Linux

distributions. tcpdump has long been the industry-standard sniffer; most other network analysis tools

read and write trace files in ―tcpdump format.‖ By default, tcpdump tunes in on the first network

interface it comes across. If it chooses the wrong interface, you can force an interface with the -i flag. If

DNS is broken or you just don’t want tcpdump doing name lookups, use the -n option. For example, the

following truncated output comes from the machine named nubark. The filter specification host bull

limits the display of packets to those that directly involve the machine bull, either as source or as

destination.

The first packet shows the host bull sending a DNS lookup request about atrust.com to nubark.

The response is the IP address of the machine associated with that name, which is 66.77.122.161. Note

the time stamp on the left and tcpdump’s understanding of the application-layer protocol (in this case,

DNS). The port number on bull is arbitrary and is shown numerically (41537), but since the server port

number (53) is well known, tcpdump shows its symbolic name (―domain‖) instead.

Wireshark: visual sniffer

If you’re more inclined to use a point-and-click program for packet sniffing, then Wireshark may

be for you. Available under the GNU General Public License from www.wireshark.org, Wireshark is a

GTK+ (GIMP tool kit)-based GUI packet sniffer that has more functionality than most commercial

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 27/36

sniffing products. You can run Wireshark on your Linux desktop, or if your laptop is still painfully

suffering in the dark ages of Windows, you can download binaries for that too.

In addition to sniffing packets, Wireshark has a couple of features that make it extra handy. One

nice feature is that Wireshark can read and write a large number of other packet trace file formats,

including (but not limited to):

• TCPDUMP

• NAI’s Sniffer

• Sniffer Pro

• NetXray

• Snoop

• Shomiti Surveyor

• Microsoft’s Network Monitor

• Novell’s LANalyzer

• Cisco Secure IDS iplog

The second extra-handy feature is that you can click on one packet in a TCP stream and ask

Wireshark to ―reassemble‖ (splice together) the payload data of all the packets in the stream. This feature

is useful if you want to quickly examine the data transferred during a complete TCP conversation, such as

a connection carrying an email message across the network.5 Wireshark has capture filters, which

function identically to tcpdump’s. Watch out, though—one important gotcha with Wireshark is the added

feature of ―display filters,‖ which affect what you see rather than what’s actually captured by the sniffer.

Oddly, display filters use an entirely different syntax from capture filters. Wireshark is an incredibly

powerful analysis tool and is included in almost every networking expert’s tool kit. Moreover, it’s also an

invaluable learning aid for those just beginning to explore packet networking. Wireshark’s help menu

provides many great examples to get you started.

NETWORK MANAGEMENT PROTOCOLS

Network management protocols standardize the method of probing a device to discover its

configuration, health, and network connections. In addition, they allow some of this information to be

modified so that network management can be standardized across different kinds of machinery and

performed from a central location. The most common management protocol used with TCP/IP is the

Simple Network Management Protocol, SNMP. Despite its name, SNMP is actually quite complex. It

defines a hierarchical namespace of management data and a way to read and write the data at each node.

It also defines a way for managed servers and devices (―agents‖) to send event notification messages

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 28/36

(―traps‖) to management stations. The SNMP protocol itself is simple; most of SNMP’s complexity lies

above the protocol layer in the conventions for constructing the namespace and in the unnecessarily

baroque vocabulary that surrounds SNMP like a protective shell.

Several other standards are floating around out there. Many of them originate from the

Distributed Management Task Force (DMTF), which is responsible for concepts such as WBEM (Web-

Based Enterprise Management), DMI (Desktop Management Interface), and the CIM (Conceptual

Interface Model). Some of these concepts, particularly DMI, have been embraced by several major

vendors and may become a useful complement to (or even a replacement for) SNMP.

A major advantage of management-by-protocol is that it promotes all kinds of network hardware

onto a level playing field. Linux systems are all basically similar, but routers, switches, and other low-

level components are not. With SNMP, they all speak a common language and can be probed, reset, and

configured from a central location. It’s nice to have one consistent interface to the entire network’s

hardware.

Simple Network Management Protocol

Background

The Simple Network Management protocol (SNMP) is an application layer protocol that

facilitates the exchange of the management information between network devices. It is part of

the Transmission Control Protocol / Internet Protocol (TCP/IP) protocol suite. SNMP enables

network administrators to manage network performance, find and solve network problems, and

plan for network growth.Two versions of SNMP exist: SNMP version 1 (SNMPv1) and SNMP

version 2 (SNMPv2). Both versions have a number of features in common. but SNMPv2 offers

enhancements , such as additional protocol operations. Standardization of yet another version of

SNMP - SNMP version 3 (SNMPv3) – is pending. This chapter provides descriptions of the

SNMPv1 and SNMPv2 protocol operations. Figure 56-1 illustrates a basic network managed by

SNMP.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 29/36

SNMP Basic Components

An SNMP - managed network consists of three key components: managed devices,

agents, and network – management systems (NMSs).

A managed device is a network node that contains an SNMP agent and that resides on a

managed network. Managed devices collect and store management information and make this

information available to NMSs using SNMP. Managed devices, sometimes called network

elements, can be routers and access servers, switches and bridges, hubs, computer hosts, or

printers.

An agent is a network management software module that resides in a managed device.

An agent has local knowledge of management information and translates that information into a

form compatible with SNMP. An NMS executes applications that monitor and control managed

devices. NMSs provide the bulk of the processing and memory resources required for network

management. One or more NMSs must exist on any managed network.

SNMP Commands

Managed devices are monitored and controlled using four basic SNMP commands: read,

write, trap, and traversal operations. The read command is used by an NMS to monitor managed

devices. The NMS examines the different variables that are maintained by the managed devices.

The write command is used by an NMS to control managed devices. The NMS changes the

values of the variables stored within managed devices. The trap command is used by the

managed devices to asynchronously report events to the NMS. When certain types of events

occur, a managed device sends a trap to the NMS. Traversal operations are used by the NMS to

Management entity

Agent

Management Database

Agent

Management Database

Agent

Management Database

NMS

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 30/36

determine which variables a managed device supports and to sequentially gather information in

variable tables, such as a routing table.

Network Management Architecture

Network management system contains two primary elements. A manager and agents. The

manager is the console through which the network administrator performs network management

functions. Agents are the entities that interface to the actual device being managed. Bridges,

hubs, routers or network servers are examples of managed devices that contain managed objects.

These managed objects might be hardware, configuration parameters, performance

statistics, and so on, that directly relate to the current operation of the device in question. These

objects are arranged in what is known as a virtual information database, called a management

information base, also called MIB. SNMP allows managers and agents to communicate for the

purpose of accessing these objects. The model of network management architecture looks like

this:

Typical agent usually:

1 Implements full SNMP protocol.

2 Stores and retrieves management data as defined by the MIB.

3 Can asynchronously signal an event to the manager.

4 Can be a proxy for some non-SNMP manageable network node. Click here to see typical

proxy architecture.

Atypical manager usually:

1 Implemented as a Network Management Station (the NMS)

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 31/36

2 Implements full SNMP protocol

3 Able to send Query

4 Get responses from agents

5 Set variables in agents

6 Acknowledge asynchronous events from agents

Some prominent vendors offer network management platforms which implement the role of the

manager (listed in alphabetic order):

1 Dec PolyCenter Network Manager

2 Hewlett – Packard Open View

3 IBM AIX NetView/6000

4 SunConnect SunNet Manager

Management Information Base

Management Information Bases (MIBs) are a collection of definitions, which define the

properties of the managed object within the device to be managed. Every managed device keeps

a database of values for each of the definitions written in the MIB. It is not the actual database

itself – it is the implementation dependent.

Definition of the MIB conforms to the SMI given in RFC 1155. Latest Internet MIB is

given in RFC 1213 sometimes called the MIB-II. Click here to see MIB architecture. You can

think of a MIB as an information warehouse.

Criteria and Philosophy for standardized MIB

1 Objects have to be uniquely named

2 Objects have to be essential

3 Abstract structure of the MIB needed to be universal

4 For the standard MIB maintain only a small number of objects

5 Allow for private extensions

6 Object must be general and not too device dependent

7 Objects cannot be easily derivable from their objects

8 If agent is to be SNMP manageable then it is mandatory to implement the Internet MIB

(currently given as MIB-II in RFC 1157)

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 32/36

Naming an object

1. Universal unambiguous identification of arbitrary objects

2. Can be achieved by using an hierarchical tree

3. Based on the Object Identification Scheme defined by OSI

The Registered Tree

Identifiers

1 Object name is given by its name in the tree.

2 All child nodes are given by the unique integer values within the new sub-tree.

3 Children can be parents of further child sub-tree (ie: they have subordinates) where the

numbering scheme is recursively applied.

4 The Object Identifier (or name) of an object is the sequence of non-negative Integer

values traversing the tree to the node required.

5 Allocation of an integer value for a node in the tree is an act of registration by

whoever has delegated authority for that sub tree.

6 This process can go to an arbitrary depth.

7 If a node ha children then it is an aggregate node.

8 Children of the same parent cannot have the same integer value.

Object and Object Identifiers

1 Object is named or identified by the sequence of integers in traversing the tree to the

object type required

2 This does not identify an instance of the object

3 The Object Identifier(OID) is shown in afew ways with a.b.c.d.e being the preferred

4 OIDs can name many types of objects:

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 33/36

The Internet Sub – tree

 Directory sub-tree if for future directory services

 Experimental sub-tree is for experimental MIB work – still

 Has to be registered with the authority (IESG)

 MIB sub-tree is the actual mandatory Internet MIB for all

 Agents to implement (currently MIB-II RFC 1156- this is the Only sub-tree for

management)

 Enterprise sub-tree (of private) are MIBs of proprietary objects And are of course not

mandatory (sub-tree registered with Internet assigned numbers authority) for example:

CISCO

 Router OID: 1.3.6.1.4.1.9.1.1

 SNMP management nearly always Internet in MIB and specific enterprises MIBs.

MIB-II Standard Internet MIB

1. Definition follows structure given in SMI

2. MIB-II (RFC 1213) is current standard definition of the virtual file store for SNMP

manageable objects

 Has 10 basic groups

 System

 Interfaces

 AT

 IP

 ICMP

 TCP

 UDP

 EGP

 Transmission

 SNMP

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 34/36

If agent implements any group then is has to implement all of the managed objects within the

group. An agent does not have to implement all groups. Note: MIB –I and MIB-II have some

OID (position in the Internet sub-tree)

MIB-II

The MIB sub-tree

Note: there is an object cm OT (9) under the MIB but it has become almost superfluous and for

all intense and purposes is not one of the SNMP manageable groups within MIB.

SNMP Protocol

SNMP is based on the managers/ agent model. SNMP is referred to as ―simple‖ because

the agent requires minimal software. Most of the processing power and the data storage reside on

the management system, while a complementary subset of those functions resides in the

managed system.

To achieve its goal of being simple, SNMP includes a limited set of management

commands and responses. The management system issues Get, GetNext and Set messages to

retrieve single or multiple object variables or to establish the value of a single variable. The

managed agent sends a response message to complete the Get, GetNext or Set. The managed

agents send an event notification, called a trap to the management system to identify the

occurrence of conditions such as threshold that exceeds a predetermined value. In short there are

only five primitive operations:

1 Get(retrieve operation)

2 Getnext(traversal operation)

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 35/36

3 Getresponse(indicative operation)

4 Set(alter operation)

5 Trap(asynchronous trap operation)

SNMP Message Construct

Each SNMP message has the format:

1 Version number

2 Community name – kind of a password

3 One or more SNMP PDUs – assuming trivial authentication

 Each SNMP PDU except trap has the following format:

1 Request id – request sequence number

2 Error status – zero if no error otherwise one of a small set

3 Error index – if non zero indicates which of the OIDs in the

 PDU caused the error 2

4 List of OIDs and values - values are null for get and getnext

Trap PDUs have the following format:

1 Enterprise – identifies the type of object causing the trap

2 Agent address – IP address of agent which sent a the trap

3 Generic trap id – the common standard traps

4 Specific trap id – proprietary or enterprise trap

5 Time stamp – when trap occurred in time ticks

6 List of OIDs and values – OIDs that may be relevant to

 Send to the NMS

POSSIBLE QUESTIONS

SECTION B – 2 Marks

1. What are the different types of addresses?

2. Mention the purpose of IPaddress in the networking.

3. Mention the purpose of DHCP.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Class: III BSC CS A & B Course Name: Network Programming

 Course Code: 17CSU501B UNIT: V -LAN Administration Batch : 2017-2020

Prepared by Dr.P.Tamil Selvan, Assistant Prof, Department of CS, CA & IT, KAHE Page 36/36

4. Differentiate ping and traceroute

5. List some of the security issues in networking.

6. What are packets and encapsulation?

7. What are subnetting?

8. Mention the commands in SNMP.

9. Define packet snippers.

SECTION C - 6 Marks

1. Discuss the role of packets and encapsulation in TCP/IP networking.

2. Describe the role of DHCP with examples.

3. Explain (i) nstat (ii)traceroute (iii) ping

4. Explain in detail about IP addressing in networking with examples.

5. Describe about packet snippers.

6. Describe the role of Network management applications.

7. Illustrate with a neat diagram about SNMP protocol

SUBJECT NAME: NETWORK PROGRAMMING

UNIT V SEMESTER: V

S.NO Question Choice1 Choice2 Choice3 Choice4 Ans

1

The progenitor of the modern Internet was a

network

called _____ ARPANET CNET OCTNET TELNET ARPANET

2 ARPANET was Established in ______ 1972 1973 1969 1968 1969

3 ISP Refers to ____

Internet Scheme

Providers

Internet

Service

Provider

Intranet

Service

Providers

Intranet

Scheme Providers

Internet

Service

Provider

4 DNS refers to _____

Domain Number

Service

Domain

 Name

Service

Desktop

Number

Service

Desktop

Name Service

Domain

Name Service

5 RFC stands for ______

Request for

Comment

Request

 for

Connection

Respect to

 Comment

Regulation for

Connection

Request for

Comment

6 TCP/IP Reference Model consists of ____ layers 5 6 8 7 5

7 ICMP lies in ____layer of TCP/IP reference Model Application Network DataLink Transport Network

8 CRC refers to _____

Circular

Redundancy

Check

Cyclic

Redundancy

Check

Common

Redundancy

Check

Client

Redundancy

Check

Cyclic

 Redundancy

Check

9 MTU refers to _____

Minimum

Transfer

Unit

Maximum

Transport

Unit

Minimum

Transport

Unit

Maximum

Transfer Unit

Maximum

Transfer Unit

10 The MTU of Ethernet is _____bytes 1500 2000 2500 3000 1500

DEPARTMENT OF CS, CA & IT

STAFF NAME: Dr.P.TAMIL SELVAN

SUB.CODE: 17CSU501B

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University)

Coimbatore – 641 021.

ONE MARK QUESTIONS

(Established Under Section 3 of UGC Act 1956)

11 The MTU of FDDI is ____bytes 1500 4000 4470 5000 4470

12 The MTU of PPP modem link is _____ 512 654 858 1024 512

13 The MTU of P2P WAN link is _____ 1500 600 5000 6000 1500

14

_____ is a command used to display the IP

configuration

 in UNIX ipconfog ifconfig ipconfiguation ifconfigurations ifconfig

15 MAC refers to_____

Medium Address

Control

Maximum

Address

Control

Medium

 Access

Control

Maximum

 Access Control

Medium

Access Control

16 _____ is also called Physical Address IP Address

Port

Number

Process

Number MAC MAC

17 ____ is also called Logical Number IP Address

Port

Number

Process

Number MAC IP Address

18

Address which refers to Single host in destination

Address

 is ____ unicast multicast broadcast doublecast unicast

19 When Destination refers to group of host it is called ______unicast multicast broadcast doublecast multicast

20

When Destination refers to all the host in network it

is

called ______ unicast multicast broadcast doublecast broadcast

21 IGMP refers to _____

Internet Group

Management

Protocol

Intranet

Group

Management

 Protocol

Internet

Group

Message

Protocol

Internet

Group

Message

Protocol

Intranet

Group

Management

 Protocol

22 Which of the following is not a Correct IP Address? 125.16.25.1 172.16.8.200 172.16.25.1 172.16.256.10 172.16.256.10

23 What is the size of the IPv4 IP Address? 32 bits 64 bits 128 bits 16 bits 32 bits

24 IP Classful addressing consists of ____classes 6 4 5 7 5

25 Class A of Classful address can contain ____number of Host65025 255 255 X 255 1024 255

26 Class B of Classful address can contain ____number of Host65025 255 255 X 25 1024 65025

27 Which of the following is not a Correct IP Address?

11111111

11111111

 11111111

 11111111

00000000

00000000

00000000

00000000

11110000

11110000

 11110000

 00001111

1111

1111

1111

 1111

1111

1111

1111

 1111

28 If a network is sub divided it is called ______ Supernetting Subnetting Masking Polling Subnetting

29 If networks are grouped to form a single network it is called _____Supernetting Subnetting Masking Polling Supernetting

30 What is the masking value of the given IP 125.16.23.56/12?126 16 23 12 12

31 Which representation denotes class A? N.N.N.N N.N.H.H N.H.H.H N.N.N.H N.N.N.H

32 What does N represent in the N.N.N.H ? Network Address Host Address Next Network Node Network Address

33 What does H represent in the N.N.N.H ? Network Address Host Address Next Network Node Host Address

34 ____ is a device used to connect different Network Switch bridge Router Hub Router

35 CIDR refers to ____

Classless Intra

Domain Routing

Classful Intra

 Domain

Routing

Classless

Interdomain

Routing

Classful

InterDomain

Routing

Classless

Interdomain

Routing

36 NIC stands for ____

Network Interface

 Console

Network

Interface

Component

Network

Interface

Card

Network

Interference

Card

Network

Interface Card

37 NAT refers to ____

Network Address

transalation

Neighbour

Address

transalation

Network

Addressing

Translator

Network

 Interdependent

Translation

Network

Address

 transalation

38 IPV6 adress is ___bit long 156 64 32 128 128

39

_____ is the process of directing a packet through

the maze

 of networks that stand between its source and its

destination. Hacking Switching Translating Routing Routing

40 Routing is handled in ____ layer Application Datalink Network Transport Network

41 _____ is the table used for Routing process in RouterRouting Symbol Grasping Piping Routing

42 ICMP is used to ____ Report Error Find Error Remove Error All Report Error

43 DHCP refers to _____

Digital Host

Configuration

Protocol

Dynamic

host

Control

Protocol

Dynamic

Host

Configuration

Protocol

Digital Host

Control protocol

Dynamic Host

Configuration

Protocol

44 ARP refers to _____

Address

Reservation

Protocol

Address

Rendring

Protocol

Adding

Resolution

Protocols

Address

Resolution

 Protocol

Address

Resolution

 Protocol

45

The ______ option of ifconfig sets the subnet mask

for the

 interface and is required if the network is not

subnetted Submask Supermask Masking netmask netmask

46

The ____ command defines static routes, explicit

routing

table entries that never change, even if you run a netstat route mask ipconfig route

47 ______removes a specific entry from the routing table when used with route commanddel delete remove rmv del

48 To inspect the Existing route we use ____command route netstat -nr ifconfig routing netstat -nr

49

A _____ router causes all packets whose destination

network is not found in the kernel’s routing table to

be Final Alter default finally default

50 ____ command is used to check the existance of a hostroute ifconfig ping traceout ping

51

_____ is acommand that uncovers the sequence of

gateways through which an IP packet travels to

reach its destination. route ifconfig ping traceout traceout

52 Network Statistic can be known through ____ commandtraceout ping ifcongig netstat netstat

53

_____ is a command used for inspecting live

interface

 Activity SAP SAD SAR SRA SAR

54 ____ is a tool used for packet sniffer SAP DAD tcpdump tcpclear tcpdump

55 ____ is a tool used for packet sniffer SAP DAD Wireshark tcpclear Wireshark

56 ______ is a visual Packet Sniffer SAP DAD Wireshark tcpclear Wireshark

57 SNMP refers to ______

Simple Network

Mail Protocol

Simple

 Network

Management

 Process

Simplex

Network

Management

Process

Simple

Network

Management

Protocol

Simple

Network

Management

Protocol

58 _____ is a function used to create a child Process in UNIXtrap frok fork down fork

59

_____command is used to traverses a MIB starting

at a

particular OID snmpget snmprun snmptable snmpwalk snmpwalk

60 Physical address is used in _____layer application Datalink network Presentation Datalink

Network Address

 Reg .No………………….

 [17CSU501 B]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

COIMBATORE – 641 021

(For the candidates admitted from 2017 onwards)

B.Sc DEGREE EXAMINATION

Fifth Semester

COMPUTER SCIENCE

NETWORK PROGRAMMING

Date & Session : 07.2019 Class : III B.Sc(CS)

Time : 2:00 Hrs Maximum : 60 Marks

SECTION A – (20*1 = 20 Marks)

Answer All Questions

1. The maximum size of the TCP header is _____.

 a. 40 bytes b. 60 bytes c. 80 bytes d. 100 bytes

2. TCP provides _____communication using port numbers.

 a. host –to-host b. process to process c. port to port d. interface to interface

3. The _____ layer is responsible for process-to-process delivery of the entire message.

 a. transport b. data link c. application d. session

4. Only ___ chunks use TSNs.

 a. Frames B. Data C. Segments D. Packet

5. UDP and TCP are both____ layer protocols.

 a. data link b. network c. transport d. interface

6. ____ is a stream-oriented protocol.

 a. UDP b. TCP c. SCTP d. IGMP

7. The client program issues a request for an ____.

 a. active open b. passive open c. client open d. server open

 8. In SCTP, data are carried as ____chunks.

 a. information b. frame c. data d. segment

9. The _____ function is used by a TCP client to establish a connection with a TCP server.

 a. bind b. open c. frame d. connect

10. How many ports a computer may have?

 a. 256 b. 28 c. 65535 d.1024

11. UDP is a suitable transport protocol for ___.

 a. unicast b. multicasting c. broadcasting d. multiway casting

12. The unit of data in TCP is a ____.

 a. bit b. frame c. byte d. segments

13. The UDP protocol encapsulates and decapsulates messages in a ___.

 a. IP datagram b. segments c. frames d. packets

14. SCTP allows ____ service in each connection.

 a. bytestream b. unistream c. multistream d. forwardstream

15. Each stream in SCTP needs to be identified by using a____

 a. byte identifier b. bit identifier c. client identifier d. stream identifier

16. SCTP uses a ___ chunk to report the state of thereceiver buffer to the sender.

 a. TACK b. PACK c. QACK d.SACK

 17. At the transport layer, TCP groups a number of bytes together into a packet called

 a.frames b. bits c. segments d. datagrams

18. The connection establishment in TCP is called ____ handshaking.

a. two way b. multiway c. threeway d. fourway

19. A connection in SCTP is called association to emphasize ___.

a. Multistream b. Multihoming c. multienvironment d. multilayered

20. A ___ in SCTP plays the same role as a segment in TCP

a. packet b. frames c.datagrams d.chunks

SECTION B – (3*2 = 6 Marks)

Answer All Questions

21. Define the three states of TCP Connection establishment and termination.

 22.Mention two differences between TCP and UDP.

 23.Define Chunks.

SECTION C – (3*8 = 24 Marks)

Answer the Questions

24.a. Describe the features of TCP. (Or)

 b. Elucidate the four way states of SCTP Connection establishment and termination.

25.a. Explain the three states of TCP Connection establishment and termination. (Or)

 b. Describe the operation of SCTP.

 26. a. Explain in detail about Port number with neat diagram. (Or)

 b. Give detailed explanation on the TCP Port number and Concurrent Server with neat

 diagram.

	1.pdf (p.1-2)
	2.pdf (p.3-6)
	3.pdf (p.7-40)
	4.pdf (p.41-44)
	5.pdf (p.45-112)
	6.pdf (p.113-115)
	7.pdf (p.116-158)
	8.pdf (p.159-165)
	9.pdf (p.166-207)
	10.pdf (p.208-211)
	11.pdf (p.212-247)
	12.pdf (p.248-255)
	13.pdf (p.256-258)

