
 
 

FUNCTIONAL ANALYSIS                                                                                        SYLLABUS/2016-Batch 
 

Master of Science, Mathematics, 2016, Karpagam Academy of Higher Education, Coimbatore – 21.  
 

KARPAGAM ACADEMY OF HIGHER EDUCATION 
(Deemed to be University Established Under Section 3 of UGC Act 1956) 

Pollachi Main Road, Eachanari (Po), 

Coimbatore –641 021 

DEPARTMENT Of MATHEMATICS 

 
 

Subject: FUNCTIONAL ANALYSIS                                        Subject Code: 16MMP301 

L    T    P    C  

4     0     0    4 
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PLO: To be thorough with Banach spaces, related theorems, orthonormal sets, normal and unitary operators 

and to be familiar with Banach algebras. UNIT I 

Banach Spaces- Normed linear space – Definitions and Examples-Theorems. Continuous Linear 

Transformations – Some theorems- Problems. The Hahn- Banach Theorem –Lemma and Theorems. The 

Natural imbedding of N in N**-Definitions and Theorems. 

 

 

UNIT II 

The Open Mapping Theorem- Theorem and Examples –Problems. The closed graph theorem. The conjugate 

of an operation- The uniform boundedness theorem- Problems. 

UNIT III 

Hilbert Spaces- The Definition and Some Simple Properties – Examples and Problems. Orthogonal 
Complements - Some theorems .Ortho-normal sets – Definitions and Examples-Bessel’s inequality- 
The conjugate space H*. 

UNIT IV

The Adjoint of an operator – Definitions and Some Properties-Problems. Self- adjoint operators – and Unitary 
operators –Theorems and Problems. Some Theorems and Problems. Normal Projections - Theorems and 
Problems 

UNIT V 

Banach algebras: The definition and some examples of Banach algebra – Regular and singular 
elements – Topological divisors of zero – The spectrum – The formula for the spectral radius. 
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KARPAGAM ACADEMY OF HIGHER EDUCATION 
 (Deemed to be University Established Under Section 3 of UGC Act 1956) 

Pollachi Main Road, Eachanari (Po), 
Coimbatore –641 021 

DEPARTMENT OF MATHEMATICS 

Lecture Plan 
 Subject Name: Functional Analysis               Subject Code:   16MMP301 

 

S. No 

Lecture 

Duration 

Hour 

Topics To Be Covered Support Materials 

UNIT-I 

1 1 Introduction to linear Spaces T: Ch 2, 33 

2 1 Definitions and Examples on normed linear 

space 

R1: Ch 9, 212 

3 1 Definitions and Examples on normed linear 

space 

R1: Ch 9, 213 

4 1 Theorems on normed linear spaces R1: Ch 9, 214 

5 1 Theorems on normed linear spaces R1: Ch 9, 215 

6 1 Theorems on continuous Linear 

Transformations 

R1: Ch 9, 216 

7 1 Theorems on continuous Linear 

Transformations 

R1: Ch 9, 217 

8 1 The Hahn- Banach Theorem.  R1: Ch 9, 218 

9 1 The Hahn- Banach Theorem.  R1: Ch 9, 219 

10 1 The Natural imbedding of N in N R1: Ch 9, 220 

11 1 The Natural imbedding of N in N R1: Ch 9, 221-222 

12 1 Recapitulation and Discussion  of possible 

questions  

 

Total 12Hours           

TEXT BOOK 

T  Balmohan V., and Limaye., 2004. Functional Analysis, New Age International Pvt. Ltd, Chennai. 

REFERENCES 

R1 Simmons. G.F., 1963. Introduction to Topology & Modern Analysis, Tata McGraw-Hill Publishing 
Company Ltd, New Delhi. 

 

UNIT-II 

1 1  

The Open Mapping Theorem 

 

R1: Ch 9, 235 

2 1 Continuation of  The Open Mapping Theorem  

R1: Ch 9, 236 

3 1 Continuation of  The Open Mapping Theorem R1: Ch 9, 237 

4 1 Continuation of  The Open Mapping Theorem R1: Ch 9, 238 
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5 1 The closed graph theorem R1: Ch 9, 239 

6 1 The closed graph theorem R1: Ch 9, 240 

7 1 Theorems on conjugate of an operation R1: Ch 9, 241 
8 1 Theorems on conjugate of an operation R1: Ch 9, 241 
9 1 Problems on conjugate of an operation R1: Ch 9, 242 
10 1 Problems on conjugate of an operation R1: Ch 9, 243 
11 1 The uniform boundedness theorem R1: Ch 9, 244 
12 1 Recapitulation and Discussion  of possible  

questions 
 

Total 12 Hours   

REFERENCES 

R1 Simmons. G.F., 1963. Introduction to Topology & Modern Analysis, Tata McGraw-Hill Publishing 

Company Ltd, New Delhi 

UNIT-III 

1 1 Introduction to Hilbert Spaces R1: Ch 10, 244 

2 1 Introduction to Hilbert Spaces R1: Ch 10, 245 

3 1 Some Simple Properties R1: Ch 10, 246 

4 1 Some Simple Properties. R1: Ch 10, 247-248 

5 1 Theorems on orthogonal Complements R1: Ch 10, 248-249 

6 1 Theorems on orthogonal Complements R1: Ch 10, 250 

7 1 Examples and Problems on orthogonal 

Complements 

R1: Ch 10, 251 

8 1 Examples and Problems on orthogonal 

Complements. 

R1: Ch 10, 252-253 

9 1 Theorems on orthonormal sets R1: Ch 10, 254 

10 1 Definitions and Examples-Bessel’s inequality R1: Ch 10, 255 

11 1 The conjugate space H R1: Ch 10, 256-257 

12 1 Recapitulation and Discussion  of possible 

questions 

 

Total 12 Hours   

REFERENCES 

R1 Simmons. G.F., 1963. Introduction to Topology & Modern Analysis, Tata McGraw-Hill Publishing 

Company Ltd, New Delhi. 

UNIT-IV 

1 1 Introduction to Adjoint of an operator R1: Ch 10, 262 

2 1 Introduction to Adjoint of an operator R1: Ch 10, 263 

3 1 Theorems on Adjoint of an operator R1: Ch 10, 265 

4 1 Theorems on Adjoint of an operator R1: Ch 10, 266 

5 1 Theorems on Adjoint of an operator R1: Ch 10, 267 

6 1 Examples and Problems on Adjoint of an 

operator 

R1: Ch 10, 268 
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7 1 Examples and Problems on Adjoint of an 

operator 

R1: Ch 10, 269-270 

8 1 Theorems on normal Projections R1: Ch 10, 271 

9 1 Theorems for Nilpotent Form R1: Ch 10, 272 

10 1 Theorems on normal Projections R1: Ch 10, 273 

11 1 Theorems on normal Projections R1: Ch 10, 274 

12 1 Recapitulation and Discussion  of possible 

questions 

 

Total 12 Hours   

REFERENCES 

R1 Simmons. G.F., 1963. Introduction to Topology & Modern Analysis, Tata McGraw-Hill Publishing 

Company Ltd, New Delhi. 

UNIT-V 

1 1 The definition of Banach algebra R1: Ch 12, 302-303 

2 1 some examples of Banach algebra R1: Ch 12, 304 

3 1 Continuation of Banach algebras R1: Ch 12, 305 

4 1 Some Theorems on Banach algebras R1: Ch 12, 306 

5 1 Problems on Banach algebras R1: Ch 12, 307 

6 1 Problems on Banach algebras R1: Ch 12, 308 

7 1 Theorems on regular and singular elements R1: Ch 12, 309 

8 1 Theorems on regular and singular elements R1: Ch 12, 309 

9 1 Theorems on topological divisors of zero R1: Ch 12, 310-311 

10 1 Recapitulation and Discussion  of possible 

questions 

 

11 1 Discussion on Previous ESE Question Papers  

12 1 Discussion on Previous ESE Question Papers  

Total 12 Hours           

REFERENCES 

R1 Simmons. G.F., 1963. Introduction to Topology & Modern Analysis, Tata McGraw-Hill Publishing 

Company Ltd, New Delhi.. 

 

Total no. of Hours for the Course: 60 hours 
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UNIT I 

Banach Spaces- Normed linear space – Definitions and Examples-Theorems. Continuous Linear 

Transformations – Some theorems- Problems. The Hahn- Banach Theorem –Lemma and Theorems. The 

Natural imbedding of N in N**-Definitions and Theorems. 

TEXT BOOK 

1. Balmohan V., and Limaye., 2004. Functional Analysis, New Age International Pvt. Ltd, Chennai. 

REFERENCES 

1. Simmons. G.F., 1963. Introduction to Topology & Modern Analysis, Tata McGraw-Hill Publishing 
Company Ltd, New Delhi. 
 

2. Chandrasekhara Rao.K., 2006. Functional Analysis, Narosa Publishing House, Chennai. 

 

3. Choudhary .B,and Sundarsan Nanda., 2003. Functional Analysis with Applications, New Age 
International Pvt. Ltd, Chennai. 
 

4. Ponnusamy.S., 2002. Foundations of functional analysis, Narosa Publishing House, Chennai. 
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1 Linear spaces

The readers will recall that by the scalars we mean either the sytem of
real numbers or the system of complex numbers.

Definition 1 A linear space is an additive abelian group L with the prop-
erty that any scalar α and any x ∈ L can be combined by an operation
with αx ∈ L in such a manner that

i α(x + y) = αx + αy

ii (α + β)x = αx + βx

iii (αβ)x = α(βy)

iv 1 · x = x

Remark 1 The elements of L are called vectors

Remark 2 The operation newly defined is called scalar mulyiplication

Remark 3 The linear space is called real linear space or a complex
space according as the scalars are the real numbers or the complex num-
bers.

Example 1 The simplest example of a vector space is the trivial space
{0}, which contains only the zero vector and with scalar multiplication
defined by α · 0 = 0

Example 2 The set R of real numbers R is a vector space over R.

Example 3 The set R2 of all ordered pairs of real numers is a vector
space over R.

Example 4 The set of all functions f defined at 1 with f (1) = 0 .The
number 0 is essential in this example. If we replace 0 by a nonzero
number c, we violate the closure axioms.
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2 Subspaces

Definition 2 A nonempty subset M of a vector space L is called a sub-
space of L if M is a vector space under the operations addition and
scalar multiplication defined in L.

Theorem 1 Suppose L is a linear space over R and L ⊂ L is a nonempty
subset of L. Then M is a subspace of L if and only if the following two
closure conditions hold:

1 If u, v are in M, then u + v is in W.

2 If u is in M and c is a scalar, then cu is in M.

3 Linear transformation

Definition 3 Let X and Y be vecto,rspaces. A linear operator or linear
function or linear transformation from X into Y is a function T : X →
Ysuch that the following two conditions are satisfied whenever x, x1, x2 ∈

X and a α ∈ F

(1) T (x1 + x2) = T (x1) + T (x2)

(2) T (αx) = αT (x)

4 Cosets

Definition 4 Let M be a subspace of a vector space L. Then the cosets
of M are the sets

f + M = { f + m : m ∈ M}, f ∈ L

Theorem 2 Let L be a vector space, and let M be a subspace of L.

(i) If x, y ∈ M then either x + M = y + M or (x + M) ∩ (y + M) = ∅.

(ii) x + M = M iff x ∈ M
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(iii) x + M = y + M iff x − y ∈ M

(iv) If x ∈ L and m ∈ M then x + M = x + m + M.

(v) The set of distinct cosets of M is a partition of L.

Remark 4 The elements of L are called vectors

Remark 5 The new operation is called scalar multiplication

5 Quotient space

Definition 5 If X is a vector space and S a subspace, we may define the
quotient space X/S of cosets.

Remark 6 Since two cosets of M are either identical or disjoint, the
quotient space L/M is the set of all the distinct cosets of M.

Definition 6 Let M be a subspace of a vector space L. Given x, y ∈ L,
define addition of cosets by

(x + M) + (y + M) = (x + y) + M

. Given x ∈ L and c ∈ F, define scalar multiplication by

c(x + M) = cx + M

.

6 Normed linear space

Definition 7 Given a linear space L over R, a mapping ‖ · ‖ : L → R is
a nann for L if it satisfies the following properties: For all x ∈ L,

(i) ‖x‖ ≥ 0

(ii) ‖x‖ = 0 if and only if x = 0
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(iii) ‖αx‖ = |α|‖x‖ for all scalar α

(iv) ‖x + y‖ ≤ ‖x‖ + ‖y‖

The pair (L, ‖ · ‖) is called a normed linear space.

Remark 7 The norm generates a special metric on the linear space.
Given a normed linear space (L, ‖ · ‖), a function d : N ×N → R defined
by

d(x, y) = ‖x − y‖

is a metric for N and is called the metric generated by the norm.

Remark 8 Properties (iii) and (iv) tell us that the norm is a convex func-
tion on L; that is, for any x, y ∈ L we have

‖λx + (1 − λ)y‖ ≤ ‖λx‖ + ‖(1 − λ)y‖

= |λ| ‖x‖ + |(1 − λ)| ‖y‖

= λ ‖x‖ + (1 − λ) ‖y‖

for all 0 ≤ λ ≤ 1.

Problem 1
| ‖x‖ − ‖y‖ | ≤ ‖x − y‖

Solution Now

‖x‖ = ‖x − y + y‖

≤ ‖x − y‖ + ‖y‖

‖x‖ − ‖y‖ ≤ ‖x − y‖ (1)

Hence

−(‖x‖ − ‖y‖) = ‖y‖ − ‖x‖

≤ ‖y − x‖ by(1.1)

= ‖x − y‖

‖x‖ − ‖y‖ ≥ −‖x − y‖
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Therefore
−‖x − y‖ ≤ ‖x‖ − ‖y‖ ≤ ‖x − y‖

i.e
| ‖x‖ − ‖y‖ | ≤ ‖x − y‖

Problem 2 The norm is a continuous function

Solution Suppose xn → x.
Now

| ‖xn‖ − ‖x‖ | ≤ ‖xn − x‖

→ 0

Hence
‖xn‖ → ‖x‖

7 Banach space

Definition 8 A normed linear space which is complete as a metric space
with its metric generated by the norm, is called a Banach space.

Theorem 3 In a normed linear space, we have

| ‖x‖ − ‖y‖ | ≤ ‖x − y‖

Proof.

‖x‖ = ‖x − y + y‖

≤ ‖x − y‖ + ‖y‖

‖x‖ − ‖y‖ ≤ ‖x − y‖

Hence

−(‖x‖ − ‖y‖) = ‖y‖ − ‖x‖

≤ ‖y − x‖ by(1.1)

= ‖x − y‖

‖x‖ − ‖y‖ ≥ −‖x − y‖
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Therefore
−‖x − y‖ ≤ ‖x‖ − ‖y‖ ≤ ‖x − y‖

i.e
| ‖x‖ − ‖y‖ | ≤ ‖x − y‖

Theorem 4 The norm is a continuous function

proof. Suppose xn → x.
Now

| ‖xn‖ − ‖x‖ | ≤ ‖xn − x‖

→ 0

Hence
‖xn‖ → ‖x‖

Norm is a contiuous function.

Example 5 The set of real number and complex are the simplest of all
normed linear spaces. The norm of a number x is defined by

‖x‖ = |x|

. Since RandC are complete, RandC are banach spaces.

Example 6 The linear spaces R and C of all n-tuples x = (x1, x2, ...xn)
of real and complex number are normed linear space with norm

‖x‖ = (
n∑

i=1

|xi|
2)

1
2

. Since R and C are complete,R and C are Banach spaces.
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Possible Questions
8 marks

1. Prove that if N is a normed linear space and x0 is non-zero vector
in N then there exist functional f0 ∈ N∗ such that f (x0) = ‖x0‖ and
‖ f0‖ = 1

2. Let M be a closed linear subspace of a normed linear space N and
let x0 be a point not in M. If d is the distance from x0 to M. Show
that there exist a functional f ∈ N∗ such that f (M) = 0, f (x0) = 1
and ‖ f0‖ =

1
d

3. State and prove Hahn Banach theorem.

4. Prove that let M be a closed linear subspace of a normed linear
space N. If the norm of a coset x + M in the quotient space N/M
is defined by ‖x + M‖ = inf{‖x + M‖ : m ∈ M} then N/M is a
normed linear space. Also, if N is a Banach space then N/M is also
a Banach space

5. Prove that if M is a closed linear subspace of a normed linear space
N and x0 is a vector not in M, then there exist a functional f0 in N∗
such that f0(M) = 0, f0(x) , 0.

6. If N is a normed linear space then each vector x induces a functional
Fx on N∗ by Fx( f ) = f (x) for every f ∈ N∗ such that ‖Fx‖ = ‖x‖.
Moreover there is an isometric isomorphism from N into N ∗ ∗

7. Prove that if N is a normed linear space and x0 is non-zero vector in
N then there exist functional f0 in N∗ such that f0(x0) = ‖x0‖ and
‖ f0‖ = 1.

8. Prove that let N & N′ be a normed linear space the set B(N,N′) of
all continuous linear transformation of N into N” is a normed linear
space with respect to the pointwise linear operations
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i (T + U)(x) = T (x) + U(x)

ii (αT )(x) = αT (x)

and the norm defined by ||T || = sup{||T (x)|| : ||x|| = 1}.Also if N′ is
a Banach space then B(N,N′) is also a Banach space.

9. Prove that let M be a linear subspace of a normed linear space N.
Let f be a functional defined on M of x0 is a vector not in M and if
M0 = M + x0 . Then f can be extended to a functional f0 defined
on M0 such that ‖ f0‖ = ‖ f ‖

10. Let N and N
′

be normed linear spaces and T be a linear transfor-
mation of N into N

′

. Then the following condition on T are all
equivalent to one snother.

• T is continous.

• T is continnuous at the origin.

• There exist a real number K ≥ 0 with the probability that

‖T (x)‖ ≤ K‖(x)‖

for every x in N.

• If S = x : ‖x‖ ≤ 1 isa closed unit sphere then its image T (s) is
a bounded set in N

′

.
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Question Option-1 Option-2 Option-3 Option-4 Answer

The norm of x is called as the ………… of the vector direction length weight scalar Length

Every …………. normed linear space is a banach space complete metric compact connected complete

A banach space is a normed linear space which is complete as a ………… complete connected compact metric metric

The metric space arise on norm as d(x,y)=…………… ║x+y ║ ║x ║ ║x-y ║ ║xy ║ ║x-y ║

The linear operation is denoted by……….. R N L K L

The two primary operation in alinear space is called …………… Linear operation Arithmetic operation Operators Operations Linear operation

The size of an element x is a real number denoted by …………… norm x real x banach x complex x norm x

A linear space is called real linear space when its scalar is …….. norm real banach complex real

A linear space is called ……... linear space when its scalar is  complex norm real banach complex complex 

………………… is called the distance between x and y c(x,y) r(x,y) d(x,y) p(x,y) d(x,y)

Every cauchy sequence  has a convergent………….. sequence subsequence series serial subsequence

The real part of Z is denoted by …………. Re(Z) Re(x+y) Im(Z) Im(x+y) Re(Z)

The imaginary part of Z is denoted by …………. Re(Z) Re(x+y) Im(Z) Im(x+y) Im(Z)

The ……………. of A is the lub of the distance between pair of its points. direction distance weight scalar distance

If f is a……………. function if there is areal number K such that │f(x)│≤ k . norm finite bounded unbounded bounded

A…………..set is one whose diameter is finite. complete connected metric bounded bounded

Every sequentially compact metric space is……………. complete connected compact metric compact

Every sequentially ………………. metric space is totally bounded. complete connected compact metric compact

A mapping of a nonempty set b in to a metric space is called a…………

mapping norm finite bounded unbounded bounded

A metric space is compact iff it is ……………. and totally bounded. complete connected metric bounded complete

A closed subspace of a complete metric space is ………. iff it is totally

 bounded complete connected compact metric compact

A metric space is said to be sequentially compact if every sequence in it has 

a convergent ………………… sequence subsequence space subspace subsequence

The ……… is called second conjugate  space of N. N** N N'' N* N**

A complete metric space is ametric space in which every cauchy sequence

 is………….. complete connected compact convergent convergent

If N is a banach space then the product N/M is  a…………………... Banach space hilbert space Inner product space linear space Banach space

The elements of N* are called continuous linear functional or……………… continuous functional linear space convergent functional

The identity transformation  I is an ……for the algebra B(N) continuous functional linear space identity identity

N is said to be isometrically isomorphic to N' if ther exist an ……………of N

 into N'  isomorphic isometric isometric isomorphism isomorphism isometric isomorphism

If T is continuous at the origin , then Xn→0 implies ……………..  Xn→0 T( Xn)→0  Xn→1  T(Xn)→∞ T(Xn)→0

The set of all …………. for T equals the set of all radii of closed sphere

 centered on the origin which contain T(S) bounds convex set continuous functional bounds

Any infinite set which is numerically equivalent to N is said to be …………… Countable uncountable uncountably infinite countably finite countably finite

A set is …………… if it is nonempty and finite Countable uncountable uncountably infinite countably finite countable

Any countable union of countable set is……….. countably finite not countable Countable uncountable Countable

Uncountable is otherwise called as………………… countably finite not countable Countable uncountably infinite uncountably infinite

The absolute value is the …………… between the numbers. direction distance weight scalar distance

The triangle inequality for metric space is ……………… d(x,y) <d(x,z)+d(y,z) d(x,y) <d(x,z)+d(y,s) d(x,y) <d(x,y)+d(y,z) d(x,y) >d(x,z)+d(y,z) d(x,y) <d(x,z)+d(y,z)

The elements of x are called the points of………space (x,d) Banach space hilbert space Metric space linear space Metric space

Let x be a metric space then it is ……. property is  d(x,y)=d(y,x) asymmetry symmetry abelian commutate symmetry

Let x be a metric space then it is symmetry  Property is  d(x,y)= ……. d(x,y) <d(x,z)+d(y,z) d(x,y) <d(x,z)+d(y,s) d(x,y) d(y,x) d(y,x)

f is said to be continuous if it is …………… at each point of x. continuous functional linear space convergent continuous
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Definition 1 A normed linear space which is complete as a metric space
with its metric generated by the norm, is called a Banach space.

Theorem 1 In a normed linear space, we have

| ‖x‖ − ‖y‖ | ≤ ‖x − y‖

Proof.

‖x‖ = ‖x − y + y‖

≤ ‖x − y‖ + ‖y‖

‖x‖ − ‖y‖ ≤ ‖x − y‖

Hence

−(‖x‖ − ‖y‖) = ‖y‖ − ‖x‖

≤ ‖y − x‖ by(1.1)

= ‖x − y‖

‖x‖ − ‖y‖ ≥ −‖x − y‖

Therefore
−‖x − y‖ ≤ ‖x‖ − ‖y‖ ≤ ‖x − y‖

i.e
| ‖x‖ − ‖y‖ | ≤ ‖x − y‖

Theorem 2 The norm is a continuous function

proof. Suppose xn → x.
Now

| ‖xn‖ − ‖x‖ | ≤ ‖xn − x‖

→ 0

Hence
‖xn‖ → ‖x‖

Norm is a contiuous function.
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Example 1 The set of real number and complex are the simplest of all
normed linear spaces. The norm of a number x is defined by

‖x‖ = |x|

. Since RandC are complete, RandC are banach spaces.

Example 2 The linear spaces R and C of all n-tuples x = (x1, x2, ...xn)
of real and complex number are normed linear space with norm

‖x‖ = (
n∑

i=1

|xi|
2)

1
2

. Since R and C are complete,R and C are Banach spaces.

Definition 2 subspace A non empty subset M of L is called a subspace
(or a linear subspace)of L, if M is a linear space with respect to the
linear operations defined in L.

Remark 1 If the subspace M is a proper of L, then it is called a proper
subspace of L.

Remark 2 The zero spaces 0 and the full spaces L itself are always sub-
spaces of L.

Theorem 3 Let M be a closed linear subspace ofa normed linear space
N, if the norm of a coset x + M in the quotient space N/M is defined by

‖x + M‖ = in f (‖x + M‖ : m ∈ M)

then N/M is a normed linear space further,if N is Banach space then so
N/M .

proof. Since,each ‖x + M‖ ≥ 0, we use

in f (‖x + M‖ : m ∈ M) ≥ 0
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Given

‖x + M‖ ≥ o

Suppose‖x + M‖ = 0

in f (‖x + M‖ : m ∈ M) = 0

There is a sequence [mk] in M.
such that ‖x + Mk‖ → 0
⇔ x ∈ M since M is closed.
⇔ x + M = M the zero element of N/M.
now,

‖(x = M) + (y + M)|| = ‖(x + y) + M‖

= in f [‖(x + y) + m‖ : m ∈ M]

= in f [‖x + y + m + m
′

‖ : m,m
′

∈ M]

= in f [‖(x + m)‖ + ‖(y + m
′

)‖ : m,m
′

∈ M]

= in f [‖(x + m)‖ : m ∈ M] + in f [(y + m
′

)‖ : m
′

∈ M]

= ‖x + M‖ + ‖y + M‖.

‖α(x + m)‖ = in f [‖α(x + m)‖ : m ∈ M]

= in f [|α|.‖x + m‖ : m ∈ M]

= |α|.in f [‖x + m‖ : m ∈ M]

= |α|.‖x + m‖

The N/M is a normed linear space.
Suppose N is complete
To prove: N/M is complete
Let us consider a cauchy sequence in N/M it is enough to show that
cauchy seequence has a convergent subsequence
Let y1 ∈ x1 + M and y2 ∈ x2 + M.
Such that

‖y1 − y2‖ <
1
2
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.
Next select y3 ∈ x3 + M.
Such that

‖y2 − y3‖ <
1
4

.
Continuing in this way, we obtain a sequence yn in N.
Such that

‖yn − yn+1‖ <
1
2n

.
Supposem < n

‖ym − yn‖ = ‖ym − ym+1 + ym+1 − ym+2 + .... + yn−1 − yn‖

≤ ‖ym − ym+1‖ + ‖ym+1 − ym+2‖ + .... + ‖yn−1 − yn‖

<
1

2m +
1

2m+1 + .... +
1

2n1

=
1

2m

[
1 +

1
2

+
1
22 + ... +

1
2n−1−m

]
=

1
2m

1 − 1
2n−m

1 − 1
2


=

1
2m

[
1 −

1
2n−m

]
=

1
2m−1

[
1 −

1
2n−m

]
<

1
2m−1 .

yn is a cauchy sequence
Since N is acomplete, we have {yn} is convergent.
Let y be the limit of sequence yn.
‖yn − y‖ → 0.
‖(xn + M) − (y + M)‖ → 0.
{xn + M} is a convergence.
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Hence N/M is complete.
since N/M is a normed linear space, N/M is a Banach Space.

Example 3 Let Pbe real number such that 1 ≤ P < ∞. We denote by
(l)n

p the space of all n-tuples x = (x1, x2.....xn) of scalars with the norm
defined by

‖x‖p =

 n∑
i=1

‖xi‖
p


1
p

Problem 1 The ln
p space is the normed linear space with norm defined

by

‖x‖p =

 n∑
i=1

|xi|
p


1
p

.

solution: Since each |xi| ≥ 0,we have ‖x‖p ≥ 0.
Suppose ‖x‖p = 0 then n∑

i=1

‖xi‖
p


1
p

= 0.

⇒

n∑
i=1

‖xi‖
p = 0 f oralli = 1, 2, ...n

⇒ |xi|
p = 0 f oralli = 1, 2, ...n

⇒ |xi| = 0 f oralli = 1, 2, ...n

⇒ xi = 0 f oralli = 1, 2, ...n

⇒ xi = (x1, x2, ...xn) = (0, 0, ..., 0)

⇒ x = 0.

Suppose‖x + y‖p = 0. then the triangle inequality is trivial.
Suppose ‖x + y‖p , o.

Prepared by Dr. K. Kalidass, Department of Mathematics, KAHE Page 6 of 12



Unit II The Open Mapping Theorem 2016 Batch

‖x + y‖p =

 n∑
i=1

|xi + yi|
p


1
p

(
‖x + Y‖p

)p
=

n∑
i=1

|xi + yi|
p

=

n∑
i=1

|xi + yi|.|xi + yi|
p−1

≤

n∑
i=1

[|xi + yi|].[|xi + yi|
p−1]

=

 n∑
i=1

|xi|[|xi + yi|]p−1

 +

 n∑
i=1

|yi||xi + yi|
p−1


Now consider the first sum in the R.H.S
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n∑
i=1

|xi|[|xi + yi|]p−1 ≤

 n∑
i=1

|xi|
p


1
p

.

 n∑
i=1

|xi + yi|
p−1

q

.

where
1
p

+
1
q

= 1

= ‖x‖p

 n∑
i=1

|xi + yi|
p−1q

1− 1
p

.

= ‖x‖p


 n∑

i=1

|xi + yi|
p


1
p


p−1

.

= ‖x‖p

(
‖x + y‖p

)p−1

Hence, ‖x + y‖p ≤ ‖x‖p

(
‖x + y‖p

)p−1
+ ‖y‖p

(
‖x + y‖p

)p−1

=
(
‖x + y‖p

)p−1
.
[
‖x‖p + ‖y‖p

]
‖x + y‖p ≤ ‖x‖p + ‖y‖p

‖αx‖p =

 ∞∑
i=1

|αxi|
p


1
p

=

 ∞∑
i=1

|α|p|xi|
p


1
p

= |α|

 ∞∑
i=1

|xi|
p


1
p

= |α|‖x‖p

(ln
p, ‖.‖p)

Hence the proof.

Problem 2 The ln
p space is a banach space with norm defined by

‖x‖p =

 n∑
i=1

|xi|
p


1
p

.
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solution: By previous problem, ln
p is a normed linear space. It is enough

to show that ln
p space is complete.

Let fm be a cauchy sequence and fm(i) = i cordinate of xm.
For given Σ ≥ 0 there exist a positive integer N.
Such that ‖ fm − f

′

m‖p ≤ Σ for all m,m
′

≥ N

⇒

 n∑
i=1

| fm − f
′

m|
p


1
p

≤ Σp

⇒

 n∑
i=1

| fm(i) − fm(i)
′

|p

 < Σp

| fm(i) − f
′

m(i)|p < Σp f oralli = 1, 2, ..n

| fm(i) − f
′

m(i)| < Σ

|xmi − f
′

mi| < Σ

xmi

is a cauchys sequence of real number
Since R is a complete,xmi is convergence to xi

xmi → xi for all i.
Let f = (x1, x2..., xn) then f ∈ ln

p and fm → f .
ln
p space is complete.

ln
p space is a Banach space.

Definition 3 Consider a real number p with 1 ≤ p < ∞ and we denote
lp be space of all sequence x = (x1, x2...xn) of scalars. Such that

∞∑
i=1

|xi|
p ≤ ∞

with the norm defined by

‖x‖p =

 ∞∑
i=1

|xi|
p


1
p

(1)
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Problem 3 The lp is a Banach space.

solution. To prove s is a convex.
Let x, y ∈ s be arbitrary.
Let α, β be non-negative real numbers with α + β = 1.
z = (αx + βy)
where z ∈ s.
Now,

‖z‖ = ‖αx + βy‖

= |α|‖x‖ + |β|‖y‖

= α‖x‖ + β‖y‖

≤ α.1 + β.1

‖z‖ ≤ α + β

‖z‖ ≤ 1.

s is a convex

Remark 3 Consider the real linear space R of all ordered pairs x =

(a, b) of real numbers.
There are many different norm can be defined on R2.

‖x‖1 = |a| + |b|

‖x‖2 = |a|2 + |b|2

‖x‖∞ = max(|a| + |b|)

Remark 4 Considering the norm defined by

‖x‖p = (|a|p + |b|p)
1
p

where 1 ≤ p∞.
If p < 1, then s = [x : ‖x‖p ≤ 1] need not be a convex set.
‖x‖p need not be a norm.
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Possible Questions
8 marks

1. Prove that a nonempty subset X of a normed linear space N is
bounded iff f (X) is a bounded set of numbers for each f in N∗

2. Show that E is a projection on M along N iff I − E is a projection
on N along M

3. State and prove closed graph theorem

4. Let T be an operator, a normed linear space N, T∗ be its conjugate
defined by T ∗ ( f ) = f0T (or) (T ∗ f )x = f (T (x)) for every f ∈ N∗

and x ∈ N then prove that T ∗ is an operator on N∗ and the mapping
φ : B(N) → B(N∗) such that φ(T ) = T ∗ for every T ∈ B(N) is an
isometric isomorphism of B(N) into B(N∗) and also preserves the
identity transformation.

5. Prove that let B be a Banach space and let M and N be a closed
linear subspace of B such that B = M⊕N .If Z = x+y is the unique
representation of a vector in B as a sum of vectors in M and N ,
then the mapping P defined by P(Z) = x is a projection on B whose
range and null spaces are M & N.

6. State and prove open mapping theorem.

7. State and prove uniform boundedness theorem.

8. Prove that if B and B′ are Banach space and if T is a continuous
linear transformation of B on to B′ then the image of each open
sphere centered on the origin in B contains an open sphere centered
on the origin in B′

9. Prove that if P is a projection on a Banach space B and if M and N
are its range and null space then M and N are closed linear subspace
of B such that B = M ⊕ N

Prepared by Dr. K. Kalidass, Department of Mathematics, KAHE Page 11 of 12



Unit II The Open Mapping Theorem 2016 Batch

10. Prove that T is a closed linear transformation iff its graph TG is
closed subspace.
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Question Option-1 Option-2 Option-3 Option-4 Answer

The centre of some open sphere contained in A is called the  ……….. closed open interior exterior interior

Each operator T on a normed linear space N induces a corresponding

 operator denoted by  ……. T' T** T* T T*

The M is the null space for the projection on …………….. P I-P Space subspace I-P

 If P is a projection  on a  Banach space B and if M and N are its ……… dense sets range and null space subspaces projection range and null space

A projection on E determines a pair of linear subspace M and N then …….. L= m+N L=M+N L=M-N L= M N L= M N

The image of open sphere centered on the origin in B contains an …………..

Sphere centered on  the origin in B and B' closed open interior exterior open

The …... is the null space of the operator on the projection on I-P M N L=M-N L= m+N M

The …... is the null space of the operator on the projection on P M N L=M-N L= m+N N

The …... is the  range of the operator on the projection on I-P M N L=M-N L= m+N N

The …... is the  range  of the operator on the projection on P M N L=M-N L= m+N M

A pair  of linear subspace M and N such L= MN determines a………. on E. dense sets range and null space subspaces projection projection

If T is continuous , then its graph is ………. as a subset of BxB' closed open interior exterior closed

A closed set in a topological space in a set whose compliment is……….. closed open interior exterior open

A is ………… iff A = Int(A) closed open interior exterior open

Int(A) equals the union of all …………….. of A. closed open open subset open set open subset 

The interior of A is denoted by ………………… Int(A) Cl(A) Ext(A) Im(A) Int(A)

Int(A ) is an open subset of A which contains every ……………. of A closed open open subset open set open subset 

Let x be any metric space then any union of open set in x is ……... closed open open subset open set open

Let x be any metric space then any finite intersection of …….in x is open. closed open open subset open set open set

In any metric space x, each open sphere is an ……………….. closed open open subset open set open set

The open sphere  Sr(x0)  with center x0  and radius r is the subset of x define by 

……………... d(x,y) d(y,x) d(x,x0) < r d(x,x0) = r d(x,x0) < r

An open sphere is always non empty for it contain its………….. center radius distance length center

An ………… sphere with radius 1 contain only its center. closed open open subset open set open

If the open sphere is bounded open interval (x0 - r, x0 + r) with midpoint x0

 and total length…... r 2r 3r 0 2r

Sr(x0) is an open sphere  with radius …...centered on x0 r 2r 3r 0 r

In the linear space the………. transformation  I defined by I(x)=x  identity linear one to one onto  identity

The mapping P(Z) = x is a  ………………. on B. dense sets range and null space subspaces projection projection

B and B' have same topology means  they are ……………. homomorphic homeomorphic linear connected homeomorphic

B and B' have same …….. means  they are  homeomorphic strong topology nullspace topology weak topology topology

The  identity mapping of B' to B is ………. for ║T(x)║=║x║. continuous functional linear space convergent continuous

If T is continuous linear transformation of B onto B'  then T is an ……. mapping. closed open open subset open set open 

A 1-1 linear transformation  T of abanach space onto itself is continuous then

 its inverse is automatically ………… continuous functional linear space convergent continuous

The mapping T →T* is thus anorm preserving map onf B(N) into ……….. B(N)* B(N') B(N) B(N)** B(N')

Subject Name: Functional analysis                                                                                     Subject Code:   16MMP301

UNIT-II

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),

Coimbatore –641 021

DEPARTMENT OF MATHEMATICS

PART-A   Multiple Choice Questions (Each Question Carries One Mark)



UNIT-III                                              Functional Analysis                                  2016-Batch 
 

Prepared by Dr. K. Kalidass, Department of Mathematics, KAHE Page 1 
 

KARPAGAM ACADEMY OF HIGHER EDUCATION 

 (Deemed to be University Established Under Section 3 of UGC Act 1956) 

Pollachi Main Road, Eachanari (Po), 
Coimbatore –641 021 

DEPARTMENT OF MATHEMATICS 

___________________________________________________________________________________ 

Subject: Functional Analysis                            Semester: III                                                  L  T  P   C  

Subject Code: 16MMP301  Class: II-M.Sc. Mathematics           4  0   0   4 

 

UNIT III 

Hilbert Spaces- The Definition and Some Simple Properties – Examples and Problems. Orthogonal 

Complements - Some theorems .Ortho-normal sets – Definitions and Examples-Bessel’s inequality- The 

conjugate space H* 

TEXT BOOK 

1. Balmohan V., and Limaye., 2004. Functional Analysis, New Age International Pvt. Ltd, Chennai. 

REFERENCES 

1. Simmons. G.F., 1963. Introduction to Topology & Modern Analysis, Tata McGraw-Hill Publishing 
Company Ltd, New Delhi. 
 

2. Chandrasekhara Rao.K., 2006. Functional Analysis, Narosa Publishing House, Chennai. 

 

3. Choudhary .B,and Sundarsan Nanda., 2003. Functional Analysis with Applications, New Age 
International Pvt. Ltd, Chennai. 
 

4. Ponnusamy.S., 2002. Foundations of functional analysis, Narosa Publishing House, Chennai. 

 

 

 



Unit III Hilbert Spaces 2016 Batch

1 Hilbert spaces

Definition 1 Let N and N
′

be a normed linear spaces withthe same
scalars and T be a linear transformation of N and N

′

.We say that T
is continuous if xn → x ∈ N.

T (xn)→ T (x)

in N
′

.

Theorem 1 Let N and N
′

be normed linear spaces and T be a linear
transformation of N into N

′

. Then the following condition on T are all
equivalent to one snother.

• T is continous.

• T is continnuous at the origin.

• There exist a real number K ≥ 0 with the probability that

‖T (x)‖ ≤ K‖(x)‖

for every x in N.

• If S = x : ‖x‖ ≤ 1 isa closed unit sphere then its image T (s) is a
bounded set in N

′

.

proof. 1=2
Assume that T is continuous.
Suppose xn → 0.
Then,

T (xn)→ T (0) = 0

T (xn)→ = 0
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T is continuous at 0.
Conversely, assume that T is continuous at 0.
Suppose,

xn → x

xn − x → 0

T (xn − x) → 0

T (xn) − T (x) → 0

T (xn) → T (x)

Hence, T is continuous.
Next,2=3
Suppose 3 is true.
Since ‖.‖ is continuous,

‖xn‖ → ‖0‖

‖xn‖ → 0

Now,

‖T (xn)‖ ≤ K(xn)

for all xn in N.
T is continuous at 0.
Conversely,assume that T is continuous at origin.
To prove a real number K ≥ 0.

‖T (x)‖ leq K‖x‖ f orallx ∈ N. (1)

Suppose there is a no such K.
For each positive integer n, wwe can find a vector

xn 3 ‖T (xn)‖ ≥ n‖xn‖
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.

yn =
xn

n‖xn‖
∈ N

now, ‖T (yn)‖ = ‖T (
xn

n‖xn‖
)‖

= |
1

n‖xn‖
|.‖T (xn)‖

= f rac1n‖xn‖.‖T (xn)‖

≥ 1

Clearly,yn → 0, but T (xn →)0

‖T (x)‖ ≤ K‖x‖ f orallxinN.

For 3=4,
suppose 3 is true
let

S = [x : ‖x‖ ≤ 1]

T (S ) = [y : y = T (x) f orsomexinS ]

‖y‖ = ‖T (x)‖

≤ k.‖x‖

≤ k

T(S) is bounded
conversely, Assume that 4 is true.
Suppose x = 0 then

T (x) = T (0)

= 0

‖T (x)‖ = 0
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3 is trivially true.
suppose x , 0 then ‖x‖ > 0 then

y =
x
‖x‖
∈ s

‖y‖ = ‖
x
‖x‖
‖

=
1
‖x‖
.‖x‖

= 1

y ∈ S

then T (y) ∈ T (S ).
since T(S) is a bounded set, we have

‖T (y)‖ ≤ k

‖T (
x
‖x‖

) ≤ k

1
‖x‖
.‖T (x)‖ ≤ k

‖T (x)‖ ≤ k.‖x‖

Definition 2 suppose T is a linear transformation and there exist a real
number k ≥ 0 with the property that ‖T (x)‖ ≤ k‖x‖ for every x , then
k is called a bound for T and such a linear transformation T is called
bounded linear transformation.

Remark 1 By previous theorem,T is bounded linear transformation iff
T is continous

Definition 3 suppose T is continuous, we define its norm by ‖T‖ = sup[‖T (x)‖ :
‖X‖ ≤ 1]
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Remark 2 suppose ‖x‖ = 1.Then we have another espression for the
norm of T.

‖T‖ = in f [k : k ≥ 0]

‖T (x)‖ ≤ k.‖x‖ f orallx

Theorem 2 If N and N
′

are normed linear spaces,then the set B(N,N
′

)
of all continuous linear transformation of N into N

′

is itself normed
linear space with respect to the pointwise linear operations and the norm
defined by

‖T‖ : sup(‖T (x)‖ : ‖x‖ ≤ 1)

.Further if N
′

is a banach space then B(N,N
′

) is also a Banach space.

Definition 4 Let N be a normed linear space .A continuous linear trans-
formation of N and N

′

itself is called an ’Operator on N’ and we denote
the normed linear space of all operators on N by B(N).

Remark 3 Suppose N is a banach space, then by previous therom B is a
Banach space.

Remark 4 If T and U are any two linear transformation on their product(TU)(x) =

T (U(x))

Remark 5 B(N) is an algebra in accordance with the mutliplication de-
fined by

(TU(x) = T (U(x)

. for all T,U ∈ B

Remark 6 Suppose Tn → T and Tn → T
′

. Then TnT
′

n → TT
′

.

‖TnT
′

n − TT
′

‖ = ‖Tn(T
′

n − T
′

) + (Tn − T )T
′

‖

≤ ‖Tn(T
′

n − T
′

) + (Tn − T )T
′

‖

≤ ‖Tn‖‖(T
′

n − T
′

) + (Tn − T )‖‖T
′

‖

→ 0

TnT
′

n → TT
′
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Remark 7 Suppose N , 0.Then the identity transformation T is an iden-
tity for the algebra B(N).

‖I‖ = 1, f or

‖I‖ = sup[‖I(x)‖ : ‖x‖ ≤ 1]

= sup[‖x‖ : ‖x‖ ≤ 1]

= 1
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Possible Questions
8 marks

1. Prove that a closed convex subset C of a Hilbert space H contains
a unique vector of smallest norm.

2. State and prove Schwartz inequality.

3. Show that inner product function is jointly continuous.i.e., xn → x,
yn → y the (xn, yn)→ (x, y).

4. Prove that if B is a complex Banach space whose norm obeys the
parallelogram law and if an inner product is defined on B by 4(x, y) =

||x + y||2 − ||x − y||2 + i||x + iy||2 − i||x − iy||2

5. Prove that let M be a closed linear subspace of a Hilbert space H.
Let x be a vector not in M and let d be the distance from x to M.
Then there exist a unique vector y0 ∈ M such that ||x − y0|| = d.

6. Prove that if M is a proper closed linear subspace of a Hilbert space
then there exist non-zero vector z0 ∈ H, z0 ⊥ M

7. If the {ei} is an orthonormal set in a Hilbert space H and if x is an
arbitrary vector in H then 〈x

∑
〈x, ei〉, ei〉 ⊥ e j for every j.

8. State and prove Bessel’s inequality .

9. Prove that if M is a linear subspace of a Hilbert space , Show that
it is closed iff M = M⊥⊥

10. Prove that if {ei} is an orthonormal set in a Hilbert space, H and if X
is any vector in H then the set S = {ei : 〈x, ei〉 , 0} is either empty
or countable.

11. Prove that if M and N are closed linear subspaces of a Hilbert space
H such that M ⊥ N, then the linear subspace M + N is closed.

12. State and prove Bessel?s inequality for finite orthonormal set.
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13. State and prove Riesz representation theorem.

.
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Question Option-1 Option-2 Option-3 Option-4 Answer

Every inner product space is a…………… normed  linear space hilbert space banach space continuous normed  linear space

The ……….. is orthogonal to any vector product scalar zero vector real value zero vector

The relation of orthogonality in a  Hilbert space is …………. asymmetry symmetry abelian commutate symmetry

The zero vector is the only vector which is ………… to itself. asymmetry symmetry orthogonal direction orthogonal

A complex banach space is said to be a ………….. if there is an inner 

product which satisfies the three conditions. Banach space hilbert space Inner product space linear space hilbert space 

For the space l2
n 
we use cauchy inequality to prove …………inequality minkowski's schwartz triangle cauchy triangle schwartz

Two vectors x and y in a hilbert space H are said to be orthogonal if …… (x,y)>1 (x,y)=0 (x,y)=1 (x,y)<1 (x,y)=0

If x is orthogonal to y then every scalar multiple is ………….. to  y. parallel symmetry orthogonal perpendicular perpendicular

The ………………. is orthogonal to every vector. product scalar zero vector real value zero vector

The d is the distance from  ……….. to c. center vertices edges origin origin

If M is a closed linear subspace of ahilbert space H then H is the …………

of M and M perp product scalar zero vector Direct sum Direct sum

If M is a proper closed linear subspace of H, there exist a Z0≠0 in H such 

that……….. M+Mperp Mperp+z0 Z0 ┴ M Z0 ┴ P Z0 ┴ M

If M and N are closed linear subspace of ahilbert space H such that 

M┴N then the linear subspace M+N is……… closed open open subset open set closed

The scalars in a Hilbert space are usually ……………. numbers. Irrational algebraic complex rational complex

The  distance property in inner product space is   (ax+by, Z) =………… a(x,z)+b(y,z) a(x,x)+b(y,x) a(x,z)-b(y,z) a(x,z)+b(x,z) a(x,z)+b(y,z)

The  distance property in inner product space is   (ax-by, Z) =………… a(x,z)+b(y,z) a(x,x)+b(y,x) a(x,z)-b(y,z) a(x,z)+b(x,z) a(x,z)-b(y,z)

If s1  s2 then s1
┴
  …………… s1┴ s2┴ s1┴ -s2┴ s1┴s2┴ s2┴

An orthonormal set cannot has an ………… product scalar zero vector real value zero vector

The set  S is finite or………………….. Countable uncountable countably infinite countably finite countably infinite

The orthonormal set is either ………………. or countable. Countable uncountable finite empty empty

The orthonormal set is either  empty or …………….. Countable uncountable finite empty Countable

If  M is linear subspace of a hilbert space then it is closed iff  M=……… s┴ M┴ M┴M M┴┴ M┴┴

A nonempty set {ei} of a hilbert space H is said to be an orthonormal set if 

…………… for all i=j (ei, ej) >0 (ei, ej) =0 (ei, ej) =1 (ei, ej) <1 (ei, ej) =1

A nonempty set {ei} of a hilbert space H is said to be an orthonormal set if 

…………… for all i≠ j (ei, ej) >0 (ei, ej) =0 (ei, ej) =1 (ei, ej) <1 (ei, ej) =0

If H contains only the zero vector then it has no ………………… orthonormal set orthonormal basis Banach space hilbert space orthonormal set

If H contains a nonzero vector and if we normalised x then ║e ║=…… zero four five one one

If (x,y) are any two vectors in a Hilbert space then │(x,y)│<=……….. ║x ║║y║ ║x ║/║y║ ║x ║-║y║ ║x ║+║y║ ║x ║║y║

If (x,y) are any two vectors in a Hilbert space then ║x+y║
2
+║x-y║

2
 =……….. 2║x ║

2
/2║y║

2
2║x ║

2
-2║y║

2
2║x ║

2
+║y║

2
2║x ║

2
+2║y║

2
2║x ║

2
+2║y║

2

The sum of Z and  Z conjugate is equal to……… 2 im Z 2 Re z 2 z Re z 2 Re z

If (x,y) are any two vectors in a Hilbert space then ║x+y║
2
-║x-y║

2
 =……….. 2║x ║

2
/2║y║

2
2(x,y)+2(y,x) 2║x ║

2
+║y║

2
2(x,y)-2(y,x) 2(x,y)+2(y,x)

The product of  a and conjugate of  a is  ………….. a an a
2

a a
2

If (x,y) are any two orthogonal vectors in a Hilbert space then ║x+y║
2
 =……….. 2║x ║

2
/2║y║

2
2║x ║

2
-2║y║

2
║x ║

2
+║y║

2
2║x ║

2
+2║y║

2
║x ║

2
+║y║

2

If (x,y) are any two orthogonal vectors in a Hilbert space then ║x-y║
2
 =……….. 2║x ║

2
/2║y║

2
║x ║

2
-║y║

2
║x ║

2
+║y║

2
2║x ║

2
+2║y║

2
║x ║

2
+║y║

2

Every inner product space is expressed as  a║x║
2 
…………… (x,y)>1 (x,x) (y,y) (y,x) (x,x)

A close convex subset of a hilbert space H contains a unique vector of 

smallest  ……………… metric space subset norm norm

A close ………. subset of a hilbert space H contains a unique vector of 

smallest  norm. concave convex linear metric convex

Parseval's equation is otherwise called as parseval's …………. transform fourier identity subscript identity

Let x be anarbitrary vector in H the numbers (x,ei) are called the ,,,,,,,,,

coefficient of x. parseval fourier schwartz bessels fourier

The set of all continuous linear functional on H is denoted by …………… H H** H* T* H*

The expression x= (x,ei)ei is called the …………. expansion of x. parseval fourier schwartz bessels fourier
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Unit IV The Adjoint of an operator 2016 Batch

1 The Adjoint of an operator

Definition 1 Let N and N
′

be normed linear spaces. An isometric iso-
morphism of N and N

′

is a one to one linear transformation T of N into
N
′

. Such that ‖T (x)‖ = ‖x‖ for every x in N and N is said to be isometri-
cally isomorphic to N

′

if there exist an isometric isomorphism of N into
N
′

.

Definition 2 The set B(N,R) or B(N,C) is denoted by N∗ and is called
the ’conjugate space of N’ and the elements of N∗ are called ’continuous
linear functionals (or) functionals ’.

Definition 3 Let N and N
′

be normed linear spaces and let T : N → N
′

be a linear transformation. The kernal of T is the

ker(T ) = [x : T (x) = 0]

Problem 1 ker T is a linear manifold and that ker T is closed if T is
continuous.

solution A non-empty subset M of a linear space L is a linear suspace L
(a linear manifold in L) iff

x.y ∈ M ⇒ x + y ∈ M

x ∈ Mandαisscalar ⇒ α.x ∈ M

α, βanyscalars⇒ α.x + β.y ∈ M

Let x, y ∈ ker T
Let α, β be any scalars
Now,

T (αx + βy) = T (αx) + T (βy)

= αT (x) + βT (y)

= α.0 + β.0

= 0
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αx + βy ∈ ker T.
Let x be a limit point of ker T .
Then there exist a sequence xn. Such that xn → x.
Since T is continuous

T (xn)→ T (x)

. Since xn is a sequence in ker T , we have

T (xn) = 0

T (x) = 0

x ∈ ker T

Hence ker T is closed.

Definition 4 Let S be any non-empty subset of L and let M be the set
of all finite linear combination of element of S. Then M is called as the
’linear monifold spanned by S’.

Remark 1 M is the intersection of all linear manifold containing S.

Remark 2 M is the smallest linear manifold which contain S.

Definition 5 Suppose M is linear manifold in a linear space L. Two el-
ements x1.x2 ∈ L are called ’Equavalent Modulo M’ if x1 − x2 ∈ M and
we write

x1 ≡ x2(modM)

Remark 3 L is divided into mutual disjoint equivalence classes. We
denote the set of all such equivalence classes by L/M.

Remark 4 Let [x] denote the equivalence class which contains the ele-
ment x.Then equivalence class of

[x] = [y ∈ L : x ≡ y(modM)]

= [y : x − y ∈ M]

= [y : x − y ∈ m] f orsomem ∈ M

= [y : y = x + m] f orsomem ∈ M.
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Theorem 1 Let N be a non-wero normed linear space and letS = [x ∈
N : ‖x‖ = 1] be a linear subspace of N. Then N is a Banachspace⇐⇒ S
is complete.

solution. Suppose N is a Banach space
Let xn be a cauchy sequence in S. Then

‖xn‖ = 1

for every n.
Since N is a Banach space and xn is a cauchy sequence in N.

xn → x

Since ‖.‖ is a continuous function.

‖xn‖ → ‖x‖

‖xn‖ = lim
n→∞
‖x‖

= lim
n→∞

1

= 1

x ∈ S .

S is complete. Conversely, assume that S is complete.
Since N is a normal linear space, it is enough to show that N is complete.
Let yn be a cauchys sequence in N.
For given Σ > 0 a positive integer M.
Such that

‖ym − yn‖ < Σ

for all n,m ≥ M.

Prepared by Dr. K. Kalidass, Department of Mathematics, KAHE Page 4 of 12



Unit IV The Adjoint of an operator 2016 Batch

Let ,

xn =
yn

‖yn‖
∈ N

‖xn‖ = ‖
yn

‖yn‖
‖

= |
1
‖yn‖
|.‖yn‖

= 1

xn ∈ S .

Hence xn is a cauchyy sequece in S.

‖x − m − xn‖ = ‖
ym

‖ym‖
−

yn

‖yn‖
‖

= ‖
ym

‖ym‖
−

yn

‖ym‖
+

yn

‖ym‖
−

yn

‖yn‖
‖

≤ ‖
ym

‖ym‖
−

yn

‖ym‖
‖ + ‖

yn

‖ym‖
−

yn

‖yn‖
‖

=
1
‖ym‖
‖ym − yn‖ + |

1
‖ym‖

−
1
yn
|‖yn‖

= ‖
ym − yn

‖ym‖
‖ + ‖

yn − ym

‖ym‖
‖

≤ 2‖
ym − yn

‖ym‖
‖

<
2
‖ym‖

i f n,m ≥ M.

xn is a cauchy sequence in S.
Since S is complete,xn → x and x ∈ S .

yn

‖yn‖
→ x

yn → ‖yn‖.x

|‖ym‖ − ‖yn‖| ≤ ‖ymyn‖

< Σi f n,m ≥ M.

Prepared by Dr. K. Kalidass, Department of Mathematics, KAHE Page 5 of 12



Unit IV The Adjoint of an operator 2016 Batch

‖yn‖ is a cauchys sequence in R
Since R is complete,

‖yn‖ → α ∈ R

yn → αx ∈ N

N is a Banach space.
Hence proved.

Definition 6 Let S be set then a partial order on S is a binary operation≤
on S.
That satisfies,

a ≤ a f oralla ∈ S .

a ≤ bandb ≤ a

⇒ a = b.

a ≤ bandb ≤ c

⇒ a = c.

The pair (S ,≤) is called partially ordered set (or) po-set.

Definition 7 Let (S ,≤) be a partially ordered set. A subset T of S is
called totally ordered set if a, b ∈ T ⇒ a ≤ b
A totally ordered subset is also called a chain.

Definition 8 An element U ∈ S is said to be an upper bound for a subset
T of S if

a ≤ U

Definition 9 A maximal element of S is an element m ∈ S such that
m ≤ x⇒ m = x

Example 1 The set of all real number R is a partially ordered set with
usually ordered on R
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Example 2 The set of all integer Z is a totally ordered set (or) chain.

Example 3 Let A be an arbitrary set and let P(A) be the set of all subset
of A. Then P(A),≤ is a po-set (or) paetially ordered set.

Definition 10 Zorn’s lemma : Let (S ,≤) be a partially ordered set in
which every chain has an upper bounded then (S ,≤) contains maximal
element.

Theorem 2 The Hahn Banach theorem Let M be a linear subspace of
a normed linear space N and let f be a functional defined on M then f
can be extended to a fractional f0 defined on N such that,

‖ f ‖ = ‖ f0‖.

proof. Let P be the set of all ordered pairs (M − λ, fλ). Such that

• Mλ is a linear subspace of N contains M.

• fλ is a bounded linear functional on Mλ

• fλ is the extension of f.

• ‖ fλ‖ = ‖ f ‖

define a relaion on P as follows:

(Mλ, fλ) ≤ (Mµ, fµ)

iff Mλ < fµ and fλ < fµ on Mλ

Clearly ,P is a partially ordered set . Let Q be a ordered chain of P.
Q = (Mi, fi) be a chain in P.
Consider (UMi,Φ) where Φ(x) = fi(x) for all x ∈ Mi

Let (x, y) ∈ UMi, and α, β be any scalars. Then x ∈ miy ∈ m j

Since Q is totally ordered set ,Mi ∈ m j

Without loss of generality assume that Mi ∈ m j
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Then x, y ∈ M j

Since M j is a subspace of N, we have

αx + βy

. Since M j is a subset of UMi.
UMi is a subspace of N.
Suppose x ∈ UMi such that x ∈ Mi and x ∈ M j. Then by definition of Φ,

Φ(x) = fi(x)

and
Φ(x) = f j(x)

.

fi(x) = f j(x)

. Φ is well defined.
(UMi,Φ) is an upper bound of Q.
P satisfies the all condition of ’Zorns lemma’.
Hence thereexist a maximal element (H, F) in P.
Suppose H ∈ N then there exist x0 ∈ N − H by previous theorem,F
can be extended to a functional F0 on H0 = HU[x0] which contains H
properly.Whic is contradiction to the maximal of (H, F).
Hence N = H

Theorem 3 Let N be a normed linear space and x0 a non-zero vector in
N, then exist a functional F in N∗ such that

F(x0) = ‖x0‖

‖F‖ = 1.

proof. Let M = [αx0] be a linear subspaces of N spanned by x0.
Define f0 on M by

f0(αx0) = α‖x0‖
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Let y1, y0 ∈ M
Then y1 = αx0 and y2 = βx0 for some scalars α, β ∈ F.
Suppose γ and S are scalars

f0(γy1 + S y[2]) = f0(γαx0 + γβx0)

= f0[(γα + S β)x0]

= (γα + S β)‖x0‖

= (γα‖x0‖(+(S β)‖x0‖

= γ f0(αx0) + S f0(βx0)

f0 is a linear on M.
Let y = αx0

‖y‖ = ‖αx0‖

= |α|‖x0‖

‖ f0(y)‖ = ‖ f0(αx0)‖

= ‖α‖x0‖‖

= |α|‖x0‖

= ‖y‖

f0 is bounded on M.
f0is functional on M.
Now,

‖ f0‖ = sup[‖ f0(y)‖ : y ∈ M, ‖y‖ = 1]

= sup[‖y‖ : y ∈ Mand‖y‖ ≤ 1]

= 1.

Also f0(x0) = f0(1.x0)

= ‖x0‖
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By Hahn Banach f0 can be extended to a functional F ∈ N∗ such that

F(x0) = f0(x0)

= ‖x0‖

and‖F‖ = ‖ f0‖

= 1.

Hence the proof.

Theorem 4 Let M be a closed linear subsoace of a normed linear space
N and x0 a vector not in M,then there exist a functional F in N∗. Such
that F(M) = 0 and F(x0) , 0

proof. Consider φ : N → N
M defined by

φ(x) = x + M
φ is a continuous linear transformation and if m ∈ M.
φ(m) = m + M = 0
x0 ∈ M
φ(x0) = x0 + M , 0
φ(x0) is not a zero vector in N/M. By Hahn Banach theorem there exist
a functional f ∈ (N/M)∗ such that

f (x0 + M) = ‖x0 + M‖ , 0

F(αx + βy) = f (φ(αx + βy))

= f ((αx + βy) + M)

= f (αx + M) + f (βy + M)

= α f (x + M) + β f (y + M)

= αF(x) + βF(y)

F is linaer
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Now|F(x)| = | f (φ(x))|

≤ ‖ f ‖.‖φ(x)‖

≤ ‖ f ‖.‖φ‖‖(x)‖

≤ ‖ f ‖.‖x‖

F is bounded
F is a functional on N
F ∈ N∗

Suppose m ∈ M then

F(m) = f (φ(m))

= f (m + M)

= f (0)

= 0

AlsoF(x0) = f (φ(x0))

= f (x0 + m)

= 0

, 0

Hence the proof.
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Possible Questions
8 marks

1. Prove that the self adjoint operators in B(H) form a closed real
linear subspace of B(H) and Therefore a real Banach space which
contains the identity transformation

2. Prove that if A1 & A2 are self adjoint operator on H then their prod-
uct A1A2 is self Adjoint iff A1A2 = A2A1.

3. Prove that an operator T on a Hilbert space H is self adjoint if
〈T x, x〉 is real ∀x.

4. If N1 and N2 are normed operators on H with the property that either
with the adjoint of the other then N1 + N2 and N1N2 are normal

5. Prove that if A is a positive operator on H then I +A is non-singular.
In particular I + T ∗T and I + TT ∗ are non-singular for any arbitrary
operator T on H.

6. Prove that an operator on Hilbert space H is unitary iff T is unitary.
It is an isometric isomorphism of H onto itself.

7. If P is a projection on Hilbert space H with range M and null space
N , then M ⊥ N ↔ P is self adjoint. In this case N = M⊥

8. If P is a projection on a closed linear subspace M of H, then M is
invariant under T iff T P = PT P

9. If P is a projection on a closed linear subspace M(H), then M re-
duces to an operator T iff T P = PT

10. Prove that the set of all normal operators on H is a closed subset
of B(H) which contains the set of all self adjoint operators and is
closed under scalar multiplication
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The null space  of any continuous linear transformation is ………… closed open open subset open set closed

Let M ={x / f(x)=0} then M is the ……………….. of f. range linear nullspace open subset nullspace

Let the adjoint of T denoted by …………. on H. H H** H* T* T*

The adjoint of an operator is (Tx,y) =………….. (Tx,y) (x,T*y) (T*x,y) (Tx,Ty) (x,T*y)

The adjoint of operator T to T*  on B(H) is (T1+T2)*=……. T1*-T2* T1+T2* T1*+T2 T1*+T2* T1*+T2*

The adjoint of operator T to T*  on B(H) is (aT)* =……………. a(T)*  Conjugate of a (T)* T1*+a T*  Conjugate of a (T)*

The adjoint of operator T to T*  on B(H) is  (T1T2)*=……... T1*-T2* T1+T2* T1*T2* T2*T1* T2*T1*

The adjoint of operator T to T*  on B(H) is T** =  …………… a(T)* T1+T2* T T* T

The adjoint of operator T to T*  on B(H) is  ║T║=…………...  ║T║*  ║T*║ T* T  ║T*║

The adjoint of operator T to T*  on B(H) is  ║T*T║=………….  ║T║*  ║T*║ T*  ║T║
2

 ║T║
2

If T is nonsingular operator on  H then T* is also nonsingular then (T*) 
-1

=…….  ║T║*  ║T*║ (T
-1

) * (T
-1

) (T
-1

) *

If T = T* then 0 and I are ……………. operators adjoint commutate self adjoint symmetric self adjoint

If A1 and A 2 are self adjoint operators on H then their product A1A2 is 

self adjoint iff A1A2 =…………….. A2A1 A1A2 A1 A2 A2A1

If T is an arbitrary operator on  a hilbert space H then T=0 iff ……………… (Tx,y) (x,T*y) (T*x,y) (Tx,y)=0 (Tx,y)=0

If T is an arbitrary operator on  a hilbert space H then (Tx,x)=0 iff ……………… T=1 T=0 T=T* T= Tx T=0

If (A1A2)*=…………if  A1 and  A2 are self adjoint  operator A2A1 A*2 A*1 A2 A2A1

The adjoint operator 0*=  ………….. 6 2 0 1 0

The adjoint operator 1*=  ………….. 6 2 0 1 1

If A is a positive operator on a H then I+A is ………………. singular nonsingular commutate self adjoint nonsingular

I+T*T are………….  for any arbitrary oprator on T on H . singular nonsingular commutate self adjoint nonsingular

The self adjoint operator A is said to be positive if ……………….. (Ax,x) =0 (Ax,x) ≥ 0 (A*x,y) (Ax,y)=0 (Ax,x) >= 0

Every complete subspace of a complete space is  ……………. closed open open subset open set closed

An operator N on H is said to be …………. if it commutes with its adjoint. complete closed normal open normal

An operator N on H is said to be normal  If it ……………. with its adjoint. singular nonsingular commutes self adjoint commutes

The normal operator is NN*=…………… N* nonsingular N N*N N*N

Every ………………. operator is normal adjoint commutate self adjoint symmetric self adjoint

An operator T on H is ……………. Iff ║T*x║=║T x║ complete closed normal open normal

If  is a …………...operation on H then ║N
2
║=║ N║

2
complete closed normal open normal

If T is an operator on H then T is normal iff its real and imaginary parts …… singular nonsingular commutes self adjoint commutes

An operator U on H is said to be ……….. If UU*= U*U= I complete closed normal unitary unitary

An operator U on H is said to be  unitary If …………………. UU*= U*U= I U*U=0 U=1 U=0 UU*= U*U= I

Every unitary opeartor is a ……………… operator complete closed normal unitary normal

………….. operators are precisely nonsingular operators. complete closed normal unitary unitary

Unitary operator inverse equals  theirs ………… adjoint commutate self adjoint symmetric adjoint

 Unitary operators are precisely ………………. operators. singular nonsingular commutes self adjoint nonsingular

A projection on a banch space B is an ……………. operator when T
2
 =T. adjoint commutate self adjoint idempotent idempotent

An operator P on a hilbert space H is a …………. on H which satisfies the 

condition  P
2
= P and  P* = P dense sets range and null space subspaces projection projection

A closed linear subsapce M(H) is ………… under T if T(M)  M invariant commutate self adjoint idempotent invariant

Two projectionP and Q on ahilbert space H are said to be……... if PQ=0 invariant commutate orthogonal idempotent orthogonal

If P is a…………… on a closed linear subspace  M of H then M reduces an

 operator T iff TP=PT projection commutate self adjoint idempotent projection
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Unit V Banach algebra 2016 Batch

1 Banach algebra

Definition 1 The natural embedding on N in N∗

The conjugate space N∗ of a normed linear space N is itself a normed
linear space . we can form the conjugate space (N∗)∗ of N∗. We denote
this space by N∗∗ and called second conjuate.

Theorem 1 Let N an arbitrary normed linear space then each vector
x in N includes a functional Fx on N∗ defined by Fx( f ) = f (x) for all
x ∈ N. such that

‖Fx‖ = ‖x‖

.

Proof: Let f , g ∈ N∗ be arbitrary and α, β be any scalars

Fx(α f + βg) = (α f + βg)(x)

= (α f (x) + βg(x))

= α.Fx( f ) + βFx(g)

Fx is linear.
Now,

‖Fx( f )‖ = ‖ f (x)‖

≤ ‖ f ‖‖x‖

Fx is bounded.
Fx is linear functional on N∗

Next,we have to prove that

‖Fx‖ = ‖x‖

Now, ‖Fx‖ = sup[‖Fx( f )‖ : ‖ f ‖ ≤ 1]

≤ sup[‖ f ‖‖x‖ : ‖ f ‖ ≤ 1]

≤ ‖x‖

Prepared by Dr. K. Kalidass, Department of Mathematics, KAHE Page 2 of 17



Unit V Banach algebra 2016 Batch

Suppose x = 0 then ‖ fx‖ = ‖x‖.
It is true for x = 0
Such that

g(x) = ‖x‖

‖g‖ = 1

By defn of Fx we have,

g(x) = Fx(g)

Fx(g) = g(x) = ‖x‖

Now, ‖x‖ = g(x)

≤ sup[|g(x)| : ‖g‖ ≤ 1]

= ‖Fx‖

Hence‖x‖ ≤ ‖Fx‖

‖x‖ = ‖Fx‖

Theorem 2 The mapping J : N → N∗∗ defined by

J(x) = Fx

for all x ∈ N defines an isomorphic of N into N∗∗.

proof: Now,

F(ax+by))( f ) = f (ax + by)

= a. f (x) + b. f (y)

= a.Fx( f ) + b.Fy( f )

= (a.Fx + b.Fy)( f )

F(ax+by)) = a.Fx( f ) + b.Fy

J(ax + by) = aJ(x) + bJ(y)

J is linear.
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Also,

‖J(x)‖ = ‖Fx‖

= ‖x‖

SupposeJ(x) = J(y)

⇒ J(x) − J(y) = 0

⇒ J(x − y) = 0

⇒ ‖J(x − y)‖ = ‖0‖

⇒ ‖x − y‖ = 0

⇒ x − y = 0

⇒ x = y

J is one-one.
Hence J is isometric isomorphism.

Remark 1 J is an isometric isomorphism of N into N∗∗ and therefore we
may say N as a part of N∗∗ without changing any of its structure as a
normed linear space.
N is a subset of N∗∗(N ∈ N∗∗). Hence the map J is called natural imbed-
ding of N into N∗∗.

Remark 2 Suppose J is onto N = N∗∗ the sign of equality is the same
sence of isomorphism under the map J. The map J is called reflexive.

Banach spaces 2

2 Open mapping

Theorem 3 The open mapping theorem
Let B and B

′

are Bananch spaces, the symbols S (x, r) and S
′

(x, r) denote
the open sphere with centre x and radius r

S (x, r) = {y ∈ B : ‖y − x‖ < r}

S
′

(x, r) = {y ∈ B
′

: ‖y − x‖ < r}
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Remark 3 S r and S r′ denote the open sphere centered at origin and the
radius r.

S r = {y ∈ B : ‖y‖ < r}

S r′ = {y ∈ B
′

: ‖y‖ < r}

Remark 4 S r = r.S r

proof:

S r = {y ∈ B : ‖y‖ < r}

= {y ∈ B :
‖y‖
r
< 1}

lety = rx

S r = {rx ∈ B : ‖x‖ < 1}

= r{x ∈ B : ‖x‖ < 1}

= r.S 1

Theorem 4 Let B and B
′

be the Banach space and T be the linear trans-
formation of B and B

′

. Then the image of each open sphere centered on
the origin in B contains an open sphere centered on the origin in B

′

.

proof: Let S r and S r′ denote the open sphere centered at origin and the
radius r in B and B

′

respectively
By previous note, S r = r.S

T (sr) = T (rS 1)

= r.T (S 1)

For each positive integer n,consider an open sphere S n in B.
Then

B =

∞⋃
n=1

S n
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Since T is onto, we have

B
′

= T (B)

= T

B =

∞⋃
n=1

S n


=

∞⋃
n=1

T (S n)

Since B
′

is a Banach space, we have B
′

is complete.
B
′

is of second category (Baire’s category theorem).
If complete metric space is the union of sequence of its subset then the
closure atleast one set in the sequence must have non-empty interior.

(T (S no))o , 0

for some n0

For all y such that
y ∈ (T (S no))0

y is an interior point of T (S no).
G of y such thaty ∈ G ⊂ T (S no)
Since y ∈ T (S no), y ∈ T (S no) or y is a limit point of T (S no).
y is an interior point of T (S no).
Such that y ∈ T (S no).
Suppose y is a limit point of T (S no).
Since G is a nbd of y,G has atleast one point other than y.
For a point y0 ∈ G and y0 ∈ T (S no).
Define a map, f : B

′

→ B by f (y) = y − y0

Suppose

f (y1) = f (y2)

y1 − y2 = y2 − y0

y1 = y2
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f is one-one.
f is onto.
Suppose yn → y
Then

f (yn) = yn − y0

= y − y0

= f (y)

f (yn) → f (y)

f is continuous.
Now

f −1(yn) = yn + y0

y + y0 = f −1(y)

f −1(yn) → f −1(y)

f is a homeomorphism.
claim: 0 is the interior point of T (S no) − y0.
Since y0 is a interior point of T (S no),a neighbourhood G of

y0 3 y0 ∈ G ⊂ T (S no)

.

f (y0) ∈ f (G) ⊂ f (T (S no))

.

0 ∈ f (G) ⊂ T (S no) − y0

.
0 is a interior point of T (S no) − y0.
claim: T (S n0) − y0 ⊂ T (S 2n0)
Let y ∈ T (S n0) − y0
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for all x ∈ S n0 y = T (x) − y0

Since y0 ∈ T (S n0), for all x0 ∈ S n0

y0 = T (x0)

y0 = T (x0)

y = T (x) − T (x0)

= T (x − x0)

Now x, x0 ∈ sno

⇒ ‖x‖ < n0, ‖x0‖ < n0

⇒ ‖x − x0‖ ≤ ‖x‖ + ‖x0‖

⇒ ‖x − x0‖ ≤ n0 + n0

⇒ ‖x − x0‖ ≤ 2n0

⇒ x − x0 ∈ S 2n0

T (x − x0) ∈ T (S 2n0)
y ∈ T (S 2n0)
T (S n0) − y0 ⊂ T (S 2n0) = 2n0T (s1)

T (S n0) − y0 ⊂ 2n0T (s1)

Since f is continuous.

f (T (S n0)) ⊂ f (T (S n0))

T (S n0) − y0 ⊂ T (S n0) − y0

⊂ 2n0T (S 1)

Define a map g : B
′

→ B
′

by g(x) = 2n0x
Clearly g is homeomorphism.
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g(T (S n0)) = g(T (S n0))

2n0T (S 1 = 2n0T (S 1)

T (S n0) − y0 ⊂ 2n0T (s1)

0 is a interior point of T (S 1).
Hence there exist ε > 0 such that

S
′

ε(T (S 1)) (1)

Claim: S
′

ε ⊂ (T (S 3)).
Let y ∈ S

′

ε be arbitrary
Then ‖y‖ < ε
From (2.1), y ∈ T (S 1), then y is a limit point of (S 1).
Therefore a vector y1 ∈ T (S 1).
Such that y1 ∈ T (S 1) and ‖y − y1‖ < ε/2.
Then y1 = T (x1) for some x1 ∈ S with ‖x1‖ < 1.
We have S

′

ε/2 ⊂ T (S 1
2
).

Since ‖y − y1‖ < ε/2,y − y1 ∈ ε/2.

y − y1 ∈ T (S 1
2
)

Vector y2 in T (S 1
2
) such that

‖(y − y1) − y2‖ < ε/2

when y2 ∈ T (S 1
2
),y2 = T (x2)

for some x2 ∈ S 1
2

‖x2‖ <
1
2 .

Continuing in this way, we get a sequence xn in B such that ‖xn‖ <
1

2n−1

and

‖y − (y1 + y2 + .... + yn)‖ <
ε

2n . (2)
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Let

S n = x1 + x2 + .... + xn.

‖S n‖ = ‖x1 + x2 + .... + xn‖

≤ ‖x1‖ + ‖x2‖ + .... + ‖xn‖

< 1 +
1
2

+ ... +
1

2n−1

=
1(1 − 1

2n )

1 − 1
2

< 2 (3)

For n > m we have

‖sn − sm‖ = ‖xm+1 + .... + xn‖

≤ ‖xm+1‖ + .... + ‖xn‖

<
1

2m + .... +
1

2n−1

=

1
2m

(
1 − 1

2n−m

)
1 − 1

2

=
1

2m−1 −
1

2n−m−1 → 0asm, n→ ∞

S n is a cauchy’s sequence in B.
Sice B is complete,S n converges to some vectors x ∈ B. Now

‖x‖ = ‖limS n‖

= lim‖S n‖

≤ 2(by2.2)

< 3

x ∈ S 3

Since T is continuous, x = limS n
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⇒ T (x) = limT (S [n])

= lim[T (x1 + ..... + xn)]

= lim[T (x1) + ..... + T (xn)]

= lim[y1 + .... + yn]

= y(by2.2)

y = T (x) where ‖x‖ < 3.
y ∈ T (S 3)
Hence S

′

ε ⊂ T (S 3).
Hence the proof.

Theorem 5 Open Mapping Theorem: Let B and B
′

be Banach space,
T is a continuous linear transformation of B and B

′

then T is open map-
ping.

proof: Given that T : B→ B
′

is continuous onto
To Prove: T is an open map.
Let G be an open set in B
Let y ∈ T (G) be arbitrary
Since T is onto ,x ∈ G 3 T (x) = y
Since G is an open set, x is a interior point of G.
For an open sphere S (x, r) ⊂ G.
W.K.T S (x, r) = x + S r.
where S r is an open sphere centre at origin with radius r.

x + S r ⊂ G

By previous theorem, an open sphere S
′

εinB
′

such that S
′

ε ⊂ T (S r).
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y + S
′

ε ⊂ y + T (S r)

= T (x) + T (S r)

= T (x + S r)

= T (s(x, r)).

S
′

(y, ε) ⊂ T (S (x, r))

y is a n interior point on T(G).
T(G) is an open set (or) open sphere.
Hence the proof.

Theorem 6 Let B and B
′

be Banach spaces and let T be a one-one con-
tinuous linear transformation of B nto B

′

. Then T is homeomorphism.

proof:
Since T is one-one, onto, continuous we have to prove that T−1 is con-
tinuous.
By prrevious theorem ,T is an open map .
T(G) is open if G is open.
Since T (−1)−1 = T , we have T−1 is continuous.
Hence T is homeomorphism.

Definition 2 Closed Graph Theorem:
Let x and Y be any non-empty set and let f : X → Y be an imaginary
mapping.Then the graph of f is a subset of XxY which consist of all
ordered pairs of the form(x,f(x)).

Remark 5 Let N and N
′

be the normed liinear spaces.Then NxN
′

is
a normed linear space with co-ordinate wise linear operation and the
norm

• ‖x, y‖ = max[‖x‖, ‖y‖]
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• ‖x, y‖ = max[‖x‖ + ‖y‖]

Definition 3 Let N and N
′

be the normed liinear spaces and D be the
subspace of N. Then a linear transformation T : D → N

′

is said to be
closed iff xn ∈ D, xn ∈ x,T (xn ∈ y)and T (x) = y.

Theorem 7 Let N and N
′

be the normed liinear spaces and D be the
subspace of N. Then a linear transformation T : D → N

′

is said to be
closed iff TG is closed.

proof:
Suppose T is a Closed linear transformation
To prove:TG is closed
Suppose TG has limit point (x,y). Then there exist a sequence (xn,T (xn))
where xn ∈ D and (xn,T (xn) ∈ (x, y).

‖(xn,T (xn) − (x, y)‖ → 0

⇒ ‖(xn − x,T (xn) − y)‖ → 0

⇒ ‖(xn − x‖ + ‖T (xn) − y)‖ → 0

⇒ ‖(xn − x‖ → 0

and ⇒ ‖T (xn) − y)‖ → 0

therefore
xn → x

and
T (xn)→ y

. Since T is a closed linear transformation T (x) = y and x ∈ D.
(x, y) ∈ T(G).
T(G) is closed. Conversely assume that the graph of T is closed,T (G) is
closed.
To prove: T is a closed linear transformstion.
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Let xn ∈ D, xn ∈ x,T (xn) ∈ y then (x,y) is a limit point of T(G).

(x, y) ∈ TG

.
Since T(G) is closed ,we have TG = TG.
x ∈ G and T (x) = y
Hence T is a closed linear transformation.

Theorem 8 Let B and B
′

be Banach spaces and T be a linear trans-
formation of BintoB

′

. Then T is a continuous mapping iff its graph is
closed.

proof:
Let T : B→ B

′

be continuous.
To prove:
TG is closed.
TG = TG

Since TG ⊂ TG, it is enough to show that TG ⊃ TG

Let x, y ∈ TG

Then there exist a sequence (xn,T (xn)) in TG. Such that (xn,T (xn)) →
(x, y)
Hence (xn → x,T (xn)→ y)
Since T is a continuous T (xn)→ y

T (x) = y

(x,T (x)) ∈ TG

(x, y) ∈ TG

TG ⊃ TG

TG is closed.
Conversely,assume that TG is closed.
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Denote B1 the linear space B renormed by

‖x1‖ = ‖x‖ + ‖T (x)‖

Now, ‖T (x)‖ ≤ ‖T (x)‖ + ‖x‖

≤ ‖x‖1

(4)

T is bounded by ‖x‖1
T is cotinuous.
It is sufficient to prove B1 and B are homeomorphic.
Consider the identity map
I : B1 → B by I(x) = x
Clearly I is one-one and onto.
Also

‖I(x)‖ = ‖x‖

≤ ‖x‖ + ‖T (x)‖

= ‖x‖

I is bounded by ‖x‖1.
I is continuous. Let xn be any cauchy sequence in B1.
Then ‖xn − xm‖ → 0 as n,m→ ∞.

⇒ ‖xn − xm‖ + ‖T (xn − xm)‖ → 0asn,m→ ∞

⇒ ‖xn − xm‖ + ‖T (xn) − T (xm)‖ → 0asn,m→ ∞

⇒ ‖xn − xm‖ → 0, ‖T (xn − xm)‖ → 0asn,m→ ∞

xn,T (xn) are cauchy sequence in B, B
′

respectively.
Since BandB

′

are complete,xn → B and T (xn)→ B
′

.
SinceTG is closed, (x, y) ∈ TG.
Such that T (x) = y
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Now,

‖xn − x‖1 = ‖xn − x‖ + ‖T (xn − x)‖

= ‖xn − x‖ + ‖T (xn) − T (x)‖

= ‖xn − x‖ + ‖T (xn − y)‖

= → 0asn→ ∞

B1 is complete.
B and B1 are Banach spaces and I is a one-one conitinuous linear trans-
formation of B and B1.
By previous theorem, I is homeomorphism.
B and B1 are homeomorphic.
Hence the proof.
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Possible Questions
8 marks

1. Prove that every element x for which ||x − 1|| = 1 is regular and the
inverse of such an element is given by the formula, x−1 = 1 +

∑
(1−

x)n.

2. Prove that the boundary of S is a subset of Z

3. Prove that if G is an open set therefore S is a closed set.

4. ) If T is a operator on a finite dimension Hilbert space H, then prove
the following

i T is singular↔ 0 ∈ σ(T )

ii If T is not singular, α ∈ σ(T )↔ α ∈ σ(T )

iii If A is non-singular, then σ(AT A−1) = σ(T )

iv If α ∈ σ(T ) and if P is any polynomial then P(α) ∈ σ(P(T ))

5. If T be an arbitrary operator on a finite dimension Hilbert space H
and N be a normal operator on H. Show that if T commutes with
N then T commutes with N∗.

6. Prove that the mapping x → x−1 of G into G is continuous and its
therefore a homeomorphism of G onto itself.

7. Prove that for every element x in a Banach algebra A, σ(x) is non
empty and compact.

8. Prove that if 0 is the only topological divisor of zero in a Banach
algebra A then A = C.

9. Prove that Γ(x) = lim ||xn||
1
n
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Question Option-1 Option-2 Option-3 Option-4 Answer
A non zero vector x such that Tx=l x is true for some scalar l is called an 

…………..  of T. eigen value eigen vector scalar idempotent eigen vector

A scalar l such that Tx=lx holds for some nonzero x is called an……… of T. eigen value eigen vector scalar idempotent eigen value

Each eigen vector corresponds precisely to one………………….. eigen value eigen vector scalar idempotent eigen value

Each eigen value has one or more ……………. associated with it. eigen value eigen vector scalar idempotent eigen vector

Eigen value are otherwise called as ………………………..  characterestic value characterestic vector eigen vector scalar  characterestic value

Eigen vector are otherwise called as ………………………..  characterestic value characterestic vector eigen value scalar characterestic vector

If T is an operator on hilbert space H, then T to a vector x is to transform it

 into a scalar multiple ……………… Tx=lx Tx =0 Tx=1 l x=1 Tx=lx

The image of the zero operator under the mapping T T] is the……………… scalar zero vector real value zero matrix zero matrix

If T has different Eigen values then each one is ……….. to one another corresponding same distinct identity distinct

The expression for T=l1P1+l2P2+…………….+lmPm when it exist is called

 the ………….. resolution resolvement spectral distinct identity spectral

The image of the identity operator is the ………… matrix singular identity nonsingular null identity

The ……….. Matrix is 1's down the main diagonal and zero elsewhere. singular identity nonsingular null identity

Two matrices in An are ………… iff they are the matrices of a single operator 

on H relative to different bases similar asimilar vary distinct similar

The …………. of S is a subset of Z. boundary resolvement spectral distinct boundary

The set of all …………… divisor of zero by z. identical topological boundary resolvement topological

The set of all complex number is a…………….. algebra Ring hardy banach functional banach

The regular element is the compliment of …………… element singular identity nonsingular null singular

A banach algebra is acomplex ………….. which is also an algebra 

with identity 1. Banach space hilbert space Inner product space linear space Banach space

Let A be a …………. algebra then the set of all reular elements in A by G. Ring hardy banach functional banach

Let A be a …………. algebra then the set of all reular elements in A by S. singular identity nonsingular null singular

The set of all values in a banach algebra is ……….. number complex real inverse scalar complex

G is an open set and therefore s is an …………. set. closed open open subset open set closed

The compliment of spectrum is called the ……………… of x. resolvement spectral distinct identity resolvement

For every element x in a banach algebra A the ……….. of x is nonempty and 

compact. resolvement spectrum distinct identity spectrum

A division algebra is an algebra with identity in which each non zero element

 is …………….. singular nonsingular commutate regular regular

 0 is the only …………… divisor of zero in a banach algebra then A=C. identical topological boundary resolvement topological

 0 is the only topological divisor of zero in a banach algebra then ……….. A=C A=1 A=0 A=V A=C

A banach algebra is called a banach* algebra if it has an ………… involution topological boundary resolvement involution

The element x* is called the ………… of x and so asubalgebra of A is said to be self 

adjoint if it contains the adjoint of each of its elements. adjoint commutate self adjoint idempotent adjoint

A banach* algebra in which ║x*  x║=║x║
2
 for all x is called ……………… B* algebra resolvement spectrum distinct B* algebra

If x is anormal element in a …………… then ║x
2
║=║ x║

2
B* algebra resolvement spectrum distinct B* algebra

An element xA is ………… if there exist  an element y such that xy=yx=1 singular left regular right regular regular regular

An element xA is ………… if there exist  an element y such that yx=1 singular left regular right regular regular left regular

An element xA is ………… if there exist  an element y such that xy=1 singular left regular right regular regular right regular

Every maximal left ideal in A is …………….. closed open open subset open set closed

If x is not right regular then it is called……………..  right singular left regular right regular regular right singular

If x is not left regular then it is called……………..  left singular left regular right regular regular left singular

If x is both right and left regular then it is called …………  left singular left regular right regular regular regular

A is the intersection of all its ……….. left ideal  maximal minimal right regular regular maximal

A maximal left ideal in A is a proper left ideal which is not properly contained

if their …………… left ideal  maximal minimal proper regular proper
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1. The metric space arise on norm as d(x, y) =

a. ‖x‖ b. ‖x + y‖
c. ‖x − y‖ d. ‖y‖

2. Every ——normed linear space is a banach space

a. compact b. connected
c. complete d. closed

3. Every linear is an abelian group under

a. multiplication b. addtition
c. neither a nor b d. both a and b

4.
∣∣∣‖x‖ − ‖y‖∣∣∣ ≤
a. ‖x‖ b. ‖y‖
c. ‖x‖ − ‖y‖ d. ‖x‖ + ‖y‖

5. The norm is a —– function

a. real valued b. continuous
c. neither a nor b d. both a and b

6. The space R is a normed linear space with ‖x‖ =

a. x b. |x|
c.
√

x d. x
2

7. The set S = {x : ‖x‖ ≤ 1} is

a. closed sphere b. unit sphere
c. neither a nor b d. both a and b

8. ‖x‖p =

(
n∑

n=1
|xi|

p

) 1
p

is norm if

a. p < 1 b. p > 1
c. 1 ≤ p < ∞ d. neither a nor b

9. T is continuous if T is

a. unbounded b. bounded
c. neither a nor b d. both a and b

10. If u is a unit and is idempotent, then u =

a. 0 b. 1
c. either 0 or 1 d. neither 0 nor 1

11. T is bounded linear transformation if

a.‖T(x)‖ < K‖x‖ b.‖T(x)‖ ≤ K‖x‖
c.‖T(x)‖ > K‖x‖ d. ‖T(x)‖ ≥ K‖x‖

12. ‖T‖ =

a. sup{‖T(x)‖ : ‖x‖ < 1} b. sup{‖T(x)‖ : ‖x‖ ≤ 1}
c. inf{‖T(x)‖ : ‖x‖ < 1} d. inf{‖T(x)‖ : ‖x‖ ≤ 1}
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13. ‖T(x)‖ ≤

a. ‖T‖ b. ‖x‖
c. neither a nor b d. both a and b

14. Isometric isomorphism is a —– function

a. one-one b. onto
c. neither a nor b d. both a and b

15. ‖I‖ =

a.0 b. 1
c. neither a nor b d. both a and b

16. Which of the following is true?

a. ‖TT′‖ ≤ ‖T‖‖T′‖ b. ‖TT′‖ < ‖T‖‖T′‖
c. ‖TT′‖ ≥ ‖T‖‖T′‖ d.‖TT′‖ > ‖T‖‖T′‖

17. A linear space is called —– linear space when its
scalar is complex

a. norm b. real
c. complex d.Banach

18. N/M is Banach space if N is —-

a. norm b. real
c. complex d.Banach

19. In a Banach space every Cauchy sequence is

a. bounded b. convergent
c. neither a nor b d. both a and b

20. Consider the set of all bounded sequences of
scalars with ‖x‖ = sup |xn| is

a. normed linear space b. Banach space
c. neither a nor b d. both a and b

Part B-(3 × 2 = 6 marks)

21. Prove that norm is convex function

22. Define an operator

23. Prove that the closed unit sphere is convex

Part C-(3 × 8 = 24 marks)

24. a) Prove that norm is a continuous function

OR

b) Prove that lnp space is a normed linear space

25. a) Prove that lnp space is a Banach space

OR

b) Let N and N′ be normed vector spaces and let
T : N→ N′ be a linear transformation. Prove
that the following statements are equivalent.
(i) T is continuous.
(ii) T is continuous at the origin, in the sense

that xn → 0⇒ T(xn)→ 0
(iii) there exists a real number K ≥ 0 with

the property that ‖T(x)‖ ≤ K‖x‖ for ev-
ery x ∈ N

(iv) if S = {x : ‖x‖ ≤ 1} is the closed unit
sphere in N, then its image T(S) is a
bounded set in N′

26. a) Let M be a closed linear subspace of a normed
linear space N. Prove that N/M is a normed
linear space
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OR

b) Let N be a non-zero normed linear space.
Prove that N is a Banach space iff {x : ‖x‖ = 1}
is complete

3
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1. The conjugate space of N is the set of all ——-
transformations form N into R

a. linear b. bounded
c. neither a nor b d. both a and b

2. N∗∗ is the

a. second conjugate of N b. dual space of N
c. neither a nor b d. both a and b

3. Which of the following is true?

a. ‖Fx‖ ≤ ‖x‖ b. ‖Fx‖ ≥ ‖x‖
c. neither a nor b d. both a and b

4. T(Sr)

a. T(S1) b. rT(S1)
c. Sr d. S1

5. Each operator T on a normed linear space N in-
duces a corresponding operator denoted by

a. T′ b. T∗
c. neither a nor b d. both a and b

6. An open sphere is always non empty for it contain
its

a. centre b. distance
c. length d. radius

7. Sr(x0) is an open sphere with radius — centered
on x0

a. 1 b. r
c. neither a nor b d. both a and b

8. A 1-1 linear transformation T of abanach space
onto itself is continuous then its inverse is auto-
matically

a. linear b. continuous
c. neither a nor b d. both a and b

9. If T is continuous linear transformation of B onto
B’ then T is an — mapping.

a. closed b.open
c. neither a nor b d. both a and b

10. Which of the following is true?

a. ‖T∗‖ ≤ ‖T‖ b. ‖T∗‖ ≥ ‖T‖
c. neither a nor b d. both a and b

11. Which of the following is true?

a. I∗ ≤ I b. I∗ ≥ I
c. neither a nor b d. both a and b
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12. A complex banach space is said to be

a. inner product space b. Banach space
c. Hilbert space d. all the above

13. In a Hilbert space < x, 0 >

a. x b. 0
c. neither a nor b d. both a and b

14. In a Hilbert space < x, y >

a. < x, y > b. < y, x >
c. < x, x > d. both a and b

15. ‖I‖ =

a.0 b. 1
c. neither a nor b d. both a and b

16. In a Hilbert space < x, x >

a. ‖x‖ b. ‖x‖2
c. neither a nor b d. both a and b

17. < x, x >

a. ≤ 0 b. ≥ 0
c. =1 d.=0

18. If F = − − − then the inner product space is called
Hermitaian

a. R b. C
c. neither a nor b d. both a and b

19. If F = − − − then the inner product space is called
Euclidean

a. R b. C
c. neither a nor b d. both a and b

20. If x and y are orthogonal then < x, y >=

a.1 b. 0
c. neither a nor b d. both a and b

Part B-(3 × 2 = 6 marks)

21. Define graph of a linear transformation

22. Define an inner product space

23. Define conjugate of T

Part C-(3 × 8 = 24 marks)

24. a) State and prove two properties of a inner
product space

OR

b) State and prove closed graph theorem

25. a) State and prove Hahn Banach theorem

OR

b) State and prove open mapping theorem

26. a) Prove that R is a Hilbert space

OR

b) State and prove Schwarz inequality

2
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