
                                                ORACLE (SQL/PL-SQL)                       2017-2020 Batch 

Department of Computer Science, KAHE                                                                 Page 1 
 
 

KARPAGAM ACADEMY OF HIGHER EDUCATION 

                         Coimbatore-641 021 

                                        (For the candidates admitted from 2016 onwards) 

DEPARTMENT OF CS, CA & IT 
 
 

CLASS: III- B. Sc (CS)                          SEMESTER : V 
 
17CSU504A                   Oracle (SQL/PL-SQL)            3H – 3C 
 
Instruction Hours / week: L: 3 T: 0 P: 0      Marks: Int : 40 Ext : 60 Total: 100 
 
SCOPE 
The Objective of Relational Database Management System including relational, object-
relational, and object-oriented systems, SQL standards, algebraic query languages, 
integrity constraints, triggers, functional dependencies, and normal forms. Other topics 
include tuning database transactions, security from the application perspective, and data 
warehousing. 
 
OBJECTIVES 
 

 Understand the role and nature of relational database management systems 
(RDBMS) in today's IT environment. 

 Translate written business requirements into conceptual entity-relationship data 
models. 

 Convert conceptual data models into relational database schemas using the SQL 
Data Definition Language (DDL).  

 Query and manipulate databases using the SQL Data Manipulation Language 
(DML).  

 
UNIT-I 
Introduction to Oracle as RDBMS SQL Vs. SQL * Plus: SQL Commands and Data 
types, Operators and Expressions, Introduction to SQL * Plus. 
 
UNIT-II 
Managing Tables and Data: Creating and Altering Tables (Including constraints) ,Data 
Manipulation Command like Insert, update, delete, SELECT statement with WHERE, 
GROUP BY and HAVING, ORDER BY, DISTINCT, Special operator like IN, ANY, 
ALL BETWEEN, EXISTS, LIKE, Join, Built in functions    
 
UNIT-III 
Other Database Objects - View, Synonyms, Index 
 
UNIT-IV  
Transaction Control Statements -  Commit, Rollback, Savepoint  



                                                ORACLE (SQL/PL-SQL)                       2017-2020 Batch 

Department of Computer Science, KAHE                                                                 Page 2 
 
 

 
UNIT-V 
Introduction to PL/SQL SQL v/s PL/SQL, PL/SQL Block Structure, Language 
construct of PL/SQL (Variables, Basic and Composite Data type, Conditions looping 
etc.) TYPE and % ROWTYPE , Using Cursor (Implicit, Explicit) 
 
Suggested Readings 
1. Ivan Bayross. (2010). SQL, PL/SQL the Programming Language of Oracle. New 
Delhi: BPB Publications.  
2. Steven Feuerstein., & Bill Pribyl. (2014). Oracle PL/SQL Programming (6th ed.). 
O'Reilly Media.  
3. Rajeeb, C. Chatterjee. (2012). Learning Oracle SQL and PL/SQL: A simplified Guide. 
New Delhi: PHI.  
4. Ron Hardman.,& Michael Mclaughlin. (2005). Expert Oracle PL/SQL. Oracle Press.  
5. Michael Mclaughlin. (2008). Oracle Database 11g PL/SQL Programming. Oracle 
Press.  
6. John Watson.,& Roopesh Ramklass. (2008). OCA Oracle Database11g SQL 
Fundamentals I Exam Guide. Oracle Press. 
 
Websites 
W1: https://www.tutorialspoint.com/plsql/ 
W2: http://plsql-tutorial.com/ 
 
 

                                        ESE MARKS ALLOCATION 
 

1. 

Section A 

20 X1 = 20 

(Online Examination) 

 
20 

2. 

Section B 

5X2 = 10  
10 

3 

Section C 

5X6 = 30 
(Either ‘A’ or ‘B’ Choice) 

30 

 Total 60 

 



Lesson Plan 2017 -2020 Batch 

 

Prepared by K.Banuropa, Asst. Prof., Department of CS, CA & IT, KAHE                                      1 
 

KARPAGAM ACADEMY OF HIGHER EDUCATION 
 (Deemed to be University) 

 (Established Under Section 3 of UGC Act, 1956) 
DEPARTMENT OF CS, CA & IT 

LESSON PLAN 
  
SUBJECT NAME:  Oracle (SQL/PL-SQL) 

SUBJECT CODE: 17CSU504A      SEMESTER: V 

STAFF: K. BANUROOPA      CLASS:  III B.Sc. CS A& B 

 

S.No 
Lecture 

Duration 
(Hr) 

Topics Covered 
Reference 
Materials 

Unit I 

1. 1 Introduction to Oracle as RDBMS SQL Vs. SQL * Plus S1:10-14 
2. 1 SQL Commands S1:23-25 
3. 1 Data types S1-457:451 
4. 1 Operators and Expressions S1-113:132 
5. 1 Introduction to SQL * Plus. S1:26-33 
6. 1 Recapitulation and Possible Questions Discussion   

Total No of hours for Unit 1:6 
Unit II 

1. 
1 Managing Tables and Data: Creating and Altering 

Tables (Including constraints) 
S1:461-473 

2. 1 Data Manipulation Command: Insert,  S1:403-405 
3. 1 Data Manipulation Command: Update, delete, S1:406-408 

4. 
1 

SELECT statement with WHERE, GROUP BY  
S1:103-113 
S1:287-291 

5. 
1 SELECT statement with HAVING, ORDER BY, 

DISTINCT 
S1:294-296 
S1:136-141 

6. 1 Special operators: IN, ANY, ALL  W1 
7. 1 Special operators: BETWEEN, EXISTS, LIKE, W2 
8. 1 Join, Built in functions    S1:309-331 
9. 1 Recapitulation and Possible Questions Discussion   

Total No of hours for Unit 2:9 
Unit –III 

1. 
1 Other Database Objects - View -CREATE VIEW, ALTER 

VIEW, and DROP VIEW 
S1: 487-495 

2. 1 Retrieve Data from Views S1: 496-497 
3. 1 Synonyms-Create Private and Public Synonyms S1: 498-500 
4. 1 Index-Create and Maintain Indexes S1: 509-510 
5. 1 Types of Index S1: 511-516 
6. 1 Modifying and Dropping Indexes S1: 517-518 



Lesson Plan 2017 -2020 Batch 

 

Prepared by K.Banuropa, Asst. Prof., Department of CS, CA & IT, KAHE                                      2 
 

7. 1 Recapitulation and Possible Questions Discussion   
Total No of hours for Unit 3:7 

Unit – IV 

1. 1 Transaction Control Statements - Database Transactions S1:427-428 

2. 1 Commit S1:431-439 

3. 1 Rollback W3 
4. 1 Savepoint W3 
5. 1 Recapitulation and Possible Questions Discussion  

Total No of hours for Unit 4:5 
Unit – V 

1. 1 Introduction to PL/SQL SQL v/s PL/SQL S2:3-7,W4 
2. 1 PL/SQL Block Structure S2:53-62 

3. 
1 Language construct of PL/SQL (Variables, Basic and 

Composite Data type, etc.) 
S2:63-74 
S2:83-94 

4. 1 Conditions, looping S2:105-116 
5. 1 TYPE and % ROWTYPE S1:323-330,W5 
6. 1 Using Cursor (Implicit, Explicit) S2:485-512 
7. 1 Recapitulation and Possible Questions Discussion  
8. 1 Previous year end-semester question paper discussion  

Total No of hours for Unit 5:09 
Total No. Of Hours Allocated: 36 

 
SUGGESTED READINGS: 

 
Suggested Readings 

1. John Watson.,& Roopesh Ramklass. (2008). OCA Oracle Database11g SQL Fundamentals I 
Exam Guide. Oracle Press. 

2. Ivan Bayross. (2010). SQL, PL/SQL the Programming Language of Oracle. New Delhi: BPB 
Publications.  

3. Steven Feuerstein., & Bill Pribyl. (2014). Oracle PL/SQL Programming (6th ed.). O'Reilly 
Media.  

4. Rajeeb, C. Chatterjee. (2012). Learning Oracle SQL and PL/SQL: A simplified Guide. New 
Delhi: PHI.  

5. Ron Hardman.,& Michael Mclaughlin. (2005). Expert Oracle PL/SQL. Oracle Press.  
6. Michael Mclaughlin. (2008). Oracle Database 11g PL/SQL Programming. Oracle Press.  

 
Web Sites: 

W1. https://www.geeksforgeeks.org/sql-all-and-any/ 
W2. https://www.oracletutorial.com/oracle-basics/oracle-like/ 
W3. https://www.oracle-dba-online.com/sql/commit_rollback_savepoint.htm 
W4. https://www.tutorialspoint.com/plsql/ 
W5. http://plsql-tutorial.com/ 
                        



 KARPAGAM ACADEMY OF HIGHER EDUCATION 

COURSE NAME: ORACLE (SQL/PL-SQL)  COURSE CODE: 17CSU504A 

BATCH: 2017-2020   UNIT I: INTRODUCTION TO ORACLE AS RDBMS 
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 1/23 
 

UNIT I 

SYLLABUS 

 

Introduction to Oracle as RDBMS SQL Vs. SQL * Plus: SQL Commands and Data 
types, Operators and Expressions, Introduction to SQL * Plus. 

 
Introduction to Oracle as RDBMS 

A database is a collection of data treated as a unit. The purpose of a database is to 
store and retrieve related information. A database server is the key to information 
management. In general, a server reliably manages a large amount of data in a multiuser 
environment so that many users can concurrently access the same data. A database server 
also prevents unauthorized access and provides efficient solutions for failure recovery. 

ORACLE is a fourth generation relational database management system. In 
general, a database management system (DBMS) must be able to reliably manage a large 
amount of data in a multi-user environment so that many users can concurrently access 
the same data. All this must be accomplished while delivering high performance to the 
users of the database. A DBMS must also be secure from unauthorized access and 
provide efficient solutions for failure recovery. The ORACLE Server provides efficient 
and effective solutions for the major database features.  

ORACLE consists of many tools that allow you to create an application with ease 
and flexibility. You must determine how to implement your requirements using the 
features available in ORACLE, along with its tools. The features and tools that you 
choose to use to implement your application can significantly affect the performance of 
your application.  

Several of the more useful features available to ORACLE application developers 
are integrity constraints, stored procedures and packages, database triggers, cost-based 
optimizer, shared SQL, locking and sequences.  

In Oracle database management, PL/SQL is a procedural language extension to 
Structured Query Language (SQL). The purpose of PL/SQL is to combine database 
language and procedural programming language. The basic unit in PL/SQL is called a 
block, which is made up of three parts: a declarative part, an executable part, and an 
exception-building part. 

 
SQL Vs. SQL * Plus 

The scope of SQL includes data insert, query, update and delete. 



 KARPAGAM ACADEMY OF HIGHER EDUCATION 

COURSE NAME: ORACLE (SQL/PL-SQL)  COURSE CODE: 17CSU504A 

BATCH: 2017-2020   UNIT I: INTRODUCTION TO ORACLE AS RDBMS 
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 2/23 
 

SQL*Plus is an interactive and batch query tool that is installed with every Oracle 
Database Server or Client installation. It has a command-line user interface, a Windows 
Graphical User Interface (GUI) and the iSQL* Plus web-based user interface. 

SQL*Plus has its own commands and environment, and it provides access to the Oracle 
Database. It enables you to enter and execute SQL, PL/SQL 

 
SQL is a language, while SQL*Plus is a tool. 

SQL is the query language used for communication with Oracle server to access and 
modify the data. 
SQL* Plus is a command line tool with which you can send SQL queries to the server. 
Also, it can help you format the query result. 

SQL is a language which is invented by IBM. 
SQL * Plus is a tool to use SQL language for a database from Oracle corporation. 

SQL can be simply used to ask queries, i.e. it involves DML, DDL and DCL. 
SQL * Plus is command line tool which doesn’t involve DML, DDL and DCL. 

In SQL, there is no continuation character.. 
Whereas, in SQL * Plus there is a continuation character. 

Keywords cannot be abbreviated in SQL. 
But keywords can be abbreviated in SQL*Plus. 

SQL uses functions to manipulate the data. 
SQL * plus uses commands to manipulate the data. 

SQL Commands 
 
SQL, Structured Query Language, is a programming language designed to manage data 
stored in relational databases. SQL operates through simple, declarative statements. This 
keeps data accurate and secure, and it helps maintain the integrity of databases, regardless 
of size. 

DML 

DML is abbreviation of Data Manipulation Language. It is used to retrieve, store, 
modify, delete, insert and update data in database. 

Examples: SELECT, UPDATE, INSERT statements 



 KARPAGAM ACADEMY OF HIGHER EDUCATION 

COURSE NAME: ORACLE (SQL/PL-SQL)  COURSE CODE: 17CSU504A 

BATCH: 2017-2020   UNIT I: INTRODUCTION TO ORACLE AS RDBMS 
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 3/23 
 

DDL 

DDL is abbreviation of Data Definition Language. It is used to create and modify the 
structure of database objects in database. 

Examples: CREATE, ALTER, DROP statements 

DCL 

DCL is abbreviation of Data Control Language. It is used to create roles, permissions, 
and referential integrity as well it is used to control access to database by securing it. 

Examples: GRANT, REVOKE statements 

TCL 

TCL is abbreviation of Transactional Control Language. It is used to manage different 
transactions occurring within a database. 

Examples: COMMIT, ROLLBACK statements 

Data Types in Oracle  

Each column in a database table is required to have a name and a data type. 

A datatype associates a fixed set of properties with the values that can be used in a 
column of a table or in an argument of a procedure or function. These properties cause 
Oracle to treat values of one datatype differently from values of another datatype; for 
example, Oracle can add values of NUMBER datatype but not values of RAW datatype. 

Oracle supplies the following built-in datatypes: 

 character datatypes 
o CHAR 
o NCHAR 
o VARCHAR2 and VARCHAR 
o NVARCHAR2 
o CLOB 
o NCLOB 
o LONG 

 NUMBER datatype 
 DATE datatype 
 binary datatypes 

o BLOB 



 KARPAGAM ACADEMY OF HIGHER EDUCATION 

COURSE NAME: ORACLE (SQL/PL-SQL)  COURSE CODE: 17CSU504A 

BATCH: 2017-2020   UNIT I: INTRODUCTION TO ORACLE AS RDBMS 
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 4/23 
 

o BFILE 
o RAW 
o LONG RAW 

Another datatype, ROWID, is used for values in the ROWID pseudocolumn, which 
represents the unique address of each row in a table. 

Datatype   Description   Column Length and Default   

CHAR (size)   Fixed-length character data 
of length size bytes.   

Fixed for every row in the table (with 
trailing blanks); maximum size is 2000 
bytes per row, default size is 1 byte per 
row. Consider the character set (one-byte 
or multibyte) before setting size.   

VARCHAR2 
(size)   

Variable-length character 
data.   

Variable for each row, up to 4000 bytes 
per row. Consider the character set (one-
byte or multibyte) before setting size. A 
maximum size must be specified.   

NCHAR(size)   Fixed-length character data 
of length size characters or 
bytes, depending on the 
national character set.   

Fixed for every row in the table (with 
trailing blanks). Column size is the number 
of characters for a fixed-width national 
character set or the number of bytes for a 
varying-width national character set. 
Maximumsize is determined by the 
number of bytes required to store one 
character, with an upper limit of 2000 
bytes per row. Default is 1 character or 1 
byte, depending on the character set.   

NVARCHAR2 
(size)   

Variable-length character 
data of 
length size characters or 
bytes, depending on 
national character set. A 
maximum size must be 
specified.   

Variable for each row. Column size is the 
number of characters for a fixed-width 
national character set or the number of 
bytes for a varying-width national 
character set. Maximum size is determined 
by the number of bytes required to store 
one character, with an upper limit of 4000 
bytes per row. Default is 1 character or 1 
byte, depending on the character set.   

CLOB   Single-byte character data.   Up to 2^32 - 1 bytes, or 4 gigabytes.   

NCLOB   Single-byte or fixed-length 
multibyte national character 
set (NCHAR) data.   

Up to 2^32 - 1 bytes, or 4 gigabytes.   

LONG   Variable-length character Variable for each row in the table, up to 



 KARPAGAM ACADEMY OF HIGHER EDUCATION 

COURSE NAME: ORACLE (SQL/PL-SQL)  COURSE CODE: 17CSU504A 

BATCH: 2017-2020   UNIT I: INTRODUCTION TO ORACLE AS RDBMS 
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 5/23 
 

data.   2^31 - 1 bytes, or 2 gigabytes, per row. 
Provided for backward compatibility.   

NUMBER (p, 
s)   

Variable-length numeric 
data. Maximum 
precision p and/or scale sis 
38.   

Variable for each row. The maximum 
space required for a given column is 21 
bytes per row.   

DATE   Fixed-length date and time 
data, ranging from Jan. 1, 
4712 B.C.E. to Dec. 31, 
4712 C.E.   

Fixed at 7 bytes for each row in the table. 
Default format is a string (such as DD-
MON-YY) specified by 
NLS_DATE_FORMAT parameter.   

BLOB   Unstructured binary data.   Up to 2^32 - 1 bytes, or 4 gigabytes.   

BFILE   Binary data stored in an 
external file.   

Up to 2^32 - 1 bytes, or 4 gigabytes.   

RAW (size)   Variable-length raw binary 
data.   

Variable for each row in the table, up to 
2000 bytes per row. A maximum size must 
be specified. Provided for backward 
compatibility.   

LONG RAW   Variable-length raw binary 
data.   

Variable for each row in the table, up to 
2^31 - 1 bytes, or 2 gigabytes, per row. 
Provided for backward compatibility.   

ROWID   Binary data representing 
row addresses.   

Fixed at 10 bytes (extended ROWID) or 6 
bytes (restricted ROWID) for each row in 
the table.   

SQL Operators Overview 

An operator manipulates individual data items and returns a result. The data items are 
called operands or arguments. Operators are represented by special characters or by 
keywords. For example, the multiplication operator is represented by an asterisk (*) and 
the operator that tests for nulls is represented by the keywords IS NULL. There are two 
general classes of operators: unary and binary. Oracle Database Lite SQL also supports 
set operators. 

2.1.1 Unary Operators 

A unary operator uses only one operand. A unary operator typically appears with its 
operand in the following format. 

operator operand KARPAGAM ACADEMY OF HIGHER EDUCATION 

CLASS : III B.SC CS                          COURSE NAME: ORACLE 

(SQL/PL-SQL) 



 KARPAGAM ACADEMY OF HIGHER EDUCATION 

COURSE NAME: ORACLE (SQL/PL-SQL)  COURSE CODE: 17CSU504A 

BATCH: 2017-2020   UNIT I: INTRODUCTION TO ORACLE AS RDBMS 
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 6/23 
 

COURSE CODE: 17CSU504A                         BATCH: 2017-2020 

UNIT I: INTRODUCTION TO ORACLE AS RDBMS  

KARPAGAM ACADEMY OF HIGHER EDUCATION 

CLASS : III B.SC CS                          COURSE NAME: ORACLE 

(SQL/PL-SQL) 

COURSE CODE: 17CSU504A                         BATCH: 2017-2020 

UNIT I: INTRODUCTION TO ORACLE AS RDBMS  

 

2.1.2 Binary Operators 

A binary operator uses two operands. A binary operator appears with its operands in the 
following format. 

operand1 operator operand2 

2.1.3 Set Operators 

Set operators combine sets of rows returned by queries, instead of individual data items. 
All set operators have equal precedence. Oracle Database Lite supports the following set 
operators. 

 UNION 
 UNION ALL 
 INTERSECT 
 MINUS 

The levels of precedence among the Oracle Database Lite SQL operators from high to 
low are listed in Table 2-1. Operators listed on the same line have the same level of 
precedence. 

Table 2-1 Levels of Precedence of the Oracle Database Lite SQL Operators 

Precedence Level SQL Operator 

1 Unary + - arithmetic operators, PRIOR operator 

2 * / arithmetic operators 

3 Binary + - arithmetic operators, || character operators 

4 All comparison operators 

5 NOT logical operator 



 KARPAGAM ACADEMY OF HIGHER EDUCATION 

COURSE NAME: ORACLE (SQL/PL-SQL)  COURSE CODE: 17CSU504A 

BATCH: 2017-2020   UNIT I: INTRODUCTION TO ORACLE AS RDBMS 
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 7/23 
 

Precedence Level SQL Operator 

6 AND logical operator 

7 OR logical operator 

 

2.1.4 Other Operators 

Other operators with special formats accept more than two operands. If an operator 
receives a null operator, the result is always null. The only operator that does not follow 
this rule is CONCAT. 

2.2 Arithmetic Operators 

Arithmetic operators manipulate numeric operands. The '-' operator is also used in date 
arithmetic. Supported arithmetic operators are listed in Table 2-2. 

Table 2-2 Arithmetic Operators 

Operator Description Example 

+ (unary) Makes operand positive SELECT +3 FROM DUAL; 

- (unary) Negates operand SELECT -4 FROM DUAL; 

/  Division (numbers and dates) SELECT SAL / 10 FROM EMP; 

*  Multiplication SELECT SAL * 5 FROM EMP; 

+  Addition (numbers and dates) SELECT SAL + 200 FROM EMP; 

- Subtraction (numbers and dates) SELECT SAL - 100 FROM EMP; 

 

2.3 Character Operators 

Character operators used in expressions to manipulate character strings are listed in Table 
2-3. 

Table 2-3 Character Operators 

Operator Description Example 

||  Concatenates character 
strings 

SELECT 'The Name of the employee is: ' || 
ENAME FROM EMP; 

 



 KARPAGAM ACADEMY OF HIGHER EDUCATION 

COURSE NAME: ORACLE (SQL/PL-SQL)  COURSE CODE: 17CSU504A 

BATCH: 2017-2020   UNIT I: INTRODUCTION TO ORACLE AS RDBMS 
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 8/23 
 

2.3.1 Concatenating Character Strings 

With Oracle Database Lite, you can concatenate character strings with the following 
results. 

 Concatenating two character strings results in another character string. 
 Oracle Database Lite preserves trailing blanks in character strings by 

concatenation, regardless of the strings' datatypes. 
 Oracle Database Lite provides the CONCAT character function as an alternative 

to the vertical bar operator. For example, 
 SELECT CONCAT (CONCAT (ENAME, ' is a '),job) FROM EMP WHERE 

SAL > 2000; 
  

This returns the following output. 

CONCAT(CONCAT(ENAME 
------------------------- 
KING       is a PRESIDENT 
BLAKE      is a MANAGER 
CLARK      is a MANAGER 
JONES      is a MANAGER 
FORD       is a ANALYST 
SCOTT      is a ANALYST 
 
6 rows selected. 
 

 Oracle Database Lite treats zero-length character strings as nulls. When you 
concatenate a zero-length character string with another operand the result is 
always the other operand. A null value can only result from the concatenation of 
two null strings. 

2.4 Comparison Operators 

Comparison operators used in conditions that compare one expression with another are 
listed in Table 2-4. The result of a comparison can be TRUE, FALSE, or UNKNOWN. 

Table 2-4 Comparison Operators 

Operator Description Example 

=  Equality test. SELECT ENAME 
"Employee" FROM EMP 



 KARPAGAM ACADEMY OF HIGHER EDUCATION 

COURSE NAME: ORACLE (SQL/PL-SQL)  COURSE CODE: 17CSU504A 

BATCH: 2017-2020   UNIT I: INTRODUCTION TO ORACLE AS RDBMS 
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 9/23 
 

Operator Description Example 

WHERE SAL = 1500; 

!=, ^=, <> Inequality test. SELECT ENAME FROM 
EMP WHERE SAL ^= 
5000; 

> Greater than test. SELECT ENAME 
"Employee", JOB "Title" 
FROM EMP WHERE 
SAL > 3000; 

<  Less than test. SELECT * FROM 
PRICE WHERE 
MINPRICE < 30; 

>= Greater than or equal to test. SELECT * FROM 
PRICE WHERE 
MINPRICE >= 20; 

<=  Less than or equal to test. SELECT ENAME FROM 
EMP WHERE SAL <= 
1500; 

IN "Equivalent to any member of" test. 
Equivalent to "=ANY". 

SELECT * FROM EMP 
WHERE ENAME IN 
('SMITH', 'WARD'); 

ANY/ SOME Compares a value to each value in a list 
or returned by a query. Must be 
preceded by =, !=, >, <, <= or >=. 
Evaluates to FASLE if the query returns 
no rows. 

SELECT * FROM DEPT 
WHERE LOC = SOME 
('NEW 
YORK','DALLAS'); 

NOT IN Equivalent to "!=ANY". Evaluates 
to FALSE if any member of the set 
is NULL. 

SELECT * FROM DEPT 
WHERE LOC NOT IN 
('NEW YORK', 
'DALLAS'); 

ALL Compares a value with every value in a 
list or returned by a query. Must be 
preceded by =, !=, >, <, <= or 
>=. Evaluates to TRUE if the query 
returns no rows. 

SELECT * FROM emp 
WHERE sal >= ALL 
(1400, 3000); 

[NOT] 
BETWEENx and y 

[Not] greater than or equal to x and less 
than or equal to y. 

SELECT ENAME, JOB 
FROM EMP WHERE 
SAL BETWEEN 3000 
AND 5000; 



 KARPAGAM ACADEMY OF HIGHER EDUCATION 

COURSE NAME: ORACLE (SQL/PL-SQL)  COURSE CODE: 17CSU504A 

BATCH: 2017-2020   UNIT I: INTRODUCTION TO ORACLE AS RDBMS 
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 10/23 
 

Operator Description Example 

EXISTS TRUE if a sub-query returns at least one 
row. 

SELECT * FROM EMP 
WHERE EXISTS 
(SELECT ENAME 
FROM EMP WHERE 
MGR IS NULL); 

x [NOT] 
LIKE y[ESCAPEz] 

TRUE if x does [not] match the 
pattern y. Within y, the character "%" 
matches any string of zero or more 
characters except null. The character "_" 
matches any single character. Any 
character following ESCAPE is 
interpreted literally, useful 
when y contains a percent (%) or 
underscore (_). 

SELECT * FROM EMP 
WHERE ENAME LIKE 
'%E%'; 

IS [NOT] NULL Tests for nulls. This is the only operator 
that should be used to test for nulls. 

SELECT * FROM EMP 
WHERE COMM IS NOT 
NULL AND SAL > 1500; 

 

2.5 Logical Operators 

Logical operators which manipulate the results of conditions are listed in Table 2-5. 

Table 2-5 Logical Operators 

Operator Description Example 

NOT Returns TRUE if the following condition 
is FALSE. Returns FALSE if it is TRUE. If it 
is UNKNOWN, it remains UNKNOWN. 

SELECT * FROM EMP 
WHERE NOT (job IS 
NULL) 

SELECT * FROM EMP 
WHERE NOT (sal 
BETWEEN 1000 AND 
2000) 

AND Returns TRUE if both component conditions 
are TRUE. Returns FALSE if either is FALSE; 
otherwise returns UNKNOWN. 

SELECT * FROM EMP 
WHERE job='CLERK' 
AND deptno=10 

OR Returns TRUE if either component condition 
is TRUE. Returns FALSE if both are FALSE. 
Otherwise, returns UNKNOWN. 

SELECT * FROM emp 
WHERE job='CLERK' OR 
deptno=10 



 KARPAGAM ACADEMY OF HIGHER EDUCATION 

COURSE NAME: ORACLE (SQL/PL-SQL)  COURSE CODE: 17CSU504A 

BATCH: 2017-2020   UNIT I: INTRODUCTION TO ORACLE AS RDBMS 
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 11/23 
 

 

2.6 Set Operators 

Set operators which combine the results of two queries into a single result are listed 
in Table 2-6. 

Table 2-6 Set Operators 

Operator Description Example 

UNION Returns all distinct rows 
selected by either query. 

SELECT * FROM 

(SELECT ENAME FROM 
EMP WHERE JOB = 
'CLERK' 

UNION 

SELECT ENAME FROM 
EMP WHERE JOB = 
'ANALYST'); 

UNION ALL Returns all rows selected 
by either query, 
including all duplicates. 

SELECT * FROM 

(SELECT SAL FROM EMP 
WHERE JOB = 'CLERK' 

UNION 

SELECT SAL FROM EMP 
WHERE JOB = 
'ANALYST'); 

INTERSECT and INTERSECT 
ALL 

Returns all distinct rows 
selected by both queries. 

SELECT * FROM 
orders_list1 

INTERSECT 

SELECT * FROM 
orders_list2 

MINUS Returns all distinct rows 
selected by the first 
query but not the second. 

SELECT * FROM (SELECT 
SAL FROM EMP WHERE 
JOB = 'PRESIDENT' 



 KARPAGAM ACADEMY OF HIGHER EDUCATION 

COURSE NAME: ORACLE (SQL/PL-SQL)  COURSE CODE: 17CSU504A 

BATCH: 2017-2020   UNIT I: INTRODUCTION TO ORACLE AS RDBMS 
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 12/23 
 

Operator Description Example 

MINUS 

SELECT SAL FROM EMP 
WHERE JOB = 
'MANAGER'); 

 
 

Note: : 

The syntax for INTERSECT ALL is supported, but it returns the same 
results as INTERSECT. 

 

 
ALL 
 
TRUE if all of the subquery values meet the condition 
 
SELECT * FROM Products 
WHERE Price > ALL (SELECT Price FROM Products WHERE Price > 50); 
 

ProductID ProductName SupplierID CategoryID Price 

1  Toy  1  1  18  

2  Plastic 1  1  19  

3  Steel  1  2  10 

 
AND 
 
SELECT * FROM Customers 
WHERE City = "London" AND Country = "UK"; 
 

CustomerID CustomerName City Country 

4  ContactName London  UK  

11  Thomas Hardy  London  UK  

16  Victoria Ashworth  London  U 

 
 



 KARPAGAM ACADEMY OF HIGHER EDUCATION 

COURSE NAME: ORACLE (SQL/PL-SQL)  COURSE CODE: 17CSU504A 

BATCH: 2017-2020   UNIT I: INTRODUCTION TO ORACLE AS RDBMS 
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 13/23 
 

 
ANY 
 
TRUE if any of the subquery values meet the condition 
 
SELECT * FROM Products 
WHERE Price > ANY (SELECT Price FROM Products WHERE Price > 50); 
 

ProductID ProductName SupplierID CategoryID Unit Price 

9  A 4  6  18 - 500 g pkgs.  97  

18  B 7  8  16 kg pkg.  62.5  

20  C 8  3  30 gift boxes  81  

 
BETWEEN 
 
TRUE if the operand is within the range of comparisons 
 
SELECT * FROM Products 
WHERE Price BETWEEN 50 AND 60; 
 

ProductID ProductName SupplierID CategoryID Price 

51  A 24  7  53  

59  B 28  4  55  

 
IN 
 
TRUE if the operand is equal to one of a list of expressions 
 
SELECT * FROM Customers 
WHERE City IN ('Paris','London'); 
 

CustomerID CustomerName ContactName Address City 

4  Around the Horn  Thomas Hardy  120 Hanover Sq.  London  

11  B's Beverages  Victoria 
Ashworth  

Fauntleroy Circus  London  

16  Consolidated 
Holdings  

Elizabeth Brown  Berkeley Gardens 12 
Brewery   

London  

 
NOT 
 
Displays a record if the condition(s) is NOT TRUE 



 KARPAGAM ACADEMY OF HIGHER EDUCATION 

COURSE NAME: ORACLE (SQL/PL-SQL)  COURSE CODE: 17CSU504A 

BATCH: 2017-2020   UNIT I: INTRODUCTION TO ORACLE AS RDBMS 
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 14/23 
 

 
SELECT * FROM Customers 
WHERE City NOT LIKE 's%'; 
 

CustomerID CustomerName Address City 

1  Alfreds Futterkiste  Obere Str. 57  Berlin  

2  Ana Trujillo Emparedados y 
helados  

Avda. de la Constitución 
2222  

México 
D.F.  

3  Antonio Moreno Taquería  Mataderos 2312  México 
D.F.  

 
OR 
 
TRUE if any of the conditions separated by OR is TRUE 
 
SELECT * FROM Customers 
WHERE City = "London" OR Country = "UK"; 
 
 
 

CustomerID CustomerName Address City Country 

4  A 120 Hanover Sq.  London  UK  

11  B Fauntleroy Circus  London  UK  

38  C Garden House Crowther Way  Cowes  UK 

 
EXISTS 
 
TRUE if the subquery returns one or more records 
 
SELECT * FROM Products 
WHERE EXISTS (SELECT Price FROM Products WHERE Price > 50); 
 

ProductID ProductName SupplierID Unit Price 

1  A 1  10 boxes x 20 bags  18  

2  B 1  24 - 12 oz bottles  19  

3  C 1  12 - 550 ml bottles  10 

 
LIKE 
 
TRUE if the operand matches a pattern. 



 KARPAGAM ACADEMY OF HIGHER EDUCATION 

COURSE NAME: ORACLE (SQL/PL-SQL)  COURSE CODE: 17CSU504A 

BATCH: 2017-2020   UNIT I: INTRODUCTION TO ORACLE AS RDBMS 
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 15/23 
 

 
SELECT * FROM Customers 
WHERE City LIKE 's%'; 
 

CustomerID Address City Country 

7  24, place Kléber  Strasbourg  France  

15  Av. dos Lusíadas, 23  São Paulo  Brazil  

21  Rua Orós, 92  São Paulo  Brazil  

 
SQL Expressions 

An expression is a combination of one or more values, operators, and SQL functions that 
evaluates to a value. An expression generally assumes the datatype of its components. 

This simple expression evaluates to 4 and has datatype NUMBER (the same datatype as 
its components): 

2*2  

The following expression is an example of a more complex expression that uses both 
functions and operators. The expression adds seven days to the current date, removes the 
time component from the sum, and converts the result to CHAR datatype: 

TO_CHAR(TRUNC(SYSDATE+7))  

You can use expressions in: 

 The select list of the SELECT statement 
 A condition of the WHERE clause and HAVING clause 
 The CONNECT BY, START WITH, and ORDER BY clauses 
 The VALUES clause of the INSERT statement 
 The SET clause of the UPDATE statement 

For example, you could use an expression in place of the quoted string 'Smith' in 
this UPDATE statement SETclause: 

SET last_name = 'Smith';  

This SET clause has the expression INITCAP(last_name) instead of the quoted string 
'Smith': 



 KARPAGAM ACADEMY OF HIGHER EDUCATION 

COURSE NAME: ORACLE (SQL/PL-SQL)  COURSE CODE: 17CSU504A 

BATCH: 2017-2020   UNIT I: INTRODUCTION TO ORACLE AS RDBMS 
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 16/23 
 

SET last_name = INITCAP(last_name); 

Syntax 

Consider the basic syntax of the SELECT statement as follows − 

SELECT column1, column2, columnN  
FROM table_name  
WHERE [CONDITION|EXPRESSION]; 

There are different types of SQL expressions, which are mentioned below − 

 Boolean 
 Numeric 
 Date 

Boolean Expressions 

SQL Boolean Expressions fetch the data based on matching a single value. Following is 
the syntax − 

SELECT column1, column2, columnN  
FROM table_name  
WHERE SINGLE VALUE MATCHING EXPRESSION; 

The following table is a simple example showing the usage of various SQL Boolean 
Expressions − 

SQL> SELECT * FROM CUSTOMERS WHERE SALARY = 10000; 
 

Numeric Expression 

These expressions are used to perform any mathematical operation in any query. 
Following is the syntax − 

SELECT numerical_expression as  OPERATION_NAME 
[FROM table_name 
WHERE CONDITION] ; 

Here, the numerical_expression is used for a mathematical expression or any formula. 
Following is a simple example showing the usage of SQL Numeric Expressions − 

SQL> SELECT (15 + 6) AS ADDITION 



 KARPAGAM ACADEMY OF HIGHER EDUCATION 

COURSE NAME: ORACLE (SQL/PL-SQL)  COURSE CODE: 17CSU504A 

BATCH: 2017-2020   UNIT I: INTRODUCTION TO ORACLE AS RDBMS 
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 17/23 
 

There are several built-in functions like avg(), sum(), count(), etc., to perform what is 
known as the aggregate data calculations against a table or a specific table column. 

Date Expressions 

Date Expressions return current system date and time values − 

SQL>  SELECT CURRENT_TIMESTAMP from dual; 
+---------------------+ 
| Current_Timestamp   | 
+---------------------+ 
| 2009-11-12 06:40:23 | 
+---------------------+ 

Another date expression is as shown below − 

SQL>  SELECT  GETDATE();; 
+-------------------------+ 
| GETDATE                 | 
+-------------------------+ 
| 2009-10-22 12:07:18.140 | 
+-------------------------+ 

Introduction to SQL * Plus 

SQL*Plus is essentially an interactive query tool with some scripting capabilities. 
We can enter a SQL statement, such as a SELECT query, and view the results. We can 
execute data definition language (DDL) statements to create tables and other objects. 
DBAs can use SQL*Plus to start up, shut down, and otherwise administer a database. 
 In spite of all, GUI-based SQL generators contained in products such as 
PowerBuilder, Clear Access, and Crystal Reports, it is quicker and easier to build up and 
test a complex query in SQL*Plus before transferring it to whatever development tool. 

Uses for SQL*Plus 

Originally developed simply as a way to enter queries and see results, SQL*Plus has 
been enhanced with scripting and formatting capabilities and can be used for many 
different purposes. The basic functionality is simple. With SQL*Plus, you can do the 
following: 

 Issue a SELECT query and view the results. 
 Insert, update, and delete data from database tables. 
 Submit PL/SQL blocks to the Oracle server for execution. 



 KARPAGAM ACADEMY OF HIGHER EDUCATION 

COURSE NAME: ORACLE (SQL/PL-SQL)  COURSE CODE: 17CSU504A 

BATCH: 2017-2020   UNIT I: INTRODUCTION TO ORACLE AS RDBMS 
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 18/23 
 

 Issue DDL statements, such as those used to create, alter, or drop database objects 
(e.g., tables, indexes, and users), as well as any other types of SQL statements that 
Oracle supports. 

 Execute SQL*Plus script files. 
 Write output to a file. 
 Execute procedures and functions that are stored in a database. 

Beginning with SQL*Plus in Oracle8i Database, you can use the SET MARKUP HTML 
command to generate HMTL output, such as that shown below. 

QL*Plus report formatted in HTML 

<html> 
<head> 
<meta http-equiv="Content-Type" content="text/html;  
charset=US-ASCII"> 
<meta name="generator" content="SQL*Plus 10.1.0"> 
<style type='text/css'> body {font:10pt Arial,Helvetica, 
sans-serif; color:black; background:White;} 
... 
<tr> 
<td align="right"> 
       101 
</td> 
<td> 
Marusia Churai 
</td> 
<td align="right"> 
 $169.00 
</td> 
</tr> 
<tr> 
<td align="right"> 
       102 
</td> 
<td> 
Mykhailo Hrushevsky 
</td> 
... 
 
By writing such HTML output to a file, you can easily generate ad hoc reports for users 
to view from a corporate intranet. One DBA whom I spoke with regularly refreshes the 
phone list on his departmental intranet using this mechanism. The output is rendered in a 
browser. 



 KARPAGAM ACADEMY OF HIGHER EDUCATION 

COURSE NAME: ORACLE (SQL/PL-SQL)  COURSE CODE: 17CSU504A 

BATCH: 2017-2020   UNIT I: INTRODUCTION TO ORACLE AS RDBMS 
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 19/23 
 

 

 
 
 
             Of course, it's rare that you would issue such a simple statement, or just one 
statement, when you add a new user. Usually, you also want to assign a default 
tablespace and often a quota on that tablespace. You may also want to grant the privilege 
needed to connect to the database. Whenever you have a task that requires a sequence of 
statements to be executed, you can simplify things by taking advantage of SQL*Plus's 
scripting capabilities. The statements in Example 1-5, when placed in a script file, allow 
you to add a new user with just one command. 

 

Example 1-5. Script to create a new database user 

CREATE USER &&1 IDENTIFIED BY &&2 
   DEFAULT TABLESPACE users 
   TEMPORARY TABLESPACE temp 
   QUOTA &&3.M ON users; 
      
GRANT CONNECT TO &&1; 

The &&1, &&2, and &&3 in Example 1-5 are SQL*Plus user variables marking the 
locations at which to insert parameters that you pass to the script. Assuming that you give 
the name create_user.s ql to the file shown in Example 1-5, and assuming that you are 
the DBA, you can issue the following command from SQL*Plus whenever you need to 
add a user to your database: 



 KARPAGAM ACADEMY OF HIGHER EDUCATION 

COURSE NAME: ORACLE (SQL/PL-SQL)  COURSE CODE: 17CSU504A 

BATCH: 2017-2020   UNIT I: INTRODUCTION TO ORACLE AS RDBMS 
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 20/23 
 

Example 1-6 shows how this works, by creating a user named sql_dude with a password 
of yooper and a quota of 10 megabytes. 

Example 1-6. Running a script to create a new database user 

SQL> @ex1-5 sql_dude yooper 10 
old   1: CREATE USER &&1 IDENTIFIED BY &&2 
new   1: CREATE USER sql_dude IDENTIFIED BY yooper 
old   4:    QUOTA &&3.M ON users 
new   4:    QUOTA 10M ON users 
 
User created. 
 
old   1: GRANT CONNECT TO &&1 
new   1: GRANT CONNECT TO sql_dude 
 
Grant succeeded. 
 

Example 1-7. "Hello World" written as a PL/SQL block and executed from SQL*Plus 

SQL> SET SERVEROUTPUT ON 
SQL> BEGIN 
  2    DBMS_OUTPUT.PUT_LINE('Hello World!'); 
  3  END; 
  4  / 
Hello World! 
 

SQL*Plus's Relation to SQL, PL/SQL, and the Oracle Database 

SQL*Plus is often used in conjunction with two other products, both of which have the 
letters "SQL" in their names. The first is SQL itself. Without a doubt, the most common 
use of SQL*Plus is to submit SQL statements to the database for execution. The second 
product is Oracle's PL/SQL procedural language. Table 1-1 provides a short summary of 
each of these three products. 

Table 1-1. The three SQLs: SQL, PL/SQL, and SQL*Plus 

Product Description 

SQL 
SQL is an ANSI and ISO standard language used to insert, delete, update, and 
retrieve data from relational databases. SQL is also used to manage relational 
databases. 

PL/SQL PL/SQL is a proprietary procedural language developed by Oracle as an 



 KARPAGAM ACADEMY OF HIGHER EDUCATION 

COURSE NAME: ORACLE (SQL/PL-SQL)  COURSE CODE: 17CSU504A 

BATCH: 2017-2020   UNIT I: INTRODUCTION TO ORACLE AS RDBMS 
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 21/23 
 

Product Description 
extension to SQL, for use in coding business rules and other procedural logic 
at the database level. Like SQL, PL/SQL executes inside the database engine. 

SQL*Plus 
SQL*Plus is an Oracle-developed tool that allows you to interactively enter 
and execute SQL commands and PL/SQL blocks. 

Because these three products all have "SQL" as part of their names, people occasionally 
get confused about the relationships among them and about which statements get 
executed where. SQL*Plus does have its own set of commands that it recognizes and 
executes (for example, SET SERVEROUTPUT ON), but any SQL statements and 
PL/SQL blocks are sent to the database server for execution. Figure 1-2 illustrates this 
relationship. 

                            

Figure 1-2. Relationships among SQL*Plus, SQL, and PL/SQL 

Think of SQL*Plus as kind of a middleman, standing between you and Oracle and 
helping you to communicate with your database. You type in a SQL query, SQL*Plus 
takes it and sends it to the database, the database returns the results to SQL*Plus, and 
SQL*Plus displays those results in a format you can understand. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 KARPAGAM ACADEMY OF HIGHER EDUCATION 

COURSE NAME: ORACLE (SQL/PL-SQL)  COURSE CODE: 17CSU504A 

BATCH: 2017-2020   UNIT I: INTRODUCTION TO ORACLE AS RDBMS 
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 22/23 
 

 
 
 
 
 
 
 
 
 
 

POSSIBLE QUESTIONS 
 UNIT I 

 
2 marks Questions: 
1. What is a SQL command? 

2. Define TCL. 

3. Define SQL*Plus. 

4. What is meant by SQL expression? 

5. What is meant by DML? 

6. Define SQL operators. 

 
6 marks Questions: 
 

1. Differentiate SQL and SQL*Plus.                                        

2. List and explain SQL commands. 

3. Describe about SQL datatypes.                                 

4. Explain in detail about SQL expressions. 

5. Elaborate SQL*Plus.                                          

6. Explain DDL commands with example. 

 
 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 1/18 
 

KARPAGAM ACADEMY OF HIGHER EDUCATION 

CLASS : II B.SC CS                          COURSE NAME: ORACLE (SQL/PL-SQL) 

COURSE CODE: 17CSU504A                         BATCH: 2017-2020 

UNIT II: MANAGING TABLES AND DATA  

 

UNIT II 

SYLLABUS 

Managing Tables and Data: Creating and Altering Tables (Including constraints) ,Data 

Manipulation Command like Insert, update, delete, SELECT statement with WHERE, 

GROUP BY and HAVING, ORDER BY, DISTINCT, Special operator like IN, ANY, 

ALL BETWEEN, EXISTS, LIKE, Join, Built in functions    

 

SQL Create Constraints 

Constraints can be specified when the table is created with the CREATE TABLE 

statement, or after the table is created with the ALTER TABLE statement. 

Syntax 

CREATE TABLE table_name ( 

    column1 datatype constraint, 

    column2 datatype constraint, 

    column3 datatype constraint, 

    .... 

);  

SQL Constraints 

SQL constraints are used to specify rules for the data in a table. 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 2/18 
 

Constraints are used to limit the type of data that can go into a table. This ensures the 

accuracy and reliability of the data in the table. If there is any violation between the 

constraint and the data action, the action is aborted. 

Constraints can be column level or table level. Column level constraints apply to a 

column, and table level constraints apply to the whole table. 

The following constraints are commonly used in SQL: 

 NOT NULL - Ensures that a column cannot have a NULL value 

 UNIQUE - Ensures that all values in a column are different 

 PRIMARY KEY - A combination of a NOT NULL and UNIQUE. Uniquely 

identifies each row in a table 

 FOREIGN KEY - Uniquely identifies a row/record in another table 

 CHECK - Ensures that all values in a column satisfies a specific condition 

 DEFAULT - Sets a default value for a column when no value is specified 

 INDEX - Used to create and retrieve data from the database very quickly 

Example 

 

CREATE TABLE Persons ( 

    ID int NOT NULL, 

    LastName varchar(255) NOT NULL, 

    FirstName varchar(255) NOT NULL, 

    Age int 

); 

SQL UNIQUE Constraint on ALTER TABLE 

To create a UNIQUE constraint on the "ID" column when the table is already created, use 

the following SQL: 

MySQL / SQL Server / Oracle / MS Access: 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 3/18 
 

ALTER TABLE Persons 

ADD UNIQUE (ID); 

To name a UNIQUE constraint, and to define a UNIQUE constraint on multiple columns, 

use the following SQL syntax: 

ALTER TABLE Persons 

ADD CONSTRAINT UC_Person UNIQUE (ID,LastName); 

The SQL INSERT INTO Statement 

The INSERT INTO statement is used to insert new records in a table. 

INSERT INTO Syntax 

It is possible to write the INSERT INTO statement in two ways. 

The first way specifies both the column names and the values to be inserted: 

INSERT INTO table_name (column1, column2, column3, ...) 

VALUES (value1, value2, value3, ...); 

If you are adding values for all the columns of the table, you do not need to specify the 

column names in the SQL query. However, make sure the order of the values is in the 

same order as the columns in the table. The INSERT INTO syntax would be as follows: 

INSERT INTO table_name 

VALUES (value1, value2, value3, ...); 

The SQL GROUP BY Statement 

The GROUP BY statement is often used with aggregate functions (COUNT, MAX, MIN, 

SUM, AVG) to group the result-set by one or more columns. 

 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 4/18 
 

GROUP BY Syntax 

SELECT column_name(s) 

FROM table_name 

WHERE condition 

GROUP BY column_name(s) 

ORDER BY column_name(s);  

 

Example 

SELECT COUNT(CustomerID), Country 

FROM Customers 

GROUP BY Country; 

SQL - WHERE Clause 

The SQL WHERE clause is used to specify a condition while fetching the data from a 

single table or by joining with multiple tables. If the given condition is satisfied, then 

only it returns a specific value from the table. You should use the WHERE clause to filter 

the records and fetching only the necessary records. 

The WHERE clause is not only used in the SELECT statement, but it is also used in the 

UPDATE, DELETE statement, etc., which we would examine in the subsequent chapters. 

Syntax 

The basic syntax of the SELECT statement with the WHERE clause is as shown below. 

SELECT column1, column2, columnN  

FROM table_name 

WHERE [condition] 

 

Example 

SQL> SELECT ID, NAME, SALARY  

FROM CUSTOMERS 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 5/18 
 

WHERE SALARY > 2000; 

HAVING 

The HAVING Clause enables you to specify conditions that filter which group results 

appear in the results. 

The WHERE clause places conditions on the selected columns, whereas the HAVING 

clause places conditions on groups created by the GROUP BY clause. 

SELECT column_name, COUNT(*) 

FROM table_name 

GROUP BY column_name 

HAVING COUNT(*) > value; 

HAVING was added to SQL because the WHERE keyword could not be used with 

aggregate functions. 

ORDER BY 

The SQL ORDER BY clause is used to sort the data in ascending or descending order, 

based on one or more columns. Some databases sort the query results in an ascending 

order by default. 

SELECT column_name 

FROM table_name 

ORDER BY column_name ASC | DESC; 

ORDER BY is a clause that indicates you want to sort the result set by a particular 

column either alphabetically or numerically. 

SQL - Distinct Keyword 

The SQL DISTINCT keyword is used in conjunction with the SELECT statement to 

eliminate all the duplicate records and fetching only unique records. 

 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 6/18 
 

There may be a situation when you have multiple duplicate records in a table. While 

fetching such records, it makes more sense to fetch only those unique records instead of 

fetching duplicate records. 

Syntax 

 

The basic syntax of DISTINCT keyword to eliminate the duplicate records is as follows − 

 

SELECT DISTINCT column1, column2,.....columnN  

FROM table_name 

WHERE [condition] 

 

IN 

TRUE if the operand is equal to one of a list of expressions 

 

SELECT * FROM Customers 

WHERE City IN ('Paris','London'); 

CustomerID CustomerName ContactName Address City 

4  Around the Horn  Thomas Hardy  120 Hanover Sq.  London  

11  B's Beverages  Victoria 

Ashworth  

Fauntleroy Circus  London  

16  Consolidated 

Holdings  

Elizabeth Brown  Berkeley Gardens 12 

Brewery   

London  

 

NOT 

Displays a record if the condition(s) is NOT TRUE 

SELECT * FROM Customers 

WHERE City NOT LIKE 's%'; 

 

 

 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 7/18 
 

CustomerID CustomerName Address City 

1  Alfreds Futterkiste  Obere Str. 57  Berlin  

2  Ana Trujillo Emparedados y 

helados  

Avda. de la Constitución 

2222  

México 

D.F.  

3  Antonio Moreno Taquería  Mataderos 2312  México 

D.F.  

 

OR 

TRUE if any of the conditions separated by OR is TRUE 

 

SELECT * FROM Customers 

WHERE City = "London" OR Country = "UK"; 

CustomerID CustomerName Address City Country 

4  A 120 Hanover Sq.  London  UK  

11  B Fauntleroy Circus  London  UK  

38  C Garden House Crowther Way  Cowes  UK 

 

EXISTS 

 

TRUE if the subquery returns one or more records 

 

SELECT * FROM Products 

WHERE EXISTS (SELECT Price FROM Products WHERE Price > 50); 

 

ProductID ProductName SupplierID Unit Price 

1  A 1  10 boxes x 20 bags  18  

2  B 1  24 - 12 oz bottles  19  

3  C 1  12 - 550 ml bottles  10 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 8/18 
 

LIKE 

TRUE if the operand matches a pattern. 

 

SELECT * FROM Customers 

WHERE City LIKE 's%'; 

 

CustomerID Address City Country 

7  24, place Kléber  Strasbourg  France  

15  Av. dos Lusíadas, 23  São Paulo  Brazil  

21  Rua Orós, 92  São Paulo  Brazil  

 

SQL INNER JOIN (simple join) 

SQL INNER JOINS return all rows from multiple tables where the join condition is met. 

Syntax 

 

The syntax for the INNER JOIN in SQL is: 

 

SELECT columns 

FROM table1  

INNER JOIN table2 

ON table1.column = table2.column; 

Example 

Let's look at an example of how to use the INNER JOIN in a query. 

In this example, we have a table called customers with the following data: 

 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 9/18 
 

customer_id last_name first_name favorite_website 

4000 Jackson Joe techonthenet.com 

5000 Smith Jane digminecraft.com 

6000 Ferguson Sam bigactivities.com 

7000 Reynolds Allen checkyourmath.com 

8000 Anderson Paige NULL 

9000 Johnson Derek techonthenet.com 

And a table called orders with the following data: 

order_id customer_id order_date 

1 7000 2016/04/18 

2 5000 2016/04/18 

3 8000 2016/04/19 

4 4000 2016/04/20 

5 NULL 2016/05/01 

 

Enter the following SQL statement: 

 

SELECT customers.customer_id, orders.order_id, orders.order_date 

FROM customers  

INNER JOIN orders 

ON customers.customer_id = orders.customer_id 

ORDER BY customers.customer_id; 

 

 

 

 

 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 10/18 
 

 

Output 

 

customer_id order_id order_date 

4000 4 2016/04/20 

5000 2 2016/04/18 

7000 1 2016/04/18 

8000 3 2016/04/19 

 

SQL LEFT OUTER JOIN 

 

Another type of join is called a LEFT OUTER JOIN. This type of join returns all rows 

from the LEFT-hand table specified in the ON condition and only those rows from the 

other table where the joined fields are equal (join condition is met). 

Syntax 

 

The syntax for the LEFT OUTER JOIN in SQL is: 

 

SELECT columns 

FROM table1 

LEFT [OUTER] JOIN table2 

ON table1.column = table2.column; 

 

In some databases, the OUTER keyword is omitted and written simply as LEFT JOIN. 

 

The SQL LEFT OUTER JOIN would return the all records from table1 and only those 

records from table2 that intersect with table1. 

 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 11/18 
 

 

 

 

Using the same customers table as the previous example: 

customer_id last_name first_name favorite_website 

4000 Jackson Joe techonthenet.com 

5000 Smith Jane digminecraft.com 

6000 Ferguson Sam bigactivities.com 

7000 Reynolds Allen checkyourmath.com 

8000 Anderson Paige NULL 

9000 Johnson Derek techonthenet.com 

And the orders table with the following data: 

order_id customer_id order_date 

1 7000 2016/04/18 

2 5000 2016/04/18 

3 8000 2016/04/19 

4 4000 2016/04/20 

5 NULL 2016/05/01 

 

Enter the following SQL statement: 

 

SELECT customers.customer_id, orders.order_id, orders.order_date 

FROM customers  



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 12/18 
 

LEFT OUTER JOIN orders 

ON customers.customer_id = orders.customer_id 

ORDER BY customers.customer_id; 

 

There will be 6 records selected. These are the results that you should see: 

 

customer_id order_id order_date 

4000 4 2016/04/20 

5000 2 2016/04/18 

6000 NULL NULL 

7000 1 2016/04/18 

8000 3 2016/04/19 

9000 NULL NULL 

 

SQL RIGHT OUTER JOIN 

 

Another type of join is called a SQL RIGHT OUTER JOIN. This type of join returns all 

rows from the RIGHT-hand table specified in the ON condition and only those rows from 

the other table where the joined fields are equal (join condition is met). 

Syntax 

 

The syntax for the RIGHT OUTER JOIN in SQL is: 

 

SELECT columns 

FROM table1 

RIGHT [OUTER] JOIN table2 

ON table1.column = table2.column; 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 13/18 
 

 

In some databases, the OUTER keyword is omitted and written simply as RIGHT JOIN. 

 

Using the same customers table as the previous example: 

customer_id last_name first_name favorite_website 

4000 Jackson Joe techonthenet.com 

5000 Smith Jane digminecraft.com 

6000 Ferguson Sam bigactivities.com 

7000 Reynolds Allen checkyourmath.com 

8000 Anderson Paige NULL 

9000 Johnson Derek techonthenet.com 

And the orders table with the following data: 

order_id customer_id order_date 

1 7000 2016/04/18 

2 5000 2016/04/18 

3 8000 2016/04/19 

4 4000 2016/04/20 

5 NULL 2016/05/01 

 

Enter the following SQL statement: 

 

SELECT customers.customer_id, orders.order_id, orders.order_date 

FROM customers  



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 14/18 
 

RIGHT OUTER JOIN orders 

ON customers.customer_id = orders.customer_id 

ORDER BY customers.customer_id; 

There will be 5 records selected. These are the results that you should see: 

customer_id order_id order_date 

NULL 5 2016/05/01 

4000 4 2016/04/20 

5000 2 2016/04/18 

7000 1 2016/04/18 

8000 3 2016/04/19 

 

 

SQL FULL OUTER JOIN 

 

Another type of join is called a SQL FULL OUTER JOIN. This type of join returns all 

rows from the LEFT-hand table and RIGHT-hand table with NULL values in place 

where the join condition is not met. 

Syntax 

 

The syntax for the SQL FULL OUTER JOIN is: 

 

SELECT columns 

FROM table1 

FULL [OUTER] JOIN table2 

ON table1.column = table2.column; 

 

In some databases, the OUTER keyword is omitted and written simply as FULL JOIN. 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 15/18 
 

 

Using the same customers table as the previous example: 

customer_id last_name first_name favorite_website 

4000 Jackson Joe techonthenet.com 

5000 Smith Jane digminecraft.com 

6000 Ferguson Sam bigactivities.com 

7000 Reynolds Allen checkyourmath.com 

8000 Anderson Paige NULL 

9000 Johnson Derek techonthenet.com 

And the orders table with the following data: 

order_id customer_id order_date 

1 7000 2016/04/18 

2 5000 2016/04/18 

3 8000 2016/04/19 

4 4000 2016/04/20 

5 NULL 2016/05/01 

Enter the following SQL statement: 

 

SELECT customers.customer_id, orders.order_id, orders.order_date 

FROM customers  

FULL OUTER JOIN orders 

ON customers.customer_id = orders.customer_id 

ORDER BY customers.customer_id; 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 16/18 
 

There will be 7 records selected. These are the results that you should see: 

customer_id order_id order_date 

NULL 5 2016/05/01 

4000 4 2016/04/20 

5000 2 2016/04/18 

6000 NULL NULL 

7000 1 2016/04/18 

8000 3 2016/04/19 

9000 NULL NULL 

 

Built in functions    
 

Numeric Functions 

 

Function Description 

ABS Returns the absolute value of a number 

AVG Returns the average value of an expression 

CEILING Returns the smallest integer value that is greater than 
or equal to a number 

COUNT Returns the count of an expression 

FLOOR Returns the largest integer value that is equal to or less 
than a number 

MAX Returns the maximum value of an expression 

MIN Returns the minimum value of an expression 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 17/18 
 

RAND Returns a random number or a random number within 
a range 

ROUND Returns a number rounded to a certain number of 
decimal places 

SIGN Returns a value indicating the sign of a number 

SUM Returns the summed value of an expression 

Conversion Functions 

Function Description 

CAST Converts an expression from one data type to another 

CONVERT Converts an expression from one data type to another 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 18/18 
 

POSSIBLE QUESTIONS 
UNIT-II 

 
2 marks questions 

1. What is known as constraints? 

2. Define primary key. 

3. Define foreign key. 

4. What is the use of WHERE clause? 

5. Define FULL OUTER JOIN. 

6 marks questions 

1. Elaborate Constraints with suitable queries. 

2. Explain about Data Manipulation Language. 

3. Explain in detail about special operators. 

4. Discuss the concept of join. 

5. Explain about Built in functions in SQL. 

 



KARPAGAM ACADEMY OF HIGHER EDUCATION 

CLASS : III B.SC CS                     COURSE NAME: ORACLE (SQL/PL-SQL) 

COURSE CODE: 17CSU504A                         BATCH: 2017-2020 

UNIT III: OTHER DATABASE OBJECTS  
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 1/11 
 

 
UNIT III 

SYLLABUS 

 Other Database Objects - View, Synonyms, Index 
 

 
VIEW 
A view is nothing more than a SQL statement that is stored in the database with an associated 
name. A view is actually a composition of a table in the form of a predefined SQL query. 
A view can contain all rows of a table or select rows from a table. A view can be created from 
one or many tables which depends on the written SQL query to create a view. 
Views, which are a type of virtual tables allow users to do the following − 

 Structure data in a way that users or classes of users find natural or intuitive. 
 Restrict access to the data in such a way that a user can see and (sometimes) modify 

exactly what they need and no more. 
 Summarize data from various tables which can be used to generate reports. 

Creating Views 
Database views are created using the CREATE VIEW statement. Views can be created from a 
single table, multiple tables or another view. 
To create a view, a user must have the appropriate system privilege according to the specific 
implementation. 
The basic CREATE VIEW syntax is as follows − 

CREATE VIEW view_name AS 
SELECT column1, column2..... 
FROM table_name 
WHERE [condition]; 

You can include multiple tables in your SELECT statement in a similar way as you use them in 
a normal SQL SELECT query. 
Example 
Consider the CUSTOMERS table having the following records − 

+----+----------+-----+-----------+----------+ 
| ID | NAME     | AGE | ADDRESS   | SALARY   | 
+----+----------+-----+-----------+----------+ 
|1|Ramesh|32|Ahmedabad|2000.00| 
|2|Khilan|25|Delhi|1500.00| 
|3| kaushik  |23|Kota|2000.00| 
|4|Chaitali|25|Mumbai|6500.00| 
|5|Hardik|27|Bhopal|8500.00| 
|6|Komal|22| MP        |4500.00| 
|7|Muffy|24|Indore|10000.00| 
+----+----------+-----+-----------+----------+ 



KARPAGAM ACADEMY OF HIGHER EDUCATION 

CLASS : III B.SC CS                     COURSE NAME: ORACLE (SQL/PL-SQL) 

COURSE CODE: 17CSU504A                         BATCH: 2017-2020 

UNIT III: OTHER DATABASE OBJECTS  
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 2/11 
 

Following is an example to create a view from the CUSTOMERS table. This view would be 
used to have customer name and age from the CUSTOMERS table. 

SQL > CREATE VIEW CUSTOMERS_VIEW AS 
SELECT name, age 
FROM  CUSTOMERS; 

Now, you can query CUSTOMERS_VIEW in a similar way as you query an actual table. 
Following is an example for the same. 

SQL > SELECT * FROM CUSTOMERS_VIEW; 

This would produce the following result. 

+----------+-----+ 
| name     | age | 
+----------+-----+ 
| Ramesh   |  32 | 
| Khilan   |  25 | 
| kaushik  |  23 | 
| Chaitali |  25 | 
| Hardik   |  27 | 
| Komal    |  22 | 
| Muffy    |  24 | 
+----------+-----+ 

The WITH CHECK OPTION 
The WITH CHECK OPTION is a CREATE VIEW statement option. The purpose of the WITH 
CHECK OPTION is to ensure that all UPDATE and INSERTs satisfy the condition(s) in the 
view definition. 
If they do not satisfy the condition(s), the UPDATE or INSERT returns an error. 
The following code block has an example of creating same view CUSTOMERS_VIEW with 
the WITH CHECK OPTION. 

CREATE VIEW CUSTOMERS_VIEW AS 
SELECT name, age 
FROM  CUSTOMERS 
WHERE age IS NOT NULL 
WITH CHECK OPTION; 

The WITH CHECK OPTION in this case should deny the entry of any NULL values in the 
view's AGE column, because the view is defined by data that does not have a NULL value in 
the AGE column. 
Updating a View 
A view can be updated under certain conditions which are given below − 

 The SELECT clause may not contain the keyword DISTINCT. 
 The SELECT clause may not contain summary functions. 
 The SELECT clause may not contain set functions. 
 The SELECT clause may not contain set operators. 



KARPAGAM ACADEMY OF HIGHER EDUCATION 

CLASS : III B.SC CS                     COURSE NAME: ORACLE (SQL/PL-SQL) 

COURSE CODE: 17CSU504A                         BATCH: 2017-2020 

UNIT III: OTHER DATABASE OBJECTS  
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 3/11 
 

 The SELECT clause may not contain an ORDER BY clause. 
 The FROM clause may not contain multiple tables. 
 The WHERE clause may not contain subqueries. 
 The query may not contain GROUP BY or HAVING. 
 Calculated columns may not be updated. 
 All NOT NULL columns from the base table must be included in the view in order for 

the INSERT query to function. 
So, if a view satisfies all the above-mentioned rules then you can update that view. The 
following code block has an example to update the age of Ramesh. 

SQL > UPDATE CUSTOMERS_VIEW 
   SET AGE =35 
   WHERE name ='Ramesh'; 

This would ultimately update the base table CUSTOMERS and the same would reflect in the 
view itself. Now, try to query the base table and the SELECT statement would produce the 
following result. 

+----+----------+-----+-----------+----------+ 
| ID | NAME     | AGE | ADDRESS   | SALARY   | 
+----+----------+-----+-----------+----------+ 
|  1 | Ramesh   |  35 | Ahmedabad |  2000.00 | 
|  2 | Khilan   |  25 | Delhi     |  1500.00 | 
|  3 | kaushik  |  23 | Kota      |  2000.00 | 
|  4 | Chaitali |  25 | Mumbai    |  6500.00 | 
|  5 | Hardik   |  27 | Bhopal    |  8500.00 | 
|  6 | Komal    |  22 | MP        |  4500.00 | 
|  7 | Muffy    |  24 | Indore    | 10000.00 | 
+----+----------+-----+-----------+----------+ 

Inserting Rows into a View 
Rows of data can be inserted into a view. The same rules that apply to the UPDATE command 
also apply to the INSERT command. 
Here, we cannot insert rows in the CUSTOMERS_VIEW because we have not included all the 
NOT NULL columns in this view, otherwise you can insert rows in a view in a similar way as 
you insert them in a table. 
Deleting Rows into a View 
Rows of data can be deleted from a view. The same rules that apply to the UPDATE and 
INSERT commands apply to the DELETE command. 
Following is an example to delete a record having AGE = 22. 

SQL > DELETE FROM CUSTOMERS_VIEW 
   WHERE age =22; 

This would ultimately delete a row from the base table CUSTOMERS and the same would 
reflect in the view itself. Now, try to query the base table and the SELECT statement would 
produce the following result. 



KARPAGAM ACADEMY OF HIGHER EDUCATION 

CLASS : III B.SC CS                     COURSE NAME: ORACLE (SQL/PL-SQL) 

COURSE CODE: 17CSU504A                         BATCH: 2017-2020 

UNIT III: OTHER DATABASE OBJECTS  
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 4/11 
 

+----+----------+-----+-----------+----------+ 
| ID | NAME     | AGE | ADDRESS   | SALARY   | 

+----+----------+-----+-----------+----------+ 
|  1 | Ramesh   |  35 | Ahmedabad |  2000.00 | 
|  2 | Khilan   |  25 | Delhi     |  1500.00 | 
|  3 | kaushik  |  23 | Kota      |  2000.00 | 
|  4 | Chaitali |  25 | Mumbai    |  6500.00 | 
|  5 | Hardik   |  27 | Bhopal    |  8500.00 | 
|  7 | Muffy    |  24 | Indore    | 10000.00 | 
+----+----------+-----+-----------+----------+ 

Dropping Views 
Obviously, where you have a view, you need a way to drop the view if it is no longer needed. 
The syntax is very simple and is given below − 

DROP VIEW view_name; 

Following is an example to drop the CUSTOMERS_VIEW from the CUSTOMERS table. 

DROP VIEW CUSTOMERS_VIEW; 

Force VIEW Creation 
FORCE keyword is used while creating a view, forcefully. This keyword is used to create a 
View even if the table does not exist. After creating a force View if we create the base table and 
enter values in it, the view will be automatically updated. 
Syntax for forced View is, 
CREATEor REPLACE FORCEVIEW view_name AS 
SELECT column_name(s) 
FROM table_name 
WHERE condition; 
Update a VIEW 
UPDATE command for view is same as for tables. 
Syntax to Update a View is, 
UPDATEview-name SETVALUE 
WHERE condition; 
NOTE: If we update a view it also updates base table data automatically. 
Read-Only VIEW 
We can create a view with read-only option to restrict access to the view. 
Syntax to create a view with Read-Only Access 
CREATEor REPLACE FORCEVIEW view_name AS 
SELECT column_name(s) 
FROM table_name 
WHERE condition WITHread-only; 
The above syntax will create view for read-only purpose, we cannot Update or Insert data into 
read-only view. It will throw an error. 
Types of View 
There are two types of view, 



KARPAGAM ACADEMY OF HIGHER EDUCATION 

CLASS : III B.SC CS                     COURSE NAME: ORACLE (SQL/PL-SQL) 

COURSE CODE: 17CSU504A                         BATCH: 2017-2020 

UNIT III: OTHER DATABASE OBJECTS  
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 5/11 
 

 Simple View 
 Complex View 
 

Simple View Complex View 

Created from one table Created from one or more table 

Does not contain functions Contain functions 

Does not contain groups of data Contains groups of data 

 
Synonyms 
A synonym is an alternative name for objects such as tables, views, sequences, stored 
procedures, and other database objects. 
You generally use synonyms when you are granting access to an object from another schema and 
you don't want the users to have to worry about knowing which schema owns the object. 
Create Synonym (or Replace) 
You may wish to create a synonym so that users do not have to prefix the table name with the 
schema name when using the table in a query. 
Syntax 
The syntax to create a synonym in Oracle is: 

CREATE [OR REPLACE] [PUBLIC] SYNONYM [schema .] synonym_name 
  FOR [schema .] object_name [@ dblink]; 

OR REPLACE 
Allows you to recreate the synonym (if it already exists) without having to issue a DROP 
synonym command. 

PUBLIC 
It means that the synonym is a public synonym and is accessible to all users. Remember 
though that the user must first have the appropriate privileges to the object to use the 
synonym. 

schema 
The appropriate schema. If this phrase is omitted, Oracle assumes that you are referring 
to your own schema. 

object_name 
The name of the object for which you are creating the synonym. It can be one of the 
following: 

 table 
 view 
 sequence 



KARPAGAM ACADEMY OF HIGHER EDUCATION 

CLASS : III B.SC CS                     COURSE NAME: ORACLE (SQL/PL-SQL) 

COURSE CODE: 17CSU504A                         BATCH: 2017-2020 

UNIT III: OTHER DATABASE OBJECTS  
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 6/11 
 

 stored procedure 
 function 
 package 
 materialized view 
 java class schema object 
 user-defined object 
 synonym 

Example 
Let's look at an example of how to create a synonym in Oracle. 
For example: 

CREATE PUBLIC SYNONYM suppliers 
FOR app.suppliers; 

This first CREATE SYNONYM example demonstrates how to create a synonym 
called suppliers. Now, users of other schemas can reference the table called suppliers without 
having to prefix the table name with the schema named app. For example: 

SELECT * 
FROM suppliers; 

If this synonym already existed and you wanted to redefine it, you could always use the OR 
REPLACE phrase as follows: 

CREATE OR REPLACE PUBLIC SYNONYM suppliers 
FOR app.suppliers; 

Drop synonym 
Once a synonym has been created in Oracle, you might at some point need to drop the synonym. 
Syntax 
The syntax to drop a synonym in Oracle is: 

DROP [PUBLIC] SYNONYM [schema .] synonym_name [force]; 

PUBLIC 
Allows you to drop a public synonym. If you have specified PUBLIC, then you don't 
specify a schema. 

force 
It will force Oracle to drop the synonym even if it has dependencies. It is probably not a 
good idea to use force as it can cause invalidation of Oracle objects. 

Example 
Let's look at an example of how to drop a synonym in Oracle. 
For example: 

DROP PUBLIC SYNONYM suppliers; 

This DROP statement would drop the synonym called suppliers that we defined earlier. 



KARPAGAM ACADEMY OF HIGHER EDUCATION 

CLASS : III B.SC CS                     COURSE NAME: ORACLE (SQL/PL-SQL) 

COURSE CODE: 17CSU504A                         BATCH: 2017-2020 

UNIT III: OTHER DATABASE OBJECTS  
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 7/11 
 

SQL Index 
Index in sql is created on existing tables to retrieve the rows quickly. 
When there are thousands of records in a table, retrieving information will take a long time. 
Therefore indexes are created on columns which are accessed frequently, so that the 
information can be retrieved quickly. Indexes can be created on a single column or a group 
of columns. When a index is created, it first sorts the data and then it assigns a ROWID for 
each row. 

For example, if you want to reference all pages in a book that discusses a certain topic, you first 
refer to the index, which lists all the topics alphabetically and are then referred to one or more 
specific page numbers. 
An index helps to speed up SELECT queries and WHERE clauses, but it slows down data 
input, with the UPDATE and the INSERT statements. Indexes can be created or dropped with 
no effect on the data. 
Creating an index involves the CREATE INDEX statement, which allows you to name the 
index, to specify the table and which column or columns to index, and to indicate whether the 
index is in an ascending or descending order. 
Indexes can also be unique, like the UNIQUE constraint, in that the index prevents duplicate 
entries in the column or combination of columns on which there is an index. 
Create an Index 
Syntax 
The syntax for creating an index in Oracle/PLSQL is: 

CREATE [UNIQUE] INDEX index_name 
  ON table_name (column1, column2, ... column_n) 
[ COMPUTE STATISTICS ]; 

UNIQUE 
It indicates that the combination of values in the indexed columns must be unique. 

index_name 
The name to assign to the index. 

table_name 
The name of the table in which to create the index. 

column1, column2, ... column_n 
The columns to use in the index. 

COMPUTE STATISTICS 
It tells Oracle to collect statistics during the creation of the index. The statistics are then 
used by the optimizer to choose a "plan of execution" when SQL statements are executed. 

Example 
Let's look at an example of how to create an index in Oracle/PLSQL. 
For example: 

CREATE INDEX supplier_idx 
  ON supplier (supplier_name); 

In this example, we've created an index on the supplier table called supplier_idx. It consists of 
only one field - the supplier_name field. 



KARPAGAM ACADEMY OF HIGHER EDUCATION 

CLASS : III B.SC CS                     COURSE NAME: ORACLE (SQL/PL-SQL) 

COURSE CODE: 17CSU504A                         BATCH: 2017-2020 

UNIT III: OTHER DATABASE OBJECTS  
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 8/11 
 

We could also create an index with more than one field as in the example below: 

CREATE INDEX supplier_idx 
  ON supplier (supplier_name, city); 

We could also choose to collect statistics upon creation of the index as follows: 

CREATE INDEX supplier_idx 
  ON supplier (supplier_name, city) 
  COMPUTE STATISTICS; 

Create a Function-Based Index 
In Oracle, you are not restricted to creating indexes on only columns. You can create function-
based indexes. 
Syntax 
The syntax for creating a function-based index in Oracle/PLSQL is: 

CREATE [UNIQUE] INDEX index_name 
  ON table_name (function1, function2, ... function_n) 
[ COMPUTE STATISTICS ]; 

 UNIQUE 
o It indicates that the combination of values in the indexed columns must be unique. 

 index_name 
o The name to assign to the index. 

 table_name 
o The name of the table in which to create the index. 

 function1, function2, ... function_n 
o The functions to use in the index. 

 COMPUTE STATISTICS 
o It tells Oracle to collect statistics during the creation of the index. The statistics 

are then used by the optimizer to choose a "plan of execution" when SQL 
statements are executed. 

Example 
Let's look at an example of how to create a function-based index in Oracle/PLSQL. 
For example: 

CREATE INDEX supplier_idx 
  ON supplier (UPPER(supplier_name)); 

In this example, we've created an index based on the uppercase evaluation of 
the supplier_name field. 
However, to be sure that the Oracle optimizer uses this index when executing your SQL 
statements, be sure that UPPER(supplier_name) does not evaluate to a NULL value. To ensure 
this, add UPPER(supplier_name) IS NOT NULL to your WHERE clause as follows: 

SELECT supplier_id, supplier_name, UPPER(supplier_name) 



KARPAGAM ACADEMY OF HIGHER EDUCATION 

CLASS : III B.SC CS                     COURSE NAME: ORACLE (SQL/PL-SQL) 

COURSE CODE: 17CSU504A                         BATCH: 2017-2020 

UNIT III: OTHER DATABASE OBJECTS  
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 9/11 
 

FROM supplier 
WHERE UPPER(supplier_name) IS NOT NULL 
ORDER BY UPPER(supplier_name); 

Rename an Index 
Syntax 
The syntax for renaming an index in Oracle/PLSQL is: 

ALTER INDEX index_name 
  RENAME TO new_index_name; 

index_name 
The name of the index that you wish to rename. 

new_index_name 
The new name to assign to the index. 

Example 
Let's look at an example of how to rename an index in Oracle/PLSQL. 
For example: 

ALTER INDEX supplier_idx 
  RENAME TO supplier_index_name; 

In this example, we're renaming the index called supplier_idx to supplier_index_name. 
Collect Statistics on an Index 
If you forgot to collect statistics on the index when you first created it or you want to update the 
statistics, you can always use the ALTER INDEX command to collect statistics at a later date. 
Syntax 
The syntax for collecting statistics on an index in Oracle/PLSQL is: 

ALTER INDEX index_name 
  REBUILD COMPUTE STATISTICS; 

index_name 
The index in which to collect statistics. 

Example 
Let's look at an example of how to collect statistics for an index in Oracle/PLSQL. 
For example: 

ALTER INDEX supplier_idx 
  REBUILD COMPUTE STATISTICS; 

In this example, we're collecting statistics for the index called supplier_idx. 
 
Drop an Index 
Syntax 
The syntax for dropping an index in Oracle/PLSQL is: 



KARPAGAM ACADEMY OF HIGHER EDUCATION 

CLASS : III B.SC CS                     COURSE NAME: ORACLE (SQL/PL-SQL) 

COURSE CODE: 17CSU504A                         BATCH: 2017-2020 

UNIT III: OTHER DATABASE OBJECTS  
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 10/11 
 

DROP INDEX index_name; 

Where index_name -The name of the index to drop. 
Example 
Let's look at an example of how to drop an index in Oracle/PLSQL. 
For example: 

DROP INDEX supplier_idx; 

In this example, we're dropping an index called supplier_idx. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



KARPAGAM ACADEMY OF HIGHER EDUCATION 

CLASS : III B.SC CS                     COURSE NAME: ORACLE (SQL/PL-SQL) 

COURSE CODE: 17CSU504A                         BATCH: 2017-2020 

UNIT III: OTHER DATABASE OBJECTS  
 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 11/11 
 

UNIT-III 
 

POSSIBLE QUESTIONS 
 

2 marks questions 
1. Define view. 
2. How to create a view? 
3. What is WITH CHECK OPTION used for? 
4. What is the use of FORCE keyword? 
5. Define synonyms. 
6. What is an index? 

6 marks questions 
1. Discuss the different types of Indexes with examples. 
2. What is the purpose of using synonym? Explain with example. 
3. Illustrate creation, modification and deletion of views with appropriate examples. 

 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 1/11 

KARPAGAM ACADEMY OF HIGHER EDUCATION 

CLASS : II B.SC CS                     COURSE NAME: ORACLE (SQL/PL-SQL) 

COURSE CODE: 17CSU504A        BATCH: 2017-2020 

UNIT IV: TRANSACTION CONTROL STATEMENTS 

 

UNIT IV 

SYLLABUS 

           Transaction Control Statements -  Commit, Rollback, Savepoint    

 

Commit, Rollback and Savepoint SQL commands 

Transaction Control Language(TCL) commands are used to manage transactions in the database. 
These are used to manage the changes made to the data in a table by DML statements. It also 
allows statements to be grouped together into logical transactions. 

COMMIT Statement 

COMMIT command is used to permanently save any transaction into the database. 

When we use any DML command like INSERT, UPDATE or DELETE, the changes made by 
these commands are not permanent, until the current session is closed, the changes made by 
these commands can be rolled back. 

To avoid that, we use the COMMIT command to mark the changes as permanent. 

Syntax 

The syntax for the COMMIT statement in Oracle/PLSQL is: 

COMMIT [ WORK ] [ COMMENT clause ] [ WRITE clause ] [ FORCE clause ]; 

Parameters or Arguments 

WORK 

Optional. It was added by Oracle to be SQL-compliant. Issuing the COMMIT with or 

without the WORK parameter will result in the same outcome. 

COMMENT clause 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 2/11 

Optional. It is used to specify a comment to be associated with the current transaction. 

The comment that can be up to 255 bytes of text enclosed in single quotes. It is stored in 

the system view called DBA_2PC_PENDING along with the transaction ID if there is a 

problem. 

WRITE clause 

Optional. It is used to specify the priority that the redo information for the committed 

transaction is to be written to the redo log. With this clause, you have two parameters to 

specify: 

 

 WAIT or NOWAIT (WAIT is the default if omitted) 
o WAIT - means that the commit returns to the client only after the redo 

information is persistent in the redo log. 
o NOWAIT - means that the commit returns to the client right away 

regardless of the status of the redo log. 
 IMMEDIATE or BATCH (IMMEDIATE is the default if omitted) 

o IMMEDIATE - forces a disk I/O causing the log writer to write the redo 
information to the redo log. 

o BATCH - forces a "group commit" and buffers the redo log to be written 
with other transactions. 

FORCE clause 

Optional. It is used to force the commit of a transaction that may be corrupt or in doubt. 

With this clause, you can specify the FORCE in 3 ways: 

 

 FORCE 'string', [integer] or FORCE CORRUPT_XID 'string' or FORCE 
CORRUPT_XID_ALL 

o FORCE 'string', [integer] - allows you to commit a corrupt or in doubt 
transaction in a distributed database system by specifying the transaction 
ID in single quotes as string. You can find the transaction ID in the system 
view called DBA_2PC_PENDING. You can specify integer to assign the 
transaction a system change number if you do not wish to commit the 
transaction using the current system change number. 

o FORCE CORRUPT_XID 'string' - allows you to commit a corrupt or in 
doubt transaction by specifying the transaction ID in single quotes 
as string. You can find the transaction ID in the system view called 
V$CORRUPT_XID_LIST. 

o FORCE CORRUPT_XID_ALL - allows you to commit all corrupted 
transactions. 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 3/11 

Note 

 You must have DBA privileges to access the system views - DBA_2PC_PENDING and 
V$CORRUPT_XID_LIST. 

 You must have DBA privileges to specify certain features of the COMMIT statement. 

Example 

Let's look at an example that shows how to issue a commit in Oracle using the COMMIT 
statement. 

For example: 

COMMIT; 

This COMMIT example would perform the same as the following: 

COMMIT WORK WRITE WAIT IMMEDIATE; 

In this example, the WORK keyword is implied and the omission of the WRITE clause would 
default to WRITE WAIT IMMEDIATE so the first 2 COMMIT statements are equivalent. 

Comment 

Let's look at an example of a COMMIT that shows how to use the COMMENT clause: 

For example, you can write the COMMIT with a comment in two ways: 

COMMIT COMMENT 'This is the comment for the transaction'; 

OR 

COMMIT WORK COMMENT 'This is the comment for the transaction'; 

Since the WORK keyword is always implied, both of these COMMIT examples are equivalent. 
The COMMIT would store the comment enclosed in quotes along with the transaction ID in the 
DBA_2PC_PENDING system view, if the transaction was in error or in doubt. 

Force 

Finally, look at an example of a COMMIT that shows how to use the FORCE clause. 

For example, you can write the COMMIT of an in-doubt transaction in two ways: 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 4/11 

COMMIT FORCE '22.14.67'; 

OR 

COMMIT WORK FORCE '22.14.67'; 

Since the WORK keyword is always implied, both of these COMMIT examples would force the 
commit of the corrupted or in doubt transaction identified by the transaction ID '22.14.67'. 

ROLLBACK 

This command restores the database to last commited state. It is also used 
with SAVEPOINT command to jump to a savepoint in an ongoing transaction. 

If we have used the UPDATE command to make some changes into the database, and realise that 
those changes were not required, then we can use the ROLLBACK command to rollback those 
changes, if they were not commited using the COMMIT command. 

ROLLBACKTOsavepoint_name; 

Syntax 

The syntax for the ROLLBACK statement is: 

ROLLBACK [ WORK ] [ TO [SAVEPOINT] savepoint_name  | FORCE 'string' ]; 

Parameters or Arguments 

WORK 

Optional. It was added by Oracle to be SQL-compliant. Issuing the ROLLBACK with or 

without the WORK parameter will result in the same outcome. 

TO SAVEPOINT savepoint_name 

Optional. The ROLLBACK statement undoes all changes for the current session up to the 

savepoint specified by savepoint_name. If this clause is omitted, then all changes are 

undone. 

FORCE 'string' 

Optional. It is used to force the rollback of a transaction that may be corrupt or in doubt. 

With this clause, you specify the transaction ID in single quotes as string. You can find 

the transaction ID in the system view called DBA_2PC_PENDING. 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 5/11 

Note 

 You must have DBA privileges to access the system views - DBA_2PC_PENDING and 
V$CORRUPT_XID_LIST. 

 You can not rollback a transaction that is in doubt to a savepoint. 

Example 

Let's look at an example that shows how to issue a rollback in Oracle using the ROLLBACK 
statement. 

For example: 

ROLLBACK; 

This ROLLBACK example would perform the same as the following: 

ROLLBACK WORK; 

In this example, the WORK keyword is implied so the first 2 ROLLBACK statements are 
equivalent. These examples would rollback the current transaction. 

Savepoint 

Let's look at an example of a ROLLBACK that shows how to use the rollback to a specific 
savepoint. 

For example, you can write the ROLLBACK to a savepoint in two ways: 

ROLLBACK TO SAVEPOINT savepoint1; 

OR 

ROLLBACK WORK TO SAVEPOINT savepoint1; 

Since the WORK keyword is always implied, both of these ROLLBACK examples would 
rollback the current transaction to the savepoint called savepoint1. 

Force 

Finally, look at an example of a ROLLBACK that shows how to force the rollback of a 
transaction that is in doubt. 

For example, you can write the ROLLBACK of an in-doubt transaction in two ways: 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 6/11 

ROLLBACK FORCE '22.14.67'; 

OR 

ROLLBACK WORK FORCE '22.14.67'; 

Since the WORK keyword is always implied, both of these ROLLBACK examples would force 
the rollback of the corrupted or in doubt transaction identified by the transaction ID '22.14.67'. 

SAVEPOINT 

SAVEPOINT command is used to temporarily save a transaction so that you can rollback to that 
point whenever required. 

Following is savepoint command's syntax, 

SAVEPOINTsavepoint_name; 

In short, using this command we can name the different states of our data in any table and then 
rollback to that state using the ROLLBACK command whenever required. 

Using Savepoint and Rollback 

Following is the table class, 

id name 

1 Abhi 

2 Adam 

4 Alex 

Lets use some SQL queries on the above table and see the results. 

INSERTINTO class VALUES(5,'Rahul'); 

 

COMMIT; 

 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 7/11 

UPDATE class SET name ='Abhijit'WHERE id ='5'; 

 

SAVEPOINT A; 

 

INSERTINTO class VALUES(6,'Chris'); 

 

SAVEPOINT B; 

 

INSERTINTO class VALUES(7,'Bravo'); 

 

SAVEPOINT C; 

 

SELECT*FROM class; 

NOTE: SELECT statement is used to show the data stored in the table. 

The resultant table will look like, 

id name 

1 Abhi 

2 Adam 

4 Alex 

5 Abhijit 

6 Chris 

7 Bravo 

Now let's use the ROLLBACK command to roll back the state of data to the savepoint B. 

ROLLBACKTO B; 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 8/11 

SELECT*FROM class; 

Now class table will look like, 

id name 

1 Abhi 

2 Adam 

4 Alex 

5 Abhijit 

6 Chris 

Now let's again use the ROLLBACK command to roll back the state of data to the savepoint A 

ROLLBACKTO A; 

SELECT*FROM class; 

Now the table will look like, 

id name 

1 Abhi 

2 Adam 



 

Prepared By K.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 9/11 

4 Alex 

5 Abhijit 

 

 
 
 
 

UNIT-IV 
 

POSSIBLE QUESTIONS 
 

2 marks questions 

1. Define commit. 

2. What is meant by Rollback? 

3. Define Savepoint. 

4. Give an example query for TO SAVEPOINT. 

 

6 marks questions 

1. Elaborate COMMIT with examples. 

2. Explain about Rollback. 

3. Elaborate Savepoint. 

 



Prepared ByK.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 1/20 

KARPAGAM ACADEMY OF HIGHER EDUCATION 

CLASS : III B.SC CS                      COURSE NAME: ORACLE (SQL/PL-SQL) 

COURSE CODE: 17CSU504A         BATCH: 2017-2020 

UNIT V: INTRODUCTION TO PL/SQL  

 
UNIT V 

SYLLABUS 

Introduction to PL/SQL SQL v/s PL/SQL, PL/SQL Block Structure, Language construct of 
PL/SQL (Variables, Basic and Composite Data type, Conditions looping etc.) TYPE and  
% ROWTYPE , Using Cursor (Implicit, Explicit) 

 
SQL v/s PL/SQL 
Difference between SQL and PL/SQL 

SQL PL/SQL 

 SQL is a single query that is used to 
perform DML and DDL operations. 

 PL/SQL is a block of codes that used 
to write the entire program blocks/ 
procedure/ function, etc. 

 It is declarative, that defines what 
need to be done, rather than how 
things need to be done. 

 PL/SQL is procedural that defines 
how the things needs to be done. 

 Execute as a single statement.  Execute as a whole block. 

 Mainly used to manipulate data.  Mainly used to create an application. 

 Interaction with a Database server.  No interaction with the database 
server. 

 Cannot contain PL/SQL code in it.  It is an extension of SQL, so that it 
can contain SQL inside it. 

 
PL/SQL BLOCK STRUCTURE 

PL/SQL is a block-structured language; this means that the PL/SQL programs are 
divided and written in logical blocks of code. Each block consists of three sub-parts. 

 

S.No Sections & Description 

1 

Declarations 
This section starts with the keyword DECLARE. It is an optional section and 
defines all variables, cursors, subprograms, and other elements to be used in the 
program. 



Prepared ByK.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 2/20 

2 

Executable Commands 
This section is enclosed between the keywords BEGINand END and it is a 
mandatory section. It consists of the executable PL/SQL statements of the program. 
It should have at least one executable line of code, which may be just a NULL 
command to indicate that nothing should be executed. 

3 
Exception Handling 
This section starts with the keyword EXCEPTION. This optional section 
contains exception(s) that handle errors in the program. 

 

 
Every PL/SQL statement ends with a semicolon (;). PL/SQL blocks can be nested within other 
PL/SQL blocks using BEGINand END. Following is the basic structure of a PL/SQL block − 

DECLARE  
<declarations section> 
BEGIN  
<executable command(s)> 
EXCEPTION  
<exception handling> 
END; 

The 'Hello World' Example 

DECLARE  
message  varchar2(20):='Hello, World!'; 
BEGIN 
dbms_output.put_line(message); 
END; 
/ 



Prepared ByK.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 3/20 

The end; line signals the end of the PL/SQL block. To run the code from the SQL command 
line, you may need to type / at the beginning of the first blank line after the last line of the code. 
When the above code is executed at the SQL prompt, it produces the following result − 

Hello World   
 
PL/SQL procedure successfully completed. 

The PL/SQL Identifiers 
PL/SQL identifiers are constants, variables, exceptions, procedures, cursors, and reserved 
words. The identifiers consist of a letter optionally followed by more letters, numerals, dollar 
signs, underscores, and number signs and should not exceed 30 characters. 
By default, identifiers are not case-sensitive. So you can use integer or INTEGER to 
represent a numeric value. You cannot use a reserved keyword as an identifier. 
The PL/SQL Delimiters 
A delimiter is a symbol with a special meaning. Following is the list of delimiters in PL/SQL − 

Delimiter Description 

+, -, *, / Addition, subtraction/negation, multiplication, division 

% Attribute indicator 

' Character string delimiter 

. Component selector 

(,) Expression or list delimiter 

: Host variable indicator 

, Item separator 

" Quoted identifier delimiter 

= Relational operator 

@ Remote access indicator 

; Statement terminator 

:= Assignment operator 

=> Association operator 



Prepared ByK.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 4/20 

|| Concatenation operator 

** Exponentiation operator 

<<, >> Label delimiter (begin and end) 

/*, */ Multi-line comment delimiter (begin and end) 

-- Single-line comment indicator 

.. Range operator 

<, >, <=, >= Relational operators 

<>, '=, ~=, ^= Different versions of NOT EQUAL 

 
The PL/SQL Comments 
Program comments are explanatory statements that can be included in the PL/SQL code that 
you write and helps anyone reading its source code. All programming languages allow some 
form of comments. 
The PL/SQL supports single-line and multi-line comments. All characters available inside any 
comment are ignored by the PL/SQL compiler. The PL/SQL single-line comments start with the 
delimiter -- (double hyphen) and multi-line comments are enclosed by /* and */. 

DECLARE  
   -- variable declaration  
message  varchar2(20):= 'Hello, World!';  
BEGIN  
   /*  
*  PL/SQL executable statement(s)  
   */  
dbms_output.put_line(message);  
END;  
/ 

When the above code is executed at the SQL prompt, it produces the following result − 

Hello World 
 
PL/SQL procedure successfully completed. 

PL/SQL Program Units 
A PL/SQL unit is any one of the following − 

 PL/SQL block 
 Function 
 Package 
 Package body 



Prepared ByK.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 5/20 

 Procedure 
 Trigger 
 Type 
 Type body 

 
LANGUAGE CONSTRUCT OF PL/SQL 
Variables 

A variable is a name given to a storage area that our programs can manipulate. Each 
variable in PL/SQL has a specific data type, which determines the size and the layout of the 
variable's memory; the range of values that can be stored within that memory and the set of 
operations that can be applied to the variable. 

The name of a PL/SQL variable consists of a letter optionally followed by more letters, 
numerals, dollar signs, underscores, and number signs and should not exceed 30 characters. By 
default, variable names are not case-sensitive. You cannot use a reserved PL/SQL keyword as a 
variable name. 
PL/SQL programming language allows to define various types of variables, such as date time 
data types, records, collections, etc. which we will cover in subsequent chapters. For this 
chapter, let us study only basic variable types. 
Variable Declaration in PL/SQL 
PL/SQL variables must be declared in the declaration section or in a package as a global 
variable. When you declare a variable, PL/SQL allocates memory for the variable's value and 
the storage location is identified by the variable name. 
The syntax for declaring a variable is − 

variable_name [CONSTANT] datatype [NOT NULL] [:= | DEFAULT initial_value]  

Where, variable_name is a valid identifier in PL/SQL, datatypemustbe a valid PL/SQL data 
type or any user defined data type which we already have discussed in the last chapter. Some 
valid variable declarations along with their definition are shown below − 

sales number(10, 2);  
pi CONSTANT double precision := 3.1415;  
name varchar2(25);  
address varchar2(100); 

When you provide a size, scale or precision limit with the data type, it is called a constrained 
declaration. Constrained declarations require less memory than unconstrained declarations. For 
example − 

sales number(10, 2);  
name varchar2(25);  
address varchar2(100);  

Initializing Variables in PL/SQL 
Whenever you declare a variable, PL/SQL assigns it a default value of NULL. If you want to 
initialize a variable with a value other than the NULL value, you can do so during the 
declaration, using either of the following − 

 The DEFAULT keyword 
 The assignment operator 

For example − 



Prepared ByK.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 6/20 

counterbinary_integer := 0;  
greetings varchar2(20) DEFAULT 'Have a Good Day'; 

You can also specify that a variable should not have a NULLvalue using the NOT 
NULL constraint. If you use the NOT NULL constraint, you must explicitly assign an initial 
value for that variable. 
It is a good programming practice to initialize variables properly otherwise, sometimes 
programs would produce unexpected results. Try the following example which makes use of 
various types of variables − 

DECLARE  
a integer :=10; 
b integer :=20; 
c integer; 
f real; 
BEGIN 
c:= a + b; 
dbms_output.put_line('Value of c: '|| c); 
f:=70.0/3.0; 
dbms_output.put_line('Value of f: '|| f); 
END; 
/ 

When the above code is executed, it produces the following result − 

Value of c: 30  
Value of f: 23.333333333333333333   
 
PL/SQL procedure successfully completed.  

Variable Scope in PL/SQL 
PL/SQL allows the nesting of blocks, i.e., each program block may contain another inner block. 
If a variable is declared within an inner block, it is not accessible to the outer block. However, if 
a variable is declared and accessible to an outer block, it is also accessible to all nested inner 
blocks. There are two types of variable scope − 

 Local variables − Variables declared in an inner block and not accessible to outer 
blocks. 

 Global variables − Variables declared in the outermost block or a package. 
Following example shows the usage of Local and Globalvariables in its simple form − 

DECLARE  
--Global variables   
num1 number :=95; 
num2 number :=85; 
BEGIN 
dbms_output.put_line('Outer Variable num1: '|| num1); 
dbms_output.put_line('Outer Variable num2: '|| num2); 
   DECLARE   
--Local variables  



Prepared ByK.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 7/20 

num1 number :=195; 
num2 number :=185; 
BEGIN 
dbms_output.put_line('Inner Variable num1: '|| num1); 
dbms_output.put_line('Inner Variable num2: '|| num2); 
END; 
END; 
/ 

When the above code is executed, it produces the following result − 

Outer Variable num1: 95  
Outer Variable num2: 85  
Inner Variable num1: 195  
Inner Variable num2: 185   
 
PL/SQL procedure successfully completed.  

Assigning SQL Query Results to PL/SQL Variables 
You can use the SELECT INTO statement of SQL to assign values to PL/SQL variables. For 
each item in the SELECT list, there must be a corresponding, type-compatible variable in 
the INTO list. The following example illustrates the concept. Let us create a table named 
CUSTOMERS − 

CREATE TABLE CUSTOMERS( 
   ID   INT NOT NULL, 
   NAME VARCHAR (20) NOT NULL, 
   AGE INT NOT NULL, 
   ADDRESS CHAR (25), 
   SALARY   DECIMAL (18,2), 
   PRIMARY KEY (ID) 
); 
 
TableCreated 

Let us now insert some values in the table − 

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) 
VALUES (1,'Ramesh',32,'Ahmedabad',2000.00); 
 
INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) 
VALUES (2,'Khilan',25,'Delhi',1500.00); 
 
INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) 
VALUES (3,'kaushik',23,'Kota',2000.00); 
 
INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) 
VALUES (4,'Chaitali',25,'Mumbai',6500.00); 
 



Prepared ByK.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 8/20 

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) 
VALUES (5,'Hardik',27,'Bhopal',8500.00); 
 
INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) 
VALUES (6,'Komal',22,'MP',4500.00); 

The following program assigns values from the above table to PL/SQL variables using 
the SELECT INTO clause of SQL − 

DECLARE  
c_idcustomers.id%type:=1; 
c_namecustomers.name%type; 
c_addrcustomers.address%type; 
c_salcustomers.salary%type; 
BEGIN 
   SELECT name, address, salary INTO c_name,c_addr,c_sal 
   FROM customers  
   WHERE id =c_id; 
dbms_output.put_line 
('Customer '||c_name||' from '||c_addr||' earns '||c_sal); 
END; 
/ 

When the above code is executed, it produces the following result − 

Customer Ramesh from Ahmedabad earns 2000   
 
PL/SQL procedure completed successfully 

 
Data Types 
The PL/SQL variables, constants and parameters must have a valid data type, which specifies a 
storage format, constraints, and a valid range of values. We will focus on the SCALAR and 
the LOBdata types in this chapter. The other two data types will be covered in other chapters. 

S.No Category & Description 

1 
Scalar 
Single values with no internal components, such as a NUMBER, 
DATE, or BOOLEAN. 

2 
Large Object (LOB) 
Pointers to large objects that are stored separately from other data items, such as 
text, graphic images, video clips, and sound waveforms. 

3 
Composite 
Data items that have internal components that can be accessed individually. For 
example, collections and records. 



Prepared ByK.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 9/20 

4 
Reference 
Pointers to other data items. 

 
PL/SQL Scalar Data Types and Subtypes 
PL/SQL Scalar Data Types and Subtypes come under the following categories − 

S.No Date Type & Description 

1 
Numeric 
Numeric values on which arithmetic operations are performed. 

2 
Character 
Alphanumeric values that represent single characters or strings of 
characters. 

3 
Boolean 
Logical values on which logical operations are performed. 

4 
Datetime 
Dates and times. 

PL/SQL provides subtypes of data types. For example, the data type NUMBER has a subtype 
called INTEGER. You can use the subtypes in your PL/SQL program to make the data types 
compatible with data types in other programs while embedding the PL/SQL code in another 
program, such as a Java program. 
PL/SQL Numeric Data Types and Subtypes 
Following table lists out the PL/SQL pre-defined numeric data types and their sub-types − 

S.No Data Type & Description 

1 
PLS_INTEGER 
Signed integer in range -2,147,483,648 through 2,147,483,647, represented in 32 
bits 

2 
BINARY_INTEGER 
Signed integer in range -2,147,483,648 through 2,147,483,647, represented in 32 
bits 

3 
BINARY_FLOAT 
Single-precision IEEE 754-format floating-point number 

4 
BINARY_DOUBLE 
Double-precision IEEE 754-format floating-point number 



Prepared ByK.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 10/20 

5 
NUMBER(prec, scale) 
Fixed-point or floating-point number with absolute value in range 1E-130 to (but 
not including) 1.0E126. A NUMBER variable can also represent 0 

6 
DEC(prec, scale) 
ANSI specific fixed-point type with maximum precision of 38 decimal digits 

7 
DECIMAL(prec, scale) 
IBM specific fixed-point type with maximum precision of 38 decimal digits 

8 
NUMERIC(pre, secale) 
Floating type with maximum precision of 38 decimal digits 

9 
DOUBLE PRECISION 
ANSI specific floating-point type with maximum precision of 126 binary digits 
(approximately 38 decimal digits) 

10 
FLOAT 
ANSI and IBM specific floating-point type with maximum precision of 126 
binary digits (approximately 38 decimal digits) 

11 
INT 
ANSI specific integer type with maximum precision of 38 decimal digits 

12 
INTEGER 
ANSI and IBM specific integer type with maximum precision of 38 decimal 
digits 

13 
SMALLINT 
ANSI and IBM specific integer type with maximum precision of 38 decimal 
digits 

14 
REAL 
Floating-point type with maximum precision of 63 binary digits (approximately 
18 decimal digits) 

Following is a valid declaration − 

DECLARE  
num1 INTEGER; 
num2 REAL; 
num3 DOUBLE PRECISION; 
BEGIN 
null; 
END; 



Prepared ByK.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 11/20 

/ 

When the above code is compiled and executed, it produces the following result − 

PL/SQL procedure successfully completed  

PL/SQL Character Data Types and Subtypes 
Following is the detail of PL/SQL pre-defined character data types and their sub-types − 

S.No Data Type & Description 

1 
CHAR 
Fixed-length character string with maximum size of 32,767 bytes 

2 
VARCHAR2 
Variable-length character string with maximum size of 32,767 
bytes 

3 
RAW 
Variable-length binary or byte string with maximum size of 32,767 
bytes, not interpreted by PL/SQL 

4 
NCHAR 
Fixed-length national character string with maximum size of 
32,767 bytes 

5 
NVARCHAR2 
Variable-length national character string with maximum size of 
32,767 bytes 

6 
LONG 
Variable-length character string with maximum size of 32,760 
bytes 

7 
LONG RAW 
Variable-length binary or byte string with maximum size of 32,760 
bytes, not interpreted by PL/SQL 

8 
ROWID 
Physical row identifier, the address of a row in an ordinary table 

9 
UROWID 
Universal row identifier (physical, logical, or foreign row 
identifier) 

 
 



Prepared ByK.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 12/20 

 
PL/SQL BOOLEAN DATA TYPES 
The BOOLEAN data type stores logical values that are used in logical operations. The logical 
values are the Boolean values TRUE and FALSE and the value NULL. 
 

Control Structures in PL/SQL 
Decision-making structures require that the programmer specify one or more conditions to be 
evaluated or tested by the program, along with a statement or statements to be executed if the 
condition is determined to be true, and optionally, other statements to be executed if the 
condition is determined to be false. 
Following is the general form of a typical conditional (i.e., decision making) structure found in 
most of the programming languages − 

 
PL/SQL programming language provides following types of decision-making statements. Click 
the following links to check their detail. 

S.No Statement & Description 

1 

IF - THEN statement 
The IF statement associates a condition with a sequence of statements 
enclosed by the keywords THEN and END IF. If the condition is true, the 
statements get executed and if the condition is false or NULL then the IF 
statement does nothing. 

2 

IF-THEN-ELSE statement 
IF statement adds the keyword ELSE followed by an alternative sequence of 
statement. If the condition is false or NULL, then only the alternative sequence 
of statements get executed. It ensures that either of the sequence of statements 
is executed. 

3 
IF-THEN-ELSIF statement 
It allows you to choose between several alternatives. 



Prepared ByK.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 13/20 

4 

Case statement 
Like the IF statement, the CASE statement selects one sequence of statements 
to execute. 
However, to select the sequence, the CASE statement uses a selector rather 
than multiple Boolean expressions. A selector is an expression whose value is 
used to select one of several alternatives. 

5 
Searched CASE statement 
The searched CASE statement has no selector, and it's WHEN clauses contain 
search conditions that yield Boolean values. 

6 
nested IF-THEN-ELSE 
You can use one IF-THEN or IF-THEN-ELSIFstatement inside another IF-
THEN or IF-THEN-ELSIFstatement(s). 

 
LOOPING 
There may be a situation when you need to execute a block of code several number of times. In 
general, statements are executed sequentially: The first statement in a function is executed first, 
followed by the second, and so on. 
Programming languages provide various control structures that allow for more complicated 
execution paths. 
A loop statement allows us to execute a statement or group of statements multiple times and 
following is the general form of a loop statement in most of the programming languages − 

 
PL/SQL provides the following types of loop to handle the looping requirements. Click the 
following links to check their detail. 

S.No Loop Type & Description 

1 

PL/SQL Basic LOOP 
In this loop structure, sequence of statements is enclosed between the LOOP and the 
END LOOP statements. At each iteration, the sequence of statements is executed and 
then control resumes at the top of the loop. 



Prepared ByK.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 14/20 

2 
PL/SQL WHILE LOOP 
Repeats a statement or group of statements while a given condition is true. It tests the 
condition before executing the loop body. 

3 
PL/SQL FOR LOOP 
Execute a sequence of statements multiple times and abbreviates the code that manages 
the loop variable. 

4 
Nested loops in PL/SQL 
You can use one or more loop inside any another basic loop, while, or for loop. 

Labeling a PL/SQL Loop 
PL/SQL loops can be labeled. The label should be enclosed by double angle brackets (<< and 
>>) and appear at the beginning of the LOOP statement. The label name can also appear at the 
end of the LOOP statement. You may use the label in the EXIT statement to exit from the loop. 
The following program illustrates the concept − 

DECLARE  
i number(1); 
j number(1); 
BEGIN 
<<outer_loop>> 
   FOR i IN 1..3 LOOP  
<<inner_loop>> 
      FOR j IN 1..3 LOOP  
dbms_output.put_line('i is: '|| i ||' and j is: '|| j); 
END loop inner_loop; 
END loop outer_loop; 
END; 
/ 

When the above code is executed at the SQL prompt, it produces the following result − 

i is: 1 and j is: 1  
i is: 1 and j is: 2  
i is: 1 and j is: 3  
i is: 2 and j is: 1  
i is: 2 and j is: 2  
i is: 2 and j is: 3  
i is: 3 and j is: 1  
i is: 3 and j is: 2  
i is: 3 and j is: 3   
 
PL/SQL procedure successfully completed.  

 
TYPE and % ROWTYPE 



Prepared ByK.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 15/20 

The %TYPE attribute provides the datatype of a variable or table column. This is particularly 
useful when declaring variables that will hold values of a table column. For example, suppose 
you want to declare variables as the same datatype as the employee_id and last_name columns 
in employees table. To declare variables named empid and emplname that have the same 
datatype as the table columns, use dot notation and the %TYPE attribute. 
Using %TYPE With Table Columns in PL/SQL 
DECLARE -- declare variables using %TYPE attribute 
empidemployees.employee_id%TYPE;  -- employee_iddatatype is NUMBER(6) 
emplnameemployees.last_name%TYPE;  -- last_namedatatype is VARCHAR2(25) 
BEGIN 
empid    := 100301;  -- this is OK because it fits in NUMBER(6) 
--   empid  := 3018907;  -- this is too large and will cause an overflow 
emplname := 'Patel'; --  this is OK because it fits in VARCHAR2(25) 
   DBMS_OUTPUT.PUT_LINE('Employee ID: ' || empid);  -- display data 
   DBMS_OUTPUT.PUT_LINE('Employee name: ' || emplname); -- display data 
END; 
/ 
Using the %ROWTYPE Attribute to Declare Variables 
For easier maintenance of code that interacts with the database, you can use 
the %ROWTYPE attribute to declare a variable that represents a row in a table. A PL/SQL 
record is the datatype that stores the same information as a row in a table. 
In PL/SQL, records are used to group data. A record consists of a number of related fields in 
which data values can be stored. The record can store an entire row of data selected from the 
table or fetched from a cursor or cursor variable. 

DECLARE  
customer_reccustomers%rowtype;  
BEGIN  
   SELECT * into customer_rec 
   FROM customers  
   WHERE id = 5;   
dbms_output.put_line('Customer ID: ' || customer_rec.id);  
dbms_output.put_line('Customer Name: ' || customer_rec.name);  
dbms_output.put_line('Customer Address: ' || customer_rec.address);  
dbms_output.put_line('Customer Salary: ' || customer_rec.salary);  
END;  
/ 

Cursors 
Oracle creates a memory area, known as the context area, for processing an SQL statement, 
which contains all the information needed for processing the statement; for example, the 
number of rows processed, etc. 
A cursor is a pointer to this context area. PL/SQL controls the context area through a cursor. A 
cursor holds the rows (one or more) returned by a SQL statement. The set of rows the cursor 
holds is referred to as the active set. 
You can name a cursor so that it could be referred to in a program to fetch and process the rows 
returned by the SQL statement, one at a time. There are two types of cursors − 

 Implicit cursors 



Prepared ByK.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 16/20 

 Explicit cursors 
Implicit Cursors 
Implicit cursors are automatically created by Oracle whenever an SQL statement is executed, 
when there is no explicit cursor for the statement. Programmers cannot control the implicit 
cursors and the information in it. 
Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an implicit cursor is 
associated with this statement. For INSERT operations, the cursor holds the data that needs to 
be inserted. For UPDATE and DELETE operations, the cursor identifies the rows that would be 
affected. 
In PL/SQL, you can refer to the most recent implicit cursor as the SQL cursor, which always 
has attributes such as %FOUND, %ISOPEN, %NOTFOUND, and %ROWCOUNT. The 
SQL cursor has additional attributes, %BULK_ROWCOUNT and %BULK_EXCEPTIONS, 
designed for use with the FORALLstatement. The following table provides the description of 
the most used attributes − 

S.No Attribute & Description 

1 

%FOUND 
Returns TRUE if an INSERT, UPDATE, or DELETE statement affected one or more 
rows or a SELECT INTO statement returned one or more rows. Otherwise, it returns 
FALSE. 

2 

%NOTFOUND 
The logical opposite of %FOUND. It returns TRUE if an INSERT, UPDATE, or 
DELETE statement affected no rows, or a SELECT INTO statement returned no rows. 
Otherwise, it returns FALSE. 

3 
%ISOPEN 
Always returns FALSE for implicit cursors, because Oracle closes the SQL cursor 
automatically after executing its associated SQL statement. 

4 
%ROWCOUNT 
Returns the number of rows affected by an INSERT, UPDATE, or DELETE 
statement, or returned by a SELECT INTO statement. 

Any SQL cursor attribute will be accessed as sql%attribute_name as shown below in the 
example. 
Example 
We will be using the CUSTOMERS table we had created and used in the previous chapters. 

Select * from customers;   
 
+----+----------+-----+-----------+----------+  
| ID | NAME     | AGE | ADDRESS   | SALARY   |  
+----+----------+-----+-----------+----------+  
|  1 | Ramesh   |  32 | Ahmedabad |  2000.00 |  



Prepared ByK.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 17/20 

|  2 | Khilan   |  25 | Delhi     |  1500.00 |  
|  3 | kaushik  |  23 | Kota      |  2000.00 |  
|  4 | Chaitali |  25 | Mumbai    |  6500.00 |  
|  5 | Hardik   |  27 | Bhopal    |  8500.00 |  
|  6 | Komal    |  22 | MP        |  4500.00 |  
+----+----------+-----+-----------+----------+ 

The following program will update the table and increase the salary of each customer by 500 
and use the SQL%ROWCOUNTattribute to determine the number of rows affected − 

DECLARE   
total_rows number(2); 
BEGIN 
   UPDATE customers  
   SET salary = salary +500; 
   IF sql%notfound THEN  
dbms_output.put_line('no customers selected'); 
   ELSIF sql%found THEN  
total_rows:=sql%rowcount; 
dbms_output.put_line(total_rows||' customers selected '); 
END IF; 
END; 
/ 

When the above code is executed at the SQL prompt, it produces the following result − 

6 customers selected   
 
PL/SQL procedure successfully completed.  

If you check the records in customers table, you will find that the rows have been updated − 

Select * from customers;   
 
+----+----------+-----+-----------+----------+  
| ID | NAME     | AGE | ADDRESS   | SALARY   |  
+----+----------+-----+-----------+----------+  
|  1 | Ramesh   |  32 | Ahmedabad |  2500.00 |  
|  2 | Khilan   |  25 | Delhi     |  2000.00 |  
|  3 | kaushik  |  23 | Kota      |  2500.00 |  
|  4 | Chaitali |  25 | Mumbai    |  7000.00 |  
|  5 | Hardik   |  27 | Bhopal    |  9000.00 |  
|  6 | Komal    |  22 | MP        |  5000.00 |  
+----+----------+-----+-----------+----------+ 

 
 
Explicit Cursors 
Explicit cursors are programmer-defined cursors for gaining more control over the context 
area. An explicit cursor should be defined in the declaration section of the PL/SQL Block. It is 
created on a SELECT Statement which returns more than one row. 



Prepared ByK.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 18/20 

The syntax for creating an explicit cursor is − 

CURSOR cursor_name IS select_statement;  

Working with an explicit cursor includes the following steps − 
 Declaring the cursor for initializing the memory 
 Opening the cursor for allocating the memory 
 Fetching the cursor for retrieving the data 
 Closing the cursor to release the allocated memory 

Declaring the Cursor 
Declaring the cursor defines the cursor with a name and the associated SELECT statement. For 
example − 

CURSOR c_customers IS  
   SELECT id, name, address FROM customers; 

 
Opening the Cursor 
Opening the cursor allocates the memory for the cursor and makes it ready for fetching the rows 
returned by the SQL statement into it. For example, we will open the above defined cursor as 
follows − 

OPEN c_customers; 

Fetching the Cursor 
Fetching the cursor involves accessing one row at a time. For example, we will fetch rows from 
the above-opened cursor as follows − 

FETCH c_customers INTO c_id,c_name,c_addr; 

Closing the Cursor 
Closing the cursor means releasing the allocated memory. For example, we will close the 
above-opened cursor as follows − 

CLOSE c_customers; 

Example 
Following is a complete example to illustrate the concepts of explicit cursors  

DECLARE  
c_idcustomers.id%type; 
c_namecustomerS.No.ame%type; 
c_addrcustomers.address%type; 
   CURSOR c_customersis 
      SELECT id, name, address FROM customers; 
BEGIN 
   OPEN c_customers; 
   LOOP  
   FETCH c_customersintoc_id,c_name,c_addr; 
      EXIT WHEN c_customers%notfound; 
dbms_output.put_line(c_id||' '||c_name||' '||c_addr); 
END LOOP; 
   CLOSE c_customers; 



Prepared ByK.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 19/20 

END; 
/ 

When the above code is executed at the SQL prompt, it produces the following result − 

1 Ramesh Ahmedabad   
2 Khilan Delhi   
3 kaushik Kota      
4 Chaitali Mumbai   
5 Hardik Bhopal    
6 Komal MP   
 
PL/SQL procedure successfully completed.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Prepared ByK.Banuroopa, Asst.Prof, Department of CS, CA & IT, KAHE Page 20/20 

 
POSSIBLE QUESTIONS 

UNIT-V 
 

2 marks questions 
1. Define PL/SQL. 
2. What is meant by datatype? 
3. Define Large Object. 
4. Define Looping. 
5. Define cursor. 
6. What are the types of cursor? 

6 marks questions 
1. Explain about PL/SQL Block Structure. 
2. Explain various types of datatypes. 
3. Describe Conditions looping. 
4. Elaborate TYPE and % ROWTYPE. 
5. Explain cursor with examples.  
 
 
 
 
 
 



Register Number____________ 
  [17CSU504A] 

 

KARPAGAM ACADEMY OF HIGHER EDUCATION 

(Deemed to be University) 
(Established Under Section 3 of UGC Act 1956) 

Coimbatore-641021. 
B.Sc COMPUTER SCIENCE 

FIRST INTERNAL EXAMINATION - JULY 2019 
Fifth Semester 

Oracle (SQL/PL-SQL) 
Date & Session:    .7.2019 &   N                          Duration: 2  Hours 
Maximum        : 50 Marks      Class : III-B. Sc(CS ) A & B 
 

PART A – (20 X 1 = 20 Marks) 
ANSWER ALL THE QUESTIONS 

1. The relational model is based on the concept that data stored in tables called _____________ 
a. Fields b. Records c. Relations d. Keys 

2. Which command is used for removing a table and all its data from the database? 
a. Create command 
b. Drop table command 

c. Alter table command 
d. All of the Mentioned 

3. In SQL, which of the following is not a data Manipulation Language Commands? 
a. Delete b. Truncate c. Update d. Create

4. Which of the following is not a type of SQL statement? 
a. Data Manipulation Language 

(DML) 
b. Data Definition Language (DDL) 

c. Data Control Language (DCL) 
d. Data Communication Language 

(DCL) 
5. In SQL, which command is used to add new rows to a table? 

a. Alter Table 
b. Add row 

c. Insert 
d. Append 

6. In SQL, which command(s) is(are) used to change a table’s storage characteristics? 
a. ALTER TABLE 
b. MODIFY TABLE 

c. CHANGE TABLE 
d. All of the Mentioned 

7. ___________ defines rules regarding the values allowed in columns and is the standard mechanism 
for enforcing database integrity. 

a. Column b. Constraint c. Index d. Trigger
8. Which command is used for removing a table and all its data from the database? 

a. Create command 
b. Drop table command 

c. Alter table command 
d. All of the Mentioned 

9. In SQL, which command is used to SELECT only one copy of each set of duplicable rows 
a. SELECT DISTINCT 
b. SELECT UNIQUE 

c. SELECT DIFFERENT 
d. All of the Mentioned 

10. Which of the SQL statements is correct? 
a. SELECT Username AND Password FROM Users 
b. SELECT Username, Password FROM Users 
c. SELECT Username, Password WHERE Username = ‘user1’ 
d. None of the Mentioned 

11. Let the statement : SELECT column1 FROM myTable; return 10 rows. The statement: SELECT 
ALL column1 FROM myTable; will return___. 

a. less than 10 rows 
b. more than 10 rows 

c. exactly 10 rows 
d. none of the above 

12. What is true about Unique and primary key? 
a. Unique can have multiple NULL values but Primary can’t have. 
b. Unique can have single NULL value but Primary can’t have even single. 
c. Both can have duplicate values 
d. None of the above 

13. What will be the consequence of omitting ‘Where’ clause in Update Statement? 
a. No effect on the query as well as on table. 
b. All records present in the table will be updated 
c. Only one record will be updated 
d. None of the above 

14. Which one is correct syntax for Insert Statement? 
a. Insert table_name Columns(Col1, Col2,Col3); 
b. Insert into table_name (Col1, Col2,Col3) VALUES (Val1,Val2,Val3); 
c. Insert Columns(Col1, Col2,Col3) VALUE (Val1, Val2,Val3) Into table_name; 
d. None of the above 

15. Which one of the following sorts rows in SQL? 
a. SORT BY b. ALIGN BY c. ORDER BY d. GROUP BY 

16. Which of the constraint cannot be defined at the table level?   
a. Check 
b. Unique 

c. Not null 
d. Primary key 

17. Which of the following wild card character will select all columns in a table? 
a. * b. ? c. / d. +

18. What option is used in alter table statement to change the name of an existing column? 
a. RENAME b. MODIFY c. ADD d. DROP

19. What character is used to execute the previous SQL command again in SQL *plus? 
a. * b. ?  c. / d. + 

20. To obtain the structure of an Oracle table, the command to use in SQL* plus is ___ 
a. STRUCTURE [TableName]. 
b. DESCRIBE [TableName]. 
c. DESCRIBE STRUCTURE [TableName]. 
d. DESC TABLE [TableName]. 

 
PART – B (3 X 2 =6 Marks) 

ANSWER ALL THE QUESTIONS 
21. What is the SQL* Plus? 
22. If an UNIQUE KEY constraint on DATE column is created, will it accept the rows that are inserted 

with SYSDATE?  
23. Compare CHAR and VARCHAR2 data types in Oracle. 

 
PART – C (3 X 8 =24 Marks) 

ANSWER ALL THE QUESTIONS 
24. (a) Differentiate SQL and SQL*Plus.                                        [OR] 

       (b) List and explain types of SQL commands. 

25. (a) Describe about SQL data types.                                                        [OR] 

                  (b) Explain in detail about expressions in select statement with examples. 

26. (a) Elaborate the syntax of alter table statement and explain with examples             [OR] 

(b) Illustrate different type of constraints defined in a table with examples. 

 


	1.pdf (p.1-2)
	2.pdf (p.3-4)
	3.pdf (p.5-26)
	4.pdf (p.27-44)
	5.pdf (p.45-55)
	6.pdf (p.56-64)
	7.pdf (p.65-84)
	8.pdf (p.85)

