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  Course Objective :This course has been intended to identify and use key concepts and 

fundamental principles of fluid dynamics, together with the assumptions made in their development 

pertaining to fluid behavior, both in static and flowing conditions. 

 

 Course Outcome : To understand the fluids, their characteristics, Bernoulli’s theorem in steady 

motion, Complex Potential Navier-Stokes equations and to be exposed with Laminar Boundary 

Layer in incompressible flow. 

 

UNIT I 

Introductory Notions – Velocity – Stream Lines and Path Lines – Stream Tubes and Filaments – 

Fluid Body – Density – Pressure. Differentiation following the Fluid – Equation of continuity – 

Boundary conditions – Kinematical and physical – Rate of change of linear momentum – Equation 

of motion of an in viscid fluid. 

 

UNIT II 

Euler’s momentum Theorem – Conservative forces – Bernoulli’s theorem in steady motion – energy 

equation for in viscid fluid – circulation – Kelvin’s theorem – vortex motion – Helmholtz equation. 

 

UNIT III 

Two Dimensional Motion – Two Dimensional Functions – Complex Potential – basic singularities – 

source – sink – Vortex – doublet – Circle theorem. Flow past a circular cylinder with circulation – 

Blasius Theorem – Lift force. (Magnus effect) 

 

UNIT IV 

Viscous flows – Navier-Stokes equations – Vorticity and circulation in a viscous fluid – Steady flow 

through an arbitrary cylinder under pressure – Staedy Couettc flow between cylinders in relative 

motion – Steady flow between parallel planes. 

 

 

 

UNIT V 

Laminar Boundary Layer in incompressible flow: Boundary Layer concept – Boundary Layer 

equations – Displacement thickness, Momentum thickness – Kinetic energy thickness –integral 

equation of boundary layer – flow parallel to semi infinite flat plate – Blasius equation and its 

solution in series. 
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TEXT BOOKS 

 

1. Milne Thomson .L.M., (1968). Theoretical Hydrodynamics, Fifth edition, Dover Publications    
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2. Curle.N., and Davies H.J., (1971), Modern Fluid Dynamics Volume-I ,  D Van Nostrand 

    Company Ltd.,   London. (for unit III,IV,V)  
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1. Yuan, S.W, (1976). Foundations of Fluid Mechanics, Prentice- Hall, India.  

 

2. Shanthi swarup, (2003), Fluid dynamics, Krishna Prakasan media Pvt Ltd, Meerut. 
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                  KARPAGAM ACADEMY OF HIGHER EDUCATION 

(Deemed to be University Established Under Section 3 of UGC Act 1956) 

Pollachi Main Road, Eachanari (Po), 

Coimbatore –641 021 

                                                        Department of Mathematics 

                                                      LESSON PLAN  

  

Subject:  Fluid Dynamics                          Subject Code:  16MMP302 

Class: II M.Sc Mathematics   Semester-III 

           Unit-1 

S.No Lecture 

Hour 

Topics to be Covered Support Materials 

1 1 Introduction to fluid dynamics T1.Ch 1: pg:1-3 

2 1 Basic concepts of fluid 

dynamics,viscosity,compressible and 

non-compressible fluids 

T1.Ch 1: pg:3-8 

3 1 Stream surface,tube filament,streak 

lines,path lines  

R2.Ch 1: pg:1.5-1.9 

4 1 Problems on path lines R2.Ch 1:pg:1.5-1.9 

5 1 Geometrical significance of velocity, 

Problems on rotational and 

irrotational flow 

T1.Ch 3: pg:8-10 

6 1 Theorem on Equation of continuity T1.Ch 3: pg:68-73 

7 1 Conservation of mass T1.Ch 3:pg:74-75 

8 1  Boundary conditions T1.Ch 3: pg:74-75 

9 1 Continuation of Boundary conditions T1.Ch 3:pg:75 

10 1 Theorems on rate of change of linear 

momentum   

T1.Ch 3: pg:75-79 

11 1  Equation of motion of an inviscid 

fluid 

T1.Ch 3:pg:75-79 

12 1 Recapitulation and discussion of 

possible questions 
  

                                                                                  Total  

Hours  

12 

  

 

TEXT BOOKS 
1. Milne Thomson .L.M., (1968). Theoretical Hydrodynamics, Fifth edition, Dover Publications    

    INC, NewYork.(for unit I,II) 
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REFERENCES 

 

1. Yuan, S.W, (1976). Foundations of Fluid Mechanics, Prentice- Hall, India.  

 

                                                         UNIT-II 

S.No Lecture 

Hour 

Topics to be Covered Support Materials 

1 1 Euler’s equation of motion in terms of vorticity T1.Ch 3: pg:79-80 

2 1 Euler’s momentum theorem T1.Ch 3: pg:80-81 

3 1 Equations of Motion T1.Ch 4:pg:106-110 

4 1 Theorem on equations of motion in terms of 

vorticity 

T1.Ch 4: pg:106-110 

5 1 Problems on Barotropic flow T1.Ch 4:pg:106-110 

6 1 Bernoulli’s theorem in steady motion R1.Ch 4: pg:181-182 

 

7 1 Continuation of  bernoulli’s theorem R1.Ch 4:pg:181-182 

8 1 Theorem on Energy equation for inviscid fluid R1.Ch 4: pg:110-113 

 

9 1 Circulation  R1.Ch 4: pg:182-187 

 

10 1  kelvins theorem R1.Ch 4: pg:182-187 

 

11 1 Theorem on Helmholtz equation of vorticity R1.Ch 4: pg:72-76 

 

12 1 Recapitulation and discussion of possible 

questions. 
 

                                                                                 Total  Hours  12 

  
TEXT BOOKS 
1. Milne Thomson .L.M., (1968). Theoretical Hydrodynamics, Fifth edition, Dover Publications    

    INC, NewYork.(for unit I,II) 

 

 

REFERENCES 

 

1. Yuan, S.W, (1976). Foundations of Fluid Mechanics, Prentice- Hall, India.  
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 UNIT-III 

S.No Lecture 

Hour 

Topics to be Covered Support Materials 

1 1 Two dimentional motion  T2.Ch 3: pg:42-43 

2 1  Functions-problems T2.Ch 3: pg:42-43 

3 1 Theorem on stream line  T2.Ch 3: pg:43-44 

4 1 Potential lines T2.Ch 3: pg:44-45 

5 1 Problems on flow patterns T2.Ch 3: pg:46-47 

6 1 Basic singularities T2.Ch 3: pg:47-55 

7 1 Theorem on source and sink in 2-D flow T2.Ch 3: pg:50-55 

8 1 Theorem on complex potential for doublet and 

vortex 

 

T2.Ch 3: pg:56-60 

9 1 Milne Thomson’s circle theorem 

 
T2.Ch 3: pg:69-70 

10 1 Blasius theorem and lift force T2.Ch 3: pg:70-71 

11 1  lift force T2.Ch 3:pg:70-71 

12 1 Recapitulation and discussion of possible 

questions. 
 

 Total Hours 

 

12 

 

 
TEXT BOOKS 

 

2. Curle.N., and Davies H.J., (1971), Modern Fluid Dynamics Volume-I ,  D Van Nostrand 

    Company Ltd.,   London  

 

 

 

 



                                                                                                                                     Lesson  Plan /2016-2018 Batch 
 

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE                                                          Page 4 of 5 
 

 

 

UNIT-IV 

S.No Lecture 

Hour 

Topics to be Covered Support Materials 

1 1 Dynamics of real fluid:Definition of plane 

couette flow  
T2.Ch 5: pg:123-125 

2 1 Theorem on Reynold’s number T2.Ch 5: pg:123-125 

3 1 Theorem on Navier stokes equations T2.Ch 5: pg:140-144 

4 1 Theorem on Energy equation  T2.Ch 5: pg:145-150 

5 1 Diffusion of vorticity T2.Ch 5: pg:145-150 

6 1 Steady flow through an arbitrary cylinder 

under pressure 

T2.Ch 5: pg:150-152 

7 1 Problems on steady flow T2.Ch 5: pg:150-152 

8 1 Steady coquette flow between cylinders in 

relative motion 

 

T2:Ch 5: pg:152-157 

9 1 Problems on steady coquette flow T2:Ch 5: pg:152-157 

10 1 Steady flow between parallel planes-

problems 

T2.Ch 5: pg:157-158 

11 1 Theorem on poiseuille flow T2:Ch 5: pg:159-160 

12 1 Recapitulation and discussion of possible 

questions. 

 

                                                                                    Total  Hours         12 

  

 

TEXT BOOKS 

 

2. Curle.N., and Davies H.J., (1971), Modern Fluid Dynamics Volume-I ,  D Van Nostrand 

    Company Ltd.,   London  
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UNIT-V 

S.No Lecture 

Hour 

Topics to be Covered Support Materials 

1 1 Laminar boundary layer in incompressible 

fluid: Definition and Problems on 

equation of boundary layer 

T2.Ch 6: pg:175-183 

 

2 1 Theorem on displacement  T2.Ch 6: pg:184-187 

3 1 Theorem on momentum thickness T2.Ch 6: pg:184-187 

4 1 Boundary layer separation: Theorem on 

integral equation of boundary layer and   

T2.Ch 6: pg:179-

180, 187-190 

5 1 Problems on momentum integral 

equation 

T2.Ch 6: pg:179-

180, 187-190 

6 1 Theorems on boundary layer along a semi 

infinite flat plate ,  
T2.Ch 6: pg:192-197 

7 1 Blasius equation and its solution in 

series 

T2.Ch 6: pg:192-197 

8 1 Problems on flow near to the stagnation 

point of a cylinder 

T2.Ch 6: pg:197-198 

9 1 Recapitulation and discussion of 

possible questions 
 

10 1 Discussion of previous ESE question 

papers. 

 

11 1 Discussion of previous ESE question 

papers. 
 

12 1 Discussion of previous ESE question 

papers. 

 

 Total Hours          12 

 
 

TEXT BOOKS 

 

2. Curle.N., and Davies H.J., (1971), Modern Fluid Dynamics Volume-I ,  D Van Nostrand 

    Company Ltd.,   London  
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UNIT-I 
 

Basic Concepts and Definitions 

(i)  Let then,wk̂vĵuîq   

  | q | = qwvu 222   

D.C‟s are given by l = cos  = 
|q|

u
, m = cos  = 

|q|

w
cosn,

|q|

v   

where l, m, n, are components of a unit vector i.e. l2 + m2 + n2 = 1 

(ii)  n̂sinabba,cosabb.a   

(iii)   = ,
z

k̂
y

ĵ
x

î









  where  is a scalar and  

   
z

k̂
y

ĵ
x

î









is a vector (operator) 

(iv)  div  q.q q,
z

w

y

v

x

u










= (u, v, w) 

If qthen,0q   is said to be solenoidal vector.  

(v)        ,dzk̂dyĵdxîrd  d= dz
z

ĳ
dy

y

ĳ
dx

x

ĳ









 

and  

 = ,
z

k̂
y

ĵ
x

î









 

Therefore,  

d = (). rd  

(vi)  Curl

wvu
zyx

k̂ĵî

qq







  

      = 







































y

u

x

v
k̂

x

w

z

u
ĵ

z

v

y

w
î  

(vii)  (a) Gradient of a scalar is a vector. 
      (b) Divergence of a scalar and curl of a scalar are meaningless. 
       (c) Divergence of a vector is a scalar and curl of a vector is a vector.  
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 6 

(viii)   = 2 = 
2

2

2

2

2

2

zyx 








 

where 2 is Laplacian operator.  

(ix)  Curl grad  = 0, div curl  q = 0 

(x) Curl curl qqdivgradq 2  

i.e. qcurlcurlqdivgradq2   

(xi)  Gauss’s divergence theorem 

 (a) 
VS

dvqdivSdq  

 (b) dvqcurldSqn̂
VS
   

(xii)  Green’s theorem 

 (a)  
V

2

SV

dVSddV  

     =  
V

2

S

dVSd  

 (b)  













VV

22 dS
nn

dV)(  

(xiii)  Stoke’s theorem dSn̂qcurlSdqcurlrdq
SSC

  

(xiv)  Orthogonal curvilinear co-ordinates : 

 Let there be three orthogonal families of surfaces  

  f1(x, y, z) = , f2(x, y, z) = , f3(x, y, z) =   (1) 

where x, y, z are Cartesian co-ordinates of a point P(x, y, z) in space.  The 

surfaces 

   = constant,   constant,  = constant  (2) 

form an orthogonal system in which every pair of surfaces is an orthogonal 
system.  The values , ,  are called orthogonal curvilinear co-ordinates.  
From three equations in (1), we can get  
 
  x = x(, , ), y = y(, , ), z = z(, , ) 

The surfaces (2) are called co-ordinate surfaces.    
Let r be the position vector of the point P(x, y, z) 

    i.e. rk̂zĵyîxr  (, , ) 
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A tangent vector to the -curve ( = constant,  = constant) at P is .
r




 A unit 

tangent vector is 

  




r

r
ê1  

or  11êh
r





 

where h1 = 
222

zyxr































 

Similarly, 32 ê,ê  are unit vectors along -curve and -curve respectively such 

that 

  3322 êh
r

,êh
r









 

Further,           











 d
r

d
r

d
r

rd  

                  = h1 d 33221 êdhêdhê   

Therefore,  

            (ds)2 = 22
3

22
2

22
1 dhdhdhrd.rd   

where h1 d, h2 d, h3 d  are arc lengths along ,  and  curves.  
In orthogonal curvilinear co-ordinates, we have the following results.  
 

(i)       grad  = 
















321 h

1
,

h

1
,

h

1
 

(ii)    If then),q,q,q(q 321  

 div 














 )qhh()qhh()qhh(

hhh

1
q 321213132

321

 

(iii)  If curl ),,,(q 321  then  

  1 = 













)qh()qh(
hh

1
2233

32

 

  2 = 













)qh()qh(
hh

1
3311

13
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  3 = 













)qh()qh(
hh

1
1122

21

 

(iv)  2 = .
h

hh

h

hh

h

hh

hhh

1

3

21

2

13

1

32

321 


















































 

The Cartesian co-ordinate system (x, y, z) is the simplest of all orthogonal co-
ordinate systems. In many problems involving vector field theory, it is 
convenient to work with other two most common orthogonal co-ordinates i.e. 
cylindrical polar co-ordinates and spherical polar co-ordinates denoted 
respectively by (r, , z) and (r, , ).  For cylindrical co-ordinates, h1 = 1, h2 = 
r, h3 = 1. For spherical co-ordinates, h1 = 1, h2 = r, h3 = r sin . 
1. Fluid Dynamics  

Fluid dynamics is the science treating the study of fluids in motion.  By the 
term fluid, we mean a substance that flows i.e. which is not a solid.  Fluids may 
be divided into two categories  
(i) liquids which are incompressible i.e. their volumes do not change when the 
pressure changes  
(ii) gases which are compressible i.e. they undergo change in volume whenever 
the pressure changes.  The term hydrodynamics is often applied to the science 
of moving incompressible fluids.  However, there is no sharp distinctions 
between the three states of matter i.e. solid, liquid and gases. 

In microscopic view of fluids, matter is assumed to be composed of molecules 
which are in random relative motion under the action of intermolecular forces.  
In solids, spacing of the molecules is small, spacing persists even under strong 
molecular forces.  In liquids, the spacing between molecules is greater even 
under weaker molecular forces and in gases, the gaps are even larger.  

If we imagine that our microscope, with which we have observed the molecular 
structure of matter, has a variable focal length, we could change our 
observation of matter from the fine detailed microscopic viewpoint to a longer 
range macroscopic viewpoint in which we would not see the gaps between the 
molecules and the matter would appear to be continuously distributed.  We 
shall take this macroscopic view of fluids in which physical quantities 
associated with the fluids within a given volume V are assumed to be 
distributed continuously and, within a sufficiently small volume V, uniformly.  
This observation is known as Continuum hypothesis.  It implies that at each 
point of a fluid, we can prescribe a unique velocity, a unique pressure, a unique 
density etc.  Moreover, for a continuous or ideal fluid we can define a fluid 

particle as the fluid contained within an infinitesimal volume whose size is so 
small that it may be regarded as a geometrical point.  
 

1.1. Stresses : Two types of forces act on a fluid element.  One of them is 

body force and other is surface force.  The body force is proportional to the 
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surface force 

shearing stress normal stress 
90 

Q( )Stt,rSr   

P )t,r(  rSr   

rS  

r  

O  

mass of the body on which it acts while the surface force is proportional to the 

surface area and acts on the boundary of the body. 

Suppose F is the surface force acting on an elementary surface area dS at a 
point P of the surface S. 
 
 
 
 
 
 
                                      
      
 

Let F1 and F2 be resolved parts of F  in the directions of tangent and normal at 
P.  The normal force per unit area is called the normal stress and is also called 
pressure.  The tangential force per unit area is called the shearing stress. 
 

1.2. Viscosity : It is the internal friction between the particles of the fluid 
which offers resistance to the deformation of the fluid.  The friction is in the 
form of tangential and shearing forces (stresses).  Fluids with such property are 
called viscous or real fluids and those not having this property are called 
inviscid or ideal or perfect fluids. 

Actually, all fluids are real, but in many cases, when the rates of variation of 
fluid velocity with distances are small, viscous effects may be ignored.  

From the definition of body force and shearing stress, it is clear that body force 
per unit area at every point of surface of an ideal fluid acts along the normal to 
the surface at that point.  Thus ideal fluid does not exert any shearing stress.  

Thus, we conclude that viscosity of a fluid is that property by virtue of which it 
is able to offer resistance to shearing stress.  It is a kind of molecular frictional 
resistance.  
1.3. Velocity of Fluid at a Point : Suppose that at time t, a fluid particle is at 

the point P having position vector )rOP.e.i(r   

 
 
 
 
 
 
 
 
 

P 
 
 
S 
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and at time t + t the same particle has reached at point Q having position 
vector rδr  .  The particle velocity q at point P is 

   

dt

rd

t

r
Lt

t

r)rr(
Ltq

0St0St









 

where the limit is assumed to exist uniquely.   Clearly q  is in general 

dependent on both r  and t, so we may write 
   ),t,z,y,x(q)t,r(qq   

 k̂zĵyîxr  (P has co-ordinates (x, y, z)) 

Suppose, 

     k̂wĵvîuq   

and since 

  k̂
dt

dz
ĵ

dt

dy
î

dt

dx

dt

rd
q  ,     

therefore 

   u = .
dt

dz
w,

dt

dy
v,

dt

dx   

 

1.4. Remarks. (i) A point where ,0q  is called a stagnation point. 

(ii)  When the flow is such that the velocity at each point is independent of 
time i.e. the flow pattern is same at each instant, then the motion is termed as 
steady motion, otherwise it is unsteady.      
 

1.5. Flux across any surface : The flux i.e. the rate of flow across any surface 

S is defined by the integral 

  dS)n̂q(
S

  

where  is the density, q is the velocity of the fluid and n̂ is the outward unit 

normal at any point of S. 
Also, we define 
  Flux = density  normal velocity  area of the surface.  

2.  Eulerian and Lagrangian Methods (Local and Total range of change) 

We have two methods for studying the general problem of fluid dynamics. 
2.1. Eulerian Method : In this method, we fix a point in the space occupied by 
the fluid and observation is made of whatever changes of velocity, density 
pressure etc take place at that point.  i.e. point is fixed and fluid particles are 
allowed to pass through it.  If P(x, y, z) is the point under reference, then x, y, z 
do not depend upon the time parameter t, therefore z,y,x  do not exist (dot 

denotes derivative w.r.t. time t). 
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Let f(x, y, z, t) be a scalar function associated with some property of the fluid 

(e.g. its density) i.e. f(x, y, z, t) = f( t,r ), where k̂zĵyîxr   is the position 

vector of the point P, then  

  
tδ

)t,r(f)tδt,r(f
Lt

t

f

0tδ








    (1) 

Here, 
t

f




 is called local time rate of change.  

2.2.  Lagrangian Method :- In this case, observations are made at each point 
and each instant, i.e., any particle of the fluid is selected and observation is 
made of its particular motion and it is pursued throughout its course.  
 
Let a fluid particle be initially at the point (a, b, c).  After lapse of time t, let the 
same fluid particle be at (x, y, z).  It is obvious that x, y, z are functions of t.  
But since the particles which have initially different positions occupy different 
positions after the motion is allowed.  Hence the co-ordinates of the final 
position i.e. (x, y, z) depend on (a, b c) also. Thus 
 
 x = f1(a, b, c, t), y = f2(a, b, c, t), z = f3(a, b, c, t). 

For this case, if f(x, y, z, t) be scalar function associated with the fluid, then  

  
tδ

)t,r(f)tδt,rδr(f
Lt

dt

df

0tδ




   (2) 

where z,y,x   exist. 

Here 
dt

df
is called an individual time rate or total rate or particle rate of change. 

Now, we establish the relation between these two time rates (1) & (2). 
We have  

f = f(x, y, z, t) 
Therefore, 

    
t

f

dt

dz

z

f

dt

dy

y

f

dt

dx

x

f

dt

df











  

              = 
t

f
k̂

dt

dz
ĵ

dt

dy
î

dt

dx
k̂

z

f
ĵ

y

f
î

x

f









 

















 

         = 
t

f
qf


  

where      

   q k̂
dt

dz
ĵ

dt

dy
î

dt

dx  = (u, v, w) 
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Thus       

             fq
t

f

dt

df 

       (3) 

2.3. Remarks. (i) The relation 

   f.q
t

f

dt

df 

  

                        f.q
tdt

df






 

  

                       

 .q
tdt

d
 

The operator 







Dt

D
bydenotedalso

dt

d
is called Lagrangian operator or material 

derivative i.e. time rate of change in Lagrangian view.  Sometimes, it is called 
„differentiation following the fluid‟. 
(ii)  Similarly, for a vector function )t,z,y,x(F associated with some 

property of the fluid (e.g. its velocity, acceleration), we can show that 
 

  Fq
t

F

dt

Fd 

  

Hence the relation (3) holds for both scalar and vector functions associated 
with the moving fluid. 
(iii)  The Eulerian method is sometimes also called the flux method. 

(iv)  Both Lagrangian and Eulerian methods were used by Euler for studying 

fluid dynamics. 

(v)  Lagrangian method resembles very much with the dynamics of a 

particle 

(vi)  The two methods are essentially equivalent, but depending upon the 
problem, one has to judge whether Lagrangian method is more useful 
or the Eulerian.  

3. Streamlines, Pathlines and Streaklines 

 

3.1. Streamlines : It is a curve drawn in the fluid such that the direction of the 
tangent to it at any point coincides with the direction of the fluid velocity 
vector q  at that point.  At any time t, let q = (u, v, w) be the velocity at each 

point P(x, y, z) of the fluid.  The direction ratios of the tangent to the curve at 
P(x, y, z) are rd  = (dx, dy, dz) since the tangent and the velocity at P have the 

same direction, therefore 0rdq   
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i.e. 0)k̂dzĵdyîdx()k̂wĵvîu(   

i.e. (vdy  w dy) 0k̂)vdxudy(ĵ)udzwdx(î   

i.e. vdz  wdy = 0 = wdx  udz = udy  vdx 

 
w

dz

v

dy

u

dx   

These are the differential equations for the streamlines. 
i.e. their solution gives the streamlines. 
 
 
 
 
 
 
 

In the figure, if ,.......q,q,q 321 denote the velocities at neighbouring points P1, 

P2, P3,…., then the small straight line segments P1P2, P2P3, P3P4… collectively 
give the approximate form of the streamlines.   
 

3.2. Pathlines: When the fluid motion is steady so that the pattern of flow does 
not vary with time, the paths of the fluid particles coincide with the 
streamlines. But in case of unsteady motion, the flow pattern varies with time 
and the paths of the particles do not coincide with the streamlines.  However, 
the streamline through any point P does touch the pathline through P. Pathlines 
are the curves described by the fluid particles during their motion i.e. these are 
the paths of the particles. 
The differential equations for pathlines are 
 

w
dt

dz
,v

dt

dy
,u

dt

dx
.e.iq

dt

rd       (1) 

where now (x, y, z) are the Cartesian co-ordinates of the fluid particle and not a 
fixed point of space.  The equation of the pathline which passes through the 
point (x0, y0, z0), which is fixed in space, at time t = 0 say, is the solution of (1) 
which satisfy the initial condition that x = x0, y = y0,  z = z0 when t = 0.  The 
solution gives a set of equations of the form  

 x = x(x0, y0, z0, t) 

 y = y(x0, y0, z0, t)      (2) 

 z = z(x0, y0, z0, t) 
   
which, as t takes all values greater than zero, will trace out the required 

pathline.  

3.3. Remarks : (i) Streamlines give the motion of each particle at a given 
instant whereas pathlines give the motion of a given particle at each instant.  

P1 

P2 

P3 P4 

1q  2q  3q  
4q  

Streamline 
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We can make these observations by using a suspension of aluminium dust in 
the liquid.  
 
(ii)  If we draw the streamlines through every point of a closed curve in the 

fluid, we obtain a stream tube.  A stream tube of very small cross-
section is called a stream filament. 

 

 

 

 

 

 

 

 

(iii)  The components of velocity at right angle to the streamline is always 
zero.  This shows that there is no flow across the streamlines.  Thus, if 
we replace the boundary of stream tube by a rigid boundary, the flow is 
not affected. The principle of conservation of mass then gives that the 
flux across any cross-section of the stream tube should be the same.  

3.4. Streaklines : In addition to streamlines and pathlines, it is useful for 
observational purpose to define a streakline.  This is the curve of all fluid 
particles which at some time have coincided with a particular fixed point of 
space.  Thus, a streakline is the locus of different particles passing through a 
fixed point.  The streakline is observed when a neutrally buoyant marker fluid 
is continuously injected into the flow at a fixed point of space from time                 
 = .  The marker fluid may be smoke if the main flow involves a gas such 
as air, or a dye such as potassium permanganate (KMnO4) if the main flow 
involves a liquid such as water. 

If the co-ordinates of a particle of marker fluid are (x, y, z) at time t and the 
particle coincided with the injection point (x0, y0, z0) at some time , where   
t, then the time-history (streakline) of this particle is obtained by solving the 
equations for a pathline, subject to the initial condition that  x = x0, y = y0,               
z = z0 at t = .  As  takes all possible values in the angle     t, the 
locations of all fluid particles on the streakline through (x0, y0, z0) are obtained.  
Thus, the equation of the streakline at time t is given by     

 x = x(x0, y0, z0, t, ) 

 y = y(x0, y0, z0, t, )  (    t)    (2) 

 z = z(x0, y0, z0, t, ) 

3.5. Remark: (i) For a steady flow, streaklines also coincide with streamlines 
and pathlines. 
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(ii)  Streamlines, pathlines and streaklines are termed as flowlines for a 
fluid.  

4. Velocity Potential  

Suppose that k̂wĵvîuq  is the velocity at any time t at each point               

P(x, y, z) of the fluid.  Also suppose that the expression u dx + vdy + wdz is an 
exact differential, say  d. 

Then, d = udx + vdy + wdz 

i.e.  



















dt
t

dz
z

dy
y

dx
x

= u dx + vdy + wdz where  = (x, y, z, t) 

is some scalar function, uniform throughout the entire field of flow. 

Therefore, 

 u = 0
t

,
z

w,
y

v,
x














 

But  

           
t


= 0     = (x, y, z) 

Hence  

            














 k̂

z
ĵ

y
î

x
k̂wĵvîuq =  

where  is termed as the velocity potential and the flow of such type is called 
flow of potential kind. 

In the above definition, the negative sign in q is a convention and it 

ensures that flow takes place from higher to lower potentials.  The level 
surfaces (x, y, z, t) = constant, are called equipotentials or equipotential 

surfaces. 

4.1. Theorem : At all points of the field of flow the equipotentials (i.e. 
equipotential surfaces) are cut orthogonally by the streamlines.  

Proof. If the fluid velocity at any time t be q = (u, v, w), then the equations of 

streamlines are 

  
w

dz

v

dy

u

dx        (1) 

The surfaces given by 
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  udx.e.i0rdq  + vdy + wdz = 0   (2) 

are such that the velocity is at right angles to the tangent planes.  The curves 
(1) and the surfaces (2) cut each other orthogonally.  Suppose that the 
expression on the left hand side of (2) is an exact differential, say, d, then 

  d = udx + vdy + wdz     (3) 

where  is velocity potential. 

The necessary and sufficient condition for the relations. 

  u = 
z

w,
y

v,
x 








 

i.e. q =   to hold is 

  curl q  = curl () = 0     (4) 

The solution of (2) i.e. d = 0 is  

(x, y, z) = const     (5) 

The surfaces (5) are called equipotentials.  Thus the equipotentials are cut 
orthogonally by the stream lines. 

4.2. Note : When curl q = 0 , the flow is said to be irrotational or of potential 

kind, otherwise it is rotational.  For irrotational flow, q  = . 

4.3. Example. The velocity potential of a two dimensional flow is  = c xy.  
Find the stream lines  

Solution. The stream lines are given by 

  
w

dz

v

dy

u

dx   

where   q = (u, v, w) 

For an irrotational motion (i.e. motion of potential kind)  

we have  

curl q  = 0 = curl ()     

i.e.   q  =  , where  is the velocity potential. 
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From here,  

             (u, v, w) =  
















z
,

y
,

x
= (cy, cx, 0) 

i.e                     u = cy, v = cx, w = 0 

Therefore, streamlines are  

                   
0

dz

cx

dy

cy

dx 





 

i.e.   x dx  ydy = 0, dz = 0 

i.e.   x2  y2 = a2, z = K 

which are rectangular hyperbolae 

4.4. Example. If the speed of fluid is everywhere the same, the streamlines are 
straight. 

Solution. The streamlines are given by the differential equations.   

         
w

dz

v

dy

u

dx   

where u, v, w are constants.  The solutions are  

  vx  uy = constant, vz  wy = constant 

The intersection of these planes are necessarily straight lines.  Hence the result. 

4.5. Example. Find the stream lines and path lines of the particles for the two 
dimensional velocity field. 

  u = 
t1

x


, v = y, w = 0 

Solution.  For streamlines, the differential equations are 

  
w

dz

v

dy

u

dx   

Therefore,  

              (1+t) 
0

dz

y

dy

x

dx
  

Unit-1 Introductory Notions 2016-Batch

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE

Page 14 of 38



 

Here t = constant = t0 (at given instant), therefore the solutions are 

 (1+t0) log x = log y + c1, z = c2 

or    log 0t1
x


= log y + log a , z = c2. 

or         0t1
x


= ay, z = c2. 

which are the required stream lines. 

For path lines, we have 

          w
dt

dz
,v

dt

dy
,u

dt

dx   

Therefore, 

   0
dt

dz
,y

dt

dy
,

t1

x

dt

dx 


  

     0dz,dt
y

dy
,

t1

dt

x

dx 


  

  log. x = log(1+t) + log a, log y = t + logb, z = c 

        x = a(1+t), y = bet, z = c 

       a

ax

bey


 ; z = c 

which are the required path lines. 

4.6. Note. In case of path lines, t must be eliminated since these give the 
motion at each instant (i.e. independent of t). 

4.7. Example. Obtain the equations of the streamlines, path lines and 
streaklines which pass through  (l, l, 0) at t = 0 for the two dimensional flow 

              u = ,
t

y
v,

t

t
1

t

x

000









  w = 0. 

where l and t0 are constants having respectively the dimensions of length and 
time.  

Solution.  We define the dimensionless co-ordinates X, Y, Z and time T by 
writing 
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   X = 
0t

t
T,

z
Z,

y
Y,

x 
lll

 

such that dX = dt
t

1
dT,dz

1
dZ,dy

1
dY,dx

1

0


lll

 

and            u = ,
t

Y
v),T1(

t

X

00

ll   w = 0 

Streamlines are given by 

    
w

dz

v

dy

u

dx   

   
0

dZ

Y

dYt

)T1(X

dXt 00 l

l

l

l

l



 

    
0

dZ

Y

dY

)T1(X

dX 


 

Integrating these, we get 

         Z = constant = C1 (say)     (1) 

and  log X = (1+T) log Y + log C2, where C2 is constant 

 X = C2 Y
(1+T)       (2) 

As variables X, Y, Z and T are independent and C1 & C2 are constants, 
equations (1) & (2) give the complete family of stream lines at all times                
t = t0T.  In particular, X = 1 = Y, Z = 0 and T = 0  C1 = 0, C2 = 1 and we get 
stream line as Y = X i.e. y = x and z = 0. 

Pathlines are given by 

  0
dT

dZ
,Y

dT

dY
),T1(X

dT

dX   

Now, X, Y, Z are the dimensionless co-ordinates of a fluid particle and are 
functions of T.  

Therefore,       1

2

Klog
2

T
TXlogdT)T1(

X

dX 







  
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                  X = K1 
2/2TTe       (3) 

                  2KlogTYlogdT
Y

dY
Y

dT

dY   

   Y = K2 e
T.      (4) 

dZ = 0  Z = constant = K3      (5) 

These are the parametric equations of path lines.  The path line through P(1, 1, 
0) i.e. X = 1 = Y,         Z = 0, T = 0 is obtained when K1 = K2 = 1, K3 = 0 

                     X = 2

2T
T

e


, Y = eT, Z = 0 

Elimination of T gives. 

  X =   





 






 






 

 2

T
1

2

T
1

T2

T
1T

Yee  = 0Z,Y
Ylog

2

1
1








 

 

  

The pathline which passes through X = Y = 1, Z = 0 when T =  is given by 

  X = exp. ,
2

1
T

2

1
T 22





   

  Y = exp (T), Z = 0 

These are the parametric equations of the streaklines true for all values of T.  
At T = 0, the equations give 

  X = exp. 






 
2

2

, Y = exp(), Z = 0. 

Eliminating , we have.  

           = log Y i.e.  = log Y 

Therefore,     

                    X = exp         0Z,YYe2/1 2

Ylog
1

2/1.
2

1








 







 
  

4.8. Article. To obtain the differential equations for streamlines in cylindrical 
and spherical co-ordinates  
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We know that the streamlines are obtained from the differential equations  

  0rdq        (1) 

where q  is the velocity vector and r  is the position vector of a liquid particle. 

If the motion is irrotational, then 

  q  

Therefore, the differential equations (1) become 

    d r = 0       (2) 

(i) In cylindrical co-ordinates (r, , z), we have 

  d r  = (dr, r d, dz) 

and                  

             = grad  = 
















z
,

r

1
,

r
 

Thus, the different equations (2) become 

           
















z
,

r

1
,

r
 (dr, rd, dz) = 0  

              
z

dz

r/1

rd

r

dr








.    (3) 

(ii) In spherical co-ordinates (r, , ), we have  

  d r = (dr, rd, r sin d) 

and                 = grad  = 
















sinr

1
,

r

1
,

r
  

The differential equations (2) become. 

       
















sinr

1
,

r

1
,

r
 (dr, rd, r sin  d) = 0  

             










/
sinr

1

dsinr

r

1

rd

r

dr
    (4) 
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Equations (3) and (4) are the required differential equations. 

4.9. Example. Show that if the velocity potential of an irrotational fluid motion 

is  = ,cos
r

A
2

 where (r, , ) are the spherical polar co-ordinates of any 

point, the lines of flow lie on the surface r = k sin2, k being a constant. 

Solution. The differential equations for lines of flow (streamlines) are 

  










sinr

1

dsinr

r

1

rd

r

dr
 

From first two members, we have 

  







 




 sin
r

A

r

1

rd

cos
r

A2

dr

23

 

                              







d

sin

cos
2

r

dr

sin

rd2

cos

dr
 

                               log r = 2 log sin + log k     r = k sin2   
  

Hence the result. 

4.10. Note. In the above example, the velocity potential, in Cartesian co-
ordinates, can be written as 

   = A(x2 + y2 + z2)3/2 z. tan1 







x

y
, 

 where    

                        x = r sin cos , y = r sin sin, z = r cos 

are spherical polar substitutions. 

Also, the streamlines r = k sin2 can be written as r3 = k r2 sin2 

            (x2 + y2 + z2)3/2 = k (x2 + y2) 

i.e.     x2 + y2 + z2 = k2/3 (x2 + y2)2/3 

which are the streamlines in Cartesian co-ordinates.  
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4.11. Example. At the point in an incompressible fluid having spherical polar 

co-ordinates (r, , ), the velocity components are (2M 3r  cos, M 3r sin, 0) 
where M is a constant.  Show that velocity is  of potential kind.  Find the 
velocity potential and the equations of streamlines.   

Solution. Here d ȥ̂ȥdșsinrș̂șrdr̂drr   

ș̂șsinrMr̂școsrM2q 33   

Then,  

         curl 

0sinrMcosrM2

r

ˆsinrˆrr̂

sinr

1
q

23
2






  

                   =  )sinrM2sinrM2(ˆsinr0ˆr0r̂
sinr

1 33

2



 = 0  

Therefore, the flow is of potential kind. 

Now, using the relation 














 ȥ̂

ȥ
ĳ

șsinr

1ș̂
ș
ĳ

r

1
r̂

r

ĳĳq , we have 





















 ˆ

sinr

1ˆ
r

1
r̂

r
ˆsinrMr̂cosrM2 33  

From here, 

                       0,sinrM,cosrM2
r

23 









 

Therefore,  

                         d = 









dddr
r

 

                            =  d)sinrM(dr)cosrM2( 23  

                           = d )cosrM( 2   

Integrating, we get 

              = 2rM cos  

which is the required velocity potential.   
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The streamlines are given by  

   

















sinr

1

dsinr

r

1

rd

r

dr
       

              or 
0

dsinr

sinrM

rd

cosrM2

dr
33







 

From the last term,  = constant. 

From the first two terms, we get 

         



sin

cos2

r

dr
d = 2 cot  d 

Integrating, we get 

     log r = log sin2 + constant 

                            r = A sin2 ,  = constant 

The equation  = const. shows that the streamlines lie in planes which pass 
through the axis of symmetry  = 0. 

5. Irrotational and Rotational Motion, Vortex Lines  

5.1. Vorticity.  If q  = (u, v, w) be the velocity vector of a fluid particle, then 

the vector  defined by 

    = curl qq   

is called the vortex vector or vorticity and it‟s components are (1, 2, 3), 
given by 

  1 = 
y

u

x

v
,

x

w

z

u
,

z

v

y

w
32 

















 

5.2. Vortex Motion (or Rotational Motion). The fluid motion is said to be 
rotational if 

  0qcurl   

5.3. Irrotational Motion. If 0qcurlξ  , then the fluid motion is said to be 

irrotational or of potential kind and then .q   
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5.4. Vortexline. It is a curve in the fluid such that the tangent at any point on 

the curve has the direction of the vorticity vector .   

The differential equations of vortexlines are given by 0rd   

i.e. 
321

dzdydx








 

where            . = (1, 2, 3). 

5.5. Vortex Tube. It is the locus of vortex line drawn at each point of a closed 
curve i.e. vortex tube is the surface formed by drawing vortex lines through 
each point of a closed curve in the fluid. 

A vortex tube with small cross-section is called a vortex filament.  

5.6. Flow. Let A and B be two points in the fluid.  

Then  A
B rdq is called the flow along any path from A to B 

If motion is irrotational then andq   

flow =    B
A

B
A )B()A(drd  

5.7. Circulation It is the flow round a closed curve.  If C be the closed curve in 
a moving fluid, then circulation  about C is given by  

=  
C

rdq  =  
S S

.dSξn̂dSqcurln̂  

If the motion is irrotational, then q  and thus, 

                       =    
CC

,0)A(ĳ)A(ĳĳdrdĳ    

where A is any point on the curve C.  This shows that for an irrotational 
motion, circulation is zero.  

5.8. Theorem :-The necessary and sufficient condition such that the vortex 
lines are at right angles to the stream lines, is 

  (u, v, w) =  
















z
,

y
,

x
  

i.e. q = , where  and  are functions of x, y, z and t. 

Unit-1 Introductory Notions 2016-Batch

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE

Page 22 of 38



 

Proof. Necessary condition:- We know that the differential equation  

rdq  = 0 is integrable if    pdx + Qdy + Rdz = 0 is integrable if 

0...
y

R

z

Q 













 

        0qcurlq    (exactness condition) 

i.e.           ,0q     = curl q  

This shows that the streamlines are at right angles to the vortex lines.  Thus the 
streamlines and vortex lines are at right angles to each other if the differential 
equation 0rdq  is integrable. 

The exactness condition .qthatimplies0qcurlq   

0)(curlqcurlBut  .  Thus the vortexlines do not exist.  The equations 

0rdq   are therefore not exact. 

So, there exists an integrating factor (function of x, y, z, t) such that 

  1 0rdq   is integrable. 

If this differential equation is integrable, then we can write  

1 rdq  = d, where  is a scalar function of x, y, z, t 

 1 rdq  =   rd    | d =  rd  

 q  . 

Sufficient condition :- Let us take q =        = 1 q  

Then, curl q  = curl () 

  ()  = (  ) +      =    

Therefore, 

 q (  )  q   =   (  )q  

              =   (1 q  q )   = 0 
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t)n̂q(   

S 
S 

n̂  

q  n̂  
s 

This shows that the directions of streamlines and vortexlines are at right angles 
to each other.   

 

 

6.  Equation of Continuity  

6.1. Equation of Continuity by Euler’s Method (Equation of conservation 
of Mass): Equation of continuity is obtained by using the fact that the mass 
contained inside a given volume of fluid remains constant throughout the 
motion.  Consider a region of fluid in which there is no inlets (sources) or 
outlets (sinks) through which the fluid can enter or leave the region. Let S be 
the surface enclosing volume V of this region and let n̂ denotes the unit vector 
normal to an element S of S drawn outwards. 

Let q  be the fluid velocity and  be the fluid density. 

 
 
 
 
 
 
 
 
First, we consider the mass of fluid which leaves V by flowing across an 
element S of S in time t.  This quantity is exactly that which is contained in a 
small cylinder of cross-section S of length )n̂q(  t. 

Thus, mass of the fluid is = density  Volume =  )n̂q(  St. S 

 
 
 
 
 
 
 
 
Hence the rate at which fluid leaves V by flowing across the element S is  

    )n̂q(  S. 

Summing over all such elements S, we obtain the rate of flow of fluid coming 
out of V across the entire surface S.  Hence, the rate at which mass flows out of 
the region V is  

    
SS

dSn̂)qρ(dS)n̂q(ρ     
VS

.dVFdSn̂F

thedivergenceGaussBy
  

V 
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          = 
V

dV)qρ(div     (1) 

Now, the mass M of the fluid possessed by the volume V of the fluid is  

  M = 
V

dVρ , where  = (x, y, z, t) with (x, y, z) the Cartesian 

co-ordinates of a general point of V, a fixed region of space.  Since the space 
co-ordinates are independent of time t, therefore the rate of increase of mass 
within V is  

 











VV

time.t.r.wchangenotdoesV|dV
t

ρ
dVρ

dt

d

dt

dM
 (2) 

But the considered region is free from source or sink i.e. the mass is neither 
created nor destroyed, therefore the total rate of change of mass is zero and 
thus from (1) & (2), we get 

    



V V

0dV)qρ(div.dV
t

ρ
 

   0dV)qρ(div
t

ρ
V

 



 



   

Since V is arbitrary, we conclude that at any point of the fluid which is neither 
a source nor a sink, 

  0)qρ(div.
t

ρ 



 

i.e.  0)qρ.(.
t

ρ 



     (3) 

Equation (3) is known as equation of continuity. 

Corollary (1). We know that 

  div .q.qdivρ)qρ(  (grad) 

Therefore, (3) takes the form 

  0ρ)q()q(ρ
t

ρ 



    (4) 

Corollary (2). We know that the differential operator 
Dt

D
is given by 

  )q(
tDt

D 

  

Therefore, from (4), we obtain the equation of continuity as 0)q(ρ.
Dt

ρD   
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i.e.   0qdivρ
Dt

ρD       (5) 

Corollary (3). Equation (5) can be written as 

  0qdiv
Dt

ρD

ρ
1   

   0qdiv)ρ(log
Dt

D       (6) 

Corollary (4). When the motion of fluid is steady, then 0
t

ρ 



and thus the 

equation of continuity (3) becomes 

div 0)qρ(   |Here  is not a function of time i.e.  = (x, y, z) (7) 

Corollary (5). When the fluid is incompressible, then  = constant and thus 

0
Dt

ρD  . 

The equation of continuity becomes 

  div q  = 0      (8) 

which is same for homogeneous and incompressible fluid. 

Corollary (6). If in addition to homogeneity and incompressibility, the flow is 

of potential kind such that q = , then the equation of continuity becomes 

single word 

  div(.) = 0     .(.) = 0      2 = 0 (9) 

which is known as the Laplace equation.  

6.2. Equation of continuity in Cartesian co-ordinates :- Let (x, y, z) be the 
rectangular Cartesian            co-ordinates.  

Let k̂wĵvîuq        (1) 

and  = k̂
z

ĵ
y

î
x 








      (2) 

Then, the equation of continuity 0)qρ(div
t

ρ 



 can be written as 

  0)wρ(
z

)vρ(
y

)uρ(
xt

ρ 












  (3) 

i.e. 0
z

w

y

v

x

uρ
z

ρ
w

y

ρ
v

x

ρ
u

t

ρ 




























  (4) 

which is the required equation of continuity in Cartesian co-ordinates. 
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0 

2ê  

1ê  

3ê  

Corollary (1). If the fluid motion is steady, then 0
t

ρ 



and the equation (3) 

becomes 

  0)wρ(
z

)vρ(
y

)uρ(
x











   (5) 

Corollary (2).  If the fluid is incompressible, then  = constant and the 

equation of continuity is               q  = 0  

i.e.   0
z

w

y

v

x

u 









     (6) 

Corollary (3). If the fluid is incompressible and of potential kind, then 

equation of continuity is       

                                2 = 0 

 i.e.    ,0
zyx 2

2

2

2

2

2











where q . 

6.3.  Equation of continuity in orthogonal curvilinear co-ordinates: Let (u1, 

u2, u3) be the orthogonal curvilinear co-ordinates and 321 ê,ê,ê be the unit 

vectors tangent to the co-ordinate curves.  

Let  332211 êqêqêqq        (1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
The general equation of continuity is  

  0)qρ(
t

ρ 



     (2) 

We know from vector calculus that for any vector point function f  = (f1, f2, f3), 

 














 )fhh(

u
)fhh(

u
)fhh(

uhhh

1
f 321

3
213

2
132

1321

 (3) 

where h1, h2, h3 are scalars.  

Unit-1 Introductory Notions 2016-Batch

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE

Page 27 of 38



FLUID DYNAMICS                                                                                                                               
31 

Using (3), the equation of continuity (2) becomes 





















)qρhh(
u

)qρhh(
u

)qρhh(
uhhh

1

t

ρ
321

3
213

2
132

1321

 (4) 

Corollary (1). When motion of fluid is steady, then equation (4) becomes 

0)qρhh(
u

)qρhh(
u

)qρhh(
u

321
3

213
2

132
1











  (5) 

Corollary (2). When the fluid is incompressible, the equation of continuity is 
( = const) 

  0)qhh(
u

)qhh(
u

)qhh(
u

321
3

213
2

132
1











 (6) 

Corollary (3). When fluid is incompressible and irrotational then  = const 


















332211 uh

1
,

uh

1
,

uh

1
q  and the equation of continuity 

becomes  

0
uh

hh

uuh

hh

uuh

hh

u 33

21

322

31

211

32

1









































  (7) 

Now, we shall write equation (4) in cylindrical & spherical polar co-ordinates.  
6.4.  Equation of continuity in cylindrical co-ordinates (r, , z) . Here,  

u1  r, u2  , u3  z  and h1 = 1, h2 = r, h3 = 1 

The equation of continuity becomes 

  0)qρr(
z

)qρ(
ș

)qρr(
rr

1

t

ρ
321 

















 

i.e.   












)qρ(
z

)qρ(
șr

1
)qρr(

rr

1

t

ρ
321 0  (8) 

Corollary (1). When the fluid motion is steady, then equation (8) becomes 

  0)qρ(
z

r)qρ(
ș

)qρr(
r

321 









   (9) 

Corollary (2). For incompressible fluid, equation of continuity is  

  0
z

q
r)q()rq(

r
3

21 










   (10) 

Corollary (3). When the fluid is incompressible and is of potential kind, then 
equation (8) takes the form    
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0
z

r
zr

1

r
r

r







































  (11) 

where q  ;  is expressed in cylindrical co-ordinates. 

6.5. Equation of continuity in spherical co-ordinates (r, , ). Here,  

(u1, u2, u3)  (r, , )   and     h = 1, h2 = r, h3 = r sin  

The equation of continuity becomes  

 0)qρr(
ȥ

)qρșsinr(
ș

)qρșsinr(
rșsinr

1

t

ρ
321

2
2





















 

 0)qρ(
ȥ

r)qșρ(sin
ș

r)qρr(
r

șsin
șsinr

1

t

ρ
321

2
2





















 (12) 

Corollary (1). For steady case, equation (12) becomes  

 sin  0)qρ(
ȥ

r)qρ.ș(sin
ș

r)qρr(
r

321
2 










  (13) 

Corollary (2). For incompressible fluid, we have 

  sin  0
q

r)q.(sinr)qr(
r

3
21

2 











   (14) 

Corollary (3). When fluid is incompressible and of potential kind, then 

equation of continuity is 

 0.
sin

1
sin

r
sinr

r
2 








































 (15) 

where q ;  is expressed in spherical co-ordinates. 

6.6. Symmetrical forms of motion and equation of continuity for them.  We 
have the following three types of symmetry which are special cases of 
cylindrical and spherical polar co-ordinates. 

(i) Cylindrical Symmetry :- In this type of symmetry, with suitable choice of 
cylindrical polar co-ordinates (r, , z), every physical quantity is independent 
of both  and z so that 

  )t,r(qqand0
zș








 

For this case, the equation of continuity in cylindrical co-ordinates, reduces to  

  0)rqρ(
rr

1

t

ρ
1 







     (1) 
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If the flow is steady, then equation (1) becomes  

  0)rqρ(
r

1 



   q1r = constant = F(t), (say). 

Further, if the fluid is incompressible then q1 r = constant = G(t), (say). 

(ii) Spherical Symmetry :- In this case, the motion of fluid is symmetrical 
about the centre and thus with the choice of spherical polar co-ordinates                
(r, , ), every physical quantity is independent of both  & .  so that  

  qqand0 






(r, t)     

The equation of continuity, for such symmetry, reduces to 

  0)rqρ(
r

.
r

1

t

ρ 2
12








    (2) 

For steady motion, it becomes 

  0)rqρ(
r

2
1 




  q1 r
2 = const = F(t), (say) 

and for incompressible fluid, it has the form q1 r
2 = constant = G(t), (say). 

(iii) Axial Symmetry :- (a) In cylindrical co-ordinates (r, , z), axial symmetry 

means that every physical quantity is independent of  i.e. 0



 and thus the 

equation of continuity becomes 

  0)rqρ(
z

)rqρ(
rr

1

t

ρ
31 














 

(b) In spherical co-ordinates (r, , ), axial symmetry means that every 

physical quantity is independent of  i.e. 



= 0 and the equations of 

continuity, for this case, reduces to  

  .0)șsinqρ(
șșsinr

1
)rqρ(

rr

1

t

ρ
2

2
12











 

6.7. Example. If (s) is the cross-sectional area of a stream filament, prove 
that the equation of continuity is  

  ,0)qρı(
s

)ρı(
t








where s is an element of arc of the 

filament and q is the fluid speed.  
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Solution. Let P and Q be the points on the end sections of the stream filament.  
 
 
 
 
 
 
The rate of flow of fluid out of volume of filament is 

  sδ)ıqρ(
s

)ıqρ()ıqρ( PPQ 
   

where we have retained the terms upto first order only, since s is 
infinitesimally small    
Now, the fluid speed is along the normal to the cross-section.  At time t, the 
mass within the segment of filament is s and its rate of increase is 
  

  sδ)ρı(
t

)sρıδ(
t 





      

  (2) 

Using law of conservation of mass, we have from (1) & (2) 

  0sδ)ıqρ(
s

sδ)ρı(
t








 | Total rate = 0 

i.e.  0)qρı(
s

)ρı(
t








    (3) 

which is the required equation at any point P of the filament. 

6.8. Deduction :- For steady incompressible flow, 0)ρı(
t





and equation (3) 

reduces to  

  0)q(
s

0)q(
s








     q = constant  

which shows that for steady incompressible flow product of velocity and cross-
section of stream filament is constant.  This result means that the volume of 
fluid a crossing every section per unit time is constant 

 





  c

t

volume
c

t

cetandisıcqı   

6.9. Example. A mass of a fluid moves in such a way that each particle 
describes a circle in one plane about a fixed axis, show that the equation of 
continuity is 

P 

f(s) 

Q 

f(s+s) 
s 
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y 

x 

r 

 

 

  0)ρȦ(
șt

ρ 






, 

where  is the angular velocity of a particle whose azimuthal angle is  at time 

t. 

Solution. Here, the motion is in a plane i.e. we have a two dimensional case 
and the particle describe a circle 
 
 
 
 
 
 
 
 
Therefore,  z = constant, r = constant 

  0
r

,0
z








       (1) 

i.e. there is only rotation. 
We know that the equation of continuity in cylindrical co-ordinates (r, , z) is 

  0)qρ(
z

)qρ(
șr

1
)qρr(

rr

1

t

ρ
321 













  (2) 

Using (1), we get 

  0)qρ(
șr

1

t

ρ
2 







 

   0)Ȧrρ(
șr

1

t

ρ 






, where q = q2 = r. 

 0)(
t








   

Hence the result 

6.10.  Example. A mass of fluid is in motion so that the lines of motion lie on 
the surface of        co-axial cylinders, show that the equation of continuity is  

  0)vρ(
z

)vρ(
șr

1

t

ρ
zș 










 

where v, vz are the velocities perpendicular and parallel to z.  

Solution. We know that the equation of continuity in cylindrical co-ordinates 
(r, , z) is given by  
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 0)vρ(
z

)vρ(
șr

1
)rvρ(

rr

1

t

ρ
zșr 













, where q = (vr, v, vz)  

Since the lines of motion (path lines) lie on the surface of cylinder, therefore 
the component of velocity in the direction of dr is zero i.e. vr = 0 
Thus, the equation of continuity in the present case reduces to 

  0)vρ(
z

)vρ(
vr

1

t

ρ
zș 










    

Hence the result 

6.11.  Example. The particles of a fluid move symmetrically in space with 
regard to a fixed centre, prove that the equation of continuity is 

  0)ur(
r

.
r

ρ
r

ρ
u

t

ρ 2
2











. 

where u is the velocity at a distance r 

Solution. First, derive the equation of continuity in spherical co-ordinates.  
Now, the present case is the case of spherical symmetry, since the motion is 
symmetrical w.r.t. a fixed centre. 
Therefore, the equation of continuity is 

 0
ȥș

0)rqρ(
r

.
r

1

t

ρ 2
12









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


  

   0)rqρ(
r

.
r

1

t

ρ 2
12








¸ where q1  u 

   0)ur(
r

.ρ.
r

1
ur

r

ρ
.

r

1

t

ρ 2
2

2
2











 

   0)ur(
rr

ρ
r

ρ
.u

t

ρ 2
2











   

Hence the result  

6.12. Example. If the lines of motion are curves on the surfaces of cones 
having their vertices at the origin and the axis of z for common axis, prove that 
the equation of continuity is  

  0)qρ(
ȥr

șeccos
q

r

ρ2
)qρ(

rt
ȥrr 










 

Solution. First derive the equation of continuity in spherical co-ordinates (r, , 
) as 

 0)qρ(
ȥ

r)șsinqρ(
ș

r)rqρ(
r

șsin
șsinr

1

t

ρ
32

2
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








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






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which holds at every point of the fluid and is known as Euler‟s dynamical 
equation for an ideal fluid. 
 

The above method for obtaining the Euler‟s equation of 
motion, is also known as flux method.  

 

Other Forms of Euler’s Equation of Motion. (i) We know that  



 q
tDt

D

dt

d
,   

therefore equation (4) becomes.  

  p
1

Fqq
t

q 






)(     (5) 

But qcurl,qq
2

1
q)q( 2 






  

Therefore,  Euler‟s equation becomes 

  .p
1

Fqq
2

1

t

q 2 













   (6)  

Equation (6) is called Lamb‟s hydrodynamical equation  

(ii) Cartesian Form. Let F),w,v,u(q  = (X,Y,Z) and p = 
















z

p
,

y

p
,

x

p
,  

then equation (5) gives  

  


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


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

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






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






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

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























z

p1
Z

z

w
w

y

w
v

x

w
u

t

w

x

p1
Y

z

v
w

y

v
v

x

v
u

t

v

x

p1
X

z

u
w

y

u
v

x

u
u

t

u

  (7) 

Equation (7) are the required equations in Cartesian form. 

(iii) Equations of Motion in Cylindrical Co-ordinates. (r, , z).  Here,  

                             rd),w,v,u(q  = (dr, rd, dz) 
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     p = 
















z

p
,

p

r

1
,

r

p
 

Let F  = (Fr, F, Fz). 

Also, the acceleration components in cylindrical co-ordinates are  

  









dt

dw

r

uv

dt

dv
,

r

v

dt

du

dt

qd 2

 

Thus, the equation of motion 

  .p
1

F
dt

qd 


  becomes 

  



































z

p1
F

dt

dw

p

r

1
F

r

vu

dt

dv

r

p1
F

r

v

dt

du

z

r

2

    (8) 

(iv)   Equations of Motion in Spherical co-ordinates (r, , ).  Here,             

                         )dsinr,rd,dr(rd),w,v,u(q   

  p = 














 p

sinr

1
,

p

r

1
,

r

p
  

Let F = (Fr, F, F).  The components of acceleration in spherical co-ordinates 

are 

  






 
r

cotvw

dt

dw
,

r

uv

r

cotw

dt

dv
,

r

wv

dt

du

dt

qd 222

 

Thus, the equation of motion take the form 
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





















p

r

1
F

r

vw

dt

dw

p

r

1
F

r

uv

r

w

dt

dv

r

p1
Fr

r

wv

dt

du

2

22

sin

cot

cot
   (9) 

The two equations, the equation of continuity and the Euler‟s 
equation of motion, comprise the equations of motion of an ideal fluid.  Thus 
the equations 

  0qdiv
t





)(  

and p
1

Fqq
t

q 






)(  

are fundamental to any theoretical study of ideal fluid flow.  These equations 
are solved subject to the appropriate boundary and initial conditions dictated by 
the physical characteristics of the flow.   
 

Equation of Motion.  Let initially a fluid element be at (a, b, 
c) at time t = t0 when its volume is dV0 and density is 0.  After time t, let the 
same fluid element be at (x, y, z) when its volume is dV and density is  .  The 
equation of continuity is  
 
  J = 0       (1) 

where     J = 
)c,b,a(

)z,y,x(




 

The components of acceleration are 

2

2

2

2

2

2

t

z
z,

t

y
y,

t

x
x








   

Let the body force F be conservative so that we can express it in terms of a 
body force potential function  as 
 

  F =        (2) 

By Euler‟s equation of motion, 

  Lagrange’s
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  p
1

p
1

F
dt

qd 





    (3) 

Its Cartesian equivalent is 
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
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
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


z
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z

y
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y

x

p1
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x

2

2

2

2

2

2

      (4) 

We note that a, b, c, t are the independent variables and our object is to 
determine x, y, z in terms of a, b, c, t and so investigate completely the motion. 
 
To deduce equations containing only differentiations w.r.t. the independent 
variables a, b, c, t we multiply the equations in (4) by x/a, y/a, z/a and 
add to get 
 

a

p1

aa

z

t

z

a

y

t

y

a

x

t

x
2

2

2

2

2

2




























   (5) 

Similarly, we get 

  
b

p1

bb

z

t

z

b

y

t

y

b

x

t

x
2

2

2

2

2

2




























  (6) 

c

p1

cc

z

t

z

c

y

t

y

c

x

t

x
2

2

2

2

2

2




























  (7) 

These equations (5), (6), (7) together with equation (1) constitute Lagarange‟s 
Hydrodynamical Equations. 
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   Possible Questions 

  Part B (5x8=40 Marks) 

 

1. Derive differential equation of a stream line 

2. The velocity components in a flow two dimensional flow fluid for an incompressible fluid is given 

by u=e^x cos hy,v=-e^x sin hy. 

3. Derive Euler’s generalised Momentum theorem 

4. Obtain the Equation of motion interms of verticity vector when the force is conservative. 

5. S.T in an irrotational incompressible inviscid 2-D fluid flow both φ & ψ satisfy the 
Laplace equation 

6. Discuss the motion for the complex potential w=iAz 

7. Discuss about Plane coutte flow 

8. Explain Navier Strokes equation 

  

 Part-C(1x10=10 Marks) 

 

 1. Discuss the motion for the complex potential w=z
2 

 2. Determine the restriction on fၶ,fၷ,fၸ if x²/a².fၶ(t) + y²/b².fၷ(t)+z²/c².fၸ(t)=1 is a possible  

     boundary   surface of a liquid. 

3. Derive Euler’s equation of motion.  

4. Derive Euler’s generalised Momentum theorem  and  Obtain the Equation of  

    motion   interms   of    verticity vector  when  the  force  is  conservative. 
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Question Choice 1 Choice 2 Choice 3 Choice 4  Answer

 ___________ is a branch of science which 

deals with the behavior of fluid at rest as 

well as motion. fluid mechanics fluid statics fluid kinematics   fluids fluid mechanics

  The behavior of fluid at rest gives the 

study of______________. fluid dynamics fluid statics elastic plastic fluid statics

  The behavior of fluid when it is in motion 

without considering the pressure force is 

called___________. fluid kinematics  fluid mechanics  fluid statics fluids fluid kinematics

The behavior of fluid when it is in motion 

with considering the pressure force is 

called_________. fluid kinematics fluid dynamics fluid statics fluid mechanics fluid dynamics 

____________ is the branch of science 

which deals with the study of fluids. fluid kinematics fluid dynamics fluid statics fluid mechanics fluid dynamics 

 If any material deformation vanishes when 

a force applied withdrawn a material is said 

to be_________. elastic plastic deformation fluid elastic 

If deformation remains even after the force 

applied withdrawn the material is said to 

be___________ elastic plastic  fluid fluid statics plastic 

  If the deformation remains even after the 

force applied withdrawn this property of 

material is____________. elastic plasticity  fluid deformation plasticity
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   _________ can be classified as liquids and 

gases. solids pressure fluids forces  fluids

 The density of fluids is defined as 

_________ volume.  limit per unit solid per time mass per unit forces per unit mass per unit 

  A force per unit area is known as 

____________. force   pressure   fluid   density. pressure  

ӘF is the ___________ force due to fluid on 

Әs normal constant force pressure normal

 The pressure changes in the fluid beings 

changes in the dencity of fluid is 

called__________. compressible fluid 

incompressible 

fluid body force surface force compressible fluid 

The change in pressure of fluid do not alter 

the density of the fluid is 

called____________. compressible fluid 

incompressible 

fluid body force surface force incompressible fluid 

   _________ are propotional to mass of the 

body. pressure  body force surface force force  body force 

  _________ are propotional to the surface 

area. body force surface force force mass surface force 

  The normal force per unit area is said to 

be ____________. normal stress shearing stress stress strain normal stress 

The tangential force per unit area is said to 

be ____________. normal stress shearing stress stress strain shearing stress 

 In a high viscosity fluid there exist normal 

as well as shearing stress is called 

__________. viscous fluid inviscid fluid frictionless ideal viscous fluid

Rate of change of linear momentum 

equation is______________.

 Which is the velocity of the equation. q=dr/dt .q=s/r .v=dx/w .u=dy/s q=dr/dt 

The differential equation of the path line 

is__________. .u=dy/s .v=dx/w q=dr/dt .q=s/r q=dr/dt 

 A flow in which each fluid particle posses 

different velocity at each section of the 

pipe are called_________. uniform flow rotational floe barotropic flow non-uniform flow non-uniform flow 

  A flow in which each fluid particle go on 

rotating about their own axis while flowing 

is said to be_________. rotational floe uniform flow non-uniform flow barotropic flow uniform flow 



The pressure is function of density then the 

flow is said to be ___________. rotational floe uniform flow barotropic flow non-uniform flow barotropic flow

  The direction of the fluid velocity at the 

point is called___________. stream line velocity fluid pressure stream line 

__________ is defined as the locus of 

different fluid particles passing through a 

fixed point. stream filament stream line   path line stream tube stream line  

 A stream tube of an infinitesimal cross 

sectional area is called__________. stream line   stream filament path line stream tube stream filament 

The equation of volume is__________.

cross section 

area*speed 

speed/cross 

section area

cross section 

area/speed speed

cross section 

area*speed 

The equation of speed is__________. time/length length/speed length*time time*speed length/speed

  When a fluid particle moves it changes in 

both ______________. speed and time 

time and 

frequency speed and position position and time position and time 

When the flow is _________ the strem line 

have same form at all times. steady unsteady stream surface stream tube steady

 When the flow is_______ the stream line 

changes from instant to instant. stream tube steady unsteady steady unsteady

If ∆.f=0 then f is said to be a 

_____________. solenoid rotation irrotation constant solenoid



 Unit-2  Bernoulli’s Theorem and Circulation  2016-Batch 

Prepared  by:Y.Sangeetha,Department of Mathematics,KAHE 

 

 

  
 

            KARPAGAM ACADEMY OF HIGHER EDUCATION  
                               

                      

                                    

 

 

 

 

 

Subject : Fluid Dynamics          SEMESTER: III                                              L  T    P   C  

SUBJECT CODE: 16MMP302       CLASS : II M.Sc Mathematics                               4   0    0    4 

 

 

 

 

 

 

UNIT II 

Euler’s momentum Theorem – Conservative forces – Bernoulli’s theorem in steady motion – energy 

equation for in viscid fluid – circulation – Kelvin’s theorem – vortex motion – Helmholtz equation. 

 

TEXT BOOKS 

 

1. Milne Thomson .L.M., (1968). Theoretical Hydrodynamics, Fifth edition, Dover Publications    

    INC, NewYork.(for unit I,II) 

2. Curle.N., and Davies H.J., (1971), Modern Fluid Dynamics Volume-I ,  D Van Nostrand 

    Company Ltd.,   London. (for unit III,IV,V)  

 

REFERENCES 

 

1. Yuan, S.W, (1976). Foundations of Fluid Mechanics, Prentice- Hall, India.  

 

2. Shanthi swarup, (2003), Fluid dynamics, Krishna Prakasan media Pvt Ltd, Meerut. 

 

3. C.Pozrikidis(2016),Fluid Dynamics Theory,computation and Numerical simulation,Springer 

    Pvt ltd,US 

 

 

Page 1 of 69

(Deemed to be UniversityEstablished under Section 3 of UGC Act 1956) 

  DEPARTMENT OF MATHEMATICS                              

Pollachi Main Road, Eacharani Post, Coimbatore-641 021



 

UNIT – 
 

 

So far we have confined our attention to the cases involving irrotational motion 
only.  But the most general displacement of a fluid involves rotation such that 

the rotational vector (vortex vector or vorticity) 0qcurl  .  Here we 

consider the theory of rotational or vortex motion.  First of all we revisit some 
elementary definitions. 

Lines drawn in the fluid so as at every point to coincide with the instantaneous 
axis of rotation of the corresponding fluid element are called vortex lines.  
Portions of the fluid bounded by vortex lines drawn through every point of an 
infinity small closed curve are called vortex filaments or simply vortices and 
the boundary of a vortex filament is called a vortex tube. 

If C is a closed curve, then circulation about C is given by  

   =    
SSSC

Sd.dS.n̂dSqcurl.n̂rd.q    

The quantity n̂ S is called the strength of the vortex tube.  A vortex tube 

with a unit strength is called a unit vortex tube. 

We shall observe some important results for vortex motion which are 
consequences of the following theorem due to Lord Kelvin.   

 The 
circulation around a closed  contour C moving with the inviscid (non-viscous) 
fluid is constant for all times provided that the external forces (body forces) are 
conservative and the density is a function of pressure only.  

Proof. The circulation round a closed curve C of fluid particles is defined by  

   = 
C

rd.q , 

where q  is the velocity and r  is the position vector of a fluid particle at any 

time t. 

Time derivative of  following the motion of fluid is  

    
CC

)rdq(
dt

d
rdq

dt

d

dt

d
 

Vortex Motion

Kelvin’s  Circulation  Theorem  (Consistency  of  circulation). 

II
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         =  



 

C

)rd(
dt

d
qrd

dt

qd
 

       =  



 

C

qdqrd
dt

qd
 (1) qd

dt

rd
d)rd(

dt

d 





  

Since the system of forces is conservative; therefore F = , where  is a 
potential function Euler‟s equation of motion is  

  


 1
F

dt

qd
p =  


1
p   (2) 

Multiplying each term of (2) scalarly by rd , we get 

  
dt

qd
rd  .rd

1
rd


 p 

i.e.  


 dp
drd.

dt

qd
   (3)           d.rd   

Thus from (1), we get 

   












C

qdq
dp

d
dt

d
 

         =  















 

C

2 dp
1

q
2

1
d  

         =   





 

C C

2 dp
1

q
2

1
d  

         =  



 

C

A

A

2 dp
q

2

1
 

         = 0   C

dp
      (4) 

where A is any point on the closed contour C.  Now, if density is a function of 

pressure only, then the integral  C

dp
 vanishes and hence we get 
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  0
dt

d 
       = constant for all time  

Corollary (1). In a closed circuit C of fluid particles moving under the same 
conditions as in the theorem,  

    
S S

Sd.Sd.qcurl = constant   (5) 

where S is any open surface whose rim is C.  To establish (5), we note that, by 
Stock‟s theorem,  

   
S C

rd.qSd.qcurl =  = constant 

This shows that the product of the cross-section and angular velocity at any 
point on a vortex filament is constant all along the vortex filament and for all 
times.  

Corollary (2). Under the conditions of the theorem, vortex lines move with the 
fluid. 

Proof. Let C be any closed curve drawn on the surface of a vortex tube.  Let S 
be the portion of the vortex tube rimmed by C.  By definition vortex lines lie 
on S. Thus 

 0 =  
S C

rd.qSd.qcurl      |  on surface circulation is zero  

Let C be a material curve and S be a material surface, then  

    
SS

0dS)qcurl.n̂(
Dt

D
dS)qcurl.n̂(

dt

d
 

Thus qcurl.n̂  remains zero, so that S remains a surface composed of vortex 

lines.  Consequently vortex lines and tubes move with the fluid i.e. vortex 
filaments are composed of the same fluid particles.  This explains why smoke 
rings maintain their forms for long periods of time. 

Corollary (3). Under the conditions of the theorem, if the flow is irrotational in 
a material region of the fluid at some particular time (e.g. t = 0 or t = t0), the 
flow is always irrotational in that material region thereafter. 

i.e. If the motion of an ideal fluid is once irrotational it remains irrotational for 
ever afterwards provided the external forces are conservative and density  is a 
function of pressure p only. 
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Proof. Suppose that at some instant (t = t0), the fluid on the material surface S 
is irrotational  

Then,   = 0        (1) 

for all points of S. 

Let C be the boundary of surface S, then 

   =  
C S

)qcurl.n̂(rd.q dS =  
S

0ds).n̂(   | using (1) 

But by Kelvin‟s circulation theorem,  is constant for all times.  Hence 
circulation  is zero for all subsequent times.  At any later time, 

   
S

.n̂ dS = 0 

If we now take S to be non-zero infinitesimal element, say S, then 

   .n̂ S = 0      = 0 at all points of S for all times and the 

motion is irrotational permanently.  This proves the permanency of irrotational 
motion. 

(ii)   The Kelvin‟s theorem is true whether the motion be rotational or 

irrotational  In case of irrotational motion, 0  and thus  = 0   

(iii) From the results of the theorem, we conclude that vortex filaments must 
either form closed curves or have their ends on the bounding surface of 
the fluid.  A vortex in an ideal fluid is therefore permanent. 

Euler‟s equation of motion for an ideal fluid under 
the action of a conservative body force with potential  per unit mass is  

  p
1

qq
2

1

t

q

Dt

qD 2 











   (1) 

where the vorticity qqcurl  .  If the fluid has constant density, then 

taking curl of equation (1), we get 

    )q(q
2

1

t

q 2 


















=  










 p

1
 

Remarks (i) The above three corollaries are properties of vortex filaments.

Vorticity  Equation.   
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  0)q(
t

q 



 

 0)q()q(
t





  

 )q(
t





 

       =  )q(q)(  

  q)()q(
t





 

i.e.  q)(
Dt

D



      (2) 

which is the required vorticity equation. 

Equation (2) is called Helmholtz‟s vorticity equation.  For two-dimensional motion, the 

vorticity vector   is perpendicular to the velocity vector q  and the R.H.S. of (2) is identically 

zero.  Thus, for two dimensional motion of an ideal fluid, vorticity is constant.  

In the case, when body force is not conservative, equation (2) becomes 

  Fcurlq)(
Dt

D 
 

where F  is body force per unit mass. 

about the axis r = 0 where (r, , z) are cylindrical polar co-ordinates.  The cylindrical polar 

resolutes of velocity are [qr(r, z), 0, qz(r, z)].  Show that if a fluid particle has vorticity of 

magnitude 0 when        r = r0, its vorticity when at general distance r from the axis of 

symmetry has magnitude  = (0/r0)r, if any body forces acting are conservative. 

  Example. A  motion  of  in  viscid  incompressible  fluid  of  uniform  density  is  symmetrical 
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Solution. The vorticity vector   satisfies the vorticity equation  

  q)(
Dt

D 
       (1) 

Now,  

               

)z,r(q0)z,r(q
zr

ẑˆrr̂

r

1
qcurl

zr











                             

                    =   


























)0(ẑ)z,r(q
r

)z,r(q
z

ˆr)z,r(qr̂
r

1
zrz  

        = 












r

q

z

q zr 


 .    (2) 

Therefore, 

   
















z
ẑ

r

1ˆ
r

r̂)(  

   = .
r

q

z

qˆ zr 














 
















z
ẑ

r

1ˆ
r

r̂  

   = ẑ.ˆ0r̂.ˆ
r

q

z

q

r

1 zr 


















 

Thus  )ẑqr̂q(
r

q

z

q

r

1
q).( zr

zr 


















  

   = 














 r̂

r

q

z

q

r

q zrr  
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   = 












 ˆ

r

q

z

q

r

q zrr   | 0
ẑ

,ˆr̂ 






 (3) 

Hence 
r

qr
q).(   | using (2)    (4) 

 From (1) & (4), we get 

  
r

qr

Dt

D
      (5) 

Now, qr = r̂.q , so equation (5) becomes 

  r 


r̂.q
Dt

D
      (6) 

Since   
Dt

Dr
r

Dt

rD
.rrr 22   

 
Dt

Dr
q.r̂

Dt

Dr

Dt

rD
.r̂

Dt

Dr

Dt

rD
.

r

r   

Using this in (6), we get 

  r 


Dt

Dr

Dt

D
 

  r 0
Dt

Dr

Dt

D     0
r

Dt

Dr

Dt

D
r

2




 

 

0

0

r
.const

r
0

rDt

D 








 
  

                                            r
r

r

0

0
2








 



  

Hence the result. 

For an incompressible fluid in the xy-plane, we have 

Vorticity in Two-dimensions 
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  











 0,

y
,

x
),0,v,u(q  

Therefore, )
y

u

x

v
,0,0(q





  

       = 













y

u

x

v
k̂  

which shows that in two-dimensional flow, the vorticity vector is perpendicular 
to the plane of flow. 

Also,                = 
y

u

x

v








  

Thus              k̂   

Now, for this case, the Helmholtz‟s vorticity equation  

          q)(
dt

d



 gives 

          
0

dt

d
constant 

i.e.  = constant. 

which shows that in the two-dimensional motion of an incompressible fluid, 
the vorticity of any particle remains constant. 

Here, we may regard  as a vortex strength per unit area. 

Also, in terms of stream function, we have 

             u = 
x

v,
y 





 

Therefore,          












 2

2

2

2

2

k̂
yx

k̂  

i.e.            = 2 

This gives vorticity in terms of the stream function.  
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section is a circle of radius a, by the plane of motion is a circle and the liquid 
inside such a tube is said to form a circular vortex. 

If  is the angular velocity and a2 the cross-sectional area of the vortex tube, 
then circulation  

    
C SS

SdqcurldSn̂qcurlrdq  

      =   
S

2 )say(kadS  

This product of the cross-section and angular velocity at any point of the vortex 
tube is constant along the vortex and is known as the strength of the circular 
vortex. 

nar Vortex Filament.  The strength k of circular 
vortex is given by k = a2.  If we let a0 and  such that the product 
2 a remains constant, we get a rectilinear vortex filament and represent it by 
a point in the plane of motion.  Such vortex filament may be regarded as 
straight gravitating rod of fluid lying perpendicular to the plane of flow.  It is 
also termed as a uniform line vortex.  The strength of a vortex filament is 
positive when the circulation round it is anticlockwise and negative when 
clockwise.  

four types  

(i)  Forced vortex in which the fluid rotates as a rigid body with constant 
angular velocity. 

(ii)  Free cylindrical vortex for which the fluid moves along streamlines 
which are concentric circles in horizontal planes and there is no 
variation of total energy with radius.  

(iii)  Free spiral vortex which is a combination the free cylindrical vortex 
and a source (radial flow) 

(iv) Compound vortex in which the fluid rotates as a forced vortex at the 
centre and as a free vortex outside.  

(Circular vortex).  In case of a doubly connected region, the possibility of 
cyclic motion does exist and as such we proceed to explain it presently in the 
case of circle.  

Circular  Vortex.   The  section  of  a  cylindrical vortex  tube  whose  cross-

Rectilinear  or  Columnar  Vortex  Filament.    The  strength  k  of  circular 

 Different Types of Vortices.  We may divide vortices into the following 

   Complex   Potential   for   Circulation   about   a   Circular   Cylinder 
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If the circulation in a closed circuit is 2k, then k is called the strength of the 
circulation.  

Let us consider the complex potential  

  W =  + i = ik log z     (1) 

On the circular cylinder |z| = a, z = a ei 

Thus, W = ik log (a ei) = ik (log a + i) 

i.e.   + i  = k + ik log a 

   = k,  = k log a = constant. 

This shows that the circular cylinder is a streamline and thus equation (1) gives 
the required complex potential for circulation about a circular cylinder. 

When the fluid moves once round the cylinder in the positive sense,  increases 
by 2 and then 

  1 = k ( +2) = k 2k  

       =   2k 

Therefore, circulation = 2k =  1 

             = decrease in  moving once round the circuit. 

Hence there is a circulation of amount 2k about the cylinder.  

Also,   
z

ik

dz

dw   

 q = 
r

k

dz

dW   

i.e. k = rq 

Therefore,       k = q when r = 1 

Thus k is the speed at unit distance from the origin. 

consider a cylindrical vortex tube whose cross-section is a circle of radius a; 
surrounded by infinite mass of liquid.  We assume that vorticity over the area 
of the circle is constant and is zero outside the circle. 

  Complex  Potential  for  Rectilinear  Vortex  (Line  Vortex).    Let  us 
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Let  be the stream function, then  

  k̂2  

i.e.   = 2 = 
2

2

2

2

yx 





 

      = 
2

2

22

2

r

1

rr

1

r 








 

Since there is a symmetry about the origin  is a function of r only and so 

0
2

2





. 

   = ,
dr

d
r

dr

d

r

1






 

 for r < a 

     = 0, for r > a 

i.e.   





 

dr

d
r

dr

d
 = r, for r < a  

      = 0, for r > a 

Integrating, we find 

  r
2

r

dr

d 2




+ A, for r < a  

        = B, for r > a 

We are interested in the fluid motion outside the cylinder |z| = a.  Therefore, 
integrating the second of the above result, we get 

   = B log r + C, for r > a. 

The constant C may be chosen to be zero.  Further, for r > a, the vorticity is 
zero and the fluid motion is irrotational, therefore velocity potential  exists 
and is related to  as  

  
r

B

rr

1 






 

  = B + D 
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  = B, neglecting D 

Let k be the circulation while moving once round the cylinder, then  

  k = decrease in value of  on describing the circuit once 

     = B [(+2)] = 2B 

 B = k/2 = K(say)  

Thus,  = K and  = ZK log r 

Hence W =  + i = k + iK logr 

         = iK (logr + i) 

         = iK log z = i .zlog
2

k


 

If the rectilinear vortex is situated at the point z = z0, then by shifting the 
origin, we get  

  W = iK log (zz0) 

If there are vortices of strengths K1, K2, …Kn situated at z1, z2,…, zn 
respectively, then the complex potential is  

  W = iK1 log(zz1) +iK2 log(zz2) +…+ iKn log(zzn). 

By a vortex, we mean a rectilinear vortex or line vortex.  

(ii)  K = k/2, where K is the strength of a vortex and k that of circulation 

and a vortex is called a spiral vortex or a vortex source. 

Let us consider a source of strength m and a vortex of strength K both at the 
origin. Then the complex potential is 

  W = m log z + iK logz 

       = (m + iK) log z = (m + iK) log (rei) 

       = (m + iK) (log r + i) 

        + i =  m log r  K + i(m + K log r) 

Therefore,    = (m log r + K),  = m + K log r  

Remarks (i) By a vortex, we mean a rectilinear vortex or line vortex. 

  Complex  Potential  for  a  Spiral  Vortex.   The  combination  of  a  source 
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If we go once round the origin, then  decrease by 2K and  be 2m. 

consisting of a coincident line-source of strength m per unit length and line-
vortex of strength K per unit length in the presence of a circular cylinder of 
radius a, whose axis is parallel to and at a distance b( > a) from the line of the 
source and vortex.  Show that the cylinder is attracted by a force of magnitude  

   
2 a2 (m2 + K2)/ b(b2a2)  

per unit length. 

Solution.  We suppose the line-source and line-vortex to be at the origin, then the complex 

potential is  

  

  W = m log z  + iKlog z =  (iKm) log z   (1)  

When the circular cylinder    |zb| = a (b > a) is inserted, the complex potential, by circle 

theorem, becomes  

 

  W =  (iKm) log z + (iKm) log 










b

bz

a2

 (2)  

where  

  |zb| = a   (z  b) (zb) = a2  

 z b =  
b

a 2

   z =  b
bz

a 2




 

By Blasius theorem, force on the cylinder C is given by  

  X iY  = [ sum of residues of 

2

dz

dW








 within C ]  

          (3) 

Now  

2

dz

dW








= 

22

2 bz

a

)bz(ba

miK

z

miK












   (4) 

 Example.  Find  the  complex  potential  for  the  motion  due  to  a  system 
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The only singularities of 

2

dz

dW








within C are at z =  b and z = b  
b

a 2

  since z = 0 is not 

inside C.  

Now,   

residue (z =  b) =   2 






 
b

mK 22

  Only product term of (4) 

and           will contribute 

residue  (z = b )
b

a 2

 = 
)ab(

b)mK(2
22

22




 . 

Therefore, from (3), we get  

  XiY = 2 (K2+ m2) 



 

 b

1

ab

b
22

 

            =  2a2(K2 + m2)/b(b2a2) 

Thus                       

     Y = 0,    X = 2a2 (K2 + m2)/b(b2a2) .  

The negative sign implies that the cylinder is attracted towards the origin where the spiral 

vortex is situated.  

vortices placed at small distance apart, form a vortex doublet. 

Let us consider a vortex of strength K at z = aei and another vortex of strength 
K at z = 0, then the complex potential is  

  W = iK log (zaei) iK log z 

       = iK log 















  

z

ae
1logiK

z

aez ii

 

       = iK 











.....
z2

ea

z

ae
2

i22i

 

 Complex  Potential  for  a  Vortex  Doublet.    Two  equal  and  opposite 
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As a0, K, then Ka and we obtain 

  W = 
z

e

z

ei )2/(ii  
 

This is the required complex potential for a vortex doublet at the origin. 

Also, we note that the complex potential for a doublet at the origin is 
z

e i
. 

Thus, it follows that the complex potential of a vortex doublet is the same as 
that for a doublet with its axes rotated through a right angle.  

Vortex in a Plane.  Let us consider two line vortices of 
strengths K and K per unit length at A(z = z1) and B(z = z2) respectively.  The 
complex potential due to these line vortices is  

  W =  + i = iK log(zz1) iK log(z z2) 

   = K log 
2

1

2

1

r

r
logK

zz

zz





 

If r1 = r2, then  = K log1 = 0 

Thus the plane boundary OP is a streamline so that 
there is no flow across OP.  Hence the line vortex at 
B with strength K per unit length is the image of 
the line vortex at A with strength K per unit length 
so that A and B are at equal distances from OP. 

sources, sinks and doublets), a vortex means a line vortex and strength means 
strength per unit length.  

x 
of strength k be present at z = d, then the complex potential is iK log (zd).  
When the cylinder |z| = a is introduced into the fluid, the complex potential, by 
circle theorem, becomes  

           W = iK log (zd)  iK log 







 d

z

a2

 

i.e.    + i = iK log(zd) iK log 









d

a
z

2

+ iK log z + constant  

         (1) 

P 

r1 r2 

B(K)          0            A(K) 

OA = OB 

|zz1| = r1, |zz2| = r2 

 Image  of  Vortex  in  a  Plane.  Let  us  consider  two  line  vortices  of 

 Remark. In  case  of  two  dimensions  (as  for 

 Image of a Vortex in a Circular Cylinder (or in a circle ).  Let a vortex 
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   = iK   
















 

dx

y
taniy)dx(log 12/122  

    iK 




























































 

d

a
x

y
taniy

d

a
xlog

2

1

2/1

2

22

 

   + iK 



  

x

y
taniyxlog 122  

where we have ignored the constant term 

   = K log 

 

















































2/1

22

22

2/1222

sina
d

a
cosa

sina)dcosa(a

 



 

sinay

,cosax

aeza|z| i

 

      = K log d = constant. 

This shows that the cylinder is a streamline.  Thus (1) represents the complex 
potential of the fluid motion. From (1), we observe that the image of a vortex 
of strength K at z = d is a vortex of strength K at the inverse point z = a2/d 
together with a vortex of strength K at z = 0 i.e. centre of the circle. 

Cylinder in a Uniform Stream. Let a 
liquid be in motion with a velocity U along the x-axis.  The complex potential 
due to the stream is Uz. If the circular cylinder of radius a is introduced inside 

the liquid, then the complex potential, by circle theorem, becomes Uz + U
z

a 2

.  

Let there be a circulation k about the cylinder.  The complex potential due to 
circulation is ik log z.  Thus the complex potential of the whole system is  

  W = Uz + U
z

a 2

+ ik log z.    (1) 

  Circulation  about  a  Circular  Cylinder  in  a  Uniform  Stream.  Let  a 
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 
z

ik

z

a
UU

dz

dW
q

2

2

  

At the stagnation points, q  = 0 i.e. q = 0 

 U  0
z

ik

z

Ua
2

2

    

 Uz2 + ikz  U a2 = 0 

 z = 
22

2

Ua4

k
1a

U2

ik   

Since a and U are constants, therefore the flow potential term depends very 
much on the magnitude of k.  We shall consider three cases. 

Case I. When k < 2aU i.e. ,1
Ua4

k
22

2

  we put 

  
22

2

Ua4

k
sin2  and then 

  z = ia sin  + a cos  

Thus the stagnation points are (a cos ,  a sin) and (a cos,  a sin) 

Further |z| = a | + cos   i sin | = a  

 The stagnation points lie on the boundary of the cylinder.  They lie on the 
line MN below the diameter AB as shown in the fig.  The velocity increases 
above MN and decreases below MN.  

 

 

 

 

 

 

 

 
 
 
                    

B A 

N M 
(a cos,a sin) (a cos,a sin) 

C 
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Further, from Bernoull‟s equation, 

  


2q
2

1p
constant 

we observe that the pressure decreases above MN and increases below MN.   

Thus, there is an increase of pressure by the liquid due to circulation.  If there 
is no circulation, then k = 0   sin=0 

   = 0, , z = + a 

Therefore, MN coincides with AB and thus the stagnation points are at A and 
B.  Therefore we conclude that the circulation brings the stagnation points 
downwards and put an upward thrust on the cylinder. 

Case II. When k = 2aU i.e. 1
Ua4

k
22

2

 , then sin = 1 

   = /2,  z = ia    |z| = a 

and thus the stagnation points coincide at C, the bottom of the cylinder. 

Case III. When k > 2aU i.e. 
22

2

Ua4

k
> 1, then we put 

22

2

Ua4

k
 = cosh2 so that  

  z = a (i cosh  + sinh ) 

    = ia e, i a e 

 The stagnation points lie on y-axis.  

Further |(iae) (iae)| = a2 

this shows that the stagnation points are inverse points w.r.t. the circular 
boundary of the cylinder.  One of these points lie inside and other is outside the 
cylinder.  The point which is inside the cylinder does not belong to the motion.

  
circletheinside,ae|iae||z|

circletheoutside,ae|iae||z|

2

1








 

since ae <ae. 

We know that at the stagnation points (critical points), there are two 
branches of the streamlines which are at right angles to each other.  Thus the 
liquid inside the loop formed at the stagnation points will not be carried by the 
stream but will circulate round the cylinder  
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Pressure (Force) on the circular cylinder :-  From (1), we have 

z

ik

z

Ua
U

dz

dW
2

2

  

Therefore,  by Blasius theorem,  

   X  iy =  







C

2

.dz
dz

dW

2

i
 

           =  (sum of the residues of 
2

dz

dW








within the circle |z| = a) 

  ais
dz

dW
astheoremsidueRes'CauchyBy

2









meromorphic function 

where X, Y are components of the pressure of the liquid and  is the density of 
the liquid 

Now,  
2

2

2

22

2

2
2

2

z

k

z

a
1

z

ikU2

z

a
1U

dz

dW 

























 

The only pole inside the cylinder |z| = a is z = 0 i.e. a simple pole.  The residue 
at z = 0 is 2ikU 

Therefore,  X  iy = (2i kU) 

              X = 0, Y = 2kU 

This represents an upward thrust on the cylinder due to circulation.   The lifting 
tendency (k  0) is called the Magnus effect.  The moment M is obtained to be 
zero, since residue is zero in that case. 

at the complex potential 

  W = U ik
z

a
z

2









  log z represents a possible flow part a 

circular cylinder.  Sketch the streamlines, find the stagnation points and 
calculate the force on the cylinder. 

,
iaz

iaz










 K and a both real, is the 

complex potential of a steady flow of liquid about a circular cylinder, the plane 

 Exercise.  Show that the complex potential

   Example. Verify  that  W  =  iK  log   , K  and  a  both  real,  is  the  

Unit-2 Bernoulli's Theorem and Circulation 2016-Batch

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
Page 20 of 69



                                                          

y = 0 being a rigid boundary.  Find the force exerted by the liquid on unit 
length of the cylinder. 

Solution. Putting W =  + i, we get 

    + i = iK log 
iaz

iaz




 

   = ik 






 

 

x

ay
tani

x

ay
tani

|iaz|

|iaz|
log 11  

   = K log 
|iaz|

|iaz|




 

The streamlines  = constant are given by  

  
|iaz|

|iaz|




= constant =  (say) 

For   1, these are non-intersecting coaxial circles having z = + ia as the 
limiting points i.e. circles of zero radius.  In particular, for  = 1, we get a 
streamline which is the perpendicular bisector of the line segment joining the 
points + ia and it is the radical axis of the coaxial system.  No fluid crosses a 
streamline and so a rigid boundary may be introduced along any circle                 
 = constant of the coaxial system, including the perpendicular bisector  = 1  

We note that for  = 1, |z  ia| = |z + ia| 

  x2 + (ya)2 = x2 + (y +a)2    y = 0 

Hence we can introduce rigid boundaries along  

(i) a particular circle  = constant ( 1) 

(ii)  along the plane y = 0 ( = 1) 

and this establishes the result of the 
first part of the question.  The 
circular section C of the cylinder 
and the rigid plane y = 0 are shown 
in the fig.  Circle C is any member 
of the above mentioned -system of 
coaxial circles and it encloses the 
point A(0, a) whereas the point  
B(0, a) is external to it. 

 
 
   
       A   (0,a) 

O y = 0 

C 

y 

x 
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Since W = iK [log (z  ia)  log (z + ia)] 

  W = 













iaz

1

iaz

1
iK

dz

dW
 

Therefore,  by Blasis theorem, 

  X  iY =  







C

2

dz
dz

dW

2

i
 

i.e.  X  iY =  





















C

2

dz
iaz

1

iaz

1
iK

2

i
 

   =  

















C
22

2

dz
)iaz)(iaz(

2

)iaz(

1

)iaz(

1

2

iK
 

The integrand has double poles at z = + ia.  Out of these poles only z = ia lies 
within C.   Thus, we find residue at z = ia.  It is only the last term of the 
integrand which  gives a non-zero contribution to the contour integral and the 
appropriate residue at z = ia is  

  










 )iaz)(iaz(

2
)iaz(Lt

iaz
 = 

a

i

ia

1

ia2

2 
 

Hence by Cauchy-Residue theorem, we get 

  X  iY = 



 

a

i
)i2(

2

K2

 = 
a

Ki 2
   

           X = 0, Y = 
a

K2
 

which shows that the liquid exerts a downward force on the cylinder of amount 

a

K2
 per unit length.  In case of moment M, the sum of residues is obtained 

to be zero and thus  M = 0 
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due to a vortex filament K at z = z0.  We know that, the complex potential is 

  W = iK log (zz0) 

 






 i

i
0

e
R

iK

Re

iK

zz

iK

dz

dW
q  

where z  z0 = Rei. 

  AP = R, arg (zz0) =  

 

 

 

 

 

 

   u  iv =  ie
Re

iK
 

              = )sini(cos
R

iK 
 

        U = 
R

K
q,cos

R

K
v,sin

R

K 
 

Therefore,            )90tan(cot
u

v   

Thus, the direction of motion at P is perpendicular to AP with speed K/R in the 
sense given by the rotation of the vortex at A.  

ar Vortex (Line Vortex)  

The stream function  at a distance r < a (the radius of a cylindrical vortex) is 
determined by               = 2.  Using polar co-ordinates, we get 

v 

A 
z0 

 

R 

K 
P 

 
u 

90 

 Motion  of  a  Vortex  Filament.   We  find  the  velocity  of  the  point  P(z) 

 Motion of Rectilinear Vortex (Line Vortex) 
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                     2 = ,
dr

d

r

1

dr

d
2

2 
 where  is a function of r only, due to 

symmetry 












0
d

d
.e.i

2

2

 

Thus, we get 

           2 = 





 

dr

d
r

dr

d

r

1
= , r < a     (1) 

Integrating (1) and noting that  is constant, we obtain 

  
r

A
r

2

1

dr

d 
     (2) 

But the radial and transverse components of velocity are 

  qr = 
r

q,
r

1







  

 qr = 0,        q = 
r

A
r

2

1      

The velocity cannot be infinite at the origin (r = 0) and so A = 0 

Therefore,  q = 
2

1
r = 0 at r = 0 

Thus there is no motion at the centre of a circular vortex.  Therefore, in case of 
a rectilinear vortex (line vortex), its motion is not due to itself but due to the 
presence of other vortices. Thus, if motion is due to n vortices of strengths Ks 
at the points zs (s = 1, 2,…,n), then the complex potential at a point P(z), not 
occupied by any vortex, is  

  W = 


n

1s
i Ks log (zzs)    (3) 

and the complex velocity is given by 

  u  iv =   












n

1s s

s

zz

K
i

dz

dW
   (4) 

Further, the complex velocity of the vortex of strength Kr, which is produced 
only by the other vortices, is  

Unit-2 Bernoulli's Theorem and Circulation 2016-Batch

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
Page 24 of 69



                                                                          

  ur  i vr =   









n

1s sr

s

zz

K
i , where s  r.  (5) 

The result (5) is practically obtained as  

  W = WiKr log (z  zr) 

so that 

  ur  ivr = 

rzzr

r

rzz zz

iK

dz

dW

dz

'dW


















  

points A(z = z1) and    B(z = z2) respectively, then  

  W = iK1 log (zz1) + iK2 log (zz2) 

The velocity of A is due to the presence of other vortex at B and vice-versa.  
Thus  

  
21

2

1zz
1

zz

iK

dz

dW
z














  

and   

21

1

12

1

2zz
2

zz

iK

zz

iK

dz

dW
z

















  

Therefore,  

K1 0
zz

KiK

zz

KiK
zKz

21

21

21

21
221 





   

or  0
KK

zKzK

dt

d
.e.i0

KK

zKzK

21

2211

21

2211 












 

 

Integrating, we get 

  



21

2211

KK

zKzK
constant 

Centroid of Vortices.   Let there be two vortices of strengths K and K at 
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A(z1) 

K2 G 

K1 

B(z2) 

The point 
21

2211

KK

zKzK




 divides AB in the ratio  K2 : K1.   This point remains 

fixed                            (not necessarily a stagnation point) and is called the 
centroid G of the vortices at A and B. 

Further 

  
2112 KK

AB

K

GB

K

AG


  

Therefore, AG = AB
KK

K

21

2


 

      v = r   = r
dt

d
 

The velocity of A is  

     |u1  iv1| = 
AB

K2  

         = 



.AG

)AB(

KK
.

KK

ABK
2

21

21

2  

where                   = 
2

21

)AB(

KK 
 

Thus, A moves with a velocity AG. perpendicular to AG.  Similarly B moves 
with a velocity GB. perpendicular to GB.  So AB rotates with an angular 
velocity .  Further, neither vortex has a component of velocity along AB, it 
follows that AB remains constant in length. 

vortex pair. 

respectively.  Then the complex potential is  

  W = iK log (zz1)  iK log (zz2)  

    = W1 + W2 (say) 

The velocity at A is due to the presence of the vortex at B and vice-versa. 

 Vortex Pair.  A pair of vortices of equal and opposite strengths is called a 

Let  K  and  K  be  the  strengths  of  the  two  vortices  at  A(z  =  z )  and  B(z  =  z ) 
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K 

A (z=z1) (z=z2) B 

K 

Therefore the velocity at A is given by 

  

 

 

 u1iv1 = 
211zz

2

zz

iK

dz

dW













 

Similarly, the velocity at B is  

                  u2  iv2 = 
2zz

1

dz

dW








   

              
2112 zz

iK

zz

iK







  

     q1 = |u1 iv1| = ,
AB

K
  

   
AB

K
|ivu|q 222    | |z1  z2| = AB 

Therefore, both the vortices have the same velocity. 

Further, W = iK log 
2

1

zz

zz




 

  + i = iK 












)(i
zz

zz
log 21

2

1   
x

y
tan 1  

  = K log 
2

1

2

1

r

r
logK

zz

zz





 

Therefore, the streamlines,  = constant, are 
2

1

r

r
= constant. 

which are co-axial circles. 

Thus the streamlines in case of a vortex pair are co-axial circles which have A 
and B as limiting points.  
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in the presence of a plane circular impermeable boundary |z| = a, around which 
there is circulation 2k.  Show that 

   =  
1n

1
2 

 

Show that there are two stagnation points on the circular boundary z = aei 
symmetrically placed about the real axis in the quadrants nearest to the vortex 
given by 

  cos = (3n21)/2n3. 

and prove that  is real. 

Solution. The circulation of vortex is 2k and thus the strength of vortex is k  

Therefore, complex potential due to the vortex is  

  f(z) = ik log (zna) 

  )z(f = ik log (z na)    | k,n, a and the 

function form are real. 

  z/af 2 = ik log 







 na

z

a 2

 

The complex potential, when the circular cylinder |z| = a is introduced into the 

fluid, becomes               f(z) + f (a2/z), by circle theorem.   

Now, there is a circulation 2k around the cylinder.  This is equivalent to the 
line vortex at z = 0 of strength k. 

Thus the total complex potential is  

  W = ik log (zna) ik log 







 na

z

a 2

 +ik log z  

      = ik log (zna) ik log 





 

n

a
z + ik log z + ik log z + constant. 

      = ik log (zna) ik log ik
n

a
z 






   ( +1) log z + constant (1) 

 Example. A vortex of circulation 2 k is at rest at the point z = na (n > 1), 
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na 

O(z=0)       A 





 

n

a
z                     A (z=na) 

  (+1)k              k                                   k 

This is equivalent to the complex potential due to a vortex of strength k at           
z = na, k at z = a/n and ( +1)k at z = 0 as shown in the figure 

 

 

 

The velocity at point A is due to the motion of other two vortices (i.e. 
excluding first term in (1)) 

Therefore,  

                             






 




























 an

)1(ik

n

a
na

ik

dz

dW

naz

     

              (Differentiating (1) and put z = an excluding Ist term of (1))  
    

The vortex at A is at rest if  

         0

n

a
na

k

na

)1(k
0

dz

dW

naz







 

           = 
1n

1
2 

   

Hence the result 

Now, from (1), we get 

     


























z

1

n

a
z

1

naz

1
ik

dz

dW
 

Putting z = a ei and simplifying, we get 

  
1n

1
usng

)1n)(1cosn2n(

1n3cosn2

a

eik

dz

dW
222

23i









 

The stagnation points on the circle, if any, are given by  

     0
dz

dW  for z = aei 

Unit-2 Bernoulli's Theorem and Circulation 2016-Batch

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
Page 29 of 69



FLUID DYNAMICS  204 

Thus                    

    0
dz

dW      2n3 cos  3n2+1 = 0 

      cos = 
3

2

n2

1n3 
     (2) 

Now, we know that 1 cos   1 i.e. |cos|  1 therefore R.H.S. of (2) must lie 
within these limits for  to be real 

Let us write          

    f(n) = 
33

2

n2

1

n2

3

n2

1n3 
 

Then                    

     f(1) = 1 ,  and   also,  f (n) = 
42 n2

3

n2

3   

                                                  = 
4n2

3
(1n2) < 0 for n > 1 

From here, we note that f (n) < 1 for n > 1.  Thus for n > 1, f(n) decreases 
monotonically from 1 at n = 1 to 0 as n.  For all n >1, real values of  are 
obtained from (2).  Two distinct values of  are obtained for any given n > 1, 
one of the values is  = , where 0 <   /2 and the other is             = 2.  
Hence the two stagnation points are symmetrically placed about the real axis in 
the quadrants nearest to the vortex. 

When a body moves slowly through a liquid, rows of vortices are sometimes 
formed. There vortices can, when stable, be photographed. Here we consider 
infinite system of parallel line vortices and two dimensional flow will be 
presumed throughout. 

an infinite row of parallel rectilinear vortices (line vortices) of same strength K 
and a distance „a‟ apart. 

First, let there be 2n+1 vortices with their centres on x-axis and the middle 
vortex having its centre at the origin.  The vortices are placed at points                
z = + na, n = 0, 1, 2, ……, symmetrical about  y-axis.   The complex potential 
due to these vortices is  

Vortex Rows 

 Single  Infinite  Row  of  Vortices. We  shall  find  the  complex  potential  of 
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y 

x 
3a  2a   a       O   a    2a      3a 

 

 

 

 

 

W = iK log z + iK log (za) + iK log (z2a) +…..+ iK log (zna) 

       + iK log (z+a) + iK log (z +2a) + …… + iK log (z + na) 

      = iK log z (z2 a2) (z222a2) (z2  32a2)………(z2n2a2) 

      = iK log 




































22

2

22

2

22

2

2

2

an

z
1.......

a3

z
1

a2

z
1

a

z
1

a

z
 

       + iK log 

a

(1)n (a2. 22 a2. 32a2………n2a2) 

Ignoring the constant term and putting ,
a

z 
 we get 

  W = iK log 

































22

2

22

2

2

2

n
1.............

n
11  

Making n , we find 

  W = iK log sin = iK log sin
a

z
   (1) 

The velocity of the vortex at origin is given by 

 q =    0zzlogiKW
dz

d
  | The motion is due to other vortices  

     = 
0z

zlogiK
a

z
sinlogiK

dz

d






 
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      = iK 

0z

z

1

a

z
sin

a

z
cos

a

























 

which is indeterminate form and  0 as z  0.  Hence the velocity at z = 0 is 
zero.  Similarly, all other vortices are at rest. Thus, the infinite row of vortices 
does not induce any velocity by itself. 

Now, the velocity at any point of the fluid other than the vortices is given by  

  
a

z
cot

a

iK

dz

dW
ivuq

  

         = 



 

)iyx(
a

cot
a

iK
 = 

)iyx(
a

sin

)iyx(
a

cos

a

iK






 

         = 

)iyx(
a

sin)iyx(
a

sin2

)iyx(
a

sin)iyx(
a

cos2

a

iK






 

         = 

a

x2
cosi

a

y2
cos

a

yi2
sin

a

x2
sin

a

iK






 

         = 
























a

x2
cos

a

y2
cosh

a

y2
sinhi

a

x2
sin

a

iK
 

                u = 

a

x2
cos

a

y2
cosh

a

x2
sin

a

K

v,

a

x2
cos

a

y2
cosh

a

y2
sinh

a

K










 

Also, we have W =  + i = iK log sin
a

z
 

and  w  =   i = iK log sin
a

z
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y 

A A 

      
  O   (0, 
0) 

x 

B 

   z12a         z1a              z1        z1+a           z1+2a      

k 

  z22a         z2a                    z2           z2+a        z2+2a  
B 

  ( +i)  ( i) = iK log sin 
a

z
 






 

a

z
sinlogiK  

 2 i = iK log sin
a

z
sin 

a

z
 

Streamlines,  = constant, are found to be  

  cosh 
a

x2
cos

a

y2 
= constant. 

consisting of infinite number of vortices each of strength K evenly placed 
along a line AA parallel to x-axis and another system also consisting of 
infinite number of vortices each of strength K placed similarly along a 
parallel line BB.  Let the line midway between these two lines of vortices be 
taken as the x-axis. 

 

 

 

 

 

 

 

Let one vortex on infinite row AA be at z = z1 and one vortex on infinite row 
BB be at z = z2, so that the system consists of vortices K at z = z1 + na and 
vortices K at z = z2 + na, n = 1, 2, …. 

The complex potential of the system is 

  W = iK  










0n 22

11

)nazz)(nazz(

)nazz)(nazz(
log   

       = iK  











0
222

2

222
1

an)zz(

an)zz(
log  

       = iK log 


 













1n
222

2

222
1

2

1

an)zz(

an)zz(
logiK

zz

zz
 

Double Infinite Row of Vortices.  Let us suppose that we have a system 

Unit-2 Bernoulli's Theorem and Circulation 2016-Batch

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
Page 33 of 69



 208 

       = iK log  




















 

1n
222

2

222
1

2

1

an)zz(1

an)zz(1

zz

zz
 (1) 

Now, since sin =  















1n
22

2

n
1    real or complex, 

we get, on setting  = 
a

)zz(

a

)zz( 21 



 

sin 






 










22

2
1

1n

11

an

)zz(
1

a

)zz(

a

)zz(
 

sin 






 










22

2
2

1n

22

an

)zz(
1

a

)zz(

a

)zz(
 

Therefore, equation (1) takes the form. 

     W = iK log 

























a

)zz(
sin

a

)zz(
sin

2

1

   (2) 

The velocity at any point P(z), not occupied by a vortex filament, is  

 u iv =   iK
dz

dW
[cot  (z z1)  cot  (zz2)], where = /a 

          = 2iK sin (z2z1)/[cos (z2z1)  cos (2zz1 z2)] (3) 

To find the velocity (u1, v1) of the vortex K at z = z1, we have 

  u1  iv1 =   
1zz

1)zzlog(iKW
dz

d






   

    = iK 

1zz1
12

zz

1
)zz(cot)zz(cot












  

Since              












)zz(

1
)zz(cot

1
1 0 as zz1 
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O 
Ar  

r  

r  

P(time t+t) 

P(time t) 

A(t0=0) 

rr   

Suppose that a fluid particle is moving along a curve C, initially it being at 

point A(t0  = 0) with position vector Ar .  Let P and P be its positions at time t 

and t + t with position vectors rrandr  respectively.  

Therefore,   'PPr   
 
 
 
 
 
 
 
 
 

 

 

 

 
The points A, P, P are geometrical points of region occupied by fluid and they 
coincide with the locations of the same fluid particle at times t0, t, t + t 

respectively.  Let f be the acceleration of the particle at time t when it 
coincides with P.  By definition 
 

  
t

ttimeinvelocityparticleinChange
Ltf

0t 





)(
 (1) 

But the particle vel. at time t is )t,r(q and at time t+t it is ),( ttrrq  .   

Thus (1) becomes  

  
t

trqttrrq
Ltf

0t 




)],(),([
    (2) 

Now,  

t

ttrqttrq

t

ttrqttrrq

t

trqttrrq








 ),(),(),(),(),(),(

 

 (3) 
Since r  is independent of time t, therefore  

  
t

q

t

trqttrq
Lt

0t 







),(),(
    (4) 

 Acceleration at a Point of a Fluid
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Using Taylor‟s expansion, we get  

   ),()(),(),( ttrqrttrqttrrq  (5) 

where || = 0 ])[( 2r  

[ F(x+x, y +y, z + z) F(x,y,z) = 
















z
z

y
y

x
x  (F(x,y,z) 

  +

2

z
z

y
y

x
x

2

1

















|
. F(x,y,z) + …… 

and  

         ),( 







 r

z
z

y
y

x
x where  

   k
z

j
y

i
x

kzjyixr ˆˆˆ,ˆˆˆ







 ] 

But r is merely the displacement of the fluid particle in time t, therefore, 

  ttrqr  ),(       (6) 

Thus, from (5), we obtain  

  qq
t

ttrqttrrq
Lt

0t
)(

),(),( 





  (7) 

where R. H. S. of (4) & (7) are evaluated at P )t,r( .  Hence, from (2), the 

acceleration of fluid at P in vector form is given by 
 

  q)q(
t

q
f 


      (8) 

q .  The same procedure can be applied to find the rate of change of any 

physical property associated with the fluid, such as density.  Thus, if  F = 
F )t,r(  is any scalar or vector quantity associated with the fluid, it‟s rate of 
change at time t is given by  
 

  F)q(
t

F

Dt

DF 

  

Remark. We have obtained the acceleration i.e. rate of change of velocity 
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The operator )q(
tDt

D 

 is Lagrangian and operators on R.H.S. are 

Eulerian since r  is independent of t. 
Dt

D
is also called material derivative.   

In particular, if F = , the density of the fluid, then  

 



)(q
tDt

D
 

which is the general equation of motion for unsteady flow. 

Cartesian components of q  and f1, f2, f3 that of f  i.e. q  = (u,v,w), f  = (f1, f2, 

f3). 
Then from equation. 

  q)q(
t

q
f 


 ,     (1) 

we get 

  

z

w
w

y

w
v

x

w
u

t

w
f

z

v
w

y

v
v

x

v
u

t

v
f

z

u
w

y

u
v

x

u
u

t

u
f

3

2

1










































 

which are the required Cartesian components of f . 

In tensor form with co-ordinates xi and velocity components qi (i = 1, 2, 3), the 
above set of equations can be written as  
 

  fi =
j

i
j,ij,ij

i

x

q
qwhere,qq

t

q








 

obtaining the acceleration components in curvilinear co-ordinates; we obtain a 
more suitable form of equation (1). as  
 

  )( qqq
2

1

t

q
f 2 









  

 Components of Acceleration in Cartesian co-ordinates. Let u,v,w be the 

  Components   of   Acceleration   Curvilinear   co-ordinates.     Before 
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     = qq
2

1

t

q 2 










  ,    where qqcurl   . 

We have  

z

q
)k̂q(

y

q
)ĵ.q(

x

q
)îq(q)q(








   (2) 

For any three vectors ,C,B,A we have 

  C)BA(B)CA()CB(A   

i.e.  

)CB(AB)CA(C)BA(   

In particular, taking 
x

q
CiBqA


 ,ˆ, , we get  

  























x

q
îqî

x

q
q

x

q
)îq(  

       = 




















x

q
îqq

2

1

x
î 2   (3) 

Similarly,  

            























y

q
ĵqq

2

1

y
ĵ

y

q
)jq( 2   (4) 

  























z

q
k̂qq

2

1

z
k̂

z

q
)k̂q( 2   (5) 

Adding (3), (4) and (5), we get 

  

















x

q
ĵqq

2

1
q)q( 2  

     =  qqq
2

1 2 





  

Thus, from (1), we obtain 

   qqq
2

1

t

q

dt

qd
f 2 









  

     = qq
2

1

t

q 2 










    (6) 
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Now, let (u1, u2, u3) denote the orthogonal curvilinear co-ordinates. 

Also let fqqqq 321 ,,,( = (f1, f2, f3)  = (1, 2, 3), where the terms have 

their usual meaning.  We know that the expression for the operator  in 
curvilinear co-ordinates is  
 

    ,
uh

1
,

uh

1
,

uh

1

332211

















 

where h1, h2, h3 are scalar factors. 

The components of qcurl  in the curvilinear system are given by  

  


























































)qh(
u

)qh(
uhh

1

)qh(
u

)qh(
uhh

1

)qh(
u

)qh(
uhh

1

11
2

22
121

3

33
1

11
313

2

22
3

33
232

1

  (7) 

Using these results in (6), we find that  

 

 

 










































)qq(qqq
uh2

1

t

q
f

)qq(qqq
uh2

1

t

q
f

)qq(qqq
uh2

1

t

q
f

1221
2

3
2

2
2

1
33

3
3

3113
2

3
2

2
2

1
22

2
2

2332
2

3
2

2
2

1
11

1
1

  (8) 

which are the components of acceleration in curvilinear co-ordinates. 

Now, we write the components of acceleration in cylindrical (r, , z) and 
spherical (r, , )             co-ordinates. 
 

Here, 

  u1  r, u2   u3  z.   and     h1 = 1, h2 = r, h3 = 1 

 Components  of  Acceleration  in  Cylindrical  Co-ordinates  (r,  ,  z).  
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Therefore,  
















z
,

r

1
,

r
 

and  

  1 = 











)rq(
z

q

r

1
2

3  = 
z

q
.

q

r

1 23








 

  2 = 
r

q

z

q
)q(

r
)q(

z
31

31 













 

  3 = 










 1

2

q
)rq(

rr

1
  = 






 122 q

r

1

r

q

r

q
 

Thus,  

f1 =   





















r

q
q

z

q
qqqq

r2

1

t

q 3
1

1
3

2
3

2
2

2
1

1  

                     















 12

2
22

2

q

r

q

r

q

r

q
q  

                 =
r

q
q

z

q
q

r

q
q

r

q
q

r

q
q

t

q 3
1

1
3

3
3

2
2

1
1

1
























 

                   






 12

2
22

2

q

r

q

r

q

r

q
q  

   =
r

q

z

q
q

q

r

q

r

q
q

t

q 2
21

3
121

1
1 

















 

If we define the differential operator 

  then,
z

q
r

q

r
q

tdt

d

Dt

D
3

2
1 









  

  f1 =
r

v

Dt

Du

r

q

Dt

Dq 22
21   

Similarly,  f2 = 
r

uv

Dt

Dv

r

qq

Dt

Dq 212      (9) 
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  f3 = 
Dt

Dw

Dt

Dq3        

   

where (q1, q2 , q3)  (u, v, w) 

Equation (9) gives the required components of acceleration in cylindrical co-

ordinates.  

). Here, 

 u1  r, u2  ,  u3      and h1 = 1, h2 = r, h3 = r sin  

Therefore,           
















sinr

1
,

r

1
,

r
 

and    

1 = 














)rq()qsinr(

sinr

1
232

 

      = 

























23
32

q
r

q
sinqcosr

sinr

1
 

      = 


















23
3

qq
.sincosq

sinr

1
 

  2 = 
















)qsinr(

r
)q(

sinr

1
31  

      = 














 r

q
sinrqsin

q

sinr

1 3
3

1  

  3 = 











)q()rq(
rr

1
12   = 












 12
2

q

r

q
rq

r

1
 

Thus, 
f1 = 

  























r

q
sinrsinq

q

sinr

q
qqq

r2

1

t

q 3
3

132
3

2
2

2
1

1  

 Components of Acceleration in Spherical Co-ordinates (r,  ,  ). Here,     
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              












 12
2

2 q

r

q
rq

r

q
 

  = 
r

qq

sinr

q

r

q
q

r

q
q

r

q
q

t

q 2
3133

3
2

2
1

1
1 






















 

              q3










 123

2

2
23 q

r

q

r

q
q

r

q

r

q
 

  = 















sinr

q

r

q

r
q

tDt

D
where,

r

q

r

q

Dt

Dq 32
1

2
3

2
21  

i.e.   f1 =
r

wv

Dt

Du

r

qq

Dt

Dq 222
3

2
21 


  

Similarly,   f2 = 
r

cotwuv

Dt

Dv

r

cotqqq

Dt

Dq 22
3212 


         (10) 

  f3 = 
r

)cotvu(w

Dt

Dw

r

cotqqqq

Dt

Dq 32313 


  

Equation (10) gives the required comps of acceleration in spherical co-

ordinates. 

(inviscid) fluid moving with velocity q .  We insert an elementary rigid plane 

area A into this fluid at point P.  This plane area also moves with the velocity 
q  of the local fluid at P.  

If   F denotes the force exerted on one side of A by the fluid particles on the 
other side, 
 
 
 
 
 
 
 
 
then this force will act normal to A. 

F  

A  

 Pressure  at  a  point  of  a  Moving  Fluid.  Let  P  be  a  point  in  a  ideal 
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S 

R 

Q 

Y 

Z 

z 

P 

x 
y 

X 

O 

Further, if we assume that 
A

F
Lt

0A 



exists uniquely, then this limit is called the 

(hydrodynamic) fluid pressure at point P and is denoted by p. 

is same in all direction. 

Proof :- Let q  be the velocity of the fluid.  We consider am elementary 

tetrahedron PQRS of the fluid at a point P of the moving fluid, Let the edges of 
the tetrahedron be PQ = x, PR = y, PS = z at time t, where x, y, z are 
taken along the co-ordinate axes OX, OY, OZ respectively.  This tetrahedron is 
also moving with the velocity q  of the local fluid at P.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let p be the pressure on the face QRS where area is s.  Suppose that < l, m, 
n> are the d.c.‟s of the normal to s drawn outwards from the tetrahedron.  
Then,   
 
        ls = projection of the area s on yz-plane.  

              = area of face PRS (triangle) 

              = 
2

zy
zy

2

1  .  

Similarly,  

      ms = area of face PQS   = 
2

xz
xz

2

1  .  

and  

    ns = area of face PQR  = 
2

yx
yx

2

1  .  

The total force exerted by the fluid, outside the tetrahedron, on the face QRS is 

Theorem :- Prove that the pressure p at a point P in a moving inviscid fluid 
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  = ps )ˆˆˆ( knjmi l  

  = p )ˆˆˆ( ksnjsmis l  

  = )ˆˆˆ( kyxjxzizy
2

p   

Let px, py, pz be the pressures on the faces PRS, PQS, PRQ. The forces exerted 
on these faces by the exterior fluid are  
 

  kyxp
2

1
jxzp

2

1
izyp

2

1
zyx

ˆ,ˆ,ˆ    respectively. 

Thus, the total surface force on the tetrahedron is  

  izyp
2

1
kyxjxzizy

2

p
x

ˆ)ˆˆˆ(   

  + kyxp
2

1
jxzp

2

1
zy

ˆˆ   

  =  kyxppjxzppizypp
2

1
zyx

ˆ)(ˆ)(ˆ)(   (1) 

In addition to surface force (fluid forces), the fluid may be subjected to body 

forces which are due to external causes such as gravity.  Let F  be the mean 
body force per unit mass within the tetrahedron.  

Volume of the tetrahedron PQRS is 
3

1
h s i.e. 

6

1
x y z, where h is the 

perpendicular from P on the face QRS. 

Thus, the total force acting on the tetrahedron PQRS is = Fe
6

1
x y z (2)   

Where  is the mean density of the fluid. 
From (1) and (2), the net force acting on the tetrahedron is  

   zyxF
6

1
kyxppjxzppizypp

2

1
zyx  ˆ)(ˆ)(ˆ)  

Now, the acceleration of the tetrahedron is 
6

1
masstheand

Dt

qD
 x y z of 

fluid inside it is constant. 
Thus, the equation of motion of the fluid contained in the tetrahedron is   
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 

n̂  

S 

p 

   zyxF
6

1
kyxpPjxzppizypp

2

1
zyx  ˆ)(ˆ)(ˆ)(  

    = .







Dt

qD
zyx

6

1
   (f = ma)    

i.e.  
                        (pxp) l 

s
Dt

qD
sh

3

1
shF

3

1
ksnppjsmppi zy  ˆ)(ˆ)(ˆ  

On dividing by Ss and letting the tetrahedron shrink to zero about P, in which 
case h0, it follows that  
  pxp = 0, pyp = 0, pzp = 0  

i.e.    
px = py = pz = p.     (3) 

Since the choice of axes is arbitrary, the relation (3) establishes that at any 
point P of a moving ideal fluid, the pressure p is same in all directions. 
 

Conservation of Momentum).  To obtain Euler‟s dynamical equation, we 
shall make use of Newton‟s second law of motion. 
Consider a region  of fluid bounded by a closed surface S which consists of 
the same fluid particles at all times. Let q  be the velocity and  be the density 

of the fluid. 
Then  d is an element of mass within S and it remains constant. 
 
 
 
 
 
 
 
 
 
 
 
The linear momentum of volume  is 

 Equations of Motion 

   Euler’s   Equation   of   Motion   of   an   Ideal   Fluid   (Equation   of 
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  qM 


d    | mass  velocity = momentum. 

Rate of change of momentum is 

  
dt

d

dt

Md  q


d = 
dt

qd



d   (1) 

The fluid within  is acted upon by two types of forces  

The first type of forces are the surface forces which are due to the fluid exterior 
to . 
Since the fluid is ideal, the surface force is simply the pressure p directed along 
the inward normal at all point of S. 
The total surface force on S is 

dSn̂pdS)n̂(p
SS
  = 


pd    (By Gauss div. Theorem) (2) 

    
The second type of forces are the body forces which are due to some external 

agent. Let F  be the body force per unit mass acting on the fluid.  Then F  d 
is the body force on the element of mass ed and the total body force on the 
mass within  is  
 

  


Fd       (3) 

By Newton‟s second law of motion, we have  

Rate of change of momentum = total force 

  


 pddFd
dt

qd
 

  








  0dpF

dt

qd
 

Since d is arbitrary, we get 

  0pF
dt

qd   

i.e.  

p
1

F
dt

qd 


      (4) 
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which holds at every point of the fluid and is known as Euler‟s dynamical 
equation for an ideal fluid. 
 

The above method for obtaining the Euler‟s equation of 
motion, is also known as flux method.  

 

Other Forms of Euler’s Equation of Motion. (i) We know that  



 q
tDt

D

dt

d
,   

therefore equation (4) becomes.  

  p
1

Fqq
t

q 






)(     (5) 

But qcurl,qq
2

1
q)q( 2 






  

Therefore,  Euler‟s equation becomes 

  .p
1

Fqq
2

1

t

q 2 













   (6)  

Equation (6) is called Lamb‟s hydrodynamical equation  

(ii) Cartesian Form. Let F),w,v,u(q  = (X,Y,Z) and p = 
















z

p
,

y

p
,

x

p
,  

then equation (5) gives  

  





































































z

p1
Z

z

w
w

y

w
v

x

w
u

t

w

x

p1
Y

z

v
w

y

v
v

x

v
u

t

v

x

p1
X

z

u
w

y

u
v

x

u
u

t

u

  (7) 

Equation (7) are the required equations in Cartesian form. 

(iii) Equations of Motion in Cylindrical Co-ordinates. (r, , z).  Here,  

                             rd),w,v,u(q  = (dr, rd, dz) 

           Remark.

Unit-2 Bernoulli's Theorem and Circulation 2016-Batch

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
Page 47 of 69



 56 

     p = 
















z

p
,

p

r

1
,

r

p
 

Let F  = (Fr, F, Fz). 

Also, the acceleration components in cylindrical co-ordinates are  

  









dt

dw

r

uv

dt

dv
,

r

v

dt

du

dt

qd 2

 

Thus, the equation of motion 

  .p
1

F
dt

qd 


  becomes 

  



































z

p1
F

dt

dw

p

r

1
F

r

vu

dt

dv

r

p1
F

r

v

dt

du

z

r

2

    (8) 

(iv)   Equations of Motion in Spherical co-ordinates (r, , ).  Here,             

                         )dsinr,rd,dr(rd),w,v,u(q   

  p = 














 p

sinr

1
,

p

r

1
,

r

p
  

Let F = (Fr, F, F).  The components of acceleration in spherical co-ordinates 

are 

  






 
r

cotvw

dt

dw
,

r

uv

r

cotw

dt

dv
,

r

wv

dt

du

dt

qd 222

 

Thus, the equation of motion take the form 
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





















p

r

1
F

r

vw

dt

dw

p

r

1
F

r

uv

r

w

dt

dv

r

p1
Fr

r

wv

dt

du

2

22

sin

cot

cot
   (9) 

The two equations, the equation of continuity and the Euler‟s 
equation of motion, comprise the equations of motion of an ideal fluid.  Thus 
the equations 

  0qdiv
t





)(  

and p
1

Fqq
t

q 






)(  

are fundamental to any theoretical study of ideal fluid flow.  These equations 
are solved subject to the appropriate boundary and initial conditions dictated by 
the physical characteristics of the flow.   
 

Equation of Motion.  Let initially a fluid element be at (a, b, 
c) at time t = t0 when its volume is dV0 and density is 0.  After time t, let the 
same fluid element be at (x, y, z) when its volume is dV and density is  .  The 
equation of continuity is  
 
  J = 0       (1) 

where     J = 
)c,b,a(

)z,y,x(




 

The components of acceleration are 

2

2

2

2

2

2

t

z
z,

t

y
y,

t

x
x








   

Let the body force F be conservative so that we can express it in terms of a 
body force potential function  as 
 

  F =        (2) 

By Euler‟s equation of motion, 

 Remark  :-

       Lagrange’s
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  p
1

p
1

F
dt

qd 





    (3) 

Its Cartesian equivalent is 

 





















































z

p1

zt

z

y

p1

yt

y

x

p1

xt

x

2

2

2

2

2

2

      (4) 

We note that a, b, c, t are the independent variables and our object is to 
determine x, y, z in terms of a, b, c, t and so investigate completely the motion. 
 
To deduce equations containing only differentiations w.r.t. the independent 
variables a, b, c, t we multiply the equations in (4) by x/a, y/a, z/a and 
add to get 
 

a

p1

aa

z

t

z

a

y

t

y

a

x

t

x
2

2

2

2

2

2




























   (5) 

Similarly, we get 

  
b

p1

bb

z

t

z

b

y

t

y

b

x

t

x
2

2

2

2

2

2




























  (6) 

c

p1

cc

z

t

z

c

y

t

y

c

x

t

x
2

2

2

2

2

2




























  (7) 

These equations (5), (6), (7) together with equation (1) constitute Lagarange‟s 
Hydrodynamical Equations. 
 

straight tube of uniform small bore and is acted upon by a body force which is 
such that the fluid is attracted to a fixed point of the tube, with a force varying 
as the distance from the point. Discuss the motion and determine the velocity 
and pressure within the liquid. 
 

Solution.  We note that the small bore of the tube permits us to ignore any 
variation of velocity across any cross-section of the tube and to suppose that 
the flow is unidirectional. 

 Example.  A homogeneous incompressible liquid occupies a length 2l of a 
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x 

l l 

P G 

h 

î  

We u be the velocity along the tube and p be the pressure at a general point P at 
distance x from the centre of force O.  Also, let h be the distance of the centre 
of mass G of the fluid, as shown in the figure.  

 
 
 
 
 
 
 
 

Equations of motion of the fluid are : 

(i) Equation of Continuity : Here, )0,0,u(q   

Therefore, equation of continuity becomes 

 )()( 1tuu0
x

u 



 

(ii) Euler’s Equation : In this case, it becomes 

 
x

p1
x

x

p1
X

x

uu

t

u



















 

 )(2
x

p1
x

t

u










| using (1) 

where x î is the body force per unit mass,  being a positive constant.  

We observe that equation (2) can be written as 

  
dx

dp1
x

dt

du


      (3) 

Integrating w.r.t. x, we get 

  x C
p

2

x

dt

du 2




      (4)  

where C is a constant and at most can be a function of t only. w.r.t. (x, y, z) 

Let  be the pressure at the free surfaces  x = hl and x = h + l of the liquid. 
Then using these boundary conditions, equation (4) becomes  

  (hl ) Ch
2

1

dt

du 2 

 )( l   
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  (h+l) Ch
2

1

dt

du 2 

 )( l  

which on subtraction give 

  h
dt

du        (5) 

But in the fluid motion all fluid particles move with the same velocity u and u 

= 
dt

dh
 

 Equation (5) becomes 

  h
dt

hd
2

2

       (6) 

Now, we solve the different equation (6), which can be written as  

  (D2 + ) h = 0 

Here auxiliary equation is  

      D2 +  = 0   D =  i 

Therefore, the solution of (6) is 

               h = A cos   t  

where A and  are constants which can be determined from initial conditions. 

To Calculate Pressure : We have from (3) & (5) 

  x  h
dx

dp1



 

                 )( xh
dx

dp1 


 

Integrating w.r.t. x ,  we get 

  D
12

xhp 2





 )(

)(
     (7) 

The boundary condition x = h  l,  p =  gives  
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  D
2

2






 l

.  

i.e.              D = / +
2

2
l

 

Therefore, equation (7) becomes  

  
22

xhp 22
l





/

)(
 

      =  22xh
2

l



)(  

      =  ))(( ll 



xhxh
2

 

curved tube of uniform small bore, under the action of gravity.  Calculate the 
period of oscillation. 
Solution.  Let O be the lowest point of the tube, AB the equilibrium level of 
the liquid and h the height of AB above O.  Let  and  be respectively the 
inclinations of the tube to the horizontal at A and B and  be the inclination of 
the tube at a distance s along the tube from O.  Let a and b denote the arc 
lengths of OA and OB respectively and suppose that at time t, the liquid is 
displaced through a small distance z along the tube from its equilibrium 
position. 
 

Due to the assumption of uniform small bore the flow is unidirectional along 
the tube. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Let the velocity be u(s, t). 

The equation of continuity gives 0
s

u 



    (1) 

M 

z 

A B 

N 

z 

y 

O 

h 

s 

   

   Example. Homogeneous  liquid  is  in  motion  in  a  vertical  plane,  within  a 
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 u is independent of  s 
Euler‟s equation of motion becomes  

  
s

p1
g

s

u
u

t

u













sin    

Using equation (1), this gives 

  
ds

dp1
g

t

u

dt

du





 sin  

i.e.             
ds

dp1

ds

dy
g

dt

du


      (2) 

Integrating it w.r.t. s, we find 

 
 
 
 
 

            sin  = 
ds

dy
    

  C
p

gy
dt

du
s 


      (3) 

where C may be a function of time t at the most. 
The boundary conditions at free surface are  

(i) p =  for y = h + z sin , s = OM = a + z at M 

(ii) p =   for y = h  z sin , s = ON = (bz) at N . 

Using these boundary conditions in (3), we get 

  (a + z) Czhg
dt

du 

 )sin(  

  (bz) Czhg
dt

du 

 )sin(  

Subtracting these we get 

 
 

 

ds 

dy 

dx 
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  (a +b) )sin(sinzg
dt

du     (4) 

Since    

             u = ,
2

2

dt

zd

dt

du

dt

dz    

equation (4) becomes 

           (a +b) )sin(singz
dt

zd
2

2

  

          ,z
dt

zd
2

2

      (5) 

where                           = 
ba

)sin(sing




 

We observe that equation (5) represents the simple harmonic motion.   It‟s 
period T is given by 

            T =
2

1

)sin(sing

ba
2

2














 . 

 

We shall obtain a special form of Euler‟s dynamical 
equation in terms of pressure.  The Euler‟s dynamical equation is 

  p
1

F
dt

qd 


      (1) 

where F,velocityisq  is the body force, p and  are pressure and density 

respectively.  

F  be conservative so that it can be expressed in terms of a body force potential 

function  as  

F  =          (2) 

When the flow is steady, then 0
t

q 



    (3) 

Therefore, in case of steady motion with a conservative body force equation 
(1), on using (2) and (3),  gives  

 Bernoulli’s Equation (Theorem) 

  For Steady Flow. 
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  p
1

qq
2

1 2 








  

    

0
t

q
andqq

2

1

t

q

dt

qd
or

q).q(
t

q

dt

qd

2 

















 

    








  qp

1
q

2

1 2    (4) 

Further, if we suppose that the liquid is barotropic i.e. density is a function of 
pressure p only, then we can write 

  





dp
p

1
 

Using this in (4), we get 

  









 q
dp

q
2

1 2 .    (5) 

Multiplying (5) scalarly by q  and noting that  

  0)qq()q(q  , we get 

  0
dp

q
2

1
q 2 










     (6) 

If ŝ  is a unit vector along the streamline through general point of the fluid and 
s measures distance along this stream line, then since ŝ  is parallel to q , 

therefore equation (6) gives 

  0
dp

q
2

1

s
2 














   

s
s

skq

qtoparalleliss








ˆ

ˆ
ˆ

 

Hence along any particular streamline, we have 

  C
dp

q
2

1 2 


      (7) 

where C is constant which takes different values for different streamlines.  
Equation (7) is known as Bernaull‟s equation.  This result applies to steady 
flow of ideal.  barotropic fluids in which the body forces are conservative. 

Now, if ŝ  is a unit vector taken along a vortexline, then, similarly, we get   
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 C
dp

q
2

1 2 


  along any particular vortexline.  (Here, we 

multiply scalarly by  )  

 &qif.e.i0  are parallel, then streamlines and 

vortex lines coincide and q  is said to be Beltrami vector.  

 

If ,0  the flow is irrotational. 

For both of these flow patterns,  

  C
dp

q
2

1 2 


  

where C is same at all points of the fluid.  
(ii)  For homogeneous incompressible fluids,  is constant and 

  





 pdp
. 

The Bernoulli‟s equation becomes 

  Cq
2

1p 2 


 

so that if q  is known, the pressure can be calculated. 

. Here also, we suppose that the body 

forces are conservative i.e. F  =  

For irrotational flow, 0qq   

The equation of motion  

        p
1

Fqqq
2

1

t

q 2 













)(    (1) 

in the present case becomes. 

          p
1

q
2

1

t
2 




















  

 Remark. (i) If            q

    For  Unsteady  Irrotational  Flow. Here  also,  we  suppose  that  the  body 
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                   0
t

dp
q

2

1 2 











   | Barotropic fluid. 

Integrating, we get  

  )(tf
t

dp
q

2

1 2 




     (2) 

which is the required equation.  

If the liquid is homogeneous, then 





pdp
 and the equation (2) become 

  ).(tf
t

p
q

2

1 2 




  

Further, for study case,            

            const)t(f,0
t





 

         .const
p

q
2

1 2 


  

tapering circular 
cross section.  It is inclined so that its axis makes and angle  to the horizontal 
with its smaller cross-section downwards.  The radius of the pipe at its upper 
end is twice that of at its lower end and water is pumped at a steady rate 
through the pipe to emerge at atmospheric pressure.  It the pumping pressure is 
twice the atmospheric pressure, show that the fluid leaves the pipe with a speed 
U give by 

 U2 = 








singL

15

32
, 

where  is atmospheric pressure 

Solution. The assumption that the pipe is slowly tapering means that any 
variation in the velocity over any cross-section can be ignored.  Let the 
velocity at the wider and of the pipe be V and the emerging velocity be U 

(velocity at the lower end).  The only body force is that of gravity, so ĵgF   

and consequently  = gy 
 

 Example. A long straight pipe of length L has a slowly tapering circular 
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L 

 

y 

L 

y 

y = L sin  

  

gy
y

g

k
z

j
y

i
x

jqF












 ˆˆˆˆ

 

Bernoulli‟s equation, Cq
2

1p 2 


   | For water  is const. 

becomes Cgyq
2

1p 2 


      (1) 

Applying this equation of the two ends of the pipe, we get 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  22 U
2

1
gLV

2

12 






sin.    (2) |for 

lower end y = 0 

Let a and 2a be the radii of the lower and upper ends respectively, then by the 
principle of conservation of mass 
 
  (2a)2V =  a2 U 

                             V = 
4

U
      (3) 

From (2) and (3), we obtain 

   +
2

1
Lg

16

U

2

1 2









 sin U2 

  2a 
 
 
P 

         
 
O 

  

 a 
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C 

A 

z 

P 

x 

B x Q 

u 

u 

                             .sin







 Lg

16

U
U

2

1 2
2  

                            2U
32

15   =  +gL sin. 

                                    U2 = 








singL

15

32
   

Hence the result. 

angle ABC a right angle and AB equal to BC.  The end C is closed and the tube 
is placed with end A upwards and AB vertical, and is filled with liquid.  If the 
end C be opened, prove that the pressure at any point of the vertical tube is 
instantaneously diminished one-half.  Also find the instantaneous change of 
pressure at any point of the horizontal tube, the pressure of the atmospheric 
being neglected.  
 
Solution.  Let AB = BC = a 
 
 
 
                                                                M 
 
 
 
 
 
 
 
When the liquid in AB has fallen through a distance z at time t, then let P be 
any point in the vertical column such that  

  AM = z, BP = x, BM = az 

If u and p be the velocity and pressure at P, then equation of motion is  

  
x

p1
g

x

u
u

t

u













  (1)  |u  u(x, t) 

and equation of continuity is 

  0
x

u 



  i.e. u = u(t) 

Example. A straight tube ABC, of small bore, is bent so as to make the 
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Therefore, equation (1) becomes 

  
x

p1
g

t

u










 

Integrating. w.r.t. x ,  we get 

   x Cp
1

gx
t

u 






.      (2) 

Using the boundary condition p = 0 at x = az, we get 

  C = )za(g
t

u
)za( 

  

Therefore, equation (2) becomes 

  x   )( zag
t

u
za

p
gx

t

u 









 

i.e. 





 




g

t

u
zax

p
)(      (3) 

Now, we take a point Q in BC, where BQ = x and let u, p be the velocity and 

pressure at Q, then  

  
t

u
ax

p





'

)'(
'

  | z = 0 and g is not effecting (4) 

Equating the pressure at B, when x = 0, x = 0, we get 

  (az) 
t

'u
ag

t

u









 



   | From (3) & (4) 

      = a 
t

u




   |  u = u 

Initially, when C is just opened, then z = 0,  t = 0 and we have 
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u
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u
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






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









   (5) 

Therefore, from equation (3), initially, the pressure at P is given by 
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          0t0
0

0 ppg
t

u
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








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



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


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                = )ax(
2
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                             p0 = )( xag
2

1      (6) 

But when the end C is closed, the liquid is at rest and the hydrostatic pressure 

at P is  

  p1 = gh = g (ax)  |h = AP = ax  (7) 

From (6) and (7), we get 

  10 p
2

1
p   

Thus, the pressure is diminished to one-half. 
Now, from (4), initial pressure at Q is given by  

  
0t

0

t

u
ax

p










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








 )'( = 

2

g
xa )'(    

                     )'(' xag
2

1
p0   

When the end C is closed, the initial pressure (hydrostatic) p2 at Q (or B or C) 
is   g a . 
Therefore, instantaneous change in pressure 

  = )'(' xag
2

1
gapp 02   = )'( xag

2

1   

 
density , the pressure at infinity being .  Show that, if the radius R of the 
sphere varies in any manner, the pressure at the surface of the sphere at any 
time is  
 

   + 

















 2

2

22

dt

dR

dt

Rd

2

)(
 

Solution. In the incompressible liquid, outside the sphere, the fluid velocity q  

will be radial and thus will  be a function of r, the radial distance from the 
centre of the sphere (the origin), and time t only. 
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 The equation of continuity in spherical polar co-ordinates becomes 

  0)ur(
dr

d

r

1 2

2
             (1)              

...

).(

,,),,(),,,(

symmetrysphericalei

ur
rr

1
q

00
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truu00uq

2

2 














 

               r2u = constant = f(t)    
 
On the surface of the sphere,  

   r = R, u = R  
Therefore,                  

                                   f(t) = R2 R  
and thus  

                                   r2u = R2 R      (2) 

 
 
 
 
 
 
 
 
  
 
We observe that u  0 as n  , as required. 
From (1), it is clear that curl q  = 0 

 the motion is irrotational and  q  =  

   u = 
r
        

2r

f

r





  | From (2) 

   = f/r                (3) 

The pressure equation for irrotational non-steady fluid motion in the absence of 

body forces is  

  )(tC
t

q
2

1p 2 




      

 
    
      R 

p =  

R   
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               i.e.    ).(tC
t

u
2

1p 2 




     (4) 

where C(t) is a function of time t.  

As r , p  , u = f/r2  0, 0 

so that C(t) = / for all t      (5) 

Therefore, from (2), (3), (4) and (5), we get 

            
2

2

2

r

RR

2

1
rf
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p




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
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


/    (6) 

But                          222 RR2RR)RR(
dt

d

t

f  



 

At the surface of the sphere,  we have r = R  and equation (6) gives 

            222 R
2

1
RRRR2

R

1p  

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   (7) 

Now,  
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2

22
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dt

d
R

dt

)R(d    

             = 22 R)R2RR2(    

             = 2R 2R3R    

Therefore,  from (7), we obtain  

  p = +


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
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

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1 )(
   

Hence the result.  

ple.  An infinite mass of ideal incompressible fluid is subjected to a 

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Thus, the impulsive pressure at the surface of the sphere of radius a/2 is given 
by  
 

  P = 6/a7
2/a

a

3

14

4
2

2





  

Hence the result 

When motion is the same in all planes parallel to xy plane (say) and there is no 
velocity parallel to the z-axis, i.e. when u, v are functions of x, y, t only and w 
= 0, we may regard the motion as two-dimensional and consider only the 
cases confined to the xy plane.  When we speak of the flow across a curve in 
this plane, we shall mean the flow across unit length of a cylinder whose trace 
on the xy plane is the curve in question, the generators of the cylinder being 
parallel to the z-axis. 

For a two-dimensional motion in xy-plane, q  is a function of x, y, t only and 

the differential equation of the streamlines (lines of flow) are 

  
v

dy

u

dx   i.e. vdx  udy = 0    (1) 

and the corresponding equation of continuity is 

  0
y

v

x

u 






      (2) 

We note that equation (2) is the condition of exactness of (1), it follows that (1) 
must be an exact differential, d(say).  Thus  

  vdx  udy = d = dy
y

dx
x 







 

so that                          u =  
x

v,
y 





 

This function  is called the stream function or the current function  or 
Lagrange’s stream function. 

Obviously, the streamlines are given by the solution of (1) i.e. d = 0 i.e.              
 = constant. (For unsteady flow, streamlines are given by  = f(t)) 
Thus, the stream function is constant along a streamline. 
 
From the above discussion, it is clear that the existence of stream function is 
merely a consequence of the continuity and incompressibility of the fluid.  The 

Stream Function
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0 

 

u 

P 

  

v 
n̂  

c 

stream function always exists in all types of two dimensional motion whether 
rotational or irrotational.  However, it should be noted again that velocity 
potential exists only for irrotational motion whether two dimensional or three 
dimensional. 
 

Let P be a point on a curve 
C in xy-plane.  Let an 
element ds of the curve 
makes an angle  with x-
axis.  The direction 
cosines of the normal at P 
are  

 (cos (90 +), cos , 0) 
i.e.             (sin , cos, 0). 
The flow across the curve C from right to left is  

  = ĵcosîsinn̂where,dsn̂q
C

 , 

          ĵvîuq   
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y
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  = 
C

d = (B  A) 

where A and B are the values of  at the initial and final points of the curve.  
Thus, the difference of the values of a stream function at any two points 
represents the flow across that curve, joining the two points. 
 

crosses its boundary, then 

 Physical Interpretation of Stream Function :-

 Corollary. If we suppose that the curve C be the streamline, then no fluid 
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 82 

  (B  A) = 0     B = A 

i.e.  is constant along c. 

R equations) :- 

We know that the velocity potential  is given by 

  













y
,

x
q  

i.e.   u = 
y

v,
x 





     (1) 

Also, the stream function  is given by 

  u = 
x

v,
y 





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      (2) 

From (1) and (2), we get 

  
xy

and
yx 











    (3) 

Equations in (3) imply 

  2 = 0 and 2 = 0 

i.e.  and  are harmonic functions.  

Again, from (3), we get 

   = grad  =  )ĵvîu(q   

        =  

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x
î
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        = ĵ
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î
y 



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        = )k̂î(
x

)k̂ĵ(
y






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        = k̂ĵ
y

î
x















  

        =   k̂ = grad   k̂  

i.e. grad  = (grad ) k̂  =  k̂  grad  

 Relation Between  and  (i.e. C R equations) :-
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i.e.   =   k̂       (4) 

Again, from (3), we note that 

  














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


yyxx
 

  0
yyxx














 

i.e.      = 0      (5) 

Thus, for irrotational incompressible two-dimensional flow (steady or 
unsteady), (x, y), (x, y) are harmonic functions and the family of curves            
 = constant (equipotentials) and  = constant (streamlines) intersect 
orthogonally.   

2 y2) are the velocity 
components of a possible fluid motion.  Determine the stream function and the 
streamlines. 

on.  At present we continue discussing three dimensional irrotational flow of 
incompressible fluids.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Exercise. Show  that  u  =  2c  xy,  v  =  c(a +  x

  Remark. We  shall  consider  the  study  of  two  dimensional  motion  later 
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Possible Questions 

                                              Part-B(5x8=40 marks) 

 
1. Show that the product of the speed and cross sectional area is constant along the stream 

filament of a liquid in steady motion. 

2. The velocity q ͞ in a three dimensional flow fluid for an incompressible fluid is given by q ͞ 
=2xi͞ -yj ͞ -zk͞. Determine the equatin of the stream line passing through the point(1,1,1). 

3. Derive Equation of motion when the force is conservative. 
4. Explain Beltrami’s flow 

5. In irrotational motions of 2-D.P.T(∂q/∂x)²+( (∂q/∂y)²=q.∆²q. 

6. A velocity field is given by q ͞ = -xi ͞ +(y+t)j ͞ find the stream function and the stream line for the 
field at t=2. 

7. Explain Reynold’s numbers 

8. Discuss about Energy equation 

9. Explain the displacement and momentum thickness. 

 

 Part-C(1x10=10 Marks) 

 
     

1.  Discuss about Energy equation  and explain the displacement and momentum thickness. 

 

2. Explain the integral equations at boundary layer 

3. Derive Euler’s equation of motion. 

4. A velocity field is given by q ͞ = -xi ͞ +(y+t)j͞ find the stream function and the stream line for  

    the field at t=2. 
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Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

A force is said to be  ---              if the force can be 

derivable from the potential. conservative                    non conservative acceleration     surface conservative                    

A flow is called a Beltrami’s flow when--- q.E=0 q*E=0                                 q/E=0 q+E=0                                 q*E=0                                 

Bernoulli’s equation occurs when the motion is-- unsteady rotational steady irrotational steady

The  ----      flow can occurs when the vertex and stream 

lines coincide viscous flow                     beltrami’s flow                 invisid flow normal flow beltrami’s flow                 

When the motion is both steady and irrotational then---

∇

 .E                                    

∇

*E

∇

+E                                  

∇

-E

∇

 .E                                    

The product of the cross sectional area and magniyude 

of the vorticity is       ----        along a vortex filament parallel        zero constant    normal constant    

When the forces are conservative and the pressure is a 

function of the density,then--

∇

.a =0                                    

∇

*a=0

∇

+a    =0                                 

∇

-a=0

∇

.a =0                                    

circulation around a closed circuit ‘c’ is defined as ∫q.rdr  ∫q.dr                     ∫qx.rdr                  ∫qx+dr  ∫q.dr                     

Euler’s equation of motion is dq/dt=F-

∇

P dq/dt=F                  dq/dt=F-

∇

p/P  qd/dt=-

∇

Ω dq/dt=F-

∇

p/P  

 ---       from is called the acceleration potential Ω-∫ ð P/ ρ

∇

[∫ ð P/ ρ] +dp

∇

[∫ ð P/ ρ] Ω+∫ ð P /p                      Ω+∫ ð P /p                      

q*E=0 can become zero when E ≠0,but q*E can be to 

each other parallel non parallel                        zero normal parallel 

The motion is both steady and irrotational if

∇

.ψ≠0

∇

+ψ   =0 

∇

 .ψ   =0                            

∇

*a=0 

∇

 .ψ   =0                            

Which is the constant of kelvin’s theorem a ρ B                                     ψ ρ

Circulation is always defined around a   ----    ciruit open parallel      closed normal closed

When a conservative force f  a potentialΩ such that F=

∇

Ω F=-

∇

Ω F≠

∇

*Ω F≠

∇

.Ω F=-

∇

Ω

A force is said to be conservative if the force can be 

derivable from the potential density area      viscosity potential

The euler’s theory is confined only for ideal or inviscid 

fluid viscid   stream inviscid fluid inviscid

The rate of change of linear momentum is equal to the          

       of the forces acting on a body sum product proportional  difference sum 

            is a body force per unit mass q F  ρ  

∇

F  

the inward normal is ρ  q n^                             F  n^                             

    --   is the motion the rate of change of linear 

momentum =the sum of the forces acting on the body Kelvin’s theorem Energy equation Newton’s second law Euler’s theorem

Newton’s second 

law

rate of change of circulation is ð/ðt(cir c)= ∫b.nds ð/ðt(cir c)= ∫q.dr ð/ðt(cir c)= ∫dq/dt.dr ð/ðt(cir c)= ∫a.dr ð/ðt(cir c)= ∫b.nds

Accelaration is given by a=dm/dt a=dq/dt                 a=dr/dt                  a=dc/dt a=dq/dt                 

          is the internal energy per unit mass E F r a E 

Density of a fluid is denoted by F ρ  a E ρ  

In Red wood viscometer

Absolute value of 

viscosity is detemiined

Part of the head 

of fluid is utilized 

inOvercoming 

friction

Fluid discharges 

through orifice with 

negligible velocity

 Comparison of 

viscosity is done.

 Comparison of 

viscosity is done.

Centre of buoyancy is

 The point of 

intersection of 

buoyant force and  

centre line of the body

Centre of gravity 

of the body

Centric of displaced 

volume fluid

 Midpoint between 

C.G. and metacentric.

Centric of 

displaced volume 

fluid

In isentropic flow; the temperature

 Cannot exceed the 

reservoir temperature

Cannot drop and 

again increase 

downstream

 Is independent of 

Match number

 Is a function of Match 

number only

 Cannot exceed 

the reservoir 

temperature

A stream line is

 The line of equal 

velocity in a flow

The line along 

which the rate of 

pressure drop is 

uniform

 The line along the 

geometrical centre 

of the flow

Fixed in space in steady 

flow.

Fixed in space in 

steady flow.

The flow of water in a pure of diameter 3000mm can be 

measured by Venturimeter Rotameter Pilot tube Orifice plate Pilot tube
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Apparent shear forces

Can never occur in 

frictionless fluid 

regardless of its motion

Can never occur 

when the fluid is 

at rest

Depend upon 

cohesive forces All of the above All of the above

 Weber number is the ratio of

Inertial forces to 

surface tension

 Inertial forces to 

viscous forces

Elastic forces to 

pressure forces

 Viscous forces to 

gravity

Inertial forces to 

surface tension

A small plastic boat loaded with pieces of steel rods is 

floating in a bath tub. If the cargo is dumped  into the 

water allowing the both to float empty, the  water level 

in the tub will

water level in the tub will

Rise Fall Remains same Rise and then fall Fall

A flow in which each liquid particle has a definite path 

and their paths do not cross each other, is called Steady flow Uniform flow Streamline flow Turbulent flow Streamline flow
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n̂  

S 

UNIT – 
 

 

1.1. Acyclic and Cyclic Irrotational Motion.  An irrotational motion is called 
acyclic if the velocity potential  is a single valued function i.e. when at every 
field point, a unique velocity potential exists, otherwise the irrotational motion 
is said to be cyclic.  Clearly, only acyclic irrotational motion is possible in a 
simply connected region. 

For a possible fluid motion, even if  is multivalued at a particular point, the 
velocity at that point must be single-valued.  Hence if we obtain two different 
values of , these values can only differ by a constant. 

At present, we restrict ourself to acyclic irrotational motion for which we prove 
a number of results related to . 

 

1.2.Mean Value of Velocity Potential Over Spherical Surfaces.   Theorem : 
The mean value of a  over any spherical surface S drawn in the fluid 
throughout whose interior 2 = 0, is equal to the value of  at the centre of the 
sphere.  

 
Proof. Let (P) be the value of  at the centre P of a spherical surface S of 

radius r, wholly lying in the liquid and let   denotes the mean value of  over 

S.  Let us draw another concentric sphere  of unit radius.  Then a cone with 
vertex P which intercepts area dS from the sphere S, intercepts an area d from 
the sphere  and we have  
 
 
 
 
 
 
 
 
 

  
2

2

1

r

d

dS 


   dS = r2d    (1)   

                    
 
 
 

      d        r 

     P   1 

Three Dimensional Irrotational Flow  
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Now, by definition 

   








S
2

S

S dS
r4

1

dS

dS

 

      =   



 S S

2

2
d

4

1
dr

r4

1
     

  
2

SS r

dS

r4

1
d

r4

1

r 














  

          = dS
rr4

1

S
2 





     (2) 

       |  r2 is constant on S 

Since the normal n̂  to the surface is along the radius r, therefore on S, we have 

  n̂.
nr








     (3) 

From (2) & (3), we find 

   






S
2

dSn̂.
r4

1

r
 

        =  
 

d)(div
r4

1
2

  | Gauss theorem 

        =  
 

0d
r4

1 2

2
,  | 2 = 0 

where  is the volume enclosed by the surface S. 
 

Thus 



0
r

= constant. 

This shows that   is independent of choice of r and hence mean value of  is 

same over all spherical surfaces having the same centre P.  When S shrinks to 

point P, then   = (P) 

 
1.3. Corollary.   The velocity potential  can not have a maximum or 
minimum value in the interior of any region throughout which 2 = 0. 
 
Proof. If possible, suppose that  has a maximum value (P) at a point P.  We 
draw a sphere with centre P and radius , where  is small.  Then the mean 

value   of  must be less than (P) i.e.      < (P) as (P) is maximum.  This 
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is a contradiction to the mean potential theorem in which         = (P).  Thus  

cannot have a maximum value.  Similarly  cannot have a minimum value. 
 
1.4. Theorem. In an irrotational motion the maximum value of the fluid 
velocity occurs at the boundary. 
 
Proof. Let P be any interior point of the fluid and Q be a neighbouring point 
also lying in the fluid.  Let us take the direction of x-axis along the direction of 
q  at P.   Let qP and qQ denote the speed of particles at P & Q respectively. 

 

Then  
2

P

2
P

x
q 








  

and   
2

Q

2

Q

2

Q

2
Q

zyx
q 



























  

 
 
 
 
 
 
 
 
 
 

Since 2 = 0   
x


(2) = 0  2 0
x











 

 
x


satisfies Laplace equation. Therefore, by mean value theorem 

(corollary), 
x


cannot be maximum or minimum at P.  Thus, there are points 

such as Q in the neighbourhood of P such that  

  2
P

2
Q

2

P

2

Q

qq
xx




















 

 qP cannot be maximum in the interior of fluid and its maximum value | q |, if 

any, must therefore occur on the boundary. 

Q 

q  
P x 

qP 
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n̂  

 
d 

 

1.5. Note. q = | q | may be minimum in the interior of the fluid as q  = 0  at the 

stagnation point.  i.e. q is minimum at stagnation points. 

 
1.6. Corollary.  In steady irrotational flow, the pressure has its minimum value 
on the boundary. 
 
Proof. From Bernoulli‟s equation, we have 

  2q
2

1p 


= constant     (1) 

Equation (1) shows that p is least when q2 is greatest and by above theorem, q2 
is greatest at the boundary.  Thus, the minimum value of p must occur only on 
the boundary. 
 
1.7. Note. The maximum value of p occurs at the stagnation points, where q  = 

0. 
 
1.8. Theorem. If liquid of infinite extent is in irrotational motion and is 
bounded internally by one or more closed surfaces S, the mean value of  over 
a large sphere , of radius R, which encloses S, is of the form 

  C
R

M
  

where M and C are constants, provided that the liquid is at rest at infinity. 

Proof. Suppose that the volume of fluid acrossing each of internal surfaces 
contained within , per unit time, is a finite quantity say 4M (i.e. 4M 
represents the flux of fluid across  or S).  Since the fluid velocity at any point 

of  is 
R


 radially outwards, the equation of continuity gives 

 

   




d

R
= 4M     (1) 

But                         d = R2d 
 
 
 
 
 
 
 

                        S2 
 
S1                  
                         S3    
         d 
            
                    SN 
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Therefore, 
 

  







MdR

R4

1 2  

 






 2R

M
d

R4

1
 

 






 2R

M
d

R4

1
 

Integrating w.r.t. R, we get 

  C
R

M
d

4

1 
 

 

where C is independent of R.  

 C
R

M

R

d

4

1
2







 

  
 

 C
R

M

R4

d

2




 
  

 C
R

M        (2) 

To show that C is an absolute constant, we have to prove that it is independent 
of co-ordinates of centre of sphere .  Let the centre of the sphere  be 
displaced by distance x in an arbitrary direction while keeping R constant, 
then from (2),  
 

  
x

C

x 





      (3)  

 |  R is constant 

Also,    dw
x4

1
dw

4

1

xx 









 






 

        = 0, since 0
x





 on  when R as the liquid is at rest at 

infinity. 
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 From (3), we get  

x

C




 = 0   C is an absolute constant. 

Hence    

           C
R

M  , where M and C are constants. 

1.9. Corollary.  When closed surfaces within  are rigid then no flow can take 

place across them, therefore, in that case M = 0 and .C  

This shows that mean value of  over any sphere enclosing solid rigid 
boundaries is constant. 
 
2. Kinetic Energy of Irrotational Flow  

We shall prove that K.E. is given by 

  T =  


S

dS
n2

,  

where  is the velocity potential.  
We know that if  be the finite region occupied by the fluid, then the K.E. is 

given by  

  T = 


 d)q.q(
2

1
dq

2

1 2  

     = 


 d
2

1
).(    | q  

If fluid density is constant, then  

    T = 



d

2
).(    (1) 

Now, div ( ) = .() = . . +  (. ) 

=  .  +  2 

= . .    |  2 = 0 

 

                     
                  
 
 

             S1 
 
                      
                   S3 
          S2 

n̂  
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Therefore, from (1) & (2), we get 

 T = 



div

2
() d = 



S2
. n̂ dS    | By Gauss theorem 

    = 


S2
(. n̂ )dS =  



S2
 ,dS

n


 where S = S0 + S1 + S2 +…+ Sn  

denotes the sum of the outer boundary surface S0 and the inverse boundaries 
S1, S2,…, Sn and n̂  is unit normal to S drawn out of the fluid on each 
boundary. 

Also T =  


S2
  ,dS

n


 where n̂  is unit normal to S drawn inside the fluid on 

each boundary.  
 
2.1. Kelvin’s Minimum Energy Theorem. The kinetic energy of irrotational 
motion of a liquid occupying a finite simply connected region is less than that 
of any other motion of the liquid which is consistent with the same normal 
velocity of the boundary. 
 
Proof. Let T be the K.E., q  be the fluid velocity and  be the velocity potential 

of the given irrotational motion. Let  be the region occupied by the fluid and S 
be the surface of this region, then 
 

  T = 



2

q 2d = 



2

()2 d 

     = dS
n2 S 


     (1) 

Let T1 be the K.E. and 1q  be the velocity of any other motion of the fluid 

consistent with the same normal velocity of the boundary S (or consistent  with 
the same kinetic boundary condition) 
For both the motions, the continuity equation is satisfied i.e. 
 

    q = 0 =  1q      (2) 

The boundaries have the same normal velocity 

i.e.   n̂qn̂q 1   
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i.e.  0n̂)qq( 1       (3) 

Now, let us consider 

   T1  T = 



2

(q1
2  q2) d 

   = 



2

   d)qq()qq(q2 2
11  

   = 



2

 d)qq(q2 1 



2

2
1 )qq(  d 

   =   

 . )qq( 1  d + 




2

2
1 )qq(  d (4) 

From vector calculus, we have 

  [ )qq( 1  ] =  )qq( 1  +  )qq( 1   

i.e.   )qq( 1  = [ )qq( 1  ]  )qq( 1   

Therefore, from (4), we find 

  T1  T =   

[ )qq( 1  ]d +  


 )qq( 1  d 

   + 



2

)qq( 1 
2 d 

   =  
S

 )qq( 1   n̂ dS + 


  )qq( 1  d  

   + 



2

)qq( 1 
2d  |By Gauss theorem 

   = 



2

)qq( 1 
2d  | using (2) & (3) 

   > 0 

                            T1 > T .    
Hence the theorem. 
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2.2. Kinetic Energy of Infinite Liquid. Theorem : An infinite liquid is in 
irrotational motion which is at rest at infinity and is bounded internally by solid 
surface (s)S.  Show that the K.E. of the moving fluid is  

           T = e
2

1
 




S

dS
n

 

where S = S1 + S2 + … SN denotes the sum of the inner boundaries S1, S2, …, 
SN and n̂  is normal to S drawn out of the fluid on each boundary. 
 
Proof. Let  be a large surface enclosing the surface (s) S and  be the region 
bounded by S internally and by  externally. 
 
Using the result of K.E. for finite liquids, we find that the K.E. T* for finite 
region  is given by 
 
 
 
 
 
 
 
 
           
 
 

  T* = 
 





dS
n2

dS
n2 S

   (1) 

Now, div q  = 2 = 0 throughout  and the divergence theorem accordingly 

gives  
    

 SU

qn̂0dqdiv dS = 0 

     



 
 SUSU

0dS
n

0dSn̂  

     



 




0dS

n
dS

nS

     (2) 

Since the surface S is solid, there is no flow across it, hence 

  



S

0dS
n

      (3) 

Therefore, from (2), we get  

S1 S2 

S3 

SN 

 
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 




0dS

n
     (4) 

For the surface , as  goes to infinity, the liquid is at rest 

                      q  = 0    = 0    = constant = C (say) (5) 

Hence, as  goes to , the K.E. of the liquid is 

     T*  
 



 dS

n
c

2
dS

n2
T

S

  | Using (5) 

     =  


S

dS
n2

  | Using (4)    

 Hence the result 

2.3. Remark. We note that the K.E. for finite and infinite liquid has the same 
expression. 
 
2.4. Theorem. Show that acyclic irrotational motion is impossible in a finite 
volume of fluid bounded by rigid surfaces at rest or in infinite fluid at rest at 
infinity and bounded internally by rigid bodies at rest. 
 
Proof. If possible suppose that acyclic irrotational motion is possible and let  
be the velocity potential.  Then, K.E. of the fluid is 
 

   


 S

2 dS
n2

d
2

T )(    (1) 

Where S is the sum of all the rigid boundaries when  is finite or the sum of 
internal rigid boundaries when  is infinite. 
 
Now, since the boundaries are rigid, then at every point of S, the normal 
velocity is zero 

i.e.  0
n





 at each point of S    (2) 

 
From (1) & (2), we get 

  


q2 d = 0   q2 = 0  0q   at each point of . 

  liquid is at rest. 
 
Hence there is no motion of fluid. 
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 acyclic irrotational motion is impossible.  

2.5. Corollary. If the solid boundaries in motion are instantaneously brought to 
rest, show that the motion of the fluid will instantaneously cease to be 
irrotational. 
 
Proof. If possible, assume that the motion remains irrotational, then the K.E. is 

given by  

  T =  
 

 dS
n2

1
dq

2

1

S

2    (1) 

When the surface S (solid boundary) is brought to rest instantaneously, then 

  0q   at each point of S. 

  = constant at each point of S. 

 0
n





 constant at each point of S. 

 0q   in  

 there is no motion. 

Thus the motion is no longer irrotational. 

2.6. Uniqueness Theorems.  Theorem 1: If the region occupied by the fluid is 
finite, then only one irrotational motion of the fluid exists when the boundaries 
have prescribed velocities. OR Show that there cannot be two different forms 
of acyclic irrotational motion of a given liquid whose boundaries have 
prescribed velocities. 
 
Proof. If possible, let 1 and 2 be two different velocity potentials 

representing two motions, then 

  21 = 0 = 22     (1) 

Since the kinetic conditions at the boundaries are satisfied by both flows, 
therefore at each               point of S,  
 

 
nn
21








      (2) 

Let  = 1  2 
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 2 = 21  22 = 0 at each point of fluid. and 0
nnn
21 












 at 

each point of S. 
  represents a possible irrotational motion.  
 
Also, the K.E. is given by 

   



 S

2 0dS
n2

dq
2

)(   0
n





 

 0q   at each point of fluid. 

  = 0 at each point of fluid.  

 1  2 = 0  1 = 2 

which  shows that the motions are the same.  Moreover  is unique apart from 
an additive constant which gives rise to no velocity and thus can be taken as 
zero (without loss of generality) 
 
Theorem II. If the region occupied by the fluid is infinite and fluid is at rest at 
infinity, prove that only one irrotational motion is possible when internal 
boundaries have prescribed velocities. 
 
Proof. If possible, let there be two irrotational motions given by two different 
velocity potentials 1 & 2.  The conditions on boundaries are 
 

                 
nn
21








     (1) 

and 0qq 21   at infinity      (2) 

Let us write  = 1  2      (3) 

 2 = 21  22 = 0  0 = 0 

 motion given by  is also irrotational.  
Further from (3), we get 
 

  0
nnn
21 












   | using (1) 

 0q0n̂q   on the surface 

Also,  
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X 

z 

Y 

Q 

 r 
0 

 

P(x,y,z) 

 (r, , ) 

21q   

      = at0qq 21       | using (2) 

Therefore 0q   everywhere on the surface and also at infinity. 

Hence we get  = constant   1  2 = constant    (4) 

Without loss of generality, we can take the constant on R.H.S. of (4) to be zero 
(it gives no motion) and thus we get 1 = 2 
 
2.7. Remark. The above two uniqueness theorems are useful in finding 
solutions of 2 = 0 subject to prescribed boundary conditions. 
 
3. Axially Symmetric Flows  

A potential flow which is axially symmetric about the axis  = 0,  (i.e. z-axis 
is taken as the axis of symmetry) has the property that at any point P, all the 
scalar and vector quantities associated with the flow are independent of 

azinuthal angle  such that 



 0, where (r, , ) are spherical polar co-

ordinates.   
 
 
 
 
 
 
 
 
 
 
 
 
 
The equation of continuity div q = 0 for steady flow of an incompressible fluid 

becomes. 
   

  0)q(sin
sinr

1
)qr(

rr

1
r

2

2











     (1) 

For irrotational motion q = , where  is velocity potential and thus 

  qr = 
r


, q = 



r

1
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From equation (1), we have 

  0sin
sinr

1

r
r

rr

1
2

2

2































  (2) 

Let a solution of (2) in separable variables r,  has the form 

   = R(r) ()      (3) 

Using (3) in (2), we get 

  0)R(sin
sin

1
)R(

r
r

r
2 



 












 







 

        0sin
sin

R

r

R
r

r
2 




























  

        




















d

d
sin

d

d

sin

1

dr

dR
r

dr

d

R

1 2   (4) 

The L.H.S. of (4) is a function of r only while the R.H.S. is a function of  
only.  The equation can therefore be satisfied if and only if either side is a 
constant, say n(n+1) and thus we get 
 

   )1n(n
dr

dR
r

dr

d

R

1 2 







    (5) 

and  

0sin)1n(n
d

d
sin

d

d 











   (6) 

To solve (5), we put  

R = rm   1mrm
dr

dR   

Thus (5)     )1n(nrmr
dr

d

r

1 1m2

m
  

                        m   )1n(nrr
dr

d m1m   
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                  m (m+1) rm = rm n(n+1) 

                 (m2 + mn2n) = 0 

                 (mn) (m+n+1) = 0 

                 m = n or m = (n+1) 

Therefore, solution of (5) can be written as  

                R(r) = An r
n + Bnr

(n+1)   (7) 

To solve (6), we put  

                                       cos =  

                                    






 d

d
sin

d

d

d

d

d

d
 

Therefore, equation (6) becomes. 

                     sin 










 d

d
)sin(sin

d

d
 +n (n+1) 0sin   

                   0)1n(n
d

d
sin

d

d 2 











 

                  0)1n(n
d

d
)cos1(

d

d 2 











 

                 0)1n(n
d

d
)1(

d

d 2 











   (8) 

Equation (8) is a Legendre‟s Equation and possesses a solution known as 
Legendre Function of the first kind Pn() 
 
Therefore, 

           = Pn() 

Hence the general solution of (3) is of the form 

  (r, )  = R(r)  () 

   = [An r
n + Bn r

(n+1)] Pn (cos )  (9) 
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( complete solution is the sum of all such solutions i.e. 


0n
…….) 

3.1. Uniform Flow. Consider the flow which corresponds to a potential given 

by (9) with  

  An = US1n, Bn 0,    (n = 0, 1, 2, ……)     | Sij is knonecker delta 

Sii = 1 Sij = 0 for i  j 

Where U is a constant. 
Since P1 (cos) = cos, equation (9) becomes 

  (r, ) = Ur cos   Uz  | z = r cos 

Thus  

       q =  =  k̂Uk̂
z





 

which is a uniform streaming motion of the fluid with speed U along the 
direction of z-axis or the axis  = 0. 
 
3.2. Sphere at Rest in a Uniform Stream.  Consider an impermeable solid 
sphere of radius „a‟ at rest with its centre at the pole of a system of spherical 
polar co-ordinates (r, , ).  The sphere is immersed in an infinite 
homogeneous liquid with constant density , which, in the absence of the 
sphere, would be flowing as a uniform stream with speed U along the direction 
 = 0. 

The presence of the sphere will produce a local perturbation of the uniform 
streaming motion such that the disturbance diminishes with increasing distance 
r from centre of sphere.  We say that the perturbation of the uniform stream 
tends to zero as r. 

In this problem z-axis is the axis of symmetry.  Undisturbed velocity of 

incompressible fluid is U k̂Uq.e.ik̂   

 the velocity potential 0 due to such a uniform flow would be  

  0 = Uz = Ur cos 

When the sphere is inserted, the undisturbed potential Ur cos of uniform 
stream has to be modified by “perturbation potential” due to the presence of the 
sphere.  This must have the following properties. 
(i) It must satisfy Laplace equation for the case of axial symmetry 

(ii) It must tend to zero at large distances from the sphere  

So, we write (r, ) = U r cos  + 1 (r, ) (r  a) 
where 1 satisfies the Laplace equation together with boundary conditions 
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r

cosU
r

1








  .e.i0
r





velocity normal to 

sphere is zero at r = a 

                      
r
1




= + Ucos (r = a, a    ) 

 and  
|1|  0 as r.   

Hence a suitable form of function 1 is  

    1 = B 2r  cos 

So, we assume (in view of (9)) that 

  (r, ) = Ur cos 
2r

B
 cos    (1) 

The constant B is to be determined from the fact that there is no flow normal to 

the surface r = a i.e. 0
r ar












 

 

          U cos + 3

3
Ua

2

1
B0cos

a

B2    

Thus (1) becomes 

             (r, ) = Ur cos  cos
r2

Ua
2

3

 

             = U 







 cos

r2

a
r

2

3

   (2) 

Now, the uniqueness theorem II infer that the velocity potential in (2) is 
unique. 
The velocity components at P(r, , ), (r  a), are 
 

                  qr =  












cos
r

a
1U

r 3

3

  

                 q =  












sin
r2

a
1U

r

1
3

3

   (3) 
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                 q = 0
sinr

1






 . 

Different terms related to motion are obtained as follows. 

(i) Stagnation Points : Stagnation points are those points in the flow where the 

velocity vanishes i.e. 0q  .  Thus these points are obtained by solving the 

equations 

 and                   

































0sin
r2

a
1U

0cos
r

a
1U

3

3

3

3

   (4) 

which are satisfied only by r = a, sin = 0. i.e. r = a,  = 0,   Thus the 
stagnation points are (r = a,  = a) and (r = a,  = ) on the sphere.  These are 
referred to respectively as the rear and forward stagnation points.  
 
(ii) Streamlines : The equations of streamlines  

             



q

dsinr

q

rd

q

dr

r

 

for the present case, become 
   

         ,
0

dsinr

sin
r2

a
1U

rd

cos
r

a
1U

dr

3

3

3

3



























 r  a 

                            d = 0     = constant. 

and  

                              r 


















3

3

3

3

r2

a
1dcos

r

a
1 sin dr 

                 











dcot2dr
ar

ar2

r

1
33

33

 

      











dcot2dr
rar

rar2
132

23

 

Integrating, we get 

           log (r2  a3 r1) = 2 log sin + log C 
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     log 






 
r

ar 33

log sin2 + log C 

                                sin2 = ,
ar

Cr
33 

 where C  0 

For each value of C, above equation gives a streamline in the plane                        
 = constant.  The choice of c = 0 corresponds to the sphere and the axis of 
symmetry.   
(iii) Pressure at Any Point : The pressure at any point of the fluid is obtained 
by applying Bernoulli‟s equation along the streamline through that point, 
taking the pressure at  to be of constant value p.  Thus, in the absence of 
body force, the Bernoulli‟s equation for homogeneous steady flow is  
 

                         
2

1p



()2 = C 

At infinity, p = p and  = U k̂ , we get 

   C = 2U
2

1p



  

Thus  

                         p = p + 
2

1
U

2

1 2 ()2 

 p = p +  






























 2

2

3

3
22

2

3

3
22 sin

r2

a
1Ucos

r

a
1U

2

1
U

2

1
     

                                                     |  =  q  

  p = p  





























 1sin

r2

a
1cos

r

a
1U

2

1 2

2

3

3
2

2

3

3
2  (5) 

which gives the pressure at any point of the fluid. Of particular interest is the 
distribution of pressure on the boundary of the sphere.  It is obtained by putting 
r = a in (5) and thus 
 

   p = p 




















 1sin

r2

a
1U

2

1 2

2

3

3
2  

     = p 
8

1
p1sin

4

9
U

2

1 22 





   U2 (49 sin2) 
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Z 

pmin 

Z 

p 

    

pcos  

pmax 

   
P0 

 
a 

a sin 

d 

a 

l a sin 

     = p +
8

1
U2 (9cos2 5) 

The maximum pressure occurs at the stagnation points, where  = 0 or .  Thus 

         pmax = p +
2

1
U2     

(pmax. is also called stagnation pressure) 
The minimum pressure occurs along the equatorial circle of the sphere where  
=/2 
Therefore, 

         pmin. = p 
8

5
U2 

A fluid is presumed to be incapable of sustaining a negative pressure, thus  

         pmin. = 0   U =



5

p8
 

At this stage the fluid will tend to break away from the surface of the sphere 
and cavitation is said to occur. i.e. a vacuum is formed.   
 
(iv) Thrust on the Hemisphere : Now, we find the thrust (force) on the 
hemisphere on which the liquid impinges, r = a, 0    /2. 
 
Let S be a small element at P0 (a, , ) of the hemisphere bounded by circles 
at r = a and at angular distances  and  +  from axis of symmetry                
(i.e. z-axis)  
 
 
 
 
 
 
 
 
 
 
 
The component of thrust on S is p cos S.   Hence the total thrust on the 
hemisphere is along ZO and is given by  
 
 
 
 
 
                                                                                            l = r   ad  

 
 
           + 

                      

                 O 
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                                             dS = (2a sin )(ad) 
F = 

hemisphere

p cos dS 

   = 
 2/

0

p cos (2a sin) (ad)    

   = 
 2/

0

(2a2) sin cos 



  d)5cos9(U

8

1
p 22                                                  

(using value of p at boundary)                                                  

    = a2





 

2U
16

1
p . 

3.3. Sphere in Motion in Fluid at Rest at Infinity. Let a solid sphere of 

radius „a‟ centred at 0 be moving with uniform velocity U k̂  in 
incompressible fluid of infinite extent, which is at rest at infinity.  Z-axis is the 

axis of symmetry and k̂  is unit vector in this direction.  (As the sphere is 

moving with velocity U k̂    the relative velocity of fluid if the sphere be 

considered to be at rest is U k̂ .)   
 
The boundary value problem for  is now to solve  
 
  2 = 0      (1) 

such that       
r


= U cos, (r = a)     (2) 

and    
|) 0,  (r)     (3) 

The present case is also a problem with axial symmetry about the axis  = 0, , 

so 

   = (r, ) 

Also, since P1(cos) = cos   | Legendre‟s function 

and the boundary condition (2) implies that the dependence of  on  must be 
like cos, therefore  has the form  
 

   =  





 






  cos

r

B
Ar)(cosP

r

B
Ar

212
 

However, to satisfy (3), it is necessary that A = 0, and then from (2), we get B 

=
2

1
Ua3. 
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Thus the solution for  is 
 

   = 
cos

r2

Ua
2

3

     (4) 

From here, the velocity components are obtained to be  

  qr = 
3

3

3

3

r2

Ua

r

1
q,cos

r

Ua

r








 sin, q = 0, 

where (r, , ) are spherical polar co-ordinates.  The various terms of 
particular importance related to this motion are obtained as follows. 
(i) Streamlines : The differential equations for streamlines are 

  



q

dsinr

q

rd

q

dr

r

 

i.e.  
0

dsinr

sin
r2

Ua

rd

cos
r

Ua

dr

3

3

3

3












 

  d = 0   = constant. 

and  

                         
r

dr
= 2 cot d   log r = 2 log sin + log C 

    r = C sin2 

Therefore, streamline lines are given by r = C sin2,  = constant 

(ii) K.E. of the Liquid : Let S be the surface of sphere and  be the density of 
liquid, then K.E. is given by  
 

   T1 =  


S

dS
n2

     (5) 

Where n̂  is the outwards unit normal.  But for the sphere n̂  is along radius 

vector 

Therefore,        
arS rn 




















   

 

      = 





 cosUa

2

1
(U cos) 
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      = 
2

1
U2a cos2 

Therefore,           

                            T1 = 

0

2
22

S 4

aU
dScosaU

2

1

2
cos2 (2a sin) (ad) 

           = 



0

2
23

dsincos
2

Ua
   

 



20

0
 

           = 










 

0

323

3

cos

2

Ua
 

          = 













 

4

U
a

3

4
Ua

3

1 2
322 . 

          = 21UM
4

1
     (6) 

where M1 = 
3

4
 a3 is the mass of the liquid displaced by the sphere. 

Also, K.E. of the sphere moving with speed U is given by 

       T2 = 2UM
2

1
     (7) 

where M = 
3

4
a3 is the mass of the sphere,  being the density of the 

material of the sphere. 

Therefore, from (6) and (7), total K.E. T is given by 

        T = T1 + T2 = 2U
2

'M
M

2

1






     (8) 

The quantity M +
2

'M
 is called the virtual mass of the sphere.  

3.4.  Accelerating Sphere Moving in a Fluid at Rest at Infinity. The solution 
derived above for  is applicable when the sphere translates unsteadily along a 
straight line.  In the present case, we take U = U(t) and get the velocity 
potential as  
 

       = (r, , t) = 
2

3

r2

a)t(U
cos   (1) 
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The instantaneous values of velocity components and K.E. at time t are given 

by  

qr = 
3

3

3

3

r2

a)t(U
q,cos

r

a)t(U 
 sin, q = 0  | similar to steady case 

and    T = 





  'M

2

1
M

2

1
U2(t)    (2) 

The pressure at any point of the fluid is obtained by using Bernoulli‟s equation 
for unsteady flow of a homogeneous liquid, in the absence of body force, as   
 

  )t(f
t

U
2

1p 2 






     (3) 

where f(t) is a function of time t only.  

Let p be the pressure at infinity where the fluid is at rest, then from (3), we get 

  f(t) = 

p

and thus 

  
t

U
2

1pp 2








      (4) 

To find 
t


, we proceed as follows : 

Since k̂)t(Uk̂UU   is the velocity of the sphere, the velocity potential 

given in (1) can be expressed in the form 
 

   = 
3

3

r

)rU(a

2

1 
     (5) 

since r  is the position vector of a fixed point P of the fluid relative to the 
moving centre 0 of the sphere, it follows that  
 

  )r(
t

U 

       (6) 

Also, since r2 =  Ur
t

r
r

t

r
rrr 





   |using (6) 

      = )k̂U()r(   

      = rU r̂rr|)k̂r̂(   

     = r U cos 
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      



cosU
t

r
      (7) 

Differentiating (5) w.r.t. time t and using (6) & (7), we get 















 2

3

2

23

2
3 cos

r

U3

t

U

r

cos

r

U
a

2

1

t
 

  = 
t

U
U

r

cosU3

r

U

r

cosU

2

a
3

22

3

2

2

3










    

Also,  

          2

6

62
2

6

62
22

r
2 sin

r4

aU
cos

r

aU
qqU    

                 = 





  22

6

62

sin
4

1
cos

r

aU
 

The pressure at any point of the fluid can be obtained from equation (4). 
In particular, at a point on the sphere r = a  
 

   

 222 cosU3UcosaU

2

1

t
  

and   
4

U
U

2

 (4 cos2 + sin2) 

and the corresponding pressure is given by  

  2U
8

1
cosaU

2

1pp 





  (9 cos2  5)  (8) 

The force (thrust) acting on the sphere is given by  

           
0 k̂)ad)(sina2(cospF  

  = 2a2 


 



 

0

22 )5cos9(U
8

1
cosaU

2

1
pk̂   cos sin d 

  = k̂U'M
2

1
k̂Ua

3

4

2

1
k̂Ua

3

2 33  





   

where M =
3

4
a3 is mass of the liquid displaced. This shows that the force 

acts in the direction oppositing the sphere‟s motion. 
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3.5. Equation of Motion of the Sphere.  Let R be the external force per unit 
mass in the direction of motion of the sphere.  Let us use the result that the rate 
of doing work is equal to the rate of increase in K.E. 
 

Thus   RU = 













  )t(U

2

'M
M

dt

d

2

1

dt

d 2     

 | From (2) 

       = 
dt

dU
U

2

'M
M 






   

  M
dt

dU
'M

2

1
R

dt

dU       (9) 

If the liquid is not there, then M = 0 and the equation of motion of the sphere 

is 

  M R
dt

dU        (10) 

Comparing equation (9) & (10), we note that the presence of the liquid offers a 

resistance of the amount 
dt

dU
'M

2

1
 to the motion of the sphere  

Let R be the external force per unit mass on the sphere when there is no liquid, 

then  

                 MR = external force on the sphere in the presence of the liquid. 
 
  = MR  MR = (M M) R 

Since,  M = 
3

a4
'M,

3

a4 33 
 

  R = 'R










     (11) 

From equations (9) & (11), we find 

  M
dt

dU
'M

2

1
'R

dt

dU 








  

or  'R
M

'MM
'R

dt

dU

2

'M
M 






 
















   
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  M 'R

2

1
'R

2

'M
M

'MM

dt

dU










































    (12) 

This is the required equation of motion of a sphere in a liquid at rest at infinity. 
From equations (10) & (12), we note that the effect of the presence of the 

liquid reduces the external force in the ration   :  + 
2


.  

3.6. Remark. We have already studied the impulsive actions in Unit-I, where, 
we had derived the relation between the impulsive pressure P and the velocity 
potential  as P = .  Here, we derive the expression for K.E. generated due to 
impulsive action.  
 
3.7. Kinetic Energy Generated by Impulsive Motion : Let us consider 
incompressible fluid, initially at rest, which is set in motion by the application 

of impulse m21 I,...,I,I to rigid boundaries S1, S2,…, Sm respectively.  The fluid 

may be of finite or infinite extent.  We know that the K.E. of the irrotational 
motion generated in the fluid is given by  
 

  T =  


S
dS

n2
     (1) 

where S = S1 + S2 +… +Sm, n̂  is outwards unit normal on each Si  

Let the velocity given to Si be iU (i = 1, 2,…, m), then on Si, we have 

 

   iU.n̂
n





      (2) 

 q|   

using (2) in (1), we get 

  T =   
 iS

m

1i
i dSn̂.U

2
    (3) 

But the impulsive force exerted by the fluid on Si is iR , where 

  iR  =  
iSiS

dSn̂dSPn̂   | P =   

  (4)    
Thus from (3) & (4), we get 

  T =   


m

1i
ii RU

2

1
     (5) 
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k̂  

U cos 

Sb 

3.8. Example. Incompressible liquid of constant density  is contained within 
a region bounded by two concentric rigid spherical surfaces of radii a, b (a < 
b).  The fluid is initially at rest.  If the inner boundary is suddenly given a 

velocity U k̂ , where k̂  is a constant vector, show that the outer surface 
experiences the impulsive force  

  k̂
ab

bUa2
33

33




 

Also calculate the corresponding K.E. generated by the impulsive motion.  
Solution. The motion generated in the fluid is irrotational  

0q 2   which is the equation of continuity.  The boundary 

conditions which  must satisfy, are  

  

 cosU
r

 (r = a)     (1) 

 

    0
r



  (r = b)     (2) 

with (r, , ) spherical 
polar co-ordinates and 
with  = 0 along the 

direction of k̂ . 
The form of boundary conditions suggest a  
solution of the form  

   = (Ar + B 2r ) cos     (3) 
 
 
 
 
 
 
 
 
 
 
 
        
which satisfy (1) & (2) if  

  A  0
b

B2
A,U

a

B2
33
  

    A = 
)ab(2

bUa
B,

ab

Ua
33

33

33

3







 

          b  
  a                
 

            U k̂  
                   Sa 
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Thus, the solution of the problem is  

   = 










cos

r2

b
r

ab

Ua
2

3

33

3

 

Impulsive force acting on the outer boundary in the direction of k̂  is 

   k̂dScos)P(F
bS br     

where   (P)r =b = ()r =b 

                   = 












cos
b2

b
b

ab

Ua
2

3

33

3

 

            = 
33

3

ab

cosbUa2

2

3




 

and for the outer sphere r = b,  
 
  dS = 2 (b sin) (bd), 0     

Thus, impulsive force, 






0

22

33

3

k̂d)sinb2(cos
ab

bUa

2

3
F  

        = 






0

2

33

33

dsincos
ab

k̂bUa3
 

        = k̂
ab

bUa2
33

33




   

Hence the result 

Now, if 21 U,U  denote the velocity of spheres of radii a & b respectively and 

21 R,R  be the corresponding impulsive forces exerted by the fluid, then  

 

 k̂
ab

bUa2
FR,0U,k̂UU

33

33

221 
  

 K.E., T =  ii R.U
2

1   

  =    1112211 Rk̂U
2

1
RU

2

1
RURU

2

1     (4) 

Also,                      

 dSn̂RdSn̂R
1S1

iSi    

                  dS)(k̂n̂k̂R ar
aS1    
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  =  

























aS 2

3

33

3

cos
a2

b
a

ab

Ua
cos 2 (a sin) ( a d) 

( negative sign due to inwards normal i.e. on the inner sphere, pressure is 

inwards)  

   = 






0

2

2

33

33

3

a2.
a2

ba2

ab

Ua
cos2 sin d 

   = 
33

333

ab

)ba2(Ua

3

2




  

Thus, from equation (4), we get 

  T = 
33

3332

ab

)ba2(aU

3

1




 

3.9. Deduction : If we let b, then it becomes the case of a sphere of radius 
„a‟ moving in an infinite liquid at rest at infinity and we get 
 

  T = 32

3

3

3

3
32

b
aU

3

1

b

a
1

b

a2
1aU

3

1
Lt 














 

     = 2'
1

23 UM
4

1
Ua

3

4

4

1 





   

where 
3

4
M '

1  a3 is the mass of liquid displaced by the sphere r = a 

3.10. Example. (Motion of Two Concentric Spheres) : The space between two 
spheres is filled with incompressible fluid.  The spheres have radii a, b (a < b) 
and move with constant speeds U, V respectively along the line of centres.  
Show that at the instant when the spheres are concentric, the velocity potential 
is given by 
 

   = 
33

23333

ab

cosrba)VU(
2

1
r)VbUa(







 

 

Also determine the impulse which is required to produce the velocity U to the 
inner sphere, when outer sphere is at rest. 
 
Solution. Let  be the density of the liquid. 
We are to solve 2 = 0 under the boundary conditions 
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r
 = U cos, r = a      (1) 

and  
r
  = V cos, r = b     (2) 

where U & V are taken in the same direction.  

The solution of the Laplace equation is of the form 

   = (Ar + B 2r ) cos 

  
r
  = 






  cos

r

B2
A

3
 

and thus the boundary conditions give 

  A  V
b

B2
A,U

a

B2
33
  

Solving for A & B, we find 

  B = 
33

33

33

33

ba

VbUa
A,

ba

ba)VU(

2

1







 

Thus the velocity potential for this motion is  

   =  


























cos
r

1

ba

ba)VU(

2

1
r

ba

VbUa
233

33

33

33

 

     = 
33

23333

ab

cosrba)VU(
2

1
r)VbUa(







 

 

Hence the result 

Impulse :- When outer sphere is at rest, then V = 0 and from equation (3), we 

get 

   = 










cos

r2

b
r

ab

Ua
2

3

33

3

    (4) 

Let              M = 
3

4
 a2 be the mass of inner sphere 

and             M = 
3

4
a3 is the mass of liquid displaced by the inner sphere. 
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If I be the impulse, then by the principle of linear momentum, we have 

  I = MU + Total impulsive Pressure 

i.e.  I = MU +  (P)r =a cos dS 

    = MU +  












0 2

3

33

3

a2

b
a

ab

Ua
cos2 2 (a sin) (a d) 

  | P =  

i.e.  I = MU + 





033

333

ab

)ba2(Ua
cos2 sin d 

    = MU +  
33

333

ab

)ba2(Ua

3

2




 

   = MU +  
33

33

ab

)ba2(U'M

2

1




 

3.11. Deduction :-  If b , then it will be the case of a solid sphere moving 

in an infinite liquid and  

  I  = MU + U
2

'M
MU

2

'M






   

3.12. Remark. The problem in which we solve the Laplace equation 2 = 0 

when the normal derivative of  i.e. 
n


is given on the boundary, then such 

type of problem is called a Neumann problem whereas the solution of                  
2 = 0 when the value of  is given on the boundary, is termed as Dirichlet 
problem.  
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qr 

4. Sources, Sinks and Doublets (Three-dimensional Hydrodynamical 
Singularities) 

4.1. Source : An outward symmetrical radial flow of fluid in all directions is 
termed as a three dimensional source or a point source or a simple source. 

Thus, a source is a point at which fluid is continuously created and distributed e.g. an 

expanding bubble of gas pushing away the surrounding fluid.  If the volume of fluid per unit 

time which is emitted from a simple source at 0 is constant and equal to 4m, then m is termed 

as strength of the source. 

4.2. Sink : A negative source is called a sink.  At such points, the fluid is 
constantly moving radically inwards from all directions.  Thus a simple sink of 
strength m is a simple source of strength m. 

 

 

 

 

 

 

 

 

4.3. Velocity Potential due to a Simple Source of Strength m.   Let there be 
a source of strength  m at a point 0.  With 0 as the centre, we draw a sphere of 
radius r around 0. 

The flow across the 
sphere per unit volume 
is given by  

  
S

dSn̂.q  

In case of a source there is only the radial velocity i.e. q  has only radial 

component qr . 

 
           
       0      r 
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0 
 

P 

M 
z-axis 

Therefore, the flow is  

  = 
S

rq dS   | n̂.q  = qr, since n̂andq have same directions i.e. 

radial direction. 

  = qr (4 r2). 

Thus, we get 

  4m = qr (4 r2) 

  qr = 










r

m

rr

m
2

     (1) 

It is observed that curl 0q  (except at r = 0), therefore for irrotational flow, 

  qr = 
r


   | q   (2) 

From (1) & (2), we find 

   = 
r

m
 

which is the required expression for the velocity potential for a source. 

4.4. Remarks. (i) For a simple sink of strength m, the velocity potential is  = 


r

m
 

(ii) A source or sink implies the creation or annihilation of liquid at a point.  
Both are points at which the velocity potential (and stream function for two 
dimensional case) become infinite and therefore, they require special analysis.   

 

 

 

 

4.5. A simple Source in Uniform Stream.  Let us consider a simple source of 

strength m at 0 in a uniform stream having undisturbed velocity U k̂,k̂ be the 

unit vector along z-axis which is taken as the axis of symmetry of the flow. 
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We shall find the velocity potential at any point P(z, , ).  From P, draw  on 
OZ.  Let OP = r, POZ|  =  ; OM = z 

We observe that the velocity potential of the uniform stream in the absence of 
source is  

     

UzU
z

k̂
z

k̂Uq








 

  1 = Uz = Ur cos      (1) 

and the velocity potential of the simple source is  

  2 = 
r

m
      (2) 

Thus, the velocity potential of the combination is 

   =  1 + 2 = Ur cos +
r

m
 

           =  





 

r

m
cosUr    (3) 

From here, the velocity components at P(r, , ) are  

  qr = 
2r

m
cosU

r





 

  q = 



r

1
= U sin    

0

20

0








 

  q = 



sinr

1
= 0 

The stagnation points )0q(   are given by U cos + ,0
r

m
2
  sin = 0     = 0 

or  
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P 

1r  

2r  

r  

 

O2    h     O     h      O1(m)        z-axis 

But  = 0 gives r to be imaginary    =  and r = 
U

m
 

Thus there is only one stagnation point 







 0,,

U

m
 

4.6. Doublet (Dipole).  The combination of a source and a sink of equal 
strength, at a small distance apart, is called a doublet.  

4.7. To Find the Velocity Potential of Doublet.  Suppose  that  there is a 
simple  source  of  

strength m at O1 and a 
simple sink of strength m 
at O2.  Origin O is taken as 
the mid point. of O1 O2.  It 
is also assumed that there 
is no other source or sink.  
Let P be a fixed point 
within the fluid and 

                        

,POO|,rPO,rPO,rOP 12211 
 

            |h|h,hOO,hOO 21   

The velocity potential at P due to the combination of source and sink at O1 and 
O2 is 

   = 
21 r

m

r

m   = 
21

12

rr

mrmr 
 

     = 
)rr(rr

)rr(m

rr

)rr(m

2121

2
1

2
2

21

12







 

     = 
)rr(rr

)rr).(rr(m

2121

1212




 

But   r2rrandh2rr 1212     
rhr

rhr

1

2



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Thus    = 
)rr(rr

r.hm4

)rr(rr

)r2).(h2(m

2121212 



 

     = ,
)rr(rr

r.2

2121 


 where hm2    (1) 

In equation (1), let us first keep   a finite constant and non-zero vector, so that 

 = | | is a finite constant and non-zero scalar.  Let .OOalong0h 1  

Then m in such a way that   remains the same finite non-zero constant 

vector.  In that case, both r1, r2r and thus under this limiting process, (1) 
results in 

   = 
233 r

cos

r

cosr

r2

r.2 



    (2) 

The limiting source sink combination obtained at 0 when we keep the direction 

of h  fixed but let h0 and m with  = 2mh remaining a finite non-zero 
constant, is called a three-dimensional doublet (or dipole).  The scalar quantity 

 is called the moment or strength of the doublet.  The vector quantity   =  ̂  

is called the vector moment of the doublet & ̂  (unit vector from 02 to 01) 

determines the direction of the axis of the doublet from sink to source. 

From (2), the velocity components are given by  

  qr = 
3r

cos2

r





 

  q = 
3r

sin

r

1 



 

  q = 0 

The streamlines due to the doublet are given by 

  
0

dsinr

r

sin

rd

r

cos2

dr

33







 

  d = 0      = constant and 
r

dr
= 2cot d 

  r = A sin2 
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O M Z 
 

r  
k̂U  

P(r,,) 

4.8. Doublet in a Uniform Stream. Let there be a doublet of vector moment 

k̂ at O in a uniform stream whose velocity in the absence of the doublet is 

U k̂ (U = constant). 

 

 

 

 

 

Let P be a point in the fluid having spherical polar co-ordinates (r, , ), the 

direction OZ  of the doublets axis being the line  = 0.  We shall find the 
resultant velocity potential due to the combination of the uniform stream and 
the doublet.  We know that the velocity potential due to the uniform stream is 

  1 = Uz = Ur cos     (1) 

and the velocity potential due to a doublet at O, is 

  2 = 
2r

cos
      (2) 

Thus, the resultant velocity potential at P. due to the combination, is  

   = 1 + 2 = (Ur +  r 2) cos 

From here, the velocity component are 

  qr =  





 




cos
r

2
U

r 3
 

  q =  





 




sin
r

U
r

1
3

 

  q = 0
sinr

1 




 

Stagnation points are determined by solving. 

 0q|0sin
r

U,0cos
r

2
U

33







 






   
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P 

A   x    x        B x2  

d r1 

r r2 

M 

x1 

which are satisfied when sin = 0 and r =
3/1

U

2






 

 

Thus, we have the two stagnation points. 

  
















 

















 

,
U

2
and0,

U

2
3/13/1

 

which lie on the axis of symmetry. 

If we write r = a i.e. a = 
3/1

U

2






 

i.e.  = 
2

1
U a3, then for the region r  a, we 

obtain the same velocity potential as for a uniform flow past a fixed 
impermeable sphere of radius a and centre 0.  Thus, for r  a, the effect of the 

sphere is that of a doublet of strength  = 
2

1
Ua3 situated at its centre, its axis 

pointing upstream.  So the sphere can be represented by a suitably chosen 
singularity at its centre.  

4.9. Line Distribution of Sources.  Let us consider a uniform line source AB 
of strength m per unit length.  This means that the elemental section of AB at a 
distance. x from A and of length x is a point source of strength mx. 

 

 

 

 

 

 

Let P be a point in the fluid at a distance r from this element, then the velocity 

potential at P due to the point source is  
r

xm
 . 

The total velocity potential at P due to the entire line distribution AB (= 2l) is 

   = m 
l2

0 r

dx
      (1) 
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Let AM = x1, BM = x2, where AM is the orthogonal projection of AP on AB. 
Also, let PM = d, AP = r1, BP = r2 .  Since r2 = (x1 x)2 + d2 = (x1x)2 + r1

2  
x1

2, therefore from (1), we get 

   = m 


l2

0 2
1

2
1

2
1 )xr()xx(

dx
 

   = m
 

  





















 

22

22

2

0

2
1

2
1

2
11

axxlog

dx
ax

1

1

(xr()xx()xx(log
l

 

    = m   0
2

2
1

2
1

2
11 )xr()xx()xx(log

l
   

    = m   2
1

2
1

2
2211 xrxxlog)rxlog(   |  x1  2l = x1 AB = x2 

    = m log .xrdxrwhere,
rx

rx 2
2

2
2

22
1

2
1

22

11 










 

Again, the relation 2
2

2
2

2
1

2
1 xrxr   

  
1221

2121

11

22

22

11

xxrr

xxrr

xr

xr

xr

xr












  

          = 
l

l

2rr

2rr

21

21




 

Thus,    = m log 










l

l

2rr

2rr

21

21  

     = m log 










l

l

a

a
     (2) 

where 2a is the length of major axis of the ellipsoid of revolution through P 
having A and B as foci since for such an ellipsoid r1 + r2 = constant.  It follows 
from here that the equipotential surfaces  = constant are precisely the family 
of confocal ellipsoid r1 + r2 = 2a obtained when a is allowed  to vary. 
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A B 

r1 r2 

     

P 
r2+r2 

r1=n 

P 

r1+r1 

B 

c 

A 

b 

C a 

Expression for Velocity :- The velocity at P is given by n̂
n

q 







  

         (3) 

 

 

 

 

 

 

Let P be any point on the ellipsoid specified by parameter a and P the 
neighbouring point on the ellipsoid specified by parameter a + a, where 

n̂n'PP   

Thus  n̂
n

a

a

1

a

1
mn̂

a

a
log

n
mq


























lll

l
= n̂

n

a

a

m2
22 


 l

l
   (4) 

The normal at P to the a-surface bisects the angle 2 between the focal radii 
AP, BP. 

Now,   

(r1 + r1)
2 = r1

2 + (n)2  2r1 n cos (180)  

         = r1
2 + (n)2 + 2r1 n cos 

   

Ccosab2bac

ab2

cba
Ccos

222

222




 

  2r1 r1 = 2r1 n cos  + (n)2  (r1)
2 

  r1 = n cos  | (r1)
2 = (n)2 

  



cos
n

r1  

Similarly,       



cos
n

r2  

Since,              2a = r1 + r2 

Unit-3 Two Dimensional Motion 2016-Batch

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
Page 42 of 94



                                                                                                     

  O 

a 
(m) 
A(a, 0, 0) 

Y 

Y 

                 2 .
n

r

n

r

n

a 21












= cos  + cos  = 2 cos  

                 



cos
n

a
 

and thus from equation (4), the velocity of fluid at P is given by 

n̂
a

cosm2
q

22 








l

l
 

5. Hydrodynamical Images for Three Dimensional Flows 

Let us consider a fluid containing a distribution of sources, sinks and doublets.  
If a surface S can be drawn in the fluid across which there is no flow, then any 
system of sources, sinks and doublets on opposite sides of this surface S may 
be said to be images of one another w.r.t. to the surface.  Further, if the surface 
S be considered as a rigid boundary and the liquid removed from one side of it, 
the motion on the other side will remain unaltered. 

5.1. Images in a Rigid Impermeable Infinite Plane.  (i) Image of a source in 
a plane : consider a simple source of strength m situated at A(a, 0, 0) at a 
distance a from an infinite plane YY. 

We shall show that the 
appropriate image system 
for this is an equal source 
of strength m at A(a, 0, 
0), the reflection of A in 
the plane.    
  

To prove this, we consider 
two equal sources f 
strength m at A(a, 0, 0) & 
A (a, 0, 0) with no rigid 
boundary.  Let P0 be any 
point on the plane YY.  
Then the fluid velocity at 
P0 due to the two sources 
is  
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(m) 

A(a,0,0) 
X 

O 

x =0 
A(a,0,0) 

(m) 

P0 

Y 

  

Y 

Y 

B(m) B(m) 

A(m) A(m) 
X 

 

  03
0

03
0

P'A
)P'A(

m
AP

)AP(

m
q    r

r

m
r̂

r

m
q

32
  

 

 

 

 

                 )P'AAP(
)AP(

m
q 003

0

  

      = )OP2(
)AP(

m
03

0

= )OP(
)AP(

m2
03

0

     

0

000

00

OP2

)OP'A()oPAO(

P'AAP







 

This shows that at any point P0 of the plane YY, the fluid flows tangentially to 
the plane x = 0 and so there is no transport of fluid across this plane. 

Let  denotes the velocity potential then, at all points P0 on the plane YY, the 
normal component of velocity is zero  

             
n


= 0.  Hence, the image of a source at A in the rigid plane YY is 

a source at A, as required.  

(ii) Image of Doublet in a 
Plane : Consider a pair of 
sources m at A and m at 
B, taken close together and 
on one side of the rigid 
plane YY‟.  The image 
system is m at A‟, m at 
B, where A & B are 
respectively the reflections 
of A and B in the plane 
YY.  In the limiting case, 

when BA along BA  in 
such a way as to form a 
doublet at A, we find that 
the image of  
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Y 

Z 0 

Y 
(z=0) 

 a 

A() 

Y 

2 

A()  a      0  a          A()             M   Z 

r2 r r1 

 
1 

P(r,,) 

a doublet in an infinite impermeable rigid plane is a doublet of equal strength  
and symmetrically disposed to the other w.r.t the plane.  

5.2. Example.  A three dimensional doublet of strength  whose axis is in the 

direction OZ  is distant a from the rigid plane z = 0 which is the sole boundary 
of liquid of constant density , infinite in extent.  If p be the pressure at , 

show that the pressure on the plane is least at a distance 
2

5a
 from the doublet 

Solution. Let there be a 
doublet of strength  at 
the point A with OA = 
a and YY (i.e. z = 0) 
be the infinite plane.  
Then the image system 
is an equal doublet of 
strength  at A, the 
reflection of A in the 
plane z = 0, and the 

axis along ZO .  The 
line OZ is taken as the 
initial line  = 0 and 
plane z = 0 is  = /2.  

so that P(r, , ) is confined to the region 0    /2.  Let  AP = r1, AP = r2 
and 1, 2 be the angles which these lines make with the axis of the doublets as 
shown in the figure. 

Then, the velocity potential at P is  

 

 

 

 

   = 
2
2

2
2

1

1

r

cos

r

cos 



    (1) 

where  










cosra2arr

cosra2arr
222

2

222
1

    (2)   

(By cosine formulae in  POA, POA) 
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But   cos1 = 
111 r

acosr

r

OAOM

r

AM   

and  cos (180 2) = 
222 r

cosra

r

OMO'A

r

M'A   

  cos 2 = 
2r

)cosra( 
 

Using these relations in (1), we get 

   = 






 






 

2
2
21

2
1 r

)cosra(

rr

acosr

r
 

     =  






 
3
2

3
1 r

acosr

r

acosr
   (3) 

Further from (2), we have 

  2 r1 
1

11

r

cosar

r

r
cosa2r2

r

r 







 

Similarly, 
1

1

2

2

r

sinrar
,

r

cosar

r

r 






 

  
2

2

r

sinrar 



. 

Thus from (3), the velocity components are given by  

qr=  
































)acosr(
r

1

r

r
3

r

cos
)acosr(

r

1

r

r
3

r

cos

r 4
1

1
3

1
4
2

2
3
2

 

=  






 
5

1
3

1
5
2

3
2 r

)acosr)(cosar(3

r

cos

r

)acosr)(cosar(
3

r

cos
 

q = 



r

1
= 













































4
2

2

3
2

4
1

1

3
1 r

r
)acosr(

3
r

sinr

r

r
)acosr(

3
r

sinr

r
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      = 






 
5
2

3
2

5
1

3
1 r

)acosr(sinra
3

r

sinr

r

)acosr(sinra3

r

sinr

r
 

 q = 0 

When the point P lies on the plane YY or  = /2, we have  2
2

2
1 rr r2 + a2 

and so at (r, /2, ), the velocity components are  

  qr = 6 ra/(r2 + a2)5/2, q = 0, q = 0 . 

Along the streamline through this point, Bernoulli‟s equation is 

  ,
p

constq
2

1p 2





  

where 0q   at infinity.  

Thus, the pressure at any point on the plane YY is given by 

  p = p   522222 )ar(ra36
2

1   

i.e.  p(r) = p 
522

222

)ar(

ra18




 

Now,  

p(r) = 6222222 )ar()ar4(ra36
dr

dp   

which gives      p(r) = 0 when r = 
2

1
a 

Also  

     p 0
2

a
'p,0

2

a 





 






   

i.e. p(r) changes sign from negative to positive when r passes through 
2

a
 

 p is minimum at r =
2

a
  = /2 
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i.e. at the point P0 





  ,2/,

2

a
 

The distance P0A is given by 

  a
2

5
a

2

a 2
2









 

Hence p is least at a distance 
2

5
a from the doublet and the minimum value is 

  pmin. = p 
6

5
2

a

1

5

4

2

9






   

5.3. Images in Impermeable Spherical Surfaces.  We have already studied 
the effect of placing a solid impermeable sphere in a uniform stream of 
incompressible fluid, taking the case of axial symmetry.  Here, we discuss the 
disturbance produced when a sphere is placed in more general flow. 

We shall make use of Weiss‟s Sphere Theorem which states as follows : 

 “Let (r, , ) be the velocity potential at a point P having spherical 
polar co-ordinates (r, , ) in an incompressible fluid having irrotational 
motion and no rigid boundaries.  Also suppose that  has no singularities 
within the region r  a.  Then if a solid impermeable sphere of radius a is 
introduced into the flow with its centre at the origin of co-ordinates, the new 
velocity potential at P in the fluid is  

  (r, , ) +  







 r/2a

0

2

a

1
,,

r

a

r

a
(R, , ) dR, (r > a) 

where r and 
r

a 2

are the inverse points w.r.t the sphere of radius a.” 

Here, the last two terms refer to perturbation potential due to the presence of 
the sphere.  

(i) Image of a Source in a Sphere : Suppose a source of strength m is 
situated at point A at a distance f(> a) from the centre of the sphere of 
radius a. 
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P r 

A(f,0,0) 

 

Let B be the inverse point of A w.r.t. the sphere, then OB = a2/f 

 

 

 

 

The velocity potential at P(r, , ) in the fluid due to a simple source of 
strength m at A(f, 0, 0) is 

  (r, ) = 
AP

m
 

From  OAP, cos = 
rf2

)AP(fr

)OA)(OP(2

)AP()OA()OP( 222222 
 

  AP =  cosrf2fr 22  

Thus, the velocity potential is 

  (r, ) = m(r2 + f2 2rf cos)1/2    
  (1) 

Introducing a solid sphere in the region r  a, where a < f, we obtain on using 
Weiss‟s sphere theorem, a perturbation potential  

  







 r/2a

0

2

a

1
,

r

a

r

a
(R, ) dR 

i.e.   










r/2a

0

2/12
2

2

4

a

m
cosf

r

a
2f

r

a

r

am
[R2 + f2  2Rf 

cos]1/2 dR 

i.e. 





r/2a
0 222222 fcosRf2R

dR

a

m

)f/a(cos)f/a(r2r

)fma(
 

This shows that the image system of a point source of strength m placed at 
distance f(> a) from the centre of solid sphere consists of a source of strength 

           a 
                        

           0       B 
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(m)  (m) 

   A    B 

f

ma
 at the inverse point 

f

a 2

in the sphere, together with a continuous line 

distribution of sinks of uniform strength 
a

m
 per unit length extending from the 

centre to the inverse point. 

(ii) Image of a doublet in a sphere when the axis of the doublet passes 
through the centre of the sphere :- Let us consider a doublet AB with its axis 

BA  pointing towards the centre 0 of a sphere of radius a.  Let OA = f, OB = f 
+ f.  Let A, B be the inverse points of A & B in the sphere so that  

 

 

 

 

  OA = a2/f, OB = a2/(f+f). 

At A, B we associate simple sources of strengths m and m so that the strength 
of the doublet is  = mf, where  is to remain a finite non-zero constant as 
m and f0 simultaneously.  

  BA = OA  OB = 
12222

f

f
1

f

a

f

a

ff

a

f

a








 


  

          = 
f

f

f

a

f

a

f

a 222  to the first order 

          = f
f

a
2

2

 to the first order 

Now, from the case of “Image of source in a sphere”, the image of m at A 

consists of 
f

ma
 at A together with a continuous line distribution from O to A 

of sinks of strength 
a

m
 per unit length and the image of m at B consists of 

)ff(

ma




at B together with a continuous line distribution from O to B of 

sources of strength 
a

m
 per unit length. 

 

         O 

            B    A 
   a 
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The line distribution of sinks and sources from 0 to B cancel each other 

leaving behind a line distribution of sinks of strength 
a

m
 per unit length from 

B to A i.e. sink of strength 
a

m
 BA = 

a

m
222

2

f

a
)fm(

f

a
f

f

a 







 at B.  The 

source at B is of strength 

  





 






 


 

f

f
1

f

ma

f

f
1

f

ma

ff

ma
1

    ,           to the first 

order terms  

   = 
22 f

a

f

ma
f

f

ma

f

ma 
  

which is equivalent to a sink 
2f

a
sourceaand'Bat

f

ma 
at B.   

As there is already a sink 
2f

a
 at B, therefore source and sink at B neutralize.  

Finally, we are left with source 
f

ma
at A and a sink. 

f

ma
at B.  Thus, to the 

first order, we obtain a doublet at A of strength  

  
f

ma
 (BA) = 

f

ma
f

f

a
2

2

  

      = 
3

3

3

3

f

a
f

f

ma  . 

Hence in the limiting case as f0, m, we obtain a doublet at A of 
strength  with its axis towards O, together with a doublet at the inverse point 

A of strength 
3

3

f

a
 with its axis away              from O. 

6. Stream Function for an Axi-Symmetric Flow (Stoke’s Stream Function) 

If the streamlines in all the planes passing through a given axis are the same, 
the fluid motion is said to be axi-symmetric.  We have already considered such 
flow for irrotational motion in spherical polar co-ordinates. (r, , ) in which 
the line  = 0 is the axis of symmetry. 

Suppose the z-axis be taken as axis of symmetry, then q = 0 and the fluid 
motion is the same in every plane  = constant (meridian plane) and suppose 
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that a point P in the fluid may be specified by cylindrical polar co-ordinates (r, 
, z).  Thus, all the quantities associated with the flow are independent of . 
The equation of continuity in cylindrical co-ordinates, becomes 

  0)rq(
z

)rq(
r

zr 






 

i.e.  )rq(
z

)rq(
r

zr 





     (1) 

This is the condition of exactness of the differential equation  

  rqrdz  r qz dr = 0     (2) 

This means that (2) is an exact differential equation and let L.H.S. be an exact 
differential d(say) 

Therefore, 

rqr dz  rqz dr = d = dz
z

dr
r 





 

which gives 

  rz rq
z

,rq
r








     (3) 

The function  in (3) is called Stoke’s stream function. 

The equation of streamlines in the meridian plane  = constant at a fixed time t 
is  

  
zr q

dz

q

dr   

  qz dr = qr dz 

Using (3), we get 

   dz
zr

1
dr

rr

1







 

  0dz
z

dr
r








 

  d = 0 

Unit-3 Two Dimensional Motion 2016-Batch

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
Page 52 of 94



                                                                                                                           

   = constant = C 

which represent the streamlines. 

6.1. Stoke’s Stream Function in Spherical Polar Co-ordinates (r,  ) :  
We consider the                    axi-symmetric motion in r,  plane such that q = 
0. The equation of continuity in spherical polar     co-ordinates becomes  

  0)qsinr(
sinr

1
)qr(

rr

1
2r

2

2











  

i.e.                    )qsinr()qsinr(
r

r
2








   (1) 

This is condition of exactness for the different equation  

  r sin q dr  r2 sin qr d = 0    (2) 

Thus the expression on L.H.S. of (2) is equal to an exact differential function 
 such that  

   r sin q dr  qr r
2 sin d = d = 







ddr
r

 

                  .sinrq,sinrq
r

2
r 







  

6.2. Remark. In the above cases, the motion need not be irrotational i.e. 
velocity potential may not exist.  In case of irrotational motion, it can easily be 
shown that the velocity potential  and the Stoke‟s stream function  do not 
satisfy CR equations due to the fact that  is not harmonic.  

6.3. Stoke’s Stream Function for a Uniform Stream : Let a uniform stream 

with velocity U be in the direction of z-axis such that k̂Uq  .  Then, from the 

relations  

  q3 =  ,
zr

1
q,

rr

1
r 





  

we get  U = 
zr

1
0,

rr

1





  

 0
z

,Ur
r







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  = U 
2

r 2

, where the constant of integration is found to be 

zero.  

In spherical polar co-ordinates we have 

   =   222 sinr
2

U
)sinr(

2

U
. 

6.4. Stoke’s Stream Function for a Simple Source at Origin : In case of 
simple source 

  r̂)r(fq   

But we have already calculated that for a source of strength m at origin. 

  )0r(r̂
r

m
q

2
 in spherical polar co-ordinates.  

i.e.  (qr, q) = r̂
r

m
2

      (1) 

Also, we know that in spherical polar co-ordinates, 

  qr = 
rsinr

1
q,

sinr

1
2 








     (2) 

From (1) & (2), we get 

  0
r

,
sinr

1

r

m
22









  

  0
r

,sinm 






 

   = m cos . 

A constant may be added to this solution and this is usually done to make  = 
0 along the axis of symmetry  = 0.  In such case,  

  = m (cos  1) 

For a sink of strength m at origin, the Stoke‟s stream function is 

   = m (1cos) 
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 z    Q z Q        B b   M   z-axis 

                                                         = 0   

P 

A 

r 

 

d 

6.5. Stoke’s Stream Function for a Doublet at Origin :  We assume that the 
flow is due to only a doublet at origin 0 of strength .  Taking the axis  = 0 of 
the system of spherical co-ordinates to coincide with the axis of the doublet, 
we find that the velocity potential at P(r, , ) is 

   = 
2r

cos
 (r > 0)     (1) 

  qr = 
33 r

sin

r

1
q,

r

cos2

r








  q = 0 (2) 

But the relations between the velocity components and the Stoke‟s stream 
function  are  

  qr = 
rsinr

1
q,

sinr

1
2 








     (3) 

From (2) and (3), we get 

  
2

2

r

sin

r
,

r

cossin2 






 

Integrating, we get  

   = 
r

sin 2 
 

6.6. Stoke’s Stream Function due to a Uniform Line Source : Let a uniform 
line source of fluid extends along the streamline segment AB of length l.  
Consider an element QQ of length z at a distance z ( = AQ) from A.  Thus we 
have a simple source of strength m z, where m is the constant source strength 
per unit length of the distribution along AB. 

Let QP = r, PQB| = Q, PM = d 

The Stoke‟s stream 
function  at P for the 
simple source of 
strength mz at Q is                
mz(cos1).  Then, 
the value of the Stoke‟s 
stream function  at P 
due to entire line source 
AB is given by   

  = m   
l l l

0 0 0
dzmdzcosmdz)1(cos  
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          = m  


l

l

l

l

0 22
mdz

)zb(d

zb
  

22 )zb(d

bz

r

bz

PQ

BMQB

PQ

QM
cos,PQMIn











l

ll
 

Putting l + b z = x   dz = dx 

When   z = 0, x = l + b, 

when   z = l, x = b 

Therefore, 

  = m   


b

b 22
m

xd

)dx(x
l

l   

or   = 
b

b2

m l

(d2 + x2)1/2 (2x) dx  ml 

      = l

l

m
2/1

xd

2

m
b

b

22












 


 

      = m   ll mbd)b(d 2222   

      = m[AP  BP]  mAB 

      = m[AP  BP  AB] . 

As p is the only variable point, the simpler form m (APBP) can be taken for 
evaluating velocity components at P.  The stream surfaces are 

   = constant i.e. AP  BP = constant. 

These are confocal hyperboloids of revolution about AB, with A and B as foci. 

We have shown earlier that the equipotentials were confocal ellipsoids of 
revolution about AB with the same foci.  Also it is well known result that two 
families of confocals intersect orthogonally. 

6.7. Stoke’s Stream Function for a Doublet in a Uniform Stream : Let a 

doublet of vector moment  k̂  is situated at origin 0 in a uniform stream whose 

undisturbed velocity is U k̂ . 
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In spherical polar co-ordinates (r, , ), the Stoke‟s stream functions for each 
separate distribution are  

  1 = 
2

1
Ur2 sin2 (for uniform stream, k̂Uq  ) 

  2 = 
r


sin2  (for doublet at origin) 

Hence the stream function for the combination is 

   (r, ) = 





  22 sinr/Ur

2

1
 

The equation of the stream surfaces are (r, ) = constant. 

In particular, the stream surfaces for which  = 0 are given by  

  





  22 sinr/Ur

2

1
= 0 

  sin = 0 or 0
r

Ur
2

1 2   

   = 0,  i.e. the z-axis or r = 
3/1

U

2






 

, the surface of the sphere 

with centre 0 and radius 
3/1

U

2






 

. 
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7.  Irrotational Motion in Two-dimensions 

Suppose that a fluid moves in such a way that at any given instant, the flow 
pattern in a certain plane within the fluid is the same as that in all other parallel 
planes within the fluid.  Then at the considered instant, the flow is said to be 
two-dimensional flow or plane flow.  Any one of the parallel planes is then 
termed as flame of flow. 

If we take the plane of flow as the plane z = 0, then at any point in the fluid 
having cartesian co-ordinates (x, y, z), all physical quantities i.e. velocity, 
density, pressure etc, associated with the fluid are independent of z. 

Thus q  = q  (x, y, t)  = (x, y, t) etc 

Plane flows, as described above, cannot be achieved in reality, but in certain 
important cases, close approximation to planarity of flow may occur. 

We have already considered such flow when defining Lagrange‟s stream 
function. We consider here some special methods for treating two-dimensional 
irrotational motion.  

7.1. Use of Cylindrical Polar Co-ordinates.  For an incompressible 
irrotational flow of uniform density, the equation of continuity 2 = 0 for the 
velocity potential (r, , z) in cylindrical polar co-ordinates (r, , z) is  

  0
zr

1

r
r

rr

1
2

2

2

2

2




















   (1) 

If the flow is two dimensional and the co-ordinate axes are so chosen that all 
physical quantities associated with the fluid are independent of z, then  = (r, 
) and (1) simplifies to 

  0
r

1

r
r

rr

1
2

2

2

















    (2) 

Let us seek solutions of (2) by putting 

  (r, ) = f(r) g()     (3) 

in (2) for separation of variables.  Thus, we get 

  g()   )(''g)r(f
r

1
)r('rf

dr

d

r

1
2

 = 0 
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i.e.   
 

)(g

)(''g

)r(f

)r('rf
dr

d
r


      (4) 

Thus, L.H.S. of (4) is a function of r only and R.H.S. is a function of  only.  
As r and  are independent variables, so each side of (4) is a constant (say).  
Thus, we have 

  
)(g

)(''g
;

)r(f

)r('rf)r(''fr2




=  

i.e.  r2f (r) + r f (r)  f(r) = 0    (5) 

and   g() + g() = 0     (6) 

Equation (6) has periodic solutions when  > 0.  Normally the physical 
problem requires that g( + 2) = g() and this is satisfied when  = n2 for         
n = 1, 2, 3,….  

Thus, the basic solution of (6) are 

  g() = c1 cos n + c2 sin n    (7) 

Now, (5) is of Euler-homogeneous type and it is reduced to a linear different 

equation of constant co-efficients by putting r = et i.e. t = log r  
r

1

dr

dt   

Also,  f (r) = 
dt

df

r

1

dr

dt
.

dt

df

dr

df   

and   f (r) = 














dt

df

r

1

dr

d

dr

df

dr

d

dr

fd
2

2

 

          = 














2r

1

dt

df

dt

df

dr

d

r

1
 

          =
dt

df

r

1

dr

dt

dt

df

dt

d

r

1
2

















 

          = 
dt

df

r

1

dt

fd

r

1
22

2

2
  
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  r2 f (r) = 
dt

df

dt

fd
2

2

  

Therefore, equation (5) reduces to 

  0fn
dt

df

dt

df

dt

fd 2

2

2

  

   0fn
dt

fd 2

2

2

  

It‟s solution is 

  f = exp ( + nt) = e+nt =   nnt re 
  

i.e.  f = c3 r
n + c4 r

n     (8) 

A special solution of (2) is obtained by linear superposition of the forms (7) & 
(8) to give 

  (r, ) = f(r) g() 

             = (Anr
n + Bn r

n) (Cn cos n + Dn sin n) (9) 

The most general solution is of the form 

 (r, ) =  


1n
( An r

n + Bn r
n) (Cn cos n + Dn sin n) (10) 

7.2.  Particular cases. (i) for n = 0, we have 

  f = k1 + k2t = k1 + k2 log r 

and   g = k3 + k4 

so that another solution of (2) is 

  (r, ) = (k1 + k2 log r) (k3 + k4 ) 

(ii) for n = 1, we get a special solution as  

   = r cos ,  = r sin ,  = r1 cos ,  = r1 sin    

7.3. Example.  Discuss the uniform flow past an infinitely long circular 
cylinder.  
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Solution. Let P be a point with cylindrical polar co-ordinates (r, , z) in the 
flow region of an unbounded incompressible fluid of uniform density moving 

irrotationally with uniform velocity U î  at infinity past the fixed solid 
cylinder r  a  

When the cylinder r = a is introduced, it will produce a perturbation which is 
such as to satisfy Laplace equation and to become vanishingly small for large r.  
This suggests taking the velocity potential for r > a, 0    2 in the form  

  (r, ) = Ur cos  Ar1 cos  ,   (1) 

where the velocity potential of the uniform stream is Ux = Ur cos and due to 
perturbation, it is Ar1 cos which 0 as r and gives rise to a velocity 
pattern which is symmetrical about             = 0, . (the term r1 sin is not 
there since it does not give symmetric flow) 

As there is no flow across r = a, so the boundary condition on the surface is  

  
r


= 0, when r = a     (2) 

Applying (2) in (1), we get  A = Ua2 for all  satisfying     2. 

Thus, the velocity potential for a uniform flow past a fixed infinite cylinder is 

  (r, ) = U cos 









r

a
r

2

, r > a, 0    2  (3) 

From here, the cylindrical components of velocity are ( q = ) 

  qr =  












2

2

r

a
1cosU

r
 

  q =   22
2

r/a1sinU
r

a
rsinU

r

1

r

1 












 

  qz =  0
z





 

We note that as r, qr = U cos, q = U sin which are consistent with the 

velocity at infinity U î  of the uniform stream.  

7.4. Example.  A cylinder of infinite length and nearly circular section moves 
through an infinite volume of liquid with velocity U at right-angles to its axis 
and in the direction of positive x-axis. If the section is specified by the 
equation.   
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  r = a(1 + cosn) 

where n is positive integer and  is small, show that the approximate value of 
the velocity potential of the fluid is  

  Ua





























)1ncos(
r

a
)1ncos(

r

a
cos

r

a
1n1n

 

Solution. Let the tangent at a point P on the plane of cylinder makes angles , 
() with the radial line OP drawn from 0 as shown in the figure 

 

 

 

 

 

 

At large radial distances r from OZ, the fluid velocity becomes vanishingly 
small. 

Let us assume the velocity potential (r, ) of the form rk cos
sin k (k = 1, 

2,…..).  
Thus, we seek a solution of the form 

  (r, ) =  


1k
rk (Ak cos k + Bk sin k)  (1) 

(If we take k = 0, this would add on to  an arbitrary constant A0). 
At  = 0 and  =  on the boundary, q = 0 which is satisfied by taking Bk = 0 
(k = 1, 2,…..) 
Thus, the velocity potential simplifies to the form 

  (r, ) =  


1k
Ak r

k cos k    (2) 

which approximately remains unaltered on replacing  by 2. 

At any point (r, ,z) of the fluid, the cylindrical polar velocity components are 
(q = ) 

  qr =  

 

1k
.k

r
Ak. r

(k+1) cos k 

UN 

X 

               
                           
 
       0    

U 

90 

- 

 

P 

 
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 r  

1+ cos n 

n sin n 

  q =  

 

1k
.k

r

1
Ak. r

(k+1) sin k 

  qz = 
z


= 0 

At P on the boundary, since ( ) is the angle between the tangent and the 
radius vector OP, therefore 

  cot () = )r(log
d

d

d

dr

r

1





 

  cot  = 
d

d
[log a(1+cosn)]  

              = 
)ncos1(a

1


(a n sin n) 

    cot  = 


ncos1

nsinn
                    sin () = r

ds

d
  (3) 

The normal component of velocity UN of the boundary at P is cos () = 
ds

dr
 

  UN = U sin ( ) 

        = U (sin  cos   cos sin ) 

i.e.  UN = 




nsinn)ncos1(

]nsinnsin)ncos1([cosU
2222

  (4) 

As there is n transport of 
fluid across the surface 
and n breakaway from it, 
so UN is also the normal 
velocity component of the 
fluid.   

Thus,  

UN = qr sin  + q cos .        

 

 

            
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 = 
22

)1k(

1k
k

)nsinn()ncos1(

)ncos1(kcosrAk







  


+ 

22

)1k(

1k
k

)nsinn()ncos1(

)nsinn(ksinrAk







  


 

= 
22

)1k()1k(

1k
k

)nsinn()ncos1(

]nsinnksin)ncos1(k[cos)ncos1(aAk



 





    

(5) 

Equating the two forms for Un, we get 

]nsinksinn)ncos1(k[cos)ncos1(aAk )1k()1k(

1k
k  


 

= U[cos (1+ cos n)  n sin  sin n]    (6) 

We further simplify (6) for the terms upto 1st order in .  

L.H.S. of  (6) 

= ]nsinksinnncoskcosk][cosncos)1k(1[aAk )1k(

1k
k  



=  



 ncoskcos)1k(k[cosaAk )1k(

1k

k  

 ]nsinksinnncoskcos   

= ]nsinksinnncoskcoskk[cosaAk )1k(

1k
k  




  

=  
  




 )kncos()kncos(

2

k
kcosaAk )1k(

1k

k  

  
 )kncos()kncos(

2

n
 

= 



  




 )kncos()kn(

2
)kncos()kn(

2
kcosaAk )1k(

1k
k  (7)

  

R.H.S. of (6)  
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= U    



  )1ncos()1ncos(

2

n
)1ncos()1ncos(

2
cos  

= U  



  )1ncos()n1()1ncos()n1(

2
cos   (8) 

Correct to the first order of approximation, from (6), (7) & (8), comparing 
coefficients of cos , cos (n1), cos(n+1), we get 

 U = 
2

1

a

A
  A1 = Ua2   (9)   | n + k 1 

      )1n(U
2

1
)1n(aA

2

1
aA)1n( 2

1
n

1n 



  

    

In (7) cos k  cos(n1)  
  cos (nk)  cos (n1)  

similarly for n+1 

and  )1n(U
2

1
)1n(aA

2

1
aA)1n( 2

1
)2n(

1n 



  

  

 An1 = Uan,  An+1 = U an+2 

All Ak other than A1, An1, An+1 are zero.  Putting the value of these three non-
zero co-efficients in (2), we get 

(r, ) = [A1r
1 cos + An1 r

(n1) cos (n1)  +An+1 r
(n+1) cos (n+1)] 

=  Ua





























)1ncos(
r

a
)1ncos(

r

a
cos

r

a
1n1n

. 

Hence the result.  

8.  The Complex Potential  

Here, we confine our attention to irrotational plane flows of incompressible 
fluid of uniform density for which the velocity potential (x, y) and the stream 
function (x, y) exist.  Here (x, y) specify two dimensional Cartesian co-
ordinates in a plane of flow.  Let us write 

  W = (x, y) + i(x, y)     (1) 

We suppose that all four first-order partial derivatives of  &  with respect to 
x, y exist and are continuous throughout the plane of flow.  Now, the velocity 

q  = (u, v) has components satisfying q  = . 
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  u = 
xy

v,
yx 











   (2) 

Thus  and  satisfy the C-R equations and so W must be an analytic function 
of z = x +iy 

Therefore, we can write (1) as 

  W = f(z) =  +i     (3) 

The function W = f(z) is called the complex potential of the plane flow.  

8.1. Complex Velocity.  We have 

  W =  + i and z = x +iy 

Differentiating partially w.r.t. x, we get 

  
y

i
xx

i
xx

W
















= u + iv 

But              1
x

z

dz

dW

x

z
.

dz

dW

x

W 









  

Thus.               ivu
dz

dW   

     ivu
dz

dW  = q cos  iq sin  

           = q(cos  i sin)  = q ei 

The combination u iv is known as complex velocity 

Thus, speed q = 22 vu
dz

dW   

and for stagnation points, 0
dz

dW   

8.2.  Example. Discuss the flow for which complex potential is  

  W = z2 

Solution. We have 
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  W =  + i = z2 = (x + iy)2 = x2y2 + 2i xy 

             (x, y) = x2y2,  (x, y) = 2xy 

The equipotentials,  = constant, are the rectangular hyperbolae                             
x2  y2 = constant having asymptotes y = + x. 

The streamlines,  = constant, are the rectangular hyperbolae xy = constant 

having the axes x = 0, y = 0 as asymptotes Also z2
dz

dW  , therefore the only 

stagnation point is the origin.  The two families of the hyperbolae cut 
orthogonally in accordance with general theory. 

8.3.  Complex Potential for a Uniform Stream.  Let the uniform stream 
advance with a velocity having magnitude U and being inclined at angle  to 
the positive direction of the x-axis. 

Then, we have u = U cos, V = U sin and thus 

  
dz

dW
= u  iv = U ei 

The simplest form of W, ignoring the constant of integration, is  

  W = Uz ei 

i.e.        + i = U(x + iy) (cos i sin ) 

       = U(x cos  + y sin ) U î (y cos   x sin ) 

Equating real and imaginary parts, we get 

   = U(x cos  + y sin ) 

   = U(y cos   x sin ) 

Thus, the equations of equipotentials are 

  x cos  + y sin  = constant    (1) 

These equations represent a family of parallel streamlines.  The equations of 
the streamlines are 

  y cos  x sin = constant    (2) 
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C 

These equations represent another family of parallel streamlines inclined at 
angle  to the positive x-direction.  The two family of streamlines intersect 
orthogonally in accordance with general theory.   

8.4. Line Source and Line Sink.   Line source and line sink are the two-
dimensional analogues of the three-dimensional simple source and sink.  Let A 
be any point of the considered plane of flow and C be any closed curve 
surrounding A.  We construct a cylinder having its generators through the 
points of C and normal to the plane of flow.  Suppose that in each plane of 
flow, fluid is emitted radically and symmetrically from all points on the infinite 
line through A normal to the plane of flow and such that the rate of emission 
from all such points as A is the same.  Then the line through A is called a line 
source. We may take the closed curve C to be a circle having centre A and 
radius r. 

Suppose the line source 
emits fluid at the rate 
2m units of mass per 
unit length of the source 
per unit time, in all 
directions in the plane of 
flow (say, xy-plane).  We 
define the strength of the 
line source to be m.  A line 
source of strength m is 
called a line sink. 

An example of a line source is a long straight hose with perforations along its 
length, commonly used for watering lawns for long periods of time.  

8.5. Complex Potential for a Line Source.  Let there be a line source of 
strength m per unit length at z = 0.  Since the flow is radial, the velocity has the 
radial component qr only.  Then the flow across a circle of radius r is (by law 
of conservation of mass) 

  (2 r qr) = 2m 

  qr = 
r

m
 

The complex potential is obtained from the relation 

   ivu
dz

dW  = qr cos   i qr sin  

    = qr (cos  i sin) =
r

m
ei 

     
     A 
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  
z

m

re

m
e

r

m

dz

dW
i

i  
  

Integrating, we get 

  W = m log z 

where we have ignored the constant of integration. 

We can write it as 

   + i  = m log (r ei) 

   = m log r  i m 

    =   m log r,  = m 

Thus, the equipotentials and streamlines have the respective forms 

  r = constant,  = constant 

i.e.  x2 + y2 = constant, tan1

x

y
= constant 

i.e.  x2 + y2 = C1, y = C2x . 

Thus the equipotentials are circles and streamlines are straight lines passing 
through origin. 

If the line source is at z = z0 instead of z = 0, then the complex potential is 

  W = m log (zz0) 

For a line sink of strength m per unit length at z = z0, the complex potential is  

  W = m log (zz0). 

If there are a number of line sources at z = z1, z2,…,zn of respective strengths 
m1, m2,…, mn per unit length, then the complex potential is 

  W = m1 log(z z1)  m2 log (zz2)…….mn log (zzn). 

8.6. Complex Potential for a Line Doublet.  The combination of a line source 
and a line sink of equal strength when placed close to each other gives a line 
doublet.  Let us take a line source of strength m per unit length at z = a ei and 
a line sink of strength m per unit length at z = 0 

Therefore, the complex potential due to the combination is  
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  W = m log(z  aei) + m log (z0) 

       = m log 







 

z

ae
1logm

z

aez ii

 

       = m 











....
z3

ea

z2

ea

z

ae
3

i33

2

i22i

 

In the figure,  
OP = a = s where a is the distance between the source and sink. 
As a0, m so that ma  and thus, we get 

  W = 
z

e i
 

If the line sink is situated at z = z0, then the complex potential is 

  W = 
0

i

zz

e


 

 

If  = 0, then the line source is on x-axis and thus. 

  W =
0zz 


 

If there are number of line doublets of strengths 1, 2 ……. n per unit length 
with line sinks at points z1, z2,……., zn and their axis being inclined at angles 
1, 2,….., n with the positive direction of x-axis, then the complex potential 
is given by 

  W = 1

n

ni

n
2

2i

2
1

1i

zz

e
.........

zz

e

zz

e











 

8.7. Example. Discuss the flow due to a uniform line doublet at origin of 
strength  per unit length and its axis being along the x-axis. 
Solution. We know that the complex potential for a doublet is 

  W = 
0

i

zz

e


 

 

and when the doublet is at origin having its axis along x-axis, then  = 0, z0 = 0 

 W = 
22 yx

)iyx(

iyxz 





 

  + i = 
2222 yx

y
i

yx

x







 

  = 
2222 yx

y
,

yx

x







 

Thus the equipotentials,  = constant, are the coaxial circles  
  x2 + y2 = 2k1x      (1) 
and the streamlines,  = constant, are the coaxial circles 
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z 

z
2az   

  x2 + y2 = 2k2y      (2) 

Family (1) have centres (k1, 0) and radii k1 and family (2) have centres (0, k2) 
and radii k2 

The two families are orthogonal 

 

 

 

 

 

 

 

 

 

 

8.8. Milne-Thomson Circle Theorem :Let f(z) be the complex potential for a 
flow having no rigid boundaries and such that there are no singularities within 
the circle |z| = a.  Then on introducing the solid circular cylinder |z| = a, with 
impermeable boundary, into the flow, the new complex potential for the fluid 
outside the cylinder is given by   

  W = f(z) + f (a2/z), |z|  a 

 

Proof. Let C be he cross-section of the cylinder with equation |z| = 1. 

Therefore, on the circle C, |z| = a    z z = a2   z  = a2/z 

where z  is the image of the point z w.r.t. the circle.  If z is outside the circle, 
then z  = a2/z is inside the circle.   Further, all the singularities of f(z) lie 

outside C and the singularities of f(a2/z) and therefore those of f (a2/z) lie 
inside C.  Therefore f(a2/z) introduces no singularity outside the cylinder.  

Thus, the functions f(z) and f(z) + f (a2/z) both have the same singularities 
outside C.  Therefore the conditions satisfied by f(z) in the absence of the 

cylinder are satisfied by f(z) + f (a2/z) in the presence of the cylinder.   Further, 
the complex potential, after insertion of the cylinder |z| = a, is 

   
       
   z 

x 

y 

Streamlines 

Equipotentials 
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  W = f(z) + f (a2/z) = f(z) + f ( z ) 

       = f(z) + )z(f  

       = a purely real quantity     

But we know that W =  + i 

It follows that  = 0 

This proves that the circular cylinder |z| = a is a streamline i.e. C is a 
streamline.  Therefore, the new complex potential justifies the fluid motion and 
hence the circle theorem. 

8.9. Uniform Flow Past a Fixed Infinite Circular Cylinder.  We have 
already dealt with this problem using cylindrical polar co-ordinates.  Here, we 
use the concept of complex potential. 

The velocity potential due to an undisturbed uniform stream having velocity 

U î (U is real) is Ux = U Re(z). 

Since z is an analytic function, the corresponding complex potential is  

  f(z) = Uz 

Thus 

  zUzUUz)z(f)z(f   

and so  

f (a2/z) = Ua2/z .   

With the cylinder |z| = a present, by circle theorem, the complex potential, for 
the liquid  region |z|  a, is  

        W = f(z) + f (a2/z) 

                i.e.  + i = U 









z

a
z

2

 

Taking z = rei, where r  a, equating real and imaginary parts, we get 

  = Re(W) = U cos 









r

a
r

2

  | Same expression as derived earlier 
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Y 

P 

r1 

1 X 
O m 

A(a,0) 

m 2 

A(a,0) 

r2 

   = Im(W) = U sin 









r

a
r

2

 

The perturbation term f (a2/z) = U
z

a 2

gives the image of the flow in the 

cylinder.  This image represents a uniform line doublet of strength Ua2 per unit 

length and axis in the direction î . 

9. Images in Two Dimensions 

In a two dimensional fluid motion, if the flow across a curve C is zero, then the 
system of line sources, sinks, doublets etc on one side of the curve C is said to 
form the images of line sources, sinks, doublets etc on the other side of C.  To 
discuss the images in two dimensions, we use complex potential. 

9.1.  Image of a Line Source in a Plane. Without loss of generality we take 
the rigid impermeable plane to be x = 0 and perpendicular to the plane of flow 
(xy-plane).  Thus we are to determine the image of a line source of strength m 
per unit length at A(a, 0) w.r.t. the streamline OY.  Let us place a line source 
per unit length at A(a, 0). 

 

 

 

 

 

The complex potential of strength at a point P due to the system of line 
sources, is given by  

  W = m log za) m log(z + a) 

       = m log [(za) (z+a)] 

       = m log    )21(i
21

2i

2
1i

1 errlogmerer    

   + i = m log (r1 r2) im (1 + 2) 

  = m (1 + 2) 

If P lies on y-axis, then PA = PB    PBA|PAB|   
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Y 

X 
A 

m B 

 m 

O 

B m 

 

A 
m 

i.e.    1 = 2     1 + 2 =  

Thus  = m = constant 

which shows that y-axis is a streamline.  Hence the image of a line source of 
strength m per unit length at A(a, 0) is a source of strength m per unit length at 
A(a, 0).  In other words, image of a line source w.r.t. a plane (a stream line) 
is a line source of equal strength situated on opposite side of the plane (stream 
line) at an equal distance.  

9.2.  Image of a Line Doublet in a Plane.  Let us consider the rigid 
impermeable plane to be x = 0 and perpendicular to the plane of flow (xy-
plane).  Thus we are to determine the image of a line doublet w.r.t.  

 

 

 

 

 

 

the stream line OY.  Let there be line sources at the points A and B, taken very 
close together, of strengths m and m per unit length.  Their respective images 
in OY are m at A, m at B, where A, B are the reflections of A, B in OY.  

The line AB makes angle  with OX .  Thus 'B'A  makes angle () with 

OX .  In the limiting case, as m, AB0, we have equal line doublets at A 

and A with their axes inclined at , () to OX . Hence, either of the line 
doublet is the hydrodynamical image of the other in the infinite rigid 
impermeable plane (stream line) x = 0 

9.3.  Image of Line Source in a Circular Cylinder (or in a circle).  Let a line 
source of strength m per unit length be present at a point z = d in the fluid; d > 
a.  Let us then  insert a circular cylinder |z| = a in the fluid.  The complex 
potential in the absence of cylinder is m log (zd) and after the insertion of 
cylinder, by circle theorem, we get 

   + i = W = m log (zd) m log(a2/z)d 
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                        = m log (zd) m log


























 

z
d

a

z

d 2

 

  = m log (zd) m log (za2/d) + m log z + constant  (1) 

Ignoring the constant term, we observe from (1) that the complex potential 
represents a line source at z = d, another line source at the inverse point z = 
a2/d and an equal line sink at the centre of the circle.  Thus the image of a line 
source of strength m per unit length at z = d in a cylinder is an equal line 
source at the inverse point z = a2/d together with an equal line sink at the centre 
z = 0 of the circle.  Further, (1) can be written as  

   + i = m   
















 

dx

y
taniy)dx(log 12/122  

  m 















































 

d/ax

y
taniy

d

a
xlog

2

1

2/1

2

22

 

+ m 



  

x

y
tani)yxlog( 12/122      .| log z = log + i r = 22 yx  ,   

                     = tan1

x

y
 

    = m tan1

x

y
tanm

d/ax

y
tanm

dx

y 1

2

1  


















. 

    
 
 
      
      

A(z=d) 

m 

  m        m 

    z=0   A(z =a2/d) 

        m 
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  = m tan1 
x

y
tanm

d/ax

y

dx

y
1

d/ax

y

dx

y

1

2

2




























 
222

222

xya

ayx




 

  = m tan1 0
x

y
tanm

x

y 1   . 

Thus, the circular cylinder is a streamline i.e. there is no flow of fluid across 
the cylinder. 

9.4. Image of a Line Doublet in a Circular Cylinder (or in a Circle).  Let 
there be a line doublet of strength  per unit length at the point z = d, its axis 
being inclined at an angle  with the x-axis.  The line doublet is assumed to be 
perpendicular to the plane of flow i.e. parallel to the axis of cylinder.  The 
complex potential in the absence of the cylinder, is  

  
dz

e ie




 

When the cylinder |z| = a is inserted, the complex potential, by circle theorem, 
becomes  

  W = 
d)z/a(

e

dz

e
2

ii





 

 

       = 






 




 

d
azd

ze

dz

e
2

ii

  

       = 






 





 

d
azd

ez

dz

e
2

)(ii

 

       = 

d
az

e

d

a

d

e

dz

e
2

)(i

2

2)(ii










 

   (1) 

If the constant term (second term) in (1) is neglected, then the complex 
potential in (1) is due to a line doublet of strength  per unit length at z = d, 
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 

m 

z =d 

m 

inclined at an angle  with x-axis and another line doublet of strength 
2

2

d

a
per 

unit length at the inverse point z = a2/d inclined at an angle  with x-axis.   

Thus the image of a line doublet of strength  per unit length z = d inclined at 

angle  with x-axis is a line doublet of strength 
2

2

d

a
per unit length at the 

inverse point a2/d which is inclined at an angle  with x-axis.  

 

 

 

 

9.5. Remark. The above two cases i.e. (iii) and (iv) alongwith „uniform flow 
past a fixed infinite circular cylinder‟ are applications of Milne-Thomson circle 
theorem.  

9.6. Example. What arrangement of sources and sinks will give rise to the 

function W = log 









z

a
z

2

? 

Also prove that two of the streamlines are a circle r = a and x = 0 

Solution.  We have W = log 






 









z

az
log

z

a
z

222

 

i.e.    + i = log (z2a2)  log z 

     = log (za) + log (z+a)  log z    (1) 

This represents a line source at z = 0 and two line sinks at z = + a, each of 
strength unity per unit length.  We can write  

   + i = log(xa + iy) + log(x +a + iy)  log(x +iy) 

                = tan1

x

y
tan

ax

y
tan

ax

y 11  





 

      m 

               
 
              z=a2/d 
                 m 
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      = tan1
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ax

y
1

ax

y

ax
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1
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
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xy2 1

222









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      = tan1 















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






x

y

ayx

ayx
222

222

   (2) 

Since  = constant is the equation of the streamlines, therefore equations for 
streamlines are 

  y (x2 + y2 + a2) = (x2 + y2 a2)x tan  

where  is a constant. 

In particular, if we take  = /2, then we get the streamlines as 

  (x2 + y2 a2) x = 0 
i.e.  x2 + y2 a2 = 0,  x = 0 
i.e.  x2 + y2 = a2         x = 0  
i.e.  r = a, x = 0 . 

Hence the result.  

9.7. Example. A two dimensional doublet of strength  î  per unit length is at a 

point z = ia in a stream of velocity V î  in a semi-infinite liquid of constant 
density occupying the half plane y > 0 and having y = 0 as a rigid impermeable 

boundary, î  being the unit vector in the positive x-axis.  Show that the 
complex potential of the motion is  

  W = Vz + 2z/(z2 + a2) 

Also show that for 0 <  < 4a2V, there are no stagnation points on the 
boundary and that the pressure on it is a minimum at the origin and maximum 

at the points ( + a 3 , 0). 
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y 

x 

V î  

 î  A(0,a) 
       

y =0 

A(0,a)   

Solution. We know that the image of the line doublet  î  at point A(0, a) is a 

line doublet  î  at point A(0, a) 

 

 

 

 

 

 

Therefore, the complex potential of the system is  

  W = Vz + 
iaziaz 





 

       = Vz +
22 az

z2




 = Vz + 2z (z2 + a2)1 

From here, we get 

  
dz

dW
= V + 2(a2  z2) (a2 + z2)2 

On the boundary y = 0 and thus z = x, therefore, 

q = 
dx

dW

dz

dW  = V + 2 (a2x2) (a2 + x2)2 

For stagnation points 0
dx

dW   

            Vx4 + 2x2 (Va2 ) + Va4 + 2a2 = 0   (1) 

which is a quadratic in x2 whose discreminant is 

   = 4[(Va2 )2 V (Va4 + 2a2)] 

      = 4 ( 4a2V) 

From here,  < 0 if 0 <  < 4a2V, showing that the quadratic equation (1) has 
no real root.  Therefore there is no stagnation points on the boundary y = 0. 
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Applying Bernoullis equation along the streamline y = 0, we have 

  











2

222

22

)xa(

xa
2V

2

1

e

p
 constant   

  2q
2

1

e

p
 constant.  

P is maximum when X = 

2

222

22

)xa(

)xa(2
V 










 is minimum and conversely. 

From here, we get 

       X1/2 = V +2 (a2  x2) (a2 + x2)2 

Differentiating  w.r.t. x, we get 

          
2

1
X1/2. X = 4x (3a2x2) (a2 + x2)3 X =

dx

dX
 

For extreme values of X, we have X = 0 which gives 

              x  = 0, + a 3 . 

We observe that X changes sign from positive to ve when x passes through 
zero and thus X is maximum at x = 0   p is minimum at x = 0 i.e. at (0, 0) i.e. 
the origin. 

Similarly X changes sign from negative to positive as x passes through + a 3  

showing that X is minimum at x = + a 3 and thus p is maximum at              (+ 

a 3 ,0) . 

10. Blasius Theorem  

In a steady two dimensional irrotational flow given by the complex potential W 
= f(z), if the pressure forces on the fixed cylindrical surface C are represented 
by a force (X, Y) and a couple of moment M about the origin of co-ordinates, 
then neglecting the external forces,  

  X  iY = dz
dz

dW

2

i
2

C








  

  M = Real part of 

















 C

2

dz
dz

dW
z

2
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y 

x 

 

 pds cos 

pds sin 

pds  

O 

where  is the density of the fluid    

Proof. Let ds be an element of arc at a point P(x, y) and the tangent at p makes 
an angle  with the x-axis.  The pressure at P(x, y) is pds, p is the pressure per 
unit length.  pds acts along the inward normal to the cylindrical surface and its 
components along the co-ordinate axes are 

              pds cos (90 + ),    pds cos  

  i.e.      pds sin,     pds cos  

 The pressure at the element ds is 

 

 

 

 

 

  dF = dX + idY 

       = p sin ds + ip cos ds 

       = ip (cos + i sin) ds

 
axisxpositivealongsinpds

axisxnegativealongsinpds




 

       = ip 
ds

dy
sin,

ds

dx
cosds

ds

dy
i

ds

dx 





   

       = ip (dx + idy) = ip dz    (1) 

The pressure equation, in the absence of external forces, is 

  


2q
2

1p
constant 

or  p = 
2

1
q2 + k     (2) 

Further  
dz

dW
 u + iv = q cos + iq sin 

 

ds  ds 
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          = q (cos  i sin) = q ei   (3) 

and dz = dx + idy = 





 

ds

dy
i

ds

dx
ds = (cos  + i sin) ds = ei ds (4) 

The pressure on the cylinder is obtained by integrating (1).  Therefore, 

  F = X + iY = C ipdz = C i (k1/2 q2) dz 

     = 
2

i
C q2 dz    |  C  dz = 0 

      = 
2

i
C q2 eids 

From here ; 

  X  iY = 
2

i
C q2 ei ds 

             = 
2

i
C (q2 e2i) ei ds 

             = 
2

i
C

2

dz

dW








dz  | using (3) & (4) 

The moment M is given by 

  M =  C Fdr = C [(pds sin) y +(pds cos) x] 

       =  






















C dsx
ds

dx
pdsy

ds

dy
p  

 






cospdssinpds

0yx

k̂ĵî

Fdr


 

       = C p(x dx + ydy] 

       =  





 

C

2q
2

1
k  (xdx + ydy) 
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       = k 




 

C

22

2
)yx(

2

1
d C q2 (xdx + ydy) 

       = 
2


C q2(xdx + ydy)   |  1st integral 

vanishes.  

       = 


C2
q2 (x cos + y sin) ds   

dssindy

dscosdx




 

       = R.P. of 



 

C
2 ds)sini)(cosiyx(q

2
    

      = R.P of 



 

 
C

i2 dszeq
2

 

        

          = R.P of 






 

C
ii22 dse)eq(z

2

e
 

       = R.P. of 











 






 C

2

dz
dz

dW
z

2

e
. 

  Hence the theorem.  

11. Two-dimensional Irrotational Motion Produced by Motion of 
Cylinders 

Here, we discuss two-dimensional irrotational motion produced by the motion 
of cylinders in an infinite mass of liquid at rest at infinity (the local fluid moves 
with the cylinder).  The cylinders move at right angles to their generators 
which are taken parallel to z-axis.  Thus we get the xy-plane as the plane of 
flow.  For the sake of simplicity, we take the cylinders of unit length. For such 
motion, the stream function  or velocity potential ) is determined in the light 
of the following conditions. 

(i)   satisfies Laplace equation i.e. 2 = 0 at every point of the liquid. 

(ii)  Since the liquid is at rest at infinity, so 

  0
y

and0
x








 at infinity. 
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(iii)  Along any fixed boundary, the normal component of velocity must be 

zero so that 
s


= 0 i.e.       

                   = constant, which means that the boundary must coincide with a 
streamline. 

(iv)  On the boundary of the moving cylinder, the normal component of the 
velocity of the liquid must be equal to normal component of velocity of 
the cylinder. 

Further, we observe that the two-dimensional solution of the Laplace equation 
2 = 0, in polar co-ordinates (r, ), is  

   = An r
n cos n + Bn r

n sin  

where n is any integer, An and Bn being constants.  Also, all the observations 
made for , are valid for velocity potential , where  and  satisfy CR 
equations.  

11.1. Motion of a Circular Cylinder.  Let us consider a circular cylinder of 
radius a moving with velocity U along x-axis in an infinite mass of liquid at 
rest at infinity.  The velocity potential  which is the solution of 2 = 0, must 
satisfy the following conditions. 

(i) 











cosU

r ar

 

(ii) 






r

1
and

r
  0 as r 

A suitable form of  is  

   (r, ) = 





 

r

B
Ar cos    (1) 

                 





 




2r

B
A

r
 cos    (2) 

Applying conditions (i) and (ii) in (2), we get 

  ,cosUcos
a

B
A

2







  (A + 0.B) = 0 for all . 

            
x 

U 

Ucos 
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            A +
2a

B
 = U, A = 0 

                    A = 0, B = U a2 

Thus                  (r, ) = cos
r

Ua 2

    (3) 

The second condition of (ii) is evidently satisfied by  in (3) 

But                     






r

1

r
              (CR equation) 

so,                  
2

2

r

Ua

r

1 



 cos 

              i.e.        



cos
r

Ua 2

 

Neglecting constant of integration, we get 

                        = 
r

Ua 2

sin    (4)  

Thus                      W =  + i = 
r

Ua 2

 (cos  i sin) 

                          = 
z

Ua

re

Ua 2

i

2

  

which gives the complex potential for the flow.  

11.2. Remarks. (i) For the case of „Uniform flow past a fixed circular 
cylinder‟, using circle theorem, we have obtained the complex potential as 

                     W = f(z) + f(a2/z) 

                         = Uz + U
z

a 2

 

where the cylinder moves with velocity U along positive direction of x-axis.  If 
we give a velocity U to the complete system, along  the positive direction of x-
axis, then the stream comes to rest and the cylinder moves with velocity U in 
x-direction. 
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Thus, we get 

                  W = Uz + U
z

Ua
Uz

z

a 22

  

(ii)  Similarly, if we impose a velocity U in the negative direction of x-axis 
to the complete system in the present problem, then the cylinder comes 
to rest and the liquid flows past the fixed cylinder with velocity U in 
negative x-axis direction and thus we get 

                 W = .Uz
z

Ua 2

  

(iii)  If we put Ua2 = , then we get 

                 W = 
0z

e

z

i





 

 

which shows that the complex potential due to a circular cylinder with velocity 
U along x-axis in an infinite mass of liquid is the same as the complex potential 
due to a line doublet of strength   = Ua2 pre unit length situated at the centre 
with its axis along x-axis. 

11.3. Example.   A circular cylinder of radius a is moving in the fluid with 
velocity U along the axis of x.  Show that the motion produced by the cylinder 
in a mass of fluid at rest at infinity is given by the complex potential 

               W =  + i = 
Utz

Ua 2


 

Find the magnitude and direction of the velocity in the fluid and deduce that 
for a marked particle of fluid whose polar co-ordinates are (r, ) referred to the 
centre of the cylinder as origin, 

  
















 

r

a
randee

r

a

r

U

dt

d
i

dt

dr

r

1 2
ii

2

2

sin  = constant 

Solution. The cylinder is given to be moving along x-axis.  At time t, it has 
moved through a distance Ut. Taking z = Ut as the origin, the complex 
potential is 

               W =  + i = 
Utz

Ua 2


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Therefore                


 i2

2

2

2

2

e
r

Ua

)Utz(

Ua

dz

dW
 ,   z Ut = rei 

i.e.          u  iv = 
2

2

r

Ua
(cos 2  i sin 2) 

                u =  2sin
r

Ua
v,2cos

r

Ua
2

2

2

2

 

Therefore,             q = 
2

2
22

r

Ua
vu   

The direction of velocity is tan  = 
u

v
= tan 2     = 2 

When the cylinder is fixed and its centre is at 0, then 

            W = Uz + )iyx(
r

Ua
)iyx(U

z

Ua
2

22

  

i.e.      + i = Ur (cos + i sin) + )sini(cos
r

Ua 2

  

                          = Ur cos + 









sin
r

a
rU,

r

cosUa 22

 

The streamlines are given by  = constant 

         









r

a
r

2

sin = constant 

Further, 

   

 q|cos

r

Ua
cosU

rdt

dr
2

2

 

             r
2

2

r

sinUa
sinU

r

1

dt

d 



 

               
3

2

3

2

r

sinUa
i

r

cosiU

r

cosUa

r

cosU

dt

d
i

dt

dr

r

1   
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          = 







  ii

2

2

ee
r

a

r

U
  

Hence the result. 

11.4. Equation of Motion of a Circular Cylinder.  Let a circular cylinder of 
radius a move with a uniform velocity U along x-axis in a liquid at rest at 

infinity.  The complex potential for the resulting motion, is  + i = W =
z

Ua 2

, 

where origin is taken at the centre of the cylinder.  

Thus,              = 
r

Ua 2

cos,    = 
r

Ua 2

 sin 

so  
arr 











= U cos 

Let T1 be the K.E. of the liquid on the boundary of the cylinder and T2 that of 
the cylinder.  Let  and  be the densities of material of the cylinder and the 
liquid respectively.  Then 

  T1 =  


C

ds
n2

 

       =  












 2

0
arr2

ad,    s = a    ds = ad        | l = r 

       = 










 2

0

2

cos
a

Ua

2
(U cos) ad 

       = 
 2

0

22

2

aU
cos2  d 

       = ,
2

U
'M

2

U
)a(

2

aU 22
2

22


 

where M =  a2 = mass of the liquid displaced by the cylinder of unit length. 

K.E. of the cylinder, T2 = 
2

1
MU2, M = a2  

Thus, total K.E. of the liquid and cylinder is  
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  T = T1 + T2 = 
2

1
(M + M) U2    (1) 

Let R be the external force on the cylinder in the direction of motion.  We use 
the fact that rate of change of total energy is equal to the rate at which work is 
being done by external forces at the boundary. 

  RU = 
2

1

dt

d
(M + M) U2  

 

velocity.force
time

cetandis.force

time

donework




 

        = 
dt

dU
U2

2

'MM
 

        = (M + M) U
dt

dU
 

       M
dt

dU
'MR

dt

dU       (2) 

Equation (2) is the equation of motion of the cylinder.  This shows that the 
presence of liquid offers resistance (drag force) to the motion of the cylinder, 
since if there is no liquid, then M = 0 and we get 

        M R
dt

dU        (3) 

Now, if
M

R
= external force on the cylinder per unit mass be constant and 

conservative, then by the energy equation, we get 

  
2

1
(M + M1) U2 (M M1)

M

R
r = constant   (4) 

where r is the distance moved by the cylinder in the direction of R. Diff. (4) 
w.r.t. t, we get 

  (M + M) U
M

R
)'MM(

dt

dU  U = 0 

or  M R
aa

aa
R

'MM

'MM

dt

dU
22

22





  
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i.e.   M R
dt

dU


      (5) 

which gives another form of equation of motion 

If U = (u, v) and R = (X, Y), then 

  M Y
dt

dv
M,X

dt

du





    (6) 

Are the equations of motion of the cylinder in Cartesian co-ordinates.  
Comparing (3) and (5), it can be said that the effect of the presence of the 
liquid is to reduce external forces in the ratio 

   :  + . 

11.5. Motion of two co-axial cylinders.  Let us consider two co-axial 
cylinders of radii a and b (a < b).  The space between them is filled with liquid 
of density  .  Let the cylinders move parallel to themselves in directions at 
right angles with velocities U and V respectively, as shown in the figure 

 

 

 

 

 

The boundary conditions for the velocity potential  which is the solution of 
2 = 0, are )q(   

(i)    
r


 = U cos, r = a      (1) 

(ii)  
r


= V sin, r = b      (2) 

A suitable form of velocity potential is 

      = 





 






  sin

r

D
Crcos

r

B
Ar    (3)   

           





 






 




sin
r

D
Ccos

r

B
A

r 22
   (4) 

 

        
      U 

V sin V 

U cos 
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Using (1) & (2) in (4), we get 

       U cos = 





 






  sin

a

D
Ccos

a

B
A

22
 

 V sin = 





 






  sin

b

D
Ccos

b

B
A

22
 

Comparing co-efficients of  cos  and  sin,  we get 

    A  0
a

D
C,U

a

B
22
  

  A  V
b

D
C,0

b

B
22

  

Solving these equations, we obtain 

            A = 
22

22

22

2

22

22

22

2

ba

bVa
D,

ba

Vb
C,

ba

bUa
B,

ba

Ua











 

Thus, (3) becomes 

             =  






















sin

r

a
r

ba

Vb
cos

r

b
r

ba

Ua 2

22

22

22

2

 

    = 






















sin

r

a
r

ab

Vb
cos

r

b
r

ab

Ua 2

22

22

22

2

 (5) 

The expression for  can be obtained from  

         






r

1

r
 

i.e.         
r

r






 

     = 






















sin

r

a
r

ab

Vb
cos

r

b
r

ab

Ua 2

22

22

22

2

 

Integrating and neglecting the constant of integration, we get 
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   = 






















cos

r

a
r

ab

Vb
sin

r

b
r

ab

Ua 2

22

22

22

2

 (6) 

It should be noted that the values of  and  given by (5) and (6), hold only at 
the instant when the cylinders are on starting i.e. the initial motion. 

11.6. Corollary.  If the cylinders move in the same direction then the boundary 
conditions are 

(i) 
r


= U cos , r = a 

(ii) 
r


 = V cos, r = b 

Using these conditions in (4), comparing co-efficients of cos and sin and 
then solving the resulting equations, we get 

 A = ,
ab

bUVa
B,

ab

VbUa
22

22

22

22







 C = 0, D = 0 

So,  =   










cos

r

bUVa
rVbUa

ab

1 22
22

22
 

and  =   










sin

r

bUVa
rVbUa

ab

1 22
22

22
 

11.7. Example.   An infinite cylinder of radius a and density  is surrounded 
by a fixed concentric cylinder of radius b and the intervening space is filled 
with liquid of density .  Prove that the impulse per unit length necessary to 
start the inner cylinder with velocity V is 

  
22

2

ab

a




[(+) b2  () a2]V 

Suppose that V is taken along the x-axis. 

Solution. Let the velocity potential be 

          = 





 






  sin

r

D
Crcos

r

B
Ar    (1) 

The boundary conditions are )q(   

(i)     
r


= V cos, r = a 
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(ii)   
r


 = 0, r = b 

Applying these conditions in (1) and then comparing co-efficients of cos and 
sin, we get 

  A  0
a

D
C,V

a

B
22
  

         A  0
b

D
C,0

b

B
22
  

Solving for A, B, C, D, we obtain 

       A = ,
ab

bVa
B,

ab

Va
22

22

22

2





 C = D = 0 

Thus, the potential (1) is 

        = 










cos

r

bVa
rVa

ab

1 22
2

22
 

Now, the impulsive pressure at a point on r = a (along x-axis), is 

  P = ( )r = a = ar

2

22

2

|cos
r

b
r

ab

Va














 

           = 



cos)ba(

ab

Va 22

22
 

The impulsive pressure on the mole cylinder is  

            



2

0 22 ab

Va
 (a2 + b2) cos. a cos d 

                     =  a2 V
ab

ab
22

22













 

Now, change in momentum = the sum of impulsive forces 

Therefore,  a2 (V0) = I  a2 V
ab

ab
22

22













  

  I = a2 V + a2 V
ab

ab
22

22













 

Thus, impulse due to external forces, is 

  I = 
22

2

ab

Va




[  (b2a2) + (b2 + a2)] 

    = 
22

2

ab

Va




 [( + ) b2 () a2] 

Hence the result.  
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Possible   Questions 

                                                  Part-B(5x8=40 marks) 
 

1. Prove that the velocity field u=yzt,v=zxt,w=xyt is a possible case of irrotational flow. 

2. Obtain the condition that the surface F(r ,t)=0. 

3. Explain Bernoulli’s equation. 

4. State and prove Kelvin’s theorem 

5. Discuss the flow for the complex potential w=z². 

6. Explain Sink and its complex potential strength of the sink. 

7. Explain Vorticity of viscous fluid 

8. Explain Steady flow-through an arbitrary cylinder under pressure. 

9. Explain the boundary layer characteristics. 
 

   Part-C(1x10=10 Marks) 

 

 

1. Derive the kinetic energy integral equation  

  

2.  S.T x²/a².f(t) + y²/b².φ(t)=1 where f(t)φ(t)=constant is a possible form of the boundary surface 

       of a    trivial 

3. Explain Vorticity of viscous fluid 

4. Explain Steady flow-through an arbitrary cylinder under pressure. 
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Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

The stream function is constant along a __________________  Stream line Path line Vortex line Filament line  Stream line

 If the stream function is ____________ along a stream line equal to zero zero constant not equal constant

If the motion is steady, the stream line pattern is ___________ equal fixed not fixed constant fixed

 When the motion is not steady the stream line pattern is 

____________ fixed not equal constant zero not

 The velocity potential ᶲ exits when the fluid is ____________ Rotational  Irrotational Stream line  Path line  Irrotational

 If the velocity potential function are __________  Velocity Density Pressure  Force  Velocity

 The complex potential functions are satisfying ____________ 

equation Laplace equation

Differential 

equation  C – R equation

Homogeneous 

equation

 C – R 

equation

 If the velocity potential function are velocity Φ is called q=

∇

 Φ q= -

∇

 Φ q=

∇

x Φ  q=-

∇

x Φ q= -

∇

 Φ

The irrotational flow of an incompressible in viscid fluid is in 

____________ 3 – D  1 – D  2 – D

Multi – 

Dimension  2 – D

When the incompressible in viscid 2 – D fluid flow Φ and ψ 

satisfy the ____________ equation. C – R equation

Laplace 

equation

 Linear 

equation

 Differential 

equation

Laplace 

equation

 The stream function ψ exist whether the motes is 

______________  Stream line  Path line  Irrotational Rotational  Irrotational

 The ________ potential can exist only when the motion is 

irrotational  Velocity Density Pressure  Force  Velocity

 Part of the fluid may be moving irrotationally and the other 

parts may be ____________  Irrotational constant   Rotational Density   Rotational

The points where the velocity is ____________ are called 

stagnation points 1 0 Constant Variable 0

 In a 2 – D flow field where the fluid is assumed to be created 

is called  Doublet Vertex Sink  Sources  Sources

 The flow is radically inverse is called ____________ Vertex Sink  Sources  Doublet Sink

The amount of the fluid going in to the sink in a unit time is 

called ________  Strength of the sink

Strength of the 

doublet

Strength of the 

source

 Strength of the 

Vertex

 Strength of 

the sink

 The amount of the fluid going in to the sink in a  ______ is 

called strength of the sink  Certain Interval   Unit time Mean time average   Unit time

 If a source, the velocity of the fluid is ______________  Finite Equal Infinite  Zero Infinite

Complex potential of the flow due to sink of strength m at the 

origin is given by  w = m logz w = -m logz w=log z  W=-log z w = -m logz

A combination of a source and a sink in a particular way is 

known as a ____________  Doublet Source  sink vortex  Doublet

 The line joining the source and sink is called as ____________ 

of the doublet X – axis  Access  Y – axis Z-axis  Access

If any point in the 2 – D field where the fluid is assumed to be 

____________ is called a sink Created Constant Moving Annihilated Annihilated

  In a 2 – D field where the fluid is assumed to be annihilated 

is called a ______________  Sink Source

Strength of 

source  Strength of sink  Sink 
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 When the motion of a fluid consists of symmetrical radial 

flow in all directions proceeding from a point, Then the point 

is known a ____________ Source  Simple source Sink vortex

 Simple 

source

When the fluid particles have circular motion under steady 

condition such a circular motion is called ___________ vortex Sink  Doublet Source vortex

The Complex potential for a stream flow when a 

____________ is placed in that  Surface  uniform

 Circular 

Cylinder continuous

 Circular 

Cylinder

The complex potential for the uniform flow is ___________ w = v Z w = V Z w ≠ u × Z w = u . Z w = V Z

The complex potential for the _________ flow is w = u Z Uniform  Continuous Discontinuous Equal Uniform

 The complex potential for a ___________ flow when a 

circular cylinder is placed in that Straight Stream Rotational irrotational Stream

A steady two dimensional irrotational incompressible in viscid 

fluid flow under no ___________Forces External Internal Heat mass External

When are remembered that as the fluid is assumed to be in 

viscid, the drag force is 1 Equal  Zero Not Equal  Zero

Cavitations is caused by High velocity

Low 

barometric 

pressure High pressure  Low pressure  Low pressure

The general energy equation is applicable to Unsteady flow Steady flow

Non-uniform 

flow Turbulent flow Steady flow

The friction resistance in Pipe is proportional To Square of V , 

according to Froudeaiumber

Reynolds-

Weber Darcy-Reynolds Weber-Froude

Froudeaiumb

er

Pitot tube is used to measure the velocity head of Still fluid Laminar flow Turbulent flow Flowing fluid Flowing fluid

 In equilibrium condition, fluids are not able to sustain Shear force

Resistance to 

viscosity Surface tension

Geometric 

similitude

Surface 

tension
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UNIT – IV 

 

1. Stress Components in a Real Fluid 

Let S be a small rigid plane area inserted at a point P in a viscous fluid.  
Cartesian co-ordinates (x, y, z) are referred to a set of fixed axes OX, OY, OZ.  

Suppose that  nF is the force exerted by 

the moving fluid on one side of S, the 
unit vector n̂ being taken to specify the 
normal at P to S on this side.  We know 

that in the case of an inviscit fluid,  nF  is 

aligned with n̂ .  For a viscous fluid, 
however, frictional forces are called into 
play between the fluid and the surface so 

that  nF  will also have a component 

tangential to S.  We suppose the 

Cartesian components of  nF  to be         

(Fnx, Fny, Fnz) so that  

   nF = Fnx î  + Fny ĵ + Fnz k̂ . 

Then the components of stress parallel to the axes are defined to be nx, ny, 
nz, where 

  nx = ,
dS

dF

Sδ
Fδ

lt nxnx

0Sδ



 

  ny = ,
dS

dF

Sδ
Fδ

lt
nyny

0Sδ



 

  nz = .
dS

dF

S

F
lt nznz

0S






 

Z 

X 

Y O 

P 

S 

n̂  

nFδ

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 234 

Z 

Y 
O 

y 
x 

z 
P1 

P2 

.P(x,y,z) 

In the components nx, ny, nz, the first suffix n denotes the direction of the 
normal to the elemental plane S whereas the second suffix x or y or z denotes 
the direction in which the component is measured.  

If we identify n̂  in turn with the unit vectors )OZ(),OY(),OX(ink̂,ĵ,î , which 

is achieved by suitably re-orientating S, we obtain the following three sets of 
stress components  

  xx,   xy,       xz ; 

  yx,    yy,      yz ; 

  zx,     zy,     zz  . 

The diagonal elements xx, yy, zz of this array are called normal or direct 
stresses.  The remaining six elements are called shearing stresses.  For an 
inviscid fluid, we have 

  xx = yy = zz = p 

  xy = xz = yx = yz = zx = zy = 0 

Here, we consider the normal stresses as positive when they are tensile and 
negative when they are compressive, so that p is the hydrostatic pressure.  The 
matrix  

  

















zzzyzx

yzyyyx

xzxyxx

ııı
ııı
ııı

     (1) 

is called the stress matrix.  If its components are known, we can calculate the 
total forces on any area at any chosen point.  The quantities ij(i, j = x, y, z) are 
called the components of the stress tensor whose matrix is of the form (1).  
Further we observe that ij is a tensor of order two. 

2. Relation Between Rectangular (Cartesian) Components of Stress  

 Let us consider the motion of a small rectangular parallelopiped of 
viscous fluid, its centre being P(x, y, z) and its edges of lengths x, y, z, 
parallel to fixed Cartesian axes, as shown  in the figure. 
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X 

 

 

 

Let  be the density of the fluid.  The mass x y z of the fluid element 
remains constant and the element is presumed to move alongwith the fluid.  In 
the figure, the points P1 and P2 have been taken on the centre of the faces so 

that they have co-ordinates 





 






  z,y,

2

x
xandz,y,

2

x
x  respectively. 

 At P(x, y, z), the force components parallel to OZ,OY,OX  on the 

surface area y. z through P and having î as unit normal, are 

  (xxy z,   xy yz,    xz yz) 

At P2 





  z,y,

2

x
x , since î  is the unit normal measured outwards from the 

fluid, the corresponding force components across the parallel plane of area 
yz, are 






































































  zy

x2

x
,zy

x2

x
,zy

x2

x xz
xz

xy
xy

xx
xx . 

For the parallel plane through P1 





  z,y,

2

xδ
x , since  î  is the unit normal 

drawn outwards from the fluid element, the corresponding components are 







































































 zy

x2

x
,zy

x2

x
,zy

x2

x xz
xz

xy
xy

xx
xx  

The forces on the parallel planes through P1 and P2 are equivalent to a single 
force at P with components  

  

















x

ı
,

x

ı
,

x

ı xzxyxx x y z 

together with couples whose moments (upto third order terms) are  

   xz x y z about Oy, 

   xy xyz about Oz. 
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Similarly, the pair of faces perpendicular to the y axis give a force at P having 
components  

  



















y

ı
,

y

ı
,

y

ı yzyyyx x y z 

together with couples of moments  

   yx x y z about Oz, 

   yz xyz about Ox. 

The pair of faces perpendicular to the z-axis give a force at P having 
components  

  

















z

ı
,

z

ı
,

z

ı zzzyzx x y z 

together with couples of moments 

   zy x y z about Ox, 

   zx xyz about Oy. 

Combining the surface forces of all six faces of the parallelopiped, we observe 
that they reduce to a single force at P having components  



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
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
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


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
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
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
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
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





























z

ı
y

ı
x

ı
,

z

ı
y

ı
x

ı
,

z

ı
y

ı
x

ı zzyzxzzyyyxyzxyxxx x y z, 

together with a vector couple having Cartesian components  

  [(yz  zy), (zx  xz), (xy  yx)] x y z. 

Now, suppose the external body forces acting at P are [X, Y, Z] per unit mass, 
so that the total body force on the element has components [X, Y, Z]  x y 

z.  Let us take moments about î direction through P.  Then, we have  

Total moment of forces = Moment of inertia about axis  Angular 
acceleration  

i.e.  (yzzy) x y z + terms of 4th order in x, y z = terms of 5th order in 
x, y, z. 
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Thus, to the third order of smallness in x, y, z, we obtain  

  (yz  zy) x y z = 0 

Hence, as the considered fluid element becomes vanishingly small, we obtain  

  yz = zy. 

Similarly, we get 

  zx = xz,      xy = yx 

Thus, the stress matrix is diagonally symmetric and contains only six 
unknowns.  In other words, we have proved that  

  ij = ji, (i, j = x, y, z) 

i.e. ij is symmetric. 

In fact, ij is a symmetric second order Cartesian tensor. 

2.1. Transnational Motion of Fluid Element.  Considering the surface forces 
and body forces, we note (from the previous article) that the total force 

component in the î direction, acting on the fluid element at point P(x, y, z), is  

    



















z

ı
y

ı
x

ı zxyxxx x y z + X x y z (1) 

where (X, Y, Z) is the body force per unit mass and  being the density of the 
viscous fluid.  As the mass  x y z is considered constant, if q  = (u, v, w) 

be the velocity of point P at time t, then the equation of motion in the 

î direction is  

 



















z

ı
y

ı
x

ı zxyxxx x y z +  X x y z = (x y z)
dt

du
  

or  
dt

duρXρ
z

ı
y

ı
x

ı zxyxxx 












   (2) 

If u = u(x, y, z, t), then  

  
z

u
w

y

u
v

x

u
u

t

u

dt

du











  where 



tdt

d
q  

Thus, (2) becomes 
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y
y

ξ 

  

D 
(x,y+y) 

C 
(x+x,y+y) 

C 
D 

y
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




 

 











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











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ı
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ı
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ı zxyxxx  (3) 

Similarly the equations of motion in k̂andĵ directions are 
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 1
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

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


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
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


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ı zyyyxy
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



 1

Z
z

w
w

y

w
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w
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w
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


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














z

ı
y

ı
x

ı zzyzxz  (5) 

Equations (3), (4), (5) provide the equations of motion of the fluid element at 
P(x, y, z). 

In tensor form, if the co-ordinates are xi, the velocity components ui, the body 
force components Xi, where i = 1, 2, 3, the equations of motion can be 
expressed as  

  




 1

Xuu
t

u
ij,ij

i  ji,j (i, j = 1, 2, 3). 

3. Nature of Strains (Rates of Strain) 

The change in the relative position of the parts of the body under some force, is 
termed as deformation.  By Hooke‟s law, the stress is proportional to strain in 
case of elastic bodies, while in case of non-elastic bodies the stress is 
proportional to the rate of strain. 

Strain is of two kinds, the normal and the shearing.  The ratio of change in 
length to the original length of a line element is called normal (or direct) 

strain.   The shearing strain measures the change in angle between two line 
elements from the natural state to some standard state.  We shall consider two 
dimensional case and then extend it to three dimensions.  Let us consider a 
rectangular element ABCD of an elastic solid with co-ordinates of A as (x, y) 
and length of sides as x and y in the natural state.  

Let the point A. be defined to a point A(x +, y +) then  

  B(x +x, y) goes to B(x + +x +
x

ξ



x, y ++
x

Ș



x) 
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A(x,y)                         B(x+x,y) 

(Before deformation) 

A 
1 

B 

x
x





 
x

x





 

(After deformation) 

     y 
2 

1 

2 

 

 

 

 

 

The point D(x, y +y) goes to the point   

  D(x + +
y

y,  y +  + y + )y

y





.   

Therefore, projected lengths of AB along x and y axes are   x + x
x





and 

x

Ș



x 

Thus,   

(A B)2 = 
22

x
x

x
x

x 





 








 


     (1) 

The normal strain along x-axis is defined by  

  xx = 
AB

AB'B'A 
  

   AB = (1+xx) AB = (1 + xx) x   | AB = x  (2) 

From (1) & (2), we have 

  (1+xx)
2 (x)2 = (x)2 


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  (1+xx)
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ξ
1 














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
  

From here, to the first order terms only, we get 

  xx = 
x

ξ



. 

Similarly, the normal strain along the y-axis is  

x 

Unit-4 Steady flow past rigid bodies 2016-Batch

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
Page 8 of 64



 240 

  yy = 
y

Ș



 

The shearing strain xy at the point A is the change in the angle between the 
sides AB and AD.  The right angle DAB|  between AB and AD is diminished 

by xy = 1 + 2 = tan1 + tan2, 1 & 2 being small.  

i.e.    xy = 

y
y
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
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y
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)γ(

2

1
xy ,       upto first order. 

We observe that the strains have the nature of change in displacement in a 
given unit length in a given direction.  Hence strain is a tensor of order two. 

In the case of fluids, there is no resistance to deformation but only to the time 
rate of deformation.  Hence in fluid dynamics the rate of change of strain with 
time i.e. rate of strain is to be used in place of strain in elasticity.  Thus, for 
viscous fluids, replacing strains by rates of strain, the corresponding results are 
obtained to be  
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)u(
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In case of three dimensions, these become 
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   (A) 

where u, v, w are the velocity components of the viscous fluid along x, y, z 
axis respectively. 

The six quantities xx, yy, zz, xy, yz, zx in (A) are called components of the 
rates of strain or gradients of velocity 

3.1. Transformation of Rates of Strain.  

We shall obtain the rates of strain in term 
of the new co-ordinates x, y, changing 
from x, y to x, y.  Let us obtain the new 
axes by rotating the original axes through 
angle  and let     l = cos,   m = sin   

Then   x = lx + my, y = mx + ly 

    x = lx  my, y = mx + ly 

Further,  
t

)'x(
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(lx + my) 

  u = lu + mv 

and  v = mu + lv 

Also,         (OP)2 = x2 + y2 = x2 + y2  |  they are still perpendicular 
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          = l2 xx + m2 yy + lm.xy 

Similarly  yy = 2m
'y

'v 



xx + l2 yy  lm xy 

  xy = 
'x
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

= 2lm (yy  xx) + (l2m2) xy. 

which are the rates of strain of the new system in terms of rates of strain in the 
original system.  If we put back l = cos, m = sin, then  
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 (B) 

These equations give the transformation formulae for the rates of strain. 

 

We observe that the rate of  strain is also a tensor of order two, there must exist 
at least two invariants of the rate of strain to the choice of co-ordinate systems.  
These can be obtained as follows. 

  xx + yy = (l2 + m2) (xx + yy) 

          = xx + yy = 







q,qdiv
y

v

x

u
(u, v) (1) 

           xx yy 
4

)'( 2
xy

 = (l2 xx +m2 yy + lmxy) (m
2 xx + l2 yy  lm xy) 

           
4

1
[2lm (yy  xx) + (l2  m2) xy]

2 

          = (l4 + 2 l2 m2 + m4) xx yy 
4

2
xy

(l4 + 2l
2 m2 + m4) 

          = xx yy 
4

2
xy

    (2) 
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Equation (1) shows that the divergence of the velocity vector at a given point is 
independent of the orientation of the co-ordinate axes.  Equation (2 is related to 
the dissipation function.  i.e. loss of energy due to viscosity. 

Let us now consider the general case of the rates of strain in three dimensions.  
The direction cosines between x, y, z and x, y, z are related as follows. 

 

 

     

 x y Z 

x l1 m1 n1 

y l2 m2 n2 

z l3 m3 n3 

The relations between co-ordinates in the two systems are  

  x = l1x + m1y  n1z 

  y = l2x + m2y + n2z 

  z = l3x + m3y + n3z 

and 

  x = l1x + l2 y + l3 z 

  y = m1x + m2y + m3z 

  z = n1x + n2y + n3z 

From here, we get 

  u = l1u + m1v + n1w 

  v = l2u + m2v + n2w 

  w = l3u + m3v+ n3w 

We shall use these relations to find out the rates of strain w. r. t. the new co-
ordinates x, y, z. 
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Let us work out 
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Similarly, we have 
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2 zz + l3m3 xy + m3n3 yz + n3l3 zx 

            xy =
'x

z

z

'v

'x

y

y

'v

'x

x

x

'v

'y

'u

'x

'v

























+ 
'y

z

z

'u

'y

y

y

'u

'y

x

x

'u



















 

        = 2l1l2 xx + 2m1 m2 yy + 2n1n2 zz 

        + (l1m2 + m1l2) xy + (m1n2 + n1m2) yz + (n1l2 + l1n2) zx 

 yz = 
'z

'v

'y

'w








= 2l2 l3 xx + 2m2m3 yy + 2n2n3 zz 

        + (l2m3 + m2l3) xy + (m2n3 + n2m3) yz + (n2l3 + l2n3) zx 
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 zx = 
'x

'w

'z

'u







= 2l3l1 xx + 2m3 m1 yy + 2n3n1 zz 

        + (l3m1 + m3l1) xy + (m3n1 + n3m1) yz + (n3l1 + l3n1) zx 

From here, we find 

      xx + yy + zz = (l1
2 + l2

2 + l3
2) xx + (m1

2 + m2
2 + m3

2) yy 

        + (n1
2 + n2

2 + n3
2) zz + (l1m1 + l2m2 + l3m3) xy 

                   + (m1n1 + m2n2 + m3n3) yz + (n1l1 + n2l2 + n3l3) zx 

   = xx + yy + zz 

where we have used the orthogonality relations    

  l1
2 + l2

2 + l3
2 = 1 etc 

and  l1m1 + l2m2 + l3m3 = 0 etc. 

Thus we conclude that  

  xx + yy  + zz = xx + yy + zz 

          = qdiv
z

w

y

v

x

u 









  

is invariant. 

Similarly,   

 xx yy + yy zz + zz xx 
4

1
[(xy)

2 + (yz)
2 + (zx)

2] 

                          = xx yy + yy zz + zz xx 
4

1
[(xy)

2 + (yz)
2 + (zx)

2] 

is also invariant. 

3.2. Remark.  The stress tensor ij and the rates of strain ij follow the same 
rules of transformation.  Thus, the three equations in (B) can also be written for 
stress components so that we get the relations between the original and the new 
stress components as   
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


































ș2cosıș2sin
2

ıı
ı

ș2sinıș2cos
2

ıı
2

ıı
ı

ș2sinıș2cos
2

ıı
2

ıı
ı

xy
yyxx'

xy

xy
yyxxyyxx'

yy

xy
yyxxyyxx'

xx

 (C) 

4. Relations Between the Stress and Gradients of Velocity  

(Equivalence of Hooke’s Law in Case of Viscous Fluids) 

In elasticity, generalized Hooke‟s law gives a relation between the stress and 
the strain components. 

For viscous fluid, the following assumptions are to be made to find the 
relations between the stress and the rate of strain. 

(i) The stress components may be expressed as linear functions of rates of 
strain components. 

(ii) The relations between stress and rates of strain are invariant w.r.t 
rotation and reflection of co-ordinate axes (symmetry). 

(iii) The stress components reduce to the hydrostatic pressure when all the 
gradients of velocity are zero. 

i.e.  xx = p = yy = zz, xx = 0
x

u 



= yy = zz. 

First we consider two dimensional case and then we extend it to three 
dimensions. 

 Under the assumption (i), we can write  

  xx = A1 xx + B1 yy + C1 xy + D1 

  yy = A2 xx + B2 yy + C2 xy + D2    (1) 

  xy = A3 xx + B3 yy + C3 xy + D3  

where As, Bs, Cs and Ds are constants to be determined.  

From the assumption (ii), we have 

  xx = A1 xx + B1 yy + C1 xy + D1 

  yy = A2 xx + B2 yy + C2 xy + D2  (2) 
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  xy = A3 xx + B3 yy + C3 xy + D3  

But the relations between the original and the new stress components are (from 
equation (C))  




































ș2cosıș2sin
2

ıı
ı

ș2sinıș2cos
2

ıı
2

ıı
ı

ș2sinıș2cos
2

ıı
2

ıı
ı

xy
yyxx'

xy

xy
yyxxyyxx'

yy

xy
yyxxyyxx'

xx

 (3) 

Using the equation (1) in 1st of (3), we get 

 
2

1ı '
xx  (A1 + A2) xx + 

2

1
(B1+B2) yy + 

2

1
 (C1+C2) xy 

        + 
2

1
(D1+D2) +

2

1
 (A1A2) xx cos 2 

        + 
2

1
(B1B2) yy cos 2 + 

2

1
(C1C2) xy cos 2 

        + 
2

1
 (D1D2) cos 2 + (A3xx + B3 yy + C3xy + D3) sin 2 (4) 

Also, the relations between the original and the new rates of strain are 

  













































2cos
2

2sin
2

2sin
2

2cos
22

2sin
2

2cos
22

xyyyxx'
xy

xyyyxxyyxx'
yy

xyyyxxyyxx'
xx

 (5) 

Using equation (5) in 1st of equations (2), we get 

 '
xxı  = 

2

A1 (xx + yy) +
2

A1  (xx  yy) cos 2 +
2

A1  xy sin 2 

         + 
2

B1 (xx + yy) 
2

B1  (xx  yy) cos 2 
2

B1  xy sin 2 
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          C1(xx  yy) sin 2 + C1 xy cos 2 + D1  (6) 

Comparing co-efficients in (4) & (6), we get  

 
2

A1 (1+cos 2) + 
2

A2 (1cos 2) + A3 sin 2 

       = 
2

A1 (1 + cos 2) + 
2

B1 (1cos 2)  C1 sin 2       | xx 

2

B1 (1+cos 2) +
2

B2  (1cos 2) + B3 sin 2 

    = 
2

A1 (1  cos 2) + 
2

B1 (1+cos 2) + C1 sin 2      | yy 

2

C1 (1+cos 2) + 
2

C2  (1cos 2) + C3 sin 2 

    = 
2

A1 sin 2 
2

B1 sin 2 + C1 cos 2         | xy 

  
2

D1 (1+cos 2) + 
2

D2 (1cos 2) + D3 sin 2 = D1 

From these equations, we get 

  A2 = B1 = B(say), B2 = A1 = A(say) 

  C2 = A3 =  C1 = B3 = C(say) 

  C3 =
2

BA

2

BA 11 


, D1 = D2 = D (say), D3 = 0 

The stress components in terms of the rates of strain are now obtained to be  

  


















xyyyxxxy

xyyyxxyy

xyyyxxxx

γ
2

BA
)(Cı

DγCABı
DγCBAı

   (7) 

To find A, B, C and D, we make use of the assumption that there is symmetry 
of the fluid about the co-ordinate axes.  
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Let us take the symmetry w.r.t. the y-axis.  If (x1, y1) are the new co-ordinates 
of the point with co-ordinates (x, y), then  

  x1 = x, y1 = y 

i.e.  u1 = u, v1 = v   

The rates of strain w.r.t. (x1, y1) co-ordinates are  

  
1111

1
xx

x

y

y

u

x

u

x

u

x

u

x

u
11 

















  

             = 0
x

y
,1

x

x

x

u

11
xx 










  

Similarly,  

  xyyxyyyy 1111
,   

and             

xyyxyyyyxxxx 111111
,,   

Using these in (7), we get 

   


















11111111

11111111

11111111

yxyyxxyx

yxyyxxyy

yxyyxxxx

2

BA
)(C

DCAB

DCBA

  (8) 

The relations (7) are invariant where there is a symmetry w.r.t. any co-ordinate 
transformation and so  

  




















11111111

11111111

11111111

yxyyxxyx

yxyyxxyy

yxyyxxxx

2

BA
)(C

DCAB

DCBA

  (9) 

Comparing (8) & (9), we find C = 0.   According to the assumption (iii), we 
have 

  xx = yy = p, xx = yy = 0 

Thus from (7), we find D = p, since C = 0.   

Unit-4 Steady flow past rigid bodies 2016-Batch

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
Page 18 of 64



 

The last equation in (7) becomes  

  xy = 
2

BA 
 xy =  xy, where  = 

2

BA 
 is called the co 

efficient of viscosity. 

The relations in (7) are now,  

  xx = A xx + B yy  p = (AB) xx + B (xx + yy)  p 

        = 2 xx + B  q p   

 
q

y

v

x

u

)v,u(q

yyxx 







 

  yy = 2 yy + B q p. 

  xy =  xy = 2 xy 

These are the required relations between the stress components and the rates of 
strain in two dimensions. 

For three dimensional case, we can write. 

  



























pqȜ
z

wȝ2pqBȝ2ı

pqȜ
y

vȝ2pqBȝ2ı

pqȜ
x

uȝ2pqBȝ2ı

zzzz

yyyy

xxxx

 (10) 

  xy =  xy =  













y

u

x

v
,  

 yz =  yz =  













z

v

y

w
    (11) 

  zx =  zx =  













z

u

x

w
     

   

where B  . 
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U î  

Y 

O 
X 

h 

Also,  xx + yy + zz  = 2(xx + yy + zz) + 3  q 3p 

   = 2  q +3  q 3p 

   = (2 +3)  q 3p 

For incompressible fluid  q  = 0. 

   xx + yy + zz = 3p 

i.e.  p
3

ııı zzyyxx 


 

This shows that the mean normal stress is equal to the hydrostatic pressure (i.e. 
constant) 

4.1. Remarks : (i) For compressible fluids, B  = 
3

ȝ2
 

(ii)  Equations (10) and (11) may be combined in tensor form.  Thus, if xi 
denote the Cartesian co-ordinates, ui the velocity components (i = 1, 2, 
3), then (10) & (11) may be collectively written as  

  ij = (p) Sij + (ui,j + uj,i), (i, j = 1, 2, 3) 

where   = div q  = uj,i, 

  p = 
3

1
i,i,  = 0 for incompressible flow,  

 = 
3

2
 for compressible flow. 

(iv) For viscous fluids, stress is linearly proportional to rate of strain.  This 
law is known as Newton‟s law of viscosity and such fluids are known 
as Newtonian fluids.   

4.2. The Co-efficient of Viscosity and Laminar Flow :  

 

 

 

 

      Pu î  
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Z 

 

 

The figure shows two parallel planes y = 0, y = h, a small distance h apart, the 
space between them being occupied by a thin film of viscous fluid.  The plane 

y = 0 is held fixed and the upper plane is given a constant velocity U î .  If U is 
not very large, the layers of liquid in contact with y = 0 are at rest and those in 

contact with y = h are moving with velocity U î  i.e. there is no slip between 
fluid and either surface.  A velocity gradient is set up in the fluid between the 
planes.  At some point P(x, y, z) in between the planes, the fluid velocity will 

be U î , where 0 < u < U and u is independent of x and z.  Thus, when y is 
fixed, u is fixed i.e. fluid moves in layers parallel to two planes.  Such flow is 
termed as Laminar flow.  Due to viscosity of the fluid there is friction between 
these layers.  Experimental work shows that the shearing stress on the moving 
plane is proportional to U/h when h is sufficiently small.  Thus, we write this 
stress in the form  

  yx = 
dy

duȝ
h

U
lim

0h



 

where  is the co-efficient of viscosity.  In aerodynamics, a more important 
quality is the Kinematic co-efficient of viscosity v defined by  

  v = /. 

For most fluids  depends on the pressure and temperature.  For gases, 
according to the Kinetic theory,  is independent of the pressure but decreases 
with the temperature. 

5.  Navier-Stoke’s Equations of Motion (Conservation of Linear 
Momentum) 

Let us consider a mass of volume  enclosed by the surface S in motion at time 
t.  Let d be an element of volume, then the mass of this element is d,  
being the density of the viscous fluid. 

Let the element moves with the velocity q .  The inertial force on the element 

is  

  d amF|
dt

qd 







 

The resultant of inertial forces (or the rate of change of linear momentum) is  
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   d
dt

qd
FI         (1) 

Let X  be the body force per unit mass, then the resultant of body force is  

   dXFB      (2) 

The surface force on an element Ad  of the surface is given by the vector 

  zyx îfzîfyîfxf   

     = zzyyxx î)Ad.P(î)Ad.P(î)Ad.P(    (3) 

where zyx î,î,î are unit vectors, Ad is the vectorial area of the element and 

zP,yP,xP are components of stress vector, given by  

  
















zzzyzyxzxz

zyzyyyxyxy

zxzyxyxxxx

îıîıîıP

îıîıîıP

îıîıîıP

  | Ti
x= ij xj (4)   

The resultant of the surface forces is given by  

  Ad.PîAd.PîAd.PîF zzyyxxS    (5) 

Using Gauss divergence theorem this can be written as  

ĲdPîĲdPîĲdPîF zzyyxxS   (6)  dSn̂Ad   

Let us use the law of conservation of momentum.  By this law, the time rate of 
change of linear momentum is equal to the total force on the fluid mass. 
Equating the resultant of body and surface forces with that of inertial forces, 
we obtain.  

 dPîdPîdPîdXd
dt

qd
zzyyxx  (7) 

Since d is an arbitrary volume element, so we have 

   zzyyxx îPîPîPX
dt

qd    (8) 
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This is the required equation of motion in vector form using the values of 

,P,P,P zyx  we get 

  

z

ı
y

ı
x

ı
P

z

ı
y

ı
x

ı
P

z

ı
y

ı
x

ı
P

zzzyzx
x

yzyyyx
y

xzxyxx
x












































 

and let q = (u, v, w), X  = (Xx, Xy, Xz) then the equations of motion can be put 

as 

  





















































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   (9) 

These are the equations of motion in terms of the stress components.  (We have 
also drawn these equations previously) 

Also, we know that    
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and the relations between stress and rates of strain are  
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Using these in (9), we get 
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           (10) 

where  = 
3

ȝ2 compressible fluids. 

The equation in (10) are called Navier-Stoke‟s equations for a viscous 
compressible fluid. 

5.1. Deductions (i) If  = co-efficient of viscosity = constant, then Navier-
Stoke‟s equations (10) become  

  u
z

w

y

v

x

u

x3

1

x

p
X

dt

du 2
x 





















  

  u
z

w

y

v

x

u

x3

1

x

p
X

dt

du 2
x 





















  

  w
z

w

y

v

x

u

z3

1

z

p
X

dt

dw 2
z 





















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which can be expression in vector form as  

  )q(
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(ii) For incompressible fluid,        = constant,   
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dr 

dz 

d 

   = constant,          .0
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u
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Thus the equations become  
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i.e.  




p

X
dt

qd
+ v2 q  

where v = / is called the Kinematic co-efficient of viscosity.  

For steady motion with no body forces, we have 

 0X,0
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q)q( 2 


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



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(iii) If there is no shear at all i.e  = 0,  then 

  

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
 p

Xq)q(
t

q

dt
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These are Euler‟s dynamical equations for an incompressible non-viscous 
fluid.  

5.2. Equations of Motion in Cylindrical Co-ordinates (r, , z).  In 

cylindrical co-ordinates               (r,  z), we have q  = (qr, q, qz) and the 

acceleration is given by.  
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  (1) 

where zșr î,î,î  are the unit vectors in the directions of r, , z increasing.  
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  (The surface forces are obtained on cylindrical volume) 

Thus, in cylindrical co-ordinates; the resultant inertial force is  
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The components of stress vector, zșr P,P,P  in cylindrical co-ordinates are 

given by  
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In cylindrical co-ordinates we have  
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Therefore, the equations of motion in vector form 
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The relations between the stress components and the rates of strain, in 
cylindrical co-ordinates are 
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Using the above relations, the equations of motion (Navier Stoke‟s equation) in 
cylindrical                co-ordinates become  
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5.3. Special cases.  (i) If  = constant and  = constant, then  q = 0 and the 

equations of motion are  
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(ii)  If the fluid is non-viscous then  = 0 and if it is incompressible, then 
 q = 0,  = constant and the equations of motion become  
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These are Euler‟s dynamical equations in cylindrical co-ordinates.   

5.4. Equations of Motion in Spherical Co-ordinates (r, , ).  We know that 
the velocity and acceleration. components in spherical co-ordinates (r, , ) are  
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   

  a = 
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dq ȥșȥrȥ   

The equations of motion for a viscous incompressible fluid of constant 
viscosity  are : 

   qpX
dt

qd 2  

Unit-4 Steady flow past rigid bodies 2016-Batch

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
Page 29 of 64



                                                          

In spherical co-ordinates,  
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Let us simplify 
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Thus, the equations of motion for a viscous incompressible fluid in spherical 
co-ordinates are  
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If we put  = 0 in the above equations, we get the equations of motion for ideal 
fluid.  

6. Steady Flow Between Parallel Planes 

For a viscous incompressible fluid in steady flow, the Navier Stoke‟s equation 
with negligible body forces, are  

  
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In Cartesina co-ordinates; these are  
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The equation of continuity for incompressible flow is 

  0
z

w

y

v

x

u 









  (2)   |  q  = 0 

The equations (1) are non-linear 2nd order partial differential equations and 
there is no known general method for solving them.  However, we shall find 
some exact solutions of the Navier-Stoke‟s equations in some special cases.  
This is one of those cases.  

 Let us consider a two dimensional steady laminar flow of a viscous in 
compressible fluid between two parallel straight plates.  Let x-axis be the 
direction of flow, y-axis be perpendicular to it and z-axis be parallel to the 
width of the plates and let h be the distance between the plates.  

We have the conditions  

  v = 0, w = 0 and 0
z





     (3) 

From the continuity equation (2), we have  

  0
x

u 



  u = u(y)     (4) 
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The second equation of equations (1) gives 

   0
y

p 



  p = p(x)     (5) 

The 3rd equation of equations (1) is identically satisfied and the 1st equation 
gives 

  0 =  
 dx

dp1
v

2

2

2

2

dy

udȝ
dx

dp

dy

ud    



 = v (6)  

Since u is a function of y only, so 
dx

dp
 is either a function of y or a constant.  

But from (5), p is a function of x alone.  

Hence 
dx

dp
is constant. i.e. pressure gradient is constant. 

Integrating equation (6) w.r.t y twice, we get the general solution to be  

  u =
2

y

dx

dp

ȝ
1 2

+ Ay + B     (7) 

where A and B are constants to be determined from the boundary conditions.  

Now we take the following particular cases  

6.1. Couette’s Flow : It is the flow between two parallel planes (flat plates) 
one of which is at rest and other moving with velocity U parallel to the fixed 
plate.  Here, the constants A and B in (7) are determined from the conditions  

  u = 0, y = 0 

and  u = U, y = h       (8) 
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 O 

Unit-4 Steady flow past rigid bodies 2016-Batch

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
Page 33 of 64



                                                          

 

 

 

 

 

 

Using these conditions, we get 
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Therefore, the solution (7) becomes  
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We note that equation (10) represents a parabolic curve. 

This equation is known as the equation of Couette‟s flow.  Thus the velocity 
profile for Couetle‟s flow is parabolic.  The flow Q per unit breadth is given by  
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 In non-dimensional form (11) can be written as 

  

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yα
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where                = 







dx

dp

Uȝ2
h2

     (14) 

 is the non-dimensional pressure gradient.  If  > 0, the pressure is decreasing 
in the direction of flow and the velocity is positive between the plates.  If  < 
0, the equation (13) can be put as  

  
2

2

h

yα
)α1(

h

y

U

u       (15) 

The pressure is increasing in the direction of flow and the reverse flow begins 
when  < 1 

      |  y is small. i.e. 
y2 is neglected 

If  = 0 





  0

dx

dp
.e.i , then the particular case is known as simple Couette‟s 

flow and the velocity is given by  

  
h

y

U

u   

which gives u = 0 where y = 0 i.e. on the stationary plane.  

(i) Average and Extreme Values of Velocity : The average velocity of a 
Couette‟s flow between two parallel straight plates is given by  

  u0 = 
h
0 u
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dy   (16)   |  u = u(y) 

Using the value of u from (13), we get 
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      = U
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In the case of a simple Couette‟s flow, the velocity increases from zero on the 

stationary plate to U on the moving plate such that the average velocity is .
2

U
  

When the non-dimensional pressure gradient is  = 3, then from (17), we get 
u0 = 0.  This means that there is no flow because the pressure gradient is 
balanced by the viscous force.  

For maximum & minimum values of u, we have 

  0
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and                                ,0
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So, from (13), we get 
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and thus u is maximum for   1 and minimum for   1. 

(ii) Shearing Stress : The shearing stress (drag per unit area) in a Couette‟s 
flow is given by  

  yx =  

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         = 
h

Uȝ , for a simple Couette‟s flow ( = 0).  

When y = ,
2

h
 then the second term in (20) vanishes.  Thus the shearing stress 

is independent of  on the line midway between the flow.  The shearing stress 
at the stationary plane is positive for                > 1 and negative for  < 1.
     | y = 0 at stationary plate 

The velocity gradient at the stationary plate is zero for  = 1 and the shearing 
stress is zero                for     = 1. 

Thus yx  0 when   1. 

Further, drag per unit area on the lower and the upper plates are obtained from 
(20) by putting y = 0 and y = h, as  

  
h

U

h

U
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h

U

h

U 
 

combining the two results, drag per unit area on the two plates is  
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i.e.  
dx
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P,

2
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h

Uȝ   

6.2. Plane Poiseuille Flow : A flow between two parallel stationary plates is 
said to be a plane Poiseuille Flow. 

The origin is taken on the line midway between the plates which are placed at a 
distance h and x-axis is along this line.   

The conditions to be used in this problem are 

  u = 0, when y = + 
2

h
      (21) 
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Using these conditions in (7), we get 

  A = 0, B = 
8
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dx
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ȝ
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

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and thus the solution (7) is 
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This represents a parabola and thus the laminar flow in a Plane Poiseuille Flow 
is parabolic. 

(i) Average and Maximum Velocity : For extreme values of u, we have          

dy

du
= 0 and thus from (22), we get 
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The average velocity in the plane Poiseuille flow is defined by  

              u0 = 


2/h

2/hh

1
u dy 

Using the value of u from (22), we get 
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From (23) & (24), decrease in the pressure is given by  
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This further shows that 
dx

dp
is a negative constant. 

(ii) Shearing Stress : The shearing stress at a plate (lower plate) for a plane 
Poiseuille Flow is  
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The local frictional (skin) co-efficient Cf is defined by  
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Where Re = 
v

hu0  is the Reynolds number of the flow based on the average 

velocity and the channel height.  

7.  Theory of Lubrication  

The hydrodynamic theory of Couette flow can be applied in the study of 
lubrication by considering an example of the slipper bearing which consists of 
a sliding block moving over a stationary guide and inclined at a small angle 
with respect to the stationary pad.  The gap between the sliding block and the 
pad is always much smaller than the length of the block and is filled with a 
lubricant, usually oil.  For such a case viscous forces are predominant.  The 
theory of lubrication was first developed by Osborne Reynolds in 1886, and the 
discussion is due to Lord Rayleigh (1918). 

 

 

 

 

load 

U 

slipper block 

bearing guide 
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 h2 

 

In order to make the motion steady, a system of co-ordinates is chosen in 
which the slipper block is stationary and the pad moves with a uniform velocity 
U in the x-direction.  Since the slipper block is inclined relative to the guide, a 
pressure difference is set up in the gap between the slipper and the guide.  At 
high velocities, extreme pressure difference can be created to support heavy 
loads in the direction normal to the guide.  Let the block be so wide in the z-
direction that the problem may be treated as two-dimensional. 

 

 

 

 

 

 

 

 

 

 

Let (a, h1), (b, h2) and (x, h) be the co-ordinates of A, B and any point on AB.  
Since the addition of  a constant pressure throughout the fluid will make no 
difference to the solution, so we may for convenience assume that p = 0 
beyond the ends of the block.  Since the inclination of the plane faces is small, 
(i.e. the faces are nearly parallel) the velocity u at any point is given by  

  u = 
h

Uy

dx

dp

ȝ2
hyy2


( from () of previous article) and the 

flow Q in x-direction is  

  Q = 
dx

dp

12

h

2

hU 3


  (from () of previous article) 

The condition of continuity requires that Q must be independent of x i.e. Q = 
Q(y).  Hence  

 Z 

 h1  h(x) 

 A 

B 

Y 

X 

 U 

 O 
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x

3

d

dp

ȝ12

h
hU

2

1   = constant = 
2

1
h0U 

  
xd

dp
= 6U 







 
3

0

h

hh
     (1) 

where h0 is the value of hat the points of maximum pressure 







 0

d

dp
.t.s

x

. 

Now, the equation of AB is  

  hh1 = )ax(
ab

hh 12 



 

  
l

1212 hh

ab

hh

dx

dh 





        (2) 

where l is the length of the block and 
dx

dh
 is the slope of the line AB. 

From (1) and (2), we get 

  





 




3
0

2
12 h

h

h

1

hh

U6

dh

dx
.

dx

dp

dh

dp l
   (3) 

Integrating, we find  

  p = C
h2

h

h

1

hh

U6
2

0

12







 


 l

 

     = C
h

h2h

hh

U3
2

0

12







 


 l

    (4) 

We now determine h0 and C so that  

  p = 0 when h = h1 and when h = h2 

This gives  

  h0 = 
)hh)(hh(

U6
C,

hh

hh2

121221

21





l

 

Unit-4 Steady flow past rigid bodies 2016-Batch

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
Page 41 of 64



                                                                                 

and thus p = 
)hh(h

)hh)(hh(U6
2
1

2
2

2
21


 l

 

or  p = 
2

21
2
2

2
1 h

)hh)(hh(

hh

U6 

 l

     (5) 

This suggests that p > 0 if h1 > h2 i.e. the stream contracts in the direction of 
motion.  P > 0 yields thrust rather than a suction.  So we conclude that a 
necessary condition for lubrication is that the relative motion should tend to 
drag the fluid from the wider to narrower part of the intervening space i.e. the 
stream should be convergent. 

The total pressure (thrust)P is given by  

            P =   







b

a

h

h
dh

dh

dx
pdxp 2

1
 

              = 
2

1

h

h
12 hh

l
pdh    | using (2) 

             = 
2

21h

h
12

2
2

2
1

2

h

)hh)(hh(

)hh)(hh(

U6 2

1







l
 dh 

             = dh
)hh(h

)hh)(hh(

)hh(

U6

21
2

21h

h2
21

2
2

1 






l

 (6) 

To find the integral in (6), we observe that  

   





 

 2h

1

2h

1 h

21
2

21

h 2
21 dh

h

h

h

h

h

hh
1dh

h

)hh)(hh(
 

           = 
2

1

h

h
21

21 hloghhlogh
h

hh
h 



   

          = 2(h1h2) + (h1 + h2) log 








2

1

h

h
 

  
21

21
212

21h

h
21 hh

hh
2)h/hlog(dh

h

)hh)(hh(

hh

1 2

1 





   
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      = log k2 ,
1k

1k











   k = h1/h2. 

Thus (6) becomes  

  P = 





















1k

1k
2klog

)1k(h

U6
22

2

2
l

   (7) 

Now, the tangential stress (drag) at the section h is  

dx

dp

2

h

h

U
)( hyyx           | From () of previous article. 

and thus the total frictional force experienced by the moving fluid is  

  F = dx)( hyyx

b

a
   

  dx
h

hh
U6

2

h

h

U
3

0b

a














 




      | using (1) 

     = U dh
hhh

h3

h

u

12
2
0h

h

2

1 






 

l
    | using (2) 

     = dh
hh

hh6
.

h

1

h

u

hh

U

21

21
2

h

h
12

2

1 















l
  

     = 





















1k

1k
3klog2

)1k(h

U2

2

l
   (8) 

Comparing (7) and (8) we see that  the ratio F/P of the total friction to the total 
load is independent of both  and U, but proportional to h if the scale of h is 
altered.  

It has been found by Reynolds and Rayleigh that the value of k which makes P 

a maximum is 2.2 (approx.) and that this makes P = 0.16
2
2

2

h

Ul
, F = 0.75

2h

Ul
.  

For this case,  F/P = 4.7
l

2h
. 

By making h2 small enough compared to l, we can ensure a small frictional 
drag i.e. good lubrication.  
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z x 

y 

8. Steady Flow Through Tube of Uniform Circular Cross-section                                            

(Poiseuille’s Flow or Hagen-Poiseuill’s Flow) 

We consider a laminar flow, in the absence of body forces, through a long tube 
of uniform circular cross-section with axial symmetry.  

Let z-axis be taken along the axis of the tube and the flow be in the direction of 
z-axis.  Since the flow is along z-axis, the radial and transverse components of 
velocity are absent. 

 

 

 

 

 

Thus qr = q = 0    )q,q,q(q zr   

The continuity equation for a viscous incompressible fluid gives.   

 
z

qz




 = 0    qz = qz(r)     (1)    |  axial symmetry i.e. independent of  

The equations of motion in cylindrical co-ords are  

   























  q

r

2

r

q
q

r

p
X

r

q

dt

dq
22

r
r

2
r

2
r   

   





 













  




2
r

2

2r

r

qq

r

2
q

p

r

1
X

r

qq

dt

dq
 

   z
2

z
z q

z

p
X

dt

dq



  

where                   ,
z

q
r

1
q

r
q

tdt

d
zr 









   

and                       )X,X,X(X zr   

In the present case 0
t





 and   qr = q = 0, 0X   

 
r 
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Thus from the first two equations, we get 

  )z(pp0
p

r

p 






    (2) 

The third equation gives.  

  0 = z
2q

z

p 



  isrand)r(qq zz  constant w.r.t.  t .   

or   









dr

dq

r

1

dr

qd
q

dz

dp z
2
z

2

z
2    (3) 

(In cylindrical co-ordinates 
2

2

2

2

22

2
2

zr

1

rr

1

r 









 ) 

  

since qz is a function of r only (from (1)) and p is a function of z only                 
(from (2)). 

Equation (3) can be put as  

  
dz

dp
r

dr

dq

dr

qd
r z

2
z

2









  

i.e.  
dz

dpr

dr

dq
r

dr

d z











 

Integrating, w.r.t. r, we get. 

  r A
2

r

dz

dp1

dr

dq 2
z 









  

i.e.  
r

A
r

dz

dp

2

1

dr

dqz 








  

Integrating again, we get 

      qz = BrlogAr
dz

dp

u

1 2 








    (4) 

where A and B are constants to be determined from the boundary conditions. 
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 The first boundary condition is obtained from the symmetry of the flow 
such that  

   0
dr

dqz     on r = 0     (5) 

and the second boundary condition is  

        qz = 0, when r = a     (6) 

where a is the radius of the tube.   Using these conditions, we get 

  A = 0,  B =  22 a
dz

dp

4

1
a

dz

dp

4

1



















 

Thus, the solution (4) becomes 

  qz = 





 

 dz

dp

4

1
 (a2r2)    (7) 

This represents a paraboloid of revolution and thus the velocity profile is 
parabolic.  

(i) The Max x Average Velocity :  For extreme values of qz, we have 

0
dr

dqz        |  qz is a function of r only 

From (7), it implies that r = 0 and thus  

  qmax. = 







 dz

dp

4

a2

     (8) 

where 
dz

dp
 is a negative constant. 

From (7) and (8), the velocity distribution, in non dimensional from, is given 
by  

       
2

max

z

a

r
1

q

q






  

The average velocity is defined by 

  q0 = 



a

0

2

02a

1
qz r dr d 
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Using the value of qz, we get 

  q0 = .max

2

q
2

1

dz

dp

8

a 








 

The average velocity is therefore half of the maximum velocity  

The volume of fluid discharged over any section per unit time (i.e. volumetric 
flow) is defined as  

  Q = 
a

0
qz. 2 r dr 

Using (7), it is obtained to be  

  Q = .max
2

2
2

4

qa
2

1

dz

dp

4

a
a

2

1

dz

dp

8

a 













 














  (9) 

(ii) Shearing Stress : The shearing stress in Poiseuille‟s flow is given by 

  rz =  

















dz

dp

2

r
)r2(

dz

dp

4

1

dr

dqz  

On the boundary of the tube, we have 

  (rz)r=a =  .maxq.
a

2

dz

dp

2

a

dz

dp

2

a 





 








  (10) 

The local frictional (skin) co-efficient Cf for  laminar flow through a circular 
pipe is  

  Cf = 
2q

q

a

2

2q

)(
2
0

max
2
0

arrz







   

    
2
0

0

q

q2

a

4




 = 
e0 R

16

q

1

a

8 



 

Where Re = 2aq0/v is the Reynolds number.  When Re is less than the critical 
Reynolds number, which is 2300 in this flow problem, the flow is laminar but 
if Re > 2300, the flow ceases to be laminar and becomes turbulent.  Thus, in 
this problem, Re < 2300. 
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8.1. Example. Establish the formula 
l

 4a

8

1
(p1p2) for the rate of steady flow 

of an incompressible liquid through a circular pipe of radius „a‟, p1 and p2 
being the pressures at two sections of the pipe distant lapart.  Also find the 
drag on the cylinder. 

Solution. First we prove equation (9) and then we note that 
dz

dp
 is the change 

in pressure per unit length and thus in the present case  

  
l

12 pp

dz

dp 
  

Therefore, from equation (9), we get 

  Q = 





 




l

21
4 pp

8

a
 

Also, the drag on the cylinder is  

  F = 2al (rz)r=a 

     = a2
l 

dz

dp
 

      = a2 (p1p2). 

Hence the result.  

9.  Steady Flow Between co-axial Circular Cylinders 

Let us consider the steady flow of a viscous fluid parallel to the axis in the 
annular space between two co-axial cylinders of radii r1 and r2(r2> r1).  The 
velocity for such flow is  

  qz = 
4

1








dz

dp
r2 + A log r + B   (1) 

(from equation (4) of previous article) where A and B are constants to be 

determined from the boundary conditions, 
dz

dp
being the constant pressure 

gradient.  

The boundary conditions are  
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  qz = 0 at r = r1 and r = r2    (2) 

Applying (2) in (1), we get 

  A = 

















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



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4

1
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4

1 2
1

2
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2
1

2
2 r2/r1 

and 

  B = 



















2

11

2
1

2

rrlog
nlog

r)1n(

dz

dp

4

1
  

Thus the velocity distribution in the annular space between two co-axial 
cylinders is  

  qz =  













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
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



 1

2
1

2
22

1
r

r
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r)1n(
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dz
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4

1
 (3) 

The volumetric flow in this case is  

  Q = 
 2

1

r

r

2

0
qz r dr d 

      = 
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
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      = 





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






nlog

)1n(
)1n(

dz
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4

4
1   (4) 

The average velocity q0 in the annulus is given by  

  q0 = 






 


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
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1n
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r

r)1n(

Q 2
2

2
1

2
1

2
 (5) 

The shearing stress on the inner and outer cylinders are  
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4

r 2
1  

10. Steady Flow Between Concentric Rotating Cylinders  (Couette’s Flow) 

We consider the flow between two concentric rotating cylinders with radii r1, r2 
(r2 > r1) having viscous fluid in between them.  We assume that the flow is 
circular such that only the tangential component of velocity exists.  Let w1 and 
w2 be the angular velocity of the inner and outer cylinders respectively. 

 The continuity equation in cylindrical co-ordinates (r, , z) reduces to  
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2 

z 

 


 q
= 0,      q = q(r)       

 (1) 

where      qr = qz = 0 

 

Now, the Navier-Stoke‟s equations for viscous in compressible fluid in 
cylindrical co-ordinates are  

       


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
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
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
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
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
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r

qq

dt
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                  z
2

z
z q

z

p
X

dt

dq



  

Here, qr = qz = 0; X  = (Xr, X, Xz) = 0, q = q(r) 

From the last two equations, we have  

  0
r

q
q

p

r

1
,0

z

p
2

2 





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


 

    (2) 

and the first equation gives 

  
r

p

r

q2




       (3) 

The L.H.S. of (3) is a function of r and thus p is a function of r only. i.e. 

0
p 



 

 Equation (2) reduces to  

  2q  
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r

1

dr

qd
22

2
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r2 

r1 

1 
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 0
r

q

dr

d

dr

qd
2

2







       (4) 

Integrating, we get 

  1C2
r

q

dr

dq
   

 r rc2)qr(
dr

d
rc2q

dr

dq
11  

  

Integrating, we get 

  r q = c1 r
2 + c2   q = c1 r + 

r

c2    (5) 

which is the general solution, where c1 and c2 are constants to be determined 
from the boundary conditions. 

The boundary conditions are  

  q = r1 1, when r = r1 

and  q = r2 2, when r = r2     (6) 

   
dt

d
rv,surfacetheon
   v = r 

                                        l = r   
dt

d
r

dt

d l
 i.e. v = r  

Using these in (5), we obtain  
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21
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2
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2
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rr

)(rr
c,
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






  (7) 

Thus the solution (5) in the present case is  

  q = 






 


 r

)(rr
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1 12
2
2

2
1

1
2

12
2
22

1
2
2

 (8) 

In particular, if the inner cylinder is at rest i.e. 1 = 0, 2 = w(say), r1 = a, r2 = 
b, then the solution becomes  
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  q = 

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b 2

22

2

     (9) 

The radial pressure, given by (3), is  
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
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Integrating w.r.t., we get 
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If p = p1 when r = r1, then  
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Hence the pressure is given by  

  p = p1 + 
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where c1 and c2 are given by (7). 

The formula for shearing stress is  
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         = . r 
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The expressions for the shearing stress on the outer and the inner cylinder are 
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11. Steady Flow in Tubes of Uniform CrossSection  

Here, we consider the incompressible unaccelerated flow through a tube of any 
uniform cross-section.  We neglect body forces.  Thus, we have 

  0q,0F,0
dt

qd      (1) 

and the Navier-Stoke‟s equations in vector form become  

  0 =  q
p 2







 

i.e.  p = 2 q       (2) 

Let us work with fixed co-ordinate axis ox, oy,  oz with oz taken parallel to the 
flow so that  

  k̂wq  ,      (3) 

where q (u, v, w), u = 0, v = 0 

From equation of continuity ,0
z

w

y

v

x

u













 

getwe            0
z

w





  w = w (x, y)    (4)  

Thus from equation (2), (3) & (4), we obtain  
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     (6) 

Equations (5) show that p is a function of z only, therefore, we can write  

  

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The L.H.S. of (7) is a function of z only while R.H.S. is a function of x, y only.  
Thus each side is a constant, say P, the negative sign being taken since p 
decreases as z increases.  Then the problem of solving the Navier-Stoke‟s 
equations reduces to the problem of solving the partial differential equation. 

  

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dz
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  (8) 

subject to the condition that w vanishes on the walls of the tube for a viscous 
fluid. 

To obtain the solutions of (8), we first establish a uniqueness theorem.  A form 
which is a little more general than that required here, is as follows : 

11.1. Uniqueness Theorem.  If 

   )y,x(f
y

w

x

w
2
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
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


 

at all points (x, y) of a region S in the plane ox, oy bounded by a closed curve c 
and if f(x, y) is prescribed at each point (x, y) of S and w at each point of C, 
then any solution w = w (x, y) satisfying these conditions is unique.  

Proof. The given equation is  
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     (9) 
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C 

Let w = w1 (x, y) and w = w2(x, y) be two solutions satisfying equation (9) in 
the region S together with the prescribed boundary conditions on C  

i.e.  w1 = w2 on C 

We are to prove that w1 = w2 in S.   

For this, we write 
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Also, on curve C,             W = 0,      (12) 

 

Since w1 = w2 on C. 

 

 

 

Now, consider 

  I = dxdy
y

W

x

W

S

22

 






























 

    =  













































S
2

2

2

22

2

2

y

W

x

W
W

y

W

x

W
 dx dy 

 | using (11) 

    =  


































S
y

W
W

yx

W
W

x
 dxdy 

S 

Unit-4 Steady flow past rigid bodies 2016-Batch

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
Page 56 of 64



 288 

    = ,dx
y

W
Wdy

x

W
W

C
 














 by Green‟s Theorem. 

    = 0, as W = 0 on C. 
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y
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= 0 at each point of S. 

 W = constant in S.  

Since W = 0 on C, we infer from the continuity of W that W = 0 throughout S. 

Hence w1 = w2 in S which establishes the uniqueness of the solution. Under the 
reference of the uniqueness theorem, we now find the solution of equation (8) 
for tubes having different types of uniform cross-section.  

11.2. Tube having Uniform Elliptic Cross-Section :  Suppose that the elliptic 
cross-section of the tube has the equation  
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subject to the condition w = 0 on the cross section (13). 

We first observe that the function  
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satisfies the boundary condition, namely w = 0 on the elliptic cross-section.  
Regarding k as constant and on substituting w into the partial differential 
equation (14), we find 
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  k =
)ba(ȝ2

bPa
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
     (16) 

Thus from equation (15) & (16), we get 
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The uniqueness theorems shows that w, given in (17) is the required solution.   

The volume discharged through the tube per unit time is  
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11.3. Remark (circular cross-section). When b = a, then the cross-section of 
the tube becomes a circle of radius a and, then    

   w = qz = 









2

2

2

2

2

4

a

y

a

x
1

a2

a

ȝ2
P

 

       = )ra(
ȝ4
P

)yxa(
ȝ4
P 22222  ,   

 | x2 + y2 = r2 

where P = 
dz

dp
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y 

0 
x 

y = 3x  

y =  3x  

x= a 

and Q = 
ȝ8

Paπ
a2

a

ȝ4
Pπ 4

2

6









 

mean velocity = ȝ8Pa
aπ
Q 2

2
 . 

These results have already been obtained.  

11.4. Tube having Equilateral Triangular Cross-Section.   Suppose that the 
cross-section of the tube is the equilateral triangle bounded by the lines  

  x = a, y = + 
3

x
     (19) 

If we take 

  w  = k(xa) 





  22 x

3

1
y     (20) 

       =k 







 )ax(

3

x
)ax(y

2
2  

then w = 0 on the boundary of the tube. 

 

 

 

 

 

 

Substituting for w in  

  
ȝ
P

y

w

x

w
2

2

2

2








     (21) 

we obtain  
 

  k
ȝ
P

)a2x2(
3

a2
x2
















   

60 

60 

60 

30 
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  k = 
aȝ4

P3
      (22) 

Thus, by the uniqueness theorem,  

  w = 





  22 x

3

1
y)ax(

aȝ4
P3

    (23) 

is the unique solution  

The volume discharged per unit time is  

  Q =   
S

a

0

3x

0

dywdx2dsw   | due to symmetry 

      =  









a
0

2
2

3x

0

dy
3

x
y)ax(dx

aȝ2
P3

 

      = 
ȝ360

Pa4

 

 

11.5.  Remark. If we take the cross-section to be  

  (xa) )a2y3x(   

 

then  Q = 
ȝ

Pa

320

27 4

      

     | Replace a by  3a  in the above example 

12. Unsteady Flow Over a Flat Plate 

So far we have discussed the examples of exact solutions of the Navier-Stokes 
equations for steady flows.  Here, we consider the case of unsteady flow.  

The simplest unsteady flow is that which results due to the impulsive motion of 
a flat plate in its own plane in an infinite mass of fluid which is otherwise at 
rest.  This flow was first studied by Stokes and is generally known as Stokes 

first problem. 

(2a, 0) 

 

O 

y 

x =a x 
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Let x-axis be taken in the direction of motion of the plate, which is suddenly 
accelerated from rest and moves with constant velocity U0.  Let y-axis be 
perpendicular to the plate.  The motion is two-dimensional and the only non-
zero component of velocity is u, where q  = (u, v, w).  Further, u is a function 

of y and t only. i.e. u  u(y, t).  The pressure in the whole space is constant.  
The Navier-Stokes equations in the absence of body forces, for the present 
case, become 

  
t

u




= v
2

2

y

u




, v = /     (1) 

The initial and boundary conditions are  

  u = 0 when t = 0 for all y     (2) 

  when
yat0u

0yatUu 0








 t > 0    (3) 

We observe that the partial differential equation (1) is the same as the equation 
of heat conduction, diffusion etc.  It can be reduced to an ordinary differential 
equation if we make the following substitution (principle of similarity of flow) 

  )Ș(f
U

u

0

       (4) 

where   = 
t2

y

v
      (5) 

is the similarity parameter. 

We have,  

  






 












2/30
t4

y

Ș
f

U
t

Ș
Ș
u

t

u

v
 

  



















t2

1

Ș
f

U
y

Ș
Ș
u

y

u
0

v
 

  










































t4

1

Ș
f

U
y

Ș
y

u

Șy

u

yy

u
2

2

02

2

v
 

Thus, in terms of the new variables, equation (1) reduces to  
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2

2

Ș
f

)Ș2(
Ș
f







 

i.e.  0
Șd

dfȘ2
Șd

fd
2

2

      (6) 

and the corresponding boundary conditions are  

  f(0) = 1 and f() = 0     (7) 

The second condition in (7) includes the initial condition (2). 

The solution of (6) is   

2
Ș
0

2Ș
1

2Ș
1

1
2

CȘdeCf

eC'f

ClogȘ'flogȘ2
'f

''f









  

  f() = C1  Ș
0 2

2Ș CȘde     (8) 

Using the boundary conditions (7) in (8), the constants of integration C1 and C2 
are obtained to be  

  C2 = 1 and C1 = 
π

2

Șde

1

0

2Ș



 

   (9) 

The velocity distribution, from equation (4), is therefore given by  

   Ș
0

2Ș

0

Șde
π

2
1)Ș(f

U

u
 

          = (1erf n)    (10) 

the integral  

  erf  = Șde
π

2 Ș
0

2Ș       (11) 

is called the error function or the probability integral and tables for it are 
readily available.  

 The velocity distribution (10) is tabulated as follows. 
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 erf  

0U

u
 

0 0 1 

0.01 0.01128 0.98872 

0.05 0.05637 0.94363 

0.1 0.11246 0.88754 

0.2 0.22270 0.77730 

0.4 0.42839 0.57161 

0.6 0.60386 0.39613 

0.8 0.74210 0.25790 

1.0 0.84270 0.15720 

1.2 0.91031 0.08969 

1.4 0.95229 0.04771 

1.6 0.97635 0.02365 

1.8 0.98909 0.01091 

2.0 0.99532 0.00468 

2.4 0.99931 0.00069 

2.8 0.99992 0.00008 

 1.00000 0 

 

We observe that the velocity decreases continuously and tends to its limiting 
value zero as  tends to infinity.  However, for all practical purposes, this value 
is reached at about  = 2.0 and therefore the corresponding value of y, which 
we shall denote by , from (5), is  

       
~
 4 tv            (12) 

Thus distance is a measure of the extent to which the momentum has 
penetrated the body of the fluid.  It is proportional to the square root of the 

Unit-4 Steady flow past rigid bodies 2016-Batch

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
Page 63 of 64



 Unit-4  Steady flow past rigid bodies   2016-Batch 

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE 

 

 

 

Possible Questions 

                                                    Part-B(5x8=40 marks) 

1. The velocity field at a point in a fluid is given by q͞ = (x/t,y,0).Obtain also a path line. 

2. Derive the equation of continuity. 

3. Explain Energy equation. 

4. Explain Circulation and rate of change of circulation 

5. Discuss on source and its complex potential. 

6. Obtain the complex potential for the vortex 

7. Discuss about Circulation in a viscous fluid 

8. Explain about Steady coutte flow between cylinder in Relative motion 

9. Derive the kinetic energy thickness. 

 

 

                       Part-C(1x10=10 Marks) 
 

1. Explain the boundary layer separation  

2. Explain the Lift force 

3. Explain Circulation and rate of change of circulation and discuss on source and its complex potential 

4. Derive the kinetic energy thickness. 
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Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

In the case of a real fluid frictionless resistance is known as ----

------------ shearing stress 

tangential 

stress friction stress ideal fluid tangential stress 

In the case of --------------frictionless resistance is known as 

tangential stress perfect fluid     friction stress real fluid ideal fluid real fluid 

On real fluid ,tangential stresses are --------------- large small very small infinite small

The property which causes the tangential stress is known as---

---- inviscosity   real fluid velocity viscosity viscosity 

On plane coutte flow if the fluid is perfect the motion of the 

plates has--------on the fluid no effect  viscous effect speed no effect  

Shearing stress will be proportional to the rate of change of ---

---- speed pressure force velocity velocity

The force will be proportional to the area upon which it acts 

and it is known as ------- shearing stress

tangential 

stress viscosity

 effect of 

viscosity shearing stress

In the effect of viscosity the shearing stress is denoted by ------

-- ψ  m t W t

The coefficient of viscosity is denoted by-------- ψ  m W t m 

The viscous force are of order ---- per unit area U/L m (U/L) m /L  mU m (U/L) 

The typical pressure force will be of order------ per unit area U2 rU rU/L   rU2      rU2     

 In a Reynold’s numbers, the kinematic viscosity is ------ g=m/r g=m g=1/m g=0 g=m/r

The non-dimensional parameter R=UL/g is called ------- viscous force pressure force  

 Reynold’s 

number

kinematic   

viscosity

 Reynold’s 

number

In the Navier stokes equation,when the fluid is 

incompressible,then r and m are----- equal zero not equal constant constant

In a circulation on a viscous fluid the space derivative of the 

vorticity vector are-------------- small constant large infinite large 

The steady flow through an arbitrary cylinder under pressure 

is known as ---------

Hagen –Poiseuille 

flow viscous flow inviscous flow vorticity flow

Hagen 

–Poiseuille flow 

In the Reynolds number      is the principal parameter 

determining the ------ role of the flow 

nature of the 

flow 

order of the 

flow type of the flow

nature of the 

flow 

The constant of proportionality, m depends entirely upon the 

physical properties of the fluid is called ________

typical viscous 

stress

effect of 

viscosity 

coefficient of 

viscosity

viscosity of a 

flow

coefficient of 

viscosity

An arbitrary volume of a fluid,the momentum of the fluid 

contained within the volume is ----- ∫vidv ∫ rvi dv  ∫ rdv  ∫ r2 vi dv   ∫ rvi dv 

The resultant value of an poiseuille’s law is ------ M=(πp a3)/4m 

 M=(πrp 

a3)/6m    M=(πrp a4)/8m M=(πp a4)/6m    M=(πrp a4)/8m 

If we consider two infinite parallel planes.Aflow with pressure 

gradient when both planes are at rest then they are called as -

------- pressure flow  

plane 

poiseuille flow coutte flow

plane coutte 

flow

plane poiseuille 

flow

If we consider two infinite parallel  planes.A flow without 

pressure gradient when one plane moves relative to the 

other such a flow is called---------- plane coutte flow 

plane 

poiseuille flow 

infinite plane 

flow

viscous plane 

flow plane coutte flow 

A flow is said to be ---------- if all fluid particles moving in one 

direction  parallel  perpendicular nonparallel zero  parallel  

Possible Questions                               
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A flow is said to be parallel if only one velocity component is --

-------- zero non zero constant   variable non zero

A flow is said to be parallel if all fluid particles moving in---------

- direction two three one four one

A flow is said to be parallel if only---------- velocity component 

is non zero two four three one one

Skin friction σ= ---------- μ/h μU μU/h U/h μU/h

Skin friction is also known as ---------per unit area circle sphere square    drag drag

In plane couette flow the -------------------is zero

temperature 

gradient  temperature 

pressure 

gradient  pressure

pressure 

gradient

In------------------- the pressure gradient is zero

 plane poiseuille 

flow 

 plane 

couette flow   couette flow  poiseuille flow   

 plane couette 

flow  

 In ---------------------------the plates are at rest

 plane poiseuille 

flow  

plane couette 

flow  couette flow  poiseuille flow   

 plane poiseuille 

flow  

 In plane poiseuille flow the plates are at-------- motion  rest stable    nonstable rest

In steady flow the flow past a circular cylinder then the stokes 

equation reduces to ------- parallel perpendicular nonzero zero zero
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UNIT-V 

 

1.  Dynamical Similarity  

We have observed that due to non-linear character of the fundamental 
equations governing the flow of a viscous compressible fluid, there are no 
known general methods for solving them.  Only in few particular cases and that 
too under restricted conditions, exact solutions of these equations, for all 
ranges of viscosity, exist and a few of them have already been considered. 
However, attempts have been made to simplify these equations for two 
extreme cases of viscosity, very large and very small, and we have well 
established theories for these cases which are respectively known as “Theory 
of slow motion” and “Theory of boundary layers”.  But the cases of moderate 
viscosities cannot be interpreted from these two theories.  Further, even in 
these two extreme cases, we find great mathematical difficulties and therefore 
most of the research on the behaviour of viscous fluids have been carried out 
by experiments. 

In practical cases, such as designing of ships, aircrafts, underwater projects etc, 
it is usually necessary to carry out experiments on models and to relate their 
behaviour to that of the actual object (prototype).  In fact, the model and the 
prototype should be what is called as dynamical similar.  Mathematically 
speaking, two physical systems are equivalent if the governing equations and 
the boundary conditions of the two systems are the same.  Such systems are 
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called dynamically similar system.  One obvious condition is that the model 
should be geometrically similar to the prototype which means that we can 
obtain the actual object from the model by enlarging or contracting its size in 
every direction in the same proportion.  This eliminates the consideration of 
boundary conditions in the discussion of dynamical similarity and so we have 
to consider only the governing equations.  In short, we can say that two fluid 
motions are dynamically similar if with geometrically similar boundaries, the 
flow patterns are geometrically similar.  Further, two geometrically similar 
flows are dynamically similar if forces acting at every point are similar i.e. the 
forces are acting in same direction having same ratio in magnitude. 

We now discuss the conditions under which the fluid motions are dynamically 
similar.  In other words, we have to find out those parameters which 
characterize a flow problem.  There are two methods for finding out these 
parameters (i) inspection analysis (ii) dimensional analysis.  In the first case, 
we reduce the fundamental equations to a non-dimensional form and obtain the 
non-dimensional parameters from the resulting equations.  This procedure 
should always be used when the basic differential equations for a problem are 
available.  In the second case, we form non-dimensional parameters from the 
physical quantities occurring in a problem, even when the knowledge of the 
governing equations is missing. We discuss these two methods with particular 
reference to the flow of a viscous compressible fluid. 

1.1.  Remark. (i) Some authors do not differentiate between the two methods 
and study both of them under the head of dimensional analysis. 

(ii) In two dynamically similar systems, usually, all the non-dimensional 
numbers cannot be matched and so strictly speaking, perfect dynamical 
similarity is rare.  So, many times we match only the important non-
dimensional numbers.        

1.2. Inspection Analysis, Reynolds Number.  We know that the Navier-
Stokes equation of motion of a viscous incompressible fluid in the x-direction 
is  





































2

2

2

2

2

2

z

u

y

u

x

u

x

p1
X

z

u
w

y

u
v

x

u
u

t

u
 (1) 

Suppose L, U, P denote a characteristic length, velocity and pressure 
respectively.  Then the length, velocities and pressure in (1) may be expressed 
in terms of these standards.  Thus, we write 

  x = Lx, y = Ly, z = Lz    (2) 

  u = Uu, v = Uv, w = Uw    (3) 

  p = P p      (4) 
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where all primed quantities are pure numbers having no dimensions.  Then, 
since L/U is the characteristic time, we get 

  
't

'u

L

U

)'tLU(

)'Uu(

t

u 2

1 









 

  u
'x

'u
'u

L

U

)'Lx(

)'Uu(
)'Uu(

x

u 2










 etc 

  
'x

'p

L

P

)'Lx(

)'Pp(1

x

p1

















 

  
2

2

22

2

2

2

'x

'u

L

U

)'Lx(

)'Uu(

x

u










 etc. 

Substituting these results in (1) and simplifying, we obtain  

  
'x

'p

U

P

U

LX

'z

'u
'w

'y

'u
'v

'x

'u
'u

't

'u
22 

















 

    + 

















2

2

2

2

2

2

'z

'u

'y

'u

'x

'u

UL

v
  (5) 

The L.H.S. of (5) is entirely dimensionless, so R.H.S. must be also 
dimensionless. Thus, it follows that the three quantities  

  
22 U

LX
,

U

P
,

UL 


     (6) 

must be dimensionless quantities. 

In order to produce a faithful model of a given incompressible viscous flow, it 
is essential to keep these three numbers constant.  Based on these numbers we 
have the following definitions. 

1.3. Reynolds Number.  The first non-dimensional number in (6) ensures 
dynamical similarity at corresponding points near the boundaries where 
viscous effects supervene.  Its reciprocal is called the Reynolds number  and is 
denoted by Re so that  

  Re = 


UL
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Thus CF = 
22 U

LX

LU

X

forcesInertia

forcesbody



  

If CF is small, the body forces can be neglected as compared to the inertia 
forces. Reciprocal of this number is rather more important and is called 
Froude number, denoted by Fr . Thus 

  Fr = 
LX

U

C

1 2

F

  

This number is particularly used in cases when body forces are the 
gravitational forces.  Thus,  

  Fr = 
gL

U

g

LU

forcesgravity

forcesinertia 22





  

It is important only when there is a free surface, e.g. in an open channel 
problem.  In such cases too the force due to gravity may be neglected in 
comparison to the inertia force if Fr is large i.e. if  

  .1
forcegravity

forceviscous

forceertiaint

forceviscous

forcegravity

forceinertia

R

F

e

r   

1.6. Dimensional Analysis.  In the previous case, we reduced the governing 
equations of a viscous compressible fluid to a non-dimensional form and 
obtained the dimensionless parameters.  An alternative method, with which the 
non-dimensional parameters may be formed from the physical quantities 
occurring in a flow problem is known as dimensional analysis.  In dimensional 
analysis of any problem, we write the dimensions of each physical quantity in 
terms of fundamental units.  Then, by dividing and rearranging the different 
units, we get some non-dimensional (universal) numbers.  Thus, dimensional 
analysis can put the quantities influencing a physical phenomenon into a useful 
form for the interpretation of data.  It is not a tool for solving problems 
explicitly but a powerful method for establishing and the grouping of the 
relevant variables that are likely to appear if the analytic solution is at all 
possible.  The major advantage of the use of dimensional analysis is most 
apparent where complete analytic solution of the physical problem is not 
possible.  

There are, generally, three accepted methods of dimensional analysis due to 
Buckingham, Rayleigh and Bridgeman.  We shall discuss Buckingham‟s Pi-
theorem here as it is the simplest one among the three methods.  

1.7. Buckingham -theorem. The -theorem makes use of the following 
assumptions  
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(i) It is possible to select always m independent fundamental units in a physical 
phenomenon (in mechanics, m = 3 i.e. length, time, mass or force) 

(ii) There exist quantities, say Q1, Q2,…, Qn involved in a physical 
phenomenon whose dimensional formulae may be expressed in terms of m 
fundamental units  

(iii) There exists a functional relationship between the n dimensional quantities 
Q1, Q2,…, Qn, say 

  (Q1, Q2,…, Qn) = 0     (1) 

(iv) Equation (1) is independent of the type of units chosen and is 
dimensionally homogeneous i.e. the quantities occurring on both sides of the 
equation must have the same dimensions.      

Statement :-  If Q1, Q2,…, Qn be n physical quantities involved in a physical 
phenomenon and if there are m(< n) independent fundamental units in this 
system, then a relation  

  (Q1, Q2,…, Qn) = 0 

is equivalent to the relation  

  f(1, 2,…, nr) = 0, 

where 1, 2,…, nr are the dimensionless power products of Q1, Q2,…, Qn 
taken r + 1 at a time, r being the rank of the dimensional matrix of the given 
physical quantities. 

Proof. Let Q1, Q2,…, Qn be n given physical quantities and let their dimensions 
be expressed in terms of m fundamental units u1, u2,…, um in the following 
manner  

  [Q1] =  1m2111 a
m

a
2

a
1 u...uu   

  [Q2] =  2m2212 a
m

a
2

a
1 u...uu  

  ………………………… 

  ………………………… 

  [Qn] =  mnn2n1 a
m

a
2

a
1 u...uu  

so that aij is the exponent of ui in the dimension of Qj .  The matrix of 
dimensions i.e. the dimensional matrix of the given physical quantities is 
written as  
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   Q1: Q2: Qn: 

  u1: a11 a12………a1n 

  u2: a21 a22……a2n 

   ………………… 

   ………………… 

um: 
1ma  

2ma …… mna   

This mn matrix is usually denoted by A. 

Now, let us form a product  of powers of  Q1, Q2,……, Qn ,  say 

   = n21 x
n

x
2

x
1 Q........QQ  

then  [] = 

      



 n

mnn2n12
2m22121

1m2111
xa

m
a
2

a
1

xa
m

a
2

a
1

xa
m

a
2

a
1 u.....uu............u.....uuu.....uu  

In order that the product  is dimensionless, the powers of u1, u2,…, um should 
be zero                      i.e. M0, L0, T0 etc.  Thus, we must have 

  a11x1 + a12 x2 +………..+ a1n xn = 0 

  a21x1 + a22 x2 +………..+ a2n xn = 0 

  ……………………………………. 

  ……………………………………. 

1ma + x1 + 2ma x2 + ……+ mna xn = 0   

This is a set of m homogeneous equations in n unknowns and in matrix form 
can be written as  

  AX = 0, X = 



















n

2

1

x

x

x


 

Now, from matrix algebra, we know the result that if there are m homogeneous 
equations in n unknowns, then the number of independent solutions will be 
nr, where r is the rank of the matrix of co-efficients, and any other solution 

Unit-5 Boundary Layer Theory 2016-Batch

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
Page 8 of 38



 

can be expressed as a linear combination of these linearly independent 
solutions.  Further there will be only r independent equations in the set of 
equations. 

Thus if r is the rank of the dimensional matrix A, then the number of linearly 
independent solutions of the matrix equation AX = 0 are nr.  So, 
corresponding to each independent solution of X, we will have a dimensionless 
product  and therefore the number of dimensionless products in a complete 
set will be nr 

Therefore, (Q1, Q2,………, Qn) = 0 

  f(1, 2,……….., nr) = 0  

Hence the theorem. 

1.8. Method for -products.  To find out the -products in a complete set, we 
adopt the following steps.  

(i) Write down the dimensional matrix of n physical quantities, involving 
in a physical phenomenon, having in independent fundamental units. 

(ii) Find the rank of the dimensional matrix. If the rank is r(say), then the 
number of ‟s will be nr. 

(iii) Select r quantities out of the n physical quantities as base quantities, 
keeping in view that these r quantities should have different dimensions 
and the dimension of any of the fundamental unit should not be zero in 
all of them. 

(iv) Express 1, 2,…., nr a power products of these r quantities raised to 
arbitrary integer exponents and one of the excluded, but different in 
different ‟s, (nr) quantities. 

(v) Equate to zero the total dimension of each fundamental unit in each -
product to get the integer exponents. 

Thus, the Pi-theorem allows us to take n quantities and find the 
minimum number of non-dimensional parameters 1, 2,…., nr as associated 
with these n quantities.  

1.9. Application of -theorem to Viscous Compressible Fluid Flow.  We 
now follow the above mentioned fire steps to find out -products and see the 
application of -theorem and see the application of -theorem to the simple 
case of viscous compressible fluid flow.  Suppose that in the considered fluid 
flow, the physical quantities involved are  
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  L, U, , X, P,  

and the fundamental units in which the dimensions of all these quantities can 
be expressed are mass [M], length [L] and time [T].  The above six quantities 
have dimensions as follows  

  Quantity     Dimensions   

  L-length    [L] 

  U-velocity    [LT1] 

 -density    [ML3] 

 X-force per unit mass   [LT2]   force [MLT2] 

 P-pressure force per unit area) [ML1 T2] 

 -viscosity    [ML1 T1] 

(i) The dimensional matrix for the present problem is  

   L   U   e   X   P    

  M : 0   0   1   0   1   1 

  L : 1   1 3   1 1 1 

  T : 0 1   0 2 2 1 

(ii) The rank of the above matrix is 3, so the number of independent 
dimensionless products will be 63 = 3. 

(iii) Let us take L, U,  as base quantities.  

(iv) Let  







987

654

321

xxx
3

xxx
2

xxx
1

UL

PUL

XUL

 

(v) Now,   
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]TML[

)]TML()ML()LT()L[(][

]TML[

)]TML()ML()LT()L[(][

]TML[

)]LT()ML()LT()L[(][

1x1x1x3xx

11x3x1x
3

2x1x1x3xx

21x3x1x
3

2xx1x3xx

2x3x1x
1

89987

987

56654

654

23321

321

























 

If 1, 2, 3 are dimensionless, then we must have 

  x1+x2 3x3+1 = 0 x4 + x5 3x6 1 = 0  x7 +x83x91 = 0 

         x3 = 0       x6+1 = 0     x9+1 = 0 

   x22 = 0     x52 = 0   x81 = 0 

Solving these equations, we get 

  x1 = 1   x4 = 0   x7 = 1 

  x2 = 2   x5 = 2   x8 = 1 

  x3 = 0   x6 = 1   x9 = 1  

Thus, we get 

  1 = L1 U2 0 X = 
2U

LX
 

  2 = L0 U2 1 P = 
2U

P


 

  3 = L1 U1 1  = 
LULU




 

which are the same dimensionless quantities obtained in equation (6) of the 
inspection analysis  

1.10. Remark. If we include the energy equation and equation of state in our 
study, then, in the general case of viscous compressible fluid dynamics, there 
are 9 physical quantities and the fundamental units in which the dimensions of 

Unit-5 Boundary Layer Theory 2016-Batch

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
Page 11 of 38



                                                          

all these quantities can be expressed are length, mass, time and temperature (Q) 
and thus there are 94 = 5 non-dimensional numbers.  

2.  Prandtl’s Boundary Layer (case of small viscosity) 

The simple problems of fluid motion which can be considered are divided into 
two classes according as the corresponding Reynolds number is small or large.  
In the case of small Reynolds number, viscosity is predominant and the inertia 
terms in the equations may be regarded as negligible.  The case of large 
Reynolds number in which the frictional terms are small and inertia forces are 
predominant, was investigated by the German Scientist Ludwig Prandtl in 
1904.  He made an hypothesis that for fluids with very small viscosity i.e. large 
Reynolds number, the flow about a solid boundary can be divided into the 
following two regions.  

(i) A thin layer in the neighbourhood of the body, known as the boundary 
layer, in which the viscous effect may be considered to be confined.  The 
smaller the viscosity i.e. the larger the Reynolds number, the thinner is this 
layer.  Its thickness is denoted by .  In such layer, the velocity gradient normal 
to the wall of the body is very large. 

(ii) The region outside this layer where the viscous effect may be considered as 
negligible and the fluid is regarded as non-viscous. 

On the basis of this hypothesis, Prandtl simplified the Navier-Stokes equations 
to a mathematical tractable form which are termed as Prandtl boundary layer 
equations and thus he succeeded in giving a physically penetrating explanation 
of the importance of viscosity in the assessment of frictional drag.  The theory 
was first developed for laminar flow of viscous incompressible fluids but was, 
later on, extended to include compressible fluids and turbulent flow.  However, 
we shall consider only the case of incompressible fluids.  

In the discussion of unsteady flow over a flat plate, we had obtained that  

  t4~   

i.e. the boundary layer thickness is proportional to the square root of kinematic 
viscosity.  The thickness is very small compared with a linear dimension L of 
the body i.e.  << L. 

2.1. Boundary Layer equation in Two-dimensions.  The viscosity of water, 
air etc is very small.  The Reynolds number for such fluids is large.  This led 
Prandtl to introduce the concept of the boundary layer.  We now discuss the 
mathematical procedure for reducing Navier-Stokes equations to boundary 
layer equations.  The procedure is known as order of magnitude approach. 

Let us consider a flow around a wedge submerged in a fluid of very small 
viscosity as shown in the figure  

y 

u 

Boundary 

layer x 

U 

 
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At the stagnation point O, the thickness of the boundary layer is zero and it 
increases slowly towards the rear of the wedge.  The velocity distribution and 
the pattern of streamlines deviate only slightly from those in the potential flow.  
We take the x-axis along the wall of the wedge and y-axis perpendicular to it, 
so that the flow is two-dimensional in the xy-plane.  Within a very thin 
boundary layer of thickness , a very large velocity gradient exists i.e. the 
velocity u parallel to the wall in the boundary layer increases rapidly from a 
value zero at the wall to a value U of the main stream at the edge of the 
boundary layer. 

The NavierStokes equations, in the absence of body forces, for two 
dimensional flow, are  

  





























2

2

2

2

y

u

x

u

x

p1

y

u
v

x

u
u

t

u
   (1) 

  





























2

2

2

2

y

v

x

v

y

p1

y

v
v

x

v
u

t

v
  (2) 

The equation of continuity is  

  0
y

v

x

u 






      (3) 

In studying the unsteady flow over a flat plate, we found that the thickness of 
the boundary layer  is proportional to the square root of the kinematic 
viscosity v which is indeed very small.  For this reason  < < x except near the 
stagnation point 0 where the boundary layer begins.  In order to compare the 
order of magnitude of the individual terms in the above equations, we put them 
in non-dimensional form by introducing the non-dimensional notations  
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  x* = 
V

v
*v,

U

u
*u,

y
*y,

x





l 


p

p
*p,

U/

t
*t

l
 (4) 

where l, , U, V and p are certain reference values of the corresponding 
quantities x, y, u , v and p respectively.  The non-dimensional quantities are all 
of order unity.  The continuity equation in non-dimensional form is  

  0
*y

*vV

*x

*uU











l
     (5) 

Integrating, we get 

   







 1

0

1

0

0*dy
*y

*vV
*dy

*x

*uU

l
 

or   



 

1

0

1*y 1*)v(where*,dy
*x

*u

U

V

l
   (6) 

Since the integral in (6) is of the order of unity, the ratio 
U

V
 is of order 

l


.  

Therefore V < < U. 

We now obtain the non-dimensional form of (1) using (4) such that  









































 

2

2

2

2

2

2

2

22

*y

*u

*x

*uU

*x

*pp

*y

*u
*

UV

*x

*u
*u

U

*t

*uU l

llll
     

or  







































 

2

2

2

2

2

2

e
2 *y

*u

*x

*u

R*x

*p

U

p

*y

*u
*v

U

V

*x

*u
*u

*t

*u lll
 (7) 

   1             1         

1

     1                              2         1           
2δ

1
 

The order of the terms involved are indicated. 

Reynolds number, Re = 
UR

1U

e l

l 



= 0()2 as  is proportional to v1/2. 

Similarly, the non-dimensional form of (2) is  

  
*y

*v
*v

V

*x

*v
*u

UV

*t

*vUV 2














ll
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     =  


























2

2

22

2

*y

*vV

*x

*v

*y

*pp
2

V

l

 

or  
*y

*v
*v

U

V

*x

*v
*u

U

V

*t

*v

U

V
2

2












 l

 

                                2    

δ
1

 

   = 























 
22

22

2

2

222 *y

*v

*x

*v

U

V

*y

*p

U

p l

l

ll
 

   = 

























 
2

2

2

2

2

2

e
2 *y

*v

*x

*v

U

V

R

1

*y

*p

U

p ll
 

       2         1          
2δ

1
  (8) 

We neglect the terms of the order of  and higher as  is small.  We then revert 
back to the dimensional variables to obtain  

  
2

2

y

u

x

p1

y

u
v

x

u
u

t

u



















   (9) 

  0
y

p 



      p = p(x)     (10) 

and   0
y

v

x

u 






      (11) 

Equations (911) are known as Prandtl‟s boundary layer equations with 
boundary conditions  

  







y),t,x(Uu

0y,0vu
     (12) 

Since p is independent of y, for given x, p has the same value through the 
boundary layer from y = 0 to y = .  Thus, in boundary layer theory, there are 
only two variable terms u and v instead of three u, v and p in the Navier-Stokes 
equations.  This is a great simplification in the solution of the differential 
equations. 
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Now, U is the velocity outside the boundary layer.  The Euler‟s equation in the 
main stream (potential flow of non-viscous fluid) is obtained from (9) by 
taking v= 0 and  

  v = 0, 0
y

u 



 for y   

Thus, we get 

  
dx

dp1

x

U
U

t

U











     (13) 

From (9) and (13), we obtain  

  
2

2

y

u

x

U
U

t

U

y

u
v

x

u
u

t

u



















  (14) 

and   0
y

v

x

u 






      (15) 

Although these equations are obtained for a rectilinear flow but they hold for 
curved flow if the curvature of the boundary is small in comparison to the 
boundary layer thickness. 

The integration of (14) and (15) can be simplified if we can reduce the number 
of variables by introducing the stream function . 

where  u =
x

ȥ
v,

y

ȥ






      (16) 

The continuity equation is automatically satisfied.  The boundary layer 
equation (14) in terms of  is  

 
t

U

x

U
U

yyxyxyyt 3

3

2

222

























  (17) 

The boundary conditions (12) reduce to  

  





















y),t,x(U
y

ȥ

0y,0
y

ȥ
x

ȥ

    (18) 

The exact solution of (17) was given by H. Blasius in 1908, for the case of 
steady flow  0t   past a flat plate (U = constant). 
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3. The Boundary Layer Along a Flat Plate (Blasius Solution or Blasius – 

Topfer for Solution) 

Let us consider the steady flow of an incompressible viscous fluid past a thin 
semi-infinite flat plate which is placed in the direction of a uniform velocity 
U.  The motion is two-dimensional and can be analysed by using the Prandtl 
boundary layer equations.  We choose the origin of the co-ordinates at the 
leading edge of the plate, x-axis along the direction of the uniformal stream 
and y-axis normal to the plate.  The Prandtl boundary layer equations, for this 
case, are  

  u 
2

2

y

u

y

u
v

x

u










     (1) 

  0
y

v

x

u 






      (2) 

where u, v are the velocity components and v is the kinematic viscosity. 

 

 
 
 
 
 

The boundary conditions are  

  







 ywhenUu

0ywhen0vu
   (3) 

In this problem, the parameters in which the results are to be obtained, are U, 
v, x, y.  So, we may take   

    
U

u
= F(x, y, v, U) = F()    (4) 

Further, according to the exact solution of the unsteady motion of a flat plate, 
we have 

   ~



U

x
~t      (5) 

where x is the distance travelled in time t with velocity U.  Hence the non-
dimensional distance parameter may be expressed as   

U 

y 

x 

 

U 

u 

O 
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   = 
x

U
y

Ux

y

δ
y

vv





     (6) 

Thus, it can be seen that  in (4) is a function of x, y, v, U as in (6) 

The stream function  is given by  

   =  u dy   
x

ȥ
v,

y

ȥ
u





  

      =  U F() Șd
Șd

dy
 

      = U )(fxUd)(F
U

x 



  (7) 

The velocity components in terms of  are (dash denotes derivative w.r.t. ) 

    u = )('f
x

U
xU

yy












 

 = Uf () (8) 

  v = 











 




2/3x2

1U
y)('fxU)(f

U

2

1

x v
v

x
  

    v =  )('f
x

U
y

2

1
)(f

U

2

1 
 

x
 

       = 












  )(f)('fy

x

U

x

U

2

1
 

       = ))(f)('f(
x

U

2

1 
     (9) 

Also, 

  
x

)(''fU
yxx

u 2












  

       
2/3x

1U
y).(''fU

2

1

v


   
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                   =  )Ș(''fȘ
x

U

2

1      (10) 

  )Ș(''f
x

U
U))Ș(''f(

y
U

y

u

v


 







  (11) 

  )Ș('''f
x

U

y

u 2

2

2

v





      (12) 

Using these values of u, v and their derivatives in (1), we obtain  

  U f () 

)(''f
U

U))(f)('f(
U

2

1
)n(''f

x

U

2

1 











  




xx
 

      = v )('''f
x

U2



  

or  '''f
x

U
''f)f'fȘ(

x2

U
''f'fȘ

x2

U 222
   

or   f  f  +  f  f  f f  = 2f  

or  2 f  + f f  = 0 

i.e.   0
d

fd
f

d

fd
2

2

2

3

3







     (13) 

The boundary conditions (3) in terms of f and  are obtained as follows   

  u = 0 when y = 0 implies  f () = 0 when  = 0 

and  

v = 0    f () f() = 0   f() = 0 

Therefore,  

f() = f () = 0 when  = 0     
  (14) 

u = U when y implies that  U f () = U when  

Therefore, 
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 f () = 1 when       (15) 

Thus we have reduced the partial differential equation (1) to ordinary 
differential equation (13), known as Blasius equation, where  is the similarity 
parameter. 

The third order non-linear differential equation (13) has no closed form 
solution, however,  Blasius obtained the solution in the form of power series 
expansion about  = 0. 

Let us consider  

  f() = c0 + c1 + 3322

3|

c

2|

c
 + …….  (16) 

f () = c1 + c2 + 3423 Ș
3|

cȘ
2|

c
 + …….  (17) 

f () = c2 + c3 + 3524 Ș
3|

cȘ
2|

c
 + …….  (18) 

f () = c3 + c4 + 3625 Ș
3|

cȘ
2|

c
 + …….  (19) 

The constants ci‟s are determined from the boundary conditions (14), (15) and 
the differential equation (13).  From (14), we get 

  c0 = c1 = 0 

From (13), we have 

0 = (2c3 + 2c4 + c52 +…..) + (c0 + c1 +
2|

c 2  2 +….) (c2 +c3 + ...)
2|

c 24 

  

i.e.  (2c3 + c0 c2) + (2c4 + c0 c3 + c1 c2) 

  + 2
2
2

31
40

5
2

c
cc

2|

cc
c 










 +…. = 0 

i.e.   2c3 + 2c4  + 0....
2

c
c 2

2
2

5 









  
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Equating the co-efficients to zero, we get 

  c3 = c4 = c6 = c7 = c9 = c10 = 0 

  c5 =  4
211

3
28

2
2 c

8

375
c,c

4

11
c,

2|

c
  

The solution (16) is  

  f() = 
11|

c
8

375

8|
c

4

11

5|2

c

2

c 11
4
2

8
3
2

52
222 







 +… (20) 

The constant c2 is determined by the condition (15) i.e.  

  1
Șd

df
  as n 

We write (20) as 

  f() = 
























...

11|

)c(

8

375

8|

)c(

4

11

5|

)c(

2

1

2|

)c(
c

113/1
2

83/1
2

53/1
2

23/1
23/1

2  

         = )c(Fc 3/1
2

3/1
2       (21) 

Therefore, 

       f () = )c('Fc 3/1
2

3/2
2   

Thus, 1)('flim)c('Fclim 3/1
2

3/2
2 


 

Therefore, 

 c2 = 

2/3

3/1
2 )c('flim

1




















    (22) 

where c2 is determined numerically by Howarth (1938) as 0.33206.  Thus f() 
in (20) is completely obtained which helps in finding u and v from (8) and (9).  
Hence the Blasius solution.  

The shearing stress 0 on the surface of the plate can be calculated from the 
results of the Blasius solution.  Thus, we have 
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  0 = 

















Uxv

)0(''fUȝ
y

u

0y

     

      =  2

e

2 U
R

332.0

Ux

CU

x




 
v

    (23) 

where   /xUR
xe  is the Reynolds number. 

The frictional drag coefficients or local skin friction coefficients Cf is   

  Cf  = 

xe2

0

R

664.0

U
2

1








    (24) 

The total frictional force F per unit width for one side of the plate of length l is 
given by  

  F = 






l

l

0

2
x0

U
U664.0d    (25) 

Equation (25) shows that frictional force is proportional to the 3/2th power of 
the free stream velocity U . 

The average skin-friction co-efficient of the drag co-efficient is obtained as  

  CF = 
lll

l

e2

2
U

2 R

328.1

PU
2

1

PU664.0

U
2

1

F


 





   (26) 

Where 


 U
Re

l

l
. 

3.1. Characteristic Boundary Layer Parameters : (i) Boundary Layer 

Thickness.  The boundary layer is the region adjacent to a solid surface in 
which viscous forces are important.  According to the boundary conditions (3), 
the velocity u in the boundary layer does not reach the value U of the free 
stream until y, because the influence of viscosity in the boundary layer 
decreases asymptotically outwards.  Hence it is difficult to define an exact 
thickness of the boundary layer.  However, at certain finite value of , the 
velocity in the boundary layer asymptotically blends into the free stream 
velocity of the potential flow.  If an arbitrary limit of the boundary layer at            
u = 0.9975 U is considered, the thickness of the boundary layer is found to be  
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 316 

   = 5.64

xeR

x64.5

U

x





    (27) 

(ii) Displacement Thickness : The boundary layer thickness being somewhat 
arbitrary so more physically meaningful thickness is introduced.  This 
thickness is known as displacement thickness, which is defined as  

  U 1 = 


0y

(U u)dy    (28) 

where the right-hand size signifies the decrease in total flow caused by the 
influence of the friction and the left-hand side represents the potential flow that 
has been displaced from the wall.  Hence the displacement thickness 1 is that 
distance by which the external potential field of flow is displaced outwards due 
to the decrease in velocity in the boundary layer.  

i.e.   1 =  











0

dy
U

u
1       (29) 

Using the expressions for 
U

u
 and y from (8) and (6) respectively, we find 1 

for the flow on a flat plate, as  

  1 =  


 0

Șd)'f1(
U

xv
 

      = 


lim
U

Ux
 [  f()] 

      = 1.7208 

xeR

x7208.1

U

x 


v
    (30) 

(iii) Momentum Thickness : Analogous to the displacement thickness, 
another thickness, known as momentum thickness (2), may be defined in 
accordance with the momentum law.  This is obtained by equating the loss of 
momentum flow as a consequence of the wall friction in the boundary layer to 
the momentum flow in the absence of the boundary layer.  Thus 

   2  





0y

2 dy)uU(uρU  
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or  2 =   











0

dy
U

u
1

U

u
    (31) 

Again, using (8) and (6), we obtain 2 for the case of the flow on a flat plate, as  

  2 = 






0
U

x
f (1f ) d 

      = 0.664 

xeR

x664.0

U

x 


    (32) 

Comparison among various thicknesses of the boundary layer is shown in the 
figure.  We note that  

 2 < 1 <  .  
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4.  Integral Methods for the Approximate Solution of Boundary Layer Equations                   
(Karman Integral Conditions) 

We have observed that the solution of the steady boundary layer equations is 
very difficult.   The solution obtained in the previous case is also a very special 
case.  For engineering problems, it is often acceptable if an approximate 
solution can be obtained.  One of the most useful methods is the Von Karman-
Pohlhausen method based on the integral theorem.  The basic concept of this 
method is that the solutions satisfy the differential equations only on the 
average, i.e., it is not anticipated that the solution satisfies the boundary layer 
equations at every point (x, y) but the momentum integral equation and the 
boundary conditions must be satisfied.  The momentum integral equation is 
obtained by integrating the boundary layer equations with respect to y over the 
boundary layer thickness or by the momentum law.  

4.1.  Momentum Integral Equation for the Boundary Layer (Von Karman Integral 
Relation). The Prandtl‟s boundary layer equations are 

  
2

2

y

u

dx

dp

ρ
1

y

u
v

x

u
u

t

u













v    (1) 

and   0
y

v

x

u 






      (2) 

Integrating (1) w.r.t. y from y = 0 to y = (x), the outer edge of the boundary layer, we get 

   
  



















0 0 2

2

0 00
dy

y

u
dy

dx

dp1
dy

y

u
vdy

x

u
udyu

t
(3) 

Let us simplify the third term on L.H.S. of (3).  We have  

    
  










0 0 0
dy

y

v
udy

y

)uv(
dy

y

u
v  

        =  
 




0 0
dy

y

v
u)uv(d  

        =   





00 dy
y

v
uuv  

        =  
 







0 0
dy

y

v
udy

y

v
U    (4) 

where u = U at y = . 

Replacing ,
x

u
by

y

v







 from the continuity equation, we get 
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    
  










0 0 0
dy

x

u
udy

x

u
Udy

y

u
v    (5) 

Using (5) in (3), we find 

 
 






















0 0 2

2

0000
dy

y

u
dy

dx

dp1
dy

x

u
udy

x

u
uUdy

x

y
udyu

t
 

 


 



























 
0

000 0 y

u
dy

dx

dp1
dy

x

u
Udy

x

u
u2dyu

t
 

 

0yy
000

2

0 y

u

y

u
dy

dx

dp1
dy

x

u
Udy

x

u
dyu

t 

 







































 

= 
0yy

dx

dp1
























 

= 





 0

dx

dp
      (6) 

where  = 
y

u




= 0 at y =  .  

   = 0 at y = 0 

i.e. 0 is the shear stress on the wall. 

Let us further simplify the second and third terms on the L.H.S. of (6).  For this we use the 
Leibnitz rule according to which  

    



)x(b

)x(a

)x(b

)x(a dx

db
)y,b(f

dx

da
)y,a(fdy

x

f
dy)y,x(f

dx

d
 

  
 




0

22

0

2

dx

d
Udyu

dx

d
dy

x

u
 

and    
  



0

2

0 dx

d
Udyu

dx

d
Udy

x

u
U  

Thus, equation (6) reduces to  

    
  











0 0 0

02

dx

dp
dyu

dx

d
Udyu

dx

d
udy

t
  (7) 

This is one form of the Von Karman integral relation and is also called the momentum integral 
equation of the boundary layer.  
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4.2. Von Karman Integral Relation by Momentum Law.  The Von Karman integral 
equation of the boundary layer represents the relation between the overall rate of flux of 
momentum across a section of the boundary and the surface forces due to the wall shearing 
stress and the pressure gradient.  The Von Karman integral equation which we just obtained, 
can be derived from the momentum theorem of fluid mechanics.  

Let us consider an element of the boundary layer, ABCDA of unit length perpendicular to the 
xy-plane as shown in the figure.  

 

 

 

 

 

 

 

Let AD = x be the small length of the element in the x-direction and  be the thickness of the 
boundary layer at a distance x from the leading edge of the plate.  We assume that the velocity 
of the boundary layer flow at the outer edge of the boundary layer is the same as that of the 
potential flow, i.e., u = U at y = . 

The rate of mass flow across AB into the element is  

  


0
u dy 

The corresponding rate of mass flow across DC out of the element is  

  


0
u dy +  







0
dyu

x
 x 

The net rate of flow across AB and DC is  

  
dx

d
    




0
dyu  x     (1) 

Since there is no flow across the surface of the plate AD, so by continuity 
equation, the rate of mass flow out of the element across BC must be  

  
dx

d  



0
dyu  x     (2) 

Similarly, the net rate of change of momentum across AB and DC of the 
element, in the                        x-direction, becomes  

  
dx

d  



0

2 dyu  x     (3) 

xx
dx

dp

2

1
p 



   

y U 

B 

C 

u 

p 

 

x A x D 
x O 

0 

x)δp(
dx

dδp   

 
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The rate of change of momentum across BC is  

  U 
dx

d  



0
dyu  x     (4) 

where U is the velocity across BC in the x-direction.  Total outward flux of momentum 
becomes  

  



  

 

0 0

2 dyu
dx

d
Udyu

dx

d
 x   (5) 

The time rate of increase of momentum within the element is  

  



 





0
dyu

t
x     (6) 

The forces acting on the fluid due to the shearing stress at the wall is  

  
0yu

u












x = 0 x, in the x-direction   (7) 

and due to the difference of pressure along AB and CD is  

  p 
dx

dp

dx

d
xx

dx

dp

2

1
px)p(

dx

d
p 



 



  x (8) 

where we have neglected terms of order x.   

Now, according to the momentum law, we have  

Rate of change of momentum in x-direction. = Total force in x-direction  

  



 



 



 
 

0 0

2

0
dyu

dx

d
Udyu

dx

d
xdyu

t
 x 

  =  
dx

do
x  0 x     (9) 

Dividing both sides of (9) by x, we get 

  











 0

00

2

0 dx

dp
dyu

dx

d
Udyu

dx

d
dyu

t
 (10) 

which is the required Von Karman integral equation, being the same as obtained by integrating 
Prandtl‟s boundary layer. 

4.3. Other Forms of the Von Karman Integral Equation.  It is often convenient to have the 
integral equation in terms of displacement and momentum thicknesses.  The momentum 
integral equation of the boundary layer is  
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










 0

00

2

0 dx

dp
dyu

dx

d
Udyu

dx

d
dyu

t
 (1) 

Also, the Euler‟s equation in the main stream is  

  
dx

dp1

x

U
U

t

U











     (2) 

where U is the velocity of the potential flow, 
dx

dp
 is the pressure gradient,  is the density

 ,  is the thickness of the boundary layer and 0 is the shearing stress at the wall.  For 
a steady flow, we obtain from (1) and (2) 

  



 
 0

00

2

dx

dU
Udyu

dx

d
Udyu

dx

d
   

or 

  



 
 0

0000

2 dy
dx

dU
Udyu

dx

dU
dyuU

dx

d
dyu

dx

d
 

or 

  



 
 0

00
)uU(

dx

dU
dy)uU(u

dx

d
  (3) 

The displacement and momentum thicknesses are defined by  

  1 = 








 

0
dy

U

u
1      U1 = 








 

0
dy

U

u
1   (4) 

and 

  2 = 








 

0
dy

U

u
1

U

u
     U22 = 




0
dy)uU(u  (5) 

Thus, equation (3) reduces to  

  



 0
12

2 U
dx

dU
)U(

dx

d
 

or 

  U2





 0

12
2

dx

dU
U

dx

dU
U2

dx

d
 

or 

   
2

0
12

2

Udx

dU
2

U

1

dx

d







   (6) 
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This is the Von Karman momentum integral equation in terms of displacement and momentum 
thicknesses.  

4.4. Application of the Momentum Integral Equation to Boundary Layers (Von Karman 

Pohlhausen Method).  Pohlhausen introduced a fourth degree polynomial for the velocity in 
terms of a non-dimensional parameter  = y/, 0    1 such that  

  432 dcba)(f
U

u
    (1) 

The constants a, b, c d are to be determined from the boundary conditions 

  u = 0, v = 0, 







 U

dx

dp1

y

u
2

2

,
dx

dU
 at y = 0  (2) 

  u = U, ,0
y

u
,0

y

u
2

2








 at y =    (3) 

The first two conditions in (2) and the first condition in (3) are satisfied by all exact solutions 
of the boundary layer equations.  The second condition in (3) is meant for continuous flow on 
the outer boundary of the layer. The third condition in (2) is obtained from Prandtl‟s boundary 
layer equation i.e.  

  
2

2

y

u
v

dx

dp1

y

u
v

x

u
u

t

u

















 

When the flow is steady and u = 0 = v on y = 0, then  

  
dx

dUU

dx

dp1

dx

dp1

y

u
2

2













 

The point where 0
y

u
2

2





 is called a point of inflexion of the velocity profile in the boundary 

layer.  From (1), we get 

  
22

2

22

2

δ
U

Șd
ud

δ
1

y

u 



(2b+6c+12d2) = 0 

  6d2 + 3c + b = 0 

This gives two values of .  One of the points is near the wall and other is in the upper region 
of the boundary layer.  For this reason, the boundary condition.  

  0
y

u
2

2





 at y =  is imposed. 

 Let us now use the conditions (2) and (3) in (1) to find out 

   = 0, 
dx

dUUbU2

dx

dUU

y

u
22

2












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  b = 
dx

dU
,

2dx

dU

2

22







 

   = 1, u = U       a  1dc
2

Ȝ   

   = 1, 
y

u




= 0    a   +3c +4d = 0   (4) 

   = 1, 0
y

u
2

2





  + 6c + 12d = 0 

Solving (4), we get 

  a = 2+
6

1d,
2

2c,
2

b,
6


  (5) 

Therefore, the velocity in (1) has the expression  

  
432 Ș

6

Ȝ
1Ș

2

Ȝ
2Ș

2

ȜȘ
6

Ȝ
2)Ș(f

U

u






 






 






   

       = 223 + 4 +  









6

Ș
2

Ș
2

Ș
6

Ș 432

 

       = F() +  G()    (6) 

where           F() = 223 + 4 

         G() = )ȘȘ3Ș31(
6

Ș 32   = 
6

Ș
(1)3   

        = 
dx

dU2




  (7) 

The velocity profile expressed in terms of  in (6) constitute a one-parameter family of curves 
with a dimensionless parameter  which depends mainly on the pressure gradient of the flow.  
 may be written as  

   = 









δ/Uȝ
δ

dx

dp

dx

dUδ2

v
 

which can be interpreted physically as the ratio of the pressure force to viscous force.  This is 
known as the shape factor. 

We shall now calculate the limits of .  From (6), we get 

f() = (223+4) + 
6

Ȝ
(1)3 

Therefore, 
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  
Șd

df
(262 + 43) + 

6

Ȝ
[(1)3  3(1)2] 

         = (262 + 43) +
6

Ȝ
(1u) (1)2 

and   














  ȜȘ1

6

Ȝ
12)Ș1(

Șd
fd
2

2

 

when    = 0, 
6

Ȝ
2

Șd
df

0









 

  0
Șd

df

0









     =  12 

This is taken as lower limit of .  The upper limit of  can be determined from the condition of 

zero curvature of the velocity, i.e. 0
Șd

fd
2

2

  which gives  = 





 1

6

Ȝ
12

Ȝ
.  It is seen that 

for   12,   1.0 and for  > 12,  < 1.0.  Hence for  > 12, the point of inflexion occurs 
within  = 1.0 i.e. the velocity profile in the boundary layer becomes greater than the velocity 
in the potential flow.  This is not justified physically.  Therefore, we take   12.  So, the limits 
of  are 12    12. 

For  = 0, the velocity profile corresponds to the Blasius solution.  

With the aid of the approximate Pohlhausen‟s velocity profile (6), we find the displacement 
and momentum thicknesses.  These are defined by  

  1 = 








 

0 U

u
1 dy     (8) 

  2 = 








 

0 U

u
1

U

u
dy     (9) 

Using (6) and  = 
δ
y

, we have 

  
 1

0

1 [1F()  G()] d 

        =  



 

1

0

343 d)1(
6

221  

        = 

1

0

4554
2

4

)Ș1(

6

Ȝ
5

)Ș1(

6

Ȝ
5

Ș
2

ȘȘȘ 






    
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           = 
120

Ȝ
10

3       (10) 

and 

  
 1

0

2 [F()+ G()] [1F()G()]d 

        = 
9072

Ȝ
945

Ȝ
315

37 2

     (11) 

The shearing stress 0 at the wall is given by  

  0 =  





 











 6

Ȝ
2

δ
Uȝ

y

u

0y

    (12) 

Let us multiply each side of the momentum integral equation i.e.  

  
2

0
12

2

Udx

dU
)2(

U

1

dx

d







 

by 

2U

to find out 

  
Udx

dU
2

dx

dU 20
2
2

2

122

























   (13) 

To simplify (13), we use the parameters  

  z = 

2

2
2
2

2
2

2
2

dx

dU
'zUK,

































2
  (14) 
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          = 














 






 

9072

Ȝ
945

Ȝ
315

37

6

12Ȝ
δ
δ

6

12Ȝ 2
2  (17) 

Using the values of z, k, f1(k), f2(k) in (13), and noting that ,
dx

dz

2

1

dx

δdδ 22 
v

 the momentum 

integral equation takes the form  

  
dx

dz

2

U
(2+f1(k)) k = f2(k) 

or  
U

)k(F

dx

dz        (18) 

where F(k) = 2f2(k)  2 (2+f1(k)) k      (19) 

Equation (18) is a non-linear differential equation of the first order for z. 

At the stagnation point x = 0 and U = 0.  At this point 
dx

dz
cannot be infinite and so F(k) = 0.  

This gives the value of  at the stagnation point.  Thus, we have 

  2f2(k)  2(2 +f1(k)) k = 0    (20) 

Using the values from (15), (16) and (17), it is obtained that initial value 0 of  at the 
stagnation point is 0 = 7052. 

Further, we can determine F(k), in (19), numerically for different values of .  

5.  Separation of Boundary Layer  

5.1. Physical Approach : The decelerated fluid particles in the boundary layer do not remain 
in the thin layer which adheres to the body along the whole wetted length of the wall.  In some 
cases the thickness of the boundary layer increases considerably in the downstream direction 
and the flow in the boundary layer become reversed.  The decelerated fluid particles then no 
longer remain in the boundary layer but forced outwards, which means that the boundary layer 
separates from the wall.  Such phenomenon is known as boundary layer separation and the 
point at which the boundary layer separates is known as point of separation.  

The phenomenon of boundary layer separation is primarily connected with the pressure 
distribution in the boundary layer and is very common in the flows about blunt bodies, such as 
circular and elliptic cylinders or spheres.  The fluid flow in the boundary layer is determined 
by the following three factors.  

(i) It is retarted due to viscosity because of no-slip condition at the wall. 

(ii) It is pulled forward by the free stream velocity above the boundary layer  

(iii) It is affected by the pressure gradient. 

We have already observed that the pressure in the boundary layer is the same as it is outside 
the boundary layer.   Let us consider a curved surface as shown in the figure  
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Upstream of the highest point the stream lines of the outer flow converge, resulting in an 
increase of the free stream velocity U(x) and a consequent fall of pressure with 

x 





  0

dx

dp
i.e. favourable pressure gradient.  Downstream of the highest point the stream 

lines diverge, resulting in a decrease of U(x) and a rise of pressure with x 





  0

dx

dp
.  In the 

region with rising pressure , 





  .gradientpressureadverse.e.i0

dx

dp
along the wall, the 

retarded fluid particles with small momentum and energy cannot penetrate too far.  Thus, the 
forward flow is brought to rest and thereafter a back flow sets in the direction of the pressure 
gradient.  This causes a boundary layer separation and the point at which the forward flow is 
brought to rest is called the point of separation.  

5.2. Analytical Approach.  In this approach, the separation phenomenon may be explained by 
applying the Prandtl‟s boundary layer equations both outside the boundary layer and at the 
wall.  Outside the boundary layer, the equation is  

  U
dx

dp1

dx

dU


      (1) 

and at the wall, i.e. at y = 0, we have u = v = 0, the equation is 

  

0
2

2

y

uȝ 











= 
dx

dp
     (2) 

It may be noted that at the outer edge of the boundary layer both 
2

2

y

u
and

y

u







tend to zero, 

y

u




 from the positive side whereas 
2

2

y

u




 from the negative side, as at the outer edge the 

maximum value of u i.e. U should occur and the boundary layer flow merges smoothly with 
the potential flow. 

 Since it is clear from equation (1) that the curvature of the velocity 
profiles in the immediate neighbourhood of the wall depends only on the 
pressure gradient, we consider the following three cases : 

U(x) 

0
y

u
2

2





 

0
y

u
2

2






 
0

y

u
2

2





 

 
y 

0
dx

dp
  0

dx

dp
  
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(i) 
dx

dp
= 0 i.e. zero pressure gradient i.e. constant pressure : 

In this case 0
y

u

0
2

2













 and hence the velocity gradient 
y

u




 decreases steadily from a 

positive value at the wall to zero at the outer edge of the boundary layer.  The velocity profile 
must therefore have a steadily decreasing form (figure 1). 

 

 

 

 

 

 

 

     Figure 1 

The point of inflexion occurs on the wall since 






















4

4

0
3

3

y

u
but0

y

u
 0, which can 

easily be verified by differentiating the boundary layer equation w.r.t. y and evaluating the 
value at y = 0.  The fluid particles continue to move forward and therefore separation of 
boundary layer does not occur. 

(ii) 
dx

dp
< 0 i.e. favourable pressure gradient :  

For this case, from equation (2), we conclude that 0
y

u

0
2

2













 and therefore it increases 

steadily to the value zero at the outer edge (y = ) of the boundary layer.  The velocity gradient 

y

u




 again decreases steadily from a positive value at the wall to the value zero at the outer 

edge of the boundary layer.  The velocity profile does not have any point of inflexion (figure 2) 
and has a form similar to the case of zero pressure gradient.  In this case also, the fluid particles 
continue to move forward and so there is no boundary layer separation. 

 

 

 

 

 

(iii) 
dx

dp
>0 i.e. adverse pressure gradient :  
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In this case 

0
2

2

y

u










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 will be a positive quantity.  In order to have a positive value of 
2

2

y

u




 at 

y = 0, the slope of the velocity gradient 
y

u




at y = 0 must be positive.  But the boundary 

condition requires 
y

u




= 0 at y = .  Therefore, the slope of the velocity gradient must change 

signs from positive to negative in the boundary layer which results in point of inflexion of the 
velocity profile in the boundary layer (fig. 3).  The velocity gradient at the wall is much 
smaller compared to the case of zero pressure gradient.  

 

 

 

 

 

                               Figure 3. 

As the adverse pressure gradient increases further, the velocity profile may become 

increasingly distorted until the velocity gradient at the wall 

0
y

u











 is zero, as shown in figure 

3.  At this point, separation of flow from the wall begins.  Further downstream, a back flow in 
the direction of the pressure gradient sets in. 

It should be noted here that the type of velocity profile shown in figure 3 is naturally unstable 
and it frequently happens that the transition to turbulent flow in the boundary layer will take 
place before laminar separation can occur.  Under such circumstances, the turbulent boundary 
layer will be maintained and separation of flow from the wall will be delayed. 

Further, the point of separation is defined as the limit between forward and reverse flow in the 
layer in immediate neighbourhood of the boundary wall.  In other words, the point of 

separation is the point at which 

0
y

u











= 0 i.e. 0 = 0. 
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Possible Questions 

                                       Part-B(5x8=40 marks) 
 

     1. Derive the differentiation following the motion of a fluid. 

2. Determine the stream lines and path lines of the particle u=x/(1+t) , v=y/(1+t) , w=z/(1+t). 

     3.Prove that the rate of change of total energy,kinetic energy,potential energy,intrinsic energy 

of any position of a Compressible inviscid fluid as it moves about is equal to the rate at 

which work is being done by the pressure on the boundary Ω is constant w.r.t time. 

     4. Derive the Helmholtz equation of vorticity 

     5. Discuss source in two dimensions. 

     6. Explain Milne thomson’s circle theorem 

7. Obtain the Helmholtz equations for vorticity of viscous fluid. 

8. Explain about Steady flow between parallel plane 

9. Explain the momentum integral equation. 
 
 

                                                Part-C(1x10=10 Marks) 

 

      1. Explain the boundary layer separation  

     2. Explain the Lift force 

     3. Explain Circulation and rate of change of circulation and discuss on source and its  

         complex  potential 

     4. Derive the kinetic energy thickness. 
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Question Choice 1 Choice 2 Choice 3 Choice 4  Answer

In a boundary layer characteristics  which 

streamlines far from the wall are displaced 

then δ1(x) is referred to as--------------

displacement 

thickness

momentum 

thickness

kinetic energy 

thicknesss 

friction 

thickness displacement thickness

The value of displacement thickness δ1(x)=-----

-------------- ∫u(1-(u/u1)) dy   ∫1-(1/u1)) dy  ∫1-(u/u1) dy

 ∫(u/u1)(1-

(u/u1)) dy   ∫1-(u/u1) dy

When separation ocurrs in which 

circumstances the boundary layer 

approximation is suspect in such case is 

_________ 

displacement 

thickness 

momentum 

thickness

kinetic energy 

thicknesss

friction 

thifckness momentum thickness

A momentum thickness δ2(x) is defined for 

incompressible flow as   --------- ∫u(1-(u/u1)) dy  ∫1-(1/u1)) dy  ∫1-(u/u1) dy 

 ∫(u/u1)(1-

(u/u1)) dy   ∫(u/u1)(1-(u/u1)) dy  

A physically significant measure of boundary 

layer thickness is --------

displacement 

thickness

momentum 

thickness

kinetic energy 

thicknesss

friction 

thifckness

kinetic energy 

thicknesss

A measuresthe flux of kinetic energy defect 

within the boundary layer as compared with---

------ viscous flow steady flow  inviscid flow

incompressible 

flow incompressible flow

The kinetic energy thickness is defined as 

δ3(x)=------ ∫u(1-(u/u1)) dy ∫1-(1/u1)) dy   ∫1-(u/u1) dy 

 ∫(u/u1)(1-

(u2/u12)) dy   ∫(u/u1)(1-(u2/u12)) dy  

The wall shearing stress is defined as ------- μ δ τw ρw τw

The skin friction  τw=------ (∂u/∂y)w μ(∂u/∂y)w  δ(∂u/∂y)w   (∂2u/∂y2)w         μ(∂u/∂y)w  

The onset of reversed flow near the wall takes 

place at the position of zero skin frction.such a 

position is called a position of ------

boundary layer 

friction 

boundary layer 

characteristics 

boundary 

layer 

separation     

 boundary layer 

flow

boundary layer 

separation     

Kinematic viscosity is denoted by ----- μ=γ/ρ  γ= μ/ ρ    ρ= μγ    γ= ρ μ       γ= μ/ ρ   

Enthalpy is defined as ----  I=E+P   I=E-(P/ ρ) I=E+(P/ ρ)   I=E+( ρ / P)    I=E+(P/ ρ)  

Thermal conductivity is denoted by --------- p I  ρ K K

Reynold’s number is defined as -------  R=U/ γ R=L/ γ   R=UL/ γ     R=U γ / L  R=UL/ γ    

Viscosity is a function of temperature and ------

----- pressure mass density viscosity pressure

Kinematic viscosity is a function of -------and 

pressure pressure temperature density force temperature 

The rate of increases of the boundary layer 

thickness depends on ------ ∂p/∂x   ∂q/∂x  ∂p/∂y  ∂q/∂y   ∂p/∂x  

The rate of -------- of the boundary layer 

thickness depends on boundary gradient change not change increase decrease increase

The layer in which -----is  called boundary layer  ∂u/∂y  ∂v/∂y ∂u/∂x  ∂v/∂x      ∂u/∂y 

Kinetic energy thickness is also known as 

kinetic energy --------- linear equation laplace equation

integral 

equation 

definite 

equation integral equation 

------- is called the pressure coefficient  cv Pc  VC cp cp
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-------- have zero velocity at the walls real fluids ideal fluid  viscous fluid inviscid fluid real fluids

 Real fluids have-------- velocity at the walls negative positive  zero  nonzero  zero 

 Real fluids have zero  velocity -------- near to the wall 

opposite to the 

wall at the walls   befor the wall at the walls   

If the pressure  has ----then the boundary 

layer thickness increases rapidly decreases   change    nochange       increases increases 

.If the pressure increases then the---- 

increases rapidly boundary    

boundary layer 

thickness 

boundary 

layer

boundary 

surface

boundary layer 

thickness 

If the ---------------increases then the boundary 

layer thickness increases rapidly pressure   density mass      force pressure   

If the pressure increases then the boundary 

layer thickness ------------- rapidly decreases 

 gradually 

increases increases 

 gradually 

decreases increases 

.-------- has no slip conditions real fluids ideal fluid viscous fluid inviscid fluid real fluids 

 Real fluids has -------- no slip conditions slip conditions

maximum slip 

conditions

minimum slip 

conditions no slip conditions 

In the equation of boundary layer the velocity 

component is-----to the wall parralel perpendicular normal   tangent normal   

In the equation of ----- the velocity component 

is normal to the wall boundary   

boundary layer 

thickness

boundary 

layer

boundary 

surface boundary layer

In the equation of boundary layer the velocity 

component is normal to the wall is ----- normal  parallel small perpendicular small

The velocity component is normal to the wall 

is small if ----- is small δ/2  δ/3  δ/4 δ/5 δ/2

The velocity component is normal to the wall 

is small if δ/2 is ----- normal small  parallel perpendicular small

 In the equation of boundary layer-----------------

--- normal to the wall is small

temperature 

gradient  temperature pressure    

pressure 

gradient pressure gradient

 In the equation of boundary layer pressure 

gradient -------------------- to the wall is small parallel normal tangent  perpendicular normal

The relationship between the pressure and 

main stream velocity can be obtained by --------

beltramis 

equation linear equation

indefinite 

equation

 Bernoulli’s 

equation  Bernoulli’s equation 
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