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Course Objective :This course has been intended to identify and use key concepts and
fundamental principles of fluid dynamics, together with the assumptions made in their development
pertaining to fluid behavior, both in static and flowing conditions.

Course Outcome : To understand the fluids, their characteristics, Bernoulli’s theorem in steady
motion, Complex Potential Navier-Stokes equations and to be exposed with Laminar Boundary
Layer in incompressible flow.

UNIT I

Introductory Notions — Velocity — Stream Lines and Path Lines — Stream Tubes and Filaments —
Fluid Body — Density — Pressure. Differentiation following the Fluid — Equation of continuity —
Boundary conditions — Kinematical and physical — Rate of change of linear momentum — Equation
of motion of an in viscid fluid.

UNIT Il
Euler’s momentum Theorem — Conservative forces — Bernoulli’s theorem in steady motion — energy
equation for in viscid fluid — circulation — Kelvin’s theorem — vortex motion — Helmholtz equation.

UNIT 111

Two Dimensional Motion — Two Dimensional Functions — Complex Potential — basic singularities —
source — sink — Vortex — doublet — Circle theorem. Flow past a circular cylinder with circulation —
Blasius Theorem — Lift force. (Magnus effect)

UNIT IV

Viscous flows — Navier-Stokes equations — Vorticity and circulation in a viscous fluid — Steady flow
through an arbitrary cylinder under pressure — Staedy Couettc flow between cylinders in relative
motion — Steady flow between parallel planes.

UNIT V

Laminar Boundary Layer in incompressible flow: Boundary Layer concept — Boundary Layer
equations — Displacement thickness, Momentum thickness — Kinetic energy thickness —integral
equation of boundary layer — flow parallel to semi infinite flat plate — Blasius equation and its
solution in series.
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SUGGESTED READINGS

TEXT BOOKS

1. Milne Thomson .L.M., (1968). Theoretical Hydrodynamics, Fifth edition, Dover Publications
INC, NewYork.(for unit I,11)

2. Curle.N., and Davies H.J., (1971), Modern Fluid Dynamics Volume-I, D Van Nostrand
Company Ltd., London. (for unit 111,1V,V)

REFERENCES

1. Yuan, S.W, (1976). Foundations of Fluid Mechanics, Prentice- Hall, India.

2. Shanthi swarup, (2003), Fluid dynamics, Krishna Prakasan media Pvt Ltd, Meerut.

3. C.Pozrikidis(2016),Fluid Dynamics Theory,computation and Numerical simulation,Springer
Pvt Itd,US
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Subject: Fluid Dynamics

Pollachi Main Road, Eachanari (Po),

Coimbatore —641 021

Department of Mathematics

LESSON PLAN

Subject Code: 16MMP302

Class: 11 M.Sc Mathematics Semester-111
Unit-1
S.No Lecture Topics to be Covered Support Materials
Hour
1 1 Introduction to fluid dynamics T1.Ch 1: pg:1-3
2 1 Basic concepts of fluid T1.Ch 1: pg:3-8
dynamics,viscosity,compressible and
non-compressible fluids
3 1 Stream surface,tube filament,streak R2.Ch 1: pg:1.5-1.9
lines,path lines
4 1 Problems on path lines R2.Ch 1:pg:1.5-1.9
5 1 Geometrical significance of velocity, | T1.Ch 3: pg:8-10
Problems on rotational and
irrotational flow
6 1 Theorem on Equation of continuity T1.Ch 3: pg:68-73
7 1 Conservation of mass T1.Ch 3:pg:74-75
8 1 Boundary conditions T1.Ch 3: pg:74-75
9 1 Continuation of Boundary conditions | T1.Ch 3:pg:75
10 1 Theorems on rate of change of linear | T1.Ch 3: pg:75-79
momentum
11 1 Equation of motion of an inviscid T1.Ch 3:pg:75-79
fluid
12 1 Recapitulation and discussion of
possible questions
Total 12
Hours
TEXT BOOKS

1. Milne Thomson .L.M., (1968). Theoretical Hydrodynamics, Fifth edition, Dover Publications

INC, NewYork.(for unit I,11)
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REFERENCES

Lesson Plan /2016-2018 Batch

1. Yuan, S.W, (1976). Foundations of Fluid Mechanics, Prentice- Hall, India.

UNIT-II
S.No | Lecture Topics to be Covered Support Materials
Hour

1 1 Euler’s equation of motion in terms of vorticity | T1.Ch 3: pg:79-80
2 1 Euler’s momentum theorem T1.Ch 3: pg:80-81
3 1 Equations of Motion T1.Ch 4:pg:106-110
4 1 Theorem on equations of motion in terms of | T1.Ch 4: pg:106-110

vorticity
5 1 Problems on Barotropic flow T1.Ch 4:pg:106-110
6 1 Bernoulli’s theorem in steady motion R1.Ch 4: pg:181-182
7 1 Continuation of bernoulli’s theorem R1.Ch 4:pg:181-182
8 1 Theorem on Energy equation for inviscid fluid R1.Ch 4: pg:110-113
9 1 Circulation R1.Ch 4: pg:182-187
10 1 kelvins theorem R1.Ch 4: pg:182-187
11 1 Theorem on Helmholtz equation of vorticity | R1.Ch 4: pg:72-76
12 1 Recapitulation and discussion of possible

questions.

Total Hours 12
TEXT BOOKS

1. Milne Thomson .L.M., (1968). Theoretical Hydrodynamics, Fifth edition, Dover Publications
INC, NewYork.(for unit I,11)

REFERENCES

1. Yuan, S.W, (1976). Foundations of Fluid Mechanics, Prentice- Hall, India.
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UNIT-H1
S.No | Lecture Topics to be Covered Support Materials
Hour
1 1 Two dimentional motion T2.Ch 3: pg:42-43
2 1 Functions-problems T2.Ch 3: pg:42-43
3 1 Theorem on stream line T2.Ch 3: pg:43-44
4 1 Potential lines T2.Ch 3: pg:44-45
5 1 Problems on flow patterns T2.Ch 3: pg:46-47
6 1 Basic singularities T2.Ch 3: pg:47-55
7 1 Theorem on source and sink in 2-D flow T2.Ch 3: pg:50-55
8 1 Theorem on complex potential for doublet and | T2.Ch 3: pg:56-60
vortex
9 1 Milne Thomson’s circle theorem T2.Ch 3: pg:69-70
10 1 Blasius theorem and lift force T2.Ch 3: pg:70-71
11 1 lift force T2.Ch 3:pg:70-71
12 1 Recapitulation and discussion of possible
guestions.
Total Hours 12
TEXT BOOKS

2. Curle.N., and Davies H.J., (1971), Modern Fluid Dynamics Volume-1, D Van Nostrand
Company Ltd., London
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UNIT-1V
S.No | Lecture Topics to be Covered Support Materials
Hour
1 1 Dynamics of real fluid:Definition of plane T2.Ch 5: pg:123-125
couette flow
2 1 Theorem on Reynold’s number T2.Ch 5: pg:123-125
3 1 Theorem on Navier stokes equations T2.Ch 5: pg:140-144
4 1 Theorem on Energy equation T2.Ch 5: pg:145-150
1 Diffusion of vorticity T2.Ch 5: pg:145-150
6 1 Steady flow through an arbitrary cylinder T2.Ch 5: pg:150-152
under pressure
7 1 Problems on steady flow T2.Ch 5: pg:150-152
8 1 Steady coquette flow between cylinders in | T2:Ch 5: pg:152-157
relative motion
9 1 Problems on steady coquette flow T2:Ch 5: pg:152-157
10 1 Steady flow between parallel planes- T2.Ch 5: pg:157-158
problems
11 1 Theorem on poiseuille flow T2:Ch 5: pg:159-160
12 1 Recapitulation and discussion of possible
guestions.
Total Hours 12
TEXT BOOKS

2. Curle.N., and Davies H.J., (1971), Modern Fluid Dynamics Volume-1, D Van Nostrand
Company Ltd., London
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UNIT-V
S.No Lecture Topics to be Covered Support Materials
Hour

1 1 Laminar boundary layer in incompressible | T2.Ch 6: pg:175-183
fluid: Definition and Problems on
equation of boundary layer

2 1 Theorem on displacement T2.Ch 6: pg:184-187

3 1 Theorem on momentum thickness T2.Ch 6: pg:184-187

4 1 Boundary layer separation: Theoremon | T2.Ch 6: pg:179-
integral equation of boundary layer and | 180, 187-190

5 1 Problems on momentum integral T2.Ch 6: pg:179-
equation 180, 187-190

6 1 Theorems on boundary layer along asemi | T2.Ch 6: pg:192-197
infinite flat plate ,

7 1 Blasius equation and its solution in T2.Ch 6: pg:192-197
series

8 1 Problems on flow near to the stagnation | T2.Ch 6: pg:197-198
point of a cylinder

9 1 Recapitulation and discussion of
possible questions

10 1 Discussion of previous ESE question
papers.

11 1 Discussion of previous ESE question
papers.

12 1 Discussion of previous ESE question
papers.

Total Hours 12
TEXT BOOKS

2. Curle.N., and Davies H.J., (1971), Modern Fluid Dynamics Volume-1, D Van Nostrand

Company Ltd., London
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UNIT I
Introductory Notions — Velocity — Stream Lines and Path Lines — Stream Tubes and Filaments —
Fluid Body — Density — Pressure. Differentiation following the Fluid — Equation of continuity —
Boundary conditions — Kinematical and physical — Rate of change of linear momentum — Equation
of motion of an in viscid fluid.

TEXT BOOKS

1. Milne Thomson .L.M., (1968). Theoretical Hydrodynamics, Fifth edition, Dover Publications
INC, NewYork.(for unit LII)

2. Curle.N., and Davies H.J., (1971), Modern Fluid Dynamics Volume-1, D Van Nostrand
Company Ltd., London. (for unit ITLIV,V)

REFERENCES

1. Yuan, S.W, (1976). Foundations of Fluid Mechanics, Prentice- Hall, India.

2. Shanthi swarup, (2003), Fluid dynamics, Krishna Prakasan media Pvt Ltd, Meerut.
3..C.Pozrikidis(2016),Fluid Dynamics Theory,computation and Numerical simulation,Springer
Pvt 1td,US
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Unit-1

Introductory Notions

UNIT-1

Basic Concepts and Definitions
(i) Let q =iu+3v+f<w,then

Iq|= Vvu? +v* +w? =q
L
1q]

. . 2 2
where 1, m, n, are components of a unit vectori.e. 1"+ m”“+n" =1

D.C’s are given by 1 =cos a = , m=cos P} =

(ii) a.b =abcosO, axb =absin0On

(i) Vo= ;@ + 3@ + 12@, where ¢ is a scalar and
ox "oy Z

V5i2+3£+f<—isavector (operator)
ox "oy oz
iv) divg=v.g=+Y 0N Gdowvw
ox 0Oy o0z

If V-q =0,then q is said to be solenoidal vector.

(v) dr= idx+}dy+12dz,d¢=a—q’dx+a—‘deJra—"’dz
0x oy

oz
and
vp=i120, 300, (%
ox "oy oz
Therefore,
dd = (Vo). dr

(vi) Curlg=Vxq=

£ Qo=

P
Kk
ox oy
u v

f(aw avJ a(ﬁu awj A(av auj
=il ———|+] ——— |+k| ———
oy oz oz oOx ox Oy

(vii)  (a) Gradient of a scalar is a vector.
(b) Divergence of a scalar and curl of a scalar are meaningless.

(c) Divergence of a vector is a scalar and curl of a vector is a vector.

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
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0 0 0
g 20,0008

(viii)

where V7 is Laplacian operator.
(ix) Curlgrad $ =0, divcurl q=0
(x)  Curlcurl q=graddiv q —qu

i.e. V*q = graddivq —curlcurlqg
(xi)  Gauss’s divergence theorem

(a) [q-dS = [div q dv
S \%

(b) [AxqdS= [curl q dv
S v

(xii) Green’s theorem
@) [Vo-VydV =[¢Vy-dS - [¢V ydV
\' S \'

=jw¢-d§—jwz¢-dv

®) [47y -V I(cb——wiﬂds

(xiii) Stoke s theorem [q-dr = [curl §-dS = [curl g-AdS
C S S

(xiv) Orthogonal curvilinear co-ordinates :
Let there be three orthogonal families of surfaces
fi(x, ¥, 2) = &, Fa(x, ¥, 2) = B, f3(%, ¥, 2) = ¥ (1)
where X, y, z are Cartesian co-ordinates of a point P(x, y, z) in space. The
surfaces
o = constant, B constant, y = constant (2)

form an orthogonal system in which every pair of surfaces is an orthogonal
system. The values a, B, y are called orthogonal curvilinear co-ordinates.
From three equations in (1), we can get

X =x(a, B’ Y)’ y= Y((X, B’ Y)’ z=1(a, B’ y)

The surfaces (2) are called co-ordinate surfaces.
Let rbe the position vector of the point P(x, y, z)

i.e. fzxi+y3+zf<=f(oc, B,v)

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
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. Oor .
A tangent vector to the a-curve (B = constant, Y = constant) at P is P A unit
o

tangent vector is

. O0r/oa
€ =—
| 0T /0|
o
2 2 2
where h; = ar (ﬁxj +(ﬁj +[%j
o oo oo ool

Similarly, €,,€; are unit vectors along B-curve and y-curve respectively such

that
ﬁ = hzéz’@ = h3é3
op oy
Further, dr= 8r —dB —dy
6(1 P oy
Therefore,

(ds)* = drdf = hjda® +h3dp* +h3dy?

where h; da, hy d, hs d y are arc lengths along a, B and y curves.
In orthogonal curvilinear co-ordinates, we have the following results.

. (ra 1o 1a
® grad‘b_(h 20" h, 3, ay]

(ii) If 9=1(q;.9,,93), then

1
h;h,h,

(i) Ifcurl =& =(§,.&,.&;), then

div q= {8 (h,hsq,) + B(h h1Q2)+a_Y(h hz‘l3)}

1 0 0
& = [8[3 3%)‘5(th2)}

1 0 0
&= [a (h1Q1)—£(h3Q3)}

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
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Introductory Notions

& d |:i(h2CI2)—g(h1(h):|

" hyh, | da op
(v) V2= — | O [hahs 003, 0 fhshy 0p) 0 fhih, 56
hih,hy| 6o\ hy éa) OBl h, B) oy hy oy)|

The Cartesian co-ordinate system (X, y, z) is the simplest of all orthogonal co-
ordinate systems. In many problems involving vector field theory, it is
convenient to work with other two most common orthogonal co-ordinates i.e.
cylindrical polar co-ordinates and spherical polar co-ordinates denoted
respectively by (r, 0, z) and (r, 0, y). For cylindrical co-ordinates, h; = 1, h, =
r, hs = 1. For spherical co-ordinates, h; = 1, h, =r, h3 = sin 0.

1. Fluid Dynamics

Fluid dynamics is the science treating the study of fluids in motion. By the
term fluid, we mean a substance that flows i.e. which is not a solid. Fluids may
be divided into two categories

(i) liquids which are incompressible i.e. their volumes do not change when the
pressure changes

(ii) gases which are compressible i.e. they undergo change in volume whenever
the pressure changes. The term hydrodynamics is often applied to the science
of moving incompressible fluids. However, there is no sharp distinctions
between the three states of matter i.e. solid, liquid and gases.

In microscopic view of fluids, matter is assumed to be composed of molecules
which are in random relative motion under the action of intermolecular forces.
In solids, spacing of the molecules is small, spacing persists even under strong
molecular forces. In liquids, the spacing between molecules is greater even
under weaker molecular forces and in gases, the gaps are even larger.

If we imagine that our microscope, with which we have observed the molecular
structure of matter, has a variable focal length, we could change our
observation of matter from the fine detailed microscopic viewpoint to a longer
range macroscopic viewpoint in which we would not see the gaps between the
molecules and the matter would appear to be continuously distributed. We
shall take this macroscopic view of fluids in which physical quantities
associated with the fluids within a given volume V are assumed to be
distributed continuously and, within a sufficiently small volume &V, uniformly.
This observation is known as Continuum hypothesis. It implies that at each
point of a fluid, we can prescribe a unique velocity, a unique pressure, a unique
density etc. Moreover, for a continuous or ideal fluid we can define a fluid
particle as the fluid contained within an infinitesimal volume whose size is so
small that it may be regarded as a geometrical point.

1.1. Stresses : Two types of forces act on a fluid element. One of them is

body force and other is surface force. The body force is proportional to the

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE

2016-Batch

Page 5 of 38



Unit-1

Introductory Notions

mass of the body on which it acts while the surface force is proportional to the

surface area and acts on the boundary of the body.

Suppose Fis the surface force acting on an elementary surface area dS at a

point P of the surface S. surface force

shearing stress normal stress

Let F; and F, be resolved parts of F in the directions of tangent and normal at
P. The normal force per unit area is called the normal stress and is also called
pressure. The tangential force per unit area is called the shearing stress.

1.2. Viscosity : It is the internal friction between the particles of the fluid
which offers resistance to the deformation of the fluid. The friction is in the
form of tangential and shearing forces (stresses). Fluids with such property are
called viscous or real fluids and those not having this property are called
inviscid or ideal or perfect fluids.

Actually, all fluids are real, but in many cases, when the rates of variation of
fluid velocity with distances are small, viscous effects may be ignored.

From the definition of body force and shearing stress, it is clear that body force
per unit area at every point of surface of an ideal fluid acts along the normal to
the surface at that point. Thus ideal fluid does not exert any shearing stress.

Thus, we conclude that viscosity of a fluid is that property by virtue of which it
is able to offer resistance to shearing stress. It is a kind of molecular frictional
resistance.

1.3. Velocity of Fluid at a Point : Suppose that at time t, a fluid particle is at

the point P having position vector (i.e.OP =)
Q(T +Sr1,t+St)
P

AN

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
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Introductory Notions

and at time t + Ot the same particle has reached at point Q having position
vector T+0r. The particle velocity qat point P is

q= Lt (r+8r)—r: Lt ﬁ:g
St—0 ot Sst—»0 ot dt

where the limit is assumed to exist uniquely.  Clearly q is in general
dependent on both 1 and t, so we may write
q = q(f’ t) = q(X’ y’ Z’ t)7

F=xi+ yj +zk (P has co-ordinates (x, y, z))

Suppose,
q=u i+ Vj +wk
and since
g=d_dxp, dys, deg
dt dt dt° dt
therefore

dx dy dz
u=—, Vv=—", w=—.
dt dt dt

1.4. Remarks. (i) A point where q = 0, is called a stagnation point.

(ii)) When the flow is such that the velocity at each point is independent of
time i.e. the flow pattern is same at each instant, then the motion is termed as
steady motion, otherwise it is unsteady.

1.5. Flux across any surface : The flux i.e. the rate of flow across any surface

S is defined by the integral
[p(@-f)ds
S

where p is the density, qis the velocity of the fluid and nis the outward unit
normal at any point of S.
Also, we define

Flux = density x normal velocity x area of the surface.

2. Eulerian and Lagrangian Methods (Local and Total range of change)

We have two methods for studying the general problem of fluid dynamics.

2.1. Eulerian Method : In this method, we fix a point in the space occupied by
the fluid and observation is made of whatever changes of velocity, density
pressure etc take place at that point. i.e. point is fixed and fluid particles are
allowed to pass through it. If P(x, y, z) is the point under reference, then x, y, z
do not depend upon the time parameter t, therefore X,y,zdo not exist (dot

denotes derivative w.r.t. time t).

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
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Introductory Notions

Let f(x, y, z, t) be a scalar function associated with some property of the fluid
(e.g. its density) i.e. f(x, y, z, t) = f(T,t), where T = Xi+y j+zKk is the position
vector of the point P, then

of ‘ f(r,t+ot)—f(r,t)

1
ot §t—0 ot )

Here, % is called local time rate of change.

2.2. Lagrangian Method :- In this case, observations are made at each point
and each instant, i.e., any particle of the fluid is selected and observation is
made of its particular motion and it is pursued throughout its course.

Let a fluid particle be initially at the point (a, b, ¢). After lapse of time t, let the
same fluid particle be at (x, y, z). It is obvious that X, y, z are functions of t.
But since the particles which have initially different positions occupy different
positions after the motion is allowed. Hence the co-ordinates of the final
position i.e. (x, y, z) depend on (a, b c) also. Thus

X = fl(a, b, C, t)’ y = fz(a’ b, C, t)’ Z = f3(a5 b’ C’ t)'

For this case, if {(x, y, z, t) be scalar function associated with the fluid, then

df _ Lt f(r+0or,t+0ot)—f(r,t)
dt &0 ot

(2)
where X,V,Z exist.

df . o . .
Here d—lS called an individual time rate or total rate or particle rate of change.
t

Now, we establish the relation between these two time rates (1) & (2).
We have
f=1(x,y,z1)
Therefore,
df ofdx ofdy ofdz of
=t — 2 — 4+

dt oxdt oydt ozdt ot

o~ of~ of » dx » d}”. dz » of
=| —i+—j+—k||—1+—)j+—k [+—
ox oy oz dt dt” dt ot
_Vf.q_|__
where
_ dx: dys dz:
=—i+—j+—k=(,v,
g e e
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Thus
df of
—=—+q-Vf 3
a ad (3)

2.3. Remarks. (i) The relation

d—fzﬁﬂ‘l.Vf
dt ot

= £=(g+q.VJf
dt ot

= EEQ—F(_].V
dt ot

The operator %(also denoted by%) is called Lagrangian operator or material

derivative i.e. time rate of change in Lagrangian view. Sometimes, it is called
‘differentiation following the fluid’.

(i) Similarly, for a vector function F(x, y,Z,t)associated with some
property of the fluid (e.g. its velocity, acceleration), we can show that

aF _oF
dt ot
Hence the relation (3) holds for both scalar and vector functions associated

with the moving fluid.
(iii)  The Eulerian method is sometimes also called the flux method.

+q-VF

(iv)  Both Lagrangian and Eulerian methods were used by Euler for studying
fluid dynamics.

) Lagrangian method resembles very much with the dynamics of a
particle

(vi)  The two methods are essentially equivalent, but depending upon the
problem, one has to judge whether Lagrangian method is more useful
or the Eulerian.

3. Streamlines, Pathlines and Streaklines

3.1. Streamlines : It is a curve drawn in the fluid such that the direction of the
tangent to it at any point coincides with the direction of the fluid velocity
vector q at that point. At any time t, let q= (u, v, w) be the velocity at each
point P(x, y, z) of the fluid. The direction ratios of the tangent to the curve at
P(x, y, z) are dr = (dx, dy, dz) since the tangent and the velocity at P have the
same direction, therefore qxdr = 0

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE
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Introductory Notions

i.e. (ui+v3+wﬁ)x(dxi+dy3+dzﬁ)=6
i.e. (vdy — w dy)i+ (wdx —udz)j+ (udy— vdx)k = 0
i.e. vdz — wdy = 0 = wdx — udz = udy — vdx
dx dy dz
- — == —
u v ow

These are the differential equations for the streamlines.
1.e. their solution gives the streamlines.

Streamline

In the figure, if q;,q,,q3,..-. denote the velocities at neighbouring points Py,

P», Ps,...., then the small straight line segments P;P,, P,P3, P5P,... collectively
give the approximate form of the streamlines.

3.2. Pathlines: When the fluid motion is steady so that the pattern of flow does
not vary with time, the paths of the fluid particles coincide with the
streamlines. But in case of unsteady motion, the flow pattern varies with time
and the paths of the particles do not coincide with the streamlines. However,
the streamline through any point P does touch the pathline through P. Pathlines
are the curves described by the fluid particles during their motion i.e. these are
the paths of the particles.

The differential equations for pathlines are

dr _. dx dy dz
—=qile—=u—=V,— =W
dt dt dt dt

where now (X, y, z) are the Cartesian co-ordinates of the fluid particle and not a
fixed point of space. The equation of the pathline which passes through the
point (Xo, Yo, Zo), which is fixed in space, at time t = 0 say, is the solution of (1)
which satisfy the initial condition that x = Xo, y = yo, z = Zo when t = 0. The
solution gives a set of equations of the form

)

X = X(Xo, Yo, Zo, t)
y = ¥(Xo, Yo, Zo, t) (2)

z = 7(X0, Y0, Zo, t)

which, as t takes all values greater than zero, will trace out the required
pathline.

3.3. Remarks : (i) Streamlines give the motion of each particle at a given
instant whereas pathlines give the motion of a given particle at each instant.
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We can make these observations by using a suspension of aluminium dust in
the liquid.

(ii) If we draw the streamlines through every point of a closed curve in the
fluid, we obtain a stream tube. A stream tube of very small cross-
section is called a stream filament.

(iii) The components of velocity at right angle to the streamline is always
zero. This shows that there is no flow across the streamlines. Thus, if
we replace the boundary of stream tube by a rigid boundary, the flow is
not affected. The principle of conservation of mass then gives that the
flux across any cross-section of the stream tube should be the same.

3.4. Streaklines : In addition to streamlines and pathlines, it is useful for
observational purpose to define a streakline. This is the curve of all fluid
particles which at some time have coincided with a particular fixed point of
space. Thus, a streakline is the locus of different particles passing through a
fixed point. The streakline is observed when a neutrally buoyant marker fluid
is continuously injected into the flow at a fixed point of space from time
T = —oo. The marker fluid may be smoke if the main flow involves a gas such
as air, or a dye such as potassium permanganate (KMnOQO,) if the main flow
involves a liquid such as water.

If the co-ordinates of a particle of marker fluid are (X, y, z) at time t and the
particle coincided with the injection point (Xo, Yo, Zo) at some time t, where T <
t, then the time-history (streakline) of this particle is obtained by solving the
equations for a pathline, subject to the initial condition that x = Xq, y = Yo,
z=12zpat t=71. As 7t takes all possible values in the angle —co < 1 < t, the
locations of all fluid particles on the streakline through (xo, yo, o) are obtained.
Thus, the equation of the streakline at time t is given by

X = X(XO’ YO, Z, t’ T)
y = y(Xo0, Yo, Zo, t, T) [ (—0 < T<H) 2)
z = 7(Xo, Yo, Zo, t, T)

3.5. Remark: (i) For a steady flow, streaklines also coincide with streamlines
and pathlines.
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(ii) Streamlines, pathlines and streaklines are termed as flowlines for a
fluid.

4. Velocity Potential

Suppose that q:ui+vj+wfiis the velocity at any time t at each point

P(x, y, z) of the fluid. Also suppose that the expression u dx + vdy + wdz is an
exact differential, say — d¢.

Then, —d¢ = udx + vdy + wdz

oy oz

is some scalar function, uniform throughout the entire field of flow.

ie. —(%dx+@dy+@dz+%dtJ: u dx + vdy + wdz where ¢ = ¢(x, y, z, t)

Therefore,
u= _ad),V:_ad),W:_ad),@:o
ox oy 0z ot
But
2—(1):0 = ¢=90(x,y,2)
Hence
ox oy oz

where ¢ is termed as the velocity potential and the flow of such type is called
flow of potential kind.

In the above definition, the negative sign in q=—-V¢is a convention and it
ensures that flow takes place from higher to lower potentials. The level
surfaces ¢(x, y, z, t) = constant, are called equipotentials or equipotential
surfaces.

4.1. Theorem : At all points of the field of flow the equipotentials (i.e.
equipotential surfaces) are cut orthogonally by the streamlines.

Proof. If the fluid velocity at any time t be q= (u, v, w), then the equations of
streamlines are

dx dy dz
e (1)

u v W

The surfaces given by
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q-dr =01ieudx+ vdy + wdz =0 2)

are such that the velocity is at right angles to the tangent planes. The curves
(1) and the surfaces (2) cut each other orthogonally. Suppose that the
expression on the left hand side of (2) is an exact differential, say, —d¢, then

dd = udx + vdy + wdz 3)
where ¢ is velocity potential.

The necessary and sufficient condition for the relations.

S SO

1) oy 0z
i.e. q=— V¢ toholdis
curl q =curl (-V¢) =0 4)
The solution of (2) i.e. dp =0 is
d(x, y, z) = const )

The surfaces (5) are called equipotentials. Thus the equipotentials are cut
orthogonally by the stream lines.

4.2. Note : When curl q= 0, the flow is said to be irrotational or of potential
kind, otherwise it is rotational. For irrotational flow, q =—-V¢.

4.3. Example. The velocity potential of a two dimensional flow is ¢ = ¢ xy.
Find the stream lines

Solution. The stream lines are given by

dx_dy_dz

u v o w
where q=(u, v, w)
For an irrotational motion (i.e. motion of potential kind)
we have
curl @ =0 =curl (-V¢)

i.e. q =— V¢, where ¢ is the velocity potential.
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From here,
oo 0 3
s Vo =" <= = |=— ) 90
(u, v, w) (ax oy sz (cy, cx, 0)
i.e u=-—cy,v=—cx,w=0

Therefore, streamlines are

dx _dy _dz

-cy —-cx O
1.e. xdx —ydy=0,dz=0
1.e. xz—yzzaz,z:K

which are rectangular hyperbolae

4.4. Example. If the speed of fluid is everywhere the same, the streamlines are
straight.

Solution. The streamlines are given by the differential equations.

dx_dy_dz
u \'% \%Y

where u, v, w are constants. The solutions are
VX — uy = constant, vz — wy = constant
The intersection of these planes are necessarily straight lines. Hence the result.

4.5. Example. Find the stream lines and path lines of the particles for the two
dimensional velocity field.

X
u=——,v=y,w=0
1+t Y

Solution. For streamlines, the differential equations are

dx _dy_dz
u vV W
Therefore,
g &4y _ &2
x y O
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Here t = constant = ty (at given instant), therefore the solutions are
(1+tp) logx=logy+ci,z=c

or log x1+t0:10gy+loga,z:cz.

1+t0
or X =ay, zZ=_C.

which are the required stream lines.
For path lines, we have

dx dy dz
—=Uu,—=V,— =W
dt dt dt

Therefore,

dx x dy dZ_O

dat 1+tde

- dx_dt dy 4 ds-0
x 1+t y

= log. x =log(1+t) + log a, logy=t+logb,z=c

= x=a(1+t),y=bet,z=c

X—a

= y = be @ ;z=c
which are the required path lines.

4.6. Note. In case of path lines, t must be eliminated since these give the
motion at each instant (i.e. independent of t).

4.7. Example. Obtain the equations of the streamlines, path lines and
streaklines which pass through (/, /, 0) at t = O for the two dimensional flow

u:i 1+i ,v=l, w=0.
ty ty ty

where / and tj are constants having respectively the dimensions of length and
time.

Solution. We define the dimensionless co-ordinates X, Y, Z and time T by
writing
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x=2y=Yz-%2 -1
T T,

such that dX = %dx, dY = %dy, dZ = %dz, dT = tidt
0

and u=£l(l+T),V:Xl,w=0

to to
Streamlines are given by

dx _dy _dz

u \' w

toldX  tldY 1dZ
XIA+T) Y[ 0

dX _dY _dZ
X1+T) Y O

Integrating these, we get
Z = constant = C; (say)
and log X = (1+T) log Y + log C,, where C, is constant

= X=C, YD

2016-Batch

(D

2)

As variables X, Y, Z and T are independent and C; & C, are constants,
equations (1) & (2) give the complete family of stream lines at all times
t=1toT. Inparticular, X =1=Y,Z=0and T=0= C, =0, C, =1 and we get

stream lineas Y =X i.e.y=xand z=0.
Pathlines are given by

X _xa+m Yoy Z_g
dT dT ~ 'dT

Now, X, Y, Z are the dimensionless co-ordinates of a fluid particle and are

functions of T.

2

Therefore, d% =(1+TdT =logX= (T + T?J +logK,
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- X =K, ™'/ 3)
d—Y:Y :>d—Y:dT =logY =T+logkK,
dT Y
= Y=K,e". “4)
dZ =0 = Z = constant = K3 5)

These are the parametric equations of path lines. The path line through P(1, 1,
0)ie. X=1=Y, Z=0,T=01is obtained when K; =K, =1,K5=0

T2
T+— T
=>X=e 2,Y=e,Z=0

Elimination of T gives.

The pathline which passes through X =Y =1,Z =0 when T = 1 is given by
X =exp. T+1T2 —1—112 ,
2 2

Y =exp(T-1),Z=0

These are the parametric equations of the streaklines true for all values of T.
At T =0, the equations give

2
X = exp.(—r —%J, Y =exp(-1), Z=0.
Eliminating t, we have.

—-t=logYie t=-logY

Therefore,

X =exp (~t(1+1/2))=[e~ I“;j‘ = (Y)"?) = Y(l 2 j,z =0

4.8. Article. To obtain the differential equations for streamlines in cylindrical
and spherical co-ordinates
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We know that the streamlines are obtained from the differential equations

gxdi=0 (1)

where q is the velocity vector and T is the position vector of a liquid particle.

If the motion is irrotational, then
q=-Vé

Therefore, the differential equations (1) become

V- xdr= 0 (2)
(i) In cylindrical co-ordinates (r, 0, z), we have

dr =(dr, rd6, dz)

and

Thus, the different equations (2) become

(@lﬁﬁjx (dr, rd6, dz) = 0
or 10 oz

dr rdO dz
= = = )
op/or  1/r-0p/00 0O/oz

3)

(i1) In spherical co-ordinates (r, 0, ), we have

dr=(dr, rd6, r sin® dy)

nd V(I):gradq):(%,%%g,rsilne%J

The differential equations (2) become.

@,1@, 1 o) x (dr, rd®, r sin O dy) = 0
or 100 rsin6 oy

dr rdo rsin Ody
= o 1 T
dor Tapae 1 apray
rsin0

r

4)
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Equations (3) and (4) are the required differential equations.

4.9. Example. Show that if the velocity potential of an irrotational fluid motion

is ¢ = %\VCOS@, where (1, 0, ) are the spherical polar co-ordinates of any
r

point, the lines of flow lie on the surface r =k sinZG, k being a constant.
Solution. The differential equations for lines of flow (streamlines) are

dr - rd®  rsinOdy
o Lanae L apoy
rsin©

T

From first two members, we have

dr _ rd0
2A B
—\y— cosB 1(—\|/Azsin9]
r r r
dr _ 2‘rd9 N g _ 20956 40
cosO sinO r sin O

= logr=2logsin + logk = r=ksin’0

Hence the result.

4.10. Note. In the above example, the velocity potential, in Cartesian co-
ordinates, can be written as

o= A+ y2 +2z9)? 7z tan™ (zj ,
X
where

X =1 81n0 cos y, y =r sin0 siny, z =r cosH
are spherical polar substitutions.
Also, the streamlines r = k $in’0 can be written as r° = k r* sin°0

= (x2 + y2 + 22)3/2 =k (X2 + yz)

2 2
K /3 /3

ie. X+y +7 = x>+

which are the streamlines in Cartesian co-ordinates.
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4.11. Example. At the point in an incompressible fluid having spherical polar

co-ordinates (r, 0, y), the velocity components are (2M 3 cos0, M7 sinB, 0)
where M is a constant. Show that velocity is of potential kind. Find the

velocity potential and the equations of streamlines.

Solution. Here dT = drf +rd06 + rsin Ody

q=2Mr> cosOf + Mr> sin0

Then,
r rd rsin 0\
cul G=———|  gfer 9/o0  ojoy
r*sin® 2Mr> cos® Mr?sin® 0
= 21_ f~0+ré-0+rsineq;(—21vﬁ3sine+21vﬁ3sine)]:6
r-smno-

Therefore, the flow is of potential kind.

Now, using the relation q =—Vo = @r+—@6+ 1 @\Tf , we have
rdd®  rsin6 oy

2ME> cosOf + Mr> sin00 = 8(1) lad)é ! 6(1)
6r r 00 rsm@&w

From here,
@ =2M¢> cose,—@ = Mr? sinB,@ =0
or 09 oy
Therefore,

do = @dr+@d6+@d\y
or 00 oy

= (—2Mf” cos@)dr — (Mr” sin 0)d0
= d(Mr? cos0)
Integrating, we get
b = Mr? cosd

which is the required velocity potential.
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The streamlines are given by

dr  rd®  rsinOdy
_@_ 10 1 oo

or r 00 rsm@&w

) dr ~rd®  rsinbdy
2Mtcos0 Mt sin® 0

(0)

From the last term, \ = constant.
From the first two terms, we get

dr 2cos0

r sin 0

dO=2cot0dob

Integrating, we get
log r = log sin°0 + constant
=1 =Asin’0, y = constant

The equation y = const. shows that the streamlines lie in planes which pass
through the axis of symmetry 6 = 0.

5. Irrotational and Rotational Motion, Vortex Lines

5.1. Vorticity. If g = (u, v, w) be the velocity vector of a fluid particle, then
the vector & defined by

£ =curl g=Vxq
is called the vortex vector or vorticity and it’s components are (§;, &, &3),
given by
ow Ov 6u @ ov Ou
0z oOx’

ilzg_a— éz és &_5

5.2. Vortex Motion (or Rotational Motion). The fluid motion is said to be
rotational if

E=culg=0

5.3. Irrotational Motion. If & =curl q =0, then the fluid motion is said to be
irrotational or of potential kind and then q =—V¢.
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5.4. Vortexline. It is a curve in the fluid such that the tangent at any point on
the curve has the direction of the vorticity vector &.

The differential equations of vortexlines are given by & xdr = 0

. dx dy dz
ie. —=-—2=-"
& & &
where E.= (&1, &, &3).

5.5. Vortex Tube. It is the locus of vortex line drawn at each point of a closed
curve i.e. vortex tube is the surface formed by drawing vortex lines through
each point of a closed curve in the fluid.

A vortex tube with small cross-section is called a vortex filament.

5.6. Flow. Let A and B be two points in the fluid.
Then jﬁ q - dris called the flow along any path from A to B

If motion is irrotational then q =—V¢ and
flow == [{V- df =—[d = §(A) — ¢(B)

5.7. Circulation It is the flow round a closed curve. If C be the closed curve in
a moving fluid, then circulation I" about C is given by

I'={q-dr = [fA-curlqdS=[n-E&dS.
C S S

If the motion is irrotational, then g =—V¢ and thus,

=—{Vo-di =—{dp = p(A) — p(A) =0,
C C

where A is any point on the curve C. This shows that for an irrotational
motion, circulation is zero.

5.8. Theorem :-The necessary and sufficient condition such that the vortex
lines are at right angles to the stream lines, is

_ [ % %
(u, v, w)—},{ax,ay,aZ]

i.e. q= uVo, where p and ¢ are functions of X, y, z and t.
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Proof. Necessary condition:- We know that the differential equation

q -dr =0 is integrable if .+ pdx + Qdy + Rdz = 0 is integrable if
(% - (%RJ +..4+=0

q-curlg=0 (exactness condition)
ie. q-£=0, E=curl g

This shows that the streamlines are at right angles to the vortex lines. Thus the
streamlines and vortex lines are at right angles to each other if the differential
equation q-dr =0is integrable.

The exactness condition q-curlq =0 implies thatq = —V¢.

But curlg = curl(-V¢) = 0. Thus the vortexlines do not exist. The equations
q-dr =0 are therefore not exact.

So, there exists an integrating factor p(function of x, y, z, t) such that
w! q-dr =0 is integrable.

If this differential equation is integrable, then we can write
w'q-dr = d¢, where ¢ is a scalar function of x, y, z, t
=>u'q-dr=V¢-dr | o dp= V- dr
= q=uVe.
Sufficient condition :- Let us take q=pVp = Vo=p'q
Then, curl q = curl (uVd)
= E=Vx(uVd) =(Vx V) +V uxVd =Vux Vo
Therefore,

q-E=(VuxVe)-q =Vu- (Vo xq)

=Vu- (w'gxq) =0
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This shows that the directions of streamlines and vortexlines are at right angles
to each other.

6. Equation of Continuity

6.1. Equation of Continuity by Euler’s Method (Equation of conservation
of Mass): Equation of continuity is obtained by using the fact that the mass
contained inside a given volume of fluid remains constant throughout the
motion. Consider a region of fluid in which there is no inlets (sources) or
outlets (sinks) through which the fluid can enter or leave the region. Let S be
the surface enclosing volume V of this region and let ndenotes the unit vector
normal to an element dS of S drawn outwards.

Let q be the fluid velocity and p be the fluid density.

f

S i

First, we consider the mass of fluid which leaves V by flowing across an
element oS of S in time &t. This quantity is exactly that which is contained in a
small cylinder of cross-section 8S of length (q - ) dt.

Thus, mass of the fluid is = density x Volume = p (q-n) St. 8S

re

S N
7N,

(g-R)dt

=>

Hence the rate at which fluid leaves V by flowing across the element S4 is

p(q-n)aS.

Summing over all such elements 6S, we obtain the rate of flow of fluid coming
out of V across the entire surface S. Hence, the rate at which mass flows out of
the region V is

By Gaussdivergencethe

[p(@-R)dS =[(pq) - idS [F-RdS= V- FdV.
S S S A\
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= [div(pg)dV (1)
\%
Now, the mass M of the fluid possessed by the volume V of the fluid is

M= jpdV, where p = p(X, y, z, t) with (x, y, z) the Cartesian
\%
co-ordinates of a general point of V, a fixed region of space. Since the space
co-ordinates are independent of time t, therefore the rate of increase of mass

within V is
M = d [pdV |= j@dV | Vdoesnotchangew.r.t.time (2)
dt  dely Vot

But the considered region is free from source or sink i.e. the mass is neither
created nor destroyed, therefore the total rate of change of mass is zero and
thus from (1) & (2), we get

j% dV.+ [div(pq)dV =0

\% %
op L.
= [l ==+div(pq) [dV =0
vL ot

Since V is arbitrary, we conclude that at any point of the fluid which is neither
a source nor a sink,

op .., _
L 4d =0
ot iv(pq)

ie. % +V.(pq) =0 (3)

Equation (3) is known as equation of continuity.
Corollary (1). We know that

div(pq) = pdivq +.q.(gradp)
Therefore, (3) takes the form

P 4 pv-@+@:VIp=0 @

Corollary (2). We know that the differential operator %is given by

D o _
— =4 V
DL a q-V)

Therefore, from (4), we obtain the equation of continuity as %‘z +p(V-q) =0
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Dp

i.e. —
Dt

+pdivg=0 (5)

Corollary (3). Equation (5) can be written as

1D divg=0
p Dt

N D (logp)+divg =0 ©6)
o, (ogp)+divg

Corollary (4). When the motion of fluid is steady, then % = (0 and thus the

equation of continuity (3) becomes
div(pq) =0 |Here p is not a function of time i.e. p =p(X,y,z) (7)
Corollary (5). When the fluid is incompressible, then p = constant and thus

D

Dp_,

Dt
The equation of continuity becomes

div g =0 )
which is same for homogeneous and incompressible fluid.

Corollary (6). If in addition to homogeneity and incompressibility, the flow is
of potential kind such that q= -V ¢, then the equation of continuity becomes
single word

div(-Vd)=0 =V.(VH)=0 =V*$=0 9)
which is known as the Laplace equation.

6.2. Equation of continuity in Cartesian co-ordinates :- Let (X, y, z) be the

rectangular Cartesian co-ordinates.
Let c_lzuiA+v3+w1A< (1)
andv=2i+ij+21€ (2)
ox oy oz
Then, the equation of continuity % +div(pq) =0 can be written as
op O 0 0
—_—+— +— +—(pw)=0 3
% o PV oy (pv)+—(pw) 3)
i.e.@+u@+V@+w@+p @+@+@ =0 4)
ot ox oy oz ox oy oz

which is the required equation of continuity in Cartesian co-ordinates.
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Corollary (1). If the fluid motion is steady, then % = (0and the equation (3)
becomes

0 0 0

—(pu)+—(V)+—(pw)=0 5

8X(p)ay(p)az(p) S)
Corollary (2). If the fluid is incompressible, then p = constant and the
equation of continuity is V-.q=0
ie. Qv ©6)

ox oy oz

Corollary (3). If the fluid is incompressible and of potential kind, then
equation of continuity is

V=0

2 2 2
ie. 0 i)+a (l)+8 i)zo,where q=—-Vo.
OX oy~ oz
6.3. Equation of continuity in orthogonal curvilinear co-ordinates: Let (u,
Uz, u3) be the orthogonal curvilinear co-ordinates and €,,€,,&;be the unit

vectors tangent to the co-ordinate curves.
Let §=q;& +q;,€, +q5¢; (1)

The general equation of continuity is
op _
—+V. =0 2
A (PqQ) 2)

We know from vector calculus that for any vector point function f = (f1, £, 13),

=1 |9 0 0
V-f= ——(h,h4f)) +——(h3h,f,) +——(h;h,f 3
h1h2h3 |:5l11 ( 243 1) 8[12 ( 341 2) 5[13 ( 12 3)j| ( )

where hi, h,, hs are scalars.
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Using (3), the equation of continuity (2) becomes

op 1
+ ——(h»h +——(hsh +——(h;h 4
o hyhyhy L‘ul (hyhspqy) 8u2 (hshipq,) 20, ( 2PQ3)} 4)

Corollary (1). When motion of fluid is steady, then equation (4) becomes

——(h»h +—hh +—hh 0 5
8u1(2 3Pq) 20, (hsh;pq;) au( 2pq3) = 5)

Corollary (2). When the fluid is incompressible, the equation of continuity is
(p = const)

o, (h h3Q1)+ o, (h h1q2)+8u3 (h;h,q3)=0 (6)

Corollary (3). When fluid is incompressible and irrotational then p = const

q=—-Vb=- 1.9 ,i 0 ,i 0 ¢ and the equation of continuity
h; du; "h, du, h; du,

becomes

0 (hyh; o¢ N 0 (hh; o¢ N 0 (hh, o ~0 )

Now, we shall write equation (4) in cylindrical & spherical polar co-ordinates.
6.4. Equation of continuity in cylindrical co-ordinates (r, 0, z) . Here,

y=r,up=0,u3=z andh;=1,h,=r,h3=1

The equation of continuity becomes

op 1[0 0 0
Ep+;[a(qul)+%(PQ2)+£(TPC13)}:0

. o 10

ie. 8‘t’+——<rpql> ——(pq2>+—<pq3> 0 (8)

Corollary (1). When the fluid motion is steady, then equation (8) becomes

—(rpq1)+ (pqz)+r—(pq3) 0 9

Corollary (2). For incompressible fluid, equation of continuity is

0
—(rq1)+—(q2)+r 5123 =0 (10)

Corollary (3). When the fluid is incompressible and is of potential kind, then
equation (8) takes the form
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Q(r@}i[l@}ﬁ(r@):o (11)
or\ or) 00\ro0) oz\ oz

where q =—V¢; V is expressed in cylindrical co-ordinates.
6.5. Equation of continuity in spherical co-ordinates (r, 0, y). Here,
(u,up,u3)=(,0,y) and h=1,h,=r,h3=rsin0

The equation of continuity becomes

op 1 |0 o, . o, . 0
—+ — 0 +— 0 +— =0
a rzsine{ar(r sinOpq; ) ae(rsm Pd2) 6W(rpcm)}
S, |

ot r”sin®

. A0 9 o, . 0
sin®—(r +1r—(sin0® +r— =0 (12
{ 8r( Pd1) ae( Pd2) 6\”(0(13)} (12)
Corollary (1). For steady case, equation (12) becomes
. 0 2 o, . 0
60— +r1r—(sin0, +r— =0 13
sin 0—-(r°pqy) +1— (sinfpq,) raw(p%) (13)
Corollary (2). For incompressible fluid, we have
. 40 o, . aq
sin Ga(r2q1)+r%(sm&q2)+rﬁ:0 (14)

Corollary (3). When fluid is incompressible and of potential kind, then

equation of continuity is

9( Zsme@}ﬁ(sme@}i[#.@j:o (15)
or or) 09 ) oylsinb oy

where q =—V¢; V is expressed in spherical co-ordinates.

6.6. Symmetrical forms of motion and equation of continuity for them. We
have the following three types of symmetry which are special cases of
cylindrical and spherical polar co-ordinates.

(i) Cylindrical Symmetry :- In this type of symmetry, with suitable choice of
cylindrical polar co-ordinates (r, 0, z), every physical quantity is independent
of both 0 and z so that

0 O
—=—=0and q=q(r,t
o o 1=y
For this case, the equation of continuity in cylindrical co-ordinates, reduces to
op 10
—+-— r)=0 1
% 1o (pqir) (1)
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If the flow is steady, then equation (1) becomes
g(pqlr) =0 = pqir = constant = F(t), (say).

Further, if the fluid is incompressible then q; r = constant = G(t), (say).

(ii) Spherical Symmetry :- In this case, the motion of fluid is symmetrical
about the centre and thus with the choice of spherical polar co-ordinates
(r, 8, v), every physical quantity is independent of both 0 & y. so that

i=i=0andc_1=6(r, t)
00 oy
The equation of continuity, for such symmetry, reduces to

8p 1 0 2\
§+r—2-a(9(hr )=0 (2)

For steady motion, it becomes
0 2\ ) 3
—(pq;r7) =0 = pqi 1~ = const = F(t), (say)

and for incompressible fluid, it has the form q; 1> = constant = G(1), (say).
(iii) Axial Symmetry :- (a) In cylindrical co-ordinates (r, 0, z), axial symmetry

means that every physical quantity is independent of 0 i.e. % =0 and thus the

equation of continuity becomes

op 1[0 0
—+-|= +— =0
ot 1[&(pcnr) aZ(pqa,r)}

(b) In spherical co-ordinates (r, 0, y), axial symmetry means that every

. o . 0 .
physical quantity is independent of w i.e. 6_: 0 and the equations of
Wy
continuity, for this case, reduces to

%

1 0 ) 1 0 )
o +r—2§(P‘]1r ) +————(pq, sin0) = 0.

rsin® 00

6.7. Example. If o(s) is the cross-sectional area of a stream filament, prove
that the equation of continuity is

%(pc}+§(pcq)=0, where 0s is an element of arc of the
S

filament and q is the fluid speed.
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Solution. Let P and Q be the points on the end sections of the stream filament.

/>\>\

e
P ./—SS L 0
f(s) f(s+8%)

The rate of flow of fluid out of volume of filament is
0
(Pqo) — (Pqo)p = ™ (pqo) p 68
where we have retained the terms upto first order only, since 0s is
infinitesimally small

Now, the fluid speed is along the normal to the cross-section. At time t, the
mass within the segment of filament is pads and its rate of increase is

%(poas) :§<pc>6s
@)

Using law of conservation of mass, we have from (1) & (2)

° (po)os + 9 (pqo)ds =0 | Total rate =0
ot 0s

0 0
ie. —(po)+—(poq) =0 3
5 PO+ 5 (Pod) 3)
which is the required equation at any point P of the filament.
6.8. Deduction :- For steady incompressible flow, %(pc) = 0 and equation (3)
reduces to
0 0
—(poq) =0 = —(oq)=0 = o q=constant
0s 0s

which shows that for steady incompressible flow product of velocity and cross-
section of stream filament is constant. This result means that the volume of
fluid a crossing every section per unit time is constant

distance volume
oq:czof:c: ; =c

6.9. Example. A mass of a fluid moves in such a way that each particle
describes a circle in one plane about a fixed axis, show that the equation of
continuity is
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op
+— 0,
2 20 (pw) =

where o is the angular velocity of a particle whose azimuthal angle is 0 at time

t.

Solution. Here, the motion is in a plane i.e. we have a two dimensional case
and the particle describe a circley

00
r
0
X
Therefore, z = constant, r = constant
-~ 2.0 2o (1)
oz or

i.e. there is only rotation.
We know that the equation of continuity in cylindrical co-ordinates (r, 0, z) is

op 10 0
—p+——(rpq1)+——(pqz)+—(pq3) =0 2)
ot oz
Using (1), we get
op 10
+—— 0
ot (Pq2) =
= gi) +%%(prco) 0, where q = q» = ro.
P
—+— 0
= a2 (pw)

Hence the result

6.10. Example. A mass of fluid is in motion so that the lines of motion lie on
the surface of co-axial cylinders show that the equation of continuity is

op 10

TS pve) <va> 0

where v, v, are the velocities perpendicular and parallel to z.

Solution. We know that the equation of continuity in cylindrical co-ordinates
(r, 0, z) is given by
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ap + 1 g (prvr ) + 1— (pVe ) + (pV ) O Where q (Vr, Vo, Vz)
ot ror

Since the lines of motion (path lines) lie on the surface of cylinder, therefore
the component of velocity in the direction of dr is zero i.e. v, =0
Thus, the equation of continuity in the present case reduces to

op 10
+—— + =0
ot av(P 0) (PVZ)

Hence the result

6.11. Example. The particles of a fluid move symmetrically in space with
regard to a fixed centre, prove that the equation of continuity is
P, 0,

0.
o 8r 7 (r u)

where u is the velocity at a distance r

Solution. First, derive the equation of continuity in spherical co-ordinates.
Now, the present case is the case of spherical symmetry, since the motion is
symmetrical w.r.t. a fixed centre.

Therefore, the equation of continuity is

%
ot

|..£_ =0

o 5
=0 . —
(pqr”) 03

Lo
2 or

8p 1 0 2
= 4+ — . — r°)=0. whereq; =u
a2 ar(pql )=0, qi

8p 1 6p 2 1 0 2
= —+—.—ur" +—.p.—(ur’)=0
o 2a T2 par(u )

= @+u.@+£g(r2u)=0

ot or r?or
Hence the result
6.12. Example. If the lines of motion are curves on the surfaces of cones
having their vertices at the origin and the axis of z for common axis, prove that
the equation of continuity is

00 cosecO O

—+— + .+ — 0
o % (pa) ()=
Solution. First derive the equation of continuity in spherical co-ordinates (r, 0,
V) as
p 00 2, 0 : d
— sin®— r)+r— sin@) +1r— =0
o 2o e[ a (pqyr™) 2 (pq; sin0) = (p%)}
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which holds at every point of the fluid and is known as Euler’s dynamical
equation for an ideal fluid.
The above method for obtaining the Euler’s equation of

motion, is also known as flux method.

Other Forms of Euler’s Equation of Motion. (i) We know that

d_D_2 .y

at Dt o

therefore equation (4) becomes.

aq oo = 1
§q+(q-v)q=F——Vp S
p

But (q-V)q =V(%q2j+gxq, E=curlg

Therefore, Euler’s equation becomes

aq 1_2j |
A4y -G |+Exg=F-~Vp. 6
at (Zq Exq 5 p (6)

Equation (6) is called Lamb’s hydrodynamical equation

. : _ = d o p
Cartesian Form. Let g =(u,v,w),F=(X)Y,Z)and Vp=| —,—,— |,
(i) i et q=( ) F=( ) and Vp (GX oy oz
then equation (5) gives
ou Ou Ou ou 1 op
—4+u—+vVv—+w—=X-———
ot ox oy oz p OX
@+u@+vﬁ+wﬁz —l@ (7)
ot ox oy 0z p OXx
ow ow ow 10p
—+u—+V—Fw—=7Z———
ot 10)'4 oy oz p oz

Equation (7) are the required equations in Cartesian form.

(iii) Equations of Motion in Cylindrical Co-ordinates. (r, 6, z). Here,

q = (u,v,w), dr=(dr, rd, dz)
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voo %P 1P o
“lor'roo oz

Let F = (Fr, FO, Fz).

Also, the acceleration components in cylindrical co-ordinates are

dg _(du_v® dv uvdw
dt (dt r’'dt r dt
Thus, the equation of motion

49 _g_1 Vp. becomes

dt p

du_v'_p 1

dt r p or

ﬂ_‘_ﬂzpe_l@ (8)
dt r rp 00

dw 1 op

[Ty

(iv) Equations of Motion in Spherical co-ordinates (r, 0, v). Here,

q=(u,v,w), dr = (dr,rdo, rsinOdy)

v (@1 1 &
or 'r 00 rsin® dy

Let F= (Fr, FO, Fy). The components of acceleration in spherical co-ordinates

are

E_ du vZ+w? Q_wzcotﬁ uv dw vwcot0
dt r O dt r r o dt r

dt T de

Thus, the equation of motion take the form
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2 2
@_—V TW :Fr_l@
dt r p or
2
dv w cot6+ﬂ:F9_l@ )
dt r r pr 00
d_w+vwcot6=F_ 1. p
dt r V' prsin® oy

The two equations, the equation of continuity and the Euler’s
equation of motion, comprise the equations of motion of an ideal fluid. Thus
the equations

op ., _
+id =0
ot iv(pq)

and 6—q+(q-V)(_]=F—le
ot P

are fundamental to any theoretical study of ideal fluid flow. These equations
are solved subject to the appropriate boundary and initial conditions dictated by
the physical characteristics of the flow.

Lagrange’s Equation of Motion. Let initially a fluid element be at (a, b,
c) at time t = tp when its volume is dV( and density is po. After time t, let the

same fluid element be at (x, y, z) when its volume is dV and density is p . The
equation of continuity is

pJ = po (D
where J= M
o(a,b,c)

The components of acceleration are

o*’x .. 0%y . 0%z
=2 YT 2T
ot ot ot

5

Let the body force Fbe conservative so that we can express it in terms of a
body force potential function Q2 as

F=-VQ 2)

By Euler’s equation of motion,
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da _g_1 p:—VQ—le (3)
dt p p

Its Cartesian equivalent is

2 Q 1
o’y o op @

We note that a, b, c, t are the independent variables and our object is to
determine x, y, z in terms of a, b, ¢, t and so investigate completely the motion.

To deduce equations containing only differentiations w.r.t. the independent
variables a, b, c, t we multiply the equations in (4) by 0x/0a, dy/0a, 0z/0a and
add to get

A 5)

XX Oyoy,ozor_ R 1Cp 6)

R A AR i 4 (7)

These equations (5), (6), (7) together with equation (1) constitute Lagarange’s
Hydrodynamical Equations.
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Possible Questions

Part B (5x8=40 Marks)

1. Derive differential equation of a stream line

2. The velocity components in a flow two dimensional flow fluid for an incompressible fluid is given
by u=e”x cos hy,v=-e”x sin hy.

3. Derive Euler’s generalised Momentum theorem

4. Obtain the Equation of motion interms of verticity vector when the force is conservative.

5. S.T in an irrotational incompressible inviscid 2-D fluid flow both ¢ & vy satisfy the
Laplace equation

6. Discuss the motion for the complex potential w=iAz

7. Discuss about Plane coutte flow

8. Explain Navier Strokes equation

Part-C(1x10=10 Marks)
1. Discuss the motion for the complex potential w=z>
2. Determine the restriction on fi,f2,f5 if x?/a2.fi(t) + y*/b%.f2(t)+z*/c2.f3(t)=1 is a possible
boundary surface of a liquid.

3. Derive Euler’s equation of motion.

4. Derive Euler’s generalised Momentum theorem and Obtain the Equation of
motion interms of verticity vector when the force is conservative.
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Part A (20x1=20 Marks)

Question
is a branch of science which
deals with the behavior of fluid at rest as
well as motion.

The behavior of fluid at rest gives the
study of .

The behavior of fluid when it is in motion
without considering the pressure force is
called .

The behavior of fluid when it is in motion
with considering the pressure force is
called

is the branch of science
which deals with the study of fluids.

If any material deformation vanishes when
a force applied withdrawn a material is said
to be
If deformation remains even after the force
applied withdrawn the material is said to
be

If the deformation remains even after the
force applied withdrawn this property of
material is

Introductory Notions

Subject: Fluid Dynamics
Subject Code: 16MMP302

Semester: 111

(Question Nos. 1 to 20 Online Examinations)

Possible Questions

Choice 1

fluid mechanics

fluid dynamics

fluid kinematics

fluid kinematics

fluid kinematics

elastic

elastic

elastic

Choice 2

fluid statics

fluid statics

fluid mechanics

fluid dynamics

fluid dynamics

plastic

plastic

plasticity

Choice 3

fluid kinematics

elastic

fluid statics

fluid statics

fluid statics

deformation

fluid

fluid

Choice 4

fluids

plastic

fluids

fluid mechanics

fluid mechanics

fluid

fluid statics

deformation

Answer

fluid mechanics

fluid statics

fluid kinematics

fluid dynamics

fluid dynamics

elastic

plastic

plasticity



can be classified as liquids and

gases.
The density of fluids is defined as
volume.
A force per unit area is known as
oF is the force due to fluid on
os

The pressure changes in the fluid beings
changes in the dencity of fluid is

called

The change in pressure of fluid do not alter
the density of the fluid is

called .

are propotional to mass of the
body.

are propotional to the surface
area.

The normal force per unit area is said to
be .
The tangential force per unit area is said to
be .

In a high viscosity fluid there exist normal
as well as shearing stress is called

Rate of change of linear momentum
equation is .
Which is the velocity of the equation.
The differential equation of the path line
is

A flow in which each fluid particle posses
different velocity at each section of the
pipe are called

A flow in which each fluid particle go on
rotating about their own axis while flowing
is said to be

solids

limit per unit

force

normal

compressible fluid

compressible fluid

pressure
body force
normal stress

normal stress

viscous fluid

g=dr/dt

.u=dy/s

uniform flow

rotational floe

pressure
solid per time
pressure
constant

incompressible
fluid

incompressible
fluid

body force
surface force
shearing stress

shearing stress

inviscid fluid

.q=s/r

v=dx/w

rotational floe

uniform flow

fluids
mass per unit
fluid

force

body force

body force
surface force
force

stress

stress

frictionless

v=dx/w

g=dr/dt

barotropic flow

non-uniform flow barotropic flow

forces
forces per unit
density.

pressure

surface force

surface force
force
mass
strain

strain

ideal

.u=dy/s

.q=s/r

non-uniform flow

fluids

mass per unit

pressure

normal

compressible fluid

incompressible fluid

body force
surface force
normal stress

shearing stress

viscous fluid

g=dr/dt

g=dr/dt

non-uniform flow

uniform flow



The pressure is function of density then the

flow is said to be

The direction of the fluid velocity at the

point is called

is defined as the locus of
different fluid particles passing through a

fixed point.

A stream tube of an infinitesimal cross
sectional area is called

The equation of volume is
The equation of speed is .
When a fluid particle moves it changes in

both

When the flow is

have same form at all times.

the stream line
changes from instant to instant.

If A.f=0 then f is said to be a

When the flow is

the strem line

rotational floe

stream line

stream filament

stream line
cross section
area*speed
time/length
speed and time
steady

stream tube

solenoid

uniform flow

velocity

stream line

stream filament
speed/cross
section area
length/speed
time and
frequency

unsteady
steady

rotation

barotropic flow

fluid

path line

path line

cross section
area/speed
length*time

speed and position
stream surface

unsteady

irrotation

non-uniform flow

pressure

stream tube

stream tube

speed
time*speed

position and time
stream tube
steady

constant

barotropic flow

stream line

stream line

stream filament
cross section
area*speed
length/speed
position and time
steady

unsteady

solenoid
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UNIT -1I

Vortex Motion

So far we have confined our attention to the cases involving irrotational motion
only. But the most general displacement of a fluid involves rotation such that

the rotational vector (vortex vector or vorticity) &=curlq#0. Here we

consider the theory of rotational or vortex motion. First of all we revisit some
elementary definitions.

Lines drawn in the fluid so as at every point to coincide with the instantaneous
axis of rotation of the corresponding fluid element are called vortex lines.
Portions of the fluid bounded by vortex lines drawn through every point of an
infinity small closed curve are called vortex filaments or simply vortices and
the boundary of a vortex filament is called a vortex tube.

If C is a closed curve, then circulation about C is given by

I'= { qdr=[f.curlqdS=[A.EdS=[E.dS
C S S S

The quantity ‘ﬁ € ‘ 0S is called the strength of the vortex tube. A vortex tube
with a unit strength is called a unit vortex tube.

We shall observe some important results for vortex motion which are
consequences of the following theorem due to Lord Kelvin.

Kelvin’s Circulation Theorem (Consistency of circulation). The
circulation around a closed contour C moving with the inviscid (non-viscous)
fluid is constant for all times provided that the external forces (body forces) are
conservative and the density is a function of pressure only.

Proof. The circulation round a closed curve C of fluid particles is defined by

I'= {qdr,
C

where q is the velocity and t is the position vector of a fluid particle at any
time t.

Time derivative of I" following the motion of fluid is

ar d d
a_d s ai={Y G- dr
" qlddr=f g @ dn
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Since the system of forces is conservative; therefore F=-VQ, where Q is a

Bernoulli's Theorem and Circulation

~199 5.9 s
_i[ dr+q dt(dlr)}

~ 199 41 G.d5 gy =d I oag
_i{dt dr +q dQ} (1) ‘-dt(dr) d( j dq

potential function Euler’s equation of motion is

dt

d—q:F—lvp=—VQ—lvp
p

p

Multiplying each term of (2) scalarly by dr, we get

df-d—q =—df‘~VQ—ldf.Vp
p
1.e. d—q.df =—-dQ - @ 3)
dt p

Thus from (1), we get

dr
dt

where A is any point on the closed contour C. Now, if density is a function of

"}

—dﬂ—@ﬂj-dqj
p

{ye-a) o
2 p

ch
A
— |:1C_12—Q:| _§dp
2 A cP
:o_§@
c P

dt

2)

| odrvV=d

4)

. d .
pressure only, then the integral ff P Janishes and hence we get

C
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d_F =0 = I =constant for all time

dt

Corollary (1). In a closed circuit C of fluid particles moving under the same
conditions as in the theorem,

[curl q.dS = [E.dS = constant %)
S S

where S is any open surface whose rim is C. To establish (5), we note that, by
Stock’s theorem,

[curlq.dS = {q.df=T = constant
s C

This shows that the product of the cross-section and angular velocity at any
point on a vortex filament is constant all along the vortex filament and for all
times.

Corollary (2). Under the conditions of the theorem, vortex lines move with the
fluid.

Proof. Let C be any closed curve drawn on the surface of a vortex tube. Let S
be the portion of the vortex tube rimmed by C. By definition vortex lines lie
on S. Thus

0= [curl qdS = {gqdr | -+ on surface circulation is zero
S C

Let C be a material curve and S be a material surface, then

d. . _ D . _
— [(n.curl 9)dS =|— (n.curl q)dS=0
dti( url q) th( url )

Thus n.curl q remains zero, so that S remains a surface composed of vortex
lines. Consequently vortex lines and tubes move with the fluid i.e. vortex
filaments are composed of the same fluid particles. This explains why smoke
rings maintain their forms for long periods of time.

Corollary (3). Under the conditions of the theorem, if the flow is irrotational in
a material region of the fluid at some particular time (e.g. t = 0 or t = ty), the
flow is always irrotational in that material region thereafter.

i.e. If the motion of an ideal fluid is once irrotational it remains irrotational for

ever afterwards provided the external forces are conservative and density p is a
function of pressure p only.
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Proof. Suppose that at some instant (t = to), the fluid on the material surface S
1s irrotational

Then, £ =0 (1)
for all points of S.

Let C be the boundary of surface S, then

I'= {qdr=[(A.curl §)dS = [(A.E)ds=0 | using (1)
C S S

But by Kelvin’s circulation theorem, I'" is constant for all times. Hence
circulation I' is zero for all subsequent times. At any later time,

[A.EdS =
S
If we now take S to be non-zero infinitesimal element, say AS, then

AEAS =0 = & =0 at all points of S for all times and the

motion is irrotational permanently. This proves the permanency of irrotational
motion.

Remarks (i) The above three corollaries are properties of vortex filaments.

(ii) The Kelvin’s theorem is true whether the motion be rotational or
irrotational In case of irrotational motion, & =0 and thus ' =0

(iili)  From the results of the theorem, we conclude that vortex filaments must
either form closed curves or have their ends on the bounding surface of
the fluid. A vortex in an ideal fluid is therefore permanent.

Vorticity Equation. Euler’s equation of motion for an ideal fluid under
the action of a conservative body force with potential Q per unit mass is

Dq oq (1_2j _ = 1
A_A v 2q? |-GxE=-VQ--V 1
Dt a2 )Taxs o P 1)

where the vorticity & =curl @ =V xq. If the fluid has constant density, then
taking curl of equation (1), we get

\% x@+Vx|:V(lq2ﬂ—Vx((_JxE):Vx(—VQ—lej
ot 2 p
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= Vx%—VX(QXE)ZO

- O (Vx@)-Vx(@xE =0
ot

= %fwx@xé)

=E&-V)q-@q- V)&

ot

= 5+(§-V)E=(E-V)€1
ie. DE& =(§-V)q )

which is the required vorticity equation.

Equation (2) is called Helmholtz’s vorticity equation. For two-dimensional motion, the
vorticity vector E is perpendicular to the velocity vector  and the R.H.S. of (2) is identically

zero. Thus, for two dimensional motion of an ideal fluid, vorticity is constant.

In the case, when body force is not conservative, equation (2) becomes

%z(E-V)q+cur1F

where F is body force per unit mass.

Example. A motion of in viscid incompressible fluid of uniform density is symmetrical
about the axis r = 0 where (r, 0, z) are cylindrical polar co-ordinates. The cylindrical polar
resolutes of velocity are [q.(r, z), 0, q,(r, z)]. Show that if a fluid particle has vorticity of
magnitude &, when r = 1y, its vorticity when at general distance r from the axis of

symmetry has magnitude & = (§/ro)r, if any body forces acting are conservative.
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Solution. The vorticity vector & satisfies the vorticity equation

D¢ - _ _
S _(E.V 1
Do (&-V)q (1
Now,
r 0 z
Ezcurl_zl 2 2 E
= & o &

q,(r,z) 0 q,(r,2)
:%{f%{qz(r,z)}+ré{%qr(r,z)—ng(r,z)}+i(0)}
={%—%}é. )

oz or
Therefore,
- (.0 Arl0O .0
VW=t ltY 4069459
V) &(raﬁ r69+Z6Zj
_ %, .[fLéleij
oz or or r 00 oz
_lfaa, 4, | o 05=0=02
r\ oz o )0
- 1({0q, 0q,)\0 . .
Th Vyq=-|—4-—2%|=— +
us (&V)q r(@z arjae(qrr q,2)
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Hence (EV)g= ¢ | using (2)
r

.. From (1) & (4), we get

DE_E—
Do

Now, q; = q.r, so equation (5) becomes

r—=q.tr¢
LR
Since 2 =r’ :f.g :rE
Dt Dt
r Dr Dr . Dr Dr ~_ Dr
= —— = D> l—=— =Iq=—
r Dt t t t Dt
Using this in (6), we get
D& _Drz
Dt Dt
DE EDr
D¢ = Dr Dt
— r_g_g}_: - Mzo
r
= D 3’; 0:>(t° constza—o
Dt r I,

:ﬁ:[ﬁ_o]r
& Iy

Vorticity in Two-dimensions

Hence the result.

For an incompressible fluid in the xy-plane, we have
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Therefore, E=Vxq=1(0,0,

which shows that in two-dimensional flow, the vorticity vector is perpendicular
to the plane of flow.

Also, E= ‘

Thus E=k¢
Now, for this case, the Helmholtz’s vorticity equation
dg

— =(E£-V)q gives
" (&-V)q giv

a5 =0 = & =constant
dt

i.e. § = constant.

which shows that in the two-dimensional motion of an incompressible fluid,
the vorticity of any particle remains constant.

Here, we may regard & as a vortex strength per unit area.

Also, in terms of stream function, we have

v v
dy’ ox
2 2
Therefore, E=k 6_\;} + 5_\2If =k V?y
ox~ 0y
i.e. £=Viy

This gives vorticity in terms of the stream function.
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Circular Vortex. The section of a cylindrical vortex tube whose cross-
section is a circle of radius a, by the plane of motion is a circle and the liquid
inside such a tube is said to form a circular vortex.

If o is the angular velocity and na’ the cross-sectional area of the vortex tube,
then circulation

I'={q-dr=[ curlg-AdS= curlg-dS
C S S
= IdSzconaz = k(say)
S

This product of the cross-section and angular velocity at any point of the vortex
tube is constant along the vortex and is known as the strength of the circular
vortex.

Rectilinear or Columnar Yarte¥oFiknnFilamdiite stikagitrekgtf Icinfutarcular
vortex is given by k = wma®. If we let a—>0 and ®w—>oo such that the product
o7 a remains constant, we get a rectilinear vortex filament and represent it by
a point in the plane of motion. Such vortex filament may be regarded as
straight gravitating rod of fluid lying perpendicular to the plane of flow. It is
also termed as a uniform line vortex. The strength of a vortex filament is
positive when the circulation round it is anticlockwise and negative when
clockwise.

Different Types of Vortices. We may divide vortices into the following
four types

(i) Forced vortex in which the fluid rotates as a rigid body with constant
angular velocity.

(ii) Free cylindrical vortex for which the fluid moves along streamlines
which are concentric circles in horizontal planes and there is no
variation of total energy with radius.

(iii)  Free spiral vortex which is a combination the free cylindrical vortex
and a source (radial flow)

(iv)  Compound vortex in which the fluid rotates as a forced vortex at the
centre and as a free vortex outside.

Complex Potential for Circulation about a Circular Cylinder
(Circular vortex). In case of a doubly connected region, the possibility of
cyclic motion does exist and as such we proceed to explain it presently in the
case of circle.
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If the circulation in a closed circuit is 27k, then k is called the strength of the
circulation.

Let us consider the complex potential
W=¢+iy=iklogz (1)
On the circular cylinder |z| = a, z=a ¢
Thus, W = ik log (a ¢') = ik (log a + i0)
i.e. ¢ +iy =-kO +ik loga
= ¢ = -kO, y =k log a = constant.

This shows that the circular cylinder is a streamline and thus equation (1) gives
the required complex potential for circulation about a circular cylinder.

When the fluid moves once round the cylinder in the positive sense, 0 increases
by 27t and then

¢ =-k (0 +27) = —k6 —2nk
= ¢ —2nk
Therefore, circulation = 2tk = ¢ —¢;
= decrease in ¢ moving once round the circuit.

Hence there is a circulation of amount 27tk about the cylinder.

Also, d_wzﬁ
dz =z
‘ dW| k
= q= —_—— | = —
dz r
ie.k=rq

Therefore, k=qwhenr=1
Thus k is the speed at unit distance from the origin.

Complex Potential for Rectilinear Vortex (Line Vortex). Let us
consider a cylindrical vortex tube whose cross-section is a circle of radius a;
surrounded by infinite mass of liquid. We assume that vorticity over the area
of the circle is constant and is zero outside the circle.
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Let y be the stream function, then

E=Viyk

2 2
ie. foviy= OV, OV

ox? 8y2

_ %y 1oy 10%

T ol ror r? ool

Since there is a symmetry about the origin y is a function of r only and so

O’y
26°
€= li(rd—w} forr<a
rdr\ dr
=0,forr>a
i.e. i(rd—wj =r§, forr<a
dr\ dr
=0,forr>a

Integrating, we find

2

rd—W:§%+A,f0rr<a

dr
=B, forr>a

We are interested in the fluid motion outside the cylinder |z| = a. Therefore,
integrating the second of the above result, we get

y=Blogr+C,forr>a.

The constant C may be chosen to be zero. Further, for r > a, the vorticity is
zero and the fluid motion is irrotational, therefore velocity potential ¢ exists
and is related to y as

_16p _ov_B
rod o r
= ¢=-BO+D
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= ¢ = —B6, neglecting D
Let k be the circulation while moving once round the cylinder, then
k = decrease in value of ¢ on describing the circuit once
=-B [0—(0+27)] =27B
= B =k/2n = K(say)
Thus, ¢ = -K06 and y =ZK log r
Hence W = ¢ + iy = —k0 + iK logr

=iK (logr + i0)
=iKlogz = iﬁlogz.
2n

If the rectilinear vortex is situated at the point z = zp, then by shifting the
origin, we get

W =iK log (z—z¢)

If there are vortices of strengths Kj, K, ...K, situated at z;, z,..., zZ,
respectively, then the complex potential is

W =K, log(z-z,) +iK; log(z—z,) +...+ 1K, log(z—z,).
Remarks (i) By a Bortexowexneanmeanta neeti nerte ¥ ontdsnevbnexortex.
(ii) K =k/2n, where K is the strength of a vortex and k that of circulation

Complex Potential for a Spiral Vortex. The combination of a source
and a vortex is called a spiral vortex or a vortex source.

Let us consider a source of strength m and a vortex of strength K both at the
origin. Then the complex potential is

W =-mlog z + iK logz
= (—m + iK) log z = (—m + iK) log (reie)
= (—m + iK) (log r +10)
= ¢ +iy =—mlogr— K6 +i(-m6 + K log r)

Therefore, ¢ =—(mlogr+K06), y=—mb + Klogr
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Unit-2 Bernoulli's Theorem and Circulation

If we go once round the origin, then ¢ decrease by 2nK and y be 2wm.

Example. Find the complex potential for the motion due to a system
consisting of a coincident line-source of strength m per unit length and line-
vortex of strength K per unit length in the presence of a circular cylinder of
radius a, whose axis is parallel to and at a distance b( > a) from the line of the
source and vortex. Show that the cylinder is attracted by a force of magnitude

2np a> (m? + K?)/ b(b*—a?)

per unit length.
Solution. We suppose the line-source and line-vortex to be at the origin, then the complex

potential is

W =-mlogz +iKlogz= (iK-m) log z €))
When the circular cylinder |z—b| = a (b > a) is inserted, the complex potential, by circle

theorem, becomes

2
W = (iK-m) log z + (-iK-m) log [ a b + bJ 2)

where

lz=b|=a= ( z—b) (z-b) =2’

a2

z—b

By Blasius theorem, force on the cylinder C is given by

+b

_ 3,2 _
= z-b= — = z=
b

2
. . dw .
X—-1Y =—np[ sum of residues of d_ within C ]
V4

3

dw)> [iK -m iK +m a’ ?
Now | — | = - “)
z a“+b(z-b)z-b
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dw)’ a’
The only singularities of (—j within Careatz= bandz="b — ? since z = 0 is not

dz
inside C.
Now,
) K? + m?
residue (z= b)= -2 T Only product term of (4)
and will contribute

. a’_ 2(K*+m*)b
residue (z=b— —) = — 5 5 -
(b”—a”)

Therefore, from (3), we get

X—iY = 2np (K*+ m?) [L—l}
T b>—-a%? b

= 2npa’ (K> + m*)/b(b*—a%)
Thus
Y =0, X=-2npa’(K>+m’)/bb*-a’).
The negative sign implies that the cylinder is attracted towards the origin where the spiral

vortex is situated.

Complex Potential for a Vortex Doublet. Two equal and opposite
vortices placed at small distance apart, form a vortex doublet.

Let us consider a vortex of strength K at z = ae'* and another vortex of strength
—K at z = 0, then the complex potential is

W = iK log (z—ae'*) —iK log z

_ aala io
- iK log (ﬂJ =iK log(l _ae J
V4 V4
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As a—0, K—oo, then Ka—p and we obtain

. io i(a—m/2)
—1ue c
W = R

z zZ

This is the required complex potential for a vortex doublet at the origin.

i ei(x
v/

Thus, it follows that the complex potential of a vortex doublet is the same as

that for a doublet with its axes rotated through a right angle.

Also, we note that the complex potential for a doublet at the origin is

Image of VortexVortexFilana. Rlaneis daetsidercowsidingwortines vofitices of
strengths K and —K per unit length at A(z = z;) and B(z = z,) respectively. The
complex potential due to these line vortices is

W =¢+iy =iK log(z-z,) —iK log(z —z,)

- P
= v=Klog |22 =Klogr—1
I Iy
Ifry =1, then y =K logl =0
Thus the plane boundary OP is a streamline so that
there is no flow across OP. Hence the line vortex at (g, 0 A(K)
B with strength —K per unit length is the image of
the line vortex at A with strength K per unit length OA=0B

so that A and B are at equal distances from OP. lz—z1| =11, |22 = 12

Remark. In case of two dimensions (as for
sources, sinks and doublets), a vortex means a line vortex and strength means
strength per unit length.

Image of a Vortex in a Circular Cylinder (or in a circle ). Let a vortex X
of strength k be present at z = d, then the complex potential is iK log (z—d).
When the cylinder |z| = a is introduced into the fluid, the complex potential, by
circle theorem, becomes

2
W = iK log (z—d) — iK log [a— —dj
Z

2
ie. ¢ + 1y = iK log(z—d) —iK log (z —%J + 1K log z + constant

(1
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-k gl 7} s (2

X_

1/2

5 \2
—iK | log (X—%j +y? +itan”| —

+iK |log/x* +y?* +itan™ X}

X

where we have ignored the constant term

a{(acose—d)2 +a’sin? 6}1/2

1/2

a’ 2
(acosﬁ—dj +a’sin’0

|zl=a =z =ae"

= X =acosb,

y =asin0

= K log d = constant.

This shows that the cylinder is a streamline. Thus (1) represents the complex
potential of the fluid motion. From (1), we observe that the image of a vortex
of strength K at z = d is a vortex of strength —K at the inverse point z = a’/d
together with a vortex of strength K at z = 0 i.e. centre of the circle.

Circulation about a Circular Cylifdglindez finafdimifotienStréama Let a
liquid be in motion with a velocity —U along the x-axis. The complex potential
due to the stream is Uz. If the circular cylinder of radius a is introduced inside

2

the liquid, then the complex potential, by circle theorem, becomes Uz + Ua—.
z

Let there be a circulation k about the cylinder. The complex potential due to
circulation is ik log z. Thus the complex potential of the whole system is

2
W=Uz+U2 yiklogz (1)
VA
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At the stagnation points, q =01ie.q=0

2 .
= U—Uiz+$:0

Z V4
= U2 +ikz-Ua’=0

. 2
= Z:_kia l_k—
20\ 42202

Since a and U are constants, therefore the flow potential term depends very
much on the magnitude of k. We shall consider three cases.

2

k
Case I. When k < 2aU i.e. —— <1, we put
4a°U

2

m = Sil’l2 B and then
a

z=—lasin3+acosf
Thus the stagnation points are (a cos 3, — a sinf}) and (—a cosf, — a sinf)
Further |z|=a|+cos B —isinB|=a
.. The stagnation points lie on the boundary of the cylinder. They lie on the

line MN below the diameter AB as shown in the fig. The velocity increases
above MN and decreases below MN.

)

‘M
(—a cospP,—a sinf cosP,—a sinP)

(a

T
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Further, from Bernoull’s equation,

1
b + —q2 =constant

p
we observe that the pressure decreases above MN and increases below MN.

Thus, there is an increase of pressure by the liquid due to circulation. If there
is no circulation, then k = 0 = sinf=0

= B=0,t,z=+a

Therefore, MN coincides with AB and thus the stagnation points are at A and
B. Therefore we conclude that the circulation brings the stagnation points
downwards and put an upward thrust on the cylinder.

2

k
Case II. When k = 2aU i.e. —— =1, then sinf} = 1
4a”U

= B=n/2, z=—ia =[z|]=a
and thus the stagnation points coincide at C, the bottom of the cylinder.

2 2

k
Case II1I. When k > 2aU i.e. — > 1, then we put

1220 > = cosh”p so that
a

4a*U

z =a (—icosh B + sinh B)

B p

=—jae’,—lae’

.. The stagnation points lie on y-axis.
Further |(—iaeB) (—iae™P )| = a’

this shows that the stagnation points are inverse points w.r.t. the circular
boundary of the cylinder. One of these points lie inside and other is outside the
cylinder. The point which is inside the cylinder does not belong to the motion.

|z, || —iae® |= ae® , outside the circle

| 2, |5| —ae P |= ae P inside the circle

since ae P <aeP.

We know that at the stagnation points (critical points), there are two
branches of the streamlines which are at right angles to each other. Thus the
liquid inside the loop formed at the stagnation points will not be carried by the
stream but will circulate round the cylinder
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Pressure (Force) on the circular cylinder :- From (1), we have

Therefore, by Blasius theorem,
ip ((dWY
ST
2 c dz

dw)’
= —np (sum of the residues of [d—j within the circle |z| = a)
z

2
By Cauchy's Re sidue theorem as ((L—Wj is a meromorphic function
z

where X, Y are components of the pressure of the liquid and p is the density of
the liquid

2 2\2 A 2 2
Now, (ﬁj _ui-d | 2 ) K
dZ ZZ 7 ZZ Z2

The only pole inside the cylinder |z| = a is z = 0 i.e. a simple pole. The residue
atz =01s 2ikU

Therefore, X —1y = —np(2i kU)
= X =0,Y =2nkpU

This represents an upward thrust on the cylinder due to circulation. The lifting
tendency (k # 0) is called the Magnus effect. The moment M is obtained to be
zero, since residue is zero in that case.

Exercise. Show that the atinp bonppiten patential

2
W = U[z+a—]+ik log z represents a possible flow part a
z

circular cylinder. Sketch the streamlines, find the stagnation points and
calculate the force on the cylinder.

Example. Verify that W = iK log , K %ﬁd}é‘i‘-}oﬂﬁ aedl aibothe real, is the
Z+1a

complex potential of a steady flow of liquid about a circular cylinder, the plane
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y = 0 being a rigid boundary. Find the force exerted by the liquid on unit
length of the cylinder.

Solution. Putting W = ¢ + iy, we get

¢ + iy =iK log Z_%a
z+ia
=ik log—lz_@|+itan_1—y_a—itan_l—yJra
|z +ia | X X
= v =Klog |Z_%a|
| z+ia |

The streamlines \y = constant are given by

:ZZ__’_—El: constant = A (say)

For A # 1, these are non-intersecting coaxial circles having z = + ia as the
limiting points i.e. circles of zero radius. In particular, for A = 1, we get a
streamline which is the perpendicular bisector of the line segment joining the
points + ia and it is the radical axis of the coaxial system. No fluid crosses a
streamline and so a rigid boundary may be introduced along any circle
A = constant of the coaxial system, including the perpendicular bisector A = 1

We note that for A = 1, |z — ia| = |z + ia|
= X+ (y-a) =x" +(y+a)’ =y=0
Hence we can introduce rigid boundaries along

1) a particular circle A = constant (+ 1)
(i) along the planey=0 (A =1)

and this establishes the result of the
first part of the question. The
circular section C of the cylinder
and the rigid plane y = 0 are shown
in the fig. Circle C is any member
of the above mentioned A-system of
coaxial circles and it encloses the
pOiI’lt A(O, a) whereas the pOiIlt MTTT T 171711 |O| TTT11
B(0, —a) is external to it. y

Trrr= X
=0
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Since W =iK [log (z — ia) — log (z + ia)]

— W!:d_W:iK( 1 _ 1 )
dz Zz—1a z+1a

Therefore, by Blasis theorem,

. 2
X —iY = Ej(d—wj dz
2C dz

2
ie. X —iY = ‘pj{ ( L ﬂ dz
zZ—1a Z-‘rla

= iK’p I L 2 dz
(z—la) (z—i-ia)2 (z—1a)(z+1a)
The integrand has double poles at z = + ia. Out of these poles only z = ia lies
within C. Thus, we find residue at z = ia. It is only the last term of the

integrand which gives a non-zero contribution to the contour integral and the
appropriate residue at z =ia is

7-ia| (z—1a)(z+1a) 2ia ia a
Hence by Cauchy-Residue theorem, we get

2 : )
X_iy= —K p[(zm)l} _ InK"p
2 a a

which shows that the liquid exerts a downward force on the cylinder of amount

nK?p

a
to be zero and thus M =0

per unit length. In case of moment M, the sum of residues is obtained
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Motion of a Vortex Filament. We find the velocity of the point P(z)
due to a vortex filament K at z = zo. We know that, the complex potential is

W =iK log (z—z)

AW K  —iK —iK _g
dz z—z, Re' R

where z — 7o = Re'’.

AP =R, arg (z—z9p) =0

ﬁ(cos@—isin@)
R
= U= isine, V:Ecosﬁ,q:E
R R R

Therefore, Y _coth= tan(90+ 0)
u

Thus, the direction of motion at P is perpendicular to AP with speed K/R in the

sense given by the rotation of the vortex at A.

Motion of Rectilinear WpiVar (exnd Mer¥p)tex)

The stream function y at a distance r < a (the radius of a cylindrical vortex) is

determined by ¢ = V*y. Using polar co-ordinates, we get
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2
1
Viy = d—W+—d—w, where y is a function of r only, due to

dr? rdr

. d*y
symmetry | .e.—— =0
, y[ y j
Thus, we get

1d({ dy
Vz =——|r— =&, 1< 1
v rdr(r drj Srea L

Integrating (1) and noting that & is constant, we obtain

dy 1 A
sk A R 2
dr 2§ r @)

But the radial and transverse components of velocity are

__16\|J _@
*="Te T
1 A

q:-=0, Qo= —1r&+—
2 r

The velocity cannot be infinite at the origin (r=0) and so A =0
1
Therefore, qo = ) rE=0atr=0

Thus there is no motion at the centre of a circular vortex. Therefore, in case of
a rectilinear vortex (line vortex), its motion is not due to itself but due to the
presence of other vortices. Thus, if motion is due to n vortices of strengths Kj
at the points z (s = 1, 2,...,n), then the complex potential at a point P(z), not
occupied by any vortex, is

W=7 iK. log(zz) 3)

s=1

and the complex velocity is given by

u—iv:—ﬂz—ii( K, J @)
dZ s=1

Further, the complex velocity of the vortex of strength K;, which is produced
only by the other vortices, is
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Z, —Zg

n K
ur—in=—Zi( 5 j,wheresir. (5)
s=1
The result (5) is practically obtained as
W' =W-iK, log (z — z,)

so that

. ( dW'j dw K,
U —1v,p = | ——— = -——+
dZ Z=Zy dZ -1z Z=7

T

Centroid of Vortices. Let there be two vortices of strengths K and K at
points A(z=z;) and B(z = z,) respectively, then

W =iK, log (z—z,) + iK; log (z—z,)

The velocity of A is due to the presence of other vortex at B and vice-versa.

Thus
- ( de ~iK,
Zl =| —— =
dz J,.,, z,-1,
and
ZZ =| ——— = =
dz ),_,, z,-z, z,-1,
Therefore,
Z2)=2Zy, 7,17,
or K,z +K,7, _ 0 e 9Kz +Kyzy) o
K, +K, dt\ K, +K,

Integrating, we get

K,z, +K,z,
K, +K,

= constant
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K.z, +K

o L B 1 divides AB in the ratio K, : K;. This point remains
K, +K,

fixed (not necessarily a stagnation point) and is called the

centroid G of the vortices at A and B.

The point

Further

AG GB AB { ) B@)
K, K, K,+K,

K
Therefore, AG= —2 _AB
K, +K,
V=r o=r—
dt
The velocity of A is
. 2
u, —ivy| = —=
o=l = -

K,AB K, +K
=282 BT AGo
K;+K, (AB)

K, +K
® = 1 2

where 5
(AB)

Thus, A moves with a velocity AG.o perpendicular to AG. Similarly B moves
with a velocity GB.o perpendicular to GB. So AB rotates with an angular
velocity ®. Further, neither vortex has a component of velocity along AB, it
follows that AB remains constant in length.

Vortex Pair. A pair of vortices of equal and opposite strengths is called a
vortex pair.

Let K and K be the strengths of the two vortices at A(z = z) and B(z = z)
respectively. Then the complex potential is

W =iK log (z—z;) — iK log (z—z5)
=W, + W, (say)

The velocity at A is due to the presence of the vortex at B and vice-versa.
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Therefore the velocity at A is given by

K -K

“N N

Al (z=2y) B

. ( szj iK
ui—ivy = | — =
dZ Z_Zl

Similarly, the velocity at B is

Uy —1vp = —dWl
2 2 iz -

—-iK iK

Zy =21 71171

= qi = |U1 —iV1| = £,
AB
K
Hu, —iv, F—— 71— 73| =AB
qz Hup —iv, | AB | |21 2]

Therefore, both the vortices have the same velocity.

Further, W = iK log 2 4
= ¢+iw=iK[log —— +i(91—62)} ‘9=tan“1
= v=Klog |22 =Klogr—1

) r
Therefore, the streamlines, y = constant, are —L = constant.
r
2

which are co-axial circles.

Thus the streamlines in case of a vortex pair are co-axial circles which have A
and B as limiting points.
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Example. A vortex of circulation 2 k is at rest at the point z = na (n > 1),
in the presence of a plane circular impermeable boundary |z| = a, around which
there is circulation 2rtAk. Show that

1

A =
n’ -1

Show that there are two stagnation points on the circular boundary z = ae'

symmetrically placed about the real axis in the quadrants nearest to the vortex
given by

cos® = (3n°-1)/2n’.
and prove that 0 is real.
Solution. The circulation of vortex is 2rk and thus the strength of vortex is k
Therefore, complex potential due to the vortex is

f(z) = ik log (z—na)

= f(z)=—ik log (z —na) | kon, a and the
function form are real.
- f(a/2)=—ik log | 2~ ~na

z

The complex potential, when the circular cylinder |z| = a is introduced into the
fluid, becomes f(z) + f (a2/z), by circle theorem.

Now, there is a circulation 2wAk around the cylinder. This is equivalent to the
line vortex at z = 0 of strength Ak.

Thus the total complex potential is

2
W =ik log (z—na) —ik log [a_ - naj +iAk log z
z

= ik log (z—na) —ik log (z - 3j+ i\k log z + ik log z + constant.
n

= ik log (z—na) —ik log (Z - Ej +ik (A +1) log z + constant (D)
n
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This is equivalent to the complex potential due to a vortex of strength k at

z=na, -k atz=a/n and (A +1)k at z =0 as shown in the figure

S

na

a
0(z=0) A’ (z = —j
n

(A+1)k -k

The velocity at point A is due to the motion of other two vortices (i.e.

excluding first term in (1))

Therefore,

(d_W) | -ik {ik(xﬂ)j
dz ),_.. a na
na-—-—

n

(Differentiating (1) and put z = an excluding Ist term of (1))

The vortex at A is at rest if

dw
dz

_ koA k

=0
Z=na na na——

=0

= A=

Hence the result

Now, from (1), we get

Puttingz =a ¢ and simplifying, we get

dw __ikeie 2n° cos0—3n? +1
dz a (n®—-2ncosf+1)n*-1)

The stagnation points on the circle, if any, are given by

d—VV:Oforz = ae'
dz

0
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FLUID DYNAMICS s
Thus
d—W =0 =2n’cos0—3n’+1=0
dz
3n% -1
= cosO = )
2n?

Now, we know that —1< cos 0 < 1 i.e. |cos6| < 1 therefore R.H.S. of (2) must lie
within these limits for 6 to be real

Let us write

3n?-1 3 1

f(n) = -
@) 2n’ 2n  2n?

Then

3 3
f(1)=1, and also, f'(n)=———+—
@ ®) 2n*  2n*

3 2
= ——(1-n)<O0forn>1
2n*

From here, we note that f '(n) < 1 for n > 1. Thus for n > 1, f(n) decreases
monotonically from 1 at n = 1 to 0 as n—co. For all n >1, real values of 0 are
obtained from (2). Two distinct values of 0 are obtained for any given n > 1,
one of the values is 0 = o, where 0 < o < /2 and the other is 0 =2n—a.
Hence the two stagnation points are symmetrically placed about the real axis in
the quadrants nearest to the vortex.

Vortex Rows

When a body moves slowly through a liquid, rows of vortices are sometimes
formed. There vortices can, when stable, be photographed. Here we consider
infinite system of parallel line vortices and two dimensional flow will be
presumed throughout.

Single Infinite Row of Vortices. We shall find the complex potential of
an infinite row of parallel rectilinear vortices (line vortices) of same strength K
and a distance ‘a’ apart.

First, let there be 2n+1 vortices with their centres on x-axis and the middle
vortex having its centre at the origin. The vortices are placed at points
z=+na,n=0,1,2,...... , symmetrical about y-axis. The complex potential
due to these vortices is
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—————+—+——>

—-3a —2a -a O Ia 2|a 3a

W =iK log z + iK log (z—a) + iK log (z—2a) +.....+ iK log (z—na)

+iK log (z+a) + iK log (z +2a) + ...... + iK log (z + na)

=iK log z (2> —a%) (z’-2%a%) (2 - 3%a)......... (z*-n"a%)
2 2 2 2
TZ V4 Z Z Z
=iKlog —|1-—||1- I-——— ... N
. a ( azj[ 2232J( 32a2J ( nzazj
+iK log E(—1)rl (a>.2%a% 3%%......... n’a%)
T

. . TZ
Ignoring the constant term and putting — =6, we get
a

. 02 02 0°
W =iK log6 (l—gj(l—nzan .......... (l_nznzj

Making n— oo, we find

W =K log sin = iK log sin > (1)
a

The velocity of the vortex at origin is given by
d

Qo = —d—[W —iKlog Z]Z=O | The motion is due to other vortices
z

= —i{iKlogsinE—iKlogz}
dz a

z=0
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Z
COS—

) T 1
=—K | -—& =
a . NZ 7z

SIn—

a z=0
which is indeterminate form and — 0 as z — 0. Hence the velocity at z = 0 is
zero. Similarly, all other vortices are at rest. Thus, the infinite row of vortices

does not induce any velocity by itself.

Now, the velocity at any point of the fluid other than the vortices is given by

_ . _ dW _-iKn 7z

=u—-1Iv=—-" cot—
q dz a a
i )
CiKn . K cos— (X +1y)
= cot{—(x +iy)} = a
a a $in = (x +iy)
a
yis LT )
 _iKn 2cosg(x +1y)smg(x—1y)
a ZSiHE(X+iy)sinE(X—iy)
a a
. 2nx . 2myi
_ _iKn sin . sm—a
o 2my . 21X
COS——1—CO0S——
a a
. 2nx . . 2wy
~ —iKT[ SmT—lsth
a coshw—cos%
a a
KT i 2 KT in 2™
a a a a
= u= , V=
cosh@—cos@ cosh@—coszlX
a a a a

Also, we have W = ¢ + iy = iK log sin 2
a

and w =¢—1iy =-iK log sin 22
a
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(¢ +iy) — (¢ —iy) =K log sin E—(—iKlog sinn—zj
a a

= 21y =iK log sin 7% sin 22
a a

Streamlines, y = constant, are found to be

2 271X
cosh Y COS—— = constant.

a a

Double Infinite Row of Vortices. Let us suppose that we have a system
consisting of infinite number of vortices each of strength K evenly placed
along a line AA' parallel to x-axis and another system also consisting of
infinite number of vortices each of strength —K placed similarly along a

parallel line BB'. Let the line midway between these two lines of vortices be
taken as the x-axis.

k

A TCNIINTNTN

T T Y
z,—2a Z,—a Zi Z+a Z1+2a

e e

Z,—2a Zr,—a Zo+a Z+2a

Let one vortex on infinite row AA' be at z = z; and one vortex on infinite row
BB’ be at z = 7, so that the system consists of vortices K at z = z; + na and
vortices—-K atz=z,+na,n=1,2, ....

The complex potential of the system is

Woik log{@—zl “na)e 1
n=0 (z—z, —na)(z—z, +na)

" N2 2.2
:iKZlog{(Z 2)" —n'a }
0

(2—22)2 —n’a’

w N2 2.2
=iK log rmn +iKZlog(Z 21)2 n232
Z—1Z, =l (z—z,)"—n"a
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=iKlOg (ﬁjﬁ{l—(z—zl)z/n%ﬂ} W

Z—1Z, )n-l 1—(z—22)2/n2a2

2,2

© 2
Now, since sinf =0 [ | (1 _ 9 J vV 0 real or complex,
n°m

n=l1

. Wz—-z,) mW(z-z
we get, on setting 6 = (z-2) _mz-2,)

a a
. mMz-z)) m™Mz-2z)) L (Z—zl)2
Sin = 1-—
a a g n’a’

a a el n’a’

N Mz—2,) _ n(z—zz)ﬁ (1_(Z_ZZ)ZJ

Therefore, equation (1) takes the form.

. 7Z—7Z
sinpZ=%)

W=iKlog | ——2& — (2)
sin Tti(z 23)
a

The velocity at any point P(z), not occupied by a vortex filament, is

u-—iv = —t—w = —iKA [cot A (z —z;) — cot A (z—2;)], where A= 1t/a
z

= 2iK\ sin A(z,—z1)/[cos A(zy—2z;1) — cosh (2z—z1 —23)] (3)

To find the velocity (u;, vi) of the vortex K at z = z;, we have

up —ivy = —{i {W—iKlog(z — Zl)}:|
dz

7=7]

=iK {kcotk(z—zz)—Xcotk(z—zl)+ 1 }
2=21],.,
Since

{cotk(z—zl) - }—)O as z—7,

Mz—1z,)
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Acceleration at a Point of a Fluid

Suppose that a fluid particle is moving along a curve C, initially it being at
point A(tp = 0) with position vector 1, . Let P and P’ be its positions at time t

and t + &t with position vectors T and T + dTrespectively.
Therefore, 61 = PP

P’(time t+0t)

P(time t)

A(t():())

The points A, P, P’ are geometrical points of region occupied by fluid and they
coincide with the locations of the same fluid particle at times ty, t, t + Ot
respectively. Let fbe the acceleration of the particle at time t when it
coincides with P. By definition

‘ (Changein particle velocity in time Jt)
3t—0 ot

f= (1)
But the particle vel. at time t is q(7,t) and at time t+03t it is q(T + Or,t + Ot).

Thus (1) becomes

[q(r+or,t+0t) —q(T,1)]

f= 1t (2)
80 ot
Now,
q(r+0r,t+0t)—q(r,t)  q(r+0r,t+0t)—q(r,t+ ot) N q(r,t+0t) —q(r,t +0ot)
ot ot ot
3)
Since t is independent of time t, therefore
Lt q(r5t+6t)_q(rat) :@ (4)

5t—0 ot ot
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Using Taylor’s expansion, we get

q(r+0r,t+0t) —q(r,t +0t) = (or - V)q(r,t +ot)+ € (5)

where || = 0[(5F)*]

0 0 0
- F(x+0x, y +0y, z + 0z) —-F(x,y,z) = | 0x — +0y— + 0z— | (F(x,y,
[ F(x+0x, y +0y, z + 0z) —F(X,y,z) (Xax y@y Zazj((XYZ)

2
+i 5X£+8yg+8zg Fxy,z)+ ...,
|2 Ox oy oz

and

SXi + SyQ + SZE =(0r-V), where
O0x oy 0z

5 =oxi+0yj+ozkv=""i+274 94
ox oy oz

But or is merely the displacement of the fluid particle in time ot, therefore,
or = q(T,t)ot (6)
Thus, from (5), we obtain

Lt q(r+0r,t+0t) —q(r,t + ot) ~(q
80 ot

-V)q (7)

where R. H. S. of (4) & (7) are evaluated at P(r,t). Hence, from (2), the
acceleration of fluid at P in vector form is given by

f:%qﬂq-vm ®)

Remark. We have obtained the acceleration i.e. rate of change of velocity
q. The same procedure can be applied to find the rate of change of any

physical property associated with the fluid, such as density. Thus, if F =
F(r,t) is any scalar or vector quantity associated with the fluid, it’s rate of

change at time t is given by

DF _oF

+(q-V)F
Dl a q-V)
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The operator DRtE§+((_1-V) is Lagrangian and operators on R.H.S. are

L - .. D . . o
Eulerian since T is independent of t. EIS also called material derivative.
In particular, if F = p, the density of the fluid, then

Dp op
P_-PiqgvVv
Dt ot @V

which is the general equation of motion for unsteady flow.

Components of Acceleration in Cartesian co-ordinates. Let u,v,w be the
Cartesian components of q and fj, f, f3 that of f i.e. @ = (u,v,w), f = (fi, f2,

f3).
Then from equation.

= 0q L, o
f=—"+4+(g-V)q, 1
5 H@vVia (1)
we get
ou ou ou
fi=—4+u—+v—+w—
ot ox oy 0z
ov Ov 0oV
fr=—+u—+v—+w—
ot ox 0Oy 0z
ow ow ow
fy=—4+u—4+v—+w—

which are the required Cartesian components of f .

In tensor form with co-ordinates x; and velocity components q; (i = 1, 2, 3), the
above set of equations can be written as

0q;

i

f; = % +q;q;;, Whereq;; =

Components of Acceleration Curvilinear co-ordinates. Before
obtaining the acceleration components in curvilinear co-ordinates; we obtain a
more suitable form of equation (1). as

f:%‘_HquQj—qx(vX@
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- q +V(lq 2
ot 2
We have

e va-@H8+@) @03
q-V)a=(q 1)8X+(q-1)6y+(q k) .

For any three vectors A, B, C, we have
Ax(BxC)=(A-C)B-(A-B)C
1.e.

(A-B)C=(A-C)B-Ax(BxC)

In particular, taking A=q, B = iA, C= gx—q we get

@-i)ZX—q:(a-ZX—qji qx[Ix—qj
12(3e)+(-3)
Similarly,
_-0q ~0(1_,) _ ([~ 0Oq
q D= —(—q )—qX(JX—j
dy “oy\2 oy

_~0q +0(1_5) _ (¢ aqj
‘k)—=k—| = - kx—
(q )Z (ijq{ 3
Adding (3), (4) and (5), we get

@-vm:Vquj—axZﬁx@—qj

=V@azj—ax(wq)

Thus, from (1), we obtain

dt ot

oq 1 _,) =
=—+V| - +

a (2qj xa
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Now, let (uj, uz, u3) denote the orthogonal curvilinear co-ordinates.

Also let q = (ql,qz,q3,f: (f1, £, 13) E: (&1, &, &3), where the terms have

their usual meaning. We know that the expression for the operator V in
curvilinear co-ordinates is

Vo i 0 L 0 i 0
- h, aUl,hz 8u2’h3 Ousy ’
where hy, h,, hs are scalar factors.

The components of & = curl q in the curvilinear system are given by

1 [ o 0
= ——(h ——(h
& h2h3_3 2( 343) 5 3( 2%)}
1[0 0
- —(h ——(h 7
s h3h1_5 3( 1q1) 5 1( 3Q3)} (7)
1 [ o 0
= ——h ——(h
&; h1h2_5 1( 2d>) 5 2( 1%)}

Using these results in (6), we find that

oq 1 0

f :El-'_z_h]a(q]z +q22 +q32)+ (€,95 —&39,)
0 1 0

e gtz " 2h, ou, 07 +02" 02+ (&, —gia) 8)
oq; 1 0

f = 8t3 " 2h; Ou, (q12 +q22 +q32)+ (€192 —&,49;)

which are the components of acceleration in curvilinear co-ordinates.

Now, we write the components of acceleration in cylindrical (r, 6, z) and
spherical (r, 0, ) co-ordinates.

Components of Acceleration in Cylindrical Co-ordinates (r, , z).
Here,

u=r,u=0u=z. and h =1, hy=r,h3=1
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Therefore, V= g,li’ﬁ
or r09 0z
and

£ = %__( ) _1d4; _dq,
0 oz r 00 oz

1%, o
( g)— ql q3

0
&= a(ch) o

or

£y = 1{&@ )_%} _ aq_zJFQ_z_l%

o0 or r r 00
Thus,
fi= agltlJraa(‘h +q; +Q3) (%%_%

b 2 P
-l q, 9 92 92 %
or r r 00

aq; aq, oq, 0q; oq,

)

0q;

=—L+ + + +
at Ch&r Q28r q38r Q38Z

04y 45, 9 Oar
2
or r r o0

_ aq +q_2an aq;, _9q;

+ + — 2z
a U T e B Ty

If we define the differential operator

2_i_ngq + 4 +q 9 then
Dt dt ot ' or 0 Pz

2 2
fl_Dql _% _Du_v° ~

Similarly, = DDqtz L %: _w >
r r
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Dq; _Dw
Dt Dt

3=

where (q1, 92 , q3) = (u, v, W)
Equation (9) gives the required components of acceleration in cylindrical co-
ordinates.

Components of Acceleration in Spherical Co-ordinates (r, , ). Here, ). Here,

u=r,u=0, us=y andh;=1,hy=r,hs3=rsin 6

Therefore, V= (é lﬁ ! 0 j

or’r 90 rsin0 oy
and )
1 0 0
= —(rsin0q;)——(r
S rzsine_ae( q3) aw((h)}
= 21 r(coseq3+sin68q—3j—raq—2
r°sin®| 00 oy
= 1 q30059+sin9.%—%
rsin0 a0 oy
1 0 o, .
§2=rsme{£(%)—a(rsme%)}
= L %—sine%—rsine%
rsin@| oy or
P R M 0,
w= r{&r(rqz) ae(ql)} } r[qzﬂ o o0
Thus,
fi =
10 q ) . ~0q
%+5§(q12+q22+q32)+ﬁ{%—q3sm9—rsmeﬁ}
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S P
r o 00
2
:5Ch+qlach+qza%+q3a%+ (%3 8q1_q_3
ot or or o rsin@oy r
oq; g3 93 9, aq
— _— - = _+__
Y
Dg, g5 43 0,40, q5 0
=—-—"*2-= where—=—+q,—+——+—"——
Dt r r Dt ot o r 00 rsin0 oy
. Dg; g3+q5 _Du_v’+w’ )
1.€. f]:———z_——
Dt r Dt r

£ = Dq, CICE —q3 coth EE_’_ uv—w?cot@

'
Dt r Dt r (10

Similarly,

Dq, 4 q;9; + 9,45 cotd _ Dw + w(u + vcot0)

f; =
: Dt r Dt r

Equation (10) gives the required comps of acceleration in spherical co-
ordinates.

Pressure at a point of a Moving Fluid. Let P be a point in a ideal
(inviscid) fluid moving with velocity q. We insert an elementary rigid plane
area OA into this fluid at point P. This plane area also moves with the velocity
q of the local fluid at P.

If §F denotes the force exerted on one side of SA by the fluid particles on the
other side,

then this force will act normal to dA.
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Further, if we assume that Lt oF exists uniquely, then this limit is called the
3A—0 OA

(hydrodynamic) fluid pressure at point P and is denoted by p.

Theorem :- Prove that the pressure p at a point P in a moving inviscid fluid
is same in all direction.

Proof :- Let q be the velocity of the fluid. We consider am elementary
tetrahedron PQRS of the fluid at a point P of the moving fluid, Let the edges of
the tetrahedron be PQ = 8x, PR = oy, PS = 6z at time t, where 0x, dy, 0z are
taken along the co-ordinate axes OX, OY, OZ respectively. This tetrahedron is
also moving with the velocity q of the local fluid at P.

X

Let p be the pressure on the face QRS where area is 0s. Suppose that < /, m,
n> are the d.c.’s of the normal to 8s drawn outwards from the tetrahedron.

Then,
[ds = projection of the area s on yz-plane.
= area of face PRS (triangle)
= Loy oy = 0%
2
Similarly,
mds = area of face PQS = %Szﬁx = 8228X
and
nds = area of face PQR = %gx.gy — 8X25y

The total force exerted by the fluid, outside the tetrahedron, on the face QRS is
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= —pds (Ii+mj+nk)

= —p (I8si+mds j+ ndsk)
= — g (8y5zf + 0z0OX 3 + OXOy lA<)

Let py, py, p. be the pressures on the faces PRS, PQS, PRQ. The forces exerted
on these faces by the exterior fluid are

%pXSySZ i, %pyESZSXE, %pZBXSyﬁ respectively.
Thus, the total surface force on the tetrahedron is

—g(8y8zf+8z8x3+8x8yf<)+%px8y82f
+ Lp bz0x)+ Lp,oxdyk
2Py J 2Pz M

1 o “ ~
= 5[(px —p)dydzi+(p, —p)dzdx j+(p, —p)6x5yk] (1)

In addition to surface force (fluid forces), the fluid may be subjected to body

forces which are due to external causes such as gravity. LetF be the mean
body force per unit mass within the tetrahedron.

Volume of the tetrahedron PQRS is %h Os i.e. é ox dy 0z, where h is the
perpendicular from P on the face QRS.
Thus, the total force acting on the tetrahedron PQRS is = %61_36)( dyoz (2)

Where p is the mean density of the fluid.
From (1) and (2), the net force acting on the tetrahedron is

% [pX - p)SyBZf +(py —p)dzdx 3 +(p, —p)Oxdy 1A<]+ é p F5x3ydz

Now, the acceleration of the tetrahedron is %and the mass% p Ox Oy 0z of

fluid inside it is constant.
Thus, the equation of motion of the fluid contained in the tetrahedron is
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% [(pX —p)Oyoz i+ (py, —p)dz6x 3 + (P, —p)oxdy 12]+ % p Fox8ydz

_1 Dgq fema
= 6p6x6y8z( Dt ) (f=m a)

i.e.
(px—p) !

2 A ~ ] - 1 Dq
0si+ —p)mds j+ (p, —p)ndsk + —p Fhds = —phds—
si+(py, —p)mdsj+(p, —p) 3P 5 Phos T

On dividing by Ss and letting the tetrahedron shrink to zero about P, in which
case h—0, it follows that

pxpP=0,py—p=0,pp=0

i.e.
Px = Py =Pz =DP- (3)

Since the choice of axes is arbitrary, the relation (3) establishes that at any
point P of a moving ideal fluid, the pressure p is same in all directions.

Equations of Motion

Euler’s Equation of Motion of an Ideal Fluid (Equation of
Conservation of Momentum). To obtain Euler’s dynamical equation, we
shall make use of Newton’s second law of motion.

Consider a region t of fluid bounded by a closed surface S which consists of
the same fluid particles at all times. Let q be the velocity and p be the density
of the fluid.

Then p drt is an element of mass within S and it remains constant.

A

n

/P

The linear momentum of volume 7t is
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M= qpdt mass x velocity = momentum.
T

Rate of change of momentum is
—=—[qpdt=] —pdt (1)

The fluid within 7 is acted upon by two types of forces

The first type of forces are the surface forces which are due to the fluid exterior
to .

Since the fluid is ideal, the surface force is simply the pressure p directed along

the inward normal at all point of S.
The total surface force on S is

| p(-n)dS=—[ pndS =[ Vpdr (By Gauss div. Theorem) (2)
S S T

The second type of forces are the body forces which are due to some external
agent. Let F be the body force per unit mass acting on the fluid. Then F pdrt
is the body force on the element of mass edt and the total body force on the
mass within 1 is

[Fpdt 3)

By Newton’s second law of motion, we have

Rate of change of momentum = total force

= Iccil—?pdr :II_:pdr—ijdr

dg =
= J‘(d—(tlp—Fp+ijdt:O

Since dt is arbitrary, we get

R
—p—-Fp+Vp=0
q P PTVP
1.e.
4 _r-lvp (4)
dt p
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which holds at every point of the fluid and is known as Euler’s dynamical
equation for an ideal fluid.
Remark. The above method for obtaining the Euler’s equation of

motion, is also known as flux method.

Other Forms of Euler’s Equation of Motion. (i) We know that

d_D_2 .y

dt Dt ot

therefore equation (4) becomes.

aq oo = 1
§q+(q-v)q=F——Vp S
p

But (q-V)q =V(%q2j+gxq, E=curlg

Therefore, Euler’s equation becomes

aq 1_2j |
A4y -G |+Exg=F-~Vp. 6
it (zq Exq 5 p (6)

Equation (6) is called Lamb’s hydrodynamical equation

. : _ = d p p
Cartesian Form. Let g =(u,v,w),F=(XY,Z)and Vp=| —,—,— |,
(i) i et q=( ) F=( ) and Vp (GX oy oz
then equation (5) gives
ou Ou Ou ou 1 op
—4+u—+vVv—+w—=X-———
ot ox oy oz p OX
@+u@+vﬁ+wﬁz —l@ (7)
ot ox oy 0z p OX
ow ow ow 1 0p
—+u—+V—Fw—=7Z———
ot 1024 oy oz p oz

Equation (7) are the required equations in Cartesian form.

(iii) Equations of Motion in Cylindrical Co-ordinates. (r, 6, z). Here,

q = (u,v,w), dr=(dr, rd, dz)
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voo %P 1P o
“lor'roo oz

Let F = (Fr, FO, Fz).

Also, the acceleration components in cylindrical co-ordinates are

dg _(du_v® dv uvdw
dt (dt r’'dt r dt
Thus, the equation of motion

49 _g_1 Vp. becomes

dt p

du_v'_p 1

dt r p or

ﬂ_‘_ﬂzpe_l@ (8)
dt r rp 00

dw 1 op

[Ty

(iv) Equations of Motion in Spherical co-ordinates (r, 0, v). Here,

q=(u,v,w), dr =(dr,rd6, rsin0dy)

v (@1 1 &
or 'r 00 rsin® dy

Let F= (Fr, FO, Fy). The components of acceleration in spherical co-ordinates

are

E_ du vZ+w? Q_wzcotﬁ uv dw vwcot0
dt r O dt r r o dt r

dt T de

Thus, the equation of motion take the form
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du_V2+W2 . 1 op

dt r p or
2
dv_wrcotd uv_., 10p )
dt r r pr 00
d_ijvwcote=F 3 1. p
dt r V' prsin® oy
Remark :- The two equations, the equation of continuity and the Euler’s

equation of motion, comprise the equations of motion of an ideal fluid. Thus
the equations

op ., _
i | =0
ot iv(pq)

and 6—‘H(@-V)ﬁ:ﬁ—lvp
ot p

are fundamental to any theoretical study of ideal fluid flow. These equations
are solved subject to the appropriate boundary and initial conditions dictated by
the physical characteristics of the flow.

Lagrange’s Equation of Motion. Let initially a fluid element be at (a, b,
c) at time t = tp when its volume is dV( and density is po. After time t, let the
same fluid element be at (X, y, z) when its volume is dV and density is p . The
equation of continuity is

pJ = po (D
where J= M
o(a,b,c)

The components of acceleration are

o*’x .. 0%y . 0%z
=2 YT 2T
ot ot ot

5%

Let the body force Fbe conservative so that we can express it in terms of a
body force potential function Q2 as

F=-VQ 2)

By Euler’s equation of motion,
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da _g_1 p:—VQ—le (3)
dt p p

Its Cartesian equivalent is

. P (4)

We note that a, b, c, t are the independent variables and our object is to
determine x, y, z in terms of a, b, ¢, t and so investigate completely the motion.

To deduce equations containing only differentiations w.r.t. the independent
variables a, b, ¢, t we multiply the equations in (4) by 0x/0a, dy/0a, 0z/0a and
add to get

2
A 5)

e 6)

— 4+ 2 S == (7)

These equations (5), (6), (7) together with equation (1) constitute Lagarange’s
Hydrodynamical Equations.

Example. A homogeneous incompressible liquid occupies a length 21 of a
straight tube of uniform small bore and is acted upon by a body force which is
such that the fluid is attracted to a fixed point of the tube, with a force varying
as the distance from the point. Discuss the motion and determine the velocity
and pressure within the liquid.

Solution. We note that the small bore of the tube permits us to ignore any
variation of velocity across any cross-section of the tube and to suppose that
the flow is unidirectional.
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We u be the velocity along the tube and p be the pressure at a general point P at
distance x from the centre of force O. Also, let h be the distance of the centre

of mass G of the fluid, as shown in the figure.
[ [ >

@
U

X

Equations of motion of the fluid are :

(i) Equation of Continuity : Here, q = (u,0,0)
Therefore, equation of continuity becomes

ou
—=0=u=u(t 1
o (t) @)
(ii) Euler’s Equation : In this case, it becomes
Qw1
ot 0ox p OXx p OXx
= %:—ux—é% (2) | using (1)

where —uxi is the body force per unit mass, p being a positive constant.

We observe that equation (2) can be written as

du 1d
=P 3)
dt p dx

Integrating w.r.t. X, we get
du x?

p
D— _— - 4
xt 1L +C 4)

where C is a constant and at most can be a function of t only. w.r.t. (X, y, z)

Let I'T be the pressure at the free surfaces x =h—/and x =h + [ of the liquid.

Then using these boundary conditions, equation (4) becomes

du 1 2 I1
h-l)—=—wh-0)"——+C
( )dt 2u( ) 5
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du 1 2 I1
h+/) —=——uwth-/)"——+C
( )dt 2u( ) >

which on subtraction give

du
- —_uh 5
M (&)

But in the fluid motion all fluid particles move with the same velocity u and u
dh

T dt

.. Equation (5) becomes
d*h
= =—ph (6)
a2

Now, we solve the different equation (6), which can be written as
D*+wh=0
Here auxiliary equation is
D’+u=0 =D=+/ui

Therefore, the solution of (6) is

h=Acos(\/Et+e)

where A and € are constants which can be determined from initial conditions.

To Calculate Pressure :(— We have from (3) & (5)

—ux ———=—ph
[ o dx [
= l@zp(h—x)
p dx

Integrating w.r.t. x , we get

P22 ip 7)

The boundary condition x =h -/, p =11 gives
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2
E=u.l—+D
p -2
2
ie. D=H/p+%
Therefore, equation (7) becomes
B:Ll(h——)()z+n/p+},ll_2
p -2 2
-0 B2 -2
p 2
U B i th—x-1)
p 2

Example. Homogeneous liquid is in motion in a vertical plane, within a

curved tube of uniform small bore, under the action of gravity. Calculate the
period of oscillation.
Solution. Let O be the lowest point of the tube, AB the equilibrium level of
the liquid and h the height of AB above O. Let a and [ be respectively the
inclinations of the tube to the horizontal at A and B and 6 be the inclination of
the tube at a distance s along the tube from O. Let a and b denote the arc
lengths of OA and OB respectively and suppose that at time t, the liquid is
displaced through a small distance z along the tube from its equilibrium
position.

Due to the assumption of uniform small bore the flow is unidirectional along

the tube. y

A

Let the velocity be u(s, t).

The equation of continuity gives a =0 (1)
S
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= u is independent of s
Euler’s equation of motion becomes

ou 1
—+u—=-gsn0—-——
ot 0s p Os
Using equation (1), this gives
d_u_ oo Ldp
dt ot p ds
1.e. du = —gg _1Ldp
dt ds pds
Integrating it w.r.t. s, we find
ds
dy
) 6
dx sin O = dy
ds
S du =—gy-— Pic
dt p

where C may be a function of time t at the most.
The boundary conditions at free surface are

(1) p=Ilfory=h+zsina,s=0OM=a+zatM
(i) p=Ilfory=h—-zsinf,s=0ON=—(b-z)atN.

Using these boundary conditions in (3), we get

(a+72z) d—u:—g(h+zsinoc)—E+C
dt p

—(b—2) du_ —g(h—zsinp) _a +C
dt p

Subtracting these we get
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(a +b) % =—gz(sino +sinf3) 4)

Since
dz du d*z
== —=——,
dt ~ dt dt?
equation (4) becomes

d’z ) .
(a +b) d_2 =—gz(sino +sinf)
t
d*z
= ? =—uz, (5)
where _ g(sinot+sinf3)
a+b

We observe that equation (5) represents the simple harmonic motion. It’s
period T is given by

1
T=E:2n ‘a+b. ’ .
m g(sina. +sin )

Bernoulli’s Equation (Theorem)

For Steady Flow. We shall obtain a special form of Euler’s dynamical
equation in terms of pressure. The Euler’s dynamical equation is

d_r lyp (1)
dt p

where q is velocity, F is the body force, p and p are pressure and density
respectively.
F be conservative so that it can be expressed in terms of a body force potential

function Q as

F=-VQ 2)

When the flow is steady, then %(tl =0 3)

Therefore, in case of steady motion with a conservative body force equation
(1), on using (2) and (3), gives
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2 P
dq o9 _._
=—+(qV
i a (Q.V)q
or((ilqz(%q+ [%GZJ—QXE and@:O
1_, 1 _ =
= \Y% Eq +Q [+—Vp=qx§ 4)

p

Further, if we suppose that the liquid is barotropic i.e. density is a function of
pressure p only, then we can write

le = vj@
p p
Using this in (4), we get
VBQMQH@}:qXE. (5)
p

Multiplying (5) scalarly by a and noting that
G- @x8)=@xq-E=0, we get
q-v{lq%m@}:o ©)
2 p

If S is a unit vector along the streamline through general point of the fluid and
s measures distance along this stream line, then since § is parallel to q,

therefore equation (6) gives

a1 d " § is parallel to q
g2 +0+[P =0 q=ks
os| 2 p 5
sV=—
0os
Hence along any particular streamline, we have
l<—12+Q+I@:c (7)

2 p

where C is constant which takes different values for different streamlines.
Equation (7) is known as Bernaull’s equation. This result applies to steady
flow of ideal. barotropic fluids in which the body forces are conservative.
Now, if § is a unit vector taken along a vortexline, then, similarly, we get

Prepared by:Y.Sangeetha,Department of Mathematics, KAHE
Page 56 of 69



Unit-2

Bernoulli's Theorem and Circulation

%(_12 +Q+] dp =C along any particular vortexline. (Here, we
P

multiply scalarly by E)

Remark. (i) If qxE&=0 ie. if §&¢& are parallel, then streamlines and
vortex lines coincide and q is said to be Beltrami vector.

If E =0, the flow is irrotational.
For both of these flow patterns,

l612+Q+I@:C
2 P

where C is same at all points of the fluid.
(ii) For homogeneous incompressible fluids, p is constant and

The Bernoulli’s equation becomes

1_,
+—-q"+Q=C
2q

o |

so that if a is known, the pressure can be calculated.

For Unsteady Irrotational Flow. Here Hlsre also,swepsisppdsat thia¢ thodyody
forces are conservative i.e. F =-VQ
For irrotational flow, q=-V¢ =V xq=0

The equation of motion

a—q+V(lq2j—q><(V><(_])=F—le (1)
ot 2 p

in the present case becomes.

) 1_, 1
~v| 2|4V =g? |=-VQ--V
(3)law)-va i
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= V l(_12+§2+f@—@ =0 | Barotropic fluid.
2 p ot

Integrating, we get

L) dp 09 _
54 +Q+Ip 5 = f® (2)

which is the required equation.
jdp_p
p P

If the liquid is homogeneous, then and the equation (2) become

1 _» p_ 0
—q +Q+=——=1(0).
54 o (t)

Further, for study case,

o9

— =0, f(t) =const
2t (t)

lc_lz +Q+P =const
2 P

Example. A long straight pipe of length L has a slowly taperingagi¢cuigrcircular
cross section. It is inclined so that its axis makes and angle a to the horizontal
with its smaller cross-section downwards. The radius of the pipe at its upper
end is twice that of at its lower end and water is pumped at a steady rate
through the pipe to emerge at atmospheric pressure. It the pumping pressure is
twice the atmospheric pressure, show that the fluid leaves the pipe with a speed
U give by

U= 2{gLsinoc+E},
15 p

where I1 is atmospheric pressure

Solution. The assumption that the pipe is slowly tapering means that any
variation in the velocity over any cross-section can be ignored. Let the
velocity at the wider and of the pipe be V and the emerging velocity be U

(velocity at the lower end). The only body force is that of gravity, so F=—g ]
and consequently Q = gy
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0, 00~ 0Q -~

F=-VQ = —qj=-VQ=—-""i-2"7-20k
ox oy~ oz
oy
Bernoulli’s equation, P +%q2 +Q=C | .- For water p is const.
p

p,1 > _
becomes —+§q +gy=C (1)

p

Applying this equation of the two ends of the pipe, we get

y

—+§.V2 +gLsinoc=E+§U2 (2)  |[for

lowerend y =0

Let a and 2a be the radii of the lower and upper ends respectively, then by the
principle of conservation of mass

n(2a)’V =na’U

U
= V= 3)

From (2) and (3), we obtain

1 (U? . 1 .,
IMT+—p — |+gpLsma =—pU
2‘{16} &p 2p
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1 , U2 .
= —pl U ——— [=I1+gpLsmo.
29( 16] gp

= ng2 =11 +gpL sino.

= U= 32 gLsinoc+E
15 p

Hence the result.

Example. A straight tube ABC, of small bore, is bent so as to make the

angle ABC aright angle and AB equal to BC. The end C is closed and the tube
is placed with end A upwards and AB vertical, and is filled with liquid. If the
end C be opened, prove that the pressure at any point of the vertical tube is
instantaneously diminished one-half. Also find the instantaneous change of
pressure at any point of the horizontal tube, the pressure of the atmospheric
being neglected.

Solution. Let AB=BC=a

A

1\_._

z

M= M

Pl .

(IR

]

l —>u

B ¢<— xX—>Q } C

When the liquid in AB has fallen through a distance z at time t, then let P be
any point in the vertical column such that

AM=z,BP=x,BM=a—z

If u and p be the velocity and pressure at P, then equation of motion is

@+u_:—g——— (D) |u =u(x,t)
and equation of continuity is

ou
—=0 ie.u=u(t
x 1.e.u=u(t)
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Therefore, equation (1) becomes

u_ , 1o
a ° pox
Integrating. w.r.t. X, we get
ou 1
x—=—-gx.——p+C 2
P pp (2)

Using the boundary condition p = 0 at x = a—z, we get
ou
C=(a-z)—+gla—-z
(a-z) ot gla—1z)

Therefore, equation (2) becomes

x%:—gx—§+(a—z)%+g(a—z)
ie. E: —(x—a+z)(%+gj (3)

Now, we take a point Q in BC, where BQ = x’ and let u’, p’ be the velocity and

pressure at Q, then

' 1

P _ —(x'—a)% | z =0 and g is not effecting 4)

Equating the pressure at B, when x =0, x" = 0, we get

(a—2) (% + gj = a—' | From (3) & (4)

Initially, when C is just opened, then z =0, t=0 and we have

&),

ou -g . (Ou
- (atjo 2 ‘e(atjo & )

Therefore, from equation (3), initially, the pressure at P is given by
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ou
pi:—(x—a){[—j +g} [P0 =(Pi=o
p a Jy
= _—zg(x—a)
=  po= %pg(a—x) ©)

But when the end C is closed, the liquid is at rest and the hydrostatic pressure
at P is
p1 = pgh = pg (a—x) lh= AP = a—x (7)

From (6) and (7), we get

1

Po :Epl

Thus, the pressure is diminished to one-half.
Now, from (4), initial pressure at Q is given by

p'O__ " @ = (x'— @ = — 'g
S a)(atjt_o‘(x a)(atjt:o‘(a 3

1 1 '
= Po=5pe@-x)
When the end C is closed, the initial pressure (hydrostatic) p, at Q (or B or C)

iIs pga.
Therefore, instantaneous change in pressure

1 1 1 1 1
=P, —Po =pga—§pg(a—><) = Epg(aH)

Example. A sphereisat rest in an infinite mass of homogeneous liquid of

density p, the pressure at infinity being I1. Show that, if the radius R of the
sphere varies in any manner, the pressure at the surface of the sphere at any

time 1S
22 2
o+ P LR){d_Rj
2| di? dt

Solution. In the incompressible liquid, outside the sphere, the fluid velocity q

will be radial and thus will be a function of r, the radial distance from the
centre of the sphere (the origin), and time t only.
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The equation of continuity in spherical polar co-ordinates becomes

1 d
r—za(I'ZU.) =0 (1)
_ 0
~q =(u,0,0), u=u(r,t), V= (a ,0,0)

_ 106,,
V-q=——("u).
q rzar( u)

1.e. sphericalsymmetry

— r’u = constant = f(t)

On the surface of the sphere,

r=R,u= R
Therefore,
f(t)=R* R
and thus
u=R’R (2)

We observe that u — 0 as n — oo, as required.
From (1), it is clear thatcurl @ = 0

= the motion is irrotational and q =-V¢

= u=—@ = —a—(l):i | From (2)
or or r?

= o=t (3)
The pressure equation for irrotational non-steady fluid motion in the absence of

body forces is
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ie. %+%u2 —% = C(¢). 4)

where C(t) is a function of time t.

Ast— 0, p = I, u = f/r* > 0, p—>0

so that C(t) =I1/p for all t 5)
Therefore, from (2), (3), (4) and (5), we get
5t \2
P_I, O/ RR (6)
p p o 2( r?
But q=3(RZR)=RR2 +2RR?
ot dt

At the surface of the sphere, we have r =R and equation (6) gives

-0, LorR2 +RR?)- 1R
p 2
Ooog2yrir-lRre

p 2

= E+1(3R2+2RR) (7)
p 2

ol O

d*(R*) (yp d : -
" +(R) = QRR)+ ()

= 2RR+2R?)+R?

=2R R +3R?

Therefore, from (7), we obtain
1 |d*R?) (drRY
=II+— +| —
P 2 p{ dt? dt

Hence the result.
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Thus, the impulsive pressure at the surface of the sphere of radius a/2 is given
by

2
p=P /l—élga—:w/7ﬂpa2/6

4\ 3 pal/2

Hence the result
Stream Function

When motion is the same in all planes parallel to xy plane (say) and there is no
velocity parallel to the z-axis, i.e. when u, v are functions of x, y, t only and w
= 0, we may regard the motion as two-dimensional and consider only the
cases confined to the xy plane. When we speak of the flow across a curve in
this plane, we shall mean the flow across unit length of a cylinder whose trace
on the xy plane is the curve in question, the generators of the cylinder being
parallel to the z-axis.

For a two-dimensional motion in xy-plane, q is a function of x, y, t only and
the differential equation of the streamlines (lines of flow) are
%:ﬂ re.vdx —udy =0 (1)
u \%

and the corresponding equation of continuity is

CLIRCU 2)

ox Oy

We note that equation (2) is the condition of exactness of (1), it follows that (1)
must be an exact differential, dy(say). Thus

vdx —udy =dy = @dx+@dy
Ox oy

A

so that u= , V=
Ox

oy

This function w is called the stream function or the current function or
Lagrange’s stream function.

Obviously, the streamlines are given by the solution of (1) i.e. dw = 0 i.e.
w = constant. (For unsteady flow, streamlines are given by y = f(t))
Thus, the stream function is constant along a streamline.

From the above discussion, it is clear that the existence of stream function is
merely a consequence of the continuity and incompressibility of the fluid. The
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stream function always exists in all types of two dimensional motion whether
rotational or irrotational. However, it should be noted again that velocity
potential exists only for irrotational motion whether two dimensional or three
dimensional.

Physical Interpretation of Stream Function :-

Let P be a point on a curve
C in xy-plane. Let an
element ds of the curve
makes an angle 6 with x-

axis. The direction
cosines of the normal at P
are

(cos (90 +0), cos 6, 0)
ie. (—sin 0, cos0, 0). 0
The flow across the curve C from right to left is

= [ q-nds,wheren =—sin0i+cos0],

C
q:uerVj
= [ (—usin®+ vcosO)ds
C
) @sin9+@cos6 ds uz—ﬁ, Vzﬁ
c oy Ox oy ox

c \Ox ds Oy ds

= i (%dx+%dyj

= j dy= (w8 — ya)
C

where y, and ygp are the values of y at the initial and final points of the curve.
Thus, the difference of the values of a stream function at any two points
represents the flow across that curve, joining the two points.

Corollary. If we suppose that the curve C be the streamline, then no fluid
crosses its boundary, then
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(B—ya)=0 = y=ya
i.e. yis constant along c.

Relation Between and (i.e. C R equationR) equations) :-

We know that the velocity potential ¢ is given by

_ oo o
= Vh=— =2,
= (@x ayJ
ie. NP SV ()
[0 oy
Also, the stream function y is given by
u= —@,V = N 2)
oy [8)
From (1) and (2), we get
a—(l):@anda—d):—@ (3)
ox 0y oy 1)
Equations in (3) imply

Vip=0and V’y=0
i.e. ¢ and yare harmonic functions.
Again, from (3), we get

Vo=grad p=—q=—(ui+v))

:Vl//xf(:grad 1,//><1A<
i.e. grad ¢ = (grad W)xf( = —kx grad y
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ie. Vo =Vyxk (4)
Again, from (3), we note that
9oy _oy(_ 0o
Oox 0x Oy \ Oy
N oy, 9 _,
Ox Ox 0Oy Oy
ie. V-V =0 (5)

Thus, for irrotational incompressible two-dimensional flow (steady or
unsteady), d(x, y), w(X, y) are harmonic functions and the family of curves

¢ = constant (equipotentials) and w = constant (streamlines) intersect
orthogonally.
Exercise. Show that u = 2¢ xy, v = c(a+ x : —yz) are the velocity

components of a possible fluid motion. Determine the stream function and the
streamlines.

Remark. We shall consider the study of two dimensional motion later
on. At present we continue discussing three dimensional irrotational flow of
incompressible fluids.
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Possible Questions

Part-B(5x8=40 marks)

1. Show that the product of the speed and cross sectional area is constant along the stream

2.

[op B &2 I > G

oo

filament of a liquid in steady motion.
The velocity in a three dimensional flow fluid for an incompressible fluid is given by @
=2xi-yj-zK. Determine the equatin of the stream line passing through the point(1,1,1).

. Derive Equation of motion when the force is conservative.

. Explain Beltrami’s flow

. In‘irrotational motions of 2-D.P.T(0q/0x)*+( (0q/0y)*=q.A%q.

. A velocity field is given by = -xi+(y+t)j find the stream function and the stream line for the

field at t=2.

. Explain Reynold’s numbers
. Discuss about Energy equation
. Explain the displacement and momentum thickness.

Part-C(1x10=10 Marks)

1. Discuss about Energy equation and explain the displacement and momentum thickness.

2. Explain the integral equations at boundary layer

3. Derive Euler’s equation of motion.

4. A velocity field is given by = -xi+(y+t)jfind the stream function and the stream line for
the field at t=2.
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Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

A force is said to be --- if the force can be

derivable from the potential. conservative non conservative acceleration surface conservative
A flow is called a Beltrami’s flow when--- g.E=0 g*E=0 q/E=0 g+E=0 g*E=0
Bernoulli’s equation occurs when the motion is-- unsteady rotational steady irrotational steady
The ----  flow can occurs when the vertex and stream
lines coincide viscous flow beltrami’s flow  invisid flow normal flow beltrami’s flow
When the motion is both steady and irrotational then---  .E *E +E -E .E
The product of the cross sectional area and magniyude
of the vorticity is ~ ---- along a vortex filament parallel zero constant normal constant
When the forces are conservative and the pressure is a ' ' ' ' '
function of the density,then-- .a=0 *a=0 +a =0 -a=0 .a=0
circulation around a closed circuit ‘c’ is defined as [q.rdr fq.dr [gx.rdr [gx+dr fg.dr
Euler’s equation of motion is dqg/dt=F- P dq/dt=F dg/dt=F- p/P qd/dt=- Q dq/dt=F- p/P
---  fromis called the acceleration potential Q-[8P/p [J 6 P/ p] +dp [[6P/p] Q+[dP/p Q+[8P/p
g*E=0 can become zero when E #0,but g*E can be to
each other parallel non parallel zero normal parallel
The motion is both steady and irrotational if .y=z0 + =0 .y =0 *a=0 Gy =0
Which is the constant of kelvin’s theorem a p B 1) o}
Circulation is always defined around a ---- ciruit open parallel closed normal closed
When a conservative force f a potentialQ such that F= Q F=- Q F£ *Q Fz .Q F=- Q
A force is said to be conservative if the force can be
derivable from the potential density area viscosity potential
The euler’s theory is confined only for ideal or inviscid
fluid viscid stream inviscid fluid inviscid
The rate of change of linear momentum is equal to the

of the forces acting on a body sum product proportional difference sum

is a body force per unit mass q F o F
the inward normal is p q n” F nA
-- is the motion the rate of change of linear Newton’s second

momentum =the sum of the forces acting on the body  Kelvin’s theorem Energy equation Newton’s second law Euler’s theorem law

rate of change of circulation is d/dt(cir ¢)= [b.nds d/0t(cir c)= [q.dr 3§/dt(cir c)= [dq/dt.dr &/8t(cir c)= fa.dr d/0t(cir ¢)= [b.nds

Accelaration is given by a=dm/dt a=dq/dt a=dr/dt a=dc/dt a=dq/dt
is the internal energy per unit mass E F r a E
Density of a fluid is denoted by F p a E o

Part of the head

of fluid is utilized Fluid discharges
Absolute value of inOvercoming through orifice with Comparison of
viscosity is detemiined friction negligible velocity viscosity is done.

Comparison of

In Red wood viscometer viscosity is done.

The point of

intersection of Centric of

buoyant force and Centre of gravity Centric of displaced  Midpoint between displaced volume
Centre of buoyancy is centre line of the body of the body volume fluid C.G. and metacentric.  fluid

Cannot drop and Cannot exceed
Cannot exceed the again increase Is independent of Is a function of Match the reservoir
reservoir temperature downstream Match number number only temperature

The line along

which the rate of The line along the

In isentropic flow; the temperature

The line of equal

pressure drop is

geometrical centre

Fixed in space in steady

Fixed in space in

A stream line is velocity in a flow uniform of the flow flow. steady flow.
The flow of water in a pure of diameter 3000mm can be
measured by Venturimeter Rotameter Pilot tube Orifice plate Pilot tube



Can never occur in Can never occur

frictionless fluid when the fluid is Depend upon
Apparent shear forces regardless of its motion at rest cohesive forces All of the above All of the above
Inertial forces to Inertial forces to Elastic forces to Viscous forces to Inertial forces to
Weber number is the ratio of surface tension viscous forces pressure forces gravity surface tension
A small plastic boat loaded with pieces of steel rods is
floating in a bath tub. If the cargo is dumped into the
water allowing the both to float empty, the water level
in the tub will
water level in the tub will
Rise Fall Remains same Rise and then fall Fall

A flow in which each liquid particle has a definite path
and their paths do not cross each other, is called Steady flow Uniform flow Streamline flow Turbulent flow Streamline flow
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UNIT - 111

Three Dimensional Irrotational Flow

Acyclic and Cyclic Irrotational Motion. An irrotational motion is called
acyclic if the velocity potential ¢ is a single valued function i.e. when at every
field point, a unique velocity potential exists, otherwise the irrotational motion
is said to be cyclic. Clearly, only acyclic irrotational motion is possible in a
simply connected region.

For a possible fluid motion, even if ¢ is multivalued at a particular point, the
velocity at that point must be single-valued. Hence if we obtain two different
values of ¢, these values can only differ by a constant.

At present, we restrict ourself to acyclic irrotational motion for which we prove
a number of results related to ¢.

Mean Value of Velocity Potential Over Spherical Surfaces. Theorem :
The mean value of a ¢ over any spherical surface S drawn in the fluid
throughout whose interior V¢ = 0, is equal to the value of ¢ at the centre of the
sphere.

Proof. Let ¢(P) be the value of ¢ at the centre P of a spherical surface S of
radius r, wholly lying in the liquid and let ¢ denotes the mean value of ¢ over

S. Let us draw another concentric sphere ® of unit radius. Then a cone with
vertex P which intercepts area dS from the sphere S, intercepts an area do from
the sphere ® and we have

do r

— =— =dS=rdo (1)
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Now, by definition

_Jeds
*="as e
S
1

1
=5 £¢r2dm= E!qxim

o6 1.0 1. 06dS
do=—[ X
o 4my or 4rg or r?

1 8
— b 2
Anr? £ or as @

2 .
| . " is constant on S

Since the normal n to the surface is along the radius r, therefore on S, we have

% - % = VoA 3)
From (2) & (3), we find
= T:I‘z [div(V)dr | Gauss theorem
= 4;2{V2¢dr=0, | V=0

where 71 is the volume enclosed by the surface S.

Thus % =0 = ¢ = constant.

This shows that ¢ is independent of choice of r and hence mean value of ¢ is
same over all spherical surfaces having the same centre P. When S shrinks to
point P, then ¢ = ¢(P)

Corollary.  The velocity potential ¢ can not have a maximum or
minimum value in the interior of any region throughout which V2¢ =0.

Proof. If possible, suppose that ¢ has a maximum value ¢(P) at a point P. We
draw a sphere with centre P and radius €, where € is small. Then the mean

value ¢ of ¢ must be less than ¢(P) i.e. ¢ < ¢(P) as ¢(P) is maximum. This
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is a contradiction to the mean potential theorem in which ¢ = ¢(P). Thus ¢
cannot have a maximum value. Similarly ¢ cannot have a minimum value.

Theorem. In an irrotational motion the maximum value of the fluid
velocity occurs at the boundary.

Proof. Let P be any interior point of the fluid and Q be a neighbouring point
also lying in the fluid. Let us take the direction of x-axis along the direction of
q atP. Let gp and qq denote the speed of particles at P & Q respectively.

2
Then qﬁz(g—d)J
X/ p
2 2 2
and qé:(?) +[%) +(?j
X/ q 9 2 ) q

Since Vp=0 = 9 (V) =0 =V? (@j =0
ox Oox
o9

= —satisfies Laplace equation. Therefore, by mean value theorem

Ox
o0

(corollary), a—cannot be maximum or minimum at P. Thus, there are points
X

such as Q in the neighbourhood of P such that

2 2
af ah 2 2
2, (5, = e
Q P
= gp cannot be maximum in the interior of fluid and its maximum value |q]|, if
any, must therefore occur on the boundary.
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"~ Note. q = |q| may be minimum in the interior of the fluid as g =0 at the
stagnation point. i.e. q iS minimum at stagnation points.

-~ Corollary. In steady irrotational flow, the pressure has its minimum value
on the boundary.

Proof. From Bernoulli’s equation, we have

B+%q2= constant (1)

P

Equation (1) shows that p is least when q” is greatest and by above theorem, q°
is greatest at the boundary. Thus, the minimum value of p must occur only on
the boundary.

Note. The maximum value of p occurs at the stagnation points, where q =
0.

Theorem. If liquid of infinite extent is in irrotational motion and is
bounded internally by one or more closed surfaces S, the mean value of ¢ over
a large sphere ., of radius R, which encloses S, is of the form

- M
=—+C
¢ R

where M and C are constants, provided that the liquid is at rest at infinity.

Proof. Suppose that the volume of fluid acrossing each of internal surfaces
contained within Y., per unit time, is a finite quantity say —4nM (i.e. -41M
represents the flux of fluid across 2. or S). Since the fluid velocity at any point

o9

of 2 is R radially outwards, the equation of continuity gives

)

But
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Therefore,
L% R2gp =M
4rmy OR
N 8(1) -M
4n2 aR " R?
—
4TC OR 5 '[ pde>

Integrating w.r.t. R, we get
1 [ ¢do = M. c
uss R

where C is independent of R.

d= M
= — —+C
£¢(R2j R
)y
AN
j— :—+
47R?> R
- M
= =—+C
¢ R

(2)

To show that C is an absolute constant, we have to prove that it is independent
of co-ordinates of centre of sphere ). Let the centre of the sphere > be
displaced by distance 0x in an arbitrary direction while keeping R constant,

3)

then from (2),

8 _oC

Ox 0OX

| - R is constant

Also, %_0)1 — [bdw =ij @dw

OXx OXx|4mns dns OX

) o D
= (), since & =0 on 2, when R—o0 as the liquid is at rest at

infinity.
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.. From (3), we get

oC )
— =0 = Cis an absolute constant.

Ox
Hence

q_) = % +C, where M and C are constants.

Corollary. When closed surfaces within > are rigid then no flow can take
place across them, therefore, in that case M = 0 and $ =C.

This shows that mean value of ¢ over any sphere enclosing solid rigid
boundaries is constant.

- Kinetic Energy of Irrotational Flow

We shall prove that K.E. is given by

P, 0d
T==| ¢—dS,
2£ ¢8n

where ¢ is the velocity potential.
We know that if t be the finite region occupied by the fluid, then the K.E. is

given by

T= %J pa*de = J pagae

1 _
= 2] p(VoVo)r |g=-V¢
If fluid density is constant, then
T= g{(vq).vq))dr 1)
Now, div (¢ Vo) = V.(¢VP) = V. V. + ¢ (V. V)
= V. Vo + o Vo
=Vp. Vo, | V=0
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Therefore, from (1) & (2), we get

T= g_[div (dVe) dt = %I oVo. ndS | By Gauss theorem
T S

:BI ¢(V.n)dS = EJ. ¢@ds, where S=So+S;+S, +...+ S,

denotes the sum of the outer boundary surface Sy and the inverse boundaries
S1, So,..., Sy and 1 is unit normal to S drawn out of the fluid on each
boundary.

Also T = —gj d)%ds, where n is unit normal to S drawn inside the fluid on
S

each boundary.

© Kelvin’s Minimum Energy Theorem. The kinetic energy of irrotational
motion of a liquid occupying a finite simply connected region is less than that
of any other motion of the liquid which is consistent with the same normal
velocity of the boundary.

Proof. Let T be the K.E., q be the fluid velocity and ¢ be the velocity potential

of the given irrotational motion. Let t be the region occupied by the fluid and S
be the surface of this region, then

’T:%{ q%h:vgi(—v¢fdr

% 4s

_ P00
—2£¢an (1)

Let T; be the K.E. and q; be the velocity of any other motion of the fluid
consistent with the same normal velocity of the boundary S (or consistent with

the same kinetic boundary condition)
For both the motions, the continuity equation is satisfied i.e.
V-g=0=V-g 2)

The boundaries have the same normal velocity

ie. q-n=gq,-n
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ie. (@ --fi=0 3)

Now, let us consider

TI—T:%J; (qlz—qz)dr
=2 br@-o+@ -0
=2 W@k L] @ -0l

=—p] V. (@@ -t +%j @, -@)2dt (4)
From vector calculus, we have

V0@ -] =V @ - D+ V- (@ 9
ie. Vo (@ —9= V6@ - D] -4V (@ -9
Therefore, from (4), we find
Ti-T=-p[ V0@ -DIdr+p[ OV-4(@ ~dDde
+ gj @ - de

=—p| 0@ - -0dS+p[ ¢V-(q, - Pdr
S T

+ %_f (@ -9 *de IBy Gauss theorem
= % [ @-9%c | using (2) & (3)
>0

= T,>T.

Hence the theorem.
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Kinetic Energy of Infinite Liquid. Theorem : An infinite liquid is in
irrotational motion which is at rest at infinity and is bounded internally by solid
surface (s)S. Show that the K.E. of the moving fluid is

1. o
T=Lleo®4ds
PR

where S = S; + S, + ... Sy denotes the sum of the inner boundaries Sy, S, ...,
Sn and 1 is normal to S drawn out of the fluid on each boundary.

Proof. Let X be a large surface enclosing the surface (s) S and 1 be the region
bounded by S internally and by > externally.

Using the result of K.E. for finite liquids, we find that the K.E. T* for finite
region T is given by

s P69 454 P62
T _2£¢and3+2£¢ands (1)

Now, div q = V*¢ = 0 throughout t and the divergence theorem accordingly
gives

[divqdt=0 = [n-qdS=0
T SUS

~ [A.vedS=0 = | Pas=0
SUS suz On

X 454X gs—
= [51dS+[2lds=0 2)

Since the surface S is solid, there is no flow across it, hence

g

—dS=0 3
£8n ©)
Therefore, from (2), we get
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j%dS:O )

z

For the surface 2, as 2. goes to infinity, the liquid is at rest
= q=0=>V$=0 = ¢ =constant = C (say) (5)

Hence, as 2. goes to oo, the K.E. of the liquid is

P, 0 p (09 :
T* > T==|¢0—dS+=c|—dS | Using (5)
2! on 2 ié‘n
- % £ ¢%ds | Using (4)

Hence the result

~ 7 Remark. We note that the K.E. for finite and infinite liquid has the same
expression.

Theorem. Show that acyclic irrotational motion is impossible in a finite
volume of fluid bounded by rigid surfaces at rest or in infinite fluid at rest at

infinity and bounded internally by rigid bodies at rest.

Proof. If possible suppose that acyclic irrotational motion is possible and let ¢
be the velocity potential. Then, K.E. of the fluid is

p 2 P, 0
T==|(Vd)"dt==|o—dS 1
5 I (Vo) dr=2 £ o= (1)
Where S is the sum of all the rigid boundaries when t is finite or the sum of

internal rigid boundaries when 7 is infinite.

Now, since the boundaries are rigid, then at every point of S, the normal
velocity is zero

1.e. % =0 at each point of S 2)

From (1) & (2), we get

[ q*dt=0 =¢*=0= g =0 at each point of t.

= liquid is at rest.

Hence there is no motion of fluid.

Prepared by:Y.Sangeetha,Department of Mathematics, KAHE
Page 11 of 94



Unit-3 Two Dimensional Motion 2016-Batch

=> acyclic irrotational motion is impossible.

Corollary. If the solid boundaries in motion are instantaneously brought to
rest, show that the motion of the fluid will instantaneously cease to be
irrotational.

Proof. If possible, assume that the motion remains irrotational, then the K.E. is

given by

s

1 _ 1
T= Ep'[qurzipi ¢a (1)

When the surface S (solid boundary) is brought to rest instantaneously, then

q =0 at each point of S.

= ¢ = constant at each point of S.
o .
= — =0 constant at each point of S.
= gq=0int
= there is no motion.

Thus the motion is no longer irrotational.

Uniqueness Theorems. Theorem 1: If the region occupied by the fluid is
finite, then only one irrotational motion of the fluid exists when the boundaries
have prescribed velocities. OR Show that there cannot be two different forms
of acyclic irrotational motion of a given liquid whose boundaries have
prescribed velocities.

Proof. If possible, let ¢; and ¢, be two different velocity potentials

representing two motions, then

Vi = 0=V (1)
Since the kinetic conditions at the boundaries are satisfied by both flows,
therefore at each point of S,
o o
o = Oy )
on  On
Let ¢ = (1)] - ¢2
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= V% = V?¢; — V2, = 0 at each point of fluid. and

on  on
each point of S.
= ¢ represents a possible irrotational motion.
Also, the K.E. is given by
P2 P4 OO 9
= dt==|¢—dS=0 —=0
5 J @°dv=7 £ b= ~

= @ =0 at each point of fluid.

= V¢ =0 at each point of fluid.
:>V(|)1—V(|)2=O:>V(I)1 =V(|)2

G

=0 at
on

which shows that the motions are the same. Moreover ¢ is unique apart from
an additive constant which gives rise to no velocity and thus can be taken as

zero (without loss of generality)

Theorem II. If the region occupied by the fluid is infinite and fluid is at rest at
infinity, prove that only one irrotational motion is possible when internal

boundaries have prescribed velocities.

Proof. If possible, let there be two irrotational motions given by two different

velocity potentials ¢; & ¢,. The conditions on boundaries are

X1 _ Oy

on  on
and @, =q, =0 at infinity
Let us write ¢ = ¢; — ¢
= V=V -Vih=0-0=0

= motion given by ¢ is also irrotational.
Further from (3), we get

9 _090 _0b | using (1)
on_ on  on

= q-Ai=0 = q=0 on the surface

Also,
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q=-Vo=-Vé, +V9¢,
=q,-q,=0at © | using (2)

Therefore q =0 everywhere on the surface and also at infinity.
Hence we get ¢ = constant = ¢; — ¢, = constant 4)
Without loss of generality, we can take the constant on R.H.S. of (4) to be zero

(it gives no motion) and thus we get ¢; = ¢»

. Remark. The above two uniqueness theorems are useful in finding
solutions of V2¢ = ( subject to prescribed boundary conditions.
Axially Symmetric Flows

A potential flow which is axially symmetric about the axis 6 = 0, «t (i.e. z-axis
is taken as the axis of symmetry) has the property that at any point P, all the
scalar and vector quantities associated with the flow are independent of

azinuthal angle y such that ais 0, where (r, 0, y) are spherical polar co-

\y/
ordinates.
Z
P(x,y,z)
(r, 6, y)
r
0 0
Y
U
X Q
The equation of continuity div q= 0 for steady flow of an incompressible fluid
becomes.
1 0,, 1 o0 .
——(r +————(sinfq,) =0 1
2o A0t e a0 M) )

For irrotational motion q=—V¢, where ¢ is velocity potential and thus

_ 9% _ 169
o ¥ T
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From equation (1), we have

iﬁ(ﬁ@}r#ﬁ(smeﬁj:o (2)
r? or or) r*sin® 90 00

Let a solution of (2) in separable variables r, 0 has the form
¢ =—-R(1) ©(0) (3)
Using (3) in (2), we get

ﬁ{rzﬁ(R@)}F_.l g[sinG£(R®)}=0
or| o sin® o0 o0

= @)ﬁ r28—R +—,R 0 sin98—® =0
or sin© 00 09

o LdfpdRY)__ 1 4 inp4® (4)
R dr dr ®sin 6 doO do

The L.H.S. of (4) is a function of r only while the R.H.S. is a function of 0
only. The equation can therefore be satisfied if and only if either side is a
constant, say n(n+1) and thus we get

1 d{ ,dR
— P2 = 1 5
Rdr(r drj n(n+1) ©)
and
d sin@d—® +n(n+1)@sin6=0 (6)
do do
To solve (5), we put
R=r" :>d—R =mr™?!
dr

Thus (5) = ii(rzmrm_1 )= n(n+1)
r™ dr

= m %(r"yrl ): r"n(n+1)
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= m (m+1) r" =" n(n+1)
= (m2 + m—nz—n) =0
= (m—n) (m+n+1) =0
= m=norm=—(n+l)
Therefore, solution of (5) can be written as
R(r) = A, 1 + Br ™V

To solve (6), we put

cosO =
d_dud . gd
do dodp dup

Therefore, equation (6) becomes.

— sinO a sin@(—sin(i))@ +n (n+1) ®sinB=0
d dp

)

:>i sin29@ +n(n+1)®=0
dp du

-4 (1—cosze)@ +n(n+D)O=0
dp dp

- 4 (1—p2)@ +n(n+1)O=0
dp dp

Equation (8) is a Legendre’s Equation and possesses a solution known as

Legendre Function of the first kind P,(p)

Therefore,
O="P,(1)
Hence the general solution of (3) is of the form
o(r, 0) =-R(r) ©(6)
= —[A, 1" + B, r ™| P, (cos 0)
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( complete solution is the sum of all such solutions i.e. >, ....... )
n=0

Uniform Flow. Consider the flow which corresponds to a potential given
by (9) with
Ay=US,,B,0, (n=0,1,2,...... ) | Sjjis knonecker delta
Sii=1S;j=0fori#]
Where U is a constant.
Since P; (cos0) = cos0, equation (9) becomes
d(r, 0) =—Ur cos 6 =-Uz z=r1cosd
Thus

which is a uniform streaming motion of the fluid with speed U along the
direction of z-axis or the axis 0 = 0.

Sphere at Rest in a Uniform Stream. Consider an impermeable solid
sphere of radius ‘a’ at rest with its centre at the pole of a system of spherical
polar co-ordinates (r, 6, y). The sphere is immersed in an infinite
homogeneous liquid with constant density p, which, in the absence of the
sphere, would be flowing as a uniform stream with speed U along the direction
0=0.

The presence of the sphere will produce a local perturbation of the uniform
streaming motion such that the disturbance diminishes with increasing distance
r from centre of sphere. We say that the perturbation of the uniform stream
tends to zero as r—>co.

In this problem z-axis is the axis of symmetry. Undisturbed velocity of
incompressible fluid is UK ie. q=U k
= the velocity potential ¢y due to such a uniform flow would be

¢o = —Uz = —-Ur cosO

When the sphere is inserted, the undisturbed potential —Ur cos® of uniform
stream has to be modified by “perturbation potential” due to the presence of the
sphere. This must have the following properties.

@) It must satisfy Laplace equation for the case of axial symmetry

(i1) It must tend to zero at large distances from the sphere

So, we write  ¢(r, 0) =—-Urcos 0 + ¢; (1, 0) (r>a)
where ¢, satisfies the Laplace equation together with boundary conditions
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@ = —Ucos@+%
or or

% =01ie. velocity normal to

sphere is zero atr =a

09,

=>—=+4+UcosO (r=a,a<0<m)
or

and
[Vdi| — 0 as r—>oo.

Hence a suitable form of function ¢, is
& =—-BT> cosd

So, we assume (in view of (9)) that

d(r, 0) = —Ur cosO —Ez cosO (1)
r

The constant B is to be determined from the fact that there is no flow normal to

the surfacer = ai.e. (@J =0
ar r=a

= —U cos0O + 2—]33cos(9=0 :B:%Uaz'
a

Thus (1) becomes
3

d(r, 0) = —Ur cosO —%cose
r

a3
=-U|r+ —ZJCOSG (2)

2r

Now, the uniqueness theorem II infer that the velocity potential in (2) is
unique.
The velocity components at P(r, 0, y), (r > a), are

3
qez—lﬁz—U(Ha—jsine 3)
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=— —=0.
v rsin® oy

Different terms related to motion are obtained as follows.

Two Dimensional Motion

2016-Batch

(i) Stagnation Points : Stagnation points are those points in the flow where the
velocity vanishes i.e. ¢=0. Thus these points are obtained by solving the

equations
3
U{l - a—Jcos@ =0
r
and
a3
Ul 1+ =3 Slne =0
2r

which are satisfied only by r = a, sin6 = 0. i.e. r = a,

4)

0 =0, © Thus the

stagnation points are (r = a, 0 = a) and (r = a, © = ©) on the sphere. These are
referred to respectively as the rear and forward stagnation points.

(ii) Streamlines : The equations of streamlines
dr _rd6 _ rsin6dy
q: do q\y

for the present case, become

dr rdo

_ rsinOdy

3 - 3
U(l—ijcos@ —U{1+a3Jsin6
r 2r
= dy=0 = y =constant.
3 3
r(l - a—SJCOSGdO = —{1 + a—3J sin0O dr
r 2r
1f 21 +a’°
ri r’-a’
N 2r +a’t?
2 —a’t!

Integrating, we get

and

]dr =-2cot0do

Jdr =-2cot0do

log (i —a’ ") =2 log sin® + log C
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I'3 —a3 .2
= log =—log sin"0 + log C
r

= $in’0 = %, where C >0
r’—a

For each value of C, above equation gives a streamline in the plane
y = constant. The choice of ¢ = 0 corresponds to the sphere and the axis of
symmetry.

(iii) Pressure at Any Point : The pressure at any point of the fluid is obtained
by applying Bernoulli’s equation along the streamline through that point,
taking the pressure at o to be of constant value p.. Thus, in the absence of
body force, the Bernoulli’s equation for homogeneous steady flow is

Pyliver=c

p 2
At infinity, p = p-and -V¢ = U k, we get
1

c=P=, 2
p

Thus

= po +2pU — 1 p (V)

P = P 2[3 2p
= P=Paw+

32 3 )2
%pUzép{Uz(li—J cos29+U2(1+%J sin’ 9}
|Vo=-q

1 a’ ’ a’ ’
=  P=pPo-— EpU2 (I_Fj cosze+(l+ﬁ) sin@—-1| (5

which gives the pressure at any point of the fluid. Of particular interest is the
distribution of pressure on the boundary of the sphere. It is obtained by putting
r=ain (5) and thus

1 a’ ’
p:po@—aplj2 (14‘;} sin29—1
I

= P —%pUz(%sinz 0 —1} =p, + épUz (4-9 sin’0)
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1
= Po +§ pU? (9cos’0 —5)
The maximum pressure occurs at the stagnation points, where 6 = 0 or . Thus
1 o
max = Poo +— U
P P > P

(Pmax- 18 also called stagnation pressure)

The minimum pressure occurs along the equatorial circle of the sphere where 0
=n/2

Therefore,

5 o
min. = Po = U
p p 3 p

A fluid is presumed to be incapable of sustaining a negative pressure, thus

8p,,

5p

At this stage the fluid will tend to break away from the surface of the sphere
and cavitation is said to occur. i.e. a vacuum is formed.

pmin.=0 =U=

(iv) Thrust on the Hemisphere : Now, we find the thrust (force) on the
hemisphere on which the liquid impinges, r =a, 0 <6 < /2.

Let oS be a small element at Py (a, 0, y) of the hemisphere bounded by circles

at r = a and at angular distances 0 and 6 + 80 from axis of symmetry
(i.e. z-axis)

Z!

The component of thrust on 8S is p cos® 6S. Hence the total thrust on the
hemisphere is along Z'O and is given by

pd

a

[=r0=ad0
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dS = (2mta sin 0)(ad0)
F= [p cosBdS

hemisphere

n/2

| pcosO (2ra sinB) (adb)
0

n/2
[ (2ma®) sin® cosd {pw + % pU’*(9cos” 0 — 5)}d9
0

(using value of p at boundary)

2 |
~ ——pU? |.
na{pm 6P }

3.3. Sphere in Motion in Fluid at Rest at Infinity. Let a solid sphere of

[P

radius ‘a’ centred at 0 be moving with uniform velocity ~Uk in
incompressible fluid of infinite extent, which is at rest at infinity. Z-axis is the

axis of symmetry and k is unit vector in this direction. (As the sphere is
moving with velocity -Uk = the relative velocity of fluid if the sphere be

considered to be at rest is Uk 2

The boundary value problem for ¢ is now to solve

V=0 (1)
such that _—84) =-U cos0, (r=a) (2)
or
and
Vo) =0, (r—>o) 3)

The present case is also a problem with axial symmetry about the axis 6 = 0, ,
SO

¢ = ¢(r, 0)
Also, since P(cos0) = cosO | Legendre’s function

and the boundary condition (2) implies that the dependence of ¢ on 6 must be
like cos0, therefore ¢ has the form

d= —(Ar+ %)Pl (cos0) = —(Ar+ %)cos@

However, to satisfy (3), it is necessary that A = 0, and then from (2), we get B
= l Ua’.
2
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Thus the solution for ¢ is

3
a

= cosO
¢ 2r?

From here, the velocity components are obtained to be

8 —Ua® _18p -Ua®
_%_ cosh, q = %0 YA
a2 e T e T o8

qr =

where (r, 0, y) are spherical polar co-ordinates. The various terms of
particular importance related to this motion are obtained as follows.
(i) Streamlines : The differential equations for streamlines are

dr _rd6 _rsin6dy
q; 9o q\y

) dr rd® rsin 0dy
ie. 3 = 3 =

—Ua- Ua” . 0

—— —cos®  ———sin@

r 2r

= dy =0 = y = constant.
and

g= 2 cotd dO = logr=2log sinO + log C

r

= r=C sin°0

Therefore, streamline lines are given by r=C sin”0), y = constant

(ii) K.E. of the Liquid : Let S be the surface of sphere and p be the density of

liquid, then K.E. is given by

P, 00
T, = 2922 ds
‘ 2£¢8n

Where n is the outwards unit normal. But for the sphere fi is along radius

vector
Therefore, ((I)@j = (— (I)@)
al'l S aI' r=a
= (% Uacos Oj (U cos0)
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= %Uza cos°0
Therefore,
2
T, = E_f leacosz 0dS = pay _[n cos’0 (2ma sinB) (adb)
23 2 0
3172
= IR U (%052 0sin do
2 0
0<0<m
0<y<L2n
_ npa’lU? [_ cos’ 6}
2 3,
U2
= — a,2 U2 = a3 -
37 3P\ s
_ %MIUZ (6)

where M' = % T pa3 1s the mass of the liquid displaced by the sphere.

Also, K.E. of the sphere moving with speed U is given by
T, = %MUQ (7)

4 . . .
where M = 5n0a3 is the mass of the sphere, ¢ being the density of the

material of the sphere.

Therefore, from (6) and (7), total K.E. T is given by

1 M
T=T;+T,= E(M+TJU2 (8)

The quantity M + EX is called the virtual mass of the sphere.

3.4. Accelerating Sphere Moving in a Fluid at Rest at Infinity. The solution
derived above for ¢ is applicable when the sphere translates unsteadily along a
straight line. In the present case, we take U = U(t) and get the velocity
potential as

3
6=, 0,0 = —2 D% o5 (1)
2r
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The instantaneous values of velocity components and K.E. at time t are given

by
e &cos 0,qg = % sinB, qu = 0 | similar to steady case
I r
1 L)
and TZE M+EM U“(t) (2)

The pressure at any point of the fluid is obtained by using Bernoulli’s equation
for unsteady flow of a homogeneous liquid, in the absence of body force, as

U’ —%zf(t) (3)

p,1
p 2

where f(t) is a function of time t only.

Let p» be the pressure at infinity where the fluid is at rest, then from (3), we get

f(t) = 2= and thus
p

B:p_w_lﬁ2+@ 4)

pop 2 O

To find % , we proceed as follows :

Since U=-Uk = —U(t)lA< is the velocity of the sphere, the velocity potential
given in (1) can be expressed in the form

_12°@U-D

0=5""73

&)

since Tt is the position vector of a fixed point P of the fluid relative to the
moving centre 0 of the sphere, it follows that

= 0, _
U=a(—r) (6)
Also, since = T-T :rng-ﬁz—fﬁ[—} lusing (6)
ot ot
= (-D)-(-Uk)
:rU(f-E) r=rr
=1 U cosO
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:gzUcose (7
ot

Differentiating (5) w.r.t. time t and using (6) & (7), we get

o0 1 5| U? cosOoU 3U* ,
Ezza |:—r—3—r—25 r—3COS 6
_ 2’| Ucos® U? 3U%cos’0 U_@U
2l e v v “a
Also,
. U2a® 2,6
Ul=q’+q; = cos® 0+ sin” @
e "o r® 4r°
2.6
:U6a (C0s29+lsin26)
r 4

The pressure at any point of the fluid can be obtained from equation (4).
In particular, at a point on the sphere r = a

%(I) = _—21[Uacos6 +U? -3U? cos? 9]

= U 2 4 i
and U ZT(4 cos 0 + sin"0)

and the corresponding pressure is given by

B:p_w_ancose+lU2(9 cos’0 — 5) (8)
P p 2 8

The force (thrust) acting on the sphere is given by

F = [ pcosO(2nasin0) (adO)k

= 2ma’ IEJ.;[ {pw - % pUacosf + % pU?(9cos?® 6 — 5)} cos0 sinb dO

= 2TcpaSUIQ:l ﬂTca3p Uk =Lmuk
3 2\ 3 2

where M’ :% na’p is mass of the liquid displaced. This shows that the force

acts in the direction oppositing the sphere’s motion.
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-~ Equation of Motion of the Sphere. Let R be the external force per unit
mass in the direction of motion of the sphere. Let us use the result that the rate
of doing work is equal to the rate of increase in K.E.

Thus ru=&_Ldify M U2(t)
dt 2dt 2
| From (2)
= (M+&)Ud—U
2 dt
=N MIU_g_1lypdU 9)
dt 2 dt

If the liquid is not there, then M’ = 0 and the equation of motion of the sphere
is
M dU _

a R (10)

Comparing equation (9) & (10), we note that the presence of the liquid offers a

resistance of the amount %M'(il—[tj to the motion of the sphere

Let R’ be the external force per unit mass on the sphere when there is no liquid,

then
MR = external force on the sphere in the presence of the liquid.
=MR'-M'R'=(M -M") R’
3 3
Since, M= 4mca ,M'= 4mpa
3 3
R = (—G_ij' an
c

From equations (9) & (11), we find

ME — (_G_ij'_lM'd_U
2 dt
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M(L—Uz M_ﬁ, R'= G_‘l’ R' (12)
t M + cs+5

This is the required equation of motion of a sphere in a liquid at rest at infinity.
From equations (10) & (12), we note that the effect of the presence of the

liquid reduces the external force in the ration o —p : 6 + P

2
- Remark. We have already studied the impulsive actions in Unit-I, where,
we had derived the relation between the impulsive pressure P and the velocity
potential ¢ as P = p¢p. Here, we derive the expression for K.E. generated due to
impulsive action.

~ Kinetic Energy Generated by Impulsive Motion : Let us consider
incompressible fluid, initially at rest, which is set in motion by the application

of impulse Tl, 12,..., Tm to rigid boundaries Sy, S,,..., Sy respectively. The fluid
may be of finite or infinite extent. We know that the K.E. of the irrotational
motion generated in the fluid is given by

_ P40
T_2js¢6nds (1)

where S =S; + S, +... +S,,, 0 is outwards unit normal on each S;
Let the velocity given to S; be Ui (1=1,2,..., m), then on S;, we have

_% n.U, )

|g=-Vé
using (2) in (1), we get

- PY T i
T=-32 U, [, figds 3)

But the impulsive force exerted by the fluid on S; is R, where

R, = IsiﬁPdS:pjsiﬁ¢dS |P=pod
“)
Thus from (3) & (4), we get
T:_lgﬁi'ﬁi (5)
2
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-7 Example. Incompressible liquid of constant density p is contained within
a region bounded by two concentric rigid spherical surfaces of radii a, b (a <
b). The fluid is initially at rest. If the inner boundary is suddenly given a

velocity U1A<, where k is a constant vector, show that the outer surface
experiences the impulsive force

2npUa’b’ »
b’ -a’ k
Also calculate the corresponding K.E. generated by the impulsive motion.
Solution. The motion generated in the fluid is irrotational =
q=-Vé =V?¢=0 which is the equation of continuity. The boundary
conditions which ¢ must satisfy, are

—%ZUCOSO (r=a) (1)

—%=0 (r="b) @)

with (r, 0, y) spherical

polar co-ordinates and

with 6 = 0 along the

direction of k.

The form of boundary conditions suggest a
solution of the form

o =—(Ar+ BT?) cosd (3)

which satisfy (1) & (2) if

JEECNTINE
a b
—Ua® —Ua’b?
= A=, B
b’ —a 2(b”—a”)
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Thus, the solution of the problem is

Ua® b’
= r+ cosO
¢ b’ —-a’ ( 2r? J

Impulsive force acting on the outer boundary in the direction of k is

F= Usb (P),_,, cosO dSJﬁ

where (P)r=b = (PD)r=b

pUa? b’
= b+ cosO
b’ -a’ [ 2b*

_3 2Ua*bcos®
2 bP-a’
and for the outer sphere r = b,

dS =2mn (b sinb) (bdB),0<O< =

=3 pUa’b

05 g o0s 00’ sin 0)dOk
—a

Thus, impulsive force, F= I

31331
_ SnpUa’b’k Incosz 0sinO dO
b’ —a’® 0
2npUa’b’ »
T b _a’ k
Hence the result
Now, if U,, U, denote the velocity of spheres of radii a & b respectively and

R,, R, be the corresponding impulsive forces exerted by the fluid, then

3113
U, -UKT,=0,R,=F= sz;Uaaf
KE,T=-130, R,
2
lfe = — — 1— — -

Also,
R, = ApdS=R, = n¢dS

= R,-k=p[, A-k(¢),dS
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—a a

3 3
=—p jsa cosel:bga . (a + 2b 5 jcose:l 27 (a sinO) (a do)

( negative sign due to inwards normal i.e. on the inner sphere, pressure is
inwards)

_ pUa® 2a° +b’
b’ —a® 2a’

2na’ I g c0s”0 sind dO

3 —_2 7tpUa3(2a3 +b%)
3 b®—a’
Thus, from equation (4), we get

_1 npU%a’(2a’ +b?)

T
3 b3_a3

Deduction : If we let b—oo, then it becomes the case of a sphere of radius
‘a’ moving in an infinite liquid at rest at infinity and we get

3
mpU%al| 1424
1 b —lnpUz 3

T= Lt — a
bow 3 a3 3
-
(4 3)y2 1,002
_ iUt =i MU
4(3 paj 40!

where le = g npa’ is the mass of liquid displaced by the sphere r = a

- Example. (Motion of Two Concentric Spheres) : The space between two
spheres is filled with incompressible fluid. The spheres have radii a, b (a < b)
and move with constant speeds U, V respectively along the line of centres.
Show that at the instant when the spheres are concentric, the velocity potential
is given by

{(a3U—b3V)r+;(U—V)a3b3fz}cose

o=

b’ —a’

Also determine the impulse which is required to produce the velocity U to the
inner sphere, when outer sphere is at rest.

Solution. Let p be the density of the liquid.
We are to solve V2¢ = (0 under the boundary conditions
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—@:Ucose,r:a (1)
or

and _% =V cosO, r=>b (2)
or

where U & V are taken in the same direction.

The solution of the Laplace equation is of the form

& = —(Ar + BT?) cos@

= _% = (A—Z—BJCOSG
or r’
and thus the boundary conditions give
I T
a b

Solving for A & B, we find

A%

_ 313 31713
g- L U-Vjab” , _a'U-b'V
2 a’-b’ a’ —b’
Thus the velocity potential for this motion is

317 13 _ 313
¢=_M—a u-b er+%—(U V)a'b i}cose

a3 _p3 a3 —bd 12

{(a3U —b*V)r+ ; (U- V)a3b3fz}cose

b’ -a’
Hence the result

Impulse :- When outer sphere is at rest, then V = 0 and from equation (3), we

get
3 3
b= 3Ua - r+b2 cosO 4)
b’ —a 2r
Let M = g  a’c be the mass of inner sphere
4 5 . P )
and M = 3 ma’p is the mass of liquid displaced by the inner sphere.
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If I be the impulse, then by the principle of linear momentum, we have

I =MU + Total impulsive Pressure

ie. [=MU + | (P); -, cosO dS
b3 Ua3 b3 ) .
=MU + pjo R [a+ 2az]cos 0 27 (a sinB) (a dO)
|P=pd
npUa’(2a® +b°) ;n 2
i.e. I=MU + 3 3 J cos“0 sinO dO
b’ —a 0
3 3 1.3
- MU + gnpa U(2a” +b”)
3 b’ —a’

1M'UQa’ +b?)

=MU +
2 b3_a3

Deduction :- If b —oo, then it will be the case of a solid sphere moving

in an infinite liquid and

I =MU + MU:[M+MJU
2 2

Remark. The problem in which we solve the Laplace equation V¢ = 0

¢

when the normal derivative of ¢ i.e. —is given on the boundary, then such

type of problem is called a Neumann problem whereas the solution of
V2 = 0 when the value of ¢ is given on the boundary, is termed as Dirichlet

problem.
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Sources, Sinks and Doublets (Three-dimensional Hydrodynamical
Singularities)

Source : An outward symmetrical radial flow of fluid in all directions is
termed as a three dimensional source or a point source or a simple source.

Thus, a source is a point at which fluid is continuously created and distributed e.g. an
expanding bubble of gas pushing away the surrounding fluid. If the volume of fluid per unit
time which is emitted from a simple source at O is constant and equal to 47m, then m is termed

as strength of the source.

Sink : A negative source is called a sink. At such points, the fluid is
constantly moving radically inwards from all directions. Thus a simple sink of
strength m is a simple source of strength —m.

Velocity Potential due to a Simple Source of Strength m. Let there be
a source of strength m at a point 0. With O as the centre, we draw a sphere of
radius r around 0.

The flow across the
sphere per unit volume
is given by

[qAds
S

In case of a source there is only the radial velocity i.e. q has only radial
component q; .
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Therefore, the flow is

= [q, dS |q.n =q,, since q and n have same directions i.e.
radial direction. S

=q; (47 r2).
Thus, we get

4nm = q; (4n rz)
S

It is observed that curl q = 0 (except at r = 0), therefore for irrotational flow,

) |

-~ q=-Vé ©)

qr =

From (1) & (2), we find

which is the required expression for the velocity potential for a source.

Remarks. (i) For a simple sink of strength m, the velocity potential is ¢ =

m
r

(ii) A source or sink implies the creation or annihilation of liquid at a point.
Both are points at which the velocity potential (and stream function for two
dimensional case) become infinite and therefore, they require special analysis.

P

M .
z-axis
A simple Source in Uniform Stream. Let us consider a simple source of
strength m at O in a uniform stream having undisturbed velocity Uk, kbe the
unit vector along z-axis which is taken as the axis of symmetry of the flow.
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We shall find the velocity potential at any point P(z, 0, ). From P, draw L on

OZ. LetOP=r, |POZ =0 ;0M =2

We observe that the velocity potential of the uniform stream in the absence of

source is

g=-vo =Uk=-2%
Z

3@=—UZ>(I)=—UZ
0z

¢ =-Uz=-Urcos 0 (1)

and the velocity potential of the simple source is

b=

m
T

2)
Thus, the velocity potential of the combination is

o= ¢ + ¢ =—Ur cosO L
r

r

= —(Ur cose—Ej 3)

From here, the velocity components at P(r, 6, y) are

ob m
r=——=Ucos0+—
a or r’

la 0<0<m
qe:———d):—USine OS\IISZTC
r oo
9 _
oy
1 o
qW:_ - —d):()
rsin0 oy

The stagnation points (q =0) are given by U cos + 22 =0,sin6=0 =0=0
r

orm
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But 0 =0 gives r to be imaginary = 0 =nandr = \/%

Thus there is only one stagnation point (\/% , n,Oj

- Doublet (Dipole). The combination of a source and a sink of equal
strength, at a small distance apart, is called a doublet.

To Find the Velocity Potential of Doublet. Suppose that there is a
simple source of

strength m at O; and a
simple sink of strength m
at O,. Origin O is taken as
the mid point. of O; O,. It
is also assumed that there
is no other source or sink.
Let P be a fixed point
within the fluid and

O, -h O h Oim) z-axis

The velocity potential at P due to the combination of source and sink at O; and
02 18

m m mr,—nr

n n nr,

2 2

1, L5, (1 +1,)

_ m(E, —E)(5 +F)

nr,(r +1,)

But T, —% =2h and T, +1, = 2t
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m(2h).(2r) _ 4mhf

Thus o=
I, (5 +1,) nr(rn+r,)

2pr =
= L, where L =2mh (1)
L1, (1 +1,)
In equation (1), let us first keep 1 a finite constant and non-zero vector, so that

= |1t | is a finite constant and non-zero scalar. Let h — 0 along O,O.

Then m—oo in such a way that @ remains the same finite non-zero constant

vector. In that case, both rj, r,—r and thus under this limiting process, (1)
results in

_2pr _ prcosd  ucoso

23 r’ r?

¢ (2)

The limiting source sink combination obtained at 0 when we keep the direction
of h fixed but let h—>0 and m—»co with p = 2mh remaining a finite non-zero
constant, is called a three-dimensional doublet (or dipole). The scalar quantity
u is called the moment or strength of the doublet. The vector quantity @ = pfi
is called the vector moment of the doublet &1 (unit vector from 0, to 0)
determines the direction of the axis of the doublet from sink to source.

From (2), the velocity components are given by

_ 00 _2pcosb
qr ar I‘3

_ 104 _psin®
Y-
qy=0

The streamlines due to the doublet are given by

dr rd0  rsinOdy
2ucos®  usin® 0
r r
dr
= dy =0 = y =constant and —= 2cot0 d6
r
= r=A sin’0
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Doublet in a Uniform Stream. Let there be a doublet of vector moment
1= pk at O in a uniform stream whose velocity in the absence of the doublet is

Uk (U = constant).

P(r,0,y)

<
-Uk

o) M Z

Let P be a point in the fluid having spherical polar co-ordinates (r, 0, ), the

direction OZ of the doublets axis being the line 6 = 0. We shall find the
resultant velocity potential due to the combination of the uniform stream and
the doublet. We know that the velocity potential due to the uniform stream is

¢ = Uz = Ur cosO (1

and the velocity potential due to a doublet at O, is

s = HCOS0 )

r

Thus, the resultant velocity potential at P. due to the combination, is
b=+ = (Ur+pt>) cosd
From here, the velocity component are

qr = _% —(U—z—?jcose

r

10¢ .
=——=|U+—~ 0
P r@@( r3jsm
1 dp _
rsin 0 oy

Qy =

Stagnation points are determined by solving.

(U—z—gjcosezo,(U+%Jsiﬂ6=O |
r r

el
Il
ol
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/3
which are satisfied when sin@ =0 and r =(%’Lj

Thus, we have the two stagnation points.

() )os (3]

which lie on the axis of symmetry.

1/3
If wewriter=aie.a= (Ej ie. u= %U a3, then for the region r > a, we

obtain the same velocity potential as for a uniform flow past a fixed
impermeable sphere of radius a and centre 0. Thus, for r > a, the effect of the

. 1 . . . .
sphere is that of a doublet of strength p = EUa3 situated at its centre, its axis

pointing upstream. So the sphere can be represented by a suitably chosen
singularity at its centre.

Line Distribution of Sources. Let us consider a uniform line source AB
of strength m per unit length. This means that the elemental section of AB at a
distance. x from A and of length 6x is a point source of strength mox.

P
I d
r )
________ M
A «— X —ox B« xo—

X1

Let P be a point in the fluid at a distance r from this element, then the velocity

potential at P due to the point source is
r

The total velocity potential at P due to the entire line distribution AB (= 2I) is

p=m[— (1)
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Let AM = x;, BM = x,, where AM is the orthogonal projection of AP on AB.
Also, let PM =d, AP =1, BP =1, . Since r* = (x; —x)* + d* = (x;—x)* + 11° —
X 12, therefore from (1), we get

2/ dx

O Jx, —x)2+ (@2 —xD)

o=m |

2/ p 1
2 2 2 V| ——dx
m IOg{(Xl_X)+\/(X11_X) + (13 —xl(} -[a x? +a2

log(x +Vx% +a? )]B

0

o

=m

log{(xl —X) +\/(X1 _X)2 +(I‘12 _Xlz)}]zl
=m llog(x1 +1;) —logix2 —l—ﬁX% +r12 —X12 H

X| +T1,
=mlog( L j, wherer? —xi =d? =17 —x3.

X1 —21=X1 —AB=X2

. . 2 2 _ .2 2
Again, the relation r;” — x| =1, — X35

=
n+r1, +21
Thus, ¢ = m log LZ—FZI
a—+/
=m log| — (2)
a—|[

where 2a is the length of major axis of the ellipsoid of revolution through P
having A and B as foci since for such an ellipsoid r; + r, = constant. It follows
from here that the equipotential surfaces ¢ = constant are precisely the family
of confocal ellipsoid r; + r, = 2a obtained when a is allowed to vary.
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Expression for Velocity :- The velocity at P is given by q =-V¢ = —(%jﬁ

3)

Let P be any point on the ellipsoid specified by parameter a and P’ the
neighbouring point on the ellipsoid specified by parameter a + da, where

PP'=8nnh
Thus q = —mg[log—a+l}ﬁ = —m[—l b }@ﬁ: _2im @ﬁ 4)
on a—I a+l a-Il|on  a’—[*0on
The normal at P to the a-surface bisects the angle 2o between the focal radii
AP, BP.
Now,

(r; + 8r1)2 =r’+ (8n)2 —2r; 0n cos (180—a)

A
=r1” + (8n)* + 2r; &n cosa
2 K22
cosC = u ¢ b
2ab
=c?=a’+b?—2abcosC
B a C
= 2r; 81y = 2r; 8n cos o + (8n)* — (8ry)?
= dr; = én cosal | (8r1)* = (8n)*
o
= — =cosa
on
Similarly, % =cosa
on
Since, 2a=r11+17
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oy

oa )
= 2—=—+—=.=cos L+ CcosS 0. =2 cos O
on oOn On
oa
— =cosa
on

and thus from equation (4), the velocity of fluid at P is given by
__[Zchosa}ﬁ
i

Hydrodynamical Images for Three Dimensional Flows

Let us consider a fluid containing a distribution of sources, sinks and doublets.
If a surface S can be drawn in the fluid across which there is no flow, then any
system of sources, sinks and doublets on opposite sides of this surface S may
be said to be images of one another w.r.t. to the surface. Further, if the surface
S be considered as a rigid boundary and the liquid removed from one side of it,
the motion on the other side will remain unaltered.

Images in a Rigid Impermeable Infinite Plane. (i) Image of a source in
a plane : consider a simple source of strength m situated at A(a, 0, 0) at a
distance a from an infinite plane YY'.

We shall show that the
appropriate image system
for this is an equal source
of strength m at A'(—a, 0,
0), the reflection of A in
the plane.

=

To prove this, we consider
two equal sources f
strength m at A(a, 0, 0) &
A’ (—a, 0, 0) with no rigid
boundary. Let Py be any %
point on the plane YY'.

Then the fluid velocity at

Py due to the two sources

is

o
o
>
~~
o
N
(=]
N—"
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q=—— AP +—— AP q=—i=—F
(AP " (AP Y C 2
Py
(m) 0 (m)
A'(-a00) | _, A@00)
- qz(A?)3(AP0+A'PO)
0
" AP, +A'P,
m — 2m — = T
_ (20P,) = (OP,) |=(AO+0P,)+ (A, +OP
(AP} 0 (AP,)} 0 (_ 0)+(A'y 0)
= 20P,

This shows that at any point Py of the plane YY’, the fluid flows tangentially to
the plane x = 0 and so there is no transport of fluid across this plane.

Let ¢ denotes the velocity potential then, at all points Py on the plane YY', the
normal component of velocity is zero

0

_ %
on

a source at A', as required.

= 0. Hence, the image of a source at A in the rigid plane YY"’ is

(i) Image of Doublet in a Y

Plane : Consider a pair of
sources —m at A and m at B'(m) B(m)
B, taken close together and

on one side of the rigid %\ /
plane YY’. The image A'(—m) A(-m)
system is —m at A’, m at
B’, where A’ & B’ are
respectively the reflections
of A and B in the plane Y’
YY'. In the limiting case,

when B—A along BA in

such a way as to form a

doublet at A, we find that
the image of
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a doublet in an infinite impermeable rigid plane is a doublet of equal strength
and symmetrically disposed to the other w.r.t the plane.

Example. A three dimensional doublet of strength p whose axis is in the

direction OZ is distant a from the rigid plane z = 0 which is the sole boundary
of liquid of constant density p, infinite in extent. If p, be the pressure at oo,

. . avs
show that the pressure on the plane is least at a distance N from the doublet

Solution. Let there be a
doublet of strength p at
the point A with OA = Y
aand YY' (ie. z = 0)
be the infinite plane.
Then the image system ca—o

is an equal doublet of 0 A(p) 7
strength p at A’, the
reflection of A in the
plane z = 0, and the
axis along ZO. The Y’
line OZ is taken as the (z=0)
initial line 6 = 0 and

plane z =0 is 0 = /2.

so that P(r, 6, y) is confined to the region 0 < 0 < /2. Let AP=r1,, AP=n,
and a, o be the angles which these lines make with the axis of the doublets as
shown in the figure.

Then, the velocity potential at P is

v : P(r,0,y)
I I :
(05) :
o I
z VAL
A'(wa 0 a A(w) M Z
pLcosa,  HLCOoSsoL,
b=t (1)
I )
17 =1* +a’ —2racos0
where s o 2)
r; =r°+a” +2racos0

(By cosine formulae in A POA, POA’)
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AM OM-OA rcosO-a

But cosaly =
I'l rl rl
and cos (180 —ap) = AM:AO+OM =a+rcose
T L 1,
(a+rcos0)
= cosop=——-—-—7"-"-
0}

Using these relations in (1), we get

rcosf—a —(a+rcosH)
et e

= - 3)
I r;

3 {rcos@—a rcos@+a}

Further from (2), we have

or _
21 — =2r—2acosf :@=ﬂ
or or 9

Similarly. %: r+acose,%= rasin®
b) 5]

Thus from (3), the velocity components are given by

4= 09 _ u{co:@ —3(%)%(rcos@+a) B C03Se +3(%ji4(rcose—a)}

or I 1Y) I I

—u {cos@ _3 (r+acosb)(rcosb+a) cosb N 3(r—acosO)(rcosd —a)}

1“23 1“25 r13 r15
) (rcosb—a) @ ) (rcosO+a) %
100 | rsin® 00 ) rsinB 00
Qo=———="|—5—+3 2 -———3 7
rdd r| g 1 15y I,

Prepared by:Y.Sangeetha,Department of Mathematics, KAHE

2016-Batch

Page 46 of 94



Unit-3 Two Dimensional Motion

p| rsin® 3rasinO(rcos6—a) rsin@® rasinB(rcosb+a)
== + - +3
r| r oy o
1 1 2 2

qy =0

When the point P lies on the plane YY’ or 6 = /2, we have 1 =r; =1’ + a’
and so at (r, /2, y), the velocity components are

qr=-6u ra/(r2 + a2)5/2, q0=0,q,=0.
Along the streamline through this point, Bernoulli’s equation is

1—2 Pw
+— =const=—-,
2q

p

o o

where @ =0 at infinity.

Thus, the pressure at any point on the plane YY" is given by
1 2,22 /02 | 25
p:pw—ap[36p a’r /(r +a”) ]

18pp?a’r?

i.e. p(r) = poo -
(r2 +212)5

Now,

p'(r) = % = 36p;,tzazr(4r2 —az)/(r2 +a?)°
r

which gives  p'(r) =0 whenr = %a

a a
""=—1<0,p'|=+|>0
p(z j p(z j

. . . . a
1.e. p'(r) changes sign from negative to positive when r passes through —

Also

D a
=pis mlnlmumatrza 0 =mn/2
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i.e. at the point Py (%, n/2,\yj

The distance PyA is given by

. . 5 .. )
Hence p is least at a distance > a from the doublet and the minimum value is

A
Pmin. = P 2pM 5 a6

Images in Impermeable Spherical Surfaces. We have already studied
the effect of placing a solid impermeable sphere in a uniform stream of
incompressible fluid, taking the case of axial symmetry. Here, we discuss the
disturbance produced when a sphere is placed in more general flow.

We shall make use of Weiss’s Sphere Theorem which states as follows :

“Let ¢(r, 6, y) be the velocity potential at a point P having spherical
polar co-ordinates (r, 6, y) in an incompressible fluid having irrotational
motion and no rigid boundaries. Also suppose that ¢ has no singularities
within the region r < a. Then if a solid impermeable sphere of radius a is
introduced into the flow with its centre at the origin of co-ordinates, the new
velocity potential at P in the fluid is

a [a’ 1.2/,
¢(r7 69 W)+ ;d) Taeaw _g 0 (I)(R’ e’ W) dR9 (r>a)

2

a . . .
where r and — are the inverse points w.r.t the sphere of radius a.”
r

Here, the last two terms refer to perturbation potential due to the presence of
the sphere.

) Image of a Source in a Sphere : Suppose a source of strength m is
situated at point A at a distance f(> a) from the centre of the sphere of
radius a.
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Let B be the inverse point of A w.r.t. the sphere, then OB = a’/f

r P

0 B A(£.0.0)

The velocity potential at P(r, 0, y) in the fluid due to a simple source of
strength m at A(f, 0, 0) is

m
¢(r’ e) - E

(OP)’ +(0A)? —(AP)* _r® +f —(AP)

From A OAP, cos0 =
2(0OP)(0OA) 2rf

= AP = \/r2+f2—2rfc0s9
Thus, the velocity potential is

o(r, 0) = m(r* + £~ 2rf cos0)
ey

Introducing a solid sphere in the region r < a, where a < f, we obtain on using
Weiss’s sphere theorem, a perturbation potential

2
id{a—,ej—l 27" o(R, 0) dR
T T a

4 2 -1/2 5
@[a_ﬁfz_za_fcose} M R L P oRe
T r T a
cose]_l/zdR
(ma/f) _E aZ/r dR

i.e.

\/rz—2r(a2/f)cose+(a2/f)2 a” \/R2—2Rfcos€)+f2

This shows that the image system of a point source of strength m placed at
distance f(> a) from the centre of solid sphere consists of a source of strength
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2
ma . .oan, . . .
—— at the inverse point Tm the sphere, together with a continuous line

distribution of sinks of uniform strength — per unit length extending from the
centre to the inverse point.

(ii) Image of a doublet in a sphere when the axis of the doublet passes
through the centre of the sphere :- Let us consider a doublet AB with its axis

BA pointing towards the centre O of a sphere of radius a. Let OA=f, OB =f
+ of. Let A’, B’ be the inverse points of A & B in the sphere so that

(m) (-m)
A B

OA’ = a’/f, OB’ = a*/(f+8f).

At A, B we associate simple sources of strengths m and —m so that the strength
of the doublet is p = mof, where p is to remain a finite non-zero constant as
m—c0 and 6f—0 simultaneously.

2 2 2 2 -1
BA'=OA —OB' =2 _ & _a af, of
f f+of f f f
2 2 2
= a__a_+a__t0 the first order
f f f

2
= efl—ZSf to the first order

Now, from the case of “Image of source in a sphere”, the image of m at A

. ma ) . . .
consists of ra at A’ together with a continuous line distribution from O to A’

of sinks of strength m per unit length and the image of —m at B consists of
a

ma
(f +0of)

at B’ together with a continuous line distribution from O to B’ of

m .
sources of strength — per unit length.
a
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The line distribution of sinks and sources from O to B’ cancel each other

leaving behind a line distribution of sinks of strength m per unit length from
a

2
B’ to A’ i.e. sink of strength Mpar=M2 5 =i(m6f) — M2t B, The
a a | f? f2 f?
source at B’ is of strength
-1
—ma _—maf, of) - _ _maf, of}) to the first
f +0of f f f f
order terms
_Cma, mag _—ma
£ f? f £

o : .. ma : a
which is equivalent to a sink Tat B'and a source?—2 at B'.

) ) a ) )
As there is already a sink ?—2 at B’, therefore source and sink at B’ neutralize.

Finally, we are left with source %at A’ and a sink. %at B’. Thus, to the
first order, we obtain a doublet at A’ of strength

2

ma ma a

22 BA) = —2 L 5f
f (B'AY f f?2
_ma;35f=“i3
-3 £3

Hence in the limiting case as 6f—0, m—o, we obtain a doublet at A of

strength p with its axis towards O, together with a doublet at the inverse point
3
a’ .. .
A’ of strength P;_} with its axis away from O.

Stream Function for an Axi-Symmetric Flow (Stoke’s Stream Function)

If the streamlines in all the planes passing through a given axis are the same,
the fluid motion is said to be axi-symmetric. We have already considered such
flow for irrotational motion in spherical polar co-ordinates. (r, 6, y) in which
the line 0 = 0 is the axis of symmetry.

Suppose the z-axis be taken as axis of symmetry, then qo = 0 and the fluid
motion is the same in every plane 0 = constant (meridian plane) and suppose
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that a point P in the fluid may be specified by cylindrical polar co-ordinates (r,
0, z). Thus, all the quantities associated with the flow are independent of 0.
The equation of continuity in cylindrical co-ordinates, becomes

— (rqr) + (rqz) 0

pe. %rqr) - -§<qu> (1)

This is the condition of exactness of the differential equation

rqdz —rq,dr=0 (2)
This means that (2) is an exact differential equation and let L.H.S. be an exact
differential d'Y'(say)
Therefore,
rq; dz —rq, dr=d¥ = a—lPd +a—‘Pd
or 0z
which gives
8‘1’ oY
-rq,,— =1q, 3
o ey, =M (3)

The function ¥ in (3) is called Stoke’s stream function.

The equation of streamlines in the meridian plane 0 = constant at a fixed time t
is

ar_dz
q: 4,
= q,dr=q,;dz

Using (3), we get

1 0¥ 1 0¥

———dr=-—-dz
r or r oz
= a—\Pdrvtfj—\sz:O
oz
= d¥ =0
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= Y = constant = C
which represent the streamlines.

Stoke’s Stream Function in Spherical Polar Co-ordinates (r, 0 y) :
We consider the axi-symmetric motion in r, 0 plane such that q,, =
0. The equation of continuity in spherical polar  co-ordinates becomes

1 0 , 1 o0 .
—— + — 0q,)=0
r’ &(r ) r’sin® ae(rsm )
) 0 . 0 )
ie. a(r2 sinfq,) = %(—rsm 0q,) (1)

This is condition of exactness for the different equation
r sin@ qe dr — 1* sin g, d0 = 0 (2)

Thus the expression on L.H.S. of (2) is equal to an exact differential function
¥ such that

rsin® qo d; — q; 1 sin® d0 = dV¥ = a—\Pdr+a—lPdG
or 09

= %P :qersine,a—\P =—q, r’sin0.

00

Remark. In the above cases, the motion need not be irrotational i.e.
velocity potential may not exist. In case of irrotational motion, it can easily be
shown that the velocity potential ¢ and the Stoke’s stream function ¥ do not
satisfy C—R equations due to the fact that ¥ is not harmonic.

- Stoke’s Stream Function for a Uniform Stream : Let a uniform stream
with velocity U be in the direction of z-axis such that ¢ = Uk. Then, from the

relations
__lo¥ ~_10¥
= 1r(9r’qr roz’
we get U= _15_\11’0215_\11
r or r oz
= a—\Pz—Ur,é—quO
or oz
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2
r ) .
= Y =-U 7 where the constant of integration is found to be

Z€10.

In spherical polar co-ordinates we have
Y= —E(rsine)2 = —Hr2 sin” 0.
2 2

Stoke’s Stream Function for a Simple Source at Origin : In case of
simple source

q=f()r

But we have already calculated that for a source of strength m at origin.
__m, . . .
q =— t(r > 0) in spherical polar co-ordinates.
r

. m .
ie. (Gr o) = — T (D

=

Also, we know that in spherical polar co-ordinates,

Loov 1w
2 sin0 00" 3 T rsine or

qr=- (2)

From (1) & (2), we get

m 1 oV ¥

r? _r2 sin@g’g B

= a—\P:—msine,a—\P:O
00 or
= Y =mcosO .

A constant may be added to this solution and this is usually done to make ¥ =
0 along the axis of symmetry 6 = 0. In such case,

Y=m (cos 0 —1)
For a sink of strength m at origin, the Stoke’s stream function is

Y =m (1-cos0)
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~ 7 Stoke’s Stream Function for a Doublet at Origin : We assume that the
flow is due to only a doublet at origin O of strength p. Taking the axis 6 = 0 of
the system of spherical co-ordinates to coincide with the axis of the doublet,
we find that the velocity potential at P(r, 0, y) is

cosO
¢:“r2 (r>0) ®
_O0p _2ucos® 109 usin®

= qr = Q=0 (2

’q Y
a0 ree o
But the relations between the velocity components and the Stoke’s stream
function V¥ are

Loov 1w
2 sin6 90 1° " rsin® or
From (2) and (3), we get

qr =

3)

oY _ 2usinBcosd oV psin® 0
00 r " or r?

Integrating, we get

W= —psin® 0
r

Stoke’s Stream Function due to a Uniform Line Source : Let a uniform
line source of fluid extends along the streamline segment AB of length /.
Consider an element QQ’ of length oz at a distance z (= AQ) from A. Thus we
have a simple source of strength m 6z, where m is the constant source strength
per unit length of the distribution along AB.

LetQP=r, [PQB=Q, PM =d p

The Stoke’s stream
function 8V at P for the
simple source  of
strength mdz at Q is
mdz(cos6-1). Then,
the value of the Stoke’s
stream function W at P
due to entire line source «—z —>Q oz Q B«~b —>M z-axis
AB is given by 0=0

¥Y=m _fé (cosO—-1)dz = mjé cosOdz— m.[é dz
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In APQM, cosb = QM = QB+ BM
ol [+b-2z d PQ PQ
=m| 7O _z4b I-z+b

0 Jd% +(+b-2)
r Jd2+d+b-2)

Putting /+b-z=x = dz =—-dx

When z=0,x=[+b,
when z=1[,x=Db
Therefore,

L+b X( dX) —m/

N

or \P _ %.‘-é+b (d2 + X2)71/2 (2X) dX _ ml

—m/

[+b
g[\/dz +x?2 ]

2 1/2
b

ml\/d2+(l+b)2 —\/d2+b2J—ml

= m[AP — BP] - mAB
= m[AP - BP — AB].

As p is the only variable point, the simpler form m (AP—BP) can be taken for
evaluating velocity components at P. The stream surfaces are

Y = constant 1.e. AP — BP = constant.
These are confocal hyperboloids of revolution about AB, with A and B as foci.

We have shown earlier that the equipotentials were confocal ellipsoids of
revolution about AB with the same foci. Also it is well known result that two
families of confocals intersect orthogonally.

Stoke’s Stream Function for a Doublet in a Uniform Stream : Let a
doublet of vector moment pk is situated at origin O in a uniform stream whose
undisturbed velocity is —UKk .
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In spherical polar co-ordinates (r, 0, y), the Stoke’s stream functions for each
separate distribution are

Y, = % Ur? sin’0 (for uniform stream, q = ~Uk )

Y, =- B sin’o (for doublet at origin)
Hence the stream function for the combination is

Y(r0)= (%Ur2 —]Vt/rjsin2 0

The equation of the stream surfaces are ¥(r, 0) = constant.

In particular, the stream surfaces for which ¥ = 0 are given by

(%Ur2 —u/rjsin2 0=0

= sin® = 0 or lUrz—E:O
r
G
= 0 =0, mi.e. the z-axis orr = (Fuj , the surface of the sphere

5 /3
with centre O and radius (Fuj .
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Irrotational Motion in Two-dimensions

Suppose that a fluid moves in such a way that at any given instant, the flow
pattern in a certain plane within the fluid is the same as that in all other parallel
planes within the fluid. Then at the considered instant, the flow is said to be
two-dimensional flow or plane flow. Any one of the parallel planes is then
termed as flame of flow.

If we take the plane of flow as the plane z = 0, then at any point in the fluid
having cartesian co-ordinates (X, y, z), all physical quantities i.e. velocity,
density, pressure etc, associated with the fluid are independent of z.

Thus g = q X, y,t) p=p(x,y,t) etc

Plane flows, as described above, cannot be achieved in reality, but in certain
important cases, close approximation to planarity of flow may occur.

We have already considered such flow when defining Lagrange’s stream
function. We consider here some special methods for treating two-dimensional

irrotational motion.

Use of Cylindrical Polar Co-ordinates. For an incompressible
irrotational flow of uniform density, the equation of continuity V2(|) = 0 for the
velocity potential ¢(r, 0, z) in cylindrical polar co-ordinates (r, 0, z) is

lg(r@j+i—¢+—¢=0 (1)
ror\ or 200% 022
If the flow is two dimensional and the co-ordinate axes are so chosen that all

physical quantities associated with the fluid are independent of z, then ¢ = ¢(r,
0) and (1) simplifies to

o), 1 0% _
r@r( ar)Jr r2 592 =0 @

Let us seek solutions of (2) by putting

(r, 0) = —£(r) g(6) 3)

in (2) for separation of variables. Thus, we get

o) - L[ )]+~ £ ©)=0
rdr r
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d
r— [rf '(r)] "
ie. dr __£0® 4)
f(r) g(0)

Thus, L.H.S. of (4) is a function of r only and R.H.S. is a function of 6 only.
As r and 0 are independent variables, so each side of (4) is a constant A(say).
Thus, we have

r2fn(r)_|_rf'(1‘) =\ L(e)z—k

f(r) g(0)
ie. £(r) + 1 £/(r) =\ f(r) = 0 (5)
and g"(0)+A g(0)=0 (6)

Equation (6) has periodic solutions when A > 0. Normally the physical

problem requires that g(6 + 2r) = g(0) and this is satisfied when A = n* for
n=1,2,3,....

Thus, the basic solution of (6) are

g(0) = ¢ cos nO + ¢, sin nO (7)
Now, (5) is of Euler-homogeneous type and it is reduced to a linear different
. . . - de 1
equation of constant co-efficients by puttingr=e i.e. t=logr = i =-
r r

df _df dt_1df

Also, f'f)= —=—.—==
dr dt dr rdt
2
and f"(r) = af = i(d_f) — i(ld_f}
dr? drldr) dr\rdt

ld(dfj df( 1)
= — |+—] ——
rdridt) dtl 2
_1fd ﬁ)% _Ldf

r| dtldt )dr| r? dt

1 d* 1 df

Prepared by:Y.Sangeetha,Department of Mathematics, KAHE

2016-Batch

Page 59 of 94



Unit-3 Two Dimensional Motion 2016-Batch

d’f df
2

= f"1)= ———
r (1) W

Therefore, equation (5) reduces to

2
dif _df ﬁ_nzfzo
de? dt dt
2
= %— 2 =0
dt

It’s solution is
N
f=exp(+nt)=e™ = (etyn =r*"

ie. f=c3r"4+car " (8)

A special solution of (2) is obtained by linear superposition of the forms (7) &
(8) to give

o(r, 0) = —f(r) g(6)
=—(A" +B,r") (Chcosnb + D, sinnd)  (9)

The most general solution is of the form

O, 0) = — 3 (An 1" + By 1) (Cp cos n + D, sin nd) (10)

n=1
Particular cases. (i) for n = 0, we have
f=ki+kt=k; +kylogr
and g=k; + k40
so that another solution of (2) is
d(r, 0) = —(k; + ky log r) (ks + k4 0)
(ii) for n = 1, we get a special solution as
b=-rcosB,d=-rsin0, ¢=—1"cosH, ¢=—r"sin0

Example. Discuss the uniform flow past an infinitely long circular
cylinder.
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Solution. Let P be a point with cylindrical polar co-ordinates (r, 6, z) in the
flow region of an unbounded incompressible fluid of uniform density moving

irrotationally with uniform velocity —Ui at infinity past the fixed solid
cylinderr<a

When the cylinder r = a is introduced, it will produce a perturbation which is
such as to satisfy Laplace equation and to become vanishingly small for large r.
This suggests taking the velocity potential for r > a, 0 <0 < 2 in the form

¢(r, 0) = Ur cosO — Ar'cos 0, (D)

where the velocity potential of the uniform stream is Ux = Ur cos6 and due to
perturbation, it is —Ar ' cos® which —0 as r—c0 and gives rise to a velocity
pattern which is symmetrical about 0 = 0, m. (the term 1" sin® is not
there since it does not give symmetric flow)

As there is no flow across r = a, so the boundary condition on the surface is

a—q)=0, whenr=a )
or

Applying (2) in (1), we get A = —Ua” for all 0 satisfying 6 < 0 < 2.

Thus, the velocity potential for a uniform flow past a fixed infinite cylinder is

2

o(r, 0) = U cos® [r+aTJ,r>a,O£9£2n 3)

From here, the cylindrical components of velocity are (q=—-V¢)

2
qr = —% = —Ucose[l—a—zJ

r
2
ro0 r r
oo
Z:__:O
4 oz

We note that as r—o0, q; = —U cos0, qo = U sin® which are consistent with the
velocity at infinity —U 1 of the uniform stream.

Example. A cylinder of infinite length and nearly circular section moves
through an infinite volume of liquid with velocity U at right-angles to its axis
and in the direction of positive x-axis. If the section is specified by the
equation.
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r=a(l +€ cosn0d)

where n is positive integer and € is small, show that the approximate value of
the velocity potential of the fluid is

n+l n-1
Ua {E cosH+ € (E) cosm+1)0—€e (Ej cos(n — 1)6}
r r

r

Solution. Let the tangent at a point P on the plane of cylinder makes angles a,
(m—a) with the radial line OP drawn from O as shown in the figure

\

At large radial distances r from OZ, the fluid velocity becomes vanishingly
small.

Let us assume the velocity potential ¢(r, ) of the form —1r* $°k0 (k = 1,
2,.....).
Thus, we seek a solution of the form

O, 0)=—3 1 (Ay cos kO + By sin k0) (1)
k=1

(If we take k = 0, this would add on to ¢ an arbitrary constant Ay).

At 8 =0 and 0 = 7 on the boundary, q¢ = 0 which is satisfied by taking Bx = 0
k=1,2,....)

Thus, the velocity potential simplifies to the form

O, 0)=—3 Axr ™ cos kO )
k=1

which approximately remains unaltered on replacing 6 by 2n—0.

At any point (1, 0,z) of the fluid, the cylindrical polar velocity components are

(@=-Vo)

qr = —%(I) = —ik. A 1% cos kO
k=1
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Qo= _1% — —ik, A r Y sin k0O
r k=1

_%_y

4= 0z

At P on the boundary, since (t —a) is the angle between the tangent and the
radius vector OP, therefore

ldr d
cot (m—a) = P = E(logr)
r_/n-
= —cot o = % [log a(1+ecosnb)]
0
1

=——(—ae nsinnb)
a(l+ € cosn0)

ensinnd . do
= cotoo= —— sin (m—a) =r— (3)
1+ € cosnO ds
The normal component of velocity Uy of the boundary at P is cos (n—a) = ?
S

Un = U sin (a0 —0)
= U (sin o cos 6 — cosa. sin 0)

. UlcosO(1+ € cosnB) —sin O € nsinno]
1.e. Un =

4)

\/(1+ ecosnf)’+ €? n?sin” nO

As there is n0 transport of
fluid across the surface
and n6 breakaway from it,
so Uy is also the normal
velocity component of the
fluid. €n sin n0

1+€ cos nd

03

Thus,

Un =q; sin o + gg €OS Ol
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{— i k Akr_(k“) coske}(H € cosnb) {— io: k Akr_(k”) sin ke}(e nsinno)
k=1 k=1
+

\/(1+ e cosnb)? + (e nsinnd)? \/(1+ e cosnb)? + (e nsinnb)?>

- ZkAka_(k“) (14 € cosn®) P [coskO(1+ e cosnB) + sin kO € nsinnod]
k=l

\/(1+ e cosnd)? + (e nsinnd)?
(5)

Equating the two forms for U,, we get

- ikAka_(k“) (1+ € cosnB) " *[coskO(1+ € cosnB)+ € nsinkOsin nb]
k=1

= U[cos 6(1+€ cos nB) — en sin 0 sin n0O] (6)
We further simplify (6) for the terms upto 1st order in €.

L.H.S. of (6)

= ikAka_(k“) [1— € (k +1)cosnB][coskO+ € coskOcosnO+ € nsinkOsinnoO]
k=1

= — ZkAka*(k”)[coskO— e (k+1)coskOcosnd

k=1

+ € coskOcosnO+ € nsinkOsin noO]

= — ZkAka_(k“) [coskO— € kcoskOcosnO+ € nsin kOsinnO]
k=1

= Zk A a {coske - % {cos(n +k)0+cos(n — k)e}

k=1

+€_2“{COS(n ~k)0—cos(n +k)9}1

=— ikAka_(k“) {coske - g (n+k)costn +k)0+ § (n—Kk)cos(n — k)G} (7)
k=1

R.H.S. of (6)

Prepared by:Y.Sangeetha,Department of Mathematics, KAHE

2016-Batch

Page 64 of 94



Unit-3

Two Dimensional Motion

=U|cosO+ § {cos(n +1)0+cos(n — 1)9} - % {cos(n —1)0 —cos(n + 1)6}}

=U| cosO+ % {(1 +n)cosm+1)0+(1—n)cos(n — 1)9}} (8)

Correct to the first order of approximation, from (6), (7) & (8), comparing
coefficients of cos 0, cos (n—1)0, cos(n+1)0, we get

_Al

U= —1 = A=-Ud 9  [n+k=zl
a
| D) 1
- (n—-DA _a +§A1a e(n-1) =5U e(n-1)
In (7) cos kO — cos(n—1)0
cos (n—k)0 — cos (n—1)0
similarly for n+1
and - {(n +DA, 2 " —%Ala_2 e(n+ 1)} = —%U e(n+1)
= A, =Uea", Ay =-Uea™

All Ay other than A, A,_j, Apy1 are zero. Putting the value of these three non-
zero co-efficients in (2), we get

O(r, 0) = —[A;r ' cosO + Ay 1"V cos (n—-1) O +Ane 1™ cos (n+1)0]

n+l n—1
= Ua {E cosO+ € (Ej cosm+1)0—€e (Ej cos(n — 1)9} .
r

r r

Hence the result.
The Complex Potential

Here, we confine our attention to irrotational plane flows of incompressible
fluid of uniform density for which the velocity potential ¢(x, y) and the stream
function y(x, y) exist. Here (X, y) specify two dimensional Cartesian co-
ordinates in a plane of flow. Let us write

W =¢(x,y) +iy(x, y) (D)

We suppose that all four first-order partial derivatives of ¢ & y with respect to
X, y exist and are continuous throughout the plane of flow. Now, the velocity

q = (u, v) has components satisfying q =—-V¢.
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0 _ v % oy

- H - (2)
o0x oy oy 0Ox

Thus ¢ and v satisfy the C-R equations and so W must be an analytic function
of z = x +iy

Therefore, we can write (1) as
W =1(z) = ¢ +iy (3)
The function W ={(z) is called the complex potential of the plane flow.
Complex Velocity. We have
W =¢+iyand z = x +y
Differentiating partially w.r.t. X, we get

oW _db, 0v_db 2

1—=—-u+1v

ox ox O0x Ox oy

oW dW o0z dW 0z
But —_— = —=1
OX dz ox dz Ox
Thus. d—Wz—u+iv
dz
:—d—wzu—iV:qcose—iqsinG
dz

=(q(cosb —1isinB) =q e ?

The combination u —iv is known as complex velocity

w =u? +v?

Thus, speed q =‘ - CL—
z

and for stagnation points, CL—W =0
z

Example. Discuss the flow for which complex potential is
W=7

Solution. We have
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W = ¢+ iy =2 = (x + iy)* = x’—y* + 2i xy
= 0(x, y) = X"y, w(x, y) = 2xy

The equipotentials, ¢ = constant, are the rectangular hyperbolae
_— y2 = constant having asymptotes y = + X.

The streamlines, ¢ = constant, are the rectangular hyperbolae xy = constant

having the axes x = 0, y = 0 as asymptotes Also (L—W =2z, therefore the only
z

stagnation point is the origin. The two families of the hyperbolae cut
orthogonally in accordance with general theory.

Complex Potential for a Uniform Stream. Let the uniform stream
advance with a velocity having magnitude U and being inclined at angle o to
the positive direction of the x-axis.

Then, we have u = U cosa,, V = U sina and thus

—d—W:u—iV:Uefi“
dz

The simplest form of W, ignoring the constant of integration, is
W=-Uze™
i.e. ¢ + 1y =-U(X + iy) (cos a—i sin o)
=-U(x cos o + y sin o) Ui (y cos o0 — X sin o)
Equating real and imaginary parts, we get
¢ =-U(x cos a + y sin o)
v =-U(y cos a — x sin o)
Thus, the equations of equipotentials are
X COS o + y sin o = constant (D)

These equations represent a family of parallel streamlines. The equations of
the streamlines are

y cosa — X sinol = constant 2)
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These equations represent another family of parallel streamlines inclined at
angle a to the positive x-direction. The two family of streamlines intersect
orthogonally in accordance with general theory.

Line Source and Line Sink. Line source and line sink are the two-
dimensional analogues of the three-dimensional simple source and sink. Let A
be any point of the considered plane of flow and C be any closed curve
surrounding A. We construct a cylinder having its generators through the
points of C and normal to the plane of flow. Suppose that in each plane of
flow, fluid is emitted radically and symmetrically from all points on the infinite
line through A normal to the plane of flow and such that the rate of emission
from all such points as A is the same. Then the line through A is called a line
source. We may take the closed curve C to be a circle having centre A and
radius r.

Suppose the line source
emits fluid at the rate

2nmp units of mass per C
unit length of the source
per unit time, in all A

directions in the plane of
flow (say, xy-plane). We
define the strength of the
line source to be m. A line
source of strength —m is
called a line sink.

An example of a line source is a long straight hose with perforations along its
length, commonly used for watering lawns for long periods of time.

Complex Potential for a Line Source. Let there be a line source of
strength m per unit length at z = 0. Since the flow is radial, the velocity has the
radial component g, only. Then the flow across a circle of radius r is (by law
of conservation of mass)

2nr qy)p =2mmp

m
:> qr:_
r

The complex potential is obtained from the relation

_d_W:u_jV:qrcose—iqrsinG
dz

= (; (cosO — 1 sinB) _m e 1
r
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dw m jo_—Mm_-m
dz r re z

Integrating, we get

W=-mlogz
where we have ignored the constant of integration.
We can write it as

o +iy =-mlog (re')

=-mlogr—1im0

= ¢=— mlogr, y =-m0
Thus, the equipotentials and streamlines have the respective forms

r = constant, 0 = constant

Y
X

: 2,2 -1
1.e. X" + y~ = constant, tan = constant

i.e. X2+y2=C1,y=C2X.

Thus the equipotentials are circles and streamlines are straight lines passing
through origin.

If the line source is at z = 7 instead of z = 0, then the complex potential is
W =-m log (z—z¢)

For a line sink of strength m per unit length at z = z,, the complex potential is
W =m log (z—z).

If there are a number of line sources at z = z;, 7,...,z, of respective strengths
m;j, my,..., m, per unit length, then the complex potential is

W =-m, log(z —z,) — m; log (z—27,)....... —m, log (z—z,).

Complex Potential for a Line Doublet. The combination of a line source
and a line sink of equal strength when placed close to each other gives a line
doublet. Let us take a line source of strength m per unit length at z = a ¢'* and
a line sink of strength m per unit length at z=0

Therefore, the complex potential due to the combination is
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W = —m log(z — a¢'*) + m log (z—0)

i

. i
=-m log zmac —mlog(l _ae J
z

V4

+
z 272 3z°

{aela aZ eZla . a3 e31(x :|

In the figure,
OP = a = 6s where a is the distance between the source and sink.
As a—0, m—o0 so that ma —p and thus, we get

1
w=He
zZ
If the line sink is situated at z = 7, then the complex potential is
1
w=HE
YA
If o =0, then the line source is on x-axis and thus.
w=_*
YA
If there are number of line doublets of strengths py, 1y ....... K, per unit length
with line sinks at points z,, z,,....... , Zn and their axis being inclined at angles
o, 0,....., Oy With the positive direction of x-axis, then the complex potential
is given by
l(ll 10(2 l(Xn
W= © + 1, © Foreenen +U, ©
Z—-7, -7, -7,

Example. Discuss the flow due to a uniform line doublet at origin of
strength p per unit length and its axis being along the x-axis.
Solution. We know that the complex potential for a doublet is

and when the doublet is at origin having its axis along x-axis, then a =0, zp =0
B ux-iy)

z x+iy x*+y?

- pX . opy
= + 1y = —1
o+l x2+y?  xP4y?
px —py
s = —, - 7
¢ x? +y? v x? +y?

Thus the equipotentials, ¢ = constant, are the coaxial circles
x> +y = 2k;x (1)
and the streamlines, \y = constant, are the coaxial circles
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X2+ y2 =2kyy (2)

Family (1) have centres (k;, 0) and radii k; and family (2) have centres (0, k)
and radii k,
The two families are orthogonal

Streamlines

Equipotentials

Milne-Thomson Circle Theorem :Let f(z) be the complex potential for a
flow having no rigid boundaries and such that there are no singularities within
the circle |z| = a. Then on introducing the solid circular cylinder |z| = a, with
impermeable boundary, into the flow, the new complex potential for the fluid
outside the cylinder is given by

W =1(z) +f (a’/2), |z| > a

Proof. Let C be he cross-section of the cylinder with equation |z| = 1.
Therefore, on the circle C, [z|=a =z Z= a’ =7 =a'lz

where Z is the image of the point z w.r.t. the circle. If z is outside the circle,
then Z = a%/z is inside the circle.  Further, all the singularities of f(z) lie
outside C and the singularities of f(a’/z) and therefore those of f (a’/z) lie
inside C. Therefore f(a’/z) introduces no singularity outside the cylinder.
Thus, the functions f(z) and f(z) + f (a%/z) both have the same singularities
outside C. Therefore the conditions satisfied by f(z) in the absence of the
cylinder are satisfied by f(z) + f (a’/z) in the presence of the cylinder. Further,
the complex potential, after insertion of the cylinder |z| = a, is
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W =1{(z) +f (a%/2) = f(z) +f (Z)
=1f(z) +1(z)
= a purely real quantity
But we know that W = ¢ + iy

It follows that y =0

This proves that the circular cylinder |z| = a is a streamline i.e. C is a
streamline. Therefore, the new complex potential justifies the fluid motion and
hence the circle theorem.

Uniform Flow Past a Fixed Infinite Circular Cylinder. We have
already dealt with this problem using cylindrical polar co-ordinates. Here, we
use the concept of complex potential.

The velocity potential due to an undisturbed uniform stream having velocity
—Ui (U isreal) is Ux = U Re(2).

Since z is an analytic function, the corresponding complex potential is

f(z) =Uz
Thus

f(z)=f(z)=Uz=Uz=Uz
and so

f (az/z) =Ua’/z .

With the cylinder |z| = a present, by circle theorem, the complex potential, for
the liquid region |z| > a, is

W =f(z) + f (a%/z)
%)
ie. ¢+iy=U|z+—
VA

Taking z = re’®, where r > a, equating real and imaginary parts, we get

2

¢ =Re(W) =U cosH (r + a—j | Same expression as derived earlier
r
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2
v = Im(W) = U sin® [r —a—J
r

2
The perturbation term f (a’/z) = v gives the image of the flow in the
z

cylinder. This image represents a uniform line doublet of strength Ua? per unit
length and axis in the direction i .

Images in Two Dimensions

In a two dimensional fluid motion, if the flow across a curve C is zero, then the
system of line sources, sinks, doublets etc on one side of the curve C is said to
form the images of line sources, sinks, doublets etc on the other side of C. To
discuss the images in two dimensions, we use complex potential.

Image of a Line Source in a Plane. Without loss of generality we take
the rigid impermeable plane to be x = 0 and perpendicular to the plane of flow
(xy-plane). Thus we are to determine the image of a line source of strength m
per unit length at A(a, 0) w.r.t. the streamline OY. Let us place a line source
per unit length at A’(—a, 0).

I I

m 92 91 X
A-a0) |9 ™A@O)

The complex potential of strength at a point P due to the system of line
sources, is given by

W =-m log z—a) -m log(z + a)

=-m log [(z—a) (z+a)]

=-m log [rleiel 1rzeia2 J: —mlog rlrzei(91+92)]
= ¢ + iy = —m log (r; r2) —im (0, + 0,)
= Y =-—m (91 + 92)

If P lies on y-axis, then PA=PB = | PAB=|PBA
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i.e. n—61:62 2>91+62:TC
Thus y = —mmn = constant

which shows that y-axis is a streamline. Hence the image of a line source of
strength m per unit length at A(a, 0) is a source of strength m per unit length at
A'(-a, 0). In other words, image of a line source w.r.t. a plane (a stream line)
is a line source of equal strength situated on opposite side of the plane (stream
line) at an equal distance.

Image of a Line Doublet in a Plane. Let us consider the rigid
impermeable plane to be x = 0 and perpendicular to the plane of flow (xy-
plane). Thus we are to determine the image of a line doublet w.r.t.

Y

B’ m m
| o
a‘i\A’ m 4 X

A

£
U A

the stream line OY. Let there be line sources at the points A and B, taken very
close together, of strengths —m and m per unit length. Their respective images
in OY are —m at A’, m at B’, where A’, B’ are the reflections of A, B in OY.

The line AB makes angle o with OX. Thus A'B' makes angle (n—o) with
OX'. In the limiting case, as m—, AB—0, we have equal line doublets at A

and A’ with their axes inclined at a, (m—a) to OX . Hence, either of the line
doublet is the hydrodynamical image of the other in the infinite rigid
impermeable plane (stream line) x =0

Image of Line Source in a Circular Cylinder (or in a circle). Let a line
source of strength m per unit length be present at a point z = d in the fluid; d >
a. Let us then insert a circular cylinder |z| = a in the fluid. The complex
potential in the absence of cylinder is —m log (z—d) and after the insertion of
cylinder, by circle theorem, we get

b + iy = W = —m log (z—d) —m log(a*/z)—d

Prepared by:Y.Sangeetha,Department of Mathematics, KAHE

2016-Batch

Page 74 of 94



Unit-3

Two Dimensional Motion

=0 A'(z :az/d)\ A(z=d)

—m m m

m

2
=—m log (z—d) —-m log H_—dj (— % + ZJ:|
z

=-—m log (z—d) —m log (z—a*/d) + m log z + constant (1)

Ignoring the constant term, we observe from (1) that the complex potential
represents a line source at z = d, another line source at the inverse point z =
a’/d and an equal line sink at the centre of the circle. Thus the image of a line
source of strength m per unit length at z = d in a cylinder is an equal line
source at the inverse point z = a’/d together with an equal line sink at the centre
z = 0 of the circle. Further, (1) can be written as

O +iy= —m{log{(x ~d)? +y? }1/2 +itan_1( Y dﬂ

X —

1/2

,\2
a 2 . -1 y

-m |logd| x—— | + +itan” | —2——

8 ( dJ Y (x—az/d)

+m[log(x2 +yHY? +itan™ X} |logz=log +i0r=4/x*+y?,0
X

=tan”'

X
= \V:—mtan_( y j—mtan_l(+j+mtan_ll.
x—d x—a“/d X
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y " y
-d x-a’/d 1y
= —-m tan ! X X—a +mtan =
1— y y X
2
x—dx—-a“/d

X2+y2=3.2

:>a2_y2 =X2

=-m tanflz +mtan” Yo 0.

X X

Thus, the circular cylinder is a streamline i.e. there is no flow of fluid across
the cylinder.

Image of a Line Doublet in a Circular Cylinder (or in a Circle). Let
there be a line doublet of strength p per unit length at the point z = d, its axis
being inclined at an angle o with the x-axis. The line doublet is assumed to be
perpendicular to the plane of flow i.e. parallel to the axis of cylinder. The
complex potential in the absence of the cylinder, is

Meie
z—d

When the cylinder |z| = a is inserted, the complex potential, by circle theorem,
becomes

io ia

ue pe
= —+ >

z—d (a“/z)-d
~ Meiot ~ Me—iotz

7Z— d d(Z _ a%)
~ Meiot . uz ei(rrfoc)
- z—d _ az

o{2-+7%)
io i(m—a) 2 i(m—a)

_pe + pe + pa- € (1)

~z-d d d2 . a2
A

If the constant term (second term) in (1) is neglected, then the complex
potential in (1) is due to a line doublet of strength u per unit length at z = d,

Prepared by:Y.Sangeetha,Department of Mathematics, KAHE

2016-Batch

Page 76 of 94



Unit-3 Two Dimensional Motion 2016-Batch

2
inclined at an angle o with x-axis and another line doublet of strength % per

unit length at the inverse point z = a’/d inclined at an angle n—a with x-axis.

Thus the image of a line doublet of strength p per unit length z = d inclined at
2
angle a with x-axis is a line doublet of strength % per unit length at the
d

inverse point a’/d which is inclined at an angle T—a. with x-axis.

o J 7=

a

—m

Remark. The above two cases i.e. (iii) and (iv) alongwith ‘uniform flow
past a fixed infinite circular cylinder’ are applications of Milne-Thomson circle
theorem.

Example. What arrangement of sources and sinks will give rise to the

a2
function W =log| z—— |?
z

Also prove that two of the streamlines are a circler=aand x =0

a’ z’ —a’
Solution. We have W =log| z—— |=log
z z

ie. b + iy = log (z’-a’) — log z
= log (z—a) + log (z+a) — log z (D

This represents a line source at z = 0 and two line sinks at z = + a, each of
strength unity per unit length. We can write

¢ + iy = log(x—a + iy) + log(x +a + iy) — log(x +iy)

1y +tan”! Y tan ™! Y
X—a X+a X

= y=tan
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y .
=tan || 2= X*a >§+a —tan' Y
P *
<% _ga2
_ 2 _
_ tan” —YJtz
X“—y“—a X
(o2, 2, .2
_ +y+
—tan"! (%}Z 2)
[ x“+y —a” )x

Since y = constant is the equation of the streamlines, therefore equations for
streamlines are

y (x2 + y2 + az) = (x2 + y2 —az)x tan o
where o is a constant.

In particular, if we take o = /2, then we get the streamlines as

(xz+y2—a2 x=0
1.e. X2+y2—a2=0, x=0
ie. X +y =a x=0
i.e. r=a,x=0.

Hence the result.

Example. A two dimensional doublet of strength },li per unit length is at a

point z = ia in a stream of velocity ~Vi in a semi-infinite liquid of constant
density occupying the half plane y > 0 and having y = 0 as a rigid impermeable

boundary, i being the unit vector in the positive x-axis. Show that the
complex potential of the motion is

W=Vz+ 2;,Lz/(z2 + a2)

Also show that for 0 < p < 4a*V, there are no stagnation points on the
boundary and that the pressure on it is a minimum at the origin and maximum

at the points ( + a3 , 0).
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Solution. We know that the image of the line doublet uf at point A(0, a) is a
line doublet pi at point A'(0, —a)

<—
Vi

A((,a)

ot

L} yl= |
rA'(0,—a)

y
Therefore, the complex potential of the system is

W=Vz+ L"i‘L
Z—1a Z+1a

2uz

7% +a?

=Vz+ =Vz+2uz (z2 + az)_1

From here, we get

(L—W =V +2u@’ -z% @ +72%)7
V4

On the boundary y = 0 and thus z = x, therefore,

— _d_w — _d_W - V + 2“ (aZ_XZ) (a2 +X2)—2
dz dx
For stagnation points aw =0
dx
= Vx* +2x* (Va® —p) + Va' + 2pa* = 0 (1)

which is a quadratic in x”* whose discreminant is
A =4[(Va® —p)* =V (Va* + 2pa?)]
=4p (n—4a’V)

From here, A <0if 0 < p < 42V, showing that the quadratic equation (1) has
no real root. Therefore there is no stagnation points on the boundary y = 0.
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Applying Bernoullis equation along the streamline y = 0, we have

2
2,2
B+1{V+2u%} = constant
e 2 (a”+x7)

p + %qz = constant.

(&

2 2
+21u(a X”)

2
is minimum and conversely.

2, 22

(a”+x7)

P is maximum when X = {V

From here, we get
X" =V +2u (a® — x?) (@’ + x)
Differentiating w.r.t. X, we get

1 X2 X' = ~4px 3a’—=x%) (@° + x) 7 X =d—X
2 dx

For extreme values of X, we have X' = 0 which gives
x =0, + a+/3.

We observe that X’ changes sign from positive to —ve when x passes through
zero and thus X is maximum at x =0 = p is minimum at x = 0 i.e. at (0, 0) i.e.
the origin.

Similarly X' changes sign from negative to positive as x passes through + a3

showing that X is minimum at X = + a+/3 and thus p is maximum at (+
av3.,0).

Blasius Theorem
In a steady two dimensional irrotational flow given by the complex potential W
= f(z), if the pressure forces on the fixed cylindrical surface C are represented

by a force (X, Y) and a couple of moment M about the origin of co-ordinates,
then neglecting the external forces,

. 2
. ip dW
X-ivy=P[ [E¥] 4
1 ZIC(dzj “

2

p dw
M =Real partof |—=| z| — | dz
eaparo{zj‘c(dz} }
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where p is the density of the fluid

Proof. Let ds be an element of arc at a point P(x, y) and the tangent at p makes

an angle 6 with the x-axis. The pressure at P(x, y) is pds, p is the pressure per
unit length. pds acts along the inward normal to the cylindrical surface and its

components along the co-ordinate axes are
pds cos (90 + 6), pds cosO
ie. —pdssin®, pdscosO

The pressure at the element ds is

y
pds sinf
w pds cos6
pds
0
0]
X
dF =dX +idY
=—p sinO ds + ip cosO ds
= ip (cosO + i sinB) ds

pds sin 0 alongnegative x — axis
= —pds sin 0 along positive X —axis

=ip %Jriﬂ ds cosezd—x, sinezﬂ
ds ds ds ds
=ip (dx +idy) =ipdz (1)
The pressure equation, in the absence of external forces, is
b, lq2 =constant
p
I >
or p= 5 pq” +k (2)
Further (;—W =—u+iv=—qcosO + iq sinO
v/
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=—q (cosB — i sinB) = —q e 0 3)
. dx . dy .. i0
and dz =dx + idy = d—+1d— ds=(cos O +isinf)ds=e"ds (4)
S S

The pressure on the cylinder is obtained by integrating (1). Therefore,

F=X+iY= [, ipdz=[. i(k-1/2pq’) dz
i
2 g e e
ip 2 0
== [c q e"ds
From here ;
X-iY = %Jc q? e ds
_1p Ic (q2 720y 610 g
2
i 2
=P (—] dz | using (3) & (4)

The moment M is given by

M= . ‘f x dl_:‘: [c [(pds sin®) y +(pds cos) x]

o]

i xdF
i ik
= X y 0
—pdssin® pdscosd

= [ p(x dx + ydy]

1
= [. (k—ipqzj (xdx + ydy)
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1
= kIC d[a(xz o yz)}—% [c q* (xdx + ydy)

= —% [c q*(xdx + ydy) | - 1% integral
vanishes.
—-p ) ) dx = cos0Ods
= — X cosO + y sinB) ds
2 Je @ Y sinf) dy = sin 6ds

=R.P. of _—zpjc qz(x +1y)(cos B —isin G)ds}

— -P 2,0
=R.P of TJCq ze ds}

=R.P of{%e [c z(q%e " )eieds}

2
=R.P. of {—EJC Z(d—wj dz}.
2 dz

Hence the theorem.

Two-dimensional Irrotational Motion Produced by Motion of
Cylinders

Here, we discuss two-dimensional irrotational motion produced by the motion
of cylinders in an infinite mass of liquid at rest at infinity (the local fluid moves
with the cylinder). The cylinders move at right angles to their generators
which are taken parallel to z-axis. Thus we get the xy-plane as the plane of
flow. For the sake of simplicity, we take the cylinders of unit length. For such
motion, the stream function y or velocity potential ¢) is determined in the light
of the following conditions.

) v satisfies Laplace equation i.e. VZ\V = ( at every point of the liquid.

(ii) Since the liquid is at rest at infinity, so

oy oy

— =0 and — =0 at infinity.
ox oy
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(iii)  Along any fixed boundary, the normal component of velocity must be

zero so that 8_\1/ =01.e.

0s

y = constant, which means that the boundary must coincide with a
streamline.

(iv)  On the boundary of the moving cylinder, the normal component of the
velocity of the liquid must be equal to normal component of velocity of
the cylinder.

Further, we observe that the two-dimensional solution of the Laplace equation
Vz\u = 0, in polar co-ordinates (r, ), is

y=A,r"cosnd + B, 1" sin 0

where n is any integer, A, and B, being constants. Also, all the observations
made for v, are valid for velocity potential ¢, where ¢ and y satisfy C—R
equations.

Motion of a Circular Cylinder. Let us consider a circular cylinder of
radius a moving with velocity U along x-axis in an infinite mass of liquid at
rest at infinity. The velocity potential ¢ which is the solution of V¢ = 0, must
satisfy the following conditions.

@) (— @) =Ucos0

or
Ucos0
(i1) —@ and—1@ — 0 as r—w
or r 00 9 U
AN X
A suitable form of ¢ is
B
o (r,0)= (Ar+ —jcos@ (1)
r
— _% :(—A+%) cosO (2)
or r

Applying conditions (i) and (ii) in (2), we get

(— A+ %jcos@ =Ucos0,(-A + 0.B) =0 for all 6.
a
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= —A+£:U,A:0
a2

- A=0,B=Ua?

2

Thus ot 0) = 22 cos0 3)
T

The second condition of (ii) is evidently satisfied by ¢ in (3)

But % = 1% (C-R equation)
r
2
S0, 16—\“ = —Ui cos0
r 00 r?
2
i.e. % = —icosﬁ
r

Neglecting constant of integration, we get

2

w=—9"Gno @)
r
2
Thus W=0¢+iy = Va (cosB — 1 sin0)
3 Ua® B Ua?
e z

which gives the complex potential for the flow.

Remarks. (i) For the case of ‘Uniform flow past a fixed circular
cylinder’, using circle theorem, we have obtained the complex potential as

W = {(z) + f(a’/z)

2

:Uz+Ua—
zZ

where the cylinder moves with velocity U along positive direction of x-axis. If
we give a velocity U to the complete system, along the positive direction of x-
axis, then the stream comes to rest and the cylinder moves with velocity U in
x-direction.
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Thus, we get

2 2
W=Uz+ U2 Uz =02
V4 Z

(ii) Similarly, if we impose a velocity U in the negative direction of x-axis
to the complete system in the present problem, then the cylinder comes
to rest and the liquid flows past the fixed cylinder with velocity U in
negative x-axis direction and thus we get

2
w="2" U
Z

(iii)  If we put Ua® = p, then we get

which shows that the complex potential due to a circular cylinder with velocity
U along x-axis in an infinite mass of liquid is the same as the complex potential
due to a line doublet of strength p = Ua® pre unit length situated at the centre
with its axis along x-axis.

- Example. A circular cylinder of radius a is moving in the fluid with
velocity U along the axis of x. Show that the motion produced by the cylinder
in a mass of fluid at rest at infinity is given by the complex potential

Ua?

z—Ut

W=d+iy=

Find the magnitude and direction of the velocity in the fluid and deduce that
for a marked particle of fluid whose polar co-ordinates are (r, 0) referred to the
centre of the cylinder as origin,

2 2
1%4_1@:2 a—ze‘e—eﬂ9 and | r—2 |sin 6 = constant
rdt  dt ri{r r

Solution. The cylinder is given to be moving along x-axis. At time t, it has
moved through a distance Ut. Taking z = Ut as the origin, the complex
potential is

Ua?
z—-Ut

W=d+iy=
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dW Ua 2 Ua 2 -2i0 i0

Therefore - = S=—5—¢€ , z-Ut=re'
dz (z-Ut) r

2

1.e. u-—1iv= Ui (cos 20 — 1 sin 20)
r

2 2

= u= ULZCOSZG, V=Uizsin26
r r
2

Therefore, q= u?+v? = ULZ

r
o o v
The direction of velocity istan o= —=tan 20 = a =20
u

When the cylinder is fixed and its centre is at 0, then

2 2
W=Uz+ 22— Ux +iy)+Ui2(x—iy)
Z T

2

ie. ¢ + iy = Ur (cosO + 1 sin0) +Ui(cose—isin9)
r
2 2
= (|)=Urcose+Ua—COSG, w:U(r—a—]sinG
r r

The streamlines are given by y = constant

2
a” | .
= [r——j sin@ = constant
r
Further,
2
g:_@:—Ucose+UiCose lq
dt or r’
2 .
rd_@ __ 1o _ Usi1”16+Ua—Slne
dt r 00 r’

1dr .dO Ucos® Ua’cosO iUcos® . Ua’sin®
—ti—=— + + +i

rdt dt r 2 r r
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Hence the result.

Equation of Motion of a Circular Cylinder. Let a circular cylinder of
radius a move with a uniform velocity U along x-axis in a liquid at rest at

e : : o Ua’
infinity. The complex potential for the resulting motion, is ¢ + iy =W = i ,
zZ

where origin is taken at the centre of the cylinder.

2 2
Thus, o= Ua cosH, y=- sin0
r r
o) (@j =-U cos0
81’ r=a

Let T; be the K.E. of the liquid on the boundary of the cylinder and T, that of
the cylinder. Let ¢ and p be the densities of material of the cylinder and the
liquid respectively. Then

P, 0p
Ti=-2[¢="d
! 2('[¢8n ;

:_% 02”(4)%4)} add, s=ad =ds=add [/=10

2
%_fozn [Ui COS@J (U cos0) add
a

2.2
= pU2a .[027[ cos’ 0 do
npU?a’ , U2 U?
=———=(map)—=M"—,
> (ma“p) 5 5

where M' =&t a2p = mass of the liquid displaced by the cylinder of unit length.
K.E. of the cylinder, T, = %MUz, M = ta’c

Thus, total K.E. of the liquid and cylinder is
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T:T1+T2:%(M+M’)U2 (1)

Let R be the external force on the cylinder in the direction of motion. We use
the fact that rate of change of total energy is equal to the rate at which work is
being done by external forces at the boundary.

RU=+ 4 mem) 02
2 dt

workdone force distance
time time
= force velocity

_ M+M 2Ud_U
2 dt
=(M+M’)Ud—U
dt
N mIU_g_pdU 2)
dt dt

Equation (2) is the equation of motion of the cylinder. This shows that the
presence of liquid offers resistance (drag force) to the motion of the cylinder,
since if there is no liquid, then M' = 0 and we get

M—=R 3)

R . .
Now, 1fﬁ= external force on the cylinder per unit mass be constant and

conservative, then by the energy equation, we get
1 1 112 1, R
E M+M)U —-(M-M )M r = constant @)

where r is the distance moved by the cylinder in the direction of R. Diff. (4)
w.rt. t, we get

dU

M+ v _om-myRu=o
dt M

MdU_ M—M’R: noa’ —mpa’

— = R
dt M+M' moa®+mpa’

or
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i.e. d—U °- pR
dt o+p

which gives another form of equation of motion
IfU=(u,v)and R = (X, Y), then

du G—pX’ M@:G—pY
dt c+p dt o+p

2016-Batch

®)

(6)

Are the equations of motion of the cylinder in Cartesian co-ordinates.
Comparing (3) and (5), it can be said that the effect of the presence of the

liquid is to reduce external forces in the ratio

c—p:C+p.

Motion of two co-axial cylinders. Let us consider two co-axial
cylinders of radii a and b (a < b). The space between them is filled with liquid
of density p . Let the cylinders move parallel to themselves in directions at
right angles with velocities U and V respectively, as shown in the figure

The boundary conditions for the velocity potential ¢ which is the solution of

V2 =0, are (q=-Vd)
-

or

=UcosO,r=a

(ii) —@:V sinf, r=b
r

A suitable form of velocity potential is

o= (Ar+chose+(Cr +Bjsin9
r r

= 8(1) (A—E)COSO+( —BJSinO
or r2 r’
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Using (1) & (2) in (4), we get

—U cos0 = (A—%jcos6+(C—%)sm9
a a

-V sin0 = (A—%)cos@+(€—%)sm6
b b

Comparing co-efficients of cos® and sinf, we get

B D
A-—=-U, C-==0
3.2 3.2
A—b%:O, C—b%:—v

Solving these equations, we obtain

Ua’ B_—Ua2b2 C- Vb? D_Va2b2

A=_ ) - s 9 -
a’—b? a’—b? a’—b? a’—b?

Thus, (3) becomes

Ua? b? Vb? a’
=— ———|r+—|cosO+———|r+— [sin0O
0 az_bz( rJ az_bz( r

2 2 2 2
=bgiaz(r+b7]cos6—b2wja2(r+a7}sin9 (3)

The expression for y can be obtained from

9% _1oy
or r o0
1.e. @:r@
00 or

Integrating and neglecting the constant of integration, we get
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2 2 2 2
Y= Ua r—b— sinO+ Vb r—2 |cosO (6)
b? —a? r

It should be noted that the values of ¢ and y given by (5) and (6), hold only at
the instant when the cylinders are on starting i.e. the initial motion.

Corollary. If the cylinders move in the same direction then the boundary
conditions are

1) —@=Ucose,r=a
or

(ii) _% =V cosO, r=b
or

Using these conditions in (4), comparing co-efficients of cos® and sin® and
then solving the resulting equations, we get

2 R2 _ 21,2
A:UEZ—VS, B:;JZV—aL),C:O,D:O
—a —a
So d= ! (Uaz—Vbz)r—M cos0
’ b? —a’ r

2,2
and w:bziaz{(Uaz—Vbz)r+%}sin6

Example. An infinite cylinder of radius a and density & is surrounded
by a fixed concentric cylinder of radius b and the intervening space is filled
with liquid of density p. Prove that the impulse per unit length necessary to
start the inner cylinder with velocity V is

2
% [(c+p) b — (6—p) °]V

Suppose that V is taken along the x-axis.

Solution. Let the velocity potential be

o= (Ar+E)cose+(Cr +Ejsin6 (1)
r r
The boundary conditions are (q =—Vo)
@) —@:Vcose,r:a
or
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a9
ii —-——=0,r=b
i or
Applying these conditions in (1) and then comparing co-efficients of cos® and
sinB, we get
A By e Do
a a
B D
A _b_2 = 0, - b_2 = O
Solving for A, B, C, D, we obtain
Va ? Va ?b?
R

Thus, the potential (1) is
2.2
= ! [Vazr+vel b Jcos@

T

Now, the impulsive pressure at a point on r = a (along x-axis), is

Va? b*
P=(p ¢)=a= bg—z(r+TJcos|r_a

_ pVa
b’ -a?
The impulsive pressure on the mole cylinder is

Jzn pVa (a2 + bz) cos0. a cosO do

0 b2 _a2
2, .2
=-ma’p {Ez i:2 JV

(@’ +b?)cosd

Now, change in momentum = the sum of impulsive forces

2, .2
Therefore, T a’c V=-0)=1- nazp [b ra ]V

b* —a’
2, .2
= I=na26V+na2p(Ezi22jV
Thus, impulse due to external forces, is
2
ma“V
I= 5 —slo (b>-a”) + p(b” + a”)]
2
ma“V
=33 [e+p) b ~(o-p)a’]

Hence the result.
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Possible Questions
Part-B(5x8=40 marks)

. Prove that the velocity field u=yzt,v=zxt,w=xyt is a possible case of irrotational flow.
. Obtain the condition that the surface F(r ,t)=0.

. Explain Bernoulli’s equation.

. State and prove Kelvin’s theorem

. Discuss the flow for the complex potential w=z2.

. Explain Sink and its complex potential strength of the sink.

. Explain Vorticity of viscous fluid

. Explain Steady flow-through an arbitrary cylinder under pressure.

9. Explain the boundary layer characteristics.

~N o 0ok~ 0N

oo

Part-C(1x10=10 Marks)

1. Derive the kinetic energy integral equation
2. S.Tx%/af(t) + y2/b2.d(t)=1 where f(t)p(t)=constant is a possible form of the boundary surface

of a trivial

w

Explain Vorticity of viscous fluid

4. Explain Steady flow-through an arbitrary cylinder under pressure.
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Unit 111
Two dimensional Motion
Part A (20x1=20 Marks)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
The stream function is constant along a Stream line Path line Vortex line Filament line Stream line
If the stream function is along a stream line equal to zero zero constant not equal constant
If the motion is steady, the stream line pattern is equal fixed not fixed constant fixed
When the motion is not steady the stream line pattern is
fixed not equal constant zero not
The velocity potential ¢ exits when the fluid is Rotational Irrotational Stream line Path line Irrotational
If the velocity potential function are Velocity Density Pressure Force Velocity
The complex potential functions are satisfying Differential Homogeneous C—-R
equation Laplace equation equation C—Requation equation equation
If the velocity potential function are velocity @ is called g= O g=- O g= xO® = x® =- O
The irrotational flow of an incompressible in viscid fluid is in Multi —
3-D 1-D 2-D Dimension 2-D
When the incompressible in viscid 2 — D fluid flow ® and ¢ Laplace Linear Differential Laplace
satisfy the equation. C—R equation equation equation equation equation
The stream function | exist whether the motes is
Stream line Path line Irrotational Rotational Irrotational
The potential can exist only when the motion is
irrotational Velocity Density Pressure Force Velocity
Part of the fluid may be moving irrotationally and the other
parts may be Irrotational constant Rotational Density Rotational
The points where the velocity is are called
stagnation points 0 Constant Variable
In a 2 — D flow field where the fluid is assumed to be created
is called Doublet Vertex Sink Sources Sources
The flow is radically inverse is called Vertex Sink Sources Doublet Sink
The amount of the fluid going in to the sink in a unit time is Strength of the Strength of the Strength of the  Strength of
called Strength of the sink doublet source Vertex the sink
The amount of the fluid going in to the sink in a is
called strength of the sink Certain Interval Unit time Mean time average Unit time
If a source, the velocity of the fluid is Finite Equal Infinite Zero Infinite
Complex potential of the flow due to sink of strength m at the
origin is given by w =m logz w =-m logz w=log z W=-log z w =-m logz
A combination of a source and a sink in a particular way is
known as a Doublet Source sink vortex Doublet
The line joining the source and sink is called as
of the doublet X —axis Access Y — axis Z-axis Access
If any point in the 2 — D field where the fluid is assumed to be
is called a sink Created Constant Moving Annihilated Annihilated
In a 2 — D field where the fluid is assumed to be annihilated Strength of
is called a Sink Source source Strength of sink  Sink




When the motion of a fluid consists of symmetrical radial
flow in all directions proceeding from a point, Then the point
is known a

When the fluid particles have circular motion under steady
condition such a circular motion is called
The Complex potential for a stream flow when a

is placed in that

The complex potential for the uniform flow is
The complex potential for the flowisw=uZ
The complex potential for a
circular cylinder is placed in that
A steady two dimensional irrotational incompressible in viscid
fluid flow under no Forces

When are remembered that as the fluid is assumed to be in
viscid, the drag force is

flow when a

Cavitations is caused by

The general energy equation is applicable to

The friction resistance in Pipe is proportional To Square of V,
according to

Pitot tube is used to measure the velocity head of

In equilibrium condition, fluids are not able to sustain

Source

vortex

Surface

w=v/Z

Uniform

Straight

External

High velocity

Unsteady flow

Froudeaiumber

Still fluid

Shear force

Simple source

Sink
uniform
w=VZ
Continuous
Stream
Internal
Equal

Low
barometric
pressure
Steady flow
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Weber
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Resistance to
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Discontinuous
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Heat

Zero
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Surface tension
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Equal

irrotational

mass
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Flowing fluid

Geometric
similitude
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UNIT -1V

Stress Components in a Real Fluid

Let 0S be a small rigid plane area inserted at a point P in a viscous fluid.
Cartesian co-ordinates (x_y, z) are referred to a set of fixed axes OX, OY, OZ.

Suppose that 8F,is the force exerted by

the moving fluid on one side of 3S, the Z

unit vector nbeing taken to specify the .
normal at P to 8S on this side. We know P n
that in the case of an inviscit fluid, F, is &
aligned with n. For a viscous fluid, N

however, frictional forces are called into Y
play between the fluid and the surface so

that SF, will also have a component

tangential to oS. We suppose the ‘yx
Cartesian components of 8F, to be
(0Fx, OFyy, OF,,) so that

SF, = 8Fuy i + 0Fyy j+ 8Fy, k.

Then the components of stress parallel to the axes are defined to be Gy, Oy,

Oz, Where
OF, dF,
Onx= It —=—"7,
35—0 oS ds
oF dFE
Cny= 1t RS A
35S—0 OS dsS
6I'::nZ anZ
Onz = —==—=,
85-0 3S dsS
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In the components Gy, Ouy, Ons, the first suffix n denotes the direction of the
normal to the elemental plane 3S whereas the second suffix x or y or z denotes
the direction in which the component is measured.

If we identify i in turn with the unit vectors 1, j,k in (OX),(OY),(OZ), which

is achieved by suitably re-orientating 8S, we obtain the following three sets of
stress components

Oxx> Oxy» Oxz»

Gyxs  Oyys  Oyz;

Ozx» GOzy, Oyzz .
The diagonal elements oxx, Gyy, G, of this array are called normal or direct
stresses. The remaining six elements are called shearing stresses. For an
inviscid fluid, we have

Oxx = Oyy =0z =P

Oxy = Oxz = Oyx = Oyz = Ozx = Ozy = 0
Here, we consider the normal stresses as positive when they are tensile and

negative when they are compressive, so that p is the hydrostatic pressure. The
matrix

O xx ny Oxz
ny ny GYZ (1)
zX zy 7z

is called the stress matrix. If its components are known, we can calculate the
total forces on any area at any chosen point. The quantities c;(i, j = X, y, z) are
called the components of the stress tensor whose matrix is of the form (1).
Further we observe that cj; is a tensor of order two.

Relation Between Rectangular (Cartesian) Components of Stress

Let us consider the motion of a small rectangular parallelopiped of
viscous fluid, its centre being P(x, y, z) and its edges of lengths 0x, dy, 0z,
parallel to fixed Cartesian axes, as shown in the figure.

i 4 0z
Z : AR
};P(x, ,Z)
P, dx
oy
i Y
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Let p be the density of the fluid. The mass pdx dy 6z of the fluid element
remains constant and the element is presumed to move alongwith the fluid. In
the figure, the points P; and P, have been taken on the centre of the faces so

that they have co-ordinates (X —%, Yy, Z) and(x + %{, Y, Zj respectively.

At P(x, y, z), the force components parallel to O_X,O ,OZ on the

surface area dy. 0z through P and having i as unit normal, are

(0xx0y 8z, Oy 0ydz, Oy, Oydz)

Ox ) , )
At Pz(X +7,y,z , since 1 is the unit normal measured outwards from the

fluid, the corresponding force components across the parallel plane of area
dydz, are

0
{Gxx +8—X O 0ydz,4 0, +8—X T dydz,4 0, +8—X QO dyoz |.
2\ ox Y2 ox 2 ox

For the parallel plane through P, (X —%(,y, Zj, since —i is the unit normal

drawn outwards from the fluid element, the corresponding components are
oG
—:04 X[ 00y dydz, — 40, _Ox[ Dy dydz, — GXZ—S—X Goy, dydz
2\ ox Yoo2 | ox 2 ox

The forces on the parallel planes through P; and P, are equivalent to a single
force at P with components

oo
DOp DOy O |5 5y 62
ox O0x Ox
together with couples whose moments (upto third order terms) are

— Oy, 0X Oy 0z about Oy,

Gy 0xdyoz about Oz.
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Similarly, the pair of faces perpendicular to the y axis give a force at P having
components

{acyx 06,, OC
oy oy oy

t ¥ } Ox dy 0z

together with couples of moments
— Gyx 0X Oy 8z about Oz,
Gy, 0xdyo6z about Ox.

The pair of faces perpendicular to the z-axis give a force at P having
components

b

|:aczx aGZY 6022

s Ox dy 0z
0z 0z Oz

together with couples of moments
— G,y 0x Oy 0z about Ox,
G« 0x0ydz about Oy.

Combining the surface forces of all six faces of the parallelopiped, we observe
that they reduce to a single force at P having components

8 éc,, 0o, 0 0
00 + Oyx + 064 , Oxy + Oyy + Ocy ) oy, + Oye + 0oy, ox dy dz,
ax ay az ax ay aZ aX ay aZ

together with a vector couple having Cartesian components

[(Gyz - Gzy), (sz - ze)a (ny - ny)] Ox 8}’ 0Z.

Now, suppose the external body forces acting at P are [X, Y, Z] per unit mass,
so that the total body force on the element has components [X, Y, Z] p dx oy

5z. Let us take moments about i —direction through P. Then, we have

Total moment of forces = Moment of inertia about axis x Angular
acceleration

i.e. (0y,,~0,) 8x Sy 8z + terms of 4" order in 8x, 8y 8z = terms of 5™ order in
Ox, dy, 0z.
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Thus, to the third order of smallness in 0x, dy, 6z, we obtain

(Oy, — Ozy) 0x 0y 8z =0

Hence, as the considered fluid element becomes vanishingly small, we obtain
Gy, = Oyy.

Similarly, we get
Oz =Oxz  Oxy = Oyx

Thus, the stress matrix is diagonally symmetric and contains only six
unknowns. In other words, we have proved that

Gij = Gji, (1, ] =X, ¥, 2)
1.e. ojj 1s symmetric.
In fact, o is a symmetric second order Cartesian tensor.

Transnational Motion of Fluid Element. Considering the surface forces
and body forces, we note (from the previous article) that the total force

component in the 1 —direction, acting on the fluid element at point P(x, y, z), is

yx o
ox  dy oz

0o
[66“ + aGZXJSX Oy dz+ X pdxdyoz (1)

where (X, Y, Z) is the body force per unit mass and p being the density of the
viscous fluid. As the mass p 0x Oy Oz is considered constant, if q = (u, v, w)
be the velocity of point P at time t, then the equation of motion in the
i —direction is

0o
0O +—2 4 DO Ox dy 0z + p X 0x Oy 0z = (pdx dy é‘)z)d—u
[9).4 oy oz dt
06
or 0 +— 4 0 +pX = du (2)
19 oy 0z dt

du_ou  ou  ou
dt o ox oy oz dt

Thus, (2) becomes
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ou ou ou ou 1{6c,, 0oy 0o,
—tU—F+V—FW—=X+— + + (3)
ot Ox oy oz pl oOx oy oz

Similarly the equations of motion in jandf( directions are

10, 10, 10,
N Gy 1| Dy DOy | DO 4)
x oy | oz

ot ox Oy 0z p

ow Ow  Ow ow 1(éc,, 0oy, oo,
—tUu—+V—FW—=Z+— + + &)
ot OX oy oz pl ox oy 0z

Equations (3), (4), (5) provide the equations of motion of the fluid element at
P(x,y, z).

In tensor form, if the co-ordinates are x;, the velocity components u;, the body
force components X;, where 1 = 1, 2, 3, the equations of motion can be
expressed as

i

1 ..
+u;u; =X +B cjij (1,) = 1,2, 3).

Nature of Strains (Rates of Strain)

The change in the relative position of the parts of the body under some force, is
termed as deformation. By Hooke’s law, the stress is proportional to strain in
case of elastic bodies, while in case of non-elastic bodies the stress is
proportional to the rate of strain.

Strain is of two kinds, the normal and the shearing. The ratio of change in
length to the original length of a line element is called normal (or direct)
strain. The shearing strain measures the change in angle between two line
elements from the natural state to some standard state. We shall consider two
dimensional case and then extend it to three dimensions. Let us consider a
rectangular element ABCD of an elastic solid with co-ordinates of A as (x, y)
and length of sides as Ax and Ay in the natural state.

Let the point A. be defined to a point A'(x +&, y +1) then

B(x +Ax, y) goes to B'(x +& +Ax +%Ax, y +n+a—nAx)
ox ox
i % Ay C
oy foemeeee
(x,y+Ay) (X+AX,y+Ay) o Ay |
D C |
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Ay

AX
A(Xx,y) B(x+AXx,y)

(Before deformation) (After deformation)

The point D(x, y +Ay) goes to the point

D'(x +§+%Ay, y+n+Ay+ @Ay).
oy oy

Therefore, projected lengths of A'B’ along x and y axes are Ax + %Ax and
a—nAX
O0x
Thus,
2 2
(A'B'Y = (Ax +%ij +(@ij (1)
[8)4 [8)

The normal strain along x-axis is defined by

_ _AB-AB
XX AB
= AB' =(l+ex) AB=(1 + ) Ax |AB=Ax  (2)

From (1) & (2), we have

2 2
(1€’ (A%’ = (A%’ {[”%} +(anj }

x) lox

2 2
= (I+ey)’ = [1+%) +(@j
Ox Ox
From here, to the first order terms only, we get
-y
O0x

Similarly, the normal strain along the y-axis is
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on
Sy = g

The shearing strain yx, at the point A is the change in the angle between the

sides AB and AD. The right angle | DAB between AB and AD is diminished
by Yxy = 01 + 0> = tan0; + tan6,, 0; & 0, being small.

o N
axAX oy Y

Yxy = o€ + on
(1 + anAx (1 + ay]Ay

i.e.

-1 -1
= @[14_%) +%(1+@j

Ox Ox oy oy
Exy = %(ny )= %(g + %) , upto first order.

We observe that the strains have the nature of change in displacement in a
given unit length in a given direction. Hence strain is a tensor of order two.

In the case of fluids, there is no resistance to deformation but only to the time
rate of deformation. Hence in fluid dynamics the rate of change of strain with
time i.e. rate of strain is to be used in place of strain in elasticity. Thus, for
viscous fluids, replacing strains by rates of strain, the corresponding results are

obtained to be
o(%)-2(F) 22
ot\ o0x ox \ ot Ox Ox

Exx =

12(@&}1(@@)
2at\ox  oy) 2\lox oy

In case of three dimensions, these become
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€y =€y =€, = —

ox Y oy oz
c —l( )—l @4_@
T T 5 Ty
c —l( )—l @4_@
ey T o oy T o
c —l( )—l(@.}.@}
) Vox 2\ 0x o0z

Steady flow past rigid bodies

2016-Batch

(A)

where u, v, w are the velocity components of the viscous fluid along x, y, z

axis respectively.

The six quantities €xx, €yy, €22, Vxy» Yyz» Yzx I (A) are called components of the

rates of strain or gradients of velocity

Transformation of Rates of Strain.
We shall obtain the rates of strain in term
of the new co-ordinates X', y’, changing
from x, y to x', y'. Let us obtain the new
axes by rotating the original axes through
angle 6 and let /= cosf, m =sin0

Then x'=IX+my,y =-mx +ly
= x=IxX"-my,y=mx"+1y
Further, %(x') = %(lx + my)
= u' =/lu+mv
and v =—mu+lv
Also, (OPY =x"+y =x"?+y"
NOW, E’XX: @:(@jé_k @ ﬂ
ox' \ox/Jox'" oy )ox'
, ( ou 8Vj ou ov
or €e'w=|l—+m— |[+|/—+m— |m
ox 0 d oy
PP 2 Y g Y
oy ox 0Oy
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2 2
=" exx+m” ey + Imuyyy

Similarly €'y = oy m? €y + I €y — Im yyy
ou' oV
Yy = g + g =2Im (€yy— €x) + (lz—mz) Yxy-

which are the rates of strain of the new system in terms of rates of strain in the
original system. If we put back 1 = cos6, m = sin0, then

. €, te, €, —€ - .
€= AR Y 00520+ 2% §in 20
2 2 2
. e, te, €, -—€ - .
€yy= o Y 00520 — ¥ §in 20 (B)
2 2 2

' 1 ' exx eyy . YXy
=— =——— 2 5in20+—c0s20
€xy 2(vxy) 5 5

These equations give the transformation formulae for the rates of strain.

We observe that the rate of strain is also a tensor of order two, there must exist
at least two invariants of the rate of strain to the choice of co-ordinate systems.
These can be obtained as follows.

2 2
€t €y=("+m") (e + €yy)

= et €y = %+@=dw & a=wv) )

N
€'xx E'yy — (v )Z ) = (l2 € xx +m? Eyy + Imyyy) (m2 Exx + P Eyy — Imyyy)

1
1 [2Im (€yy — €xx) + (- m?) ny]z

2
o
= +2Pm?+m*) ey eyy—Ty (I* + 2P m> + m*)

2
YXy

4

2)

= €Exx €yy —
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Unit-4 Steady flow past rigid bodies

Equation (1) shows that the divergence of the velocity vector at a given point is
independent of the orientation of the co-ordinate axes. Equation (2 is related to
the dissipation function. i.e. loss of energy due to viscosity.

Let us now consider the general case of the rates of strain in three dimensions.
The direction cosines between x, y, z and x', y', z’ are related as follows.

X y Z

x' Iy m; nj
! l

y 2 my np
' [

z 3 ms n3

The relations between co-ordinates in the two systems are

x'=0Lx+myy njz

y' = bx + mpy + nyz

7' = I3X + m3y + n3z
and

x=lx"+bLy +57

y =mx' + mpy’ + m3z’

!

z=nx"+nmy +nz
From here, we get

u' =Lu+mv+nw

V' = bu + myv + npw

w' = u + m3v+ nsw

We shall use these relations to find out the rates of strain w. r. t. the new co-

ordinates x', y', z'.
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Steady flow past rigid bodies

Let us work out

ou' _owox owdy, ouoz

!

ST o T ox 0x' Oy Ox' | oz Ox'

( ou ov 8Wj
OX ox ox

( du ov awj
+ |, —+m —+n,— |m,
oy oy Jy

( ou ov 6‘wj
+ |/, —+m;,—+n, n,
oz oz

ov aou
= 112 Exx T+ 1’1112 Eyy + 1112 (S s llml (&—F_

g
+mn; | —+— |[+n)/}| —+—

oz

0y

oz 0oy ox oz

2 2 2
=l exx+my” €yy+ 101" €4+ [ mMyyyy +myny Yy, + 0yl Yo

Similarly, we have

!
Sy =

!

€=

!

Vxy =

!

Yyz= <

ov'

8 lz exx+m2 ny+n2 ezz"'lZ mzyxy+m2n2yyz+nzlz Yzx
y

aW'_ 2 2 2

F—h Exx +M3" Eyy + N3 €, + [3mM3 Yxy + M3N3 Yy, + 303 Yix
/4

ov' ou'  oOv' ox 6V'6'y ov' 0z 8u'8x+8u6'y+8u 0z

X Oy oxox Oyox ozox  oxdy oy dy ooy

= 21112 Exx T 2m1 mp €yy + 2I11I12 €5z
+ (Iimy + myly) yxy + (Mnp + nymy) vy, + (/2 + [1np) Y4«

ow' ov'
—+—=2L 3 exx +2mym3 €yy + 2mon3 €,

o o

+ (lamz + mol3) yxy + (M2n3 + nom3) vy, + (N2l3 + [on3) 7,4
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Unit-4 Steady flow past rigid bodies 2016-Batch

’Y'ZX = % + %: 21311 €xx + 2m3 my Eyy + 2n3n; €,

+ (lmy + maly) yxy + (M3ng + n3my) vy, + (0301 + l3n7) 74«

From here, we find

€x+ €yt €'n (112 + 122 + 132) Exx + (m12 + m22 + m32) Eyy
2 2 2
+ (0" + 02" +n3%) €, + (Iimy + hmy + lms) vy
+ (myn; + mony + m3n3) Yy, + (nily + noly + n3l3) vax
=Ex+ Eywyt+ €y
where we have used the orthogonality relations
12+ 1+ 15" =1 etc

and lim; + [hmy + lsm3 = 0 etc.

Thus we conclude that

2 ! ! —
€'t €y +€n=€Ext eyt €x

is invariant.

Similarly,

1 2 2 2
E'xx E'yy + E,yy E'zz + E’zz E’XX _Z [('ley) + (Y’yz) + (Y’zx) ]

1
= Exx Eyyt Eyy €2+ €47 Exx _Z [(’ny)2 + ('sz)2 + (sz)z]

is also invariant.

Remark. The stress tensor cj; and the rates of strain €;; follow the same
rules of transformation. Thus, the three equations in (B) can also be written for
stress components so that we get the relations between the original and the new
stress components as
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Steady flow past rigid bodies

. G, +0 G,, — 0 ]
o, =— oy X Y c0s20+ 6., sin20
XX 2 2 Xy
, Oy T Oy, Ox —Oyy )
Oyy = - cos20—o,, sin20 ©)
2 2 Y
. G, —O., .
6., =—— Yqin20+0., cos20
Xy 2 Xy

Relations Between the Stress and Gradients of Velocity
(Equivalence of Hooke’s Law in Case of Viscous Fluids)

In elasticity, generalized Hooke’s law gives a relation between the stress and
the strain components.

For viscous fluid, the following assumptions are to be made to find the
relations between the stress and the rate of strain.

1) The stress components may be expressed as linear functions of rates of
strain components.

(i1) The relations between stress and rates of strain are invariant w.r.t
rotation and reflection of co-ordinate axes (symmetry).

(111))  The stress components reduce to the hydrostatic pressure when all the
gradients of velocity are zero.

i.e. Oxx = —P = Oyy = Oy, Exx = §:O= Eyy = €z

First we consider two dimensional case and then we extend it to three
dimensions.

Under the assumption (i), we can write
Oxx = Ay €xx +Bi €4y + C; 75y + Dy
Oyy=As exx+Br ey +Coyyy + Do (1)
Oxy = Az €xx+ B3 €yy + C3 75y + D3
where A's, B's, C's and D’s are constants to be determined.
From the assumption (ii), we have
o' x=A1 €' +B1 ey +Ci 7+ Dy

o'yw=Are'xx+Bre'yy +Cr ¥y + Dy (2)
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Unit-4 Steady flow past rigid bodies

G,xy = A3 E'XX + B3 e'yy + C3 'Y’Xy + D3

But the relations between the original and the new stress components are (from

equation (C))

. O, +0 O, —O ]

Oy = AR il cos20+o,, sin20
2 2
Oy Oy, Oy —Oyy )

Oyy = 5 - 5 cos26—csXy sin 20 3)

. G, —OC
6,y =————>sin20+0c,, cos20

2 y

Using the equation (1) in 1% of (3), we get

| 1 1
O == (A1+Ag) exx+ — (B1+B2) €y + — (C1+C2) vy
2 2 2
1 1
+ 5 (D1+D2) +5 (Al—Az) Exx COS 20

+ %(Bl—Bz) Eyy COS 20 + % (C1—C2) yxy cos 20

+ % (Dl—Dz) cos 20 + (A3€xx + B3 Eyy + Cg’yxy + D3) sin 20 (4)

Also, the relations between the original and the new rates of strain are

. En TE €y — € Xy .
€= 2 Y 00520 + ¥ 5in 20
2 2 2
€, +€ €, — €
b= S b A — ) cosZO—yiSiHZG (5
2 2
. €Ex T € . X
Yy = _E O G20+ Y o520
2 2
Using equation (5) in 1*' of equations (2), we get
. A A A
O, = TI(EXX + Eyy) +71 (exx — €yy) cos 260 +71 Txy Sin 20

B B B
+ 71(6“+ Eyy) —71 (Exx — Eyy) COS 20 —71 Yxy Sin 20
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Steady flow past rigid bodies

— Ci(exx — €yy) sin 20 + C; yxy cos 20 + Dy (6)

Comparing co-efficients in (4) & (6), we get

% (1+cos 20) + % (1—cos 20) + A3 sin 20

= %(1 + cos 20) + %(l—cos 20) — C; sin 20 | €xx
% (1+cos 20) +B—22 (1—cos 20) + B3 sin 20

= %(1 — cos 20) + % (14+cos 20) + C sin 20 | €yy
% (1+cos 20) + % (1—cos 20) + C5 sin 20

A B
= jsinZG—jlsin29+Cl cos 20 | Vxy

D D
71 (1+cos 20) + 72 (1—cos 20) + D3 sin 20 = D,

From these equations, we get
A2 = B1 = B(say), B2 = A1 = A(say)
Cy,=A3=—-C;=-B3=-C(say)

A, -B -
Cs= 12 1=A2B’D1=D2:D(Sa}’)aD3:O

The stress components in terms of the rates of strain are now obtained to be

Oy =A€y +Be,, +Cy,, +D

o, =Bey +Aeg,, —Cvy,, +D (7
A-B

Oy =—Cle —€yy) +Tyxy

To find A, B, C and D, we make use of the assumption that there is symmetry
of the fluid about the co-ordinate axes.
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Unit-4 Steady flow past rigid bodies 2016-Batch

Let us take the symmetry w.r.t. the y-axis. If (x;, y;) are the new co-ordinates
of the point with co-ordinates (X, y), then

X1==X,y1=Yy
i.e. Uy =-u,vi=V
The rates of strain w.r.t. (x;, y;) co-ordinates are

du, —du_ Qudu dudy

_a = S
ox ox, 0x,
Similarly,
Sy Cyyr Vxy T Ty
and
lexl = Oxx ’GY1)’1 = GYY’ c5"1)/1 = _GX)’
Using these in (7), we get
lexl :Aexlxl +Be)’1)’| _CYXIY1 +D
GYlYl :BEXIXI +AEY1Y1 +CYX1Y1 +D (8)
A-B
GXIYI = C(exlxl a EYIYI ) + 2 yXlYl

The relations (7) are invariant where there is a symmetry w.r.t. any co-ordinate
transformation and so

lexl :AGXIXI +BEY1Y1 +CYX1Y1 +D

Gym :Bexlxl +AE)’1Y1 _CYXIYI +D (9)
A-B

le}’l :_C(exlxl _EY1Y1)+ 2 y"1}’1

Comparing (8) & (9), we find C = 0. According to the assumption (iii), we
have

Oxx = Oyy = —P, €Exx = €yy =0

Thus from (7), we find D = —p, since C = 0.
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Unit-4 Steady flow past rigid bodies 2016-Batch

The last equation in (7) becomes

Oxy = ——— Yxy = 1 Vxy» Where p =

A-B A-B is called the co
2 2

efficient of viscosity.
The relations in (7) are now,

Ox=Aex+Bey—p=(A-B) ex+B(ex+€y)—p

=2uex+BV-q—p
q=(,v)
ou ov _

EXX +€yy:&+5:V‘q

Oyy =2l Eyy + BV-q—p.

Oxy = W Yxy = 21 Exy

These are the required relations between the stress components and the rates of

strain in two dimensions.

For three dimensional case, we can write.
_ ou _
Oy =21E +BV-q—p=2u&+kv-q—p

ny:Zueyy+BV-Q—p:2u%+kV-c_1—p (10)

O :2“622 +BVC_1—p=2ugﬂ+7Nq-p
Z
\

ov Ou
Oxy=HUYxy=H &"'5 s

~—

oW OV
GYZ:M’YYZZH(g"'aj (11)

{8
= =i ox Oz )

where B = A.
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AlsO, Gy + Oyy + 6, =2U(Exx + Eyy + €4,) + 3A V-q-3p
=2uV-q+31 V-q-3p
=(2u+31) V-q-3p

For incompressible fluid V-q = 0.

= Oxx + Oyy + G, ==3p

. O +csf;/y +0,, -

This shows that the mean normal stress is equal to the hydrostatic pressure (i.e.
constant)

Remarks : (i) For compressible fluids, B =A = —2?”

(ii) Equations (10) and (11) may be combined in tensor form. Thus, if x;
denote the Cartesian co-ordinates, u; the velocity components (i = 1, 2,
3), then (10) & (11) may be collectively written as

Gij = (MO—p) Si; + p(uij +uj), G, j=1, 2, 3)
where 0 =div q =u;,;
1

p= —5 Gii, 0 = 0 for incompressible flow,

A= —% p for compressible flow.

(iv)  For viscous fluids, stress is linearly proportional to rate of strain. This
law is known as Newton’s law of viscosity and such fluids are known
as Newtonian fluids.

The Co-efficient of Viscosity and Laminar Flow :

O._—_ ——————— . —_—_-
/IITT'I'ITI' I X
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Steady flow past rigid bodies

The figure shows two parallel planes y = 0, y = h, a small distance h apart, the
space between them being occupied by a thin film of viscous fluid. The plane
y = 0 is held fixed and the upper plane is given a constant velocity Ui. If U is
not very large, the layers of liquid in contact with y = 0 are at rest and those in
contact with y = h are moving with velocity Ui i.e. there is no slip between
fluid and either surface. A velocity gradient is set up in the fluid between the
planes. At some point P(x, y, z) in between the planes, the fluid velocity will
be Ui, where 0 < u < U and u is independent of x and z. Thus, when y is
fixed, u is fixed i.e. fluid moves in layers parallel to two planes. Such flow is
termed as Laminar flow. Due to viscosity of the fluid there is friction between
these layers. Experimental work shows that the shearing stress on the moving
plane is proportional to U/h when h is sufficiently small. Thus, we write this
stress in the form

. U du
_:“_

X = lim
o= My

where p is the co-efficient of viscosity. In aerodynamics, a more important
quality is the Kinematic co-efficient of viscosity v defined by

v =p/p.

For most fluids p depends on the pressure and temperature. For gases,
according to the Kinetic theory, u is independent of the pressure but decreases
with the temperature.

Navier-Stoke’s Equations of Motion (Conservation of Linear
Momentum)

Let us consider a mass of volume 1 enclosed by the surface S in motion at time
t. Let dt be an element of volume, then the mass of this element is pdrt, p
being the density of the viscous fluid.

Let the element moves with the velocity q. The inertial force on the element
is

pdt (%j |F =ma

The resultant of inertial forces (or the rate of change of linear momentum) is
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R =lfp e ()
Let X be the body force per unit mass, then the resultant of body force is
F, =[]]pXdr )
The surface force on an element dA of the surface is given by the vector
f= fx{X Jrfyiy +fziAZ
= (P.dA)i, +(P,dA)i, +(P,dA), 3)

A~

where 1,,1,,1,are unit vectors, dAis the vectorial area of the element and

Px, Py, Pz are components of stress vector, given by
P,
P, =0, i, +0,i, +0,,i | Ti'= T X 4)
P,

The resultant of the surface forces is given by
R =i ([P dA+i, [P dA+], I[P dA )
Using Gauss divergence theorem this can be written as
F =i J[JV-Pdv+i, J[[V-Pdr+i,[[[V-Bdr (6) |- dA=ddS
Let us use the law of conservation of momentum. By this law, the time rate of
change of linear momentum is equal to the total force on the fluid mass.

Equating the resultant of body and surface forces with that of inertial forces,
we obtain.

”fp%drzf”p)_(dwfX f”V-l_Dxdr+iy I”V-I_Dydr+fz [[I[v-Pdt ()
Since dt is an arbitrary volume element, so we have

dq < = 2 =2 =
p=d=pX+V-P, i, +V-P,i, +V-P,i, 8)
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This is the required equation of motion in vector form using the values of

PP, P, we get

X2ty*tzo

— 0o
V-Px=66“+ y | OOy
Ox oy 0z
V.P - 06y N 00, . ooy,
Y ox oy oz
_ 0
V-P = OO | Suy | OO
ox oy oz

and let q=(u, v, w), X = (X, Xy, X,) then the equations of motion can be put

as

du oc,, 0oy 0Oo,,

P— =pPA +
dt [0 oy 0z

0c 0c oo

pﬁ - pX yx  Pyy  Pyz )
dt Y oox oy oz
dw os, 00, oo,

P—— =P, +
dt ox oy 0z

These are the equations of motion in terms of the stress components. (We have
also drawn these equations previously)

Also, we know that

d
dt
and the relations between stress and rates of strain are
ou
O =2L—+AV-q—
XX n ox q—p
ov _
Oyy = 2p5+7ﬁ-q—p

G, ZZM@-FXVC_I—[)
0z

B _ (ou  ov
ny _quy =u 5-’_&

Prepared by:Y.Sangeetha,Department of Mathematics, KAHE

2016-Batch

Page 23 of 64



Unit-4 Steady flow past rigid bodies

w_ @ o[ a 2g ] e of (@ o
Par P 6x+8x[u(2ﬁx 374 6‘y{“ +82{“(61+8xﬂ
N R
a P Ty Ty Mty 3 o\ M e "oy )| ax | Mlax oy
dw_ v o[ fyow 20 ], o[ fow an)], ] fow o
Pae —PX G, aszaz 37 qﬂ ax{u(ﬁx-l_ﬁzﬂ-i_&y[“(@y-'_@zﬂ

(10)

where A = — 2?I’lcompressible fluids.

The equation in (10) are called Navier-Stoke’s equations for a viscous
compressible fluid.

Deductions (i) If p = co-efficient of viscosity = constant, then Navier-
Stoke’s equations (10) become

du op 1 O0f(ou ov ow 2
—=pX,——+-p—| —+—+— |+uV

Pac ~ P Tax T3kl ax o ) M
du op 1 O0f(ou ov ow 2
—=pX,——+-p—| —+—+— |+uV

Pac ~ P Tax T3kl ax o ) MV
dt oz 3 0z\0ox 0Oy Oz

which can be expression in vector form as

dq 0q | — o= < 20— M _
= 2 +@q-V)q|=pX-Vp+uV3g+=V(V-
pdt p[at Qq )q} p p+uvq 3 V-9

(ii) For incompressible fluid, p = constant,
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=0.

_ Ou
L = constant, V-q=—
OX

ov Ow
_ + —_—
oy oz
Thus the equations become

dN_A, g vig=X-Lvp+tvig
P p

dt ot
ie. d—q=X—E+ wW2q
dt p

where v = p/p is called the Kinematic co-efficient of viscosity.

For steady motion with no body forces, we have
@ vig=""P+Lvy M _gx=0
P P

(iii)  If there is no shear at all i.e p =0, then

dq 9q _ - < V
_q:_q+(qV)q:X__p
dt ot p

These are Euler’s dynamical equations for an incompressible non-viscous
fluid.

Equations of Motion in Cylindrical Co-ordinates (r, 0, z). In
cylindrical co-ordinates (r, © z), we have q = (qr, qo, q-) and the
acceleration is given by.

— 2
99 _;[d9: 9o |, (990 , 9o |, 5 49,
dt de r dt r dt

ey

where 1., iy, 1, are the unit vectors in the directions of r, 0, z increasing.

STy
N

dz

v T

dr
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N

(The surface forces are obtained on cylindrical volume)

Thus, in cylindrical co-ordinates; the resultant inertial force is

— dq
E = —d
! ”fp dt ’

~ [ dq qé ~(dgqy 9q,9¢ | - dq
= —L = |+ + = + Z |pd 2
”I|:lr( dt r o dt r 2 dt pdt  (2)

The components of stress vector, P, Py, P, in cylindrical co-ordinates are
given by

Pr =1, 0y + 190 + 1,6,
Py =1, Gg. +140¢y +1,00,

PZ =1, G4 +16029 +IZGZZ

In cylindrical co-ordinates we have

— 1o d d G
VP = %6 )+ L6+ _Sw
r r_ar(m”) ae(%) az(m“)}

T
— 1[0 0 0 i c,
V-P, :;_a(rcer)+a—e(cee)+£(rcez)_ +Te
- 1[0 0 0 |
V-P,=—| — +— +—
z r _81' (rczr) ae (GZG) 62 (erz )_

Therefore, the equations of motion in vector form
dq < = =, = =, 2 =
pa = pX+1r(v'Pr)+19 (V'PG)_'_IZ (VPZ)

reduces to

dq qg 1| © 0 0 Cop
=X +-| = + — +— -9
p[ dt r P2 r &(rcn) 00 (r0e) oz (0,,) r
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— pXr + aGrr +1acr9 a(Srz + G —Opg

+
o r 00 0z r

dge , 9,9 0 10 0 O
—+—— |=pXy+— +-— +— +2—
P[ dt . PAe ar(Gre) rae(cee) aZ(Gez) .

dqz — pXZ + acyrz 18692 aGZZ + G,
dt or r 00 oz r

P

_ d 0 & q o 0
here X =(X,,X,y,X,),—=—+q, —+——+q, —
where X=X Xo-X0) =5 T 5 T 26 T2 5

The relations between the stress components and the rates of strain, in
cylindrical co-ordinates are

2 _
Gee=2u€ee—?uv~q—p A=—

G, =21 ezz—z—;V-Q—p

Go=HU7Y0, Or=H%Ym  Oo,= Yo, Where

ez e o 1% 4
or rod r
c,= Mz %o _Go 104
0z o r r 09
vo= 1Mz XMoo, A4 04,

“rTo ezl Ty Ta

Using the above relations, the equations of motion (Navier Stoke’s equation) in
cylindrical co-ordinates become

dg, g3 op 8| (,0q, 2 _
e _He j_ox P[22y,
‘{ a ) P a T alM a3
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dgy _ 9,9 lop 10 (289 29, 2 _
—20 L A0 Xy — e — | 220 2y
p( & r ) P ree rael" ro30

laqr 8qe Qe
r 86 r

1an 5% 2u 194, , %o _ 90
rod or r

aq, 109y  0q, qr
or r 09 oz r

where V-q =

Special cases. (i) If p = constant and p = constant, then V-q = 0 and the
equations of motion are

dq, qj . 20
(), -2

dt r rc 00
dqg 9,99 1 dp 2 209, Qg
— - | =pXy =+ +——L—=
p[dt r )P T TR T 2 T2

Prepared by:Y.Sangeetha,Department of Mathematics, KAHE
Page 28 of 64



Unit-4 Steady flow past rigid bodies 2016-Batch

p 49 =pX, _P v,

dt 0z
2 2 2
where V* = 5—2+1£+i28—2+a—2
ror r-o0” oz

(ii) If the fluid is non-viscous then p = 0 and if it is incompressible, then
V-q =0, p = constant and the equations of motion become

dg, qj op
e 10 |_yx P

P dt r P or
dqgy | 9,9, 1 op
_+r_ =X, ———=

P dt r P3e r 00
dq op
Hz |5 o

P dtj P2 "o

These are Euler’s dynamical equations in cylindrical co-ordinates.

Equations of Motion in Spherical Co-ordinates (r, 6, y). We know that
the velocity and acceleration. components in spherical co-ordinates (r, 6, ) are

gr=rcos 9 sin@d—e+sin29g, do :rd—e,
dt dt dt
. dy
=rsin0 —
qQy dt
2., .2
+
and ar= % _ﬁ
dt r
dgy . 9,90 9y coto
g = + -
dt r r
d cotf
a, = q\|1 n qrq\y n %qw

dt r r

The equations of motion for a viscous incompressible fluid of constant

viscosity p are :

p%w?—(—vavzq

Prepared by:Y.Sangeetha,Department of Mathematics, KAHE
Page 29 of 64



Unit-4 Steady flow past rigid bodies

In spherical co-ordinates,

Vp:(ap top 1 apj,

or 1 00 rsind oy
X=(X.Xp.X,)
Let us simplify
V2g=V(V-q)-Vx(VxQq)

1 dqy
rsin® oy

10, 1 o .
ButV.q=-— + < (sinfq,) +
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Unit-4 Steady flow past rigid bodies

Thus, the equations of motion for a viscous incompressible fluid in spherical
co-ordinates are
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If we put nu = 0 in the above equations, we get the equations of motion for ideal
fluid.

Steady Flow Between Parallel Planes

For a viscous incompressible fluid in steady flow, the Navier Stoke’s equation
with negligible body forces, are

dd p p p

©

In Cartesina co-ordinates; these are
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Steady flow past rigid bodies

du ou 0
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The equation of continuity for incompressible flow is

@_{_@_Fa_wz() (2) |'.'V'q:0

ox 0Oy oz

The equations (1) are non-linear 2" order partial differential equations and
there is no known general method for solving them. However, we shall find
some exact solutions of the Navier-Stoke’s equations in some special cases.
This is one of those cases.

Let us consider a two dimensional steady laminar flow of a viscous in
compressible fluid between two parallel straight plates. Let x-axis be the
direction of flow, y-axis be perpendicular to it and z-axis be parallel to the
width of the plates and let h be the distance between the plates.

We have the conditions

V:O,W:OandgEO 3)
0z

From the continuity equation (2), we have

%zO:u:u(y) 4)
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Unit-4 Steady flow past rigid bodies 2016-Batch

zZ

The second equation of equations (1) gives

P )= p=pi) (5)

ay

The 3" equation of equations (1) is identically satisfied and the 1* equation
gives

2 2
O:—l@Jer :}@— d_u

n
= =y 6
pdx dy* dx : dy? p ©

. . . dp . . .
Since u is a function of y only, so d—p is either a function of y or a constant.
X

But from (5), p is a function of x alone.

dp. . L
Hence —plS constant. i.e. pressure gradient is constant.

dx

Integrating equation (6) w.r.t y twice, we get the general solution to be

2
u=t9PY L Ay4+B 7
pdx 2

where A and B are constants to be determined from the boundary conditions.
Now we take the following particular cases
Couette’s Flow : It is the flow between two parallel planes (flat plates)

one of which is at rest and other moving with velocity U parallel to the fixed
plate. Here, the constants A and B in (7) are determined from the conditions

and u=U,y=h (8)
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Unit-4 Steady flow past rigid bodies

u=0
B P P P A X
z

Using these conditions, we get

2
B=0, U:l(@)h—+Ah
pldx) 2
. A=H_£(@j,3=o )
h  2pldx

Therefore, the solution (7) becomes

2
pldx ) 2 h  2pldx
2_
=y_hy(@)+ﬂ (%)
2u \dx h

_U _E@z(l_z)

1
h’ 2udxhl h (I

We note that equation (10) represents a parabolic curve.

This equation is known as the equation of Couette’s flow. Thus the velocity
profile for Couetle’s flow is parabolic. The flow Q per unit breadth is given by

h n| 1 dpy? U hdp
= d = S LA R I d
Q= fyudy JOLndx 2 y(h owdx )|

3
:E_h_@ ()
2 12udx
3
_hU by dp (12)
2 12u dx
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Unit-4 Steady flow past rigid bodies 2016-Batch

In non-dimensional form (11) can be written as

YoV i)Y (13)
U h h h
2
where o= h—(— @) (14)
2uU\  dx

o is the non-dimensional pressure gradient. If a > 0, the pressure is decreasing
in the direction of flow and the velocity is positive between the plates. If a <
0, the equation (13) can be put as

:%(1+a —% (15)

cCle

The pressure is increasing in the direction of flow and the reverse flow begins
when a < -1

|~y is small. i.e.
y* is neglected

Ifa=0 (i.e.@ = Oj, then the particular case is known as simple Couette’s

dx
flow and the velocity is given by

u_y
U h
which gives u = 0 where y = 0 i.e. on the stationary plane.

(i) Average and Extreme Values of Velocity : The average velocity of a
Couette’s flow between two parallel straight plates is given by

1
o= Joud, (16) | u=u(y)

Using the value of u from (13), we get

1 .y Uy y YJ
=—[5| —+Ua=|1-=||d
o hjo{h ah[ h Y

Uh2 h2 h3
=S5 tla — -5
2h 2h?  3h
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U U (1 ol (17)
2 6 2 6
2 2
:E_“_@:HJF}‘_RP:_@ (18)
2 12udx 2 12 dx

In the case of a simple Couette’s flow, the velocity increases from zero on the

. . ..U
stationary plate to U on the moving plate such that the average velocity is >

When the non-dimensional pressure gradient is a = —3, then from (17), we get
up = 0. This means that there is no flow because the pressure gradient is
balanced by the viscous force.

For maximum & minimum values of u, we have

du :O:H+Ua(l—§j=0
h h?

dy h
=>y= (lg—aajh (19)
From here, % =1, whena =1
and % =0, when o = -1

So, from (13), we get

0= 1+(x+a 1+a 1_1+(1 U
20, 2a, 20
(1+oc)2
4o,

U

and thus u is maximum for a > 1 and minimum for o < —1.

(ii) Shearing Stress : The shearing stress (drag per unit area) in a Couette’s
flow is given by

du U poU 2y
x=U—=p—+—|1-— 20
Oy de Hh h ( hj (20)
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= % , for a simple Couette’s flow (a = 0).
When y = %, then the second term in (20) vanishes. Thus the shearing stress

is independent of o on the line midway between the flow. The shearing stress
at the stationary plane is positive for o > —1 and negative for o < —1.
| y =0 at stationary plate

The velocity gradient at the stationary plate is zero for oo = —1 and the shearing
stress is zero for a=-I.

Thus oy 20 when o 2—1.

Further, drag per unit area on the lower and the upper plates are obtained from
(20) by putting y =0 and y = h, as

WU, poU o uU ol
h h h h

combining the two results, drag per unit area on the two plates is

WU, poU U b dp

T . skokok

h h h 2dx ()
ie. E_P—h, =—@
h 2 dx

Plane Poiseuille Flow : A flow between two parallel stationary plates is
said to be a plane Poiseuille Flow.

The origin is taken on the line midway between the plates which are placed at a
distance h and x-axis is along this line.

The conditions to be used in this problem are

u:O,Wheny:i% (21)
y
I o GG A GG
' h/2
h 0 A2 X
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Unit-4 Steady flow past rigid bodies

Using these conditions in (7), we get

2
a-om- (g
pl dx) 8

and thus the solution (7) is

2 2
u= l(@) y _h” (22)
pldx A 2 8
This represents a parabola and thus the laminar flow in a Plane Poiseuille Flow

is parabolic.

(i) Average and Maximum Velocity : For extreme values of u, we have

d_u = (0 and thus from (22), we get

dy
l(@j y=0 =y=0
pldx
2
Therefore , Upax = L (— @j (23)
8u\ dx

The average velocity in the plane Poiseuille flow is defined by
1 h/2

Up= — udy
h —hJ‘/2

Using the value of u from (22), we get

h/2 4.2 2
b= i@[l_iz]dy
h_;, 8w dx| nh
_ 1?2
_2=hidp) 2, o
3l 8ud,) 3

From (23) & (24), decrease in the pressure is given by
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Unit-4 Steady flow past rigid bodies
dp 8p -8u3 —12u
dx h2 max . h2 2 0 h2 0 ( )
) dp. .
This further shows that d—1$ a negative constant.
X

(ii) Shearing Stress : The shearing stress at a plate (lower plate) for a plane
Poiseuille Flow is

= ﬂu 4 (26)
The local frictional (skin) co-efficient C¢ is defined by

Coo Oodowe ol
f_—zzTumax. 5
PUp2

(3w ) v _n
ph{2u2/2) hu, R,

h
Where R, = Yol is the Reynolds number of the flow based on the average
v

velocity and the channel height.
Theory of Lubrication

The hydrodynamic theory of Couette flow can be applied in the study of
lubrication by considering an example of the slipper bearing which consists of
a sliding block moving over a stationary guide and inclined at a small angle
with respect to the stationary pad. The gap between the sliding block and the
pad is always much smaller than the length of the block and is filled with a
lubricant, usually oil. For such a case viscous forces are predominant. The
theory of lubrication was first developed by Osborne Reynolds in 1886, and the
discussion is due to Lord Rayleigh (1918).

load
|

—> U

slipper block

z

bearing guide

.7
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In order to make the motion steady, a system of co-ordinates is chosen in
which the slipper block is stationary and the pad moves with a uniform velocity
U in the x-direction. Since the slipper block is inclined relative to the guide, a
pressure difference is set up in the gap between the slipper and the guide. At
high velocities, extreme pressure difference can be created to support heavy
loads in the direction normal to the guide. Let the block be so wide in the z-
direction that the problem may be treated as two-dimensional.

Y
A
(O —
hy A
h(x) hy
ol v N

Let (a, h;), (b, hy) and (x, h) be the co-ordinates of A, B and any point on AB.
Since the addition of a constant pressure throughout the fluid will make no
difference to the solution, so we may for convenience assume that p = 0
beyond the ends of the block. Since the inclination of the plane faces is small,
(i.e. the faces are nearly parallel) the velocity u at any point is given by

2 J—
= y_hy@ + E ( from (*) of previous article) and the
2u dx h
flow Q in x-direction is
3
Q= @ — h—@ (from (**) of previous article)
2 12udx

The condition of continuity requires that Q must be independent of x i.e. Q =
Q(y). Hence

Prepared by:Y.Sangeetha,Department of Mathematics, KAHE

2016-Batch

Page 40 of 64



Unit-4 Steady flow past rigid bodies
3
th— h—@ = constant = l hoU
2 12ud, 2
dp h-h°
= —=6uU 1
q u ( 3 j (1)

dp

where hy is the value of hat the points of maximum pressure (s.t.d— = O] .

X
Now, the equation of AB is

h2_h1
—a

h-h; =

(x-a)

— %ZhZ_hl =h2_h1 (2)
dx b—a [

where [ is the length of the block and j—h is the slope of the line AB.
X

From (1) and (2), we get

dp_dpdx_ o6ull (1 _hy 3)
dh dx'dh h,—h (h®

Integrating, we find

h,—h;\ h 2hn?
_ 3uui (hO‘Zhj+c @)

We now determine hy and C so that
p =0 when h =h; and when h =h,
This gives

2h;h, 6uU!

ho: N C:
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_ 6uUl(h—h)(h—h,)
h?(h3 —h{)

and thus

6uUl (h, —h)(h—h,)

= 5)
hi —h3 h?

or

This suggests that p > 0 if h; > hy i.e. the stream contracts in the direction of
motion. P > 0 yields thrust rather than a suction. So we conclude that a
necessary condition for lubrication is that the relative motion should tend to
drag the fluid from the wider to narrower part of the intervening space i.e. the
stream should be convergent.

The total pressure (thrust)P is given by

b h, (dx
P= Lpdx . p(dhjdh

[ h, .
= dh using (2
hoon P | using (2)

_ 6uUl? th (h, —h)(h - h)
(hlz_hg)(hZ_hl) o h?

(6)

_ 6},LUl J‘ (h—h;)(h— h)
(h; =h,)*’™  h%*(h, +h,)

To find the integral in (6), we observe that

hp h
RN

hy

h;h
:[ lhz—h1 logh—hzlogh}

= —Z(hl—hz) + (h] + hz) log (E—IJ
2

! jhz (h_hl)(zh_hz)dhzlog(hl/hz)—zhl_h2
h, +h, b h,+h,
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k-1
=logk-2| —— |, k=hj/h,.
8 [k +1j v

Thus (6) becomes

_6uul’ (k-1
P_hg(k—l)z{logk 2(1<+1ﬂ @

Now, the tangential stress (drag) at the section h is

— E + E@ | From (#xx*) of previous article.

Oy =577 i

and thus the total frictional force experienced by the moving fluid is

b
F= L (Gyy) yop dx

:Ib [%.FE@LU(h_hoﬂdx | using (1)

a 2 h3

3 h, (u 3h, [ ,
=uU Ih] (H _FJ - dh | using (2)

ol " [u 1 6h;h, jdh

U 210gk—3(—k_1j (8)
h,(k—1) k+1

Comparing (7) and (8) we see that the ratio F/P of the total friction to the total
load is independent of both p and U, but proportional to h if the scale of h is
altered.

It has been found by Reynolds and Rayleigh that the value of k which makes P

2
WL poo7sdl
h

2 2

a maximum is 2.2 (approx.) and that this makes P = 0.16

h
For this case, F/P =4.7 72 .

By making h, small enough compared to /, we can ensure a small frictional
drag i.e. good lubrication.
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Steady Flow Through Tube of Uniform Circular Cross-section
(Poiseuille’s Flow or Hagen-Poiseuill’s Flow)

We consider a laminar flow, in the absence of body forces, through a long tube
of uniform circular cross-section with axial symmetry.

Let z-axis be taken along the axis of the tube and the flow be in the direction of
z-axis. Since the flow is along z-axis, the radial and transverse components of
velocity are absent.

1

b z

Thus g, =qep=0 q=(4;.9¢-9,)

The continuity equation for a viscous incompressible fluid gives.

a9,

5 =0 =q,=q/r) (1) |- axial symmetry i.e. independent of 6
Z

The equations of motion in cylindrical co-ords are

dg, qg° . 20
; di_qi}p.xr_@w(vzqr_q___&j
t T T

d . 1 2 4&q,
- &+mj:p.xe__@w(vzq“_ﬂ_q_ej

dt r r o0 200 r?
dq op 2
—L=pX, ——+uV
P ~PX5, TRV,
where i—g+ ﬁ_|_ 10 9
dt o o derae g,
and X=(X,,Xy,X,)

In the present case % =0and q=qy=0, X=0
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Thus from the first two equations, we get

9 _p
o a0 =0 =p=p(2) 2)

The third equation gives.

0= 8p +uviq, | *q, =q,(r)andris constant w.r.t. t.
dp 2 d*q 1 dq
or — = V = Z — 1z 3
dz L{ a? ot dr ©)

ot 1o 198 &

(In cylindrical co-ordinates V= 5 —tSs 5t 5
or ror r? 00 oz

since q, is a function of r only (from (1)) and p is a function of z only
(from (2)).

Equation (3) can be put as

2
u( d’q, di]:r@

dr*? dr dz
i.e. 4 rd& :L%
dr\ dr pdz

Integrating, w.r.t. r, we get.

2
T d&:l(@jr—-l-A
dr  p\dz) 2

. da, _1(dp) A
o dr 2pl\dz r

Integrating again, we get
q, = L(@jrz +Alogr+B “4)
up\ dz

where A and B are constants to be determined from the boundary conditions.
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The first boundary condition is obtained from the symmetry of the flow
such that

dﬁ:o onr=0 (5)
dr

and the second boundary condition is
g.=0,whenr=a (6)

where a is the radius of the tube. Using these conditions, we get

A=0, B =—L(@)a2 =i(—@)a2
4u\ dz 4u\ dz

Thus, the solution (4) becomes

_ 1 (=dp) 2 >
qz—4u(dzj<a r’) (7)

This represents a paraboloid of revolution and thus the velocity profile is
parabolic.

(i) The Max x Average Velocity : For extreme values of q,, we have

d
% =0 | - g, is a function of r only
r

From (7), it implies that r = 0 and thus

2
a d
(max. = _(__pj (8)
4u\  dz
dp . .
where d_ 1S a negative constant.
z

From (7) and (8), the velocity distribution, in non dimensional from, is given

by
2
q, :1_(£J
qmax a

The average velocity is defined by

1 2n ra
qo:? Io Io q.rdrdf
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Using the value of q,, we get

EE
qo 8}1 dz 2qmax

The average velocity is therefore half of the maximum velocity

The volume of fluid discharged over any section per unit time (i.e. volumetric
flow) is defined as

Q= J; Jz. 2mrdr

Using (7), it is obtained to be

4 2/
- &(_@j :lﬂ:az a_[ﬂ) :lnaz qmax (9)
gu\ dz) 2 |andz )| 2 -

(ii) Shearing Stress : The shearing stress in Poiseuille’s flow is given by

oum ey LYoy __r(on)
dr 4u\ dz 2\ dz

On the boundary of the tube, we have

a(dp) a(—-dp) 2u
z)=a= " | 7 |= =< 7 |7 -Umax 10
(Gr) Z(dzj 2[ dz j a | dmex. (19

The local frictional (skin) co-efficient Cy for laminar flow through a circular
pipe is

C — (Grz)r=a :E qmax
2 2
pa3/2  a pqj/2

_4p2q _8u 1 _ 16
pa qf paq, R,

Where R, = 2aq/v is the Reynolds number. When R. is less than the critical
Reynolds number, which is 2300 in this flow problem, the flow is laminar but
if Re > 2300, the flow ceases to be laminar and becomes turbulent. Thus, in
this problem, R. < 2300.
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4
Example. Establish the formula %% (p1—p2) for the rate of steady flow
L

of an incompressible liquid through a circular pipe of radius ‘a’, p; and p;
being the pressures at two sections of the pipe distant l-apart. Also find the
drag on the cylinder.

. . dp .
Solution. First we prove equation (9) and then we note that d_p is the change
zZ
in pressure per unit length and thus in the present case
dp _P2~7P
dz [

Therefore, from equation (9), we get

o= T (Pi=Ps
8u [

Also, the drag on the cylinder is

F =2mnal (Orz)i=a

—ma’l @
dz

=na’ (p1—p2).
Hence the result.
Steady Flow Between co-axial Circular Cylinders

Let us consider the steady flow of a viscous fluid parallel to the axis in the
annular space between two co-axial cylinders of radii r; and rp(r2> r1). The
velocity for such flow is

qZ:L(@jr2+Alogr+B (1)
4u \ dz

(from equation (4) of previous article) where A and B are constants to be
. o dp, .
determined from the boundary conditions, d—pbemg the constant pressure
z

gradient.

The boundary conditions are
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g-=0atr=rjandr=rn, (2)

Applying (2) in (1), we get

2 .2 2 1\2
_ L(@jﬁ _ _L(@jw, -
4u\dz )logr, /r, 4n

and

2 2
B = i(@j ﬁlogrl _r12
4u\dz logn

Thus the velocity distribution in the annular space between two co-axial

cylinders is
2 1ye2
qzz—i(@) (2 %)+ D gl L 3)
4u\dz logn I

The volumetric flow in this case is

Q= Jf)n J:z g, rdrdo

2 \e2
= J.zn J.m‘ —i(@j (r12 —r2)+—(n Dri log L r dr dO
0 Jn 4ul\ dz logn I

_ 2 4 2 o2 (2 2\ ™
_ ﬂ(@j IS U)o P L
4pn \dz 2 4 logn 2 I 4

_—_n(%jﬁ_i_ﬁﬁ
auldz) 2 2 4 4

2 \e2 22 2
+ @~ (logn—ljn LIS
logn 2) 2 4

4 B 2 _
—m—l(@ 2 -2-n*+1+2 1{(210gn—1)n2+1}
8u \dz )| logn

P i 2 1\2
:ﬂ(@ 2n2—n4—1+2n4—2n2—u
8u \dz logn

Prepared by:Y.Sangeetha,Department of Mathematics, KAHE

2016-Batch

Page 49 of 64



Unit-4 Steady flow past rigid bodies

4 2 32
—-my (d n” -1
i [—pj{m“ - =D } @)
8u \dz logn
The average velocity qo in the annulus is given by
2 2
-1 (d n" -1
qo = 2Q ~ = ‘[—F’J (n*+1)- (5)
n(n” -1 8u \ dz logn

The shearing stress on the inner and outer cylinders are

_(, 49,
(Grz)r=r1 _(H dr Jrzr]
2 12
:_ML(@j g 4 (07D
4u\ dz r;logn

__r_l(@j -1 _,
T 4\dz logn

_ (, dq,
(Grz)r=r2 - [H dI’ jrzrz

2 _1ye2
=l@ _2r2+&
4dz 1, logn

:_r_l[@) on_ @ =D
4\ dz nlogn

and

Steady Flow Between Concentric Rotating Cylinders (Couette’s Flow)

We consider the flow between two concentric rotating cylinders with radii ry, 1>
(r, > 1) having viscous fluid in between them. We assume that the flow is
circular such that only the tangential component of velocity exists. Let w; and
w be the angular velocity of the inner and outer cylinders respectively.

The continuity equation in cylindrical co-ordinates (r, 0, z) reduces to

Prepared by:Y.Sangeetha,Department of Mathematics, KAHE

2016-Batch

Page 50 of 64



Unit-4 Steady flow past rigid bodies

Now, the Navier-Stoke’s equations for viscous in compressible fluid in

cylindrical co-ordinates are

dg, g3 op 2 g, 2 08q,
—r Y =pX —=4 \V4 _dr = ~19
’{dt P )P e T T T
dgy | 9,94 1 op 2 2 .09, (g
2+ | =pXg ———+ Y Vg + = — -
p(dt r PR e MU 1T
dq op 2
—~=pX, ——+uv
p dt pA, oz uv-q,
Here, g, =q, =0; X = (X, Xo, X,) =0, qo = qo(r)
From the last two equations, we have
op 1 op 2 e
—=0,———+u V ——=1=0 2
0z r oo Y e r? @)
and the first equation gives
2
dp _ Op
a6 _HP 3
P P (3)

The L.H.S. of (3) is a function of r and thus p is a function of r only. i.e.

»_,
00

.. Equation (2) reduces to

Vige— Jo o v2=9 19,

I ol ror
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2
N d_q29+i(q_9j —0 4)
dr dr\ r

Integrating, we get

940 90 _
dr r
d
= rijtqe =201r:>£(rq9)=2clr
dr dr

Integrating, we get
2 _ )
rqe=cir'+c, =>qo=c;r+ — 5
r

which is the general solution, where c; and c; are constants to be determined
from the boundary conditions.

The boundary conditions are
qo=1] ®1, whenr =1

and qo =12 0, whenr=rn, (6)
do
*» on the surface v= ra =S V=ro

dl

[=10 > —=r—ie.v=rom
dt dt

Using these in (5), we obtain

2 2 2.2
9 Cr, =
22 2
=

(7)

C =
2 2
L, =1

Thus the solution (5) in the present case is

1 22 (@, — )
4o= 5 (17, —1fo )r——-—2—2_"1° (8)

In particular, if the inner cylinder is at rest i.e. ®; =0, m, = w(say), 1, =a, 1, =
b, then the solution becomes
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b% —a? r

2 2
go= —22 (r—a—] ©)

The radial pressure, given by (3), is

2 2
%:p%:$(cfr2 +:—§+2c1c2) | using (5)

2
c, 2cc
=p|cir+—2+—12
r r
Integrating w.r.t., we get

2.2 2
p=p{01r _ZC—22+2c1c2 logr}+c3 (10)
r

If p=p; whenr =ry, then

2.2 2
Crh C)
=p| ————%+2c,c, logr, [+¢
P1 P{ > 2r12 1€2 g1i| 3

{Cfrf >
= C3=p1—p - +2¢c,c, logr,
2 2nf

Hence the pressure is given by

2_ .2 2
of I7 =1y e[ 1 1 r
=pi1+p|cC ——=| ——— |+2c,c, log—
p=Dp1 p{ 1( ) J 2{1_2 rlzJ 1~2 gr1i|

where c; and c; are given by (7).

The formula for shearing stress is

ol i)
a5
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3 d Cy 2c
—H.ra C1+r—2 = ur —r—3

_ —2pc, —2ur’r; (0, —,)

r’ r’(ry —17)

The expressions for the shearing stress on the outer and the inner cylinder are

2
( ) _ 2’“(0‘)2 - (Dl )rl
Or0)r=r, = 22

L =1

2
_ 2@, —o))r;
(Orp)rry = 2.2

Steady Flow in Tubes of Uniform Cross—Section

Here, we consider the incompressible unaccelerated flow through a tube of any
uniform cross-section. We neglect body forces. Thus, we have

dq = = -
“1=0,F=0,V-g=0 1
it q (1

and the Navier-Stoke’s equations in vector form become

0=—@+Ev2q
p P

ie. Vp=puvig ()

Let us work with fixed co-ordinate axis ox, oy, oz with oz taken parallel to the
flow so that

q=wk, 3)

where q(u, v,w),u=0,v=0

From equation of continuity o + ol + w _ 0,
ox Oy Oz
we get ow =0 = w=Ww (X,y) 4)

oz

Thus from equation (2), (3) & (4), we obtain
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2 2
@n@jﬂfﬂ{@ ‘jﬁ_vj]ﬁ
x oy ox* oy
- %:0,%:0 )
2 2
and % = P{Zx‘;’ +aay—\;]] (6)

Equations (5) show that p is a function of z only, therefore, we can write

dp o*w  0*w
E=M(6X2+ay2j @

The L.H.S. of (7) is a function of z only while R.H.S. is a function of x, y only.
Thus each side is a constant, say —P, the negative sign being taken since p
decreases as z increases. Then the problem of solving the Navier-Stoke’s
equations reduces to the problem of solving the partial differential equation.

2 2 B
Pyl i
[0 oy u dz

subject to the condition that w vanishes on the walls of the tube for a viscous
fluid.

To obtain the solutions of (8), we first establish a uniqueness theorem. A form
which is a little more general than that required here, is as follows :

. Uniqueness Theorem. If

at all points (x, y) of a region S in the plane ox, oy bounded by a closed curve ¢
and if f(x, y) is prescribed at each point (X, y) of S and w at each point of C,
then any solution w = w (X, y) satisfying these conditions is unique.

Proof. The given equation is

— +— =fxy) )
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Let w = w; (X, y) and w = wy(X, y) be two solutions satisfying equation (9) in
the region S together with the prescribed boundary conditions on C

i.e. wi; =wpon C
We are to prove that w; = w; in S.
For this, we write
W=w;—-w; (10)

O*W  *W (szl szlJ [ﬁzwz szzj

Then, + =
ox* oy’ ox? oy’ ox? oy’

= f(x, y) — f(x, y) = 0

*W o'W .
= axz +—2 :0 inS (11)
Also, on curve C, W =0, (12)
Since w; = w, on C. C

Now, consider

2 2 2 2
REIR

| using (11)

:J’Sj’{%(w%—f}r%(w%ﬂ dxdy
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= ff Wa—wdy—Wé—de , by Green’s Theorem.
Ox oy

C

=0,as W=0onC.

2 2
Now, =0 = [éﬂ) + w =0 in S which will be true only if w =0,
[0 oy Ox

w = 0 at each point of S.
ay

= W =constant in S.
Since W =0 on C, we infer from the continuity of W that W = 0 throughout S.

Hence w; = w; in S which establishes the uniqueness of the solution. Under the
reference of the uniqueness theorem, we now find the solution of equation (8)
for tubes having different types of uniform cross-section.

Tube having Uniform Elliptic Cross-Section : Suppose that the elliptic
cross-section of the tube has the equation

X2

2

2
+2-1=0 (13)
a

o

Then, we must solve

o’w o*w P

—+ =—— (14)
x> oyt m
subject to the condition w = 0 on the cross section (13).
We first observe that the function
2 2
w:l{l—x—z—g—zJ (15)
a

satisfies the boundary condition, namely w = O on the elliptic cross-section.
Regarding k as constant and on substituting w into the partial differential
equation (14), we find

k(—_f_%):—_l’
a”~ b w
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Pa’b?

_ 16
2u(a’ +b?) (10)

Thus from equation (15) & (16), we get

21,2 2 2
@ +

The uniqueness theorems shows that w, given in (17) is the required solution.

The volume discharged through the tube per unit time is

Q= [[w dxdy
S
= Pa—zw_”dxdy—i”xzdxdy—i”yzdxdy}
2u(a’ +b%)| a’ b?
212 [ 2 2
= Paz—bz nab—iznaba——%nabb—
2u@” +b%)| a 4 b 4

_mP a’b’
" 4pla?+b? (1%

Mean velocity

Q _Q_P[ad
[[dxdy mab 4pla?+b?

Remark (circular cross-section). When b = a, then the cross-section of
the tube becomes a circle of radius a and, then

wegqe P A X ¥
2u 2a’ a’ a’

P P
:4—u(32—X2—y2):4—”(32—f2),
| 2, .2_ 2
X"+y =71
whereP:—@
dz

Prepared by:Y.Sangeetha,Department of Mathematics, KAHE
Page 58 of 64



Unit-4

Steady flow past rigid bodies

6 4
andQ=n—P a_2 :nPa
4l 2a 8u

mean velocity = % =Pa’ / 8.
ma

These results have already been obtained.

Tube having Equilateral Triangular Cross-Section. Suppose that the

cross-section of the tube is the equilateral triangle bounded by the lines

X
X=a,y=+ (19)
NE)
If we take
)
w =k(x—a) [y _EX j (20)

2
=k{y2(x—a)—%(x—a>}

then w = 0 on the boundary of the tube.

y
y=x/"3-5
- EL x=a X
60
y=—x/3

Substituting for w in

o’w &’ P
aX—V;JraV—VZV:—E 1)

k[(—2x+%j+(2x—2a)} :_—P
3 B

we obtain
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- k= o (22)
4pa
Thus, by the uniqueness theorem,
3P » 1 5
w=—(x—-a ——X 23
4 ( )(y 3 j (23)
is the unique solution
The volume discharged per unit time is
a x/ 3
Q= [[wds=2[dx [wdy | due to symmetry
S 0 0
3P X/ﬁ 2 X2
=—[sdx [ (x—a -—d
2ua j 0 (I) ( )(y 3 y
3 Pa’
60\/§u
Remark. If we take the cross-section to be
y,
(x—a) (X £/3y +2a)
_____________ X =as, x
27 Pa
then Q= ——
20V3 n (-2a, 0)

| Replace a by 3a in the above example
Unsteady Flow Over a Flat Plate

So far we have discussed the examples of exact solutions of the Navier-Stokes
equations for steady flows. Here, we consider the case of unsteady flow.

The simplest unsteady flow is that which results due to the impulsive motion of
a flat plate in its own plane in an infinite mass of fluid which is otherwise at
rest. This flow was first studied by Stokes and is generally known as Stokes
first problem.
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Let x-axis be taken in the direction of motion of the plate, which is suddenly
accelerated from rest and moves with constant velocity Uy. Let y-axis be
perpendicular to the plate. The motion is two-dimensional and the only non-
zero component of velocity is u, where q = (u, v, w). Further, u is a function
of y and t only. i.e. u = u(y, t). The pressure in the whole space is constant.
The Navier-Stokes equations in the absence of body forces, for the present
case, become

ou  o%u

—=Vv—F,V= 1
ooy Wp (1)

The initial and boundary conditions are
u=0whent=0 forall y (2)
u=U,aty=0
o &Y }Whent>0 3)

u=0aty=o

We observe that the partial differential equation (1) is the same as the equation
of heat conduction, diffusion etc. It can be reduced to an ordinary differential
equation if we make the following substitution (principle of similarity of flow)

u

U—O—f(n) 4)

h S 5
where n= i (&)

is the similarity parameter.

We have,
u_duon_ A -y
ot a4
du_duon_ off 1 j
oy mody on\ 2t
__(@):2 @]@:U ﬁ(i)
oy) ooy )ay "o \4n

Thus, in terms of the new variables, equation (1) reduces to
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ie. S 42— =0 (6)

and the corresponding boundary conditions are
f(0) =1 and f(0) =0 (7)

The second condition in (7) includes the initial condition (2).

% =-2n=log f'= —n2 +log C,
2
The solution of (6) is =f'=Ce™

—f=C[ledn+C,

2
f)=Ci [e™ dn+C, (8)

Using the boundary conditions (7) in (8), the constants of integration C; and C,
are obtained to be

szlandclz—;——i 9)

—=
ey
The velocity distribution, from equation (4), is therefore given by

u 2 2
—=f()=1-—=[1e"d
U, i \/EIO "

= (1—-erf n) (10)
the integral

_ 2 g
erfn_ﬁjoe dn (11)

is called the error function or the probability integral and tables for it are
readily available.

The velocity distribution (10) is tabulated as follows.
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n erf n u
U
0 0 1
0.01 0.01128 0.98872
0.05 0.05637 0.94363
0.1 0.11246 0.88754
0.2 0.22270 0.77730
0.4 0.42839 0.57161
0.6 0.60386 0.39613
0.8 0.74210 0.25790
1.0 0.84270 0.15720
1.2 0.91031 0.08969
1.4 0.95229 0.04771
1.6 0.97635 0.02365
1.8 0.98909 0.01091
2.0 0.99532 0.00468
24 0.99931 0.00069
2.8 0.99992 0.00008
0 1.00000 0

We observe that the velocity decreases continuously and tends to its limiting
value zero as 7 tends to infinity. However, for all practical purposes, this value
is reached at about n = 2.0 and therefore the corresponding value of y, which
we shall denote by d, from (5), is

&~ 4\t (12)

Thus distance is a measure of the extent to which the momentum has
penetrated the body of the fluid. It is proportional to the square root of the
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Possible Questions

Part-B(5x8=40 marks)

1 The velocity field at a point in a fluid is given by q= (x/t,y,0).Obtain also a path line.
2 Derive the equation of continuity.

Explain Energy equation.

Explain Circulation and rate of change of circulation

Discuss on source and its complex potential.

Obtain the complex potential for the vortex

Discuss about Circulation in a viscous fluid

Explain about Steady coutte flow between cylinder in Relative motion

Derive the kinetic energy thickness.

O 00 N O U1 b W

Part-C(1x10=10 Marks)

1. Explain the boundary layer separation
2. Explain the Lift force
3. Explain Circulation and rate of change of circulation and discuss on source and its complex potential

4. Derive the kinetic energy thickness.
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unit IV

Steady flow past rigid bodies

Part A (20x1=20 Marks)
Possible Questions
Question Choice 1
In the case of a real fluid frictionless resistance is known as ----
———————————— shearing stress
In the case of -------------- frictionless resistance is known as

tangential stress perfect fluid

On real fluid ,tangential stresses are --------------- large

The property which causes the tangential stress is known as---

inviscosity
On plane coutte flow if the fluid is perfect the motion of the

plates has-------- on the fluid no effect
Shearing stress will be proportional to the rate of change of ---

-—-- speed

The force will be proportional to the area upon which it acts
and it is known as -------
In the effect of viscosity the shearing stress is denoted by ------

shearing stress

- v
The coefficient of viscosity is denoted by-------- U]

The viscous force are of order ---- per unit area u/L
The typical pressure force will be of order------ per unit area U2

In a Reynold’s numbers, the kinematic viscosity is ------ g=m/r

The non-dimensional parameter R=UL/g is called ------- viscous force

In the Navier stokes equation,when the fluid is

incompressible,then r and m are----- equal
In a circulation on a viscous fluid the space derivative of the
vorticity vector are-------------- small

The steady flow through an arbitrary cylinder under pressure
is known as ---------

In the Reynolds number
determining the ------

Hagen —Poiseuille
flow

is the principal parameter

role of the flow

The constant of proportionality, m depends entirely upon the typical viscous

physical properties of the fluid is called stress
An arbitrary volume of a fluid,the momentum of the fluid
contained within the volume is ----- Jvidv

The resultant value of an poiseuille’s law is ------ M=(rtp a3)/4m
If we consider two infinite parallel planes.Aflow with pressure
gradient when both planes are at rest then they are called as -
——————— pressure flow
If we consider two infinite parallel planes.A flow without
pressure gradient when one plane moves relative to the
other such a flow is called----------

A flow is said to be ---------- if all fluid particles moving in one

direction

plane coutte flow

parallel

Choice 2
tangential
stress

friction stress
small

real fluid
viscous
pressure
tangential
stress

m

m

m (U/L)

ru
g=m

pressure force
zero

constant
viscous flow
nature of the

flow

effect of
viscosity

[ rvidv
M=(rtrp
a3)/6m

plane
poiseuille flow

plane
poiseuille flow

perpendicular

Choice 3
friction stress

real fluid
very small

velocity
effect

force
viscosity

t

W

m /L

ru/L

g=1/m
Reynold’s
number
not equal
large
inviscous flow
order of the

flow

coefficient of
viscosity

 rdv

M=(rtrp a4)/8m

coutte flow

infinite plane
flow

nonparallel

Choice 4
ideal fluid

ideal fluid
infinite
viscosity
speed
velocity
effect of
viscosity
w
t

mU

ru2
g=0
kinematic
viscosity

constant

infinite

vorticity flow
type of the flow

viscosity of a
flow

Jr2vidv
M=(rtp a4)/6m

plane coutte
flow

viscous plane
flow

zero

Answer
tangential stress

real fluid
small

viscosity

no effect
velocity
shearing stress
t

m

m (U/L)

ru2

g=m/r
Reynold’s
number
constant

large

Hagen
—Poiseuille flow
nature of the

flow

coefficient of
viscosity

[ rvidv

M=(rtrp a4)/8m
plane poiseuille
flow

plane coutte flow

parallel



A flow is said to be parallel if only one velocity component is --

A flow is said to be parallel if all fluid particles moving in

- direction

A flow is said to be parallel if only

is non zero

Skin friction o= ----------
Skin friction is also known as

In plane couette flow the

velocity component

per unit area

the pressure gradient is zero

the plates are at rest
In plane poiseuille flow the plates are at
In steady flow the flow past a circular cylinder then the stokes
equation reduces to

Zero

two

two

u/h

circle
temperature
gradient

plane poiseuille
flow

plane poiseuille
flow

motion

parallel

non zero

three

four
pu
sphere

temperature
plane
couette flow
plane couette
flow

rest

perpendicular

constant
one
three
puU/h
square
pressure
gradient

couette flow

couette flow
stable

nonzero

variable
four
one
u/h

drag

pressure

poiseuille flow

poiseuille flow
nonstable

zero

non zero
one

one
puU/h

drag

pressure
gradient

plane couette
flow

plane poiseuille
flow

rest

zero
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Laminar Boundary Layer in incompressible flow: Boundary Layer concept — Boundary Layer
equations — Displacement thickness, Momentum thickness — Kinetic energy thickness —integral
equation of boundary layer — flow parallel to semi infinite flat plate — Blasius equation and its
solution in series.

TEXT BOOKS

1. Milne Thomson .L.M., (1968). Theoretical Hydrodynamics, Fifth edition, Dover Publications
INC, NewYork.(for unit I,11)

2. Curle.N., and Davies H.J., (1971), Modern Fluid Dynamics Volume-I, D Van Nostrand
Company Ltd., London. (for unit I11,1V,V)

REFERENCES

1. Yuan, S.W, (1976). Foundations of Fluid Mechanics, Prentice- Hall, India.

2. Shanthi swarup, (2003), Fluid dynamics, Krishna Prakasan media Pvt Ltd, Meerut.

3.C.Pozrikidis(2016),Fluid Dynamics Theory,computation and Numerical simulation,Springer Pvt
Itd,US

Prepared by:Y.Sangeetha,Department of Mathematics,KAHE

Page 1 of 38



Unit-5

Boundary Layer Theory

UNIT-V

Dynamical Similarity

We have observed that due to non-linear character of the fundamental
equations governing the flow of a viscous compressible fluid, there are no
known general methods for solving them. Only in few particular cases and that
too under restricted conditions, exact solutions of these equations, for all
ranges of viscosity, exist and a few of them have already been considered.
However, attempts have been made to simplify these equations for two
extreme cases of viscosity, very large and very small, and we have well
established theories for these cases which are respectively known as “Theory
of slow motion” and “Theory of boundary layers”. But the cases of moderate
viscosities cannot be interpreted from these two theories. Further, even in
these two extreme cases, we find great mathematical difficulties and therefore
most of the research on the behaviour of viscous fluids have been carried out
by experiments.

In practical cases, such as designing of ships, aircrafts, underwater projects etc,
it is usually necessary to carry out experiments on models and to relate their
behaviour to that of the actual object (prototype). In fact, the model and the
prototype should be what is called as dynamical similar. Mathematically
speaking, two physical systems are equivalent if the governing equations and
the boundary conditions of the two systems are the same. Such systems are
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called dynamically similar system. One obvious condition is that the model
should be geometrically similar to the prototype which means that we can
obtain the actual object from the model by enlarging or contracting its size in
every direction in the same proportion. This eliminates the consideration of
boundary conditions in the discussion of dynamical similarity and so we have
to consider only the governing equations. In short, we can say that two fluid
motions are dynamically similar if with geometrically similar boundaries, the
flow patterns are geometrically similar. Further, two geometrically similar
flows are dynamically similar if forces acting at every point are similar i.e. the
forces are acting in same direction having same ratio in magnitude.

We now discuss the conditions under which the fluid motions are dynamically
similar. In other words, we have to find out those parameters which
characterize a flow problem. There are two methods for finding out these
parameters (i) inspection analysis (ii) dimensional analysis. In the first case,
we reduce the fundamental equations to a non-dimensional form and obtain the
non-dimensional parameters from the resulting equations. This procedure
should always be used when the basic differential equations for a problem are
available. In the second case, we form non-dimensional parameters from the
physical quantities occurring in a problem, even when the knowledge of the
governing equations is missing. We discuss these two methods with particular
reference to the flow of a viscous compressible fluid.

Remark. (i) Some authors do not differentiate between the two methods
and study both of them under the head of dimensional analysis.

(ii) In two dynamically similar systems, usually, all the non-dimensional
numbers cannot be matched and so strictly speaking, perfect dynamical
similarity is rare. So, many times we match only the important non-
dimensional numbers.

Inspection Analysis, Reynolds Number. We know that the Navier-
Stokes equation of motion of a viscous incompressible fluid in the x-direction
is

ou Ou Ou ou 1 0p
—4U—+V—F+W—=X———+V
ot ox oy oz p OXx

o*u 0*u  0%u
PPN ()

ox~ oy~ oz

Suppose L, U, P denote a characteristic length, velocity and pressure

respectively. Then the length, velocities and pressure in (1) may be expressed
in terms of these standards. Thus, we write

x=Lx',y=Ly,z=Lz7 (2)
u=Uu, v=0Uv, w=UWwW 3)
p=Pp’ (4)

Prepared by:Y.Sangeetha,Department of Mathematics, KAHE

2016-Batch

Page 3 of 38



Unit-5 Boundary Layer Theory 2016-Batch

where all primed quantities are pure numbers having no dimensions. Then,
since L/U is the characteristic time, we get

ou_ o) U o
ot oLUt) L ot

' 2 '
2 &gy @) U7
ox olx) L ox
1op_10(®p) _ P opf
pox po(lx') pLox'

tc

0’w_0%(Uu) _U o™
aXZ a(LXv)Z L2 aX'Z ’

Substituting these results in (1) and simplifying, we obtain

au' ou ,ou o X P op
—+V—+W—=—- —
o ox' oy oz U* puU? X'

v (6% o%u' &*u'

i E(Gx'z Tt az'QJ )

The L.H.S. of (5) is entirely dimensionless, so R.H.S. must be also
dimensionless. Thus, it follows that the three quantities

\Y% P ILX

s T _ A~ 5 6

must be dimensionless quantities.

In order to produce a faithful model of a given incompressible viscous flow, it
is essential to keep these three numbers constant. Based on these numbers we
have the following definitions.

Reynolds Number. The first non-dimensional number in (6) ensures
dynamical similarity at corresponding points near the boundaries where
viscous effects supervene. Its reciprocal is called the Reynolds number and is
denoted by R. so that

ro UL
A%
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bodyforces = pX IX
Inertia forces pU?/L  U?

Thus CF =

If Cr is small, the body forces can be neglected as compared to the inertia
forces. Reciprocal of this number is rather more important and is called
Froude number, denoted by F,. Thus

1 U?

C, LX

r—

This number is particularly used in cases when body forces are the
gravitational forces. Thus,

_ inertia forces pUz/L _ U_2
' gravity forces pg gl

It is important only when there is a free surface, e.g. in an open channel
problem. In such cases too the force due to gravity may be neglected in
comparison to the inertia force if F; is large i.e. if

Iy

F,  inertia force " viscous force _ viscous force o

R, gravity force intertia force gravity force

Dimensional Analysis. In the previous case, we reduced the governing
equations of a viscous compressible fluid to a non-dimensional form and
obtained the dimensionless parameters. An alternative method, with which the
non-dimensional parameters may be formed from the physical quantities
occurring in a flow problem is known as dimensional analysis. In dimensional
analysis of any problem, we write the dimensions of each physical quantity in
terms of fundamental units. Then, by dividing and rearranging the different
units, we get some non-dimensional (universal) numbers. Thus, dimensional
analysis can put the quantities influencing a physical phenomenon into a useful
form for the interpretation of data. It is not a tool for solving problems
explicitly but a powerful method for establishing and the grouping of the
relevant variables that are likely to appear if the analytic solution is at all
possible. The major advantage of the use of dimensional analysis is most
apparent where complete analytic solution of the physical problem is not
possible.

There are, generally, three accepted methods of dimensional analysis due to
Buckingham, Rayleigh and Bridgeman. We shall discuss Buckingham’s Pi-
theorem here as it is the simplest one among the three methods.

Buckingham n-theorem. The n-theorem makes use of the following
assumptions
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(1) It is possible to select always m independent fundamental units in a physical
phenomenon (in mechanics, m = 3 i.e. length, time, mass or force)

(i1)) There exist quantities, say Qp, Q,..., Q, involved in a physical
phenomenon whose dimensional formulae may be expressed in terms of m
fundamental units

(iii) There exists a functional relationship between the n dimensional quantities

Qi1, Qa,..., Qq, say
®(Q1, Q2,...,Qn) =0 (D)

(iv) Equation (1) is independent of the type of units chosen and is
dimensionally homogeneous i.e. the quantities occurring on both sides of the
equation must have the same dimensions.

Statement :- If Q;, Q,,..., Q, be n physical quantities involved in a physical
phenomenon and if there are m(< n) independent fundamental units in this
system, then a relation

(I)(Qla Q25" ° Qn) = O
is equivalent to the relation
f(my, m,..., Thy) =0

where m;, my,..., T, are the dimensionless power products of Qp, Qa,..., Qn
taken r + 1 at a time, r being the rank of the dimensional matrix of the given
physical quantities.

Proof. Let Q;, Qa,..., Q, be n given physical quantities and let their dimensions
be expressed in terms of m fundamental units uj, uy,..., Uy in the following
manner

[Ql] — lualluaZI i, Amy

[Qz] l 12u322 _u?ﬁnzl

[Qul = [ua“‘u g J

so that a; is the exponent of u; in the dimension of Q; . The matrix of
dimensions i.e. the dimensional matrix of the given physical quantities is
written as
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Qi Qx
e 2
uj: an an.... din
U ar axy...... Ao
\_ Un: an, Ay ceeees a., /

This mxn matrix is usually denoted by A.

Now, let us form a product «t of powers of Qj, Qo,...... , Qn, say
_ N X5 X
= Q" Q... Q"
then [x] =
app ayg amp {212,222 amy |2 (al ap a )X“
[(u1 u.um )X (u1 u,2...ue ) .......... u,"uy L u™

In order that the product & is dimensionless, the powers of uy, uy,..., uy, should

be zero 1.e. Mo, LO, T° etc. Thus, we must have
apX;+ap Xy toooo.. +anx, =0
QX +anXyto.o.o..o...... + ap, Xn:()
a, +Xi+a X2t ...... +a,xn=0

This is a set of m homogeneous equations in n unknowns and in matrix form
can be written as

Now, from matrix algebra, we know the result that if there are m homogeneous
equations in n unknowns, then the number of independent solutions will be
n—r, where r is the rank of the matrix of co-efficients, and any other solution
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can be expressed as a linear combination of these linearly independent
solutions. Further there will be only r independent equations in the set of
equations.

Thus if r is the rank of the dimensional matrix A, then the number of linearly
independent solutions of the matrix equation AX = 0 are n-r. So,
corresponding to each independent solution of X, we will have a dimensionless
product w and therefore the number of dimensionless products in a complete
set will be n—r

Therefore, d(Q1, Qo,e.ee.o. ,Qn) =0
= f(my, T,eeeeen. .. , Tor) =0
Hence the theorem.

- Method for m-products. To find out the n-products in a complete set, we
adopt the following steps.

(1) Write down the dimensional matrix of n physical quantities, involving
in a physical phenomenon, having in independent fundamental units.

(ii) Find the rank of the dimensional matrix. If the rank is r(say), then the
number of 7’s will be n—r.

(111)  Select r quantities out of the n physical quantities as base quantities,
keeping in view that these r quantities should have different dimensions
and the dimension of any of the fundamental unit should not be zero in
all of them.

@iv) Express my, m,...., Ty @ power products of these r quantities raised to
arbitrary integer exponents and one of the excluded, but different in
different ©’s, (n—r) quantities.

) Equate to zero the total dimension of each fundamental unit in each -
product to get the integer exponents.

Thus, the Pi-theorem allows us to take n quantities and find the
minimum number of non-dimensional parameters 7, my,...., T, as associated
with these n quantities.

Application of n-theorem to Viscous Compressible Fluid Flow. We
now follow the above mentioned fire steps to find out n-products and see the
application of m-theorem and see the application of m-theorem to the simple
case of viscous compressible fluid flow. Suppose that in the considered fluid
flow, the physical quantities involved are
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L, U’ pa X, P’ H

and the fundamental units in which the dimensions of all these quantities can
be expressed are mass [M], length [L] and time [T]. The above six quantities
have dimensions as follows

Quantity Dimensions

L-length [L]

U-velocity [LT ]

p-density [ML™]

X-force per unit mass [LT*Z] — force [MLT*Z]

P-pressure force per unit area) ML T

p-viscosity ML T
(i) The dimensional matrix for the present problem is
/L U e X P u\
M:| O 0 1 0 1 1
L: 1 1 -3 1 -1 -1

T: Q -1 0 -2 -2 —y

(1i1) The rank of the above matrix is 3, so the number of independent
dimensionless products will be 6-3 = 3.

(111) Let us take L, U, p as base quantities.

n, =L"U*p"X
(iv) Let n, =L USp P
Ty = | R UXSpXQM

) Now,
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[ 1=[L)" (LT~)* (ML) (LT )]
_ [Lx1+x2—3x3+1Mx3 T—x2—2]
[m3]=[(L)* (LT (ML?)* (ML'T )]
S ROAE NI
[r3]=[@L)* (LT ML) ML'T™)]

_ [LX7 +X8—3X9 —IMX9 +1T—X8 -1 ]

If m;, 7, m3 are dimensionless, then we must have

X1+X2 —3x3+1 =0 X4+ X5 3% —1=0| X74+Xg—3%X9—1=0
x3=0 X+l =0 Xo+1 =0
—X2—2 =0 —X5—2 =0 —Xg—l =0

Solving these equations, we get

x1=1 ‘X4:O x7=-—1
Xy =-2 X5=-2 xg=—1
x3=0 Xe=—1 Xg=—1
Thus, we get
m=L'U?p’X= I{j—i{
mL=L"U?p'P= P2
pU

S T = I B U B
3 P R=0 T

which are the same dimensionless quantities obtained in equation (6) of the
inspection analysis

Remark. If we include the energy equation and equation of state in our
study, then, in the general case of viscous compressible fluid dynamics, there
are 9 physical quantities and the fundamental units in which the dimensions of
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all these quantities can be expressed are length, mass, time and temperature (Q)
and thus there are 9—-4 = 5 non-dimensional numbers.

Prandtl’s Boundary Layer (case of small viscosity)

The simple problems of fluid motion which can be considered are divided into
two classes according as the corresponding Reynolds number is small or large.
In the case of small Reynolds number, viscosity is predominant and the inertia
terms in the equations may be regarded as negligible. The case of large
Reynolds number in which the frictional terms are small and inertia forces are
predominant, was investigated by the German Scientist Ludwig Prandtl in
1904. He made an hypothesis that for fluids with very small viscosity i.e. large
Reynolds number, the flow about a solid boundary can be divided into the
following two regions.

(1) A thin layer in the neighbourhood of the body, known as the boundary
layer, in which the viscous effect may be considered to be confined. The
smaller the viscosity i.e. the larger the Reynolds number, the thinner is this
layer. Its thickness is denoted by 8. In such layer, the velocity gradient normal
to the wall of the body is very large.

(i1) The region outside this layer where the viscous effect may be considered as
negligible and the fluid is regarded as non-viscous.

On the basis of this hypothesis, Prandtl simplified the Navier-Stokes equations
to a mathematical tractable form which are termed as Prandtl boundary layer
equations and thus he succeeded in giving a physically penetrating explanation
of the importance of viscosity in the assessment of frictional drag. The theory
was first developed for laminar flow of viscous incompressible fluids but was,
later on, extended to include compressible fluids and turbulent flow. However,
we shall consider only the case of incompressible fluids.

In the discussion of unsteady flow over a flat plate, we had obtained that

S~ 4wt

i.e. the boundary layer thickness is proportional to the square root of kinematic
viscosity. The thickness is very small compared with a linear dimension L of
the body i.e. d << L.

Boundary Layer equation in Two-dimensions. The viscosity of water,
air etc is very small. The Reynolds number for such fluids is large. This led
Prandtl to introduce the concept of the boundary layer. We now discuss the
mathematical procedure for reducing Navier-Stokes equations to boundary
layer equations. The procedure is known as order of magnitude approach.

Let us consider a flow around a wedge submerged in a fluid of very small
viscosity as shown in the figure
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At the stagnation point O, the thickness of the boundary layer is zero and it
increases slowly towards the rear of the wedge. The velocity distribution and
the pattern of streamlines deviate only slightly from those in the potential flow.
We take the x-axis along the wall of the wedge and y-axis perpendicular to it,
so that the flow is two-dimensional in the xy-plane. Within a very thin
boundary layer of thickness 0, a very large velocity gradient exists i.e. the
velocity u parallel to the wall in the boundary layer increases rapidly from a
value zero at the wall to a value U of the main stream at the edge of the
boundary layer.

The Navier—Stokes equations, in the absence of body forces, for two
dimensional flow, are

du ou ou —-19p [(d*u 0%
U —F+V— =tV —— F—— (1)
o ox oy pox (oxP o ooy?

2 2
@+HQ+V@:_1@+V Q_Fﬁ 2)

o0 ox oy pdy (ox* oy’

The equation of continuity is

CLICLA 3)

ox Oy

In studying the unsteady flow over a flat plate, we found that the thickness of
the boundary layer 6 is proportional to the square root of the kinematic
viscosity v which is indeed very small. For this reason 6 < < x except near the
stagnation point 0 where the boundary layer begins. In order to compare the
order of magnitude of the individual terms in the above equations, we put them
in non-dimensional form by introducing the non-dimensional notations
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where [, 0, U, V and p. are certain reference values of the corresponding
quantities x, y, u, v and p respectively. The non-dimensional quantities are all
of order unity. The continuity equation in non-dimensional form is

Ucdu* Vov*
I -

et A S 5
[ ox* Joy* ©)
Integrating, we get
1
V_ dfou*
or U =——j %dy*, where (v¥) g« =1 (6)

Since the integral in (6) is of the order of unity, the ratio % is of order ? .

Therefore V < < U.

We now obtain the non-dimensional form of (1) using (4) such that

U_ZEJFU_ZU*GU*JFUV du*_ —Po Gp* vU 62u*+£52u*
I a* | oxE S oy* pl ax* 12 | g #2 52 oy

or

* * * * 2% 2 A2 4
qu*  Lu* VI du*_ p, Lﬁu laqu

+u +— +—
ot * ox* U § ay* U2 GX* ax*z 82 ay*z
1 181 & 1 N
S 52
The order of the terms involved are indicated.
u 1 v 2 . . 12
Reynolds number, Re = — = —=—=0(5)" as 9 is proportional to v
v

[$]

Similarly, the non-dimensional form of (2) is

UVov* UV  ovk V?  ov*

———+—u vHE—
[ ot | ox* & oy*
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. 2
pd oy *

Vov: Vo ov* V[ o ov¥

or — u +——VvF—
Uat* U ox* U2s oy*

S S 521
S

v +l62V*
12 ox 2 52 gy *?

—P L Op*, VVI o2y
pU? doy* [2U? | ox *?

— *
Poo iap;_{_iv

120%v*
828y %2

& & 1

v
—= — +
pU2 6 ay* ]Re U aX*Q

12 9%v*
52 oy 2

1
57 8)

We neglect the terms of the order of & and higher as d is small. We then revert

back to the dimensional variables to obtain

2

ot ox oy pox oyl

Il
)

= p=pXx)

+
Il
(e

2|2

and

2l 2R

9)

(10)

(11)

Equations (9—11) are known as Prandtl’s boundary layer equations with

boundary conditions

u=v=0, y=0
u=U(x,t),y >

(12)

Since p is independent of y, for given x, p has the same value through the
boundary layer from y = 0 to y = 6. Thus, in boundary layer theory, there are
only two variable terms u and v instead of three u, v and p in the Navier-Stokes

equations.
equations.

This is a great simplification in the solution of the differential

Prepared by:Y.Sangeetha,Department of Mathematics, KAHE

2016-Batch

Page 15 of 38



Unit-5

Boundary Layer Theory

Now, U is the velocity outside the boundary layer. The Euler’s equation in the
main stream (potential flow of non-viscous fluid) is obtained from (9) by
taking v= 0 and

v=0, =0 fory=>9

au
oy
Thus, we get

ou U@_U:_l@ (13)
o ox p dx

From (9) and (13), we obtain

2
@+u8u+ ou 8U+U8—U+va—u (14)
ot Ox ay ot Ox ay2

and @+@=O (15)

ox Oy

Although these equations are obtained for a rectilinear flow but they hold for
curved flow if the curvature of the boundary is small in comparison to the
boundary layer thickness.

The integration of (14) and (15) can be simplified if we can reduce the number
of variables by introducing the stream function .

i v (16)

where u=—-, V=

The continuity equation is automatically satisfied. The boundary layer
equation (14) in terms of y is

2 2 3
Oy J Oy wow_ O, ;U U (17)

Gy oy oxdy ox oyt oy | ox | a

The boundary conditions (12) reduce to

v
% (13)
%zU(x,t),y—)oo

The exact solution of (17) was given by H. Blasius in 1908, for the case of
steady flow (6/ ot = O) past a flat plate (U = constant).
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The Boundary Layer Along a Flat Plate (Blasius Solution or Blasius —
Topfer for Solution)

Let us consider the steady flow of an incompressible viscous fluid past a thin
semi-infinite flat plate which is placed in the direction of a uniform velocity
U,. The motion is two-dimensional and can be analysed by using the Prandtl
boundary layer equations. We choose the origin of the co-ordinates at the
leading edge of the plate, x-axis along the direction of the uniformal stream
and y-axis normal to the plate. The Prandtl boundary layer equations, for this

case, are
ou du o*u
U—+v_—=v_— (1)
ox 0y oy
au + o =0 (2)
Ox Oy
where u, v are the velocity components and v is the kinematic viscosity.
y
Uy,
)
u

Of-'",-'"',-'f-'f-'"',-'"',-":-'"',-'"',-'"',-'"'ffff;ffffffffffffffffff > X
The boundary conditions are

3)

u=v=_0 wheny =0
u=U

wheny — o

[ee]

In this problem, the parameters in which the results are to be obtained, are U,
v, X, y. So, we may take

Ui = F(x, y, v, U.) = F(n) )

0

Further, according to the exact solution of the unsteady motion of a flat plate,
we have

§~Jvt ~ | X (5)
U

o0

where x is the distance travelled in time t with velocity U,. Hence the non-
dimensional distance parameter may be expressed as
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U,
o Jyw/U, VX

Thus, it can be seen that 1 in (4) is a function of x, y, v, U as in (6)

The stream function v is given by

v =ludy uz%, VZ—%
= U Fp Dy
dn
= U, [VJ—XI F(m) dn=/vxU,, f(m) (7)

[ee]

The velocity components in terms of 1 are (dash denotes derivative w.r.t. n)

u—‘g‘;’ (,My - JvxU, Jifm) UA ') ®)

/ U, / 1
—vV= % 2 v f(n)+\j f(n)y [ 2 3/2)
1 |vU 1 U
- v Y f sy == ()
2 X 27 x
=1 [We (,/U—‘” yf'(n)—f(n)J
2 X VX

1 VU,
=3 o ')~ () 9)
Also,
ou oty o om
X oxgy e T

:__U (). y \/ NI

Prepared by:Y.Sangeetha,Department of Mathematics, KAHE

2016-Batch

Page 18 of 38



Unit-5 Boundary Layer Theory 2016-Batch

10 N
=———T]f M) (10)
2
au 6 " UCD "
—=U,—( (”)):Um/_ f"'(m) (11)
oy oy VX
o’u _U3 .,
() (12)
oy VX
Using these values of u, v and their derivatives in (1), we obtain
Uoof'(n)
1 U " "
—E—nf (n) +— = (f'(m—-fm)HU,, f m
Ui ARl
=v —f"'(m)
VX
2 2 2
or —[;—nf f"+U (nf'—Hf'"= U°° e
or Nt "+t A" =2("
or 21" +ff"=0
3 2
ie. PR A (13)
dn dn

The boundary conditions (3) in terms of f and n are obtained as follows

u=0wheny=0implies f'(n)=0 whenn =0

and
v=0 =nf'(n)-fin)=0 =1f(n)=0
Therefore,
fm)=f'M)=0whenn =0
(14)
u = U, when y—oo implies that U, f'(n) = U, when n—o0
Therefore,
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f'(m)=1 when n —w (15)

Thus we have reduced the partial differential equation (1) to ordinary
differential equation (13), known as Blasius equation, where 1 is the similarity
parameter.

The third order non-linear differential equation (13) has no closed form
solution, however, Blasius obtained the solution in the form of power series
expansion about n = 0.

Let us consider

c C
fn)=co+em+ 2n>+2n’+....... 16
(M) =co+cim |—271 I_?)n (16)

f'Mm)=ci+com+ C—3nz+c—4n3+ ....... (17)
|2

13

(M) =cs+em+ C—;n2+c—5n3+ ....... (18)

3

fur(n) =C3 +C4n + C_;nz +C_6T|3+ ....... (19)

13

The constants c;’s are determined from the boundary conditions (14), (15) and
the differential equation (13). From (14), we get

C0:C1:O

From (13), we have

0= (2c3 + 2c4n + cs° +.....) + (co + ¢ + o2 N +....) (ca +c3 T]+C—4n2 +...)
2 2

1.e. (2c3+cocp) + (2ca + cpc3+ ¢ co)M

2
CcoC c

+ (05 +-94 4, +—2}12+....=0
2 2

2
i.e. 2c3+2cam + (cs +%}12 +...=0
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Equating the co-efficients to zero, we get
C3=C4=Ce=C7=Co=C10=0

2
CS=_C—2, CS:EC; C11:—ﬁ024
|2 4 8

The solution (16) is

2.5 8 11
fop= 220 Ham 3554m o (g
2T s a8 T s

The constant c; is determined by the condition (15) i.e.

df

— =1 as n—w
dn

We write (20) as

f(n) =
s € 1En’ 1en® 375 @t

Cle 2 4 s

= 012/3F(012/3n) 21

Therefore,

£'(m)= ¢ Fe3™n)

Thus, Lim C%BF'(CIZ/ST]): lim f'(n) =1
n—-® n—e®

Therefore,

3/2

2= |t (22)
lim £'(c; °n)
n—©

where c; is determined numerically by Howarth (1938) as 0.33206. Thus f(n)
in (20) is completely obtained which helps in finding u and v from (8) and (9).
Hence the Blasius solution.

The shearing stress Tty on the surface of the plate can be calculated from the
results of the Blasius solution. Thus, we have
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(8uj pU,, £''(0)
To=U| — =
ay y=0 VX/Uoo

U,C, 0332

- = 23
u\/VX/UOO \/Rex pUZ (23)

where R, =xU /v is the Reynolds number.

The frictional drag coefficients or local skin friction coefficients Cy is

C = 1 To _ 0.1364 (24)
~pUZ ex
’ p
The total frictional force F per unit width for one side of the plate of length / is
given by
l vl
F= j 1od, =0.664 pUZ |~ (25)
0 U

Equation (25) shows that frictional force is proportional to the 3/2th power of
the free stream velocity U, .

The average skin-friction co-efficient of the drag co-efficient is obtained as

2
F o 0664PUL 75, 1328

1

Cp= _
~pUZ ] EPUfoz R,

(26)

Where R, :%.
\%

Characteristic Boundary Layer Parameters : (i) Boundary Layer
Thickness. The boundary layer is the region adjacent to a solid surface in
which viscous forces are important. According to the boundary conditions (3),
the velocity u in the boundary layer does not reach the value U, of the free
stream until y—oo, because the influence of viscosity in the boundary layer
decreases asymptotically outwards. Hence it is difficult to define an exact
thickness of the boundary layer. However, at certain finite value of m, the
velocity in the boundary layer asymptotically blends into the free stream
velocity of the potential flow. If an arbitrary limit of the boundary layer at
u =0.9975 U, is considered, the thickness of the boundary layer is found to be
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§=5.64 | VX 364 27)
U, R,

X

(ii) Displacement Thickness : The boundary layer thickness being somewhat
arbitrary so more physically meaningful thickness is introduced. This
thickness is known as displacement thickness, which is defined as

Unbi= | (Un-wdy (28)
y=0

where the right-hand size signifies the decrease in total flow caused by the
influence of the friction and the left-hand side represents the potential flow that
has been displaced from the wall. Hence the displacement thickness 0, is that
distance by which the external potential field of flow is displaced outwards due
to the decrease in velocity in the boundary layer.

° u
= fl1-la 2
ie & (f)( U J y (29)

o0

Using the expressions for L and y from (8) and (6) respectively, we find 9,

0

for the flow on a flat plate, as

VX %
oi= [— | (1-1")d
1 UI( )dn

o0 0
Ux
= |— L -
‘/Uoo ng;o [n — ()]
17008 | X 17208 x (30)

(iii) Momentum Thickness : Analogous to the displacement thickness,
another thickness, known as momentum thickness (J;), may be defined in
accordance with the momentum law. This is obtained by equating the loss of
momentum flow as a consequence of the wall friction in the boundary layer to
the momentum flow in the absence of the boundary layer. Thus

pd, U2 =p Ju(U, —u)dy
y=0
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U, U

o0

or 5, = Tl(l—l}iy 31)

Again, using (8) and (6), we obtain 9, for the case of the flow on a flat plate, as

VX T,
8, = /U—w'([ f£(1-f ") dn
- 0664 |X - DO0AX (32)
U, R,

X

Comparison among various thicknesses of the boundary layer is shown in the

figure. We note that
y

Uoo
0, <901 <9. <

0.9975 U,,

_—> U —u
(Velocity deficit)
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4. Integral Methods for the Approximate Solution of Boundary Layer Equations
(Karman Integral Conditions)

We have observed that the solution of the steady boundary layer equations is
very difficult. The solution obtained in the previous case is also a very special
case. For engineering problems, it is often acceptable if an approximate
solution can be obtained. One of the most useful methods is the Von Karman-
Pohlhausen method based on the integral theorem. The basic concept of this
method is that the solutions satisfy the differential equations only on the
average, 1.e., it is not anticipated that the solution satisfies the boundary layer
equations at every point (x, y) but the momentum integral equation and the
boundary conditions must be satisfied. The momentum integral equation is
obtained by integrating the boundary layer equations with respect to y over the
boundary layer thickness or by the momentum law.

Momentum Integral Equation for the Boundary Layer (Von Karman Integral
Relation). The Prandtl’s boundary layer equations are

— U — V= VY —— (1)

and —+—=0 )
ox oy
Integrating (1) w.r.t. y from y = 0 to y = 8(x), the outer edge of the boundary layer, we get
—j udy+ |, u—d N V—d ——depd “j —d 6
y Y+, 0 3y y

Let us simplify the third term on L.H.S. of (3). We have

J-S ou jsa(uv)

—dy=], o

an dj—dy

_ jjd(uv)—jju%dy

5 OV
= [uv]s—jougdy
Uj —dy Iju@dy 4)

whereu=Uaty=3.

ou
Replacing — by — 8_ , from the continuity equation, we get
X
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6u @ d 5)
ox Y
Using (5) in (3), we find

2
%qudy+qu%dy—Uqu%dy+J.§u%dy:—lJ.S@dy-i-EJ.SQdy

)
0 (8 5 Ou 8 Ou 8 dp ou
= §IOUdy+2I0u &dy_UJ‘O &dy:——jo dX {ay:|0
0 8 5 Ou’ 8 ou 15 dp u( ou
—[Pudy+[’ =dy-U[ —dy=——{ —Edy+=|=—
. R B e o A I
=_1@5+(£j _(zj
pdx  \p)s P
§d
- 2P % ©
pdx p

u
where © = a—=0aty=8.

=taty=0
i.e. Ty is the shear stress on the wall.

Let us further simplify the second and third terms on the L.H.S. of (6). For this we use the
Leibnitz rule according to which

Sy = [0S dy—fa, ) S )

a(x) a(x) Jx
Ja;—d—f—f“’
and Uy 2 dy=U [ udy-02 2
Thus, equation (6) reduces to
%ISudy+%I§u2dy—U%j§udy:—%%—% @)

This is one form of the Von Karman integral relation and is also called the momentum integral
equation of the boundary layer.
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Von Karman Integral Relation by Momentum Law. The Von Karman integral
equation of the boundary layer represents the relation between the overall rate of flux of
momentum across a section of the boundary and the surface forces due to the wall shearing
stress and the pressure gradient. The Von Karman integral equation which we just obtained,
can be derived from the momentum theorem of fluid mechanics.

Let us consider an element of the boundary layer, ABCDA of unit length perpendicular to the
xy-plane as shown in the figure.

y U
e C
/ AS
/ B
g d
s| u
< pd+—(pd)Ax
péd— . dx
0

0O . X
A D .

Let AD = Ax be the small length of the éementxm the x-direction and & be the thickness of the

boundary layer at a distance x from the leading edge of the plate. We assume that the velocity

of the boundary layer flow at the outer edge of the boundary layer is the same as that of the

potential flow, i.e.,u=Uaty = 4.

The rate of mass flow across AB into the element is
Jo pud
o PUdy
The corresponding rate of mass flow across DC out of the element is
8 0 |5
.[0 pudy + & 0 pUdy Ax

The net rate of flow across AB and DC is

(;ix I_[jpudyJAx (1

Since there is no flow across the surface of the plate AD, so by continuity
equation, the rate of mass flow out of the element across BC must be

d I_[S ud JA ()
- X
ax Uo pudy
Similarly, the net rate of change of momentum across AB and DC of the
element, in the x-direction, becomes
ey ]
= jo pu’dy |Ax 3)
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The rate of change of momentum across BC is

-U ;—X |J06 pu dyJ AX 4)

where U is the velocity across BC in the x-direction. Total outward flux of momentum
becomes

[ d (s d (s
&Io puzdy—U&jO pudy} AX (5)

The time rate of increase of momentum within the element is

[0 5
P Io pudy |Ax (6)
The forces acting on the fluid due to the shearing stress at the wall is

ou
—u| — AX = —73 AX, in the x-direction @)
ou ),

and due to the difference of pressure along AB and CD is

1dp

pd— {pS + a4 (pS)Ax} + [p +— do dp
dx 2

Ax}Ax — =—-0—Ax (8)
dx dx

dx
where we have neglected terms of order AXAJ.
Now, according to the momentum law, we have

Rate of change of momentum in x-direction. = Total force in x-direction

0 6 d s 5 d ;s
= {EJ‘O pudy}Ax+{£J‘0pu dy—UaJ.0 pudy} AX
do
=-0 — AX — 79 AX ©)]
dx

Dividing both sides of (9) by pAx, we get
0 (8 d s d s
—j udy+—j uzdy—U—j udy=————-— (10)
o0 dx 0 dx -0
which is the required Von Karman integral equation, being the same as obtained by integrating
Prandtl’s boundary layer.
Other Forms of the Von Karman Integral Equation. It is often convenient to have the

integral equation in terms of displacement and momentum thicknesses. The momentum
integral equation of the boundary layer is
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Also, the Euler’s equation in the main stream is

U, gV __1dp

ek pdx

2016-Batch

— ey

@

d
where U is the velocity of the potential flow, e is the pressure gradient, p is the density

X

, 0 is the thickness of the boundary layer and 1 is the shearing stress at the wall. For

a steady flow, we obtain from (1) and (2)

d d dU
&J.osuzdy—U&J. Yo

udy-0U—=—
. dx p

or

d
dx

or
d s dU s T
— [ uU-u)dy+—['(U-u) =2
dx -0 dx -0 p
The displacement and momentum thicknesses are defined by

1 u 13 u
o, = IO (1 —ﬁjdy = Ud, = IO (1 —Ejdy

and
5 5
S, = J‘O%(l—%jdy = U%, = .[0 u(U—u)dy

Thus, equation (3) reduces to

—(U d,)+ d—UU6
or
2 4 ous, 9V, ys, 4V T
dx X dx p
or
&+i(282+8)dU o
dx U dx pU?
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This is the Von Karman momentum integral equation in terms of displacement and momentum
thicknesses.

Application of the Momentum Integral Equation to Boundary Layers (Von Karman
Pohlhausen Method). Pohlhausen introduced a fourth degree polynomial for the velocity in
terms of a non-dimensional parameter 1 = y/d, 0 < n < 1 such that

%zf(n)zan+bn2+cn3+dn4 (1)

The constants a, b, ¢ d are to be determined from the boundary conditions

o’u 1dp U dU
u=0,v=0, —=——=———, aty=0 (2)
2 pdx v dx

2
u:U,@=0,8—121=0, aty=29 3)

ay

The first two conditions in (2) and the first condition in (3) are satisfied by all exact solutions
of the boundary layer equations. The second condition in (3) is meant for continuous flow on
the outer boundary of the layer. The third condition in (2) is obtained from Prandtl’s boundary
layer equation i.e.

du OGu ou ldp H%u

—HU—+V— =+ V—
o ox oy pdx oy’

When the flow is steady and u =0 =v ony =0, then
Pu_1dp_ldp__UdU
oy? vpdx pdx v dx

2

The point where =0 is called a point of inflexion of the velocity profile in the boundary

2

layer. From (1), we get

O'u_ 1 d% U(2b6 12dn®) =0
— = —F5 = —5 (2b+b6en+12dn’) =
2 2 2 2
oy 0° dn
= 6dn’ +3cn+b=0

This gives two values of 1. One of the points is near the wall and other is in the upper region
of the boundary layer. For this reason, the boundary condition.

o%u .
~5 = 0 aty =3 is imposed.

Let us now use the conditions (2) and (3) in (1) to find out

082u U du 2bU UdU
n=0—F=-—— =

oy v dx :>82 v dx
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82 du A 8% dU
= b=——————7\,:_

2vdx 2’ vg

A
n=Lu=U =a-—+c+d=1

ou

n=1,—=0 =a-A+3c+4d=0 4)
oy
d%u

n=1,—5=0=-A+6c+12d=0

Solving (4), we get

a=2+&,b=_—7\', c:—2+&,d:1—& 5)

6 2 2 6

Therefore, the velocity in (1) has the expression

u 7\, 7\, 2 )\, 3 7\, 4
—=fm)=|2+—M—-—=m"+|-24+=-n" +|1-—
0 m) ( 6}1 oM ( 2}1 ( 6}1

2 3 4
=2n—2n3+n4+x(ﬂ—n—+%—%]

6 2
=F(n) + A G(n) (6)
where F(n) =2n-2n+n*
G =2 (1-3n+3n 1) = L (1)’
6 6

8% dU
A= —— @)

v dx

The velocity profile expressed in terms of 1 in (6) constitute a one-parameter family of curves
with a dimensionless parameter A which depends mainly on the pressure gradient of the flow.
A may be written as

2
xzid_U__@( 5 j

v dx  dx uu/o

which can be interpreted physically as the ratio of the pressure force to viscous force. This is
known as the shape factor.

We shall now calculate the limits of A. From (6), we get
3,4 A 3
f(m) =2n-2n"+’) + gn(l—n)

Therefore,
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df 2 3 }\’ 3 2
— =(2-6n"+4n) + — [(I-)" = 3n(1-1)7]
dn 6

— (D2 3 & . 2
=(2-6m +4n)+6(1 un) (1-n)

d’f A
and dn_z = (1 - T])|:1 2(8 - ljn — }\.j|

dfj A
when n=0,|—| =2+—
0 6

(gj =0 =A=-12
dn 0

This is taken as lower limit of A. The upper limit of A can be determined from the condition of

A () |
zero curvature of the velocity, i.e. > = O which givesn = — /| ——1. Itis seen that
dn 12/ \6
for A <12, m > 1.0 and for A > 12, n < 1.0. Hence for A > 12, the point of inflexion occurs
within n = 1.0 i.e. the velocity profile in the boundary layer becomes greater than the velocity
in the potential flow. This is not justified physically. Therefore, we take A < 12. So, the limits
of Lare —12 <A < 12.

For A = 0, the velocity profile corresponds to the Blasius solution.

With the aid of the approximate Pohlhausen’s velocity profile (6), we find the displacement
and momentum thicknesses. These are defined by

S
5= (l—%jdy ®)

0

)
u u
8= [—|1-—=|d 9)
2£U( ij (

Using (6) and n = Y , we have
g n S

6 1
—=[ [1-Fa) -2 Gl dn
5 0

1
= | [1—2n+2n3 -n' —%n(l—n)ﬂdn
0

1

2,0t Ad-m’ Ad-n?
2 5 6 5 6 4

0
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_3 A
S 10 120
and
S 1
% _ _F(n)-
5 = [ [Fau+2 Gl [1-F(n)-2.Gapldn
0
37 A X

T 315 945 9072

The shearing stress T, at the wall is given by

T0=H(@j :E(Z-F&)
o), 8\ 6

Let us multiply each side of the momentum integral equation i.e.

9, L 25, +5)3Y = o
dx U dx pU?
o, .
by to find out
A%

Us, @{% 3, Jﬁd_U: 793,

v dx 8; v dx pU

To simplify (13), we use the parameters

82
2= —=,K=2U'=

Y% v dx

3 dU_5 Av_| 3
v §2
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(X+12j82 (xﬂzj 37 A N
= —= = (17)

6 )5 6 \315 945 9072
. ) . 0,do, 1dz
Using the values of z, k, f;(k), f,(k) in (13), and noting that — —= = —— the momentum
v dx 2dx
integral equation takes the form
H% + (2+f1(k)) k = fr(k)
2 dx R
or % = @ (18)
dx U
where F(k) = 2f,(k) — 2 (2+f;(k)) k (19)

Equation (18) is a non-linear differential equation of the first order for z.

dz
At the stagnation point x = 0 and U = 0. At this point d_ cannot be infinite and so F(k) = 0.
X

This gives the value of A at the stagnation point. Thus, we have
2f,(k) —2(2 +£1(k)) k=0 (20)

Using the values from (15), (16) and (17), it is obtained that initial value A, of A at the
stagnation point is A = 7-052.

Further, we can determine F(k), in (19), numerically for different values of A.
Separation of Boundary Layer

Physical Approach : The decelerated fluid particles in the boundary layer do not remain
in the thin layer which adheres to the body along the whole wetted length of the wall. In some
cases the thickness of the boundary layer increases considerably in the downstream direction
and the flow in the boundary layer become reversed. The decelerated fluid particles then no
longer remain in the boundary layer but forced outwards, which means that the boundary layer
separates from the wall. Such phenomenon is known as boundary layer separation and the
point at which the boundary layer separates is known as point of separation.

The phenomenon of boundary layer separation is primarily connected with the pressure
distribution in the boundary layer and is very common in the flows about blunt bodies, such as
circular and elliptic cylinders or spheres. The fluid flow in the boundary layer is determined
by the following three factors.

@) It is retarted due to viscosity because of no-slip condition at the wall.

(ii) It is pulled forward by the free stream velocity above the boundary layer

(iii) It is affected by the pressure gradient.

We have already observed that the pressure in the boundary layer is the same as it is outside
the boundary layer. Let us consider a curved surface as shown in the figure
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d%u )
—>0

. — <0 . 2 .
Upstream of the highest it The stream lines of the g}fter flow converge, resulting in an
increase of the free stream velocity U(x) and a consequent fall of pressure with

x(d—p < O)i.e. favourable pressure gradient. Downstream of the highest point the stream
X

d
lines diverge, resulting in a decrease of U(x) and a rise of pressure with x (d—p >0 |. Inthe
X

X

retarded fluid particles with small momentum and energy cannot penetrate too far. Thus, the
forward flow is brought to rest and thereafter a back flow sets in the direction of the pressure
gradient. This causes a boundary layer separation and the point at which the forward flow is
brought to rest is called the point of separation.

d . .
region with rising pressure , (d—p >0 1.e. adverse pressure gradient. |along the wall, the

Analytical Approach. In this approach, the separation phenomenon may be explained by
applying the Prandtl’s boundary layer equations both outside the boundary layer and at the
wall. Outside the boundary layer, the equation is

dU  1dp
U—=——— 1)
dx p dx
and at the wall, i.e. at y = 0, we have u = v = 0, the equation is
d%u dp
Ll e 2)
oy ), dx
2
It may be noted that at the outer edge of the boundary layer both — and > tend to zero,
u 211
— from the positive side whereas — from the negative side, as at the outer edge the

y

maximum value of u i.e. U should occur and the boundary layer flow merges smoothly with
the potential flow.

Since it is clear from equation (1) that the curvature of the velocity
profiles in the immediate neighbourhood of the wall depends only on the
pressure gradient, we consider the following three cases :
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@) —p= 0 i.e. zero pressure gradient i.e. constant pressure :
X

2
u
In this case —— | = O and hence the velocity gradient — decreases steadily from a
0 ay
positive value at the wall to zero at the outer edge of the boundary layer. The velocity profile
must therefore have a steadily decreasing form (figure 1).

y
y y

2
ou . ou
el o) 3

u oy oy

Figure 1
83 4
. . . . u .
The point of inflexion occurs on the wall since 5| = 0 but y # 0, which can
0

easily be verified by differentiating the boundary layer equation w.r.t. y and evaluating the
value at y = 0. The fluid particles continue to move forward and therefore separation of
boundary layer does not occur.

(i1) it < 01i.e. favourable pressure gradient :
X

2
For this case, from equation (2), we conclude that —3 < 0 and therefore it increases
0
steadily to the value zero at the outer edge (y = ) of the boundary layer. The velocity gradient
ou

— again decreases steadily from a positive value at the wall to the value zero at the outer
y

edge of the boundary layer. The velocity profile does not have any point of inflexion (figure 2)

and has a form similar to the case of zero pressure gradient. In this case also, the fluid particles

continue to move forward and so there is no boundary layer separation.

y

y
d 2
(iii) jl >0 ie”adverse pressure gradient: 8_u 0°u
dx u )

oy

«<

o
<,

Figure 2
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2 2

In this case ~ will be a positive quantity. In order to have a positive value of

oy ),

ou
y = 0, the slope of the velocity gradient a—at y = 0 must be positive. But the boundary
y

u

condition requires a—= 0 at y = 8. Therefore, the slope of the velocity gradient must change
y

signs from positive to negative in the boundary layer which results in point of inflexion of the

velocity profile in the boundary layer (fig. 3). The velocity gradient at the wall is much

smaller compared to the case of zero pressure gradient.

y
f y
P.L
¢} u 0 u [V o*u
A 2
oy oy
Figure 3.

As the adverse pressure gradient increases further, the velocity profile may become

increasingly distorted until the velocity gradient at the wall [—J is zero, as shown in figure

0
3. At this point, separation of flow from the wall begins. Further downstream, a back flow in
the direction of the pressure gradient sets in.

It should be noted here that the type of velocity profile shown in figure 3 is naturally unstable
and it frequently happens that the transition to turbulent flow in the boundary layer will take
place before laminar separation can occur. Under such circumstances, the turbulent boundary
layer will be maintained and separation of flow from the wall will be delayed.

Further, the point of separation is defined as the limit between forward and reverse flow in the
layer in immediate neighbourhood of the boundary wall. In other words, the point of

ou
separation is the point at which (— =01ie.1=0.
0
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Possible Questions

Part-B(5x8=40 marks)

1. Derive the differentiation following the motion of a fluid.

2. Determine the stream lines and path lines of the particle u=x/(1+t) , v=y/(1+t) , w=z/(1+t).

3.Prove that the rate of change of total energy,kinetic energy,potential energy,intrinsic energy
of any position of a Compressible inviscid fluid as it moves about is equal to the rate at
which work is being done by the pressure on the boundary Q is constant w.r.t time.

. Derive the Helmholtz equation of vorticity

. Discuss source in two dimensions.

. Explain Milne thomson’s circle theorem

. Obtain the Helmholtz equations for vorticity of viscous fluid.

. Explain about Steady flow between parallel plane

. Explain the momentum integral equation.

O© 00 N O O

Part-C(1x10=10 Marks)

1. Explain the boundary layer separation

2. Explain the Lift force

3. Explain Circulation and rate of change of circulation and discuss on source and its
complex potential

4. Derive the kinetic energy thickness.
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Unit V
Part A (20x1=20 Marks)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
In a boundary layer characteristics which
streamlines far from the wall are displaced displacement momentum kinetic energy friction
then 61(x) is referred to as-------------- thickness thickness thicknesss thickness displacement thickness
The value of displacement thickness 61(x)=---- f(u/ul)(1-
-------------- Ju(1-(u/ul)) dy J1-(1/ul)) dy J1-(u/ul)dy (u/ul))dy J1-(u/ul) dy
When separation ocurrs in which
circumstances the boundary layer
approximation is suspect in such case is displacement momentum kinetic energy friction
thickness thickness thicknesss thifckness momentum thickness
A momentum thickness 62(x) is defined for J(u/ul)(1-
incompressible flow as  --------- fu(1-(u/ul)) dy f1-(1/ul)) dy f1-(u/ul)dy (u/ul))dy f(u/ul)(1-(u/ul)) dy
A physically significant measure of boundary  displacement momentum kinetic energy friction kinetic energy
layer thickness is -------- thickness thickness thicknesss thifckness thicknesss
A measuresthe flux of kinetic energy defect
within the boundary layer as compared with--- incompressible
------ viscous flow steady flow inviscid flow  flow incompressible flow

The kinetic energy thickness is defined as
63(x)=------

The wall shearing stress is defined as -------
The skin friction tw=------

The onset of reversed flow near the wall takes
place at the position of zero skin frction.such a

position is called a position of ------
Kinematic viscosity is denoted by -----
Enthalpy is defined as ----

Thermal conductivity is denoted by ---------
Reynold’s number is defined as -------

Viscosity is a function of temperature and -----

Kinematic viscosity is a function of ------- and
pressure

The rate of increases of the boundary layer
thickness depends on ------

The rate of -------- of the boundary layer
thickness depends on boundary gradient

The layer in which ----- is called boundary layer

Kinetic energy thickness is also known as
kinetic energy ---------
------- is called the pressure coefficient

Ju(1-(u/ul)) dy
1
(ou/ay)w

boundary layer
friction

u=y/p

|=E+P

p
R=U/v

pressure
pressure
Op/ox
change
du/dy

linear equation
cv

[1-(1/u1)) dy

5
H(u/oy)w

boundary layer
characteristics
y=H/p

I=E-(P/ p)

|
R=L/y

mass
temperature
0g/0x

not change
ov/dy

laplace equation
Pc

f1-(u/ul) dy

™w
&(du/dy)w

boundary
layer
separation
p=Hy
I=E+(P/ p)

p
R=UL/ y

density
density
Op/dy
increase
du/ox
integral

equation
VC

J(u/u1)(1-
(u2/u12)) dy

pw
(02u/dy2)w

boundary layer
flow

Y=PH
I=E+(p/ P)

K
R=UYy/L

viscosity
force
9q/dy
decrease
ov/0x
definite

equation
cp

[(u/ul)(1-(u2/u12)) dy

™w
H(du/dy)w

boundary layer
separation
y=n/p
I=E+(P/ p)

K
R=UL/ y

pressure
temperature
Op/ox
increase
du/oy

integral equation
cp



-------- have zero velocity at the walls

Real fluids have-------- velocity at the walls

Real fluids have zero velocity --------

If the pressure has ----then the boundary
layer thickness increases rapidly

If the pressure increases then the----
increases rapidly

If the ------------—-- increases then the boundary
layer thickness increases rapidly

If the pressure increases then the boundary
layer thickness ------------- rapidly
R has no slip conditions

Real fluids has --------

In the equation of boundary layer the velocity
component is-----to the wall

In the equation of ----- the velocity component
is normal to the wall

In the equation of boundary layer the velocity
component is normal to the wall is -----

The velocity component is normal to the wall
is small if ----- is small

The velocity component is normal to the wall
is small if /2 is --—---

In the equation of boundary layer-----------------
--- normal to the wall is small

In the equation of boundary layer pressure
gradient -------------------- to the wall is small

The relationship between the pressure and
main stream velocity can be obtained by --------

real fluids

negative

near to the wall

decreases

boundary

pressure

decreases

real fluids

no slip conditions

parralel

boundary

normal

6/2

normal
temperature
gradient

parallel

beltramis
equation

ideal fluid
positive

opposite to the
wall

change
boundary layer
thickness
density
gradually
increases

ideal fluid

slip conditions
perpendicular
boundary layer
thickness
parallel

6/3

small

temperature

normal

linear equation

viscous fluid

zero

at the walls

nochange

boundary
layer

mass

increases

viscous fluid

maximum slip
conditions

normal
boundary
layer
small

6/4
parallel

pressure

tangent

indefinite
equation

inviscid fluid
nonzero
befor the wall
increases
boundary
surface

force
gradually
decreases

inviscid fluid

minimum slip
conditions

tangent
boundary
surface
perpendicular
6/5
perpendicular
pressure
gradient

perpendicular

Bernoulli’s
equation

real fluids

zero

at the walls

increases

boundary layer
thickness

pressure

increases

real fluids

no slip conditions

normal

boundary layer

small

8/2

small

pressure gradient

normal

Bernoulli’s equation
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| KARPAGAM ACADEMY OFHIGHER EDUCATION |

Thlrd Jemester. - e T
I Internal Test - July'2017
Fluid Dynamlcs ‘
Time : ZHours

Date : 07.17( N) :
Class I-M.Sc: Mathematlcs

*d)normal stress “b)shearing’ stress

Masimum: 50 Marks .

PART A (20x 1 -20 Marks)

¥ AnSWer all the questions : :
1) __can be classified as hqurds and gases
- ajsolids b)fluids c)pressurc : d)forces BRI

- Z)In ahigh vrscosrty ﬂurd there exrst norrnal as we‘ll as
‘shearing stress is: called .

‘d)viscous fluid. b)mvrscld ﬂurd c)ﬁ10t10nless d)icieal"

3) The ‘behavior of fluid when itis in motron thhout
" considering the pressure force is called_ ,
a)ﬂurd kinematics b)ﬂmd mechamcs c)ﬂmd statlcs d)ﬂurds

4)The normal force per-unit area rs sald to be » .
a)normal stress b)shearmg stress ' c)stress dDStrain o
| | 5)The pressure changes inthe ﬂurd brmgs changes m the -
. density of fluid is called - fluid. a

. a)compressrble b)steady

L 6)The density of ﬂurds is defmed as per umt volume

'va)mass . D)solid c)mass d)lrmrt

1oy A =0 then'f isidto o
_ a)Solenord b)rotatlon c)1rr1tatron d)constant

: a)v E b V*E

- a) constant b)zero

c)unsteady d) umform -‘ e
' -a_) fq dr, b) fq rdr

b

7) _are propotronal to the surface area o
/ ;a)body force.; b)surface force

o c)force )mass

8)The tangentlal force per umt area 1s sard to be .
c)stress d)stram '

o /d)u=dy/s

1DA force is: sard as - if force can ‘oe derlvable from potentral i
‘ a)conservatlve b)non conservanve c)acceleratron d)surface A S

‘ 12)A flowis called a Beltrarm s ﬂow when
a)q*E-0 : b)q E--0 c)q+E

9 )V+E o d)VE

14) The product ‘of the 'cross sectronal area and magmtude of
the vortrcrty is_ along avortex filament
o) parallel " d)

16)Crrcu1atlon aroun:




. Answerall the ques s
 24)3) Derive different

) Determine the

1 7)Euler s equatlon of motionis. :
~a) dq/dt=F- Vp/P b) dq/dt"F VP c) dq/dt—F d) qd/dt#—V Q

18) When a force is conservative; there exista potentlalﬂ such :
“thatf=. '

“a) Vo b

I9)The flow occursr when Vertex. and stream lme c01nc1de
a)v1scous ./b)invisid .., -

20) The forces are conservatwe and the pressure is. a functlon

of the densxty, then_

S

) Va b) V*ac) V+a d) V”.a

PART -B (3x.2-6uMarks)

Answewall the questlons .- w ;,\:_ BT o
21) Define steady and Unsteady ﬂow o .

' 22) State Beltramis flow .

23)7Deﬁne source and smk

_EART-CN(SX 8=24Marks)

P
' _-x/(1+t) V‘“‘y/(l-i-t) 'w-z/(1+t)

25) a) Explaln Energy equatlon
(OR)

b) Obtain the Equation of motion interms of vorticity
vector when the force is conservative

' 26) a)S Tin anlrrotatlonal mcompressxble inviscid 2-D fluid

ﬂow both (p & \v satlsfy the Laplace equatmn
b) DlSCllSS the motlon for the complex potentlal w=iAz
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