

M.Sc Computer Science 2018 - 2019

Semester-III

18CSP301 J2EE 4H – 4C

Instruction Hours / week: L: 4 T: 0 P: 0 Marks: Int : 40 Ext : 60 Total: 100

End Semester Exam : 3 Hours

Course Objectives

• To provide the necessary knowledge to design and develop database-driven application using

J2EE.

• To impart expertise in Web Application Development using J2EE.

Course Outcomes(COs)

1. Understand the In-depth concepts of JEE

2. Understand the in-depth Life cycle of servlets and JSP.

3. Learn how to communicate with databases using Java.

4. Handle Errors and Exceptions in Web Applications

5. Use NetBeans IDE for creating J2EE Applications

Unit I - J2EE OVERVIEW

Beginning of Java – Java Byte code – Advantages of Java –J2EE and J2SE. J2EE Multi Tier

Architecture – Distributive Systems – The Tier – Multi Tier Architecture – Client Tier Web Tier

Enterprise Java Beans Tier Enterprise Information Systems Tier Implementation.

Unit II - J2EE DATABASE CONCEPTS

Data – Database – Database Schema. JDBC Objects: Driver Types – Packages – JDBC Process –

Database Connection – Statement Objects – Result Set – Meta Data.

Unit III - JAVA SERVLETS

Benefits – Anatomy – Reading Data from Client –Reading HTTP Request Headers – Sending Data to

client – Working with Cookies.

Unit IV - ENTERPRISE JAVA BEANS

Deployment Descriptors – Session Java Bean –Entity Java Bean Message Driven Bean.

Unit V – JSP

What is Java Server Pages? - Evolution of Dynamic Content Technologies – JSP & Java 2 Enterprise

ed.).; JSP Fundamentals: Writing your first JSP- Tag conversions- Running JSP. Programming JSP

Scripts: Scripting Languages – JSP tags- JSP directives – Scripting elements – Flow of Control –

comments;

Java Remote Method Invocation.

SUGGESTED READINGS

1. Jim Keogh. (2014). The Complete Reference J2EE (1st ed.). New Delhi: Tata McGraw Hill.

 (PAGE NOS. : 3 - 61 23 - 35 98 – 116124 – 151 157 – 159 350 – 369 406 – 443 380 – 395 486- 490)

2. Duane, K. Fields., & Mark, A. Kolb. (2012). Web Development with Java Server Pages (1st ed.).

Pune: Manning Publications.

(PAGE NOS. : 2 – 15 46 - 64 65 – 99)

3. Joseph, J. Bambara et al. (2006). J2EE Unleashed (1st ed.). New Delhi:Tech Media.

4. Paul, J. Perrone., Venkata, S. R. Chaganti., Venkata S. R. Krishna., & Tom Schwenk. (2009). J2EE

Developer's Handbook. New Delhi: Sams Publications.

5. Rod Johnson. (2012). J2EE Development without EJB (1st ed.). New Delhi:Wiley Dream Tech.

6. Rod Johnson., & Rod Johnson, P.H. (2012). Expert One-On-One J2ee Design and Development.

New Delhi: John Wiley & Sons.

WEB SITES

1. java.sun.com/javaee/

2. java.sun.com/j2ee/1.4/docs/tutorial/doc/

3. www.j2eebrain.com/

LECTURE PLAN 2018-2020 BATCH

Prepared by Dr.V.Sameswari., Asst. Professor., Dept. of CS, CA & IT, KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

Coimbatore - 641021.

(For the candidates admitted from 2019 onwards)

 DEPARTMENT OF COMPUTER SCIENCE, CA & IT

Faculty Dr. V.SAMESWARI

Subject J2EE
Subject Code 18CSP301

Class II M.Sc Computer Science

UNIT I

SI.
NO

Lecture
Duration
(Period)

Topics to be Covered Support
Materials

1 1 J2EE Overview: Beginning of java, Java bytecode T1: 8-12

2 1 Advantages of java T1: 12-15

3 1 J2EE and J2SE T1: 15-18

4 1 J2EE Multi-tier architecture: Distributive System, T1: 23-26,
W2

5 1 The Tier T1: 27-30

6 1 Multi-tier architecture: Client tire T1: 30-32

7 1 Web tire T1: 34-35

8 1 Enterprise java bean Tire T1: 35-36

9 1 Enterprise information systems tire Implementation T1: 36-39

10 1 Recapitulation and Discussion of Important Questions

Total Periods Planned for Unit I 10

UNIT II

SI.
NO

Lecture
Duration
(Period)

Topics to be Covered Support
Materials

1 1 J2EE Database concepts: Data, database, tables T1: 97-99,
W4

2 1 Database schema-Identifying information,
Decomposing attribute to data,
How to decompose attribute, example,
Defining data

T1:99-107

LECTURE PLAN 2018-2020 BATCH

Prepared by Dr.V.Sameswari., Asst. Professor., Dept. of CS, CA & IT, KAHE

3 1 Normalizing data& process, Grouping data,Creating
Primary keys ,Functional dependency,Transitive
dependencies,Foreign key,Referential Integrity

T1:108-116

4 1 JDBC OBJECTS: Driver types, packages T1: 124-
126, W4

5 1 JDBC process T1: 126-130

6 1 Database connection T1:130-133

7 1 Statement objects T1:135-140

8 1 Resultset, T1:141-144

9 1 Metadata T1:157-160

10 1 Recapitulation and Discussion of Important Questions

Total Periods Planned for Unit II 10

UNIT III
SI.
NO

Lecture
Duration
(Period)

Topics to be Covered Support
Materials

1 1 Java Servlets: Benefits T1:350-352
W3

2 1 Anatomy of a java servlet T1:352-353

3 1 Reading data from a client T1:354-355

4 1 Reading HTTP request headers T1:355-358

5 1 Sending data to a client T1:359-361

6 1 Writing the HTTP response header T1:362-364

7 1 Working with cookies T1:364--367

8 1 Recapitulation and Discussion of Important Questions

Total Periods Planned for Unit III 8

UNIT IV

SI.
NO

Lecture
Duration
(Period)

Topics to be Covered Support
Materials

1 1 Enterprise java bean:Introduction T1:405-407

2 1 Deployment descriptors-Anatomy of deployment
descriptor

T1:409-411

3 1 Environment Elements,Referencing EJB, Reference
other resources

T1:411-419

4 1 Sharing resources,Security elements T1:420-423

5 1 Query elements and relationship elements, T1:423-424

LECTURE PLAN 2018-2020 BATCH

Prepared by Dr.V.Sameswari., Asst. Professor., Dept. of CS, CA & IT, KAHE

6 1 Assembly elements T1:424-431

7 1 and Exclude list elements T1:431-434

8 1 Entity java bean T1:434-440

9 1 Message driven bean T1:441-444

10 1 Recapitulation and Discussion of Important Questions

Total Periods Planned for Unit IV 10

UNIT V
SI.
NO

Lecture
Duration
(Period)

Topics to be Covered Support
Materials

1 1 JSP: What is java server page, evolution of dynamic
content technologies

T2: 1-9

2 1 JSP & Java 2 Enterprise Edition T2:10-12

3 1 JSP Fundamentals- Writing your first JSP , Tag
conversion, Running JSP

T2:21-40

4 1 Programming JSP Scripts: Scripting languages,
JSP tags, JSP directives

T2:50-65

5 1 Scripting elements, flow of control, comments T2:67-80

6 1 Java remote method invocation W3

7 1 Recapitulation and Discussion of Important Questions

8 1 Discussion of Previous ESE Question Papers

9 1 Discussion of Previous ESE Question Papers

10 1 Discussion of Previous ESE Question Papers

Total Periods Planned for Unit V 10

Total Periods 48

TEXT BOOKS

T1 Jim Keogh, (2002), "The Complete Reference J2EE", 1st Edition, Tata Mcgraw Hill

Publications, New Delhi.

T2 Duane K fields And Mark A. Koib (2000), "Web Development with Java Server

Pages", 1st Edition, Manning Publications, Pune.

References

R1 Joseph. J. Bambara et. Al. (2001), "J2EE Unleashed", 1st Edition, New Delhi.

LECTURE PLAN 2018-2020 BATCH

Prepared by Dr.V.Sameswari., Asst. Professor., Dept. of CS, CA & IT, KAHE

R2 Paul. J. Perrone, Venkata. S. R. Chaganti, Venkata. S.R.Krishna and Tom Schwenk,
(2003), "J2EE Developers", Havel Book, Sams Publications, New Delhi.

R3 Rod Jhonson, (2004), "J2EE Development without EJB", Wiley Dream Tech, New
Delhi.

R4 Rod Jhonson, (2004), "Expert One-on-one J2EE Design and Development", Jhon
Wiley and sons, New Delhi.

Web Sites

W1 java.sun.com

W2 www.java-Forums.org.

W3 http://www.slideshare.net/Aamir97/j2ee-multitier-architecture

W4 www.javatpoint.com

W5 https://docs.oracle.com

http://www.java-forums.org./
http://www.slideshare.net/Aamir97/j2ee-multitier-architecture
http://www.javatpoint.com/

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

Java Source Code Interpreter Java Byte Code

UNIT I

J2EE OVERVIEW

J2EE is Java, optimized for enterprise computing. Officially J2EE stands for Java 2
Platform, Enterprise Edition. J2EE is an open, standard-based, development and

deployment platform for building n-tier, web-based and server-centric and component-

based enterprise applications. As an enterprise platform, the J2EE environment extends

basic Java with tools that "provide a complete, stable, secure, and fast Java platform to

the enterprise level." One goal of using J2EE is reducing the cost and complexity of

creating large-scale solutions. Because Java is a strongly typed language, use of the

language is often inherently more secure in Web applications than Web applications built

with less strong typing

 BEGINNING OF JAVA

Java was created in 1991. It was developed by James Gosling et al. of Sun Microsystems.

Initially called Oak, in honor of the tree outside Gosling's window, its name was changed

to Java because there was already a language called Oak. The original motivation for

Java is the need for platform independent language that could be embedded in various

consumer electronic products like toasters and refrigerators. As a programming language,

Java can create all kinds of applications that you could create using any conventional

programming language

 JAVA BYTE CODE

Java bytecode is the form of instructions that the Java virtual machine executes. Each

bytecode opcode is one byte in length, although some require parameters, resulting in

some multi-byte instructions. Not all of the possible 256 opcodes are used. Java bytecode

is designed to be executed in a Java virtual machine. There are several virtual machines available

today, both free and commercial products. Fig.1.1 shows the process of converting a souce code

to byte code.

Fig. 1.1 Converting Source code to bytecode

 ADVANTAGES OF JAVA

JAVA offers a number of advantages to developers.

 Java is simple: Java was designed to be easy to use and is therefore easy to write,

compile, debug, and learn than other programming languages. The reason that why

Java is much simpler than C++ is because Java uses automatic memory allocation

http://en.wikipedia.org/wiki/Java_virtual_machine
http://en.wikipedia.org/wiki/Bytecode
http://en.wikipedia.org/wiki/Opcode
http://en.wikipedia.org/wiki/Java_virtual_machine

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

and garbage collection where else C++ requires the programmer to allocate

memory and to collect garbage.

 Java is object-oriented: Java is object-oriented because programming in Java is
centered on creating objects, manipulating objects, and making objects work

together. This allows you to create modular programs and reusable code.

 Java is platform-independent: One of the most significant advantages of Java is

its ability to move easily from one computer system to another. The ability to run

the same program on many different systems is crucial to World Wide Web

software, and Java succeeds at this by being platform-independent at both the

source and binary levels.

 Java is distributed: Distributed computing involves several computers on a

network working together. Java is designed to make distributed computing easy

with the networking capability that is inherently integrated into it. Writing network

programs in Java is like sending and receiving data to and from a file. For example,

the diagram below shows three programs running on three different systems,

communicating with each other to perform a joint task.

 Java is interpreted: An interpreter is needed in order to run Java programs.

The programs are compiled into Java Virtual Machine code called bytecode. The

bytecode is machine independent and is able to run on any machine that has a Java

interpreter. With Java, the program need only be compiled once, and the bytecode

generated by the Java compiler can run on any platform.

 Java is secure: Java is one of the first programming languages to consider security
as part of its design. The Java language, compiler, interpreter, and runtime

environment were each developed with security in mind.

 Java is robust: Robust means reliable and no programming language can really

assure reliability. Java puts a lot of emphasis on early checking for possible errors,

as Java compilers are able to detect many problems that would first show up during

execution time in other languages.

 Java is multithreaded: Multithreaded is the capability for a program to perform

several tasks simultaneously within a program. In Java, multithreaded programming

has been smoothly integrated into it, while in other languages, operating system-

specific procedures have to be called in order to enable multithreading.

Multithreading is a necessity in visual and network programming

 J2EE AND J2SE

J2SE is considered the foundation edition of the Java platform and programming

environment in which all other editions are based. J2EE is the edition of the Java 2

platform targeted at developing multi-tier enterprise applications.J2EE consists of a set of

specifications, APIs and technologies defining enterprise application development. J2EE

technology providers expose tools, frameworks and platforms that handle a good deal of

the details of enterprise application infrastructure and behavior. J2EE implementations

enjoy all of the features of the Java 2 Standard Edition (J2SE) platform with additional

frameworks and libraries added to support distributed/Web development

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

 J2EE MULTI TIER ARCHITECTURE

The J2EE platform uses a multitiered distributed application model. Application logic is

divided into components according to function, and the various application components

that make up a J2EE application are installed on different machines depending on the tier

in the multitiered J2EE environment to which the application component belongs. Figure

 shows two multitiered J2EE applications divided into the tiers described in

the following list.

 Client-tier components run on the client machine.

 Web-tier components run on the J2EE server

 Enterprise JavaBean tier components run on the J2EE server.

 Enterprise information system (EIS)-tier software runs on the EIS server.

Although a J2EE application can consist of the three or four tiers shown in Figure 1.2,

J2EE multitiered applications are generally considered to be three tiered applications

because they are distributed over three different locations: client machines, the J2EE

server machine, and the database or legacy machines at the back end. Three-tiered

applications that run in this way extend the standard two-tiered client and server model

by placing a multithreaded application server between the client application and back-end

storage.

Figure1.2 J2EE Multitiered Applications

 DISTRIBUTIVE SYSTEMS

The concept of multi-tier architecture has evolved over decades, following a similar

evolutionary course as programming languages. The key objective of multi-tier

architecture is to share resources amongst clients, which are the fundamental design

philosophy used to develop programs. In earlier days programmers originally used

assembly language to create programs. These programs employed the concept of software

services that were shared with the program running on the machine. Software services

consist of subroutines written in assembly language that communicate with each other

using machine registers, which are memory spaces within the CPU of a machine.

Whenever a programmer required functionality provided by a software service, the

programmer called the appropriate assembly language subroutine from within the

program.

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

Although the technique of using software services made creating programs efficient

by reusing code, there was a drawback. Assembly language subroutines were machine

specific and couldn’t be easily replicated on different machines. This meant that

subroutines had to be rewritten for each machine. The introduction of FORTRAN and

COBOL brought the next evolution of programming languages and with it the next

evolution of software services. Programs written in FORTRAN could share functionality

by using functions instead of assembly language subroutines. The same was true of

programs written in COBOL. A function is conceptually similar to a Java method, which

is a group of statements that perform a specific functionality. The group is named, and is

callable from within a program. Although both assembly language subroutines and

functions are executed in a single memory space, functions had a critical advantage over

assembly language subroutines.

A function could run on different machines by recompiling the function. However,

software services were restricted to a machine. This meant programs and functions that

comprise software services had to reside on the same machine. A program couldn’t call a

software service that was contained on a different machine. Programs and software

services were saddled with the same limitations that affected data exchange at that time.

Magnetic tapes were used to transfer data, programs, and software services to another

machine. There wasn’t a real-time transmission system.

 The Tier

A tier is an abstract concept that defines a group of technologies that provide one or

more services to its clients. A good way to understand a tier structure’s organization is to

draw a parallel to a typical large corporation (see Figure 1.3).

Figure 1.3 Resources of a large organization are typically organized into a tier structure

that operates similarly to the tier structure used in distributed systems.

At the lowest level of a corporation are facilities services that consist of resources

necessary to maintain the office building. Facilities services encompass a wide variety of

resources that typically include electricity, ventilation, elevator services, computer

network services, and telephone services. The next tier in the organization contains

support resources such as accounting, supplies, computer programming, and other

resources that support the main activity of the company. Above the support tier is the

production tier. The production tier has the resources necessary to produce products and

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

services sold by the company. The highest tier is the marketing tier, which consists of

resources used to determine the products and services to sell to customers.

Any resource is considered a client when a resource sends a request for service to a

service provider (also referred to as a service). A serv.ice is any resource that receives

and fulfills a request from a client, and that resource itself might have to make requests to

other resources to fulfill a client’s request. For Example a product manager working at

the marketing tier decides the company could make a profit by selling customers a

widget. The product manager requests an accountant to conduct a formal cost analysis of

manufacturing a widget.

The accountant is on the support tier of the organization. The product manager is the

client and the accountant is the service. However, the accountant requires information

from the manufacturing manager to fulfill the product manager’s request. The

manufacturing manager works on the production tier of the organization. The accountant

is the client to the manufacturing manager who is the service to the accountant. In multi-

tier architecture, each tier contains services that include software objects, database

management systems (DBMS), or connectivity to legacy systems.

Information technology departments of corporations employ multi-tier architecture

because it’s a cost-efficient way to build an application that is flexible, scalable, and

responsive to the expectations of clients. This is because the functionality of the

application is divided into logical components that are associated with a tier. Each

component is a service that is built and maintained independently of other services.

Services are bound together by a communication protocol that enables a service to

receive and send information from and to other services.

A client is concerned about sending a request for service and receiving results from a

service. A client isn’t concerned about how a service provides the results. This means that

a programmer can quickly develop a system by creating a client program that formulates

requests for services that already exist in the multi-tier architecture. These services

already have the functionality built into them to fulfill the request made by the client

program.

Services can be modified as changes occur in the functionality without affecting the

client program. For example, a client might request the tax owed on a specific order. The

request is sent to a service that has the functionality to determine the tax. The business

logic for calculating the tax resides within the service. A programmer can modify the

business logic in the service to reflect the latest changes in the tax code without having to

modify the client program. These changes are hidden from the client program.

 J2EE Multi-Tier Architecture

J2EE is four-tier architecture (see Figure1.4). These consist of the Client Tier (sometimes

referred to as the Presentation Tier or Application Tier), Web Tier, Enterprise JavaBeans

Tier (sometimes referred to as the Business Tier), and the Enterprise Information Systems

Tier. Each tier is focused on providing a specific type of functionality to an

application.It’s important to delineate between physical location and functionality. Two

or more tiers can physically reside on the same Java Virtual Machine (JVM) although

each tier provides a different type of functionality to a J2EE application. And since the

J2EE multi-tier architecture is functionally centric, a J2EE application accesses only tiers

whose functionality is required by the J2EE application. It’s also important to

disassociate a J2EE API with a particular tier. That is, some APIs (i.e., XML API) and

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

J2EE components can be used on more than one tier, while other APIs (i.e., Enterprise

JavaBeans API) are associated with a particular tier. The Client Tier consists of programs

that interact with the user. These programs prompt the user for input and then convert the

user’s response into requests that are forwarded to software on a component that

processes the request and returns results to the client program. The component can

operate on any tier, although most requests from clients are processed by components on

the Web Tier. The client program also translates the server’s response into text and

screens that are presented to the user.

Figure1.4 J2EE consists of four tiers, each of which focuses on providing specific functionality to an

application.

The Web Tier provides Internet functionality to a J2EE application. Components that

operate on the Web Tier use HTTP to receive requests from and send responses to clients

that could reside on any tier. A client is any component that initiates a request, as

explained previously in this chapter. For example (see Figure 1.5), a client’s request for

data that is received by a component working on the Web Tier is passed by the

component to the Enterprise JavaBeans Tier where an Enterprise Java Bean working on

the Enterprise JavaBeans

Figure 1.5 J2EE consists of four tiers, each of which focuses on providing specific

functionality to an application

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

A request is typically passed from one tier to another before the Tier interacts with

DBMS to fulfill the request. Requests are made to the Enterprise JavaBeans by using the

Java Remote Method Invocation (RMI) API. The requested data is then returned by the

Enterprise JavaBeans where the data is then forwarded to the Web Tier and then relayed

to the Client Tier where the data is presented to the user. The Enterprise JavaBeans Tier

contains the business logic for J2EE applications.

. Access is made using an Access Control List (ACL) that controls communication

between tiers. The ACL is a critical design element in the J2EE multi-tier architecture

because ACL bridges tiers that are typically located on different virtual local area

networks and because ACL adds a security level to web applications. Hackers typically

focus their attack on the Web Tier to try to directly access DBMS. ACL prevents direct

access to DBMS and similar resources. The EIS links a J2EE application to resources and

legacy systems that are available on the corporate backbone network. It’s on the EIS

where a J2EE application directly or indirectly interfaces with a variety of technologies,

including DBMS and mainframes that are part of the mission-critical systems that keep

the corporation operational. Components that work on the EIS communicate to resources

using CORBA or Java connectors, referred to as J2EE Connector Extensions.

 CLIENT TIER IMPLEMENTATION

There are two components on the Client Tier that are described in the J2EE specification.

These are applet clients and application clients. An applet client is a component used by a

web client that operates within the applet container, which is a Java-enabled browser. An

applet uses the browser as a user interface.

An application client is a Java application that operates within the application

client container, which is the Java 2 Runtime Environment, Standard Edition (JRE). An

application has its own user interface and is capable of accessing all the tiers in the multi-

tier architecture depending how the ACLs are configured, although typically an

application has access to only the web layer. A rich client is a third type of client, but a

rich client is not considered a component of the Client Tier because a rich client can be

written in a language other than Java and therefore J2EE doesn’t define a rich client

container.

A rich client is similar to an application client in that both are applications that contain

their own user interface. And as with an application client, a rich client can access any

tier in the environment, depending on the ACLs configuration, using HTTP, SOAP,

ebXML, or an appropriate protocol.

 WEB TIER IMPLEMENTATION

The Web Tier has several responsibilities in the J2EE multi-tier architecture, all of which

is provided to the Client Tier using HTTP. These responsibilities are to act as an

intermediary between components working on the Web Tier and other tiers and the Client

Tier.

Intermediary activities include:

 Accepting requests from other software that was sent using POST, GET, and PUT

operations, which are part of HTTP transmissions

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

 Transmit data such as images and dynamic content

There are two types of components that work on the Web Tier. These are servlets

and Java Server Pages (JSP), although many times they are proxied to the Application or

EJB Tier. A servlet is a Java class that resides on the Web Tier and is called by a request

from a browser client that operates on the Client Tier. A servlet is associated with a URL

that is mapped by the servlet container.

A request for a servlet contains the servlet’s URL and is transmitted from the Client Tier

to the Web Tier using HTTP. The request generates an instance of the servlet or reuses an

existing instance, which receives any input parameters from the Web Tier that are

necessary for the servlet to perform the service. Input parameters are sent as part of the

request from the client.

An instance of a servlet fulfills the request by accessing components/resources on the

Web Tier or on other tiers as is necessary based on the business logic that is encoded into

the servlet. The servlet typically generates an HTML output stream that is returned to the

web server. The web server then transmits the data to the client. This output stream is a

dynamic web page.

JSP is similar to a servlet in that a JSP is associated with a URL and is callable from a

client. However, JSP is different than a servlet in several ways, depending on the

container that is used. Some containers translate the JSP into a servlet the first time the

client calls the JSP, which is then compiled and the compiled servlet loaded into memory.

The servlet remains in memory. Subsequent calls by the client to the JSP cause the web

server to recall the servlet without translating the JSP and compiling the resulting code.

Other containers precompile a JSP into a .java file that looks like a servlet file, which is

then compiled into a Java class.

Business logic used by JSP and servlet’s is contained in one or more Enterprise

JavaBeans that are callable from within the JSP and servlet. The code is the same for both

JSP and servlet, although the format of the code differs. JSP uses custom tags to access

an Enterprise JavaBeans while servlet’s are able to directly access Enterprise JavaBeans.

 ENTERPRISE JAVABEANS TIER IMPLEMENTATION

J2EE uses distributive object technology to enable Java developers to build

portable, scalable, and efficient applications that meet the 24-7 durability expected from

an enterprise system. The Enterprise JavaBeans Tier contains the Enterprise JavaBeans

server, which is the object server that stores and manages Enterprise JavaBeans. The

Enterprise JavaBeans Tier is a vital element in the J2EE multi-tier architecture because

this tier provides concurrency, scalability, lifecycle management, and fault tolerance. The

Enterprise JavaBeans Tier automatically handles concurrency issues that assure multiple

clients have simultaneous access to the same object. The Enterprise JavaBeans Tier is the

tier where some vendors include features that enable scalability of an application,

because the tier is designed to work in a clustered environment. This assumes that vendor

components that are used support clustering. If not, a Local Director is typically used for

horizontal load balancing

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

The Enterprise JavaBeans Tier manages instances of components. This means

component containers working on the Enterprise JavaBeans Tier create and destroy

instances of components and also move components in and out of memory. Fault-

tolerance is an important consideration in mission-critical applications. The Enterprise

JavaBeans Tier is the tier where some vendors include features that provide fault-tolerant

operation by making it possible to have multiple Enterprise JavaBeans servers available

through the tier. This means backup Enterprise JavaBeans servers can be contacted

immediately upon the failure of the primary Enterprise JavaBeans server. The Enterprise

JavaBeans server has an Enterprise JavaBeans container within which is a collection of

Enterprise JavaBeans. As discussed in previous sections of this chapter, an Enterprise

Java Bean is a class that contains business logic and is callable from a servlet or JSP.

Collectively the Enterprise JavaBeans server and Enterprise JavaBeans container are

responsible for low-level system services that are required to implement business logic of

an Enterprise Java Bean.

These system services are

■ Resource pooling

■ Distributed object protocols

■ Thread management

■ State management

■ Process management

■ Object persistence

■ Security

■ Deploy-time configuration

A key benefit of using the Enterprise JavaBeans server and Enterprise JavaBeans

container technology is that this technology makes proper use of a programmer’s

expertise. That is, a programmer who specializes in coding business logic isn’t concerned

about coding system services. Likewise, a programmer whose specialty is system

services can focus on developing system services and not be concerned with coding

business logic.

Any component, regardless of the tier where the component is located, can use

Enterprise JavaBeans. This means that an Enterprise Java Bean client can reside outside

the Client Tier. The protocol used to communicate between the Enterprise JavaBeans

Tier and other tiers is dependent on the protocol used by the other tier. Components on

the Client Tier and the Web Tier communicate with the Enterprise JavaBeans Tier using

the Java RMI API and either IIOP or JRMP. Sometimes software on other tiers, usually

the middle tier, uses JMS to communicate with the Enterprise JavaBeans Tier.

This communication isn’t exclusively used to send and receive messages between

machines. JMS is also used for other communication, such as decoupling tiers using the

queue mechanism. However, the Enterprise Java Bean that is used must be a message-

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

driven bean (MDB). MDBs are commonly used to process messages on a queue that may

or may not reside on the local machine.

 Enterprise Information Systems Tier Implementation

The Enterprise Information Systems (EIS) Tier is the J2EE architecture’s connectivity to

resources that are not part of J2EE. These include a variety of resources such as legacy

systems, DBMS, and systems provided by third parties that are accessible to components

in the J2EE infrastructure. This tier provides flexibility to developers of J2EE

applications because developers can leverage existing systems and resources currently

available to the corporation and do not need to replicate them in J2EE. Likewise,

developers can utilize off-the-shelf software that is commercially available in the

marketplace because the EIS Tier provides the connectivity between a J2EE application

and non-J2EE software. This connectivity is made possible through the use of CORBA

and Java Connectors or through proprietary protocols. Java Connector technology

enables software developers to create a Java Connector for legacy systems and for third-

party software. The connector defines all the elements that are needed to communicate

between the J2EE application and the non-J2EE software. This includes rules for

connecting to each other and rules for conducting secured transactions.

 J2EE COMPONENTS

J2EE applications are made up of components. A J2EE component is a self-contained

functional software unit that is assembled into a J2EE application with its related classes

and files and that communicates with other components.

The J2EE specification defines the following J2EE components:

 Application clients and applets are components that run on the client.

 Java Servlet and Java Server Pages (JSP) technology components are Web

components that run on the server.

Enterprise JavaBeans (EJB) components (enterprise beans) are business components that

run on the server.

J2EE components are written in the Java programming language and are compiled in the

same way as any program in the language. The difference between J2EE components and

―standard‖ Java classes is that J2EE components are assembled into a J2EE application,

verified to be well formed and in compliance with the J2EE specification, and deployed

to production, where they are run and managed by the J2EE server.

 J2EE Clients

A J2EE client can be a Web client or an application client.

Web Clients
A Web client consists of two parts: dynamic Web pages containing various types of

markup language (HTML, XML, and so on), which are generated by Web Components

running in the Web tier, and a Web browser, which renders the pages received from the

server.

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

A Web client is sometimes called a thin client. Thin clients usually do not do things like

query databases, execute complex business rules, or connect to legacy applications. When

you use a thin client, heavyweight operations like these are off-loaded to enterprise beans

executing on the J2EE server where they can leverage the security, speed, services, and

reliability of J2EE server-side technologies.

Applets
A Web page received from the Web tier can include an embedded applet. An applet is a

small client application written in the Java programming language that executes in the

Java virtual machine installed in the Web browser. However, client systems will likely

need the Java Plug-in and possibly a security policy file in order for the applet to

successfully execute in the Web browser. Web components are the preferred API for

creating a Web client program because no plug-ins or security policy files are needed on

the client systems. Also, Web components enable cleaner and more modular application

design because they provide a way to separate applications programming from Web page

design. Personnel involved in Web page design thus do not need to understand Java

programming language syntax to do their jobs.

Application Clients
A J2EE application client runs on a client machine and provides a way for users to handle

tasks that require a richer user interface than can be provided by a markup language. It

typically has a graphical user interface (GUI) created from Swing or Abstract Window

Toolkit (AWT) APIs, but a command-line interface is certainly possible. Application

clients directly access enterprise beans running in the business tier. However, if

application requirements warrant it, a J2EE application client can open an HTTP

connection to establish communication with a servlet running in the Web tier.

KEY TERMS

 Java bytecode: It is the form of instructions that the Java virtual machine executes

 Java 2 Platform, Standard Edition (J2SE): It is used primarily for writing
applets and other Java-based applications. One of the primary uses of J2SE is the

development of Java applications for individual computers.

 Multi-Tier Architecture: It is a client-server architecture in which the presentation,
the application processing, and the data management are logically separate
processes

 Client Tier: In the client tier, Web components, such as Servlets and Java Server
Pages (JSPs), or standalone Java applications provide a dynamic interface to the

middle tier.

 Middle Tier: In the server tier, or middle tier, enterprise beans and Web Services

encapsulate reusable, distributable business logic for the application. These server-

tier components are contained on a J2EE Application Server, which provides the

platform for these components to perform actions and store data.

 Enterprise Data Tier: In the data tier, the enterprise's data is stored and persisted,
typically in a relational database.

 Application client: A first-tier J2EE client component that executes in its own Java

virtual machine. Application clients have access to some J2EE platform APIs.

http://en.wikipedia.org/wiki/Java_virtual_machine
http://en.wikipedia.org/wiki/Client-server_architecture

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

QUESTIONS
Short Answer Questions

1. Differentiate JS2E and J2EE
2. Define Java ByteCode. List the advantages of Java

3. What is Distributive Systems?

4. What is J2EE Components? List the Components

5. What is a Tier architecture?

6. Write short notes on Clients , Resources and Components in Multi-tier arch

Long –Answer Question

1. What is Java? Describe the advantages of Java
2. Describe in Detail Various J2EE Tier Architecture

3. Explain Enterprise Java Beans and Enterprise Information Systems Tier

Implementation in detail

References

1. Jim Keogh , ―The Complete Reference J2SE‖, 1
st
 Edition, Tata McGraw Hill

Edition, New Delhi:2002.

2. Joseph j Bambara et al, :J2EE Unleashed‖ , 1
st
 Edition, Tech Media, 2001

3. J2EE Tutorial - http://java.sun.com/j2ee/tutorial/1_3-fcs
4. J2EE Developers Guide -

http://java.sun.com/j2ee/sdk_1.2.1/techdocs/guides/ejb/html/DevGuideTOC.html

http://java.sun.com/j2ee/tutorial/1_3-fcs
http://java.sun.com/j2ee/sdk_1.2.1/techdocs/guides/ejb/html/DevGuideTOC.html
http://java.sun.com/j2ee/sdk_1.2.1/techdocs/guides/ejb/html/DevGuideTOC.html

UNIT-1
J2EE

S. No.

Questions Option 1 Option 2 Option 3 Option 4 Answer
1 The expansion of BCPL is ___________. Basic Combined

Programming
Language

Beginners
Combined
Programming
Language

Basic Control
Programming
Language

Beginners
Control
Programming
Language

Basic Combined
Programming
Language

2 Programmers divide a program into
functionality and create code segments
called ____________.

programs subprograms macros functions functions

3 In the year ___________ the American
National Standard Institute formally
adopted a standard for the C
Programming language.

1970 1980 1990 2000 1990

4 Java is ____________ programming language
that uses classes to create instances of
objects.

 object based object oriented procedure
oriented

 knowledge
based

 Object oriented

5 ___________ is a routine that recovers spent
memory without the programmer having
to write code to free previously reserved
memory.

 Memory release Garbage
collection

 Memory
management

 Garbage
compaction

 Garbage
collection

6 Java ___________converts java source code
into byte code that is executed by the
Java Virtual machine.

 interpreter compiler assembler preprocessor compiler

7 Java compiler generates ____________. binary code octal code byte code hexadecimal
code

 byte code

8 Small amount of data stored on the client
is called ____________.

 cookie servlet images applet cookie

9 An ___________ is a small program that can
be efficiently downloaded over the
internet and is executed by a java
compatible browser.

 cookie servlet images applet applet

UNIT-1
J2EE

10 Request and execution occur on the
user’s computer called ___________.

 server client client and server JVM client

11 Embedded in the web page might be a
reference to run a small java program
called an _____________.

 cookie applet image servlet applet

12 The ___________ reads the reference to the
applet, then requests that the web server
download the applet.

 cookie browser servlet applet browser

13 Once the applet is received, the browser
requests the ________ to execute the applet
automatically without any additional
interaction by the user.

 server client client and server JVM JVM

14 ___________ could not offer the dynamics
demanded by internet users and
corporations.

 Static web pages Dynamic web
pages

 Browsers Applets Static web pages

15 Java was developed by ____________. IBM Microsoft Sun
Microsystems

 Oracle
Corporation

Sun Microsystems

16 Features found in ____________ were
adopted in Java by the Java development
team.

 C only C++ only C and C++ Visual C++ C and C++

17 Java is a ___________ programming
language.

 multiuser multitasking multithreaded procedure
oriented

 multithreaded

18 A __________ is a process that can work
independently from other processes and
permit multiple access to the same
program simultaneously.

 macro procedure function thread thread

19 The original edition of Java is called
____________.

 J2ME J2SE J2EE Core Java J2SE

20 A ___________ program is automatically
translated into a java servlet.

 Java EJB JSP d) HTML JSP

21 ___________ interfaces between commercial
DBMS products and Java.

 API EJB JSP XML API

UNIT-1
J2EE

22 ____________ contains the API used to
create wireless java applications.

 J2ME J2SE J2EE EJB J2ME

23 During the evolutionary process, the java
development team included more
interfaces and libraries as programmers
demanded new APIs. These new features
to the JDK were called ___________.

 SDK Java Bean BDK Extensions Extensions

24 ___________ consists of specifications and
API for developing reusable server-side
business components designed to run on
applications servers.

 Java EJB JSP Servlets EJB

25 ___________ is a program that resides on
the server

. Servlet Cookie Applet JSP Servlet

26 ___________ consists of specifications and
APIs for developing reusable server-side
business components designed to run on
applications servers.

 EJB JSP Servlets Java EJB

27 A ___________ bean retains data
accumulated during a session with a
client.

 session servlet stateful session stateless session JMS container stateful session

28 A ____________ bean does not maintain any
state between method calls.

 session servlet stateless session stateful session JMS container stateless session

29 A message-driven bean is called by the
_____________.

 sessionservlet JMS container message-
oriented
middleware

 API JMS container

30 The core components of J2EE are
_____________.

 Java Beans Java servlets and
Java beans

 Java servlets
and JSPs

 Java beans,
Java servlets and
JSPs

Java beans, Java
servlets and JSPs

31 The expansion of CORBA is ___________. Combined Object
Request Basic
Architecture

Common Object
Request Broker
Architecture

Combined Object
Request Broker
Architecture

Common Object
Request Basic
Architecture

Common Object
Request Broker
Architecture

32 The expansion of XDR is ____________. Exchange Data
Representation

 External Data
Representation

 External Digital
Representation

Experimental
Data

 External Data
Representation

UNIT-1
J2EE

Representation

33 __________ are the internal software
services.

 servlets functions RPCs JSPs functions

34 __________ are the external software
services.

 servlets l functions RPCs JSPs RPCs

35 In multi-tier architecture, each tier
contains __________ that include software
objects, DBMS or connectivity to legacy
systems.

 services java programs servlets requests services

36 ____________ is a part of a tier that consists
of a collection of classes or a program
that performs a function to provide the
services.

 container component resource service component

37 A __________ is anything a component
needs to provide a service.

 container component resource service resource

38 A ___________ is a software that manages a
component and provides a component
with system services.

 container component resource service container

39 J2EE is a __________ tier architecture. 2 3 4 5 4

40 __________ tiers can physically reside on
the same JVM although each tier provides
a different type of functionality to a J2EE
application.

1 2 3 4 3

41 The __________ tier consists of programs
that interact with the user.

 client web EJB tier EIS client

42 The _________ provides internet
functionality to a J2EE application.

 client web EJB tier EIS web

43 The _________ tier contains the business
logic for J2EE applications.

 client web EJB tier EIS EJB tier

UNIT-1
J2EE

44 The ________ tier links a J2EE application
to resources and legacy systems that are
available on the corporate backbone
network.

 client web EJB tier EIS EIS

45 The __________ tier is the keystone to every
J2EE application.

 client web EJB tier EIS EJB tier

46 ___________ are contained on the EJB
server which is a distributed object
server that works on the EJB tier.

 servlets EJB JSP client programs EJB

47 It is on the ___________ where a J2EE
application directly or indirectly
interfaces with a variety of technologies
including DBMS and mainframes.

 servlets EJB JSP client programs client programs

48 There are ____________ components on the
client tier.

2 3 4 5 2

49 A _______ is a component used by a web
client that operates within the applet
container, which is a java-enabled
browser.

 application client applet client servlet JSP applet client

50 A _________ is a java application that
operates within the application client
container, which is the Java 2 Runtime
Environment Standard Edition.

 application client applet client servlet JSP application client

51 A _________ has its own interface and is
capable of accessing all the tiers in the
multi-tier architecture.

 application client applet client application servlet application

52 A ___________ is not considered as the
component of the client tier.

 application client applet client rich client server rich client

53 A ___________ can access any tier in the
environment depending on the ACLs
configuration using HTTP, SOAP, etc.

 application client applet client rich client servlet rich client

54 Clients are classified into ____________ 2 3 4 5 4

UNIT-1
J2EE

types.

55 A ___________ consists of software usually a
browser that accesses resources located
on the web tier.

 web client EJB client EIS client multitier client web client

56 _____________ only accesses one or more
EJB that are located on the EJBs tier
rather than resources on the web tier.

 web client EJB client EIS client multitier client EJB client

57 ___________ are the interface between users
and resources located on the EIS tier.

 web client EJB client EIS client multitier client EIS client

58 A ___________ is a unique type of client
because it is also a service that works on
the web tier.

 web client EJB client EIS client web service
peer

 web service peer

59 ____________ are conceptually similar to a
web service peer.

 web client EJB client EIS client multitier client multitier client

60 ____________ are similar to web clients. web client EJB client EIS client multitier client 2

Dr. V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

UNIT II
J2EE DATABASE CONCEPTS

 ABOUT DATA

The term data means groups of information that represent the qualitative or quantitative

attributes of a variable or set of variables. Data (plural of "datum") are typically the

results of measurements and can be the basis of graphs, images, or observations of a set

of variables. Data are often viewed as the lowest level of abstraction from which

information and knowledge are derived. In computer science, data is anything in a form

suitable for use with a computer. Data is often distinguished from programs. Data is a

collection of facts, figures and statistics related to an object. Data can be processed to

create useful information. Data is a valuable asset for an organization. Data can be used

by the managers to perform effective and successful operations of management. It

provides a view of past activities related to the rise and fall of an organization. It also

enables the user to make better decision for future. Data is very useful for generating

reports, graphs and statistics.

Example:

Students fill an admission form when they get admission in college. The form consists of

raw facts about the students. These raw facts are student's name, father name, address etc.

The purpose of collecting this data is to maintain the records of the students during their

study period in the college.

 ABOUT DATABASE
A database is an integrated collection of logically related records or files consolidated

into a common pool that provides data for one or more multiple uses. One way of

classifying databases involves the type of content, for example: bibliographic, full-text,

numeric, and image. Software organizes the data in a database according to a database

model. A number of database architectures exist. Many databases use a combination of

strategies. Databases consist of software-based "containers" that are structured to collect

and store information so users can retrieve, add, update or remove such information in an

automatic fashion. Database programs are designed for users so that they can add or

delete any information needed. The structure of a database is the table, which consists of

rows and columns of information.

 DATABASE SCHEMA

The schema of a database system is its structure described in a formal language supported

by the database management system (DBMS). In a relational database, the schema

defines the tables, the fields, relationships, views, indexes, packages, procedures,

functions, queues, triggers, types, sequences, materialized views, synonyms, database

links, directories, Java, XML schemas, and other elements. Schemas are generally stored

in a data dictionary. Although a schema is defined in text database language, the term is

often used to refer to a graphical depiction of the database structure.

Levels of database schema

 Conceptual schema, a map of concepts and their relationships.

 Logical schema, a map of entities and their attributes and relations

 Physical schema, a particular implementation of a logical schema

http://en.wikipedia.org/wiki/Variable
http://en.wikipedia.org/wiki/Datum_(disambiguation)
http://en.wikipedia.org/wiki/Measurement
http://en.wikipedia.org/wiki/Graph_(data_structure)
http://en.wikipedia.org/wiki/Graph_(data_structure)
http://en.wikipedia.org/wiki/Graph_(data_structure)
http://en.wikipedia.org/wiki/Abstraction
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Knowledge
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Computer_program
http://www.blurtit.com/q779557.html
http://www.blurtit.com/q779557.html
http://www.blurtit.com/q779557.html
http://en.wikipedia.org/wiki/Database_model
http://en.wikipedia.org/wiki/Database_model
http://en.wikipedia.org/wiki/Database_system
http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Table_(database)
http://en.wikipedia.org/wiki/Field_(computer_science)
http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/View_(database)
http://en.wikipedia.org/wiki/Index_(database)
http://en.wikipedia.org/wiki/Software_package_(installation)
http://en.wikipedia.org/wiki/Stored_procedure
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Queue_(data_structure)
http://en.wikipedia.org/wiki/Database_trigger
http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Materialized_view
http://en.wikipedia.org/wiki/Synonym
http://en.wikipedia.org/w/index.php?title=Database_link&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Database_link&action=edit&redlink=1
http://en.wikipedia.org/wiki/Directory_(file_systems)
http://en.wikipedia.org/wiki/Directory_(file_systems)
http://en.wikipedia.org/wiki/Directory_(file_systems)
http://en.wikipedia.org/wiki/Directory_(file_systems)
http://en.wikipedia.org/wiki/XML_schema
http://en.wikipedia.org/wiki/Data_dictionary
http://en.wikipedia.org/wiki/Conceptual_schema
http://en.wikipedia.org/wiki/Logical_schema
http://en.wikipedia.org/wiki/Physical_schema

Dr. V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

 Schema object, Oracle database object

 Conceptual schema
A conceptual schema or conceptual data model is a map of concepts and their

relationships. This describes the semantics of an organization and represents a series of

assertions about its nature. Specifically, it describes the things of significance to an

organization (entity classes), about which it is inclined to collect information, and

characteristics of (attributes) and associations between pairs of those things of

significance (relationships).

 Logical schema
A Logical Schema is a data model of a specific problem domain expressed in terms of a

particular data management technology. Without being specific to a particular database

management product, it is in terms of relational tables and columns, object-oriented

classes, or XML tags. This is as opposed to a conceptual data model, which describes the

semantics of an organization without reference to technology, or a physical data model,

which describe the particular physical mechanisms used to capture data in a storage

medium. The next step in creating a database, after the logical schema is produced, is to

create the physical schema.

 Physical Schema
Physical Schema is a term used in relation to data management. In the ANSI four-schema

architecture, the internal schema was the view of data that involved data management

technology. This was as opposed to the external schema that reflected the view of each

person in the organization, or the conceptual schema that was the integration of a set of

external schemas.

 Schema Object
A schema object is a logical data storage structure. Schema objects do not have a one-to-

one correspondence to physical files on disk that store their information. However,

Oracle stores a schema object logically within a table space of the database. The data of

each object is physically contained in one or more of the table space's data files. For some

objects such as tables, indexes, and clusters, you can specify how much disk space Oracle

allocates for the object within the table space's data files.

There is no relationship between schemas and table spaces: a table space can contain

objects from different schemas, and the objects for a schema can be contained in different

table spaces.

Associated with each database user is a schema. A schema is a collection of schema

objects. Examples of schema objects include tables, views, sequences, synonyms,

indexes, clusters, database links, snapshots, procedures, functions, and packages.

 DATABASE AND PLATFORM PORTABILITY

Data connectivity architecture can either simplify or radically complicate portability

among databases, database versions, and platforms. Ideally, data connectivity

components should share a common architecture that makes it easy to change or upgrade

the underlying database infrastructure. Most software companies and enterprise IT

organizations must support more than one database platform – and more than one version

of every platform they support. This can mean also managing a myriad of data

connectivity methods, driver versions, and client library packages.

http://en.wikipedia.org/wiki/Schema_object
http://en.wikipedia.org/wiki/Data_model
http://en.wikipedia.org/wiki/Concept
http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/Semantics
http://en.wikipedia.org/wiki/Logical_assertion
http://en.wikipedia.org/wiki/Logical_assertion
http://en.wikipedia.org/wiki/Logical_assertion
http://en.wikipedia.org/wiki/Organization
http://en.wikipedia.org/wiki/Organization
http://en.wikipedia.org/wiki/Organization
http://en.wikipedia.org/wiki/Attribute
http://en.wikipedia.org/wiki/Data_model
http://en.wikipedia.org/wiki/Conceptual_data_model
http://en.wikipedia.org/wiki/Physical_data_model
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Physical_schema
http://en.wikipedia.org/wiki/American_National_Standards_Institute
http://en.wikipedia.org/wiki/Conceptual_schema
http://en.wikipedia.org/wiki/Tablespace

Dr. V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

Adding a new database or even upgrading to a new version of the same database can

create substantial development, integration, and testing work. For example, data

connectivity components designed to work with only one database will handle

BLOB/CLOB data types (large binary or character objects) differently than a component

designed to work exclusively with another database. Developers will spend significant

time and effort on additional coding and testing for each new database that they need to

support. Standardizing and simplifying data connectivity architecture dramatically

reduces the cost and complexity associated with supporting multiple database back ends.

For independent software vendors in particular, this is a significant business priority.

 INTRODUCTION TO JDBC

An application programming Interface (API) is a set of classes, methods and resources

that programs can use to do their work. APIs exist for windowing systems, file systems,

database systems, networking systems, and others. JDBC is a Java API for database

connectivity that is part of the Java API developed by Sun Microsystems. JDBC provides

Java developers with an industry standard API for database-independent connectivity

between java applications and a wide range of relational database management systems

such as oracle. Informix, Microsoft SQL Server and Sybase.

The API provides a call level interface to the database.

 Connect to a database

 Execute SQL statements to query your database

 Generate query results

 Perform updates, inserts and deletions

 Execute stored procedures

The following figure 2.5.1 shows the components of the JDBC model. In its simplest

form, JDBC makes it possible to do these basic things: The Java application calls JDBC

classes and interfaces to submit SQL statements and retrieve results.

Figure 2.5.1 Components of the JDBC Model

The JDBC API is implemented through the JDBC driver. The JDBC Driver is a set of

classes that implement the JDBC interfaces to process JDBC calls and return result sets to

a Java application. The database (or data store) stores the data retrieved by the application

using the JDBC Driver.

 JDBC OBJECTS

The main objects of the JDBC API include:

Dr. V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

 A Data Source object is used to establish connections. Although the Driver
Manager can also be used to establish a connection, connecting through a Data

Source object is the preferred method.

 A Connection object controls the connection to the database. An application can
alter the behavior of a connection by invoking the methods associated with this

object. An application uses the connection object to create statements.

 Statement, Prepared Statement, and Callable Statement objects are used for

executing SQL statements. A Prepared Statement object is used when an

application plans to reuse a statement multiple times. The application prepares the

SQL it plans to use. Once prepared, the application can specify values for

parameters in the prepared SQL statement. The statement can be executed

multiple times with different parameter values specified for each execution. A

Callable Statement is used to call stored procedures that return values. The

Callable Statement has methods for retrieving the return values of the stored

procedure

A ResultSet object contains the results of a query. A ResultSet is returned to an

application when a SQL query is executed by a statement object. The ResultSet object

provides methods for iterating through the results of the query

BENEFITS OF JDBC

The benefits of using JDBC include the following:

 A developer only needs to know one API to access any relational database

 There is no need to rewrite code for different databases.

 There is no need to know the database vendor’s specific APIs

 It provides a standard API and is vendor independent

 Almost every database vendor has some sort of JDBC driver

 JDBC is part of the standard Java 2 platform

 JDBC ARCHITECTURE
The JDBC API contains two major sets of interfaces: the first is the JDBC API for

application writers, and the second is the lower-level JDBC driver API for driver writers.

JDBC technology drivers fit into one of four categories. Applications and applets can

access databases via the JDBC API using pure Java JDBC technology-based drivers, as

shown in the Figure 2.7.1 below

Figure 2.7.1 JDBC connectivity using ODBC drivers

Dr. V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

Left side, Type 1: JDBC-ODBC Bridge plus ODBC Driver

This combination provides JDBC access via ODBC drivers. ODBC binary code and in

many cases, database client code must be loaded on each client machine that uses a

JDBC-ODBC Bridge. Sun provides a JDBC-ODBC Bridge driver, which is appropriate

for experimental use and for situations in which no other driver is available.

Right side, Type 2: A native API partly Java technology-enabled driver. This type of

driver converts JDBC calls into calls on the client API for Oracle, Sybase, Informix,

DB2, or other DBMS. Note that, like the bridge driver, this style of driver requires that

some binary code be loaded on each client machine.

Right side, Type 3: Pure Java Driver for Database Middleware

This style of driver translates JDBC calls into the middleware vendor's protocol, which is

then translated to a DBMS protocol by a middleware server. The middleware provides

connectivity to many different databases.

Left side, Type 4: Direct-to-Database Pure Java Driver

This style of driver converts JDBC calls into the network protocol used directly by

DBMS, allowing a direct call from the client machine to the DBMS server and providing

a practical solution for intranet access.

Java application calls the JDBC library. JDBC loads a driver which talks to the database.

We can change database engines without changing database code. The Figure 2.7.2

shows the architecture of JDBC.

.

Figure 2.7.2 JDBC Architecture

JDBC IN J2EE

As a core part of the Java 2 Platform, the JDBC API is available anywhere that the

platform is. This means that your applications can truly write database applications once

and access data anywhere. The JDBC API is included in the Java 2 Platform, Standard

Edition (J2SE) and the Java 2 Platform, Enterprise Edition (J2EE), providing server-side

functionality for industrial strength scalability.

An example of a J2EE based architecture that includes a JDBC implementation:

Dr. V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

Requirements
Software: The Java 2 Platform (either the Java 2 SDK, Standard Edition, or the Java 2

SDK, Enterprise Edition), an SQL database, and a JDBC technology-based driver for that

database.

Hardware: Same as for the Java 2 Platform.

 TWO-TIER AND THREE-TIER MODELS

The JDBC API supports both two-tier and three-tier models for database access Fig 2.8.1

illustrate two-tier architecture for data access

Fig 2.8.1 Two tier architecture for data access
In the two-tier model, a Java applet or application talks directly to the data source.

This requires a JDBC driver that can communicate with the particular data source being

accessed. A user's commands are delivered to the database or other data source, and the

results of those statements are sent back to the user. The data source may be located on

another machine to which the user is connected via a network. This is referred to as a

client/server configuration, with the user's machine as the client, and the machine housing

the data source as the server. The network can be an intranet, which, for example,

connects employees within a corporation, or it can be the Internet.
In the three-tier model, commands are sent to a "middle tier" of services, which then

sends the commands to the data source. The data source processes the commands and

sends the results back to the middle tier, which then sends them to the user. MIS directors

find the three-tier model very attractive because the middle tier makes it possible to

maintain control over access and the kinds of updates that can be made to corporate data.

Another advantage is that it simplifies the deployment of applications. Finally, in many

cases, the three-tier architecture can provide performance advantages. In Figure 2.8.2:

illustrates three-tier architecture for database access.

Fig 2.8.2 Three-tier architecture for database access

http://java.sun.com/j2se/1.3/docs/guide/jdbc/getstart/intro.html#1011843

Dr. V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

Until recently, the middle tier has typically been written in languages such as C or

C++, which offer fast performance. However, with the introduction of optimizing

compilers that translate Java bytecode into efficient machine-specific code and

technologies such as Enterprise JavaBeans, the Java platform is fast becoming the

standard platform for middle-tier development. This is a big plus, making it

possible to take advantage of Java's robustness, multithreading, and security

features.

With enterprises increasingly using the Java programming language for writing

server code, the JDBC API is being used more and more in the middle tier of

three-tier architecture. Some of the features that make JDBC a server technology

are its support for connection pooling, distributed transactions, and disconnected

rowsets.

 DRIVER TYPES

JDBC technology-based drivers generally fit into one of four categories. In Figure

 shows various driver implementation possibilities

Figure 2.9.1 Various driver implementation possibilities

JDBC technology-based drivers generally fit into one of four categories. In Figure

 shows various driver implementation possibilities

 JDBC Drivers Types

Sun has defined four JDBC driver types. These are:

Type 1: JDBC-ODBC Bridge Driver

The first type of JDBC driver is JDBC-ODBC Bridge which provides JDBC

access to any ODBC complaint databases through ODBC drivers. Sun's JDBC-

ODBC bridge is example of type 1 driver.

Dr. V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

Figure 2.9.2 Various driver implementation possibilities

Type 2: Native -API Partly - Java Driver

Type 2 drivers are developed using native code libraries, which were originally

designed for accessing the database through C/C++. Here a thin code of Java wrap

around the native code and converts JDBC commands to DBMS-specific native

calls.

Type 3: JDBC-Net Pure Java Driver

Type 3 drivers are three-tier solutions. This type of driver communicates to a

middleware component which in turn connects to database and provide database

connectivity.

Type 4: Native-Protocol Pure Java Driver

Type 4 drivers are entirely written in Java that communicates directly with

vendor's database through socket connection. Here no translation or middleware

layer, are required which improves performance tremendously

JDBC-ODBC Bridge driver (Type 1 JDBC Driver)
The Type 1 driver translates all JDBC calls into ODBC calls and sends them to the

ODBC driver. ODBC is a generic API. The JDBC-ODBC Bridge driver is recommended

only for experimental use or when no other alternative is available. In figure 2.10.1 Type

1 JDBC – ODBC Bridge.

Advantage

The JDBC-ODBC Bridge allows access to almost any database, since the database's

ODBC drivers are already available.

Disadvantages
1. Since the Bridge driver is not written fully in Java, Type1 drivers are not portable
2. A performance issue is seen as a JDBC call goes through the bridge to the ODBC

driver, then to the database, and this applies even in the reverse process. They are

the slowest of all driver types.

The client system requires the ODBC Installation to use the driver and Not good for the

Web.

http://www.roseindia.net/sourcecode/searchengine/002.shtml

Dr. V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

Figure 2.10.1 Type 1: JDBC-ODBC Bridge

Native-API/partly Java driver (Type 2 JDBC Driver)

The distinctive characteristic of type 2 jdbc drivers is that Type 2 drivers convert

JDBC calls into database-specific calls i.e. this driver is specific to a particular

database. Some distinctive characteristic of type 2 jdbc drivers are shown below.

Example: Oracle will have oracle native api.

Figure 2.10.2 Type 2: Native API/ Partly Java Driver

Advantage
The distinctive characteristic of type 2 jdbc drivers are that they are typically offer better

performance than the JDBC-ODBC Bridge as the layers of communication (tiers) are less

than that of Type 1 and also it uses Native api which is Database specific.

Disadvantage

1. Native API must be installed in the Client System and hence type 2 drivers

cannot be used for the Internet.

2. Like Type 1 drivers, it’s not written in Java Language which forms a

portability issue.

3. If we change the Database we have to change the native api as it is specific to

a database

Dr. V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

4. Mostly obsolete now

5. Usually not thread safe.

All Java/Net-protocol driver (Type 3 JDBC Driver)
Type 3 database requests are passed through the network to the middle-tier server. The

middle-tier then translates the request to the database. If the middle-tier server can in turn

use Type1, Type 2 or Type 4 drivers.

Figure 2.10.3 Type 3: All Java/ Net-Protocol Driver

Advantage

1. This driver is server-based, so there is no need for any vendor database library to

be present on client machines.

2. This driver is fully written in Java and hence Portable. It is suitable for the web

There are many opportunities to optimize portability, performance, and scalability.

3. The net protocol can be designed to make the client JDBC driver very small and

fast to load.

4. The type 3 driver typically provides support for features such as caching

(connections, query results, and so on), load balancing, and advanced system

administration such as logging and auditing.

5. This driver is very flexible allows access to multiple databases using one driver

6. They are the most efficient amongst all driver types.

Disadvantage
It requires another server application to install and maintain. Traversing the recordset

may take longer, since the data comes through the backend server

Native-protocol/all-Java driver (Type 4 JDBC Driver)

The Type 4 uses java networking libraries to communicate directly with the database

server.

Dr. V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

Advantage

Figure 2.10.4 Type 4: Native-protocol/all-Java driver

1. The major benefit of using a type 4 jdbc drivers are that they are completely

written in Java to achieve platform independence and eliminate deployment

administration issues. It is most suitable for the web.

2. Number of translation layers is very less i.e. type 4 JDBC drivers don't have to

translate database requests to ODBC or a native connectivity interface or to pass

the request on to another server, performance is typically quite good

3. You don’t need to install special software on the client or server. Further, these

drivers can be downloaded dynamically.

Disadvantage
With type 4 drivers, the user needs a different driver for each database.

 JDBC PACKAGE

The purpose of the JDBC package is to provide vendor-neutral access to relational

databases. The implementation differences of the various databases used are abstracted

from the user through the use of the JDBC API. Though the specification does not

indicate that the API is to be used solely for relational databases, historically it has been

used primarily for relational database access.

The developers of the JDBC API specification have tried to keep the API as simple as

possible so that it can be a foundation upon which other APIs are built. For instance, the

connector API can be implemented on top of an existing JDBC API using appropriate

resource adapters. JDBC is composed of a number of interfaces. These interfaces are

implemented by driver developers. The API is implemented by either a vendor or a third

party to create a JDBC driver.

The Type 4 JDBC driver is considered the best driver to use for two reasons. One reason

is that since the driver has been written completely in Java, it is extremely portable.

Another reason is that the driver is not required to map JDBC calls to corresponding
native CLI calls. This avoids the overhead of mapping logic required by the Type 1 or

Type 2 driver, or the overhead of communicating with middleware required by the Type

3 driver.

Dr. V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

Such improvements in efficiency should allow the driver to execute faster than the other

types of JDBC drivers.

 JDBC 2.0 API

The JDBC 2.0 API includes the complete JDBC API, which includes both core and

Optional Package API, and provides industrial-strength database computing capabilities.

It is not, however, limited to SQL databases; the JDBC 2.0 API makes it possible to

access data from virtually any data source with a tabular format.

The JDBC 2.0 API includes two packages:

 java.sql package--the JDBC 2.0 core API

o JDBC API included in the JDKTM 1.1 release (previously called JDBC
1.2). This API is compatible with any driver that uses JDBC technology.

o JDBC API included in the Java 2 SDK, Standard Edition, version 1.2
(called the JDBC 2.0 core API). This API includes the JDBC 1.2 API and

adds many new features.

 javax.sql package--the JDBC 2.0 Optional Package API. This package extends the

functionality of the JDBC API from a client-side API to a server-side API, and it

is an essential part of Java2 SDK, Enterprise Edition technology.

Being an Optional Package, it is not included in the Java 2 Platform SDK,

Standard Edition, version 1.2, but it is readily available from various sources.

o Information about the JDBC 2.0 Optional Package API is available from

the JDBC web page. The javax.sql package may also be downloaded

from this web site.

o Driver vendors may include the javax.sql package with their products.
o The Java 2 SDK, Enterprise Edition, includes many Optional Package

APIs, including the JDBC 2.0 Optional Package.

 The java.sql Package

The java.sql package contains the entire JDBC API that sends SQL (Structured

Query Language) statements to relational databases and retrieves the results of executing
those SQL statements.

The Driver interface represents a specific JDBC implementation for a particular

database system. Connection represents a connection to a database. The Statement,

PreparedStatement, and CallableStatement interfaces support the execution

of various kinds of SQL statements. ResultSet is a set of results returned by the

database in response to a SQL query. The ResultSetMetaData interface provides

metadata about a result set, while DatabaseMetaData provides metadata about the

database as a whole.

The java.sql package contains API for the following:

 Making a connection with a data source

http://java.sun.com/products/jdbc

Dr. V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

o DriverManager class

o Driver interface

o DriverPropertyInfo class

o Connection interface
 Custom mapping an SQL user-defined type to a class in the Java programming

language

o SQLData interface

o SQLInput interface

o SQLOutput interface

 Providing information about the database and the columns of a ResultSet object

o DatabaseMetaData interface

o ResultSetMetaData interface

 Throwing exceptions
o SQLException thrown by most methods when there is a problem

accessing data and by some methods for other reasons

o SQLWarning thrown to indicate a warning

o DataTruncation thrown to indicate that data may have been truncated
o BatchUpdateException thrown to indicate that not all commands in a

batch update executed successfully

 Providing security

o SQLPermission interface

Metadata

RowSetMetaData: This interface, derived from the ResultSetMetaData interface,

provides information about the columns in a RowSet object. An application can use

RowSetMetaData methods to find out how many columns the rowset contains and what

kind of data each column can contain. The RowSetMetaData interface provides methods

for setting the information about columns, but an application would not normally use

these methods. When an application calls the RowSet method execute, the RowSet object

will contain a new set of rows, and its RowSetMetaData object will have been internally

updated to contain information about the new columns.

The Reader/Writer Facility
A RowSet object that implements the RowSetInternal interface ca n call on the

RowSetReader object associated with it to populate itself with data. It can also call on the

RowSetWriter object associated with it to write any changes to its rows back to the data

source from which it originally got the rows. A rowset that remains connected to its data

source does not need to use a reader and writer because it can simply operate on the data

source directly.

RowSetInternal:By implementing the RowSetInternal interface, a RowSet object gets

access to its internal state and is able to call on its reader and writer. A rowset keeps track

of the values in its current rows and of the values that immediately preceded the current

ones, referred to as the original values. A rowset also keeps track of (1) the parameters

that have been set for its command and (2) the connection that was passed to it, if any. A

rowset uses the RowSetInternal methods behind the scenes to get access to this

information. An application does not normally invoke these methods directly.

Dr. V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

JNDI

Connection

Statement

Resultset

RowSetReader: A disconnected RowSet object that has implemented the

RowSetInternal interface can call on its reader (the RowSetReader object associated with

it) to populate it with data. When an application calls the RowSet.execute method, that

method calls on the rowset's reader to do much of the work. Implementations can vary

widely, but generally a reader makes a connection to the data source, reads data from the

data source and populates the rowset with it, and closes the connection. A reader may

also update the RowSetMetaData object for its rowset. The rowset's internal state is also

updated, either by the reader or directly by the method RowSet.execute.

RowSetWriter: A disconnected RowSet object that has implemented the RowSetInternal

interface can call on its writer (the RowSetWriter object associated with it) to write

changes back to the underlying data source.

Implementations may vary widely, but generally, a writer will do the following:

 Make a connection to the data source

 Check to see whether there is a conflict, that is, whether a value that has been

changed in the rowset has also been changed in the data source

 Write the new values to the data source if there is no conflict

 Close the connection

The RowSet interface may be implemented in any number of ways, and anyone may

write an implementation. Developers are encouraged to use their imaginations in coming

up with new ways to use rowsets

 JDBC PROCESS

2.11.1 JDBC Data structure

Figure 2.11.1 Data structure of JDBC

Steps involved in JDBC Process:

Data source

Dr. V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

1. Load the driver

2. Define the Connection URL

3. Establish the Connection

4. Create a Statement object

5. Execute a query

6. Process the results

7. Close the connection

12.11.2 JDBC: Details of Process

1. Load the driver

try

{

Class.forName("connect.microsoft.MicrosoftDriver");

Class.forName("oracle.jdbc.driver.OracleDriver");

}

catch { ClassNotFoundException cnfe)

{

System.out.println("Error loading driver: " cnfe);
}

2. Define the Connection URL

String host = "dbhost.yourcompany.com";

String dbName = "someName";

int port = 1234;

String oracleURL = "jdbc:oracle:thin:@" + host + ":" + port + ":" +_

dbName;

String sybaseURL = "jdbc:sybase:Tds:" + host +

":" + port + ":" +

"?SERVICENAME=" + dbName;

3. Establish the Connection

String username = "jay_debesee";
String password = "secret";

Connection connection =_

DriverManager.getConnection(oracleURL,username, password);

• Optionally, look up information about the database

DatabaseMetaData dbMetaData = connection.getMetaData();

String productName = dbMetaData.getDatabaseProductName();

System.out.println("Database: " + productName);

String productVersion = dbMetaData.getDatabaseProductVersion();

System.out.println("Version: " + productVersion);

4. Create a Statement
Statement statement = connection.createStatement();

Dr. V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

5. Execute a Query

String query = "SELECT col1, col2, col3 FROM sometable";
ResultSet resultSet = statement.executeQuery(query);

– To modify the database, use executeUpdate, supplying a string that uses UPDATE,

INSERT, or DELETE

– Use setQueryTimeout to specify a maximum delay

to wait for results

6. Process the Result

while(resultSet.next()) {

System.out.println(resultSet.getString(1) + " " +

resultSet.getString(2) + " " +

resultSet.getString(3));
}

First column has index 1, not 0
– ResultSet provides various getXxx methods that

take a colu index or column name and returns the data

– You can also access result meta data (column names, etc.)

7. Close the Connection
connection.close();

– Since opening a connection is expensive, postpone this step if additional database

operations are expected

 Statement Objects

Through the Statement object, SQL statements are sent to the database.

– Three types of statement objects are available:

• Statement

– For executing a simple SQL statement

• PreparedStatement

– For executing a precompiled SQL statement passing in parameters

• CallableStatement

– For executing a database stored procedure

Statement Methods

 executeQuery

– Executes the SQL query and returns the data in a table (ResultSet)
– The resulting table may be empty but never null

ResultSet results =

statement.executeQuery("SELECT a, b FROM_ table");

• executeUpdate

– Used to execute for INSERT, UPDATE, or DELETE, SQL statements

– The return is the number of rows that were affected in the

database

– Supports Data Definition Language (DDL) statements

Dr. V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

CREATE TABLE, DROP TABLE and ALTER TABLE
int rows = statement.executeUpdate("DELETE FROM EMPLOYEES" + _ "WHERE

STATUS=0");

 execute

– Generic method for executing stored procedures and prepared statements
– Rarely used (for multiple return result sets)

– The statement execution may or may not return a ResultSet (use tatement.getResultSet). If

the return value is true, two or more result sets were produced
• getMaxRows/setMaxRows

– Determines the maximum number of rows a ResultSet may contain

– Unless explicitly set, the number of rows is unlimited (return value of 0)

• getQueryTimeout/setQueryTimeout

– Specifies the amount of a time a driver will wait for a statement to complete

before throwing a SQLException

 RESULTSET
ResultSet and Cursors

The rows that satisfy a particular query are called the result set. The number of rows

returned in a result set can be zero or more. A user can access the data in a result set

using a cursor one row at a time from top to bottom. A cursor can be thought of as a

pointer to the rows of the result set that has the ability to keep track of which row is

currently being accessed. The JDBC API supports a cursor to move both forward and

backward and also allowing it to move to a specified row or to a row whose position is

relative to another row.

Types of Result Sets

The ResultSet interface provides methods for retrieving and manipulating the results of

executed queries, and ResultSet objects can have different functionality and

characteristics. These characteristics are result set type, result set concurrency, and cursor

hold ability.

The type of a ResultSet object determines the level of its functionality in two areas: the

ways in which the cursor can be manipulated, and how concurrent changes made to the

underlying data source are reflected by the ResultSet object.

The sensitivity of the ResultSet object is determined by one of three different ResultSet

types:

TYPE_FORWARD_ONLY — the result set is not scrollable i.e. the cursor moves only

forward, from before the first row to after the last row.

TYPE_SCROLL_INSENSITIVE — the result set is scrollable; its cursor can move both

forward and backward relative to the current position,

and it can move to an absolute position.

TYPE_SCROLL_SENSITIVE — the result set is scrollable; its cursor can move both

forward and backward relative to the current position, and it can move to an absolute

position.

Before you can take advantage of these features, however, you need to create a scrollable

ResultSet object. The following line of code illustrates one way to create a scrollable

ResultSet object:

Dr. V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_READ_ONLY);

ResultSet srs = stmt.executeQuery(" ");

The first argument is one of three constants added to the ResultSet API to indicate the

type of a ResultSet object: TYPE_FORWARD_ONLY,

TYPE_SCROLL_INSENSITIVE, and TYPE_SCROLL_SENSITIVE. The second

argument is one of two ResultSet constants for specifying whether a result set is read-

only or updatable: CONCUR_READ_ONLY and CONCUR UPDATABLE. If you do

not specify any constants for the type and updatability of a ResultSet object, you will

automatically get one that is TYPE_FORWARD_ONLY and CONCUR_READ_ONLY.

Result Set Methods
When a ResultSet object is first created, the cursor is positioned before the first row. To

move the cursor, you can use the following methods:

 next() - moves the cursor forward one row. Returns true if the cursor is now

positioned on a row and false if the cursor is positioned after the last row.

 previous() - moves the cursor backwards one row. Returns true if the cursor is

now positioned on a row and false if the cursor is positioned before the first row.

 first() - moves the cursor to the first row in the ResultSet object. Returns true if

the cursor is now positioned on the first row and false if the ResultSet object does

not contain any rows.

 last() - moves the cursor to the last row in the ResultSet object. Returns true if the

cursor is now positioned on the last row and false if the ResultSet object does not

contain any rows.

 beforeFirst() - positions the cursor at the start of the ResultSet object, before the

first row. If the ResultSet object does not contain any rows, this method has

no effect.

 afterLast() - positions the cursor at the end of the ResultSet object, after the last

row. If the ResultSet object does not contain any rows, this method has no effect.

 relative(int rows) - moves the cursor relative to its current position.

 absolute(int n) - positions the cursor on the n-th row of the ResultSet object

SUMMARY

The JDBC API is a natural Java interface to the basic SQL abstractions and concepts. It

builds on ODBC rather than starting from scratch, so programmers familiar with ODBC

will find it very easy to learn JDBC. An API for database-independent connectivity

between the J2EE platform and a wide range of data sources. The JDBC API supports

both models for database access: two-tier (direct database access) and three-tier

(communication with the database over a "middle-tier" on the database server or a

separate machine). The purpose of the JDBC package is to provide vendor-neutral access

to relational databases.

KEY TERMS

 JDBC API: support application to JDBC manager communications

 JDBC driver manager: support JDBC manager to driver implementation

Dr. V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

 JDBC-ODBC bridge: provides JDBC access using ODBC as the communications
pipe.

 Native API, partly Java Driver: converts JDBC calls directly into calls on the
client to the native database API. This requires binary code on the client machine.

 JDBC Net Driver: translates JDBC into DBMS independent protocol. This

independent protocol is translated by a server into native DBMS calls. Generally

deployed using a middleware server.

 Native Protocol - Pure Java: converts JDBC into DBMS native network calls.

QUESTIONS AND EXERCISES

Short Answer Questions

1. Define Data, Database and Database Schema
2. Give a brief notes on different levels of Database Schema

3. What is JDBC API?

4. Write short notes on Statement objects

5. List two different packages used in JDBC API

6. List various Resultsets methods

Long –Answer Question

1. Explain the six steps to create a database schema with suitable examples
2. Write a brief note on Normalizing Data with suitable example

3. Explain the architecture of JDBC

4. Describe in Detail four different Types of JDBC Driver

5. Explain about Resultsets in Detail.

6. Write a database connectivity program in j2EE for maintaining students detail

References

1. Jim Keogh , ―The Complete Reference J2SE‖, 1
st
 Edition, Tata McGraw

Hill Edition, New Delhi:2002.

2. Deepak Vohra , JDBC 4.0 and Oracle JDeveloper for J2EE Development

3. Derek Ashmore , The J2EE Architect's Handbook.

4. JDBC - http://java.sun.com/docs/books/tutorial/jdbc

http://www.packtpub.com/author_view_profile/id/201
http://java.sun.com/docs/books/tutorial/jdbc/index.html

UNIT-II
J2EE

 S.
No.

QUESTIONS OPTION 1 OPTION 1 OPTION 1 OPTION 1 ANSWER

1. A __________ is a collection of data. field record database DBMS database

2. A database is managed by ____________. SQL DBMS JAVA J2EE DBMS

3. ____________ refers to an atomic unit. field data record DBMS data

4. A ____________ is a component of a
database that contains data in the form
of rows and columns.

 tuple table record attribute table

5. A ___________ is a document that defines
all components of a database.

 SQL database schema table file database schema

6. The best way to identify attributes of
an entity is by analyzing __________ of
the entity.

 instances fields data records instances

7. The ___________ describes the number of
characters used to store values of the
attribute.

 attribute range attribute size attribute format attribute type attribute size

8. The __________ uniquely identifies the
attribute from other attributes of the
same entity.

 attribute name attribute size attribute format attribute type attribute name

9. A ___________ is nearly identical to the
data type of a column in a table.

 attribute name attribute size attribute format attribute type attribute type

10. The ___________ is minimum and
maximum values that can be assigned
to an attribute.

 attribute name attribute size attribute format attribute range attribute range

11. The ___________ is the value that is
automatically assigned to the attribute.

 attribute name attribute size attribute
definition value

attribute type attribute
definition value

12. The __________ consists of the way in
which an attribute appears in the
existing system.

 attribute format attribute size attribute
definition value

attribute type attribute format

13. The ___________ identifies the origin of
the attribute value.

 attribute format attribute source attribute
definition value

attribute type attribute source

14. A ___________ is free form text that is
used to describe an attribute.

 acceptable
values

 required values comments attribute values comments

15. ____________ must be reduced to data
elements.

 values attributes comments information attributes

16. The unique name given to the data
element is called ___________.

 data name data type data size attribute data name

17. A ____________ describes the kind of
values that are associated with the
data.

 data name data type data size attribute data type

18. The ___________ is the maximum number
of characters required to represent
values of the data.

 data name data type data size attribute data size

19. The nature of the data provide a hint
to the ___________.

 data name data type data size attribute data name

20. ____________ should have as few
characters as possible to identify the
data.

 data name data type data size attribute data name

21. A ____________ can be abbreviated using
components of the name.

 data name data type data size attribute data name

22. A ____________ describes the
characteristics of data associated with
a data element.

 data name data type data size attribute data type

23. ____________ data stores alphabetical
characters and punctuations.

 Character Alpha Alphanumeric Numeric Character

24. ___________ data stores only alphabetical
characters.

 Character Alpha Alphanumeric Numeric Alpha

25. ____________ data stores alphabetical
characters, punctuations, and
numbers.

 Character Alpha Alphanumeric Numeric Alphanumeric

26. ____________ data stores numbers only. Character Alpha Alphanumeric Numeric Numeric

27. __________ data stores date and time
values.

 Character Alpha Date/Time Numeric Date/Time

28. ____________ data stores one of two
values – yes or no.

 Character Alpha Alphanumeric Logical Logical

29. ____________ data stores large text fields,
images, and other binary data.

 Character Alpha Alphanumeric Large Object Alphanumeric

30. __________ is the process of organizing
data elements into related groups to
minimize redundant data and to
assure data integrity.

 Transaction Normalization Grouping Creation Normalization

31. There are ___________ normal forms. 2 3 4 5 5

32. A common way to organize data
elements into _________ is to first
assemble a list of all data elements.

 groups text objects None of the
above

groups

33. A _________ requires the information to
be atomic.

 1 NF 2 NF 3 NF 4 NF 1 NF

34. The __________ requires the data to be in
the first normal form.

 1 NF 2 NF 3 NF 4 NF 2 NF

35. The __________ requires that data
elements to be in second normal form.

 1 NF 2 NF 3 NF 4 NF 3 NF

36. A __________ is a data element that
uniquely identifies a row of data
elements within a group.

 primary key secondary key tertiary key foreign key primary key

37. A _________ occurs when data depends
on other data such as when nonkey
data is dependent on a primary key.

 redundancy normalization functional
dependency

transitive
dependency

functional
dependency

38. A ________ is a functional dependency
between two or more nonkey data
elements.

 redundancy normalization functional
dependency

transitive
dependency

transitive
dependency

39. A __________ is a primary key of another
group used to draw a relationship
between two groups of data elements.

primary key secondary key tertiary key foreign key foreign key

40. The relationship between primary
keys and foreign keys of data groups is
called __________.

 functional
dependency

 referential
integrity

 transitive
dependency

None of the
above

referential
integrity

41. There are _________ types of JDBC
drivers.

2 3 4 5 4

42. The JDBC process is divided into
__________ routines.

2 3 4 5 5

43. The ___________ method is used to load
the JDBC driver.

 Class.forName() Results.next()
System.out.printl
n()

DB.createStatem
ent()

Class.forName()

44. The _________ method returns a
connection interface that is used
throughout the process to reference
the database.

 Class.forName() Results.next()
DriverManager.ge
tConnection()

DB.createStatem
ent()

DriverManager.g
etConnection()

45. The _________ method is used to create a
statement object.

 Class.forName() Results.next()
DriverManager.ge
tConnection()

Connect.createSt
atement()

Connect.createSt
atement()

46. The _________ method is called to
terminate the statement.arameter.

Class.forName() Results.next() Db.close() Connect.createSt
atement()

Db.close()

47. The _________ method of the ResultSet
object is used to copy the value of a
specified column in the current row of
the ResultSet to a string object.

 Class.forName() Results.next() Db.close() getString() getString()

48. The URL consists of _________ parts. 2 3 4 5 3

49. The statement object contains the
method, which is passed the query as
an argument.

 Results.next() Class.forName() executeQuery() Db.createStatem
ent()

executeQuery()

50. The __________ method of the statement
object is used when there may be
multiple results returned.

 Results.next() Class.forName() executeQuery() execute() execute()

51. The __________ method of the connection
object is called to return a statement
object.

createStatement(
)

 Class.forName() executeQuery() execute() createStatement(
)

52. The __________ method of the connection
object is called to return the
PreparedStatement object

createStatement(
)

 Class.forName() executeQuery() preparedStatem
ent()

preparedStateme
nt()

53. The _________ object is used to call a
stored procedure from within a J2EE
object.

 statement
preparedstatement

callableStatement

ResultSet callableStatemen
t

54. The CallableStatement object used
__________ types of parameter when
calling a stored procedure.

2 3 4 5 3

55. The _________ parameter contains any
data that needs to be passed to the
stored procedure.processed by the
CPU?

 IN OUT INOUT None of the
above

IN

56. The ___________ object is used whenever
a J2EE component needs to
immediately execute a query without
first having the query compiled.

 statement
preparedstatement

callableStatement

ResultSet statement

57. A SQL query can be preempted and
executed using the ___________ object.

 statement
preparedstatement

callableStatement

ResultSet preparedstateme
nt

58. The _________ object contains methods
that are used to copy data from the
ResultSet into a java collection object
or variable for further processing.

 statement
preparedstatement

callableStatement

ResultSet ResultSet

59. The ___________ parameter is a single
parameter that is used to both pass
information to the stored procedure
and retrieve information from a stored
procedure.

 IN OUT INOUT None of the
above

INOUT

60. The __________ parameter contains a
value returned by the stored
procedures. The future
generation of computers?

 IN OUT INOUT None of the
above

OUT

61. The _________ mthod returns a Boolean
true if the row contains data.

 getString() next() execute() d) close() next()

62. There are ________ methods of the
ResultSet object that are used to
position the virtual cursor.

3 4 5 6 6

63. The __________ method moves the
virtual cursor specified to the first row
in the ResultSet.

 first() next() relative() absolute() first()

64. The __________ method moves the
virtual cursor the specified number of
rows contained in the parameter.

 first() next() relative() absolute() relative()

65. A value in a column of the ResultSet
can be replaced with a NULL value by
using the __________ method.

 updataeNull() updateRow() updateString() deleteRow() updataeNull()

66. The _________ method is used to change
the value of the column of the
ResultSet.

 updataeNull() updateRow() updateString() deleteRow() updateString()

67. The __________ method is used to
remove a row from a ResultSet.

 updataeNull() updateRow() updateString() deleteRow() deleteRow()

68. The ________ method returns the
product name of the database.

getDatabaseProd
uctName()

 getUserName() getURL() getschemas() getDatabaseProd
uctName()

69. The _________ method returns the
username.

getDatabaseProd
uctName()

 getUserName() getURL() getschemas() getUserName()

70. The __________ method returns the URL
of the database.

getDatabaseProd
uctName()

 getUserName() getURL() getschemas() getURL()

71. The __________ method returns all the
schema names available in the
database.

getDatabaseProd
uctName()

 getUserName() getURL() getschemas() getschemas()

72. The ___________ method returns
primary keys.

getPrimaryKeys()

 getProcedures() getTables() getColumnCount
()

getPrimaryKeys(
)

73. The _________ method returns stored
procedure names.

getPrimaryKeys()

 getProcedures() getTables() getColumnCount
()

getProcedures()

74. The __________ method returns names of
table in the database.

getPrimaryKeys()

 getProcedures() getTables() getColumnCount
()

getTables()

75. The ___________ method returns the
number of columns contained in the
ResultSet.

getPrimaryKeys()

 getProcedures() getTables() getColumnCount
()

getColumnCount
()

32

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

UNIT 3

JAVA SERVLETS

OVERVIEW OF SERVLET

Servlets are Java programming language objects that dynamically process requests

and construct responses. The Java Servlet API allows a software developer to add

dynamic content to a Web server using the Java platform. The generated content is

commonly HTML, but may be other data such as XML. Servlets are the Java counterpart

to non-Java dynamic Web content technologies such as PHP, CGI and ASP.NET, and as

such some find it easier to think of them as 'Java scripts'. Servlets can maintain state

across many server transactions by using HTTP cookies, session variables or URL

rewriting.

The servlet API, contained in the Java package hierarchy javax.servlet, defines the

expected interactions of a Web container and a servlet. A Web container is essentially the

component of a Web server that interacts with the servlets. The Web container is

responsible for managing the lifecycle of servlets, mapping a URL to a particular servlet

and ensuring that the URL requester has the correct access rights.

A Servlet is an object that receives a request and generates a response based on that

request. The basic servlet package defines Java objects to represent servlet requests and

responses, as well as objects to reflect the servlet's configuration parameters and

execution environment. The package javax.servlet.http defines HTTP-specific subclasses

of the generic servlet elements, including session management objects that track multiple

requests and responses between the Web server and a client. Servlets may be packaged in

a WAR file as a Web application.

Servlets are server side components. These components can be run on any platform

or any server due to the core java technology which is used to implement them. Servlets

augment the functionality of a web application. They are dynamically loaded by the

server's Java runtime environment when needed. On receiving an incoming request from

the client, the web server/container initiates the required servlet. The servlet processes the

client request and sends the response back to the server/container, which is routed to the

client.

Figure 3.1.1: HTTP request response model.

Web based Client/server interaction uses the HTTP (hypertext transfer protocol). HTTP

is a stateless protocol based on a request and response model with a small, finite number

of request methods like GET, POST, HEAD, OPTIONS, PUT, TRACE, DELETE,

http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/Web_server
http://en.wikipedia.org/wiki/Java_platform
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/Common_Gateway_Interface
http://en.wikipedia.org/wiki/Active_Server_Pages
http://en.wikipedia.org/wiki/HTTP_cookie
http://en.wikipedia.org/wiki/Session_(computer_science)
http://en.wikipedia.org/wiki/URL_rewriting
http://en.wikipedia.org/wiki/URL_rewriting
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Java_package
http://java.sun.com/javaee/5/docs/api/javax/servlet/package-summary.html
http://en.wikipedia.org/wiki/Web_container
http://java.sun.com/javaee/5/docs/api/javax/servlet/Servlet.html
http://en.wikipedia.org/wiki/Object_(computer_science)
http://java.sun.com/javaee/5/docs/api/javax/servlet/http/package-summary.html
http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/WAR_(Sun_file_format)
http://en.wikipedia.org/wiki/Web_application

33

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

CONNECT, etc. The response contains the status of the response and meta information

describing the response. Most of the servlet-based web applications are built around the

framework of the HTTP request/response model (Figure 3.1.1).

 CGI VERSUS SERVLET

When a CGI program (or script) is invoked what typically happens is that a new process

is spawned to handle the request. This process is external to that of the web server and as

such you have the overhead of creating a new process and context switching etc. If you

have many requests for a CGI script then you can imagine the consequences! Of course

this is a generalization and there are wrappers for CGI that allow them to run in the same

process space as the web server. Java Servlets on the other hand actually run inside the

web server (or Servlet engine).

The developer writes the Servlet classes compiles them and places them somewhere that

the server can locate them. The first time a Servlet is requested it is loaded into memory

and cached. From then on the same Servlet instance is used with different requests being

handled by different threads. The below table 3.3.1 depicts the difference between CGI

and Servlet

Table 3.3.1 Difference Between CGI And Servlet

CGI Servlet

Written in C, C++, Visual

Basic and Perl

Written in Java

Difficult to maintain, non-

scalable, non-manage

Powerful, reliable, and

efficient

Prone to security problems of

programming language

Improves scalability,

reusability (component

based)

Resource Intensive and

inefficient

Leverages Built-in security

of Java programming

language

Platform and application-

specific

Platform independent and

portable

 BENEFITS OF JAVA SERVLETS

When developing server-side software applications, its size becomes larger and

automatically complexity intrudes in. It is always helpful if such a large application gets

broken into discreet modules that are each responsible for a specific task. This divide and

conquer principle helps to maintain and understand easily. Java Servlets provide a way to

modularize user application.

Advantages of Servlets

1. No CGI limitations

http://www.acm.org/crossroads/xrds8-2/servletsProgramming.html#Fig3%23Fig3

34

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

2. Abundant third-party tools and Web servers supporting Servlet

3. Access to entire family of Java APIs

4. Reliable, better performance and scalability

5. Platform and server independent Secure

6. Most servers allow automatic reloading of Servlet's by administrative action.

 SERVLET REQUEST AND RESPONSE
There are three different players in figure 3.4.1. They are browser, web server, and

servlet container. In many cases, a web server and a servlet container are running in a

same machine even in a single virtual machine. So they are not really distinguished in

many cases. The role of the web server is to receive HTTP request and then passes it to

the web container or servlet container which then creates Java objects that represent

―HTTP request‖ and a ―session‖ and then dispatches the request to the servlet by

invoking service() method defined in the servlet

Figure 3.4.1 Three different players

And once the servlet handles the request, it creates a HTTP response, which is then sent

to the client through the web server.
 HTTPServletRequest object

 Information about an HTTP request

 Headers

 Query String

 Session

 Cookies

 HTTPServletResponse object

 Used for formatting an HTTP response

 Headers

 Status codes

 Cookies

 SERVLET CLASSES AND INTERFACES

 Servlet Request Interface
public interface ServletRequest: Defines an object to provide client request information

to a servlet. The servlet container creates a ServletRequest object and passes it as an

argument to the servlet's service method. A ServletRequest object provides data including

parameter name and values, attributes, and an input stream. Interfaces that extend

35

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

ServletRequest can provide additional protocol specific data (for example, HTTP data is

provided by HttpServletRequest)

 ServletResponse Interface
public interface ServletResponse: Defines an object to assist a servlet in sending a

response to the client. The servlet container creates a ServletResponse object and passes

it as an argument to the servlet's service method

A subclass of HttpServlet must override at least one method, usually one of these:

• doGet, if the servlet supports HTTP GET requests

• doPost, for HTTP POST requests

• doPut, for HTTP PUT requests

• doDelete, for HTTP DELETE requests

• init and destroy, to manage resources that are held for the life of the servlet

Web clients usually activate a servlet in one of two ways:

• Get – Sends data as part of a URL

http://rmyers.com/servlet/Hello?name="john"

• Post – Sends data down the data stream following the request

 Java Servlet Anatomy and Life Cycle

 Anatomy of Java Servlets:

init()

– Invoked once when the servlet is first instantiated
– Perform any set-up in this method and Setting up a database connection

destroy()

– Invoked before servlet instance is removed.
-Perform any clean-up and Closing a previously created database connection

Figure 3.6.1.Function of doGet()
doGet()

– the doGet() function is called when the servlet is called via an HTTP GET

doPost()

– the doPost() function is called when the servlet is called via an HTTP POST. POSTs

are a good way to get input from HTML forms

http://rmyers.com/servlet/Hello?name

36

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

Figure 3.6.2 Function of doPost()

 Life Cycle of Java Servlets:
The life cycle of a servlet is controlled by servlet-container in which the servlet has been

deployed. When a HTTP request is mapped to a servlet, the container performs the

following steps.

 If an instance of the servlet does not exist, the Web container

o Loads the servlet class

o Creates an instance of the servlet class

o Initializes the servlet instance by calling the init() method
 Invokes the service method, passing HttpServletRequest and HttpServletResponse

objects as parameters.

Figure 3.6.3 Methods used in Java Servlets

The init() method gets called once when a servlet instance is created for the first time.

And then service() method gets called every time there comes a new request. Now

service() method in turn calls doGet() or doPost() methods for incoming HTTP requests.

And finally when the servlet instance gets removed, the destroy() method gets called. So

init() and destroy() methods get called only once while service(),

37

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

Figure 3.6.4 Httprequest and Httpresponse
doGet(), and doPost() methods are called a number of times depending on how many

HTTP requests are received. As it was mentioned before, init () and destroy () methods

are called only once, init() at the time service instance is created while destroy() gets

called at the time servlet instance gets removed. And init() can be used to perform some

set up operation such as setting up a database

connection and destroy() method is used to perform any clean up, for example,

removing a previously created database connection.

Example for init():
public class CatalogServlet extends HttpServlet {

private BookDB bookDB;

// Perform any one-time operation for the servlet,

// like getting database connection object.

// Note: In this example, database connection object is assumed

// to be created via other means (via life cycle event mechanism)

// and saved in ServletContext object. This is to share a same

// database connection object among multiple servlets.

public void init() throws ServletException {

bookDB = (BookDB)getServletContext().

getAttribute("bookDB");

if (bookDB == null) throw new

UnavailableException("Couldn't get database.");

}

...

}

Example: destroy()

public class CatalogServlet extends HttpServlet {

private BookDB bookDB;

public void init() throws ServletException {

bookDB = (BookDB)getServletContext().

getAttribute("bookDB");

if (bookDB == null) throw new

UnavailableException("Couldn't get database.");

}

public void destroy() {

bookDB = null;

38

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

}

…

This is destroy example code again from CatalogServlet code. Here destroy() method

nulling the local variable that contains the reference to database connection.

service() methods take generic requests and responses:

– service(ServletRequest request, ServletResponse response)
– doGet() or doPost() take HTTP requests and responses:

 doGet(HttpServletRequest request, HttpServletResponse response)

 doPost(HttpServletRequest request, HttpServletResponse response)

Figure 3.6.5 using service() method to invoke GenericServlet class

This Figure 3.6.5 shows how service () method of a subclass of GenericServlet class is
invoked.

doGet() and doPost() Methods

Using doGet() and doPost() it is possible to do the following functions:
– Can able to extract client sent information such as user-entered parameter values

that were sent as query string.

– To set and get attributes to and from scope objects.

– Perform some business logic or access the database.

– Optionally include or forward your requests to other web components.

– Populate HTTP response message and then send it to client.

Example: Simple doGet()

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

Public class HelloServlet extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

// Just send back a simple HTTP response

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<title>First Servlet</title>");

out.println("<big>Hello J2EE Programmers! </big>");

39

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

}

}

This is a very simple example code of doGet() method. In this example, a simple HTTP

response message is created and then sent back to client

Figure 3.6.6 HttpServlet subclass

 READING DATA FROM A CLIENT

A Client uses either the GET or POST Method to pass information to a java

servlet. The doGet() or doPost() netgid us called in the Java Servlet depending on the

method used by the client.

Data sent by a client is read into java servlet by calling the getParameters()

method of the HttpservletRequest object that instantiated in the argument list of the

doGet() and dopost() methods. The getParameters() method requires one argument,

which is the name of the parameter that contains the data sent by the client. The

getParameters() method returns a String object. The String object contains the value of

the parameter, if the client assigns a value to the parameter. An empty string object is

returned if the client didn’t assign a value to the parameter. Also, a null is returned if the

parameter isn’t received from the client.

A HTML form can contain a set of check boxes or other form objects that have

the same data name but different values. This means that data received from a client

might have multiple occurrences of the same parameter name.

The user can read a set of parameters that have the same name by calling the

getParameterValues() method. The getParameterValues() method has one argument

which is the name of the parameter, and returns an array of string objects. Each element

of the array contains a value of the set of parameters. The getParameterValues() method

returns a null if data received from the client doesn’t contain the parameter named in the

argument.

User can retrieve all the parameters by calling the getParameterNames() method.

The getParameterNames() method does not require an argument and returns an

Enumeration. Parameter names appear in any order and can be cast to String object and

used with the getParameter() and getParameterValues() methods.

Figure conatins an HTML form that prompts a user to enter their name , when the

user selects the Submit button, the browser calls the URL /servlet/HelloServlet Java

Servlet and sends the username as data. Figure illustrates the HelloServlet.class Java

Servlet that reads data sent by this form. In this example the getParameter() method

40

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

returns a string that is assigned to the email String object called email. The value of the

email String object is then returned to the browser in the form of an HTML page.

<HTML>

<HEAD><TITLE>Greetings Form</TITLE></HEAD>

<BODY>

<FORM METHOD=GET ACTION="/servlet/HelloServlet">

What is your name?

<INPUT TYPE=TEXT NAME=username SIZE=20>

<INPUT TYPE=SUBMIT VALUE="Introduce Yourself">

</FORM>

</BODY>
</HTML>

This form submits a form variable named username to the URL /servlet/HelloServlet.

The HelloServlet itself does little more than create an output stream, read the username

form variable, and print a nice greeting for the user.

Here’s the code:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class HelloServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {

String name;

name= req.getParameter("username");

resp.setContentType("text/html");

PrintWriter out = resp.getWriter();

out.println("<HTML>");

out.println("<HEAD><TITLE>Finally, interaction!</TITLE></HEAD>");

out.println("<BODY><H1>Hello, " + name+"!</H1>");

out.println("</BODY></HTML>");
}

}

Result:

 READING HTTP REQUEST HEADERS
When an HTTP client (e.g. a browser) sends a request, it is required to supply a request

line (usually GET or POST). If it wants to, it can also send a number of headers, all of

which are optional except for Content-Length, which is required only for POST requests.

Here are the most common headers:

41

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

 Accept The MIME types the browser prefers.

 Accept-Charset The character set the browser expects.

 Accept-Encoding The types of data encodings (such as gzip) the browser knows

how to decode. Servlets can explicitly check for gzip support and return gzipped

HTML pages to browsers that support them, setting the Content-Encoding

response header to indicate that they are gzipped. In many cases, this can reduce

page download times by a factor of five or ten.

 Accept-Language The language the browser is expecting, in case the server has

versions in more than one language.

 Authorization Authorization info, usually in response to a WWW-Authenticate

header from the server

 Connection Use persistent connection? If a servlet gets a Keep-Alive value here,

or gets a request line indicating HTTP 1.1 (where persistent connections are the

default), it may be able to take advantage of persistent connections, saving

significant time for Web pages that include several small pieces (images or applet

classes). To do this, it needs to send a Content-Length header in the response,

which is most easily accomplished by writing into a ByteArrayOutputStream,

then looking up the size just before writing it out.

 Content-Length (for POST messages, how much data is attached)

 Cookie (one of the most important headers; see separate section in this tutorial on

handling cookies)

 From (email address of requester; only used by Web spiders and other custom

clients, not by browsers)

 Host (host and port as listed in the original URL)

 If-Modified-Since (only return documents newer than this, otherwise send a 304

Not Modified" response)

 Pragma (the no-cache value indicates that the server should return a fresh

document, even if it is a proxy with a local copy)

 Referer (the URL of the page containing the link the user followed to get to

current page)

 User-Agent (type of browser, useful if servlet is returning browser-specific

content)

UA-Pixels, UA-Color, UA-OS, UA-CPU (nonstandard headers sent by some Internet

Explorer versions, indicating screen size, color depth, operating system, and cpu type

used by the browser's system)

 SENDING DATA TO A CLIENT

A java Servlet responds to a client request by reading client data and the HTTP

request headers, then processing information based on the nature of the request. For

example, a client request for information about merchandise in an online product

catalog requires the Java Servlet to search the product database to retrieve product

information and then format the product information into a web page which is

returned to the client.

There are two ways in which a java Servlet replied to a client request. These are

by sending information to the response stream and by sending information in the

HTTP response header.

42

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

The HTTP response header is similar to the HTTP request header except the

contents of the HTTP response header are generated by the web server that responds to

the client’s request. Information is sent to the response stream by creating an instance of

the PrintWriter object and then using the println() method to transmit the information to

the client.

An Http response header contains a status line, response headers, and a blank line,

followed by the document. There are three components to the status line these are the

HTTP version number, a status code and a brief message associated with the status code.

example :

HTTP/1.1 200 OK

Content-type : text/plain

My response

In the above example The HTTP Version number is 1.1 and the status code is 200,

indicating that everything is fine with the request that was received from the client. OK is

the message that is associated with the status code. This example contains HTTP

response Header, which is Content-Type that identifies the document Mime type as plain

text. The document contains the expression My response.

 WORKING WITH COOKIES

A cookie is a bit of information sent by a web server to a browser that can later be read

back from that browser. When a browser receives a cookie, it saves the cookie and

thereafter sends the cookie back to the server each time it accesses a page on that server,

subject to certain rules. Because a cookie's value can uniquely identify a client, cookies

are often used for session tracking. Version 2.0 of the Servlet API provides the

javax.servlet.http.Cookie class for working with cookies. The HTTP header

details for the cookies are handled by the Servlet API.

Create a cookie with the Cookie() constructor:

public Cookie(String name, String value)

This creates a new cookie with an initial name and value. The rules for valid names and

values are given in Netscape's Cookie Specification and RFC 2109.

A servlet can send a cookie to the client by passing a Cookie object to the

addCookie() method of HttpServletResponse:

public void HttpServletResponse.addCookie(Cookie cookie)

This method adds the specified cookie to the response. Additional cookies can be added

with subsequent calls to addCookie() . Because cookies are sent using HTTP headers,

they should be added to the response before you send any content. Browsers are only

required to accept 20 cookies per site, 300 total per user, and they can limit each cookie's

size to 4096 bytes.

The code to set a cookie looks like this:

Cookie cookie = new Cookie("ID", "123");

res.addCookie(cookie);

43

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

A servlet retrieves cookies by calling the getCookies() method of HttpServlet-

Request:

public Cookie[] HttpServletRequest.getCookies()

This method returns an array of Cookie objects that contains all the cookies sent by the

browser as part of the request or null if no cookies were sent.

The code to fetch cookies looks like this:

Cookie[] cookies = req.getCookies();

if (cookies != null) {

for (int i = 0; i < cookies.length; i++) {

String name = cookies[i].getName();

String value = cookies[i].getValue();

}

}

The following methods are used to set these attributes:

 public void Cookie.setVersion(int v) : Sets the version of a cookie. Servlets can

send and receive cookies formatted to match either Netscape persistent cookies

(Version 0) or the newer, somewhat experimental, RFC 2109 cookies (Version 1).

Newly constructed cookies default to Version to maximize interoperability.

 public void Cookie.setDomain(String pattern): Specifies a domain restriction pattern.

A domain pattern specifies the servers that should see a cookie. By default, cookies are

returned only to the host that saved them. Specifying a domain name pattern overrides this.

The pattern must begin with a dot and must contain at least two dots. A pattern matches only

one entry beyond the initial dot. For example, ".foo.com" is valid and matches

www.foo.com and upload.foo.combut not www.upload.foo.com. For details on domain

patterns, see Netscape's Cookie Specification and RFC 2109.

 public void Cookie.setMaxAge(int expiry):Specifies the maximum age of the

cookie in seconds before it expires. A negative value indicates the default, that the

cookie should expire when the browser exits. A zero value tells the browser to delete

the cookie immediately.

 public void Cookie.setPath(String uri): Specifies a path for the cookie, which is the

subset of URIs to which a cookie should be sent. By default, cookies are sent to the

page that set the cookie and to all the pages in that directory or under that directory.

For example, if /servlet/CookieMonster sets a cookie, the default path is "/servlet".

That path indicates the cookie should be sent to /servlet/Elmo and to

/servlet/subdir/BigBird--but not to the /Oscar.html servlet alias or to any CGI

programs under /cgi-bin. A path set to "/" causes a cookie to be sent to all the pages

on a server.

SUMMARY
After going through this unit you will understand the role of Servlet in big picture

of J2EE. AS soon as the Web began to be used for delivering services, service providers

recognized the need for dynamic content. Applets, one of the earliest attempts toward this

goal, focused on using the client platform to deliver dynamic user experiences. At the

same time, developers also investigated using the server platform for this purpose.

Initially, Common Gateway Interface (CGI) scripts were the main technology used to

http://www.foo.comand/
http://www.foo.comand/
http://www.upload.foo.com/

44

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

generate dynamic content. Though widely used, CGI scripting technology has a number

of shortcomings, including platform dependence and lack of scalability. To address these

limitations, Java Servlet technology was created as a portable way to provide dynamic,

user-oriented content.

Servlet request & response model. Servlet life cycle. Servlet scope objects. Servlet

request and response: Status, Header, Body and Error Handling. Servlet from the

standpoint of J2EE architecture, that is, what role Servlet plays in a multi-tier web-based

application. Servlet is basically a web technology in which HTTP request is being

received and handled and then proper HTTP response is being created and then returned

to the client

KEY TERMS

 Java Servlets : Servlets are the Java platform technology of choice for extending

and enhancing web servers

 ServletRequest: Defines an object to provide client request information to a
servlet.

 ServletResponse: Defines an object to assist a servlet in sending a response to the
client

 init() – Invoked once when the servlet is first instantiated

 service () - This method gets called every time there comes a new request.

 destroy() – Invoked before servlet instance is removed

 Http response header: It contains a status line, response headers, and a blank

line, followed by the document

 Cookie : It is a bit of information sent by a web server to a browser that can later

be read back from that browser

QUESTIONS AND EXERCISES

Short Answer Questions

1. Write short notes on Java Servlet
2. Differentiate CGI and Java Servlet

3. List the advantage of Java Servlet

4. Give a brief notes on Java Servlet life cycle

5. Write a simple program using Java Servlet to display "Hello" message

6. Define any three HTTP1.1 Status Codes

7. Define Cookies

8. What is Tracking Session?
Long –Answer Question

1. Explain the anatomy of Java Servlet in detail

2. Describe in about Servlet request and response with suitable example

3. Explain about Servlet Classes and Interfaces

4. Write a java Servlet program to reading data from a client

5. Write program using java Servlet to send data to a client

Reference

1. Jim Keogh , ―The Complete Reference J2SE‖, 1
st
 Edition, Tata McGraw

Hill Edition, New Delhi:2002.

2. Deepak Vohra , JDBC 4.0 and Oracle JDeveloper for J2EE Development

3. Derek Ashmore , The J2EE Architect's Handbook

4. Servlets - http://java.sun.com/docs/books/tutorial/servlets

http://www.packtpub.com/author_view_profile/id/201
http://java.sun.com/docs/books/tutorial/servlets

UNIT-III

J2EE

 S.
No.

Option 1 Option 2 Option 3 Option 4 Option 5 Answer

1. There are ________ types of data. 2 3 4 5 2

2. ___________ is information received from

the client that is typically either entered by

the user into the user interface or generated

by the user interface itself databases is

called

 Explicit data Implicit data CGI Browser Explicit data

3. ___________ is HTTP information that is

generated by the client rather than the user.

 Explicit data Implicit data CGI Browser Implicit data

4. The result of processing a request is

returned to the client as ___________.

 Explicit data Implicit data CGI Browser Explicit data

5. A __________ is a server side program. servlet JSP EJB Java servlet

6. Java servlet remains alive after the request

is fulfilled. This is called __________.

 persistence reliability Integrity robustness persistence

7. A __________ is a java class that reads

requests sent from a client and responds by

the sending information to the client.

 servlet JSP EJB EIS servlet

8. The doGet() method requires _________

arguments.

2 3 4 5 2

9. The doPost() method requires __________

arguments.

2 3 4 5 2

10. Incoming data includes __________ data. implicit explicit implicity and

explicit

 None of the

above

 implicity and

explicit

11. The _________ method is used in

conjunction with a PrintWriter to send

outgoing explicit data such as text that

appears on a webpage.

 println()

setContentTyp

e()

 doGet() d) doPost() println()

12. The __________ method is used to set the

value for the ContentType HTTP header

information.

 println()

setContentTyp

e()

 doGet() d) doPost() setContentType()

13. The _________ method is called

automatically when the java servlet is

created.

 init()

setContentTyp

e()

 doGet() doPost() init()

14. The __________ method is called

whenever a request for the java servlet is

made to the web server.

 init() service() doGet() doPost() service()

15. The _________ method is called when an

instance of a java servlet is removed from

memory.

 init() service() destroy()

doPost()

 destroy()

16. The __________ method is not called

when an abnormal occurrence such as a

system malfunction causes the java servlet

to abruptly terminate.

 init() service() destroy()

doPost()

 destroy()

17. The web-app element should contain a

servlet element with __________

subelements.

2 3 4 5 3

18. The ____________ contains the name used

to access the java servlet.

 servlet-name servlet-class init-param None of the

above

 servlet-name

19. A client uses the __________ method to

pass information to a java servlet.

 GET only POST only either GET or

POST

 None of the

above

 either GET or

POST

20. Data sent by a client is read into a java

servlet by calling the __________ method.

 getParameter() doGet() doPost()

getParameter

Values()

 getParameter()

21. The _________ method returns a null if

data received from the client doesnot

contain the parameter named in the

argument.

 getParameter() doGet() doPost()

getParameter

Values()

getParameterValue

s()

22. The _________ method does not require an

argument and returns an enumeration.

 getParameter()

getParameterN

ames()

 doPost()

getParameter

Values()

getParameterName

s()

23. A request from a client contains

__________ components.

2 3 4 5 2

24. The HTTP Request Header ________

identifies the MIME type of data that can

be handled by the browser that made the

request.

 Accept

Accept_Charse

t

Accept_Language

Authorizatio

n

 Accept

25. The HTTP Request Header __________

identifies the character sets that can be

used by the browser that made the request.

 Accept

Accept_Charse

t

Accept_Language

Authorizatio

n

 Accept_Charset

26. The HTTP Request Header __________

specifies the preferred languages that are

used by the browser.

 Accept

Accept_Charse

t

Accept_Language

Authorizatio

n

Accept_Language

27. The HTTP Request Header __________ is

used by a browser to identify the client to

the java servlet whenever a protected web

page is being processed.

 Accept

Accept_Charse

t

Accept_Language

Authorizatio

n

 Authorization

28. The HTTP Request Header __________

identifies whether a browser can retrieve

multiple files using the same socket, which

is referred to as persistence.

 Connection Content-

length

 Cookie Host Connection

29. The HTTP Request Header __________

contains the size of the data in bytes that

are transmitted using the POST method.

 Connection Content-

length

 Cookie Host Content-length

30. The HTTP Request Header __________

contains the host and port of the original

URL

 Connection Content-

length

Cookie Host Host

31. The HTTP Request Header ________

signifies that the browser’s requests should

be fulfilled only if the data has changed

since a specified date.

If-Modified-Since If-

Unmodified-

Since

 Referer User-Agent If-Modified-Since

32. The HTTP Request Header __________

signifies that the browser’s requests should

be fulfilled only if the data is older than a

specified date.

If-Modified-Since If-

Unmodified-

Since

 Referer User-Agent If-Unmodified-

Since

33. The HTTP Request Header ___________

contains the URL of the web page that is

currently displayed in the browser.

 If-Modified-Since If-

Unmodified-

Since

 Referer User-Agent Referer

34. The HTTP Request Header _________

identifies the browser that made the

request.

 If-Modified-Since If-

Unmodified-

Since

 Referer User-Agent User-Agent

35. HTTP _________ version uses the Keep-

Alive message to keep a connection open.

1.1 1.2. 1.3 1.4 1.1

36. There are __________ ways in which a

java servlet replies to a client request.

2 3 4 5 2

37. A java servlet can write to the HTTP

response header by calling the __________

method of the HttpServlet Response object.

 setStatus() sendError() sendRedirect() None of the

above

 setStatus()

38. The __________ method is used to notify

the client that an error has occurred.

 setStatus() sendError() sendRedirect() None of the

above

 sendError()

39. The ___________ method transmits a

location header to the browser.

 setStatus() sendError() sendRedirect() None of the

above

 sendRedirect()

40. The HTTP Response Header ___________

is a parameter for the connection header.

 close Content-

Encoding

 Content-

Language

 Content-

Length

 close

41. The HTTP Response Header ___________

indicates page encoding .

 close Content-

Encoding

 Content-

Language

 Content-

Length

 Content-

Encoding

42. The HTTP Response Header __________

indicates the language of the document.

 close Content-

Encoding

 Content-

Language

 Content-

Length

 Content-Language

43. The HTTP Response Header

____________ indicates the number of

bytes in the message before any character

encoding is applied.

 close Content-

Encoding

 Content-

Language

 Content-

Length

 Content-Length

44. The HTTP Response Header ___________

indicates the MIME type of the response

document.

 Content-Type Expires Last-Modified Location Content-Type

45. The HTTP Response Header

___________ specifies the time in

milliseconds when document is out of

date.use

 Content-Type Expires Last-Modified Location Expires

46. The HTTP Response Header ___________

indicates the last time the document was

changed.

 Content-Type Expires Last-Modified Location Last-Modified

47. The HTTP Response Header ___________

indicates the location of the document.

 Content-Type Expires Last-Modified Location Location

48. 183. The HTTP Response Header

___________ indicates the number of

seconds to wait before asking for a page

update.

 Refresh Retry-After Set-Cookie WWW-

Authenticate

 Refresh

49. The HTTP Response Header ___________

indicates the number of seconds to wait

before requesting service, if the service is

unavailable.

 Refresh Retry-After Set-Cookie WWW-

Authenticate

 Retry-After

50. The HTTP Response Header __________

identifies the cookie for the page.

 Refresh Retry-After Set-Cookie WWW-

Authenticate

 Set-Cookie

51. The HTTP Response Header __________

indicates the authorization type.

 Refresh Retry-After Set-Cookie WWW-

Authenticate

 Retry-After

52. A cookie is composed of __________

pieces.

2 3 4 5 2

53. The __________ is used to identify a

particular cookie from among other

cookies stored at the client.

 cookie name cookie value cookie API Cookie

parameter

 cookie name

54. The __________ is associated with the

cookies.

 cookie name cookie value cookie API Cookie

parameter

 cookie value

55. A java servlet writes a cookie by passing

the construction of the cookie object

_________ arguments.

2 3 4 5 2

56. The _________ method returns an array of

cookie objects.

 getCookie() addCookie() setValue() SetCookie() getCookie()

57. A java servlet can modify the value of an

existing cookies by using the __________

method of the cookie object.

 getCookie() addCookie() setValue() SetCookie() setValue()

58. The _________ object contains methods
that are used to copy data from the
ResultSet into a java collection object or
variable for further processing.

 statement
preparedstate
ment

callableStatemen
t

 ResultSet ResultSet

59. The ___________ parameter is a single
parameter that is used to both pass
information to the stored procedure and
retrieve information from a stored
procedure.

 IN OUT INOUT None of the
above

 INOUT

60. The __________ parameter contains a value
returned by the stored procedures. The
future generation of computers?

 IN OUT INOUT None of the
above

 OUT

61. The _________ mthod returns a Boolean
true if the row contains data.

 getString() next() execute() d) close() next()

62. There are ________ methods of the
ResultSet object that are used to position
the virtual cursor.

3 4 5 6 6

63. The __________ method moves the virtual
cursor specified to the first row in the
ResultSet.

 first() next() relative() absolute() first()

64. The __________ method moves the virtual
cursor the specified number of rows
contained in the parameter.

 first() next() relative() absolute() relative()

65. A value in a column of the ResultSet can
be replaced with a NULL value by using
the __________ method.

 updataeNull() updateRow() updateString()
deleteRow()

 updataeNull()

66. The _________ method is used to change
the value of the column of the ResultSet.

 updataeNull() updateRow() updateString()
deleteRow()

 updateString()

67. The __________ method is used to remove
a row from a ResultSet.

 updataeNull() updateRow() updateString()
deleteRow()

 deleteRow()

68. The ________ method returns the product
name of the database.

getDatabaseProduct
Name()

getUserName(
)

 getURL()
getschemas(
)

getDatabaseProd
uctName()

69. The _________ method returns the
username.

getDatabaseProduct
Name()

getUserName(
)

 getURL()
getschemas(
)

 getUserName()

70. The __________ method returns the URL of
the database.

getDatabaseProduct
Name()

getUserName(
)

 getURL()
getschemas(
)

 getURL()

71. The __________ method returns all the
schema names available in the database.

getDatabaseProduct
Name()

getUserName(
)

 getURL()
getschemas(
)

 getschemas()

72. The ___________ method returns primary
keys.

 getPrimaryKeys()
getProcedures
()

 getTables()
getColumnC
ount()

getPrimaryKeys()

73. The _________ method returns stored
procedure names.

 getPrimaryKeys()
getProcedures
()

 getTables()
getColumnC
ount()

 getProcedures()

74. The __________ method returns names of
table in the database.

 getPrimaryKeys()
getProcedures
()

 getTables()
getColumnC
ount()

 getTables()

75. The ___________ method returns the
number of columns contained in the
ResultSet.

 getPrimaryKeys()
getProcedures
()

 getTables()
getColumnC
ount()

getColumnCount(
)

45

Dr.V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

UNIT 4

ENTERPRISE JAVABEAN

OVERVIEW OF EJB

Enterprise beans are Java EE components that implement Enterprise JavaBeans (EJB)

technology. Enterprise beans run in the EJB container, a runtime environment within the

Application Server. Although transparent to the application developer, the EJB container

provides system-level services such as transactions and security to its enterprise beans.

These services enable you to quickly build and deploy enterprise beans, which form the

core of transactional Java EE applications. Written in the Java programming language, an

enterprise bean is a server-side component that encapsulates the business logic of an

application. The business logic is the code that fulfills the purpose of the application. In an

inventory control application, for example, the enterprise beans might implement the

business logic in methods called checkInventoryLevel and orderProduct. By

invoking these methods, clients can access the inventory services provided by the

application.

 BENEFITS OF ENTERPRISE BEANS

For several reasons, enterprise beans simplify the development of large, distributed

applications. First, because the EJB container provides system-level services to enterprise

beans, the bean developer can concentrate on solving business problems. The EJB

container, rather than the bean developer, is responsible for system-level services such as

transaction management and security authorization.

Second, because the beans rather than the clients contain the application’s business logic,

the client developer can focus on the presentation of the client. The client developer does

not have to code the routines that implement business rules or access databases. As a

result, the clients are thinner, a benefit that is particularly important for clients that run on

small devices.

Third, because enterprise beans are portable components, the application assembler can

build new applications from existing beans. These applications can run on any compliant

Java EE server provided that they use the standard APIs.

 EJB DEPLOYMENT DESCRIPTOR

Deployment descriptor is the file which tells the EJB server that which classes make

up the bean implementation, the home interface and the remote interface. it also

indicates the behavior of one EJB with other. The deployment descriptor is generally

called as ejb-jar.xml and is in the directory META-INF of the client application. In

the example given below our application consists of single EJB Here the node

<?xml version ="1.0" encoding="UTF-8"?>

<application-client version="5" xmlns="http://java

.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/application-client_5.xsd">

<description>Accessing Database Application</description>

http://www.roseindia.net/ejb/ejb-deployment-descriptor.shtml
http://www.roseindia.net/ejb/ejb-deployment-descriptor.shtml
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/application-client_5.xsd
http://www.roseindia.net/ejb/ejb-deployment-descriptor.shtml

46

Dr.V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

<display-name>Secure-app-client</display-name><enterprise-beans>

<session>

<ejb-name>secure</ejb-name>

<home>org.glassfish.docs.secure.secureHome</home>

<remote>org.glassfish.docs.secure.secure</remote>

<ejb-class>org.glassfish.docs.secure.secureBean</ejb-class>

<session-type>Stateless</session-type>

</session>

</enterprise-beans>

</application-client>

<ejb-name>secure</ejb-name>:-This is the node that assigns the name to the EJB.

<description>Accessing Database Application</description>:-This node gives the

brief description about the Ejb module created.

<session-type>Stateless</session-type>:-This node assigns the Session bean as

stateless or stateful. Here stateless means to say accessing Remote interface.

DEPLOYING EJB TECHNOLOGY

The container handles persistence, transactions, concurrency, and access control

automatically for the enterprise beans. The EJB specification describes a declarative

mechanism for how these things will be handled, through the use of an XML

deployment descriptor. When a bean is deployed into a container, the container reads

the deployment descriptor to find out how transaction, persistence (entity beans), and

access control should be handled. The person deploying the bean will use this

information and specify additional information to hook the bean up to these facilities at

run time. A deployment descriptor has a predefined format that all EJB-compliant

beans must use and all EJB-compliant servers must know how to read. This format is

specified in an XML Document Type Definition, or DTD. The deployment descriptor

describes the type of bean (session or entity) and the classes used for the remote, home,

and bean class. It also specifies the transactional attributes of every method in the bean,

which security roles can access each method (access control), and whether persistence

in the entity beans is handled automatically or is performed by the bean. Below is an

example of a XML deployment descriptor used to describe the Customer bean:

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

<ejb-jar>

<enterprise-beans>

<entity>

<description>

This bean represents a customer

</description>

<ejb-name>CustomerBean</ejb-name>

<home>CustomerHome</home>

<remote>Customer</remote>

<ejb-class>CustomerBean</ejb-class>

<persistence-type>Container</persistence-type>

<prim-key-class>Integer</prim-key-class>

http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd

47

Dr.V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

<reentrant>False</reentrant>

<cmp-field><field-name>myAddress</field-name></cmp-field>

<cmp-field><field-name>myName</field-name></cmp-field>

<cmp-field><field-name>myCreditCard</field-name></cmp-field>

</entity>

</enterprise-beans>

<assembly-descriptor>

<security-role>

<description>

This role represents everyone who is allowed full access to the Customer bean.

</description>

<role-name>everyone</role-name>

</security-role>

<method-permission>

<role-name>everyone</role-name>

<method>

<ejb-name>CustomerBean</ejb-name>

<method-name>*</method-name>

</method>

</method-permission>

<container-transaction>

<description>

All methods require a transaction

</description>

<method>

<ejb-name>CustomerBean</ejb-name>

<method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

</assembly-descriptor>

</ejb-jar>

 SESSION BEAN

A session bean represents a single client inside the Application Server. To access an

application that is deployed on the server, the client invokes the session bean’s methods.

The session bean performs work for its client, shielding the client from complexity by

executing business tasks inside the server.

As its name suggests, a session bean is similar to an interactive session. A session bean is

not shared; it can have only one client, in the same way that an interactive session can

have only one user. Like an interactive session, a session bean is not persistent. (That is,

its data is not saved to a database.) When the client terminates, its session bean appears to

terminate and is no longer associated with the client.

STATE MANAGEMENT MODES

There are two types of session beans: stateful and stateless.

48

Dr.V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

 Stateful Session Beans

The state of an object consists of the values of its instance variables. In a stateful session

bean, the instance variables represent the state of a unique client-bean session. Because

the client interacts (―talks‖) with its bean, this state is often called the conversational

state. The state is retained for the duration of the client-bean session. If the client removes

the bean or terminates, the session ends and the state disappears. This transient nature of

the state is not a problem, however, because when the conversation between the client

and the bean ends there is no need to retain the state.

As an example, the HotelClerk bean can be modified to be a stateful bean which can

maintain conversational state between method invocations. This would be useful, for

example, if you want the HotelClerk bean to be able to take many reservations, but then

process them together under one credit card. This occurs frequently, when families need

to reserve two or more rooms or when corporations reserve a block of rooms for some

event.

Below the HotelClerkBean is modified to be a stateful bean:

import javax.ejb.SessionBean;

import javax.naming.InitialContext;

public class HotelClerkBean implements SessionBean {

InitialContext jndiContext;

//conversational-state

Customer cust;

Vector resVector = new Vector();

public void ejbCreate(Customer customer) {}

cust = customer;

}

public void addReservation(Name name, RoomInfo ri,

Date from, Date to) {

ReservationInfo resInfo =

new ReservationInfo(name,ri,from,to);

resVector.addElement(resInfo);

}

public void reserveRooms() {

CreditCard card = cust.getCreditCard();

Enumeration resEnum = resVector.elements();

while (resEnum.hasMoreElements()) {

ReservationInfo resInfo =

(ReservationInfo) resEnum.nextElement();

RoomHome roomHome = (RoomHome)

getHome("java:comp/env/ejb/RoomEJB", RoomHome.class);

Room room =

roomHome.findByPrimaryKey(resInfo.roomInfo.getID());

double amount = room.getPrice(resInfo.from,restInfo.to);

CreditServiceHome creditHome = (CreditServiceHome)

getHome("java:comp/env/ejb/CreditServiceEJB",

CreditServiceHome.class);

CreditService creditAgent = creditHome.create();

creditAgent.verify(card, amount);

49

Dr.V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

ReservationHome resHome = (ReservationHome)

getHome("java:comp/env/ejb/ReservationEJB",

ReservationHome.class);

Reservation reservation =

resHome.create(resInfo.getName(),

resInfo.roomInfo,resInfo.from,resInfo.to);

}

public RoomInfo[] availableRooms(Location loc,

Date from, Date to) {

// Make an SQL call to find available rooms

}

private Object getHome(String path, Class type) {

Object ref = jndiContext.lookup(path);

return PortableRemoteObject.narrow(ref,type);

}}

In the stateful version of the HotelClerkBean class, the conversational state is the

Customer reference, which is obtained when the bean is created, and the Vector of

ReservationInfo objects.

By maintaining the conversational state in the bean, the client is absolved of the

responsibility of keeping track of this session state. The bean keeps track of the

reservations and processes them in a batch when the serverRooms() method is invoked.

To conserve resources, stateful session beans may be passivated when they are not

in use by the client. Passivation in stateful session beans is different than for entity beans.

In stateful beans, passivation means the bean conversational-state is written to a

secondary storage (often disk) and the instance is evicted from memory. The client's

reference to the bean is not affected by passivation; it remains alive and usable while the

bean is passivated.

When the client invokes a method on a bean that is passivated, the container will

activate the bean by instantiating a new instance and populating its conversational state

with the state written to secondary storage. This passivation/activation process is often

accomplished using simple Java serialization but it can be implemented in other

proprietary ways as long as the mechanism behaves the same as normal serialization.

(One exception to this is that transient fields do not need to be set to their default initial

values when a bean is activated.) Stateful session beans, unlike stateless beans, do use the

ejbActivate() and ejbPassivate() methods. The container will invoke these methods to

notify the bean when it's about to be passivated (ejbPassivate()) and immediately

following activation ejbActivate()). Bean developers should use these methods to close

open resources and to do other clean-up before the instance's state is written to secondary

storage and evicted from memory.

The ejbRemove() method is invoked on the stateful instance when the client

invokes the remove() method on the home or remote interface. The bean should use the

ejbRemove() method to do the same kind of clean-up performed in the ejbPassivate()

method.

 Stateless Session Beans

A stateless session bean does not maintain a conversational state with the client. When a

client invokes the methods of a stateless bean, the bean’s instance variables may contain

a state specific to that client, but only for the duration of the invocation. When the

50

Dr.V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

method is finished, the client-specific state should not be retained. Clients may, however,

change the state of instance variables in pooled stateless beans, and this state is held over

to the next invocation of the pooled stateless bean. Except during method invocation, all

instances of a stateless bean are equivalent, allowing the EJB container to assign an

instance to any client. That is, the state of a stateless session bean should apply accross all

clients.Because stateless session beans can support multiple clients, they can offer better

scalability for applications that require large numbers of clients. Typically, an application

requires fewer stateless session beans than stateful session beans to support the same

number of clients. A stateless session bean can implement a web service, but other types

of enterprise beans cannot.

An example of a stateless session bean is a CreditService bean, representing a credit

service that can validate and process credit card charges. A hotel chain might develop a

CreditService bean to encapsulate the process of verifying a credit card number, making a

charge, and recording the charge in the database for accounting purposes. Below are the

remote and home interfaces for the CreditService bean:

// remote interface

public interface CreditService extends javax.ejb.EJBObject {

public void verify(CreditCard card, double amount)

throws RemoteException, CreditServiceException;

public void charge(CreditCard card, double amount)

throws RemoteException, CreditServiceException;

}

// home interface

public interface CreditServiceHome extends java.ejb.EJBHome {

public CreditService create()

throws RemoteException, CreateException;

}

The remote interface, CreditService, defines two methods, verify() and charge(), which

are used by the hotel to verify and charge credit cards. The hotel might use the verify()

method to make a reservation, but not charge the customer. The charge() method would

be used to charge a customer for a room. The home interface, CreditServiceHome

provides one create() method with no arguments. All home interfaces for stateless session

beans will define just one method, a no-argument create() method, because session beans

do not have find methods and they cannot be initiated with any arguments when they are

created. Stateless session beans do not have find methods, because stateless beans are all

equivalent and are not persistent. In other words, there is no unique stateless session

beans that can be located in the database. Because stateless session beans are not

persisted, they are transient services. Every client that uses the same type of session bean

gets the same service.

Below is the bean class definition for the CreditService bean. This bean encapsulates

access to the Acme Credit Card processing services. Specifically, this bean accesses the

Acme secure Web server and posts requests to validate or charge the customer's credit

card.

import javax.ejb.SessionBean;

public class CreditServiceBean implements SessionBean {

URL acmeURL;

HttpURLConnection acmeCon;

public void ejbCreate() {

51

Dr.V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

try {

InitialContext jndiContext = new InitialContext();

URL acmeURL = (URL)

jndiContext.lookup("java:comp/ejb/env/url/acme");

acmeCon = acmeURL.openConnection();

}

catch (Exception e) {

throws new EJBException(e);

} }

public void verify(CreditCard card, double amount) {

String response = post("verify:" + card.postString() +

":" + amount);

if (response.substring("approved")== -1)

throw new CreditServiceException("denied");

}

public void charge(CreditCard card, double amount)

throws CreditCardException {

String response = post("charge:" + card.postString() +

":" + amount);

if (response.substring("approved")== -1)

throw new CreditServiceException("denied");

}

private String post(String request) {

try {

acmeCon.connect();

acmeCon.setRequestMethod("POST "+request);

String response = acmeCon.getResponseMessage();

}

catch (IOException ioe) {

throw new EJBException(ioe);

}

}

public void ejbRemove() {

acmeCon.disconnect();

}

public void setSessionContext(SessionContext cntx) {}

public void ejbActivate() {}

public void ejbPassivate() {}

}

WHEN TO USE SESSION BEANS

In general, you should use a session bean if the following circumstances hold:

 At any given time, only one client has access to the bean instance.

 The state of the bean is not persistent, existing only for a short period (perhaps a

few hours).

 The bean implements a web service.

Stateful session beans are appropriate if any of the following conditions are true:

 The bean’s state represents the interaction between the bean and a specific client.

52

Dr.V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

 The bean needs to hold information about the client across method invocations.

The bean mediates between the client and the other components of the application,

presenting a simplified view to the client.

To improve performance, choose a stateless session bean if it has any of these traits:

 The bean’s state has no data for a specific client.

 In a single method invocation, the bean performs a generic task for all clients.

For example, use a stateless session bean to send an email that confirms an online
order

ENTITY BEANS

The entity bean is one of three primary bean types: entity, session and Message

Driven. The entity Bean is used to represent data in the database. It provides an object-

oriented interface to data that would normally be accessed by the JDBC or some other

back-end API. More than that, entity beans provide a component model that allows bean

developers to focus their attention on the business logic of the bean, while the container

takes care of managing persistence, transactions, and access control.

There are two basic kinds of entity beans: container-managed persistence (CMP)

and bean-managed persistence (BMP). With CMP, the container manages the

persistence of the entity bean. With BMP, the entity bean contains database access code

(usually JDBC) and is responsible for reading and writing its own state to the database.

 CONTAINER-MANAGED PERSISTENCE

Container-managed persistence beans are the simplest for the bean developer to

create and the most difficult for the EJB server to support. This is because all the logic

for synchronizing the bean's state with the database is handled automatically by the

container. This means that the bean developer doesn't need to write any data access

logic, while the EJB server is supposed to take care of all the persistence needs

automatically -- a tall order for any vendor. Most EJB vendors support automatic

persistence to a relational database, but the level of support varies. Some provide very

sophisticated object-to-relational mapping, while others are very limited.In this panel,

you will expand the CustomerBean developed earlier to a complete definition of a

Container-managed persistence bean. In the panel on bean-managed persistence, you

will modify the CustomerBean to manage its own persistence.

 BEAN CLASS

An enterprise bean is a complete component that is made up of at least two

interfaces and a bean implementation class. All these types will be presented and their

meaning and application explained, starting with the bean class, which is defined below:

import javax.ejb.EntityBean;

public class CustomerBean implements EntityBean {

int customerID;

Address myAddress;

Name myName;

CreditCard myCreditCard;

// CREATION METHODS

public Integer ejbCreate(Integer id) {

53

Dr.V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

customerID = id.intValue();

return null;

}

public void ejbPostCreate(Integer id) {

}

public Customer ejbCreate(Integer id, Name name) {

myName = name;

return ejbCreate(id);

}

public void ejbPostCreate(Integer id, Name name) {

}

// BUSINESS METHODS

public Name getName() {

return myName;

}

public void setName(Name name) {

myName = name;

}

public Address getAddress() {

return myAddress;

}

public void setAddress(Address address) {

myAddress = address;

}

public CreditCard getCreditCard() {

return myCreditCard;

}

public void setCreditCard(CreditCard card) {

myCreditCard = card;

}

// CALLBACK METHODS

public void setEntityContext(EntityContext cntx) {

}

public void unsetEntityContext() {

}

public void ejbLoad() {

}

public void ejbStore() {

}

public void ejbActivate() {

}

public void ejbPassivate() {

}

public void ejbRemove() {

}

}

Notice that there is no database access logic in the bean. This is because the EJB vendor

provides tools for mapping the fields in the CustomerBean to the database. The

54

Dr.V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

CustomerBean class, for example, could be mapped to any database providing it contains

data that is similar to the fields in the bean. In this case, the bean's instance fields are

composed of a primitive int and simple dependent objects (Name, Address,and

CreditCard) with their own attributes Below are the definitions for these dependent

objects:

// The Name class

public class Name implements Serializable {

public String lastName, firstName, middleName;

public Name(String lastName, String firstName,

String middleName) {

this.lastName = lastName;

this.firstName = firstName;

this.middleName =

middleName;

}

public Name() {}

}

// The Address class

public class Address implements Serializable {

public String street, city, state, zip;

public Address(String street, String city,

String state, String zip) {

this.street = street;

this.city = city;

this.state = state;

this.zip = zip;

}

public Address() {}

}

// The CreditCard class

public class CreditCard implements Serializable {

public String number, type, name;

public Date expDate; public CreditCard(String number, String type, String name, Date

expDate) {

this.number = number;

this.type = type;

this.name = name;

this.expDate = expDate;

}

public CreditCard() {}

}

These fields are called container-managed fields because the container is responsible for

synchronizing their state with the database; the container manages the fields. Container-

managed fields can be any primitive data types or serializable type. This case uses both a

primitive int (customerID) and serializable objects (Address, Name, CreditCard). To map

the dependent objects to the database, a fairly sophisticated mapping tool would be

needed. Not all fields in a bean are automatically container-managed fields; some may be

just plain instance fields for the bean's transient use. A bean developer distinguishes

container-managed fields from plain instance fields by indicating which fields are

55

Dr.V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

container-managed in the deployment descriptor. The container-managed fields must

have corresponding types (columns in RDBMS) in the database either directly or through

object-relational mapping. The CustomerBean might, for example, map to a

CUSTOMER table in the database that has the following definition:

CREATE TABLE CUSTOMER

{

id INTEGER PRIMARY KEY,

last_name CHAR(30),

first_name CHAR(20),

middle_name CHAR(20),

street CHAR(50),

city CHAR(20),

state CHAR(2),

zip CHAR(9),

credit_number CHAR(20),

credit_date DATE,

credit_name CHAR(20),

credit_type CHAR(10)

}

With container-managed persistence, the vendor must have some kind of proprietary tool

that can map the bean's container-managed fields to their corresponding columns in a

specific table, CUSTOMER in this case.

Once the bean's fields are mapped to the database, and the Customer bean is deployed,

the container will manage creating records, loading records, updating records, and

deleting records in the CUSTOMER table in response to methods invoked on the

Customer bean's remote and home interfaces.

A subset (one or more) of the container-managed fields will also be identified as the

bean's primary key. The primary key is the index or pointer to a unique record(s) in the

database that makes up the state of the bean. In the case of the CustomerBean, the id field

is the primary key field and will be used to locate the bean's data in the database.

Primitive single field primary keys are represented as their corresponding object

wrappers. The primary key of the Customer bean for example is a primitive int in the

bean class, but to a bean's clients it will manifest itself as the java.lang.Integer type.

Primary keys that are made up of several fields, called compound primary keys, will be

represented by a special class defined by the bean developer. Primary keys are similar in

concept to primary keys in a relational database -- actually when a relational database is

used for persistence, they are often the same thing.

).

 MESSAGE-DRIVEN BEAN

A message-driven bean is an enterprise bean that allows Java EE applications to process

messages asynchronously. It normally acts as a JMS message listener, which is similar to

an event listener except that it receives JMS messages instead of events.

The messages can be sent by any Java EE component (an application client, another

enterprise bean, or a web component) or by a JMS application or system that does not use

56

Dr.V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

Java EE technology. Message-driven beans can process JMS messages or other kinds of

messages.

 What Makes Message-Driven Beans Different from Session Beans?

The most visible difference between message-driven beans and session beans is that

clients do not access message-driven beans through interfaces. In several respects, a

message-driven bean resembles a stateless session bean.A message-driven bean’s

instances retain no data or conversational state for a specific client. All instances of a

message-driven bean are equivalent, allowing the EJB container to assign a message to

any message-driven bean instance. The container can pool these instances to allow

streams of messages to be processed concurrently. A single message-driven bean can

process messages from multiple clients.The instance variables of the message-driven

bean instance can contain some state across the handling of client messages (for example,

a JMS API connection, an open database connection, or an object reference to an

enterprise bean object).Client components do not locate message-driven beans and

invoke methods directly on them. Instead, a client accesses a message-driven bean

through, for example, JMS by sending messages to the message destination for which the

message-driven bean class is the MessageListener. You assign a message-driven bean’s

destination during deployment by using Application Server resources.

Message-driven beans have the following characteristics:

 They execute upon receipt of a single client message.

 They are invoked asynchronously.

 They are relatively short-lived.

 They do not represent directly shared data in the database, but they can access

and update this data.

 They can be transaction-aware.

 They are stateless.

When a message arrives, the container calls the message-driven bean’s onMessage

method to process the message. The onMessage method normally casts the message to

one of the five JMS message types and handles it in accordance with the application’s

business logic. The onMessage method can call helper methods, or it can invoke a session

bean to process the information in the message or to store it in a database.

A message can be delivered to a message-driven bean within a transaction context, so all

operations within the onMessage method are part of a single transaction. If message

processing is rolled back, the message will be redelivered

 WHEN TO USE MESSAGE-DRIVEN BEANS

Session beans allow you to send JMS messages and to receive them synchronously, but

not asynchronously. To avoid tying up server resources, do not to use blocking

synchronous receives in a server-side component, and in general JMS messages hould

not be sent or received synchronously. To receive messages asynchronously, use a

message-driven bean.

Example For Message Driven Bean

Example Application Overview

This application has the following components:

57

Dr.V.SAMESWARI., Asst. Prof., Dept. of CS., KAHE

 SimpleMessageClient: A J2EE application client that sends several

messages to a queue.

 SimpleMessageEJB: A message-driven bean that asynchronously receives

and processes the messages that are sent to the queue.

Figure 4.14.1 illustrates the structure of this application. The application client sends

messages to the queue, which was created administratively using the j2eeadmin

command. The JMS provider (in this, case the J2EE server) delivers the messages to the

instances of the message-driven bean, which then processes the messages.

Figure 4.14.1 The SimpleMessageApp Application

KEY TERMS

 Enterprise JavaBeans: Enterprise bean implements a business task, or a
business entity.

 EJB Server and Container: An EJB bean is said to reside within an EJB
Container that in turn resides within an EJB Server.

 Deployment descriptors: The additional information required to install an EJB
within its server is provided in the deployment descriptors for that bean

 The EJBObject: An instance of a generated class that implements the remote

interface defined by the bean developer

 The EJBLocalObject: An instance of a generated class that implements the local

interface defined by the bean developer

Question and Excersice

Short Answer Questions

1. Differentiate Java Bean and EJB
2. List the three different Types of EJB Classes

3. Define Callback Method

4. What is jar file?

Long –Answer Question

1. Explain the Entity bean with example
2. Describe in Detail about Session bean

3. Illustrate Message Drive bean with suitable example

Reference

1. Jim Keogh , ―The Complete Reference J2SE‖, 1
st
 Edition, Tata McGraw

Hill Edition, New Delhi:2002.

2. http://publib.boulder.ibm.com/infocenter/wbihelp/v6rxmx/index.jsp?

topic=/com.ibm.wics_developer.doc/doc/access_dev_ejb/access_dev_ejb16

.htmDeepak Vohra , JDBC 4.0 and Oracle JDeveloper for J2EE Development

3. Derek Ashmore , The J2EE Architect's Handbook

4. JSP - http://java.sun.com/products/jsp/docs.html

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/MDB2.html#80720
http://publib.boulder.ibm.com/infocenter/wbihelp/v6rxmx/index.jsp
http://www.packtpub.com/author_view_profile/id/201
http://java.sun.com/products/jsp/docs.html

UNIT-IV

J2EE

 S. No. Question Option 1 Option 2 Option 3 Option 4 Answer

1 The EJB __________ is a vendor
provided entity located on the EJB
server that manages system-level
services for EJB.

 container classes interfaces none of the
above

 container

2 There are _________ kinds of EJB
types. Information

2 3 4 5 3

3 The session and entity beans must
have ____________ interfaces.

2 3 4 5 2

4 A ___________ is used to represent
business data.

 entity bean session bean message-driven
bean

 none of the
above

 entity bean

5 A __________ bean is used to model a
business process.

 entity session message-driven none of the
above

 session

6 A __________ bean is used to receive
messages from a JMS resource.

 entity session message-driven none of the
above

 message-driven

7 The _________ handles
communication between the EJB
and other components in the EJB
environment using the Home
interface and the Remote interface.

 EJB container EJB classes EJB interfaces deployment
descriptors

 EJB container

8 A _________ describes how EJBs are
managed at runtime and enables
the customization of EJB behavior
without modification to the EJB
code.

 EJB container EJB classes EJB interfaces deployment
descriptors

 deployment
descriptors

9 A _____________ is written in a file
using XML syntax.

 EJB container EJB classes EJB interfaces deployment
descriptors

 deployment
descriptors

10 The expansion of IDE is _____________. Integral
Development
Environment

Integrated
Development
Environment

Integrity
Development
Environment

Industrial
development
environment

Integrated
Development
Environment

11 The _____________ file is packages in
the Java Archive file along with the
other files that are required to
deploy the EJB.

 EJB container EJB classes EJB interfaces deployment
descriptors

 deployment
descriptors

12 The _________ element is the root
element of the deployment
descriptor.

 <ejb-jar> <ejb-name> <ejb-class> <entity> <ejb-jar>

13 There are __________ elements that
are contained within the
<enterprise-beans> element.

2 3 4 5 3

14 The first element within the <ejb-
jar> element is the __________
element.

 <enterprise-
beans>

 <home> <local> <ejb-class> <enterprise-
beans>

15 The _____________ element contains
subelements that describe the
entity EJB.

 <enterprise-
beans>

 <home> <local> <entity> <entity>

16 The _________ element describes the
fully qualified class name of the
Remote interface, which defines
the entity EJB’s business mthods to
remote clients.

 <remote > <local-home> <reentrant> <persistence-
type>

 <remote >

17 The __________ element defines how
the entity EJB manages persistence.

 <remote > <local-home> <reentrant> <persistence-
type>

 <persistence-
type>

18 The _________ element declares
whether or not an entity EJB can be
looped back without throwing an
exception.

 <remote> <reentrant> <ejb-class> <remote> <reentrant>

19 The subelement ____________
describes the deployment
descriptor.

 <description> <display-name> <small-icon> <large-icon> <description>

20 The subelement _________ describes
the JAR file and individual EJB
components.

 <description> <display-name> <small-icon> <large-icon> <display-name>

21 The subelement __________ describes
one or more enterprise beans
contained in the JAR file.

 <enterprise-
beans>

 <ejb-client-jar> <assembly-
descriptor>

 <description> <enterprise-
beans>

22 The subelement ____________
describes the path of the client JAR
and is used by the client to access
EJBs described in the deployment
descriptor.

 <enterprise-
beans>

 <ejb-client-jar> <assembly-
descriptor>

 <description> <ejb-client-jar>

23 The subelement ____________
describes how EJBs are used in the
J2EE application.

 <enterprise-
beans>

 <ejb-client-jar> <assembly-
descriptor>

 <description> <assembly-
descriptor>

24 The subelement _________ describes
a small icon within the jar file that
is used to represent the JAR file.

 <description> <small-icon> <display-name> <large-icon> <small-icon>

25 There subelement __________
describes the fully qualified class
name of the session or entity EJB
remote interface.

 <remote> <local-home> <local > <ejb-class > <remote>

26 The subelement ___________
describes the primary key filed for
entity beans that use container-
managed persistence.

 <primary-field> <prim-key-class> <persistence-
type>

 <local> <primary-field>

27 The subelement _____________
specifies the version of container-
managed persistence.

 <reentrant > <cmp-version> <cmp-field> <env-entry> <cmp-version>

28 The _________ element is used to
specify an EJB’s security role.

 <security-role-
ref>

 <role-name> <role-link> <description> <security-role-
ref>

29 A ___________ is used in a deployment
descriptor to specify a query
method and a QL statement that is
used as the criteria for selecting
data from a relational database.

 <query> <method-param> <ejb-ql> <query-
method>

 <query-
method>

30 The __________ subelement itself has
two subelements.

 <query> <method-param> <ejb-ql> <query-
method>

 <query-
method>

31 The _____________ subelement
specifies the name of the method.

 <query> <method-param> <ejb-ql> <method-
name>

 <method-
name>

32 The _________ subelement of the
<query> element contains a SQL
statement that is used to retrieve
information from the database.

 <ejb-ql> <query> <query-
method>

 <method-
param>

 <ejb-ql>

33 There are __________ types of
cardinality relationships.

2 3 4 5 4

34 The cardinality relationships has
one of __________ directions.

2 3 4 5 2

35 A _____________ is to execute a unit of
work that may involve multiple
tasks.

 transaction method assembly attribute transaction

36 The _________ method is called
whenever the session bean is
removed from the pool and is
referenced by a client.

 ejbActivate() ejbPassivate() ejbRemove() ejbCreate() ejbActivate()

37 The __________ method is called
before the instance enters the
“passive” state when the session
bean is returned to the object pool
and should contain routines that
release resources.

 ejbActivate() ejbPassivate() ejbRemove() ejbCreate() ejbPassivate()

38 The __________ method is called just
before the bean is available for
garbage collection.

 ejbActivate() ejbPassivate() ejbRemove() ejbCreate() ejbRemove()

39 The _____________ method is a
method that contains business
logic that is customized to the
service provided by the EJB.

 ejbActivate() ejbPassivate() ejbRemove() myMethod() myMethod()

40 A _________ is considered the
powerhouse of a J2EE application.

 entity java bean session java bean message-driven
bean

 none of the
above

 entity java bean

41 Data collected and managed by an
entity bean is called ____________.

 data persistent data information none of the
above

 persistent data

42 There are ___________ groups of
methods that are typically
contained in an entity bean.

2 3 4 5 3

43 There are _______ commonly used
callback methods.

4 5 64 7 7

44 The _________ method is called
immediately following the creation
of the instance and sets the content
that is associated with the entity.

setEntityContext
()

unsetEntityContext
()

 ejbLoad() ejbStore()
setEntityContext
()

45 The __________ method is called
whenever the instance of the entity
bean is activated from its “passive”
state.

setEntityContext
()

unsetEntityContext
()

 ejbLoad() ejbActivate() ejbActivate()

46 A container invokes the __________
method to instruct the instance to
synchronize its state by loading its
state from the underlying database.

setEntityContext
()

unsetEntityContext
()

 ejbLoad() ejbActivate() ejbLoad()

47 The _____________ method is invoked
by a container to instruct the
instance to synchronize its state by
storing it to the underlying
database.

setEntityContext
()

unsetEntityContext
()

 ejbLoad() ejbStore() ejbStore()

48 The _________ method is called
before the instance enters the
“passive” state and should contain
routines that release resources.

 ejbPassivate() ejbActivate() ejbRemove() ejbLoad() ejbPassivate()

49 Thee __________ method is called
immediately before the entity
terminates by either the client or
by the EJB container.

 ejbPassivate() ejbActivate() ejbRemove() ejbLoad() ejbRemove()

50 There are __________ methods
defined in a BMP bean.

2 3 4 5 5

51 In BMP bean, ___________ method
must contain code that reads data
from a database.

 ejbLoad() ejbstore() ejbCreate() ejbRemove() ejbLoad()

52 In BMP bean, the ___________ method
must have code that inserts a new
record in a database.

 ejbLoad() ejbstore() ejbCreate() ejbRemove() ejbCreate()

53 In BMP bean, the ___________ method
writes data to a database.

 ejbLoad() ejbstore() ejbCreate() ejbRemove() ejbstore()

54 The __________ method is where the
MBD processes messages received
indirectly from a client.

 onMessage() getText() ejbRemove()
setMessageDriv
enContext()

 onMessage()

58

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

UNIT 5

JAVA SERVER PAGES & JAVA RMI

 BENEFITS OF JSP

One of the main reasons why the Java Server Pages technology has evolved into what it

is today and it is still evolving is the overwhelming technical need to simplify application

design by separating dynamic content from static template display data. Another benefit

of utilizing JSP is that it allows to more cleanly separating the roles of web

application/HTML designer from a software developer. The JSP technology is blessed

with a number of exciting benefits, which are chronicled as follows:

1. The JSP technology is platform independent, in its dynamic web pages, its web

servers, and its underlying server components. That is, JSP pages perform perfectly

without any hassle on any platform, run on any web server, and web-enabled application

server. The JSP pages can be accessed from any web server.

2. The JSP technology emphasizes the use of reusable components. These components

can be combined or manipulated towards developing more purposeful components and

page design. This definitely reduces development time apart from the At development

time, JSPs are very different from Servlets, however, they are precompiled into Servlets

at run time and executed by a JSP engine which is installed on a Web-enabled application

server such as BEA WebLogic and IBM WebSphere

 JSP ARCHITECTURE

JSP pages are high level extension of servlet and it enables the developers to embed java

code in html pages. JSP files are finally compiled into a servlet by the JSP engine.

Compiled servlet is used by the engine to serve the requests.

javax.servlet.jsp package defines two interfaces:

 JSPPage

 HttpJspPage

These interfaces define the three methods for the compiled JSP page. These methods are:

 jspInt() – Called when JSP in requested

 jspDestroy() - Called when JSP is terminated

 jspService(HttpServletRequest request , HttpServletResponse response)-

59

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

JSP Architecture

The jspInt() method is identical to the init() method in a Java servlet and in an applet. The

jspInt() method is called first when the JSP is requested and is used to initialize objects

and variables that are used throughout the life of the JSP.

The jspDestroy() method is identical to the destroy method in a java servlet. The

destroy() method is automatically called when the JSP terminates normally. The destroy()

method is used for cleanup where resources used during the execution of the JSP are

released, such as disconnecting from a database. The jspService() method is

automatically called and retrieves a connection to HTTP.

 JSP TAGS

A JSP program consists of a combination of HTML tags and JSP tags. JSP tags define

java code that is to be executed before the output of the jsp program is sent to the

browser.

A JSP tag begins with a <%, which is followed by Java code and ends with %>. There is

also and Extendable Markup Language (XML) version of JSP tags, which are formatted

as <jsp:TagID></JSP:TagID>.

In JSP tags can be divided into 5 different types. These are:

1. Comment Tag: A comment tag opens with <%-- and closes with --%>, and is

followed by a comment that usually describes the functionality of statements that

follow the comment tag.

2. Directives tag: In the directives we can import packages, define error handling pages

or the session information of the JSP page.

3. Declarations tag:This tag is used for defining the functions and variables to be used

in the JSP.

4. Scriplets: In this tag we can insert any amount of valid java code and these codes are

placed in _jspService method by the JSP engine.

5. Expressions: An expression tag opens with <%= and is used for an expression

statement whose result replaces the expression statement whose result replaces the

expression tag when the JSP virtual engine resolves JSP tags. An expression tags

close with %>

 JSP Directives

Syntax of JSP directives is:

<%! //java codes %>

60

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

JSP Declaratives begins with <%! and ends %> with .We can embed any amount of java

code in the JSP Declaratives. Variables and functions defined in the declaratives are class

level and can be used anywhere in the JSP page

<%@directive attribute="value" %>

Where directive may be:

 page: page is used to provide the information about it.

Example: <%@page language="java" %>

 include: include is used to include a file in the JSP page.

Example:<%@ include file="/header.jsp" %>

 taglib: taglib is used to use the custom tags in the JSP pages (custom tags allows

us to defined our own tags)

Example: <%@ taglib uri="tlds/taglib.tld" prefix="mytag" %>

and attribute may be:

 language="java"

This tells the server that the page is using the java language. Current JSP

specification supports only java language.

Example: <%@page language="java" %>

 extends="mypackage.myclass"

This attribute is used when we want to extend any class. We can use comma(,) to

import more than one packages.

Example:

<%@page language="java"import="java.sql.*,mypackage.myclass" %>

 session="true"

When this value is true session data is available to the JSP page otherwise not. By

default this value is true.

Example: <%@page language="java" session="true" %>

 errorPage="error.jsp"

errorPage is used to handle the un-handled exceptions in the page.

Example: <%@page language="java" session="true" errorPage="error.jsp"%>

 contentType="text/html;charset=ISO-8859-1"

Use this attribute to set the MIME type and character set of the JSP.

Example:<%@page language="java" session="true" contentType="text/html;

charset=ISO-8859-1" %>

 errorPage="error.jsp"

errorPage is used to handle the un-handled exceptions in the page.

Example: <%@page language="java" session="true" errorPage="error.jsp"%>

 contentType="text/html;charset=ISO-8859-1"

Use this attribute to set the MIME type and character set of the JSP.

Example:<%@page language="java" session="true" contentType="text/html;

charset=ISO-8859-1" %>

Example:

http://www.roseindia.net/jsp/jsptags.shtml
http://www.roseindia.net/jsp/jsptags.shtml

61

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

<%@page contentType="text/html" %>

<html>

<body><%!

int cnt=0;

private int getCount(){

//increment cnt and return the value

cnt++;

return cnt;

}

%>

<p>Values of Cnt are:</p>

<p><%=getCount()%></p>

<p><%=getCount()%></p>

<p><%=getCount()%></p>

<p><%=getCount()%></p>

<p><%=getCount()%></p>

<p><%=getCount()%></p>

</body>

</html>

 JSP SCRIPTLRTS

<% //java codes %>
JSP Scriptlets begins with <% and ends %> .We can embed any amount of java code in

the JSP Scriptlets. JSP Engine places these code in the _jspService() method. Variables

available to the JSP Scriptlets are:

 request: request represents the clients request and is a subclass of

HttpServletRequest. Use this variable to retrieve the data submitted along the
request.

Example:

<%//java codes

String userName=null; serName=request.getParameter("userName"); %>

 response: response is subclass of HttpServletResponse.

 session: session represents the HTTP session object associated with the request.

 out: out is an object of output stream and is used to send any output to the

client.

Other variable available to the scriptlets are pageContext, application,config and

exception.

 JSP EXPRESSIONS

Syntax of JSP Expressions are:

<%="Any thing" %>

62

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

JSP Expressions start with Syntax of JSP Scriptles are with <%= and ends with %>.

Between these this you can put anything and that will convert to the String and that will

be displayed.

Example:

<%="Hello World!" %>

Above code will display 'Hello World!'.

Display current time using Date class

– Current time: <%= new java.util.Date() %>

Display random number using Math class

– Random number: <%= Math.random() %>

Use implicit objects

– Your hostname: <%= request.getRemoteHost() %>

– Your parameter: <%= request.getParameter(―yourParameter‖) %>

– Server: <%= application.getServerInfo() %>

Session ID: <%= session.getId() %>

 VARIABLES AND OBJECTS

In JSP variable can be declared same as in java. But the declaration statement must

appear as a JSP tag within the JSP program before the variable or object used in the

program.

Declaring and using a variable
<HTML>

<HEAD>

<TITLE>Creating a Variable</TITLE>

</HEAD>

<BODY>

<H1>Creating a Variable</H1>

<%

int days= 365;%>

<<p> Number of days = <%= days %></p>

</BODY>

</HTML>

The variable days is used in an expression tag that is embedded within the HTML

paragraph tag <p>. A JSP expression tag begins with <%=, which is followed by the

expression. The JSP virtual engine resolves the JSP expression before sending the output

of the JSP program to the browser. That is, the JSP tag <%=days%> is replaced with the

number 365, afterwards, the HTML paragraph tag and related information is sent to the

browser. It is able to place multiple statements with in a JSP tag by extending the close

JSP program. This is illustrated in the below example where three variables are declared.
<HTML>

<HEAD>

<TITLE>Creating a Variables</TITLE>

</HEAD>

<BODY>

<%

int days= 365;

int month=12;

int weeks;

63

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

%>

<<p> Number of days = <%= days %></p>

</BODY>

</HTML>

Array is used to store similar type of data in series. E.g. fruits name. Fruits can be a

mango, banana, and apple. Name of students in classroom denote to 10th Standard,

Bachelor in science can have group of 30 to 40 students.

Arrays can be String array, int array, and dynamic arrays are ArrayList, vector.

The following program shows the JSP program create three String objects,

<%@ page contentType="text/html; charset=iso-8859-1" language="java" %>

<% String[] stArray={"bob","riche","jacky","rosy"};
%>

<html>

<body>

<%

int i=0;

for(i=0;i<stArray.length;i++)

{

out.print("stArray Elements :"+stArray[i]+"
");

}

%>

</body>

</html>

This String Array has four elements. When we go through this array, have to use loop

either for or while loop. We are using here for loop, First stArray.length give use total

number of elements in array then we fetch one by one for loop iterator. Array starts from

zero so here we have only 0,1,2,3 elements if we try to get stArray[4] it will throw

<%@ page contentType="text/html; charset=iso-8859-1" language="java" %>

<%

String[] stArray=new String[4];

stArray[0]="bob";

stArray[1]="riche";

stArray[2]="jacky";

stArray[3]="rosy";

%>

<html>

<body>

<%

int i=0;

for(i=0;i<stArray.length;i++)

{

out.print("stArray Elements :"+stArray[i]+"
");

}

%>

</body>

</html>

64

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

Integer Array in JSP

<%@ page contentType="text/html; charset=iso-8859-1" language="java" %>
<%

int[] intArray={23,45,13,54,78};

%>

<html>

<body>

<%

int i=0;

for(i=0;i<intArray.length;i++)

{

out.print("intArray Elements :"+intArray[i]+"
");

}

%>

</body> </html>

Dynamic arrays are automatically growable and reduceable according to per requirement.

We don’t need to define it size when declaring array. It takes extra ratio of capacity

inside memory and keeps 20% extra Vector ArrayList

vectorArray.jsp

<%@ page import="java.util.Vector" language="java" %>

<%

Vector vc=new Vector();

vc.add("bob");

vc.add("riche");

vc.add("jacky");

vc.add("rosy");

%>

<html>

<body>

<%

int i=0;

for(i=0;i<vc.size();i++)

{

out.print("Vector Elements :"+vc.get(i)+"
");

}

%>

</body>

</html>

ArrayList: ArrayList also same just it is unsynchronized, unordered and faster than

vector.

ArrayList.jsp

<%@ page import="java.util.ArrayList" language="java" %>
<%

ArrayList ar=new ArrayList();

ar.add("bob");

ar.add("riche");

ar.add("jacky");

ar.add("rosy");

65

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

%>

<html>

<body>

<% int i=0;

for(i=0;i<ar.size();i++)

{ out.print("ArrayList Elements :"+ar.get(i)+"
"); }

%>

</body> </html>

 JSP METHODS

JSP offers the same versatility that have with JSP programs, such as defining methods

that are local to the JSP program. A method is defined similar to how a method is defined

in a java program except the method definition is place with in a JSP tag.Once the

method is defined it can be called within the JSP tag.

In this below example it shows how to declare a method and how to use it. In this

example making a method named as addNum(int i, int b) which will take two numbers

as its parameters and return integer value. The method is declared inside a declaration

directive i.e. <%! ----------- %> this is a declaration tag. This tag is used mainly for

declaration the variables and methods. In the method adding to numbers is performed. To

print the content of the method we are using scriptlet tag inside which we are going to

use the out implicit object. <% ------- %> This tag is known as Scriptlets. The main

purpose of using this tag is to embed a java code in the jsp page.

The code of the program is given below:

<% < HTML >

<HEAD>

<TITLE>Creating a Method</TITLE>

</HEAD>

<BODY>

 Method in Jsp </ font >

<%!

int addNum(int n, int m)

{

return n + m;

}

%>

Output of the program is given below:

http://roseindia.net/jsp/simple-jsp-example/jsp-methods.shtml
http://roseindia.net/jsp/simple-jsp-example/jsp-methods.shtml
http://roseindia.net/jsp/simple-jsp-example/jsp-methods.shtml
http://roseindia.net/jsp/simple-jsp-example/jsp-methods.shtml

66

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

A JSP program is capable of handling practically any kind of method that normally use in

a Java program. The following example shows how to define and is an overloaded

method.

Both methods are defined in the same JSP tags, although each follows Java Syntax

structure for defining a method. One method uses a default value for the curve, while the

overloaded method enables the statement that calls the method to provide the value of the

curve.

Once again, these methods are called form an embedded JSP tag placed inside two

HTML paragraph tags.

<HTML>

<HEAD>

<TITLE> JSP Programming</TITLE>

</HEAD>

<BODY>

<%! boolean curve (int grade)

{

return 10 + grade;

}

boolean curve (int grade, int curveValue)

{

return curveValue + grade;

}

%>

<p> your curve grade is : <%=curve(80,100)%></p>

<p> your curve grade is : <%=curve(70)%></p>

</BODY>

</HTML>

67

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

 CONTROL STATEMENTS

One of the most powerful features available in JSP is the ability to change the
flow of the program to truly create dynamic content for a web page based on
conditions received form the browsers.

 If Statement

There are two control statements used to change the flow of a JSP program.
These are the if statement and the switch statement, both of which are also used
to direct the flow of a java program. The if statement evaluates a condition
statement to determine if one or more lines of code are to be executed or
skipped.

The if statement requires three JSP tags. The first contains the beginning of the if
statement, including the conditional expression. The second contains the else
statement, and the third has the closed French brace used to terminate the else
block.

Example of if-else condition

ifelse.jsp
<%@ page language="java" import="java.sql.*" %>

<html>
<head>

<title>while loop in JSP</title>

</head>

<body>

<%

String sName="joe";

String sSecondName="noe";

if(sName.equals("joe")){

out.print("if condition check satisfied JSP count :"+sName+"
");

}

if(sName.equals("joe") && sSecondName.equals("joe"))

{

out.print("if condition check if Block
");

}

else

{

out.print("if condition check else Block
");

}

%>

</body>

</html>

Using an if-else Ladder

<HTML>

<HEAD>

68

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

<TITLE>Using an if-else Ladder</TITLE>

</HEAD>

<BODY>

<H1>Using an if-else Ladder</H1>

<%

String day = "Friday";

if(day == "Monday")

out.println("It\'s Monday.");

else if (day == "Tuesday")

out.println("It\'s Tuesday.");

else if (day == "Wednesday")

out.println("It\'s Wednesday.");

else if (day == "Thurssday")

out.println("It\'s Thursday.");

else if (day == "Friday")

out.println("It\'s Friday.");

else if (day == "Saturday")

out.println("It\'s Saturday.");

else if (day == "Sunday")

out.println("It\'s Sunday.");

%>

</BODY>

</HTML>

 Switch Statement

A switch statement compares a value with one or more other values associated with a

case statement. The code segment that is associated wit the matching case statement is

executed. Code segments associated with other case statements are ignored.

<HTML>

<HEAD>

<TITLE>Using the switch Statement</TITLE>

</HEAD>

<BODY>

<H1>Using the switch Statement</H1>

<%

int day = 3;

switch(day) {

case 0:

out.println("It\'s Sunday.");

break;

case 1:
out.println("It\'s Monday.");

break;

case 2:

out.println("It\'s Tuesday.");

break;

69

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

case 3:

out.println("It\'s Wednesday.");

break;

case 4:

out.println("It\'s Thursday.");

break;

case 5:

out.println("It\'s Friday.");

break;

default:

out.println("It must be Saturday.");

}

%>

</BODY>

</HTML>

 LOOPS

There are three kinds of loops commonly used in a JSP program. These are the for loop,

while loop, and the do…while loop.

For Loop:

The for loop repeats usually a specified number of times

Example of for loop in JSP

for.jsp
<%@ page language="java" import="java.sql.*" %>

<html>

<head>

<title>For loop in JSP</title>

</head>

<body>

<%

for(int i=0;i<=10;i++)

{

out.print("Loop through JSP count :"+i+"
");
}

%>

</body>

</html>
While Loop: The while loop executes continually as long as a specified condition remains true.

However, the while loop may not execute because the condition may never be true. In contrast the

do…while loop executes at least once; then, the conditional expression in the do… while loop is

evaluated to determine if the loop should be executed another time.

Example of while loop in JSP

while.jsp
<%@ page language="java" import="java.sql.*" %>

<html>

<head>

<title>while loop in JSP</title>

</head>

70

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

<body>

<%
int i=0;

while(i<=10)

{

out.print("While Loop through JSP count :"+i+"
");

i++;

}

%>

</body>

</html>
Example of do-while loop in JSP

doWhile.jsp

<%@ page language="java" import="java.sql.*" %>

<html>

<head>

<title>do-while loop in JSP</title>

</head>

<body>

<%
int i=0;

do{

out.print("While Loop through JSP count :"+i+"
");

i++;

}

while(i<=10);

%>

</body></html>

 RMI (Remote Method Invocation)

The RMI (Remote Method Invocation) is an API that provides a mechanism to create

distributed application in java. The RMI allows an object to invoke methods on an object

running in another JVM.

The RMI provides remote communication between the applications using two

objects stub and skeleton.

Understanding stub and skeleton

RMI uses stub and skeleton object for communication with the remote object.

A remote object is an object whose method can be invoked from another JVM. Let's

understand the stub and skeleton objects:

stub

The stub is an object, acts as a gateway for the client side. All the outgoing requests are

routed through it. It resides at the client side and represents the remote object. When the

caller invokes method on the stub object, it does the following tasks:

71

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

1. It initiates a connection with remote Virtual Machine (JVM),

2. It writes and transmits (marshals) the parameters to the remote Virtual Machine

(JVM),

3. It waits for the result

4. It reads (unmarshals) the return value or exception, and

5. It finally, returns the value to the caller.

skeleton

The skeleton is an object, acts as a gateway for the server side object. All the incoming

requests are routed through it. When the skeleton receives the incoming request, it does

the following tasks:

1. It reads the parameter for the remote method

2. It invokes the method on the actual remote object, and

3. It writes and transmits (marshals) the result to the caller.

In the Java 2 SDK, an stub protocol was introduced that eliminates the need for skeletons.

Understanding requirements for the distributed applications

If any application performs these tasks, it can be distributed application.

.

1. The application need to locate the remote method

2. It need to provide the communication with the remote objects, and

3. The application need to load the class definitions for the objects.

The RMI application have all these features, so it is called the distributed application.

72

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

Java RMI Example

The is given the 6 steps to write the RMI program.

1. Create the remote interface

2. Provide the implementation of the remote interface

3. Compile the implementation class and create the stub and skeleton objects using

the rmic tool

4. Start the registry service by rmiregistry tool

5. Create and start the remote application

6. Create and start the client application

RMI Example

In this example, we have followed all the 6 steps to create and run the rmi application.

The client application need only two files, remote interface and client application. In the

rmi application, both client and server interacts with the remote interface. The client

application invokes methods on the proxy object, RMI sends the request to the remote

JVM. The return value is sent back to the proxy object and then to the client application.

1) create the remote interface

For creating the remote interface, extend the Remote interface and declare the

RemoteException with all the methods of the remote interface. Here, we are creating a

remote interface that extends the Remote interface. There is only one method named

add() and it declares RemoteException.

1. import java.rmi.*;

2. public interface Adder extends Remote{

3. public int add(int x,int y)throws RemoteException;

4. }

73

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

2) Provide the implementation of the remote interface

Now provide the implementation of the remote interface. For providing the

implementation of the Remote interface, we need to

o Either extend the UnicastRemoteObject class,

o or use the exportObject() method of the UnicastRemoteObject class

In case, you extend the UnicastRemoteObject class, you must define a constructor that

declares RemoteException.

1. import java.rmi.*;

2. import java.rmi.server.*;

3. public class AdderRemote extends UnicastRemoteObject implements Adder{

4. AdderRemote()throws RemoteException{

5. super();

6. }

7. public int add(int x,int y){return x+y;}

8. }

3) create the stub and skeleton objects using the rmic tool.

Next step is to create stub and skeleton objects using the rmi compiler. The rmic tool

invokes the RMI compiler and creates stub and skeleton objects.

1. rmic AdderRemote

4) Start the registry service by the rmiregistry tool

Now start the registry service by using the rmiregistry tool. If you don't specify the port

number, it uses a default port number. In this example, we are using the port number

5000.

1. rmiregistry 5000

5) Create and run the server application

Now rmi services need to be hosted in a server process. The Naming class provides

methods to get and store the remote object. The Naming class provides 5 methods.

74

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

public static java.rmi.Remote lookup(java.lang.String)

throws java.rmi.NotBoundException,

java.net.MalformedURLException,

java.rmi.RemoteException;

It returns the reference of the

remote object.

public static void bind(java.lang.String, java.rmi.Remote)

throws java.rmi.AlreadyBoundException,

java.net.MalformedURLException,

java.rmi.RemoteException;

It binds the remote object with

the given name.

public static void unbind(java.lang.String) throws

java.rmi.RemoteException, java.rmi.NotBoundException,

java.net.MalformedURLException;

It destroys the remote object

which is bound with the given

name.

public static void rebind(java.lang.String,

java.rmi.Remote) throws java.rmi.RemoteException,

java.net.MalformedURLException;

It binds the remote object to the

new name.

public static java.lang.String[] list(java.lang.String) throws

java.rmi.RemoteException,

java.net.MalformedURLException;

It returns an array of the names

of the remote objects bound in

the registry.

In this example, we are binding the remote object by the name sonoo.

1. import java.rmi.*;

2. import java.rmi.registry.*;

3. public class MyServer{

4. public static void main(String args[]){

5. try{

6. Adder stub=new AdderRemote();

7. Naming.rebind("rmi://localhost:5000/sonoo",stub);

8. }catch(Exception e){System.out.println(e);}

9. }

10. }

75

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

6) Create and run the client application

At the client we are getting the stub object by the lookup() method of the Naming class

and invoking the method on this object. In this example, we are running the server and

client applications, in the same machine so we are using localhost. If you want to access

the remote object from another machine, change the localhost to the host name (or IP

address) where the remote object is located.

1. import java.rmi.*;

2. public class MyClient{

3. public static void main(String args[]){

4. try{

5. Adder stub=(Adder)Naming.lookup("rmi://localhost:5000/sonoo");

6. System.out.println(stub.add(34,4));

7. }catch(Exception e){}

8. }

9. }

For running this rmi example,

1) compile all the java files

javac *.java

2) create stub and skeleton object by rmic tool

rmic AdderRemote

3) start rmi registry in one command prompt

rmiregistry 5000

4) start the server in another command prompt

java MyServer

5) start the client application in another command prompt

76

Dr. V. SAMESWARI., Asst. Prof., Dept. of CS., KAHE

java MyClient

KEY TERMS

 Java Server Pages (JSP): JSP is a java based technology used for delivering

dynamic content to web clients in a portable, secure and well-defined way

 JSP tags: define java code that is to be executed before the output of the JSP

program is sent to the browser.

 Comment Tag: It is a tag opens with <%-- and closes with -- %>

 Directives tag: In the directives we can import packages, define error handling

pages or the session information of the JSP page.

 Declarations tag: This tag is used for defining the functions and variables to be

used in the JSP.

QUESTIONS AND EXERCISES

Short Answer Questions

1. List the benefits of JSP

2. Define the various methods used in JSP

3. What is JSP Directives and Expressions

4. What are the processes that participate in supporting remote method invocation?
5. Give a short notes on Variables and Objects in JSP

6. Define Tomcat

Long –Answer Question

1. Describe about JSP tags with suitable example
2. Illustrate Control structures in JSP with suitable example

3. How to Download and install Tomcat

4. Define Cookies? Write a JSP program to store and retrieve cookie information

5. Explain in detail about the Remote Method Invocation

References

5. Jim Keogh , ―The Complete Reference J2SE‖, 1
st
 Edition, Tata McGraw

Hill Edition, New Delhi:2002.

6. Marty Hall and Larry Brown , Core Servlets and JSP , 2
nd

 Edition,Java 2

Platform, Enterprise Edition Series
7. Bruce Perry , Java Servlet & JSP Cookbook, O’Reilly

8. http://www.roseindia.net/jsp/jsparchitecture.shtml

9. www.pdf-search-engine.com/jsp-tutorial-pdf.html

10. www.jsptut.com/

11. www.roseindia.net/jsp/jsp-pdf-books.shtml

http://www.roseindia.net/jsp/jsparchitecture.shtml
http://www.pdf-search-engine.com/jsp-tutorial-pdf.html
http://www.jsptut.com/
http://www.roseindia.net/jsp/jsp-pdf-books.shtml

UNIT-IV

J2EE

 S. No. Question Option 1 Option 2 Option 3 Option 4 Answer

1 A _____________ is called by a client to
provide a web service, the nature of
which depends on the J2EE application.

 servlet JSP classes EJB EIS JSP classes

2 There are ___________ methods that are
automatically called when a JSP is
requested and when the JSP terminates
normally.

2 3 4 5 3

3 The __________ method is called first when
the JSP is requested and is used to
initialize objects and variables that are
used throughout the life of the JSP.

 jspInt() jspDestroy service() jspProcess() jspInt()

4 The __________ method is automatically
called when the JSP terminates normally.

 jspInt() jspDestroy service() jspProcess() jspDestroy

5 The _____________ method is automatically
called and retrieves a connection to
HTTP.

 jspInt() jspDestroy service() none of the
above

 service()

6 There are ___________ factors that we must
address when installing a JSP.

2 3 4 5 3

7 __________ tags define java code that is to
be executed before the output of the JSP
program is sent to the browser.

 JSP HTML XML None of the
above

 JSP

8 A JSP tag begins with a __________. </ <* <% <! <%

9 A JSP tag ends with a ___________. /> *> %> !> %>

10 There are ___________ types of JSP tags. 2 3 4 5 5

11 A ____________ tag opens with <%-- and
closes with --%>.

comment declaration
statement

directive expression comment

12 A __________ tag opens with <%!. comment declaration
statement

directive expression declaration
statement

13 A __________ tag opens with <%@. comment declaration
statement

directive expression directive

14 A __________ tag opens with <%=. comment declaration
statement

directive expression expression

15 A __________ tag opens with <%. comment declaration
statement

directive scriptlet scriptlet

16 There are __________ kinds of loops
commonly used in a JSP program.

2 3 4 5 3

17 The _____________ loop repeats usually a
specified number of times.

for while do...while none of the
above

for

18 The _________ loop executes continuously
as long as a specified condition remains
true.

 for while do...while none of the
above

 while

19 The __________ loop executes atleast once. for while do...while none of the
above

 do...while

20 The __________ is the method used to
parse a value of a specific field.

getParameter()
getParameterV
alues()

 jspInit() jspService() getParameter()

21 There are _____________ predefined
implicit objects that are in every JSP
program.

2 3 4 5 4

22 There are __________ commonly used
methods to track a session.

2 3 4 5 3

23 A JSP database system is able to share
information among JSP programs within
a ___________ by using a session object.

 servlet session EJB none of the
above

 session

24 There are __________ steps necessary to
make an object available to remote
clients.

2 3 4 5 3

25 Method invoked by the client is called
______________.

 server method client method RMI method None of the
above

 client method

26 In addition to the methods that can be
invoked by remote clients, the developer
must also define other methods that
support the processing of client-invoked
methods. They are referred as
____________.

 server method client method RMI method None of the
above

 server method

27 In RMI, port number ___________ is the
default port.

1099 1199 1299 1399 1099

28 The __________ method is used to locate
the remote object.

myMethod() lookup() catch() getMessage() lookup()

29 The _____________ method returns a String
object that is passed to the println()
method.

 myMethod() lookup() catch() getMessage() myMethod()

30 Any exceptions that are thrown while
the client-side program runs are trapped
by the ___________ block.

 myMethod() lookup() catch() getMessage() catch()

31 The __________ calls the getMessage()
method to retrieve the error message
that is associated with the exception

 myMethod() lookup() getMessage() catch() catch()

32 The __________ is at the center of every
remote object because the remote
interface defines how the client views
the object.

 API remote
interface

 server program client program remote
interface

33 RMI handles transmission of requests
and provides the facility to load the
object’s bytecode, which is referred to as
___________.

 static code
loading

 dynamic code
loading

 object code
loading

 none of the
above

 dynamic code
loading

34 The _________ method registers the
remote object with the RMI remote
object registry or with another naming
service.

 rebind() bind unbind() none of the
above

 rebind()

35 A __________ serves as a firewall and
grants or rejects downloaded code
access to the local file system and similar
privileged operations.

 server program client program security manager none of the
above

 server program

36 Reference to a remote object can be
__________.

bound unbound rebound bound,
unbound, and
rebound

bound, unbound,
and rebound

37 A JSP is called by a ____________. server client web service EJB client

38 Once a _________ is created, it must be
placed in the same directory as HTML
pages. the root element of the
deployment descriptor.

 servlet JSP c)EJB EIS JSP

39 Once a __________ is created, it must be
placed in a particular directory that is
included in the CLASSPATH

 servlet JSP EJB none of the
above

 servlet

40 There are ____________factors one must
address when installing a JSP.

2 3 4 5 3

41 A JSP program consists of a combination
of ____________.

servlets and
HTML tags

 servlets and
EJB tags

HTML tags and
JSP tags

 servlets and
JSP tags

HTML tags and
JSP tags

42 288. A powerful feature available in
__________ is the ability to change the flow
of the program to truly create dynamic
content for a web page based on
conditions received from the browser.

servlet JSP EJB EIS JSP

43 The __________ statement in JSP is divided
into several JSP tags.-beans> element.

 IF WHILE DO…WHILE SWITCH SWITCH

44 A pair of HTML table data cell tags
_________ are placed inside the FOR loop
along with a JSP tag that contains an
element of the array.

 <TB> <TD> <TR> <TC> <TD>

45 JSP virtual machine runs on a
_____________ .

 web browser web server windows DOS web server

46 TOMCAT is one of the most popular JSP
____________.

webbrowser client
program

 virtual machine none of the
above

 virtual machine

47 Java Beans works on __________. JDK BDK SDK FDK BDK

48 The request string sent to the JSP by the
browser is divided into _____________
general components that are separated
by the question mark.

2 3 4 5 2

49 The secured version of HTTP is __________. SHTTP SVHTTP HTTPS HTTPSV HTTPS

50 The __________ enables JSP programs to
track multiple sessions simultaneously
while maintaining data integrity of each
session.

 unique
password

 unique ID unique
username

different
username

 unique ID

51 __________ attributes can be retrieved and
modified each time the JSP program
runs.

 Servlet JSP Session EJB Session

52 A session object stores ____________. implicit data explicit data attributes hidden fields attributes

53 One of the _________ syntax given below
removes a page scope from the stack.

abstract Map
peekPageScope
()

abstract Map
popPageScope(
)

abstract Map
pushPageScope().

map push() abstract Map
peekPageScope(
)

	1.pdf (p.1-2)
	2.pdf (p.3-6)
	3.pdf (p.7-18)
	4.pdf (p.19-24)
	5.pdf (p.25-43)
	6.pdf (p.44-51)
	7.pdf (p.52-64)
	8.pdf (p.65-74)
	9.pdf (p.75-87)
	10.pdf (p.88-94)
	11.pdf (p.95-113)
	12.pdf (p.114-119)

