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PO: After the completion of this course, the learner gain clear knowledge about various aspects
of Mathematical modeling which is the motivating tool in the areas such as applied mathematics,
engineering etc.
PLO: To understand the mathematical model of ODE of first order & second order, Population
dynamics, genetics and to be familiar with mathematical models of graphs.
UNIT |
Mathematical Modeling through Ordinary Differential Equations of First order: Linear Growth
and Decay Models — Non-Linear Growth and Decay Models — Compartment Models —
Dynamics problems — Geometrical problems.
UNIT Il
Mathematical Modeling through Systems of Ordinary Differential Equations of First Order:
Population Dynamics — Epidemics — Compartment Models — Economics — Medicine, Arms
Race, Battles and International Trade — Dynamics.
UNIT I
Mathematical Modeling through Ordinary Differential Equations of Second Order: Planetary
Motions — Circular Motion and Motion of Satellites — Mathematical Modeling through Linear
Differential Equations of Second Order — Miscellaneous Mathematical Models.
UNIT IV
Mathematical Modeling through Difference Equations : Simple Models — Basic Theory of Linear
Difference Equations with Constant Coefficients — Economics and Finance — Population
Dynamics and Genetics — Probability Theory.
UNIT V
Mathematical Modeling through Graphs: Solutions that can be Modeled through Graphs —
Mathematical Modeling in Terms of Directed Graphs, Signed Graphs, Weighted Digraphs and
Un oriented Graphs.
SUGGESTED READINGS
TEXT BOOK
T1: J.N. Kapur, (2015). Mathematical Modelling, Wiley Eastern Limited, New Delhi.
REFERENCES
R1:Kapur, J. N., (1985). Mathematical Models in Biology and Medicine, Affiliated East —West Press
Pvt Limited, New Delhi.
R2:Brain Albright, (2010). Mathematical Modeling with Excel, Jones and Bartlett Publishers,
New Delhi.

R3:Frank. R. Giordano, Maurice. D.Weir, WilliamP. Fox, (2003). A first course in Mathematical
Modelling, Vikash Publishing House, UK.
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Subject: Mathematical Modeling Subject Code: 16MMP303 LTPC
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S.No | Lecture Topics To Be Covered Support Materials
Duration
Hour

Unit-l MATHEMATICAL MODELING THROUGH ORDINARY DIFFERENTIAL

EQUATIONS OF FIRST ORDER

Mathematical modeling: Introduction and T1:Chapter 1, Sec 1.1
1 1 Simple Illustrations Pg.No : 1-15
Mathematical modeling Through T1: Chapter 2,Sec 2.1
2 1 Differential Equations, Linear Growth and Pg.No : 30-32
Decay Models
3 1 Continuation of types of Linear Growth and | T1 : Chapter 2,Sec 2.2
Decay Models Pg.No : 32-35
4 1 Non-Linear Growth and Decay Models T1: Chapter 2,Sec 2.3
Pg.No :35-37
5 1 Continuation of Non-Linear Growth and T1: Chapter 2,Sec 2.3
Decay Models Pg.No :37-39
5 1 Compartment Models T1: Chapter 2,Sec 2.4
Pg.No :39-41
7 1 Continuation of types of Compartment T1: Chapter 2,Sec 2.4
Models Pg.No :41-43
Mathematical modeling in Dynamics T1: Chapter 2,Sec 2.5
8 1 Through Ordinary Differential Equations of | Pg.No :43-45
First Order
Continuation of Mathematical modeling in T1: Chapter 2,Sec 2.5
9 1 Dynamics Through Ordinary Differential Pg.No :45-48
Equations of First Order
Mathematical modeling of Geometrical R3 : Chapter 2, Pg.No :75 -
10 1 Problems Through Ordinary Differential 77
Equations of First Order
Continuation of Mathematical modeling of | R3: Chapter 2, Pg.No :77 -
11 1 Geometrical Problems Through Ordinary 79
Differential Equations of First Order
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12 1 Recapitulation and discussion of possible
Question
Total 12 Hrs
TEXT BOOK:

T1: J.N.Kapur,2015. Mathematical modeling,Wiley Eastern Limited,New Delhi.

REFERENCES:

R3: Frank.R.Giordano,Maurice.D.Weir, William P. Fox,2003,A first course in Mathematical
modeling , Vikash Publishing House, UK.

Unit-1l MATHEMATICAL MODELING THROUGH SYSTEMS OF ORDINARY

DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

Mathematical modeling in Population T1: Chapter 3,Sec 3.1
1 1 Dynamics Pg.No :53-60

Mathematical modeling of Epidemics R2 : Chapter 4, Pg.No
2 1 Through Systems of Ordinary Differential 118-120

Equations of First Order

Continuation of Mathematical modeling of R2 : Chapter 4, Pg.No
3 1 Epidemics Through Systems of Ordinary 120-122

Differential Equations of First Order

Continuation of Mathematical modeling of | R2 : Chapter 4, Pg.No
4 1 Epidemics Through Systems of Ordinary 122-124

Differential Equations of First Order

Compartment Models Through Systems of T1: Chapter 3,Sec 3.3
5 1 Ordinary Differential Equations Pg.No :63-64

Mathematical modeling in Economics T1: Chapter 3,Sec 3.4
6 1 Through Systems of Ordinary Differential Pg.No :64 - 66

Equations of First Order

Continuation of types of Mathematical T1: Chapter 3,Sec 3.4
7 1 modeling in Economics Through Systems of | Pg.No :66 - 69

Ordinary Differential Equations of First

Order

Mathematical Models in Medicine, Arms R3 : Chapter 9, Pg.No :350
8 1 Race, Battles and International Trade in -355

Terms of Systems of Ordinary Differential

Equations

Continuation of types of Mathematical T1: Chapter 3,Sec 3.5
9 1 Models in Medicine, Arms Race, Battles and | pg.No :69 - 72

International Trade in Terms of Systems of

Ordinary Differential Equations

Mathematical modeling in Dynamics T1: Chapter 3,Sec 3.6
10 1 through systems of Ordinary Differential Pg.No :72-74

Equations of First Order
11 1 Continuation of Mathematical modeling in T1: Chapter 3,Sec 3.6
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Dynamics through systems of Ordinary
Differential Equations of First Order

Pg.No :74-76

Recapitulation and discussion of possible

12 ! Question
Total 12Hrs
TEXT BOOK:
T1: J.N.Kapur,2015. Mathematical modeling,Wiley Eastern Limited,New Delhi.
REFERENCES:

R2:Brain Albright,2012. Mathematical modeling with Excel, Jones and Bartlett Publishers,New

Delhi.

R3: Frank.R.Giordano,Maurice.D.Weir, William P. Fox,2003,A first course in Mathematical

modeling , Vikash Publishing House, UK.

Unit-111 MATHEMATICAL MODELING THROUGH ORDINARY DIFFERENTIAL

EQUATIONS OF SECOND ORDER

Mathematical modeling of Planetary T1: Chapter 4,Sec4.1
1 1 Motions Pg.No :76-79

Continuation of types of Mathematical T1: Chapter 4,Sec4.1
2 1 modeling of Planetary Motions Pg.No :79-82

Mathematical modeling of Circular Motion | T1 : Chapter 4,Sec 4.2
3 1 and Motion of Satellites Pg.No :82-85

Continuation of types of Mathematical T1: Chapter 4,Sec 4.2
4 1 modeling of Circular Motion and Motion of | pg.No :85-88

Satellites

Mathematical modeling Through Linear T1: Chapter 4,Sec 4.3
5 1 Differential Equations of Second Order Pg.No :88-90

Continuation of types of Mathematical T1: Chapter 4,Sec 4.3
6 1 modeling Through Linear Differential Pg.No :90-93

Equations of Second Order

Continuation of Problems on Mathematical | R2 : Chapter 7, Pg.No
7 1 modeling Through Linear Differential :238-244

Equations of Second Order

Miscellaneous Mathematical Model Through | T1 : Chapter 4,Sec 4.4
8 1 Ordinary Differential Equations of the Pg.No :93-96

Second Order

Continuation of Problems on Miscellaneous | R3: Chapter 11, Pg.No :
9 1 Mathematical Model Through Ordinary 437-440

Differential Equations of the Second Order

Continuation of Problems on Miscellaneous | R3: Chapter 11, Pg.No :
10 1 Mathematical Model Through Ordinary 440-445

Differential Equations of the Second Order
11 1 Continuation of Problems on Miscellaneous | R3: Chapter 11, Pg.No:
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Mathematical Model Through Ordinary
Differential Equations of the Second Order

445-452

Recapitulation and discussion of possible

12 ! Question
Total 12 Hrs
TEXT BOOK:
T1: J.N.Kapur,2015. Mathematical modeling,Wiley Eastern Limited,New Delhi.
REFERENCES:

R2:Brain Albright,2012. Mathematical modeling with Excel, Jones and Bartlett Publishers,New

Delhi.

R3: Frank.R.Giordano,Maurice.D.Weir, William P. Fox,2003,A first course in Mathematical
modeling , Vikash Publishing House, UK.

Unit-1IV MATHEMATICAL MODELING THROUGH DIFFERENCE EQUATIONS

The Need for Mathematical modeling T1: Chapter 5,Sec5.1
1 1 Through Difference Equations : Some Pg.No :96-98

simple Models

Basic Theory of Linear Difference Equations | T1 : Chapter 5,Sec 5.2
2 1 with Constant Coefficients Pg.No :98-101

Continuation of types of Basic Theory of T1: Chapter 5,Sec 5.2
3 1 Linear Difference Equations with Constant Pg.No :101-105

Coefficients

Mathematical modeling Through Difference | T1 : Chapter 5,Sec 5.3
4 1 Equations in Economics and Finance Pg.No :105-107

Continuation of Mathematical modeling T1: Chapter 5,Sec 5.3
5 1 Through Difference Equations in Economics | pg.No :107-110

and Finance

Mathematical modeling Through Difference | T1: Chapter 5,Sec 5.4
6 1 Equations in Population Dynamics and Pg.No :110 - 113

Genetics

Continuation of types of Mathematical T1: Chapter 5,Sec 5.4
7 1 modeling Through Difference Equations in Pg.No :113 - 117

Population Dynamics and Genetics

Mathematical modeling Through Difference | R3: Chapter 6, Pg.No :217-
8 1 Equations in Probability Theory 220

Continuation of Mathematical modeling R3: Chapter 6, Pg.No :220-
9 1 Through Difference Equations in Probability | 223

Theory
10 1 Miscellaneous Examples of Mathematical T1: Chapter 5,Sec 5.6

modeling Through Difference Equations Pg.No :121-122

Continuation of Miscellaneous Examples of | T1 : Chapter 5,Sec 5.6
11 1 Mathematical modeling Through Difference | Pg.No :122-124

Equations
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MATHEMATICAL MODELING LESSON PLAN/2016
12 1 Recapitulation and discussion of possible
Question
Total 12 Hrs
TEXT BOOK:

T1: J.N.Kapur,2015. Mathematical modeling,Wiley Eastern Limited,New Delhi.

REFERENCES:

R3: Frank.R.Giordano,Maurice.D.Weir, William P. Fox,2003,A first course in Mathematical

modeling , Vikash Publishing House, UK.

Unit-V MATHEMATICAL MODELING THROUGH GRAPHS

1 1 Situations that can be Modelled through T1: Chapter 7,Sec 7.1
Graphs Pg.No :151-154
Mathematical Models in terms of Directed T1: Chapter 7,Sec 7.2

2 1 Graphs Pg.No :154-156
Continuation of types of Mathematical T1: Chapter 7,Sec 7.2

3 1 Models in terms of Directed Graphs Pg.No :156-161
Mathematical Models in terms of Signed R3 : Chapter 3, Pg.No :

4 1 Graphs 101-107
Mathematical modeling in terms of T1: Chapter 7,Sec 7.4

5 1 Weighted Digraphs Pg.No :164-170
Continuation of Mathematical modeling in T1: Chapter 7,Sec 7.4

6 1 terms of Weighted Digraphs Pg.No :164-170
Mathematical modeling in terms of T1: Chapter 7,Sec 7.5

7 1 Unoriented Graphs Pg.No :170-173
Continuation of Mathematical modeling in T1: Chapter 7,Sec 7.5

8 1 terms of Unoriented Graphs Pg.No :173-177

9 1 Recapitulation and discussion of possible
Question

10 1 Discussion of previous ESE question papers

11 1 Discussion of previous ESE question papers

12 1 Discussion of previous ESE question papers

Total | 12Hrs
TEXT BOOK:

T1: J.N.Kapur,2015. Mathematical modeling,Wiley Eastern Limited,New Delhi.

REFERENCES:

R3: Frank.R.Giordano,Maurice.D.Weir, William P. Fox,2003,A first course in Mathematical

modeling , Vikash Publishing House, UK.

Total no.of hours for the course:60 Hours
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Unit-  Mathematical Modelling Through ODE of first order/2016 Batch

KARPAGAM ACADEMY OF HIGHER EDUCATION
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DEPARTMENT OF MATHEMATICS

Subject: Mathematical Modeling Subject Code: 16MMP303 LTPC
Class:11 M.Sc Semester:I11 4104
UNIT I

Mathematical Modeling through Ordinary Differential Equations of First order: Linear

Growth and Decay Models — Non-Linear Growth and Decay Models — Compartment

Models — Dynamics problems — Geometrical problems.

SUGGESTED READINGS

TEXT BOOK

T1: J.N. Kapur, (2015). Mathematical Modeling, Wiley Eastern Limited, New Delhi.

REFERENCES

R1:Kapur, J. N., (1985). Mathematical Models in Biology and Medicine, Affiliated
East —West Press Pvt Limited, New Delhi.

R3:Frank. R. Giordano, Maurice. D.Weir, WilliamP. Fox, (2003). A first course in
Mathematical Modelling, Vikash Publishing House, UK.
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Unit-  Mathematical Modelling Through ODE of first order/2016 Batch

MATHEMATICAL MODELLING THROUGH DIFFERENTIAF

EQUATIONS : ) » .
Mathematical Modelling in terms of differential equations arises wiel toe
situation modelled involves some continuous variable(s) varying with res-
pect to some other continuous variable(s) and we have some feasonable_
hypotheses about the rates of change of dependent variable(s) with respect

to independent variable(s). ARG ;
When we have one dependent variable x (say population size) depending

on one independent variable (say time £), we get a mathematical model in
terms of an ordinary differential equation of the first order, if the hypothesis
is about the rate of change dx/dt. The model will be in terms of an ordinary

differential equation of the second order if the hypothesis involves the rate of

change of dx/dt.
If there are a number of dependent continuous variables and only one

independent variable, the hypothesis may give a mathematical model in
terms of a system of first or higher order ordinary differential equations.

If there is one dependent continuous variable (say velocity of fluid u) and
a number of independent continuous variables (say space coordinates
X, », zand time 1), we get a mathematical model in terms of g partial differ-
ential equation./If there are a number of dependent continuous variables ld
a number of independent continuous variables, we can get a math - i
model in terms of systems of partial differential equations. G

LINEAR GROWTH AND DECAY MODELS

Populational Growth Models

— = —w~

Let x(1) be the population size at time
i tan
death rates, i.e. the number of indiv:dugsleltml;nand d be the birth and

per unit time, then in time interval (¢, r + 4¢), the numbers of births and
deaths would be bx 4t -|- 0(4¢) and dx 4t + 0(4¢) where 0(d¢)is an in-
finitesimal which approaches zero as 4¢ approaches zero, so that

(1)

o (5 A;)‘ — x(1) = (bx(1) — dx()4t + 0(41),
so that dividing by 4¢ and proceeding to the limit as 4¢ = 0, we get
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Unit-  Mathematical Modelling Through ODE of first order/2016 Batch

L~ b —d)x=ax (say) @)

Integrating (2), we get
x(t) = x(0) exp (at), (3)

so that the population grows exponentially if a > 0, decays exponentially
if @ < 0 and remains constant if @ = 0 (Figure 2.1)

x(t)y 5oy KON : X(ﬂ/r

x(0) J x(0) \\ x(0)

> 1 >t >t
Q>0 a<o a=o

Figure 2.1

(i) If a > 0, the population will become double its present size at time
7T, where

2x(0) = x(0) exp (a7) or ecxp (aT) = 2

or 7= In2=(0.69314118)a”! @)

T is called the doubling period of the population and it may be noted that
this doubling period is independent of x(0). It depends only on & and is such
that greater the value of a (i.e. greater the difference between birth and
. death rates), the smaller is the doubling period.
(ii) If a < 0, the population will become half its present size in time T’
when

—;—x(O) = x(0) exp (aT') or exp (aT") = —%-

1 -
= 5 '——(0.693141 18) a~! (5)
It may be noted that T” is also independent of x(0) and since a < 0, T >0.
T’ may be called the half-life (period) of the population and it decreases as
the excess of death rate over birth rate increases.

or T = —1n

Growth of Science and Scientists
Let S(t) denote the number of scientists at time ¢, bS(1)4t =~ U4!) be the
number of new sciantists trained in time interval (f # -+ 41) and let

Prepared by:A.Neerajah,Department of Mathematics, KAHE Page 3 of 13



Unit-  Mathematical Modelling Through ODE of first order/2016 Batch

A A - ———

dS()dt  + 0(d¢) be the number of scientists who retire from science in .the
same period, then the above model applies and the number of scientists
should grow exponentially. .
The same model applies to the growth of Science, Mafhematlcs and
Technology. Thus if M(f) is the amount of Mathematics at time £, then the
rate of growth of Mathematics is proportional to the amount of Mathe-
matics, so that ;

dMjdt = aM ~ or  M(r) = M(0) exp (at) (6)

Thus according to this model, Mathematics, Science and Technology grow
at an exponential rate and double themselves in a certain period of time,
During the last two centuries this doubling period has been about ten years,
This implies that if in 1900, we had one unit of Mathematics, then in 1910,
1920, 1930, 1940, .. . 1980 we have 2, 4, 8, 16, 32, 64, 128, 256 unit of
Mathematics and in 2000 AD we shall have about 1000 units of Mathematics.
This implies that 99.9% of Mathematics that would exist at the end of the
present century would have been created in this century and 99.9% of all
mathematicians who ever lived, would have lived in this century.

The doubling period of mathematics is 10 years and the doubling period
of the human population is 30-35 years. These doubling periods cannot
obviously be maintained indefinitely because then at some point of time, we
shall have more mathematicians than human beings. Ultimately the doubling
period of both will be the same, but hopefully this is a long way away.

This model also shows that the doubling period can be shortened by hav-
ing more intensive training programmes for mathematicians and scientists
and by creating conditions in which they continue to do creative work for
longer durations in life.

!Effects of Immigration and Emigration on
Population Size

D SRR S TR el e et v

If there is immigration into the population from outside at a rate propor-
tional to the population size, the effect is equivalent to increasing the birth
rate. Similarly if there is emigration from the population at a rate propor-
tional to the population size, the effect is the same as that of increase in the
death rate.
If however immigration and emigration take place at constant rate ; and
e respectively, equation (3) is modified to
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Unit-  Mathematical Modelling Through ODE of first order/2016 Batch

Integrating (7) we get

*(@) + LA (;(0) +l;_)eu

)

(3)

“The model also applies to growth of populations of bacteria and micro-
organisms, to the increase of volume of timber in forest, to the growth of
malignant cells etc. In the case of forests, planting of new plants will
correspond to immigration and cutting of trees will correspond to emigration.

Radio-Active Decay

Many substances undergo radio-active decay at a rate proportional to the
amount of the radioactive substance present at any time and each of them
has a half-life period. For uranium 238 it is 4.55 billion years. For potassium
it is 1.3 billion years. For thorium it is 13.9 billion years. For rubidium it
is 50 billion years while for carbonl4,itis only 5568 years and for white

lead it is only 22 years.

In radiogeology, these results are used for radioactive dating. Thus the
ratio of radio-carbon to ordinary carbon (carbon 12) in.dead plants and
animals enables us to estimate their time of death. Radioactive dating has
-also been used to estimate the age of the solar system and of earth as

4% billion years.

2.2,7 Diffusion e of movement of 2 solute

According to Fick’s law of diffusion, the time rat

across a thin membrane is proportiona
to the difference in concentrations of th
membrane,

If the area of the membran .
on one side is kept fixed at a and the concentration
other side initially is co < a, then Fick's law gives

1 of the arca of the me :
e solute on the two sl

mbrane and
des of the

e is constant and the concentration of solute
of the solution on the

(15)'

% — ka— o), (0) = co,
so that
a — c(t) = (@ — c(0))e ™™ (16)
and c(t) = a as t — o, whatever be the value of co.
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Unit-  Mathematical Modelling Through ODE of first order/2016 Batch

Change of Price of a Commeodity

Let p(7) be the price of a commodity at time 7, then its rate of change is

proportional to the difference between the demand d(f) and the supply s(7)
of the commodity in the market so that

gg — k(d(r) — s(1)), (17

where k > 0, since if demand is more than the supply, the price increases
If d(1) and s(7) are assumed linear functions of p(¢), i.e. if '

dt) = di + &p(0), s(1) =51+ 52p(), dr < 0,5, > 0 (18)

we get
B e il iy '
dt PG sp(0) = k@ — Bp(r)), B>0 (19
or :
dp
7 = K(pe — p(¢
where p. is the equilibrium price, so that
pe — p(1) = (pe — p(0))e~* 21)

and

pt)—>p. as t—>
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Unit-  Mathematical Modelling Through ODE of first order/2016 Batch

Logistic Law of Population Growth

: tonic increas-
(i) x(0) < alb = x(0) < alb = dx[dt > 0 = x(¢) is a mono

- 00,
ing function of ¢ which appronches alb ns : > 15 amotone desrgas
(i) x(0) > a/b = x(1) > alb = dx/dt <0 @D.\
' H . - 0,
ing function of # which approaches alb as t —>

Now from (23)

d*x :

LL e g — 2hx,

dr? 1

: ' wth curve

so that @2x/dr? % 0 according as x 2 af2b. Thus in case (3 t,ltlehsgoa soitit of
is convex if x < a/2b and is concave if X = a/2b and 1

: i iven in
inflexion at x == a/2b. Thus the graph of x(1) agamstl FIRER &

(25)

Figure 2.2,
X(t)A

l(t)“ !(t)“ x(0) el B

alb a/b ERE D
x(0) /
Concave

algb- ==

x(o)}—"Cornvex -

> >t -
x(o)=zar2b o a/2b<x(o)<alb x(o)>alb

Figure 2.2

—If x(0) < af2b, x(1) increases at an increasing rate till x(r) reaches a/2b and then it
. increases at a decreasing rate and approaches a/b at ¢ —

—If af2b < x(0) < a/b, x(t) increases at a decreasing rate and approaches a/b as
’-> o

—If x(0) == a/b, x(¢) is always equal to a/b

—If x(0) > a/b, x(t) decreases at a decreasing absolute rate and approaches a/b as
)

Spread'of Technological Innovations and
Infectious Diseasas
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Unit-  Mathematical Modelling Through ODE of first order/2016 Batch

Let N(7) be the number of companies which have adopted a technological
innovation till time ¢, then the rate of change of the number of these com-
panies depends both on the number of companies which have adopted this
innovation and on the number of those which have not yet adopted it, so
that if R is the total number of companies in the region '

dN

5 = KN(R — N), | (26)

which is the logistic law and shows that u(timate.?y all companies will adopt
this innovation,

Similarly i'f N(1) is th;: number of infected persons, the rate at which the
number of infected persons increases depends on the product of the num- -

pers of infected and susceptible persons. As such we again get (26), where R
is the total number of persons in the system. ' ‘

It may be noted that in both the examples, while N(f) is essentially an
integes-valued variable, we have treated it as a continuous variable. This
can be regarded as an idealisation of the situation or as an approximation to
reality. :

Rate of Dissolution

Let x(t) be the amount of undissolved solute in a solvent at time ¢ and let
co be the maximum concentration or saturation concentration, i.e. the maxi-
mum amount of the solute that can be dissolved in a unit volume of the
solvent. Let ¥ be the volume of the solvent. It is found that the rate at which
the solute is dissolved is proportional to the amount of undissolved solute
and to the difference between the concentration of the solute at time ¢ and
the maximum §o§§ible concentration, so that we get

% = katy (X220 —ar) = O (G - V) = x(e) @D
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Unit-  Mathematical Modelling Through ODE of first order/2016 Batch

Law of Mass Action: Chemical Reactions

Two chemical substances combine in the ratio a: bto form a third substance
Z. 1f z(t) is the amount of the third substance at time f, then a proportion
az(t)/(a + b) of it consists of the first substance and a proportion bz(f)/
(a 4 b) of it consists of the second substance. The rate of formation of the
third substance is proportional to the product of the amount of the two
component substances which have not yet combined together. If 4 and B
are the initial amounts of the two substances, then we get

dz az bz

bV BRIy =
This is the non-linear differential equation for a second order reaction.
Similarly for an nth order reaction, we get the non-linear equation

Z_f = k(41 — mz)(d2 — @2) .. . (4n — an2), G

where a1 + a2+ ... +an= 1.

EXERCISE

4 If in (24), a = 0.03134, b= (1.5887)(10)1, x(0) = 39105, show
that ' : '

313,400,000
1.5887 + 78,7703—0.03134:)

This is Verhulst model for thie population of USA when time zero corresponds
to 1790. Estimate the population of USA in 1800, 1850, 1900 and 1950.
Show that the point of inflexion should have occurred in about 1914. Find
also the limiting population of USA on the basis of this maodel. .

In (26) k = 0.007, R = 1000, N(0) = 50, find N(10)/and find when
N(f) = 500.

x(1) =
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COMPARTMENT MODELS

In the last two sections, we got mathematical models in terms of ordinary
differential equations of the first order, in all of which variables were sepa-
rable. In the present section, we get models in terms of linear differential
equations of first order.

We also use here the principle of continuity i.e. that the gain in amount
of a substance in a medium in any time is equal to the excess of the amount

that has entered the medium in the time over the amount that has left the
medium in this time.

A Simple Compartment Model

Let a vessel contain a volume V of asolution with concentration c(t) of a
substance at time 7 (Figure 2.3) Let
a solution with constant concentra-
tion C in an overhead tank enter the
vessel at a constant rate R and after
mixing thoroughly with the solution
in the vessel, let the mixture with
concentration ¢(t) leave the vessel at
the same rate R so that the volume
of the solution in the vessel remains

Y. Figure 2.3
Using the principle of continuity, %
we get
V(e(t + A1) — (1)) = RCAt — Re(t)4t + 0(dt)
giving
de X
V{?t_ + Rec = RC (30)
Integrating
e(t) = ¢(0) cxp(—- %t) : C(l — exp (— —ﬁ-t) (31)

As t = o, c(t) = C, so that ultimately the vessel' has the same concentra-
tion as the overhead tank. Since 3

c(t) = C — (C — co) exp (—%—l). (32)
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if C > co, the concentration in the vessel increases to C; on the other

hand if C < co, the concentration in C“)A

the vessel decreases to C (Figure 2.4).
If the rate R’ at which the solution

leaves the vessel is less than R, the c(o)p

equations of continuity gives | T o-—-——-=- — ——

4 i
%[(,,o + (R — R)Ne(®) cf

= RC — R'(ct) - (33)

’ =1 k10 - — 1
where V is the initial volume of the
solution in the vessel. This is also a Figure 2.4

linear differential equation of the first
order.

Diffusion of Glucose or a Medicine in the Blood
Stream

- a L
— W WPRAETER

Let the volume of blood in the human body be ¥ and let the initial concen-
tration of glucose in the blood stream be ¢(0). Let glucose be introduced in
the blood stream at a constant rate /. Glucose is also removed from the
blood stream due to the physiological needs of the human body at a rate
proportional to ¢(7), so that the continuity principle gives

dc 3
Vd—,t' = J — ke (34)

which is similar to (30).

Now let a dose D of a medicine be given to a patient at regular inter-
vals of duration T each. The medicine also disappears from the system at a
rate proportional to ¢(t), the concentration of the medicine in the blood
stream, then the differential equation given by the continuity principle is

V‘—i-c- = —kc

dt (35)
Integrating

o k
0 =Dew(-51), 0<r<T (36)
At time T, the residue of the first dose is D exp (

k
' - VT) and now another
dose D is given so that we get :
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e(t) = (D exp (— LV T) - D) exp (— -%(t —-T) ), (37)

i 1 ‘il il k
D eXp ( Vt) '.'}“ D EXp (— ~—V—(t v T))’ (38)
T i<2r

The first term gives the residual of the first dose and the second term

gives the residual of the second dose. Proceeding in the same way, we get
after n doses have been given

«(t) = D exp (— —lf;t) 4+ D exp (—— -§-(l — T))

+D eXP(—’—"V-(t - 2T)) + ...+ Dexp (— %(z —n_'—m)
' (39)
= D exp (— %t)(l + exp (—kV—T) + exp (%ér)

+ . owteexp ((n— l)-%,-T))

L\ EXP (n-l‘—c;T) ==}
= Dexp (— ——t)
v

,(n— DI <t <aT (40)
k
exp( T)——l

f == exp(——f;nT) 2
- (I%') " (4D

exp (’—i—;) — exp ( == %nT)
cnT +0)=D = (42)
exp (7) — 1

Thus the concentration never exceeds D/(l = exp( k,f)) The graph of

~ c(2) is shown in Figure 2.5.
c(t) o
1

cnT — 0)=pD

pi1-e” KT/ Vyl

NNSRN

T T 5 SR >
Figure 2.5
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n decreases. In any interval, the

Thus in each interval, concentratio es. :
ing of this interval and thus maxi-

concentration is maximum at the beginning. : .
mum concentration at the beginning of an interval goes on increasing as

the number of intervals increases, but the maximum value 1s always l?eIO\v
D/(1 — e kTI¥). The minimum value in an interval occurs at the end of each

i t lies below D/(exp (kT/V) — 1)

interval. This also increases, but i ' 1 s
The concentration curve is piecewise continuous and has points of dis-

continuity at T, 2T, 37, «s ‘
lin in blood and fitting curve (36) to the

By injecting glucose or penicil : cury
data, we can estimate the value of kand V. In particular this givesa method

for finding the volume of blood in the human body.

2.4.3 The Case of a Succession of Compartments

Let a solution with concentration ¢(?) of a solute pass. successively into n
tanks in which the initial concentrations of the solution are ¢1(0), 2(0), . - -
¢:(0). The rates of inflow in each tank is the same as the rate of outflow

from the tank. We have to find the concentrations cr(0), ex(t) . .. calr) at
time ¢. We get the equations
der
V T = Rc — Rc
dca
VE = Rec1 — Rea (43)
dc
V?If = RCn-1 — RCa

By solving the ﬁr§t of‘" these equations, we get ci(r). Substituting the value of
c1(?) and proceeding in the same way, we can find c;3(z) ; (0
P n .

MATHEMATICAL MODELLING IN DY -
NAMICS TH
ORD!NARY _DlFfERENTIAL EQUATIONS OF FlRS:ggggR

T T m v swrsmw Wl fSEIWE WILLJL

Leta partiélé travel a distance x in ti i
La] € x In time 7 in a straight line i i
v is given by dx/dt and its acceleration is given b%r g g

dojdt = (do]dx)(dx|di) = vdojdx = dx/di?
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Simple Harmonic Motion

Here a particle moves in a straight line in such a manner that its accelera-
tlfm is always proportional to its distance from the origin and is always
directed towards the origin, so that

v _
Frila (44)
' Integrating

= pla® — x?), (45)

where the particle is initially at rest.at x = a. Equation (44) gives
e ViVE—F (46)
We take the negative sign since velocity increases as x decreases (Figure 2.6).

-_— > » — P —P
&4— CHER TS <—Q- ORI < 8 4———A
Figure 2.6

Integrating again and using the condition thatatt = 0, x = a

x(1) = acos Vpt 47)
so that

ot) = —aV/p sin Vpt, (48)

Thus irrsimple harmonic motion, both displacement and velocity are perio-
dic functions with period 27/ 1 .

The particle starts from 4 with zero velocity and moves towards 0 with
increasing velocity and reaches 0 at time 7/24/x with velocity \/pa. It
continue to move in the same direction, but now with decreasing velocity
till it reaches A4'(04’ = a) where its velocity is again zero. It then begins
moving towards 0 with increasing velocity and reaches 0 with velocity v/ pa

and 'again comes to rest at 4 after a total time period 27/4/ 1. The periodic
motion then repeats itself.
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As one example of SHM, consider a particle of mass m attached to or
end of a perfectly elastic string, the
other end of which is attached toa 0 o)
fixed point 0 (Figure 2.7). The particle
moves under gravity in vacuum. |
Let Ip be the natural length of the L 1
string and let 4 be its extension when 0 o

the particle is in equilibrium so that
by Hooke’s law

I

: AT T

where ) is the coefficient of elastj- X

city. Now let the string be further | X
stretched a distance ¢ and then the img Y
mass be left free. The: €quation of

motion which states that masg x Fi 2.7
acceleration in any direction = force e

on the particle in that direction, gives

- ak X it Ax (50)
mvs =mg— T =mg— 2 Io b
or :
de A ox_ g% (1)
P m b a

a
[ WL 2 iod 2 s
which gives a simple harmonic motion with time period 27 / 2

- = . - ium
Motion Under Gravity in a R'OSlsh.itc:r?tgnc“?b:gauw - e
A particle falls under gravity ina m'ednum mt.v(:n o
portional to the velocity. The equation of moti

m%% = mg — mkv

or
(52)
B _rdy V=
V—uv

>|oe

i 1
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Integrating
V—o=Ve™ (53)

If the particle starts from rest with zero velocity. Equation (50) gives
= V(1 — e™™), , (54)

so that the velocity goes on increasing and approaches the limiting velocity
glk as t — . Replacing » by dx/dt, we get

(_I—x—= — p—kt 55
= vl — e *) (55)

Integrating and using X = 0 when t = 0, we get

~kt
w= W Kek—“ ™ {— (56)

Motion of a Rocket

e s VIV RN

As a first idealisation, we neglect both gravity and air resistance. A rocket
moves forward because of the large supersonic velocity with which gases
produced by the burning of the fuel_insigg,ﬁihe rocket come out of the con-
verging-diverging nozzle of the rocket (Figure 2.8).

Let m(¢) be the mass of the rocket at time ¢ and let it move forward with

velocity (f) so that the momentum at time ¢ is m(t)v(t).
In the interval of time (¢, t + A1), the mass of the rocket becomes

m(t + 41) = m(1) + ‘—Z—;’At + o(4n

m(t) mit+4t)
v(t) v(t+Aat)
dm
T odt a
v(t+ At )—u
Figure 2.8
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Since the rocket is losing mass, dm/dt is negative and the mass of gases
—dm/dt 4t moves with velocity u relative to the rocket, i.e. with a velocity
o(t + 4r) — u relative to the carth so that the total momentum of the rocket
and the gases at time 7 4 41 is

m(t + dtu(t -+ 4t) — %—74!(0(! + 4t) — u) (57)

Since we are neglecting air resistance and gravity, there is no external force
on the rocket and as such the momentum is conserved, giving the equation

m()e(r) = (m(r) - (—Z:lAt) (v(t) - %Az)
dm

- —ZI—A’(U s ll) 4~ O(At)z (58)
Dividing by 4t and proceeding to the limit as df —- 0, we get
‘ dv dm -
m(r) prkaited | (59)
or
dm 1]
m e | (60)
or
m™0 __u)
m(0) u (61)

assuming that the rocket

As the fuel burns, the
the rocket == m,
mass of the fue

starts with zero velocity, '

ok mass of the ro-ckct decreases, Initially the mass of

i (1! -+ m._s'whcn mpis the mass of the pay-load, mr is the
nd ms 18 the mass of the structure. When the fuel is

completely burnt out, mr becomes zero and if »p is the velocity of the rocket
at this stage, when the fuelis all burnt, then (60) gives

o mp + me + ms mr
vg = uln mr + s = uln (l + T MS) (62)

This is the maximum velocity that the rocket can attain and it depends on
the velocity u of efflux of gases and the ratio mr/(mp + ms). The larger the
values of u and mg/(mp + ms), the larger will be the maximum velocity
attained.
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For the best modern fuels and structural materials, the maximum velocity
this gives is abount 7 km/sec. In practice it would be much less since we
have neglected air resistance and gravity, both of which tend to reduce the
velocity. However if a rocket is to place a satellite in orbit, we require a
velocity of more than 7 km/sec. ;

The problem can be overcome by using the concept of multi-stage
rockets.

The fuel may be carried in a number of containers and when the fuel of
a container is burnt up, the container is thrown away, so that the rocket
has not to carry any dead weight. -

Thus in a three-stage rocket, let mg,, mr,, mr, be the masses of the fuels

and ms,, ms,, ms, be the three corresponding masses of containers, then
velocity at the end of the first stage is

. mp'{'mﬁ‘*‘msl'l‘mFg+mSn"r'mFa+”’Sa
o e mp + mry, + ms, + Mmr; + ms;, 63)

At the end the second stage, the velocity is

mp + mr, + mr; + ms,
mp + mpg; + mg, (64)

and at the end of the third stage, the velocity

Z'2=D|+uln

mp + mFa

= (65)

In this way, a much larger velocity is obtained than can be obtained bya |,
single-stage rocket.

v3s=1um + uln

MATHEMATICAL MODELLING OF GEOMETRICAL

PROBLEMS THROUGH ORDINARY DIFFER
ENT
EQUATIONS OF FIRST ORDER o

Simple Geometrical Problems

M '-".Il.ll-v valilu-tllual r’l'oolems
: alxlmy ]geqmetncal entities can be expressed in terms of derivatives and ag
uch relations between these entities can give rise to differential equations

whose solution ?vill give us a family of curves for which the given relation
between geometrical entities is satisfied. o

Prepared by:A.Neerajah,Department of Mathematics, KAHE Page 6 of 11



Unit-I ~ Mathematical Modelling Through ODE of first order /2016 Batch

(i) Find curves for which tan int i '
Find gent at a point is always perpendicul
the line joining the point to the origin. o Ehs

The slope of the tangent is dy/dx and the slope of line joining the point

(x, y) to the origin is ¥/x and since these lines are given to be orthogonal
Ay - % '
dx y ' (66)
Integrating
x2 + y*t = g2 : (67)

which represents a family of concentric circle.

(7
&

2

\§

.
0

) (b)
Figure 2.9

(c)

(ii) Find curves for which the.

projection of the n : 27 eals
constant length. i ormal on the x axis is of

This condition gives

2 (68)
Y dx ; .
Integrating
y? = 2kx + 4, (69.

which represents a family of parabolas, all with the same axis and samc
length of latus rectum.

(i) Find curves for which tangent makes a constant angle with the radius
vector.

Here it is convenient to usepolar coordinates and the conditions of the
problem gives

rd——o = tan a : (70)
dr / !
Integrating

r = Aebcote : 11=(71)

which represents a family of equiangular spirals.
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Orthogonal Trajectories

Let

fG,y,2) =0 (72)

represent a family of curves, one curve for each value of the parameter a.
Differentiating (72), we get

of , of dy _
aT R (13)

Eliminating a between (72) and (73), we get a differential equation of the
first order

&\ _
o2 2Z) =o. (74)

of which (72) is the general solution.

Now we want a family of curves

cutting every member of (72) at right
angle at all points of intersection.

At a point of intersection of the

two curves, x, y are the same butthe

" slope of the second curve is negative

reciprocal of the slope of the first

curve. As such differential equation

of the family of orthogonal trajecto- Figure 2.10
ries is

1
o~ im) =0 i

T N R Bt Bt BB Y NT

Integrating (75), we get
g(x, y, b) = 0,

which give the orthogonal trajectories of the family (72). o
(i) Let the original family be Yy = mx, when m is a parameter then
dyldx = m
and cli'minating m, we get the differential equation of this concurrent family
of straight lines as
d
| === (77)

To get the orthogonal trajectories, we replace dy/dx by — 1/( dyldx) to get

Yo

X dy|dx
Integrating

X2+ )2 = @2 (78)
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gonal trajectorics as concentric circles (Figure 2.9a).

gonal trajectories of the family of confocal conics
e ¥ o

_..Where A is a parameter, Diﬂ'erentiating, we get

o ) B B y dy

"-.‘-a2+f\+b2+z\5c“° 130)

Eliminating A between (79) and (80), we get

which gives the ortho
(i) Find the ortho

-

=Sl il — iy p D (81)

To get the orthogdpal trajectories, we replace p by — 1 to get

X, y) 1
et e X — =} = = 2 e LY
( p y)( p p @ = b

) (P — )(x + py) = rla® — p2) (82)
However (81) and (82) are identical, As s :
is self-orthogonal, i.e, for o et e

gy Ty » there i
same focii which cuts it at right angles, / Is another with

or

One family consists of confocal
ellipses and ‘the other consists of
confocal hyperbolas with the same
focii (Figure 2.1 1).
(iii) In polar coordinates after get-

ting. the differentia] €quation of the
family of curves, we hay

€ to replace
db b do

Py Byl (r (-F) and then integrate

the resulting differentia) €quation.

Figure 2,11 -

Then if the original family is
== 2q cos 0, (83)

with @ > 0 as a parameter, its differential equation is obtained by eliminating
a between (83) and
s ! dr

i Page 9 of 11
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to get

do

ra-; = —cot 0

g do 6\-! '

Replacing e by —(r%—;) , we get

di

rx = tan @
Integrating we get

r= 2hsinl

The orthogonal trajectories are shown in Figure 2.12.

y
A

The circles of both families pass through the origin, but while the centre
of one family lie on x-axis, the centres of the orthogonal family lie on y-axis.
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POSSIBLE QUESTIONS

Part B (6 Marks)

. Write a note on Radio — Active Decay.
. Discuss a simple Compartment Model.
. Give a brief note on diffusion or a medicine in the blood stream.

. Suppose the population of the world now is 4 billion and its doubling period is 35 years,

what will be the population of the world after 350 years?

. Design a mathematical model for motion of a rocket.

. Give an explanatory note on simple compartment models

Explain about simple harmonic motion.

Discuss in detail about motion under gravity in a resisting medium.

9.Find the relation between doubling, tripling and quadrupling times a population.

1.

2.

3.

Part C (10 Marks)

Discuss about logistic law of population growth.
Discuss a simple Compartment Model.

Give an explanatory note on simple compartment models.

4.Explain about simple geometric problems.
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UNIT-I

Subject: Mathematical Modeling
Mathematical Modelling Through ODE of first order

Part-A(20X1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)
Multiple Choice Questions

Mathematical Modelling Through ODE of first order/2016 Batch

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),
Coimbatore —641 021

Subject Code: 16MMP303

Question Opt 1 Opt 2 Opt 3 Opt 4 Answer
In growth if sciences and scientists the no of scientist should grow Logically exponentially inversely proportionally Exponentially
If there is immigration into the population from outside at a rate
to the population size Logically exponentially inversely proportionally Proportionally
e is the amount of an initial capital of 1 unit invested for 1 unit of time
then the interest at unit rate is continuously simple compounded cumulative principle compounded
e is the amount of an initial capital of 1 unit invested for _____unit of
time then the interest at unit rate is compounded continuously 4 1
In radio geology the of age solar system is used to estimate Radio active Diffusion Decay immigration Radio active
The ratio of radio carbon to ordinary carbon in dead plants and animals
enables to estimate their Time of birth time of death Time of dating None Time of death
law is used in the model' decrease of temperature' Fick's Hooke's Newton's Gauss Newton's
law is used in the model 'Diffusion’ Fick's Hooke's Newton's Gauss Fick's
If P(t) price of commodity and its rate of change is proportional to the
between demand and supply Addition Difference Division Multiplication Difference
If P(t) price of commodity and its rate of change is to the
difference between demand and supply Logically exponentially inversely Proportional Proportional
In the model 'change of price of commodity S(t) denotes System Supply Size None Supply
In the model 'change of price of commodity d(t) denotes Demand Death Decrease Diffusion Demand
In the model 'change of price of commodity p. denotes Equilibrium price Eligible price Essential price Evaluation price |Equilibrium price
As population increases the birth rate be decrease and death rate be
Increases stable decreases None Increases
As population increases the birth rate be and death rate
be increases Increases stable decreases None Decreases
companies
adopted
In the model spread of technological innovation and infestious diseases technological
kN(R-N), R denotes Total no of companies innovation region rate Total no of companies
In rate of dissonution CO be concentration Maximum Minimum Both None Maximum
Two chemical substances combined in the ratio to form the
third substances Z a:b a:2b 2a:b a:3b a:b
The gain in amount of a substance in a medium in any time is
to the excess of the amount that has entered the medium |Equal Proportional Linear Exponential Equal
The gain in amount of a substance in a medium in any time is equal to
the excess of the amount that has the medium exit entered outer None entered
A particle moves in a straight line then its acceleration is to
its distance from the origin Logically exponentially inversely Proportional proportional
A particle moves in a straight line then its acceleration is proportional to
its distance from the origin states that SHM MOR MUG None SHM
A particle falls under in @ medium in which resistance is
proportional to the velocity Gravity Sense Force Mass Gravity
A particle falls under gravity in a medium in which resistance is
proportional to the Velocity Sense Force Mass Velocity
The equation of motion which states that mass x acceleration in any
direction is on the particle Velocity Sense Force Mass Force
A rocket moves forward because of the large velocity Ultra Supersonic Infrared None Supersonic
m(t) be the mass of rocket at time t with velocity v(t) then momentum is [m(t)+v(t) m(t)v(t) m(t)-v(t) m(t)/v(t) m(t)v(t)
mass of the rocket = mF+mP+mS then F is Fuel pay load structure ferrocity Fuel
mass of the rocket = mF+mP+mS then P is Pressure pay load structure ferrocity pay load
mass of the rocket = mF+mP+mS then S is System pay load structure ferrocity structure
Curves for which tangent at a point is to the line joining
the point to the origin. Equal Proportional Perpendicular Exponential Perpendicular
Curves for which tangent at a point is perpendicular to the line joining
the point to the . centre point origin parallel origin
Curves for which the projection of the normal on the x axis is of
length. Variable Constant unit y axis Constant
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Curves for which the of the normal on the x axis is of
constant length. Projection Property Process parameter Projection
Curves for which the projection of the on the x axis is of
constant length. Normal Proportional Perpendicular Exponential Normal
Curves for which makes a constant angle with the radius
vector. tangent Secant Cosecant Cot tangent
Curves for which tangent makes a constant angle with the
vector. diameter radius unit scalar radius
Curves for which tangent makes a angle with the radius
vector. Variable Constant unit y axis Constant
The point of intersection of two curves the slope of second curve is

reciprocal of the first curve. Positive negative unity trajective negative
The point of intersection of two curves the slope of second curve is
negative of the first curve. Proportional reciprocal Exponential Logically reciprocal
The circles of both families pass through Point centre Origin None Origin
The centres of one family lie on x axis the centres of orthogonal family
lie on X axis Y axis Both axes None Y axis
The centres of one family lie on x axis the centres of family lie
on Y axis. Proportional linear unit orthogonal orthogonal
The centres of one family lie on the centres of orthogonal
family lie on Y axis. X axis Y axis Both axes None X axis
The family of confocal conics are self orthogonal proportional orthogonal linear self orthogonal
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MATHEMATICAL MODELLING IN POPULATION DYNAMICS
Prey-Predator Models

Let x(z), y(t) be the populations of the prey and predator species at time ¢..
We assumé that '

(i) if there are no predators, the prey species will grow at a rate propor-
tional to the population of the prey species,

(ii) if there are no prey, the predator species will decline at a rate
proportional to the population of the predator species,

(iii) the presence of both predators and preys is beneficial to growth of
predator species and is harmful to growth of prey species. More specifically
the predator species increases and the prey species decreases at rates
proportional to the product of the two populations.

These assumptions give the systems of non-linear first order ordinary
differential equations

flf ax — bxy = x(a — by), a,b >0 §))
dy - . ‘. .
or iy + gxy = —y(p —gx), p,q> 0 )
Now dx/dt, dy/dt both vanish if
x —_— x — 'I_)', — ——ri —{1. v 3

If the initial populations of prey and predator species are p/q and a/b
respectively, the populations will not change with time. These are the equi-
librium sizes of the populations of the two species. Of course x =0,y =0
also gives another equilibrium position.

‘From. (1) and (2)

b Hp—g) & fﬁ» -" @
-~ dx | x(a — by) 1 ”’} s
or
45 i @ o B8 9dx; xo = x(0), yo = y(0) )
§ iz x

Prepared by:A.Neerajah,Department of Mathematics, KAHE Page 2 of 11



Unit-II Mathematical Modeling through Systems of ODE First Order/2016 Batch

Integrating _ 6)
) X — X = xO)
aln-)—'%’l-lllnz—b(y yo) +

re 1S a
Thus through every point of the first quadra.nt of thte x{:cgliil::;szgtcion will
unique trajectory. No two trajectories cz_llrlltmtersec ) §
i i slopes at the same point. ; )
lm{)t} {vte“:t)ag:ﬁ\:irff?t(O, 01; or ( plq, afb), we get point trajeCtPnCS' Ir wv?/hsifz r}t,
with x = xo, y =0, from (1) and (2), we find that x mcreasesd thiat
remains zero. Similarly if we start with x = 0, y = Yo, we.ﬁn i
remains zero while y decreases. Thus positive axes of x and y give two line
trajectories (Figure 3.1).

y ()
/

—> X (1)
Figure 3.1

Since no two trajectories intersect, no tr

ajectory starting from a point
situated within the first quadrant will inters

ect the x-axis and y-axis trajec-

: s if the initial populations are
positive, the populations will be always positi
(or both) species is initially zero, it will alw

The lines through (»/q, a/b) parallel to th
first quadrant into four p

ays remain zero,

€ axes of coordinates divide the
arts I, I, IIT and IV. Using (1), (2), we find that

in 1, dx[dt < ‘0, dyldt > 0, dyldx <
inll, dxfdi <0, gy <o, dyldx > 0
in I, dx/dt > 0, dyldt < 0, dyldx < 0
in1V, . dx/dt > 0, dyldt > 0, dyldx > 0

i f11
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This give the direction field at all points as shown in Figure 3.1, Each
trajectory is a closed convex curve. These trajectories appear relatively
cramped near the axes. : :

In I and II, prey species decreases and in IIIand IV, it increases. Similarly
in IV and I, predator species increases and in II and III, it decreases. After
a certain period, both species return to their original sizes and thus both
species sizes vary periodically with time.

Competition Models

Let x(t) and y() be the populations of two species competing for the same
resources, then each species grows in the absence of the other species, and
the rate of growth of each species decreases due to the presence of the other
species. This gives the system of differential equations

dx . e, @ :

I ox bxy = bx(-z)- y), a>0, b>0. ' (7)
l .
‘;,)t—)'—-py—qu=y(p—qx)=qy(%—x); p>0, ¢g>0 (8

There are two equilibrium positions viz. (0, 0) and (p/q, a/b). There are
two point trajectories viz. (0, 0) and (p/q, a/b) and there are two line
trajectories viz. x = 0 and y = 0. ' 2

In I dx/dt < 0, dyldt < 0, dyldx > 0 -9

InIl dx/dt < 0, dyldt > 0, dyldx < 0

InNII dx/dt >0, dyldt >0, dyldx>0

In1V dx/dt >0, dyldt <0, dyldx <0 (10)
This gives the direction field as shown in Figure 3.2. From (7) and (8)
R Rl A
Integraﬁng ;
aln—Ji—-b(y—yo)=pln£—q(x-—xo) ’ (12)
Yo X0 ,
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The trajectory which passes through (p/q, a/b) is
aln%)i—-'by+a=plng§—qx+P = (13)

If the initial populations correspond to the point A4, ultimately the first
species dies but and the second species increases in size to infinity. If the
initial populations correspond to the point B, then ultimately the second
species dies out and the first species tends to infinity. Similarly if the initial
populations correspond to point C, the first species dies out and the second
species goes to infinity and if the initial populations correspond to point D,
the second species dies out and the first species goes to infinity. -

If the initial populations correspond to point E or F, the species popula-
tions converge to equilibrium populations p/q, a/b and if the initial popula-
tion correspond to point G, H, the first and second species die out
respectively. ’

Thus except when the initial populations correspond to points on curves
O'E and O'F, only one species will survive in the competition process and

the. species can coexist only when the initial population sizes correspond to
points on the curve EF.
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It is also interesting to note that while the initial populations correspond-.
ing to A4, E, B are quite close to one another, the ultimate behaviour of these
populations are drastically different. For populations starting at A, the
second species alone survives, for populations starting at B, the first species
alone survives, while for population starting at E, both species can coexist.
Thus a slight change in the initial population sizes can have a catastrophic
effect on the ultimate behaviour.

It may also be noted that for both prey-predator and competition models,
we have obtained a great deal of insight into the models ‘without using the
solution of these equations (1), (2) or (7), (8). By using numerical methods
of integration with the help of computers, we can draw some typical trajec-

tories in both cases and can get additional insight into the behaviour of these
models. '

Multi-species Models

T T T T swawW MWD

We can consider the model represented by the system of differentia] equations

i .
_ditl = aix1 + buxt + biaxixa 4+ . .. + binx1x,

7”_2 = @x2 + baxoxs + byxi + . . | 4 bznxzx,.. (14)

E‘ = AnXn + bn1xnxy _’t anXHX_g -+ o o b,,,,x,%

Here xi(t), x2(f), .. ., xa(f) represent the populations of the species.
Also a; is positive or negative according as the ith species grows or decays

in the absence of other species and by is positive or negative according as
the ith species benefits or is harmed by the presence of the jth species. In
general b; is negative since members of the ith species also compete among
themselves for limited resources.

We can find the positions of equilibrium by putting

dxi/dt = 0 for i=1,2,...,n

and solving the n algebraic equations for x1, x2, . . ., X». We can also obtz_iin
all degenerate solutions in which one or more x/'s are zero, i.e. in wtpch
one or more species have disappeared and finally we have the equilibrium
position in which all species can disappear.
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If x10, x20, . . ., Xn0 is an equilibfium position, we can discuss its local
stability by substituting

Nt =X10+ u, x2=x20+u,... Xn = Xn0 + Un (15)
14) and getting a system of linear differential equations
dln
= e + ci2uz2 4+ . . : + ciatin
{
%;‘_r% = cauy + caouz + ... -+ Conttn : (16)
d n
7;:' = Cmillt + Cagkiz + ...} Cnnlin,

by neglecting squares, products and higher powers of #’s. We can try the
solutions u; = Ai1eM, ua = AzeM, . . ., un = Ane™ to get

cip — A c12 c13 - Cin
€21 2 — A 23 % C2n

=0 (17)
Cl‘ll Cn2 CH‘] - Cnn R A

Thus the equilibrium position would be stable if the real parts of all the
cigenvalues of the matrix [c;] are negative. Tha conditions for thisare given
by Routh-Hurwitz criterion which states that all the roots of

aox" +ax"!'+...4+a, =0, a > 0 (18)
will have negative real parts if and only if To, T, T3, , . . are positive where
ai ao 0
a ao
To = a0, T = a, T2=’ s In = | a3 az a
ay a

as as as
ai do 0 0

a3 az ay 0
T

I

(19)

ds as a3 a

ar as as a4
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This is true if and only if @; > 0 and either all even-numbered 7% or all odd:
numbered Tk are positive. Alternatively (18) will have all roots with negative
real parts iff this is true for the (n — 1th degree equation

{h 4 ) 4
; = =3 o N o QRS N = 4oy = () ()
aix™! + ax*? + ax" + .. o a ' (20)

The above method will enable us to discuss only local stability t)l' i ‘pm.l»
tion of equilibrium, i.c. this will decide that if the populations of different
species are changed slightly from these cquilibriun} values, whether 't‘lm
population sizes will return to their original equili!m!nm values or not, The
problem of discussing the global stability i.e. of discussing whether the
populations will return to these equilibrium values, whatever be the magni-
tudes of the disturbances, is a more difficult problem and it is possible to
solve this problem in special cases only.

Age-Structured Population Models

Let x1(£), x2(2), . . ., xp(f) be the populations of the p pre-reproductive nge-
groups; let xp11(1), - . . , Xp+q(f) be the populations of g reproductive age-
groups and let Xpig+1(?), - . ., Npreer(r) be the populations of the r post-
reproductive age-groups. Let bpi1, bpt2, .« ., bpyy be the birth rates in the
g reproductive age-groups, let d; be the death rates in the ith age-group
(i=12,...,p+ g+ r)and let m; be the rate of migration from the /th
age-group to the (j -+ I)th age-group (/= 1,2,...,p 4 q -+ r—1),
then we get the system of differential equations

dx- ;
.d_tl = bp+1Xps1 + . . . + bpig¥pra — (di -+ my)xy

- mix1 — (d» + ma2)x2

----------------

J; = Mn-1¥n-t — duXny N =p -+ q -+ r
or

[ xi(2) 7
d x2(1)

i x,:(t) J
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r _'(dl + ml) 0 bp+l PR bppq w0l 0 0-]
my —(+m) .. o ... 0O ... 0 0
= 0 ma b i 0o ... 5 IS UL I 0
| - ; . 0 ... Muet —dnl
xi(1)
xal1)
i (22)
.\‘;1(!)
or
dx _ 23
= AX(@), (23)

where A is a matrix, all of whose diagonal elements are negative, all of whose
main subdiagonal elements are positive, g other clements of the first row are
positive and all other elements are zero. Equation (22) has the solution

X(1) = exp (A1)X(0) (24)
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MATHEMATICAL MODELL|
SYSTEMS OF ORDINARY
OF FIRST ORDER

NG OF EPIDEMICS THROUGH
DIFFERENTIAL EQUATIONS

Initially let there be n susceptible and one infected person in the system’ so'
that

SO+IND=n+1, SO =n 10 =1 (25)

The numb‘er of int‘?ct'ed persons grows at a rate proportional.to the product
of susceptible and infected persons and the number of susceptible persons
decreases at the same rate so that we get the system of differential equations

s dl
ar = —BSL, = = BsI, (26)
so that :
dS . dI
=7 o = 0, S() + I(r) = constant = n + 1 (27)
and
ds
pri —BS(n +1 — 9),
| (28)
dl
i Bl(n +1 — I).
Integrating
_ nn+1) " (n + 1)etntDE
S(t) = eI I(t) = e e)(iﬂ)p, ; (29)
so that
:Lt S(t) =0, Lt I(t) =n + 1 (30)
->00 (=0
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A Susceptlble-lnfected Susceptuble (SIS) Model

Here, a susceptible person can become infected at a rate proportional to S7
and an infected person can recover and become susceptible again at a rate

71, so that

ds dr _

S = —BSI+7I, 5 = BSI— | (31)
which gives

SIS Model with Constant Number of Carriers

Here mfectxon is spread both by mfectwes and a constant number C of
carriers, so that (30) becomes

‘ﬁ{ BUI + C)S — I
= BC(n + 1) + B(n -+ 1 —C ~ y/p)z- pr. (33)
Slmple Epidence Model with Carnars

ber Taecitasts
In this model, only carriers spread the disease and their num
exponentially with time as these are identified and eliminated, so that we get
& i — VI
45 . _pS@CW + M), = BCOSE) — VIO,

dC,cin sppnsenstt ‘ (34)

dr
so that
S(t) + I(t) = So + Io = N (say), C(t) = Coexp ( —at) (35)
and
dt = BCoN exp (—at) — [BCo exp (—a?) + rdl (36)

Model with Removal

Here infected persons are removed by death or hospitalisation at a rate
~ proportional to the number of infectives, so that the model is
as _ dl Y

dr —BST, = BSI — YI = ﬁI(S — _B_)
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= BI(S —P); P.= % (37)
Wiih initial conditions
S(0) = So>0, I0)= I >0, R(0)= Ro=0,
So + I = N. (38)

Model with Removal and Immngratlon

Tt e wensw

We modify the above model to allow for the increase of susceptibles at a
constant rate x so that the model is

L - ar. dR
7 BST + p, = = BSI — 71, = =L (39)

COMPARTMENT MODELS THROUGH SYSTEMS OF
ORDINARY DIFFERENTIAL EQUATIONS
Pharmokinetics (also called drug kinetics or tracer kinetics or multi-compart-
ment analysis) deals with the distribution of drugs, chemicals, tracers or

radio-active substances among various compartments of the body where
compartments are real or fictitious spaces for drugs.

Let x;(t) be the amount of the drug in the ith compartment at time . We
shall assume that the amount that can be transferred from the ith to the jth.
compartment (j # f) in the time interval (¢, t 4+ 4¢) is kyxi(1)4t + 0(4t)
where kj; is called the transfer coefficient from the ith to the jth compart-
ment. The total change 4.x;in time 4t is given by the amount entering the ith
compartment from other compartments which is reduced by the amount

leaving the ith compartment for other compartments mc]udmg the zeroeth
compartment that dcnotes the outside system.
Thus we get

ax; = — _{'0 kyxidt + 2 kiixdt + 0(4¢) (40)
ini Jai
Dividing by 4t and proceeding to the limit as 4 — 0, we get

dx; _

(,[ e ’C, 2 k,’] | 2 k,,’(‘, (4])
J=
i;fl J#I
= 2 kiix;, G = dads nivnls (42)

Jj=1
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where we define

g = = ;én Rije - (TR (43)
J#i
In matrix notation, we have
dx/de = KX, (44)
where
[ xi(f) ]
() ku ka .- Knt
M= 4oy el ki favs s, e (43)
i x;(’) i kiw kan o kpy
If X = BeM, when B is a column matrix, (44) gives
ABeM = KBeM (46)
This gives a consistant system of equations to determine B if
|K—AM|=0 (47

where / is n ¥ n unit matrix. Thus A has to be an eigenvalue of the matrix K,
We note that all the diagonal elements of K are negative, all the non-diago-
nal elements are non-negative and the sum of element of every column is
greater than or equal to zero. For such a matrix, it can be shown that the
real parts of the cigenvalues are always less than or equa'l to zero, and the
imaginary part is non-zero only when the real part is strictly less than zero.
Thus if Aq, A2, . .., My are the eigenvalues then

Re(d) <0
Im (A) # Oonly if RI(A) <0 : (48)
If the drug is injected at a constant rate given by the column vector D
with components Dy, Da, . .. , Da, (44) becomes
dX|dt = KX + D (49)
Equations (44) and (49) constitute the basic equations for the analysis of
drug distribution in the n-compartment system.

MATHEMATICAL MODELLING IN ECONOMICS BASED
ON SYSTEMS OF ORDINARY DIFFERENTIAL
EQUATIONS OF FIRST ORDER

Domar Macro Model
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Let S(1), (1), Y(t) be the Savings, Investment and National Income at time
1. then it is assumed that

(i) Savings are proportional to national income, so that
S@t) =a¥(t), «>0

(ii) Investment is proportional to the rate of increase of national income
50 that

1) = BY'(t), B>0
(i) All savings are invested, so that
S(t) = I(1) (52)

We get a system of three ordinary dj i i 7
3t ‘ y differential equations of first order for
determining S(1), Y(1), I(t). Solving we get

Y(1) = Y(0) e/f, (1) = aY(0)ex/? = S(1), (53)
50 that the national income, inv

; estment and savin incre: onen-
tially. vings all increase exponen

(51)

Domar First Debt Model |
Let D(f), Y(r) denote the total national debt and total national income
respectively, then we assume that

(i) Rate at which national debt changes is proportional to national income

so that ;
D'(f) = aX(t) (54)
(i) National income increases at a constant rate, so that
Y'(t) =B , (55)
Solving D(t) = D(0) + «Y(0)t + -%—ocﬁﬂ (56)
Y() = Y(0) + Bt : (57)
D(t)- _ D0y + «Y(0)t + 1/2a8t% (58)
so that Y Y(0) + B

In this model, the ratio of national debt to national income tends to increase
without limit.

Domar’s Second Debt Model

In this model, the first assumption remains the same, but the second assump-
tion is replaced by the assumption that the rate of increase of national
income is proportional to the national income so that

Y'(t) = BY(1) (59)
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Solving (54) and (59)

Y(f) = Y(0)e* (60)
D() = D(0) + %Y(O)(eﬁ' —1) 61)
D) _ _ D) WA - =

Y(©) | Y(0)e¥ + /3(‘ ™) (62)

In this case D(1)/Y(r) = /B as t = 0. Thus when debt increases at a rate
proportional to income, then if the ratio of debt to income is notto increase
indefinitely, income must increase exponentially.

Samuelson’s Investment Model

Let K(t) represent the capital and I(¢) the investment at time ¢, then we
assume that

(i) the investment gives the rate of increase of capital so that

dK
Z =10 (69)

(i) the deficiency of capital below a certain equilibrium level leads to an
acceleration of the rate of investment proportional to this deficiency and a
surplus of capital above this equilibrium level leads to a declaration of the
rate of investment, again proportional to the surplus, so that

gt! = —m(K(t) —K.),

| (70)
where K. is the capital equilibrium level. If k(1) = K(¢) —K., we get

dk dr '

e 1(1), 3= —mk(2), (71)
so that A

mk(t) it e I(—”; (72)

Intcgrating

I* = m(ks — k2; ko = k(0); 1(0) = O, (73)
so that

dk — ) I

T = - Vmvid =i | (74)
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and k(t) = k(0) cos 4/ ¢ (75)
I() = —k(0) v/m sin /57 i (76)

so that both k(1) and 7(7) oscillate with a time period 27/4/m.

It will be noted that if we put k(1) = x(1), 1(t) = (), equations (71) are
the equations for simple harmonic motion. Thus the mathematical models-
for the oscillation of a particle in a simple harmonic motion and for the
oscillation of capital about its equilibrium value are the same,

Samuelson’s Modified Investment Model

T e WMATIW TS AWIW RAWE

In this case, the rate of investment is slowed not only by excess capital as
before, but it is also slowed by a high investment level so that (71) become

dk dr : ‘
X = I(1), i —mk(t) — ni(t), a7
so that
dr '
I T + mk(t) + ni(t) = 0, (78)
A%k dk '
or g +n y + mk = 0, (79)

which are the equations for damped harmonic motion corresponding to the

case when a particle performing SHM is acted as by a resistance force pro-
portional to the velocity.

MATHEMATICAL MODELS IN MEDICINE, ARMS nAcg_
BATTLES AND INTERNATIONAL TRADE IN TERMS OF
SYSTEMS OF ORDINARY D!FFERENTIAL EQUATIONS
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3.6.1 A Model for Diabetes Mellitus :
Let x(¢), y(f) be the blood sugar and insulin levels in the blood strea.mt lz:t
time ¢ 'i’he rate of change dy/dt of insulin level is proportional to (i) the

excess x(1)—.xq of sugar in.blood over its fasting level, since this exces
makes the pnncrcns sccrctc ‘insulin into the blood stream (ii) the amoun
(1) of insulin since insulin left to itself tends to decay at a rate proportiona
to its amount and (iii) the insulin dose d(t) injected per unit time. This give

-%’— = ay (x — x0) H(x — x0) —azy + aad(t), (95

where a1, a2, ay are positive constants and H(x) is a step function whiclk
takes the value unity when x > 0 and taken the value zero otherwise. This
occurs in (95) because if blood sugar level is less than xo, there is no secre-
tion of insulin from the pancreas.

Again the rate of change dx/dt of sugar level is proportional to (i) the
product xy since tl‘}c higher the levels of sugar and insulin, the higher is
the metabolism of sugar (ii) xo — x since if sugar level falls below fasting
level, sugar is” rcl):ascd from the level stores to raise the sugar level to
normal (iii) x — xo since if x > xo, there is a natural decay in sugar level
proportional to its excess over fasting level (iv) function of ¢ — o where to -
is the time at which food is taken

Z: = —bixy + ba(xo — x) H(xo — x) —bs(x — xo0) H(x — xo)

+baz(t — to), (96)
where a suitable form for z(t — fo) can be :
2(t — to) = 0, <t
= Qe %(t—1), t > to o7

Equations (95) and (96) give two simultaneous differential equations to
determine x(7) and y(t). These equation can be numerically integrated.

Prepared by:A.Neerajah,Department of Mathematics, KAHE Page 8 0of 13



Unit-II Mathematical Modeling through Systems of ODE First Order/2016 Batch

Richardson’s Modei for Arms Race _

Let x(¢), y(¢) be the expenditures on arms by two countries 4 and B, then
the rate of change dx/dt of the expenditure by the country 4 has a term
proportional to y, since the larger the expenditure in arms by B, the larger
will be the rate of expenditure on arms by 4. Similarly it has a term pro-
portional to (—x) since its own arms expenditure has an inhibiting effect on |
the rate of expenditure onarms by A. It may glgqlco'ntaina:,_tprm independent

of the expenditures dependifig on mutual suspicions-or mitual goodwill.
With these considerations, Richardson gave the model

e |

A\ .1}_’___ e
5 = mx+r,dt——bx ny + s (98)

Here a, b, m, n are all > 0, r and s will be positive in the case of mutual
suspicions and negative in the case of mutual goodwill.
A position of equilibrium xo, yo, if it exists, will be given by

Smxo cayo ~ ro== 0 - Xo . Yo
ibxo —myo |- 5= 0. — a8 — nr — br — ms
\ _J l
X Loy (3 (eSO A2 - Bl —mn + ab
or O e il g =108 E.br,
mn — ab mn — ab 99)

If r, s are positive,

a position of equilibriu ists i
X=3x—xo,VY q m exists if ab < mn. If

=) — Yo, wWe get

dx dY
5 =aP—mk, 7 =X —ny (100)
X = 4eM, Y = BeM will satisfy these equations if
A m =0

=0, A2 42 = -
—b - XA+n . (m+.n)+mn s Y o
Now the following cases arise:
(@) mn —ab>0,r>0
(101) A
stable.

(ii) mn — ab > 0, r < 0,5 < 0, there is no position of equilibrium since
xo < 0, yo < 0. However since Ay < 0, Ay < 0, X(r) >0, Y(t)—>0as
t = ©, so that x(£) = xo, y(¢) > yo. However xo and yo are negative and

_populations cannot become negative. In any case to become negative, they

have to pass through zero values. As such, as x(f) becomes zero, (98) is
modified to

»§ > 0. In this case xo > 0, yo > 0 and from
1 < 0, A&2 < 0. As-such there is a position of equilibrium and it is

dy _
T~ g (102)
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and since s < 0, y(#) decreases till it reaches zero. Similarly if y(¢) becomes
zero first, (98) is modified to

X
o | (103)

and since » < 0, x(#) decreases till it reaches zero. Thus if mn — ab > 0,
r < 0,s < 0, there will ultimately be complete disarmament.

(iii) ma — ab < 0, r > 0, s > 0. These give xo < 0, yo < 0, one of
Ay, Az is positive and the other is negative. In this case there will be a run-
‘away arms race. | |

(iv) ma — ab < 0,r < 0, s <0. These give xo > 0, yo.> 0 one of
A1, Az is positive and the other is negatlve In this case there vnll be a run-

Mathematical Modeling through Systems of ODE First Order/2016 Batch

Lanchester's Combat Model -

Let x(¢) and y(¢) be the strengths of the two forces 'ehgéged in combat
and let M and N be the fighting powers of individuals depending on
physical fitness, types of arms and training, then Lanchester postulated that

the reduction in strength of each force is proportional
fighting strength of the opposite force, so that

to the effective

lI-\: — —‘I,llN, (l,y —_— a_vM (104)
di, dt g
dx _ & o @ — NpP = constant (105)
giving SN G R %

If the proportional reduction of strengths in the two forces

_l_.(_l.'l=.l-£{}i or MX:’-‘—-{-{- or Mx?

X odt y dt x y

This is the square law. The fighting strength of an army
square of its numerical strength and direct
individuals.

International Trade Model

Since international trade is beneficial to all parties, we C
model

are the same
= Ny? (1006)

depends on the

ly on the fighting quality of

an consider the
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dx 1

— = gax1X2 + aixixy + . .. -- @1aX1Xn

dt

dx ) -

_dtz = gyxax1 -+ az3x2x3 -+ ... 4 @wx2Xn

23 (107)
dx

—(—itf- = QniXaX1 + Gm2Xnx2 + ... + Qpn-1Xn\n-1

where all ay’s are positive. An equilibrium position is (0, 0, . . ., 0) and this
is stable.

MATHEMATICAL MODELLING IN DYNAMICS THROUGH

SYSTEMS OF ORDINARY DIFFEREN '
OF FIRST ORDER P EIONS

Dynamics
..... &t e pLIRANIUD

: : l i

y(1), its coordinates at any time ¢ and u(r),
the same time. Similarly for the motion

we have to determine x(t), y(1), z(1), u(1),

body in th.ree dimensional space, we require twelve quantities at time ¢ viz.
six coordinates and velocities of its centre of gravity and six angles and
angular velocities about the centre of gravity,

Since equa.tion of motion are based on the principle: mass /£ acceleration
in any direction = force in that direction, we get systems of second order
differential equations. However since acceleration is the rate of change of
velocity and velocity is the rate of change of displacement, we can decom-
pose one ordinary differential equation of the second order into two ordinary
differential equations of the first order.

We discuss below the motion of a particle in a plane under gravity. More
general dynamical motions will be discussed in the next chapter.

v(t) its velocity components at
of a particle in three dimensions,
u(t), w(t). For motion of a rigid
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Motion of a Projectile

A particle of mass m is projected from the origin in vacuum with velocity V
inclined at an angle « to the horizontal, Suppose at time ¢, it is at position
x(), y(t) and its horizontal and vertical velocity components are u(z), ()
respectively, then the equations of motion are:

du dv

meg =0 mg=—mg (108)
AY
v(t)
|
|
U(f):
J ; )
| -
v | z
u
d [
1
0 A"x
Figure 3.3
Integrating u=Vcosa v=Vsne— gt (109)
Ix . T
so that %IT = V cos ¢, 5 = Vsino — gt (110)
Integrating again
e Yogin ol = —l—-gt2 (111)
x =.V cos af, = 5

Eliminating ¢ between these two equations, we get

| __gx (112)
Sy = X180E T 5 PT oo «

which is a parabola, since the terms of the sec

ond degree form a perfect
square. The parabola cuts y == 0, when -

V2 sin 20
xem 0 or X — - (113)

Figure 3.3 so that the range of the

corresponding to position 0 and A in
particle is given by
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aae V2 sin 2« (114) i
g
Putting » == 0in (111) we get
t=0 or = ~.——--—-2M5;n % : (“5).

This gives the time 7" of flight. Since the horizontal velocity is constant
and equal to ¥ cos «, the total horizontal distance travelled is

V cos «(2V sin @)/(g) = V2% sin 2a/g

which gives us the same range.

POSSIBLE QUESTIONS
Part B (6 Marks)

1.Discuss in detail prey-predator models.

2.Discuss in detail on Samuelson’s investment model.

3.Derive a Simple Epidemic Model.

4.Show that national income , investment and savings increase exponentially.

5.Design any two mathematical models in economics based on ordinary differential equations of first
order give by Domar.

6.Give a detailed note on multi-species models.
7.Explain about motion of a projectile.

Part C (10 Marks)

1.Discuss in detail on Samuelson’s investment model.
2.Explain a simple epidemic model.

3.Discuss in detail Domar Macro model.
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odeling Subject Code: 16MMP303

Mathematical Modeling through Systems of ODE First Order

Part-A(20X1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)
Multiple Choice Questions
Question Opt1 Opt 2 Opt 3 Opt 4 Answer
If there are no predators the species will grow at a rate proportional
to the population. Prey trajectory permanent persuieng Prey
If there are no predators the prey species will grow at a rate -l to
the population. Proportional reciprocal Exponential Logically Proportional
The predator species _____ and the prey species decreases at a rate
proportional to the product of two populations. increases decreases uniformly stable increases
The predator species increases and the prey species at arate
proportional to the product of two populations. increases decreases uniformly stable decreases
The predator species increases and the prey species decreases at a rate
to the product of two populations. Proportional linear unit orthogonal Proportional
The predator species increases and the prey species decreases at a rate
proportional to the of two populations. Addition subtraction product division product
If there are no prey the species will decline at a rate proportional to the
population. Prey Predator permanent persuieng Predator
If there are no prey the predator species will at a rate proportional to
the population. decline denied different decrease decline
If there are no prey the predator species will decline at a rate to the
population. Proportional reciprocal Exponential Logically Proportional
The initial populations of prey and preador species are p/q and a/b a/b and p/q a/b p/q p/q and a/b
The population of x=0 and y=0 is called position. zero equilibrium unit none equilibrium
x(t) and y(t) are the populations of two species competing for the same
resources stands model epidemic population dynamic competition competition
The rate of growth of each species due to the presence of the other. |increases decreases uniformly stable decreases
The rate of growth of each species decreases due to the of the other. |presence absence both none presence
x1(t(),x2(t).....xn(t) represent the populations of n species states, model. [multi-species single-species prey predator multi-species
The real parts of all the eigenvalues of the matrix[cij] is negative are called Rout-Herwitz fick's newtyons gauss Rout-Herwitz
Age structured population model deals age groups productive reproductive decline increase reproductive
In simple epidemic mode S(t) denotes susceptible system synopsis success susceptible
In simple epidemic mode I(t) denotes Infected increase innovation intensity Infected
In simple epidemic mode S(t)+I(t) = n n+l n-1 2n n+l
In simple epidemic mode limit t tends to infinity of S(t) denotes 0 1 2
In simple epidemic mode limit t tends to infinity of 1(t) denotes n n+1 n-1 2n n+1
A susceptible person can infected at a rate proportional to Sl SIS SHM MOC S|
In SIS Infected person can recover and become susceptible at a rate Gamma |l S| SHM SIS Gamma |
A susceptible person can infected at a rate to S| Proportional linear unit orthogonal Proportional
Only carriers spread the disease deals model Simple epidence |epidemic SIS Sl Simple epidence
The model with removal deals the infected persons are removed by Death moving migration none Death
The model with removal deals the infected persons are removed by Hospitalisation moving migration none Hospitalisation
Model with removal and immigration allows the of susceptible. Increases decreases decline equate Increases
Model with removal and immigration allows the increase of susceptible. infected susceptible preys predators susceptible
deals the distribution of drugs , chemicals tracers or radio active. Pharmokinetics  [kinetics medicine diffusion Pharmokinetics
Parmokinetics deals the distribution of Drugs blood Glucose Rice Drugs
Parmokinetics deals the distribution of Chemicals blood Glucose Rice Chemicals
Parmokinetics deals the distribution of Tracers blood Glucose Rice Tracers
Parmokinetics deals the distribution of Radio active blood Glucose Rice Radio active
In Domar Macro Model S(t) denotes Savings Success Susceptible System Savings
In Domar Macro Model I(t) denotes Increases Investment innovation Instalment Investment
In Domar Macro Model Y(t) denotes Income National Income  [Debt National debt National Income
In Domar Macro Model savings are proportional to Income National Income  |Debt National debt National Income
In Domar Macro Model Investment is proportional to the rate of increase
of Income National Income  [Debt National debt National Income
In Domar Macro Model all savings are Investment so that S(t) = I(t) S(t) =1/2 1(t) 2S(t) = I(t) None S(t) = I(t)
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In Domar first Debt model D(t) denotes debt total national debt [income national income total national debt
total national
In Domar first Debt model Y(t) denotes income total income national income [total national income |income
In Domar first Debt model rate at which national debt changes is
to the national income. Proportional linear unit orthogonal Proportional
In Domar first Debt model rate at which national debt changes is proportional
to the income total income national income |total national income [national income
In Domar first Debt model national income increases at a rate. Variable Constant unit orthogonal Constant
In Domar first Debt model national income at constant rate. Increases decreases decline equate Increases
In Domar's Second Debt model the ratio of debt to on come is not to increase
indefinitely income must increase Proportional reciprocal Exponential Logically Exponential
price of a
In Allen's Speculative Model d(t) denotes demand supply commodity debt demand
price of a
In Allen's Speculative Model s(t) denotes demand supply commodity System supply
price of a price of a
In Allen's Speculative Model p(t) denotes demand supply commodity Prey commodity
In Samuelson's Investment model K(t) denotes Capital investment savings debt Capital
In Samuelson's Investment model the investment gives rate of increase of
Capital investment savings debt Capital
In Samuelson's Investment model the investment gives rate of of
capital. Increases decreases investment decline Increases
In Samuelson's Modified Investment model a particle performing is
acted by a resistance force proportional to velocity. SHM MOC SIS none SHM
In Samuelson's Modified Investment model a particle performing SHM is acted
by a resistance force to velocity. Proportional linear unit orthogonal Proportional
In a model for Diabetes Mellitus x(t ) denotes blood sugar salt urea fat blood sugar
In a model for Diabetes Mellitus y(t ) denotes insulin thyroid salt urea insulin
In Leontief's Inter - Industries relation model, the notation of contribution from
the rth industry to sth industry per unit time is Xrs Xr Xr Er Xrs
In Leontief's Inter - Industries relation model,the notation of contribution from
the rth industry to consumers per unit time is Xrs Xr Xr Er Xr
In Leontief's Inter - Industries relation model,the notation of total output of the
rth industry per unit time is Xrs Xr Xr Er Xr
In Leontief's Inter - Industries relation model,the notation of input of the labour
in the rth industry is Xrs Xr Xr Er &r
In Leontief's Inter - Industries relation model,the notation of price per unit of
the product of the rth industry is pr Xr Xr Er pr
In Leontief's Inter - Industries relation model,the notation of wage per unit of
labour per unit time is w Xr Xr Er w
In Leontief's Inter - Industries relation model,the notation of total labour input
into the system is Y Xr Xr Er Y
In Leontief's Inter - Industries relation model,the notation of stock of the
product of the rt industry held by the sth industry is Srs Xr Xr Er Srs
In Leontief's Inter - Industries relation model, the notation of stock of the rt
industry is Sr Srs Xr Er Sr
The excess of sugar in blood over its fasting level makes secrete insulin
into the blood stream. thyroid harmone pancreas none pancreas
The fighting strength of an army depends on the of its numerical
strength and directly on the fighting quality of individuals. square circle rectangle ellipse square
A particle of mass m is projected from the origin in vacuum with velocity
inclined at an angle proportional to the vertical slope horizontal equal horizontal
A particle of mass m is projected from the origin in vacuum with velocity
inclined at an angle to the horizontal. Proportional reciprocal Exponential Logically proportional
In the case of intercontinental ballistic missiles eating and have to be
considered. aerodynamics dynamics mechanics aeromechanics aerodynamics
Both range and maximum eight of projectile are reduced by resistance. |air water liquid solid air
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MATHEMATICAL MODELLING OF PLANETARY
MOTIONS

Every planet moves mainly under the gravitational attractive force exerted
by the Sun. If S and P are masses of the Sun and the planet and G is the
universal constant of gravitation, then the forces of gravitational attraction
on the Sun and planet are both GSP/r?, where r is the distance between the
Sun and the planet. Accordingly the acceleration (Fig. 4.1) of the Sun
towards the planet is GP/r? and the acceleration of the planet towards the
Sun is GS/r. The acceleration of the planet relative to the Sun is

G(S + P)ir? = pl.

Now we take the Sun as fixed, then the planet Ean be said to move under a

central force u/r? per unit mass i.e, under a force which is always directed
towards a fixed centre S.

s_ﬁgp GSP P
r re

51_72’ GS P
r

S GEP) P

Figure 4.1

We shall for the present also re

. gard P as a particle go t
motion of the planet, we have P hat to study the

to study the motion of a particle movin
g
under a central force. We can take S as origin so that the central force is

always along the radius vector. To study this motion, it is convenient to use

pplar coordinates and to find the components of the velocity and accelera-
( tion along and perpendicular to the radius vector,

e, T e m e a TEs e m  mre— e e m e m

Components of Velocity and Acceleration Vectors
along Radial and Transverse Directions
As the particle moves from P to Q, the displacement along the radius vector

=ON — OP = (r + 4r)cos 46 — (1)
and the radial component u of velocity is

(r+ dr) cos 46 —r

u=1L
dt-b'i'.i ae
ar  dr
F—— — T — 2
aIF'-E-o at  dt @
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Figure 4.2

Similarly the displacement perpendicular to the radius vector

= (r + 4r) sin 40 3)
and the transverse component v of the velocity is given by
. (r + 4r) sin 46 sin 40 40 _  df
? ﬁa!fo a4t - AE'-EO T a d dt )
As such the velocity components in polar coordinates are
dr_ _ do_
u=p=r and v=r= rt (5)

Now the change in the velocity along the radius vector
= (u+ du)cos 40 — (v + dv) sin 460 — u (6)
V+AV

and the radial component of acceleration
- bt W du) cos 40 — (v |- dv) sin 40 - u

BTN At

s Lt d" s 3‘6’0 d" "!\0 - ";’;‘(I‘l) e "0. 0

SR E TN
== ru - N‘: (7)
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Similarly the transverse component of acceleration
i Bk (2 + du) sind@ + (v - dv) cos 40 — v

St dt *{
_ ud® < do
> .'l::so di
a8 & S LT W e
Sl o T i 6 - m(rl’) -— r30") (8)

Thus the radial and transverse components of acceleration are

r''— 8 and -’l-_- (;—i(r’f") (9)

N!otion Under a Central Force

Let the force acting on a particle of mass m be mF(r) and let it be directed
towards the origin, then the equations of motion are

m(r"” — r) = —mF(r) ‘ (10)
1 .
2 28" = 0 an
From (11)
rif' = constant = / (say), (12)
then (10) gives
F* = (O = — Fy) (13)

We can eliminate ¢ between (12) and (13) to get a differential equation
between r and 0. We find it convenient to use # = 1/r instead of r, so that
making use of (12), we get

> dr dr du db 1 d

.____=_______=_____l£'l du
dt = du do dr AT —hgp (14)
and
v df_ . duY_ df . du\ do
i, dt( 4 dr) a‘o("’?zﬁ) ar
d?u dz
= =h g e - (15)

From (12), (13) and (15)

—F() = —h’u";;" - % h2yt = —h’u’(‘%{ -+ u)

T TR TEEERTATE we e e s e mwe—— e

du F
i T = (16)
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where F can be easily expressed as a function of u. This is the differential
equation of the second order whose integration will give the relation

between u and 6 or between r and 9 i.e. the equation of the path described
by a particle moving under a central force F per unit mass.

Motion Under the Inverse Square Law

If the central force per unit mass is p'/rz'or pu?, Equation (16) gives

d*u B
36‘3+U=;2' (17)

Integrating this linear equation with constant coefficients, we get

u=Acos(0—a)+E':-

h2|u

or -7———-~£;-=l+ecos(0f—-az);h2=pL, (18)

which represents a conic with a focus at the centre of force. Thus if a parti-
cle moves under a central force u/r2 per unit mass, the path is a conic sec-
tion with a focus at the centre. The conic can be an ellipse, parabola, or
hyperbola according as e < 1.

Now the velocity V of the particle is given by

V2 — 2 4 207 = (‘%%‘3‘;‘:—)2 + iy
| = }:2(%)2 + (19)
Using (18)
L % — —esin(d — ) | (20)
From (19) and (20)
i pL(ez sin‘ég ~8) 4 ecozz(ﬁ — ap
:.-2-(1 + & + 2ecos (0 — =)
___.IF:_(ez —1+2(1+ecos(6 —a)
—Ee-n+ * @)

If the path is an ellipse L = a(l — e?)

(22)
If the path is a parabola ¢ =1

Prepared by:A.Neerajah,Department of Mathematics, KAHE Page 5 of 11



Mathematical Modeling through ODE of Second Order/2016
Batch

Unit-III

If the path is a hyperbola L = aler — 1),

- 1. _ ) 1
2= — + — the case of a hyperbola
so that | -—;x(r—r a)m

=p (_-?_) in the case of a parabola (23)
=

=np (-2— — —]-) in the case of an ellipse.
r a s
ocity ¥ from a point at 2 distance r

: icle is projected with vel
Thus if the particle 1s proj hyperbola, parabola or ellipse

from the centre of force, the path will be a
according as

2 24

V2 =0 (24)

. r
{_We have proved that if the central force is ulrr per unit mass, _the path is
a conic section with the centre of forces at one focus: Conversely if we know
that the path is a conic section A il
L fu=1+ecos(®—a) (25)
=
with a focus at the centre of force, then the force per unit mass is given by

- o [dPu
F=h‘uz([7g—2+u)
. »(—eCOS(G—--:z) " 1+cos(0—cz))
- A ; 5

g B
Lk (26)

so that the central force follows the inverse square law.
( Since all planets are observed to move in elliptic orbits with the Sun at one
~focus, it follows that the law of attraction between different planets and Sun

must be the inverse square law.)

Kepler’s Laws of Planetory Motions
On the basis of the long period of observations of planetory motions by his
predecessors and by Kepler himself, Kepler deduced the following three laws

of motion empirically >

(i) Every planet describes an ellipse with the Sun at one focus

(ii) The radius vector from the Sun to a planet describes equal areas in
equal intervals of time.

(iii) Thg squares of periodic time of planets are proportional to the cubes
of the semimajor axes of the orbits of the planets
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We can deduce all these three law
of planetory motion disc
inverse square law,

s from the mathematical modelling
ussed above, when the law of attraction is the

ToTTTeUResrtiann DYUALIUND Ur SELUND ORDER X

(i) We have already seen that under
to be a conic section and this includes
(ii) Since r20' = ), we get

the inverse square law, the path has
elliptic orbits.

1 248 1
o= =k Qn

From Figur.e 4.2, the area 44 bounded by radius vectors OP and OQ and
the arc PQ is 1/272 sin 40 so that (27) gives

dA 1 -
a = 2" ol

and the rate of description of sectorical area is constant and equal areas are
described in equal intervals of time. This is Kepler's second law.

(iii) The total area of the ellipse is 7ab and since the areal velocity is 4,
the periodic time T is given by

T='ﬂ'ab . 27rab_ 27 ab 2=
th VUL AVuvBla Ve
For two different planets of masses P, P2, and semiaxes of orbits a;, az,

I
l

]

~

(29)

this gives
T\ _ Ve a’' VGS+P)a’
e - . z (30)
T A a VG(S + P) a
L P
T_St+tha_ " Sa G1)
e 2 S+P g l_;_ﬁag
Y

Since P, P; are very small compared with §, this gives, as a very good

approximation
2 3

which is Kepler’s third law of planetory motion.
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Deduction of Kepler's three laws of planetory motion from the universal
law of gravitation was an important success of mathematical modelling.
Results which took hundreds of years to obtain by observation could be

obtained in a very short time by using mathematical modelling.
Here we have neglected the forces of attraction of other planets on the

given planet. These are very small as compared with the attractive force of
the Sun. However these can be taken into account. In fact possibly the most
sensational achievement of mathematical modelling was achieved when the
discrepancies from the above theory observed in the motion of planets were
explained as possibly due to the cxistence of another small planet. The posi-
tion of this planct, not observed till that time, was calculated, and when ti:c
telescope was pointed out to that position in the sky, the planet was there!

—

Again the occurrence of many of the fundamental pfarticlcs in ;_)hysics has
been theoretically predicted on the basis of mathcmgtlcal modelling. ‘

The advantages of developing a successful theoretical !.110d('3] over relying
on purely observational and empirical models are thaf (1.) thns. dev?lopment
can suggest development of mathematical models for s:mxlf\r situations c!sc-
where and those new models can later be validated and (ii) the theoretical
models, unlike empirical models, can be generalised. Thus the model deve-
loped by Newton for planetory motion could be easily extendt?d to apply to
motion of artificial satellites. Similarly in urban transportation, a gravity
model was developed by trial and error and ad hoc empirical methods ex-
tending over a period of thirty to forty years. When the same r.nodel was
obtained theoretically from the principle of maximum entropy, it could be
easily generalised for many more complex situations than could ever be
handled by the empirical methods.

MATHEMATICAL MODELLING OF'CIRCUL '_n MOTION
MOTION OF SATELLITES ‘ ’ i

Circul\ar Motion

When a particle moves in a circle of radius a so that » = q, the radial
component of velocity = ' = 0, the transverse component of velocity =

r6’ = ab’ the radial component of acceleration = '’ — 02 = — a82, the

transverse component of acceleration = 4 4 (29 — L 4 2.7 _ o
) s g ) o (@) = ab".
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Ta ve’l ocity is at” along the tangent and the acceleration has two com-
ponents a8 along the tangent and a8 along the normal.
If a particle moves in a circle of radjus a, its equations of motion are

0o __ * = 3
maf'’ == external force in the direction of the tangent

external force in the direction of the inward normal.

Thus if a particle is attached to
one end of a string, the other end
of which is fixed and the particle
moves in a vertical circle, the equa-
tions of motion are (Figure 4.4)

mafd'? =

mab’ = —mg sin 0 (33)
maf'? = T —mg cos 6 (34)

Figure 4.4 If 0 is small, (33) gives
o= — Lo, (35)

a

which is the equation for a simple harmonic motion. Thus for small oscilla-
tions of a simple pendulum, the time period is

T = 2n\/alg (36)
If @ is not necessarily small, integration of (33) gives
a0’ = 2g cos 6 + constant (37

If the particle is projected from the lowest point with velocity u, then
a®' = u when @ == 0, so that

2 = vz — i‘i -~ PO 8 3
ad'? = = = 2g(1 — cos 8), (38)
where z is the velocity of the particle, so that
»? = u? — 2ga(l — cos 6) (39)
or -12— my?* = -%— mu2 — mga(l — cos 0) = —12--mu2 — mgh (40)

where & is the vertical distance travelled by the particle. Equation (40) can
be obtained directly from the principle of conservation of energy. Equation
(34) then gives

2
T=m-€i+mgcoso=mi;——2mg+3mgc030 (41)
a

2 .
At the highest point § = w and T = m—';- — 5mg. If 4> > 5ag, the particle

will move in the complete vertical circle again and again. However if
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tension will vanish before the particle reaches the highest POiflt.
nishes, the particle begins to move freely L.mdcr gravity
ing again becomes tight and the

w? < Sag,
When the tension va ' .
and describes a parabolic path till the str

circular motion is started again.

e on a Smooth or Rough Vertical Wire

At articl
Motion of a P of a smooth wire, tne eyuauohs of

(a) If the particle moves on the inside
motion (Fig. 4.5a) are: |
maf"' = —mg sin 0

maf’? = R — mg cos 0

(42)
(43)

R
8 %
\"
m
@ (b)

Figure 4.5

These are the same as (33) and (34) when T is replaced by the normal reac-
tion R. As such if #> = Sag, the particle makes an indefinite number of
complete rounds of the circular wire. If #> < 5ag, the reaction vanishes
before the particle reaches the highest point, the particle leaves the curve,
describes a parabolic path till it meets the circular wire again and it again
describes a circular path. This motion is repeated again and again.

~(b) If the particle moves on the outside of the smooth vertical wire
(Fig. 4.5b), the equations of motion are :

mab"” = mg sin 6. . | (44)
mab" = — R + mg cos 9 | @5)
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Integrating (44) 0’2 = u? 4 2ga(l — cos 6) _ (46)
: 2
Using (45) : R = 3mg cos 6 —-'1’;-:‘— — 2mg (47)
; - 45 ¥ mu? dizeis §
At the highets point 6 =0, R = mg — g : (48)
. 2 Y :
At the point 4, 0=n/2, R = — m—al- - 2mg " (49)

If .uz > ag, the particle leaves contact with the wire immediately and des-
cribes a parabolic path. |

If ¥? < ga, the particle remains in contact for some distance, but leaves
contact when R vanishes i.e. before it reaches 4 and then it describes a
parabolic path.

(c) If the particle moves on the inside of rough vertical circular wire, then
there is an additional frictional force wR along the tangent opposing the
motion. As such.equations (42) and (43) are modified to

maf"’ = — mg sin 6 — uR (50)
mad'? = — mgcos § + R (51
Eliminating R between these equations, we get a non-linear differential
equation ’
af’ = — gsin8 — p(—g cos § — af?) (52
which can be integrated by substituting 8’ = w, 8" = w dw/dd.
Similarly (44) and (45) are modified to
mab'’ = mg sin 6§ — pR (53)
mad'? = — R 4 mg cos @ (54)

We can again eliminate R, solve for 8" and ¢ and find the value of § when

R vanishes.
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Circular Motion of Satellites

Yust as planets move in elliptic orbits with the Sun in one focus,

made ax:tiﬁc;al satellites move in ellip-
tic (or circular) orbits with the Earth \

(or rather its centre) at one focus. \i
P

the man-

If the Earth is of mass M and

radius @ and a satellite of mass
m (<€ M) is projected from a point 2 Q /h
P at a height 4 above the Earth with
velocity V at right angles to OP 2
(Figure 4.6) it will move under a
central force Gm M/r?. Since the 5
central force of a circular orbits is Figure 4.6
mV?2/r, we get, if the path is to be circular,

mv? Gm M GM

ek @ * = 3
to gravity, then the gravitational force on a
surface of the Earth is mg. Alternatively from
it is GMm/a? so that

If g is the acceleration due
particle of mass m on the
Newton’s inverse square law,

GZ’" = mg or Gm = ga® (56)

From (55) and (56) P
- T )
e a+h e

This gives the velocity of a satellite describing a circular orbit at a height 4
above the surface of the Earth, Its time period is given by
2n(a -+ h) 2n(a - /
T= - 2 i
= mmet (@ | M)V2 e L (@ 4 )2

v Vga v ga e (36)
:Trl;?-carlh completes one revolution about its axis in twenty-four hours, Assuch
: ts 24 hoprs, the satellite would have the same period as the Earth and would
appear slau.onary, to an obscrver on the Earth, Now taking g = 32 ft/sed
a = 4000 miles, T' = 24 hours, we get if & is measured in miles ,

((4000 -+ i 1760 5 3y¥2 — 24260 7601/32 4000 2 1760 /3 . 7
2% 22
= 1642607.416 % 10°
(4000 -+ 4) #5280 = 13919.3408  10*
4000 + 1 = 26.36238788 x 10° == 26362,38784
h = 22362.38788 miles

This gives the hei |
ght of the synchronous or sync i ich i
very useful for communication purposes. PR Sl s
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Eiliptic Motion of Satellites
If as
with a velocity different from+/g a/\/
angles to the radius vector, the orbit
will not be circular, but can be ellip-
tic, parabolic or hyperbolic depend-
ing on ¥ and the angle of projection,

If the angle of projection is 90°
and the orbit is an elliptic with semi
major axis a” and eccentricity e, then
there are two possibilities depending
on whether the point of projection
is the apogoee or the perigee
Using equation (23)

atellite is projected at a height ¢ 4+ 1 above

TTortETmrTw swIwRIWIL U WJGLTIIILED

the centre of the Earth
a-t+ horif jt is not projected at right

Figure 4.7

V2 f— [L(_'_g'-—- -— -]-- 4 g
2 1
2 it — i) (1 .

'O-’I' v (al(l = e) a' )’ a(l e) ==-q +h : (60)

, 2 o BB St YT i '

1e 14 a+h(l e) or Vz—a+h(|+£’)‘

i V2= Vi'~ )"’ “or “p2 = Vol + ¢), (61;

.whcre Vo is the velocity required for a circular orbit for which e = 0; Thys
Cif V> Vo, the pqmt of projection is nearest point of the orbit to the centre

of the Earth and if V < Vo, this point is the furthest point

.

For the elliptic orbit, the time period is
T = 2"_..a"/2 (62)
ga

where if V< Vo, e = Jl —-%z., i e at h = (63)

Vo 1+ V1 — vyv

2

‘ndif V>Vo,e=~/y_2_l’ a;__ a+h2 (64)

Vo 1 == szlVO = 1

tics, KAHE Page 3 of 13
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If Amax and hn:in are the maximum and minimum heights of a satellite
above the Earth’s surface and g is the radius of the Earth, we get

a:(1+e) — @+ hmay e
a(l —e) a+hlnll'l a+hm;x_ a+hmin
- 2
2a + hmax + hmln_
= dde ! _ e
a+ hmu a + hmu -+ hmln hmﬂ 23 hmln
2 2
hmax — hmin
o e e
. © = 20 + hoar — hom &5

MATHEMATICAL MODELLING THROUGH LINEAR
DIFFERENTIAL EQUATIONS OF SECOND ORDER
Rectilinear Matig:_!'n_'_

Let one end 0 of an elastic string of natural length L(== 0A4) be fized
(Figure 4.8) and let the other end to which a particle of mass m is attached

i ; J
0 A x m
Figure 4.8

be stretched a distance @ and then released. At any time /£, let x(1) be the
_extension, then the equation of motion of the particle is

d*x X

where k is the elastic constant, If the particle moves in a resisting medium
. with resistance proportional to the velocity x’, (66) becomes

mx" + ¢x' + kx =0, (67)

which is a linear differential equation of the second order. Its solution is
. x(#) = A1e™ + Ae*v (64)
where Ay, A2 are the roots of
1 m\t -+ A+ k=0 (69)
L ig o1 8 k
Here Ay + % = — —» Aidz = —— The sum of the roots is negatjve and

the product of the roots is positive,
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Case (i) ¢* > 4km, the roots are real and distinct and are negative, As
~such x(#) = 0 as ¢t = . The motion is said be overdamped.
: Case (ii) & = 4 km, the roots are real and equal and

P ezl
x(#) = (41 + Aat) exp ( g ) i (70)
-and again x(f) —> 0 as ¢ - . In this case the motion is said to be critically

- damped. ey Ko ‘

Case (iil) ¢ < 4km, the roots are complex conjugate with the real parts of
the roots negative. x(1) always oscillates but oscillations are damped out and
tend to zero. In this case, the motion is said to be under damped.

Next we consider the case when there is an external force m- F(1) acting
on the particle. In this case (67) becomes

mx"” + cx' + kx = mF(t) (71)
A particular case of interest is given by the model
X" 4+ whx = F cos wt (72)

i.e., when in the absence of the external force, the motion is simple harmo-
nic with period 27/wy and the external force is periodic with period 27/w.
The solution of (72) is given by

x(t) = A cos (wot — &) + F cos wt/(ws — w2) w # wo (73)
== A cos (wot — «) + ﬁ% { sin wot W = Wo (74)

When w = wo, the first term is periodic and its amplitude never exceeds
| A |. However as t — o0 along a sequence for which sin wot = + 1, the
magnitude of the second term approaches infinity.

The phenomenon we have discussed here is known as of pure or undamp-
ed resonance. It occurs when ¢ = 0 and the input and natural frequencies
are equal. We shall get a similar phenomenon when ¢ is small. The forcing
function F cos wt is then said to be in resonance with the system.

Bridges, cars, planes, ships are vibrating systems and an external periodic
force with the same frequency as their natural frequency can damage them.
This is the reason why soldiers crossing a bridge are not allowed to march
in step. However resonance phenomenon can also be used to advantage e.g.
in uprooting trees or in getting a car out of a ditch.

When w and wo differ only slightly, the solution represents superposition
of two sinusoidal waves whose periods differ only slightly and this leads to
the occurrence of beats.
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Electrical Circuits

Figure 4.9 shows an electrical circuit. The current i(¢) amperes represents
the time rate of change of charge ¢ flowing in the circuits, so that

dg _ .
7 = 10 (75)

(i) There is a resistance of R Ohms in the circuit. This may be provided
by a light bulb, an electric heater or any other electrical device opposing
the motion of the charge and causing a potential drop of magnitude
ER = Ri volts.

e
£
c C>+E(t)
/ — po—
Switlch
Figure 4.9

(i) There is an induction of inductance L henrys which produc§s a
potential drop E. = L difdt.

(iii) There is a capacitance C which produces a potential drop

I
E.= c 7

ch produces a

. hi
All these potential drops are balanced by the battery whi S e e

olts. Now according to Kirchhoff’s second law,

voltage E'v off’s sec o
sum of the voltage drops round a closed circuit is zero so tha
di 1 - (76)
] — + = q = EU
Ri + L— +z4 (1)

Differentiating and using (75), we get

d?i di .l:i@ 7
Ld-IETRdt—*_C’ dt b ;
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Also substituting for (75) in (76) we get |
dtg (_Ig Inaeic Y , S 18)
L;I—IZ}RdI+Cq E(t)

Both (77) and (78) repres't':nt linear differential equatvions with constant
coefficients and their solutions will determine i(¢) and g(1).
Comparing (71) and (78), we get the correspondences

mass m ++ inductance L
friction coefficient ¢ « resistance R
spring constant k < inverse capacitance 1/C
impressed force F impressed voltage E
displacement x «» charge ¢ ‘

: dq
velocity v = dx/dt ++ current | = % )

This shows the correspondence between mechanical and electrical systems.
This forms the basis of analogue computers. A linear differential equation
of the second order can be solved by forming an electrical circuit and
measuring the electric current in it. Similar analogues exist between hydro-
dynamical and electrical systems. Mathematical modelling brings out the
isomorphisms between mathematical structures of quite different systems
and gives a method for solving all these models in terms of ths simplest of
these models.

We can haveanalogues of (71), (78) in economic system when k() repre-

_sents the excess of the capital invested over the equilibrium capital and
E(t) can represent external investments.

Phillip’s Stabilization Model for a Closed Economy
The assumptions of the model are:

(i) The producers adjust the national production Y of a product accord-
ing to the aggregate demand D. If D > Y, they increase production and
if D < Y, they decrease production so that we get

dYldt = «(D — Y), 2 > 0, (79)

where « is a reaction coefficient representing the velocity of adjustment.
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(i) Aggregate demand D is the sum of private demand, government
demand G and an exogenous disturbance u. The private demand is propor-
tional to the national income or output so that

D=(0—-L)Y+G—u (80)

where 1 — Lis the marginal propensity to spend i.e. it is the marginal
propensity to consume plus the marginal propensity to invest. We assume
that 0 < L < 1.

(iii) The government adjusts its demand to bring the national out-put to
a desired level, which without loss of generality may be taken as zero.

The Government decides its demand according to one of the following
policies:

(a) proportionate stabilization policy according to which

G*=—f, Y (81)

where f, > 0 is the coefficient of proportionality and we use the negative
sign on the right hand side since if the output is less than the described
level, government will come out with a positive demand.

(b) derivative stabilization policy according to which

G* = —faY', (82)

where fz > 0 and the government demand is proportional to Y".
(c) mixed proportionate derivative policy according to which

G*=—HLY-AQY (83)

() integral stabilization policy according to which
! o :
G* = ~fi j Ydi, fi>0 (44)
0 ; ¢ N

(iv) G* is the potential demand which the Government may like to make,

but the actual demand G will be gradually adjusied so that
G' = BG* — @), (85)
where f8 is the reaction coefficient. B = 0 since if G < G*, the government

tends to increase the demand to reach G*,
Now from (79) and (80)

dY/dt = a((1 — L) Y } G —u-Y), (86)
so that

BY[di? = —al dY/dt + o dGldt ®7)
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Eliminating G between (85), (86) and (87)

2 2 j
d ’;/‘” + L dY/dt = B (G* — "—};/i’—’ ~(Ly + u)) (88)
or d2Y[dr? + dY/dt (L + B) + «BLY - afu == aff G* (89)

If we substitute for G* from (81), (82) or (83), we get a lincar differential
equation of the second order with constant cocfficients. If however the
government uses integral stabilization policy, we use (84) to get the third
order differential equation

dY[de} + (21 + B) d2Y[de* -+ 0B dY/dt -+ up Jt¥ =0 (90)

The equations (89) and (90) can be easily solved. Even without solving
these, the stability of the sdlutions and their behaviour as ¢ -» @ can be
/

easily obtained.

MISCELLANEOUS MATHEMATICAL MODELS THROUGH
ORDINARY DIFFERENTIAL EQUATIONS OF THE SECOND
ORDER

The Catenary

Mathematical Modeling through ODE of Second Order/2016

A perfectly inflexible string is suspended under gravity from two fixed

points 4 and B (Fig. 4.10).

A

|
C
!

Figure 4.10
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Consider the equilibrium of the part CD of the string of length s where
C isthe lowest point of the string at which the tangent is horizontal.

The forces acting on this part of the string are (i) tension To at C (ii)
tension 7 at point D along tangent at D (iii) weight ws of the string.

Equating the horizontal and vertical components of forces, we get

Tcosy =To, Tsiny =ws on
Let To be equal to weight of length ¢ of the string, then (91) give

Y = = = (92)
ds— a—
E-—P—cseczlﬁ, (93)

ius of curvature of the string at D; so that

M (|+(dy))

where P is rad

d%y
dx?
2 ; .
R R -
H ._-}—’ 3
which is a non-linear differential equation of second order. "dx _ kp,/_then
(94) gives
Cc ———d—'—___p._—- = dx ' (95)
- 4/1 + p? . ; .
e X
Integrating sinh~! p = - + A (96)
When x = 0, p = 0, so that A = 0 and
g};’_ = sinh —i—f— (97)
Integrating
y = ccosh -J-:-, (98)

where we choose x-axis in such a way that y = ¢ when x = 0. This is the
equation of thecommon catenary.

It may be noted that here we get a dnﬂ'erentxal equation of the second
order from a problem of statics rather than from a problem of dynamics.
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A Curve of Pursuit
A ship at the point (a, 0) sights_ a ship at (0, 0) moving along y-axis with a
uniform velocity ku(0 < k < 1). It begins to pursue ship B with a velocity
u always moving in the direction of the ship B so that at any time AB is
along the tangent to the path of 4.
From Figure 4.11 : .

.tan(w;np):k_“ﬂ:_y -
‘ YERS G

= ay vous i kut
o dx'_..——x__'—T
‘ dy : :
i W X e ' ‘ - (99)

Differentiating with respect to x, we get

iy, dt ' :
X e ki (100)

v v —- RSN AN

AY

x a-x @, o)
Figure 4.11
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Now dx/elt == horizontal component of velocity of A = w cos (7 — )

== —UeosSYp = - ——c

jl + (101)
so that from 799) and (100)

o =k j | ((h) (102)

Putting ; Q = p, we get

dp 2y
eVl e A—
V1 +p? “0‘7‘)
Integraiting ‘% ek (Si“h“l (ln %)) Gk

Integratiing once again, we get y as a function of x.
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POSSIBLE QUESTIONS

Part B (6 Marks)

1. Derive the components of velocity and acceleration vectors along radial and transverse
directions.

2. Find the height of synchronous from the circular motion of satellites.

3. Explain about the catenary.

4. Design a mathematical model for motion of a projectile.

5. Explain on elliptic motion of satellites.

6. Discussion detail on a curve of pursuit.

7. Discuss motion of a particle on a rough vertical wire.

Part C (10 Marks)

1.Explain in detail Kepler’s law of planetary motion.
2.Explain on circular motion of satellites.

3. Discuss motion of a particle on a rough vertical wire.
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THE NEED FOR MATHEMATICAL MODELLING THROUGH
DIFFERENCE EQUATIONS: SOME SIMPLE MODELS

We need difference equation models when either the independent variable
is discrete or it is mathematically convenient to treat it as a discrete
variable. : .

$hus in Genetics, the genetic characteristics change from generation to
generation and the variable representing a generation is a discrete variable.

In Economics, the price changes are considered from year to year or from
month to month or from week to week or from day to day. In every case,
the time variable is discretized. |

In Population Dynamics, we consider the changes in population from one
age-group to another and the variable representing the age-group is a discrete
variable. ,

In finding the probability of n persons in a queue or the probability of n
persons in a state or the probability of n successes in a certain number of
trials, the independent variable is discrete.

; For mathematical modelling through differential equations, we give an
increment 4x t<? inde?endent variable x, find the change dy in y and let
4x — 0 to get differential equations. In most cases, we cannot justify the
limiting process ngorously. ’Thus f:or modelling fluid motion, making 4x—>0
e e et e o e o
Continuum mechanics is only an fp];)ro;?t;;t?ann(olt,be e ) MR
good one) to reality. » ‘on (through fortunately a very

Ftvcn if_ the limiting process can be justified e.g. when the indepenaent
vanab_le is time, the resulting differential equation may not be solvablc
analytically, i’Wc then solve it numerically and for this purpose, we again
replace the differential equation by a system of difference cquations’, Numeri-
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Wc'now give simple difference equation models parallel to the differential
equation models studied in earlier chapters.

(i) I"opulan‘on Growth Model: 1f the population at time ¢ is x(1), then
assuming that the number of births and deaths in the next unit interval of
time are proportional to the populations at time f, we get the mode!:

x(t A1) - X0 = bx() — dx() or x(1 4 1) = ax(1), (h
so that

x(1) = ax(t — 1) = a®x(t — 2) = a’>x(1 — 3) = ., . = a'x(0) (2)

This may be compared with the differential equation model:
g‘—\ == gx with the solution x(¢) = x(0)e* (3)

For solving the difference equation model, we require only simple algebra,
but for solving the differential equation model, we require knowledge of
calculus, differential equation and exponential functions.

(ii) Logistic Growth Model: This is given by

x(t + 1) — x(1) = ax(t) — bx¥1) (4

This is not easy to solve, but given x(0), we can find x(1); x(2), x(3), . . . in
succession and we can get a fairly good idea of the behaviour of the model
with the help of a pocket calculator.

(iii) Prey-Predator Model: This is given by

x(t + 1) — x(1) = —ax(t) + bx(1)y(r) ] a,b>0

4 1) = (1) = py) — qx(y()  J p,g>0

and again given x(0), 1(0), we can find x(1), p(1); x(2), y(2); x(3), y(3), .. .,
in succession. o
(iv) Competition Model: This is given by

(5)

x(t + 1) — x(t) = ax(t) — bx()y(t) ] a,b>0 -
ot 4 1) = y(t) = px(r) = gx(Oy() ) p,q >0
(v) Simple Epidemics Model: This is given by
x(t 4 1) — x(1) = —Bx(y(r) ] o on
Wt + 1) = p1) = Bx(t)y(1)

The Complementary Function
We try the solution x, == aM. If this satisfies (11), we got_
8A) = aod" -+ @At e af= 0 (13)
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This algebraic equation of nth degree has » roots By, By i g Ay, Teal oc
complex. The complementary function is then given by

Gu(r) = cidl + 221 + . . . 4 carh (14)

Case (i): If A, A, .. A, are all real and distinct, (14) gives us the
complementary function when ¢y, ca, ..., cs are any n arbitrary recal
constants.

Case (ii): If two of the roots Ay, A; are equal, then (14) contains only
n — | arbitrary constants and as such itcannot be themost general solution.
We try the solution cfA]. We get

aolt +mX + alt +n— DA™+ ... +a=0
or rg(A) + g'(A) = 0, (15)
which is identically satisfied since both g(A;) = 0 and g'(M) =0as A is a
repeated root. In this case
Gi(t) = (a1 + @A + eA3 + cdd + ... + Ccota (16)
Case (iii): If a root A, is repeated k times, the complementary function is
Gi(1) = (1 + cat + o3t + ... + e VAT + crrrdienr
+ ...+ ceta (17)
Case (iv): Let g(\) = 0 have two complex roots « + if, then their
contribution to complementary function is
c(x + iB) + cax — By (18)
Putting 2 = rcos 6, B = rsin § and using De Moivre’s theorem, this
reduces to
ciri(cos 8 + i sin 8¢ + car'(cos 8 — i sin OY
= r cos (81)c1 + c2) + 7 sin (0tXicy — ica)
= r(dy cos (01) + da sin (61))

= (22 + B2Y"*(d cos (0t) + da sin (01)), (19)
where tan 0 = = y 20)

and d,, d» are arbitrary constants. - ‘
Case (v): If the complex roots « + iB are repeated k times, then contri-

bution to the complementary functionis = .
(a2 + PYP((do + dit + .. . + di-1t*"" cos (6r)
+(fo +t+ ... +fk-1t%1) sin (81) 2D

where do. di, . . . , k=1, Jor .+ s fx-1 are 2k arbitrary constants.

The Particular Solution
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— ey W e w —— =

Hﬂe we want & u;luuon of (10) not containing any arbitrary constant.
Let p(1) = AP, B is not a root of g(A) = 0

Case (i):

We try the solution CB. Substituting in (10), we get

(22)

CB'(aoB" + a1B"' + ... + an) = AB (23)
If B # A1, Az, . . ., An, We et
A
ComBF o F.., Taz (29)
and the particular solution is
AB*
P LT i (25)
Case (ii): ° Let
p(t) = AB', B is a non-repeated root of g(A) = 0 (26)
We try the solution CzB*. Substituting in (10), we get
B'(Ctg(B) + Cg'(B)) = AB* (27)
Since g(B) = 0, g'(B) # 0
A
it O T @
so that the particular solution is
A1B*
aonB"™ ' +~ ai(n — 1)B"2 + .| | + Ggu, 29)
Case (iii): Let :
p(t) = AB', g(B) = 0, g'B) =0
g*-1(B) = 0, g*(B) # 0, (30)
then the particular solution is
Alk"lBl
g*(B) @an
Case (iv): Let o(t) = Arx (32)
~ We try the solution
dot* + dyt*=! + dot*3-4.. . 4 4 (33)
Substituting in (10) we get’
ao(do(t + n)* + di(t + m)k-t 4 dz(t ) L I R 4
+ m(do(t +n — 1) + di(t + n — 1)k + ot + n— 1)k
.+ de) + . . + an(dotk - dytk1 datk=2 4 + di)
= 0 v
(34)
Page 5 of 10

Prepared by:A.Neerajah,Department of Mathematics, KAHE



Unit-IV Mathematical Modeling through Difference Equations/2016 Batch

Equatmg the coefficients of ¢, (k-1 » 1% on both sides, we get (k & 1)

equations which in general will enable us to determin
: e d ? d 3 3 v d
thus the particular solution will be determined. ki Ay o0

xi(t 4 1) = x1)
x(t + 1) = x;(l)

37
x,...u(t + 1) = r,,(t)
xt + 1) = -a—ox..(t) — %:;x..-l(l) —ee - gﬁxn(t),
which can be written in the matrix form
[ e =1y
xot + 1)
L ot 1)
r ..o 1 @ T 0 T T ol
0 0 1 ... 0 x2(1)
au an-1 __Gn-2 ..g_l *
L "'Z'o —__a;- do > a . xn(t) -
(38)
or X(t + 1) = AX(), , e
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e
x2(1)
where = X(1) = 5 y

L xal0 . .
R S e R W
Applying (39) repeatedly
X(k) = A*X(0), (41)
where
r xi(0) 7 [ x(0) il r X0 i
x2(0) x(1) X1
X0©) = xs.(()) = x:(:"-) | | x‘z (42)
L x;(O) | L x;(.n—-l) J L st

Thus knowing the values of x; at times 0, 1, 2. ..., n — 1, we can find its
value at all subsequent times.

Solution of Linear Diff

aerence Equati i
_z-Tran_sf_qy_r_\ quations by Using

-—- e ugy

Let {un} be an infinite Sequence, then its z-transform is defined by

Z(un) =n§o u”z—", . (51)

whenever this infinite series converges. If {us} is a probability distribution

and z = l/'s, it will be the same as the probability generating function.
The following results can be easily established

) If k>0, Z(uns) = z7*Z(uy)

(52)

(i) Ifk >0, Z(upws) = [Z(w) — "E; 2=} (53)
(iii) un : %% a" ean. ”

Zun):  z/(z—=1) z/(z—a) zI(z —ie") - (54)

Taking z-transform of both sides of a lincar difference equation, we can find

Z(un) and expanding it in powers of 1/z and finding the coefficient of z-7,
we can get un.
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The Cobweb Model‘v '

Let p. = price of a commodity in the year ¢ and

9+ = amount of the commodity available in the market in year t,
then we make the following assumptions

. (i) Amount of the commodity produced this year and available for sale
is a linear function of the price of the commodity in the last year, i.e.

G = « + Bpf—ln . (68)
where B > 0 since if the last year’s price was high, the amount available this

year would also be high.

(ii) The price of the commodit

i . ; y this yearis a linear function of the amount
available this year i.e.

where 8 < 0, since if g, is large, the price would be low. From (68) and (69)
Pe—Bepy =7 4 of, i (70)
which has the solution ' .
I 4 ad 4 ¥
(pl 1 ﬁa) o (PO =3 T __"'"p' 8)(58)" (71
so that
by B8 -
(P: T‘:—ﬂg) (I’:—l - Tz;_i"f—;:-)(ﬂb) (72)
: g .
(1851_?_‘?:'5(]'5_“2%‘;‘.“’3 Pav 1,2, py, . .. arealternatively greater and less than

If | B8 | > 1, the deviation
ing. On the other hand if | BS
ultimately p; —» (28 -+ )1 — BS) as ¢ — w,

Figures 5.1a and 5.1b show how the price approaches the equilibrium

price pe = (28 + »)/(1 — Bd) as t increases in the two cases when Po = pe
and po < p. respectively,

of pr from (26 + Y)[(1 — BB) goes on increas-
| <1, this deviation goes on decreasing and
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~ + + z p:e -- N s p¢
P P; Py P7dSyp. p; p, ; :
s P. P2 Pg Py P; P, Pgd&+Y p; Ps P3 Py
1-pé ? -6
Po 2P, Po < Pe
(a) (b)
Figure 5.1

In the same way, eliminating p, from (67), (68) we get

i =25 BY =+ Ba Gi-1, (73)
which has the solution
«+ BY\ _ x4+ BY ’
(- 125 = (o - T2 oo o

so that g, also oscillates about the equilibrium quantity level

g = (@+ BN —ps) if [Bd] <1
The variation of both prices and quantities is shown simultancously in
Figure 5.2. _ , .
Suppose we start in the year zero with price po, and quantity qo represen-

ted by the point A. In year 1, the quantity g, is given by « + B po and the

price is given by p1 =7 + 84¢1. This brings us to the point C in two steps
via B. The path of prices and quantities is thus given by the Cobweb path

ABCDEFGHI, .. .and the equilibrium price and quantity are given by the
intersection of the two straight lines.

Application to Actuarial Science

’ “One important aspect of actuarial science is what is called mathematics of
finance or mathematics of investment, '

If a sum S5 is invested at compound interest of i per unit amount per

unit time and S, is the amount at the end of time ¢, then we get the difference

equation

S[+l = S; + IS: = (l + i)St, | ( > (78)
which has the solution '

'
& = 8oll. 4 1), o (719)

which is the well-known formula for compound interest. :
Suppose a person borrows a sum Sp at compound interest / and wants to ¢
amortize his debt, i.e. he wants to pay the amount and interest back by
payment of n equal instalments, say R, the first payment to be made at the '
end of the first year. ‘
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Let S¢ be the amount dy
equation c at the end of 1 years, then we have the difference
Styr = St -k iS,
— R — (l 'i' . 61 -
Its solution is gr== & (80)
S = (s s l‘_) < R
VT M tipees 81

= So(l + fy— g L+ —1
i
If the amount is paid back in » years, S, = 0, so that

(82)
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i |
S R W
= Fpn =% am ' 8
where agj; called the amortization factor i '

alle tor is the presént va i
of 1 per unit time for n periods at an ) bl

o i interest rate i.
g ¢ functions axy and ('a;il)"l are tabulated forcommon valuesof n and i.
uppose an amount R is deposited at the end of every period in a bank

and let S; be the amount at the end of ¢ periods, then
Ster = S(1 + i) + R, (84)

R'"—" lgo

so that (since So = 0)

_ (14 D=1
Sn= R —:—)— = RS (85)
From (83) and (85)
Sair = (1 + i)ramy (86)
. : | S ) e
or Sor C amn (87)

If a person has to pay an amount S af the end of n years, he can do it by
paying into a sinking find an amount R per period where

1 P
R=S 5 - (88)

where is the sinking fund factor and can be tabulated by using (87).

1
Sani
MATHEMATICAL MODELLING THROUGH DIFFERENCE
EQUATIONS IN POPULATION DYNAMICS AND GENETlCST 4

Non-Linear Difference Equations Model for Population
Growth: Non-Linear Difference Equations

T T e g e—— - -

Let x; be the popuiation at time ¢ and let births and deaths in time-interval’

({, t +- 1) be proportional to xi, then the population x,4y at time ¢ + 1 is
given by

Xepl = Xy + b.\‘, - d,\', = x,(l' -+ a)‘ v ! ‘ (89)
This has the solution

X = xo(l - a), (90)
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so that the population increases or decreases exponentially according as

a>0ora < 0 We now consider the generalisation when births-and deaths
b and d per unit population depend linearly on x, so that

Xttt =Ny +f ([’0 o le;).\’, ~ (do -} dlxt).\'t
b~ — '2 - .
nmx, rXe == mxy (l e -5—; .\',) (91)

This is the simplest non-linear generalisation of (90) and gives the discrete
version of the logistic law of population growth, Howevér this model shows
many new features not present in the continuous version of the logistic
model. Let rx;/m = y;, then (91) becomes

Yerr = my(l — )’1) (92)

One-Period Fixed Points and Their Stability

A one-period fixed point of this equation is that value of jy, for which
yi+1 = yri.e. for which

yo = my(l =y, (93)
so that there are two one-period fixed points 0 and (m -- 1)/m. If yo = 0,

then y1, »2, y3, . .. are all zero and the population ‘remains fixed at zero
value: :

If yo = (m — 1)/m, then y1, 2, y3,. . . are all equal to (m — 1)/m. The second
fixed point exists only if m > 1.

We now discuss the stability of equilibrium of each of these equilibrium
positions. ‘ . ;

Putting y» = 0 + u, in (92) and neglecting squares and higher powers of
u;, we get ur1 = mu, and since m > 0, the first equilibrium position is one
of unstable equilibrium. ' _

Again putting y, = (m — 1)/m -+ w in (92) and neglecting squares and
higher powers of u, we get '

uipt = (2 — mue, ’ (%94)

so that the second position of equilibrium is stable onlyif =1<2—-m<1

orif ] >m—2>—1lorifl<m<3. : o e Gl
Thus if 0 < m < 1, there is only one one-period fixed point and it is

- d fixed points, the first is
unstable, If 1 < m < 3, there are two one-perio :
unstable and the second is stable. If m > 3, there are two one-period fixed

points, both of which are unstable,

Two-Peri mts and Their Stability ; | :
A”:o::ftr'li:dc:;:i;daptﬁz-pcriod'ﬁxed point if it repeats itself after two periods
I8 if yoy2 =y ise. if

1 : {
Visz = '"y”'(l o }'IH) == ntzyl(l e }'l)(l — m + m)-,) o) ) (95)
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or ‘
ylmy, — (m — D)) (mdyt — m(l 4 mye + (1 = m)) =0 (%)

This is a fourth degree equation and as such there can be four tVfO'periOd
fixed points. Two of these are the same as the one-p'::rlod fixed points, Thig
is obvious from the consideration that every .onc-pcnod ﬁxed point is also 3
two-period fixed point. The genuine two-period fixed points are obtained by
solving the equation

iy — m(l + mye + (1 +F m) = 0 97

Its roots arc real if m > 3. Thus if m > 3, the two ope-perl?d fixed points
become unstable, but two new two-period fixed points exist and we can
discuss their stability as before. :

It can be shown that if ma < m < nu, where mz2 = 3 and m4 18 a number
slightly greater than 3, then the two two-period fixed points are stable but if
m > ma, all the four onc- and two-periods become unstable, but four new

four-period fixed points exist which are stable if ms < m < and become
unstable if m > ms.

2"-Period Fixed Points and Their Stability

It can be shown that there cxists an increasing infinite sequence of real
numbers mz2, ms, Mg, ..., Man, Myat+1s - -- such that when man < m <
mya+1 there are  2"+127+1-period fixed points, out of which 2" fixed points
are also fixed points of lower order time periods and all these are unstable

and the remaining 2" points are genuine 2**! period fixed points and are
stable.

From 5.3 represents the stable fixed period points.

T

A : Mg

1 [N | 5
m M, Mg Mg e

Figure 5.3

When m lies between my and ma, there is one stable one-period fixed point

Wl}cn m lies between mz2 and ms there are two stable two-period fixed
points,
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When m lies between mi and Mg,

there are four . .
points, and so on. stable four-period fixed

Fixed Points of other Periods

The sequence mi, ma, my, .. . is bounded above by a fixed number m*, If

& . i
m > "here_ca“ be a tt}l'ee-pemw;i fixed point and if there is a three-
period fixed point, there will also be fixed points of periods,

.3!597|9,---

2:3,2:5.2:7,2:9, . .. (98)
22.3,22.5 22,7 |

This is expressed by saying that Period Three Means Chaos.

Chaotic Behaviour of the Non-linear Model

If m lies between mg and nys, there will be eight 16-period stable fixed
points. If a population size starts from any one of these values;-it will osci-
llate through fifteen other values to return to the original value and this
pattern will go on repeating itself. If we draw the graph, it will show rapid
oscillations and will look like the graph representing a random phenomenon.

Our model is perfectly deterministic, though its behaviour may appear to be
random and stochastic.

Special Features of Non-linear Difference Equation Models

The simple model illustrates the differences in behaviour between difference
and differential equation models. The problems of existence and uniqueness
of solutions, of the stability of equilibrium positions are all different due to
the basic fact that inspite of similarities, the Discrete and the Continuous
are really different.

Age-Structured Population Models

Let xi(f), x2(t), . . ., xp,(#) be the population sizes of p pre-reproductive
age-groups at time f;

Let xp41(2), Xp+2(1), . . ., Xp+4(r) be the population sizes of g reproductive
age-groups at time ¢, and

Let xpig+1(2), Xpiqe2(t), . . ., Xprq+(t) be the population sizes of r post-
reproductive age-groups at time .

Let byi1, bpi2, - - -» bptq be the birth rates i.e. the number of births per
unit time per individual in the reproductive age groups.

In other age-groups, the birth rates are zero.

Let dy, da, . . ., dp+q+r be the death rates in the p + g + r age-groups.:

Let my, ma, . . ., Mprq+r, be the rates of migration to the next age-groups,
then we get the system of difference equations
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x.(; + 1) = bpraxpur(t) + .« - + bpiaXpialt) = (di + m)xi(1)

Xt +1) = mux.n('t) — (&2 + m.z).xz(') 9

Xprgrroa(t 4 1) = Mprqir-2(t) = (dprqrr-t + Mprqrr-1)Xprar-1(t):
Xpraer(t + 1) = mprasr-1apratr-1(t) — (dprasr)Xprare)

Which van be written in the matrix form

X(t + 1) = LX(0), (100)
wheve
[ xa(r) Y
xa(1)
xo=| - :
| Xpaqee()

r -(dl + Ml) 0 0 SR 0 bp{,l bp-oz v o e b}'f@ 0 0 0

my —(d2+m) O... 0 G ;au O -0 0 o

| 0 ma —(dy+m) 0 9 s U 9. 0 078
4 0 0 Bis 0 0 0 0 .. My ~d
i (101)

where p+ g+ r=n.

L is called the Leslie matrix. All the clements of its main diagonal are
negative and all the elements of its main subdiagonal are positive. In addi-
tion ¢ elements in the first row are positive and the rest of the elements are
all zero. The solution of (100) can be written as

X(1) = L'X(0) (102)
Now the Leslie matrix has the property that it has a dominant eigenvalue
vghich is real and positive, which is greater in absolute value than any other
eigenvalue and for which the corresponding eigenvector has all its compo-
nents positive. If this dominant eigenvalue is greater than unity, then the
poPulations of all age-groups will increase exponentially and if it is' less than
unity the Population of all age-groups will die out. If this dominant
e:g:?va‘lue‘ }s unit.y,_ the population can have a stable age structura.
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Mathematical Modellin

g through D
Equations in Genetics S0 o Tmaial

(a) Hardy-Weinberg Law

g:ti?:nichaéa;cteristig of an individual, like height or colour of the hair, i

obtaine?; fi : ag,a" of genes, one obtained from the father and the other
rom the mother. Every gene occurs in two forms, a dominant

J (denc{tcd by a capital letter say G) and a recessive (denoted by the corres-
. ponding small letter say g). Thus with respect to a characteristic, an
individual may be a dominant (GG), a hybrid (Gg or gG) or a recessive (gg).
In ic nth generation, let the proportions of dominants, hybrids and
recessives be pn, gn, r» s0 that

Prtgntra=1, p,20,g.=0,rm>0 (103)

We assume that individuals, in this generation mate at random. Now
pa+1 = the probability that an individual in the (n + 1)th generation is a
dominant (GG) = (probability that this individual gets a G from the father)
X (probability that the individual gets a G from the mother)

= (pn+ 50n)(pe + 20s) = (7e + 3a0)

2
or P = (p,. s -é—q) (104)
Similarly  gn41 = 2( Pn + %qn)(rn -+ -%qn) (105)
l 2
Fnyl = (fn + 'j'?n) s (106)

2
sothaf Pt  gig F ro = (p.. 2 %q,. 4 %q,, 4§ r.) =1, (107)

as expected. Similarly

1 2
P2 = (.Pni-l + EQM-I)

= (7o + 3o) + (on + 30 (e + S 00))

1 \? 1 1
= (p,. -+ iq:l) (pn + EQn + "Z’Qn +- fn)
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=X L4

= 2
== (pn +- %qn) = Dn+) (108)

and qn+2 = qn+l, T'ni2 = Tntl, (109)

so that the proportions of dominants, hybrids 2nd recessives in the (n + 2)th
generation are same as in the (7 + 1)th generation.

Thus in any population in which random mating takes place with respect
to a characteristic, the proportions of dominants, hybrids and recessive do
not change after the first generation. This is known as Hardy-Weinberg law
after the mathematician Hardy and geneticist Weinberg who jointly
discovered it.

The equations (104)-(107) is a set of difference equations of the first order.
Jants THPOUE!s s<v="
(b) Improt;:":‘e’; ;{;: are undesirable and as such we do not ajjey, the
Suppose :on to breed. ) ;
recessives in a0y ﬁnet;i:':'r‘oponions of dolmmants, hybndls and Tecessiye
Let Plﬂ_’ q,:,'a triZn of recessives and let pr, gn 0 be the populations aftey the
before chimi
limination, then
- | pik e 1 (110

’
1
P P =

n_ . an s Dn + q" 1 —In
allow random mating and let Pas1, ge1, 7a+1 DE the proportions

tNh::;: generation before elimination of recessives, then using (104)(1 %)
i i Loy

Prt1 = (Pn o 'i'qn) (111)

/ 1,1,_.,+_1_, i

gri1 = 2(;» + 5 )\72) = 9\P» T 39 (112
1 ‘ o 1 4

I'nkl = (‘Eqn) = ‘Eqn (113)

After elimination of recessives, let the new proportions be pasi, gasy,
so that '

Pr+t - qrit 1 1 (19

Pn+1 gns1  Prst T gns1 = 1— }q,’,z
so that gni1 = gn(pn + 3gn) _ ga(1 — 1q7)

1 — $g22 1 — iqn
g = i i
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This is a non-linear difference equation of the first order. To solve it we

substitute
q:'. = 1/ua
to get Unpl = Uy + % (116)
which h i = ]
as the solution uy = 4 4 >n (117)
or q,', = -—L
T5 5 ‘ (118)

so that g = 0 and p? -» : :
with all dominautsp"Eq 138> . Thus ultimately we should be lef

disappear, * Fquation (118) determines the rate at which hybrids

—_—————

MATHEMATICAL MODELLING THROUGH DIFFERENCE
EQUATIONS IN PROBABILITY THEORY

Markov Chains

Let a system be capable of being in » possible states 1, 2,. . ., #n and let the
probability of transition from state i to state j in time interval t to ¢ + 1
be pi;. Let pi(t) denote the probability that the system is in state j at time ¢
(J=1,2,...,n),then at time ¢ + 1 it can be in any one of the states
I SO

It can be in the ith state at time ¢ + 1 in n exclusive ways since it could
have been in any one of the nstates 1, 2, . . ., n at time ¢ and it could have
transited from that state to ith state in time interval (¢, ¢ 4+ 1). By using the
theorems of total and compound probability, we get '

plt +1) = 27‘ ppft),  i=12..,n (119)
"ot pit + 1) = pupi(t) + pupxl) + . . . + pupald)
\ pa(t + 1) = papi(t) + paapa’t) + . . . + puapa(t)
(120)
Pt + 1) = p1ap1(t) + panpa(t) + . . . + Pupa(t)
p(t +1) 7] Foie B s Par [ pi(t)
. p:(t.+ D _ [ pa 28 +ox o pat) (13
| ot + 1) P P wer B I o)
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or P(t + 1) = AP(1), (122)

where P(¢) is a probability vector and A is a matrix, all of whose €lemenyg
lic between zero and unity (since these are all probabilities). Further the

sum of elements of every column is unity, since the sum of elements of the

”n
ith column is j‘_‘?l py as this denotes the sum of the probabilities of the

system going from the ith state to any other state and this sum must be unity
The solution of the matrix difference equation (122) is ;

P(1) = 4'P(0) (123)
If all the eigenvalues Ay, Ay, . . ., A, of A are distinct, we can write
A = S45-! (124)
[ A 0 0
O M 0 use 0
(125)

Il

where A
Lo 0 0 ok A |

so that A" = (§54571)(SAS-Y) . ., (S45-1)
path SA’S-'
{ a 0 o

0
- 0 2is x Drsaisn
Boy R Sy ) (126)

0 g tigiase st gk

The probability vector will not change if P+ 1) =
e g ( ) = P(t) so that from

(I—=AP1) =0 (127)

Thus if P is the eigcnvec-tor pf the matrix A4 corresponding to unit eigenvalue
{hcu P ¢?oes.not change ie. 1f.thc system start with probability vector P a€
t:::c 0, it ;vxél lalways remain in this state, Even if the System starts from any
other probability vector, it will ultimately be descri ili
bl y cribed by the probability
As a special case, suppose we have a machi i

. » SU chine which can be in two states,
working or pon-worklng: Let the probability of jts transition from working
to non-workm'g'be «, of its transition from non-working to working be B
then the transition probability matrix A is obtained from ,'

working non-working

working [ il — a «
non-working B 1—-B ] i

Prepared by:A.Neerajah,Department of Mathematics, KAHE Page 10 of 12



Unit-1V Mathematical Modeling through Difference Equations/2016 Batch

TTEE s smAaTwL MYVARWIYY 14T

The system of difference cquations is

P+ 1) = o1 — o) 4 pa)B
PAt + 1) = pi(t)a + pa(e)(1 — B) (129)

» [Pl(f + 1) ] [ == B y210)

| pat + 1) «  1—8 ] [ paA1) ] o
The eigenvalues of the matrix A is given by |
| —a — 2 B

= 1 -8~

Ill;: e;gel;::;:‘tor corresponding to the unit eigenvalue is B/(x + B), a/(x + B)
ultimately the probability of the machines being found in

working order is B/(« + ) and th e e Ao ; :
working state is a/(a 4 & ¢ probability of its being found in a‘non

=0or (A — l)(/\—l—a—vﬁ)=0 (131)

MISCELLANEOUS EXAMPLES OF MATHEMATICAL
MODELLING THROUGH DIFFERENCE EQUATIONS

Difference equations arise in economics since values of prices, quantities,
national income, savings, investments at discrete intervals of time are
related. These arise in genetics because proportions of dominants, hybrids
'and recessives in different generations are related by genetic laws. These
’arise in population dynamics because population sizes at discrete instants
" of time are related by births, deaths, immigration and emigration. These
. arise in finance because amounts at discrete instants of time are related by
! rates of interest. These arise in gambler’s ruin problem because the
probability of ruin (or duration of game) when. gambler’s capital is n' is
related to the probability of ruin (or duration of game) when his capital
isn + 1. :

Similarly in geometry, difference-equations can arise because the nux.nber
of compartments in which n lines or curves divide a plane or surface is re-
lated to the number of components determined by (n + 1) lines or curves;
in dynamics the ranges after successive rebounds of an elastic ball fr?m a
horizontal or inclined place are related; in electrical currents, the potential at

s and currents in neighbouring circuits are relateq by

neighbouring node
Kirchhofl's laws and so on.
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POSSIBLE QUESTIONS

Part B (6 Marks)

1.Give any two disciplines that difference equation arises.

2. Write about Hardy-Weinberg law.

3. Write an explanatory note on complementary function.

4. Discuss about application to actuarial science.

5. Find a solution of linear difference equation by Laplace transform.

6.Explain in detail Harrod model..

Part C (10 Marks)

1.Explain in detail markov chains.
2. Write about Hardy-Weinberg law.

3. Discuss in detail on particular solution.
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UNIT-IV
Subject: Mathematical Modeling

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),

Subject Code: 16MMP303

Mathematical Modeling through Difference Equations
Part-A(20X1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)
Multiple Choice Questions

Question Opt 1 Opt 2 Opt3 Opt 4 Answer
In the genetic characteristics will change generation to generation and the Population
variable representing generation is discrete variable. Economics Genetics dynamics  [None Genetics
In genetics, the genetic characteristics will change generation to generation and the
variable representing generation is variable. Discrete Numeric Feasible Optimum [Discrete
In the price changes are consider from year to year or month to month or week Population
to week or day to day Economics Genetics dynamics  [None Economics
In _ the changes are consider in population from one age group to another and the Population Population
variable representing the age group is discrete Economics Genetics dynamics  [None dynamics
In population dynamics _ the changes are consider in population from one age group to
another and the variable representing the age group is Discrete Numeric Feasible Optimum [Discrete
No of birth and deaths are proportional to the population then the model is PGM LGM PTM CM PGM
The solution of linear differential equation is of the form CF+PI CF-PI CF*PI CF/PI CF+PI
Complementar |convergen |Conditional Complementary
CF denotes y function function function None function
the sort form of particular integral is Pl Par-Ing Ping None Pl
Complementary function can be obtained by Matrix Determinate |Eigen value [None Matrix
the solution of linear differences equation can be obtained by transform if tis
continuous Laplace z Fourier Gauss Laplace
the___is solution of linear differences equation can be obtained by transform if
tis discrete Laplace z Fourier Gauss z
the non linear difference equations reducible to linear equation by ___ method Substitution  |Direct Indirect Normal  |Substitution
Non
In difference equation theory is applied Stability Non stability |Uniformity [uniformity|Stability
Population
The Horrod model is used in the field of Economics Genetics dynamics  [None Economics
The investment depends on between the income of current year and last year |Addition Difference  |product division  [Difference
All the saving made are invested in the Horrod model then S(t) = I(t) S(t) =1/2 1(t) [2S(t)=1(t) |None S(t) = I(t)
In the cobweb model price of the commodity in the year denotes Pt qt rt st pt
In the cobweb model amount of the commodity available in the market in year t denotes  |Pt qt rt st qt
Amount of the commodity produced this year available for sale is a function Non
of the price of commodity Linear Non linear  |Stable stable Linear
In the cobweb path ABCEFGI, .. And the equilibrium price and quantity are given by Conjuncti
of two straight lines Intersection Union Disjunction |on Intersection
In the cobweb path ABCEFGI, .. And the equilibrium price and quantity are given by
intersection of two Straight lines |Circles Squares Cubes Straight lines
Mathematics
Mathematics | of Mathematics of
the actuarial science is called of finance economics [Dynamics |Statics finance
Mathematics
Mathematics | of Mathematics of
the actuarial science is called of investment |economics |Dynamics [Statics investment
One-period fixed points and their stability Yt+l=yt Yt+2=y2t Yt-1=yt yt+2=yt  [Yt+l=yt
Two-period fixed points and their stability Yt+2=yt Yt+2=y2t Yt-1=yt yt+2=y2t [Yt+2=yt
Any population in which random meeting take place with respect to a characteristic, the
proportion of dominants hybrids and recessive do not change after the first generation Hardy-
states, law Gauss weinberg Fick's Routhwelt|Hardy-weinberg
Hardy-
The probability of transition from state | to state j is Markov chain [weinberg Fick's Routhwelt|Markov chain
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Mathematical Modelling Through Graphs

Prepared by:A.Neerajah,Department of Mathematics, KAHE Page 20f 26



Unit-V Mathematical Modeling through Graphs/2016Batch

SITUATIONS THAT CAN BE MOD
L
THROUGH GRAPHS FHLED

It has been stated that “Applied Mathematics is nothing but solution of
dlﬁ‘efeﬂtlal_ equations™. This statement is wrong on many counts (i) Applied
Mathematics also deals with solutions of difference, differential-difference,
integral, integro-differential, functional and algebraic equations (ii) Applied
Mathematics is equally concerned with inequations of all types (iii) Applied
Mathematics is also concerned with mathematical modelling; in fact mathe-
matical modelling has to precede solution of equations (iv) Applied Mathe-
matics also deals with situations which cannot be modelled in terms of
equations or inequations; one such set of situations is concerned with
qualitative relations.

Mathematics deals with both quantitative and qualitative relationships.
Typical qualitative relations are: y likes x, y hates x, y is superior to x, y is
subordinate to x, y belongs to same political party as x, set y has a non-null
intersection with set x; point y is joined to point x by a road, state y canbe
tansformed into state x, team y has defeated team x, y is father of x, course
y is a prerequisite for course x, operation y has to be done before operation
x, species y eats species x, y and x are connected by an airline, y has a
healthy influence on x, any increase of y leads to a decrease in x, y belongs
to same caste as x, y and x have different nationalities and so on.

Such relationships are very conveniently represented by graphs where a
graph consists of a set of vertices and edges joining some or all pairs of these
vertices. To motivate the typical problem situations which can be modelled
through graphs, we consider the first'problem so historically modelled viz.
the problem of seven bridges of Konigsberg.

The Seven Bridges Problem
There are four land masses A, B, C, D which are connected Dy seven Drioges
numbered 1 to 7 across a river (Figure 7.1). The problem is to §tart from
any point in one of the land masses, cover each of the seven bridges once
and once only and return to the starting point.

Figure 7.1 Figure 7.2
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There are two ways of attacking this.prublcm. One inc:‘lm‘d |s' ‘tn 1'|-y to
solve the problem by walking over the bridges. I-lundrcds: 0 people tried lo
do so in their evening walks and failed to ﬁ'nd a path satislying the congi.
tions of the problem. A second method |s.to draw 0 scale map of the
bridges on paper and try to find a path by using a pencil. -

It is at this stage that concepts of mathematical modelling are useful, |y
is obvious that the sizes of the land masses are unimportant, the lengths of
the bridges or even whether these are straight or curved are irrelevant, Whyt
is relevant information is that 4 and B are connccted by two bridges 1 and
2, B and C are connected by two bridges 3 and 4, B and D arc connected
by one bridge number S, 4 and D are connected by bridge number 6 and C
and D are connected by bridge number 7. All these facts are represented hy
the graph with four vertices and seven edges in Figure 7.2. If we can trace
this graph in such a way that we start with any vertex and return to the
same vertex and trace every edge once and once only without lifting the
pencil from the paper, the problem can be solved. Again trial and error methoc
cannot be satisfactorily used to show that no solution is possible,

The number of edges meeting at a vertex is called the degree of that

_vertex. We note that the degrees of A4, B, C, D-are 3, 5, 3, 3 respectively
and each of these is an odd number. If we have to start from a vertex and
return to it, we need an even number of edges at that vertex. Thus it is
easily seen that Kénigsberg bridges problem cannot be solved.

This example also illustrates the power of mathematical modelling. We
havé not only disposed of the seven-bridges problem, but we have discover-
ed a technique for solving many problems of the same type,

Some Types of Graphs

ST ONTE NS ANIID

A graph is called comp
(Figure 7.3(a)).

w': graph is called a directed graph or a digraph if every edge is directed
"1 an arrow. The edge joining. 4 and B may be directed from A to B or

from Bto 4, If an edge i . Y
bl ge 1s left undirected'in o dj ; it wi assumed
to be directed both ways (Figure 7.3(b)), BEARD..IL. will bo.

lete if every pair of its vertices is joined by an edge

D

T
3 = F

A 8
Figure 7.3a Figure 7.3b
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D
I 15
E C
AN 2
A - F.g 1
Figure 7.3¢ Figure 7.3d

A graph is called a signed graph if every edge has either a plus or minus
sign associated with it (Figure 7.3(c)). )

A digraph is called a weighted digraph if every directed edge has a weight
(giving the importance of the edge) associated with it (Figure 7.3(d)). We
may also have digraphs with positive and negative numbers associated with
adges. These will be called weighted signed digraphs.

Nature of Models in Terms of Graphs
In all the applications we shall consider, the length of the edge joining two
vertices will not be relevant. Tt will not also be relevant whether the edge is
straight or curved. The relevant facts would be (a) which edges are joined:
(b) which edges are directed and in which direction(s); (c) which edges have
positive or negative signs associated with them; (d) which edges have
weights associated with them and what these weights are.

MATHEMATICAL MODELS IN TERMS OF

DIRECTED GRAPHS

Representing Results of Tournaments

The graph (Figure 7.4) ShOWs that

(i) Team A has defeated teams B,
&, E.

(ii) Team B has defeated teap;
C,E.

(iii) Team E has defeated D.

(iv) Matches between 4 and D, B
D and D, Cand D and C and E haye
yet to be played.

A 8

Figure 7.4

One-Way Traffic Problems
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The road map of a city can be represented by a directed graph. If only one-
way traffic is allowed from point a to point b, we draw an edge directed
from - to b. If traffic is allowed both ways, we can either draw two edges,
one directed from a to b and the other directed from b to a or simply draw
an undirected edge between g and b. The problem is to find whether we can
introduce one-way traffic on some or all of the roads without preventing
persons from going from any point of the city to any other point. In other
words, we have to find when the edges of a graph can be given direction in
Suc'h a way that there is a directed path from any vertex to every other. Itis
ca_sﬂy seep that one-way traffic on the road DE cannot be introduced
without disconnecting the vertices of the graph (Figure 7.5).

A H G
8 A
MG E D< > .
C F A ;
Figure 7.5(a) Figure 7.5(b)

In Figure 7.5(a), DE can be regarded as a

of the town. In Figure 7.5(b)

; ; DE can b
a t‘wo~way traffic is necessa e
while other edges are called

edges, two-way traflic should be permitted. It can also be shown that this :

is suflicient. In other words, the following theorem can be established: i
I ¢ s an undirected connected graph, then one can always direct the

arcmt edges of ¢ and leave the separating edges undirected (or both way

directed) so that there is a directed path from any given vertex to any oEher

vertex.

Genetic Graphs
In a genetic graph, we draw a directed edge from A to B to indicate that B
is the child of 4. In general each vertex will have two incoming edges, one
from the vertex representing the father and the other from the vertex repre-
senting the mother, If the father or mother is unknown, therc may be less
then two incoming edges. Thus in a genetic graph, the local degree of incom-
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ing edges at each vertex must be less a
than  or equal. to two. This is a !
necessary condition for a directed

graph to be a genetic graph, but it B, B,

1§ not a snflicient condition. Thus

Figure 7.6 does not give a genetic

graph inspite of the fact that the

number of incoming edges at each

vertex does not exceed two. Suppose

Ay 1s male, then 4; must be female, B3

since A1, 42 have a child By. Then Figure 7.6
43 must be male, since 42, 43 have

a child Ba. Now A1, 43 being both males cannot have a child Bs.

Senior-Subordinate Relationship
If a is senior to b, we write aSh and draw a directed edge from a to b, Thus

the organisational structure of a group may be represented by a graph like
the following [Figure 7.7].

a9 Chancellor

Vice Chancellor

p
diy ds dy de e; s d33 rofessors

S 2 €3 ©ne Lecturers
Figure 7.7

The relationship S satisfies the following properties:

(i) ~(aSa) i.e. no one is his own senior
(i1) aSh = ~ (bSa) i.e. a is senior to b implies that b is not senior to «a

o ot e by and G B8 senior to ¢, then ¢ gy
(iii) aSb, bSe = aSe i.¢. if & 18 seniol 1o
senior to ¢, A
The following theorem can casily
condition that the above three rcc”
organisation should be free of cycles
We want now to develop a measure Jo

status m(x) of the individual should
requircments,

wrhe necessary and sufficieny

be proved:
. thal the graph of

juirements hold is

s the status of euch person, The
satisfy the following reasonable
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(i) m(x) is always a whole number

(ii) If x has no subordinate, m(x) = 0

(iii) If, without otherwisc changing the structure,
subordinate to x, then m(x) increascs

(iv) If, without otherwise changing the structure, we
of a to a lower level relative to x, then m(x) increascs. .
A measure satisfying all these criteria was proposed by Harary. We define
the level of seniority of x over y as the length of the shortest path f:rOm X
to y. To find the measure of status of x, we find ni, the number of indivi-
duals who are one level below x, n2 the number of individuals who are two
levels below x and in general, we find n« the number of individuals who are

k levels below x. Then the Harary measure A(x) is defined by
h(x) = :‘7 kik

we add a new individual

move a subordinate

(1)

It can be shown that among a1l the measure which satisfy the four require-
ments given above, Harary measure is the least.

If however, we define the level of senority of x over y as the length of the
longest path from x to y, and then find H(x) = Z’J'km,, we get another

measure which will be the largest among all measures satisfying the four
requirements, For Figure 7.8, we get

h@) =12 +42423=16 H@) =11+ 32423 + 24 = 2

Mathematical Modeling through Graphs/2016Batch

hb) = 1.3 + 2.4 = 11 Hpb) = 2.1 + 22
he) = 1.2 + 1.2 =4 HO=11+412+11% B 14= 12
|
Figure 7.8 ér
d) = 1.1 = 1 H(d) = 1.1 e
h(e) = 1.3 = 3 He) = 1.2 + 2.1 = 4
Wf) = 1.1 = 1  H(f)=1. = 1
h(g) = 1.2 =2 HE=12 =
h(k) = 0  Hk) = 0
h(l) = 0  H() =0
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Food Webs

Here aSb if a eats b and we draw a directed edge from  to b. Here also ~
(aSa) and aSh = ~(bSa). However the transitive law need not hold. Thus

consider the food web in Fig. 7.9. Here fox eats bird, bird eats grass, but
fox does not eat grass.

Bird

FOK De
Insect Grass o

Figure 7.9

We can however calculate measure of the status of each species in this
food web by using (1) i(bird) = 2, h(fox) = 4, h(insect) = 1, h(grass) = 0,
Mdeer) = 1.

Communication Networks

A directed graph can serve as a model for a communication network. Thus
consider the network given in Figure 7.10. If an edge is directed from g to
b, it means that g can communicate with 4. In the given network e can
communicate directly with b, but b can communicate with e only indirectly
through ¢ and 4. However every
individual can communicate with
every other individual.

Our problem is to determine the
importance of each individual in this
network. The importance can be
measured by the fraction of the
messages on an average that pass
through him. In the absence of any Figure 7.10
other knowledge, we can assume that
if an individual can send message direct to n individuals, he will send a
message to any one of them with probability 1/n. In the present example,
the communication probability matrix is

a b c d e

o T 1R R O R 3

b /2 0 /2 0 0

¢ /3 113 0 1/3 0 )
d 0 0 2 0 12

¢ 0 | 0 0o 0 _|
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No individual is to send a message to himself and so all diflgonal ele-
ments are zero. Since all elements of the matrix are nqn-neg:eltlve and the
sum of clements of every row is unity, the matrix is a StOChz.ISth matrix ang
one of its eigenvalues is unity. The corresponding normalised eigenvector
is [11/45, 13/45, 3/10, 1/10, 1/15]. In the long run, these fractions of
messages will pass through a, b, ¢, d, ¢ respectively. Thus we can conclude
that in this network, ¢ is the most important person. -~

If in a network, an individual cannot communicate with every other
individual cither directly or indirectly, the Markov chain is not ergodic
and the process of finding the importance of each individual breaks down,

Matrices Associated with a Directed Graph

For a directed graph with n vertices, we define the n X n matrix 4 = (ai) by
ay == 1 if there is an edge directed from / to jand ay = 0 if there is no

edge directed from i to j. Thus the matrix associated with the graph of
Figure 7.11 is given by

b izt
S e il S
R R e
- R R Ty ®)
vl 1 Dy 6_

We note that (i) the diagonal elements of the matrix are all zero (ii) the

number of non-zero elements is equal

to the number of edges (iii) the
. number of non

: -zero elements in any.
\ TOW is equal to the local outward i
' t

degree of the vertex corresponding

b - Lds to the row (iv) the number of non-
Flgure 7,11 f[:zolelcments In a column is equal to
oc

al in‘ward degrec of the vertex
corresponding to the column. Now

i 2 3 4
1 i 3 1
00

!
Y
| = @) (4)
2 0 |

1 0

1 3
! 1
1 2

L

Prepared by:A.Neerajah,Department of Mathematics, KAHE Page 100f 26



Unit-V Mathematical Modeling through Graphs/2016Batch

~

(2 .
I‘:: i:::‘;“: ‘:ihcgl‘-esathc’ nl:mber o.f ‘.?.—ch:.«im from i to j. Thus from vertex
: » \ACTE are two 2-chains viz. via vertex 3 and vertex 4. We can
ge‘nem]lse this result in the form of a theorem viz. “The element aj; of 42
gives tt}c number of 2-chains i.e. the number of paths with two-edges from
vertex | to vertex ;"

The theorem can be further generalised to “‘The element a;” of A™ gives
the number of m-chains i.e. the number of paths with m edges from vertex
i to vertex j. It is also easily seen that “The ith diagonal element of A2
gives the number of vertices with which 7 has symmetric relationship™.

Ifrom the matrix 4 of a graph, a symmetric matrix S can be gencrated by
taking the elementwise product of 4 with its transpose so that in our case

F0 1 10707011 17 ro1 1 07
1010‘1010 I; 010
S=AxAT = I = |
!1100,}1101 1100
Lto1oJLoogoo] Looo o]
5

S obviously is the matrix of the graph from which all unreciprocated con-
nections have been climinated. In the matrix § (as well as in §2, 53, .. ) the
elements in the row and column corresponding to a vertex which has no
symmetric relation with any other vertex are all zero.

Application of Directed Graphs to Detection of Cliques
A subset of persons in a socio-psychological group will be said to form a
clique if (i) every member of this subset has a symmetrical relation with
every other member of this subset (ii) no other group member has a sym-
metric relation with all the members of the subset (otherwise it will be
included in the clique) (iii) the subset has at least three members.

If other words a clique can be defined as a maximal completely connected
subset of the original group, containing at least three persons. This subset
should not be properly contained in any larger completely connected subset.

It the group consists of m persons, we can represent the group by' n
vertices of a graph. The structure is provided by persons knowing or being
connected to other persons. If a person i knows j, we can draw a directed
edge from i to j. If i knows jand j knows i, then we have a symmetrical

reiation between i and J.
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» With this iqtcrprctation, the graph of Figure 7.11 shows that per
2,3 form a clique. With very small groups, we can find cliques by csons 1,
observing the corresponding graphs. For larger groups analytica] efully
pased. on the following results are useful: (i) 7 is a member of a cjj me%hods
ztl? diagonal element of S3 js different from zero. (ii) If there isq:)w]lfthc
clique of X members in the group, the corresponding k elements of gay OI.""
be (k — 1)(k — 2)/2 and the rest of the diagonal elements wil| be il
§(m) lf there are only two cliques with & and » members respective] -
there is no element common to these cliques, then & elements of §3 wﬁ{]?nd
7(k — Dk — 2)/2, m elements of S? will be (m — 1)(m — 2)/2 and th:. be
of the elements will be zero. (iv) If there are m disjoint cliques with ky, rle(zt

.. ay ko membcrs, th 3 5 ; —
en the trace of S3 is } £1 kilki — 1)(k; — 2). v) A

mzember 1s non-cliquical if only if the corresponding row and column of
S2 S consists entirely of zeros.

MATHEMATICAL MODELS IN TERMS OF SIGNED GRAPHS

Balance of Signed Graphs
A signed (or an algebraic) graph is one in which every edge has a positive
or negative sign associated with it. Thus the four graphs of Figure 7.16 are
signed graphs. Let positive sign denote friendship and negative sign denote
enemity, then in graph (i) A is a friend of both B and C and B and C are

A A A A
B + ¢ B - € B - € B =

Figure 7.16
. i ‘s friend of B and A and B are bogy, o .
also friends. In graph (i) A ¥4 friend of both B and C, bhut g an:'lk():m"i

enemies of ¢ In graph (ii), Ain i
cnemiens. In graph (iv) A is an enemy o

Iriends, . p e "
The first two praphs represents normil hcha};/';):ur-'tjn(-"ldn",‘;“d 1,
while the last two graphs represent unbalanced situaticns gp,,, it
and B and C are enemics, this creates 4 teng;,
bl

similar tension when B and € have 4 COMmmg,
: (1]

f both B and C, but 2 and ¢ b Are
= ey

balanced,
A is o friend both 72 and C
in the system and there is o
rnemu A ot are nat friends of cach other.
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I e $Egns of Oompf,n.”
“h

g ; o wiroli oduct ©
We define the sign of a cycle as the pr HE: M5 “«
4 this sign 15 positive and ;,

cdges. We find that in the two h:tlun.ccd cases,
the two unbalanced cases, this is negative. ot ,

We say that a cycle of length three or a tnanglc. ‘H b;:{ anced if and ¢
if its sign is positive. A complete algebraic graph 15 _dC’lHCd o be 4 compfe,,
graph such that between any two edges of it, there 18 a 'poﬂllllvc Or negatiy,
sign. A complete algebraic graph is caid to be balanced if all its tn'angles are
balanced. An alternative definition states that a complete algebraic graph ;,
balanced ii all its cycles are positive. It can be shown that the two defip;.
tions are equivalent. .

A graph is locally balanced at a point @ if all the cycles‘passmg through
a are balanced. If a graph is locally balanced at all points of the graph
it will obviously be balanced. A graph is defined to be m-balanced if all jis
cycles of length m are positive. For an incomplete graph, it i8 preferable to
define it to be balanced if all its cycles are positive. The definition in terms
of triangle is not satisfactory, as there may be no triangles in tke graph,

Structure Theorem and Its Implications

s aa . SRl RS

Theorem. The followin’é four conditions are equivalent:

(i) The graph is balanced i.e. every cycle in it is positive.

(ii) All closed linc-sequences in the graph are positive i.e. any sequence
of edges starting from a given vertex and ending on it and possibly passing
through the same vertex more than once is positive. ,

(iii) Any two line-sequences between two vertices have the same sign.

(iv) The set of all points of the graph can be partitioned into two disjoint

- sets such that every positive sign connects two points in the same set and
every negative sign connects two points of different sets.

The last condition has an interesting interpretation with possibility' of
application, It states that if in a group of persons there are only two possible
relationships viz. liking and disliking and if the algebraic graph represen®
ing these relationships is balanced, then the group will break up into two
separate parties such that persons within a party like one another, but each
person of one party dislikes every person of the othér party. If a bala?
situation is regarded as stable, this theorem can be interpreted to imply that
a two-party political system is stable.

netic graphs.
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.

MATHEMATICAL MODELLING '
OTGHAPKS IN TERMS OF WEIGHTED

Communication Network -
s w pedaia
Communication ith Known Probabilities of

[ —

In the communication graph of Figyre 7.10, we know that @ can communi-

cate with both & and ¢ onby and 5
in the absence of any vther Anow »—
ladge. we assgnd aqual probabilitees L
- p—— p—
o &% communmcatng with d or . O g I‘
Howaver we may have & prion know [ S>¢
N .~ - -
ladge that @'s chances of commumica ; - '
) \ \‘i 3
ung with » and ¢ arc m the rate o
312, then we assign prohability © to \
@'s communicating with » and 4 w oo -
@’s communicating with ¢ Similarh 7

we can associate a prohability with
every directed odge and we get the

. ~ -~ - = . 0y
weighted digraph (Figure 7.19) with the associated matrin

Figure .19

a b ¢ v
a 0 06 04 0 0l
b 05 0 053 0 0
B = ¢ 04 0.3 Q 0 Q (6)
d 0 0 3 0o o7
el 0 10 \ 0 0_}

We note that the elements are all non-negative and the sum of the elements
of every row is unity so that B is a stochastic matrix and unity is one of its
cigenvalues. The eigenvector corresponding to this ecigenvalues will be
different from the eigenvector found in Section 7.2.6 and so the relative

importance of the individuals depends both on the directed edges as well as
on the weights associated with the edges.
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Weighted Digraphs and Markov Chains
A Markovian system is characterised by a transition probability matrix. Thus
if the states of a system are represented by 1,2, ..., n and Py gives the

probability of transition from the ith state to jth state, the system is charac-
terised by the transition probability matrix (t.p.m)
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rpu P2 .. Py .. Pia .\

pn Pn .. py .. pa |

o | TR | -
4 Pil Pi2 Pij Pin ;
J ................. ;
LPst Pe .. Pi .. Pm |

Since 33 pij represents the probability of the system going from ith state to
i=1

any other state or of remaining in the same state, this sum must be equal to
unity. Thus the sum of elements of every row of a t.p.m. is unity.

s r s
Consider a set of N such Markov systems where N is large and ¢,

PPogs
. £ Py, P,
at any instant NPy, NP2, . . ., NPqof these (Py -+ P2 P

= |
in states 1,2, 3, ..., n respectively. After one step, let the proportio::ga;;
these states be denoted by Pi, Pi,. . ., Ph, then
Pl = Pypu - Papa - Papn + o ... o . - Papm
Pi= Pipa+ Pipra+ Papsa 4+ ...... + Papn2
....................... Gacreweied ¥ v 4 (8)
n=Pipin + Pap2n 4 Pipsn + ... ... + Prpan
or P" = PT 9)

) where P and P’ are row matrices representing the proportions of systems j
various states before and after the step and 7 is the t.p.m.

We assume that the system has been in operation for a long time apq

the proportions Py, Ps, . . ., P, have reached equilibrium values. In this case

P=PT or P(I—T)=0,

n

(10
where 7 is the unit matrix. This represents a system of z equations for deter-
mining the equilibrium values of P\, P2, .. ., P.. If the equations are consis-
tent, the determinant of the coefficient must vanish ie. |T—171!=0. This

requires that unity must be an eigenvalue of 7. However this, as we haye
seen already is true, This shows that an equilibrium state is

always possible
for a Markov chain.
A Markovian system can be represented by a wei

ghted directed graph.
Thus consider the Markovian system with the stocha

stic matrix

o JvULLAdLIL HTALETX

a b ¢ d
a 0.2 0.8 0 1 =8|
b 0.3 0.6 0.1 0

c |02 0.4 0.3 0.1

d Lo 0 0 L |
Its weighted digraph is given in Figure 7.20.

i 4
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0.1
Figure 7.20

In this example ¢ is an absorbing state ora state of equilibrium. Once a
system reaches the state d, it stavs thers for ever.

It is clear from Figure 7.20, that in whichever state, the syvstem may start,
it will ultimately end in state d. Ho“ ever the number of stzps that may be

required to reach & depeads on chance. Thus starting from ¢, the number of
stepsto rach dmay be 1,2, 3.4, .. starting from b the number of steps
to Ee.n.h & maybe 2 3.4, ... and starting for a. the numbar of steps may
be 3, 4.5, ... Ineach case. we can find the probability that the number
of S;ep\ required is # and then w= can find the expacted number of steps to
reaca 1t

Thus for the matrix

A

a i 0
(12)
b 13 23

aisan 2bsorbing state. Starting from &, we can r;agh aml, 2 3, ..., asleps
with probabilities (1/3). (1/3)(273). (1/3)(2/3 O, (1 ) (2!.:)"“', s o <5 S
that tbe expected number of steps is

) = (13)

£

4

.an
(]

-

'JJT-_

'all
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General Communication Networks

So for we have considered communication networks in which the weight
associated with a directed edge reprasents the probability of communication
along that edge. We can however have more general networks ¢.g.

(2) for communication of messages where the directed edge represents
the channel and the weight represents the capacity of the channel say in bits
per second

(b) for communication of gas in pipelines where the weights are the
capacities, say in gallons per hour

(c) communication roads where the weights are the capacities is cars per
i hour.

An interesting problem is to find the maximum flow rate, of whatever is
being communicated, from any vertex of the communication network to any
other. Useful graph-theoretic algorithms for this have been developed by

i Elias. Feinstein and Shannon as well as by Ford and Fulkerson. :

Signal Flow Graphs
The system of algebraic equations
¥ = 4yo 4 6x2 — 2X3
x2 = 2p0 — 2x1 + 2X3
Xy = 2x1 — 2x2
weighted digraph in Figure 7‘.2.2. I_’or solving for
¢ x3 and x2 to get the graphs in Figure 7.23 and

(14)

can be represented by the
x1, we successively eliminat
finally we get ‘

x = 40

We can similarly represent the solution of any number of linear equations
graphically.

4 :}1‘ % -2

X
Yo 8 Yo% 8
2 i

Yo 8 X ;’o Z

Figure 7.22 J ) Figure 7.23
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Woeighted Bipartitic Digraphs and Difference Equations

Consider the system of difference equations
X4l = anXe -+ a2y + apz
Yer1l = aux: + any + anz
41 = anxy + any + anz

Thfs can be represented by a weighted bipartitic digraph (Figure 7.24). The
weights can be positive or negative.

(15)

Figure 7.24

MATHEMATICAL MODELLING IN TERMS
UNORIENTED GRAPHS ot

Electrical Networks and Kirchoffs” Lawvvs

e S = = 2 S —
ll"no:;;:rc ::n‘n 3 hundred years after Euler solved the Konigsberg problem
iy 1849. l%‘atp;(i:::rgrczor:nuucd to deal with interesting puzzles only. Tt was
s g el offs” formulation of his laws of clectrical currents in

etic terms led to interest in serious applications of graph theory

-y

An electrical circuit (Figures 7.25a, b) consists of resistors Ri, R2.
inductances L, L2, . . ., capacitors C,, C2 and batteries B Bz, etc.

Figure 7.25
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The network diagram represents two independent aspects of an electrical
network. The first gives the interconnection between components and the
second gives voltage-current relationship of each component. The -ﬁrst aspect
is called network topology and can be modelled graphically. This aspect 1s
independent of voltages and currents. The second aspects involves voltages
and current and is modelled through differential equations.

For topological purposes, lengths and shapes of connections are n.ot
important and graphs of Figures 7.25(a), 7.25(b) and 7.25(c) are isomorphic.

For stating Kirchoff’s laws, we need two incidence matrices accocnate'd
with the graph. If v and e denote the number of vertices and edges respecti-

vely, we define the vertex or incidence matrix A = [ay] as follows:
ay = 1 if the edge j is incident at vertex 7
ai; = 0 if the edge j is not incident at vertex 7

This consists of v rows and e columns. For graph 7.25, 4 is given by

1 2 3 4 5 6

al O 1 1 0 1 0 7
b 1 1 0 1 0 0
c 1 0 1 0 0 1
ilLo o o0 1 1 1

We note that every column has two non-zero elements.
Similarly we define the circuit matrix B = [bx;] as follows

by = 1 if element j is in circuit k
— 0 if element j is not in circuit k

The matrix B contains as many rows as there are circuits and it has e columns.
In our case
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Py g 3
L1l o 0]
sle 1 o 1 1 O
T L e daed (0 Y
Al B 0s1 91

Now Kirchof’s laws can be written in the matrix form as follows:
Al = 0 (Kirchoff’s current law) (24)
BV = 0 (Kirchoff’s voltage law) (25)

where 7 is an exl column matrix giving the e currents and V' is exl columy
matrix giving e voltages.

Matrices 4 and B depend on the graph only, matrices 7 and ¥ depend on
currents and voltages only. 4 and B can be written independently of 7 anq
. Now an important question js as to how many of the components of
the current and voltage vectors are independent.

It can be proved that the rank of 4 is» — 1 and the rank of Bjg
¢ — 2+ 1. Thusv — 1 and e — v + 1 are the numbers of linearly indepen-
dent Kirchoffs current and voltage equations.

The graph-theoretic methods can now be used to (i) establish the validity
of the circuit and vertex equations and find their generalisations (ii) condit-
ions under which unique solutions of these equations exist (iii) justify the
duality procedures used in network theory (iv) develop short-cut methods
for writing equations (v) develop techniques for network synthesis.

Map-Colouring Problems

T'he four colour problem that every plane map, however complex, can be
colou.red with four colours in such a way that two neighbouri;m, regions
get different colours, challenged and fascinated rﬁathematicians %‘0 y ver
one hu.ndred years till it was finally solyed by Appall and Haken i,: ;’976
by using over 1000 hours of computer time. The problem is essentially
graph-theoretic since the sizes and
~ shapes of regions are not important.
4Th2.1t four colours are necessary is
easily seen by considering the simple
graphin Figure 7.26. It was the proof

P of the sufficiency that took more than
igure 7.26 hundred years. However the efforts
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e AL AT

o Q(\'\(" ‘hi\ pl'(\'\‘pn\ lcd to t‘
e development of . . -
muode s P of many other graph-theoretic

‘l;‘l;l'li\l“llzil‘l‘ l‘nln.\!lll\)! problems arise for colouring of maps on surface of
A S| \ ‘l.: ‘} rus o nlh?‘r surlaces. However many of these were solved even
before the simpler-looking four-colour problem was disposed of

Planar Graphs

In printing ot T.V. and radio circuits; we want that the wires, all lyin
in a plane, should not intersect, In the graph of Figure 7.27a wil:es a geai
(o Intersect, l\u! We can find an isomorphic graph in Figure 7.27(b) in v!\)fhich
edges do not Intersect. A graph which is such that we can draw a graph
isomorphic to it in which edges do not intersect is called a planar graph.

Figure 7.27 (a) Figure 7.27 (b)

A complete graph with five vertices is not planar (Figure 7.28a). We can
draw nine of the edges so that these do not intersect (Figure 7.28b) but how-
ever we may draw, we cannot draw all the ten edges without at least two of
them intersecting. The proof of this depends on Jordan’s theorem that every
simple closed curve divides the plane into two regions, one inside the curve
and one outside the curve. ABCDE in Figure 7.28(b) is a closed Jordan
curve and we cannot draw threec edges cither inside it or outside it without
intersecting.

Figure 7.28 (a) Figure 7.28 (b)

Euler's Formula for Polygonal Graphs

A polygonal graph with n vertices and n straight or curved edges has n
vertices, n edges and two faces (one inside and one outside) so that for this
graph
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V—-—E+ F=2 (26)

If we add on one edge, another polygonal region of r vertices, we increase
the number of vertices by r — 2, the number of edges by r — 1 and the

. e V—E+FiSzeroa
. ber of faces by 1, so that the net increases In . 2610 apg
?htmformula (26) remains valid. It can be shown by using the principle of
induction that (26) is valid for any polygonal graph with any number o
ions. Ry .
regro draw the dual graph G* of G, we take a point inside each reg_lon dud
draw an edge through it intersecting one of the (f,dges of the region, It j
obvious that for this dual graph the number of vertices, edges and faceg is

given by
y* = F, E=E*, F*=V, (30)
so that y* —E* + F*=F—E+V =2, (31)
as expected.
Regular Solids

A polygonal graph G is said to be completely regular if both G and its dug]
G* are regular i.e. if the degree of each vertex of G is the same (say. f?) and
the degree of each vertex of G* is the same (say P*). From this definition, it

follows
2E = PV = P*F ! - (32)
1 P
or EE P, =gV (33)

Substituting (33) in (26)

1 P
V—-i-PV‘I" ;,,—,V_=2 (34)

or V(2P + 2P* — pp¥*) — 4p* (35)
Since V, p, P* are positive integers

2P + 2P* — pP* > 0 or (P — 2)(P* — 2) < 4 (36)
O = N N v~ - ~ \YVY)
If P > 2, P* > 2, the only solutions of the inecjuality (36) are
P=3, PP=3 P=3 P=4¢4 p=3 P* =5; p =24, p* =3

P=135 p*=3,
Substituting in (35) and (33), we get the table and graphs
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‘ PV E F_.P* pP* pBs p» ndigh
U8 e i 4. 6 a
xR S - . T T
i) 3. 20 30 12e7u8%E joregg 20
(V) A28 7190 geing « Gg 13 tig
)5 12 36" g g 30 12 ™

The corr i ; ;

s :;Ix:ongcll:;i gr;;pl:lsu:;c tgwc?? i:lnf Figure 7.29(a)-(e). It is obvious that
0 itself, :

Dodocahedron ang Icosahedron are dual:u:: ealcs:hdolizleer Figsnikin

Docdacedtiedron

)

Tetrahedron

Jcosahedron

Octahedron

\

Figure 7.29

These five graphs corresponding to five Platonic regular solids (Figure 7.30).

Figure 7.31
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There is another solution of (36) viz. P we ?, p* =2, 3,4,...
corresponding graphs G and G* are shown in Figure 7.31,

POSSIBLE QUESTIONS

Part B (6 Marks)

1.Explain in detail senior-subordinate relationship.
2.Write an explanatory note on planar graphs.
3.Discuss in detail weighted digraphs and markov chains.
4.Write a note on the following

i) Signal flow graphs

i) Map-colouring problems

iii) Planar graphs

iv) Euler’s formula for polygonal graphs
5.Explain about one-way traffic problems.
6.Discuss in detail about communication networks
7.Write a note on seven bridges problem.

8.Give a brief note on Genetic graphs.

Part C (10 Marks)

1.Discuss in detail about communication networks.

2.Give a detailed note on electrical networks and Kirchoff’s laws.

3.Give a brief note on Genetic graphs.

The
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KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),
Coimbatore —641 021
UNIT-V
Subject: Mathematical Modeling Subject Code: 16MMP303
Mathematical Modeling through Graphs
Part-A(20X1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Multiple Choice Questions

Question Opt 1 Opt 2 Opt 3 Opt 4 Answer
Mathematics deals with both quantative and relationship Qualitative Numeric Decimal Integer Qualitative
Apply mathematics deals with solution of Difference Numeric Decimal Integer Difference
Apply mathematics deals with solution of Integral Numeric Decimal Integer Integral
Apply mathematics deals with solution of Functional Numeric Decimal Integer Functional
Apply mathematics deals with solution of Algebraic Numeric Decimal Integer Algebraic
In graphical model the problem of 7 bridges is called Fick's Routhwelt Konigsberg Gauss Konigsberg
A graph is called if every pair of vertices is joined by an edge Complete Incomplete Digraph Continuous Complete
A graph is called if every edge is directed with an arrow Complete Incomplete Digraph Continuous Digraph
A graph is called if every edge has either + or - sign associated with it Complete Incomplete Digraph signed graph signed graph
A digraph is called if every directed edge has a weight associated wit it Weighted digraph |signed graph Digraph Complete Weighted digraph
A graph is called if each of its vertices has same degree r. regular irregular solid unsolid regular
If traffic is allowed from point a to b the edge can draw fromatob. undirected directed complete incomplete directed
If G is undirected connected graph then one can always direct edge of G Non circuit Vertex Non vertex Circuit Circuit
In genetic graph, the local degree of incoming edges at eac vertex must be less then or equalto ___| 1 2 3 4 2
The necessary condition for a directed graph is to be one way traffic Two way traffic |Genetic Nature Genetic
The measure m(x) is always a number Real complex whole natural Whole
If x has no subordinates then measure m(x) equals 1 0 2 3 0
If witout oterwise changing the struture we move subordinate of a to a lower level relative to x then |Increases decreases stable unstable increases
If witout oterwise changing the struture we add a new individual subordinate to x then m(x) Increases decreases stable unstable increases
In communication network a graph can serve as a model undirected stable directed unstable directed
An individual can send message direct to n individuals with propability n 1/n 2n 3n 1/n
in a matrix representation an individual can send message to himself then elements are (row column digonal all digonal
All the elements of matrix are non negative and the sum of elements of every row is unity, the matrijstochastic propabilistic direct ergodic stochastic
All the elements of matrix are non negative and the sum of elements of every row is the 2|unity 3 4|unity
The markov chain is not stochastic propabilistic direct ergodic ergodic
A subset is to form clique if every member of subset has a relation with other member |symmetrical non symmetrical |stable unstable symmetrical
A subset of persons in a socio - psychological group will set to form a queue clique line None clique
The subset has atleast member 1 2 3 4 3
If the group consists of n persons then can represents the group by verties of graph n+1l n-1 n 2n n
For each communication netwrok can set up the corresponding propability matrix Digonal Unit row Transition Transition
A graph Is one in which every edge has positive or negative sign direct undirect signed unsigned signed
A graph Is one in which every edge has positive or negative sign direct undirect algebraic unsigned algebraic
The graph is balanced, every cycle in it is Positive negative both none positive
All closed line sequences in the graph is Positive negative both none positive
Any two lines sequence between two verties have the same sign number constant variable sign
Any two lines sequence between two verties have the sign same different equal none same
The set of all points of graph can be partitioned into disjoints sets 1 2 4 3 2
Every negative sign connects points of differents set 1 2 3 4 2
Every positive sign connects points of differents set 1 2 3 4 2
An algebraic grap is set to be antibalanced if every cycle in it has no of positive edges even odd real distinct even

Prepared by:A.Neerajah,Department of Mathematics,KAHE
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PART- A (20x1 = 20 Marks)
ANSWER THE FOLLOWING
1.1f there is one dependent continuous variable and a number
of independent continuous variables then system is called

a)ODE b)PDE c)LDE d)HDE
2.1f there is immigration into the population from outside at a
rate to the population size

a)Logically b)exponentially c)inversely d) proportionally
3.1f P(t) price of commodity and its rate of change is
proportional to the between demand and supply
a)Addition b)Difference c¢)Division  d)Multiplication
4.Two chemical substances combined in the ratio
to form the third substances Z
a) a:bb)a:2b c)2a:b d)a:3b
5.In population growth model b and d denotes

a) Birth & death b) Business & death
c)birth & decrease d)birth&increase

a)Radio active  b)Diffusion  c)Decay

6.If there is immigration into the population from outside at a
rate to the population size
a)Logically b) exponentially
c)inversely d) proportionally
7.In radio geology the of age solar system is used to estimate

d)immigration
8.Inthe model ‘change of price of commodity S(t) denotes
a)System  b)Supply c) Size d)model

9. law is used in the model 'Diffusion’

a)Fick's b) Hooke's ¢) Newton's  d) Gauss
10.In the model ‘change of price of commodity pe denotes

a)Equilibrium price  b) Eligible price

¢) Essential price d) Evaluation price

11.If there are no prey the species will decline at a rate
proportional to the population.

a)Prey b) Predator c) permanent d) persuieng
12.The population of x=0 and y=0 is called
position.

a)zero b) equilibrium C) unit d)value

13.The real parts of all the eigenvalues of the matrix[cij] is

negative are called

a)Rout-Herwitz b) Fick's c¢) Newtons d) Gauss
14.In simple epidemic mode limit t tends to infinity of 1(t)
denotes

an b) n+1 c)n-1 d) 2n
15.The predator species increases and the prey species

at a rate proportional to the product of two

populations.



a)increases b)decreases cjuniformly  d)stable
16.The initial populations of prey and preador species are

a)p/gand a/b b)a/b and p/qc)a/b d) p/q
17.x1(t(),x2(t).....xn(t) represent the populations of n species
states model.
a)multi-species b)single-species c)prey  d)predator
18.A susceptible person can infected at a rate proportional to
a)Sl b)SIS ¢) SHM d) MOC
19.The population of x=0 and y=0 is called position.
a)zero b) equilibrium c)unit d)null
20.The rate of growth of each species due to the
presence of the other.
a)increases b)decreases c)uniformly  d)stable
PART- B (3 x 2 = 6 Marks)
ANSWER ALL THE QUESTIONS
21.Explain diffusion in linear growth and decay.
22.In equation of logistic law, k=0.007,R=1000,N(0)=50,find
N(10).
23.Find curves for which tangent at a point is always
perpendicular to the line joining the point to the origin.
PART- C (3 x 8 = 24 Marks)
ANSWER ALL THE QUESTIONS
24.a) Discuss about logistic law of population growth.
(OR)
b) Explain about population growth models
25. a) Suppose the population of the world now is 4 billion and
its doubling period is 35 years, what will be the
population of the world after 350 years?

(OR)
b) Explain about prey-predator models.
26. a)Derive a Simple Epidemic Model.
(OR)
b)Discuss in detail Domar Macro models.
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PART- A (20x1 = 20 Marks)
ANSWER THE FOLLOWING
1.In a model Motion under inverse square law, the conic is
parabola then
a)e<l b) e=1 c)e>1 d)e=0
2. In the genetic characteristics will change generation

to generation and the variable representing generation is
discrete variable.

a)Economics b) Genetics
c)Population dynamics d)Mechanics
3. no of kepler's law are in planetary motion
a)l b)2 c)3 d)4
4.Complementary function can be obtained by
a) Matrix b)Determinate

c)Eigen value d)Eigen Vector
5.The solution of linear differences equation can be obtained by
transform if t is continuous

a) Laplace b)Z  c)Fourier d)Gauss

6.A graph is called if every pair of vertices is
joined by an edge

a) Complete b) Incomplete
c) Digraph d) Continuous
7.In graphical model the problem of 7 bridges is called
a) Fick’s b) Routhwelt
c¢) Konigsberg d) Gauss

8.The markov chain is not
a) Stochastic b) propabilistic
c) direct d)ergodic
9.Any two lines sequence between two verties have the
sign
a)Sameb) different  c) equal d) one
10.In the price changes are consider from year to
year or month to month or week to week or day to day
a)Economics b) Genetics
¢) Population dynamics d) Population growth
11.The solution of linear differential equation is of the form

a)CF+PI b)CF-PI c)CF*PI d)CF/PI
12.In difference equation theory is applied
a)Stability b) Non stability
c)Uniformity d)Non uniformity
13.In the cobweb model price of the commodity in the year
denotes
a)pt b) gt c)rt d) st
14.1f G is undirected connected graph then one can always
direct edge of G
a)Non circuit b) Vertex
c) Non vertex d) Circuit
15.The measure m(x) is always a number
a)Real b) complex  c¢) whole d) natural



16.In communication network a
a model
a)undirected b) stable c) directed  d) unstable
17.In a matrix representation an individual can send message
to himself then elements are zero.

a)row b) column c) diagonal  d) all
18. If the group consists of n persons then can represents the
group by verties of graph
a)n b)n+1 c)n-1 d) 2n
19.The necessary condition for a directed graph is to be
a)one way traffic b) Two way traffic
c) Genetic d) Nature
20.1f without otherwise changing the structure we add a new
individual subordinate to x then m(x)
a)Increases b) decreases c) stable

graph can serve as

d) unstable

PART- B (3 x 2 = 6 Marks)
ANSWER ALL THE QUESTIONS
21. Write the components of velocity and acceleration vectors
along radial and transverse directions.
22.Expain formula for Laplace Transform.
23.Explain Food Webs.

PART- C (3 x 8 = 24 Marks)
ANSWER ALL THE QUESTIONS
24. a) Explain about the catenary.
(OR)
b)Explain in detail Kepler’s law of planetary motion
25. a)Find a solution of linear difference equation by Laplace

transform.
(OR)
b) Explain in detail Harrod model..
26. a) Discuss in detail weighted digraphs and markov chains.
(OR)
b)Discuss in detail about communication networks.
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PART B (5 x 6 = 30 Marks)
Answer ALL the Questions

2

. a) Discuss about logistic law of population growth.
b) Give a brief n(:tre on diffusion or a medicine in the blood stream.
22. a) Derive a Simple Epidemic Model.
b) Show that n.a:?wronal income, investment and savings increase exponentially.
23. a) Explain about the catenary.
b) Explain in d:;'.il Kepler’s law of planetary motion.
24, a) Write an explanatory note on complementary function.
b) Explain in de:irl markov chains.
25. a) Discuss in detail weighted digraphs and markov chains.
b) Discuss in “&r] about communication networks.

PART C (1 x 10 = 10 Marks)
{Compulsory)

26. Explain about motion of a projectile.
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