Ouestion	Option 1	Option 2	Option 3	Option 4	Answer	
UNIT-1	·	· · · ·	· ·			
The probability of drawing a card of King from a pack of cards	1 / 4	1/11	1/12	1/12	1/12	
is	1/4	1/11	1/12	1/13	1/13	
In tossing a coin, the probability of getting head is	1/2	1/3	2	0	1/2	
The probability that a leap year selected at random contain 53	1/7	2/7	3/7	1/53	2/7	
A bag contains 7 red and 8 black balls. The probability of drawing						
a red ball is	7/15	8/15	1/15	14/15	7/15	
The probability of drawing a card of clubs from a pack of 52	0	(1/3)	2/4	1/4	1/4	
The probability of drawing an ace or queen card from a pack of	1/12	1/4	2/12	1/50	1/12	
52 cards is	1/13	1/4	2/13	1/52	1/13	
The total probability is is always equal to	0.5	2	1	0	1	
A variable whose value is a number determined by the outcome of a random experiment is called a	Sample	Random variable	Outcome	Event	Random variable	
If a random variable takes only a finite or a countable				Lefecte and a second la		
number of values, it is called	Finite random space	Continous random variable	Discrete random variable	Infinite random variable	Discrete random variable	
A continuous random variable is a random variable X which can take any value between	Interval	Limits	Finite values	Infinite values	Interval	
Suppose that X be a discrete or continuous random variable, then			Neither increasing nor	Can be increasing and		
distribution function is afunction of x.	Non-decreasing	Decreasing	decreasing	decreasing	Non-decreasing	
The function $f(x) = 5x^4$, $0 < x < 1$ can be a of a random variable X	Probability mass function	Probability density function	Distribution function	Exponential function	Probability density function	
If $F(x)$ is the cumulative distribution function of a continuous						
random variable X with p.d.f f(x) then	$\mathbf{F}'(\mathbf{x}) = \mathbf{f}(\mathbf{x})$	F'(x) not equal to $f(x)$	F'(x) < f(x)	F'(x) > f(x)	F'(x) = f(x)	
If X is a continuous random variable with p.d.f $f(x)$, then $F(b)-F(a)=$	P(a>X>b)	P(a <x>b)</x>	P(b <x<a)< td=""><td>P(a<x<b)< td=""><td>P(a<x<b)< td=""></x<b)<></td></x<b)<></td></x<a)<>	P(a <x<b)< td=""><td>P(a<x<b)< td=""></x<b)<></td></x<b)<>	P(a <x<b)< td=""></x<b)<>	
Which one of the following represents the best estimate of the		The mean of several sample	The mode of several sample	The median of several	The mean of several sample	
population mean?	The sample mean	means	means	sample means	means	
	Parameters describe samples	Statistics describe samples	Parameters describe		Parameters describe	
Which of the following statements are true?	and statistics describe populations	and populations	populations and statistics describe samples	Both (a) and (b) above	populations and statistics describe samples	
	The more confidence you	The less you can rely on	The greater the chance that	Correlation between the two	The more confidence you	
The narrower the confidence intervals:	can place in your results	vour results	your results were due to	scores	can place in your results	
			sampling error			
Statistical significance:	Is directly equivalent to	Does not necessarily mean	Depends on sample size	Both (h) and (c) above	Both (h) and (c) above	
Statistical significance.	psychological importance	psychologically important	Depends on sample size			
	The more sample size	The more sample size	Sampla siza has no	The more sample size	The more sample size	
All other things being equal:	increases, the more power	increases, the more power	relationship to power	increases, the more	increases, the more power	
	decreases	increases		indeterminate the power	increases	
pack of 52 cards?	13/102	1/4	2/13	7/16	13/102	
The probability of drawing king and queen card from a pack of	12/102	1 / /	2/12	0/662	9/662	
52 cards is	15/102	1/4	2/15	8/003	8/003	
Two coins are tossed five times, find the probability of getting an even number of heads ?	0.25	1	0.4	0.25	0.25	
	The wider the confidence	The more likely the	The narrower the confidence	· · · · · · · · · · · · · · · · · · ·	The narrower the confidence	
All other things being equal, the more powerful the statistical test:	intervals	confidence interval will	interval	The smaller the sample size	interval	
	The statistical test, the type	The statistical test, the	The criterion significance	The criterion significance	The criterion significance	
Power can be calculated by a knowledge of:	of design and the effect size	criterion significance level	level, the effect size and the	level, the effect size and the	level, the effect size and the	
	Anviety rated on a scale of 1	and the effect size	type of design	sample size	sample size	
	to 5 where 1 equals not					
Which of the following constitute continuous variables?	anxious, 3 equals	Gender	Temperature	Intelligence	Temperature	
	moderately anxious and 5					
	equals highly anxious					
	Able to take only certain	Able to take any value			Able to take any value	
A continuous variable can be described as:	alsorete values within a	within a range of scores	Being made up of categories	Being made up of variables	within a range of scores	
Which one of the following represents the best estimate of the		The mean of several sample	The mode of several sample	The median of several	The mean of several sample	
population mean?	The sample mean	means	means	sample means	means	
Which one of the following represents the best estimate of the	The sample mean	The mean of several sample	The mode of several sample	The median of several	The mean of several sample	
population mean?		means	means	sample means	means	
The narrower the confidence intervals:	The more confidence you	The less you can rely on	The greater the chance that	Correlation between the two	The more confidence you	
The harrower the confidence intervals.	can place in your results	your results	sampling error	scores	can place in your results	
Which of the following could be considered as categorical	Conder	Drond of holized harms	Loin colour	All of the charge	All of the charge	
variables?	Gender	Dialiu of daked deans	nair coiour		All of the above	
One card is drawn at random from a well-shuffled pack of 52 cards. What is the probability that it will be a diamond 2	1/13	1/4	1/52	1/15	1/4	
Which of the following is a continous probability distribution?	Normal	Poisson	Binomial	Uniform	Normal	
For which distribution, mean, meadian and mode coincides?	Poisson	<u>F</u>	Chi square	Normal	Normal	
The range of standard normal variate is	–∞ to +∞	0 to 1	0 to ∞	1 to ∞	-∞ to +∞	

Question	Option 1	Option 2	Option 3	Option 4	Answer
UNIT-II					
The word is used to indicate various statistical					
measures like mean, standard deviation, correlation etc, in the	Statistic	Parameter	Hypothesis	Sample	Parameter
universe.					
the	Population	Hypothesis	Sample	Parameter	Sample
Degrees of freedom are related to	No. of observations	Hypothesis under	No. of independent	No. of rows of	No. of independent
Student's t-test is applicable in case of	Small samples	For sample of size	Large samples	For sample size of more than 100	Small samples
The distribution used to test goodness of fit is	F distribution	v^2 distribution	t distribution	Z distribution	χ^2 distribution
The formula for χ^2 is	$\sum (\Omega - E)^2 / E$	$(F+O)^2/F$	(O-E)/E	$\Sigma(0 - F)^2/0$	$\sum (\Omega - F)^2 / F$
In sampling distribution the standard error is a	Standard mean	Sampling error	Difference error	Type-I error	Sampling error
The characteristic of the chi–square test is	Degree of Freedom	Level of	ANOVA	Independence of	Independence of
If $S_1^2 > S_2^2$, then the F – statistic is	S_1 / S_2	S_2 / S_1	${\bf S_1}^2 / {\bf S_2}^2$	S_1^{3} / S_2^{3}	${\bf S_1}^2 / {\bf S_2}^2$
Which of the following is the standard deviation of a sampling distribution.	Standard error	Sample standard deviation	Replication error	Meta error	Standard error
A good way to get a small standard error is to use a	Repeated sampling	Small sample	Large sample	Large population	Large sample
Numerical characteristic of a sample is called	Statistic	Parameter	Hypothesis	Sample	Statistic
Which of the following symbols represents a population parameter?	S.D	σ	r	0	σ
The distribution of means of all possible samples taken from a population is	A sampling distribution	A sample	Population distribution	Parameter distribution	A sampling distribution
The mean of the sample means is exactly equal to the	Sample mean	Population mean	Weighted mean	Combined mean	Population mean
The mean of Chi - distribution with n degrees of freedom is	n	n-1	2n	2n-1	n
The Chi- distribution is	Continous	Multimodal	Bimodal	Symmetrical	Continous
In sampling without replacement, expectation of samlpe variance is not equal to:	Population variance	Sample mean	Sample S.D	Population mean	Population variance
For larger degrees of freedom, t- distribution tends to	Standard normal	Binomial	Exponential	Poisson	Standard normal
Mode of F-distribution is always	< 1	> 1	1	0	< 1
Sampling distribution of F-distribution only depends on	Degrees of freedom	Population size	Sample size	Parameters	Degrees of freedom
Variance of Chi- distribution with n degrees of freedom is given by	n	2n	n-2	n-3	2n
Chi square variate with 1 degree of freedom is the square of	Standard normal	Binomial	Normal	Poisson	Standard normal
Student's t-distribution was discovered by	Karl Pearson	Laplace	Fisher	Gosset	Gosset
The most commonly used assumption about the distribution of a variable is	Continuity	Symmetry	Discontinuity	Non-symmetry	Symmetry
Which distribution is lower at mean and higher at tail than a normal distribution	t	F	Z	Chi-Square	t
F-distribution was devised by	R.A.Fischer	Snedecor	Gosset	Karl Pearson	Snedecor
To test whether or not two population variances are equal, the appropriate distribution is	Z distribution	Chi-square distribution	F distribution	t-distribution	F distribution
If a statistic t follows student's t distribution, then t^2 follows	F distribution	t distribution	Chi-square distribution	Normal distribution	F distribution
If F follows $F(n_1,n_2)$, then χ^2 = follows chi square distribution with	n ₁	n ₂	n ₁ -1	n ₂ - 2	n ₁
The relation between the mean and variance of chi square distribution with n d f is	Mean=2 Variance	Mean=Variance	2 Mean= Variance	Mean <variance< td=""><td>2 Mean= Variance</td></variance<>	2 Mean= Variance
The range of F- variate is	- ∞ to + ∞	0 to 1	0 to ∞	- ∞ to 0	0 to ∞
The larger variance in the variance ratio for F-statistic is taken	Denominator	Numerator	As constant	As zero	Numerator
From Snedocor's F-distribution, we can devise statistic	Fischer's Z	Students t	Chi square	Normal	Fischer's Z
For Fischer's Z-distribution, Z-statistic is	Z=1/2 log F	Z=2 log F	Z=1/3log F	Z=log F	Z=1/2 log F
Z distribution is formulated fromdistribution.	<u> </u>	Chi square	t	Standard Normal	<u> </u>
Which of the following property is not a desirable property of a point estimator?	Consistency	Efficiency	Sufficiency	Bias	Bias
Which of the following is most relevant for deriving a point estimator?	Sample size	Confidence desired	Variability in the population	Population size	Sample size
Which of the following factor does not usually affect the width of a Confidence interval?	Sample size	Confidence desired	Variability in the population	Population size	Population size
	TT 1 ' 1	Efficient	Sufficient	Standardized	Standardized

Given the level of confidence as 95% and margin of error as 2%, the minimum sample size required to estimate the population is	1256	2009	2401	2815	2401
Which of the following statement about confidence limit for	50% confidence	90% confidence	95% confidence	99% confidence	99% confidence
population mean is not true?	limits are wider	limits are wider	limits are wider	limits are widest	limits are widest
	Acceptance region	Acceptance region	Acceptance region	There is no	Acceptance region
Which of the following statement is normally true?	is more than the	is less than the	is equal to the	relationship	is more than the
	critical region	critical region	critical region	between acceptance	critical region
Which one of the following is not a step in conducting a test of	Set up the Null	Decide the level of	Decide the power	Decide on the	Decide the power
significance?	hypothesis	significance	of the Test	appropriate statistics	of the Test
	Minimum level of	Maximum level of	Maximum level of	Minimum level of	Maximum level of
The p-values indicates the :3	significance at	significance at	significance at	significance at	significance at
	which the null	which the null	which the null	which the null	which the null
If the value of proportion p in the population is not known, the most					
conservative sample size required for the given margin can be	p = 1/2	p = 1/3	p = 1/4	p = 3/4	p = 1/2
calculated by assuming					
In which distribution the ratio of two variances under the null	The t distribution	The uniform	The Normal	The E distribution	The E distribution
hypothesis of equal variance is taken?	The t-distribution	distribution	distribution	The r-distribution	The r-distribution

Question	Option 1	Option 2	Option 3	Option 4	Answer
UNIT-III					
Level of significance is the probability of	Type I error	Type II error	No error	Standard error	Type I error
If the calculated value is less than the table value, then we accept	Alternative	Null	Sample	Statistics	Null
the hypothesis.	Exact test	t togt		E test	t tagt
An example in a two-sided alternative hypothesis is:	Exact test $H1: \mu \leq 0$	t - test H1: $\mu > 0$	H1: $\mu > 0$	F - test H1: $\mu \neq 0$	t - test H1: $\mu \neq 0$
An example in a two-sided alternative hypothesis is.	111. μ < 0	111. μ > 0	$111. \mu \ge 0$	111. μ 7 0	Π1. μ 7 0
Larger group from which the sample is drawn is called	Statistic	Sampling	Universe	Parameter	Universe
Any hypothesis concerning a population is called a	Sample	Population	Statistical measure	Statistical hypothesis	Statistical hypothesis
Rejecting null hypothesis when it is true leads to	Type I error	Type II error	Correct decision	Type III error	Type I error
Accepting null hypothesis when it is true leads to	Type I error	Type II error	Correct decision	Type III error	Correct decision
Type II error occurs only if	Reject Ho when it	Accept Ho when	Accept Ho when	Reject Ho when it	Accept Ho when
The correct decision is	Reject Ho when it	Accept Ho when	Reject Ho when it	Level of	Reject Ho when it
specified in a test is known as	Null hypothesis	Alternative hypothesis	Degrees of freedom	Level of significance	Level of significance
If the computed value is less than the critical value, then	Null hypothesis is	Null hypothesis is	Alternative hypothesis is	Level of significance	Null hypothesis is
If the computed value is greater than the critical value	Null hypothesis is	Null hypothesis is	Alternative	Level of	Null hypothesis is
then	accepted	rejected	hypothesis is	significance	rejected
A critical function provides the basis for	Accepting H ₀	Rejecting H ₀	No decision about	No decision about	No decision about
Degree of freedom for statistic chi-square incase of contingency table of order 2 x 2 is	4	3	2	1	1
If the sample size is greater than 30, then the sample is called	Large sample	Small sample	Population	Normal	Large sample
If the sample size is less than 30, then the sample is called	Large sample	Small sample	Population	Normal	Small sample
Z – test is applicable only when the sample size is	Zero	2	Small	Large	Large
The degrees of freedom for two samples in t – test is	$n_1 + n_2 + 1$	$n_1 + n_2 - 2$	$n_1 + n_2 + 2$	$n_1 + n_2 + 1$	$n_1 + n_2 - 2$
The test-statistic t has $d.f = :$	n	n-1	n-2	<u>n-3</u>	n-1
An assumption of t – test is population of the sample is \dots	Binomial	Poisson	Normal	Exponential	Normal
The degrees of freedom of chi – square test in contigency tables is	(r-1)(c-1)	(r + 1)(c + 1)	(r + 1)(c - 1)	(r-1)(c+1)	(r-1)(c-1)
In chi – square test, if the values of expected frequency are less than 5, then they are combined together with the neighbouring frequencies. This is known as	Goodness of fit	Degree of Freedom	Level of significance	Pooling	Pooling
In F – test, the variance of population from which samples are drawn are	Equal	Unequal	Small	Large	Equal
If the data is given in the form of a series of variables, then the DOF is	n	n – 1	n +1	(r-1)(c-1)	n – 1
The value of Z test at 5% level of significance is	3.96	2.96	1.96	0.96	1.96
From the following which one of the following is taken as null hypothesis?	$P_1 = P_2$	$P_1 > P_2$	$P_1 < P_2$	$P_{1 \neq} P_2$	$P_1 = P_2$
Most of the non-parametric methods utilise measurements	Interval scale	Ratio scale	Ordinal scale	Nominal scale	Ordinal scale
For a non-parametric test, the distibution	Should be normal	Should be	Need not be normal	Should be Poisson	Need not be normal
Which of the following is a non-parametric test?	Chi square test	F-test	t-test	Z-test	Chi square test
To test goodness of fit for a non-normal distribution, we use	Kolomogrov- Smirnov test	Chi square test	F-test	t-test	Kolomogrov- Smirnov test
In tests using rank methods, the null hypothesis is rejected if calculated value is	> tabulated value	< tabulated value	>= tabulated value	<=tabulated value	<tabulated td="" value<=""></tabulated>
The chi squure test statistic is defined as	Chi square = Sum $[\{(O - E) * (O - E)\}]$	Chi square = Sum $[(O - F)]$	Chi square = Sum $\begin{bmatrix} \{(O + E) * (O + E) \} \end{bmatrix}$	Chi square = Sum $[\{(O + E) * (O + E)\}$	Chi square = Sum $\begin{bmatrix} \{ (O - E) * (O - E) \end{bmatrix}$
The chi square variate is always	≥0	<0	>1	1	≥0
Kolomogrov Smirnov test is for testing	Equality of several	Comparing two	Equality of 2	Equality of several	Comparing two
The null hypothesis for Kolomogrov Smirnov test is that two			Different	Non-normal	
populations are from	Same population	ivormal population	populations	populations	Same population
Mann-Whitney U-test is used for testing	Equality of two means	Equality of three means	Equality of several means	Equality of 2 sets of several rankings	Equality of two means
The non-parametric test analogous to ANOVA is	Kruskal-Wallis test	Mann-Whitney U-	Kolomogrov	Chi square test	Kruskal-Wallis test
Mann-Whitney U-test is analogous to	t-test	Chi-Square test	F-test	Z-test	t-test
Wilcoxon-Wilcox test is used for testing	Equality of several	Equality of 2	Equality of two	Equality of several	Equality of several
Wilcoxon-Wilcox test will compare equality of	All pairs of means	All means	2 means	More than 3 means	All pairs of means
The independence of attributes can be tested by using	Contigency tables	Normal table	Pooling	Z-test	Contigency tables
The degrees of freedom in a 3x3 contigency table is	8	4	3	0	4

The degrees of freedom in a r x s contigency table is	r-1	s-1	r+1	(r-1)(s-1)	(r-1)(s-1)
Most of the Non-Parametric methods utilize measurements on :	Interval Scale	Ratio Scale	Ordinal Scale	Nominal Scale	Ordinal Scale
Kolmogorow - Smirnov have evolved tests for	Goodness of fit of	Comparing two	Both (a) and (b)	Neither (a) nor (b)	Both (a) and (b)
The most commonly used assumption about the distribution of a	Continuity of the	Symmetry of the	Doth (a) and (b)	Neither (a) nor (b)	Symmetry of the
variable is:	distribution	distribution	Dotti (a) and (b)		distribution
Which one of the following statement is false:	α is called type I	1 - α is called	β is called type II	1 - β is called	1 - α is called
Which one of the following is not an alternative hypothesis?	$H_1: m \neq m_0$	$H_1: m > m_0$	$H_1: m < m_0$	$H_1: m = m_0$	$H_1: m \neq m_0$

Question	Option 1	Option 2	Option 3	Option 4	Answer
UNIT-IV					
The process of making estimates about the population parameter from	Statistical	Statistical	Statistical	Statistical	Statistical
Statistical information has non-ally true branches they are	Level of	Biased	Point estimator	Estimation of	Estimation of
Statistical inference has namely two branches, they are	confidence and	estimator and	and unbiased	parameter and	parameter and
Estimation is possible only in case of a	Parameter	Universe	Random sample	Population	Random sample
The numerical value which we determine from the sample for population parameter is called:	Estimation	Estimate	Estimator	Confidence coefficient	Estimate
		Type I and Type	Point	Biased and	Point
Estimation is of two types. They are	e sided and two si	П	eastimation and	unbiased	eastimation and
A formula or rule used for estimating the parameter is called:	Estimation	Estimate	Estimate	Interval estimate	Estimator
A single value used to estimate a population values is called:	Interval estimate	Point estimate	Level of	Degrees of	Point estimate
A value of an estimator is called:	Estimation	Estimate	Variable	Constant	Estimate
Standard error is the standard deviation of the sampling distribution	Estimate	Estimation	Estimator	Error of	Estimator
An estimator is a random variable because it varies from:	pulation to samp	ulation to populat $E(T) \neq E(T)$	Sample to sample $\overline{\mathbf{E}}(\mathbf{T})$ not equal	$\frac{1}{1}$	Sample to sample $E(T)$
Estimates given in the form of confidence intervals are called	E(1)>t	E(1) <t< td=""><td>E(1) not equal</td><td>E(1)=t Degree of</td><td>E(1)=t Interval</td></t<>	E(1) not equal	E(1)=t Degree of	E(1)=t Interval
Interval estimate is associated with:	Point estimates	Non probability	Panga of values	Number of	Panga of values
Panga or set of volves which have changes to contain volve of	Fiobability	Non-probability	Kange of values	Inulliber of	Kange of values
nonulation parameter with particular confidence level is considered	interval	Confidence	Population	Sample interval	Confidence
as	estimation	interval estimate	interval estimate	estimate	interval estimate
	Point estimates	Interval	Interval	Point estimates	Point estimates
Sample means are:	of sample means	estimates of	estimates of	of population	of population
The process of making estimates about the population parameter	Statistical	Statistical	Statistical	Statistical	Statistical
from a sample is called:	independence	inference	hypothesis	decision	inference
	Level of	Biased	Point estimator	Estimation of	Estimation of
Statistical inference has namely two branches, they are	confidence and	estimator and	and unbiased	parameter and	parameter and
Estimation is possible only in case of a	Parameter	Universe	Random sample	Population	Random sample
The numerical value which we determine from the sample for		F atimate	E e time e te m	Confidence	Estimate
population parameter is called:	Estimation	Estimate	Estimator	coefficient	Estimate
Estimation is of true tomas Theorem	One sided and	Type I and Type	Point	Biased and	Point
Estimation is of two types. They are	two sided	П	eastimation and	unbiased	eastimation and
A formula or rule used for estimating the parameter is called:	Estimation	Estimate	Estimate	Interval estimate	Estimator
A single value used to estimate a population values is called:	Interval estimate	Point estimate	Level of	Degrees of	Point estimate
A value of an estimator is called:	Estimation	Estimate	Variable	Constant	Estimate
Standard error is the standard deviation of the sampling distribution of an:	Estimate	Estimation	Estimator	Error of estimation	Estimator
An estimator is a random variable because it varies from:	Population to	Population to	Sample to	Sample to	Sample to
If T is the estimator of parameter t, then T is called unbiased if	E(T)>t	E(T) <t< td=""><td>E(T) not equal to t</td><td>E(T)=t</td><td>E(T)=t</td></t<>	E(T) not equal to t	E(T)=t	E(T)=t
Estimates given in the form of confidence intervals are called	Doint actimates	Interval	Confidence	Degree of	Interval
·····	Point estimates	estimates	limits	freedom	estimates
Interval estimate is associated with:	Probability	Non-probability	Range of values	Number of	Range of values
Method in which sample statistic is used to estimate value of	Estimation	Valuation	Probability	Limited	Estimation
parameters of population is classified as	Listimation	v aruation	calculation	theorem	Limation
Range or set of values which have chances to contain value of	Secondary	Confidence	Population	Sample interval	Confidence
population parameter with particular confidence level is considered	interval	interval estimate	interval estimate	estimate	interval estimate
as	estimation				
Upper and lower boundaries of interval of confidence are classified as	Error biased limits	Marginal limits	Estimate limits	Confidence limits	Confidence limits
Criteria of selecting point estimator must includes information	Consistency	Biasedness	Inefficiency	Population	Consistency
Considering sample statistic if mean of sampling distribution is	Unbiased		Interval	Hypothesis	Unbiased
equal to population mean then sample statistic is classified as	estimator	Biased estimator	estimation	estimator	estimator
Which of the following is an estimate of the variability of estimates					
of the mean in different samples?	Standard error of the mean	Average	Variance	Standard deviation	Standard error of the mean
If point estimate is 8 and margin of error is 5 then confidence interval is	3 to 13	4 to 14	5 to 15	6 to 16	3 to 13
To develop interval estimate of any parameter of population, value which is added or subtracted from point estimate is classified as	Margin of efficiency	Margin of consistency	Margin of biasedness	Margin of error	Margin of error
In confidence interval estimation, confidence efficient is denoted by	$1 + \beta$	1 - β	1 - α	$1 + \alpha$	1 - α

In confidence interval estimation, interval estimate is also classified as	Confidence efficient	Confidence deviation	Confidence mean	Marginal coefficient	Confidence efficient
Value of any sample statistic which is used to estimate parameters of population is classified as	Point estimate	Population estimate	Sample estimate	Parameter estimate	Point estimate
Distance between true value of population parameter and	Error of central	Error of	Error of	Error of	Error of
estimated value of population parameter is called	limit	confidence	estimation	hypothesis	estimation
In confidence interval estimation, formula of calculating confidence	Point estimate *	Point estimate ±	Point estimate -	Point estimate +	Point estimate \pm
interval is	margin of error	margin of error	margin of error	margin of error	margin of error
Difference between value of parameter of population and value of unbiased estimator point is classified as	Sampling error	Marginal error	Confidence error	Population error	Sampling error
Considering sample statistic, if sample statistic mean is not equal to population parameter then sample statistic is considered as	Unbiased estimator	Biased estimator	Interval estimation	Hypothesis estimator	Biased estimator
If true value of population parameter is 10 and estimated value of population parameter is 15 then error of estimation is	5	25	0.667	150	5
A confidence interval will be widened if:	The confidence level is increased and	The confidence level is increased and	The confidence level is decreased and	The confidence level is decreased and	The confidence level is increased and
A 95% confidence interval for the mean of a population is such that:	It contains 95% of the values in the population	There is a 95% chance that it contains all the	There is a 95% chance that it contains the	There is a 95% chance that it contains the	There is a 95% chance that it contains the
If a standard error of a statistic is less than that of another then what is the former is said to be	efficient	unbiased	consistent	sufficient	efficient
are the values that mark the boundaries of the confidence interval.	Confidence intervals	Confidence limits	Levels of confidence	Margin of error	Confidence limits
When S is used to estimate σ , the margin of error is computed by using	normal distribution	t distribution	sample mean	population mean	t distribution
For the interval estimation of μ when σ is known and the sample is	t distribution	t distribution	t distribution	normal	normal
large, the proper distribution to use is	with n +1	with n-1	with n degrees	distribution	distribution

Question	Option 1	Option 2	Option 3	Option 4	Answer
UNIT-V		-		-	
The square of the S.D is	Variance	Coefficient of	Square of variance	Square of	Variance
Analysis of variance is a statistical method of comparing the	Standard				, ununee
of several populations.	deviations	Means	Variances	Proportions	Means
The analysis of variance is a statistical test that is used to compare how many group means?	Three	More than three	Three or more	Two or more	Two or more
Analysis of variance utilizes:	F-test	Chi-Square test	Z-test	t-test	F-test
What is two-way ANOVA?	An ANOVA with two variables and	An ANOVA with one variable and	An ANOVA with one variable and	An ANOVA with both categorical	An ANOVA with one variable and
Which of the following is the correct F ratio in the one-way ANOVA?	MSA/MSE	MSBL/MSE	MST/MSE	MSE/MST	MST/MSE
For validity of F-test in Anova, parent population should be	Binomial	Poisson	Normal	Exponential	Normal
sum of squares measures the variability of the observed values around their respective tabulated values	Treatment	Error	Interaction	Total	Error
The sum of squares measures the variability of the sample treatment means around the overall mean.	Total	Treatment	Error	Interaction	Treatment
If the true means of the k populations are equal, then MST/MSE should be:	more than 1.00	Close to 1.00	Close to -1.00	A negative value between 0 and - 1	Close to 1.00
If MSE of ANOVA for six treatment groups is known, you can compute	Degree of freedom	The standard deviation of each	Variance	The pooled standard deviation	The pooled standard deviation
To determine whether the test statistic of ANOVA is statistically significant to determine critical value we need	Sample size,	Mean, sample standard deviation	Expected frequency.	MSTR, MSE	Sample size,
Which of the following is an assumption of one-way ANOVA	Variables follow	Variables follow	Samples are	Variables have	Variables follow
comparing samples from 3 or more experimental treatments?	F- distribution	normal	dependent each	different variances	normal
The error deviations within the SSE statistic measure distances:	Within groups	Between groups	Between each value and the	Betweeen samples	Within groups
In one-way ANOVA, which of the following is used within the F -ratio as a measurement of the variance of individual observations?	SSTR	MSTR	SSE	MSE	SSE
When conducting a one-way ANOVA, the the between- treatment variability is when compared to the within-treatment variability	More random larger	Smalller	Larger	More random smaller	Smaller
When conducting a one-way ANOVA, the value of F DATA will be tend to be	More random larger	Smalller	More random smaller	Larger	Smaller
When conducting an ANOVA, <i>F</i> DATA will always fall within what range?	Between negative infinity and	Between 0 and 1	Between 0 and infinity	Between 1 and infinity	Between 0 and infinity
If F DATA = 5, the result is statistically significant	Always	Sometimes	Never	Is impossible	Sometimes
If F DATA= 0.9, the result is statistically significant	Always	Sometimes	Never	Is impossible	Never
When comparing three treatments in a one-way ANOVA ,the alternate hypothesis is	All three treatments have different effect on the mean	Exactly two of the three treatments have the same effect on the	At least two treatments are different from each other in	All the treatments have same effect	At least two treatments are different from each other in
If the sample means for each of k treatment groups were identical, the observed value of the ANOVA test statistic?	1	0	A value between 0.0 and 1.0	A negative value	0
If the null hypothesis is rejected, the probability of obtaining a F -ratio > the value in the F table as the 95th % is:	0.5	>0.5	<0.5	1	<0.5
ANOVA was used to test the outcomes of three drug treatments. Each drug was given to 20 individuals. If $MSE = 16$, What is the standard deviation for all 60 individuals sampled for this study?	6.928	48	16	4	4
Analysis of variance technique originated in the field of	Agriculture	Industry	Biology	Genetics	Agriculture
With 90, 35, 25 as TSS, SSR and SSC, in case of two way classification, SSE is	50	40	30	20	30
Variation between classes or variation due to different basis of classification is commonly known as	Treatments	Total sum of squares	Sum of squares	Sum of squares due to error	Treatments
The total variation in observations in Anova is classified as:	Treatments and inherent variation	SSE and SST	MSE and MST	TSS and SSE	Treatments and inherent variation
In Anova, variance ratio is given by	MST/MSE	MSE/MST	SSE/SST	TSS/SSE	MST/MSE
Degree of freedom for TSS is	N-1	k-1	h-1	(k-1)(h-1)	N-1
For Anova, MST stands for	Mean sum of squares of	Mean sum of squares of	Mean sum of squares of tables	Mean sum of sources of	Mean sum of squares of

An ANOVA procedure is applied to data of 4 samples, where each	4 numerator and 9	3 numerator and	3 numerator and	4 numerator and	3 numerator and
sample contains 10 observations. Then degree of freedom for	denominator	An denominator	36 denominator	10 denominator	36 denominator
critical value of F are	denominator	40 denominator	50 denominator	10 denominator	50 denominator
The power function of a test is denoted by	M(w,Q)	M(Q,Qo)	P(w,Q)	P(w,Qo)	M(w,Q)
Sum of power function and operation characteristic is	Unity	Zero	two	Negative	Unity
Operation characteristic is denoted by	I(w, 0)	$M(w, \Omega)$	$I(w, \Omega_0)$	$M(w, \Omega_0)$	I(w, 0)
Operation characteristic is also known as	L(W,Q)	Power function	bast characteristic		Test characteristic
The formula to find OC is $L(w,Q) =$	1-Power Function	2xPower Function	Power Funtion -1	2xConfidance	1-Power Function
Operation Characteristic is of a test is related to	Power Function	Best Test	Unique Test	Uniformally Best	Power Function
If the Hypothesis is correct the operation charectristics will	1	0	-1	0.5	1
be	1	0	-1	0.5	1
If the Hypothesis is wrong the operation charectristics will	0	1	0.5	0.000000	0
be	0	1	0.5	0.333333	0
In which test we verify a null hypothesis against any other definite			Uniformally Best		
alternate hypothesis?	Best Test	Unique Test	Test	Unbiased Test	Best Test
A Dest Test is a Test such that the critical racion for which			1050		
A best rest is a rest such that the critical region for which	Beta	1-Beta	Alpha	1-Alpha	1-Beta
attains least value for a given α .			-		
A Test whose power function attains its mean at point $Q = Qo$ is	Unique	Unbiased	Power	Operation	Unique
called Test	omque	Chorasea	10000	Characteristic	emque
A Best Unique Test exist	Always	Never	Sometimes	When Q not = to	Sometimes
Operation Characteristic is related to	Power Function	Unique Test	Best Test	Uniformally Best	Power Function
	A statistically	A psychologically	Both (a) and (b)		A statistically
Power is the ability to detect:	significant effect	important effect	above	Design flaws	significant effect
Calculating how much of the total variance is due to error and the	Calculating the	Partitioning the	Producing the	Summarizing the	Partitioning the
calculating now inucli of the total variance is due to error and the		Fartitioning the	Froducing the	Summarizing the	
	variance	variance	variance	variance	variance
	Teasing out the	Analyzing data		Individual effects	Analyzing data
ANOVA is useful for:	individual effects	from research	Analyzing	of factors on an	from research
	of factors on an	with more than	correlational data	Dependent	with more than
	Independent	one Independent		Variables	one Independent
		The difference		Difference	The difference
	The effect of one	between two	The easiest way to	between two	between two
What is the definition of a simple effect?	variable on	conditions of one	get a significant	Dependent	conditions of one
	another	Independent	result	Variables	Independent
		macpendent	-	variables	
In a study with gender as the manipulated variable, the Independent	Within	Correlational	Between	Regressional	Between
Variable is:	participants		participants	8	participants
	The Independent	The Dependent	Thoy are difficult		
Which of the following statements are true of experiments?	Variable is	Variable is	to conduct	both (a) and (b)	both (a) and (b)
	manipulated by	assumed to be	to conduct		
	Have exactly the	Are often less	Are often more	Are rarely less	Are often more
All other things being equal repeated-measures designs:	same power as	powerful than	powerful than	powerful when	powerful than
in other things being equal, repeated measures designs.	independent	independent	independent	compare to than	independent
	macpendent	macpendent	independent	compare to than	independent
Professor P. Nutt is examining the differences between the scores					
of three groups of participants. If the groups show homogeneity of	Are similar	Are dissimilar	Are exactly the	Are enormously	Are similar
variance, this means that the variances for the groups:			same	different	
variance, uns means that the variances for the groups.					
Differences between groups, which result from our experimental	Individual	T	.	Within-	T
manipulation, are called:	differences	Treatment effects	Experiment error	participants effects	Treatment effects
Horr Hazalnuss is thinking about whether he should use a related or					
unrelated design for one of his studies. As yous, there are					
unienteed design for one of his studies. As usual, there are	40	20	10	100	40
advantages and disadvantages to both. He has four conditions. If, in	40	20	10	100	40
a related design, he uses 10 participants, how many would he need					
for an unrelated design?					
Individual differences within each group of participants are called:	Treatment effects	Between-	Within-	Individual biases	Within-
Calculating how much of the total variance is due to error and the	Calculating the	Partitioning the	Producing the	Summarizing the	Partitioning the
experimental manipulation is called:	variance	variance	variance	variance	variance
The decision on how many factors to keep is decided on:	Statistical criteria	Theoretical criteria	Both (a) and (b)	Neither (a) nor (b)	Both (a) and (b)
	As many factors	More factors than	More variables	Correlation	As many factors
It is possible to extract:	as variables	variables	than factors	between the	as variables
		variaules	utan factors		as variables
Four groups have the following means on the covariate: 35, 42, 28,	43.5	42.5	56.7	58.9	42.5
65. What is the grand mean?					
You can perform ANCOVA on:	Two groups	Three groups	Four groups	All of the above	All of the above
When carrying out a pretestposttest study, researchers often wish	Partial out the	Partial out the	Reduce the	Correlation	Partial out the
to:	effect of the	effect of the	correlation	between the two	effect of the

sing difference scores in a pretestposttest design does not partial	The pretest scores	The pretest scores	The posttest	Up normal	The pretest scores
out the effect of the pretest for the following reason:	are not normally	are normally	scores are	relationship with	are normally
out the effect of the pretest for the following reason.	correlated with	correlated with	normally	the different scores	correlated with
Experimental designs are characterized by	Two conditions	No control	Random	More than two	Random
Experimental designs are characterized by.	I wo conditions	condition	allocation of	conditions	allocation of
Detrucer monticipante designs con her	Either quasi-		Only quasi-		Either quasi-
Between-participants designs can be:	experimental or	Only experimental	experimental	Only correlational	experimental or
	Able to take only	Able to take any			Able to take any
A continuous variable can be described as:	certain discrete	value within a	Being made up of	ng made up of Being made up of	value within a
	values within a	range of scores	categories	variables	range of scores
In a within-participants design with two conditions, if you do not					
use counterbalancing of the conditions then your study is likely to	Order effects	Effects of time of	Lack of	Effects of	Order effects
suffer from:		day	participants	participants	
	Participants	Participants	Participants		Participants
Demand effects are possible confounding variables where:	behave in the way	perform poorly	perform well	Participants	behave in the way
	they think the	because they are	because they have	perform strongly	they think the
	The statistical	The statistical	The criterion	The criterion	The criterion
Power can be calculated by a knowledge of:	test, the type of	test, the criterion	significance level,	significance level,	significance level,
	design and the	significance level	the effect size and	the effect size and	the effect size and
Relative to large effect sizes, small effect sizes are:	Easier to detect	Harder to detect	As easy to detect	As difficult to	As difficult to
Differences between groups, which result from our experimental	Individual	Treatment offerste	Experiment error	Within-	Treatment offerste
manipulation, are called:	differences	reatment errects	Experiment error	participants effects	reatment effects