
SYLLABUS 2018-2021 BATCH

 Department of CS,CA,IT,KAHE 1/3

18CSU402 SOFTWARE ENGINEERING 4H – 4C

Instruction Hours / week: L: 4 T: 0 P: 0 Marks: Int : 40 Ext : 60 Total: 100

SCOPE

The graduates of the software engineering program shall be able to apply proper
theoretical, technical, and practical knowledge of software requirements, analysis,
design, implementation, verification and validation, and documentation. This course
enables the students to resolve conflicting project objectives considering viable
tradeoffs within limitations of cost, time, knowledge, existing systems, and
organizations.

COURSE OBJECTIVES

 Apply their knowledge of mathematics, sciences, and computer science to the
modeling, analysis, and measurement of software artifacts.

 Work effectively as leader/member of a development team to deliver quality
software artifacts.

 Analyze, specify and document software requirements for a software system.

 Implement a given software design using sound development practices.

 Verify, validate, assess and assure the quality of software artifacts.

 Design, select and apply the most appropriate software engineering process for a
given project, plan for a software project, identify its scope and risks, and
estimate its cost and time.

 Express and understand the importance of negotiation, effective work habits,
leadership, and good communication with stakeholders, in written and oral
forms, in a typical software development environment.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 ((DDeeeemmeedd ttoo bbee UUnniivveerrssiittyy))

 ((EEssttaabblliisshheedd UUnnddeerr SSeeccttiioonn 33 ooff UUGGCC AAcctt,, 11995566))

 CCooiimmbbaattoorree -- 664411 002211,, IInnddiiaa

 FFAACCUULLTTYY OOFF AARRTTSS,, SSCCIIEENNCCEE AANNDD HHUUMMAANNIITTIIEESS ((FFAASSHH))

 Department of CS,CA & IT

 II B.Sc CS A & B IV SEMESTER BATCH : 2018 - 2021

SYLLABUS 2018-2021 BATCH

 Department of CS,CA,IT,KAHE 2/3

COURSE OUTCOME

 The ability to analyze, design, verify, validate, implement, apply, and maintain
software systems.

 An ability to use the techniques, skills, and modern engineering tools necessary
for engineering practice.

 Knowledge of contemporary issues.

 An ability to identify, formulates, and solves engineering problems.

 An ability to work in one or more significant application domains

UNIT-I:

Introduction: The Evolving Role of Software, Software Characteristics, Changing Nature
of Software, Software Engineering as a Layered Technology, Software Process
Framework, Framework and Umbrella Activities, Process Models, Capability Maturity
Model Integration (CMMI).

UNIT-II:

Requirement Analysis; Initiating Requirement Engineering Process- Requirement
Analysis and Modeling Techniques- Flow Oriented Modeling- Need for SRS-
Characteristics and Components of SRS- Software Project Management: Estimation in
Project Planning Process, Project Scheduling.

UNIT-III:

Risk Management: Software Risks, Risk Identification Risk Projection and Risk
Refinement, RMMM plan, Quality Management- Quality Concepts, Software Quality
Assurance, Software Reviews, Metrics for Process and Projects

UNIT-IV:

Design Engineering:-Design Concepts, Architectural Design Elements, Software
Architecture, Data Design at the Architectural Level and Component Level, Mapping
of Data Flow into Software Architecture, Modeling Component Level Design

SYLLABUS 2018-2021 BATCH

 Department of CS,CA,IT,KAHE 3/3

8

UNIT-V

Testing Strategies & Tactics: Software Testing Fundamentals, Strategic Approach to
Software Testing, Test Strategies for Conventional Software, Validation Testing,
System testing Black-Box Testing, White-Box Testing and their type, Basis Path
Testing

SUGGESTED READINGS

1. Pressman, R.S. (2009). Software Engineering: A Practitioner‘s Approach (7th
ed.). New Delhi: McGraw-Hill.

2. Jalote, P. An Integrated Approach to Software Engineering (2nd ed.). New
Delhi: New Age International Publishers.

3. Aggarwal, K.K., & Singh, Y. (2008). Software Engineering (2nd ed.). New
Delhi: New Age International Publishers.

4. Sommerville, I. (2006). Software Engineering (8th ed.). New Delhi: Addison
Wesley.

5. Bell, D. (2005). Software Engineering for Students (4th ed.) New Delhi:
Addison-Wesley.

6. Mall, R. (2004). Fundamentals of Software Engineering (2nd ed.). New
Delhi: Prentice-Hall of India.

WEB SITES

1. http://en.wikipedia.org/wiki/Software_engineering
2. http://www.onesmartclick.com/engineering/software-engineering.html
3. http://www.CSU.gatech.edu/classes/AY2000/cs3802_fall/
4. www.tutorialpoint.com

Lecture Plan 2018 - 2021 Batch

Prepared by : D.Manjula & Dr.S.Saravana Kumar ,Department of CS,CA & IT ,KAHE 1/5

STAFF NAME : D.Manjula & Dr.S.Saravana Kumar

SUBJECT NAME : SOFTWARE ENGINEERING SUB.CODE : 18CSU402

SEMESTER : IV CLASS : II B.Sc (CS) A & B

UNIT I

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 ((DDeeeemmeedd ttoo bbee UUnniivveerrssiittyy))

 ((EEssttaabblliisshheedd UUnnddeerr SSeeccttiioonn 33 ooff UUGGCC AAcctt,, 11995566))

 CCooiimmbbaattoorree -- 664411 002211,, IInnddiiaa

 Depatment of CS,CA & IT

S.NO
Lecture

Duration
(Hours)

Topics To Be Covered
Support

Materials/ Pg.No

 Introduction

1 1 The Evolving Role of Software W1

 Software Characteristics T1 : 04 - 07

2 1 Changing Nature of Software T1 : 10 - 12

3 1 Software Engineering as a Layered Technology T1 : 12 - 14

4 1 Software Process Framework T1 : 14 - 16

5 1 Framework and Umbrella Activities W2

6 1 Process Models T1 : 30 - 52

7 1 Capability Maturity Model Integration (CMMI). W1

8 1 Recapitulation and Discussion of Important Questions

 Total No of Hours Planned for Unit I 8

Lecture Plan 2018 - 2021 Batch

Prepared by : D.Manjula & Dr.S.Saravana Kumar ,Department of CS,CA & IT ,KAHE 2/5

UNIT II

S.NO

Lecture
Duratio

n
(Hours)

Topics To Be Covered
Support

Materials/ Pg.No

 Requirement Analysis

1 1 Initiating Requirement Engineering Process T1 : 149 - 153

2 1 Requirement Analysis and Modeling Techniques T1 : 186 - 188

3 1 Flow Oriented Modeling

4 1 Need for SRS W1

5 1 Characteristics and Components of SRS T3: 65-66

 Software Project Management

6 1 Estimation in Project Planning Process T1 : 691 - 712

7 1 Project Scheduling T1 : 722 - 726

8 1 Recapitulation and Discussion of Important Questions

 Total No of Hours Planned for Unit II 8

Lecture Plan 2018 - 2021 Batch

Prepared by : D.Manjula & Dr.S.Saravana Kumar ,Department of CS,CA & IT ,KAHE 3/5

UNIT III

S.NO
Lecture

Duration
(Hours)

Topics To Be Covered
Support

Materials/ Pg.No

 Risk Management

1 1 Software Risks T1 : 745 - 757

 Risk Identification

2 1 Risk Projection and Risk Refinement

3 1 RMMM plan

 Quality Management

4 1 Quality Concepts T1 : 399 - 413

5 1 Software Quality Assurance T1 : 443 - 443

6 1 Software Reviews, T1 : 417 - 424

7 1 Metrics for Process and Projects T1 : 667 - 681

8 1 Recapitulation and Discussion of Important Questions

 Total No of Hours Planned for Unit III 8

Lecture Plan 2018 - 2021 Batch

Prepared by : D.Manjula & Dr.S.Saravana Kumar ,Department of CS,CA & IT ,KAHE 4/5

UNIT IV

S.NO
Lecture

Duration
(Hours)

Topics To Be Covered
Support

Materials/ Pg.No

 Design Engineering

1 1 Design Concepts T1: 223-230

2 1 Architectural Design Elements T1:233-234

3 1 Software Architecture T1: 243-246

4 1
 Data Design at the Architectural Level and Component
 Level

T1:234-237

5 1 Mapping of Data Flow into Software Architecture T1:265-272

6 1 Modeling Component Level Design T1:282 -288

7 1 Recapitulation and Discussion of Important Questions

 Total No of Hours Planned for Unit IV 7

Lecture Plan 2018 - 2021 Batch

Prepared by : D.Manjula & Dr.S.Saravana Kumar ,Department of CS,CA & IT ,KAHE 5/5

UNIT V

S.NO
Lecture

Duration
(Hours)

Topics To Be Covered
Support

Materials/ Pg.No

 Testing Strategies & Tactics:

1 1 Software Testing Fundamentals T1: 482

 Strategic Approach to Software Testing T1: 450-455

2 1 Test Strategies for Conventional Software T1: 456-459

3 1
Validation Testing T1: 467-472,

W3

 System testing

4 1 Black-Box Testing T1:495-499, 485

5 1 White-Box Testing and their type

6 1 Basis Path Testing T1:485-491

7 1 Recapitulation and Discussion of Important Questions

 Discussion of previous ESE question papers

8 1 Discussion of previous ESE question papers

9 1 Discussion of previous ESE question papers

 Total No of Hours Planned for Unit V 9

Total Hours 40

S.NO TEXT BOOKS

T1
Pressman, R.S. (2009). Software Engineering: A Practitioner‘s Approach (7th ed.). New
Delhi: McGraw-Hill.

T2
Aggarwal, K.K., & Singh, Y. (2008). Software Engineering (2nd ed.). New Delhi: New Age
International Publishers

S.NO WEB SITES

W1 www.tutorialpoints.com

W2 www.studytonight.com

W3 www.geeksforgeeks.com

S.NO QUESTIONS OPT 1 OPT 2 OPT 3 OPT 4 ANSWER

1 Software takes on a role. single dual triple tetra dual

2 Software is a . virtual system modifier framework modifier

3
Instructions that when executed provide desired function

and performance is called
software hardware firmware humanware software

4
High quality of software is achieved through

 .
testing good design construction manufacture good design

5 Software doesn’t . tearout wearout degrade deteriorate wearout

6 Software is not susceptible to . hardware defects
environmental

melodies
deterioration

environmental

melodies

7 Software will undergo . database testing enhancement manufacture enhancement

8
____refers to the meaning and form of incoming and

outgoing information.
content software hardware data content

9
____refers to the predictability of the order and timing of

information.
system software network software

information

determinacy
database

information

determinacy

UNIT I

KARPAGAM ACADEMY OF HIGHER EDUCATION

Department of Computer Science

 II B.Sc(CS) (BATCH 2018-2021) IV SEMESTER

SOFTWARE ENGINEERING (18CSU402)

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

10 is not a system software. MS Office compiler editor
file

management
MS Office

11
Collection of programs written to service other programs are

called .
system software business software

embedded

software
pc software system software

12 Which one is not coming under software myths
Management

myths
customer myths product myths

practitioners

myths
product myths

13 is a PC Software. MS word LISP CAD C MS word

14
Software that monitors, analyses, controls real world events

is called .

Business

software
real time software

web based

software

embedded

software

real time

software

15 The bedrock that supports software engineering is a tools methods process models quality focus quality focus

16
A complete software process by identifying a small number

of

framework

activities
umbrella activities

process

framework

software

process

framework

activities

17 The process framework encompassess a set of
framework

activities
umbrella activities

process

framework

software

process

umbrella

activities

18 software engineering action is design chronic decision crisis design

19 Which one is effect the outcome of the project?
Risk

management
Measurement

technical

reviews
Reusability Risk management

20 Continuing indefinitely is called . crisis decision affliction chronic chronic

21 Component based development uses . functions subroutines procedures objects objects

22 UML stands for .

Universal

Modelling

Language

User Modified

Language

Unified

Modelling

Language

User Model

Language

Unified Modelling

Language

23
A model which uses formal mathematical specification is

called .
4 GT model

Unified method

model

formal methods

model

component

based

development

formal methods

model

24
A variation of formal methods model is called

 .

component

based

development

4 GT model
unified method

model

cleanroom

software

engineering

cleanroom

software

engineering

25 The development of formal methods is .
less time

consuming

quite time

consuming

does not

consume time

very less time

consuming

quite time

consuming

26 The first step to develop software is . analysis design
requirements

gathering
coding

requirements

gathering

27 The waterfall model sometimes called as classic model
classic life cycle

model
life cycle model cycle model

classic life cycle

model

28 Software engineering activities include decision affliction hardware maintenance maintenance

29 all process model prescribes a . circular elliptical spiral workflow workflow

30
Component based development incorporates the

characteristics of the model
circular elliptical spiral hierarchical spiral

31 Prototype is a . software hardware computer model model

32
For small applications it is possible to move from

requirement gathering step to .
analysis implementatio n design modeling implementatio n

33
Software project management begins with a set of activities

that are collectively called
project planning software scope

software

estimation
decomposition project planning

34
Breaking up of a complex problem into small steps is called

 .
project planning software scope

software

estimation
decomposition decomposition

35

The ease with which software can be transferred from one

computer to another. This quality attribute is called

 .

portability reliability efficiency accuracy portability

36

The ability of a program to perform a required function

under stated condition for a stated period of time. This

quality

portability reliability efficiency accuracy reliability

37
The event to which software performs its intended function.

This quality attribute is called .
portability reliability efficiency accuracy efficiency

38
A qualitative assessments of freedom from errors. This

quality attribute is called .
portability reliability efficiency accuracy accuracy

39
The extent to which software can continue to operate

correctly. This quality attribute is called .
robustness correctness efficiency reliability robustness

40

The extent to which the software is free from design and

coding defects ie fault free. This quality attribute is called

 .

robustness correctness efficiency reliability correctness

41
System shall reside in 50KB of memory is an example of

 .

quantified

requirement

qualified

requirement

functional

requirement

performance

requirement

quantified

requirement

42
Accuracy shall be sufficient to support mission is an example

of .

quantified

requirement

qualified

requirement

functional

requirement

performance

requirement

qualified

requirement

43
System shall make efficient use of memory is an example of

 .

quantified

requirement

qualified

requirement

functional

requirement

performance

requirement

qualified

requirement

44 Which level of CMM is for process control? Initial Repeatable Defined Optimizing Optimizing

45 Product is Deliverables User expectations

Organization's

effort in

development

none of the

above
Deliverables

46 To produce a good quality product, process should be Complex Efficient Rigorous
none of the

above
Efficient

47 Which is not a product metric? Size Reliability Productivity Functionality Productivity

48 Which is NOT a process metric? Productivity Functionality Quality Efficiency Functionality

49 Effort is measured in terms of: Person- months Rupees Persons Months Person-months

50
An independently deliverable piece of functionality providing

access to its services through interface is called

Software

measurement

Software

composition

Software

measure

Software

component

Software

component

51 Management of software development is dependent on People product Process all of the above all of the above

52 During software development, which factor is most crucial? People Product Process Project People

53 Program is
Subset of

software

super set of

software
Software

none of the

above

Subset of

software

54 Milestones are used to
Know the cost of

the project

know the status of

the

project

Know user

expectations

none of the

above

know the status

of the

project

55 Software engineering approach is used to achieve:

Better

performance

of hardware

Error free software
Reusable

software

Quality

software

product

Quality software

product

56 Software consists of

instructions +

operating

system

documentation

+ operating

procedures

Programs +

hardware

manuals

Set of programs

documentation

+ operating

procedures

57 CASE Tool is
Aided Software

Engineering

Aided Software

Engineering

Aided Software

Engineering

Analysis

Software

Engineering

Aided Software

Engineering

58 SDLC stands for

Software design

life

cycle

Software

development

life cycle

System

development

life cycle

System design

life cycle

Software

development

life cycle

59 RAD stands for

Rapid

application

development

Relative application

development

Ready

application

development

Repeated

application

development

Rapid application

development

60 Which phase is not available in software life cycle? Coding Testing Maintenance Abstraction Abstraction

UNIT I

KARPAGAM ACADEMY OF HIGHER EDUCATION

Department of Computer Science

 II B.Sc(CS) (BATCH 2018-2021) IV SEMESTER

SOFTWARE ENGINEERING (18CSU402)

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 1/23

Introduction: The Evolving Role of Software, Software Characteristics, Changing Nature of

Software, Software Engineering as a Layered Technology, Software Process Framework,

Framework and Umbrella Activities, Process Models, Capability Maturity Model Integration

(CMMI).

Introduction to Software Engineering

Software is a program or set of programs containing instructions which provide desired
functionality. And Engineering is the processes of designing and building something that
serves a particular purpose and finds a cost effective solution to problems.

Software is more than just a program code. A program is an executable code, which serves

some computational purpose. Software is considered to be collection of executable

programming code, associated libraries and documentations. Software, when made for a

specific requirement is called software product.

Software Engineering is a systematic approach to the design, development, operation, and

maintenance of a software system.

Engineering on the other hand, is all about developing products, using well-defined,
scientific principles and methods

Software engineering is an engineering branch associated with development of software

product using well-defined scientific principles, methods and procedures. The outcome of

software engineering is an efficient and reliable software product.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 2/23

Dual Role of Software:

1. As a product –
 It delivers the computing potential across network of Hardware.
 It enables the Hardware to deliver the excepted functionality.
 It acts as information transformer because it produces, manages, acquires, modifies,

displays, or transmits information.

2. As a vehicle for delivering a product –
 It provides system functionality (e.g., payroll system)
 It controls other software (e.g., an operating system)
 It helps build other software (e.g., software tools)

Objectives of Software Engineering:

1. Maintainability –It should be feasible for the software to evolve to meet changing
requirements.

2. Correctness –A software product is correct, if the different requirements as specified in
the SRS document have been correctly implemented.

3. Reusability –A software product has good reusability, if the different modules of the
product can easily be reused to develop new products.

4. Testability –Here software facilitates both the establishment of test criteria and the
evaluation of the software with respect to those criteria.

5. Reliability –It is an attribute of software quality. The extent to which a program can be
expected to perform its desired function, over an arbitrary time period.

6. Portability –In this case, software can be transferred from one computer system or
environment to another.

7. Adaptability –In this case, software allows differing system constraints and user needs to
be satisfied by making changes to the software.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 3/23

Software Evolution

The process of developing a software product using software engineering principles and

methods is referred to as software evolution. This includes the initial development of

software and its maintenance and updates, till desired software product is developed,

which satisfies the expected requirements

Evolution starts from the requirement gathering process. After which developers create a

prototype of the intended software and show it to the users to get their feedback at the

early stage of software product development. The users suggest changes, on which several

consecutive updates and maintenance keep on changing too. This process changes to the

original software, till the desired software is accomplished.

Even after the user has desired software in hand, the advancing technology and the

changing requirements force the software product to change accordingly. Re-creating

software from scratch and to go one-on-one with requirement is not feasible. The only

feasible and economical solution is to update the existing software so that it matches the

latest requirements.

Software Evolution Laws

Lehman has given laws for software evolution. He divided the software into three different

categories:

 S-type (static-type) - This is a software, which works strictly according to defined specifications

and solutions. The solution and the method to achieve it, both are immediately understood

before coding. The s-type software is least subjected to changes hence this is the simplest of all.

For example, calculator program for mathematical computation.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 4/23

 P-type (practical-type) - This is a software with a collection of procedures. This is defined by

exactly what procedures can do. In this software, the specifications can be described but the

solution is not obvious instantly. For example, gaming software.

 E-type (embedded-type) - This software works closely as the requirement of real-

world environment. This software has a high degree of evolution as there are various changes in

laws, taxes etc. in the real world situations. For example, Online trading software.

Characteristics of a software

 Software should achieve a good quality in design and meet all the specifications of the

 customer.

 Software does not wear out i.e. it does not lose the material.

 Software should be inherently complex.

 Software must be efficient i.e. the ability of the software to use system resources in an

 effective and efficient manner.

 Software must be integral i.e. it must prevent from unauthorized access to the

 software or data.

Its characteristics that make it different from other things human being build.

Features of such logical system:

1. Software is developed or engineered, it is not manufactured in the classical sense which
has quality problem.

 There is no manufacture phase (or problems during manufacture are easy to
correct)

 Software costs are concentrated in engineering

2 Software doesn't "wear out.” but it deteriorates (due to change).

Hardware has bathtub curve of failure rate (high failure rate in the beginning, then
drop to steady state, then cumulative effects of dust, vibration, abuse occurs).

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 5/23

Failure Bath Tub curve for hardware

Failure curve for software

3. Although the industry is moving toward component-based construction (e.g. standard
screws and off-the-shelf integrated circuits), most software continues to be custom-built.

 Modern reusable components encapsulate data and processing into software parts
to be reused by different programs. E.g. graphical user interface, window, pull-down menus
in library etc.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 6/23

Software Applications

 System software

 Real-time software

 Business software

 Engineering and scientific software

 Embedded software

 Personal computer software

 Web-based software

Software engineering - Layered technology

 Software engineering is a fully layered technology.

 To develop a software, we need to go from one layer to another.

 All these layers are related to each other and each layer demands the fulfillment of

the previous layer.

The layered technology consists of:

1. Quality focus
The characteristics of good quality software are:

 Correctness of the functions required to be performed by the software.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 7/23

 Maintainability of the software

 Integrity i.e. providing security so that the unauthorized user cannot access

information or data.

 Usability i.e. the efforts required to use or operate the software.

2. Process

 It is the base layer or foundation layer for the software engineering.

 The software process is the key to keep all levels together.

 It defines a framework that includes different activities and tasks.

 In short, it covers all activities, actions and tasks required to be carried out for

software development.

3. Methods

 The method provides the answers of all 'how-to' that are asked during the process.

 It provides the technical way to implement the software.

 It includes collection of tasks starting from communication, requirement analysis,

analysis and design modelling, program construction, testing and support.

4. Tools

 The software engineering tool is an automated support for the software

development.

 The tools are integrated i.e the information created by one tool can be used by the

other tool.

 For example: The Microsoft publisher can be used as a web designing tool.

Software Process Framework

 The process of framework defines a small set of activities that are applicable to all

types of projects.

 The software process framework is a collection of task sets.

 Task sets consist of a collection of small work tasks, project milestones, work

productivity and software quality assurance points.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 8/23

Umbrella activities

Typical umbrella activities are:

1. Software project tracking and control

 In this activity, the developing team accesses project plan and compares it with the

predefined schedule.

 If these project plans do not match with the predefined schedule, then the required

actions are taken to maintain the schedule.

2. Risk management

 Risk is an event that may or may not occur.

 If the event occurs, then it causes some unwanted outcome. Hence, proper risk

management is required.

3. Software Quality Assurance (SQA)

 SQA is the planned and systematic pattern of activities which are required to give a

guarantee of software quality.

For example, during the software development meetings are conducted at every stage of

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 9/23

development to find out the defects and suggest improvements to produce good quality

software.

4. Formal Technical Reviews (FTR)

 FTR is a meeting conducted by the technical staff.

 The motive of the meeting is to detect quality problems and suggest improvements.

 The technical person focuses on the quality of the software from the customer point

of view.

5. Measurement

 Measurement consists of the effort required to measure the software.

 The software cannot be measured directly. It is measured by direct and indirect

measures.

 Direct measures like cost, lines of code, size of software etc.

 Indirect measures such as quality of software which is measured by some other

factor. Hence, it is an indirect measure of software.

6. Software Configuration Management (SCM)

 It manages the effect of change throughout the software process.

7. Reusability management

 It defines the criteria for reuse the product.

 The quality of software is good when the components of the software are developed

for certain application and are useful for developing other applications.
8. Work product preparation and production

 It consists of the activities that are needed to create the documents, forms, lists,

logs and user manuals for developing a software.

Software process Models
A software process is a collection of various activities.

There are five generic process framework activities:

1. Communication:
The software development starts with the communication between customer and

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 10/23

developer.

2. Planning:
It consists of complete estimation, scheduling for project development and tracking.

3. Modeling:

 Modeling consists of complete requirement analysis and the design of the project

like algorithm, flowchart etc.

 The algorithm is the step-by-step solution of the problem and the flow chart shows a

complete flow diagram of a program.

4. Construction:

 Construction consists of code generation and the testing part.

 Coding part implements the design details using an appropriate programming

language.

 Testing is to check whether the flow of coding is correct or not.

 Testing also check that the program provides desired output.

5. Deployment:

 Deployment step consists of delivering the product to the customer and take

feedback from them.

 If the customer wants some corrections or demands for the additional

capabilities, then the change is required for improvement in the quality of the software.

The following framework activities are carried out irrespective of the process model

chosen by the organization.

1. Communication

2. Planning

3. Modeling

4. Construction

5. Deployment

The name 'prescriptive' is given because the model prescribes a set of activities, actions,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 11/23

tasks, quality assurance and change the mechanism for every project.

There are three types of prescriptive process models. They are:

1. The Waterfall Model

2. Incremental Process model

3. RAD model

1. The Waterfall Model

 The waterfall model is also called as 'Linear sequential model' or 'Classic life cycle

model'.

 In this model, each phase is fully completed before the beginning of the next phase.

 This model is used for the small projects.

 In this model, feedback is taken after each phase to ensure that the project is on the

right path.

 Testing part starts only after the development is complete.

NOTE: The description of the phases of the waterfall model is same as that of the process

model.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 12/23

An alternative design for 'linear sequential model' is as follows:

Advantages of waterfall model

 The waterfall model is simple and easy to understand, implement, and use.

 All the requirements are known at the beginning of the project, hence it is easy to

manage.

 It avoids overlapping of phases because each phase is completed at once.

 This model works for small projects because the requirements are understood very

well.

 This model is preferred for those projects where the quality is more important as

compared to the cost of the project.

Disadvantages of the waterfall model

 This model is not good for complex and object oriented projects.

 It is a poor model for long projects.

 The problems with this model are uncovered, until the software testing.

 The amount of risk is high.

2. Incremental Process model

 The incremental model combines the elements of waterfall model and they are

applied in an iterative fashion.

 The first increment in this model is generally a core product.

 Each increment builds the product and submits it to the customer for any suggested

modifications.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 13/23

 The next increment implements on the customer's suggestions and add additional

requirements in the previous increment.

 This process is repeated until the product is finished.

For example, the word-processing software is developed using the incremental model.

Advantages of incremental model

 This model is flexible because the cost of development is low and initial product

delivery is faster.

 It is easier to test and debug during the smaller iteration.

 The working software generates quickly and early during the software life cycle.

 The customers can respond to its functionalities after every increment.

Disadvantages of the incremental model

 The cost of the final product may cross the cost estimated initially.

 This model requires a very clear and complete planning.

 The planning of design is required before the whole system is broken into small

increments.

 The demands of customer for the additional functionalities after every increment

causes problem during the system architecture.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 14/23

3. RAD model

 RAD is a Rapid Application Development model.

 Using the RAD model, software product is developed in a short period of time.

 The initial activity starts with the communication between customer and developer.

 Planning depends upon the initial requirements and then the requirements are

divided into groups.

 Planning is more important to work together on different modules.

The RAD model consist of following phases:

1. Business Modeling

 Business modeling consist of the flow of information between various functions in

the project.

 For example what type of information is produced by every function and which are

the functions to handle that information.

 A complete business analysis should be performed to get the essential business

information.

2. Data modeling

 The information in the business modeling phase is refined into the set of objects and

it is essential for the business.

 The attributes of each object are identified and define the relationship between

objects.

3. Process modeling

 The data objects defined in the data modeling phase are changed to fulfil the

information flow to implement the business model.

 The process description is created for adding, modifying, deleting or retrieving a

data object.

4. Application generation

 In the application generation phase, the actual system is built.

 To construct the software the automated tools are used.

5. Testing and turnover

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 15/23

 The prototypes are independently tested after each iteration so that the overall

testing time is reduced.

 The data flow and the interfaces between all the components are are fully tested.

Hence, most of the programming components are already tested.

Evolutionary Process Models

 Evolutionary models are iterative type models.

 They allow to develop more complete versions of the software.

Following are the evolutionary process models.

1. The prototyping model
2. The spiral model
3. Concurrent development model

1. The Prototyping model

 Prototype is defined as first or preliminary form using which other forms are copied

or derived.

 Prototype model is a set of general objectives for software.

 It does not identify the requirements like detailed input, output.

 It is software working model of limited functionality.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 16/23

 In this model, working programs are quickly produced.

The different phases of Prototyping model are:

1. Communication
In this phase, developer and customer meet and discuss the overall objectives of the
software.

2. Quick design

 Quick design is implemented when requirements are known.

 It includes only the important aspects like input and output format of the software.

 It focuses on those aspects which are visible to the user rather than the detailed

plan.

 It helps to construct a prototype.
3. Modeling quick design

 This phase gives the clear idea about the development of software because the

software is now built.

 It allows the developer to better understand the exact requirements.
4. Construction of prototype
The prototype is evaluated by the customer itself.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 17/23

5. Deployment, delivery, feedback

 If the user is not satisfied with current prototype then it refines according to the

requirements of the user.

 The process of refining the prototype is repeated until all the requirements of users

are met.

 When the users are satisfied with the developed prototype then the system is

developed on the basis of final prototype.

Advantages of Prototyping Model

 Prototype model need not know the detailed input, output, processes, adaptability

of operating system and full machine interaction.

 In the development process of this model users are actively involved.

 The development process is the best platform to understand the system by the user.

 Errors are detected much earlier.

 Gives quick user feedback for better solutions.

 It identifies the missing functionality easily. It also identifies the confusing or difficult

functions.

Disadvantages of Prototyping Model:

 The client involvement is more and it is not always considered by the developer.

 It is a slow process because it takes more time for development.

 Many changes can disturb the rhythm of the development team.

 It is a thrown away prototype when the users are confused with it.

2. The Spiral model

 Spiral model is a risk driven process model.

 It is used for generating the software projects.

 In spiral model, an alternate solution is provided if the risk is found in the risk

analysis, then alternate solutions are suggested and implemented.

 It is a combination of prototype and sequential model or waterfall model.

 In one iteration all activities are done, for large project's the output is small.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 18/23

The framework activities of the spiral model are as shown in the following figure.

NOTE: The description of the phases of the spiral model is same as that of the process
model.

Advantages of Spiral Model

 It reduces high amount of risk.

 It is good for large and critical projects.

 It gives strong approval and documentation control.

 In spiral model, the software is produced early in the life cycle process.

Disadvantages of Spiral Model

 It can be costly to develop a software model.

 It is not used for small projects.

3. The concurrent development model

 The concurrent development model is called as concurrent model.

 The communication activity has completed in the first iteration and exits in the

awaiting changes state.

 The modeling activity completed its initial communication and then go to the

underdevelopment state.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 19/23

 If the customer specifies the change in the requirement, then the modeling activity

moves from the under development state into the awaiting change state.

 The concurrent process model activities moving from one state to another state.

Advantages of the concurrent development model

 This model is applicable to all types of software development processes.

 It is easy for understanding and use.

 It gives immediate feedback from testing.

 It provides an accurate picture of the current state of a project.

Disadvantages of the concurrent development model

 It needs better communication between the team members. This may not be

achieved all the time.

 It requires to remember the status of the different activities.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 20/23

Capability Maturity Model Integration (CMMI).

What is CMM?

Capability Maturity Model is used as a benchmark to measure the maturity of an
organization's software process.

CMM was developed at the Software engineering institute in the late 80's. It was developed
as a result of a study financed by the U.S Air Force as a way to evaluate the work of
subcontractors. Later based on the CMM-SW model created in 1991 to assess the maturity
of software development, multiple other models are integrated with CMM-I they are

What is Capability Maturity Model (CMM) Levels?

1. Initial
2. Repeatable/Managed
3. Defined
4. Quantitatively Managed
5. Optimizing

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 21/23

Level-1: Initial –

 No KPA’s defined.

 Processes followed are adhoc and immature and are not well defined.

 Unstable environment for software dvelopment.

 No basis for predicting product quality, time for completion, etc.

Level-2: Repeatable –

 Focuses on establishing basic project management policies.

 Experience with earlier projects is used for managing new similar natured projects.

KPA’s:

 Project Planning- It includes defining resources required, goals, constraints, etc. for
the project. It presents a detailed plan to be followed systematically for successful
completion of a good quality software.

 Configuration Management- The focus is on maintaining the performance of the
software product, including all its components, for the entire lifecycle.

 Requirements Management- It includes the management of customer reviews and
feedback which result in some changes in the requirement set. It also consists of
accommodation of those modified requirements.

 Subcontract Management- It focuses on the effective management of qualified
software contractors i.e. it manages the parts of the software which are developed
by third parties.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 22/23

 Software Quality Assurance- It guarantees a good quality software product by
following certain rules and quality standard guidelines while development.

Level-3: Defined –

 At this level, documentation of the standard guidelines and procedures takes place.

 It is a well defined integrated set of project specific software engineering and
management processes.

KPA’s:

 Peer Reviews- In this method, defects are removed by using a number of review
methods like walkthroughs, inspections, buddy checks, etc.

 Intergroup Coordination- It consists of planned interactions between different
development teams to ensure efficient and proper fulfilment of customer needs.

 Organization Process Definition- It’s key focus is on the development and
maintenance of the standard development processes.

 Organization Process Focus- It includes activities and practices that should be
followed to improve the process capabilities of an organization.

 Training Programs- It focuses on the enhancement of knowledge and skills of the
team members including the developers and ensuring an increase in work efficiency.

Level-4: Managed –

 At this stage, quantitative quality goals are set for the organization for software
products as well as software processes.

 The measurements made help the organization to predict the product and process
quality within some limits defined quantitatively.

KPA’s:

 Software Quality Management- It includes the establishment of plans and strategies
to develop a quantitative analysis and understanding of the product’s quality.

 Quantitative Management- It focuses on controlling the project performance in a
quantitative manner.

Level-5: Optimizing –

 This is the highest level of process maturity in CMM and focuses on continuous
process improvement in the organization using quantitative feedback.

 Use of new tools, techniques and evaluation of software processes is done to
prevent recurrence of known defects.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT I

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 23/23

KPA’s:

 Process Change Management- Its focus is on the continuous improvement of
organization’s software processes to improve productivity, quality and cycle time for
the software product.

 Technology Change Management- It consists of identification and use of new
technologies to improve product quality and decrease the product development
time.

 Defect Prevention- It focuses on identification of causes of defects and to prevent
them from recurring in future projects by improving project defined process.

POSSIBLE QUESTIONS

PART B : 2 MARK QUESTIONS

1. Define software engineering.

2. Differentiate between software and hardware characteristics

3. List the major disadvantages of Waterfall model.

4. List the disadvantage of incremental model.

5. What is CMMI? List the five maturity levels of CMMI.

PART C: 8 MARK QUESTIONS

1. Explain in detail about Concurrent Development model.

2. Discuss in detail about Spiral Model.

3. Discuss in detail about the umbrella activities in the software process framework.

4. Illustrate Prototyping model with its phases.

5. Explain in detail about Waterfall Model with a neat sketch.

6. Discuss in detail about the Layered perspective of software engineering.

7. Describe in detail the changes acquired in the nature of software.

8. Discuss in detail about the Rapid Application Development Model with a neat sketch.

9. Explain in detail about Incremental Process Model.

10. Explain in detail about Prescriptive model.

S.NO QUESTIONS OPT 1 OPT 2 OPT 3 OPT 4 ANSWER

1
 is a process of discovery, refinement, modeling,

and specification
software

engineering

software

requirement

engineering

software

analysis
software design

software

engineering

2
_________is the systematic use of proven principles,

techniques, languages, and tools.

software

engineering
software analysis

software

design

requirements

engineering

requirements

engineering

3 Requirement engineering is conducted in a ______ sporadic way random way haphazard way

systematic use

of proven

approaches

systematic use

of proven

approaches

4
Software requirements analysis work products must be

reviewed for ________
modeling completeness

information

processing

functional

requirement
completeness

5
______ bridges the gap between system level requirement

engineering and software design

system

engineering
modeling

requirements

analysis

software

engineering

software

engineering

6
Software requirements analysis is divided into _____ areas of

effort.
2 3 4 5 4

7
Throughout evaluation and solution synthesis, the analyst’s

primary focus is on _________
when where what how what

UNIT II

KARPAGAM ACADEMY OF HIGHER EDUCATION

Department of Computer Science

 II B.Sc(CS) (BATCH 2018-2021) IV SEMESTER

SOFTWARE ENGINEERING (18CSU402)

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

8 Software applications can be collectively called as _________ data gathering
information

gathering

data

processing

information

processing
data processing

9

 _______ represents the individual data and control objects

that constitute some larger collection of information

transformed by the software

information

content
data content data model

information

model

information

content

10
_________ represents the manner in which data and control

change as each moves through a system.

information

content
information flow

information

structure
data structure

information

flow

11
______ represents the internal organization of various data

and control items.

information

content
information flow

information

structure
data structure

information

structure

12 Entity is a _______ data information model physical thing physical thing

13

The first operational analysis principle requires an

examination of the information domain and the creation of a

data model information model data structure
information

structure
data model

14
To transform software into information, the system performs

input processing output

input, processing

and

output

input,

processing and

output

15
To transform software into information, the system must

perform ________ generic functions.
2 3 4 5 3

16 There are ___________ types of models. 5 4 3 2 2

17
The horizontal partitioning of SafeHome function has

________ major functions on the first level of hierarchy
2 3 4 5 3

18
The vertical partitioning of SafeHome function has ______

major functions on the first level of hierarchy.
2 3 4 5 3

19 A model of the software to be built is called ________ data model prototype
information

model
software model prototype

20

The________ of software requirements presents the real

world manifestation of processing functions and information

strucutres

implementati on

view
essential view

partitioning

view

evolutionary

view

implementatio

n view

21

 The essential view of the SafeHome function_______ does

not concern itself with the physical form of the data that is

used.

identify event read sensor status activate sensor
deactivate

sensor

read sensor

status

22 A prototype is the _________ data model information model
software

model
evolution model software model

23 Data objects are represented by _______ labeled arrows bubbles entity label labeled arrows

24 Transformations are represented by __________ labeled arrows bubbles entity label bubbles

25
__________ enables the software engineer to generate

executable code quickly, they are ideal for rapid prototyping.
2 GT 3 GT 4 GT 5 GT 4 GT

26
The ________ provides a detailed description of the

problem that the software must solve.

information

description
software scope

function

description

software

description

information

description

27

 _______ is probably the most important and, ironically, the

most often neglected section of software requirements

specification.

behavioural

description

processing

narrative

overall

structure

validation

criteria

validation

criteria

28 The software requirements specification includes _______ bibliography appendix
Bibliography

and appendix
review

Bibliography

and appendix

29

The _________ section of the specification examines the

operation of the software as a consequence of external

events

and internally generated control characteristics.

behavioural

description

representation

format

specification

principles

prototyping

environment

behavioural

description

30
The software requirements specification is developed as a

consequence of ________
review analysis prototyping

functional

description
analysis

31
The preliminary user’s manual presents the software as a

white box black box

machine

interface
prototype black box

32 _________is the first technical step in the software process
requirements

analysis

requirements

specification

information

description

information

domain

requirements

analysis

33
The close ended approach of the prototyping paradigm is

called _______

evolutionary

prototyping
simply prototyping

open ended

prototyping

throwaway

prototyping

throwaway

prototyping

34

The information domain contains ________ different views of

the data and control as each is processed by a computer

program.

2 3 4 5 3

35
The content of ________ is defined by the attributes that are

needed to create it.
system status functional model paycheck

behavioural

model
paycheck

36
Building data, functional and behavioural models provide the

software engineer with ________ different views
5 4 3 2 3

37
The description of each function required to solve the

problem is presented in the ________

functional

description

behavioural

description

data

description

program

description

functional

description

38
Software requirements analysis work products must be

reviewed for ________
clarity completeness consistency all of the above all of the above

39
The overall role of software in a larger system is identified

during the ___________

system

engineering
software planning

software

estimation
documentation

system

engineering

40
The analyst finds that problems with the current manual

system include________

inability to

obtain the status

of a

two-or-three

day turn around to

multiple

reorders to the

same

all of the above all of the above

41 The expansion of FAST is ________

Facilitated

Application

Specification

Fast Application

Specification

Facilitated

Application

Software

Facilitated

Application

System

Facilitated

Application

Specification

42 The following come under the lists of constraints __________ cost size business rules all of the above all of the above

43
All analysis methods are related by a set of operational

system software principles analysis principles

44
The functions that the software is to perform must be

defined described discussed listed defined

45
The first step in establishing traceability back to the customer

is ________

use multiple

views of

requirement

rank requirement

record the

origin of and

the reason for

work to

eliminate

ambiguity

record the

origin of and

the reason for

46
_______are used so that the characteristics of function and

behaviour can be communicated in a compact fashion.
softwares models programs

none of the

above
models

47
Requirement analysis allows the software engineer someties

called an _____
analyst team manager

progject

manager

software

engineer
analyst

48 The primary focus on requirement analyis is on what not how what how functions what not how

49 The analysis model must achieve _____ primary objectives 3 2 5 4 3

50 Analysis modeling is of 2 types _____ 3 2 5 4 2

51 Keep the model as it can be , the rule is sated in
analysis

requiremets
waterfall model

incremental

model
spiral model

analysis

requiremets

52 A second approach in requirement analysis is _____
object oriented

analysis
structured analysis design

implementation object oriented

analysis

53
The software engineer or analyst defines all _____ that are

processed within the system
data objects

cardinality and

modality
data atttibutes relationships data objects

54 ________ defines the properties of data objects data objects
cardinality and

modality
data atttibutes relationships data atttibutes

55
_______ modeling continues to be one of the most widely

used analysis notations today
data flow diagram use case diagram

context

diagram
leve 0

data flow

diagram

56 The control specification stands for CSPEC CPEC CNPEC CTPEEC CSPEC

57 The process specification stands for PSPEC SPECP RSPEC SPEC PSPEC

58
________ model indicates how software will respond to

external events
behavioral analysis waterfall incremental behavioral

59 UML stands for ________
unified modern

language

uniform modeling

language

unified model

language

unified modern

linear

unified modern

language

60
_______ represents a sequence of activities that involves

actors and the system
use-case dfd waterfall rapid model use-case

UNIT II

KARPAGAM ACADEMY OF HIGHER EDUCATION

Department of Computer Science

 II B.Sc(CS) (BATCH 2018-2021) IV SEMESTER

SOFTWARE ENGINEERING (18CSU402)

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 1/24

Requirement Analysis; Initiating Requirement Engineering Process- Requirement Analysis
and Modeling Techniques- Flow Oriented Modeling- Need for SRS- Characteristics and
Components of SRS- Software Project Management: Estimation in Project Planning Process,
Project Scheduling.

Introduction to requirement engineering

 The process of collecting the software requirement from the client then understand,

evaluate and document it is called as requirement engineering.

 Requirement engineering constructs a bridge for design and construction.

 Requirement engineering consists of seven different tasks as follow:

Requirement Engineering is the disciplined application of proven principles,

methods, tools, and notations to describe a proposed system’s intended behavior

and its associated constraints.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 2/24

1. Inception

 Inception is a task where the requirement engineering asks a set of questions to
establish a software process.

 In this task, it understands the problem and evaluates with the proper solution.

 It collaborates with the relationship between the customer and the developer.

 The developer and customer decide the overall scope and the nature of the
question.

2. Elicitation

Elicitation means to find the requirements from anybody. The requirements are difficult
because the following problems occur in elicitation.

Problem of scope: The customer give the unnecessary technical detail rather than clarity of
the overall system objective.

Problem of understanding: Poor understanding between the customer and the developer
regarding various aspect of the project like capability, limitation of the computing
environment.

Problem of volatility: In this problem, the requirements change from time to time and it is
difficult while developing the project.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 3/24

3. Elaboration

 In this task, the information taken from user during inception and elaboration and

are expanded and refined in elaboration.

 Its main task is developing pure model of software using functions, feature and

constraints of a software.

4. Negotiation

 In negotiation task, a software engineer decides the how will the project be achieved

with limited business resources.

 To create rough guesses of development and access the impact of the requirement

on the project cost and delivery time.

5. Specification

 In this task, the requirement engineer constructs a final work product.

 The work product is in the form of software requirement specification.

 In this task, formalize the requirement of the proposed software such as

informative, functional and behavioral.

 The requirement are formalize in both graphical and textual formats.

6. Validation

 The work product is built as an output of the requirement engineering and that is

accessed for the quality through a validation step.

 The formal technical reviews from the software engineer, customer and other

stakeholders helps for the primary requirements validation mechanism.

7. Requirement management

 It is a set of activities that help the project team to identify, control and track the

requirements and changes can be made to the requirements at any time of the ongoing

project.

 These tasks start with the identification and assign a unique identifier to each of the

requirement.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 4/24

 After finalizing the requirement traceability table is developed.

 The examples of traceability table are the features, sources, dependencies,

subsystems and interface of the requirement.

Types of Requirements

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 5/24

Feasibility Study

Is cancellation of a project a bad news? As per IBM report, “31% projects get

cancelled before they are completed, 53% over-run their cost estimates by an average of

189% & for every 100 projects, there are 94 restarts.

How do we cancel a project with the least work?
CONDUCT A FEASIBILTY STUDY

Technical feasibility
• Is it technically feasible to provide direct communication

connectivity through space from one location of globe to

anotherlocation?

• Is it technically feasible to design a programming language

using“Sanskrit”?

Feasibility depends upon non technical Issues like:
• Are the project’s cost and schedule assumptionrealistic?

• Does the business modelrealistic?

• Is there any market for theproduct?

Purpose of feasibility study
“evaluation or analysis of the potential impact of a proposed project

or program.”

Focus of feasibility studies

• Is the product conceptviable?

• Will it be possible to develop a product that matches the project’s

vision statement?

• What are the current estimated cost and schedule for the project?

Eliciting Requirements

Eliciting requirement helps the user for collecting the requirement

Eliciting requirement steps are as follows:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 6/24

1. Collaborative requirements gathering

 Gathering the requirements by conducting the meetings between developer and

customer.

 Fix the rules for preparation and participation.

 The main motive is to identify the problem, give the solutions for the elements,

negotiate the different approaches and specify the primary set of solution requirements in

an environment which is valuable for achieving goal.

2. Quality Function Deployment (QFD)

 In this technique, translate the customer need into the technical requirement for the

software.

 QFD system designs a software according to the demands of the customer.

QFD consist of three types of requirement:

Normal requirements

 The objective and goal are stated for the system through the meetings with the

customer.

 For the customer satisfaction these requirements should be there.

Expected requirement

 These requirements are implicit.

 These are the basic requirement that not be clearly told by the customer, but also the

 customer expect that requirement.

Exciting requirements

 These features are beyond the expectation of the customer.

 The developer adds some additional features or unexpected feature into the software

to make the customer more satisfied.

For example, the mobile phone with standard features, but the developer adds few

additional functionalities like voice searching, multi-touch screen etc. then the customer

more exited about that feature.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 7/24

3. Usage scenarios

 Till the software team does not understand how the features and function are used by

the end users it is difficult to move technical activities.

 To achieve above problem the software team produces a set of structure that identify

the usage for the software.

 This structure is called as 'Use Cases'.

4. Elicitation work product

 The work product created as a result of requirement elicitation that is depending on

the size of the system or product to be built.

 The work product consists of a statement need, feasibility, statement scope for the

system.

 It also consists of a list of users participate in the requirement elicitation.

 Analysis model operates as a link between the 'system description' and the 'design

model'.

 In the analysis model, information, functions and the behaviour of the system is

defined and these are translated into the architecture, interface and component level

design in the 'design modeling'.

USE CASE APPROACH

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 8/24

Use cases should not be used to capture all the details of the system.

 Only significant aspects of the required functionality

 No design issues

 Use Cases are for “what” the system is , not “how” the system will be designed

 Free of design characteristics

1.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 9/24

1. Maintain studentDetails

Add/Modify/update students details like name, address.
2. Maintain subjectDetails

Add/Modify/Update Subject information semester Wise

3. Maintain Result Details

Include entry of marks and assignment of credit points for each paper.
4. Login

Use to Provide way to enter through user id & password.

5. Generate Result Report

6. View Result

According to coursecode

According to Enrollment number/rollnumber

Use –Case Diagram : Hospital Management system

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 10/24

 Requirements Analysis

Elements of the analysis model

1. Scenario based element

 This type of element represents the system user point of view.

 Scenario based elements are use case diagram, user stories.

2. Class based elements

 The object of this type of element manipulated by the system.

 It defines the object,attributes and relationship.

 The collaboration is occurring between the classes.

 Class based elements are the class diagram, collaboration diagram.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 11/24

3. Behavioral elements

 Behavioral elements represent state of the system and how it is changed by the

external events.

 The behavioral elements are sequenced diagram, state diagram.

4. Flow oriented elements

 An information flows through a computer-based system it gets transformed.

 It shows how the data objects are transformed while they flow between the various

system functions.

 The flow elements are data flow diagram, control flow diagram.

Analysis Rules of Thumb

The rules of thumb that must be followed while creating the analysis model.

The rules are as follows:

 The model focuses on the requirements in the business domain. The level of abstraction

must be high i.e there is no need to give details.

 Every element in the model helps in understanding the software requirement and focus

on the information, function and behaviour of the system.

 The consideration of infrastructure and nonfunctional model delayed in the design.

For example, the database is required for a system, but the classes, functions and

behavior of the database are not initially required. If these are initially considered then

there is a delay in the designing.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 12/24

 Throughout the system minimum coupling is required. The interconnections between

the modules is known as 'coupling'.

 The analysis model gives value to all the people related to model.

 The model should be simple as possible. Because simple model always helps in easy

understanding of the requirement.

Analysis model

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 13/24

Flow Oriented Modeling

It shows how data objects are transformed by processing the function.

The Flow oriented elements are:

i. Data flow model

 It is a graphical technique. It is used to represent information flow.

 The data objects are flowing within the software and transformed by processing the

elements.

 The data objects are represented by labeled arrows. Transformation are represented by

circles called as bubbles.

 DFD shown in a hierarchical fashion. The DFD is split into different levels. It also called as

'context level diagram'.

ii. Control flow model

 Large class applications require a control flow modeling.

 The application creates control information instated of reports or displays.

 The applications process the information in specified time.

 An event is implemented as a boolean value.

For example, the boolean values are true or false, on or off, 1 or 0.

iii. Control Specification

 A short term for control specification is CSPEC.

 It represents the behaviour of the system.

 The state diagram in CSPEC is a sequential specification of the behaviour.

 The state diagram includes states, transitions, events and activities.

 State diagram shows the transition from one state to another state if a particular event

has occurred.

iv. Process Specification

 A short term for process specification is PSPEC.

 The process specification is used to describe all flow model processes.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 14/24

 The content of process specification consists narrative text, Program Design

Language(PDL) of the process algorithm, mathematical equations, tables or UML activity

diagram.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 15/24

Data objects

 The data object is the representation of composite information.

 The composite information means an object has a number of different properties or

attribute.

For example, Height is a single value so it is not a valid data object, but dimensions contain

the height, the width and depth these are defined as an object.

Data Attributes

Each of the data object has a set of attributes.

Data object has the following characteristics:

 Name an instance of the data object.

 Describe the instance.

 Make reference to another instance in another table.

Relationship

Relationship shows the relationship between data objects and how they are related to each
other.

Cardinality

Cardinality state the number of events of one object related to the number of events of
another object.

The cardinality expressed as:

One to one (1:1)

One event of an object is related to one event of another object.
For example, one employee has only one ID.

One to many (1:N)

One event of an object is related to many events.
For example, One collage has many departments.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 16/24

Many to many(M:N)

Many events of one object are related to many events of another object.
For example, many customer place order for many products.

Modality

 If an event relationship is an optional then the modality of relationship is zero.

 If an event of relationship is compulsory then modality of relationship is one.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 17/24

Software Requirement Specification (SRS)

 The requirements are specified in specific format known as SRS.

 This document is created before starting the development work.

 The software requirement specification is an official document.

 It shows the detail about the performance of expected system.

 SRS indicates to a developer and a customer what is implemented in the software.

 SRS is useful if the software system is developed by the outside contractor.

 SRS must include an interface, functional capabilities, quality, reliability, privacy etc.

Characteristics of SRS

Correctness:
User review is used to ensure the correctness of requirements stated in the SRS. SRS is said
to be correct if it covers all the requirements that are actually expected from the system.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 18/24

Completeness:
Completeness of SRS indicates every sense of completion including the numbering of all the
pages, resolving the to be determined parts to as much extent as possible as well as
covering all the functional and non-functional requirements properly.

Consistency:
Requirements in SRS are said to be consistent if there are no conflicts between any set of
requirements. Examples of conflict include differences in terminologies used at separate
places, logical conflicts like time period of report generation, etc.

Unambiguousness:
An SRS is said to be unambiguous if all the requirements stated have only 1 interpretation.
Some of the ways to prevent unambiguousness include the use of modelling techniques like
ER diagrams, proper reviews and buddy checks, etc.
Ranking for importance and stability:
There should a criterion to classify the requirements as less or more important or more
specifically as desirable or essential. An identifier mark can be used with every requirement
to indicate its rank or stability.

Modifiability:
SRS should be made as modifiable as possible and should be capable of easily accepting
changes to the system to some extent. Modifications should be properly indexed and cross-
referenced.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 19/24

Verifiability:
An SRS is verifiable if there exists a specific technique to quantifiably measure the extent to
which every requirement is met by the system. For example, a requirement stating that the
system must be user-friendly is not verifiable and listing such requirements should be
avoided.

Traceability:
One should be able to trace a requirement to a design component and then to a code
segment in the program. Similarly, one should be able to trace a requirement to the
corresponding test cases.

Design Independence:
There should be an option to choose from multiple design alternatives for the final system.
More specifically, the SRS should not include any implementation details.

Testability:
An SRS should be written in such a way that it is easy to generate test cases and test plans
from the document.

Understandable by the customer:
An end user maybe an expert in his/her specific domain but might not be an expert in
computer science. Hence, the use of formal notations and symbols should be avoided to as
much extent as possible. The language should be kept easy and clear.

Right level of abstraction:
If the SRS is written for the requirements phase, the details should be explained explicitly.
Whereas, for a feasibility study, fewer details can be used. Hence, the level of abstraction
varies according to the purpose of the SRS.

Software Project Management:

The job pattern of an IT company engaged in software development can be seen split in

two parts:

 Software Creation

 Software Project Management

A project is well-defined task, which is a collection of several operations done in order to

achieve a goal (for example, software development and delivery). A Project can be

characterized as:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 20/24

 Every project may has a unique and distinct goal.

 Project is not routine activity or day-to-day operations.

 Project comes with a start time and end time.

 Project ends when its goal is achieved hence it is a temporary phase in the lifetime of

an organization.

 Project needs adequate resources in terms of time, manpower, finance, material and

knowledge-bank.

Software Project Management

A software project manager is the most important person inside a team who takes the
overall responsibilities to manage the software projects and play an important role in the
successful completion of the projects. A project manager has to face many difficult
situations to accomplish these works. In fact, the job responsibilities of a project manager
range from invisible activities like building up team morale to highly visible customer
presentations. Most of the managers take responsibility for writing the project proposal,
project cost estimation, scheduling, project staffing, software process tailoring, project
monitoring and control, software configuration management, risk management, managerial
report writing and presentation and interfacing with clients. The task of a project manager
are classified into two major types:

1. Project planning
2. Project monitoring and control

Project planning

Project planning is undertaken immediately after the feasibility study phase and before the
starting of the requirement analysis and specification phase. Once a project has been found
to be feasible, Software project managers started project planning. Project planning is
completed before any development phase starts. Project planning involves estimating
several characteristics of a project and then plan the project activities based on these
estimations. Project planning is done with most care and attention. A wrong estimation can
result in schedule slippage. Schedule delay can cause customer dissatisfaction, which may
lead to a project failure. For effective project planning, in addition to a very good knowledge

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 21/24

of various estimation techniques, past experience is also very important. During the project
planning the project manager performs the following activities:

1. Project Estimation: Project Size Estimation is the most important parameter based
on which all other estimations like cost, duration and effort are made.

Cost Estimation: Total expenses to develop the software product is estimated.
Time Estimation: The total time required to complete the project.
Effort Estimation: The effort needed to complete the project is estimated.

The effectiveness of all later planning activities is dependent on the accuracy of these
three estimations.

2. Scheduling: After completion of estimation of all the project parameters, scheduling
for manpower and other resources are done.

3. Staffing: Team structure and staffing plans are made.

4. Risk Management: The project manager should identify the unanticipated risks that
may occur during project development risk, analysis the damage might cause these
risks and take risk reduction plan to cope up with these risks.

5. Miscellaneous plans: This includes making several other plans such as quality
assurance plan, configuration management plan, etc.

The order in which the planning activities are undertaken is shown in the below figure:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 22/24

Project monitoring and control

Project monitoring and control activities are undertaken once the development activities
start. The main focus of project monitoring and control activities is to ensure that the
software development proceeds as per plan. This includes checking whether the project is
going on as per plan or not if any problem created then the project manager must take
necessary action to solve the problem.

Role of a software project manager: There are many roles of a project manager in the
development of software.

Lead the team: The project manager must be a good leader who makes a team of
different members of various skills and can complete their individual task.

Motivate the team-member: One of the key roles of a software project manager is to
encourage team member to work properly for the successful completion of the
project.

Tracking the progress: The project manager should keep an eye on the progress of the
project. A project manager must track whether the project is going as per plan or not.
If any problem arises, then take necessary action to solve the problem. Moreover,
check whether the product is developed by maintaining correct coding standards or
not.

Liaison: Project manager is the link between the development team and the customer.
Project manager analysis the customer requirements and convey it to the
development team and keep telling the progress of the project to the customer.
Moreover, the project manager checks whether the project is fulfilling the customer
requirements or not.

Documenting project report: The project manager prepares the documentation of the
project for future purpose. The reports contain detailed features of the product and
various techniques. These reports help to maintain and enhance the quality of the
project in the future.

Necessary skills of software project manager: A good theoretical knowledge of various
project management technique is needed to become a successful project manager, but only
theoretical knowledge is not enough. Moreover, a project manager must have good
decision-making abilities, good communication skills and the ability to control the team
members with keeping a good rapport with them and the ability to get the work done by

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 23/24

them. Some skills such as tracking and controlling the progress of the project, customer
interaction, good knowledge of estimation techniques and previous experience are needed.

Skills that are the most important to become a successful project manager are given below:

 Knowledge of project estimation techniques
 Good decision-making abilities at the right time
 Previous experience of managing a similar type of projects
 Good communication skill to meet the customer satisfaction
 A project manager must encourage all the team members to successfully develop the

product
 He must know the various type of risks that may occur and the solution for these

problems

POSSIBLE QUESTIONS

PART B : 2 MARK QUESTIONS

1. What is requirement engineering process?

2. List the analysis rules of thumb.

3. Draw the context level DFD of Safe Home Alarm System.

4. What are the four major approaches used in analysis modeling

5. Differentiate between cardinality and modality

PART C: 8 MARK QUESTIONS

1. Illustrate the Guidelines for drawing a DFD and explain it with an example.

2. Describe Sequence diagram with an example.

3. Compare and contrast Process Specification and Control Specification.

4. Illustrate the identification of Events with Use-Case while creating a Behavioral

Model.

5. Write Short notes on Attributes and Relationships.

6. Give a detailed note on active state and passive state.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT II

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 24/24

7. Discuss the Control Specification in Flow Oriented Modeling.

8. Narrate the steps involved in creating a behavioral model.

9. Describe in detail about analysis modeling concepts.

10. Elucidate Requirement Analysis process in analysis model.

11. Explain State diagram with an example.

12. Compare Cardinality and Modality.

13. Describe the Analysis Modeling Approaches and explain the Rules of Thumb.

14. Elucidate Creation of Flow Oriented Modeling in software engineering.

S.NO QUESTIONS OPT 1 OPT 2 OPT 3 OPT 4 ANSWER

1 There are __________ major phases to any design process 2 3 4 5 2

2
Diversification is the ____________ of a repertoire of

alternatives.
component solution acquisition knowledge acquisition

3

During ____________, the designer chooses and combines

appropriate elements from the repertoire to meet the design

objectives.

diversification convergence elimination creation convergence

4
________ and __________ combine intuition and judgement

based on experience in building similar entities.

elimination,

convergence

creation,

convergence

acquisition,

creation

diversification

and convergence

diversification

and

convergence

5

__________ can be traced to a customer’s requirements and at

the same time assessed for quality against a set of predefined

criteria.

design analysis principles testing design

6
The __________ must implement all of the explicit

requirements contained in the analysis model
principles testing design component design

7
A ___________ should exhibit an architectural structure that

has been created using recognizable design patterns.
principles testing component design design

UNIT III

KARPAGAM ACADEMY OF HIGHER EDUCATION

Department of Computer Science

 II B.Sc(CS) (BATCH 2018-2021) IV SEMESTER

SOFTWARE ENGINEERING (18CSU402)

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

8
A ___________ is composed of components that exhibit good

design characteristics.
principles testing component design design

9
A ___________ can be implemented in an evolutionary fashion

thereby facilitating implementation and testing.
principles testing component design design

10

A ___________ should be modular that is the software should

be logically partitioned into elements that perform specific

functions and sub functions.

design principles component testing design

11
A ___________ should contain distinct representations of data,

architecture, interfaces, and components.
design principles component testing design

12

A ___________ should lead to data structures that are

appropriate for the objects to be implemented and are drawn

from recognizable data patterns.

design principles component testing design

13

. A _____________ should lead to interfaces that reduce the

complexity of connections between modules and with the

external environment.

design principles component testing design

14

A ___________ should be derived using a repeatable method

that is driven by information obtained during software

requirements analysis

principles component design testing design

15

The software __________ process encourages good design

through the application of fundamental design principles,

systematic methodology and thorough review.

principles component design testing design

16

The __________ must be a readable, understandable guide for

those who generate code and for those who test and

subsequently support the software.

principles component design testing design

17

The __________ should provide a complete picture of the

software addressing the data, functional and behavioral

domains from an implementation perspective.

principles component design testing design

18
The evolution of software __________ is a continuing process

that has spanned the past four decades.
principles component design testing design

19
Procedural aspects of design definition evolved into a

philosophy called ____________.

top down

programming

bottom up

programming

structured

programming

object oriented

programming

structured

programming

20 The design process should not suffer from ___________. analysis tunnel vision
conceptual

errors
 integrity tunnel vision

21 The design should be __________ to the analysis model. consistent related traceable relevant traceable

22 The design should not ___________ the wheel. minimize maximize integrate reinvent reinvent

23 The design should ___________ the intellectual distance maximize minimize integrate analyse minimize

24 . The ___________ is represented at a high level of abstraction specification analysis quality
design

specification

design

specification

25 The design should exhibit ___________ and integration. uniformity analysis quality review uniformity

26 The design should be ____________ to accommodate change. reviewed analysed assessed structured structured

27

The design should be ___________ to degrade gently, even

when aberrant data, events, or operating conditions are

encountered.

reviewed analysed assessed structured structured

28 Design is not ___________, coding is not design coding analysis review event coding

29 Design is not coding, __________ is not design. coding analysis review event coding

30
The design should be __________ for quality as it is being

created not after the fact.
reviewed assessed structured integrated assessed

31
The design should be ___________ to minimize conceptual

errors.
reviewed assessed structured integrated reviewed

32 Software design is both a _________ and a model. model process data function process

33

__________ is the only way that we can accurately translate a

customer’s requirements into a finished software product or

system.

specification design data prototype design

34
The design ___________ is the equivalent of an architect’s plan

for a house.
analysis process model function model

35
At the highest level of _________, a solution is stated in broad

terms, using the language of the problem environment.
refinement modularity abstraction continuity abstraction

36
. A __________ is a named sequence of instructions that has a

specific and limited function.

procedural

abstraction
data abstraction

control

abstraction

Process

abstraction

procedural

abstraction

37
A __________ is a named collection of data that describes a

data object.

procedural

abstraction
data abstraction

control

abstraction

Process

abstraction

data

abstraction

38
_________ implies a program control mechanism without

specifying internal detail.

procedural

abstraction
data abstraction

control

abstraction

Process

abstraction

control

abstraction

39
___________ is used to coordinate activities in an operating

system.

synchronization

semaphore
control abstraction

data

abstraction

procedural

abstraction

synchronizatio

n semaphore

40
_________ is a top down design strategy originally proposed by

Niklaus Wirth.

stepwise

refinement
control abstraction

data

abstraction

procedural

abstraction

stepwise

refinement

41
The designer’s goal is to produce a model or representation of

a __________ that will later be built
component entity data raw material component

42

The second phase of any design process is the gradual

___________ of all but one particular configuration of

components, and thus the creation of the final product.

acquisition addition elimination creation elimination

43 Design begins with the __________ model. data requirements specification code requirements

44

Software design methodologies lack the __________ that are

normally associated with more classical engineering design

disciplines.

depth flexibility
quantitative

nature
all of the above all of the above

45
Software requirements, manifested by the ___________

models, feed the design task.
data functional behavioral all of the above all of the above

46
___________ is the place where quality is fostered in software

engineering
model data design specification design

47
________ provides us with representations of software that

can be assessed for quality.
design specification data prototype design

48
Procedural aspects of design definition evolved into a

philosophy called __________.

procedural

programming

object oriented

programming

structured

programming
all of the above

structured

programming

49

Meyer defines __________ criteria that enable us to evaluate a

design method with respect to its ability to define an effective

modular system.

2 3 4 5 5

50

. If a design method provides a systematic mechanism for

decomposing the problem into sub problems, it will reduce the

complexity of the overall problem, thereby achieving an

effective modular solution. This is called ____________.

modular

decomposability

modular

composability

modular

understandabil

ity

modular

continuity

modular

decomposabilit

y

51

If a design method enables existing (reusable) design

components to be assembled into a new system, it will yield a

modular solution that does not reinvent the wheel. This is

called __________.

modular

decomposability

modular

composability

modular

understandabil

ity

modular

continuity

modular

composability

52
If a module can be understood as a stand alone unit (without

reference to other modules), it will be easier to build and easier

modular

decomposability

modular

composability

modular

understandabil

modular

continuity

modular

understandabili

53

If small changes to the system requirements result in changes

to individual modules, rather than system wide changes, the

impact of change-induced side effects will be minimized. This is

modular

decomposability

modular

composability

modular

understandabil

ity

modular

continuity

modular

continuity

54

If an aberrant condition occurs within a module and its effects

are constrained within that module, the impact of error-

induced side effects will be minimized. This is called

__________.

modular

protection

modular

composability

modular

understandabil

ity

modular

continuity

modular

protection

55

The aspect of the architectural design representation defines

the components of a system and the manner in which those

components are packaged and interact with one another. This

property is called _____________.

extra functional

property
structural property

families of

related

systems

operational

property

structural

property

56
____________ represent architecture as an organized

collection of program components.
dynamic models functional models

framework

models

structural

models

structural

models

57

____________ increases the level of design abstraction by

attempting to identity repeatable architectural design

frameworks that are encountered in similar types of

applications.

framework

models
dynamic models process models

functional

models

framework

models

58

_________ address the behavioural aspects of the program

architecture, indicating how the structure or system

configuration may change as a function of external events.

framework

models
dynamic models process models

functional

models

dynamic

models

59
___________ focus on the design of the business or technical

process that the system must accommodate.

framework

models
dynamic models process models

functional

models
process models

60
_____________ can be used to represent the functional

hierarchy of a system.

framework

models
dynamic models process models

functional

models

functional

models

UNIT III

KARPAGAM ACADEMY OF HIGHER EDUCATION

Department of Computer Science

 II B.Sc(CS) (BATCH 2018-2021) IV SEMESTER

SOFTWARE ENGINEERING (18CSU402)

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT III

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 1/19

Risk Management: Software Risks, Risk Identification Risk Projection and Risk Refinement,
RMMM plan, Quality Management- Quality Concepts, Software Quality Assurance,
Software Reviews, Metrics for Process and Projects

Risk Management

Introduction

Risk is inevitable in a business organization when undertaking projects. However, the

project manager needs to ensure that risks are kept to a minimal. Risks can be mainly

divided between two types, negative impact risk and positive impact risk.

Not all the time would project managers be facing negative impact risks as there are

positive impact risks too. Once the risk has been identified, project managers need to come

up with a mitigation plan or any other solution to counter attack the risk.

Project Risk Management

Managers can plan their strategy based on four steps of risk management which prevails in

an organization. Following are the steps to manage risks effectively in an organization:

 Risk Identification

 Risk Quantification

 Risk Response

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT III

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 2/19

 Risk Monitoring and Control

Let's go through each of the step in project risk management:

There are two characteristics of risk i.e. uncertainty and loss.

Following are the categories of the risk:

1. Project risk

 If the project risk is real then it is probable that the project schedule will slip and the

cost of the project will increase.

 It identifies the potential schedule, resource, stakeholders and the requirements

problems and their impact on a software project.
2. Technical risk

 If the technical risk is real then the implementation becomes impossible.

 It identifies potential design, interface, verification and maintenance of the problem.
3. Business risk

 If the business risk is real then it harms the project or product.

There are five sub-categories of the business risk:

1. Market risk - Creating an excellent system that no one really wants.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT III

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 3/19

2. Strategic risk - Creating a product which no longer fit into the overall business strategy for
companies.

3. Sales risk - The sales force does not understand how to sell a creating product.

4. Management risk - Loose a support of senior management because of a change in focus.

5. Budget risk - losing a personal commitment.

Other risk categories

These categories suggested by Charette.

1. Known risks : These risk are unwrapped after the project plan is evaluated.

2. Predictable risks : These risks are estimated from previous project experience.

3. Unpredictable risks : These risks are unknown and are extremely tough to identify in
advance.

Principles of risk management

Maintain a global perspective - View software risks in the context of a system and the
business problem planned to solve.

Take a forward looking view – Think about the risk which may occur in the future and
create future plans for managing the future events.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT III

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 4/19

Encourage open communication – Encourage all the stakeholders and users for suggesting
risks at any time.

Integrate – A consideration of risk should be integrated into the software process.

Emphasize a continuous process – Modify the identified risk than the more information is
known and add new risks as better insight is achieved.

Develop a shared product vision – If all the stakeholders share the same vision of the
software then it is easier for better risk identification.

Encourage teamwork – While conducting risk management activities pool the skills and
experience of all stakeholders.

Risk Identification

It is a systematic attempt to specify threats to the project plans.

Two different types of risk:

1. Generic risks

 These risks are a potential threat to each software project.
2. Product-specific risks

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT III

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 5/19

 These risks are recognized by those with a clear understanding of the

technology, the people and the environment which is specific to the software

that is to be built.

 A method for recognizing risks is to create item checklist.

 The checklist is used for risk identification and focus is at the subset of known
and predictable risk in the following categories:

1. Product size
2. Business impact
3. Customer characteristic
4. Process definition
5. Development environment
6. Technology to be built
7. staff size and experience

Contents of a Risk Table

A risk table provides a project manager with a simple technique for risk projection

It consists of five columns

 Risk Summary – short description of the risk

 Risk Category – one of seven risk categories (slide 12)

 Probability – estimation of risk occurrence based on group input

 Impact – (1) catastrophic (2) critical (3) marginal (4) negligible

 RMMM – Pointer to a paragraph in the Risk Mitigation, Monitoring, and

Management Plan

Risk Summary Risk Category Probability Impact (1-4) RMMM

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT III

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 6/19

Developing a Risk Table

 List all risks in the first column (by way of the help of the risk item checklists)

 Mark the category of each risk

 Estimate the probability of each risk occurring

 Assess the impact of each risk based on an averaging of the four risk components to

determine an overall impact value (See next slide)

 Sort the rows by probability and impact in descending order

 Draw a horizontal cutoff line in the table that indicates the risks that will be given

further attention

Risk Mitigation, Monitoring and Management (RMMM)

The Risk Mitigation, Monitoring and Management, RMMM, plan documents all work
performed as part of risk analysis and is used by the project manager as part of overall
project plan.

Once RMMM has been documented and the project has begun, risk mitigation and
monitoring steps commence. Risk analysis supports the project team in constructing a
strategy to deal with risks.

There are three important issues considered in developing an effective strategy:

Risk avoidance or mitigation - It is the primary strategy which is fulfilled through a plan. Risk
Mitigation covers efforts taken to reduce either the probability or consequences of a threat.

Risk monitoring - The project manager monitors the factors and gives an indication whether
the risk is becoming more or less. Risk monitoring and control is the process of identifying,
analyzing, and planning for newly discovered risks and managing identified risks.

Risk management and planning - It assumes that the mitigation effort failed and the risk is a
reality. Risk management is the identification,assessment, and prioritization of risks

RMMM Plan

 It is a part of the software development plan or a separate document.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT III

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 7/19

 The RMMM plan documents all work executed as a part of risk analysis and used by

the project manager as a part of the overall project plan.

 The risk mitigation and monitoring starts after the project is started and the

documentation of RMMM is completed.

Quality Management

Software Quality Management

Software Quality Management ensures that the required level of quality is achieved by
submitting improvements to the product development process. SQA aims to develop a
culture within the team and it is seen as everyone's responsibility.

Software Quality management should be independent of project management to ensure
independence of cost and schedule adherences. It directly affects the process quality and
indirectly affects the product quality.

Activities of Software Quality Management:

Quality Assurance - QA aims at developing Organizational procedures and standards for
quality at Organizational level.

Quality Planning - Select applicable procedures and standards for a particular project and
modify as required to develop a quality plan.

Quality Control - Ensure that best practices and standards are followed by the software
development team to produce quality products.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT III

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 8/19

Quality Concepts

What is Quality?

Software Quality is conformance to:

> explicitly stated functional and performance requirements,
> explicitly documented development standards,
> implicit characteristics that are expected of all professionally developed software.

Problems with Software Quality

> Software specifications are usually incomplete and often inconsistent
> There is tension between:

— customer quality requirements (efficiency, reliability, etc.)
— developer quality requirements (maintainability, reusability, etc.)

> Some quality requirements are hard to specify in an unambiguous way
— directly measurable qualities (e.g., errors/KLOC),
— indirectly measurable qualities (e.g., usability).

Quality management is not just about reducing defects!

Hierarchical Quality Model

Define quality via hierarchical quality model, i.e. a number of quality attributes (a.k.a.
quality factors, quality aspects, ...)
Choose quality attributes (and weights) depending on the project context

Quality Attributes

Quality attributes apply both to the product and the process.

> product: delivered to the customer

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT III

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 9/19

> process: produces the software product
> resources: (both the product and the process require resources)

— Underlying assumption: a quality process leads to a quality product (cf.
metaphor of manufacturing lines)

Quality attributes can be external or internal.

> External: Derived from the relationship between the environment and the system
(or the process). (To derive, the system or process must run)

— e.g. Reliability, Robustness
— Internal: Derived immediately from the product or process description (To

derive, it is sufficient to have the description)
— Underlying assumption: internal quality leads to external quality (cfr.

metaphor manufacturing lines)
— e.g. Efficiency

Quality attributes

Correctness

> A system is correct if it behaves according to its specification
— An absolute property (i.e., a system cannot be “almost correct”)
— ... in theory and practice undecidable

Reliability
> The user may rely on the system behaving properly
> Reliability is the probability that the system will operate as expected over a specified

interval
— A relative property (a system has a mean time between failure of 3 weeks)

Robustness
> A system is robust if it behaves reasonably even in circumstances that were not

specified
> A vague property (once you specify the abnormal circumstances they become part of

the requirements)

Efficiency (Performance)

> Use of resources such as computing time, memory
— Affects user-friendliness and scalability
— Hardware technology changes fast!
— First do it, then do it right, then do it fast

> For process, resources are manpower, time and money
— relates to the “productivity” of a process

Usability (User Friendliness, Human Factors)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT III

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 10/19

> The degree to which the human users find the system (process) both “easy to use”
and useful

— Depends a lot on the target audience (novices vs. experts)
— Often a system has various kinds of users (end-users, operators, installers)
— Typically expressed in “amount of time to learn the system”

Maintainability

> External product attributes (evolvability also applies to process)
> How easy it is to change a system after its initial release

— software entropy maintainability gradually decreases over time

Software Quality Assurance

What is Assurance?
Assurance is nothing but a positive declaration on a product or service, which gives
confidence. It is certainty of a product or a service, which it will work well. It provides a
guarantee that the product will work without any problems as per the expectations or
requirements.

What is Quality Assurance?
Quality Assurance is popularly known as QA Testing, is defined as an activity to ensure that
an organization is providing the best possible product or service to customers. QA focuses
on improving the processes to deliver Quality Products to the customer. An organization has
to ensure, that processes are efficient and effective as per the quality standards defined for
software products.

Elements of SQA

 Standards

 Reviews and Audits

 Testing

 Error/defect collection and analysis

 Change management

 Education

 Vendor management

 Security management

 Safety

 Risk management

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT III

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 11/19

Why are Standards Important?

 Standards provide encapsulation of best, or at least most appropriate, practice

 • Standards provide a framework around which the quality assurance process may
be implemented

 • Standards assist in continuity of work when it’s carried out by different people
throughout the software product lifecycle

 Standards should not be avoided. If they are too extensive for the task at hand,
then they should be tailored.

SDS a Simplistic approach

In most mature organizations:
• ISO is not the only source of SDS
• Process and Product standards are derived independently
• Product standards are not created by SQA

Process Standards

Process Standards – standards that define the process which should be followed during
software development

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT III

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 12/19

The Capability Maturity Model (CMM) is a methodology used to develop and refine an
organization's software development process. .

The Capability Maturity Model Integration (CMMI) is a capability maturity model
developed by the Software Engineering Institute, part of Carnegie Mellon University in
Pittsburgh, USA.
The CMMI principal is that “the quality of a system or product is highly influenced by the
process used to develop and maintain it”

Integrated Product Development or IPDS manages products from concept to closure
through a series of gates. Each IPDS gate refers to a specific phase of the project.
Product Standards

SQA (SOFTWARE QUALITY ASSURANCE) is enforcing quality procedures and the SQP
(SOFTWARE QUALITY PLAN) are the directions on how you go about enforcing the quality
assurance.

Software Configuration Management Plan (SCMP)

Software Configuration Management encompasses the disciplines and techniques of
initiating, evaluating and controlling change to software products during and after the
software engineering process.

The problem:

 Multiple people have to work on software that is changing

 More than one version of the software has to be supported:

 Released systems

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT III

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 13/19

 Custom configured systems (different functionality) System(s) under development

 Software must run on different machines and operating systems

 Need for coordination

Software Configuration Management

o manages evolving software systems
o controls the costs involved in making changes to a system

Product Standards – standards that apply to software product being developed

Intellectual property (IP) is a term for any intangible asset -- something proprietary that
doesn't exist as a physical object but has value. Examples of intellectual property include
designs, concepts, software, inventions, trade secrets, formulas and brand names, as well as
works of art. Intellectual property can be protected by copyright, trademark, patent or other
legal measure.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT III

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 14/19

Software Reviews

What Are Reviews?

 a meeting conducted by technical people for technical people

 a technical assessment of a work product created during the software engineering
process

 a software quality assurance mechanism

 a training ground

What Reviews Are Not

 A project summary or progress assessment

 A meeting intended solely to impart information

 A mechanism for political or personal reprisal!

Informal Reviews

Informal reviews include:

 a simple desk check of a software engineering work product with a colleague

 a casual meeting (involving more than 2 people) for the purpose of reviewing a work
product, or the review-oriented aspects of pair programming

pair programming encourages continuous review as a work product (design or code) is
created.

 The benefit is immediate discovery of errors and better work product quality as a
consequence.

Formal Technical Reviews

The objectives of an FTR are:

 to uncover errors in function, logic, or implementation for any representation of the
software

 to verify that the software under review meets its requirements

 to ensure that the software has been represented according

 to predefined standards

 to achieve software that is developed in a uniform manner

 to make projects more manageable
The FTR is actually a class of reviews that includes walkthroughs and inspections

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT III

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 15/19

The Review Meeting

 Between three and five people (typically) should be involved in the review.

 Advance preparation should occur but should require no more than two hours of
work for each person.

 The duration of the review meeting should be less than two hours.

 Focus is on a work product (e.g., a portion of a requirements model, a detailed
component design, source code for a component)

The Players

Producer—the individual who has developed the work product

 informs the project leader that the work product is complete and that a review is
required

Review leader—evaluates the product for readiness, generates copies of product materials,
and distributes them to two or three reviewers for advance preparation.

Reviewer(s)—expected to spend between one and two hours reviewing the product,
making notes, and otherwise becoming familiar with the work.

Recorder—reviewer who records (in writing) all important issues raised during the review.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT III

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 16/19

Metrics for Process and Projects

What are Metrics?

 Software process and project metrics are quantitative measures

 They are a management tool

 They offer insight into the effectiveness of the software process and the projects that
are conducted using the process as a framework

 Basic quality and productivity data are collected.

 These data are analyzed, compared against past averages, and assessed
The goal is to determine whether quality and productivity improvements
have occurred

 The data can also be used to pinpoint problem areas

 Remedies can then be developed and the software process can be improved.

Reasons to Measure

To characterize in order to

 Gain an understanding of processes, products, resources, and environments

 Establish baselines for comparisons with future assessments

 To evaluate in order to

 Determine status with respect to plans

 To predict in order to

 Gain understanding of relationships among processes and products

 Build models of these relationships

 To improve in order to

 Identify roadblocks, root causes, inefficiencies, and other opportunities for
improving product quality and process performance

Metrics In The Process And Project Domains

Process metrics are collected across all projects and over long periods of time.

 Their intent is to provide a set of process indicators that lead to long-term software
process improvement.

 Project metrics enable a software project manager to
(1) assess the status of an ongoing project,
(2) track potential risks,
(3) uncover problem areas before they go “critical,”

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT III

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 17/19

(4) adjust work flow or tasks,
(5) evaluate the project team’s ability to control quality of
software work products

Process Metrics and Software Process Improvement:-

 Software process improvement, it is important to note that process is only one of a
number of “controllable factors in improving software quality and organizational
performance”.

 Process sits at the center of a triangle connecting three factors that have a profound
influence on software quality and organizational performance.

We measure the effectiveness of a process by deriving a set of metrics based on outcomes
of the process such as

 Errors uncovered before release of the software

 Defects delivered to and reported by the end users

 Work products delivered

 Human effort expended

 Calendar time expended

 Conformance to the schedule

 Time and effort to complete each generic activity.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT III

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 18/19

Etiquette(good manners) of Process Metrics:

 Use common sense and organizational sensitivity when interpreting metrics data

 Provide regular feedback to the individuals and teams who collect measures and
metrics

 Don’t use metrics to evaluate individuals

 Work with practitioners and teams to set clear goals and metrics that will be used to
achieve them

 Never use metrics to pressure individuals or teams

 Metrics data that indicate a problem should not be considered “negative”
o Such data are merely an indicator for process improvement

 Don’t obsess on a single metric to the exclusion of other important metrics

Project Metrics:-

 Many of the same metrics are used in both the process and project domain

 Project metrics are used for making tactical decisions
o They are used to adapt project workflow and technical activities.

 The first application of project metrics occurs during estimation
o Metrics from past projects are used as a basis for estimating time and effort

 As a project proceeds, the amount of time and effort expended are compared to
original estimates

 As technical work commences, other project metrics become important
o Production rates are measured (represented in terms of models created,

review hours, function points, and delivered source lines of code)
o Error uncovered during each generic framework activity (i.e, communication,

planning, modeling, construction, deployment) are measured

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT III

Prepared by : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 19/19

Possible Questions

Part – B (2 Mark)

1. Write about generic risk and product risk.

2. What is risk projection?

3. Define RMMM plan and its use.

4. What are the elements of software quality assurance

5. What are project metrics?

Part – C (6 Mark)

1. Explain in detail about Software risks that are faced by developers.

2. What is the use of software reviews? Explain in detail.

3. Describe in detail how are risks identified.

4. What is risk refinement? Explain in detail the steps to refine a risk if it occurs.

5. Illustrate risk projection mechanism in software engineering

6. What are Formal technical reviews? How are they conducted in software engineering?

7. Describe in detail about RMMM plan

8. Explain in detail about project matrices

9. Enumerate in detail the quality concepts that must be considered in developing a

software

10. Explain the software quality assurance standards in detail.

S.NO QUESTIONS OPT 1 OPT 2 OPT 3 OPT 4 ANSWER

1 Interface design focuses on __________ areas of concern. 2 3 4 5 3

2
 Frustration and ___________ are part of daily life for many

users of computerized information system
sadness happiness enjoyment anxiety anxiety

3
___________ creates effective communication medium

between a human and a computer.

user interface

design
architectural design code design

procedure

design

user interface

design

4

__________ identifies interface objects and actions and then

creates a screen layout that form the basis for a user interface

prototype.

design coding testing analysis design

5
___________ begins with the identification of user, task and

environmental requirements.

user interface

design
architectural design code design

procedure

design

user interface

design

6 There are _________ golden rules. 2 3 4 5 3

7
We should define interaction modes in a way that does not

force a user into unnecessary or undesired actions.
interaction modes

interface

constraints

design

principles
design analysis

interaction

modes

UNIT IV

KARPAGAM ACADEMY OF HIGHER EDUCATION

Department of Computer Science

 II B.Sc(CS) (BATCH 2018-2021) IV SEMESTER

SOFTWARE ENGINEERING (18CSU402)

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

8 We should provide ___________ interaction. rigid flexible encouraging enthusiastic flexible

9
We should design for direct interaction with ________ that

appear on the screen
code class objects user objects

10 We should hide technical ___________ from the casual user reactions actions internals interactions internals

11
We should streamline ___________ as skill levels advance and

allow the interaction to be customized.
internals interaction actions reactions interaction

12
 We should allow user interaction to be __________ and

undoable
interruptible flexible rigid encouraging interruptible

13
We should allow user interaction to interruptible and

__________.
undoable flexible rigid encouraging undoable

14 We should define shortcuts that are _____________. encouraging intuitive default past actions intuitive

15 We should define __________ that are intuitive. shortcuts broad area
interruptible

actions
interactions shortcuts

16 We should disclose information in a ___________ fashion. open progressive streamline flexible progressive

17
The visual layout of the __________ should be based on a real

world metaphor.
interaction modes interface design structure interface

18
The interface should present and acquire _____________ in a

consistent fashion.
information task knowledge idea information

19
The interface should present and acquire information in a

___________ fashion.
consistent inconsistent rigid flexible consistent

20

A ____________ of the entire system incorporates data,

architectural interface, and procedural representations of the

software

data model design model user model system image design model

21 The software engineer creates a ________________. design model data model
interface

model
system image design model

22
The end user develops a mental image that is often called the

____________.
design model user model data model system image user model

23 The implementers of the system create a _____________. design model system image data model user model system image

24 Users are categorized into __________ types. 2 3 4 5 3

25

Users with no syntactic knowledge of the system and little

semantic knowledge of the application or computer usage are

called ___________.

knowledgeable

intermittent users

knowledgeable

frequent users
novices all of the above novices

26

Users with reasonable semantic knowledge of the application

but relatively low recall of syntactic information necessary to

use the interface are called ___________.

novices
knowledgeable,

intermittent users

knowledgeable

, frequent

users

all of the above

knowledgeable,

intermittent

users

27
Users with good semantic and syntactic knowledge that often

leads to the “power-user syndrome” are called _________.
novices

knowledgeable,

intermittent users

knowledgeable

, frequent

users

all of the above
knowledgeable,

frequent users

28
Individuals who look for shortcuts and abbreviated modes of

interaction are called ___________.
novices

knowledgeable,

intermittent users

knowledgeable

, frequent

users

Testers
knowledgeable,

frequent users

29
The __________ is the image of the system that end-users

carry in their heads.
user’s model data model design model system image user’s model

30 Stepwise elaboration is called __________.
functional

decomposition
data abstraction modularity

modular

protection

functional

decomposition

31
___________ is the only way that we can accurately translate a

customer’s requirements into a finished software product or
specification design data prototype design

32 Validation focuses on ___________ criteria. 2 3 4 5 2

33 Task analysis can be applied in ________ ways. 2 3 4 5 3

34 Task analysis for interface design used ___________ approach.
object oriented

approach
top down approach

bottom up

approach
all of the above

object oriented

approach

35
The overall approach to task analysis, a human engineer must

first ________ and classify tasks.
discuss define describe list define

36 There are ___________ steps in interface design activities. 4 5 6 7 7

37 __________ refers to the deviation from average time.
system response

time
variability

system mean

time
all of the above variability

38 System response time has _________ important characteristics. 3 4 5 2

39
A ___________ is designed into the software from the

beginning.

integrated help

facility

system response

time
variability all of the above

integrated help

facility

40 Component level design also called __________.
procedural

abstraction
procedural design

stepwise

refinement
decomposition

procedural

design

41 ___________ must be translated into operational software data architectural
interface

design
all of the above all of the above

42 A _________ performs component level design. user
top level

management

software

engineer

middle level

management

software

engineer

43

The ___________ represents the software in a way that allows

one to review the details of the design for correctness and

consistency with earlier design representations.

component level

design
procedural design data design data design

component

level design

44
Design, representations of data, architecture, and interfaces

form the foundation for _____________.
procedural design

component level

design
data design code design

component

level design

45 __________ notation is used to represent the design. graphical tabular text-based all of the above graphical

46

Any program, regardless of application area or technical

complexity, can be designed and implemented using only the

__________ structured constructs.

2 3 4 5 3

47 A box in a flowchart is used to indicate a ___________. processing step logical condition flow of control start processing step

48 A diamond in a flowchart is used to indicate a _________. processing step logical condition flow of control start
logical

condition

49 The arrows in a flowchart is used to indicate a __________. processing step logical condition flow of control start flow of control

50 A picture is worth a __________ words. 100 1000 10000 100000 1000

51
The following construct is fundamental to structured

programming.
sequence condition repetition all of the above all of the above

52
___________ implements processing steps that are essential in

the specification of any algorithm.
sequence condition repetition selection sequence

53
__________ provides the facility for selected processing steps

that are essential in the specification of any algorithm
sequence condition repetition selection condition

54 _________ allows for looping. sequence condition repetition selection repetition

55

Another graphical design tool, the ________ evolved from a

desire to develop a procedural design representation that

would not allow violation of the structured constructs.

box diagram flowchart
transition

diagram
decision table box diagram

56 PDL is the abbreviation of _____________.
Process Design

Language

Program Design

Language

Program

Document

Language

Program

Document

Language

Program

Design

Language

57 A design language should have the ___________ characters. 2 3 4 5 4

58

Design notation should support the development of modular

software and provide a means for interface specification. This

attribute of design notation is called ___________.

modularity simplicity ease of editing maintainability modularity

59

Design notation should be relatively simple to learn, relatively

easy to use, and generally easy to read. This attribute of the

design notation is called __________.

modularity simplicity ease of editing maintainability simplicity

60

The procedural design may require modification as the

software process proceeds. The ease with which a design

representation can be edited can help facilitate each software

engineering task is called ___________.

modularity simplicity ease of editing maintainability ease of editing

UNIT IV

KARPAGAM ACADEMY OF HIGHER EDUCATION

Department of Computer Science

 II B.Sc(CS) (BATCH 2018-2021) IV SEMESTER

SOFTWARE ENGINEERING (18CSU402)

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT IV

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 1/20

Design Engineering:-Design Concepts, Architectural Design Elements, Software
Architecture, Data Design at the Architectural Level and Component Level, Mapping of
Data Flow into Software Architecture, Modeling Component Level Design

Introduction to design process

 The main aim of design engineering is to generate a model which shows firmness,

delight and commodity.

 Software design is an iterative process through which requirements are translated into

the blueprint for building the software.

Software quality guidelines

 A design is generated using the recognizable architectural styles and compose a good

design characteristic of components and it is implemented in evolutionary manner for

testing.

 A design of the software must be modular i.e the software must be logically partitioned

into elements.

 In design, the representation of data , architecture, interface and components should

be distinct.

 A design must carry appropriate data structure and recognizable data patterns.

 Design components must show the independent functional characteristic.

 A design creates an interface that reduce the complexity of connections between the

components.

 A design must be derived using the repeatable method.

 The notations should be use in design which can effectively communicates its meaning.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT IV

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 2/20

Quality attributes

The attributes of design name as 'FURPS' are as follows:

Functionality:
It evaluates the feature set and capabilities of the program.

Usability:
It is accessed by considering the factors such as human factor, overall aesthetics,
consistency and documentation.

Reliability:
It is evaluated by measuring parameters like frequency and security of failure, output result
accuracy, the mean-time-to-failure(MTTF), recovery from failure and the the program
predictability.

Performance:
It is measured by considering processing speed, response time, resource consumption,
throughput and efficiency.

Supportability:

 It combines the ability to extend the program, adaptability, serviceability. These three

term defines the maintainability.

 Testability, compatibility and configurability are the terms using which a system can be

easily installed and found the problem easily.

 Supportability also consists of more attributes such as compatibility, extensibility, fault

tolerance, modularity, reusability, robustness, security, portability, scalability.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT IV

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 3/20

Stages of Design

 Problem understanding

– Look at the problem from different angles to discover the

design requirements.

• Identify one or more solutions

– Evaluate possible solutions and choose the most appropriate depending on

the designer's experience and available resources.

• Describe solution abstractions

– Use graphical, formal or other descriptive notations to

describe the components of the design.

• Repeat process for each identified abstraction

until the design is expressed in primitive terms.

The Design Process

• Any design may be modelled as a directed graph made up of entities with attributes

which participate in relationships.

• The system should be described at several different levels of abstraction.

Design takes place in overlapping stages. It is artificial to separate it into distinct phases but

some separation is usually necessary

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT IV

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 4/20

Design concepts

Phases in the Design Process

Architectu ral
design

Abstract
specificatio

n

Interface
design

Compon ent
design

Data
stru ctu re
design

Alg orithm
design

Sy stem
architectu re

So ftware
specificatio n

Interface
specificatio n

Compon ent
specificatio n

Data
stru ctu re

specificatio n

Alg orithm
specificatio n

Requ irements
specificatio n

Desig n activities

Desig n prod ucts

The set of fundamental software design concepts are as follows:

1. Abstraction

 A solution is stated in large terms using the language of the problem environment at

the highest level abstraction.

 The lower level of abstraction provides a more detail description of the solution.

 A sequence of instruction that contain a specific and limited function refers in a

 procedural abstraction.

 A collection of data that describes a data object is a data abstraction.

2. Architecture

 The complete structure of the software is known as software architecture.

 Structure provides conceptual integrity for a system in a number of ways.

 The architecture is the structure of program modules where they interact with each

other in a specialized way.

 The components use the structure of data.

 The aim of the software design is to obtain an architectural framework of a system.

 The more detailed design activities are conducted from the framework.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT IV

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 5/20

3. Patterns

 A design pattern describes a design structure and that structure solves a particular
design problem in a specified content.

4. Modularity

 A software is separately divided into name and addressable components. Sometime

they are called as modules which integrate to satisfy the problem requirements.

 Modularity is the single attribute of a software that permits a program to be managed

easily.

5. Information hiding

 Modules must be specified and designed so that the information like algorithm and
data presented in a module is not accessible for other modules not requiring that
information.

6. Functional independence

 The functional independence is the concept of separation and related to the concept of

modularity, abstraction and information hiding.

 The functional independence is accessed using two criteria i.e Cohesion and coupling.

Cohesion

 Cohesion is an extension of the information hiding concept.

 A cohesive module performs a single task and it requires a small interaction with the

other components in other parts of the program.

Coupling

Coupling is an indication of interconnection between modules in a structure of software.

7. Refinement

 Refinement is a top-down design approach.

 It is a process of elaboration.

 A program is established for refining levels of procedural details.

 A hierarchy is established by decomposing a statement of function in a stepwise

manner till the programming language statement are reached.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT IV

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 6/20

8. Refactoring

 It is a reorganization technique which simplifies the design of components without

changing its function behaviour.

 Refactoring is the process of changing the software system in a way that it does not

change the external behaviour of the code still improves its internal structure.

9. Design classes

 The model of software is defined as a set of design classes.

 Every class describes the elements of problem domain and that focus on features of the

problem which are user visible.

Following are the types of design elements:

1. Data design elements

 The data design element produced a model of data that represent a high level of

abstraction.

 This model is then more refined into more implementation specific representation

which is processed by the computer based system.

 The structure of data is the most important part of the software design.

2. Architectural design elements

 The architecture design elements provides us overall view of the system.

 The architectural design element is generally represented as a set of interconnected

subsystem that are derived from analysis packages in the requirement model.

The architecture model is derived from following sources:

 The information about the application domain to built the software.

 Requirement model elements like data flow diagram or analysis classes, relationship

and collaboration between them.

 The architectural style and pattern as per availability.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT IV

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 7/20

3. Interface design elements

 The interface design elements for software represents the information flow within it

and out of the system.

 They communicate between the components defined as part of architecture.

Following are the important elements of the interface design:

1. The user interface

2. The external interface to the other systems, networks etc.

3. The internal interface between various components.

4. Component level diagram elements

 The component level design for software is similar to the set of detailed

specification of each room in a house.

 The component level design for the software completely describes the internal

details of the each software component.

 The processing of data structure occurs in a component and an interface which

allows all the component operations.

 In a context of object-oriented software engineering, a component shown in a UML

diagram.

The UML diagram is used to represent the processing logic.

5. Deployment level design elements

 The deployment level design element shows the software functionality and

subsystem that allocated in the physical computing environment which support the

software.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT IV

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 8/20

 Following figure shows three computing environment as shown. These are the

personal computer, the CPI server and the Control panel.

Architectural Design

Software Architecture
This section defines the term “software architecture” as a framework made up of the
system structures that comprise the software components, their properties, and the
relationships among these components. The goal of the architectural model is to allow the
software engineer to view and evaluate the system as a whole before moving to component
design.

What is Architecture?

The architecture is not the operational software. Rather, it is a representation that enables a
software engineer to:

(1) Analyze the effectiveness of the design in meeting its stated requirements,

(2) Consider architectural alternatives at a stage when making design changes is still
relatively easy, and

(3) Reduce the risks associated with the construction of the software.

Why is Architecture Important?
 Representations of software architecture are an enabler for communication between all

parties (stakeholders) interested in the development of a computer-based system.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT IV

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 9/20

 The architecture highlights early design decisions that will have a profound impact on all
software engineering work that follows and, as important, on the ultimate success of the
system as an operational entity.

 Architecture “constitutes a relatively small, intellectually graspable model of how the
system is structured and how its components work together” [BAS03].

Data Design
This section describes data design at both the architectural and component levels. At the
architecture level, data design is the process of creating a model of the information
represented at a high level of abstraction (using the customer's view of data).

Data Design at the Architectural Level

The challenge is extract useful information from the data environment, particularly when
the information desired is cross-functional.

To solve this challenge, the business IT community has developed data mining techniques,
also called knowledge discovery in databases (KDD), that navigate through existing
databases in an attempt to extract appropriate business-level information.

However, the existence of multiple databases, their different structures, the degree of detail
contained with the databases, and many other factors make data mining difficult within an
existing database environment.

An alternative solution, called a data warehouse, adds on additional layer to the data
architecture.
A data warehouse is a separate data environment that is not directly integrated with day-to-
day applications that encompasses all data used by a business.
In a sense, a data warehouse is a large, independent database that has access to the data
that are stored in databases that serve as the set of applications required by a business.

Data Design at the Component Level
At the component level, data design focuses on specific data structures required to realize
the data objects to be manipulated by a component.
 refine data objects and develop a set of data abstractions
 implement data object attributes as one or more data structures
 review data structures to ensure that appropriate relationships have been established
 simplify data structures as required

Set of principles for data specification:
1. The systematic analysis principles applied to function and behavior should also be
applied to data.
2. All data structures and the operations to be performed on each should be identified.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT IV

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 10/20

3. A data dictionary should be established and used to define both data and program
design.
4. Low level data design decisions should be deferred until late in the design process.
5. The representation of data structure should be known only to those modules that must
make direct use of the data contained within the structure.
6. A library of useful data structures and the operations that may be applied to them
should be developed.
7. A software design and programming language should support the specification and
realization of abstract data types.

Architectural Styles and Patterns
Each style describes a system category that encompasses:
(1) A set of components (e.g., a database, computational modules) that perform a function
required by a system,
(2) A set of connectors that enable “communication, coordination and cooperation” among
components,
(3) Constraints that define how components can be integrated to form the system, and
(4) Semantic models that enable a designer to understand the overall properties of a system
by analyzing the known properties of its constituent parts.

An architectural style is a transformation that is imposed on the design of an entire system.
An architectural pattern, like an architectural style, imposes a transformation on the design
of an architecture.

 A pattern differs from a style in a number of fundamental ways:
1. The scope of a pattern is less broad, focusing on one aspect of the architecture rather

than the architecture in its entirety.
2. A pattern imposes a rule on the architecture, describing how the S/W will handle some

aspect of its functionality at the infrastructure level.
3. Architectural patterns tend to address specific behavioral issues within the context of

the architectural.
.
Taxonomy of Architectural styles:

1. Data centred architectures:

 A data store will reside at the center of this architecture and is accessed frequently

by the other components that update, add, delete or modify the data present
within the store.

 The figure illustrates a typical data centered style. The client software access a
central repository. Variation of this approach are used to transform the repository

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT IV

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 11/20

into a blackboard when data related to client or data of interest for the client
change the notifications to client software.

 This data-centered architecture will promote integrability. This means that the
existing components can be changed and new client components can be added to
the architecture without the permission or concern of other clients.

 Data can be passed among clients using blackboard mechanism.

2. Data flow architectures:
 This kind of architecture is used when input data to be transformed into

output data through a series of computational manipulative components.
 The figure represents pipe-and-filter architecture since it uses both pipe and

filter and it has a set of components called filters connected by pipes.
 Pipes are used to transmit data from one component to the next.
 Each filter will work independently and is designed to take data input of a

certain form and produces data output to the next filter of a specified form.
The filters don’t require any knowledge of the working of neighboring filters.

 If the data flow degenerates into a single line of transforms, then it is termed
as batch sequential. This structure accepts the batch of data and then applies
a series of sequential components to transform it.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT IV

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 12/20

3. Call and Return architectures: It is used to create a program that is easy to scale and
 modify. Many sub-styles exist within this category. Two of them are explained
below.

 Remote procedure call architecture: This components is used to present in a

main program or sub program architecture distributed among multiple
computers on a network.

 Main program or Subprogram architectures: The main program structure
decomposes into number of subprograms or function into a control hierarchy.
Main program contains number of subprograms that can invoke other
components.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT IV

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 13/20

4. Object Oriented architecture: The components of a system encapsulate data and
the operations that must be applied to manipulate the data. The coordination and
communication between the components are established via the message passing.

5. Layered architecture:
 A number of different layers are defined with each layer performing a well-

defined set of operations. Each layer will do some operations that becomes
closer to machine instruction set progressively.

 At the outer layer, components will receive the user interface operations and
at the inner layers, components will perform the operating system
interfacing(communication and coordination with OS)

 Intermediate layers to utility services and application software functions.

Architectural Patterns
A S/W architecture may have a number of architectural patterns that address issues such as
concurrency, persistence, and distribution.
 Concurrency—applications must handle multiple tasks in a manner that simulates

parallelism
 operating system process management pattern
 task scheduler pattern

 Persistence—Data persists if it survives past the execution of the process that created it.
Persistent data are stored in a database or file and may be read and modified by other
processes at a later time.

 Two patterns are common:
 a database management system pattern that applies the storage and retrieval

capability of a DBMS to the application architecture
 an application level persistence pattern that builds persistence features into the

application architecture

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT IV

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 14/20

 Distribution— the manner in which systems or components within systems
communicates with one another in a distributed environment, and the nature of the
communication that occurs.

A broker acts as a ‘middle-man’ between the client component and a server component.

Mapping Data Flow into Software Architecture

This section describes the general process of mapping requirements into software
architectures during the structured design process.

An Architectural Design Method
customer requirements
four bedrooms, three baths, lots of glass…
Deriving Program Architecture
Partitioning the Architecture
horizontal” and “vertical” partitioning are required

Horizonta
l
Partitioni
ng

 de
fine separate branches of the module hierarchy for each major function

 use control modules to coordinate communication between functions

ffuunnccttiioonn

11
ffuunnccttiioonn

33

ffuunnccttiioonn

22

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT IV

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 15/20

wwoorrkkeerrss

ddeecciissiioonn--mmaakkeerrss

Vertical Partitioning:
Factoring

 design so that decision making and work are stratified
 decision making modules should reside at the top of the architecture

Why

Partitioned Architecture?

 results in software that is easier to test
 leads to software that is easier to maintain
 results in propagation of fewer side effects
 results in software that is easier to extend

 objective: to derive a program architecture that is partitioned
 approach:

 the DFD is mapped into a program architecture
 the PSPEC and STD are used to indicate the content of each module

 notation: structure chart

Flow Characteristics

Transform Mapping
Transform mapping is a technique in which Data Flow Diagrams (DFD's) are mapped to a
specific scenario. It is a data flow-oriented mapping technique that uses DFDs to map real
life scenarios to a software architecture. These real life scenarios are converted to what we
call DFDs which can be applied to a software architecture. This process of converting a real-
life situation (termed as system in software engineering) with flow of data to a DFD is called
transform mapping. In this lesson, transform mapping has been described using the scenario
of an airline reservation system.

Data Flow Diagram
A Data Flow Diagram(DFD) shows the flow of data through the system. It is also used for
modeling the requirements. DFD is often called as a data flow graph. The data flow diagram
is created with the help of various symbols which represent a process, data repository etc.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT IV

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 16/20

data flow model

"Transform" mapping

a
b

c

d e f
g h

i
j

x1

x2 x3 x4

b c

a

d e f g i

h j

typical "worker" modules

typical "decision
making" modules

direction of increasing
decision making

General Mapping Approach
Isolate incoming and outgoing flow boundaries; for transaction flows, isolate the transaction
center.
Working from the boundary outward, map DFD transforms into corresponding modules.
Add control modules as required.
Refine the resultant program structure using effective modularity concepts.

Factoring

First Level

Factoring

Program structure represents a top-down distribution of control. Factoring results in a
program structure in which top-level modules perform decision making and low-level
modules perform most input, computation, and output work. Middle-level modules perform
some control and do moderate amounts of work. When transform flow is encountered, a
DFD is mapped to a specific structure (a call and return architecture) that provides control
for incoming, transform, and outgoing information processing.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT IV

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 17/20

main
program
controller

Sensor input
controller

processing
controller

output
controller

D

C

B
A

A

C

B

Dmapping from the
flow boundary outward

main

control

This first-level factoring for the monitor sensors subsystem is illustrated in Figure 14.9. A
main controller (called monitor sensors executive)resides at the top of the program
structure and coordinates the following subordinate control functions:

• An incoming information processing controller, called sensor input controller, coordinates
receipt of all incoming data.

• A transform flow controller, called alarm conditions controller, supervises all operations on
data in internalized form (e.g., a module that invokes various data transformation
procedures).

• An outgoing information processing controller, called alarm output controller, coordinates
production of output information

Second Level Mapping
Second-level factoring is accomplished by mapping individual transforms (bubbles) of a DFD
into appropriate modules within the architecture. Beginning at the transform center
boundary and moving outward along incoming and then outgoing paths, transforms are
mapped into subordinate levels of the software structure

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT IV

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 18/20

Transaction Flow

Modeling Component Level Design

Overview
The purpose of component-level design is to define data structures, algorithms, interface
characteristics, and communication mechanisms for each software component identified in
the architectural design. Component-level design occurs after the data and architectural
designs are established. The component-level design represents the software in a way that
allows the designer to review it for correctness and consistency, before it is built. The work
product produced is a design for each software component, represented using graphical,
tabular, or text -based notation. Design walkthroughs are conducted to determine
correctness of the data transformation or control transformation allocated to each
component during earlier design steps.

Component Definitions

 Component is a modular, deployable, replaceable part of a system that encapsulates
implementation and exposes a set of interfaces

TTrraannssaaccttiioonn

FFllooww

T

incoming flow

action path

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT IV

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 19/20

o Object-oriented view is that component contains a set of collaborating
classes

o Each elaborated class includes all attributes and operations relevant to its
implementation All interfaces communication and collaboration with other
design classes are also defined

o Analysis classes and infrastructure classes serve as the basis for object-
oriented elaboration

 Traditional view is that a component (or module) reside in the software and serves
one of three roles

o Control components coordinate invocation of all other problem domain
components

o Problem domain components implement a function required by the
customer

o Infrastructure components are responsible for functions needed to support
the processing required in a domain application

o The analysis model data flow diagram is mapped into a module hierarchy as
the starting point for the component derivation

Class-based Component Design

 Focuses on the elaboration of domain specific analysis classes and the definition of
infrastructure classes

 Detailed description of class attributes, operations, and interfaces is required prior to
beginning construction activities

Class-based Component Design Principles

 Open-Closed Principle (OCP) – class should be open for extension but closed for
modification

 Liskov Substitution Principle (LSP) – subclasses should be substitutable for their base
classes

 Dependency Inversion Principle (DIP) – depend on abstractions, do not depend on
concretions

 Interface Segregation Principle (ISP) – many client specific interfaces are better than
one general purpose interface

 Release Reuse Equivalency Principle (REP) – the granule of reuse is the granule of
release

 Common Closure Principle (CCP) – classes that change together belong together

 Common Reuse Principle (CRP) – Classes that can’t be used together should not be
grouped together

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT IV

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 20/20

Possible Questions

Part – B (2 Mark)

1. Define abstraction.
2. Differentiate between refinement and refactoring
3. Write the difference between transform flow and transaction flow
4. What is transform mapping?
5. Define transaction mapping.

Part – C (6 Mark)

1. Explain in detail the process of data design at

a. Architectural level ii) Component level
2. Write in detail the approach used to design class based components
3. Discuss in detail about the Architectural components of software.
4. Write short notes on

a. Transform mapping ii) Transaction mapping
5. Write short notes on the following design concepts

a. Information hiding ii) Refinement iii) Refactoring
6. Describe in detail the procedure to refine an architecture into components.
7. Write short notes on the following design concepts

a. Abstraction ii) Architecture iii) Modularity
8. Write in detail the approach used to design conventional components
9. Explain in detail about design process and design quality
10. Write short notes on

a. Transform flow ii) Transaction flow

S.NO QUESTIONS OPT 1 OPT 2 OPT 3 OPT 4 ANSWER

1

__________ is a critical element of software quality assurance

and represents the ultimate review of specification, design, and

code generation.

software

specification

software

generation

software

coding
software testing

software

testing

2 Software is tested from ___________ different perspectives. 2 3 4 5 2

3 Software engineers are by their nature ___________ people. pessimistic optimistic constructive destructive constructive

4
__________ is a process of executing a program with the intent

of finding an error.
coding testing debugging designing testing

5 All tests should be _________ to customer requirements. traceable designed tested coded traceable

6 Tests should be planned long before _____________ begins. testing coding specification requirements testing

7
Testing should begin in the _________ and progress toward

testing in the large.
design beginning small big small

UNIT V

KARPAGAM ACADEMY OF HIGHER EDUCATION

Department of Computer Science

 II B.Sc(CS) (BATCH 2018-2021) IV SEMESTER

SOFTWARE ENGINEERING (18CSU402)

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

8 The less there is to test, the more _________ we can test it. quickly shortly automatically hardly quickly

9
________ is a process of executing a program with the intend

of finding an error.
testing coding planning designing testing

10
A good _________ is one that has a high probability of finding

an as-yet-undiscovered error
planning test case objective goal test case

11 All _________ should be traceable to customer-requirements. analysis designs tests plans tests

12
__________ is simple how easily a computer program can be

tested.

software

operability
software simplicity

software

decomposabilit

y

software

testability

software

testability

13
The better it works, the more efficiently it can be testing. This

characteristic is called ___________.
operability observability controllability decomposability operability

14 There are _________ characteristics in testability 5 6 7 8 7

15
What you see is what you test. This characteristic is called

__________.
controllability observability

decomposabilit

y
stability observability

16

The better we can control the software, the more the testing

can be automated and optimized. This characteristic is called

__________.

operability stability
understandabil

ity
controllability controllability

17

By controlling the scope of testing, we can more quickly isolate

problems and perform smarter retesting. This characteristic is

called _________.

decomposability simplicity stability
understandabilit

y

decomposabilit

y

18
. The less there is to test, the more quickly we can test it. This

characteristic is called _________.
controllability simplicity operability observability simplicity

19
The fewer the changes, the fewer the disruptions to testing.

This characteristic is called __________.
controllability decomposability stability

understandabilit

y
stability

20
 The more information we have, the smarter we will test. This

characteristic is called _________.
controllability decomposability stability

understandabilit

y

understandabili

ty

21 A good test has a high ___________ of finding an error. probability simplicity
understandabil

ity
stability probability

22 A good test is not _________. stable redundant simple complex redundant

23 White-box testing sometimes called _________.
control structure

testing
condition testing

glass-box

testing
black-box testing

glass-box

testing

24

Logic errors and incorrect assumptions are inversely

proportional to the ___________ that a program path will be

executed

simplicity probability
understandabil

ity
stability probability

25 Typographical errors are _________. redundant simple random complex random

26
One often believes that a _________ path is not likely to be

executed when, in fact, it may be executed on a regular basis.
control structural physical logical logical

27 Basic path testing is a __________. black-box testing white-box testing

control

structure

testing

control path

testing

white-box

testing

28
__________ is a software metric that provides a quantitative

measure of the logical complexity of a program.

cyclomatic

complexity
flow graph

deriving test

cases
graph matrices

cyclomatic

complexity

29

An __________ is any path through the program that

introduces atleast one new set of processing statements or a

new condition.

dependent path independent path basic path control path
independent

path

30
There are _________ steps to be applied to derive the basis

set.
2 3 4 5 4

31 There are _________ test cases that satisfy the basis set. 3 4 5 6 6

32
. A ________ is a square matrix whose size is equal to the

number of nodes on the flow graph.
graph matrix matrix flow graph

cyclomatic

complexity
graph matrix

33
To develop a software tool that assists in basis path testing, a

data structure called a ___________ is useful.
matrix flow graph graph matrix

cyclomatic

omplexity
graph matrix

34
____________ requires three or four tests to be derived for a

relational expression.
branch testing data flow testing

data control

testing
domain testing domain testing

35 __________ is probably the simplest condition testing strategy. branch testing data flow testing
condition

testing
domain testing branch testing

36

The __________ method selects test paths of a program

according to the locations of definitions and uses of variables in

the program

data flow testing condition testing loop testing
black box

testing

data flow

testing

37
__________ is a white box testing technique that focuses

exclusively on the validity of loop constructions
data flow testing loop testing

condition

testing

control path

testing
loop testing

38
___________ is a test case design method that exercises the

logical conditions contained in a program module
black box testing loop testing

data flow

testing
condition testing

condition

testing

39 _____________ is called behavioral testing. black box testing loop testing
data flow

testing
condition testing

black box

testing

40

The first step in __________ is to understand the objects that

are modeled in software and the relationships that connect

these objects

black box testing loop testing
data flow

testing
condition testing

black box

testing

41
Equivalence partitioning is a ___________ method that divides

the input domain of a program into classes of data.
black box testing loop testing

data flow

testing
condition testing

black box

testing

42 Comparison testing is also called ____________. black box testing loop testing
behavioral

testing

back-to-back

testing

back-to-back

testing

43

__________ testing can be applied to problems in which the

input domain is relatively small but too large to accommodate

exhaustive testing.

orthogonal array loop behavioral back-to-back
orthogonal

array

44
__________ focuses verification effort on the smallest unit of

software design – the software component or module.
module testing unit testing

structure

testing
system testing unit testing

45 A driver is nothing more than a __________. subprogram main program stub subroutine main program

46
_____________ serve to replace modules that are subordinate

called by the component to be tested.
subprograms main programs stubs subroutines stubs

47 Drivers and _________ represent overhead. subprograms main programs stubs subroutines stubs

48
___________ of execution paths is an essential task during the

unit test.
unit testing module testing

selective

testing
white box testing

selective

testing

49

Good _________ dictates that error conditions be anticipated

and error-handling paths set up to reroute or cleanly terminate

processing when an error does occur

design testing code module design

50
_________ is completely assembled as a package, interfacing

errors have been uncovered and corrected.
software program code all of the above software

51

The Process of Configuration identification involves the

specification of components in the software project are known

as ________.

Configuration

Items

Change Control Configuration

Control

 Project control Configuration

Items

52

Implementing a quality system is spent on writing documents

which specify how certain tasks are to be carried out is known

as _______.

 Procedures Policies Function Definitions Procedures

53
 ________ task involves the programmer to receive a

specification of a module.

 Integration

Programming

 System

Programming

 Unit Testing Configuration

Control

 Unit Testing

54

Quality Assurance follows _______ methodology Defect analysis Defect Prevention Error

detection

 Error correction Defect

Prevention

55

Quality Assurance is based on _________ work Product Oriented Function Oriented Process

Oriented

 Design Oriented Process

Oriented

56

SEI means Software

Engineering

Institute

Software

Engineering

International

Software

Engineering

Independent

System

Engineering

Institute

Software

Engineering

Institute

57

ISO means Internal

Organizations for

standards

Intermediate

Organizations for

standards

International

Organizations

for standards

Internal

optimization

standards

International

Organizations

for standards

58

PCMM means Personal

Capability

Maturity Model

People Capability

Maturity Model

Professional

Capability

Maturity

Model

Project

Capability

Maturity Model

People

Capability

Maturity Model

59

Quality Control is based on ______ methodology Defect

Prevention

 Process Oriented Defect

Detection

 debugging Defect

Detection

60
 the document shows the relationship between requirement

specification and test case is called ________

 Matrix Traceability Matrix Defect

Analysis

 Matrix Analysis Traceability

Matrix

UNIT V

KARPAGAM ACADEMY OF HIGHER EDUCATION

Department of Computer Science

 II B.Sc(CS) (BATCH 2018-2021) IV SEMESTER

SOFTWARE ENGINEERING (18CSU402)

PART-A OBJECTIVE TYPE/ MULTIPLE CHOICE QUESTIONS

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 1/27

Testing Strategies & Tactics: Software Testing Fundamentals, Strategic Approach to
Software Testing, Test Strategies for Conventional Software, Validation Testing, System
testing Black-Box Testing, White-Box Testing and their type, Basis Path Testing

Software Testing Fundamentals

What is Software Testing:

Software testing is a process, to evaluate the functionality of a software application with an
intent to find whether the developed software met the specified requirements or not and to
identify the defects to ensure that the product is defect free in order to produce the quality
product.

Definition:

According to ANSI/IEEE 1059 standard – A process of analyzing a software item to detect
the differences between existing and required conditions (i.e., defects) and to evaluate the
features of the software item.

Software Testing Types:

Manual Testing: Manual testing is the process of testing the software manually to find the
defects. Tester should have the perspective of an end users and to ensure all the features
are working as mentioned in the requirement document. In this process, testers execute the
test cases and generate the reports manually without using any automation tools.

Automation Testing: Automation testing is the process of testing the software using an
automation tools to find the defects. In this process, testers execute the test scripts and
generate the test results automatically by using automation tools. Some of the famous
automation testing tools for functional testing are QTP/UFT and Selenium.

Types of testing

There are many types of testing like

 Unit Testing
 Integration Testing
 Functional Testing
 System Testing

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 2/27

 Stress Testing
 Performance Testing
 Usability Testing
 Acceptance Testing
 Regression Testing
 Beta Testing

Testing Methods:

1. Static Testing
2. Dynamic Testing

Verification And Validation In Software Testing

Verification And Validation:

In software testing, verification and validation are the processes to check whether a
software system meets the specifications and that it fulfills its intended purpose or not.
Verification and validation is also known as V & V. It may also be referred to as software
quality control. It is normally the responsibility of software testers as part of the Software
Development Life Cycle.

VERIFICATION: (Static Testing)

Verification is the process, to ensure that whether we are building the product right i.e., to
verify the requirements which we have and to verify whether we are developing the product
accordingly or not.

Activities involved here are Inspections, Reviews, Walkthroughs

VALIDATION: (Dynamic Testing)

Validation is the process, whether we are building the right product i.e., to validate the
product which we have developed is right or not.

Software Testing - Validation Testing

The process of evaluating software during the development process or at the end of the

development process to determine whether it satisfies specified business requirements.

https://www.softwaretestingmaterial.com/sdlc-software-development-life-cycle/
https://www.softwaretestingmaterial.com/sdlc-software-development-life-cycle/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 3/27

Validation Testing ensures that the product actually meets the client's needs. It can also be

defined as to demonstrate that the product fulfills its intended use when deployed on

appropriate environment.

It answers to the question, Are we building the right product?

Validation Testing - Workflow:

Validation testing can be best demonstrated using V-Model. The Software/product under

test is evaluated during this type of testing.

Activities:

 Unit Testing

 Integration Testing

 System Testing

 User Acceptance Testing

What is Verification Testing ?

Verification is the process of evaluating work-products of a development phase to

determine whether they meet the specified requirements.

verification ensures that the product is built according to the requirements and design

specifications. It also answers to the question, Are we building the product right?

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 4/27

Verification Testing - Workflow:

verification testing can be best demonstrated using V-Model. The artefacts such as test

Plans, requirement specification, design, code and test cases are evaluated.

Activities:

 Reviews

 Walkthroughs

 Inspection

What is Unit Testing?

Unit testing, a testing technique using which individual modules are tested to determine if

there are any issues by the developer himself. It is concerned with functional correctness of

the standalone modules.

The main aim is to isolate each unit of the system to identify, analyze and fix the defects.

Unit Testing - Advantages:

 Reduces Defects in the Newly developed features or reduces bugs when changing

the existing functionality.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 5/27

 Reduces Cost of Testing as defects are captured in very early phase.

 Improves design and allows better refactoring of code.

 Unit Tests, when integrated with build gives the quality of the build as well.

Unit Testing LifeCyle:

Unit Testing Techniques:

 Black Box Testing - Using which the user interface, input and output are tested.

 White Box Testing - used to test each one of those functions behaviour is tested.

 Gray Box Testing - Used to execute tests, risks and assessment methods.

What is Integration Testing?

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 6/27

Upon completion of unit testing, the units or modules are to be integrated which gives

raise to integration testing. The purpose of integration testing is to verify the functional,

performance, and reliability between the modules that are integrated.

Integration Strategies:

 Big-Bang Integration

 Top Down Integration

 Bottom Up Integration

 Hybrid Integration

Big Bang Approach:

Here all component are integrated together at once and then tested.

Advantages:

 Convenient for small systems.

Incremental Approach

In this approach, testing is done by joining two or more modules that are logically related.
Then the other related modules are added and tested for the proper functioning. The
process continues until all of the modules are joined and tested successfully.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 7/27

Incremental Approach, in turn, is carried out by two different Methods:

 Bottom Up
 Top Down

Bottom-up Integration

In the bottom-up strategy, each module at lower levels is tested with higher modules until
all modules are tested. It takes help of Drivers for testing

Diagrammatic Representation:

Advantages:

 Fault localization is easier.
 No time is wasted waiting for all modules to be developed unlike Big-bang approach

Disadvantages:

 Critical modules (at the top level of software architecture) which control the flow of
application are tested last and may be prone to defects.

 An early prototype is not possible

Top-down Integration:

In Top to down approach, testing takes place from top to down following the control flow of
the software system.

Takes help of stubs for testing.

https://www.guru99.com/images/bottom-up-integration-testing.png

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 8/27

Diagrammatic Representation:

Advantages:

 Fault Localization is easier.
 Possibility to obtain an early prototype.
 Critical Modules are tested on priority; major design flaws could be found and fixed

first.

Disadvantages:

 Needs many Stubs.
 Modules at a lower level are tested inadequately.

Hybrid/ Sandwich Integration

In the sandwich/hybrid strategy is a combination of Top Down and Bottom up approaches.
Here, top modules are tested with lower modules at the same time lower modules are
integrated with top modules and tested. This strategy makes use of stubs as well as drivers.

https://www.guru99.com/images/top-down-integration-testing.png
https://www.guru99.com/images/1/Hybrid-Integration.png

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 9/27

How to do Integration Testing?

The Integration test procedure irrespective of the Software testing strategies (discussed
above):

1. Prepare the Integration Tests Plan
2. Design the Test Scenarios, Cases, and Scripts.
3. Executing the test Cases followed by reporting the defects.
4. Tracking & re-testing the defects.
5. Steps 3 and 4 are repeated until the completion of Integration is successful.

Strategic Approach to Software Testing

What is Test Strategy?

Test Strategy is also known as test approach defines how testing would be carried out. Test

approach has two techniques:

 Proactive - An approach in which the test design process is initiated as early as

possible in order to find and fix the defects before the build is created.

 Reactive - An approach in which the testing is not started until after design and

coding are completed.

A strategy of software testing is shown in the context of spiral.

Following figure shows the testing strategy:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 10/27

Unit testing

Unit testing starts at the centre and each unit is implemented in source code.

Integration testing

An integration testing focuses on the construction and design of the software.

Validation testing

Check all the requirements like functional, behavioral and performance requirement are

validate against the construction software.

System testing

System testing confirms all system elements and performance are tested entirely.

Testing strategy for procedural point of view

As per the procedural point of view the testing includes following steps.

1) Unit testing

2) Integration testing

3) High-order tests

4) Validation testing

These steps are shown in following figure:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 11/27

Testing Approaches:

1. White Box Testing
2. Black Box Testing
3. Grey Box Testing

BLACK BOX TESTING

BLACK BOX TESTING, also known as Behavioral Testing, is a software testing method in
which the internal structure/design/implementation of the item being tested is not known
to the tester. These tests can be functional or non-functional, though usually functional.

This method is named so because the software program, in the eyes of the tester, is like a
black box; inside which one cannot see. This method attempts to find errors in the following
categories:

 Incorrect or missing functions
 Interface errors
 Errors in data structures or external database access
 Behavior or performance errors
 Initialization and termination errors

Definition by ISTQB

 black box testing: Testing, either functional or non-functional, without reference to
the internal structure of the component or system.

 black box test design technique: Procedure to derive and/or select test cases based
on an analysis of the specification, either functional or non-functional, of a
component or system without reference to its internal structure.

Example

http://softwaretestingfundamentals.com/software-testing-methods/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 12/27

A tester, without knowledge of the internal structures of a website, tests the web pages by
using a browser; providing inputs (clicks, keystrokes) and verifying the outputs against the
expected outcome.

Levels Applicable To

Black Box Testing method is applicable to the following levels of software testing:

 Integration Testing
 System Testing
 Acceptance Testing

The higher the level, and hence the bigger and more complex the box, the more black-box
testing method comes into use.

Techniques

Following are some techniques that can be used for designing black box tests.

 Equivalence Partitioning: It is a software test design technique that involves dividing
input values into valid and invalid partitions and selecting representative values from
each partition as test data.

 Boundary Value Analysis: It is a software test design technique that involves the
determination of boundaries for input values and selecting values that are at the
boundaries and just inside/ outside of the boundaries as test data.

 Cause-Effect Graphing: It is a software test design technique that involves identifying
the cases (input conditions) and effects (output conditions), producing a Cause-Effect
Graph, and generating test cases accordingly.

Advantages

 Tests are done from a user’s point of view and will help in exposing discrepancies in
the specifications.

 Tester need not know programming languages or how the software has been
implemented.

 Tests can be conducted by a body independent from the developers, allowing for an
objective perspective and the avoidance of developer-bias.

 Test cases can be designed as soon as the specifications are complete.

Disadvantages

http://softwaretestingfundamentals.com/integration-testing/
http://softwaretestingfundamentals.com/system-testing/
http://softwaretestingfundamentals.com/acceptance-testing/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 13/27

 Only a small number of possible inputs can be tested and many program paths will
be left untested.

 Without clear specifications, which is the situation in many projects, test cases will
be difficult to design.

 Tests can be redundant if the software designer/developer has already run a test
case.

 Ever wondered why a soothsayer closes the eyes when foretelling events? So is
almost the case in Black Box Testing.

BLACK BOX TESTING:

It is also called as Behavioral/Specification-Based/Input-Output Testing

Black Box Testing is a software testing method in which testers evaluate the functionality of
the software under test without looking at the internal code structure. This can be applied
to every level of software testing such as Unit, Integration, System and Acceptance Testing.

Testers create test scenarios/cases based on software requirements and specifications. So it
is AKA Specification Based Testing.

Tester performs testing only on the functional part of an application to make sure the
behavior of the software is as expected. So it is AKA Behavioral Based Testing.

The tester passes input data to make sure whether the actual output matches the expected
output. So it is AKA Input-Output Testing.

Black Box Testing Techniques:

1. Equivalence Partitioning
2. Boundary Value Analysis
3. Decision Table
4. State Transition

Equivalence Partitioning:

Equivalence Partitioning is also known as Equivalence Class Partitioning. In equivalence
partitioning, inputs to the software or system are divided into groups that are expected to
exhibit similar behavior, so they are likely to be proposed in the same way. Hence selecting

https://www.softwaretestingmaterial.com/software-testing/
https://www.softwaretestingmaterial.com/levels-of-testing/
https://www.softwaretestingmaterial.com/test-case-template-with-explanation/
https://www.softwaretestingmaterial.com/equivalence-partitioning-testing-technique/
https://www.softwaretestingmaterial.com/boundary-value-analysis-testing-technique/
https://www.softwaretestingmaterial.com/decision-table-test-design-technique/
https://www.softwaretestingmaterial.com/state-transition-test-design-technique/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 14/27

one input from each group to design the test cases. Click here to see detailed post
on equivalence partitioning.

Equivalence partitioning is applicable at all levels of testing.

Example on Equivalence Partitioning Test Case Design Technique:

Example 1:

Assume, we have to test a field which accepts Age 18 – 56

Valid Input: 18 – 56

Invalid Input: less than or equal to 17 (<=17), greater than or equal to 57 (>=57)

Valid Class: 18 – 56 = Pick any one input test data from 18 – 56

Invalid Class 1: <=17 = Pick any one input test data less than or equal to 17

Invalid Class 2: >=57 = Pick any one input test data greater than or equal to 57

We have one valid and two invalid conditions here.

Example 2:

Assume, we have to test a filed which accepts a Mobile Number of ten digits.

https://www.softwaretestingmaterial.com/equivalence-partitioning-testing-technique/
https://i2.wp.com/www.softwaretestingmaterial.com/wp-content/uploads/2016/03/Equivalence-Partitioning-1.png?ssl=1

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 15/27

Valid input: 10 digits

Invalid Input: 9 digits, 11 digits

Boundary Value Analysis:

 Boundary value analysis (BVA) is based on testing the boundary values of valid and invalid
partitions. The Behavior at the edge of each equivalence partition is more likely to be
incorrect than the behavior within the partition, so boundaries are an area where testing is
likely to yield defects. Click here to see detailed post on boundary value analysis.

Example on Boundary Value Analysis Test Case Design Technique:

Assume, we have to test a field which accepts Age 18 – 56

Minimum boundary value is 18

Maximum boundary value is 56

Valid Inputs: 18,19,55,56

https://i2.wp.com/www.softwaretestingmaterial.com/wp-content/uploads/2016/03/Equivalence-Partitioning-2.png?ssl=1
https://www.softwaretestingmaterial.com/boundary-value-analysis-testing-technique/
https://i2.wp.com/www.softwaretestingmaterial.com/wp-content/uploads/2016/03/Boundary-Value-Analysis-1.png?ssl=1

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 16/27

Invalid Inputs: 17 and 57

Test case 1: Enter the value 17 (18-1) = Invalid

Test case 2: Enter the value 18 = Valid

Test case 3: Enter the value 19 (18+1) = Valid

Test case 4: Enter the value 55 (56-1) = Valid

Test case 5: Enter the value 56 = Valid

Test case 6: Enter the value 57 (56+1) =Invalid

Decision Table:

Decision Table is aka Cause-Effect Table. This test technique is appropriate for
functionalities which has logical relationships between inputs (if-else logic). In Decision table
technique, we deal with combinations of inputs. To identify the test cases with decision
table, we consider conditions and actions. We take conditions as inputs and actions as
outputs. Click here to see detailed post on decision table.

Example 1: How to make Decision Base Table for Login Screen

Let's create a decision table for a login screen.

https://www.softwaretestingmaterial.com/decision-table-test-design-technique/
https://www.guru99.com/images/1/120817_0759_DecisionTab1.png

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 17/27

The condition is simple if the user provides correct username and password the user will be
redirected to the homepage. If any of the input is wrong, an error message will be displayed.

Conditions Rule 1 Rule 2 Rule 3 Rule 4

Username (T/F) F T F T

Password (T/F) F F T T

Output (E/H) E E E H

Legend:

 T – Correct username/password
 F – Wrong username/password
 E – Error message is displayed
 H – Home screen is displayed

Interpretation:

 Case 1 – Username and password both were wrong. The user is shown an error
message.

 Case 2 – Username was correct, but the password was wrong. The user is shown an
error message.

 Case 3 – Username was wrong, but the password was correct. The user is shown an
error message.

 Case 4 – Username and password both were correct, and the user navigated to
homepage

State Transition:

 Using state transition testing, we pick test cases from an application where we need to test
different system transitions. We can apply this when an application gives a different output
for the same input, depending on what has happened in the earlier state. Click here to see
detailed post on state transition technique.

Types of Black Box Testing:

Functionality Testing: In simple words, what the system actually does is functional testing

https://www.softwaretestingmaterial.com/state-transition-test-design-technique/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 18/27

Non-functionality Testing: In simple words, how well the system performs is non-
functionality testing

WHITE BOX TESTING

WHITE BOX TESTING (also known as Clear Box Testing, Open Box Testing, Glass Box Testing,
Transparent Box Testing, Code-Based Testing or Structural Testing) is a software testing
method in which the internal structure/design/implementation of the item being tested is
known to the tester. The tester chooses inputs to exercise paths through the code and
determines the appropriate outputs. Programming know-how and the implementation
knowledge is essential. White box testing is testing beyond the user interface and into the
nitty-gritty of a system.

This method is named so because the software program, in the eyes of the tester, is like a
white/transparent box; inside which one clearly sees.

Definition by ISTQB

 white-box testing: Testing based on an analysis of the internal structure of the
component or system.

 white-box test design technique: Procedure to derive and/or select test cases based
on an analysis of the internal structure of a component or system.

Example

A tester, usually a developer as well, studies the implementation code of a certain field on a
webpage, determines all legal (valid and invalid) AND illegal inputs and verifies the outputs
against the expected outcomes, which is also determined by studying the implementation
code.

White Box Testing is like the work of a mechanic who examines the engine to see why the
car is not moving.

http://softwaretestingfundamentals.com/software-testing-methods/
http://softwaretestingfundamentals.com/software-testing-methods/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 19/27

Levels Applicable To

White Box Testing method is applicable to the following levels of software testing:

 Unit Testing: For testing paths within a unit.
 Integration Testing: For testing paths between units.
 System Testing: For testing paths between subsystems.

However, it is mainly applied to Unit Testing.

Advantages

 Testing can be commenced at an earlier stage. One need not wait for the GUI to be
available.

 Testing is more thorough, with the possibility of covering most paths.

Disadvantages

 Since tests can be very complex, highly skilled resources are required, with a
thorough knowledge of programming and implementation.

 Test script maintenance can be a burden if the implementation changes too
frequently.

 Since this method of testing is closely tied to the application being tested, tools to
cater to every kind of implementation/platform may not be readily available.

WHITE BOX TESTING:

It is also called as Glass Box, Clear Box, Structural Testing.

White Box Testing is based on applications internal code structure. In white-box testing an
internal perspective of the system, as well as programming skills, are used to design test
cases. This testing usually done at the unit level.

White Box Testing Techniques:

1. Statement Coverage
2. Branch Coverage
3. Path Coverage

http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/integration-testing/
http://softwaretestingfundamentals.com/system-testing/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 20/27

Coverage

White Box Testing is coverage of the specification in the code:

1. Code coverage
2. Segment coverage: Ensure that each code statement is executed once.
3. Branch Coverage or Node Testing: Coverage of each code branch in from all possible was.
4. Compound Condition Coverage: For multiple conditions test each condition with multiple
paths and combination of the different path to reach that condition.
5. Basis Path Testing: Each independent path in the code is taken for testing.
6. Data Flow Testing (DFT): In this approach you track the specific variables through each
possible calculation, thus defining the set of intermediate paths through the code.DFT tends
to reflect dependencies but it is mainly through sequences of data manipulation. In short,
each data variable is tracked and its use is verified. This approach tends to uncover bugs like
variables used but not initialize, or declared but not used, and so on.
7. Path Testing: Path testing is where all possible paths through the code are defined and
covered. It’s a time-consuming task.
8. Loop Testing: These strategies relate to testing single loops, concatenated loops, and
nested loops. Independent and dependent code loops and values are tested by this
approach.

White Box Testing Example

Consider the below simple pseudocode:

INPUT A & B

C = A + B

IF C>100

PRINT “ITS DONE”

Statement Coverage

For Statement Coverage – we would only need one test case to check all the lines of the
code.

That means:
If I consider TestCase_01 to be (A=40 and B=70), then all the lines of code will be executed.

Now the question arises:

1. Is that sufficient?

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 21/27

2. What if I consider my Test case as A=33 and B=45?
Because Statement coverage will only cover the true side, for the pseudo code, only one
test case would NOT be sufficient to test it. As a tester, we have to consider the negative
cases as well.

Branch Coverage

Hence for maximum coverage, we need to consider “Branch Coverage”, which will evaluate
the “FALSE” conditions.
In the real world, you may add appropriate statements when the condition fails.

So now the pseudocode becomes:
INPUT A & B

C = A + B

IF C>100

PRINT “ITS DONE”

ELSE

PRINT “ITS PENDING”

Since Statement coverage is not sufficient to test the entire pseudo code, we would require
Branch coverage to ensure maximum coverage.
So for Branch coverage, we would require two test cases to complete the testing of this
pseudo code.

TestCase_01: A=33, B=45
TestCase_02: A=25, B=30
With this, we can see that each and every line of the code is executed at least once.

Here are the Conclusions that are derived so far:
 Branch Coverage ensures more coverage than Statement coverage.
 Branch coverage is more powerful than Statement coverage.
 100% Branch coverage itself means 100% statement coverage.
 But 100 % statement coverage does not guarantee 100% branch coverage.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 22/27

Path Coverage

Now let’s move on to Path Coverage:
As said earlier, Path coverage is used to test the complex code snippets, which basically
involve loop statements or combination of loops and decision statements.

Consider this pseudocode:
INPUT A & B

C = A + B

IF C>100

PRINT “ITS DONE”

END IF

IF A>50

PRINT “ITS PENDING”

END IF

Now to ensure maximum coverage, we would require 4 test cases.

How? Simply – there are 2 decision statements, so for each decision statement, we would
need two branches to test. One for true and the other for the false condition. So for 2
decision statements, we would require 2 test cases to test the true side and 2 test cases to
test the false side, which makes a total of 4 test cases.

To simplify these let’s consider below flowchart of the pseudo code we have:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 23/27

In order to have the full coverage, we would need following test cases:
TestCase_01: A=50, B=60
TestCase_02: A=55, B=40
TestCase_03: A=40, B=65
TestCase_04: A=30, B=30
So the path covered will be:

https://cdn.softwaretestinghelp.com/wp-content/qa/uploads/2015/02/Path-coverage-1.jpg

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 24/27

Red Line – TestCase_01 = (A=50, B=60)

Blue Line = TestCase_02 = (A=55, B=40)

Orange Line = TestCase_03 = (A=40, B=65)

Green Line = TestCase_04 = (A=30, B=30)

GRAY BOX TESTING

GRAY BOX TESTING is a software testing method which is a combination of Black Box
Testing method and White Box Testing method. In Black Box Testing, the internal structure
of the item being tested is unknown to the tester and in White Box Testing the internal
structure is known. In Gray Box Testing, the internal structure is partially known. This
involves having access to internal data structures and algorithms for purposes of designing
the test cases, but testing at the user, or black-box level.

Gray Box Testing is named so because the software program, in the eyes of the tester is like
a gray/semi-transparent box; inside which one can partially see.

Example

https://cdn.softwaretestinghelp.com/wp-content/qa/uploads/2015/02/Path-coverage-2.jpg
http://softwaretestingfundamentals.com/software-testing-methods/
http://softwaretestingfundamentals.com/black-box-testing/
http://softwaretestingfundamentals.com/black-box-testing/
http://softwaretestingfundamentals.com/white-box-testing/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 25/27

An example of Gray Box Testing would be when the codes for two units/modules are
studied (White Box Testing method) for designing test cases and actual tests are conducted
using the exposed interfaces (Black Box Testing method).

Levels Applicable To

Though Gray Box Testing method may be used in other levels of testing, it is primarily
used in Integration Testing.

Spelling

Note that Gray is also spelled as Grey. Hence Grey Box Testing and Gray Box Testing
mean the same.

Basic Path Testing

What is Path Testing?

Path testing is a structural testing method that involves using the source code of a program
in order to find every possible executable path. It helps to determine all faults lying within a
piece of code. This method is designed to execute all or selected path through a computer
program.

Any software program includes, multiple entry and exit points. Testing each of these points
is a challenging as well as time-consuming. In order to reduce the redundant tests and to
achieve maximum test coverage, basis path testing is used.

What is Basis Path Testing?

The basis path testing is same, but it is based on a White Box Testing method, that defines
test cases based on the flows or logical path that can be taken through the program. In
software engineering, Basis path testing involves execution of all possible blocks in a
program and achieves maximum path coverage with the least number of test cases. It is a
hybrid of branch testing and path testing methods.

The objective behind basis path in software testing is that it defines the number of
independent paths, thus the number of test cases needed can be defined explicitly
(maximizes the coverage of each test case).

Here we will take a simple example, to get a better idea what is basis path testing include

http://softwaretestingfundamentals.com/integration-testing/
https://www.guru99.com/white-box-testing.html

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 26/27

In the above example, we can see there are few conditional statements that is executed
depending on what condition it suffice. Here there are 3 paths or condition that need to be
tested to get the output,

 Path 1: 1,2,3,5,6, 7
 Path 2: 1,2,4,5,6, 7
 Path 3: 1, 6, 7

Steps for Basis Path testing

The basic steps involved in basis path testing include

 Draw a control graph (to determine different program paths)
 Calculate Cyclomatic complexity (metrics to determine the number of independent

paths)
 Find a basis set of paths
 Generate test cases to exercise each path

Advantages of Basic Path Testing

 It helps to reduce the redundant tests
 It focuses attention on program logic
 It helps facilitates analytical versus arbitrary case design
 Test cases which exercise basis set will execute every statement in a program at least

once
 Basis path testing helps to determine all faults lying within a piece of code.

https://www.guru99.com/cyclomatic-complexity.html

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II B.Sc CS A & B BATCH : 2018 - 2021

COURSE NAME : SOFTWARE ENGINEERING COURSE CODE : 18CSU402

UNIT V

Prepared by : : D.Manjula & Dr.S.Saravana Kumar,Department of CS,CA & IT ,KAHE 27/27

PART A(Online)

PART B (2 Marks)

1. Define abstraction.
2. What do you mean by an error?
3. Differentiate between refinement and refactoring
4. Compare black box and white box testing
5. Write the difference between transform flow and transaction flow
6. List the different types of loops in testing
7. What is transform mapping?
8. What is validation testing?
9. Define transaction mapping.
10. What is the use of system testing?

PART C (6 Marks)

1. Explain Graph based testing methods in Black Box testing.
2. Demonstrate Flow graph notation and Independent program path in Basis path
testing.
3. Demonstrate in detail about Validation testing
4. Explain in detail about Equivalence Partitioning
5. Discuss about Boundary value analysis.
6. Write in detail about Software Testing Fundamentals.
7.Illustrate in detail about System testing.
8. Write short notes on condition testing.
9. Illustrate the use of dataflow testing in software engineering process.
10. Discuss in detail about orthogonal array testing.
11. Illustrate loop testing and its types.

	1.pdf (p.1-3)
	2.pdf (p.4-8)
	3.pdf (p.9-14)
	4.pdf (p.15-37)
	5.pdf (p.38-44)
	6.pdf (p.45-68)
	7.pdf (p.69-76)
	8.pdf (p.77-95)
	9.pdf (p.96-102)
	10.pdf (p.103-122)
	11.pdf (p.123-130)
	12.pdf (p.131-157)

