
Semester – VI

19CSU601B UNIX / LINUX PROGRAMMING 4H – 4C

Instruction Hours / week: L: 4 T: 0 P: 0 Marks: Internal: 40 External: 60 Total: 100

 End Semester Exam: 3 Hours

Course Objective

 To understand fundamental operating system abstractions such as processes, threads,

files, semaphores, IPC abstractions, shared memory regions, etc.

 To understand how the operating system abstractions can be used in the development

of application programs, or to build higher level abstractions

 To Understand how the operating system abstractions can be implemented

 To Understand the principles of concurrency and synchronization, and apply them to

write correct concurrent programs/software

 To understand basic resource management techniques (scheduling or time

management, space management) and principles and how they can be implemented.

These also include issues of performance and fairness objectives, avoiding deadlocks,

as well as security and protection.

Course Outcomes(COs)

1. This course teaches the student the concepts and principles that underlie modern

operating systems, and a practice component to relate theoretical principles with

operating system implementation.

2. Learn about processes and processor management, concurrency and synchronization,

memory management schemes, file system and secondary storage management,

security and protection, etc.

Unit I - INTRODUCTION

What is Linux/Unix Operating systems, Difference between linux/unix and other operating

systems , Features and Architecture, Various Distributions available in the market,

Installation, Booting and shutdown process

Unit II - SYSTEM PROCESSES (AN OVERVIEW)

External and internal commands, Creation of partitions in OS, Processes and its creation

phases – Fork, Exec, wait

Unit III- USER MANAGEMENT AND THE FILE SYSTEM

Types of Users, Creating users, Granting rights User management commands, File quota and

various file systems available, File System Management and Layout, File permissions, Login

process, Managing Disk Quotas, Links (hard links, symbolic links)

Unit IV - SHELL INTRODUCTION AND SHELL SCRIPTING

What is shell and various type of shell, various editors present in Linux Different modes of

operation in vi editor, What is shell script, Writing and executing the shell script, Shell

variable (user defined and system variables)

Unit V- SYSTEM CALLS, USING SYSTEM CALLS

Pipes and Filters, Decision making in Shell Scripts (If else, switch), Loops in shell Functions,

Utility programs (cut, paste, join, tr, uniq utilities), Pattern matching utility (grep)

SUGGESTED READINGS

1. Sumitabha, Das.(2006). Unix Concepts And Applications. New Delhi: Tata McGraw-

Hill Education.

2. Michael Jang. (2011). RHCSA/ RHCE Red Hat Linux Certification: Exams (Ex200 &

Ex300). Certification Press.

3. Nemeth Synder., & Hein.(2010). Linux Administration Handbook (2nd ed.). Pearson

Education.

4. Richard Stevens. W. Bill Fenner., & Andrew, M. Rudoff. (2014). Unix Network

Programming. The sockets Networking API.Vol. 1. (3rd ed.).

WEBSITE

1. www.sethi.org/tutorials/references_unix.html

2. www.penguintutor.com/linux/basic-shell-programming-reference

3. https://swcarpentry.github.io/shell-novice/reference/

http://www.sethi.org/tutorials/references_unix.html
http://www.sethi.org/tutorials/references_unix.html
http://www.penguintutor.com/linux/basic-shell-programming-reference
http://www.penguintutor.com/linux/basic-shell-programming-reference
https://swcarpentry.github.io/shell-novice/reference/
https://swcarpentry.github.io/shell-novice/reference/

KarpagamAcademy of Higher Education

(Established Under Section 3 of UGC Act 1956)

Eachanari Post, Coimbatore – 641 021. INDIA

Phone : 0422-2611146, 2611082 Fax No : 0422 -2611043

17CSU603B UNIX/LINUX PROGRAMMING

LECTURE PLAN

S.No Lecturer

Duration(Hrs)

Topics to be Covered Support Materials

UNIT I

1 1 What is Linux/Unix Operating Systems R1:12-15,W1

2 1 Difference between linux/unix and other
operating systems

R1:16-20

3 1 Features and Architecture R2:15-22

4 1 Various Distributions available in the

market

R2:23-27

 Installation, Booting and shutdown process R1:25-30

5 1 Recapitulation and discussion of Important
Questions

Total No. of Hours planned for Unit-I : 5 Hours

S.No Lecturer

Duration(Hrs)

Topics to be Covered Support Materials

UNIT II

1 1 System processes (an overview) R3:53-58

2 1 External and internal commands R3:65-69

3 1 Creation of partitions in OS R3:70-77,W2

4 1 Processes and its creation phases, Fork, Exec,

wait

R3:78-86,W3

5 1 Recapitulation and discussion of Important

Questions

Total No. of Hours planned for Unit II : 5 Hours

S.No Lecturer

Duration(Hrs)

Topics to be Covered Support Materials

UNIT III

1 1 Types of Users, Creating users R4:63-71

2 1 Granting rights

User management commands

R4:72-77

3 1 File quota and various file systems available R4:78-87

4 1 File System Management and Layout, File

permissions

R4:88-96,J1

5 1 Login process, Managing Disk Quotas, Links

(hard links, symbolic links)

R4:103-112

6 1 Recapitulation and discussion of Important

Questions

Total No. of Hours planned for Unit III : 6 Hours

LECTURE PLAN

S.No Lecturer

Duration(Hrs)

Topics to be Covered Support Materials

UNIT IV

1 1 Shell introduction and Shell Scripting R4:129-138

2 1 What is shell and various type of shell R4:139-143, W4

3 1 Various editors present in Linux Different

modes of operation in vi editor

R4:143-148

4 1 What is shell script, Writing and executing the

shell script

R4:149-157

5 1 Shell variable (user defined and system

variables)

R4:158-166

6 1 Recapitulation and Discussion of important

Questions

Total No. of Hours planned for Unit IV : 6 Hours

LECTURE PLAN

S.No Lecturer
Duration(Hrs)

Topics to be Covered Support Materials

UNIT V

1 1 System calls, Using system calls R4:167-173

2 1 Pipes and Filters, Decision making in

Shell Scripts (If else, switch),

W5,R4:174-177

3 1 Loops in shell, Functions R4:178-186

4 1 Utility programs (cut, paste, join, tr, uniq

utilities), Pattern matching utility (grep)

R4:187-195

5 1 Recapitulation and Discussion of important

Questions

6 1 Discussion of Previous ESE papers

7 1 Discussion of Previous ESE papers

8 1 Discussion of Previous ESE papers

 Total No. of Hours planned for Unit V : 8

Hours

 TOTAL

PLANNED

HOURS : 30

REFERENCE BOOKS:

R1: Michael Jang, (2011). RHCSA/ RHCE Red Hat Linux Certification: Exams (Ex200 & Ex300)

,Certification Press.

R2:Nemeth Synder & Hein,(2010). Linux Administration Handbook, (2nd ed.) Pearson Education.

R3: Sumitabha, Das, (2006). Unix Concepts And Applications, Tata McGraw-Hill Education.

R4: Richard Stevens,W., Bill Fenner, Andrew M. Rudoff, (2014). Unix Network Programming, The

sockets Networking, Vol. 1, 3rd ed. API.

WEBSITES

W1:http://en.wikipedia.org/wiki/Linux

W2:http://en.wikibooks.org/wiki/partitions_unix

W3:www.tutorialspoint.com/fork

W4: www.guru99.com/introduction_to_shell_scripting.html

W5: www.tutorialspoint.com/unix/unix_decision_making.htm

JOURNALS:

J1: ”Role of File System in Operating System”, Int. Journal of Computer Science and innovation,

Vol 3, 2016.

http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Linux
http://en.wikibooks.org/wiki/partitions_unix
http://en.wikibooks.org/wiki/partitions_unix
http://www.tutorialspoint.com/fork
http://www.guru99.com/introduction_to_shell_scripting.html
http://www.tutorialspoint.com/unix/unix_decision_making.htm

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

UNIT-I

SYLLABUS

 What is Linux/Unix Operating systems, Difference between linux/unix and other operating

systems , Features and Architecture, Various Distributions available in the market,

Installation, Booting and shutdown process.

Unix Operating Systems:

The UNIX OS was born in the late 1960s. AT&T Bell Labs released an operating system

called Unix written in C, which allows quicker modification, acceptance, and portability. The

Unix OS works on CLI (Command Line Interface), but recently, there have been

developments for GUI on Unix systems. Unix is an OS which is popular in companies,

universities big enterprises, etc.

What is LINUX?

Linux is an operating system built by Linus Torvalds at the University of Helsinki in 1991.

The name "Linux" comes from the Linux kernel. It is the software on a computer which

enables applications and the users to access the devices on the computer to perform some

specific function.

The Linux OS relays instructions from an application from the computer's processor and

sends the results back to the application via the Linux OS. It can be installed on a different

type of computers mobile phones, tablets video game consoles, etc.

The development of Linux is one of the most prominent examples of free and open source

software collaboration. Today many companies and similar numbers of individuals have

released their own version of OS based on the Linux Kernel.

Features of Unix OS

Multi-user, multitasking operating system

It can be used as the master control program in workstations and servers.

Hundreds of commercial applications are available

In its heydays, UNIX was rapidly adopted and became the standard OS in universities.

Features of Linux Operating System

Support multitasking

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

Programs consist of one or more processes, and each process have one or more threads

It can easily co-exists along with other Operating systems.

It can run multiple user programs

Individual accounts are protected because of appropriate authorization

Linux is a replica of UNIX but does not use its code.

Difference between Unix and Linux

Basis of

Difference
Linux Unix

Cost

Linux is freely distributed, downloaded through

magazines, Books, website, etc. There are paid

versions also available for Linux.

Different flavors of Unix have

different pricing depending upon

the type of vendor.

Development

Linux is Open Source, and thousands of

programmer collaborate online and contribute to

its development.

Unix systems have different

versions. These versions are

primarily developed by AT&T as

well as other commercial vendors.

User
Everyone. From home users to developers and

computer enthusiasts alike.

The UNIX can be used in internet

servers, workstations, and PCs.

Text made

interface

BASH is the Linux default shell. It offers support

for multiple command interpreters.

Originally made to work in Bourne

Shell. However, it is now

compatible with many others

software.

GUI

Linux provides two GUIs,viz., KDE and Gnome.

Though there are many alternatives such as Mate,

LXDE, Xfce, etc.

Common Desktop Environment and

also has Gnome.

Viruses
Linux has had about 60-100 viruses listed to date

which are currently not spreading.

There are between 80 to 120 viruses

reported till date in Unix.

Threat

detection

Threat detection and solution is very fast because

Linux is mainly community driven. So, if any

Linux user posts any kind of threat, a team of

qualified developers starts working to resolve this

threat.

Unix users require longer wait time,

to get the proper bug fixing patch.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

Basis of

Difference
Linux Unix

Architectures

Initially developed for Intel's x86 hardware

processors. It is available for over twenty different

types of CPU which also includes an ARM.

It is available on PA-RISC and

Itanium machines.

Usage
Linux OS can be installed on various types of

devices like mobile, tablet computers.

The UNIX operating system is used

for internet servers, workstations &

PCs.

Best feature Kernel update without reboot

Feta ZFS - next generation

filesystem DTrace - dynamic

Kernel Tracing

Versions
Different Versions of Linux are Redhat, Ubuntu,

OpenSuse, Solaris, etc.

Different Versions of Unix are HP-

UX, AIS, BSD, etc.

Supported file

type

The Filesystems supported by file type like xfs,

nfs, cramfsm ext 1 to 4, ufs, devpts, NTFS.

The Filesystems supported by file

types are zfs, hfx, GPS, xfs, vxfs.

Portability Linux is portable and is booted from a USB Stick Unix is not portable

Source Code The source is available to the general public
The source code is not available to

anyone.

Differences Between Linux and Other Operating Systems

It’s important to understand the differences between Linux and other operating systems, such

as Windows 95/98, Windows NT, OS/2, and other implementations of Unix for the personal

computer. First of all, it should be made clear that Linux will coexist happily with other

operating systems on the same machine: that is, you can run Windows NT and OS/2 along

with Linux on the same system without problems. There are even ways to interact between

the various operating systems, as you’ll see.

Why Use Linux?

Why use Linux instead of a commercial operating system? We could give you a thousand

reasons. One of the most important, however, is that Linux is an excellent choice for personal

Unix computing. If you’re a Unix software developer, why use Windows at home? Linux will

allow you to develop and test Unix software on your PC, including database and X

applications. If you’re a student, chances are that your university computing system runs

Unix. With Linux, you can run your own Unix system and tailor it to your own needs.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

Installing and running Linux is also an excellent way to learn Unix if you don’t have access

to other Unix machines.

But let’s not lose perspective. Linux isn’t just for personal Unix users. It’s robust and

complete enough to handle large tasks, as well as distributed computing needs. Many

businesses are moving to Linux in lieu of other Unix-based workstation environments. Linux

has an excellent price-performance ratio, is one of the most stable and powerful operating

systems available, and because of its Open Source nature, is completely customizable for

your needs. Universities are finding Linux to be perfect for teaching courses in operating

systems design. Larger commercial software vendors are starting to realize the opportunities

a free operating system can provide.

Linux Versus Windows 95 and 98

It’s not uncommon to run both Linux and Windows 95/98 on the same system. Many Linux

users rely on Windows for applications such as word processing and productivity tools.

While Linux provides its own analogs for these applications (for example, TeX), and

commercial software support for Linux is increasing, there are various reasons why a

particular user would want to run Windows as well as Linux. If your entire dissertation is

written using Microsoft Word, you may not be able to easily convert it to TeX or some other

format (although the Star Office suite for Linux can probably do the trick). There are many

commercial applications for Windows that aren’t available for Linux, and there’s no reason

why you can’t use both.

As you might know, Windows 95 and 98 do not fully utilize the functionality of the x86

processor. On the other hand, Linux runs completely in the processor’s protected mode and

exploits all of the features of the machine, including multiple processors.

We could debate the pros and cons of Windows and Linux for pages on end. However,

suffice it to say that Linux and Windows are completely different entities. Windows is

inexpensive (compared to other commercial operating systems) and has a strong foothold in

the PC computing world. No other operating system for the PC has reached the level of

popularity of Windows, largely because the cost of these other operating systems is

unapproachable for most personal computer users. Very few PC users can imagine spending a

thousand dollars or more on the operating system alone. Linux, however, is free, and you

finally have the chance to decide.

We will allow you to make your own judgments of Linux and Windows based on your

expectations and needs. Linux is not for everybody. But if you have always wanted to run a

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

complete Unix system at home, without the high cost of other Unix implementations for the

PC, Linux may be what you’re looking for.

There are tools available to allow you to interact between Linux and Windows. For example,

it’s easy to access Windows files from Linux. Development is proceeding on the Wine

Windows emulator, which allows you to run many popular applications.

Linux Versus Windows NT

A number of other advanced operating systems are on the rise in the PC world. Specifically,

Microsoft’s Windows NT is becoming very popular for server computing.

Windows NT, like Linux, is a full multitasking operating system, supporting multiprocessor

machines, several CPU architectures, virtual memory, networking, security, and so on.

However, the real difference between Linux and Windows NT is that Linux is a version of

Unix and hence benefits from the contributions of the Unix community at large.

There are many implementations of Unix from many vendors. There is a large push in the

Unix community for standardization in the form of open systems, but no single corporation

controls this design. Hence, any vendor (or, as it turns out, any hacker) may implement these

standards in an implementation of Unix.

Windows NT, on the other hand, is a proprietary system. The interface and design are

controlled by a single corporation, Microsoft, and only that corporation may implement the

design. (Don’t expect to see a free version of Windows NT anytime in the near future.) In one

sense, this kind of organization is beneficial: it sets a strict standard for the programming and

user interface unlike that found even in the open systems community. NT is NT wherever you

go.

It seems likely that in the coming years, Linux and Windows NT will be battling it out for

their share of the server computing market. Windows NT has behind it the full force of the

Microsoft marketing machine, while Linux has a community of thousands of developers

helping to advance the system through the Open Source model. So far, benchmarks of Linux

versus Windows NT have demonstrated that each system has its strengths and weaknesses;

however, Linux wins hands-down in a number of areas, most notably networking

performance. Linux is also much smaller than Windows NT, has a much better price-

performance ratio, and is generally seen as more stable. (While Windows NT is known to

crash quite often, Linux machines run continuously for months.) It might seem amazing that

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

“little” Linux gives Microsoft serious competition, but it’s not surprising when you realize

how effective the Open Source development process really is.

The main concept that unites all the versions of Unix is the following four basics −

Kernel − The kernel is the heart of the operating system. It interacts with the hardware and

most of the tasks like memory management, task scheduling and file management.

Shell − The shell is the utility that processes your requests. When you type in a command at

your terminal, the shell interprets the command and calls the program that you want. The

shell uses standard syntax for all commands. C Shell, Bourne Shell and Korn Shell are the

most famous shells which are available with most of the Unix variants.

Commands and Utilities − There are various commands and utilities which you can make use

of in your day to day activities. cp, mv, cat and grep, etc. are few examples of commands and

utilities. There are over 250 standard commands plus numerous others provided through 3rd

party software. All the commands come along with various options.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

Files and Directories − All the data of Unix is organized into files. All files are then

organized into directories. These directories are further organized into a tree-like structure

called the filesystem.

Utility software usually focuses on how the computer infrastructure (including the computer

hardware, operating system, application software and data storage) operates. Due to this

focus, utilities are often rather technical and targeted at people with an advanced level of

computer knowledge - in contrast to application software, which allows users to do things

like creating text documents, playing video games, listening to music or viewing websites.

vi Editor in UNIX

The default editor that comes with the UNIX operating system is called vi (visual editor).

Using vi editor, we can edit an existing file or create a new file from scratch. we can also use

this editor to just read a text file.

Syntax:

vi filename

ed is a line-oriented text editor. It is used to create, display, modify and otherwise manipulate

text files.

Editing is done in two distinct modes: command and input. When first invoked, ed is in

command mode. In this mode commands are read from the standard input and executed to

manipulate the contents of the editor buffer. A typical command might look like:

,s/old/new/g

which replaces all occurences of the string old with new.

When an input command, such as ‘a’ (append), ‘i’ (insert) or ‘c’ (change), is given, ed enters

input mode. This is the primary means of adding text to a file.

Cut:

The cut command in UNIX is a command for cutting out the sections from each line of files

and writing the result to standard output. It can be used to cut parts of a line by byte position,

character and field. Basically the cut command slices a line and extracts the text.

Various Distributions of Unix/Linux

Unix is not a single operating system. It offers many modern variants also referred to as

flavors, types, distributions, or implementations, which branch from its origins in early 1970s

mainframe computing. Although based on a core set of Unix commands, different

https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Data_%28computing%29
https://en.wikipedia.org/wiki/Application_software
https://www.lifewire.com/operating-systems-2625912
https://www.lifewire.com/linux-unix-shell-commands-2180216

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

distributions have their own unique commands and features and are designed to work with

different types of hardware.

Contemporary Unix implementations differ in whether they're open-source (i.e., free to

download, use, or modify) or closed source (i.e., proprietary binary files not subject to user

modification).

 Minix — a Unix-like open-source project, rarely used by home users.

 Linux — an open-source initiative to bring a Unix-like environment to both the

desktop and server space. Linux is popular with home computer enthusiasts.

 Mac OS X — Mac operating system from Apple Computer Inc. having a Unix core;

the latest version is the Mac OS X Panther

 BSDs (FreeBSD, DragonflyBSD, NetBSD, OpenBSD) — a branch from the earliest

Unix specs, following the design principles of the Berkeley Software Distribution.

 AIX — a series of Unix-based operating environments developed by IBM for its

servers.

 IRIX – the proprietary version of Unix from Silicon Graphics Inc.; the latest release

of which is IRIX 6.5

 Solaris — a proprietary server operating system based on Unix and developed by Sun

Microsystems.

 OpenSolaris — an open-source variant of Solaris.

 HP-UX — a series of Unix-based operating environments developed by HP for its

servers.

 Tru64 UNIX – the Unix operating environment for HP AlphaServer systems; Tru64

UNIX v5.1B-1 is the latest version

 OpenServer — based on FreeBSD and is a closed source operating system. It is now

owned by Xinuos. Previously known as SCO UNIX, it was developed by Santa Cruz

Operation. SCO acquired the rights to the UnixWare operating system, portions of

which became part of OpenServer.

No one knows exactly how many Unix flavors are there, but it is safe to say that if including

all those that are obscure and obsolete, the number of Unix flavors is at least in the hundreds.

Common Consumer Distributions

https://www.lifewire.com/operating-systems-why-unix-2200178

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

Over the years, different Linux flavors have enjoyed more or less popularity, but several

stand out as being among the most commonly deployed on desktop computers. Some of the

most commonly accessed distributions include:

 Mint — a version of Ubuntu with additional software drivers and minor

customizations.

 Debian — a project that bills itself as a "universal operating system" and enjoys

significant market share and a robust base of applications.

 Manjaro — based on the Arch Linux project and supports extensive configurability.

 Ubuntu — a significant player in the Linux market. Ubuntu's goal is to offer an easy-

to-use distribution that's beautifully designed and accessible despite language and

disability barriers.

 Antergos — also based on the Arch Linux project. This distribution offers its own

custom installer program.

 OpenSUSE — a long-running German distribution that's the community version of

the SUSE Linux commercial distribution.

 Fedora — a community project based on Red Hat Linux (an operating system that

was discontinued in 2004).

 Solus — a built-from-scratch distribution from Ireland with a custom desktop

environment called "Budgie" that looks like the old GNOME 2 desktop (GNOME is

the default desktop environment on many major Linux distributions).

 Zorin — a distribution intended to mimic the look-and-feel of Windows to help new

Linux users transition away from Microsoft's operating system.

 Elementary — based on Ubuntu and uses a custom desktop environment called

Parthenon that resembles, in some ways, Mac OS.

http://linuxmint.com/
http://www.debian.org/
https://manjaro.org/
https://ubuntu.com/
https://www.antergos.com/
http://www.opensuse.org/
https://getfedora.org/
https://getsol.us/home/
http://www.zorin-os.com/
https://www.lifewire.com/best-windows-linux-operating-systems-clones-2201177
http://elementary.io/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

Favorite Linux Distribution Voting Results

Linux Distribution Name Description

Arch

This Linux Distro is popular amongst

Developers. It is an independently developed

system. It is designed for users who go for a do-

it-yourself approach.

CentOS

It is one of the most used Linux Distribution for

enterprise and web servers. It is a free enterprise

class Operating system and is based heavily on

Red Hat enterprise Distro.

Debian

Debian is a stable and popular non-commercial

Linux distribution. It is widely used as a desktop

Linux Distro and is user-oriented. It strictly acts

within the Linux protocols.

Fedora

Another Linux kernel based Distro, Fedora is

supported by the Fedora project, an endeavor by

Red Hat. It is popular among desktop users. Its

versions are known for their short life cycle.

Gentoo

It is a source based Distribution which means

that you need to configure the code on your

system before you can install it. It is not for

Linux beginners, but it is sure fun for

experienced users.

https://www.guru99.com/images/ArchLinux.png
https://www.guru99.com/images/centos.png
https://www.guru99.com/images/debian.png
https://www.guru99.com/images/fedora.png
https://www.guru99.com/images/gentoo.png

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

Linux Distribution Name Description

LinuxMint

It is one of the most popular Desktop

Distributions available out there. It launched in

2006 and is now considered to be the fourth

most used Operating system in the computing

world.

OpenSUSE

It is an easy to use and a good alternative to MS

Windows. It can be easily set up and can also

run on small computers with obsolete

configurations.

RedHat

enterprise

Another popular enterprise based Linux

Distribution is Red Hat Enterprise.It has evolved

from Red Hat Linux which was discontinued in

2004. It is a commercial Distro and very popular

among its clientele.

Slackware

Slackware is one of the oldest Linux kernel

based OS's. It is another easy desktop

Distribution. It aims at being a 'Unix like' OS

with minimal changes to its kernel.

Ubuntu

This is the third most popular desktop operating

system after Microsoft Windows and Apple Mac

OS. It is based on the Debian Linux Distribution,

and it is known as its desktop environment.

Installation of Linux:

Linux is the foundation of thousands of open source operating systems designed to replace

Windows and Mac OS. It is free to download and install on any computer. Because it is open

source, there are a variety of different versions, or distributions, available developed by

different groups.

1. Installation of any Linux Distribution:

https://www.guru99.com/images/LinuxMint.png
https://www.guru99.com/images/OpenSuse.png
https://www.guru99.com/images/redhat(2).png
https://www.guru99.com/images/slackware.png
https://www.guru99.com/images/ubuntu_logo.png

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

2. Download the Linux distribution of your choice. If you're new to Linux, consider trying

a lightweight and easy to use distribution, such as Ubuntu or Linux Mint. Linux distributions

(known as "distros") are typically available for free to download in ISO format. You can find

the ISO for the distribution of your choice at the distribution’s website. This format needs to

be burned to a CD or USB stick before you can use it to install Linux. This will create a Live

CD or Live USB.

 A Live CD or Live USB is a disk that you can boot into, and often contains a preview version

of the operating system that can be run directly from the CD or USB stick.

 Install an image burning program, or use your system’s built-in burning tool if you are using

Windows 7, 8, or Mac OS X. Pen Drive Linux and UNetBootin are two popular tools for

burning ISO files to USB sticks.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

3. Boot into the Live CD or Live USB. Most computers are set to boot into the hard drive

first, which means you will need to change some settings to boot from your newly-burned CD

or USB. Start by rebooting the computer.

 Once the computer reboots, press the key used to enter the boot menu. The key for your

system will be displayed on the same screen as the manufacturer’s logo. Typical keys include

F12, F2, or Del.

 For Windows 8 users, hold the Shift key and click restart. This will load the Advanced

Startup Options, where you can boot from CD.

 For Windows 10 users, go to advanced boot in settings and click "Restart Now."

 If your computer doesn't give you direct access to the boot menu from the manufacturer's

splash screen, it's most likely hidden in the BIOS menu. You can access the BIOS menu in

the same way that you would get to the boot menu. At the manufacturer splash screen, the

key should be listed in one of the bottom corners.

 Once you're in the boot menu, select your live CD or USB. Once you’ve changed the settings,

save and exit the BIOS setup or boot menu. Your computer will continue with the boot

process.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

4. Try out the Linux distribution before installing. Most Live CDs and USBs can launch a

"live environment", giving you the ability to test it out before making the switch. You won’t

be able to create files, but you can navigate around the interface and decide if it’s right for

you.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

5. Start the installation process. If you’re trying out the distro, you can launch the

installation from the application on the desktop. If you decided not to try out the distribution,

you can start the installation from the boot menu.

 You will be asked to configure some basic options, such as language, keyboard layout, and

timezone.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

6. Create a username and password. You will need to create login information to install

Linux. A password will be required to log into your account and perform administrative

tasks.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

7. Set up the partition. Linux needs to be installed on a separate partition from any other

operating systems on your computer if you intend dual booting Linux with another OS. A

partition is a portion of the hard drive that is formatted specifically for that operating system.

You can skip this step if you don't plan on dual booting.

 Distros such as Ubuntu will set a recommended partition automatically. You can then adjust

this manually yourself. Most Linux installations require at least 20 GB, so be sure to set aside

enough room for both the Linux operating system and any other programs you may install

and files you may create.

 If the installation process does not give you automatic partitions, make sure that the partition

you create is formatted as Ext4. If the copy of Linux you are installing is the only operating

system on the computer, you will most likely have to manually set your partition size.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

8. Boot into Linux. Once the installation is finished, your computer will reboot. You will see

a new screen when your computer boots up called “GNU GRUB”. This is a boot loader that

handles Linux installations. Pick your new Linux distro from the list. This screen may not

show up if you only have one operating system on your computer. If this screen isn't being

presented to you automatically, then you can get it back by hitting shift right after the

manufacturer splash screen.

 If you install multiple distros on your computer, they will all be listed here.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

9. Check your hardware. Most hardware should work out of the box with your Linux distro,

though you may need to download some additional drivers to get everything working.

 Some hardware requires proprietary drivers to work correctly in Linux. This is most common

with graphics cards. There is typically an open source driver that will work, but to get the

most out of your graphics cards you will need to download the proprietary drivers from the

manufacturer.

 In Ubuntu, you can download proprietary drivers through the System Settings menu. Select

the Additional Drivers option, and then select the graphics driver from the list. Other distros

have specific methods for obtaining extra drivers.

 You can find other drivers from this list as well, such as Wi-Fi drivers.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

10. Start using Linux. Once your installation is complete and you’ve verified that your

hardware is working, you’re ready to start using Linux. Most distros come with several

popular programs installed, and you can download many more from their respective file

repositories.

BOOTING PROCESS IN LINUX

Press the power button on your system, and after few moments you see the Linux login

prompt.

Have you ever wondered what happens behind the scenes from the time you press the power

button until the Linux login prompt appears?

The following are the 6 high level stages of a typical Linux boot process.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

1. BIOS

 BIOS stands for Basic Input/Output System

 Performs some system integrity checks (System integrity checks determine the

trustworthiness of a system as well as whether the data has been changed or damaged.)

 Searches, loads, and executes the boot loader program.

 It looks for boot loader in floppy, cd-rom, or hard drive. You can press a key (typically

F12 of F2, but it depends on your system) during the BIOS startup to change the boot

sequence.

 Once the boot loader program is detected and loaded into the memory, BIOS gives the

control to it.

 So, in simple terms BIOS loads and executes the MBR boot loader.

2. MBR

 MBR stands for Master Boot Record.

 It is located in the 1st sector of the bootable disk. Typically /dev/hda, or /dev/sda

(The first SCSI disk (SCSI ID address-wise) is named /dev/sda The master disk on

IDE primary controller is named /dev/hda . (Short for Small Computer System Interface)

 MBR is less than 512 bytes in size. This has three components 1) primary boot loader

info in 1st 446 bytes 2) partition table info in next 64 bytes (A partition table is a 64-byte

data structure that provides basic information for a computer's operating system about the

division of the hard disk drive (HDD) into primary partitions.)

 3) mbr validation check in last 2 bytes. (master boot record (MBR))

 It contains information about GRUB

 So, in simple terms MBR loads and executes the GRUB boot loader.

3. GRUB

 GRUB stands for Grand Unified Bootloader.

 If you have multiple kernel images installed on your system, you can choose which one

to be executed.

 GRUB displays a splash screen, waits for few seconds, if you don’t enter anything, it

loads the default kernel image as specified in the grub configuration file.

 GRUB has the knowledge of the filesystem (the older Linux loader LILO didn’t

understand filesystem).

 Grub configuration file is /boot/grub/grub.conf (/etc/grub.conf is a link to this). The

following is sample grub.conf of CentOS.

#boot=/dev/sda

default=0

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

timeout=5

splashimage=(hd0,0)/boot/grub/splash.xpm.gz

hiddenmenu

title CentOS (2.6.18-194.el5PAE)

 root (hd0,0)

 kernel /boot/vmlinuz-2.6.18-194.el5PAE ro root=LABEL=/

 initrd /boot/initrd-2.6.18-194.el5PAE.img

 As you notice from the above info, it contains kernel and initrd image. (Initial RAMDisk

image is the image may be a file system image (optionally compressed), which is made

available in a special block device (/dev/ram)

 So, in simple terms GRUB just loads and executes Kernel and initrd images.

4. Kernel

 Mounts the root file system as specified in the “root=” in grub.conf

 Kernel executes the /sbin/init program

 Since init was the 1st program to be executed by Linux Kernel, it has the process id (PID)

of 1. Do a ‘ps -ef | grep init’ and check the pid.

 initrd stands for Initial RAM Disk.

 initrd is used by kernel as temporary root file system until kernel is booted and the real

root file system is mounted. It also contains necessary drivers compiled inside, which

helps it to access the hard drive partitions, and other hardware.

5. Init

 Looks at the /etc/inittab file to decide the Linux run level.

 Following are the available run levels

 0 – halt

 1 – Single user mode

 2 – Multiuser

 3 – Full multiuser mode

 4 – unused

 5 – X11 (while if the system is in a multi-user mode it will have a runlevel 5.)

 6 – reboot

 Init identifies the default initlevel from /etc/inittab and uses that to load all appropriate

program.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

 Execute ‘grep initdefault /etc/inittab’ on your system to identify the default run level

 If you want to get into trouble, you can set the default run level to 0 or 6. Since you know

what 0 and 6 means, probably you might not do that.

 Typically you would set the default run level to either 3 or 5.

6. Runlevel programs

 When the Linux system is booting up, you might see various services getting started. For

example, it might say “starting sendmail …. OK”. Those are the runlevel programs,

executed from the run level directory as defined by your run level.

 Depending on your default init level setting, the system will execute the programs from

one of the following directories.

 Run level 0 – /etc/rc.d/rc0.d/

 Run level 1 – /etc/rc.d/rc1.d/

 Run level 2 – /etc/rc.d/rc2.d/

 Run level 3 – /etc/rc.d/rc3.d/

 Run level 4 – /etc/rc.d/rc4.d/

 Run level 5 – /etc/rc.d/rc5.d/

 Run level 6 – /etc/rc.d/rc6.d/

 Please note that there are also symbolic links available for these directory under /etc

directly. So, /etc/rc0.d is linked to /etc/rc.d/rc0.d.

 Under the /etc/rc.d/rc*.d/ directories, you would see programs that start with S and K.

 Programs starts with S are used during startup. S for startup.

 Programs starts with K are used during shutdown. K for kill.

 There are numbers right next to S and K in the program names. Those are the sequence

number in which the programs should be started or killed.

 For example, S12syslog is to start the syslog deamon, which has the sequence number of

12. S80sendmail is to start the sendmail daemon, which has the sequence number of 80.

So, syslog program will be started before sendmail.

There you have it. That is what happens during the Linux boot process.

SHUT DOWN PROCESS

The shutdown command brings down system in a secure way. All the logged-in users are

notified about the system shutdown.

Signal SIGTERM notifies all the processes that the system is going down, so that processes

can be saved and exit properly.

Command shutdown signals the init process to change the runlevel.

Runlevel 0 halts the system

Runlevel 6 reboots the system

Runlevel 1 is default state.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

Five minutes before shutdown sequence starts, file /etc/nologin is created when shutdown is

scheduled for future which does not allow new user logins.

If by any reason, command shutdown is stopped before signalling init, this file is removed. It

is also removed to change runlevel before signalling init.

To run shutdown command root user access is required.

You can shutdown a system by passing a definite time (in minutes). System will

automatically shutdown after specified minute giving a message and time to save all work.

Syntax:

1. shutdown <time>

Example:

shutdown 3

Look at the above snapshot, message is displayed on the terminal.

To immediately shutdown the system, use now option,

Syntax:

1. shutdown now

System will shutdown immediately.

 Prepared by Dr. M. Sakthi Asvini, Assistant Professor, CS,CA&IT

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT I: INTRODUCTION BATCH: 2017-2020

1. Which command is used to display the operating system name

a) os

b) unix

c) kernel

d) uname

Answer (d)

2. Which command is used to display the unix version

a) uname -r

b) uname -n

c) uname -t

d) kernel

Answer (a)

3. Which command is used to print a file

a) print

b) ptr

c) lpr

d) none of the mentioned

Answer (c)

4. Which option of ls command used to view file inode number

a) –l

b) -o

c) –a

d) –i

Answer (d)

5. What is UNIX?

a) an operating system

b) a text editor

c) programming language

d) software program

Answer (a)

6. In which language UNIX is written?

a) JAVA

b) Python

c) C++

d) C

Answer (d)

7. Which of the following is not a feature of UNIX?

a) multitasking

b) multiuser

c) portability

d) easy to use

Answer (d)

8. Which part of the UNIX operating system interacts with the hardware?

a) Kernel

b) Shell

c) vi editor

d) application program

Answer (a)

9. ------ is a command interpreter used for interacting with a UNIX system.

a) Shell

b) kernel

c) vi editor

d) application program

10. Which of the following is not a part of all the versions of UNIX?

a) Kernel and Shell

b) Commands and utilities

c) Graphical user interface

d) System Calls

Answer (c)

11. What are Commands?

a) specific instructions for performing a particular task

b) part of the operating system

c) part of the shell

d) special instructions

Answer (a)

12. In how many categories, commands of UNIX operating system classified?

a) 1

b) 2

c) Many

d) 0

Answer (b)

13. Which command is used for extracting the details of the operating system?

a) cd

b) echo

c) uname

d) wc

Answer (c)

14. How can we specify more than one command in the command line at the same time?

a) using ;

b) using >

c) using ==

d) not possible

Answer (a)

15. Which command is used to display the documentation of commands in UNIX?

a) help

b) search

c) whatis

d) man

Answer (d)

16. Which command is used for displaying date and calendar in UNIX?

a) date and cal

b) DATE and CAL

c) date and calendar

d) dt and cl

Answer (a)

17. What is the output of who command?

a) display information about users who are currently logged in.

b) display file hierarchy

c) display administrator information

d) display processes

Answer (a)

18. What are meta-characters?

a) special characters having predefined meaning to the shell

b) special symbols

c) shell symbols

d) command symbols

Answer (a)

19. Which command is used for displaying date in the format dd/mm/yyyy ?

a) date +%m

b) date +%h

c) date +”%d/%m/%Y”

d) date +”%h %m”

Answer (c)

20. echo command is used for _________

a) displaying errors

b) displaying operating system details

c) displaying diagnostic messages

d) displaying date and time

Answer (c)

21. Which command is used as an alternative to echo command?

a) ls

b) printf

c) wc

d) ps

Answer (b)

22. script command is used for___________

a) recording history

b) recording our session

c) recording passwords

d) recording scripts

Answer (b)

23. Which of the following is not true about UNIX?

a) Many people can use a UNIX based computer at the same time; hence UNIX is called as a

multiuser system

b) A user can run multiple programs at the same time; hence UNIX is called a multitasking

environment

c) UNIX was not written in ‘C’ language

d) Linux is also known as a version of UNIX

Answer (c)

24. Who is a superuser?

a) system manager

b) normal user

c) administrator

d) a user with special rights

Answer (a)

25. What is the windowing system of UNIX known as?

a) X Window system

b) LINUX

c) Red Hat

d) DOS

Answer (a)

26. In vi-editor, for navigation purposes, the mode should be _____ mode.

a) command

b) input

c) insert

d) ex

Answer: (a)

27. In vi-editor, Using ‘b’ command we can _____________

a) move forward to the end of the word

b) move back to the beginning of the word

c) move forward to the beginning of the word

d) move back to the end of the word

Answer: (b)

28. In vi-editor, Using ‘e’ command we can _____________

a) move back to the beginning of the word

b) move forward to the end of the word

c) move forward to the beginning of the word

d) move back to the end of the word

Answer: (b)

29. In vi-editor, Using ‘w’ command we can _____________

a) move back to the beginning of the word

b) move forward to the end of the word

c) move forward to the beginning of the word

d) move back to the end of the word

Answer: (c)

30. On a UNIX system, there can be ____ shells running simultaneously.

a) 1

b) 2

c) many

d) 4

Answer: (c)

31. The prompt issued by the shell is called ______

a) prompt

b) command translator

c) command prompt

d) command executor

Answer: (c)

32. In UNIX there are ___ major types of shells.

a) 2

b) 3

c) 4

d) many

Answer: (a)

33. What is the default symbol for command prompt in Bourne shell?

a) $

b) %

c) #

d) @

Answer: (a)

34. What is the default symbol for command prompt in C shell?

a) $

b) %

c) #

d) @

Answer: (b)

35. Which one of the following command will display the name of the shell we are working

on?

a) echo shell

b) echo $

c) echo $SHELL

d) echo $$

Answer: (c)

36. Which shell is the most common and best to use?

a) Korn shell

b) POSIX shell

c) C shell

d) Bash shell

Answer: (d)

37. Which command does not terminates unless we log out of the system?

a) history

b) shell

c) echo

d) login

Answer: (b)

38. In Shell’s interpretive cycle, the shell first scans for ____ in the entered command.

a) characters

b) priority

c) meta-characters

d) wildcards

Answer: (c)

39. Which of the following is/are true about Shell?

a) Shell is a multi-faceted program

b) Shell is a command interpreter

c) Shell provides us with an environment to work in

d) Shell is a multi-faceted, command interpreter and provides an environment to work in

Answer: (d)

40. To change the login shell in some system (like Linux) we can use ____ command.

a) chshell

b) chshl

c) chsh

d) ch

Answer: (c)

41. The UNIX shell is both _______ and _______ language.

a) interactive, responsive

b) interpreter, executing

c) scripting, interpreter

d) high level, low level

Answer: (c)

42. Which one of the following command is used to create a child shell?

a) fork

b) wait

c) sh

d) env

Answer: (c)

43. Which of the following function(s) are performed by an interactive shell?

a) job control

b) history

c) aliases

d) job control, history, aliases

Answer: (d)

44. Which one of the following is not an environment variable?

a) HOME

b) PATH

c) USER

d) env

Answer: (d)

45. Which environment variable is used to display our username?

a) PATH

b) MAIL

c) LOGNAME

d) HOME

Answer: (c)

46. __________is the commercial UNIX-based operating system of Sun Microsystems.

a) Solaris

b) UNIX

c) Linux

d) Macintosh

Answer: (a)

47. ________ is an example of an open-source operating system.

a) Windows 3.1

b) Windows NT

c) Macintosh

d) GNU/Linux

Answer: (d)

48. The kernel is a___________________

a) Memory manager

b) Resource manager

c) File manager

d) Directory manager

Answer: (b)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

UNIT-II

SYLLABUS

External and internal commands, Creation of partitions in OS, Processes and its creation

phases – Fork, Exec, wait

Internal and External Commands in Linux:

The UNIX system is command-based i.e things happen because of the commands that you

key in. All UNIX commands are seldom more than four characters long.

They are grouped into two categories:

 Internal Commands: Commands which are built into the shell. For all the shell built-

in commands, execution of the same is fast in the sense that the shell doesn’t have to

search the given path for them in the PATH variable and also no process needs to be

spawned for executing it.

Examples: source, cd, fg etc.

 External Commands: Commands which aren’t built into the shell. When an external

command has to be executed, the shell looks for its path given in PATH variable and

also a new process has to be spawned and the command gets executed. They are usually

located in /bin or /usr/bin. For example, when you execute the “cat” command, which

usually is at /usr/bin, the executable /usr/bin/cat gets executed.

Examples: ls, cat etc.

If you know about UNIX commands, you must have heard about the ls command. Since ls is

a program or file having an independent existence in the /bin directory(or /usr/bin), it is

branded as an external command that actually means that the ls command is not built into

the shell and these are executables present in separate file. In simple words, when you will

key in the ls command, to be executed it will be found in /bin. Most commands are external

in nature, but there are some which are not really found anywhere, and some which are

normally not executed even if they are in one of the directories specified by PATH. For

instance, take echo command:

$type echo

echo is a shell builtin

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

echo isn’t an external command in the sense that, when you type echo, the shell won’t look in

its PATH to locate it (even if it is there in /bin). Rather, it will execute it from its own set of

built-in commands that are not stored as separate files. These built-in commands, of

which echo is a member, are known as internal commands.

You now might have noticed that it’s the shell that actually does all this works. This program

starts running as soon the user log in, and dies when the user log out. The shell is an external

command with a difference, it possesses its own set of internal commands. So, if a command

exists both as an internal command of the shell as well as external one(in /bin or /usr/bib), the

shell will accord top priority to its own internal command of the same name.

This is exactly the case with echo which is also found in /bin, but rarely ever executed

because the shell makes sure that the internal echo command takes precedence over the

external. Now, talk more about the internal and external commands.

Getting the list of Internal Commands

If you are using bash shell you can get the list of shell built-in commands

with help command:

$help

// this will list all

the shell built-in commands //

How to find out whether a command is internal or external?

In addition to this you can also find out about a particular command i.e whether it is internal

or external with the help of type command :

$type cat

cat is /bin/cat

//specifying that cat is

external type//

$type cd

cd is a shell builtin

//specifying that cd is

internal type//

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Internal vs External

The question that when to use which command between internal and external command is of

no use cause the user uses a command according to the need of the problem he wants to

solve. The only difference that exists between internal and external command is that internal

commands work much faster than the external ones as the shell has to look for the path when

it comes to the use of external commands.

There are some cases where you can avoid the use of external by using internal in place of

them, like if you need to add two numbers you can do it as:

//use of internal command let

for addition//

$let c=a+b

instead of using :

//use of external command expr

for addition//

$c=`expr $a+$b`

In such a case, use of let will be more better option as it is a shell built-in command so will

work faster than the expr which is an external command.

Creation of partitions in OS

Partitions are divisions in the formatting of the hard disk. It’s a logical – as opposed to a

physical – division, so you can edit and manipulate them for various purposes. Think

breaking a disk into two configuration parts. Partitions are really handy because they act as a

sandbox. If you have a 1 TB hard drive partitioned into a 250 GB partition and a 750 GB

partition, what you have on the latter will not affect the other, and vice versa. You can share

one of those partitions on the network and never worry about people accessing information

on the other. One could have Windows installed, riddled with viruses and trojans. The other

could be running a very obsolete, security-hole addled Linux installation. Never shall the two

interfere.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

The other useful thing is that you can have multiple partitions, each formatted with a different

“file system.” A file system is a formatting of the disk into a table that the operating system

can read, interpret, and write to. With the only one hard disk, you can install multiple

operating systems on it without actually having another physical disk. While there are tons of

file system types, there are only three kinds of partitions: primary, extended, and logical.

Any given hard disk can only have a maximum of four primary partitions. This limitation is

due to something called the Master Boot Record which tells the computer which partitions it

can boot from, and so primary partitions are usually reserved for operating systems.

Partitioning enables you to split your hard drive into multiple parts, where each part acts as

its own hard drive and this is useful when you are installing multiple operating systems in the

same machine.

In this section, it is explained how to partition a storage disk in Linux using the parted

command.

(i) The first step is to view the partition table or layout on all block devices. This helps you

identify the storage device you want to partition. You can do this using parted or fdisk

command. We will use the former for purposes of demonstration, as follows, where the -l flag

means list partition layout on all block devices.

parted -l

From the output of the above command, there are two hard disks attached to the test system,

the first is /dev/sda and the second is /dev/sdb.

In this case, we want to partition hard disk /dev/sdb. To manipulate disk partitions, open the

hard disk to start working on it, as shown.

parted /dev/sdb

At the parted prompt, make a partition table by running mklabel msdos or gpt, then enter Y/es

to accept it.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

(parted) mklabel msdos

Important: Make sure to specify the correct device for partition in the command. If you run

parted command without a partition device name, it will randomly pick a storage device to

modify.

Next, create a new primary partition on the hard disk and print the partition table as shown.

(parted) mkpart primary ext4 0 10024MB

(parted) print

To quit, issue the quit command and all changes are automatically saved.

Next, create the file system type on each partition, you can use the mkfs utility (replace ext4

with the file system type you wish to use).

mkfs.ext4 /dev/sdb1

mkfs.ext4 /dev/sdb2

Last but not least, to access the storage space on the partitions, you need to mount them by

creating the mount points and mount the partitions as follows.

mkdir -p /mnt/sdb1

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

mkdir -p /mnt/sdb2

mount -t auto /dev/sdb1 /mnt/sdb1

mount -t auto /dev/sdb2 /mnt/sdb2

To check if the partitions are actually mounted, run the df command to report file system disk

space usage.

df -hT

You may need to update /etc/fstab file to mount newly created partitions automatically at

boot time.

Process in UNIX/LINUX

A process is a program in execution in memory or in other words, an instance of a program

in memory. Any program executed creates a process. A program can be a command, a shell

script, or any binary executable or any application. a process has lots of properties associated

to it.

Process attributes:
 A process has some properties associated to it:

PID : Process-Id. Every process created in Unix/Linux has an identification number

associated to it which is called the process-id. This process id is used by the kernel to identify

the process similar to how the inode number is used for file identification. The PID is unique

for a process at any given point of time. However, it gets recycled.

PPID : Parent Process Id: Every process has to be created by some other process. The

process which creates a process is the parent process, and the process being created is the

child process. The PID of the parent process is called the parent process id(PPID). At any

https://www.tecmint.com/how-to-check-disk-space-in-linux/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

point of time, no two processes with the same pid exist in the system because it is the pid that

Unix uses to track each process.

TTY: Terminal to which the process is associated to. Every command is run from a terminal

which is associated to the process. However, not all processes are associated to a

terminal.There are some processes which do not belong to any terminal. These are called

daemons.

UID: User Id- The user to whom the process belongs to. And the user who is the owner of the

process can only kill the process(Of course, root user can kill any process). When a process

tries to access files, the accessibility depends on the permissions the process owner has on

those files.

Parent & Child Process:

 Every process in Unix has to be created by some other process. Hence, the ps command is

also created by some other process. The 'ps' command is being run from the login shell, ksh.

The ksh shell is a process running in the memory right from the moment the user logged in.

So, for all the commands trigerred from the login shell, the login shell will be the parent

process and the process created for the command executed will be the child process. In the

same lines, the 'ksh' is the parent process for the child process 'ps'.

 The below command shows the process list along with the PPID.

$ ps -o pid,ppid,args

 PID PPID COMMAND

2666744 3317840 ps -o pid,ppid,args

3317840 1 -ksh

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

 The PID of the ksh is same as the PPID of the ps command which means the ksh process is

the parent of the ps command. The '-o' option of the ps command allows the user to specify

only the fields which he needs to display.

Init Process:

 When the Unix system boots, the first process to be created is the init process. This init

process will have the PID as 1 and PPID as 0. All the other processes are created by the init

process and gets branched from there on. Note in the above command, the process of the

login shell has the PPID 1 which is the PID of the init process.

Initializing a process
A process can be run in two ways:

1. Foreground Process : Every process when started runs in foreground by
default, receives input from the keyboard and sends output to the screen.
When issuing pwd command

2. $ ls pwd
Output:

$ /home/geeksforgeeks/root

When a command/process is running in the foreground and is taking a lot of
time, no other processes can be run or started because the prompt would not
be available until the program finishes processing and comes out.

3. Backround Process : It runs in the background without keyboard input and

waits till keyboard input is required. Thus, other processes can be done in
parallel with the process running in background since they do not have to wait
for the previous process to be completed.
Adding & along with the command starts it as a background process

4. $ pwd &
Since pwd does not wants any input from the keyboard, it goes to the stop state
until moved to the foreground and given any data input. Thus, on pressing
Enter, :
Output:

[1] + Done pwd

$

That first line contains information about the background process – the job
number and the process ID. It tells you that the ls command background
process finishes successfully. The se The second is a prompt for another
command.

Tracking ongoing processes

ps (Process status) can be used to see/list all the running processes.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

$ ps

PID TTY TIME CMD
19 pts/1 00:00:00 sh
24 pts/1 00:00:00 ps
For more information -f (full) can be used along with ps

$ ps –f

UID PID PPID C STIME TTY TIME CMD
52471 19 1 0 07:20 pts/1 00:00:00f sh
52471 25 19 0 08:04 pts/1 00:00:00 ps -f
For a single process information, ps along with process id is used

$ ps 19

PID TTY TIME CMD
19 pts/1 00:00:00 sh
For a running program (named process) Pidof finds the process id’s (pids)
Fields described by ps are described as:
UID: User ID that this process belongs to (the person running it)
PID: Process ID
PPID: Parent process ID (the ID of the process that started it)
C: CPU utilization of process
STIME: Process start time
TTY: Terminal type associated with the process
TIME: CPU time taken by the process
CMD: The command that started this process
There are other options which can be used along with ps command :
-a: Shows information about all users
-x: Shows information about processes without terminals
-u: Shows additional information like -f option
-e: Displays extended information

Stopping a process
When running in foreground, hitting Ctrl + c (interrupt character) will exit the
command. For processes running in background kill command can be used if it’s pid
is known.

$ ps –f

UID PID PPID C STIME TTY TIME CMD
52471 19 1 0 07:20 pts/1 00:00:00 sh
52471 25 19 0 08:04 pts/1 00:00:00 ps –f

$ kill 19
Terminated
If a process ignores a regular kill command, you can use kill -9 followed by the
process ID .

$ kill -9 19

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Terminated

Process Control Functions

The fork() Function

As already discussed in the article creating a daemon process in C, the fork function is used

to create a process from within a process.

The resultant new process created by fork() is known as child process while the original

process (from which fork() was called) becomes the parent process.

The function fork() is called once (in the parent process) but it returns twice. Once it returns

in the parent process while the second time it returns in the child process. Note that the order

of execution of the parent and the child may vary depending upon the process scheduling

algorithm. So we see that fork function is used in process creation.

The signature of fork() is :

pid_t fork(void);

The exec Family of Functions

Another set of functions that are generally used for creating a process is
the exec family of functions. These functions are mainly used where there is a
requirement of running an existing binary from withing a process.
For example, suppose we want to run the ‘whoami’ command from within a process,
then in these kind of scenarios the exec() function or other members of this family is
used. A point worth noting here is that with a call to any of the exec family of
functions, the current process image is replaced by a new process image.

A common member of this family is the execv() function. Its signature is :

int execv(const char *path, char *const argv[]);

Note: Please refer to the man-page of exec to have a look at the other members of
this family.

https://www.thegeekstuff.com/2012/02/c-daemon-process/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

The wait() and waitpid() Functions

There are certain situations where when a child process terminates or changes state
then the parent process should come to know about the change of the state or
termination status of the child process. In that case functions like wait() are used by
the parent process where the parent can query the change in state of the child
process using these functions.
The signature of wait() is :

pid_t wait(int *status);

For the cases where a parent process has more than one child processes, there is a
function waitpid() that can be used by the parent process to query the change state
of a particular child.
The signature of waitpid() is :

pid_t waitpid(pid_t pid, int *status, int options);

By default, waitpid() waits only for terminated children, but this behavior is
modifiable via the options argument, as described below.

The value of pid can be:

 < -1 : Wait for any child process whose process group ID is equal to the absolute value of
pid.

 -1 : Wait for any child process.
 0 : Wait for any child process whose process group ID is equal to that of the calling

process.
 > 0 : Wait for the child whose process ID is equal to the value of pid.
The value of options is an OR of zero or more of the following constants:

 WNOHANG : Return immediately if no child has exited.
 WUNTRACED : Also return if a child has stopped. Status for traced children which have

stopped is provided even if this option is not specified.
 WCONTINUED : Also return if a stopped child has been resumed by delivery of

SIGCONT.

Prepared by Dr. M. Sakthi Asvini, Assistant Professor, CS,CA&IT

UNIT II

1. nice command is a ______ command in C shell.

a) internal

b) external

c) built-in

d) directory

Answer: c

2. Which option can be used explicitly to reduce the priority of any process.

a) -a

b) -n

c) -o

d) -q

Answer: b

3. Which command is used for premature termination of a process?

a) signal

b) nice

c) kill

d) nohup

Answer: c

4. Which one of the following command is used for killing the last background job?

a) kill $

b) kill $$

c) kill $!

d) kill !

Answer: c

5. Which of the followings command(s) is used to kill the login shell?

a) kill 0

b) kill -9 $$

c) kill -s KILL 0

d) kill -9 $$ and kill -s KILL 0

Answer: d

6. A process is an instance of _______ program.

a) waiting

b) executing

c) terminated

d) halted

Answer: b

7. A process is said to be ____ when it starts its execution.

a) born

b) die

c) waiting

d) terminated

Answer: a

8. When the process has completed its execution it is called ______

a) born

b) terminated

c) waiting

d) exit

Answer: d

9. Which data structure is used to store information about a process?

a) process control block (pcb)

b) array

c) queue

d) program control block

Answer: a

10. Some attributes of every process are maintained by the kernel in memory in a separate

structure called the ______

a) pcb

b) task control block

c) process table

d) task table

Answer: c

11. Each process is identified by a unique integer called ______

a) PID

b) PPID

c) TID

d) PTID

Answer: a

12. The parent id of a child is called ______

a) PID

b) PPID

c) TID

d) PTID

Answer: b

13. Which process is immediately set up by the kernel when we log on to a UNIX system?

a) shell

b) parent

c) kernal

d) bash

Answer: a

14. To know the PID of your current shell, which command will be used?

a) echo $$

b) echo $

c) $SHELL

d) $PATH

Answer: a

15. What is the PID of the first process that is set up when the system is booted?

a) 1

b) 0

c) any

d) 2

Answer: b

16. Which of the following command doesn’t create a process?

a) pwd

b) fork

c) cd

d) pwd and cd

Answer: d

17. Which command shows some attributes of a process?

a) pid

b) $$

c) ps

d) HOME

Answer: c

18. Which of the following attribute is not shown by ps command?

a) PID

b) PPID

c) tty

d) size

Answer: d

19. Which option is used by ps command to get a detailed listing of process attributes?

a) -u

b) -f

c) -l

d) -x

Answer: b

20. Which option is used by the system administrator for displaying processes of a user?

a) -f

b) -u

c) -a

d) -e

Answer: b

21. Which option is used with ps command to list system processes?

a) -A

b) -a

c) -e

d) –A and -e

Answer: d

22. What will the output of the following command?

$ ps -t dev/console

a) processes running on terminal named console

b) undefined output

c) erroneous

d) processes running on the current terminal

Answer: a

23. There are ___ distinct phases of a process.

a) 2

b) 5

c) 4

d) 3

Answer: d

24. Which of the following system call is used for creating a new process?

a) read

b) fork

c) wait

d) new

Answer: b

25. What is the value returned by fork system call, when the creation of child process is

unsuccessful?

a) positive integer

b) negative integer

c) zero

d) fractional value

Answer: b

26. Which system call is used to run a new program?

a) fork

b) wait

c) exec

d) exit

Answer: c

27. Which system call is used by the parent process to wait for the child process to complete?

a) wait

b) exec

c) fork

d) exit

Answer: b

28. Shell ___ operator is used for running jobs in the background.

a) $

b) #

c) |

d) &

Answer: d

29. Which command is used for running jobs in the background?

a) nice

b) ps

c) nohup

d) exec

Answer: c

30. Which of the following shell(s) allows the user to run jobs in the background even when the

user has logged out (without using nohup command)?

a) C

b) bash

c) Korn

d) C and bash

Answer: d

31. When nohup command is used, shells returns the _____

a) PID

b) PPID

c) tty

d) TTy

Answer: a

32. What is the PID of the process who takes the parentage of the process run with nohup

command?

a) 0

b) 1

c) 2

d) Infinite

Answer: b

33. Which command is used for executing jobs according to their priority?

a) nohup

b) $

c) &

d) nice

Answer: d

34. What is a job?

a) group of tasks

b) group of commands

c) group of processes

d) group of signals

Answer: c

35. Which of the following command is used to suspend a job?

a) ctrl-Z

b) ctrl-Q

c) bg

d) $

Answer: a

36. Which command will push the current foreground job to the background?

a) bg

b) fg

c) ctrl-Z

d) kill

Answer: a

37. ____ command will bring the background jobs to the foreground.

a) bg

b) fg

c) ctrl-Z

d) kill

Answer: b

38. What does the following command do?

$ kill %2

a) kills job number 2

b) kills the second background job

c) invalid command

d) kill all foreground & background jobs

39. Which of the following is not a part of job control facilities?

a) relate a job to the background

b) bring it back to the foreground

c) kill a job

d) create a new job

Answer: d

40. Which command is used to list the status of jobs?

a) fg

b) JOBS

c) jobs

d) fg

Answer: c

41. We can schedule a job to run at a specified time of day using _______ command.

a) batch

b) at

c) cron

d) jobs

Answer: b

42. We can use the _____ symbol with at command to redirect our output to a specified file.

a) >

b) <

c) >>

d) %

Answer: a

43. Which of the following keyword is not supported by at command?

a) now

b) noon

c) tomorrow

d) evening

Answer: d

44. Which one of the following forms used with at command is invalid?

a) at noon

b) at now +2 years

c) at 3:07 + 1 day

d) at morning

Answer: d

45. We can list the jobs queued using at command by using ____ option.

a) -p

b) -v

c) -l

d) -r

Answer: c

46. To remove a job from the queue, which option is used with at command?

a) -r

b) -l

c) -e

d) -t

Answer: a

47. Which command permits to schedule jobs for later execution, as soon as the system load

permits?

a) at

b) %

c) batch

d) cron

Answer: c

48. Jobs scheduled using batch command can be removed using ___ option.

a) -a

b) -d

c) -f

d) -r

Answer: d

49. What is a daemon?

a) process whose parent has died

b) process who has completed its execution but still has an entry in the process table

c) process which is running infinitely

d) process which runs automatically without any user interaction

Answer: d

50. What is cron?

a) a simple process

b) an orphan process

c) a daemon

d) a zombie process

Answer: c

51. Which of the following command will remove the current crontab?

a) crontab -p

b) crontab -l

c) crontab -e

d) crontab -r

Answer: d

52. To find out how efficiently a program a used the system resources, which command is used?

a) sys

b) time

c) crontab

d) daemon

Answer: b

53. Which one of the following is an internal command?

a) cut

b) expr

c) set

d) Is

Answer: c

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Prepared By Dr.M.Sakthi Asvini, Assistant Professor, Dept. of CS, CA & IT

UNIT-III

USER MANAGEMENT AND THE FILE SYSTEM

SYLLABUS

Types of Users, Creating users, Granting rights User management commands, File quota and

various file systems available, File System Management and Layout, File permissions, Login

process, Managing Disk Quotas, Links (hard links, symbolic links)

Types of Users:

Linux is a multi-user operating system i.e., it allows multiple users on different computers or

terminals to access a single system. This makes it mandatory to know how to perform

effective user management; how to add, modify, suspend, or delete user accounts, along with

granting them the necessary permissions to do their assigned tasks. For this multi-user design

to work properly there needs to be a method to enforce concurrency control. This is where

permissions come in to play.

Normally Linux/Unix based systems have two user accounts;

a general user account,

and the root account, which is the super user that can access everything on the machine,

make system changes, and administer other users. Some variants of Linux work a little

differently though.

Creating Users:

To add/create a new user, all you‟ve to follow the command „useradd„ or „adduser„ with

„username‟. The „username‟ is a user login name, that is used by user to login into the system.

Only one user can be added and that username must be unique (different from other username

already exists on the system).

For example, to add a new user called „tecmint„, use the following command.

[root@tecmint ~]# useraddtecmint

When we add a new user in Linux with „useradd„ command it gets created in locked state and

to unlock that user account, we need to set a password for that account with „passwd„

command.

[root@tecmint ~]# passwdtecmint

Changing passwo

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Prepared By Dr.M.Sakthi Asvini, Assistant Professor, Dept. of CS, CA & IT

rd for user tecmint.

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully.

Once a new user created, it‟s entry automatically added to the „/etc/passwd„ file. The file is

used to store users information and the entry should be.

tecmint:x:504:504:tecmint:/home/tecmint:/bin/bash

The above entry contains a set of seven colon-separated fields, each field has it‟s own

meaning. Let‟s see what are these fields:

1. Username: User login name used to login into system. It should be between 1 to 32

charcters long.

2. Password: User password (or x character) stored in /etc/shadow file in encrypted format.

3. User ID (UID): Every user must have a User ID (UID) User Identification Number. By

default UID 0 is reserved for root user and UID‟s ranging from 1-99 are reserved for

other predefined accounts. Further UID‟s ranging from 100-999 are reserved for system

accounts and groups.

4. Group ID (GID): The primary Group ID (GID) Group Identification Number stored in

/etc/group file.

5. User Info: This field is optional and allow you to define extra information about the user.

For example, user full name. This field is filled by „finger‟ command.

6. Home Directory: The absolute location of user‟s home directory.

7. Shell: The absolute location of a user‟s shell i.e. /bin/bash.

2. Create a User with Different Home Directory

By default „useradd„ command creates a user‟s home directory under /home directory with

username. Thus, for example, we‟ve seen above the default home directory for the user

„tecmint„ is „/home/tecmint„.

However, this action can be changed by using „-d„ option along with the location of new

home directory (i.e. /data/projects). For example, the following command will create a user

„anusha„ with a home directory „/data/projects„.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Prepared By Dr.M.Sakthi Asvini, Assistant Professor, Dept. of CS, CA & IT

[root@tecmint ~]# useradd -d /data/projects anusha

You can see the user home directory and other user related information like user id, group id,

shell and comments.

[root@tecmint ~]# cat /etc/passwd | grepanusha

anusha:x:505:505::/data/projects:/bin/bash

3. Create a User with Specific User ID
 In Linux, every user has its own UID (Unique Identification Number). By default,

whenever we create a new user accounts in Linux, it assigns userid 500, 501, 502 and so on…

But, we can create user‟s with custom userid with „-u„ option. For example, the following

command will create a user „navin„ with custom userid „999„.

[root@tecmint ~]# useradd -u 999 navin

Now, let‟s verify that the user created with a defined userid (999) using following command.

[root@tecmint ~]# cat /etc/passwd | grepnavin

navin:x:999:999::/home/navin:/bin/bash

NOTE: Make sure the value of a user ID must be unique from any other already created users

on the system.

4. Create a User with Specific Group ID

Similarly, every user has its own GID (Group Identification Number). We can create users

with specific group ID‟s as well with -g option.

Here in this example, we will add a user „tarunika„ with a

specific UID and GID simultaneously with the help of „-u„ and „-g„ options.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Prepared By Dr.M.Sakthi Asvini, Assistant Professor, Dept. of CS, CA & IT

[root@tecmint ~]# useradd -u 1000 -g 500 tarunika

Now, see the assigned user id and group id in „/etc/passwd„ file.

[root@tecmint ~]# cat /etc/passwd | greptarunika

tarunika:x:1000:500::/home/tarunika:/bin/bash

Granting rights User management commands

To add a new user account, you can run either of the following two commands

as root.

adduser [new_account]

useradd [new_account]

When a new user account is added to the system, the following operations are

performed.

1. His/her home directory is created (/home/username by default).

2. The following hidden files are copied into the user‟s home directory, and will

be used to provide environment variables for his/her user session.

.bash_logout

.bash_profile

.bashrc

3. A mail spool is created for the user at /var/spool/mail/username.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Prepared By Dr.M.Sakthi Asvini, Assistant Professor, Dept. of CS, CA & IT

4. A group is created and given the same name as the new user account.

Understanding /etc/passwd

The full account information is stored in the /etc/passwd file. This file contains

a record per system user account and has the following format (fields are

delimited by a colon).

[username]:[x]:[UID]:[GID]:[Comment]:[Home directory]:[Default shell]

Fields [username] and [Comment] are self explanatory.

The x in the second field indicates that the account is protected by a shadowed

password (in /etc/shadow), which is needed to logon as [username].

The [UID] and [GID] fields are integers that represent the User IDentification

and the primary Group IDentification to which [username] belongs,

respectively.

The [Home directory] indicates the absolute path to [username]‟s home

directory, and

The [Default shell] is the shell that will be made available to this user when he

or she logins the system.

Understanding /etc/group

Group information is stored in the /etc/group file. Each record has the following

format.

[Group name]:[Group password]:[GID]:[Group members]

[Group name] is the name of group.

An x in [Group password] indicates group passwords are not being used.

[GID]: same as in /etc/passwd.

[Group members]: a comma separated list of users who are members of [Group

name].

Add User Accounts in Linux

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Prepared By Dr.M.Sakthi Asvini, Assistant Professor, Dept. of CS, CA & IT

Add User Accounts

After adding an account, you can edit the following information (to name a few

fields) using the usermod command, whose basic syntax of usermod is as

follows.

usermod [options] [username]

Setting the expiry date for an account

Use the –expiredate flag followed by a date in YYYY-MM-DD format.

usermod --expiredate 2014-10-30 tecmint

Adding the user to supplementary groups

Use the combined -aG, or –append –groups options, followed by a comma

separated list of groups.

usermod --append --groups root,users tecmint

Changing the default location of the user‟s home directory

Use the -d, or –home options, followed by the absolute path to the new home

directory.

usermod --home /tmp tecmint

Changing the shell the user will use by default

Use –shell, followed by the path to the new shell.

usermod --shell /bin/sh tecmint

Displaying the groups an user is a member of

groups tecmint

id tecmint

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Prepared By Dr.M.Sakthi Asvini, Assistant Professor, Dept. of CS, CA & IT

Now let‟s execute all the above commands in one go.

usermod --expiredate 2014-10-30 --append --groups root,user

Unix File System

Unix file system is a logical method of organizing and storing large amounts of information

in a way that makes it easy to manage. A file is a smallest unit in which the information is

stored. Unix file system has several important features. All data in Unix is organized into

files. All files are organized into directories. These directories are organized into a tree-like

structure called the file system.

Files in Unix System are organized into multi-level hierarchy structure known as a directory

tree. At the very top of the file system is a directory called “root” which is represented by a

“/”. All other files are “descendants” of root.

Directories or Files and their description –

/ : The slash / character alone denotes the root of the filesystem tree.

/bin : Stands for “binaries” and contains certain fundamental utilities, such as ls or cp, which

are generally needed by all users.

/boot : Contains all the files that are required for successful booting process.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Prepared By Dr.M.Sakthi Asvini, Assistant Professor, Dept. of CS, CA & IT

/dev : Stands for “devices”. Contains file representations of peripheral devices and pseudo-

devices.

/etc : Contains system-wide configuration files and system databases. Originally also

contained “dangerous maintenance utilities” such as init,but these have typically been moved

to /sbin or elsewhere.

/home : Contains the home directories for the users.

/lib : Contains system libraries, and some critical files such as kernel modules or device

drivers.

/media : Default mount point for removable devices, such as USB sticks, media players, etc.

/mnt : Stands for “mount”. Contains filesystem mount points. These are used, for example, if

the system uses multiple hard disks or hard disk partitions. It is also often used for remote

(network) filesystems, CD-ROM/DVD drives, and so on.

/proc : procfs virtual filesystem showing information about processes as files.

/root : The home directory for the superuser “root” – that is, the system administrator. This

account‟s home directory is usually on the initial filesystem, and hence not in /home (which

may be a mount point for another filesystem) in case specific maintenance needs to be

performed, during which other filesystems are not available. Such a case could occur, for

example, if a hard disk drive suffers physical failures and cannot be properly mounted.

/tmp : A place for temporary files. Many systems clear this directory upon startup; it might

have tmpfs mounted atop it, in which case its contents do not survive a reboot, or it might be

explicitly cleared by a startup script at boot time.

/usr : Originally the directory holding user home directories,its use has changed. It now holds

executables, libraries, and shared resources that are not system critical, like the X Window

System, KDE, Perl, etc. However, on some Unix systems, some user accounts may still have

a home directory that is a direct subdirectory of /usr, such as the default as in Minix. (on

modern systems, these user accounts are often related to server or system use, and not

directly used by a person).

/usr/bin : This directory stores all binary programs distributed with the operating system not

residing in /bin, /sbin or (rarely) /etc.

/usr/include : Stores the development headers used throughout the system. Header files are

mostly used by the #include directive in C/C++ programming language.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Prepared By Dr.M.Sakthi Asvini, Assistant Professor, Dept. of CS, CA & IT

/usr/lib : Stores the required libraries and data files for programs stored within /usr or

elsewhere.

/var : A short for “variable.” A place for files that may change often – especially in size, for

example e-mail sent to users on the system, or process-ID lock files.

/var/log : Contains system log files.

/var/mail : The place where all the incoming mails are stored. Users (other than root) can

access their own mail only. Often, this directory is a symbolic link to /var/spool/mail.

/var/spool : Spool directory. Contains print jobs, mail spools and other queued tasks.

/var/tmp : A place for temporary files which should be preserved between system reboots.

Types of Unix files – The UNIX files system contains several different types of files :

1. Ordinary files – An ordinary file is a file on the system that contains data, text, or

program instructions.

Used to store your information, such as some text you have written or an image you have

drawn. This is the type of file that you usually work with.

Always located within/under a directory file.

Do not contain other files.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Prepared By Dr.M.Sakthi Asvini, Assistant Professor, Dept. of CS, CA & IT

In long-format output of ls -l, this type of file is specified by the “-” symbol.

2. Directories – Directories store both special and ordinary files. For users familiar with

Windows or Mac OS, UNIX directories are equivalent to folders. A directory file contains an

entry for every file and subdirectory that it houses. If you have 10 files in a directory, there

will be 10 entries in the directory. Each entry has two components.

(1) The Filename

(2) A unique identification number for the file or directory (called the inode number)

Branching points in the hierarchical tree.

Used to organize groups of files.

May contain ordinary files, special files or other directories.

Never contain “real” information which you would work with (such as text). Basically, just

used for organizing files.

All files are descendants of the root directory, (named /) located at the top of the tree.

In long-format output of ls –l , this type of file is specified by the “d” symbol.

3. Special Files – Used to represent a real physical device such as a printer, tape drive or

terminal, used for Input/Ouput (I/O) operations. Device or special files are used for device

Input/Output(I/O) on UNIX and Linux systems. They appear in a file system just like an

ordinary file or a directory.

On UNIX systems there are two flavors of special files for each device, character special files

and block special files :

When a character special file is used for device Input/Output(I/O), data is transferred one

character at a time. This type of access is called raw device access.

When a block special file is used for device Input/Output(I/O), data is transferred in large

fixed-size blocks. This type of access is called block device access.

For terminal devices, it‟s one character at a time. For disk devices though, raw access means

reading or writing in whole chunks of data – blocks, which are native to your disk.

In long-format output of ls -l, character special files are marked by the “c” symbol.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Prepared By Dr.M.Sakthi Asvini, Assistant Professor, Dept. of CS, CA & IT

In long-format output of ls -l, block special files are marked by the “b” symbol.

4. Pipes – UNIX allows you to link commands together using a pipe. The pipe acts a

temporary file which only exists to hold data from one command until it is read by another.A

Unix pipe provides a one-way flow of data.The output or result of the first command

sequence is used as the input to the second command sequence. To make a pipe, put a vertical

bar (|) on the command line between two commands.For example: who | wc -l

In long-format output of ls –l , named pipes are marked by the “p” symbol.

5. Sockets – A Unix socket (or Inter-process communication socket) is a special file which

allows for advanced inter-process communication. A Unix Socket is used in a client-server

application framework. In essence, it is a stream of data, very similar to network stream (and

network sockets), but all the transactions are local to the filesystem.

In long-format output of ls -l, Unix sockets are marked by “s” symbol.

6. Symbolic Link – Symbolic link is used for referencing some other file of the file

system.Symbolic link is also known as Soft link. It contains a text form of the path to the file

it references. To an end user, symbolic link will appear to have its own name, but when you

try reading or writing data to this file, it will instead reference these operations to the file it

points to. If we delete the soft link itself , the data file would still be there.If we delete the

source file or move it to a different location, symbolic file will not function properly.

In long-format output of ls –l , Symbolic link are marked by the “l” symbol (that‟s a lower

case L).

Linux File System Layout

The Linux File System is very important to understand.

On top of all the file system there is a directory called root (/). The root file system is the

standing point of everything here.

So in the root directory, there are couple of default directory you can see always.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Prepared By Dr.M.Sakthi Asvini, Assistant Professor, Dept. of CS, CA & IT

Those file systems are,

/ – root directory

/boot – Which contains everything your system needs to start up.

/usr – This is very important directory where the program file contents are stored

/etc – The directory which contains all the configuration files.

/home – The directory contains users individual files.

/mnt – Used to mount the cd/dvd

File System Management

When migrating from another operating system such as Microsoft Windows to another; one

thing that will profoundly affect the end user greatly will be the differences between the file

systems.

A filesystem is the methods and data structures that an operating system uses to keep track of

files on a disk or partition; that is, the way the files are organized on the disk. The word is

also used to refer to a partition or disk that is used to store the files or the type of the

filesystem. Thus, one might say I have two filesystems meaning one has two partitions on

which one stores files, or that one is using the extended filesystem, meaning the type of the

filesystem.

The difference between a disk or partition and the filesystem it contains is important. A few

programs (including, reasonably enough, programs that create filesystems) operate directly

on the raw sectors of a disk or partition; if there is an existing file system there it will be

destroyed or seriously corrupted. Most programs operate on a filesystem, and therefore won't

work on a partition that doesn't contain one (or that contains one of the wrong type).

Before a partition or disk can be used as a filesystem, it needs to be initialized, and the

bookkeeping data structures need to be written to the disk. This process is called making a

filesystem.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Prepared By Dr.M.Sakthi Asvini, Assistant Professor, Dept. of CS, CA & IT

Most UNIX filesystem types have a similar general structure, although the exact details vary

quite a bit. The central concepts are superblock, inode, data block, directory block, and

indirection block. The superblock contains information about the filesystem as a whole, such

as its size (the exact information here depends on the filesystem). An inode contains all

information about a file, except its name. The name is stored in the directory, together with

the number of the inode. A directory entry consists of a filename and the number of the inode

which represents the file. The inode contains the numbers of several data blocks, which are

used to store the data in the file. There is space only for a few data block numbers in the

inode, however, and if more are needed, more space for pointers to the data blocks is

allocated dynamically. These dynamically allocated blocks are indirect blocks; the name

indicates that in order to find the data block, one has to find its number in the indirect block

first.

Like UNIX, Linux chooses to have a single hierarchical directory structure. Everything starts

from the root directory, represented by /, and then expands into sub-directories instead of

having so-called 'drives'. In the Windows environment, one may put one's files almost

anywhere: on C drive, D drive, E drive, etc. Such a file system is called a hierarchical

structure and is managed by the programs themselves (program directories), not by the

operating system. On the other hand, Linux sorts directories descending from the root

directory / according to their importance to the boot process.

If you're wondering why Linux uses the frontslash / instead of the backslash \ as in Windows

it's because it's simply following the UNIX tradition. Linux, like Unix also chooses to be case

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Prepared By Dr.M.Sakthi Asvini, Assistant Professor, Dept. of CS, CA & IT

sensitive. What this means is that the case, whether in capitals or not, of the characters,

becomes very important. So this is not the same as THIS. This feature accounts for a fairly

large proportion of problems for new users especially during file transfer operations whether

it may be via removable disk media such as a floppy disk or over the wire by way of FTP.

The filesystem order is specific to the function of a file and not to its program context (the

majority of Linux filesystems are 'Second Extended File Systems', short 'EXT2' (aka 'ext2fs'

or 'extfs2') or are themselves subsets of this filesystem such as ext3 and Reiserfs). It is within

this filesystem that the operating system determines into which directories programs store

their files.

If you install a program in Windows, it usually stores most of its files in its own directory

structure. A help file for instance may be in C:\Program Files\[program name]\ or in

C:\Program Files\[program-name]\help or in C:\Program Files\[program -

name]\humpty\dumpty\doo. In Linux, programs put their documentation into

/usr/share/doc/[program-name], man(ual) pages into /usr/share/man/man[1-9] and info pages

into /usr/share/info. They are merged into and with the system hierarchy.

Unless you mount a partition or a device, the system does not know of the existence of that

partition or device. This might not appear to be the easiest way to provide access to your

partitions or devices, however, it offers the advantage of far greater flexibility when

compared to other operating systems. This kind of layout, known as the unified filesystem,

does offer several advantages over the approach that Windows uses. Let's take the example of

the /usr directory. This sub-directory of the root directory contains most of the system

executables. With the Linux filesystem, you can choose to mount it off another partition or

even off another machine over the network using an innumerable set of protocols such as

NFS (Sun), Coda (CMU) or AFS (IBM). The underlying system will not and need not know

the difference. The presence of the /usr directory is completely transparent. It appears to be a

local directory that is part of the local directory structure.

File Permissions in Linux/Unix with Example

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Prepared By Dr.M.Sakthi Asvini, Assistant Professor, Dept. of CS, CA & IT

Linux is a clone of UNIX, the multi-user operating system which can be accessed by many

users simultaneously. Linux can also be used in mainframes and servers without any

modifications. But this raises security concerns as an unsolicited or malign user can corrupt,

change or remove crucial data. For effective security, Linux divides authorization into 2

levels.

(i) Ownership

(ii) Permission

The concept of permissions and ownership is crucial in Linux

Ownership of Linux files

Every file and directory on your Unix/Linux system is assigned 3 types of owner, given

below.

User

A user is the owner of the file. By default, the person who created a file becomes its owner.

Hence, a user is also sometimes called an owner.

Group

A user- group can contain multiple users. All users belonging to a group will have the same

access permissions to the file. Suppose you have a project where a number of people require

access to a file. Instead of manually assigning permissions to each user, you could add all

users to a group, and assign group permission to file such that only this group members and

no one else can read or modify the files.

Other

Any other user who has access to a file. This person has neither created the file, nor he

belongs to a usergroup who could own the file. Practically, it means everybody else. Hence,

when you set the permission for others, it is also referred as set permissions for the world.

Now, the big question arises how does Linux distinguish between these three user types so

that a user 'A' cannot affect a file which contains some other user 'B's' vital information/data.

It is like you do not want your colleague, who works on your Linux computer, to view your

images. This is where Permissions set in, and they define user behavior.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Prepared By Dr.M.Sakthi Asvini, Assistant Professor, Dept. of CS, CA & IT

Permissions

Every file and directory in your UNIX/Linux system has following 3 permissions defined for

all the 3 owners discussed above.

Read: This permission give you the authority to open and read a file. Read permission on a

directory gives you the ability to lists its content.

Write: The write permission gives you the authority to modify the contents of a file. The

write permission on a directory gives you the authority to add, remove and rename files

stored in the directory. Consider a scenario where you have to write permission on file but do

not have write permission on the directory where the file is stored. You will be able to modify

the file contents. But you will not be able to rename, move or remove the file from the

directory.

Execute: In Windows, an executable program usually has an extension ".exe" and which you

can easily run. In Unix/Linux, you cannot run a program unless the execute permission is set.

If the execute permission is not set, you might still be able to see/modify the program

code(provided read & write permissions are set), but not run it.

ls - l on terminal gives

ls - l

Here, we have highlighted '-rw-rw-r--'and this weird looking code is the one that tells us

about the permissions given to the owner, user group and the world.

Here, the first '-' implies that we have selected a file.p>

Else, if it were a directory, d would have been shown.

https://www.guru99.com/images/Permis_system.png
https://www.guru99.com/images/its_a_file.png
https://www.guru99.com/images/Permis_system.png
https://www.guru99.com/images/its_a_file.png

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Prepared By Dr.M.Sakthi Asvini, Assistant Professor, Dept. of CS, CA & IT

The characters are pretty easy to remember.

r = read permission

w = write permission

x = execute permission

- = no permission

Login Process in Linux:

Login process steps

(i) Init starts getty process

(ii) getty process initiates login prompt on terminal

(iii) login command check user credentials from /etc/passwd

(iv) getty starts user shell process

(v) shell reads the system wide files /etc/profile, /etc/bashrc

(vi) Shell reads user specific files .profile, .login

(vii) Now it reads shell specific configuration file .bashrc

(viii) Shell displays the default prompt

login is used when signing onto a system. It can also be used to switch from one user to

another at any time.

NAME

login - sign on

SYNOPSIS

login [name]

login -p

login -h hostname

login -f name

DESCRIPTION

login is used when signing onto a system. It can also be used to switch from one user to

another at any time (most modern shells have support for this feature built into them,

however).

If an argument is not given, login prompts for the username.

https://www.guru99.com/images/Directory.png

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Prepared By Dr.M.Sakthi Asvini, Assistant Professor, Dept. of CS, CA & IT

If the user is not root, and if /etc/nologin exists, the contents of this file are printed to the

screen, and the login is terminated. This is typically used to prevent logins when the system is

being taken down.

If special access restrictions are specified for the user in /etc/usertty, these must be met, or the

log in attempt will be denied and a syslog message will be generated. See the section on

"Special Access Restrictions".

If the user is root, then the login must be occurring on a tty listed in /etc/securetty. Failures

will be logged with the syslog facility.

After these conditions have been checked, the password will be requested and checked (if a

password is required for this username). Ten attempts are allowed before login dies, but after

the first three, the response starts to get very slow. Login failures are reported via the syslog

facility. This facility is also used to report any successful root logins.

If the file .hushlogin exists, then a "quiet" login is performed (this disables the checking of

mail and the printing of the last login time and message of the day). Otherwise, if

/var/log/lastlogexists, the last login time is printed (and the current login is recorded).

Random administrative things, such as setting the UID and GID of the tty are performed. The

TERM environment variable is preserved, if it exists (other environment variables are

preserved if the -p option is used). Then the HOME, PATH, SHELL, TERM, MAIL, and

LOGNAME environment variables are set. PATH defaults to /usr/local/bin:/bin:/usr/bin for

normal users, and to /usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin for root. Last, if

this is not a "quiet" login, the message of the day is printed and the file with the user‟s name

in /var/spool/mail will be checked, and a message printed if it has non-zero length.

The user‟s shell is then started. If no shell is specified for the user in /etc/passwd, then /bin/sh

is used. If there is no directory specified in /etc/passwd, then / is used (the home directory is

checked for the .hushlogin file described above).

OPTIONS

Tag Description

-p Used by getty(8) to tell login not to destroy the environment

-f Used to skip a second login authentication. This specifically does not work for root,

and does not appear to work well under Linux.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Prepared By Dr.M.Sakthi Asvini, Assistant Professor, Dept. of CS, CA & IT

-h Used by other servers (i.e., telnetd(8)) to pass the name of the remote host to login so

that it may be placed in utmp and wtmp. Only the superuser may use this option.

Soft (Symbolic) and Hard links in Unix/Linux

A link in UNIX is a pointer to a file. Like pointers in any programming languages, links in

UNIX are pointers pointing to a file or a directory. Creating links is a kind of shortcuts to

access a file. Links allow more than one file name to refer to the same file, elsewhere.

There are two types of links :

Soft Link or Symbolic links

Hard Links

These links behave differently when the source of the link (what is being linked to) is moved

or removed. Symbolic links are not updated (they merely contain a string which is the

pathname of its target); hard links always refer to the source, even if moved or removed.

For example, if we have a file a.txt. If we create a hard link to the file and then delete the file,

we can still access the file using hard link. But if we create a soft link of the file and then

delete the file, we can‟t access the file through soft link and soft link becomes dangling.

Basically hard link increases reference count of a location while soft links work as a shortcut

(like in Windows)

1. Hard Links
 Each hard linked file is assigned the same Inode value as the original, therefore they

reference the same physical file location. Hard links more flexible and remain linked

even if the original or linked files are moved throughout the file system, although hard

links are unable to cross different file systems.

 ls -l command shows all the links with the link column shows number of links.

 Links have actual file contents

 Removing any link, just reduces the link count, but doesn‟t affect other links.

 We cannot create a hard link for a directory to avoid recursive loops.

 If original file is removed then the link will still show the content of the file.

 Command to create a hard link is:
 $ ln [original filename] [link name]

2. Soft Links
 A soft link is similar to the file shortcut feature which is used in Windows Operating

systems. Each soft linked file contains a separate Inode value that points to the original

file. As similar to hard links, any changes to the data in either file is reflected in the

other. Soft links can be linked across different file systems, although if the original file

is deleted or moved, the soft linked file will not work correctly (called hanging link).

 ls -l command shows all links with first column value l? and the link points to original

file.

 Soft Link contains the path for original file and not the contents.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Prepared By Dr.M.Sakthi Asvini, Assistant Professor, Dept. of CS, CA & IT

 Removing soft link doesn‟t affect anything but removing original file, the link becomes

“dangling” link which points to nonexistent file.

 A soft link can link to a directory.

 Link across filesystems: If you want to link files across the filesystems, you can only

use symlinks/soft links.

 Command to create a Soft link is:
$ ln -s [original filename] [link name]

Managing Disk Quotas:

Disk Quotas: This feature of Linux allows the system administrator to allocate a maximum

amount of disk space a user or group may use. It can be flexible in its adherence to the rules

assigned and is applied per filesystem. The default Linux Kernel which comes with Redhat

and Fedora Core comes with quota support compiled in.

Two versions of quotas have been released. Version 2 is used by the Linux 2.4 and 2.6

kernel. Quotas version 1 is used by the Linux 2.2

Configuration of disk usage quotas on Linux - Perform the following as root:

1. Edit file /etc/fstab to add qualifier "usrquota" or "grpquota" to the partition. The following

file system mounting options can be specified in /etc/fstab: grpquota, noquota, quota and

usrquota.

The filesystem when mounted will show up in the file /etc/mtab, the list of all currently

mounted filesystems.

To enable user quota support on a file system, add "usrquota" to the fourth field containing

the word "defaults".

...

/dev/hda2 /home ext3 defaults,usrquota 1 1

...

Replace "usrquota" with "grpquota", should you need group quota support on a file system

...

/dev/hda2 /home ext3 defaults,grpquota 1 1

...

Need both user quota and group quota support on a file system?

...

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc CS

COURSE CODE: UNIT II: SYSTEM PROCESSES (AN OVERVIEW) BATCH:

2017-2020

Prepared By Dr.M.Sakthi Asvini, Assistant Professor, Dept. of CS, CA & IT

/dev/hda2 /home ext3 defaults,usrquota,grpquota 1 1

...

This enables user and group quotas support on the /home file system.

touch /partition/aquota.user

where the partition might be /home or some partition defined in /etc/fstab.

then

chmod 600 /partition/aquota.user

The file should be owned by root. Quotas may also be set for groups by using the file

aquota.group

Quota file names:

Quota Version 2 (Linux 2.4/2.6 kernel: Red Hat 7.1+/8/9,FC 1-3): aquota.user, aquota.group

Quota Version 1 (Linux 2.2 kernel: Red Hat 6, 7.0): quota.user, quota.group

The files can be converted/upgraded using the convertquota command.

Re-boot or re-mount file partition with quotas.

Re-boot: shutdown -r now

Re-mount partition: mount -o remount /partition

After re-booting or re-mounting the file system, the partition will show up in the list of

mounted filesystems as having quotas. Check /etc/mtab:

...

/dev/hda5 / ext3 rw,usrquota 0 0

...

UNIT – III

1. Which library function is used for printing error messages?

a) strerror

b) stderror

c) strer

d) ptrerror

Answer: a

2. What is the significance of errno 13?

a) not a super user

b) no such file and directory

c) permission denied

d) no space left on device

Answer: b

3. What is the symbolic constant for errno 2?

a) EPERM

b) ENDENT

c) EIO

d) EEXIST

Answer: b

4. Which of the following is not a valid symbolic constant?

a) EPERM

b) ENDENT

c) EIOR

d) EEXIST

Answer: c

5. How many data structures does the kernel maintain in memory that contain information about

an open file?

a) 3

b) 2

c) 5

d) 1

Answer: a

6. The file table contains _________

a) mode of opening

b) status flags

c) offset pointer, reference count

d) mode of opening, status flags, offset printer and reference count

Answer: d

7. The vnode table is also called _____

a) inode table

b) file table

c) vtable

d) vttable

Answer: a

8. Which of the following system calls performs the action of cd command?

a) chdir

b) fchdir

c) mkdir

d) chdir and fchdir

Answer: d

9. For creating and removing directories, which of the following system calls are used?

a) mkdir

b) rmdir

c) chdir

d) mkdir and rmdir

Answer: d

10. A super user can use ___ call for creating a directory.

a) mknod

b) mkdr

c) rmdir

d) chdir

Answer: a

11. For creating a hard and symbolic link, which system calls are used?

a) link, unlink

b) link, symlink

c) unlink, ulink

d) hlink, slink

Answer: b

12. For removing a link, ____ is used.

a) link

b) symlink

c) unlink

d) delink

Answer: c

13. ____ system call is used for renaming a file, directory or symbolic link.

a) renam

b) rename

c) ren

d) change

Answer: b

14. Which of the following macro returns true if the file type is a directory?

a) S_ISREG

b) S_ISDIR

c) S_ISCHR

d) S_ISFIFO

Answer: b

15. For checking a file access rights, ___ system call is used.

a) acc

b) access

c) axs

d) filert

Answer: b

16. Which of the following is used with access call for checking the owner’s permissions?

a) R_OK

b) W_OK

c) X_OK

d) R_OK, W_OK, X_OK

Answer: d

17. Both the owner and group owner can be changed by ____ call.

a) chown

b) chgrp

c) chuser

d) ch

Answer: a

18. For changing the time stamps, _____ system call is invoked.

a) atime

b) utime

c) mtime

d) ch

Answer: b

19. Which of the following system call uses file descriptor as an argument?

a) read

b) write

c) close

d) read, write, close

Answer: d

20. Which of the following system call is used for closing a file?

a) open

b) lseek

c) close

d) write

Answer: c

21. close system call returns ____

a) 0

b) -1

c) 1

d) 0 and -1

Answer: d

22. ____ system call is used for writing to a file.

a) read

b) write

c) close

d) seek

Answer: b

23. write system call returns -1 when ___________

a) if disk fills up while write is in progress

b) when file doesn’t exist

c) if the file size exceeds the system’s limit

d) if disk fills up while write is in progress and if the file size exceeds

Answer: d

24. ___ system call is used for positioning the offset pointer.

a) read

b) write

c) open

d) lseek

Answer: d

25. Which of the following offset is used with lseek system call to set the offset pointer to the end

of the file?

a) SEEK_SET

b) SEEK_END

c) SEEK_CUR

d) SEEK_CR

Answer: b

26. Which of the following system call is used for truncating a file?

a) truncate

b) ftruncate

c) trunk

d) truncate and ftruncate

Answer: d

27. truncate needs the ___ of the file as an argument but ftruncate works with _______

a) pathname, file descriptor

b) file descriptor, pathname

c) pathname, pathname

d) file descriptor, file descriptor

Answer: a

28.

UNIT IV NOTES

SYLLABUS

Shell introduction and Shell Scripting What is shell and various type of shell, Various

editors present in Linux Different modes of operation in vi editor, What is shell script,

Writing and executing the shell script , Shell variable (user defined and system variables)

What is shell ?

Shell is a UNIX term for the interactive user interface with an operating system.

The shell is the layer of programming that understands and executes the commands a user

enters. In some systems, the shellis called a command interpreter.

Types of Shells

Let’s study different kind of shells with their features, functionalities and speed of

executions.

Bash Shell

Bash is a Unix shell. It was created as a substitute for Bourne shell and include much

more scripting tools than Bourne shell like the csh and ksh shells.

Bash is a very common shell and you actually might be running it by default on your

machine. It is almost always available on all Linux distributions. One of the contender to

Bash shell is dash which is becoming more popular by the Ubuntu project.

Zsh Shell

Zsh shell is 100% compatible with bash. This means that whatever scripts run on Bash

runs on Zsh shell exactly the same. To add, Zsh shell includes more features.

Most common features in Zsh shell are spelling correction, intelligent command-line

completion, pluggable modules that increase shell capabilities, aliases with global access

that allow a user to alias file names or anything else instead of just commands and much

better theming support.

Even better feature in favor of Zsh shell is that if a user is known to Bash shell, it is very

easy to switch to Zsh shell without getting used to a different syntax.

Csh Shell

Bill Joy created it at the University of California at Berkeley. It incorporated features

such as aliases and command history. It includes helpful programming features like built-

in arithmetic and C-like expression syntax.

Csh is an improved C shell. It is most popular in terms of a login shell and shell

command interpreter. Most favorable features of this shell are:

 Syntax similar to C

 Control over jobs

 Intelligent spell correction

 Command-line editor

 Filename completion

The Bourne Shell –

Denoted as sh

It was written by Steve Bourne at AT&T Bell Labs. It is the original UNIX shell. It is

faster and more preferred. It lacks features for interactive use like the ability to recall

previous commands. It also lacks built-in arithmetic and logical expression handling. It is

default shell for Solaris OS.

For the Bourne shell the:

Command full-path name is /bin/sh and /sbin/sh,

Non-root user default prompt is $,

Root user default prompt is #.

The Korn Shell
It is denoted as ksh

It Was written by David Korn at AT&T Bell LabsIt is a superset of the Bourne shell.So it

supports everything in the Bourne shell.It has interactive features. It includes features like

built-in arithmetic and C-like arrays, functions, and string-manipulation facilities.It is

faster than C shell. It is compatible with script written for C shell.

VARIOUS EDITORS PRESENT IN LINUX

In this article I am taking a look at some of the best 12 open source commonly used text

editors in Linux on both server and desktops.

1. Vi/Vim Editor

Vim is a powerful command line based text editor that has enhanced the functionalities of

the old Unix Vi text editor. It is one the most popular and widely used text editors among

System Administrators and programmers that is why many users often refer to it as a

programmer’s editor. It enables syntax highlighting when writing code or editing

configuration files.

If you want to see our complete series on vi(m), please refer the links below:

 Learn and Use Vi/Vim as a Full Text Editor in Linux

 Learn ‘Vi/Vim’ Editor Tips and Tricks to Enhance Your Skills

 8 Interesting ‘Vi/Vim’ Editor Tips and Tricks

2. Gedit

This is a general purpose GUI based text editor and is installed by default text editor on

Gnome desktop environment. It is simple to use, highly pluggable and a powerful editor

with the following features:

 Support for UTF-8

 Use of configurable font size and colors

 Highly customizable syntax highlighting

 Undo and redo functionalities

 Reverting of files

 Remote editing of files

 Search and replace text

 Clipboard support functionalities and many more

3. Nano Editor

Nano is an easy to use text editor especially for both new and advanced Linux users. It

enhances usability by providing customizable key binding.

Nano has the following features:

 Highly customizable key bindings

 Syntax highlighting

 Undo and redo options

 Full line display on the standard output

 Pager support to read form standard input

You can check our complete guide for editing files with Nano editor at:

 How to Use Nano Editor in Linux

https://www.tecmint.com/vi-editor-usage/
https://www.tecmint.com/learn-vi-and-vim-editor-tips-and-tricks-in-linux/
https://www.tecmint.com/how-to-use-vi-and-vim-editor-in-linux/
https://www.tecmint.com/rhcsa-exam-how-to-use-nano-vi-editors/

4. GNU Emacs

This is a highly extensible and customizable text editor that also offers interpretation of

the Lisp programming language at its core. Different extensions can be added to support

text editing functionalities.

Emacs has the following features:

 User documentation and tutorials

 Syntax highlighting using colors even for plain text.

 Unicode supports many natural languages.

 Various extension including mail and news, debugger interface, calender and many

more

5. Kate/Kwrite

Kate is a feature rich and highly pluggable text editor that comes with KDesktop

Environment (KDE). The Kate project aims at development of two main products that

is: KatePart and Kate.

KatePart is an advanced text editor component included in many KDE applications which

may require users to edit text whereas Kate is an multiple document interface(MDI) text

editor.

The following are some of its general features:

 Extensible through scripting

 Encoding support such as unicode mode

 Text rendering in bi-directional mode

 Line ending support with auto detection functionalities

Also remote file editing and many other features including advanced editor features,

applications features, programming features, text highlighting features, backup features

and search and replace features.

6. Lime Text

This is a powerful IDE-like text editor which is free and open-source successor of

popular Sublime Text. It has a few frontends such as command-line interface that you can

use with the pluggable backend.

7. Pico Editor

Pico is also a command line based text editor that comes with the Pine news and email

client. It is a good editor for new Linux users because of its simplicity in relation to many

GUI text editors.

Different modes of operation in vi editor

There are three modes of operation in vi: Command Mode, Input Mode, and Line Mode.

 Command Mode: When vi starts up, it is in Command Mode. This mode is where

vi interprets any characters we type as commands and thus does not display them

in the xterm window. This mode allows us to move through a file, and to delete,

copy, or paste a piece of text. To enter into Command Mode from any other mode,

it suffices to press the [Esc] key. If we press [Esc] when we are already in

Command Mode, then vi will beep or flash the screen.

 Input Mode: In Input Mode, vi accepts keystrokes as text and displays the text as

it is entered from the keyboard. vi must be in Input Mode before we can insert text

into a file. To enter into Input Mode, we need to put vi into Command Mode and

type the key [i].

 Line Mode: Line Mode is invoked by typing a colon [:] or a slash [/] while vi is in

Command Mode. The cursor will jump to the last line of the screen and vi will

wait for a command.

What is shell script?

A shell script is a text file that contains a sequence of commands for a UNIX-based

operating system. It's called a shell script because it combines into a "script" in a single

file a sequence of commands that would otherwise have to be presented to the system

from a keyboard one at a time.

Steps to write and execute a script

Steps to write and execute a script

o Open the terminal. Go to the directory where you want to create your script.

o Create a file with .sh extension.

o Write the script in the file using an editor.

o Make the script executable with command chmod +x <fileName>.

o Run the script using ./<fileName>.

Note: In the last step you have to mention the path of the script if your script is in other

directory.

Writing and naming

A shell script is a sequence of commands for which you have a repeated use. This

sequence is typically executed by entering the name of the script on the command line.

Alternatively, you can use scripts to automate tasks using the cron facility. Another use

for scripts is in the UNIX boot and shutdown procedure, where operation of daemons and

services are defined in init scripts.

To create a shell script, open a new empty file in your editor. Any text editor will

do: vim, emacs, gedit, dtpad et cetera are all valid. You might want to chose a more

advanced editor like vim or emacs, however, because these can be configured to

recognize shell and Bash syntax and can be a great help in preventing those errors that

beginners frequently make, such as forgetting brackets and semi-colons.

In order to activate syntax highlighting in vim, use the command

:syntax enable or :sy enable

Or :syn enable

You can add this setting to your .vimrc file to make it permanent.

Put UNIX commands in the new empty file, like you would enter them on the command

line. As discussed in the previous chapter (see Section 1.3), commands can be shell

functions, shell built-ins, UNIX commands and other scripts.

Give your script a sensible name that gives a hint about what the script does. Make sure

that your script name does not conflict with existing commands. In order to ensure that no

confusion can rise, script names often end in .sh; even so, there might be other scripts on

your system with the same name as the one you chose. Check using which, whereis and

other commands for finding information about programs and files:

which -a script_name

whereis script_name

locate script_name

http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_01_03.html

TYPES OF SHELL VARIABLES

User Defined Variables in Linux

These variables are defined by users. A shell script allows us to set and use our own

variables within the script. Setting variables allows you to temporarily store data and

use it throughout the script, making the shell script more like a real computer program.

User variables can be any text string of up to 20 letters, digits, or an underscore

character. User variables are case sensitive, so the variable Var1 is different from the

variable var1. This little rule often gets novice script programmers in trouble.

Values are assigned to user variables using an equal sign. No spaces can appear between

the variable, the equal sign, and the value (another trouble spot for novices). Here are a

few examples of assigning values to user variables:

var1=10

var2=-57

var3=testing

var4=“still more testing”

The shell script automatically determines the data type used for the variable value.

Variables defined within the shell script maintain their values throughout the life of the

shell script but are deleted when the shell script completes.

System Variables in Linux

Environment variables are dynamic values which affect the processes or programs on a

computer. They exist in every operating system, but types may vary. Environment

variables can be created, edited, saved, and deleted and give information about the system

behavior.

Environment variables can change the way a software/programs behave.

E.g. $LANG environment variable stores the value of the language that the user

understands. This value is read by an application such that a Chinese user is shown a

Mandarin interface while an American user is shown an English interface.

Prepared by Dr.M.Sakthi Asvini, Assistant Professor, CS,CA & IT

UNIT IV

1. What is a shell script?

a) group of commands

b) a file containing special symbols

c) a file containing a series of commands

d) group of functions

Answer: c

2. The first line in any shell script begins with a _____

a) &

b) !

c) $

d) #

Answer: d

3. To run the script, we should make it executable first by using _____

a) chmod +x

b) chmod +r

c) chmod +w

d) chmod +rwx

Answer: a

4. To spawn a child of our own choice for running the script, we can use ___ command.

a) ps

b) pr

c) sh

d) $$

Answer: c

5. Which command is used for making the scripts interactive?

a) ip

b) input

c) read

d) write

Answer: c

6. What are positional parameters?

a) special variables for assigning arguments from the command line

b) pattern matching parameters

c) special variables for reading user input

d) special variables and patterns

Answer: a

7. The first argument is read by the shell into the parameter ___

a) 1$

b) $3

c) $$

d) $1

Answer: d

8. The complete set of positional parameters is stored in ______ as a single string.

a) $n

b) $#

c) $*

d) $$

Answer: c

9. Which of the following is used for storing the number of positional parameters?

a) $n

b) $#

c) $*

d) $2

Answer: b

10. Which of the following commands let us perform a set of instructions repeatedly?

a) for

b) while

c) until

d) for, while, until

Answer: d

11. Which of the following keywords are used in while loop?

a) do

b) done

c) then

d) do and done

Answer: d

12. Which one of the following is used for looping with a list?

a) while

b) until

c) case

d) for

Answer: d

13. Which of the following loop statements uses do and done keyword?

a) for

b) while

c) case

d) for and while

Answer: d

14. Which command is used for changing filename extensions?

a) chown

b) rename

c) basename

d) rm

Answer: c

15. Which command is used by the shell for manipulating positional parameters?

a) set

b) cut

c) case

d) paste

Answer: a

16. ____ statement is used for shifting arguments left.

a) set

b) shift

c) cut

d) paste

Answer: b

17. The ____ allows us to read data from the same file containing the script.

a) >>

b) <<

c) !!

d) —

Answer: b

18. Which of the following command doesn’t accept a filename as an argument?

a) cut

b) ls

c) paste

d) mailx

Answer: d

19. ____ command is the appropriate way to interrupt a program.

a) kill

b) SIGKILL

c) INT

d) trap

Answer: d

20. Which of the following option is used with a set for debugging shell scripts?

a) -a

b) -x

c) -d

d) -e

Answer: b

21. Suppose x =10, then what will be the value of xx?

a) undefined

b) erroneous

c) 100

d) x10$

Answer: d

22. A shell script stopped running when we change its name. Why?

a) location of the file changed

b) we can’t change the name of the script

c) $0 was used in the script

d) many possible reasons

Answer: c

23. Where is the exit status of a command stored?

a) $0

b) $>

c) $1

d) $?

Answer: d

24. Which of the following is false?

a) here document provides standard input to any script non interactively

b) read command is used for making scripts interactive

c) $* stores the number of arguments specified

d) && and || are logical operators

Answer: c

25. test statement cannot ______

a) compare two numbers

b) compare two strings

c) compare two files

d) check a file’s attributes

Answer: c

26. ____ option is used with a test for checking if the file exists and has the size greater than

zero.

a) -f

b) -r

c) -e

d) -s

Answer: d

27. Which one of the following keyword is used with the set command to avoid overwrite existing

file?

a) nooverwrite

b) ignore

c) clobber

d) noclobber

Answer: d

28. To prevent accident logging out, we can use ____ as a keyword with the set command.

a) noclobber

b) log out

c) ignoreeof

d) ignore

Answer: c

29. To reverse any setting updated by set command we can use ____ symbol.

a) –

b) /

c) +

d) $

Answer: c

30. Which file is executed every time a second shell is called up?

a) .profile

b) rc file

c) .script

d) env.file

Answer: b

31. Which of the following are history variables?

a) HISTISIZE

b) HISTFILESIZE

c) HISTORY

d) HISTISIZE and HISTFILESIZE

Answer: d

32. Which one of the following command will search history list for the previous command having

the last occurrence of string cvf?

a) /cvf

b) /cvf [enter]

c) /bkw

d) !cvf

Answer: a

1

UNIT V

System calls, Using system calls Pipes and Filters, Decision making in Shell Scripts (If

else, switch), Loops in shell, Functions, Utility programs (cut, paste, join, tr, uniq

utilities), Pattern matching utility (grep)

Linux looks and feels much like any other UNIX system. Its development began

in 1991, when a Finnish student, Linus Torvalds, wrote and christened Linux, a small but

self-contained kernel for the 80386 processor, the first true 32-bit processor in Intel's

range of PC-compatible CPUs. From an initial kernel that partially implemented a small

subset of the UNIX system services, the Linux system has grown to include much ifFNIX

functionality. In its early days, Linux development revolved largely around the central

operating-system kernel—the core, privileged executive that manages all system

resources and that interacts directly with the computer hardware. The Linux kernel is an

entirely original piece of software developed from scratch by the Linux community. The

Linux system, as we know it today, includes a multitude of components, some written

from scratch, others borrowed from other development projects, and still others created in

collaboration with other teams. A Linux distribution includes all the standard

components of the Linux system, plus a set of administrative tools to simplify the initial

installation and subsequent upgrading of Linux and to manage installation and removal of

other packages on the system.

1.2 The Linux Kernel

The first Linux kernel released to the public was Version 0.01, dated May 14,

1991. It had no networking, ran only on 80386-compatible Intel processors and PC

hardware, and had extremely limited device-driver support. The virtual memory

subsystem was also fairly basic and included no support for memory mapped files;

however, even this early incarnation supported shared pages with copy-on-write. The

only file system supported was the Minix file system -the first Linux kernels were cross-

developed on a Minix platform.

The next milestone version, Linux 1.0, was released on March 14, 1994. This

release culminated three years of rapid development of the LimlX kernel. Perhaps the

single biggest new feature was networking: 1.0 included support for UNIX's standard

2

TCP liP networking protocols, as well as a BSD-compatible socket interface for

networking programming. Device-driver support was added for running IP over an

Ethernet or (using PPP or SLIP protocols) over serial lines or modems. The 1.0 kernel

also included a new, much enhanced file system without the limitations of the original

Minix file system and supported a range of SCSI controllers for high-performance disk

access. The developers extended the virtual memory subsystem to support paging to swap

files and memory mapping of arbitrary files (but only read-only memory mapping was

implemented in 1.0). A range of extra hardware support was also included in this release.

Although still restricted to the Intel PC platform, hardware support had grown to

include floppy-disk and CD-ROM devices, as well as sound cards, a range of mice, and

international keyboards. Floating-point emulation was provided in the kernel for 80386

users who had no 80387 math coprocessor; System V UNIX-style inclLlding shared

memory, semaphores, and message queues, was implemented. Simple support for

dynamically loadable and unloadable kernel modules was supplied as well. At this point,

development started on the 1.1 kernel stream, but numerous bug-fix patches were

released subsequently against 1.0.

In March 1995, the 1.2 kernel was released. This release did not offer nearly the

same improvement in functionality as the 1.0 release, but it did support a much wider

variety of hardware, including the new PCI hardware bus architecture. Developers added

another PC-specific feature-support for the 80386 CPU's virtual8086 mode-to allow

emulation of the DOS operating system for PC computers. They also updated the

networking stack to provide support for the IPX protocol and made the IP

implementation more complete by including accounting and firewalling functionality.

The 1.2 kernel was the final PC-only Linux kernel. The source distribution for

Linux 1.2 included partially implemented support for SPARC, Alpha, and MIPS CPUs,

but full integration of these other architectures did not begin until after the 1.2 stable

kernels was released. The Linux 1.2 release concentrated on wider hardware support and

more complete implementations of existing functionality.

Much new functionality was under development at the time, but integration of the

new code into the main kernel source code had been deferred until after the stable 1.2

kernel had been released. As a result, the 1.3 development stream saw a great deal of new

3

functionality added to the kernel. This work was finally released as Linux 2.0 in since

1996. This release was given a major version-number increment on account of two major

new capabilities: support for multiple architectures, including a 64-bit native Alpha port,

and support for multiprocessor architectures. Linux distributions based on 2.0 are also

available for the Motorola 68000-series processors and for Sun's SPARC systems.

A derived version of Linux running on top of the Mach microkernel also runs on

PC and PowerMac systems. The changes in 2.0 did not stop there. The memory-

management code was substantially improved to provide a unified cache for file-system

data independent of the caching of block devices. As a result of this change, the kernel

offered greatly increased file-system and virtual memory performance. For the first time,

file-system caching was extended to networked file systems, and writable memory-

mapped regions also were supported. The 2.0 kernel also included much improved TCP

/IP performance, and a number of new networking protocols were added, including Apple

Talk, AX.25an'lateur radio networking, and ISDN support. The ability to mount

remote netware and SMB (Microsoft LanManager) network volumes was added. Other

major improvements in 2.0 were support for internal kernel threads, for handling

dependencies between loadable modules, and for automatic loading of modules on

demand. Dynamic configuration of the kernel at run time was much improved through a

new, standardized configuration interface. Additional new features included file-system

quotas and POSIX-compatible real-time process-scheduling classes. Improvements

continued with the release of Linux 2.2 in January 1999.

A port for UltraSPARC systems was added. Networking was enhanced with

more flexible firewalling, better routing and traffic management, and support for TCP

large window and selective acks. Acorn, Apple, and NT disks could now be read, and

NFS was enhanced and a kernel-mode NFS daemon added. Signal handling, interrupts,

and some I/0 were locked at a finer level than before to improve symmetric

multiprocessor (SMP) performance. Advances in the 2.4 and 2.6 releases of the kernel

include increased support for SMP systems, journaling file systems, and enhancements to

the memory management system. The process scheduler was modified in Version 2.6,

providing an efficient 0(1) scheduling algorithm. In addition, the LimiX 2.6 kernel is now

preemptive, allowing a process to be preempted while running in kernel mode.

4

1.3 The Linux System: Design Principles

 Linux is a multiuser, multitasking system with a full set of UNIX-compatible

tools.

 Its file system adheres to traditional UNIX semantics, and it fully implements the

standard UNIX networking model.

 Main design goals are speed, efficiency, flexibility and standardization.

 Linux is designed to be compliant with the relevant POSIX documents; some

Linux distributions have achieved official POSIX certification.

 The Linux programming interface adheres to the SVR4 UNIX semantics, rather

than to BSD behavior.

1.4 The layers of a UNIX system

1.5 Components of a UNIX System

 Like most UNIX implementations, Linux is composed of three main bodies of

code:

 Standard Utilities Programs

 Standard Library

 Kernel

 Standard Utilities Programs perform individual specialized management tasks.

 Shell

5

 Commands for the management of files and directories

 Filters

 Compilers

 Editors

 Commands for the administration of the system

1.6 The shell of a UNIX System

 The UNIX systems have a Graphical User Interface (Linux uses KDE, GNOME

…), but the programmers prefer to type the commands.

 Shell: the user process which executes programs (command interpreter)

 User types command

 Shell reads command (read from input) and translates it to the operating

system.

 Can run external programs (e.g. netscape) or internal shell commands (e.g. cd)

 Various different shells available:

 Bourne shell (sh), C shell (csh), Korn shell (ksh), TC shell (tcsh), Bourne

Again shell (bash).

 The administrator of the system provides to the user a default shell, but the user

can change shell.

1.7 Memory Management

Memory management under Linux has two components. The first deals with

allocating and freeing physical memory—pages, groups of pages, and small blocks of

memory. The second handles virtual memory, which is memory mapped into the address

space of running processes.

Management of Physical Memory

Due to specific hardware characteristics, Linux separates physical memory into

three different zones identifying different regions of memory. The zones are identified as:

• Z0NE_DMA

• ZONEJTORMAL

• ZONE_HIGHMEM

These zones are architecture specific. For example, on the Intel 80x86

architecture, certain ISA (industry standard architecture) devices can only access the

6

lower 16 MB of physical memory using DMA. On these systems, the first 16 MB of

physical memory comprise ZONE-DMA. ZQNEJIORMAL identifies physical memory

that is mapped to the CPU's address space. This zone is used for most routine memory

requests. For architectures that do not limit what DMA can access, ZONEJDMA is not

present, and ZQNEJJQRMAL is used.

Finally, ZONE_HIGHMEM (for "high memory") refers to physical memory that is

not mapped into the kernel address space. For example, on the 32-bit Intel architecture

(where 232 provides a 4-GB address space), the kernel is mapped into the first 896 MB

of the address space; the remaining memory is referred to as high memory and is

allocated from ZONE_HIGHMEM.

1.7 File Systems

Linux retains UNIX's standard file-system model. In UNIX, a file does not have to be

an object stored on disk or fetched over a network from a remote file server. Rather,

UNIX files can be anything capable of handling the input or output of a stream of data.

Device drivers can appear as files, and inter process communication channels or network

connections also look like files to the user. The Linux kernel handles all these types of

file by hiding the implementation details of any single file type behind a layer of

software, the virtual file system (VFS). Here, we first cover the virtual file system and

then discuss the standard Linux file system—ext2fs.

The Virtual File System

The Linux VFS is designed around object-oriented principles. It has two

components: a set of definitions that specify what file-system objects are allowed to look

like and a layer of software to manipulate the objects. The VFS defines four main object

types:

• An inode object represents an individual file.

• A file object represents an open file.

• A superblock object represents an entire file system.

• A dentry object represents an individual directory entry.

For each of these four object types, the VFS defines a set of operations. Every object

of one of these types contains a pointer to a function table. The function table lists the

7

addresses of the actual functions that implement the defined operations for that object.

For example, an abbreviated API for some of the file object's operations includes:

• int open (. . .) — Open a file.

• ssize_t read(. . .) —Read from a file.

• ssize_t write (. . .) —Write to a file.

• int mmap (. . .) — Memory-map a file.

The complete definition of the file object is specified in the struct file_operations,

which is located in the file /usr/include/linux/fs.h. An implementation of the file object

(for a specific file type) is required to implement each function specified in the definition

of the file object.

The VFS software layer can perform an operation on one of the file-system objects

by calling the appropriate function from the object's function table, without having to

know in advance exactly what kind of object it is dealing with. The VFS does not know,

or care, whether an inode represents a networked file, a disk file, a network socket, or a

directory file. The appropriate function for that file's readQ operation will always be at

the same place in its function table, and the VFS software layer will call that function

without caring how the data are actually read.

The inode and file objects are the mechanisms used to access files. An inode object is

a data structure containing pointers to the disk blocks that contain the actual hie contents,

and a file object represents a point of access to the data in an open file. A process cannot

access an inode's contents without first obtaining a file object pointing to the inode. The

file object keeps track of where in the file the process is currently reading or writing, to

keep track of sequential file I/O.

It also remembers whether the process asked for write permissions when the file was

opened and tracks the process's activity if necessary to perform adaptive read-ahead,

fetching file data into memory before the process requests the data, to improve

performance. File objects typically belong to a single process, but inode objects do not.

Even when a file is no longer being used by any processes, its inode object may

still be cached by the VFS to improve performance if the file is used again in the near

8

future. All cached file data are linked onto a list in the file's inode object. The inode also

maintains standard information about each file, such as the owner, size, and time most

recently modified.

Directory files are dealt with slightly differently from other files. The UNIX

programming interface defines a number of operations on directories, such as creating,

deleting, and renaming a file in a directory.

The system calls for these directory operations do not require that the user open

the files concerned, unlike the case for reading or writing data. The VFS therefore defines

these directory operations in the inode object, rather than in the file object. The

superblock object represents a connected set of files that form a self-contained file

system. The operating-system kernel maintains a single superblock object for each disk

device mounted as a file system and for each networked file system currently connected.

The main responsibility of the superblock object is to provide access to inodes.

The VFS identifies every inode by a unique (file-system/inode number) pair, and it finds

the inode corresponding to a particular inode number by asking the superblock object to

return the inode with that number.

Finally, a dentry object represents a directory entry that may include the name of

a directory in the path name of a file (such as /usr) or the actual file (such as s t d i o . h).

For example, the file Aisr/include/stdio. h contains the directory entries (1) /, (2) usr, (3)

include, and (4) stdio .h. Each one of these values is represented by a separate dentry

object.

As an example of how dentry objects are used, consider the situation in which a

process wishes to open the file with the pathname / u s r / i n c l u d e / s t d i o . h using

an editor. Because Linux treats directory names as files, translating this path requires first

obtaining the inode for the root /. The operating system must then read through this file to

obtain the inode for the file include. It must continue this process until it obtains the

inode for the file s t d io . h. Because path-name translation can be a time-consuming

task, Linux maintains a cache of dentry objects, which is consulted during path-name

translation. Obtaining the inode from the dentry cache is considerably faster than having

to read the on-disk file.

The Linux ext2fs File System

9

The standard on-disk file system used by Linux is called ext2fs, for historical reasons.

Linux was originally programmed with a Minix-compatible filesystem, to ease

exchanging data with the Minix development system, but that file system was severely

restricted by 14-character file-name limits and a maximum file-system size of 64 MB.

The Minix file system was superseded by a new file system, which was christened the

extended file system (extfs). A later redesign of this file system to improve performance

and scalability and to add a few missing features led to the second extended file system

(ext2fs).

2. Windows 2000

Windows 2000 is an operating system for use on both client and servercomputers. It

was produced by Microsoft and released to manufacturing on December 15, 1999 and

launched to retail on February 17, 2000. It is the successor to Windows NT 4.0, and is the

last version of Microsoft Windows to display the "Windows NT" designation.[7] It is

succeeded by Windows XP (released in October 2001) and Windows Server

2003 (released in April 2003). During development, Windows 2000 was known as

Windows NT 5.0.

Four editions of Windows 2000 were released: Professional, Server,Advanced

Server, and Datacenter Server; the latter was both released to manufacturing and

launched months after the other editions.

While each edition of Windows 2000 was targeted at a different market, they

shared a core set of features, including many system utilities such as the Microsoft

Management Console and standard system administration applications.

Support for people with disabilities was improved over Windows NT 4.0 with a

number of new assistive technologies, and Microsoft increased support for different

languages and locale information.

2.1 The Windows 2000 File System

Windows 2000 supports several file systems, the most important of which are FAT-

16, FAT-32, and NTFS. This sample chapter examines the NTFS file system because it is

a modern file system unencumbered by the need to be fully compatible with the MS-DOS

file system.

http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Client_(computing)
http://en.wikipedia.org/wiki/Server_(computing)
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Windows_NT_4.0
http://en.wikipedia.org/wiki/Windows_2000#cite_note-7
http://en.wikipedia.org/wiki/Windows_XP
http://en.wikipedia.org/wiki/Windows_Server_2003
http://en.wikipedia.org/wiki/Windows_Server_2003
http://en.wikipedia.org/wiki/Microsoft_Management_Console
http://en.wikipedia.org/wiki/Microsoft_Management_Console
http://en.wikipedia.org/wiki/System_administration
http://en.wikipedia.org/wiki/Windows_NT_4.0
http://en.wikipedia.org/wiki/Assistive_technology
http://en.wikipedia.org/wiki/Locale

10

Windows 2000 supports several file systems, the most important of which are FAT-16, FAT-

32, andNTFS (NT File System). FAT-16 is the old MS-DOS file system. It uses 16-bit disk

addresses, which limits it to disk partitions no larger than 2 GB. FAT-32 uses 32-bit disk

addresses and supports disk partitions up to 2 TB. NTFS is a new file system developed

specifically for Windows NT and carried over to Windows 2000. It uses 64-bit disk addresses and

can (theoretically) support disk partitions up to 264 bytes, although other considerations limit it to

smaller sizes. Windows 2000 also supports read-only file systems for CD-ROMs and DVDs. It is

possible (even common) to have the same running system have access to multiple file system

types available at the same time.

Fundamental Concepts

Individual file names in NTFS are limited to 255 characters; full paths are limited to 32,767

characters. File names are in Unicode, allowing people in countries not using the Latin alphabet

(e.g., Greece, Japan, India, Russia, and Israel) to write file names in their native language. For

example, file is a perfectly legal file name. NTFS fully supports case sensitive names (so foo is

different from Foo andFOO). Unfortunately, the Win32 API does not fully support case-

sensitivity for file names and not at all for directory names, so this advantage is lost to programs

restricted to using Win32 (e.g., for Windows 98 compatibility).

An NTFS file is not just a linear sequence of bytes, as FAT-32 and UNIX files are.

Instead, a file consists of multiple attributes, each of which is represented by a stream of bytes.

Most files have a few short streams, such as the name of the file and its 64-bit object ID, plus one

long (unnamed) stream with the data. However, a file can also have two or more (long) data

streams as well. Each stream has a name consisting of the file name, a colon, and the stream

name, as in foo:stream1. Each stream has its own size and is lockable independently of all the

other streams. The idea of multiple streams in a file was borrowed from the Apple Macintosh, in

which files have two streams, the data fork and the resource fork. This concept was incorporated

into NTFS to allow an NTFS server be able to serve Macintosh clients.

File streams can be used for purposes other than Macintosh compatibility. For example, a

photo editing program could use the unnamed stream for the main image and a named stream for

a small thumbnail version. This scheme is simpler than the traditional way of putting them in the

same file one after another. Another use of streams is in word processing. These programs often

make two versions of a document, a temporary one for use during editing and a final one when

the user is done. By making the temporary one a named stream and the final one the unnamed

stream, both versions automatically share a file name, security information, timestamps, etc. with

no extra work.

11

The maximum stream length is 264 bytes. To get some idea of how big a 264-byte stream

is, imagine that the stream were written out in binary, with each of the 0s and 1s in each byte

occupying 1 mm of space. The 267-mm listing would be 15 light-years long, reaching far beyond

the solar system, to Alpha Centauri and back. File pointers are used to keep track of where a

process is in each stream, and these are 64 bits wide to handle the maximum length stream, which

is about 18.4 exabytes.

The Win32 API function calls for file and directory manipulation are roughly similar to

their UNIX counterparts, except most have more parameters and the security model is different.

Opening a file returns a handle, which is then used for reading and writing the file. For graphical

applications, no file handles are predefined. Standard input, standard output, and standard error

have to be acquired explicitly if needed; in console mode they are preopened, however. Win32

also has a number of additional calls not present in UNIX.

3. Windows XP

The Microsoft Windows XP operating system is a 32/64-bit preemptive multitasking

operating system for AMD K6/K7, Intel IA32/IA64, and later microprocessors. The

successor to Windows NT and Windows 2000, Windows XP is also intended to replace

the Windows 95/98 operating system. Key goals for the system are security, reliability,

ease of use, Windows and POSIX application compatibility, high performance,

extensibility, portability, and international support.

3.1 History

In the mid-1980s, Microsoft and IBM cooperated to develop the OS/2 operating

system, which was written in assembly language for single-processor Intel 80286

systems. In 1988, Microsoft decided to make a fresh start and to develop a "new

technology" (or NT) portable operating system that supported both the OS/2 and POSIX

application-programming interfaces (APIs). In October 1988, Dave Cutler, the architect

of the DEC VAX/VMS operating system, was hired and given the charter of building this

new operating system. Originally, the team planned for NT to use the OS/2 API as its

native environment, but during development, NT was changed to use the 32-bit Windows

API (or Win32 API), reflecting the popularity of Windows 3.0.

The first versions of NT were Windows NT 3.1 and Windows NT 3.1 Advanced

Server. (At that time, 16-bit Windows was at version 3.1.) Windows NT version 4.0

adopted the Windows 95 user interface and incorporated Internet web-server and web-

12

browser software. In addition, user-interface routines and all graphics code were moved

into the kernel to improve performance, with the side effect of decreased system

reliability. Although previous versions of NT had been ported to other microprocessor

architectures, the Windows 2000 version, released in February 2000, discontinued

support for other than Intel (and compatible) processors due to marketplace factors.

Windows 2000 incorporated significant changes over Windows NT. It added Active

Directory (an X.500-based directory service), better networking and laptop support,

support for plug-and-play devices, a distributed file system, and support for more

processors and more memory.

In October 2001, Windows XP was released as both an update to the Windows

2000 desktop operating system and a replacement for Windows 95/98. In 2002, the server

versions of Windows XP became available (called Windows .Net Server). Windows XP

updates the graphical user interface (GUI) with a visual design that takes advantage of

more recent hardware advances and many new ease-of-use features. Numerous features

have been added to automatically repair problems in applications and the operating

system itself. Windows XP provides better networking and device experience (including

zero-configuration wireless, instant messaging, streaming media, and digital

photography/video), dramatic performance improvements both for the desktop and large

multiprocessors, and better reliability and security than even Windows 2000.

Windows XP uses a client-server architecture (like Mach) to implement multiple

operating-system personalities, such as Win32 API and POSIX, with user-level processes

called subsystems. The subsystem architecture allows enhancements to be made to one

operating-system personality without affecting the application compatibility of any

others.

Windows XP is a multiuser operating system, supporting simultaneous access

through distributed services or through multiple instances of the graphical user interface

via the Windows terminal server. The server versions of Windows XP support

simultaneous terminal server sessions from Windows desktop systems. The desktop

versions of terminal server multiplex the keyboard, mouse, and monitor between virtual

terminal sessions for each logged-on user. This feature, called fast user switching, allows

13

users to preempt each other at the console of a PC without having to log off and onto the

system.

Windows XP is the first version of Windows to ship a 64-bit version. The native

NT file system (NTPS) and many of the Win32 APIs have always used 64- bit integers

where appropriate—so the major extension to 64-bit in Windows XP is support for large

addresses.

There are two desktop versions of Windows XP. Windows XP Professional is the

premium desktop system for power users at work and at home. For home users migrating

from Windows 95/98, Window's XP Personal provides the reliability and ease of use of

Windows XP, but lacks the more advanced features needed to work seamlessly with

Active Directory or rim POSIX applications. The members of the Windows .Net Server

family use the same core components as the desktop versions but add a range of features

needed for uses such as webserver farms, print/file servers, clustered systems, and, large

datacenter machines. The large datacenter machines can have up to 64 GB of memory

and 32 processors on IA32 systems and 128 GB and 64 processors on IA64 systems.

3.1 Design Principles

Microsoft's design goals for Windows XP include security, reliability, Windows

and POSIX application compatibility, high performance, extensibility, portability, and

international support.

Security

Windows XP security goals required more than just adherence to the design

standards that enabled Windows NT 4.0 to receive a C-2 security classification from the

U.S. government (which signifies a moderate level of protection from defective software

and malicious attacks). Extensive code review and testing were combined with

sophisticated automatic analysis tools to identify and investigate potential defects that

might represent security vulnerabilities.

Reliability

Windows 2000 was the most reliable, stable operating system Microsoft had ever

shipped to that point. Much of this reliability came from maturity in the source code,

extensive stress testing of the system, and automatic detection of many serious errors in

drivers. The reliability requirements for Windows XP were even more stringent.

14

Microsoft used extensive manual and automatic code review to identify over 63,000 lines

in the source files that might contain issues not detected by testing and then set about

reviewing each area to verify that the code was indeed correct.

Windows XP extends driver verification to catch more subtle bugs, improves the

facilities for catching programming errors in user-level code, and subjects third-party

applications, drivers, and devices to a rigorous certification process. Furthermore,

Windows XP adds new facilities for monitoring the health of the PC, including

downloading fixes for problems before they are encountered by users. The perceived

reliability of Windows XP was also improved by making the graphical user interface

easier to use through better visual design, simpler menus, and measured improvements in

the ease with which users can discover how to perform common tasks.

Windows and POSIX Application Compatibility

Windows XP is not only an update of Windows 2000; it is a replacement for

Windows 95/98. Windows 2000 focused primarily on compatibility for business

applications. The requirements for Windows XP include a much higher compatibility

with consumer applications that run on Windows 95/98. Application compatibility is

difficult to achieve because each application checks for a particular version of Windows,

may have some dependence on the quirks of the implementation of APIs, may have latent

application bugs that were masked in the previous system, and so forth. Windows XP

introduces a compatibility layer that falls between applications and the Win32 APIs. This

layer makes Windows XP look (almost) bug-for-bug compatible with previous versions

of Windows.

Windows XP, like earlier NT releases, maintains support for running many 16-bit

applications using a thunking, or conversion, layer that translates 16-bit API calls into

equivalent 32-bit calls. Similarly, the 64-bit version of Windows XP provides a thunking

layer that translates 32-bit API calls into native 64-bit calls. POSIX support in Windows

XP is much improved. A new POSIX subsystem called Interix is now available. Most

available UNIX-compatible software compiles and runs under Interix without

modification.

High Performance

15

Windows XP is designed to provide high performance on desktop systems

(which are largely constrained by I/O performance), server systems (where the CPU is

often the bottleneck), and large multithreaded and multiprocessor environments (where

locking and cache-line management are key to scalability).

High performance has been an increasingly important goal for Windows XP.

Windows 2000 with SQL 2000 on Compaq hardware achieved top TPC-C numbers at the

time it shipped. To satisfy performance requirements, NT uses a variety of techniques,

such as asynchronous I/O, optimized protocols for networks (for example, optimistic

locking of distributed data, batching of requests), kernel-based graphics, and

sophisticated caching of file-system data.

The memory-management and synchronization algorithms are designed with an

awareness of the performance considerations related to cache lines and multiprocessors.

Windows XP has further improved performance by reducing the code-path length in

critical functions, using better algorithms and per-processor data structures, using

memory coloring for NUMA (non-uniform memory access) machines, and implementing

more scalable locking protocols, such as queued spinlocks. The new locking protocols

help reduce system bus cycles and include lock-free lists and queues, use of atomic read-

modify-write operations (like interlocked increment), and other advanced locking

techniques.

Extensibility

Extensibility refers to the capacity of an operating system to keep up with

advances in computing technology. So that changes over time are facilitated, the

developers implemented Windows XP using a layered architecture. The Windows XP

executive runs in kernel or protected mode and provides the basic system services. On

top of the executive, several server subsystems operate in user mode.

Among them are environmental subsystems that emulate different operating

systems. Thus, programs written for MS-DOS, Microsoft Windows, and POSIX all run

on Windows XP in the appropriate environment.

Because of the modular structure, additional environmental subsystems can be

added without affecting the executive. In addition, Windows XP uses loadable drivers in

the I/O system, so new file systems, new kinds of I/O devices, and new kinds of

16

networking can be added while the system is running. Windows XP uses a client-server

model like the Mach operating system and supports distributed processing by remote

procedure calls (RPCs) as defined by the Open Software Foundation.

Portability

An operating system is portable if it can be moved from one hardware

architecture to another with relatively few changes. Windows XP is designed to be

portable. As is true of the UNIX operating system, the majority of the system is written in

C and C++. Most processor-dependent code is isolated in a dynamic link library (DLL)

called the hardware-abstraction layer (HAL). A DLL is a file that is mapped into a

process's address space such that any functions in the DLL appear to be part of the

process.

3.2 File System

Historically, MS-DOS systems have used the file-allocation table (FAT) file

system. The 16-bit FAT file system has several shortcomings, including internal

fragmentation, a size limitation of 2 GB, and a lack of access protection for files. The 32-

bit FAT file system has solved the size and fragmentation problems, but its performance

and features are still weak by comparison with modern file systems. The NTFS file

system is much better. It was designed to include many features, including data recovery,

security, fault tolerance, large files and file systems, multiple data streams, UNICODE

names, sparse files, encryption, journaling, volume shadow copies, and file compression.

Windows XP uses NTFS as its basic file system, and we focus on it here. Windows XP

continues to use FAT16, however, to read floppies and other removable media. And

despite the advantages of NTFS, FAT32 continues to be important for interoperability of

media with Windows 95/98 systems. Windows XP supports additional file-system types

for the common formats used for CD and DVD media.

17

POSSIBLE QUESTIONS

UNIT – V

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. What do you mean by system calls?

2. What are pipes?

3. What are filters?

4. What is decision making in shell script?.

5. What are utility programs?

PART – C (6 MARKS)

1. Discuss the system calls.

2. Explain the pipes and filters.

3. Explain the decision making in shell script.

4. Discuss the utility programs of Unix and Linux.

5. Explain the pattern matching utility.

 Prepared by Dr.M.Sakthi Asvini, Assistant Professor, CS,CA,IT

UNIT V

1. Which command is used to get intermediate result in a pipeline of commands?

a) tee

b) tea

c) get

d) filter

Answer : a)

2. Which of the following features of UNIX may be used for inter process communication?

a) signals

b) pipes

c) semaphore

d) all of the given answers

Answer: d)

3. Which command is used to extract a column from a text file?
A. paste
B. get
C. cut
D. tar

Answer: c)

4. What is the function of cp command in UNIX?
a) list all the available files in the current directory
b) delete a given file
c) cp is a command used for copying files and directories
d) change the directory

Answer: c

5. What happens if the destination file specified in cp command does not exist?
a) file will not be copied
b) an error will be produced
c) destination file will be automatically created
d) none of the mentioned

Answer: c

6. Which of the following is not an option of cp command?
a) -z
b) -i
c) -R
d) -u

Answer: a

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

7. What is the correct syntax for copying multiple files with a filename starting as ‘file’ into another
file named as ‘directory_one’?
a) cp -i file directory_one
b) cp -R file directory/directory_one
c) cp file* directory_one

d) none of the mentioned

Answer: c

8. How can we copy an entire directory under another directory?
a) using -R option
b) using -a option
c) using -u option
d) none of the mentioned

Answer: a

9. How can we copy a file into our current directory?
a) cp file1
b) ct file1
c) cp file*

d) ct file*

Answer: b

10. What does the following command do?

cp -u * dir_file

a) copy all files to directory dir_file
b) update all files
c) delete all files
d) update all files in the current working directory and copy newer ones to directory dir_file

Answer: d

11. -n option is used with cp command for what purpose?
a) existing file should not be overwritten
b) to update file
c) interactive copying

d) recursive copying

Answer: a

12. Which option is used with cp command for linking files instead of copying?
a) -v
b) -l
c) -f
d) -x

Answer: b

13. -v option is used with cp command for displaying _____
a) errors
b) informative messages

c) diagnostic messages
d) file contents

Answer: b

14. Which command is used for displaying contents of a file?
a) cp
b) rm
c) cat
d) mkdir

Answer: c

15. Apart from displaying file contents, cat command is also used for _____ files.
a) displaying
b) deleting
c) copying
d) creating

Answer: d

16. Which symbol is used with cat command for creating files?
a) >
b) <
c) *
d) /

Answer: a

17. If we create a file using cat command with the same filename which already exists in the
current directory then,
a) existing file is deleted
b) new file will be created separately
c) existing file will be overwritten

d) an error will be produced

Answer: c

18. Which symbol is used to append an existing file?
a) >
b) <
c) >>
d) $

Answer: c

19. Which option is used with cat command for displaying non-printable characters?
a) -v
b) -n
c) -x

d) -a

Answer: a

20. Which option is used with the cat command for displaying file with line numbers?
a) -n
b) -v
c) -a
d) -x

Answer: a

21. Which of the following cannot be performed by cat command?
a) displaying files
b) creating files
c) appending files

d) deleting files

Answer: d

22. What does cat file01 file01 file01 display?
a) error
b) blank terminal
c) contents of file01 three times successively
d) contents of file01 single time

Answer: c

23. Which files will be displayed by the following command:

cat *file*

a) all files in the directory
b) all files with filename containing ‘file’
c) no files will be displayed

d) a single file

Answer: b

24. Which command is used to create empty files?
a) cp
b) cat
c) touch
d) create

Answer: d

25. Which option is used with touch command which forces the command not to create file, if it
does not exists.
a) -h
b) -c
c) -t
d) -f

Answer: b

26. Which of the following operators are used for logical execution?
a) ||
b) &&

c) %%
d) && and ||

Answer: d

27. The syntax for using && is ______________
a) cmd1 && cmd2
b) cmd1 cmd2 &&
c) cmd1 & cmd2&
d) cmd1

Answer: a

28. To perform decision depending on the fulfillment of certain criteria, ____ is used.
a) if
b) else
c) for
d) if and else

Answer: d

29. Every if is closed with a corresponding ____
a) else
b) fi
c) if
d) else if

Answer: b

30. To check more than two conditions, ___ is used with if-else statements.
a) while
b) for
c) elif
d) for

Answer: c

31. The name of the script is stored in which special parameter?
a) $1
b) $0
c) $#
d) $*

Answer: b

32. ____ statement matches an expression for more than one alternative.
a) for
b) while
c) elif
d) case

Answer: d

33. Every pattern in case statement in terminated with a _____
a) ;

b) :
c) ;;

d) //

Answer: c

34. The ___ option in case statement matches any option not matched by the previous options.
a) ^
b) $
c) *
d) //

Answer: c

35. Which command is used for computation and string handling?
a) expr
b) case
c) if

d) read

Answer: a

36. expr can perform ____ arithmetic operations.
a) 2
b) 4
c) 5
d) 3

Answer: c

37. Which of the following is performed by expr string handling’s function?
a) determine the length of string
b) extract a substring
c) locate the position of a character in a string

d) determine the length of string, extract and locate the position of the string

Answer: d

38. expr is a _____ command

a) internal

b) external

c) shell

d) derived

Answer: b

39. Which command is used for locating repeated and non-repeated lines?

a) sort

b) uniq

c) cut

d) paste

Answer: b

40. Which option is used with uniq command for selecting non-repeated lines?

a) -i

b) -c

c) -u

d) -a

Answer: c

41. Which option is used for selecting repeated entries?

a) -d

b) -c

c) -u

d) -a

Answer: a

42. ______ option is used for counting frequency of occurrence.

a) -d

b) -c

c) -u

d) -a

Answer: b

43. test command can be used to check which of the following?

a) Compare two numbers

b) Compare two strings

c) Check attributes of a file

d) All of the mentioned

Answer: d

44. ___ implies greater than and ____ implies less than.

a) gt, le

b) gt, lt

c) ge,le

d) ge,lt

Answer: b

45. Which one of the following option is used for AND operation in test command?

a) -o

b) -a

c) -e

d) -an

Answer: b

46. Which one of the following option is used for OR operation in test command?

a) -o

b) -a

c) -e

d) -an

Answer: a

47. Which one of the following option is used for checking that the string is not null?

a) -a

b) -o

c) -z

d) -n

Answer: d

48. To extract specific columns from a file, ____ command is used.

a) tail

b) head

c) pr

d) cut

Answer: d

49. ____ option is used with the cut command for cutting fields.

a) -c

b) -n

c) -f

d) -a

Answer: c

50. Which command is used for pasting files?

a) cut

b) paste

c) tail

d) head

Answer: b

51. _____ option is used with paste command if we want to specify our own delimiter.

a) -d

b) -c

c) -a

d) -e

Answer: a

52. Which option is used with paste command for joining lines?

a) -s

b) -c

c) -a

d) -e

Answer: a

	1.pdf (p.1-2)
	2.pdf (p.3-8)
	17CSU603B UNIX/LINUX PROGRAMMING LECTURE PLAN
	WEBSITES
	JOURNALS:

	3.pdf (p.9-34)
	Difference between Unix and Linux
	Common Consumer Distributions
	1. BIOS
	2. MBR
	3. GRUB
	4. Kernel
	5. Init
	6. Runlevel programs

	4.pdf (p.35-44)
	5.pdf (p.45-55)
	Process Control Functions
	The fork() Function
	The exec Family of Functions
	The wait() and waitpid() Functions

	6.pdf (p.56-63)
	7.pdf (p.64-84)
	8.pdf (p.85-88)
	9.pdf (p.89-95)
	Types of Shells
	Bash Shell
	Zsh Shell
	Csh Shell

	1. Vi/Vim Editor
	2. Gedit
	3. Nano Editor
	4. GNU Emacs
	5. Kate/Kwrite
	6. Lime Text
	7. Pico Editor
	Different modes of operation in vi editor
	Steps to write and execute a script
	Writing and naming
	User Defined Variables in Linux

	10.pdf (p.96-100)
	11.pdf (p.101-117)
	System calls, Using system calls Pipes and Filters, Decision making in Shell Scripts (If else, switch), Loops in shell, Functions, Utility programs (cut, paste, join, tr, uniq utilities), Pattern matching utility (grep)
	1.2 The Linux Kernel
	1.3 The Linux System: Design Principles
	1.4 The layers of a UNIX system
	1.6 The shell of a UNIX System
	1.7 Memory Management
	Management of Physical Memory
	1.7 File Systems
	The Virtual File System
	The Linux ext2fs File System
	2. Windows 2000
	2.1 The Windows 2000 File System
	3. Windows XP
	3.1 History
	3.1 Design Principles
	Security
	Reliability
	Windows and POSIX Application Compatibility
	High Performance
	Extensibility
	Portability
	3.2 File System
	POSSIBLE QUESTIONS UNIT – V
	PART – C (6 MARKS)

	12.pdf (p.118-125)
	Answer : a)
	3. Which command is used to extract a column from a text file? A. paste B. get C. cut D. tar
	Answer: c)
	4. What is the function of cp command in UNIX? a) list all the available files in the current directory b) delete a given file c) cp is a command used for copying files and directories d) change the directory
	Answer: c
	5. What happens if the destination file specified in cp command does not exist? a) file will not be copied b) an error will be produced c) destination file will be automatically created d) none of the mentioned
	Answer: c (1)
	6. Which of the following is not an option of cp command? a) -z b) -i c) -R d) -u
	Answer: a
	7. What is the correct syntax for copying multiple files with a filename starting as ‘file’ into another file named as ‘directory_one’? a) cp -i file directory_one b) cp -R file directory/directory_one c) cp file* directory_one d) none of the mentioned
	Answer: c (2)
	8. How can we copy an entire directory under another directory? a) using -R option b) using -a option c) using -u option d) none of the mentioned
	Answer: a (1)
	9. How can we copy a file into our current directory? a) cp file1 b) ct file1 c) cp file* d) ct file*
	Answer: b
	10. What does the following command do?
	cp -u * dir_file
	a) copy all files to directory dir_file b) update all files c) delete all files d) update all files in the current working directory and copy newer ones to directory dir_file
	Answer: d
	11. -n option is used with cp command for what purpose? a) existing file should not be overwritten b) to update file c) interactive copying d) recursive copying
	Answer: a (2)
	12. Which option is used with cp command for linking files instead of copying? a) -v b) -l c) -f d) -x
	Answer: b (1)
	13. -v option is used with cp command for displaying _____ a) errors b) informative messages c) diagnostic messages d) file contents
	Answer: b (2)
	14. Which command is used for displaying contents of a file? a) cp b) rm c) cat d) mkdir
	Answer: c (3)
	15. Apart from displaying file contents, cat command is also used for _____ files. a) displaying b) deleting c) copying d) creating
	Answer: d (1)
	16. Which symbol is used with cat command for creating files? a) > b) < c) * d) /
	Answer: a (3)
	17. If we create a file using cat command with the same filename which already exists in the current directory then, a) existing file is deleted b) new file will be created separately c) existing file will be overwritten d) an error will be produced
	Answer: c (4)
	18. Which symbol is used to append an existing file? a) > b) < c) >> d) $
	Answer: c (5)
	19. Which option is used with cat command for displaying non-printable characters? a) -v b) -n c) -x d) -a
	Answer: a (4)
	20. Which option is used with the cat command for displaying file with line numbers? a) -n b) -v c) -a d) -x
	Answer: a (5)
	21. Which of the following cannot be performed by cat command? a) displaying files b) creating files c) appending files d) deleting files
	Answer: d (2)
	22. What does cat file01 file01 file01 display? a) error b) blank terminal c) contents of file01 three times successively d) contents of file01 single time
	Answer: c (6)
	23. Which files will be displayed by the following command:
	cat *file*
	a) all files in the directory b) all files with filename containing ‘file’ c) no files will be displayed d) a single file
	Answer: b (3)
	24. Which command is used to create empty files? a) cp b) cat c) touch d) create
	Answer: d (3)
	25. Which option is used with touch command which forces the command not to create file, if it does not exists. a) -h b) -c c) -t d) -f
	Answer: b (4)
	26. Which of the following operators are used for logical execution? a) || b) && c) %% d) && and ||
	Answer: d (4)
	27. The syntax for using && is ______________ a) cmd1 && cmd2 b) cmd1 cmd2 && c) cmd1 & cmd2& d) cmd1
	Answer: a (6)
	28. To perform decision depending on the fulfillment of certain criteria, ____ is used. a) if b) else c) for d) if and else
	Answer: d (5)
	29. Every if is closed with a corresponding ____ a) else b) fi c) if d) else if
	Answer: b (5)
	30. To check more than two conditions, ___ is used with if-else statements. a) while b) for c) elif d) for
	Answer: c (7)
	31. The name of the script is stored in which special parameter? a) $1 b) $0 c) $# d) $*
	Answer: b (6)
	32. ____ statement matches an expression for more than one alternative. a) for b) while c) elif d) case
	Answer: d (6)
	33. Every pattern in case statement in terminated with a _____ a) ; b) : c) ;; d) //
	Answer: c (8)
	34. The ___ option in case statement matches any option not matched by the previous options. a) ^ b) $ c) * d) //
	Answer: c (9)
	35. Which command is used for computation and string handling? a) expr b) case c) if d) read
	Answer: a (7)
	36. expr can perform ____ arithmetic operations. a) 2 b) 4 c) 5 d) 3
	Answer: c (10)
	37. Which of the following is performed by expr string handling’s function? a) determine the length of string b) extract a substring c) locate the position of a character in a string d) determine the length of string, extract and locate the position o...
	Answer: d (7)

