Semester — 111

16 MMP306 INTEGRAL EQUATIONS AND TRANSFORMS L TP C
4004

Scope: This course aims to give fundamental ideas on transforms, integral Equations, and
calculus of variations which play a vital role in the applications of Mathematics.
Objectives: To be familiar with the transforms, convolution integral, types of Integral equations
and the solution of initial , boundary value problems.
UNIT |
Fourier transforms: Fourier Transforms — Definition of Inversion theorem —Fourier cosine
transforms - Fourier sine transforms — Fourier transforms of derivatives -Fourier transforms of
some simple functions - Fourier transforms of rational function.
UNIT II
The convolution integral — convolution theorem — Parseval's relation for Fourier transforms —
solution of PDE by Fourier transform — Laplace’s Equation in Half plane — Laplace’s Equation
in an infinite strip - The Linear diffusion equation on a semi-infinite line - The two-dimensional
diffusion equation.
UNIT I
Integral equations: Types of Integral equations—Equation with separable kernel- Fredholm
Alternative Approximate method — Volterra integral equations—Classical Fredholm theory —
Fredholm’s First, Second, Third theorems.
UNIT- IV
Application of Integral equation to ordinary differential equation — initial value problems —
Boundary value problems — singular integral equations — Abel Integral equation .
UNIT V
Calculus of variations: Variation and its properties — Euler’s equation — Functionals of the
integral forms - Functional dependent on higher order derivatives — functionals dependent on the
functions of several independent variables — variational problems in parametric form.
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1. Sneedon. I. N, (1974). The Use of Integral Transforms, Tata Mc Graw Hill, New
Delhi. (For Unit -1 & 1)
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New York. (For Unit 111 & 1V)
3.Elsgots, L., (2003). Differential Equations and Calculus of Variation, Mir Publication
Moscow. (For Unit -V)
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The Fourier Transform

Fourier transforms as integrals

There are several ways to define the Fourier transform of a function f: R —
C. In this section, we define it using an integral representation and state
some basic uniqueness and inversion properties, without proof. Thereafter,
we will consider the transform as being defined as a suitable limit of Fourier
series, and will prove the results stated here.

Definition 1 Let f : R — R. The Fourier transform of f € L'(R), denoted
by F[f](.), is given by the integral:

1 =
Flife) = —/ t) exp(—ixt)dt
(/] ol LAY L
for x € R for which the integral exists. *

We have the Dirichlet condition for mversion of Fourier integrals.
Theorem 1 Let f : R — R. Suppose that (1) [~ |f| dt converges and (2)
in any finite interval, f,f' are piecewise continuous with at most finitely many
mazima/minima/discontinuities. Let F = F[f]. Then if f is continuous at

t € R, we have
1 o0
)= Wor /_x F(z)exp(itz)dz.

Prepared by M.Latha, Department of Mathematics, KAHE Page 2/24



UNIT-I Fourier Transforms 2016-Batch

Moreover, if f is discontinuous att € R and f(t+0) and f(t —0) denote the
right and left limits of f at t, then

%[f(t+0) + ft=0) = \/T/ F(z) exp(itx)dz.
From the above, we deduce a uniqueness result:
Theorem 2 Let f,g: R — R be continuous, f', g piecewise continuous. If
Ffl(z) = Flgl(z), va

then

f(t) = g(t), vt.

Proof: We have from inversion, easily that

f(t) = \/?/ F[fl(z)exp(itz)dx

- ﬁ/:m Flg)(x) explitz)dzx
= g(t).

O

Example 1 Find the Fourier transform of f(t) = exp(—|t|) and hence using
s and ["\ T sin J'l)dl, 2 'oxp( t) f ~ 0

inversion, deduce that fo ? =%

Solution We write

1 o
F(zr) =—— f(t) exp(—ixzt)dt
V271 [x

1 9 00
- T [/ exp(t(1 — ix))dt +/ exp(—t(1 +iz))

27 | J -0 0
- |
1 + x2

Now by the mversion formula,

, 1 =
exp(—|t]) = \/—7/ F(zx)exp(ixt)dz

& [/O‘ exp(izt) + exp(—ixt) 1t]
0

T ow 1422

2 /”L cos(zt)
= — —~dx.
T Jo 1 + x°
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Now this formula holds at ¢ = 0, so substituting £ = 0 into the above gives
the first required identity. Differentiating with respect to £ as we may for
t > 0, gives the second required identity. O.
Proceeding in a similar way as the above example, we can easily show
that 1 {
J:[exp(—§t2)](z) = exp(—E;r'z), r e R

We will discuss this example in more detail later in this chapter.

We will also show that we can reinterpret Definition 1 to obtain the
Fourier transform of any complex valued f € L?*(R), and that the Fourier
transform is unitary on this space:

Theorem 3 If f,g € L?>(R) then F|[f],Flg] € L*(R) and

[ swew @ = [~ FINFE@ de.

This 1s a result of fundamental importance for applications in signal process-

ng.

1.2 The transform as a limit of Fourier series
We start by constructing the Fourier series (complex form) for functions on
an interval [—w L, 7wL]. The ON basis functions are

1 int

e L

VorL

and a sufficiently smooth function f of period 27 L can be expanded as

- 1 L
f() = Z (m f(;r)e_'L—dI) eL .

en(t) =

s, e, s

—wL

For purposes of motivation let us abandon periodicity and think of the func-
tions f as differentiable everywhere, vanishing at ¢ = 7L and identically
zero outside [—w L, wL]. We rewrite this as

= 1

&= etz f(3)

n=—oo

which looks like a Riemann sum approximation to the integral

: N N
f(t) :27/_ _f(/\)e'*‘d,\ (1.2.1)
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=

to which it would converge as L — oc. (Indeed, we are partitioning the A
interval [—L, L] into 2L subintervals, each with partition width 1/L.) Here,

fo) = /f f(t)e ™Mat. (1.2.2)

Similarly the Parseval formula for f on [—wL,wL],

wL s oo 1 -
[ rora= 3 i

= n=—oo

goes in the limit as L — oo to the Plancherel identity
2,7/ |f(£)]2dt = / |f(\)|2dA. (1.2.3)

Expression (1.2.2) is called the Fourier integral or Fourier transform of f.
Expression (1.2.1) is called the inverse Fourier integral for f. The Plancherel
identity suggests that the Fourier transform is a one-to-one norm preserving
map of the Hilbert space L?[—oc,oc] onto itself (or to another copy of it-
self). We shall show that this is the case. Furthermore we shall show that
the pointwise convergence properties of the inverse Fourier transform are
somewhat similar to those of the Fourier series. Although we could make
a rigorous justification of the the steps in the Riemann sum approximation
above, we will follow a different course and treat the convergence in the mean
and pointwise convergence issues separately.

A second notation that we shall use is

FINW) == [ 00t = =) (1.2.4)

F*g)(t) = \/%/_ vg()\)e")"d/\ (1.2.5)

Note that, formally, F* [f](t) = 2xf(t). The first notation is used more
often in the engineering literature. The second notation makes clear that F
and F* are linear operators mapping L?|—oc, oc] onto itself in one view, and
F mapping the signal space onto the frequency space with F* mapping the
frequency space onto the signal space in the other view. In this notation the
Plancherel theorem takes the more symmetric form

[ irwra= [~ 1FA0 PG,

Examples:

fO) =V2=F[f](N) = /_x.f(t)e—i’\’dt = /_ cos(3t) cos(At)dt
_ 2Xsin(Anw)
—
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3. A truncated sine wave.

sin3t if —a<t<aw
F(e)= { 0 otherwise.

Since the sine is an odd function, we have

FQA) = V2rF[fl(A) = /x f()e Mdt = —'i/_sin(.‘?»t) sin(At)dt

_ —6isin(Ar)
9 — )2
4. A triangular wave.
14+¢ if —1<t<0
f(t) = —1 <=1 (1.2.8)
0 otherwise.

Then, since f is an even function, we have
. o ) 1
fQ) = V27 F[fl(A) = / f®)e Mdt = ‘2/ (1 — ¢) cos(At)dt
—00 0

2 —2cos A
i

>

NOTE: The Fourier transforms of the discontinuous functions above decay
as % for |A\| — oo whereas the Fourier transforms of the continuous functions
decay as X'-_r The coefficients in the Fourier series of the analogous functions
decay as % '—"3- respectively, as |n| — oc.

123 Properties of the Fourier transform

Recall that

1 = ; 1 -
FUIR) = —= /_ F(O)e Mt = ——F(\)

S .
Flal®) = 5= [ _ae™ar

We list some properties of the Fourier transform that will enable us to build a
repertoire of transforms from a few basic examples. Suppose that f, g belong
to L'[—oo, o], i.e., [T |f(t)|dt < oo with a similar statement for g. We can
state the following (whose straightforward proofs are left to the reader):
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1. F and F* are linear operators. For a,b € C we have
Flaf +bg] = aF[f] +bFlgl, F'laf +bg] = aF"[f] + bF"[g].

2. Suppose t" f(t) € L'[—o0, oc] for some positive integer n. Then

Fl"f@)(N) = i”d(fn A}

3. Suppose A" f()\) € L'[—o0, o] for some positive integer n. Then
*T\ N - d" *
F N FQ0)(0) = " AFT (1)}

4. Suppose the nth derivative f™(t) € L'[—o0, oc] and piecewise contin-
uous for some positive integer n, and f and the lower derivatives are
all continuous in (—oo, 00). Then

FIFMA) = GO"FFIN}-

. Suppose nth derivative f™()) € L'[—oc, o] for some positive integer
n and piecewise continuous for some positive integer n, and f and the
lower derivatives are all continuous in (—oc,00). Then

FF™)() = (—it)"F[)(0).

o544

6. The Fourier transform of a translation by real number a is given by

FLf(t = a))(A) = e F[f](N).

~J

. The Fourier transform of a scaling by positive number b is given by
1 A
FIOOIO) = 7 F11)-

8. The Fourier transform of a translated and scaled function is given by

Ff(bt — a))() = %e‘i’\“/l’}'[ f](%).

Examples
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e We want to compute the Fourier transform of the rectangular box func-
tion with support on [c, d]:

1 fe<t<d
R = % ift=c,d
0 otherwise.

Recall that the box function

1 f —wm<t<mw
I1(t) = % it —tn
0

otherwise.

has the Fourier transform II(A) = 27 sinc A. but we can obtain R from
(c+d)

. 5 O
IT by first translating ¢ — s = ¢ — ~—— and then rescaling s — 7=

27 c+d
R(t) —H(d_ct—rd_c).

472

d—c

s 27
ez“’\(c+d)/(d_c)sil'l('(d ). (1.2.9)

R()) =

Furthermore, from (??) we can check that the inverse Fourier transform
of Ris R 1.e., F*(F)R(t) = R(1).
e Consider the truncated sine wave
sin3t if —aw<t<mw
t) = I
() { 0 otherwise
with 6 sin(\r)
- —6i sin(Ax
JN=———
9— A2
Note that the derivative f’ of f(¢) is just 3¢g(¢) (except at 2 points)
where g(t) is the truncated cosine wave

cos3dt if —a<t<mw
g(t) = - ift =t

0 otherwise.

We have computed
o 2X sin( A7)
A - —_—
g(A) 92

so 3G(X) = (iX) f(N), as predicted.
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» want to compute the Fourier transform of the rect:

n with ennnoart on [ Al

Definition 2 The convolution of f and g is the function f * g defined by
(f*g)( / flt —x)g(x)dz.

Note also that ( L g(t — z)dx. as can be shown by a change
of variable.

Lemma 1 fx*g € L'—o0,00] and

[ ireatonae= [ is@as [ lateyar

Sketch of proof:

/_: |f = g(t)|dt = /_i (/: \f(z)g(t — .l‘)|d1') gt
- /_i (/_i l9(t = =) W) 1 (E)lde= /_: lg(t)|dt /_: | f(z)|dx.

Theorem 4 Let h = fxg. Then

h(A) = fF(N)g(N).

O

Sketch of proof:

= /_:f % g(t)e ™Mdt :/ (/ f(z)g(t — z)d )e““‘dt
= [ @ ( [t~ r)e"’*"*”dt) dz = / @) G
=1

A)g(A).
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Exercise 20 Prove the following: If [ is even,

[9" [ .
F[fl(x) = \/;/0 f(t) cos(xt)dt

Flfl(z) = \/%/0 .’f(t)sin(rf)df.

Exercise 21 The Fourier Cosine (F.[f]|(.)) and Fourier Sine (F[f](.)) of
f:R — R are defined as follows:

Falflix) = \/g/xf(t)cos(.ri)dt.
/" 0

2 I ‘
E (@)= V/;A f(t) sin(xt)dt.

and if f is odd,

The Fourier Cosine Transform (FCT)

Definitions and Relations to the Exponential Fourier Transforms
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Fr{m}=jwf[r}cusmrdr, w=0, (3.2.1)

Q

subject to the existence of the integral. The definition is sometimes more compactly represented as an
operator F_applied to the function f{r), so that

;':Fc[f{r}]=ﬁ[m}=L‘f{r}cosmrdr. (3.2.2)

The subscript ¢ is used to denote the fact that the kernel of the transformation is a cosine function. The
unit normalization constant used here provides for a definition for the inverse Fourier cosine transform,
given by

fﬁ-culij)]:%jﬂwﬁ{m]msm do, =0, (3.2.3)

again subject to the existence of the integral used in the definition. The functions f{t) and Fi®), if they
exist, are said to form a Fourier cosine transform pair.

Because the cosine function is the real part of an exponential function of purely imaginary argument,
that is,

EBS{CL?F:I=RE|:EINI]=%[EJMr+E_J‘wr:|1 (3.2.4)

it is easy to understand that there exists a very close relationship between the Fourier transform and the
cosine transform. To see this relation, consider an even extension of the function f{t) defined over the
entire real line so that

fle)=flth), teRr (3.2.5)

Its Fourier transform is defined as

EF[fr{r}]=J:fr{r}e'j“"dr, weR. (3.2.6)
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The integral in (3.2.6) can be evaluated in two parts over (—=, 0] and [0, =). Then using (3.2.5) and
changing the integrating variable in the (oo, 0] integral from f to —t, we have

o

i‘i;[fr{r}] =“; f[r}e""‘”dr +L‘f{r}ej“”drj|= EL f[r}cusmrdr.

by (3.2.4), and thus
F(f0] = 2F[fi)], if £ = f(le). (3.2.7)

Many of the properties of the Fourier cosine transforms can be derived from the properties of Fourier
transforms of symmetric, or even, functions. Some of the basic properties and operational mles are
discussed in Section 3.2.2.

3.2.2  Basic Properties and Operational Rules

1. Inverse Transformation: As stated in (3.2.3), the inverse transformation is exactly the same as the
forward transformation except for the normalization constant. This leads to the so-called Fourier
cosine integral formula, which states that

f{f}=£rﬁ{m)m\smrd¢:

mdy
=§juﬂ[J:f{r]cosm d'rj|cnsmrd'm .

The sufficient conditions for the inversion formula (3.2.3) are that f{f) be absolutely integrable in
[0, 22) and that f'(#) be piece-wise continuous in each bounded subinterval of [0, 22). In the range
where the function f{f) is continuous, (3.2.8) represents £ At the point ; where f{1} has a jump
discontinuity, (3.2.8) converges to the mean of f{g, + 0) and f(t, — 0), that is,

(3.2.8)

%Lﬂ U: f I[r}cnsl[mr }nf r]cusl[m rﬁ}a‘m = %[f I[arIJ +CI}+ f { t —CI}] , (3.2.8"

[

. Transforms of Derivatives: It is easy to show, because of the Fourier cosine kernel, that the trans-
forms of even-order derivatives are reduced to multiplication by even powers of the conjugate
variable e, much as in the case of the Laplace transforms. For the second-order derivative, using
integration by parts, we can show that,

¥ [f”l[r]]='[:f”{r}ms[mr}dr

=—f‘[ﬂ}—mzjﬂf[r}cusmr.nfr (3.2.9)

= —m:Frl[m]—_f’[ﬂ}

where we have assumed that f{t) and () vanish as t — oo, These form the sufficient conditions
for (3.2.9) to be valid. As the transform is applied to higher order derivatives, corresponding
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conditions for higher derivatives of fare required for the operational mle to be valid. Here, we also
assume that the function ff) and its derivative f' () are continuous everywhere in [0, =). If fi#) and
i) have a jump discontinuity at #, of magnitudes d and d' respectively, {3.2.9) is modified to

Ff"e)] = —-alFla) - f1{0) - od sin af, — d' cos of (3.2.10)

Higher even-order derivatives of functions with jump continuities have similar operational mles
that can be easily generalized from (3.2.10). For example, the Fourier cosine transform of the
fourth-order derivative is

FL¥(1)] = @'Fla) + af "(0) - F™(0) (3.2.11)
if fit} is continuous to order three everywhere in [0, =), and £ f,and " vanish as t —= . If f{1)
has a jump discontinuity at r, to order three of magnitudes d, d', d", and d", then (3.2.11) is

maodified to

FL9] = @'Fle) + o¥f(0) - F"(0) + @*dsin e,
+ e'd" cos oty — ed" sin of, — d" cos o, (3.2.12)

Here, and in (3.2.10), we have defined the magnitudes of the jump discontinuity at 1, as
d=fley+ 00— fley =0k d" = f'{gg+0) = f'{5, -0}
d" =" +0)—f (- 0) d"=f"(g + 0) - f"(5,—0).  (3.2.13)

For derivatives of odd order, the operational rules require the definition for the Fourier sine
transform, given in Section 3.3. For example, the Fourier cosine transform of the first order
derivative is given by

o’ (3.2.14)

if f vanishes as t — o0, and where the operator ¥, and the function Fic) are defined in (3.3.1).
When fir) has a jump discontinuity of magnitude d at 1 = &, (3.2.14) is modified to

F ()] = @ Fle) - i) - d cos{o). (3.2.15)

Generalization to higher odd-order derivatives with jump discontinuities is similar to that for
even-order derivatives in (3.2.12).

. Scaling: Scaling in the t domain translates directly to scaling in the & domain. Expansion by a
factor of a in f results in the contraction by the same factor in &, together with a scaling down
of the magnitude of the transform by the factor a. Thus, as we can show,

¥ [f{a?}]=L‘f{a?}iusmrﬁr=%j:_ﬂ{r}cus?dr . byletting T =at

=lﬁ[ﬂ], a>0.
i -ﬂ

(3.2.16)
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4. Shifting:

(a) Shifting in the t~domain: The shift-in-t property for the cosine transform is somewhat less
direct compared with the exponential Fourier transform for two reasons. First, a shift to the
left will require extending the definition of the function fif) onto the negative real line.
Secondly, a shift-in-r in the transform kernel does not result in a constant phase factor as in
the case of the exponential kernel.

If fi1) is defined as the even extension of the function fir) such that fi¢) = _ﬁ{|t|}, and if fi#)
is piece-wise continuous and absolutely integrable over [0, oo}, then

ﬁr[fe{lw a}+_ﬂ[i’— n}]=J:[_fr[r+a)+_fr{r—a}]co\smm'r
=ij={r}cnsm{r+a}dr

+qur{f)m5m{f —n}a‘r_

By expanding the compound cosine functions and using the fact that the function f{1) is
even, these combine to give:

Fflr+ a) + flr—a)] = 2F (@) cos aw , a =0, (3.2.17)

This is sometimes called the kernel-product property of the cosine transform. In terms of the
function f{t), it can be written as:

F(flit+a) + filt—a))] = 2F @) cos ao . (3.2.18)
Similarly, the kernel-product 2F (@) sin(as) is related to the Fourier sine transform:
F|[filt-a)) - flt + a)] = 2F (@) sin aw, a>0. (3.2.19)

(k) Shifting in the o-domain:
To consider the effect of shifting in & by the amount of B> 0), we examine the following,

e

Fc{w +,B) =j _ﬂ[r}cns{w +,B)mfr

= J“f{r}cnsﬁrmﬁmrdr—Juf[r}sinﬁrsinmrdr (3.2.20)
]

0
— % [ flt)cospe|-F, [f(¢)sinp].
Similarly,
Flow - B) = F[flt) cos ft] + F [ fit) sin Bt]. (3.2.20")

Combining (3.2.20) and (3.2.20") produces a shift-in-e operational rule involving only the
Fourier cosine transform as

'.'zT-f[_ﬂ[r}cosﬁr]=%[£fl{m+ﬁ}+Ff{m—ﬁ]]. (3.2.21)
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More generally, for @, § > 0, we have,

bS]

W
ra
[S%]
o

a a

Similarly, we can easily derive:

[I(m)smﬁt] [“’ B] F{‘"‘B]. (3.2.22)

a a

5. Differentiation in the @ domain: Similar to differentiation in the t domain, the transform operation
reduces a differentiation operation into multiplication by an appropriate power of the conjugate
variable. In particular, even-order derivatives in the @ domain are transformed as:

" 0)=7 [(—1)":’”_{(:)]. (3.2.23)
We show here briefly, the derivation for 1 = 1:
F{'”((o]=L:ﬁJ“f(r')coswrdr
dw * Jo
J \oswnh
=J t( )(—1)¢ *coswr dr
=% [(<1)e2£(2))-
For odd orders, these are related to Fourier sine transforms
F‘_":"'l'(.w‘]=.f', [(.—1)"-113""f(r)]. (3.2.24)

In both (3.2.23) and (3.2.24), the existence of the integrals in question is assumed. This means
that f(1) should be piece-wise continuous and that £"f(#) and *"*'f(t) should be absolutely
integrable over [0, ).

6. Asymptotic behavior: When the function f(t) is piece-wise continuous and absolutely integrable
over the region [0, ), the Reimann-Lebesque theorem for Fourier series® can be invoked to
provide the following asymptotic behavior of its cosine transform:
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Fourier Transforms

7. Integration:

(a}

(b)

& The

Integration in the t domain:

Integration in the f domain is transformed to division by the conjugate variable, very similar
to the cases of Laplace transforms and Fourier transforms, except the resulting transform is
a Fourier sine transtorm. Thus,

fa:r“"f{r}dr]=J‘:J:”f[r}drmsmdr
- J‘:[L cose m’r] flr )de

by reversing the order of integration. The inner integral results in a sine function and is the
kernel for the Fourier sine transform. Therefore,

;ﬁﬂc[ff[r}dr]=ifﬁ [#(7)]-~E(w). (3.2.26)

Here, again, fif) is subject to the usual sufficient conditions of being piece-wise continuous
and absolutely integrable in [0, =2).

Integration in the & domain:

A similar and symmetric relation exists for integration in the o-domain.

¥ [J:Fr{ﬁ}dﬁ]=—%f{r}. (3.2.27)

Mote that the integral transform inversion is of the Fourier sine type instead of the cosine
type. Also the aysmptotic behavior of F{e) has been invoked.
cormvolution property: Let fit) and g(r) be defined over [0, =) and satisfy the sufficiency

condition for the existence of F. and G.. If f(r) = fi/t]) and g(r) = g{[t|) are the even extensions

of f

and g respectively, over the entire real line, then the convolution of f and g, is given by:

f,*g,=£f,[f}g,{r—r}dr (3.2.28)

where * has been used to denote the convolution operation. It is easy to see that in terms of fand
& we have:

_fr*gr=L‘f{r)[g[r+r}+g(|r—r|}]dr (3.2.29)

which is an even function. Applying the exponential Fourier transform on both sides and using

(3.2

.7) and the convolution property of the exponential Fourier transform, we obtain the convo-

lation property for the cosine transform:
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260)fo) 5. (e elr+0) ol

r— rmdr}. (3.2.30)

In a similar way, the cosine transform of the convolution of odd extended functions is related to
the sine transforms. Thus,

2F(0)G,(0)=F, {‘me(‘rxg(mr')wt glt- r)]dr}. (3.2.31)

where

gn(r)=g"{) fort>0,
=—g‘v—l) fort<0,

—
2
(]
o
I

is defined as the odd extension of the function g(z).

The Fourier Sine Transtorm (FST)

Definitions and Relations to the Exponential Fourier Transforms
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Similar to the Fourier cosine transform, the Fourier sine transform of a function f{1), which is piece-
wise continuous and absolutely integrable over [0, =), is defined by application of the operator &, as:

E(0)=% [f(0)]=] f(e)sinordr, w>o0. (3.3.1)
0
The inverse operator ' is similarly defined:

f(t)-97[E ()] [ Flo)inordo, r=o. (3.3,

o
w2
(S5
—

subject to the existence of the integral. Functions f{) and F,(®) defined by (3.3.2) and (3.3.1), respectively,
are said to form a Fourier sine transform pair. It is noted in (3.2.3) and (3.3.2) for the inverse FCT and
inverse FST that both transform operators have symmetric kernels and that they are involuntary or
unitary up to a factor of V(2/x).

Fourier sine transforms are also very closely related to the exponential Fourier transform defined in
(3.2.6). Using the property that

sinwr=]m[ep']=—[ep'-e'”’]. (3.3.3)

one can consider the odd extension of the function f{r) defined over [0, x) as

fu(r)=f(r) t=0,
=—f(—r) t<0.

Then the Fourier transform of f(1) is

:'i’[j'a(t)]= J;;;(:)€’""‘d:= —Lﬂ_f(t)e"“”dr+'wa(r)e'-"’”dr

=2j] fle)sinor =25 [ £(r)]

and therefore,
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ﬁs[_f{rjl]=—2ij§[fn[r}]. (3.3.4)

Equation (3.3.4) provides the relation between the FST and the exponential Fourier transform. As in the
case for cosine transforms, many properties of the sine transform can be related to those for the Fourier
transform through this equation. We shall present some properties and operational mles for FST in the
next section.

3.3.2  Basic Properties and Operational Rules

1. Inverse Transformation: The inverse transformation is exactly the same as the forward transfor-
mation except for the normalization constant. Combining the forward and inverse transformations
leads to the Fourier sine integral formula, which states that,

_ﬂ:r}I = %J:Fsl,r_m}sinmr dw= %Jﬂu[ju‘_fl[r ]Isinmr drj|sinmr diw . (3.3.3)

The sufficient conditions for the inversion formmula (3.3.2) are the same as for the cosine transform.
Where i) has a jump discontinuity at = f,, (3.3.5) converges to the mean of fit, + 0) and f{s, —0).

. Transforms of Derivatives: Derivatives transform in a fashion similar to FCT, even orders involving
sine transforms only and odd orders involving cosine transforms only. Thus, for example,

[

F L (1] = —e?Fle) + of (0) (3.3.8)
and
F [f(£)] = —oF (o). (3.3.7)

where f{r) is assumed continuous to the first order.
For the fourth-order derivative, we apply {3.3.6) twice to obtain,

F.[ ()] = @*Fle) — o3f(0) + af"(0), (3.3.8)

if fit) is continuous at least to order three. When the function f{t) and its derivatives have jump
discontinuities at ¢ = &, {3.3.8) is modified to become,

F [ )] = @'Flo) — of(0) + aof"(0) — @’d cos o,
+ @id' sin o + od"” cos @ — d" sin @, (3.3.9)

where the jump discontinuities d, d', and d™ are as defined in (3.2.13). Similarly, for edd-order

derivatives, when the function f{ r) has jump discontinuities, the operational rule must be modified.
For example, (3.3.7) will become:

F (1) = —wFle) + dsin o, (3.3.77)

Generalization to other orders and to more than one lecation for the jump discontinuities is
straightforward.
3. Scaling: Scaling in the ~domain for the FST has exactly the same effect as in the case of FCT, giving,

ﬁs[f[m]]=§ﬁ[m,-’n} a=0. (3.3.10)

Prepared by M.Latha, Department of Mathematics, KAHE Page 19/23



UNIT-I Fourier Transforms 2016-Batch

4. Shifting:
{a) 5hift in the -domain:
Az in the case of the Fourier cosine transform, we first define the even and odd extensions of
the function fir) as,

£le)=£(l{). and f[f}=ﬁf[|‘ﬂ (3.3.11)

Then it can be shown that:
Flfit+a)+ flt—al] = 2F{w) cos am (3.3.12)
and
Flflt+ a) + fit—a)] = 2F (@) sin a@; a = 0. (3.3.13)
These, together with (3.2.18) and (3.2.19), form a complete set of kernel-product relations
for the cosine and the sine transforms.
(b} Shift in the m-domain:
For a positive @ shift in the @-domain, it is easily shown that
Flw+ B =F|fl1) cos Bt] + F[f(1) sin B (3.3.14)
and combining with the result for a negative shift, we get:
Flfithcos Bt]=(12)Flw+ )+ Flea-F)l. (3.3.15)
More generally, for a, 8> 0, we have,

¥, [_f{ar)cos,ﬁ:]=[|_.-"2::)le[ m:ﬁ]+ Fj[ “’_‘Bﬂ. (3.3.16)

i

Similarly, we can easily show that

¥, [f{ar}sin,ﬁr]=—{1.-'2a;{ﬁ[ ‘“:ﬁl]— F{“’;ﬁ}l (3.3.17)

The shift-in-e properties are useful in deriving some FCTs and F5Ts. As well, becanse the
guantities being transformed are modulated sinusoids, these are useful in applications to
communication problems.
5. Differentiation in the w-domaim The sine transform behaves in a fashion similar to the cosine
transform when it comes to differentiation in the @-domain. Even-order derivatives involve only
sine transforms and odd-order derivatives involve only cosine transforms. Thus,

Fj[z"]f_m} =F, [{—1}" rz"f{r}],

and
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F o) =;§F‘[(—l)"tl""f(t)]. (3.3.18)

It is again assumed that the integrals in (3.3.18) exist.
. Asymptotic behavior: The Reimann-Lebesque theorem guarantees that any Fourier sine transform
converges to zero as @ tends to infinity, that is,

w

lim F(w)=o0. (3.3.19)

~

. Integration:
(a) Integration in the r~-domain. In analogy to (3.2.26), we have

F [L f(t)dr]=(l,~"w)ﬁ(m) (3.3.20)

provided f(r) is piece-wise smooth and absolately integrable over [0, o).
(b) Integration in the @-domain. As in the Fourier cosine transform, integration in the o-domain
results in division by r in the r~-domain, giving,

?I'”m_ﬁ(ﬂ)dﬁ]=(l.-"'r)f(r) (3.3.21)

in parallel with (3.2.27).
3. The convolution property: If functions f(r) and g(7) are piece-wise continuous and absolutely
integrable over [0, oc), a convolution property involving Fi{®) and G{®) is

2F ()G (0) =, {La_f(r)[g(lr —)—g(r+7)]ar } (3.3.22)

Equivalently,

2F,(m)G<(w)=ff, {J;wg(t)[_f(t+t)+fﬂ(t—t)]d!‘} (3.3.23)

where f,(x) is the odd extension of the function f{x) defined as in (3.3.11).
One can establish a convolution theorem involving only sine transforms. This is obtained by
imposing an additional condition on one of the functions, say, g{r). We define the function /(r) by,

n(e)= [ "e(e)ar. (3.3.24)

Then g{r) must satisfy the condition that its integral h(?) is absohitely integrable over [0, =0), so
that the Fourier cosine transform of i(r) exists. We note from (3.2.26) that

Hiw) = (l/o)G o) (3.3.25)

Applying (3.3.22) to fir) and h(?) yields immediately,
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(2w)F(0)G,(w)=7 [JU

noting that g(r) = —h'(1).
Because the F5Ts have properties and operation rules very similar to those for the FCTs, we
refer the reader to Section 3.2.24 for simple examples on the use of these rules for FCTs.
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Possible Questions
PART-B (10 Mark)
UNIT |
1) Obtain the Fourier cosine transform.
2).Obtain the Fourier transform of some simple functions.
3) Derive the Fourier transforms of Rational Functions
4) Obtain Fourier sine transform.
2

X

5) Show that e 2 is a self reciprocal with respect to Fourier Transform.
1

6) i) Prove that 7, [ (1);¢] = — () £(0) + ER[£(0); €]
i) Prove that, [ (¢); €] = —¢ 7. [£(6);¢]

7) Find the solution of the linear diffusion equation on a semi-infinite line.
1

8) i) Prove that F,[e%; ¢] = (5)2752 a>0.
1
i) Prove that F,[e®; &] = (ﬁ)zaszfz a>o0.

9) Expalin the Fourier transforms of derivatives.

t2
10) Define self reciprocal and prove that e 2 is self reciprocal under the fourier transform.
11) State and prove Parseval’s theorem for cosine transform.
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The Fourier Transform

Fourier transformation is the most powerful technique for solving differential
equations of different type arising in science and engineering. There are a variety
OF both ana|}f‘tica| ar‘ld r‘lur‘nerica| appr’oaches re|}f om Fourier tran:-‘fc:rr‘ns-. FFT
(Fast Fourier Transform) is | e g, the backbone of numerical approaches for
preblems in signmal analysis. Besides all the traditional applications the modern
technique of wawvelet transform is based on (actually is an special version of ) the
Fourier transform.

Suppose that f is a Munction on B For any L = (0 we can expand  on

the interval [— L, L] in a Fourier series,
[ b
filxe) = — Coop e T where O, —/ Flyle " ¥y, (4.1.1)
. 5¥3 , . )
- ’
Lt
o T
L AL and deline £, :— IL = reAE.
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Then the formulas in (4.1.1) become

1 « i€ . & -
@) = 5= 3 cne®TAE, where Cpy = / f(y)e vy, (4.12)

n) ;_
i P L

Suppose that f(x) vanishes rapidly as & — +oc, then for sufficiently large L

we gel l )
B /'f(.u)« Iy / F(y)eEdy, (4.0.3)
J-L J -
Introducing the notation
f:(&,,] = /‘ f(y)e “vdy, (4.1.4)
we have .
f(x) =~ éZf:(E,,)('EE""AE. where |z| < L. (4.1.5)

Let L — o0, so that A§ — (0 and the sum in (4.1.5) should turn into an
integral, thus:

flx) = L/‘ _/-;(Ej]("-s"(/.f. where /(E) = /\ flx)e " de, (4.1.6)

27 J i

[ is called the Fourier transform of [ and the formula (4.1.6) is the Fourier
inversion theorem.

Definition 12. If [ is an integrable function on R, i.e., [ € L'(R), its
Fourier transform is the function [ on R. defined by

(&) ;—/ [(x)e e do = F[f(2)] (&) = F[1(a)]- (4.1.7)
Lemma 8. The Fourier transform j(E] is (i) bounded. and (ii) conlinuous.
Proof. (i) Since f(€) is defined for f € L'(R), and |¢~ | = 1, the integral

converges absolutely for all €,

1f(€)| = / f(x)e 0 dr < / [(x)dex < 00 where f e L'(R).

oo
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(ii) Let &€ — &;. We want to show that f(&) — f(&). Since
| f(£)e's*| = |f(x)] W & and [ e L,(R), i.e., / f(x)dx < oo,

the dominating convergence theorem give us

-

lim f(€) = / lim f(x)e %%dz = / f)e S de = f(&).
and the proof is complete. (ES]]
Basic properties of the Fourier transform

Some of the basic properties of the Fourier transform are given in the follow-
ing theorem.

Theorem 15. Suppose [ € L', then
(a) For any a € R, we have

(al) f[(;r u)} — e M f(€) and (a2) .7:[(1"”‘5_/'(.1')} = f(€ — a).
(b) If 6 > 0, then we have the scaling formula:
s 1 .7&
3 Ay - L7(S
Flrom]© = 5/(3).
(¢) If [ is continuous and piecewise smooth and [' € L', then
(e1)  F[['(x)](&) = i&f().
On the other hand, if x f(x) s integrable, then
(c2)  Flof@)] =if'©.

Proof. (al) From the definition we have

Convolutions
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Definition 13. If [ and g are functions on R, their convolution is the func
tion [ * g defined by

[*g(x) = /« e —y)gly)dy. VeeR (4.3.1)

— )

With a change of variables we have evidently

/ flx—y)g(y)dy —/ _v F(y)g(x — y) dy. (4.3.2)

We can think of the convolution integral as a limit of the Riemann sum:
Ue's] X
/ [l —ygly)dy~ Y flz —y;)9(y)Ay;.
R )=—0

The function f;(x) := f(x — y;) is a translation of f along the x-axis by the
amount y,, so the sum on the Right is a linear combination of translates of
[ with coefficients g(y,)Ay,;. We can therefore think of [ * g as a continuous
superposition of translates of [.

The weighted average of f on [a, b] with respect to a nonnegative weight
function g is

17 F(w)g(y)dy
[ gly)dy '

Suppose now that ]u" g(y)dy = 1. If we now use the identity (4.3.2) and write
[ *g(x) as [: f(y)g(x — y)dy, we see that [ g(x) is the weighted average
of [ with respect to the weight function g(x — y).

In the next two theorems we state (without proof) some basic algebraic
and analytic properties of convolutions.

Theorem 16. Conwvolution obeys the same algebraic laws as ordinary mul-
tiplication:

(i) The associalive law: [+(ag+bh) = a(f*g)+b(fxh), for a,b constants.
(ii) The commutative law: [ xg = g* [.

(tii) The distributive law: [ * (g« h) = ([ *g) * h.
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Theorem 17. Suppose that [ and g are differentiable and the convolutions
g, ["+qg and [+ g'are well-defined. Then [ * g is differentiable and

(f*g)(x) = ([ *g)(@) = ([ *¢") ().
Now we can give the proof for the convolution theorem:
Theorem 18 (The convolution theorem). Suppose that f, g € L', then
Flfwgl=(f*g)= fi.

Proof. By the definition

(f*g)E) = ] (f % g)(x)e " dr —j / v —y)g(y)e “dyd.

Since f, g € L' we can use Fubini's theorem to change the order of integra
tion. Substituting also @ — y = z, it follow that

(] % aN(E ] j r — y)g(y)edady
_ / )y {/ N oi€+2) g, }”;”
- (/ ay))e€ uf.u)( / J(e€dz) = f(€)a(e

[v. %] - [o %]

and thus we have _.
(f*gl&) = [(&)g(E)

and the proofl is complete. [

F y

Exempel 7. Determine the Fourier transform for the function [(x) = ¢

Solution: Using the definilion of the Fourier transform i follows that

il

.F[r: I]{EJ_] e e j‘C"'J"w.’;r'—] el! J"C‘:""".-llf;r'+j e UH8x g
[as] [ =] {0

[t"“h'f]ll +[r."*‘*-”]a: 1 . 1 2
1 = i€ ] _sa (14410 1= 142 14
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Lemma 9. Let f(x) = sign(x)-e ™, then /(E] ﬁ

Proof. A straightforward calculation yields

€
Flsign sign( e YTy
q q

/ |u f.,ll]l +/ e (u—v‘-i{]J(,J.
2 (4.4.1)

[(141 r.f]r} [ e (a+i€ )ir }1
a (a+ 2€)J1o
2iE

= —ciaps . 9
£ a+if a2+ €2

a— 1€
]

Exempel 8. Find the Fourier transform for the function [(x)

Solution: By the definition we have thal the Fourier transform for f(

. b | is N
./-;(5) = / T s

It will be easier if we first compute (/]’ (). Then /(E ) will follow easily using

theorem 15(c¢):
/ tr)e " e el
(—i€)e € da 4.2)

= L)( e } / e "l( i€)e S da (4.4.2
c g
= :7‘/:‘( = %j(f]

= (. Con

x
where we used partial integration and the fact that [i) T ¢ ‘5’}
2 o

sequently we have the differential equation /( )+ = /(‘] = (. where solulion

05 _f({] = Ce % with C = j((]].

Note that for € = (),

f(0) = / o = JF thus C = /.

— X

Page 8/22
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and hence

£
£

fle) = f[(- } (€) = Ve T. (4.4.3)

m

|

T

c2a

Figure 4.2: f(x) = ¢ * and its Fourier transform f(€) = /me €/

This means that for a Gaussian distribution [ ils Fourier transform [
ts equivalent to a scaling of [ preserving both ils shape and reqularity. In
particular, as we shall see below, the Fourier transform of e /2 is the samne
function multiplied by /2.

As a consequence of this example we have the following important formula
for the Fourier transform of a general Gaussian function:

Lemma 10.

f[(, —} (€) = V/;,. e (4.4.4)
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Proof. The proof is straightforward using the scaling formula with § = \/¥
viz,

vl

[2 ("/—:) ’)T e2

f[(_} (§) = \ —Vmem T T = \ —e %
[ a
O
Later on we shall use the above formula with the substituting: = = € and
§=(x—y):
) ) ,1&"‘ ] 2;T ) l.r—u'c"‘ -
J:-[(. 3 }(, y) = \/ R s (4.4.5)
a

Theorem 19 (The Fourier Inversion Theorem). Suppose [ ¢ L'(R).
[. piecewise continuous. and defined al its points of disconlinuily so as to

satisfy f(x) = '3[[(1 ) + ,/'(.1'+)} forall x € R Then

fla) = lun]— / f(&)es%e T dE. (4.5.1)
Moreover, since [ € L'(R), the [ is continuous and
7 MK 1 " ~ €1 2
f@)=5= [ Fepas, (452)

222 fe

Proof. Note that the cutoff function ¢ =°%/? in (4.5.1) is just to make the
integrals converge, then passing to the limit the cutoff is removed. A straight-

forward calculation yields

1 e » S22 22
— F€)e™ e 2 dE = — / / f(y)e “¥e e 2 dydéE

u)"'_l_
= )—_T ,/(y){/ e ‘-’&-(f"“f':?"’ "':‘(lf}(l_u (4.5.3)

4
L

_; ‘x.f(ll)]:[" > }(!/ a)dy.
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Now we apply (4.4.5) above with a = £* Lo get

dg<

2,2

g2

;[(—} (y—=) =

Replacing in (4.5.3) it follows that

9

(7) dy. (4.5.4)

L7 feyere g =

2m 0 V2w /
=z gives y=x + V22 and dy = v/2edz. Thus

Now since [ is bounded we have

’f(;r + \/:*}(”’ < Me ™ and .f(f]("’f"(- 2

Taking limit in both sides of (4.5.5), by Lebesgue dominated convergence
theorem, we can pass the limits inside integrals to get

| Sl e .2
F/\/(S) rsr{]l_lj'l]( s (lf— \/_/ v‘hu(%f(;r+ V2 z)e % dz.

Hence by the continuity of f it follows that

O T 1 £7° .o
T V‘X‘./'(E)("""(lﬁ = / r)e dz = fla ]\/;/’k e~ dz=f(z),

and the proof is complete. |

The Fourier inversion formula can simply be interpreted as a improper
integral if [ is integrable and piecewise smooth on R Below, we state this
as a theorem (without proof!):

Theorem 20. If [ is integrable and piecewise smooth on R, then

lim / & F(E)dE = = [;(.:» )+,/'(.,~+)}. (4.5.6)

r—00
. r

for every & € R.
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Theorem 21. Suppose that f.f.q and § are in L'. Then
2m(f, g) = ([, 9). (4.6.1)

Proof. Using the Fourier inversion theorem for ¢:

mn—#/gmﬁ%.

2=

and the delinition of the inner product vields

'.Zn(f.g)—‘.h/‘/(r]q (/!—/ fl)/ g(E)e € de
/ / fa »*Wh}ﬂ—/_Jamawe—dw»

>0

where we used the fact that since f,§ € L', and the proof is complete. [

Remark. The definition of the Fourier transform can be developed to arbi-
trary L?-functions. If f. g, [ and g are in L', then [, g, [ and § are also in
B>

Because of our interest in Lo spaces we formulate the following result:

Theorem 22 (The Plancherel Theorem). The Fourier transform. defined
originally on L' 1 L?, extends uniquely to a map on L* satisfying

2n(f,9) = {(f.§) Jorall f.g€L’.

As a consequence of the Plancherel theorem we have
The Parsevals formula: For [ = g € L? we have that

23/”uuﬂww—/'kﬂ®ﬁw

2 £ () B2 = IF()I132. (4.6.2)

or
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FEFxempel 10. Recallirng sorre of owr ey erarriples:

2 2
_7:[(‘ = ] = = carecd f[(' St ] = %.
1 + &= &2 4+ a=
Trhe syrivrnetry rule give wus
2 € € 1 £
.F[—:[ — 27re €l — oye— I8l — .F[—] — mwe— &l (4.7.4)
| I R 1 + x2

Serreilarizy. by the syrnvrnelry rule

2a

€ 1 T €
I P e R _ T e—alel 7.5
2 4 (12] =L [.r"—’ —+ a? ] ( e )( GL-7:5)

Fxempel 11. Since

|

o

bLay the syrnnrnelry rule

_'F[\/f Z(F:T(%:l (&) = 27e "52 (4.7.6)

Applications of Fourier transform
Partial differential equations

We now use the Fourier transform to solve problems on unbounded re-
gions. The Fourier transform converts differentiation into a simple algebraic
operation and we can reduce partial differential equations to easily solvable
ordinary differential equations.

Exempel 13. Consider the heat flow in an infinitely long road. given the
initial temperature u(x,0) = f(x):

Wps=kWs: T 00 < & < 00. (4.8.1)

Solution: To find the temperature u(x,t), let u(E,t) = F, [u,(.r.l)}(f).

Then
Fluw(€) = N O—lll( “tdx = 5/ N u(z, t)e “'dr = 0—;1

Further Flu,|(§) = i&u(€) gives that Flu,,|(&) = (i&)*u(§) = —&%a(§).

Hence the Fourier transform of (4.8.1) yields
du 5 ,
M~ _ke2a(e), (4.8.2)
ol

with the general solution .
(€, 1) = Ce ™™, (4.8.3)
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Fourier transform of the the initial data u(£,0) = f(&): u(€.0) = /(E]
inserted in (4.8.3) give a(€,0) = C = f(€). Thus we have

(€. 1) = f(E)e €T, (4.8.4)

Tu recover the solution u we recall that .F[ ] \/_ . Lelting

— = 1 oo
,” kt thus a S5 We then have

.r2 $g2 L2 1 :2
.'F[(-f T] (&) = VArkt-e ™ hence e *' = _.'F[(: T}(
Inserting in (4.8.4) we gel

i(€,1) =

where §(€) 1= .’F[(-’ -
follows that

(£). Using the convolution theorem.: jq = (f*g) il

| W—— )

1
B L)'= (f*g)(x)= L (u)(ll/ (4.8.6)
Vdmkt vVamk
Exempel 14. Solve the Poisson's equalion.,
Uzy + Uyy = 0, 00< o o0y 0 (4.8.7)

where the boundary condition, u(x,0) = f(x). is bounded.

Solution: As in the previous example the Fourier transform of the equa-
tion and the boundary. with respect to x, yields to the following ordinary
differential equation in y:

Q*u(€, y)

Eu(€.y) + e 0 and a(€0)= f(€), (4.8.8)

Y=

with the general solution given by
(€, y) = C1(E)eY + Cy(€)e 14, (4.8.9)

By the boundedness requirement we have that C,(&) = 0. Moreover using the
Fourier transform of the boundary data from (4.8.8) we get u(€,0) = Cy(€) =
f(€). Thus

a(€, y) = f(E)e &Y, (4.8.10)
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To take the imwverse transform, in this case, the appropriate Fourier transform
Jormula 1s:

1 T ¢ v
.F[ﬁ} — Ze € where a> 0. (4.8.11)
<+ ac

T
Choosing a = y in (4.8.11) we gel

| T o
f[i- —} =Z. el (4.8.12)
moxt 4y Y
Thus the inverse transform of (4.8.10) s
u(xe,y) = f(x) * Y. i l/ Md.&;, (4.8.13)
T a4+ Y- i) s S5 y*

which is the Poisson integral formula for the solution the given problem.

Remark. This solution make sense since the Poisson kernel ﬁ € L

and f(x) is bounded, |f(x)| < M. Thus we have

I M S\
lu(z,y)| < M - —/ , Y__ds= " arctan (i) = M.
m

o S+ Y2 ™ Y/

Exempel 15. Solve the Dirichlet problem

Ugy + Uy =0, >0 y >0, where (4.8.14)
u(0,y) =0, wu(x,0)= )+ and ul(x,y) s bounded. (4.8.15)
22

Solution: First we solve the following full range (in x) problem:

Uzy + Ugy = 0, <« €R, y >0, where (4.8.16)
u(x, 0) = ,)'+ and ulx,y) s bounded. (4.8.17)
12
In this case since —— ts odd then u(x,y) is odd in & and we have automat

ically the condition l)((). y) = 0. Now we recall the formula

™

e

@

i) ~
a? +

W/

signa - e =

N
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By the symmetry rule we get

zjr = 07w sign(€) - e (4.8.18)
1) I

Thus fora =1 we have

T . .
s Y —mi - sign(€) - e .
T

hence

u(e,0) 1= f(x) 27 —mi - sign(€)- e ¥,
Now the Fourier transform of the solution 4(&,y) = _f{{_]r: S (see previous
example). can be wrillen as

< <

(& y) = —mi-sign(€)-e e VS = i sign(E) - e

(1+u)g

Thus with a =1+ y in (4.8.18) we finally gel
.

ula, y) =

Definition 14. Let [ & LY 0, o0c). Then the Fourier cosine transform and
Fourier sine transform of [ are the functions F.[f(€) and F[F1(E) on [0, n0)
defined by
Felf1(€) = [ fle)eosEode  and  F[[(E) = / S{x)sin&erdre. (4.9.5)
Jo Jo
Thus, il fewen and fogq are the even and odd extensions of [ to K then
FAIE) and F[[](€) are restrictions to [0, oo) of ]TfHIJ and % fy4q, since

Jeven(E) = 2 [ ;_f't,.,..t,ﬂ(;r'] cosEaxdr = 2F.[f](€),
Jo

o 5
foaa(§) = 35[ Joaa(z)sinExde = —HF[[](E) = %E[_J"I{&_‘J-

S0
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The inversion formulas therefore become
.) o) .) (s ¢
flz) = — / Felf1(E) cos€x dE = — / F[fI(€) sinEx dE.
T Jo T Jo

Plancherel Theorem for F,[f] and F,[[].

Using the above relations it follows that the norm of F.[f](£) on [0, )
is given by

12 211 ; : I 1 3 \12
Il 220,00y = / 5 Jeven(§)| d€ = 13 / | feven(§)|"dE,
JiO - 3 = (s ¢}
i.e.,
1112 1 " 2 .
”}—l[/ I“l*’[n»;-_n - §”/ur.»(£”|1‘| 0,00 (-1.9.())
Recalling the Parsevals formula: ||./A'(§)||}"_._,|: sooo) = 2T F(2) 122 _s.00): theE

relation (4.9.6) is written as

“}-f[/'l”;)’[ﬂxl = % / = |./.¢'1'c‘u(-")‘2 de = %ll.ru't.'ull?-- (“)7)

Similarly,

X

"/.ndd("r‘] (2 dr = %||fudll||2' (lgs)

=P =5 |

J0

We summarize the relation (4.9.7) and (4.9.8) in the:

Theorem 25 ( Plancherel Theorem for cos and sin transforms). 7.[f]
and F,[f] extend to maps from L*(0, 0c) onto itself that satisfy

IELAIE = 1L = S0P,

Exempel 16. Use the Fourier sine transform to find a bounded solution
ul(x,y) for the problem:

thpe <& Uy =0, 5500 y > 0, (4.9.9)

with the boundary conditions

M

u(0,9) =10, and u(x0)= 21
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Fourier Transforms of impulse functions

The Dirac’s delta function is an even [unction defined by
d(x) = 0, for = #0,

and

/ o(x)dr =1 forall a > 0.

Figure 4.7: The Dirac [unction d,(x).

For @ = — T this definition give

5t —T) = / 5(t = TYdw=1.

(4.10.6)

(4.10.7)

(4.10.8)

To derive the Fourier transform of 6(f — T), we recall that by the evaluation

formula:

f)o(t —T) = f(T)o(t —T) we have e ¢

!

ot —T) = e T 5(t
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onlft — T)

Figure 4.8: The Dirac function d;_ .

and thus we have

ot —T) / 5(t — Te 7“tdt = e f“"'/ ot — T)dt = e %7, (4.10.9)

Then for T = 0: §(1) >"= ¢" = 1. Using symmetry rule and the fact
that & is an even function we have the following “formal relations”: 1 57
2m0(—w) = 2mwo(w), i.e.., we have

a(t) > =1, and 1 5% 276 (w). (4.10.10)

The steady-state temperature distribution for y > 0 with the prescribed temperature u(x, 0) = f(x) on an
infinite wall, y = 0, is described by the equation: PDE: uxx + uyy =0, —eo < x < oo,y >0 (1) BC: u(x, 0) =
f(x), oo < x < o0, (2) where u is bounded asy - =°. Both uand ux - 0 as |x| = =°. Solution. To solve this
problem, we proceed as follows. Let Flu](w) = “u(w, y), F[f(x)] = "f(w). Step 1. (Transforming the problem
using FT ) Taking FT of the PDE (1) in the variable x and using linearity property we have F[uxx] + F[uyy] =
0. (3) Since uand ux - 0 as |x| = oo, it follows that —w 2F[u](w, y) + 1 V 21 [ o —oo uyye -iwxdx =0==
-w2u"(w, y) +020y2 [J oo —oo u(x, y)e —iwxdx] =0==>d 2dy2 u™(w, y) - w 2u™(w, y) = 0, (4) which is a
second-order linear ODE in y. Taking FT of the BC yields u”(w, 0) = F[f(x)] = “f(w). (5) Step 2. (Solving the
Transformed the problem) The general solution of (4) is given by u”(w, y) = A(w)e wy + B(w)e —wy, (6)
where A(w) and B(w) are to be determined. Since u is bounded asy = oo, its FT "u(w, y) must be
bounded as y > eo. This implies A(w) =0 for w > 0. If w < 0 then B(w) = 0. Thus, u™(w, y) = Ke-|w|y, K=
is a constant. (7)
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Possible Questions
PART-B (10 Mark)
UNIT 11

1) State and proof convolution theorem for Fourier transform.
2) Derive the Parseval’s identity for Fourier Transforms.
3) Find the solution of a Laplace equation in a half plane.
4).Find the solutions of a Linear diffusion equation on a semi-strip.
5) Find the Fourier sine and cosine transform of e™ .Hence evaluate

oo B o0 2
) Iy i) D) J) e
6) State and prove Parseval’s theorem for Fourier transform.
7) Derive the solutionsof twodimensional diffusion equation
8) Derive the solution of Laplace’s equation in an infinite strip
9) State and prove Parseval’s theorem for Fourier transform.

10) Derive the solution of Laplace’s equation in an infinite strip.
11) Derive the solution of two dimensional diffusion equation in an infinite region
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UNIT 111

An integral equation i1s an equation in which an unknown function
appears under one or more integral signs. Naturally, in such an equation
there can occur other terms as well. For example, for a<s<b,
a < t < b, the equations

b
) = [ K, ng () dr, (1)
b
9(s) = () + | K(s,ng(0) dt, 2
b
9() = [ K(s,n[g ()] dt, 3)

where the function g(s) is the unknown function while all the other
functions are known, are integral equations. These functions may be
complex-valued functions of the real variables s and ¢.

Integral equations occur naturally in many fields of mechanics and
mathematical physics. They also arise as representation formulas for the
solutions of differential equations. Indeed, a differential equation can be
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replaced by an integral equation which incorporates its boundary con-
ditions. As such, each solution of the integral equation automatically
satisfies these boundary conditions. Integral equations also form one of
the most useful tools in many branches of pure analysis, such as the
theories of functional analysis and stochastic processes.

One can also consider integral equations in which the unknown
function is dependent not only on one variable but on several variables.
Such, for example, is the equation

9() =S + [ K(s.0g (@) dr , @
L4

where s and ¢ are n-dimensional vectors and €2 is a region of an n-
dimensional space. Similarly, one can also consider systems of integral
equations with several unknown functions.

An integral equation is called linear if only linear operations are
performed in it upon the unknown function. The equations (1) and (2)
are linear, while (3) is nonlinear. In fact, the equations (1) and (2) can be
written as

Llg(s)] = f(s) , (5)

where L is the appropriate integral operator. Then, for any constants ¢,
and c,, we have

Llc1g:(s) + c292(5)1 = ¢, L[g ()] + c2 L[g2(5)] . (6)

This is the general criterion for a linear operator. In this book, we shall
deal only with linear integral equations.
The most general type of linear integral equation is of the form

h(s)g(s) = f(s) + 4 [ K(s,00g (1)t , @)

where the upper limit may be either variable or fixed. The functions /, A,
and K are known functions, while g is to be determined; A is a nonzero,
real or complex, parameter. The function K(s,7) is called the kernel.
The following special cases of equation (7) are of main interest.

(i) FREDHOLM INTEGRAL EQUATIONS. In all Fredholm integral
equations, the upper limit of integration b, say, is fixed.
(i) In the Fredholm integral equation of the first kind, A(s)=0.
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Thus, .
f(s) + A f K(s,0)g()dt = 0. (8)

(i)) In the Fredholm integral equation of the second kind, A(s) = 1;

b
g(s) =/(s) + RJK(S, ng(ndr . ®

(iti) The homogenecous Fredholm integral equation of the second
kind is a special case of (ii) above. In this case, f(s) = 0;

b
g(s) = AJ‘ K(s, 1) g(2) dt . (10)

(ii) VOLTERRA EQUATIONS. Volterraequationsofthe first, homo-
geneous, and second kinds are defined precisely as above except that
b = s is the variable upper limit of integration.

Equation (7) itself is called an integral equation of the third kind.

(iii) SINGULAR INTEGRAL EQUATIONS. When one or both
limits of integration become infinite or when the kernel becomes infinite
at one or more points within the range of integration, the integral
equation is called singular. For example, the integral equations

g(s) = f(s) + 2 f (exp — |s—1]) g (1) dr (11

and

fs) = f [L/(s—=0"Tg(dt, O<a<l (12)
LY

are singular integral equations.
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(i) SEPARABLE OR DEGENERATE KERNEL. A kernel K(s,1) is
called separable or degenerate if it can be expressed as the sum of a
finite number of terms, each of which is the product of a function of s
only and a function of ¢ only, 1.e.,

M

K@s,0) =Y ai(s)b,(D) . (1)

i=1

The functions a;(s) can be assumed to be linearly independent, otherwise
the number of terms in relation (1) can be reduced (by linear inde-
pendence it is meant that, if ¢, a,+¢c;a,+ ---+c,a, =0, where ¢; are
arbitrary constants, then ¢, = ¢; =+ = ¢, =0).

(ii) SYMMETRIC KERNEL. A complex-valued function K(s,r) is
called symmetric (or Hermitian) if K(s, r) = K*(t,s), where the asterisk
denotes the complex conjugate. For a real kernel, this coincides with
definition K (s, r) = K(z, 5).

1.4. EIGENVALUES AND EIGENFUNCTIONS

If we write the homogeneous Fredholm equation as

b
| KG.og@dr = pg(s>. pu=12,

we have the classical eigenvalue or characteristic value problem; p is
the eigenvalue and g (¢) is the corresponding eigenfunction or character-
istic function. Since the linear integral equations are studied in the form
(1.1.10), it is 4 and not 1/4 which is called the eigenvalue.

1.5. CONVOLUTION INTEGRAL

Many interesting problems of mechanics and physics lead to an
integral equation in which the kernel K (s, ¢) is a function of the difference
(s— ) only:

K(s, 1) = k(s—1), (1)

where k is a certain function of one variable. The integral equation
5
g(s) = /() + A [ ks—nDg®ar, @
£

and the corresponding Fredholm equation are called integral equations
of the convolution type.
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The function defined by the integral

[ k=g dr = fk(r)g(s—:) dt (3)
0 0

is called the convolution or the Faltung of the two functions k and g.
The integrals occurring in (3) are called the convolution integrals.

The convolution defined by relation (3) is a special case of the standard
convolution

Jk(s-—r)g(r)dr = fk(r}g(s—t}a’f. @)

The integrals in (3) are obtained from those in (4) by taking k(1) =
g(r)=0, fort <0 and r > s.

2.1. REDUCTION TO A SYSTEM OF ALGEBRAIC EQUATIONS

In Chapter 1, we have defined a degenerate or a separable kernel
K(s,t) as

H

K(s,0) = ) ai(s)b,(1) , (1)

i=1

where the functions a,(s),...,a,(s) and the functions b,(r),...,5,(r)
are linearly independent. With such a kernel, the Fredholm integral
equation of the second kind,

9(s) = /() + & | K(s,)g (1) dt 2

becomes

9() = () + 1 Y. ails) [ bi(0g(0) dr . 3)

i=1 *

It emerges that the techniquz of solving this equation is essentially
dependent on the choice of the complex parameter A and on the definition
of

¢ = [ bing(dr . @
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The quantities ¢; are constants, although hitherto unknown.
Substituting (4) in (3) gives

90 =f) + 1Y )., ©

and the problem reduces to finding the quantities c;. To this end, we put
the value of g(s) as given by (5) in (3) and get

n

La@la- [6OUO+1Y aamldi=0.  ©

i=1

But the functions a;(s) are linearly independent; therefore,
c!—jbi(r)[f(:)u Y aa®ldt=0, i=1..,n. (7
k=1

Using the simplified notation

[awro=r, [bOa@®d=a, (8)

where f; and g, are known constants, equation (7) becomes
n
=AY age =1, i=1,..,n; (%)
k=1

that is, a system of n algebraic equations for the unknowns ¢;. The
determinant D(A) of this system is

1—.-1(1“ —Aalz e —Aﬂm
—Aa 1 —Aa e —Ada,

D) = ' 21 22 2 ’ (10)
~la,, —Aia,, - 1-—Aa,,

which is a polynomial in A of degree at most n. Moreover, it is not
identically zero, since, when 4 = 0, it reduces to unity.

For all values of A for which D(A) # 0, the algebraic system (9), and
thereby the integral equation (2), has a unique solution. On the other
hand, for all values of A for which D(4) becomes equal to zero, the
algerbaic system (9), and with it the integral equation (2), either is
insoluble or has an infinite number of solutions. Setting A= 1/u in
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equation (9), we have the eigenvalue problem of matrix theory. The
eigenvalues are given by the polynomial D(A) =0. They are also the
eigenvalues of our integral equation.

Note that we have considered only the integral equation of the second
kind, where alone this method is applicable.

This method is illustrated with the following examples.

2.2. EXAMPLES

Example 7. Solve the Fredholm integral equation of the second kind
g(s) =s+lf(st2+szr)g(r)dr. (N
0
The kernel K(s, 1) = st® + st is separable and we can set
€, = f!zg(f] dr , c; = J!rg(f) dt .
0 0

Equation (1) becomes
g(s) = s + Aey s + Acy 52, (2)
which we substitute in (1) to obtain the algebraic equations

¢y = % +4ie; + ey,

¢y = 4+ e, + Y, . €

The solution of these equations is readily obtained as
¢, = (60+2)/(240— 1204 — A%, c; = 80/(240—1201-4%) . (&)
From (2) and (4), we have the solution
g(s) = [(240—604) s + 80As2]/(240— 1204 —A%) . (5)

Example 2. Solve the integral equation

1
g() = () + 4 [ s+ D g i (©)
0

and find the eigenvalues.
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Here, a,(s)=s, a,(s)=1, by () =1, b, (1) =1¢,

ay

1 i
err=%, au:ofdr:l,

i 1
az1=ffzdf=§s ‘?22=J.fdf=%s
0 0

J!f(f) dt , fr = f tf (1) dt .
1]

V]

Si

Substituting these values in (2.1.9), we have the algebraic system

(1—=3A) ey — Aey = /1, -y + (=3 e, =15 .
The determinant D(A)=0 gives A+ 124—12=0. Thus, the eigen-
values are
A =(—6+4)3), Ay = (—6—4/3).
For these two values of 4, the homogeneous equation has a nontrivial
solution, while the integral equation (6) is, in general, not soluble.

When A differs from these values, the solution of the above algebraic
system is

¢ = [—12fy + A(6f, ~ 12/2)]/(2% + 124 = 12),
¢, = [—12f, — A(4f, — 6/5)]/(A* + 124 — 12) .

Using the relation (2.1.5), there results the solution

1

g(s)y = f(s) + AJ.

The function I['(s, 7; 4),

6(A—2)(s+1) — 1245t — 4

)
iz JWe O

T(s,2;4) = [6(A—2)(s+1) — 124st — 4A]/(A* + 124 — 12), (B)

is called the resolvent kernel. We have therefore succeeded in inverting
the integral equation because the right-hand side of the above formula is
a known quantity.
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2.3. FREDHOLM ALTERMNATIVE

In the previous sections, we have found that, if the kernel is separable,
the problem of solving an integral equation of the second kind reduces
to that of solving an algebraic system of equations. Unfortunately,
integral equations with degenerate kernels do not occur frequently in
practice. But since they are easily treated and, furthermore, the results
derived for such equations lead to a better understanding of integral
equations of more general types, it is worthwhile to study them. Last,

but not least, any reasonably well-behaved kernel can be written as an
infinite series of degenerate kernels.

When an integral equation cannot be solved in closed form, then
recourse has to be taken to approximate methods. But these approximate
methods can be applied with confidence only if the existence of the
solution is assured in advance. The Fredholm theorems explained in
this chapter provide such an assurance. The basic theorems of the general
theory of integral equations, which were first presented by Fredholm,
correspond to the basic theorems of linear algebraic systems. Fredholm’s
classical theory shall be presented in Chapter 4 for general kernels. Here,
we shall deal with degenerate kernels and borrow the resuits of linear
algebra.

In Section 2.1, we have found that the solution of the present problem
rests on the investigation of the determinant (2.1.10) of the coefficients of
the algebraic system (2.1.9). If D(1) = 0, then that system has only one
solution, given by Cramer’s rule

c; = (D fi + Dy + -+ + D)/ D(A), i=1,2,---,n, (1)

where D,; denotes the cofactor of the (/4, i)th element of the determinant
(2.1.10). Consequently, the integral equation (2.1.2) has the unique
solution (2.1.5), which, in view of (1), becomes

D!ifl -+ Dz-‘fz =+ -+ Dm'f:u

g = f(s) + 24 >

a;(s) , (2)
D2
— A
while the corresponding homogeneous equation
g() = 2 [ K(s.Dg () dr 3

has only the trivial solution g{s) = 0.
Substituting for f; from (2.1.8) in (2), we can write the solution g (s) as

g(s) = f(s) + [A/ D(A)]

x f { i LDl (1) + Dyiby () + -+ + Dy b (D] ai()} f(1) dt.
. @

MNow consider the determinant of (# + 1)th order
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0 a,(s) a(s) - a,(s)
b,(r) 1—la,, —la;; - —ia,,
D(s,t;4) = — | by(1) —2ay, l—2day, -+ —lay, |. (5)
bn(f) _A.a'” —-la“z e I"'Aﬂ'm‘

By developing it by the elements of the first row and the corresponding
minors by the elements of the first column, we find that the expression in
the brackets in equation (4) is D(s, t; 1). With the definition

[(s,1;1) = D(s,t;4)/D(D) , (6)

equation (4) takes the simple form
9() = (&) + 4 [ T(s, 3 )1 (1) dt . (M

The function (s, ¢;A) is the resolvent (or reciprocal) kernel we have
already encountered in Examples 2 and 4 in the previous section. We
shall see in Chapter 4 that the formula (6) has many important con-
sequences. For the time being, we content ourselves with the observation
that the only possible singular points of I'(s, #; 4) in the A-plane are the
roots of the equation D(1) =0, ie., the eigenvalues of the kernel
K(s, ).

The above discussion leads to the following basic Fredholm theorem.

Fredholm Theorem. The inhomogeneous Fredholm integral
equation (2.1.2) with a separable kernel has one and only one solution,
given by formula (7). The resolvent kernel I'(s, 7; 1) coincides with the
quotient (6) of two polynomials.

If D(A) =0, then the inhomogeneous equation (2.1.2) has no solution
in general, because an algebraic system with vanishing determinant
can be solved only for some particular values of the quantities f;. To
discuss this case, we write the algebraic system (2.1.9) as

(I—1A)e =1, (8)

where I is the unit (or identity) matrix of order n and A is the matrix
(@;;)- Now, when D(4) =0, we observe that for each nontrivial solution
of the homogeneous algebraic system

(I—1A)e =0 (9)
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there corresponds a nontrivial solution (an eigenfunction) of the homo-
geneous integral equation (3). Furthermore, if A coincides with a certain
eigenvalue 4, for which the determinant D(4y) = |[I—2,A| has the rank p,
1 < p < n, then there are r = n—p linearly independent solutions of the
algebraic system (9); r is called the index of the eigenvalue 4,. The same
holds for the homogeneous integral equation (3). Let us denote these r
linearly independent solutions as gg,(5), go2(5), >, go,(5), and let us
also assume that they have been normalized. Then, to each eigenvalue
Lo of index r = n—p, there corresponds a solution g4(s) of the homo-
geneous integral equation (3) of the form

gols) = kz; o Gox (5)

where o, are arbitrary constants.

Let m be the multiplicity of the eigenvalue 4,, i.e., D(2) =0 has
m equal roots 4,. Then, we infer from the theory of linear algebra that,
by using the elementary transformations on the determinant |I—1A|,
we shall have at most m + | identical rows and this maximum is achieved
only if A is symmetric. This means that the rank p of D(4,) is greater
than or equal to n—m. Thus,

r=n—p<n—(n—-m)=m,

and the equality holds only when g;; =aj;.

Thus we have proved the theorem of Fredholm that, if A=1,is a
root of multiplicity m = | of the equation D(4)=0, then the homo-
geneous integral equation (3) has r linearly independent solutions;
r is the index of the eigenvalue such that | <r < m.

The numbers r and m are also called the geometric multiplicity and
algebraic multiplicity of A,, respectively. From the above result, it
follows that the algebraic multiplicity of an eigenvalue must be greater
than or equal to its geometric multiplicity.

To study the case when the inhomogeneous Fredholm integral
equation (2.1.2) has solutions even when D(A) =0, we need to define
and study the transpose of the equation (2.1.2). The integral equation’

W(s) = f5) + & [ K(t,8)y () dr (10)
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is called the transpose (or adjoint) of the equation (2.1.2). Observe that
the relation between (2.1.2) and its transpose (10) is symmetric, since
(2.1.2) is the transpose of (10).

If the separable kernel K(s,r) has the expansion (2.1.1), then the
kernel K(r,s) of the transposed equation has the expansion

n

K(t,5) = Y a{)bi(s) . (1)

i~
Proceeding as in Section 2.1, we end up with the algebraic system
(I-AANe =1, (12)

where AT stands for the transpose of A and where ¢; and f; are now
defined by the relations

o= [agwd, fi=[amf@ad. (13)

The interesting feature of the system (12) is that the determinant D (1)
1s the same function as (2.1.10) except that there has been an inter-
change of rows and columns in view of the interchange in the functions
a; and b;. Thus, the eigenvalues of the transposed integral equation are
the same as those of the original equation. This means that rhe rransposed
equation (10) also possesses a unique solution whenever (2.1.2) does.

As regards the eigenfunctions of the homogeneous system

I-JAT|c =0, (14)

we know from linear algebra that these are different from the correspond-
ing eigenfunctions of the system (9). The same applies to the eigen-
functions of the transposed integral equation. Since the index r of 4, is
the same in both these systems, the number of linearly independent
eigenfunctions is also r for the transposed system. Let us denote them by
Wo1sWo2s -»Wo, and let us assume that they have been normalized.
Then, any solution Y,(s) of the transposed homogeneous integral
equation

W(s) = A [ K(t,9)w(n di (15)
corresponding to the eigenvalue A, 15 of the form

Yo(s) = ZB[‘PUE(S) ’

where f; are arbitrary constants.
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We prove in passing that eigenfunctions g (s) and ¥ (s) corresponding
to distinct eigenvalues A, and A,, respectively, of the homogeneous
integral equation (3) and its transpose (15) are orthogonal. In fact,
we have

9() =4 [ K(s.ng®de,  Y(s) = 4, [ Kty ® dr.

Multiplying both sides of the first equation by A,y (s) and those of the
second equation by A, g(s), integrating, and then subtracting the
resulting equations, we obtain

B
(A2—21) [ g(P(s)ds = 0.

But A, # A,, and the result follows.

We are now ready to discuss the solution of the inhomogeneous
Fredholm integral equation (2.1.2) for the case D(A) =0. In fact, we
can prove that the necessary and sufficient condition for this equation
to have a solution for A =4, a root of D(L) =0, is that f(s) be
orthogonal to the r eigenfunctions ,; of the transposed equation (15).

The necessary part of the proof follows from the fact that, if equation
(2.1.2) for 4 =1, admits a certain solution g(s), then

[ £ ¥os) ds = [ g()¥oils) ds
— J’ Woi(s) ds j K(s,0) g (1) dt
= f g(s)¥oi(s) ds
—do [ g0 dr [ K(s,)¥roils) ds = 0,

because A, and i, (s) are eigenvalues and corresponding eigenfunctions
of the transposed equation.

To prove the sufficiency of this condition, we again appeal to linear
algebra. In fact, the corresponding condition of orthogonality for the
linear-algebraic system assures us that the inhomogeneous system (8)
reduces to only n—r independent equations. This means that the rank
of the matrix (I—AA) is exactly p =n—r, and therefore the system (8)
or (2.1.9) is soluble. Substituting this solution in (2.1.5), we have the
solution to our integral equation.

Finally, the difference of any two solutions of (2.1.2) is a solution of
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the homogeneous equation (3). Hence, the most general solution of the
inhomogeneous integral equation (2.1.2) has the form

g(s) = G(s) + &, go1 () + 23 902(8) + ==+ + 2, g0, (5) , (16)

where G(s) is a suitable linear combination of the functions a, (s),
a; (5), -, an(j)-

We have thus proved the theorem that, if A= 4, is a root of multi-
plicity m =1 of the equation D(4)=0, then the inhomogeneous
equation has a solution if and only if the given function f(s) is orthogonal
to all the eigenfunctions of the transposed equation.

The results of this section can be collected to establish the following

theorem.

Fredholm Alternative Theorem. Either the integral equation
9(s) = f(s) + A [ K(s,0g (1) di (17)

with fixed A possesses one and only one solution g(s) for arbitrary
P,-functions f(s) and K(s,¢#), in particular the solution g =0 for
f=0; or the homogeneous equation

g(s) = 4 [ K(s,09(0) (18)

possesses a finite number r of linearly independent solutions gy,
i=1,2,---,r. In the first case, the transposed inhomogeneous equation

V() = f() + 4 [ Kt,9)¥ () di (19)

also possesses a unique solution. In the second case, the transposed
homogeneous equation

V() =4[ K@) dr (20)

also has r linearly independent solutions g, i=1,2,---,r; the in-
homogeneous integral equation (7) has a solution if and only if the given
function f{s) satisfies the r conditions

(fivhoi) = ff(S)'Pos(S) ds =0, i=12-r. (21)

In this case, the solution of (17) is determined only up to an additive
linear combination 3 7_, ¢;go;-
The following examples illustrate the theorems of this section.
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Example 1. Show that the integral equation
2r
g(s) = /() + (1) [ [sin(s+D1g (1) dr (1)
L]

possesses no solution for f(s) = s, but that it possesses infinitely many
solutions when f(s) = 1.

For this equation,

K(s,t) = sinscost + cosssinf{ ,

a,(s) = sins, a,(s) = coss, b,(t) = cosr, by(t) = sint .
Therefore,
2r
a,, = J‘ sinfcostdr =0 = a,,,
0
2n
0
_ 1 _‘)137: . 2 2
D(2) = Can I |—1 ASme . (2)
The eigenvalues are 4, = 1/n, A, = —1/n and equation (1) contains
A, =1/ n. Therefore, we have to examine the eigenfunctions of the trans-
posed equation (note that the kernel is symmetric)
2m
g(s) = (l,hr)J- sin(s+ g () dt . 3)
0
The algebraic system corresponding to (3) is
¢, — Ame, = 0, —Ane, + ¢, =0,
which gives
€y = Cy for A, = /7 ; €y = —C3 for A, = —1/n.

Therefore, the eigenfunctions for i, = I/n follow from the relation
(2.1.5) and are given by
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g(s) = c(sins + coss) . (4)
Since

2r
f(ssins+scoss}ds =-2n#0,
0

while

2n
I (sins + coss)ds =0,
0

we have proved the result.

Example 2. Solve the integral equation
1
9(s) = f() + 4 [ (1=3sg(D dr . )
1]

The algebraic system (2.1.9) for this equation is

(1—1)01 +%-‘182 =fl . —'5/14314'(1 +/1)C'2 =f2, (6)
while
-2 34

PA=|_a 134

| =1@-2%. @)

Therefore, the inhomogeneous equation (5) will have a unique solution
if and only if 4 # + 2. Then the homogeneous equation

1
9($) = 1 [ (1=3s)g (1) dr (8)
0

has only the trivial solution.

Let us now consider the case when 2 is equal to one of the eigenvalues
and examine the eigenfunctions of the transposed homogeneous
equation

g(s) = Aj(l-m}g(r) dt . (9)

For 1 = +2, the algebraic system (6) gives ¢, = 3¢,. Then, (2.1.5) gives
the eigenfunction

g@s) = c(l-s), (10)
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where ¢ is an arbitrary constant. Similarly, for A = — 2, the correspond-
ing eigenfunction is
g(s) = e(1—3s5). (11)

It follows from the above analysis that the integral equation
1
g(s) = £ +2 [ (1350 g(r) dt
[A]

will have a solution if f(s) satisfies the condition
1

[a-91rds =0,

0
while the integral equation

1
9() = f) —2 [ (1 =3s1) g (1) dt
o

will have a solution if the following holds:

1
J"u —35)f(s)ds = 0 .
1]

VOLTERRA INTEGRAL EQUATION

The same iterative scheme is applicable to the Volterra integral
equation of the second kind. In fact, the formulas corresponding to
(3.1.13) and (3.1.25) are, respectively,

5

§(s) = /(5) + ¥ i [ Kn(sfCo) . )

[

g(s) = f(s) + 2 [ T(s, s f(0) dr )
where the iterated kernel K, (s, t) satisfies the recurrence formula
Ku(s,D) = | K(5,%) Koy (x,1) dx ©)
t

with K, (s, 1) = K(s, 1), as before. The resolvent kernel I'(s, 7; A) is given
by the same formula as (3.1.26), and it is an entire function of A for any
given (s, 7) (see Exercise 8).

We shall illustrate it by the following examples.
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From the formula (3.3.3), we have

KI{S* f) = (S'_I) s

2

"- a3
K,(s,) = | 5—x)x—1) dx = (s—9) ,
J 3!
. _ A3 S
K1) = (s I)B(!x t) dx — (s 5!!') ,

T
and so on. Thus,

s s st 8
g@s) = l+s+ﬂ(2—!+3—! T )T @
For 2=1, g(s) =¢€".

Example 2. Solve the integral equation

9() = f&) + A [ e g(n) dr 3)
0

and evaluate the resolvant kernel.
For this case,
Kl (-f, t) = fs‘_r L)
K;(s,0) = J‘es“e"*‘dx = (s—0e",

5
-2
Ks(s, 1) = j(x—t)e*‘“e‘"dx = gf——z'—'le**’ R
: !
(s—pm ' _
K,(s,1) = t
(s, 1) D!
The resolvent kernel is
oo J.m—l(.'j' I)m—l 1< s
| . LAFIMs—1) !
M =1 ¢ T m—r € ’ )
o, " > 5.

Hence, the solution is

g() = S + A [ AT DET0 L dr .
o
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4.1. THE METHOD OF SOLUTION OF FREDHOLM

In the previous chapter, we have derived the solution of the Fredholm
integral equation

9(s) = /(&) + 4 [ K(s,0)g (1) (1)

as a uniformly convergent power series in the parameter A for || suitably
small. Fredholm gave the solution of equation (1) in general form for
all values of the parameter A. His results are contained in three theorems
which bear his name. We have already studied them in Chapter 2 for
the special case when the kernel is separable. In this chapter, we shall
study equation (1) when the function f(s) and the kernel K(s, ) are
any integrable functions. Furthermore, the present method enables us
to get explicit formulas for the solution in terms of certain determinants.
The method used by Fredholm consists in viewing the integral
equation (1) as the limiting case of a system of linear algebraic equations.
This theory applies to two- or higher-dimensional integrals, although we
shall confine our discussion to only one-dimensional integrals in the
interval (a, b). Let us divide the interval (a4, b) into # equal parts,

s, =ty=a, S§=t=a+h, .., s =t,=a+m-1h,
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where /i = (b — a)/n. Thereby, we have the approximate formula
J‘ K(s,O)g () dr ~ h filx(x, s)as) )
Eqguation (1) then takes the form
g () ~ F(s) + Ahélms, sDgCs) &)
which must hold for all values of s in the interval (a, #). In particular,

this equation is satisfied at the » points of division s;,, iy = 1, ..., n. This
leads to the system of equations

GG = f(s) + A 3 K(siuspa(s) . = L.n. )
Writing
S(sd) = s g(s) = g; , K(s, o) = K;; . (5}

equation (4) yields an approximation for the integral equation (1) in
terms of the system of »# linear equations

gi_"lh}Zle'jgj= is i=1,....»n ., (6)

in 7 unknown quantities g4, ..., d,- 1 he values of g; obtained by solving
this algebraic system are approxXximate solutions of the integral equation
(1) at the points 5,,5,, ..., 5,. We can plot these solutions g; as ordinates
and by interpolation draw a curve g{s) which we may expect to be an
approximation to the actual solution. With the help of this algebraic
system, we can also determine approximations for the eigenvalues of
the kernel.
The resolvent determinant of the algebraic system (6) is

I'_—"l’:K]'l —‘dlh_sz .- —ﬂ,.‘len
— ARK 1 —ARK .- —AhK,,

D"(}'L) _ i 21 22 2 (?}
AnK.,,  — ARK., - | —AhK,,

The approximate eigenvalues are obtained by setting this determinant
equal to zero. We illustrate it by the following example.

Prepared by M.Latha, Department of Mathematics, KAHE Page 21/39



UNIT-III Integral equations 2016-Batch

Example.

g(s) - J.jsin(sﬂ)g(:) dt=0.
0

By taking n = 3, we have i = n/3 and therefore
5, =16, =0, 5, =1, = 7n/3, 5, =t = 27/3,

and the values of K;; are readily calculated to give

0 0.866  0.866
(K,) =| 0866 0866 0
0.866 0 —0.866

The homogeneous system corresponding to (6) will have a non-
trivial solution if the determinant

1 -0.907.  —0.9074
D,(}) =| —09071 (1-0.9072) 0 =0,
—09074 0 (1+0.9074)

or when 1—3(0.0907)21%> =0. The roots of this equation are A=
+ 0.6365. This gives a rather close agreement with the exact values (see
Example 3, Section 3.2), which are +./2/n = + 0.6366.

In general, the practical applications of this method are limited
because one has to take a rather large n to get a reasonable approxi-
mation.

4.2. FREDHOLM'S FIRST THEOREM

The solutions ¢,,¢,,...,9, of the system of equations (4.1.6) are
obtained as ratios of certain determinants, with the determinant D,(4)
given by (4.1.7) as the denominator provided it does not vanish. Let us
expand the determinant (4.1.7) in powers of the quantity (—Ah). The
constant term is obviously equal to unity. The term containing ( — Ah)
in the first power is the sum of all the determinants containing only one
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column —AihK,,, p=1,...,n. Taking the contribution from all the
columns v = [, ..., n, we find that the total contributionis — iy ”, K,,,.

The factor containing the factor (— Ak) to the second power is the sum
of all the determinants containing two columns with that factor. This
results in the determinants of the form

K,, K,

2
{ih)K K,

.where (p,q) is an arbitrary pair of integers taken from the sequence
1,...,n, with p < g. In the same way, it follows that the term containing
the factor (—Ah)* is the sum of the determinants of the form

Kpn Kw Kpr
(-’ | K, K, K, |,
K Kr Kﬂ"

where (p, g, r) 1s an arbitrary triplet of integers selected from the sequence
l,....,n, with p<g<r.

The remaining terms are obtained in a similar manner. Therefore, we
conclude that the required expansion of D,(4) is

lh &K, K
D.(}) = 1-1&21{,,,, (=) P e
pag=1 K‘IP K‘H
(—ifi‘)a n KPP KW KP”
+ 31 Z de KM qu + o

par=t| K K, K,

rp rq
KP[PI KPIPZ o KFIPH
( :;h) Z Kp:zm Kﬂzpz T KPJP:- , (1}
Praf 2oy =1 "
KPnP i KPHPZ KPnPn

where we now stipulate that the sums are taken over all permutations
of pairs (p,q), triplets (p,q,r), etc. This convention explains the reason
for dividing each term of the above series by the corresponding number
of permutations.
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The analysis is simplified by introducing the following symbol for
the determinant formed by the values of the kernel at all points (s;, 1))

K(sy, 1)) K(sy,13) -+ K(sy,1,)

K(S?_,I.) K(sy,15) = K(s,,1,) _ K(sl,sz,...,sﬂ)’ )
. [, 05, ..,1,

K(Suy I]] K(Sm r2) e K(Sn! 'rn)

the so-called Fredholm determinant. We observe that, if any pair of
arguments in the upper or lower sequence is transposed, the value of
the determinant changes sign because the transposition of two arguments
in the upper sequence corresponds to the transposition of two rows of
the determinant and the transposition of two arguments in the lower
sequence corresponds to the transposition of two columns.

In this notation, the series (1) takes the form

D,(A) = 1 — Ah ZH:K(J s)+{_’u’)2 i k(7%
mE - prop 21 - S8
p=1 pa=1 Pt
(—Ah)? < S, 80,8,
+ Z K(s:,s:,s,)+"" 3)

pagr=1

If we now let n tend to infinity, then A will tend to zero, and each term
of the sum (3) tends to some single, double, triple integral, etc. There
results Fredholm’s first series:

0 A2 515585
D@ = 1-7|Ks.9)ds+5; | K ds, ds,

LY

3
Jl J.K(SI,:SZ:SS) dsl d-fzdsa. L (4)

31 51,52, 53

Hilbert gave a rigorous proof of the fact that the sequence D, (4)— D(4)
in the limit, while the convergence of the series (4) for all values of 4
was proved by Fredholm on the basis that the kernel K(s, 7) is @ bounded
and integrable function.' Thus, D(A) is an entire function of the complex
variable A.

We are now ready to solve the Fredholm equation (4.1.1) and express
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the solutions in the form of a quotient of two power series in the
parameter A, where the Fredholm function D(A) is to be the divisor.
In this connection, recall the relations (2.3.6) and (2.3.7). Indeed, we
seek solutions of the form

g(s) = f(s) + 4 J I(s, ;) /() dr (5)

and expect the resolvent kernel I'(s,7; 1) to be the quotient
['(s,2;4) = D(s,t; 1)/ D(4), (6)
where D(s, t; A), still to be determined, is the sum of certain functional

series.
Now, we have proved in Section 3.5 that the resolvent (s, 7; A) itself
satisfies a Fredholm integral equation of the second kind (3.5.5):

[(s,t;4) = K(s,0) + A j K(s, )T (x, 13 2) dx . )
From (6) and (7), it follows that
D(s,t;4) = K(s,0) D(A) + J.J. K(s,x) D(x,1;A) dx . (8)

The form of the series (4) for D(4) suggests that we seck the solution of
equation (8) in the form of a power series in the parameter 4:

(A
D(s,t; 1) = Cols, D) +

C,(s.1) . ©)

For this purpose, write the numerical series (4) as

DU) = 1 + Z( ‘W (10)

, _I j(s"sz’ "’)dsl ds, . (1)
§15 825 c0is§

The next step is to substitute the series for D(s,t;4) and D(4) from (9)
and (10) in (8) and compare the coefficients of equal powers of 4. The
following relations result:

CO('%I) = K{'S!'ﬂ ’ “2)
Colssd) = ¢, K(s,0) = p [ K(5,%)Cpm i (x,0) dx . (13)

where

Our contention is that we can write the function C,(s, 1) in terms of
the Fredholm determinant (2) in the following way:
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Co(s,0) =j-.-J.K(S’x"xz"“’x")dxl--.dx,,, (14)
f:xlﬁxz""'! xp
In fact, for p = 1, the relation (13) becomes

C,(5.0) = c, K(s 1) — f K (s, x) Co(x, t) dx
— K(s,1) _[' K(x, x) dx — _[ K(s, x) K(x, 1) dx

=jxc;jm, (15)
T X

where we have used (11) and (12).

To prove that (14) holds for general p, we expand the determinant
under the integral sign in the relation:

K(Sr f) K(S>xl) b K(s’xp)
K S,xl,--‘,xp . K(xlar) K(xlaxl) - K(x]9xp}
1, Xy ens X)p o : ’
K(xp; r) K(xpsxl) te K{xpsxp)

with respect to the elements of the given row, transposing in turn the

first column one place to the right, integrating both sides, and using the

definition of ¢, as in (11); the required result then follows by induction.
From (9), (12), and (14) we derive Fredholm’s second series:

D(s,2: 1) — K(s, f)+2( ‘l)pj j (':’il""x)dxl"-dxp.(16)
) ER

p=1

This series also converges for all values of the parameter A. Itis interesting
to observe the similarity between the series (4) and (16).

Having found both terms of the quotient (6), we have established the
existence of a solution to the integral equation (4.1.1) for a bounded and
integrable kernel K (s, 7), provided, of course, that D(A) == 0. Since both
terms of this quotient are entire functions of the parameter 4, it follows
that the resolvent kernel I'(s, ;1) is a meromorphic function of A,
i.e., an analytic function whose singularities may only be the poles,
which in the present case are zeros of the divisor D{1).

Next, we prove that the solution in the form obtained by Fredheolm
is unique and is given by

g =) + 4 [ T, 1507 @) dr . an
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In this connection, we first observe that the integral equation (7) satisfied
by I'(s,t;A) is valid for all values of A for which D(2)# 0. Indeed,
(7) is known to hold for |A] < B~' from the analysis of Chapter 3,
and since both sides of this equation are now proved to be meromorphic,
the above contention follows. To prove the uniqueness of the solution,
let us suppose that g(s) is a solution of the equation (4.1.1) in the case
D(A) # 0. Multiply both sides of (4.1.1) by I'(s, ¢, ), integrate, and get

I [(s,x;A)g(x)dx = J I'(s, x; A) f(x) dx
+ [ [[ T x:HKx 1) dx] g () dr. (18)
Substituting from (7) into left side of (18), this becomes

f K(s, 1) g(t) dt = j T'(s, x; A)f(x) dx , (19)
which, when joined by (4.1.1), yields
g(s) = f() + A [ T(s, 150 (1) dt (20)

but this form is unique.
In particular, the solution of the homogeneous equation

g(s) = 4 [ K(s,0g(1) dr @n
is identically zero.
The above analysis leads to the following theorem.

Fredholm’s First Theorem. Theinhomogeneous Fredholmequation

g(s) = f(&) + 2 [ K(s,0g (1) dt , (22)
where the functions f(s) and g(¢) are integrable, has a unique solution
() = f() + A [ T(s, 10/ dt (23)

where the resolvent kernel I'(s, ¢; 1),
U(s,t;4) = D(s,1;4)/D(4) , (24)

with D(4) # 0, is a meromorphic function of the complex variable A,
being the ratio of two entire functions defined by the series

D(s,t:3) = K(s, r)+z( ’DPJ. J (5 ;‘:"' . ")dxl .dx,, (25)

p=1
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and

oo

D(A) = Z

Xis-

(x"“" )dxl cdx, (26)

both of which converge for all values of 4. In particular, the solution of
the homogeneous equation

g(s) = 4 [ K(s,0)g (1) dt @7
is identically zero.

4.3. EXAMPLES

Example 7. Evaluate the resolvent for the integral equation

1
9(s) = f&) + 4 [ (s+Dg ) dr . (1)
(]
The solution to this example is obtained by writing
o~ (—A)P o (—A)?
renn - > S o[> S, @
=0 p=0
where C, and c, are defined by the relations (4.2.11) and (4.2.13):
co =1, Co(s, 1) = K(5,0) = (s+71) . (3)
¢y = | Cporls,9) ds, (4)
1
Cp = ¢, K(s,0) = p [ K(s,x) ¢, (x, 1) dlx (5
1)

Thus,
1
S
C,(s,0) = (5+1) — j (+x)(x+8)dx = Y(s+1) — st — %,

e; = | (s—s’-§ds=—4,
!
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Cy(s,) = —h(s+0) =2 f (s+X) L+ —xt — 3] dy =0.
0

Since C,(x,t) vanishes, it follows from (5) that the subsequent co-
efficients C, and ¢, also vanish. Therefore,

(s+8)— 3G+ —st—3]4

I 4 ;j. = 3
. 1:4) [ — 2 — (A312) ©)
which agrees with result (2.2.8) found by a different method.
Example 2. Solve the integral equation
1
g(s) = s+ 2 f [st+(s)%] g (1) dt . 0
1]
In this case,
co=1, Co(s, 1) = st + (s1)”,

¢ = fl(S“rS)ds =,
0
Ci(s,1) = §[st+(s0)*] - J! [sx + (sx)%] [xt + (x1) "] dr
= 35t + }(s1)* — ﬂé(sf"ﬁﬂs’*’*) :
¢; = J!({esz+§s—§s’ﬁ)ds = 1/75,
Qmﬂ=;,

and therefore all the subsequent coefficients vanish. The value of the
resolvent is

st (s0)% — {Lst + 3(s0)% — 3(st? +5%0))A

I'(s,1;4) = 8
(s,:4) [ — 34+ (1/150) A @)
The solution g(s) then follows by using the relation (4.2.23),
1505 + A(60/s—75s) + 21125
g(s) = J : 9)

A2 — 1252 + 150
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4.4 FREDHOLM'S SECOND THEOREM

Fredholm’s first theorem does not hold when 1 is a root of the
equation D(A) = 0. We have found in Chapter 2 that, for a separable
kernel, the homogeneous equation

g9 = 2 [ Ks,ng(® ar M

has nontrivial solutions. It might be expected that same holds when the
kernel is an arbitrary integrable function and we shall then have a

spectrum of eigenvalues and corresponding eigenfunctions. The second
theorem of Fredholm is devoted to the study of this problem.

We first prove that every zero of D (A1) is a pole of the resolvent kernel
(4.2.24): the order of this pole is at most equal to the order of the zero
of D(A). In fact, differentiate the Fredholm’s first series (4.2.26) and
interchange the indices of the variables of integration to get

D) = — J‘ D(s,s;A) ds . 2)

From this relation, it follows that, if A, is a zero of order k& of D(1),
then it is a zero of order &k — 1 of D'(1) and consequently A, may be a
zero of order at most &k — 1 of the entire function D(s,7¢;4). Thus, Ay
is the pole of the quotient (4.2.24) of order at most k. In particular,
if 1y is a simple zero of D(1), then D(35) =0, D'(1,) # 0, and A, is
a simple pole of the resolvent kernel. Morecover, it follows from (2) that
D(s,t;A)# 0. For this particular case, we observe from equation
{(4.1.8) that, if D(A) =0 and D(s,r; A) # 0, then D(s, ¢;4), as a function
of s, is a solution of the homogeneous equation {(1). So is aD(s,r; 1),
where « is an arbitrary constant.
Let us now consider the general case when A is a zero of an arbitrary
multiplicity =7, that is, when
Do) = 0, cee s D' (Ap) = 0, D™ (1) # 0, (3
where the superscript r stands for the differential of order r, r=1,

..., m— 1. For this case, the analysis is simplified if one defines a
determinant known as the Fredholm minor:

Fps Fay.u.,F
Du( 122 b ‘1)
rlo IZ, -y tn

— K(SI,SZ!'—-:su)+ = (_‘l)?

p=1 p!

-gl_) === sFpgs 'xls .-.,xp
= - W K dx, dx,---dx_ , 4
I J. (fl) -'*an!xly--*sxp) ! 2 £ ( )
where {s;} and {r}, i=1,2,...,n, are two sequences of arbitrary
variables. Just as do the Fredholm series (4.2.25) and (4.2.26), the series
{4) also converges for all values of A and consequently is an entire

function of A. Furthermore, by differentiating the series (4.2.26) n times
and comparing it with the series (4), there follows the relation

tl’IZs"'!tn
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d"D(1) Sisenns
I = (— l)"f I (5“ A) ds,---ds, . (5)

From this relation, we conclude that, if 4y is a zero of multiplicity m
of the function D(A), then the following holds for the Fredholm minor
of order m for that value of 4,:

) %o

S1382y ey S
rl, tz, .u,fm
Of course, there might exist minors of order lower than m which also do
not identically vanish (compare the discussion in Section 2.3).
Let us find the relation among the minors that corresponds to the

resolvent formula (4.2.7). Expansion of the determinant under the
integral sign in (4),

K(s,t)) K(sy,tz) - K(s,1,) K(s,xy) - K(s,x))
K(sy, 1) K(sp, 1) - K(sy, 1) K(sz,x) - K(s3,x,)
K(Sn.* Il) K(S,,. fz} e K(Sn" !n) K(Sn*xl) e K{‘gm xp) {6)
K(xy, 1) K(x,t) - K(xp,t) K(xg,x) - K(xls—"'p)
K(xp: I!II)' K(xps 12} e K(IP, tn) K(xpaxl) v K(Ip, xp)

by elements of the first row and integrating p times with respect to
X1, X2,...,X, for p= 1, we have

---IK(S"""S“’X"'”’x”) dx, - dx,
Frseeesbys X1 eeey X,
Z D1 K (s, 1)

Fys X1, -
.[ J. ( mo ") dx, dx, - dx,
Lyseies !h-—hr!:-l-h“'irmxh“' *xp
4+
+Z( )h n—1

Spy Xis Xay vevy Xpy onny X
K(s.,xh)fc: mo T ’ ")
ﬂ ],r",XI,...,xh_i,xh+l‘o.o,xp

x dx - (7)
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Note that the symbols for the determinant K on the right side of (7) do
not contain the variables s, in the upper sequence and the variables ¢,
or x;, in the lower sequence. Furthermore, it follows by transposing the
variable s, in the upper sequence to the first place by means of h+n—2
transpositions that all the components of the second sum on the right
side are equal. Therefore, we can write (7) as

_“JK(s,,u.,s,,,x“.“,xp)
Fiyevesbns Xy oeny Xp
n
B+ 1
= Z (—1) K(sy, 1)
h=1
Sy nn Sy X gy eens X
x |- | K[ mRTT TR Y dxy - dx,
Il:*--:In—lsr.ft+l«)*ﬂ}tnﬁxla“*:‘xp
Xy 82y ey Sys X g e Xp_1
Fl,l'z,..L,fn,hl'l,.“.,.l'p_l
x dx, ---dxp,.] dx (8)

where we have omitted the subscript # from x. Substituting (8) in (7),
we find that Fredholm minor satisfies the integral equation

n
Sy eear ¥ 53y -e- Sy
Dn( l § "1)=Z(_”“'IK(S]J:JDM—I(I ) )
fl,..., J'n =1 rl,...,fh_l,th.!,:u

Xy Xay.ans§
+ A | K(s,,x) D, 2 "
tirtaenarty

,1) dx . (9)

Expansion by the elements of any other row leads to a similar identity,
with x placed at the corresponding place. If we expand the determinant
(6) with respect to the first column and proceed as above, we get the

integral equation

n
I IR, Sy ceeaFp— s ¥ S, ¥
D,,( 1 n -ll) — E {_I)hl-lx(jhsII)Dn_l ( 1* h—1*2h+ 13 ﬂ)
lFI!*"'? fn th"' SIN‘

h=1

+ij(x,:,}pn(5""' ’S")dx , (10)
)

L TIREP "

and a similar result would follow if we were to expand by any other
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column. The formulas (9) and (10) will play the role of the Fredholm
series of the previous section.

Note that the relations (9) and (10) hold for all values of 4. With the
help of (9), we can find the solution of the homogeneous equation (1) for
the special case when 4 =/ is an eigenvalue. To this end, let us suppose
that A = 14 is a zero of multiplicity m of the function D(4). Then, as
remarked earlier, the minor D,, does not identically vanish and even the
minors D, D,, ..., D,,_, may not identically vanish. Let D, be the
first minor in the sequence D, D,,..., D, _, that does not vanish
identically. The number r lies between 1 and m and is the index of the
eigenvalue A, as defined in Section 2.3. Moreover, this means that
D,_, = 0. But then the integral equation (9) implies that

ﬂa) (1

is a solution of the homogeneous equation (1). Substituting s at different
points of the upper sequence in the minor D,, we obtain r nontrivial
solutions g,(s), i=1,...,r, of the homogeneous equation. These
solutions are usually written as

D, Sis oo Si 128 8ip gy -es Sy 3
Hyy .o A,

r
Dr Sl’""SI“’]’SIII!‘SI""I"""SJ' j.o
Tisonn W,

5,82, .00y Sy

gl{j} = Dr(f

T

m.‘(-'i) =

i=1,2,...,r. (12

Observe that we have already established that the denominator is
not zero.

The solutions @; as given by (12) are linearly independent for the
following reason. In the determinant (6) above, if we put two of the
arguments s, equal, this amounts to putting two rows equal, and
consequently the determinant vanishes. Thus, in (12), we see that
®,(s5;) =0 for i # k, whereas ®,(s,) = I. Now, if there exists a relation
3, C @, =0, we may put s =s;, and it follows that C,=0; and this
proves the linear independence of these solutions. This system of
solutions ®; is called the fundamental system of the eigenfunctions
of iy and any linear combination of these functions gives a solution
of (1).

Conversely, we can show that any solution of equation (1) must be
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a linear combination of @, (s), ®,(s),...,P,(s). We need to define a
kernel H(s,t;A) which corresponds to the resolvent kernel T'(s, 1; )) of

the previous section
T,
Ao lfDLTVTT
o U

In (10), take » to be equal to r, and add extra arguments s and ¢ to

Sy 81y ey Sy
tlgy .t

H(s, t;4) = D,.H(

AG) . (13)

obtain
8,80, .00s 8y Sy ears Sy
Ayl = K(s,n D A
D"“(r,rl,...,r, ") (5,1) ’( L eens , "")
+Z(—l)"K(S;.,J’)D,(:’S:’“"S"_“s"”""’s' ,10)
b=l 13 £28 00 s by
Sy 815 0eesS,
+AGJK(I,I]D.+1( ’ r Au)dx‘ (14)
LN E IR T 4

In every minor D, in the above equation, we transpose the variable s
from the first place to the place between the variables s,_, and s,.,
and divide both sides by the constant

SiyeeesS
Dr( ¥ i o
Eiyoros k,

H(s,1;4) — K(s,1) - loJH(S,x;l)K(x,I} dx

10)5&09

to obtain

- —ﬁglx(s,p 1) ®,(s) (15)

If g(s) is any solution to (I), we multiply (15) by g(¢) and integrate
with respect to ¢,

IQ(T) H(s, t;4) dt - %ﬂ — | g(x)T(s, x; A) dx
0
--> gz") ,(s) . (16)
h=1

where we have used (1) in all terms but the first; we have also taken
Ao I K(sp, 1) g(t)dt = g(s;). Cancelling the equal terms, we have
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96) = ¥ (6. (17)

This proves our assertion. Thus we have established the following result,

Fredholm’s Second Theorem. If 4, is a zero of multiplicity m
of the function D(4), then the homogeneous equation

g(s) = Ao [ K(s,0g(0) dt a8)

possesses at least one, and at most m, linearly independent solutions

).

i=1,..,r; 1<r<m (19

51,...,55_“.5',5'.‘4.1, <oy Sy

g:(s) = D,(

R '

not identically zero. Any other solution of this equation is a linear
combination of these solutions.

4.5. FREDHOLM'S THIRD THEOREM

In the analysis of Fredholm’s first theorem, it has been shown that
the inhomogeneous equation

g(s) = f(s) + A | K(s,0g (1) de M

possesses a unique solution provided D(A)# 0. Fredholm’s second
theorem is concerned with the study of the homogeneous equation

g(s) = 4 | K(s,0)g (1) dt,

when D(1) =0. In this section, we investigate the possibility of (1)
having a solution when D(A) =0. The analysis of this section is not
much different from the corresponding analysis for separable kernels as
given in Section 2.3. In fact, the only difference is that we shall now give
an explicit formula for the solution. Qualitatively, the discussion is the
same.

Recall that the transpose (or adjoint) of equation (1) is (under the
sarme assumption as in Section 2.3)
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b
b(s) = /() + A [ K(t,9) () dr 2)

It is clear that Fredholm’s first series D(A) as given by (4.1.26) is the
same for the transposed equation, while the second series 1s D(z,5; 1)
as obtained from (4.1.25) by interchanging the roles of s and ¢. This
means that the kernels of equation (1) and its transpose (2) have the
same eigenvalues. Furthermore, the resolvent kernel for (2) is

['(t,5;4) = D(1,5;4)/D(4) (3)
and therefore the solution of (2) is
W) = )+ 2 [ [D@ s/ DWW dr @

provided 4 is not an eigenvalue.

It is also clear that not only has the transposed kernel the same eigen-
values as the original kernel, but also the index r of each of the eigenvalues
is equal. Moreover, corresponding to equation (4.4.12), the eigen-
functions of the transposed equation for an eigenvalue for /4, are given as

D (sl,... S|y )
0
A 7T TR A P

, 5

Spyenn , S5, ©)

D, 2o
tl,cco,[i_.],ti,ti*_l,rri, tr

where the values (s,,...,s5,) and (¢,...,#,) are so chosen that the
denominator does not vanish. Substituting » in different places in the
lower sequence of this formula, we obtain a linearly independent system
of r eigenfunctions. Also recall that each @, is orthogonal to each
¥; with different eigenvalues.

If a solution g(s) of (1) exists, then multiply (1) by each member
W, (s) of the above-mentioned system of functions and integrate to
obtain

Vi) =

[ 9@l ds — 2 [[ K(s,09(0)¥ils) dsar
[9(9)ds [¥i(s) = 4 | K(t,9)¥i(0)dr] = 0,
where the term in the bracket vanishes because W, (s) is an eigenfunction

of the transposed equation. From (6), we see that a necessary condition
for (1) to have a solution is that the inhomogeneous term f(s) be

[ 79¥(5) ds (6)



UNIT-III Integral equations 2016-Batch

orthogonal to each solution of the transposed homogeneous equation.

Conversely, we shall show that the condition (6) of orthogonality is
sufficient for the existence of a solution. Indeed, we shall present an
explicit solution in that case. With this purpose, we again appeal to the
resolvent function H(s, 7; A) as defined by (4.4.13) under the assumption
that D, # 0 and that r is the index of the eigenvalue 1,.

Our contention is that if the orthogonality condition is satisfied,
then the function

9o(s) = 1(5) + Ao [ H(s,t; /(1) dr (7)
is a solution. Indeed, substitute this value for g(s) in (1), obtaining
1) + o [ HEs, 6 00(0) dt = f(5) + o [ K(s,1)
x /() + Aq j H(t, x; D) f(x) dx] dt

or
j A dt[Hs, 1:0) — K(5,0) = Ag f K, X)H(x, ;) dx] =0. (8)
Now, just as we obtained equation (4.4.15), we can obtan its “transpose,”
His, t:2) — K(s, ) — Ay j K(s,x) H(x, t: ) dx
= _hi. K(s, 1,) P, (D) . %)

Substituting this in (8) and using the orthogonality condition, we have
an identity, and thereby the assertion is proved.

The difference of any two solutions of (1) is a solution of the
homogeneous equation. Hence, the most general solution of (1) is

96) = f) + 1o [ He, D dr+ T GO0 . (10)

The above analysis leads to the following theorem.

Fredholm’s Third Theorem. For an inhomogeneous equation

9(s) = /() + %o | K(s,0g(D dt , (11

to possess a solution in the case D(2,) = 0, it is necessary and sufficient
that the given function f(s) be orthogonal to all the eigenfunctions
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Y.(s), i=1,2,...,v, of the transposed homogeneous equation corre-
sponding to the eigenvalue 4,. The general solution has the form

g{s) "—'_f(S) + AGI[D'__'_‘(S,SI’I:’ -.-pfr 10)]/Dr(a:],32,...,.:r AO)
TRAL » &y

Lty oy
x f(1) dt + i C,D,(s) . (12)
h=1
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Possible Questions

PART-B (10 Mark)
UNIT 111

1) Solve the IE and find the eigen value of g(s) = f(s) + 1 fol(s +t)g(t)dt.

2) State and prove Ferholm’s First Theorem
3) State and prove Basic fredholm theorem.

4) Show that the integral equation g(s) = f(s) + 2 fol(l — 3t)g(t)dt will have a solution
if f satisfies the condition fol(l —5)f(s)ds = 0.
5) State and prove Fredholm theorem for First and Second Kind.

6) Solve g(s) = f(s) + 4 f, e©~ g(t)dt and evaluate resolvent kernel.
7) Explain the Fredholm alternative approximate method.

8) Show that the integral equation g(s) = f(s) + % fOZ" sin(s + t) g(t)dt passes number of
solution for f(s) = s it passes many solution when f(s) = 1.

9) Find the resolvent kernel for the integral equation g(s) = f(s) + Af_ll(st + s2t?)g(t)dt

10) Solve g(s) = 1+ 4 [ (1 — 3st)g(t)dt

11) Obtain the reduction to a system of Integral equations and transform sic equation.
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UNIT IV

APPLICATION OF INTEGRAL EQUATION TOORDINARY DIFFERENTIAL
EQUATION

INITIAL VALUE PROBLEMS

There is a fundamental relationship between Volterra integral
equations and ordinary differential equations with prescribed initial
values. We begin our discussion by studying the simple initial value
problem

Y'+ A(s)y' + B(s)y = F(s), (1)

yia) = go ., yiiay = q, , (2)

where a prime implies differentiation with respect to s, and the functions
A, B, and F are defined and continuous in the closed interval a < 5 < b.

The result of integrating the differential equation (1) from a to s
and using the inttial values (2) is

V) —q = — AW ) — [ [Bls) — A'(sD13(s)) ds,

+ .|‘ F(s, )y ds; + A{a)q, .

o
Similarly, a second integration yields
5 52

V() —qo = — [ AG)y(s)ds, — [[ [B(si)—A"(s)]y(s)) ds, ds,

E Y

+ [ [ FGs) ds, ds, + [4(@qo + a1 (s—a) . (3

With the help of the identity (see Appendix, Section A.l)

s 53 s

ff F(s,) ds, ds, = f (s—0) F(r) dr , (4)

a

the two double integrais in (3) can be converted to single integrals.
Hence, the relation (3) takes the form

¥(s) = qo + [A(@do + g1 (s—a) + [ (s—0) F() dt

- f {A@) + (-0 [B() — A (N1} y() dr . 5
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From relations (5)-7), we have the Volterra integral equation of the
second kind:

Y = f) + [ K(s.0y() dr ®)

Conversely, any solution g(s) of the integral equation (8) is, as can
be verified by two differentiations, a solution of the initial value problem
(D—2).

Note that the crucial step is the use of the identity (4). Since we have
proved the corresponding identity for an arbitrary integer n in the
Appendix, Section A.l, it follows that the above process of converting
an initial value problem to a Volterra integral equation is applicable to a
linear ordinary differential equation of order n when there are »n pre-
scribed initial conditions. An alternative approach is somewhat simpler
for proving the above-mentioned equivalence for a general differential
equation. Indeed, let us consider the linear differential equation of

order n:

LY 0L bt 4 0D 4 A0y = FO. )
with the initial conditions

y(a@) = qo, y(a) = q,, - Y@ =g, ,  (10)
where the functions A4,,A4,,...,4, and F are defined and continuous
ina<s<b.

The reduction of the initial value problem (9)-(10) to the Volterra
integral equation is accomplished by introducing an unknown function
g(s):

d"ylds" = g(s) . (11)

From (10) and (11), it follows that

5

dn-l
'W-{f} = fﬂ(f} dt +¢u-1,
¢ (12)
a2y (continued)

FERS: I(S—T}Q(U dr+ (s—a)gu-y + Gy-2 »
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dy _ (S o2 (s—a)? (s—a)?
i ( Y g(-"]df-i-wq,._; g

+ -+ (s—a)g; + 4,

(s— f)" 1 (s—ay”' (s—a)?
f (I)df+( i B oy I

(12)

+(s—a)q; + 4o -

Now, if we multiply relations (11) and (12) by 1, 4, (s), 4, (s), etc. and
add, we find that the initial value problem defined by (9)-(10) is reduced
to the Volterra integral equation of the second kind

9(s) = f5) + [ K(s,0g(0) dt , (13)
where
(s—o)f~!
K(&’)—*ZA&{S) -5 (14)
and

S(s5) = F(s) — g, A;(8) — [(s—a)gp— 1 + G,-2] A2(5)
—{[G=a)"" (n—1)11gu—y + -+ + (s—a)qy + g0}
x A,(s). (15)

Conversely, 1f we solve the integral equation (13) and substitute the
value obtained for g(s) in the last equation of the system (12), we derive
the (unique) solution of the initial value problem (9)—-(10).

5.2. BOUNDARY VALUE PROBLEMS

Just as initial value problems in ordinary differential equations lead
to Volterra-type integral equations, boundary value problems in
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ordinary differential equations lead to Fredholm-type integral equations.
Let us illustrate this equivalence by the problem

V() + A(s)y' + B(s)y = F(s) , M
y@ =y, yb)=y. (2)
When we integrate equation (1) from a to s and use the boundary

condition y(a) = y,, we get

Y(s) = C+ [ F(9)ds = 4(5) y(s) + A(@) o

+ j [A'(s) — B(s)] y(s) ds ,

where C is a constant of integration.
A second integration similarly yields

i 8

() = yo = [C+ 4@y (s—a) + [ [ F(s) ds, ds,

aa

5 52

- J- A(s) y(s)) ds; + ”. [4"(s) — B(s5y)]y(s)) ds, ds, . (3)

Using the identity (5.1.4), the relation (3) becomes

&

¥(8) = yo = [C+ A@yol(s—a) + [ (s— ) F() dt

a

- f {A@) = (s—D[A4"(1) = B(1} (1) dr . 4

The constant C can be evaluated by setting s = b in (4) and using the
second boundary condition y(b) = y,:

1= yo = [C+ A@yel (b—a) + [ (b=0) F(0) dt
- [0 - -4 O - BOByW dr

or
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C+ A@yo = [1/(b-0{0—¥0) - [ (b= F(0) dt
+ [ 140 = G=D[4' () — BOBy(@D di} . (5)

From (4) and (5), we have the relation
y(s) = yo + f(s-—f) F(t) dt + [(s—a)/(b—a)]
x [(71=yo) — [ (b= F (1) dr]
- j (A = (=D [4'(D) = BODLy(0) di

+ [ [6-a)(b-a] (4@ = b= [4'(®) - BONyO dr . (6)

Equation (6) can be written as the Fredholm integral equation

() = f(9) + [ Kis,n y(0) dt, (7

provided we set
1) = yo+ [ (s—) F(t) di

) + [-a)(b-@ [ —yo) — [ (=D FW ] (®)
an

([(s—a)(b—a)T{A®W) — b= [A'() — BOI},

s<t,

K(s, 1) = 4 (9
AW {[(s—a)(b—a)] — 1} — [A" (1) — B(D)]

x [(r—a)(b—s)/(b—a)], §>1.

For the special case when A4 and B are¢ constants, ¢ =0, b= 1, and
¥(0) = y(1) =0, the above kernel simplifies to

K(s, 1) = 0
Bt(l—s5)+ As— A4, s> 1.

Note that the kernel (10) is asymmetric and discontinuous at ¢ =s,
unless A = 0. We shall elaborate on this point in Section 5.4.
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Example 7. Reduce the initial value problem
Yi(s) + Ay(s) = F(s), (D
y@ =1, »(©0) =0, (2)

to a Volterra integral equation.
Comparing (1) and (2) with the notation of Section 5.1, we have
A(s) =0, B(s) = A. Therefore, the relations (5.1.6)-(5.1.8) become

K(s, ) = A(t—ys),

S5y =1+ [=nF®dr, (3)
0
and

y(s) = 1 +I(s—r)F(t) dt+ij(r~s)y(r) dr .
0 0

Example 2. Reduce the boundary value problem
Yi(s) + AP(s)y = Q(5), O]
y@=0, yb =0 (5)

to a Fredholm integral equation,

Comparing (4) and (5) with the notation of Section 5.2, we have
A=0, B=AP(s), F(s)= Q(s), yo=0, y, =0. Substitution of these
values in the relations (5.2.8) and (5.2.9) yields

) = [s=nQ@dt — [—a)b—a)] [ b—nQWdt  (6)

and

AP —a)(b—0)/(b—a)] , ,
K(s.1) = { (O [s—a)d—1)/(b—a)] s <t @
AP@)[(t—a)(b—s5)(b—a)], s>,
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which, when put in (5.2.7), gives the required integral equation. Note
that the kernel is continuous at s = ¢. '
As a special case of the above example, let us take the boundary value

problem
YVi+dy=0, (8)
y0 =0, y(¢)=0. €)

Then, the relations (6) and (7) take the simple forms: f(s) =0, and

ASIOE —1) , ,
Knp) = {(s{ YW —1) 5 <t (10)

(Y -s), s>t.

Note that, although the kernels (7) and (10) are continuous at s =1,
their derivatives are not continuous. For example, the derivative of the

kernel (10) is
ALL=@/6)),  s<t,

0K(s,1)/ds =
y { —Atll s> f.

The value of the jump of this derivative at s =1 is

dK (s, t) dK(s,0) | 1
ds t+0 B ds t—0 -

Similarly, the value of the jump of the derivative of the kernel (7) at

s=118
dK(s, 1) dK(s, 1) B
[ds m_[ « 1_0__,11»(;).
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An integral equation is called singular if either the range of integration
is infinite or the kernel has singularities within the range of integration.
Such equations occur rather frequently in mathematical physics and
possess very unusual properties. For instance, one of the simplest
singular integral equations is the Abel integral equation

f6) = [l@/s-01dt, O<a<l, ()
0

which arises in the following problem in mechanics. A material point
moving under the influence of gravity along a smooth curve in a vertical
plane takes the time f(s) to move from the vertical height s to a fixed
point 0 on the curve. The problem is to find the equation of that curve.
Equation (1) with o =1/2 i1s the integral-equation formulation of this
problem.

The integral equation (1) is readily solved by multiplying both sides
by the factor ds/(u—s)' ~* and integrating it with respect to s from 0 to u:
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u L3

C fs) ds -J ds J'g(;)dx

=" J@—95)'"*) (s—0" &
0

The double integration on the right side of the above equation is so
written that first it is to be integrated in the ¢ direction from 0 to s and
then the resulting single integral is to be integrated in the s direction
from 0 to u. The region of integration therefore is the triangle lying below
the diagonal s =t. We change the order of integration so that we first
integrate from 5 = 7 to s = u and afterwards in the ¢ direction from 1 =0
to ¢t = u. Equation (2) then becomes

u

fods oo [ ds
JW - J"“) Q== ©

(u,u)

(0,0} u

Figure 8.1

To evaluate the integral

F s
w—s)'"*(s—0*’
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one sets y = (u—s)/(u— 1), and obtains

u

1
J(u—s)’_l(s—t}'“ ds = jyﬂ(l —y)"*dy = nfsinan ,
i)

t

where we have used the value of the Eulerian beta function B(a, 1 —«)
= m/sin am. Substituting this result in (3), we have

sinar [ fs)ds jg(;] dr ,

n (u—s)'-¢
0 0

which, when differentiated with respect to u, and then changing u to t,
gives the required solution:

sinon d

— | f fls)(t=sy" ds] . @
0

g =

The integral equation (1) is a special case of the singular integral
equation [18]

[ ewar
f{s)__[[h(s)—h(r)]" O<a<l, (5)

where h(f) is a strictly monotonically increasing and differentiable
function in (a, b), and A'(?) # 0 in this interval. To solve this, we con-
sider the integral

5

K () f(u) du
[h(s) — k(w1 %"

and substitute for f(«) from (5). This gives

”‘ g(0) I (u) dt du
J [h(w) — k(D] [h(s) — h@w]* ™’

which, by change of the order of integration, becomes
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: : h' (1) du
d )
J g1) dr J (h () = (DT Th(s) — h)]

The inner integral is easily proved to be equal to the beta function
B(a, 1 —a). We have thus proved that

5 5

F@f@dd  x
J[h(s} —h(W]'™*  sinan Jg(‘) dt (6)

a a

and by differentiating both sides of (6), we obtain the solution

t

sin o i R (u) f(u) du

90 = == % | the = haw1= " @)
Similarly, the integral equation
b
o) = | 4wt O<a<l, ®)

[h(t) — h(9]*’

and a < s < b, with A(f) a monotonically increasing function, has the

solution

b
sinarn d h'(u) f(u) du

dt ) [h(u) = h(n]' ™%

g = — 9

We close this section with the remark that a Fredholm integral
equation with a kernel of the type

K(s, 1) = H(s, fjt—s]*, O<a<l, (10)

where H(s,t) is a bounded function, can be transformed to a kernel
which is bounded. It is done by the method of iterated kernels. Indeed,
it can be shown [I1, 15, 20] that, if the singular kernel has the form as
given by the relation (10), then there always exists a positive integer p,,
dependent on «, such that, for p> p,, the iterated kernel K,(s,1) is
bounded. For this reason, the kernel (10) is called weakly singular.
Note that, for this hypothesis, the condition « < 1 is essential. For
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the important case o = 1, the integral equation differs radically from
the equations considered in this section. Moreover, we need the notion
of Cauchy principal value for this case. But, before considering the case
o = 1, let us give some examples for the case « < 1.

Example 1. Solve the integral equation

B g(t) dt
§ = v (1
0
Comparing this with integral equation (8.1.1), we find that f(s) = s,
o = 1/2. Substituting these values in (8.1.4), there results the solution:

ld_! s
0=l ]
1}

1 d 2 ‘
_ = — —_— —_— l’i
nai| 3(s+2r)(r 5) :L
1d[4 % 2t
=;a_5‘]=? @

Example 2. Solve the integral equation

L

d
f(s)=j(cosff)c;”)%, 0O<a<s<bgr. 3)

a€

Comparing (8.1.5) and (3), we see that o =1/2, and h(f) = 1—cos{,
a strictly monotonically increasing function in (0, z). Substituting this
value for A(u) in (8.1.7), we have the required solution

B ]_i I (sin u) f(u) du
9(1) = :zdr[ (cosu — cosr)"’*] » ax<r<b. @
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Similarly, the integral equation

b
g(t) dt
(coss —cos1)”’

5

fls) = 0a<s<bsn, (5)

has the solution

b
1 d (sinu) f(u) du
g(r)__nd_{l: (cosr—-cosu}l’l] a<t<b. ©
t
Example 3. Solve the integral equations
(a) f()—JA(g(I)f;G, 0<a<l; a<s<hb, (7
and
b
) f(s) = %, O<a<l; a<s<b. )

5

From (8.1.5) and (7), we find that 4(f) = £*, which is a strictly mono-
tonic function. The solution, therefore, follows from (8.1.7):

!
2sinan d uf(u) du

- E m, a<t<b. (9)

g(f) =

Similarly, the solution of the integral equation (8) is

' b
2sinan d uf(u) du

W, a<t<b. (10)

g(t) = —

The results (9) and (10) remain valid when a tends to 0 and »
tends to + oo. Hence, the solution of the integral equation

gt

(2 2)&’ 0‘:'1{]9 (“)

JG) =
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is
i

g(t) = "

Similarly, the solution of the integral equation

a0

(1) dt
f(s) = (—f;_)sz)m, 0<a<l,
is
A — 2sinan d d uf(u) du
g(r) = — x di ]| (-

t
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Possible Questions

PART-B (10 Mark)
UNIT IV

1) Obtain the relationship between Voltera integral equation and initial value problem.

2) Reduce the BVP to a Fredholm integral equation y"(s) + Ay(s) =0
with y(0) =0, y(I) = 0.
3) Solve the homogeneous fredholm integral equation g(s) = /1[01 estg(t)dt

4) Obtain the Abel integral equation.
5) Solve y”+sy =1, y(0)= y(1) =0.

6) Solve the integral equation s = fos (ngz/z dt

7) Reduce the IVB y"(s) + Ay(s) = F(s),y(0) = 1,y'(0) = 0 to a voltera integral
equation.

8) Solve the integral equation f(s) = fSLt)dt ,0<a<1la<s<band

a (s2—t2)a’

f&)=f (tzg_(:g)a dt ,0<a<1la<s<Dbh.

9) Reduce the boundary value problemy” (s) + AP(s)y = Q(s), y(a)=0, y(b)=0 to a Fredholm
integral equation.
10) Reduce the BVP to a Fredholm integral equation y"(s) + Ap(s)y(s) = g(s)

with y(a) =0 and y(b) =0.

11) Solve the BVP y”- y = F(s), y(0) =y(1) =0.
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the same spatial contour C. Consequently,

where
z(x. y, a)=2(x, y)+adz,
. dz (x, y,
pix, y, @)= o p(x y)Labp,
2
9@,y @) =2ELD —gix g +adq.
Since

a

o {F 82y = {F ) 62+ F,0bp,

a d

W{Fﬂﬁz}=ﬁi{F?}63+F?6q’
it follows that

({(F 00+ F 89 dxdy =
D
=V [5 tF, 82t + 2 F, 02} | dxdy—
D
_S§ [?‘1. {F,) +% {Fq}]ﬁzdxdy,

where Ta?;iF.v} is the so-called total partial derivative with respect

to x. When calculating it, y is assumed to be fixed, but the depen-
dence of 2, p and g upon x is taken into account:

a,,, {Fpl =F +Fp: % +Fppax +FF¢_gi
and similarly

d gz

EE[FQ}=F¢1+F¢='3I+F¢PT+FW £
Using the familiar Green's function

aM
55 ("r+ ) dxdy = (vay—Max)
c

we get
({5 tFp821+5 1F, 821 dxdy=§{Fde~—qux) 82=0.
D

The last mtegral is equal to zero, since on the cnntour C the \rarla-!
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Note that after transformation of the variables, the integrand

F (xm. ¥ (), i’ﬂ)k(n

x(0)

does not contain ¢ explicitly and, with respect to the variables
x and y, is a homogeneous function of the first degree.
Thus, the functional vx(£), y(f)] is not an arbitrary functional
of the form
t

foe xo, v, 2@, 90 a

o
that depends on two functions x(f) and y(f), but only an extremely
particular case of such a functional, since its integrand does not
contain ¢ explicitly and is a homogeneous function of the first
degree in the variables x and y.

If we were to go over to any other parametric representation of

the desired curve x=ux(t), y=y(r), then the functional v[x, y]

T, .
would be reduced to the form SF(x, Y, -5"-‘-) x.dt. Hence, the in-
X.

T

tegrand of the functional v dc:és not change its form when the
parametric representation of the curve is changed. Thus, the functional
v depends on the type of curve and not on its parametric represern-
tation.

It is easy to see the truth of the following assertion: if the in-
tegrand of the functional

o[x (0), y(r)l=§m(r. x(), y(). x(t), N

does not contain ¢ explicitly and is a homogeneous function of the

first degree in x and y, then the functional v(x(f), y(f)] depends
solely on the kind of curve x=x(f), y=y(f), and not on its para-
metric representation. Indeed, let
4
ofx (), y(®)=) D), y(t), X1, §() at,
o
where

D(x, y, kx, ky)=kD(x, y, x, y).
Let us pass to a new parametric representation putting

t=9(t) (p(t)5£0), x=x(1). y=y©®.

Y

YOE@.y0.50, § ) dt = (D@, y®), x@00), D¢ 1) 2.

o (?)
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Possible Questions

PART-B (10 Mark)
UNIT V

1) Explain about Euler equation.
2) Find the extremals of the functional V y x = 01 1+ (y")?dx,
3) i)%c())lv=e Q/’Q/x1== L, yxﬂy’z__-& Z%yly;d}lc withyx =yandyx=y.
0 0 1 1
i) Solve Vy x ="'y ¥xy dx with y x =yandyx=y.
0 0 0 1
4) Obtain variational problem in parametric form.
5) Find the curve joining two body points rotated about absicca’s axis generated.
6) Find the curve joining the points (0,0) and (1,0) for which the integral

y dx is minimum if y’(0) =a and y’(1) = b.

7) On What curve can the functional V y x = (y 24+ 12xy)dx,y0=0and

y(1) = 1 be extremized.
8) Obtain the differential equation of the vibrating string.

9) Find the extremals of the functional Vy x,Z x =2y -EZ'Z + 2yZ dx,
y0= Oy—landZO 0,2"=-1.

10) Obtain the equatlon of vibrating of a rectlllnear bar.
11) Explain the functional dependent on the functions of several independent variables.
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1. Iff is piecewise continuously differentiable and absolutely integrable on the whole real line then its fourier transform F is

a.bounded b.derivative c.continuous d.discontinuous
2.The fourier transform of a function of compact support is a function of compact support.

a.not itself b.itself c.less than d.greater than

og = (2m) = [T F(t— wg(w)du
2. feg=(m) “r“" f( Jg(w) is the convolution of two f and g.
a.simple function  b.characteristic function c.continuous function d. integral function
L
iy 1du
-=-—
ot kdt

3. The equation is

a.linear diffusion equation b.integral equation c.hyperbolic equation d.parabolic equation
4. Afunction f defined in a region Q is said to be if

a.continuous  b.absolutely integrable c.pieswise differentiable d. integrable function
5. Iffis piecewise continuous in (a,b) then it is denoted by

a. b. . c. d.
f <p(a,b) f <plab) f €p(ab) f =p(ab)
6. Fourier cosine transform is an function
a.even b.odd c.odd or even d.zero

7. Fourier sine transform is an function

a.even b.odd c.odd or even d.zero

8. A function £} s said to be self reciprocal under the fourier transform if Flsdl=



10.

11.

12.

13.

14.

15.

16.

17.

18.

. @ b, F(B) .. F@©) d. (&)
Which one is a self reciprocal under the fourier transform.
e= B. ¢ ce_%. d. e%
-1 . —

If f(x) is even then Ff()id]
A6 N ATI€6) . —RIF@)] I A7{€3)
If f(x) is then

a.even b.odd c.odd or even d.zero
A function f defined in a region Q is said to be absolute integrable if Jo 1F G lax =0

a. =0 b.<0 C.<o0 d>eo,
Iff is in (a,b) then it is denoted by

A. piesewise continuous B.discontinuous c.continuous  d.bounded
The transform of a function of compact support is no itself a function of compact support.

a.laplace b. hankel c. fourier d. inverse laplace

If f is pieswise continuously differentiable and on the whole real line then its fourier transform F is continuous.

a.absolutely continuous b.absolutely integrable

Fourier transform is an even function

a.cosine b. sine c.inverse cosine

Fourier transform is an odd function

a.cosine b. sine c.inverse cosine

is a self reciprocal under the transformation.

b. hankel

a.llaplace c. fourier

If f(t) is a piecewise continuously differentiable and absolutely integrable on R,then at a point at whichiitis .............

a. piesewise continuous b.continuous

c.absolutely discontinuous

d.inverse sine

d.inverse sine

d.inverse laplace

c.discontinuous d. bounded

d.absolutely bounded.



19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

If f dependson both t and x, both of them renging over all ..o values

a.complex b.real c.imaginary d.limit

In the application of the Fourier transform to the solution of..................
a.Ordinary differential equations b. absolutely differential equations
c. absolutely integrable equations d.Partial differential equations

The operator d/dt is mapped by the Fourier transform into the ................... Number
a.real b.complex c.limit d.imaginary

The Fourier cosine transformsthe function f(t) is defined only for .............. values of the real variable t.
a.positive b.negative c.zeros d.infinite

The Fourier sine and cosine transforms to solve .................problems involving differential equations
a.initial value  b.boundary value c.singular value d. finite value

The transforms of the derivatives of an ............ function interms of the transform of the function itself.
a.known b.unknown c.differential  d.integrable

In any problem in which f(0) is known and f'(0) is not known make use of the ...............transform
a.Fourier cosine b.Fourier sine c.fourier d.inverse fourier

In any problem in which f'(0) is known and f(0) is not known make use of the ...............transform
a.Fourier cosine b.Fourier sine c.fourier d.inverse fourier

In the Fourier transforms of rational functions the function f(z) has a .............. number of singularities .
a.zero b.non zero c.finite d.infinite

In the Fourier transforms of rational functions the function f(z) has a finite number of singularities in the .......... plane.
a.half b.upper half c.lower half d.semi infinite

In the Fourier transforms of rational functions the function f(z) is ......... at all points of the real axis
a.bounded b.analytic c.singular d.continuous

In the Fourier transforms of rational functions the function f(z) is analytic at all points of the real axis except the points are............
a.simple poles b.double poles c.differential d.continuous

The function has a simplepole at z=0 and ............... singularities
a.no other b.one c.two d.three

The function has a simplepole at z=0 and no other singularities and res f(0)=...........
a.0 b.1 c.2 d.3



UNITII

10.

11.

In the convolution integral both the function f and g are.................... functions
a.continuous  b.bounded c.differentiable d.integrable
In convolution integral functions are commutative then.............
afog=gof b.fog=-gof c.fog=(gof) d.fog=fog
Iffo(g oh)=(fog)oh thisrelation is called as......
a.commutative b.associative c.bounded d.closure
The Parseval's relation for fourier transforms may be written in the form...........

L IFI<If LR R o IFI=171

Fourier transforms may be used in the solution of ............ value problems
a.boundary b.initial c.boundary and initial d.singular
Fourier transforms may be used in the solution of boundary and initial value problems for linear............. equations

a.differential b.integral c.ordinary differential d.partial differential
In Laplace's equation A_n u(r)=0 where nisthe ..........................of the space
a.order b.number c.dimension d.total
In Laplace's equation A_n u(r)=0 where n is the dimension of the space u is the function of the ............ vector
a.position b.direction c.rotation d.irrotation

In Laplace's equation A_n u(r)=0 where n is the dimension of the space u is the function of the position vector & A_n denotes.....
a.Laplacian operator  b.vector operator c.scalar operator d.differential operator
The Laplace's equation in a half-plane a function u(x,y) satisfying Lapace equation in the half plane............
a.y>0 b.x>0 c.y20 d.x>0
The Laplace's equation in a half-plane a function u(x,y) satisfying Lapace equation in the half plane y20, the boundary condition
u(x,0)=f(x) in.....
a.0<x<oo b.o<y<oo C.-00<X< 00 d.-co<y<oo



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Laplace's equation in a half plane the limiting condition u(x,y)>...... as

a.0 b.1 c.2 d.3
Laplace'sequation in an infinite strip in the strip.............

a.y>a b.y>a c.0sy<a02y>a d.O<sy<a
Laplace's equation in an infinite strip with the boundary conditions...........

a.u(x,0)=f(x), u(x,a)=g(x)  b.u(x,0)=g(x), u(x,a)=f(x) c.u(x,0)=f(x), u(x,0)=g(x) d.u(x,a)=f(x), u(x,a)=g(x)

The Laplace's equation in a half-plane a function u(x,y) satisfying Lapace equation in the half plane y=0, the boundary condition ......

a.u(x,0)=0 b.u(x,0)=1 c.u(x,0)=-f(x) d.u(x,0)=f(x)
The ........... State distribution of temperature in aslab whose faces are maintained at prescribed temperatures.
a.Steady b.unsteady c.finite d.infinite
The stady state temperature in a thick slab when the temperature of one face of the slab is prescribed and other face is insulated against
the flow of...........
a.heat b.strip c.slab d.value
The Laplace equation in a semi infinite strip maintained at .............. temperature
a.prescribed  b.unprescribed c.finite d.infinite
The Laplace equation in a semi infinite strip maintained at prescribed temperature -one face (x=0) being ata ........... temperature.
a.Finite b.infinite c.prescribed  d.constant
The Laplace equation in a semi infinite strip maintained at prescribed temperature -one face ............ being at a constant temperature.
a.x=0 b.x=1 c.x=2 d.x=3

The Laplace equation in a semi infinite strip maintained at prescribed temperature -one face (x=0) being at a constant temperaturewhich
is the .....temperature

a.finite b.reference c.prescribed d.bounded

The Fourier sine transform consider the derivation of the solution the linear............... equations
a.differential b.integral c.diffusion d.Laplace

The ........... transform consider the derivation of the solution the linear diffusion equations
a.Fourier sine b.Inverse Fourier c.Fourier cosine d.Fourier

The linear diffusion equation on a semi infinite line............
a.y>0 b.x>0 c.y=0 d.x20
The linear diffusion equation on a semi infinite line having the initial condition u(x,0)=......



26.

27.

28.

29.

30.

31.

32.

a.l b.2 c3 d.o
The linear diffusion equation on a semi infinite line having the boundary condition u(o,t)=f(t),
a.t>0 b.t=0 c.t20 d.f(t)=0
The linear diffusion equation on a semi infinite line having theboundary condition u(x,t)=>0 as x>.............
a.0 b.1 c.2 d.oo
In general the solution of the linear diffusion equation satisfying the boundary conditions u(0,t)=...... as x>oo
a.0 b.1 c.2 d.3
In general the solution of the linear diffusion equation satisfying the boundary conditions u(x,t)=> ....... as x—>oo
a.l b.2 c.3 d.o
In general the solution of the linear diffusion equation satisfying the initial conditions are u(x,0)=............
a.0 b.oo c.f(x) d.i
The use of double Fourier transforms derive the solution u(x,y,t) of the ...............equation
a.differential  b.integral c.diffusion d.linear
The use of double Fourier transforms derive the solution ............ of the diffusion equation
a.u(x,y,t) b.u(x,y) c. u(y,t) d.u(x,t)



UNIT Il

1.

The non homogeneous integral equation of the type
b b
K(s t)g(t)dt Al K(st t)dt
KG9 o A, K(s0) g(t) ¢, gls)=fls)+

If the upper limit of the integral equation is a variable then the integral equation is called

a.Abel’s equation b.Volterra integral equation  c.homogeneous equation d.Laplace equation

Find k1(s,t) for the integral equation g(s)=(1+s)
a.s+t b.s-t c.t d.s/t
Find k2(s,t) for the integral equation g(s)=f(s)+

a.s-t b.s-t est c.t d.st

The most general form of linear equation is h(s)g(s)=

a.8(s)=f(s)+ * I K Co D o an b.‘l fﬁb K(s t) g(t)dt c. Fls) + A f k(s tydt d. g(s)=f(s)/ A [P K (s D g(O)de

R = £ + A [ k(s g o) ar

In the linear integral equation where the upper limit may be

a.fixed b.variable c.constant d.either variable or fixed
If h(s)=1 in the linear integral equation it is known as the fredholm integral equation is of the type

AT K(s ) g(t)de d.g(s)=F(s) A [P K (s ) g(t)dt

a.first kind b.second kind c.homogeneous fredholm integral equation d.third kind
In the separable kernel k(s,t)=5i=1nai (s) bi (t) the functions ai(s)can be assumed to be

a.Independent b.dependent c.linearly independent d.equal
In the kernel set k(s,t)=s+t,a2(s)=

a.S b1l c.2 d.t

The non homogeneous Fredholm integral equation is g(s)

a.g(s)=f(s)+ 4 J= K (s D g()ar b.f(s)+Afk(s,)g(t)dt  cAfk(s,t)g(t)dt d.g(s)=f(s)/ 1= KD g(D)dr



10. A non-homogeneous Fredholm integral equation with seperable kernel has one and only solution and is given by
a.g(s)=f(s)+AJT(s,t;e)f(t)dt b.AST(s,t;N)f(t)dt . 1+AJT(s,t;A)g(t)dt d.gls)= 2 K= Dgar

11. The non-homogeneous Fredholm integral equation reduces algebraic system of equation of the form

c; — @ € = fowhere i = 1,2,3 ... - P o ~ o = O
a. Z bZi c. Z‘ d.o
12. In the non-homogeneous Fred Holm integral equation the solution of I'(s,t;A) is given by
a.D(s,t;A)/D(A) b.D(s,t;A)/D(t) c.D(s,t;A)/t d.none of these
13. y"+ A(S)y'+B(S)Y= F(S) is
a.Initial value problem b.Boundary value problem c. Fredolm’s equation d.Parseval’s equation
14. The kernel K(s,t)= H(s,t)|t-s|a, O<a<1 is
a.Singular b. Weakly singular c.Strongly singular d.Regular
15. The integrable equation g(s) = f(s)+ g(t) dtis known as
a.a non —homogeneous fredholm IE b.a homogenous fredholm IE
c.a non —homogeneous volterra IE d.a homogeneous volterra IE
16. Fc[f(at);€]=
-1
2.0 b. % Fo gy, ¢/ ¢. %F [5(y), ¢/ d.1
17. The general form of voltera integral equation,if h(s)=0 is
a. A[D k(s,)g(e)de b.f(s)+ A k(s )g(B)de c.f(s)+ J; k(s £} g(e)de d. Lgk(s, £ o (D e
18.The most general type of the linear integral equation is of the form
AP K(s ) g(t)dt
a.g(s)=f(s)+ “rﬁ (s 8)9(2) b.g(s)h(s)=f(s)+g(s) c.AJk(s,t)g(t)dt d.g(s)+h(s)=f(s)+g(s)
18. In the linear integral equation if the upper limit of the integration is a fixed constant it is called
a.Fredolm integral equation b.voltera integral equation c.homogeneous equation d.Laplace equation

19. The abbreviate notation is called laplace integral equation



a.z=f(x,y) b. Z<f(xy) c.Z>f(x,y) d.z=0

20. The most general form of is h(s)g(s)=f(s)+
a.linear integral equation b. integral equation c.fredholm IE d.Abel’s integral equation
21. In the linear integral equation h(s)g(s)= f(s)+ A _I“: k(s g (t)de where the may be either variable or fixed
a. upper limit b.lower limit c.both upper and lower limit d.no limit
22. If in the linear integral equation it is known as the fredholm integral equation is of the type of second kind
a.h(s)=0 b.h(s)=1 c.h(s)>0 d.h(s)<0
23. If h(s)=1in the linear integral equation it is known as the is of the type of second kind
a.fredholm integral equation b.linear integral equation c.homogenous IE d.voltera IE
24. The Fredholm integral equation is f(s)+ A “rﬂb k(s t)g(£)de
a.non homogeneous b.homogeneous c.liner d.non linear
25. A Fredholm integral equation with seperable kernel has one and only solution and is given by g(s)=f(s)+
ALTT(s, 6 DF (Hde
a.non homogeneous b.homogeneous c.liner d.non linear non homogeneous
26. A non homogeneous Fredholm integral equation with seperable kernel has solution
a.two b.0 c.one and only d.three
27. The non-homogeneous reduces algebraic system of equation of the form
a.linear integral equation b.Fredholm integral equation c.voltera integral equation d.homogeneous integral
equation
D(s.r;d)
28. In the the solution of 2 is given by
a. a.non-homogeneous Fred holm integral equation b.homogeneous Fred Holm integral equation
b. c. homogeneous linear integral equation d. non-homogeneous linear integral equation
28. The of a function V(y(x))= e
a.variation b.solution c.simple d.characteristic
29. A function f defined in a region v is a said to be if

a.absolutely integrable b.absolutely continuous c.absolutely dis continuous d.bounded



30.

is an even function
a.Fc(x) b.F(x)

c. Fs(x)

d.f(y)



UNIT IV

1. Once a boundary value or an initial value problems has been forulated in terms of an ..........cccc.c........ equation
a.differential  b.ordinary c.partial d.integral

2. Afundamental relationship between ................. Equations and ordinary differential equations
a.Fredolm integral equation b.voltera integral equation c.Laplace equation d.Bessel's equation

3. Afundamental relationship between Volterra Equations and ordinary differential equations with prescribed ................. value
a.bounded b.boundary c.initial d.final

4. The simple initial value problem is...................
a.y"+A(s)y'+B(S)y=F(s) b.y"+B(S)y=F(s) c.y"+A(s)y'=F(s) d.y"+A(s)y'+B(S)y=0

5. The simple initial value problem is y"+A(s)y'+B(S)y=F(s) with the condition...............

a.y(a)=0 ,y'(a)=ql b.y(a)=q0 ,y'(a)=a1 c.y(a)=q0 ,y'(a)=-q1  d.y(a)=ql ,y'(a)=q0
6. The simple initial value problem is y"+A(s)y'+B(S)y=F(s) the functions A,B and F are continuous in the closed interval.................

a.ass<1 b.0<s<b c.go<s<b dass<b
7. The Volterra integral equation y(s)=f(s)+] k(s,t) y(t) dt is the ....................kind
a.first b.second c.third d.zeroth
8. Aninitial value problem to Volterra integral equation is applicable a..................... differential equation
a.linear partial b.linear ordinary c.linear d.linear integrable

9. Aninitial value problem to Volterra integral equation is applicable a linear ordinary differential equation of order........
a.n b.n-1 c.n(n-1) d.n-2
10. Aninitial value problem to Volterra integral equation is applicable a linear ordinary differential equation of order n, when there are ....
prescribed initial conditions

a.n-1 b.n(n-1) c.n-2 d.n
11. The reduction of the initial value problem to the Volterra integral equation by introducing an ..................... function g(s).
a.Known b.unknown c.integral d.differential

12. The integral equation the value obtained for g(s) of the system,derive the ................... solution of the initial value problems



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

a.0 b.1 c.unique d.different

The integral equation the value obtained for g(s) of the system,derive the unique solution of the ............. problems
a.initial value b.boundary value c.finite value  d.infinite value
Initial value problems in ordinary differential equations lead to ..............type integral equations
a.Fredolm integral equation b.voltera integral equation c.Laplace equation d.Bessel's equation
Initial value problems in ........... differential equations lead to Volterra type integral equations
a.partial b.ordinary c.infinite d.finite
............. value problems in ordinary differential equations lead to Volterra type integral equations
a.boundary b.final c.Initial d.bounded
Boundary value problems in ordinary differential equations lead to ..............type integral equations
a.Fredolm integral equation b.voltera integral equation c.Laplace equation d.Bessel's equation
Boundary value problems in ........... differential equations lead to Fredolm type integral equations
a.partial b.ordinary c.infinite d.finite
............. value problems in ordinary differential equations lead to Fredolm type integral equations
a.boundary b.final c.Initial d.bounded
The simple boundary value problem is y"+A(s)y'+B(S)y=F(s) with the condition...............

a.y(a)=0 y'(a)=ql b.y(a)=y0 ,y'(a)=yl  cy(a)=q0 ,y(b)=-q1  d.y(a)=y0 ,y(b)=y1l
A boundary value problems in the Fredolm type integral equations the Kernel K(s,t) is ......cccc.......

a.symmetric b.asymmetric c.singular d.non singular

A boundary value problems in the Fredolm type integral equations the Kernel K(s,t) is asymmetric and discontinuous at

a.t=0 b.t=a c.t=b d.t=s



23.

24.
25.

26.

27.

28.

29.

30.

31

32.

33.

34.

A boundary value problems in the Fredolm type integral equations the Kernel K(s,t) is asymmetric and discontinuous at t=s unless

a.A<0 b.A>0 c.A=0 d.A=S
The kernel of the integral equation is that of ..................type
a. a.Integral b.volterra c.fredolm d.convolution
The..veenns of the integral equation is that of convolution type
a.value b.kernel c.singular d.limit

The kernel of the integral equation is that of convolution type equations can be solved by ............

a.Fourier b.Laplace c.Z d.inverse fourier
An integral equation is called ................... if either the range of integration is infinite
a.Singular b.non singular c.finite d.infinite

An integral equation is called singular if either the range of integrationiis .................

a.zero b.finite c.infinite d.bounded
An ... equation is called singular if either the range of integration is infinite
a.differential b.Laplace c.integral d.Bessel's

An integral equation is called singular if either the range of integration is infinite or the .......

weeeeeentransform methods

has singularities within the range of

integration
a.limit b.kernel c.boundedness d.double
An integral equation is called singular if either the range of integration is infinite or the kernel has ............. within the range of integration
a.singularities b.poles c.residues d.zero
An integral equation is called singular if either the range of integration is infinite or the kernel has singularities.............. the range of
integration
a.without b.finite c.infinite d.within
One of the simplest singular integral equations is the ..........cccuuu....... integral equation

a.Lebegue b.fourier c.finite d.Abel



35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Abel integral equation aries in the problem in................... statics

a.dynamics b.mechanics c.physics d.mechanics
In Fredholm integral equation with kernel of the type where H(s,t) is a ............. function
a.continuous b.bounded c.integral d.differential
In Fredholm integral equation with kernel of the type where H(s,t) is a bounded function can be transformed to a............... which is
bounded
a.bounded b.kernel c.continuous  d.finite

In Fredholm integral equation with kernel of the type where H(s,t) is a bounded function can be transformed to a kernel which is

a.finite b.continuous c.bounded d.infinite
If the singular kernel always exists a.........ccceuuuene integer po.
a.positive b.negative c.finite d .infinite
If the .............. kernel always exists a positive integer po.
a.poles b.residue c.singular d.non singular

If the singular kernel always exists a positive integer .............
a.po b.pl c.p2 d.p3
In Fredholm integral equation with kernel of the type where H(s,t) is a bounded function can be transformed to a kernel which is
bounded is done by the method......
a.iterated kernels b.bounded kernels c.finite kernels d.continuous kernels
In Fredholm integral equation with a kernel of the type is called .......................
a.Singular b.strongly singular c.weakly singular d.bounded singular
In Fredholm integral equation with a kernel of the type for this hypothesis, the condition ....................... is essential
a.asl b.a>1 c.o>l d.a<1



UNITV

a
Vv =—WV + ad,, [
1. The equation el =5 vy + ad,] _ is

a.BVP b.convolution IE c.variation of functional d.fredholm IE

2. The variation of a functional is zero on the

a.Circumference b. curve c. circle d.cone
3. The variation of a functional is ___ on the curve.
a.zero b. one c.finite d. infinite
4. Invariational problem the variation is denoted by __
a. 9o b. Ox C. 0z d. Oy
8F 4 [8F
5 e (3y7) =0
5. The equation “¥ ey

a. heat equation  b.euler equation c. wave equation d. Laplace equation

6. Ineuler equation F is independent of y then

af
B—F, = constant 8% _ constant 5- =0 7 — o
dy ay dy ay"
b. c. d.
7. Ineuler equation F is independent of y’ then
a. % b. &' c. & d.
8. The variational problem does not have any solution in the case of
a. laplace equation b.discontinuous function c. euler equation d.continuous function
_ S —wae
9. In hamiltons principal “"@
a.stationary b.stable c. continuous d.unstable

10. The equation of vibrating string is
8%y E du 1 E‘_J 8%y 3 8%u E'_..L 1 8%

ar

o - i a
dx b. at a dx C. ar? dx? d. de g dx*



11. The equation of vibration of the rectilinear bar

Pu_  &u #u _ 8u °u _ 1du u__ p 3w
A, 8x° P o b, dx* P c. dx? k ot d. 8% Kk ar?
12. The does not have any solution in the case of continuous function
a.BVP b.IVP c.Laplace problem d. variational problem

16.When one or both the limits of integration become infinite or when the kernel becomes infinite at one or more points in the range of the
integration, the integral equation is

a. a.Volterra equation b.Fredholm equation  c.Singular integral equation d.Laplace equation
13. A function g(t) is said to be square integrable if
a.fab]g(t)|2 dt<ee b.fab|g(t)|2 dt<0 c.fab|g(t)|2 dt<1 d.fab|g(t)|2 dt>1

14. A function @ is called normalized if
al@ll=0  b.foll=1 clIol =9l d.[|o]| =2

15. The variational problem for the functional V[y(x)] =[(y2+2xy)dx, y(x)=y_O, is meaningless
a.True b.flase c.sometimes true d.zero

16. If a(x) is continous in [a,b],and if for every function h(x)€C(a,b) such that h(a)=h(b)=0, then a(x)=0 for all x in [a,b]

J-ba:[x]h[x]dx =0

a. b. J a(x)h(=)d= =0 C. h(=x)d= =0 d. h[x:]d}-:<0

17. Eulers equation for the extremals of [01(y'2+12xy)dx is
a.y”’-2x=0 b.y”-6x=0 c.2y”’-6x=0 d.y”’-12x=0
18. Solution of the equation [0s(g(t)dt)/V(s-tc )=s is

a.g(t)=2t/m b.g(t)= (2vt)/nt c.g(t)= vt/nt d.g(t)= vt/2n

19. The mth iterated kernel km(s,t) is given by




20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Sy @dx [ EeaGe0dr [k k(o g

The abbreviate notation AZ=f(x,y) is called
a.poisson equation b.laplace equation c.abel’s equation d.volterra equation

(1+s)+ J-s[s —t)g(t)dt =

a.e b.e® c.e?d d.e?

The most general form of linear equation is h(s)g(s)=

b i = 5 B
a glo)efie)e Mo K(sDg@ar | ALK (s D) g(t)dt S +2 [ k(s rae LA (D g

R()g(s) = F(s) + A f k(s, )g(t) dt

In the linear integral equation where the upper limit may be

a.fixed b.variable c.constant d.either variable or fixed
The variation of the functional v[y(x)] is given by

a.0/0x v[y(x) + «<by]a=0 b.0/0x [y(x) + xby]a=0 c.x=0 d. év =20
The function v[ y(x)]= JO1y'2+ 12xydx , y(0)=0 y(1) is extremized on

a.Y=x b. Y=x3 c. Y=x* d. Y=x°
The euler equation of the function v[ y(x)]= for/2(y'-y2)dx,y(0)=0,y(r/2)=1 is

. a¥ a¥ da*¥
a. #+1=0 b. @4y =0 c. @ 4x=0 d. @ +1=0
arF

In Euler’s equation F is of y1 then ¥ o0

a.dependent b.independent c. neither dependent nor independent d.continuous
The function V(y(x))= 2+x2y1)dx y(0) and y(1)=a is extrmized by the curve

a.y=x b.y=-x c.y=x2 d.y=-x2

The functional V(y(x))= 1+y2)dx y(0)=0 and y(p/2)=1 be extrimized by

a.y(x)=cosx b.y(x)=sinx c.y(x)=tanx d.y(x)=cotx

Brachistochrone problem is a



a.cycloid b.circle c.parabola d.ellipse
31. Fc(x)isan ........ function

a.even b.odd c.singular d.non singular
ar
32. . In Euler’s equation F is explicitly independent of x then F-yl= &»*
a.constant b.0 c.l d.infinite
aF

33. In Euler’s equation F is independent of y1 then = 8»*
a.0 b.1 c.constant d.2

@

o

34. In Euler’s equation F is independent of y1 then = 2>
a.constant b.0 c.2 d.3

even
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PART-A(20X1=20 Marks)
Answer all the Questions:
1.Iff is piecewise continuously differentiable and absolutely
integrable on the whole real line then its fourier transform F is
a)Bounded b) derivative
C) continuous d) discontinuous.
2F[f ()&l =
a)f () b)F*($) d)-f7()
3F[f(1);:¢] =
a) §F[f(¢); €] b) i F[f(¢); ]
) -iéFIf() ¢l  d)-FIf();¢]
4. The fourier transform of a function of compact supportis
a function of compact support.

c) F*(t)

a) not itself b) itself
c) less than d) greater than
5. F[e ;€] = ----------
1 1
2\z ¢ 2\z2 a
a) (;) aZ+&2 b) (;) aZ+&2
1 1
2\ 2 ¢ 2\2 ¢
C) (;) a2-¢2 d) (;) az2-¢&2

1 e 0] - -
6.fog=Q2n)2[__ f(t—ugdu is the convolution of two-----

-- function f and g.
a) Simple
¢) Continuous

b) characteristic
d) integral

. 0%u
7. The equation Fycie
a) linear diffusion equation b) integral equation

c) hyperbolic equation d) parabolic equation
8. A function f defined in a region Q is said to be ---------- if

S 1f()ldx < w0

a) continuous b) absolutely integrable

c) pieswise differentiable d) integrable

9. Fourier cosine transform is an ----------- function of &

a) even b) odd ) odd or even d) zero

10. {F,(§ + @) = F,(§ — @)} =-emeemeees

a) F[cos(wt) f(t);¢] b) F[sin(wt) f'(t); €]

¢) F[sin(wt) f(t); €] d) F[sin(wt) £ (¢); ]

11.The linear diffusion equation on a semi infinite line............
a) y>0 b) x>0 c) y>0 d) x>0

12. The Laplace's equation in a half-plane a function u(x,y) satisfying
Lapace equation in the half plane y>0, the boundary condition

a) u(x,0)=0 b) u(x,0)=1
C) u(x,0)= - f(x) d) u(x,0)=f(x)
13. The ........... State distribution of temperature in a slab whose
faces are maintained at prescribed temperatures.
a)steady b)unsteady
c)finite d)infinite

14. Laplace's equation in an infinite strip with the boundary
conditions...........

a) u(x,0)=f(x), u(x,a)=g(x) b) u(x,0)=g(x), u(x,a)=f(x)
¢) u(x,0)=0, u(x,0)=g(x) d) u(x,a)=f(x), u(x,a)=0
15. In the convolution integral both the function fand g

) (R functions
a) Continuous

c) Differentiable

b) bounded
d) integrable

16. The Parseval's relation for fourier transforms may be written in the

a) [IFIl < Ifl
) IFIF = 1I£l

b) IF 1| > 1If 1l
d) [IFII/11£1l



17. The steady state temperature in a thick slab when the temperature
of one face of the slab is prescribed and other face is insulated against
the flow of.......

a) heat b) strip
c) slab d) value
18. The Fourier sine transform consider the derivation of the solution
the  linear............... equations
a)differential b)integral
c)diffusion d)Laplace

19. In Laplace's equation A, u(r)=0 where n is the
.......................... of the space

a)order b) number
c) dimension d) total
20. The ........... transform consider the derivation of the solution the
linear diffusion equations
a) Fourier sine b) Inverse Fourier
c) Fourier cosine d) Fourier

PART-B (3X2=6 Marks)
ANSWER ALL THE QUESTIONS
21. Define Fouriertransforms.

22. Write any two  properties of Fourier Cosine and

Sine  Transforms.
23. Define  diffusion equations.
PART-C (3x8=24 Marks)
ANSWER ALL THE QUESTIONS
24. a) Obtain Fourier sine transforms.
(OR)
x2

b) Show that e 2 is a self reciprocal with respect to Fourier
Transform.

25. a) Obtain the Fourier transform of some simple functions.

(OR)

N

i) Prove that F.[e%; ] = (_)2

s

a

az—+fz,a>0.

1
T at. g1 — (2)2 ¢
ii) Prove that F,[e%;¢] = (n) vl 0
26. a) State and proof convolution theorem for Fourier transform

(OR)
b) Derive the solution of two dimensional diffusion equations
in an infinite region.
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