

MONGODB (2019-2021
Batch)

Department of Computer Science, KAHE Page 1/2

KARPAGAMACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)
 (For the candidates admitted from 2017 onwards)

DEPARTMENT OF CS, CA & IT

SUBJECT NAME : MONGODB
SEMESTER : II
SUBJECT CODE :19CSP203 CLASS: I M.Sc CS

Instruction Hours / week:L: 4 T: 0 P: 0 Marks: Internal:40External:60Total: 100
 End Semester Exam :3 Hours
Course Objectives
To provide students the knowledge and skills to master the NoSQL database mongoDB.

Course Outcomes(COs)

1. To provide students the right skills and knowledge needed to developApplications on
mongoDB

2. To provide students the right skills and knowledge needed to run Applications on

mongoDB

Unit I- GETTING STARTED

A database for the modern web – MongoDB through the JavaScript shell – Writing programs
using MongoDB.

Unit II - APPLICATION DEVELOPMENT

Document-oriented data – Principles of schema design – Designing an e-commerce data model –
Nuts and bolts on databases, collections, and documents. Queries and aggregation – E-commerce

queries – MongoDB‟s query language – Aggregating orders – Aggregation in detail.

Unit III - UPDATES, ATOMIC OPERATIONS, AND DELETES

A brief tour of document updates – E-commerce updates – Atomic document processing –
MongoDB updates and deletes. Indexing and query optimization: Indexing theory – Indexing in
practice – Query optimization.

Unit IV – REPLICATION

MONGODB (2019-2021
Batch)

Department of Computer Science, KAHE Page 2/2

Overview – Replica sets – Master-slave replication – Drivers and replication. Shading: Overview
– A sample shard cluster – Querying and indexing a shard cluster – Choosing a shard key –
sharding in production.

Unit V - DEPLOYMENT AND ADMINISTRATION

Deployment – Monitoring and diagnostics – Maintenance – Performance troubleshooting

SUGGESTED READINGS

1. Kyle Banker. (2012). MongoDB in Action. Manning Publications Co.

2. Rick Copeland. (2013). MongoDB Applied Design Patterns, 1st Edition, O‟Reilly

Media Inc.
3. GautamRege, (2012). Ruby and MongoDB Web Development Beginner's Guide.

Packt Publishing Ltd
4. Mike Wilson.. (2013). Building Node Applications with MongoDB and

Backbone, O‟Reilly Media Inc.

5. David Hows. (2009). The definitive guide to MongoDB, 2nd edition, Apress
Publication, 8132230485

6. Shakuntala Gupta Edward. 2016. Practical Mongo DB , 2nd edition, Apress
Publications, 2016, ISBN 1484206487

 WEBSITES

1. http://www.mongodb.org/about/production-deployments/
2. http://docs.mongodb.org/ecosystem/drivers/
3. http://www.mongodb.org/about/applications/
4. http://www.mongodb.org/

MONGODB (2019-2021

Batch)

Prepared by Dr.S.Veni, Department of CS, CA & IT, KAHE Page 1/ 5

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956)

 (For the candidates admitted from 2019 onwards)

DEPARTMENT OF CS, CA & IT

LESSON PLAN

SUBJECT NAME : MONGODB (19CSP203)

SEMESTER : II

UNIT I

SI.NO

Lecture

Duratio

n (Hr)

Topics to be covered
Support

Materials

1 1 Getting Started T1:1

2 1 A database for the modern web T1:3

3 1 A database for the modern web T1:18

4 1 MongoDB through the JavaScript shell T1:29

5 1 MongoDB through the JavaScript shell T1:39, W1

6 1 Writing programs using MongoDB T1:52

7 1 Recapitulation and Discussion of Important Question

Total no. of Hours Planned for Unit I 7

UNIT II

MONGODB (2019-2021

Batch)

Prepared by Dr.S.Veni, Department of CS, CA & IT, KAHE Page 2/ 5

SI.N

O

Lecture

Duration

(Hr)

Topics to be covered
Support

Materials

1 1
APPLICATION DEVELOPMENT - Document-

oriented data T1:71

2 1
Principles of schema design , Designing an e-

commerce data model

T1:75,

R2:169

3 1
Nuts and bolts on databases, collections, and

documents T1:84

4 1 Queries and aggregation- E-commerce queries T1:99, W2

5 1 MongoDB‟s query language T1:103

6 1 Aggregating orders, Aggregation in detail T1:120

7 1 Recapitulation and Discussion of Important Question

Total Periods Planned for Unit II 7

 UNIT III

SI.N

O

Lecture

Duration

(Hr)

Topics to be covered
Support

Materials

1
1

UPDATES, ATOMIC OPERATIONS, AND

DELETES - A brief tour of document updates T1:158

2

1 E-commerce updates

T1:162,

R1:193

3 1 Atomic document processing T1:171

MONGODB (2019-2021

Batch)

Prepared by Dr.S.Veni, Department of CS, CA & IT, KAHE Page 3/ 5

4 1 MongoDB updates and deletes T1:179

5 1 Indexing and query optimization: Indexing theory T1:198

6
1

Indexing in practice

T1:207

7
1 Query optimization W2

7 1 Recapitulation and Discussion of Important Question 7

Total Periods Planned for Unit III

 UNIT IV

SI.N

O

Lecture

Duration

(Hr)

Topics to be covered
Support

Materials

1 1 REPLICATION- Overview, Replica sets T1:297

2 1 Master Slave Replication – Drivers and Replication T1:324

3
1 Shading: Overview

T1:334

R3:312

4 1 A sample shard cluster T1:343

5
1 Querying and indexing a shard cluster

T1:355,w

2

6
1 Choosing a shard key

T1:359,

w2

MONGODB (2019-2021

Batch)

Prepared by Dr.S.Veni, Department of CS, CA & IT, KAHE Page 4/ 5

7 2 Sharding in production T1:365

8 1 Recapitulation and Discussion of Important Question

Total Periods Planned for Unit IV 8

UNIT V

SI.N

O

Lecture

Duration

(Hr)

Topics to be covered
Support

Materials

1
1

DEPLOYMENT AND ADMINISTRATION -

Deployment

2 1 Monitoring and diagnostics

3 1 Monitoring and diagnostics

4 1 Maintenance

5 1 Maintenance

6 1 Performance troubleshooting

7 1 Recapitulation and Discussion of Important Question

8 1 Discussion of Previous ESE Question Papers

9 1 Discussion of Previous ESE Question Papers

10 1 Discussion of Previous ESE Question Papers

Total Periods Planned for Unit V 10

Total Periods 40

MONGODB (2019-2021

Batch)

Prepared by Dr.S.Veni, Department of CS, CA & IT, KAHE Page 5/ 5

Text Book

T1

Kyle Banker. (2012). MongoDB in Action. Manning Publications Co.

References

R1 Rick Copeland. (2013). MongoDB Applied Design Patterns, 1st Edition,

O‟Reilly Media Inc.

R2 Mike Wilson.(2013). Building Node Applications with MongoDB and

Backbone, O‟Reilly Media Inc.

R3

Shakuntala Gupta Edward. 2016. Practical Mongo DB , 2nd edition, Apress

Publications, 2016, ISBN 1484206487

Web Sites

w1

http://www.mongodb.org/

w2 W3schools.com/mongodb

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 1 of 42

UNIT I
 SYLLABUS

 Getting Started: A database for the modern web – MongoDB through the
 JavaScript shell – Writing programs using MongoDB.

 Getting Started: A database for the modern web

MongoDB is a database management system designed to rapidly develop web
appli- cations and internet infrastructure. The data model and persistence
strategies are built for high read-and-write throughput and the ability to scale
easily with automatic failover. Whether an application requires just one
database node or dozens of them, MongoDB can provide surprisingly good
performance. If you’ve experienced difficul- ties scaling relational databases,
this may be great news. But not everyone needs to operate at scale. Maybe all
you’ve ever needed is a single database server.

MongoDB stores its information in documents rather than rows.

What’s a document? Here’s an example:

{

_id: 10,

username: 'peter',

email: 'pbbakkum@gmail.com'

}

This is a pretty simple document; it’s storing a few fields of information

about a user (he sounds cool). What’s the advantage of this model?

Consider the case where you’d like to store multiple emails for each user. In

the relational world, you might create a separate table of email addresses

and the users to which they’re associated. MongoDB gives you another way

to store these:

{

_id: 10,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

username: 'peter',

email: [

'pbbakkum@gmail

.com',

'pbb7c@virginia.ed

u'

]

}

MongoDB’s document format is based on JSON, a popular scheme for

storing arbi- trary data structures. JSON is an acronym for JavaScript Object

Notation. As you just saw, JSON structures consist of keys and values, and

they can nest arbitrarily deep. They’re analogous to the dictionaries and

hash maps of other programming languages.

A document-based data model can represent rich, hierarchical data

structures. It’s often possible to do without the multitable joins common

to relational databases normalized relational data model, the

information for any one product might be divided among dozens of

tables.

Built for the internet

The history of MongoDB is brief but worth recounting, for it was born out of

a much more ambitious project. In mid-2007, a startup in New York City

called 10gen began work on a platform-as-a-service (PaaS), composed of an

application server and a data- base, that would host web applications and

scale them as needed. Like Google’s App Engine, 10gen’s platform was

designed to handle the scaling and management of hardware and software

infrastructure automatically, freeing developers to focus solely on their

application code. 10gen ultimately discovered that most developers didn’t

feel comfortable giving up so much control over their technology stacks, but

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 1 of 42

users did

10gen has since changed its name to MongoDB, Inc. and continues to

sponsor the database’s development as an open source project. The code is

publicly available and free to modify and use, subject to the terms of its

license, and the community at large is encouraged to file bug reports and

submit patches. Still, most of MongoDB’s core developers are either

founders or employees of MongoDB, Inc., and the project’s roadmap

continues to be determined by the needs of its user community and the

overarching goal of creating a database that combines the best features of

relational databases and distributed key-value stores.

 MongoDB’s key features

A database is defined in large part by its data model. In this section, you’ll

look at the document data model, and then you’ll see the features of

MongoDB that allow you to operate effectively on that model.

Document data model

MongoDB’s data model is document-oriented. If you’re not familiar with

documents in the context of databases, the concept can be most easily

demonstrated by an exam- ple. A JSON document needs double quotes

everywhere except for numeric values. The following listing shows the

JavaScript version of a JSON document where double quotes aren’t

necessary.

 Listing 1.1 A document representing an entry on a social news site

{

_id: ObjectID('4bd9e8e17cefd644108961bb'), title: 'Adventures in

Databases',

url: 'http://example.com/databases.txt', author: 'msmith',

http://example.com/databases.txt%27

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

vote_count: 20,

tags: ['databases', 'mongodb', 'indexing'], image: {

url: 'http://example.com/db.jpg', caption: 'A database.',

type: 'jpg', size: 75381, data: 'Binary'

},

comments: [

{

user: 'bjones',

text: 'Interesting article.'

},

{

user: 'sverch',

text: 'Color me skeptical!'

}

]

}

SCHEMA-LESS MODEL ADVANTAGES

This lack of imposed schema confers some advantages. First, your

application code, and not the database, enforces the data’s structure. This

can speed up initial applica- tion development when the schema is

changing frequently.

http://example.com/db.jpg%27

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 1 of 42

.

product catalog. There’s no way of knowing in advance what attributes a

product will have, so the application will need to account for that variability.

 Ad hoc queries

Ad hoc queries are easy to take for granted if the only databases you’ve

int(11)

smallint(5)

smallint(5)

smallint(5)

int(10)

varchar(255)

value_id

entity_type_id

attribute_id

store_id

entity_id

value

catalog_product_entity_varchar

int(11)

smallint(5)

smallint(5)

smallint(5)

int(10)

text

value_id

entity_type_id

attribute_id

store_id

entity_id

value

catalog_product_entity_text

int(11)

smallint(5)

smallint(5)

smallint(5)

int(10)

int(11)

value_id

entity_type_id

attribute_id

store_id

entity_id

value

catalog_product_entity_int

int(11)

smallint(5)

smallint(5)

smallint(5)

int(10)

decimal(12, 4)

value_id

entity_type_id

attribute_id

store_id

entity_id

value

catalog_product_entity_decimal

int(11)

smallint(5)

smallint(5)

smallint(5)

int(10)

datetime

value_id

entity_type_id

attribute_id

store_id

entity_id

value

catalog_product_entity_datetime

entity_id int(11)

entity_type_id int(5)

attribute_set_id int(5)

type_id varchar(32)

sku ivarchar(64)

catalog_product_entity

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

ever used have been relational. But not all databases support dynamic

queries. For instance, key-value stores are queryable on one axis only: the

value’s key.

A SQL query would look like this:

SELECT * FROM posts

INNER JOIN posts_tags ON posts.id =

posts_tags.post_id INNER JOIN tags ON

posts_tags.tag_id == tags.id

WHERE tags.text = 'politics' AND posts.vote_count > 10;

The equivalent query in MongoDB is specified using a document as a

matcher. The special $gt key indicates the greater-than condition:

db.posts.find({'tags': 'politics', 'vote_count': {'$gt': 10}});

 Indexes

A critical element of ad hoc queries is that they search for values that

you don’t know when you create the database.

Indexes in MongoDB are implemented as a B-tree data structure. B-

tree indexes, also used in many relational databases, are optimized for a

variety of queries, includ- ing range scans and queries with sort clauses. But

WiredTiger has support for log- structured merge-trees (LSM) that’s expected

to be available in the MongoDB 3.2 pro- duction release.

 Replication

MongoDB provides database replication via a topology known as a replica

set. Replica sets distribute data across two or more machines for

redundancy and automate failover in the event of server and network

outages. Additionally, replication is used to scale database reads. If you

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 1 of 42

have a read-intensive application, as is commonly the case on the web, it’s

possible to spread database reads across machines in the replica set

cluster.

 Speed and durability

To understand MongoDB’s approach to durability, it pays to consider a few ideas

first. In the realm of database systems there exists an inverse relationship between

write speed and durability. Write speed can be understood as the volume of inserts,

updates, and deletes that a database can process in a given time frame. Durability

refers to level of assurance that these write operations have been made permanent.

 Scaling

It then makes sense to consider scaling horizontally, or scaling out (see

figure 1.4). Instead of beefing up a single node, scaling horizontally means

distributing the data- base across multiple machines. A horizontally scaled

architecture can run on many smaller, less expensive machines, often

reducing your hosting costs.

MongoDB was designed to make horizontal scaling manageable. It does

so via a range-based partitioning mechanism, known as sharding, which

automatically manages

Secondary Secondary

Primary

Secondary Primary

X

Primary

Secondary

Secondary

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

Original database

Scaling up

increases the

capacity of a

single machine.

Scaling out

adds more

machines of

similar size.

68 GB of RAM

1690 GB of storage

68 GB of RAM

1690 GB of storage

68 GB of RAM

1690 GB of storage

200 GB of RAM

5000 GB of storage

68 GB of RAM

1690 GB of storage

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 9 of 42

MongoDB’s core server and tools

MongoDB is written in C++ and actively developed by MongoDB, Inc.

The project compiles on all major operating systems, including Mac OS X,

Windows, Solaris, and most flavors of Linux. Precompiled binaries are

available for each of these platforms at http://mongodb.org. MongoDB is

open source and licensed under the GNU-Affero General Public License

(AGPL).

 Core server

The core database server runs via an executable called mongod

(mongodb.exe on Win- dows). The mongod server process receives

commands over a network socket using a custom binary protocol. All the

data files for a mongod process are stored by default in

/data/db on Unix-like systems and in c:\data\db on Windows. Command-

line tools

MongoDB is bundled with several command-line utilities:

■ mongodump and mongorestore—Standard utilities for backing up and

restoring a database. mongodump saves the database’s data in its

native BSON format and thus is best used for backups only; this tool

has the advantage of being usable for hot backups, which can easily

be restored with mongorestore.

■ mongoexport and mongoimport—Export and import JSON, CSV, and

TSV7 data; this is useful if you need your data in widely supported

formats. mongoimport can also be good for initial imports of large data

sets, although before importing, it’s often desirable to adjust the data

model to take best advantage of MongoDB. In such cases, it’s easier to

import the data through one of the drivers using a custom script.

■ mongosniff—A wire-sniffing tool for viewing operations sent to the

database. It essentially translates the BSON going over the wire to

human-readable shell statements.

■ mongostat—Similar to iostat, this utility constantly polls MongoDB

and the system to provide helpful stats, including the number of

operations per second (inserts, queries, updates, deletes, and so on),

the amount of virtual memory allocated, and the number of

connections to the server.

http://mongodb.org/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

■ mongotop—Similar to top, this utility polls MongoDB and shows the

amount of time it spends reading and writing data in each

collection.

■ mongoperf—Helps you understand the disk operations happening in a

running MongoDB instance.

■ mongooplog—Shows what’s happening in the MongoDB oplog.

■ Bsondump—Converts BSON files into human-readable formats

including JSON. MongoDB versus other databases

The number of available databases has exploded, and weighing one against

another can be difficult. Fortunately, most of these databases fall under

one of a few catego- ries. In table 1.1, and in the sections that follow, we

describe simple and sophisticated key-value stores, relational databases,

and document databases, and show how these compare with MongoDB.

Table 1.1 Database families

 Examples Data
model

Scalability
model

Use cases

Simple key-

value stores

Memcached Key-value,

where the

value is a

binary

blob.

Variable.

Mem-

cached can

scale

across

nodes,

converting

all available

RAM into a

single,

mono-

lithic

Caching.
Web ops.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 9 of 42

datastore.

Sophisticat

ed key-

value stores

HBase,

Cassan-

dra, Riak

KV, Redis,

CouchDB

Variable.

Cassan-

dra uses a

key- value

structure

known as a

col- umn.

HBase and

Redis store

binary

blobs.

CouchDB

stores

JSON

documents

.

Eventually

consis-

tent,

multinode

distributio

n for high

availability

and easy

failover.

High-

throughput

verticals

(activity

feeds,

message

queues).

Caching.

Web ops.

Relational

data- bases

Oracle

Database,

IBM DB2,

Micro- soft

SQL Server,

MySQL,

PostgreSQL

Tables. Vertical

scaling.

Limited

support for

clustering

and

manual

partition-

ing.

System

requiring

transaction

s (banking,

finance) or

SQL.

Normal-

ized data

model.

RELATIONAL DATABASES

Popular relational databases include MySQL, PostgreSQL, Microsoft SQL

Server, Oracle Database, IBM DB2, and so on; some are open-source and

some are proprietary. MongoDB and rela- tional databases are both capable

of representing a rich data model. Where relational databases use fixed-

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

schema tables, MongoDB has schema-free documents. Most rela- tional

databases support secondary indexes and aggregations.

DOCUMENT DATABASES

Few databases identify themselves as document databases. As of this writing,

the clos- est open-source database comparable to MongoDB is Apache’s

CouchDB. CouchDB’s document model is similar, although data is stored

in plain text as JSON, whereas MongoDB uses the BSON binary format.

Like MongoDB, CouchDB supports secondary indexes; the difference is that

the indexes in CouchDB are defined by writing map- reduce functions, a

process that’s more involved than using the declarative syntax used by

MySQL and MongoDB. They also scale differently.

Use cases and production deployments

wEB APPLICATIONS

MongoDB can be a useful tool for powering a high-traffic website. This is

the case with The Business Insider (TBI), which has used MongoDB as its

primary datastore since January 2008. TBI is a news site, although it gets

substantial traffic, serving more than a million unique page views per day.

History of MongoDB

When the first edition of MongoDB in Action was released, MongoDB 1.8.x

was the most recent stable version, with version 2.0.0 just around the

corner. With this second edi- tion, 3.0.x is the latest stable version.11

A list of the biggest changes in each of the official versions is shown

below. You should always use the most recent version available, if possible, in

which case this list isn’t particularly useful. If not, this list may help you

determine how your version dif- fers from the content of this book. This is by

no means an exhaustive list, and because of space constraints, we’ve listed

only the top four or five items for each release.

VERSION 1.8.X (NO LONGER OFFICIALLY SUPPORTED)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 9 of 42

■ Sharding—Sharding was moved from “experimental” to production-ready

status.

■ Replica sets —Replica sets were made production-ready.

■ Replica pairs deprecated—Replica set pairs are no longer supported by
MongoDB, Inc.

■ Geo search—Two-dimensional geo-indexing with coordinate pairs

(2D indexes) was introduced.

VERSION 2.0.X (NO LONGER OFFICIALLY SUPPORTED)

■ Journaling enabled by default—This version changed the default

for new data- bases to enable journaling. Journaling is an important

function that prevents data corruption.

■ $and queries—This version added the $and query operator to complement
the

$or operator.

■ Sparse indexes—Previous versions of MongoDB included nodes in

an index for every document, even if the document didn’t contain

any of the fields being tracked by the index. Sparse indexing adds

only document nodes that have rel- evant fields. This feature

significantly reduces index size. In some cases this can improve

performance because smaller indexes can result in more efficient use

of memory.

■ Replica set priorities —This version allows “weighting” of replica set

members to ensure that your best servers get priority when electing a

new primary server.

■ Collection level compact/repair—Previously you could perform

compact/repair only on a database; this enhancement extends it to

individual collections.

VERSION 2.2.X (NO LONGER OFFICIALLY SUPPORTED)

■ Aggregation framework—This version features the first iteration of a

facility to make analysis and transformation of data much easier and

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

more efficient. In many respects this facility takes over where

map/reduce leaves off; it’s built on a pipeline paradigm, instead of the

map/reduce model (which some find diffi- cult to grasp).

■ TTL collections—Collections in which the documents have a time-

limited lifespan are introduced to allow you to create caching models

such as those provided by Memcached.

■ DB level locking —This version adds database level locking to take the

place of the global lock, which improves the write concurrency by

allowing multiple opera- tions to happen simultaneously on

different databases.

■ Tag-aware sharding—This version allows nodes to be tagged with IDs

that reflect their physical location. In this way, applications can control

where data is stored in clusters, thus increasing efficiency (read-only

nodes reside in the same data center) and reducing legal

jurisdiction issues (you store data required to remain in a specific

country only on servers in that country).

VERSION 2.4.X (OLDEST STABLE RELEASE)

■ Enterprise version —The first subscriber-only edition of MongoDB, the

Enterprise version of MongoDB includes an additional authentication

module that allows the use of Kerberos authentication systems to

manage database login data. The free version has all the other

features of the Enterprise version.

■ Aggregation framework performance —Improvements are made in the

performance of the aggregation framework to support real-time

analytics; chapter 6 explores the Aggregation framework.

■ Text search —An enterprise-class search solution is integrated as an

experimental feature in MongoDB; chapter 9 explores the new text

search features.

■ Enhancements to geospatial indexing —This version includes

support for polygon intersection queries and GeoJSON, and features

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 9 of 42

an improved spherical model supporting ellipsoids.

■ V8 JavaScript engine —MongoDB has switched from the Spider Monkey

JavaScript engine to the Google V8 Engine; this move improves

multithreaded operation and opens up future performance gains in

MongoDB’s JavaScript-based map/ reduce system.

VERSION 2.6.X (STABLE RELEASE)

■ $text queries—This version added the $text query operator to support

text search in normal find queries.

■ Aggregation improvements—Aggregation has various improvements

in this ver- sion. It can stream data over cursors, it can output to

collections, and it has many new supported operators and pipeline

stages, among many other features and performance improvements.

 Additional resources

■ Improved wire protocol for writes—Now bulk writes will receive more

granular and detailed responses regarding the success or failure of

individual writes in a batch, thanks to improvements in the way

errors are returned over the network for write operations.

■ New update operators—New operators have been added for update

operations, such as $mul, which multiplies the field value by the

given amount.

■ Sharding improvements—Improvements have been made in

sharding to better handle certain edge cases. Contiguous chunks can

now be merged, and dupli- cate data that was left behind after a chunk

migration can be cleaned up auto- matically.

■ Security improvements—Collection-level access control is supported

in this ver- sion, as well as user-defined roles. Improvements have

also been made in SSL and x509 support.

■ Query system improvements —Much of the query system has been

refactored. This improves performance and predictability of

queries.

■ Enterprise module—The MongoDB Enterprise module has

improvements and extensions of existing features, as well as

support for auditing.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

VERSION 3.0.X (NEWEST STABLE RELEASE)

■ The MMAPv1 storage engine now has support for collection-level locking.

■ Replica sets can now have up to 50 members.

■ Support for the WiredTiger storage engine; WiredTiger is only

available in the 64-bit versions of MongoDB 3.0.

■ The 3.0 WiredTiger storage engine provides document-level

locking and compression.

■ Pluggable storage engine API that allows third parties to develop storage

engines for MongoDB.

■ Improved explain functionality.

■ SCRAM-SHA-1 authentication mechanism.

■ The ensureIndex() function has been replaced by the createIndex()

function and should no longer be used.

 Diving into the MongoDB shell

MongoDB’s JavaScript shell makes it easy to play with data and get a

tangible sense of documents, collections, and the database’s particular

query language. Think of the following walkthrough as a practical

introduction to MongoDB.

 Starting the shell

Follow the instructions in appendix A and you should quickly have a working

MongoDB installation on your computer, as well as a running mongod

instance. Once you do, start the MongoDB shell by running the mongo

executable:

This topic covers

■ Using CRUD operations in the MongoDB shell

■ Building indexes and using explain()

■ Understanding basic administration

■ Getting help

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 9 of 42

mongo

If the shell program starts successfully, your screen will look like figure 2.1.

The shell heading displays the version of MongoDB you’re running, along

with some additional information about the currently selected

database.

 Databases, collections, and documents

MongoDB divides collections into separate databases. Unlike the usual

overhead that databases produce in the SQL world, databases in MongoDB

are just namespaces to distinguish between collections. To query MongoDB,

you’ll need to know the data- base (or namespace) and collection you

want to query for documents. If no other database is specified on startup,

the shell selects a default database called test. As a way of keeping all the

subsequent tutorial exercises under the same namespace, let’s start by

switching to the tutorial database:

> use tutorial

switched to db tutorial

The document contains a single key and value for storing Smith’s username.

 Inserts and queries

To save this document, you need to choose a collection to save it to.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

Appropriately enough, you’ll save it to the users collection. Here’s how:

> db.users.insert({username:

"smith"}) WriteResult({ "nInserted"

: 1 })

NOTE Note that in our examples, we’ll preface MongoDB shell

commands with a > so that you can tell the difference between the
command and its output.

You may notice a slight delay after entering this code. At this point, neither

the tuto- rial database nor the users collection has been created on disk. The

delay is caused by the allocation of the initial data files for both.

If the insert succeeds, you’ve just saved your first document. In the default

MongoDB configuration, this data is now guaranteed to be inserted even if

you kill the shell or suddenly restart your machine. You can issue a query

to see the new document:

> db.users.find()

Since the data is now part of the users collection, reopening the shell and

running the query will show the same result. The response will look

something like this:

{ "_id" : ObjectId("552e458158cd52bcb257c324"), "username" : "smith" }

PASS A QUERY PREDICATE

Now that you have more than one document in the collection, let’s look

at some slightly more sophisticated queries. As before, you can still query

for all the docu- ments in the collection:

> db.users.find()

{ "_id" : ObjectId("552e458158cd52bcb257c324"), "username" : "smith" }

{ "_id" : ObjectId("552e542a58cd52bcb257c325"), "username" : "jones" }

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 9 of 42

You can also pass a simple query selector to the find method. A query

selector is a document that’s used to match against all documents in the

collection. To query for all documents where the username is jones, you pass

a simple document that acts as your query selector like this:

> db.users.find({username: "jones"})

{ "_id" : ObjectId("552e542a58cd52bcb257c325"), "username" : "jones" }

 Updating documents

> db.users.find({username: "smith"})

{ "_id" : ObjectId("552e458158cd52bcb257c324"), "username" : "smith" }

OPERATOR UPDATE

The first type of update involves passing a document with some kind of

operator description as the second argument to the update function. In

this section, you’ll see an example of how to use the $set operator, which

sets a single field to the spec- ified value.

Suppose that user Smith decides to add her country of residence. You

can record this with the following update:

> db.users.update({username: "smith"}, {$set: {country:

"Canada"}}) WriteResult({ "nMatched" : 1, "nUpserted" : 0,

"nModified" : 1 })

 Deleting data

If given no parameters, a remove operation will clear a collection of all

its docu- ments. To get rid of, say, a foo collection’s contents, you enter:

> db.foo.remove()

You often need to remove only a certain subset of a collection’s documents,

and for that, you can pass a query selector to the remove() method. If you

want to remove all users whose favorite city is Cheyenne, the expression

is straightforward:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

> db.users.remove({"favorites.cities":

"Cheyenne"}) WriteResult({ "nRemoved" : 1 })

Note that the remove() operation doesn’t actually delete the collection; it

merely removes documents from a collection. You can think of it as being

analogous to SQL’s DELETE command.

If your intent is to delete the collection along with all of its indexes, use the
drop()

method:

> db.users.drop()

 Basic administration

 Getting database information
show dbs prints a list of all the databases on the system:

> show dbs

admin (empty)

local

 0.078

GB tutorial

0.078GB

show collections displays a list of all the collections defined on the current

data- base.4 If the tutorial database is still selected, you’ll see a list of the

collections you worked with in the preceding tutorial:

> show

collections

numbers

system.indexes

users

The one collection that you may not recognize is system.indexes. This is a

special collection that exists for every database. Each entry in

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 9 of 42

system.indexes defines an index for the database, which you can view

using the getIndexes() method, as you saw earlier.

But MongoDB 3.0 deprecates direct access to the system.indexes collec-

tions; you should use createIndexes and listIndexes instead. The getIndexes()

Java- Script method can be replaced by the db.runCommand({"listIndexes":

"numbers"}) shell command.

For lower-level insight into databases and collections, the stats() method

proves useful. When you run it on a database object, you’ll get the

following output:

> db.stats()

{

"db" : "tutorial",

"collections" : 4,

"objects" : 20010,

"avgObjSize" : 48.0223888055972,

"dataSize" : 960928,

"storageSize" : 2818048,

"numExtents" : 8,

"indexes" : 3,

"indexSize" : 1177344,

"fileSize" : 67108864,

"nsSizeMB" : 16,

"extentFreeList" :

{
"num" : 0,
"totalSize" : 0

},

"dataFileVersion" :

{ "major" : 4,

"minor" : 5

},

"ok" : 1

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

 MongoDB through the Ruby lens

 Installing and connecting

Once you have RubyGems installed, run:

gem install mongo

 You’ll start by connecting to MongoDB. First, make sure that mongod is running
by running the mongo shell to ensure you can connect. Next, create a file called
connect.rb and enter the following code:

require

'rubygems'

require 'mongo'

$client = Mongo::Client.new(['127.0.0.1:27017'], :database =>

'tutorial') Mongo::Logger.logger.level = ::Logger::ERROR

$users =

$client[:users] puts

'connected!'

The first two require statements ensure that you’ve loaded the driver. The

next three lines instantiate the client to localhost and connect to the tutorial

database, store a ref- erence to the users collection in the $users variable, and

print the string connected!. We place a $ in front of each variable to make it

global so that it’ll be accessible out- side of the connect.rb script. Save

This topic covers

■ Introducing the MongoDB API through Ruby

■ Understanding how the drivers work

■ Using the BSON format and MongoDB network

protocol

■ Building a complete sample application

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 9 of 42

the file and run it:

$ ruby connect.rb

D, [2015-06-05T12:32:38.843933 #33946] DEBUG -- : MONGODB | Adding

127.0.0.1:27017 to the cluster. | runtime: 0.0031ms

D, [2015-06-05T12:32:38.847534 #33946] DEBUG -- : MONGODB |
COMMAND |

namespace=admin.$cmd selector={:ismaster=>1} flags=[]

limit=-1 skip=0 project=nil | runtime: 3.4170ms
connected!

 Inserting documents in Ruby

To run interesting MongoDB queries you first need some data, so let’s

create some (this is the C in CRUD). All of the MongoDB drivers are

designed to use the most natu- ral document representation for their

language. In JavaScript, JSON objects are the obvious choice, because

JSON is a document data structure; in Ruby, the hash data structure

makes the most sense. The native Ruby hash differs from a JSON object in

only a couple of small ways; most notably, where JSON separates keys and

values with a colon, Ruby uses a hash rocket (=>).2

Here’s an example:

$ irb -r ./connect.rb

irb(main):017:0> id = $users.insert_one({"last_name" => "mtsouk"})

=> #<Mongo::Operation::Result:70275279152800

documents=[{"ok"=>1, "n"=>1}]> irb(main):014:0>

$users.find().each do |user|
irb(main):015:1* puts user
irb(main):016:1> end

{"_id"=>BSON::ObjectId('55e3ee1c5ae119511d000000'),
"last_name"=>"knuth"}

{"_id"=>BSON::ObjectId('55e3f13d5ae119516a000000'),
"last_name"=>"mtsouk"}

=> #<Enumerator: #<Mongo::Cursor:0x70275279317980

@view=#<Mongo::Collection::View:0x70275279322740

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

namespace='tutorial.users @selector={} @options={}>>:each>

 Updates and deletes

$users.find({"last_name" => "smith"}).update_one({"$set" =>

{"city" => "Chicago"}})

This update finds the first user with a last_name of smith and, if found, sets

the value of city to Chicago. This update uses the $set operator. You can run

a query to show the change:

$users.find({"last_name" => "smith"}).to_a

 Database commands

First, you instantiate a Ruby database object referencing the admin

database. You then pass the command’s query specification to the

command method:

$admin_db = $client.use('admin')

$admin_db.command({"listDatabases" => 1})

Note that this code still depends on what we put in the connect.rb

script above because it expects the MongoDB connection to be in $client.

The response is a Ruby hash listing all the existing databases and their

sizes on disk:

#<Mongo::Operation::Result:70112905054200 documents=[{"databases"=>[

{

"name"=>"local",

"sizeOnDisk"=>83886

080.0, "empty"=>false

},

{

"name"=>"tutorial",

"sizeOnDisk"=>83886

080.0, "empty"=>false

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 9 of 42

},

{

"name"=>"admin",

"sizeOnDisk"=>1.0,

"empty"=>true

}], "totalSize"=>167772160.0, "ok"=>1.0}]>

=> nil

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 21 of 42

 How the drivers work

All MongoDB drivers perform three major functions. First, they

generate Mon- goDB object IDs. These are the default values stored in the

_id field of all documents. Next, the drivers convert any language-specific

representation of documents to and from BSON, the binary data format

used by MongoDB. In the previous examples, the driver serializes all the

Ruby hashes into BSON and then deserializes the BSON that’s returned

from the database back to Ruby hashes.

The drivers’ final function is to communicate with the database over a

TCP socket using the MongoDB wire protocol. The details of the protocol are

beyond the scope of this discussion. But the style of socket communication, in

particular whether writes on the socket wait for a response, is important, and

we’ll explore the topic in this section.

 Object ID generation

Every MongoDB document requires a primary key. That key, which must be

unique for all documents in each collection, is stored in the document’s _id

field. Developers are free to use their own custom values as the _id, but

when not provided, a MongoDB object ID will be used. Before sending a

document to the server, the driver checks whether the _id field is present.

If the field is missing, an object ID will be generated and stored as _id.

MongoDB object IDs are designed to be globally unique, meaning they’re

guaran- teed to be unique within a certain context. How can this be

guaranteed? Let’s exam- ine this in more detail.

You’ve probably seen object IDs in the wild if you’ve inserted

documents into MongoDB, and at first glance they appear to be a string

of mostly random text, like 4c291856238d3b19b2000001.

4-byte
timest
amp

Process ID

4c291856 238d3b 19b2 000001

Machine ID

 Counter

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

Figure 3.1 MongoDB object

ID format

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 29 of 42

representation of 12 bytes, and actually stores some useful information.

These bytes have a specific structure, as illustrated in figure 3.1.

The most significant four bytes carry a standard Unix (epoch)

timestamp3. The next three bytes store the machine ID, which is

followed by a two-byte process ID. The final three bytes store a process-

local counter that’s incremented each time an object ID is generated. The

counter means that ids generated in the same process and second won’t be

duplicated.

Why does the object ID have this format? It’s important to understand

that these IDs are generated in the driver, not on the server. This is different

than many RDBMSs, which increment a primary key on the server, thus

creating a bottleneck for the server generating the key. If more than one

driver is generating IDs and inserting docu- ments, they need a way of

creating unique identifiers without talking to each other. Thus, the

timestamp, machine ID, and process ID are included in the identifier itself

to make it extremely unlikely that IDs will overlap.

You may already be considering the odds of this happening. In practice,

you would encounter other limits before inserting documents at the rate

required to overflow the counter for a given second (224 million per

second). It’s slightly more conceivable (though still unlikely) to imagine that

ifyou had many drivers distributed across many machines, two machines

could have the same machine ID. For example, the Ruby driver uses the

following:

@@machine_id = Digest::MD5.digest(Socket.gethostname)[0, 3]

For this to be a problem, they would still have to have started the MongoDB

driver’s process with the same process ID, and have the same counter value

in a given second. In practice, don’t worry about duplication; it’s

extremely unlikely.

One of the incidental benefits of using MongoDB object IDs is that they

include a timestamp. Most of the drivers allow you to extract the timestamp,

thus providing the document creation time, with resolution to the nearest

second, for free. Using the Ruby

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

driver, you can call an object ID’s generation_time method to get that ID’s

creation time as a Ruby Time object:

irb> require 'mongo'

irb> id = BSON::ObjectId.from_string('4c291856238d3b19b2000001')

=> BSON::ObjectId('4c291856238d3b19b2000001')

irb> id.generation_time

=> 2010-06-28 21:47:02 UTC

Naturally, you can also use object IDs to issue range queries on object

creation time. For instance, if you wanted to query for all documents created

during June 2013, you could create two object IDs whose timestamps

encode those dates and then issue a range query on _id. Because Ruby

provides methods for generating object IDs from any Time object, the code

for doing this is trivial:4

jun_id = BSON::ObjectId.from_time(Time.utc(2013, 6, 1))

jul_id = BSON::ObjectId.from_time(Time.utc(2013, 7,

1)) @users.find({'_id' => {'$gte' => jun_id, '$lt' =>

jul_id}})

As mentioned before, you can also set your own value for _id. This might

make sense in cases where one of the document’s fields is important and

always unique. For instance, in a collection of users you could store the

username in _id rather than on object ID. There are advantages to both

ways, and it comes down to your preference as a developer.

 Building a simple application

Next you’ll build a simple application for archiving and displaying Tweets.

You can imagine this being a component in a larger application that allows

users to keep tabs on search terms relevant to their businesses. This example

will demonstrate how easy it is to consume JSON from an API like Twitter’s

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 29 of 42

and convert that to MongoDB docu- ments. If you were doing this with a

relational database, you’d have to devise a schema in advance, probably

consisting of multiple tables, and then declare those tables. Here, none of

that’s required, yet you’ll still preserve the rich structure of the Tweet docu-

ments, and you’ll be able to query them effectively.

Let’s call the app TweetArchiver. TweetArchiver will consist of two

components: the archiver and the viewer. The archiver will call the Twitter

search API and store the relevant Tweets, and the viewer will display the

results in a web browser.

 Setting up

This application requires four Ruby libraries. The source code repository for

this chap- ter includes a file called Gemfile, which lists these gems. Change

your working directory

gem install bundler bundle install

This will ensure the bundler gem is installed. Next, install the other

gems using Bundler’s package management tools. This is a widely used

Ruby tool for ensuring that the gems you use match some predetermined

versions: the versions that match our code examples.

Our Gemfile lists the mongo, twitter, bson and sinatra gems, so these

will be installed. The mongo gem we’ve used already, but we include it to be

sure we have the right version. The twitter gem is useful for communicating

with the Twitter API.

We provide the source code for this example separately, but introduce it

gradually to help you understand it. We recommend you experiment and

try new things to get the most out of the example.

It’ll be useful to have a configuration file that you can share between the

archiver and viewer scripts. Create a file called config.rb (or copy it from the

source code) that looks like this:

DATABASE_HOST =

'localhost'

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

DATABASE_PORT =

27017

DATABASE_NAME = "twitter-

archive" COLLECTION_NAME

= "tweets"
TAGS = ["#MongoDB", "#Mongo"]

CONSUMER_KEY =

"replace me"

CONSUMER_SECRET =

"replace me" TOKEN

 = "replace

me" TOKEN_SECRET =

"replace me"

First you specify the names of the database and collection you’ll use for your

applica- tion. Then you define an array of search terms, which you’ll send to

the Twitter API.

Twitter requires that you register a free account and an application for

accessing the API, which can be accomplished at http://apps.twitter.com.

Once you’ve regis- tered an application, you should see a page with its

authentication information, per- haps on the API keys tab. You will also have

to click the button that creates your access token. Use the values shown to

fill in the consumer and API keys and secrets.

 Gathering data

The next step is to write the archiver script. You start with a TweetArchiver

class. You’ll instantiate the class with a search term. Then you’ll call the

update method on the TweetArchiver instance, which issues a Twitter API

call, and save the results to a MongoDB collection.

 Let’s start with the class’s constructor:

def initialize(tag)

connection = Mongo::Connection.new(DATABASE_HOST,

DATABASE_PORT) db = connection[DATABASE_NAME]

@tweets = db[COLLECTION_NAME]

@tweets.ensure_index([['tags', 1], ['id', -1]])

http://apps.twitter.com/
http://apps.twitter.com/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 29 of 42

@tag = tag

@tweets_found = 0

@client = Twitter::REST::Client.new do

|config| config.consumer_key =

API_KEY config.consumer_secret =

API_SECRET config.access_token =

ACCESS_TOKEN

config.access_token_secret =

ACCESS_TOKEN_SECRET

en

d

end

The initialize method instantiates a connection, a database object, and the

collec- tion object you’ll use to store the Tweets.

You’re creating a compound index on tags ascending and id descending.

Because you’re going to want to query for a particular tag and show the

results from newest to oldest, an index with tags ascending and id

descending will make that query use the index both for filtering results and

for sorting them. As you can see here, you indicate index direction with 1 for

ascending and -1 for descending. Don’t worry if this doesn’t make sense

now—we discuss indexes with much greater depth in chapter 8.

You’re also configuring the Twitter client with the authentication

information from config.rb. This step hands these values to the Twitter gem,

which will use them when calling the Twitter API. Ruby has somewhat unique

syntax often used for this sort of con- figuration; the config variable is passed

to a Ruby block, in which you set its values.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

In the future, Twitter may change its API so that different values are returned,

which will likely require a schema change if you want to store these additional

values. Not so with MongoDB. Its schema-less design allows you to save the

document you get from the Twitter API without worrying about the exact

format.

The Ruby Twitter library returns Ruby hashes, so you can pass these

directly to your MongoDB collection object. Within your TweetArchiver, you

add the following instance method:

def save_tweets_for(term)

@client.search(term).each do

|tweet|

@tweets_found += 1

tweet_doc =

tweet.to_h

tweet_doc[:tags] =

term

tweet_doc[:_id] =

tweet_doc[:id]

@tweets.insert_one(tweet_do

c)

en

d

end

Before saving each Tweet document, make two small modifications. To

simplify later queries, add the search term to a tags attribute. You also set

the _id field to the ID of the Tweet, replacing the primary key of your

collection and ensuring that each Tweet is added only once. Then you pass

the modified document to the save method.

To use this code in a class, you need some additional code. First, you

must config- ure the MongoDB driver so that it connects to the correct

mongod and uses the desired database and collection. This is simple code

that you’ll replicate often as you use MongoDB. Next, you must configure

the Twitter gem with your developer credentials. This step is necessary

because Twitter restricts its API to registered developers. The next listing

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 29 of 42

also provides an update method, which gives the user feedback and calls

save_tweets_for.

 Listing 3.1 archiver.rb—A class for fetching Tweets and archiving
them in MongoDB

$LOAD_PATH << File.dirname(

FILE) require 'rubygems'

require 'mongo'

require 'twitter'

require 'config'

class TweetArchiver

def initialize(tag)

client =

Mongo::Client.new(["#{DATABASE_HOST}:#{DATABASE_PORT}"],:

database => "#{DATABASE_NAME}")

 @tweets =

client["#{COLLECTION_NAME}"]

@tweets.indexes.drop_all

@tweets.indexes.create_many([

{ :key => { tags: 1 }},

{ :key => { id: -1 }}

])

@tag = tag

@tweets_found = 0

client = Twitter::REST::Client.new do |config| config.consumer_key =

"#{API_KEY}" config.consumer_secret = "#{API_SECRET}"

config.access_token = "#{ACCESS_TOKEN}"

config.access_token_secret = "#{ACCESS_TOKEN_SECRET}"

end end

Configure the Twitter client using the values found in config.rb.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

 def update

puts "Starting Twitter search for '#{@tag}'..." save_tweets_for(@tag)

print "#{@tweets_found} Tweets saved.\n\n" end

private

A user facing method to wrap save_tweets_for

def save_tweets_for(term) @client.search(term).each do |tweet|

@tweets_found += 1 tweet_doc = tweet.to_h tweet_doc[:tags] =

term

tweet_doc[:_id] = tweet_doc[:id] @tweets.insert_one(tweet_doc)

end end

end

Search with the Twitter client and save the results to
Mongo.

All that remains is to write a script to run the TweetArchiver code against

each of the search terms. Create a file called update.rb (or copy it from the

provided code) con- taining the following:

$LOAD_PATH << File.dirname(

FILE) require 'config'

require 'archiver'

TAGS.each do |tag|

archive =

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 29 of 42

TweetArchiver.new(tag)

archive.update
end

Next, run the update script:

ruby update.rb

You’ll see some status messages indicating that Tweets have been found and

saved. You can verify that the script works by opening the MongoDB shell

and querying the col- lection directly:

> use twitter-archive

switched to db twitter-archive

> db.tweets.coun

t() 30

What’s important here is that you’ve managed to store Tweets from Twitter

searches in only a few lines of code.5 Next comes the task of displaying

the results.

 Viewing the archive

You’ll use Ruby’s Sinatra web framework to build a simple app to display the

results. Sinatra allows you to define the endpoints for a web application

and directly specify the response. Its power lies in its simplicity. For

example, the content of the index page for your application can be

specified with the following:

get '/' do

"respons

e"

end

This code specifies that GET requests to the / endpoint of your application

return the

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

value of response to the client. Using this format, you can write full web

applications with many endpoints, each of which can execute arbitrary Ruby

code before returning a response. You can find more information, including

Sinatra’s full documentation, at http://sinatrarb.com.

We’ll now introduce a file called viewer.rb and place it in the same

directory as the other scripts. Next, make a subdirectory called views, and

place a file there called tweets.erb. After these steps, the project’s file

structure should look like this:

- config.rb

- archiver.rb

- update.rb

- viewer.rb

- /views

- tweets.erb

Again, feel free to create these files yourself or copy them from the code

examples. Now edit viewer.rb with the code in the following listing.

 Listing 3.2 viewer.rb—Sinatra application for displaying the Tweet

archive

$LOAD_PATH << File.dirname(

FILE) require 'rubygems'

require 'mongo'

require 'sinatra'

require 'config'

require 'open-uri'

b Required
libraries

configure do

client = Mongo::Client.new(["#{DATABASE_HOST}:#{DATABASE_PORT}"],
:database

=> "#{DATABASE_NAME}")

http://sinatrarb.com/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Page 33 of 42

TWEETS = client["#{COLLECTION_NAME}"]

end

get '/' do

if params['tag']

selector = {:tags => params['tag']} else

selector = {} end

Instantiate collection

c for tweets

d Dynamically build query selector…

…or use

e blank selector

@tweets = TWEETS.find(selector).sort(["id", -1]) erb :tweets

end

The first lines require the necessary libraries along with your config file

B. Next there’s a configuration block that creates a connection to MongoDB

and stores a refer- ence to your tweets collection in the constant
TWEETS c.

The real meat of the application is in the lines beginning with get '/' do. The

code in this block handles requests to the application’s root URL. First, you build your

query selector. If a tags URL parameter has been provided, you create a query
selector that restricts the result set to the given tags d. Otherwise, you create

a blank selector, which returns all documents in the collection e. You then

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

issue the query f. By now, you should know that what gets assigned to the
@tweets variable isn’t a result set but a

cursor. You’ll iterate over that cursor in your view.

The last line g renders the view file tweets.erb (see the next listing).

 Listing 3.3 tweets.erb—HTML with embedded Ruby for rendering
the Tweets

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

<style>

body

{

width: 1000px;

margin: 50px

auto;

font-family: Palatino,

serif; background-color:

#dbd4c2; color: #555050;

}

h2 {

margin-top: 2em;

font-family: Arial, sans-

serif; font-weight: 100;

}

</style>

</head>

<body>

<h1>Tweet Archive</h1>

<% TAGS.each do |tag| %>

<a href="/?tag=<%= URI::encode(tag) %>"><%= tag %>

<% end %>

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Page 33 of 42

<% @tweets.each do |tweet| %>

<h2><%= tweet['text'] %></h2>

<p>

<a href="http://twitter.com/<%= tweet['user']['screen_name'] %>">

<%= tweet['user']['screen_name'] %>

on <%= tweet['created_at'] %>

</p>

<img src="<%= tweet['user']['profile_image_url'] %>" width="48" />

<% end %>

</body>

</html>

Most of the code is just HTML with some ERB (embedded Ruby) mixed in.

The Sinatra app runs the tweets.erb file through an ERB processor and

evaluates any Ruby code between <% and %> in the context of the

application.

The important parts come near the end, with the two iterators. The first

of these cycles through the list of tags to display links for restricting the result

set to a given tag.

The second iterator, beginning with the @tweets.each code, cycles through each
Tweet to display the Tweet’s text, creation date, and user profile image. You can see
results by running the application:

$ ruby viewer.rb

If the application starts without error, you’ll see the standard Sinatra startup

message that looks something like this:

$ ruby viewer.rb

[2013-07-05 18:30:19] INFO WEBrick 1.3.1

[2013-07-05 18:30:19] INFO ruby 1.9.3 (2012-04-20) [x86_64-darwin10.8.0]

== Sinatra/1.4.3 has taken the stage on 4567 for development with

backup from WEBrick

[2013-07-05 18:30:19] INFO WEBrick::HTTPServer#start: pid=18465

http://twitter.com/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 4 of 42

port=4567

You can then point your web browser to http://localhost:4567. The page

should look something like the screenshot in figure 3.2. Try clicking on the

links at the top of the screen to narrow the results to a particular tag.

Figure 3.2 Tweet Archiver output rendered in a web browser

 69

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

UNIT II
 SYLLABUS

Application Development: Document-oriented data – Principles of schema design –
Designing an e-commerce data model – Nuts and bolts on databases, collections,

and documents. Queries and aggregation – E-commerce queries – MongoDB‟s query

language – Aggregating orders – Aggregation in detail.

 Principles of schema design

Database schema design is the process of choosing the best representation

for a data set, given the features of the database system, the nature of the

data, and the applica- tion requirements. The principles of schema design

for relational database systems are well established. With RDBMSs, you’re

encouraged to shoot for a normalized data model,1 which helps to ensure

generic query ability and avoid updates to data that might result in

inconsistencies. Moreover, the established patterns prevent developers from

wondering how to model, say, one-to-many and many-to-many relationships.

What are your application access patterns?

What’s the basic unit of data?

 What are the capabilities of your database?

 What makes a good unique id or primary key for a record?

 Designing an e-commerce data model

E-commerce has the advantage of including a large number of famil- iar

data modeling patterns. Plus, it’s not hard to imagine how products,

categories, product reviews, and orders are typically modeled in an

RDBMS.

E-commerce has typically been done with RDBMSs for a couple of reasons.

The first is that e-commerce sites generally require transactions, and

transactions are an RDBMS staple.

This topic covers

■ Schema design

■ Data models for e-commerce

■ Nuts and bolts of databases, collections, and

documents

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

The second is that, until recently, domains that require rich data models

and sophisticated queries have been assumed to fit best within the realm

of the RDBMS.

Schema basics

Products and categories are the mainstays of any e-commerce site. Products,

in a nor- malized RDBMS model, tend to require a large number of tables.

There’s a table for basic product information, such as the name and SKU,

but there will be other tables to relate shipping information and pricing

histories.

This multitable schema will be facil- itated by the RDBMS’s ability to join

tables.

More concretely, listing 4.1 shows a sample product from a gardening store.

It’s advis- able to assign this document to a variable before inserting it to

the database using db.products.insert(yourVariable) to be able to run the

queries discussed over the next several pages.

 Listing 4.1 A sample product document

{

_id: ObjectId("4c4b1476238d3b4dd5003981"), slug: "wheelbarrow-9092",

sku: "9092",

name: "Extra Large Wheelbarrow", description: "Heavy duty

wheelbarrow...", details: {

weight: 47, weight_units: "lbs", model_num: 4039283402,

manufacturer: "Acme", color: "Green"

},

total_reviews: 4,

average_review: 4.5, pricing: {
retail: 589700,
sale: 489700,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

},

price_history: [

{

retail: 529700,

sale: 429700,

start: new Date(2010, 4, 1),

end: new Date(2010, 4, 8)

},

{

retail: 529700,

sale: 529700,

start: new Date(2010, 4, 9),

end: new Date(2010, 4, 16)

b Unique object ID

c Unique slug

Nested

d document

e One-to-many relationship

},

],

primary_category: ObjectId("6a5b1476238d3b4dd5000048"),

category_ids: [

ObjectId("6a5b1476238d3b4dd5000048"),

ObjectId("6a5b1476238d3b4dd5000049")

], f
main_cat_id: ObjectId("6a5b1476238d3b4dd5000048"),
tags: ["tools", "gardening", "soil"],

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

Many-to-many relationship

ONE-TO-MANY RELATIONSHIPS

This is a one-to-many relationship, since a product only has one primary
category, but a category can be the primary for many products.

MANY-TO-MANY RELATIONSHIPS
MongoDB doesn’t support joins, so you need a different many-to-many

strategy. We’ve defined a field called category_ids f containing an array of

object IDs. Each object ID acts as a pointer to the _id field of some
category document.

A RELATIONSHIP STRUCTURE

The next listing shows a sample category document. You can assign it to a new

variable and insert it into the categories collection using

db.categories.insert(newCategory). This will help you using it in forthcoming

queries without having to type it again.

 Listing 4.2 A category document

{

_id:

ObjectId("6a5b1476238d3b4dd50000

48"), slug: "gardening-tools",

name: "Gardening Tools",

description: "Gardening gadgets galore!",

parent_id:

ObjectId("55804822812cb336b78728f9"),

ancestors: [

{

name: "Home",

_id:

ObjectId("558048f0812cb336b78728f

a"), slug: "home"
},

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

{

name: "Outdoors",

_id:

ObjectId("55804822812cb336b78728

f9"), slug: "outdoors"

}

]

}

 Nuts and bolts: On databases,

collections, and documents

 Databases

A database is a namespace and physical grouping of collections and their

indexes. In this section, we’ll discuss the details of creating and deleting

databases. We’ll also jump down a level to see how MongoDB allocates

space for individual databases on the filesystem.

MANAGING DATABASES

There’s no explicit way to create a database in MongoDB. Instead, a

database is cre- ated automatically once you write to a collection in that

database. Have a look at this Ruby code:

connection = Mongo::Client.new(['127.0.0.1:27017'], :database =>

'garden') db = connection.database

Recall that the JavaScript shell performs this connection when you start it,

and then allows you to select a database like this:

use garden

Assuming that the database doesn’t exist already, the database has yet to be

created on disk even after executing this code. All you’ve done is instantiate

an instance of the class Mongo::DB, which represents a MongoDB database.

Only when you write to a col- lection are the data files created.

Continuing on in Ruby,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

products = db['products']

products.insert_one({:name => "Extra Large Wheelbarrow"})

When you call insert_one on the products collection, the driver tells

MongoDB to insert the product document into the garden.products

collection. If that collec- tion doesn’t exist, it’s created; part of this

involves allocating the garden database on disk.

You can delete all the data in this collection by calling:

products.find({}).delete_many

This removes all documents which match the filter {}, which is all

documents in the collection. This command doesn’t remove the collection

itself; it only empties it. To remove a collection entirely, you use the drop

method, like this:

products.drop

To delete a database, which means dropping all its collections, you issue a

special com- mand. You can drop the garden database from Ruby like so:

db.drop

From the MongoDB shell, run the dropDatabase() method using JavaScript:

use garden

db.dropDatabas

e();

Be careful when dropping databases; there’s no way to undo this operation

since it erases the associated files from disk. Let’s look in more detail at how

databases store their data.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

DATA FILES AND ALLOCATION

When you create a database, MongoDB allocates a set of data files on disk.

All collec- tions, indexes, and other metadata for the database are stored in

these files. The data files reside in whichever directory you designated as the

dbpath when starting mongod. When left unspecified, mongod stores all its

files in /data/db.3 Let’s see how this direc- tory looks after creating the

garden database:

$ cd /data/db

$ ls -lah
drwxr-
xr-x

81
pbakkum

admi
n

2.7K
Jul

1 10:42 .

drwxr-
xr-x

5 root admi
n

170B
Sep

19 2012 ..

-rw------- 1
pbakkum

admi
n

64M Jul 1 10:43 garden.0

-rw------- 1
pbakkum

admi
n

128M
Jul

1 10:42 garden.1

-rw------- 1
pbakkum

admi
n

16M Jul 1 10:43
garden.ns

-rwxr-xr-
x

1
pbakkum

admi
n

3B Jul 1 08:31
mongod.lock

 Collections

Collections are containers for structurally or conceptually similar

documents. Here,

MANAGING COLLECTIONS

As you saw in the previous section, you create collections implicitly by

inserting docu- ments into a particular namespace. But because more than

one collection type exists, MongoDB also provides a command for creating

collections. It provides this com- mand from the JavaScript shell:

db.createCollection("users")

When creating a standard collection, you have the option of preallocating a

specific number of bytes. This usually isn’t necessary but can be done like

this in the Java- Script shell:

db.createCollection("users", {size: 20000})

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

Collection names may contain numbers, letters, or . characters, but must

begin with a letter or number. Internally, a collection name is identified

by its namespace name, which includes the name of the database it

belongs to. Thus, the products collection is technically referred to as

garden.products when referenced in a mes- sage to or from the core server.

This fully qualified collection name can’t be longer than 128 characters.

It’s sometimes useful to include the . character in collection names to

provide a kind of virtual namespacing. For instance, you can imagine a series

of collections with titles like the following:

products.categor

ies

products.images

products.reviews

Keep in mind that this is only an organizational principle; the database

treats collec- tions named with a . like any other collection.

Collections can also be renamed. As an example, you can rename the

products col- lection with the shell’s renameCollection method:

db.products.renameCollection("store_products")

 Listing 4.6 Simulating the logging of user actions to a capped

collection

require 'mongo'

VIEW_PRODUCT = 0 # action type constants ADD_TO_CART = 1
CHECKOUT = 2
PURCHASE = 3

client = Mongo::Client.new(['127.0.0.1:27017'], :database => 'garden')

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

 client[:user_actions].drop

actions = client[:user_actions, :capped => true, :size => 16384]

actions.create

500.times do |n| # loop 500 times, using n as the iterator doc = {

:username => "kbanker",

:action_code => rand(4), # random value between 0 and 3, inclusive
:time => Time.now.utc,

:n => n

}

actions.insert_one(d

oc) end

First, you create a 16 KB capped collection called user_actions using client.6

Next, you insert 500 sample log documents B. Each document contains a

username, an action code (represented as a random integer from 0
through 3), and a timestamp. You’ve included an incrementing integer, n,
so that you can identify which documents have aged out. Now you’ll query
the collection from the shell:

> use garden

> db.user_actions.coun

t(); 160

Even though you’ve inserted 500 documents, only 160 documents exist in

the collec- tion.7 If you query the collection, you’ll see why:

db.user_actions.find().pretty();

{

"_id" :

ObjectId("51d1c69878b10e1a0e000040"

), "username" : "kbanker",

"action_code" : 3,

"time" : ISODate("2013-07-

01T18:12:40.443Z"), "n" : 340

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

"_id" :

ObjectId("51d1c69878b10e1a0e000041"),

"username" : "kbanker",

"action_code" : 2,

"time" : ISODate("2013-07-

01T18:12:40.444Z"), "n" : 341

"_id" :

ObjectId("51d1c69878b10e1a0e000042"),

"username" : "kbanker",
"action_code" : 2,
"time" : ISODate("2013-07-

01T18:12:40.445Z"), "n" : 342

TTL COLLECTIONS

MongoDB also allows you to expire documents from a collection after a

certain amount of time has passed. These are sometimes called time-to-live

(TTL) collections, though this functionality is actually implemented using a

special kind of index. Here’s how you would create such a TTL index:

>

>

>

> db.reviews.createIndex({time_field: 1}, {expireAfterSeconds: 3600})

This command will create an index on time_field.

between time_field and the current time is greater than your

expireAfterSeconds setting, then the document will be removed

automatically. In this example, review documents will be deleted after

an hour.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

Using a TTL index in this way assumes that you store a timestamp in
time_field.

Here’s an example of how to do this:

> db.reviews.insert({

time_field: new

Date(),
...

})

SYSTEM COLLECTIONS

Part of MongoDB’s design lies in its own internal use of collections. Two of

these spe- cial system collections are system.namespaces and

system.indexes. You can query the former to see all the namespaces

defined for the current database:

> db.system.namespaces.find();

{ "name" : "garden.system.indexes" }

{ "name" : "garden.products.$_id_" }

{ "name" : "garden.products" }

{ "name" : "garden.user_actions.$_id_" }

{ "name" : "garden.user_actions", "options" : { "create" :

"user_actions", "capped" : true, "size" : 1024 } }

The first collection, system.indexes, stores each index definition for the

current database. To see a list of indexes you’ve defined for the garden

database, query the collection:

> db.system.indexes.find();

{ "v" : 1, "key" : { "_id" : 1 }, "ns" : "garden.products", "name" : "_id_" }

{ "v" : 1, "key" : { "_id" : 1 }, "ns" : "garden.user_actions", "name" :

"_id_" }

{ "v" : 1, "key" : { "time_field" : 1 }, "name" : "time_field_1", "ns" :

"garden.reviews", "expireAfterSeconds" : 3600 }

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

 Documents and insertion

DOCUMENT SERIALIZATION, TYPES, AND LIMITS

All documents are serialized to BSON before being sent to MongoDB;

they’re later deserialized from BSON. The driver handles this process and

translates it from and to the appropriate data types in its programming

language. Most of the drivers provide a simple interface for serializing from

and to BSON; this happens automatically when reading and writing

documents. You don’t need to worry about this normally, but we’ll

demonstrate it explicitly for educational purposes.

In the previous capped collections example, it was reasonable to assume

that the sample document size was roughly 102 bytes. You can check this

assumption by using the Ruby driver’s BSON serializer:

doc = {

:_id => BSON::ObjectId.new,

:username => "kbanker",

:action_code => rand(5),

:time => Time.now.utc,

:n => 1

}

bson = doc.to_bson

puts "Document #{doc.inspect} takes up #{bson.length} bytes as BSON"

Deserializing BSON is as straightforward with a little help from the

StringIO class.

Try running this Ruby code to verify that it works:

string_io = StringIO.new(bson)

deserialized_doc =

String.from_bson(string_io)

puts "Here's our document deserialized from

BSON:" puts deserialized_doc.inspect

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

STRINGS

All string values must be encoded as UTF-8. Though UTF-8 is quickly

becoming the standard for character encoding, there are plenty of

situations when an older encod- ing is still used. Users typically encounter

issues with this when importing data gener- ated by legacy systems into

MongoDB.

NUMBERS

BSON specifies three numeric types: double, int, and long. This means that

BSON can encode any IEEE floating-point value and any signed integer up

to 8 bytes in length. When serializing integers in dynamic languages, such as

Ruby and Python, the driver will automatically determine whether to

encode as an int or a long. In fact, there’s only one common situation

where a number’s type must be made explicit: when you’re inserting

numeric data via the JavaScript shell. JavaScript, unhappily, natively

supports only a single numeric type called Number, which is equivalent to an

IEEE 754 Double. Consequently, if you want to save a numeric value from the

shell as an integer, you need to be explicit, using either NumberLong() or

NumberInt(). Try this example:

db.numbers.save({n: 5});

db.numbers.save({n:

NumberLong(5)});

You’ve saved two documents to the numbers collection, and though their

values are equal, the first is saved as a double and the second as a long

integer. Querying for all documents where n is 5 will return both

documents:

> db.numbers.find({n: 5});

{ "_id" : ObjectId("4c581c98d5bbeb2365a838f9"), "n" : 5 }

{ "_id" : ObjectId("4c581c9bd5bbeb2365a838fa"), "n" : NumberLong(5) }

DATETIMES

The BSON datetime type is used to store temporal values. Time values are

represented using a signed 64-bit integer marking milliseconds since the

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

Unix epoch. A negative value marks milliseconds prior to the epoch.10

VIRTUAL TYPES

What if you must store your times with their time zones? Sometimes the

basic BSON types don’t suffice. Though there’s no way to create a

custom BSON type, you can compose the various primitive BSON values

to create your own virtual type in a sub- document. For instance, if you

wanted to store times with zone, you might use a docu- ment structure like

this, in Ruby:

{

time_with_zone:

{ time: new

Date(), zone:

"EST"

}

}

It’s not difficult to write an application so that it transparently handles these

compos- ite representations. This is usually how it’s done in the real

world. For example, Mongo-Mapper, an object mapper for MongoDB

written in Ruby, allows you to define to_mongo and from_mongo methods for

any object to accommodate these sorts of cus- tom composite types.

LIMITS ON DOCUMENTS

BSON documents in MongoDB v2.0 and later are limited to 16 MB in size.

The limit exists for two related reasons. First, it’s there to prevent

developers from creating ungainly data models. Though poor data models

are still possible with this limit, the 16 MB limit helps discourage schemas

with oversized documents.

If you find yourself needing to store documents greater than 16 MB,

consider whether your schema should split data into smaller documents,

or whether a MongoDB document is even the right place to store such

information—it may be better managed as a file.

The second reason for the 16 MB limit is performance-related. On the

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

server side, querying a large document requires that the document be

copied into a buffer before being sent to the client. This copying can get

expensive, especially (as is often the case) when the client doesn’t need

the entire document.12 In addition, once sent, there’s the work of

transporting the document across the network and then deserializ- ing it on

the driver side. This can become especially costly if large batches of multi-

megabyte documents are being requested at once.

MongoDB documents are also limited to a maximum nesting depth of 100.

Nesting occurs whenever you store a document within a document. Using

deeply nested docu- ments—for example, if you wanted to serialize a tree

data structure to a MongoDB

document—results in documents that are difficult to query and can cause problems
during access. These types of data structures are usually accessed through recursive
function calls, which can outgrow their stack for especially deeply nested documents.

BULK INSERTS

All of the drivers make it possible to insert multiple documents at once.

This can be extremely handy if you’re inserting lots of data, as in an initial

bulk import or a migra- tion from another database system. Here’s a simple

Ruby example of this feature:

docs = [# define an array of documents

{ :username => 'kbanker' },

{ :username => 'pbakkum' },

{ :username => 'sverch' }

]

@col = @db['test_bulk_insert']

@ids = @col.insert_many(docs) # pass the entire array to

insert puts "Here are the ids from the bulk insert:

#{@ids.inspect}"

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

 E-commerce queries

For instance, _id lookups shouldn’t be a mystery at this point. But we’ll also

show you a few more sophisticated patterns, including querying for and dis-

playing a category hierarchy, as well as providing filtered views of product

listings.

Products, categories, and reviews

Most e-commerce applications provide at least two basic views of products and

catego- ries. First is the product home page, which highlights a given

product, displays reviews, and gives some sense of the product’s categories.

Second is the product listing page, which allows users to browse the category

hierarchy and view thumbnails of all the products within a selected

category. Let’s begin with the product home page, in many ways the

simpler of the two.

Imagine that your product page URLs are keyed on a product slug (you

learned about these user-friendly permalinks in chapter 4). In that case,

you can get all the data you need for your product page with the

following three queries:

roduct = db.products.findOne({'slug': 'wheel-barrow-

9092'}) db.categories.findOne({'_id':

product['main_cat_id']}) db.reviews.find({'product_id':

product['_id']})

FINDONE VS. FIND QUERIES

The findOne method is similar to the following, though a cursor is returned

even when you apply a limit:

Constructing Queries

This topic covers

■ Querying an e-commerce data model

■ The MongoDB query language in detail

■ Query selectors and options

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

db.products.find({'slug': 'wheel-barrow-9092'}).limit(1)

SKIP, LIMIT, AND SORT QUERY OPTIONS

Most applications paginate reviews, and for enabling this MongoDB provides
skip and

limit options. You can use these options to paginate the review document like
this:

db.reviews.find({'product_id': product['_id']}).skip(0).limit(12)

db.reviews.find({'product_id': product['_id']}).

sort({'helpful_votes': -1}).

limit(12)

page_number = 1

product = db.products.findOne({'slug': 'wheel-barrow-

9092'}) category = db.categories.findOne({'_id':

product['main_cat_id']}) reviews_count =

db.reviews.count({'product_id': product['_id']}) reviews =

db.reviews.find({'product_id': product['_id']}).

skip((page_number - 1) *

12). limit(12).

sort({'helpful_votes': -1})

 MongoDB’s query language

 Query criteria and selectors

Query criteria allow you to use one or more query selectors to specify the

query’s results. MongoDB gives you many possible selectors. This section

provides an overview.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

SELECTOR MATCHING

The simplest way to specify a query is with a selector whose key-value pairs

literally match against the document you’re looking for. Here are a

couple of examples:

db.users.find({'last_name': "Banker"})

db.users.find({'first_name': "Smith", birth_year:

1975})

RANGES

Table 5.1 shows the range query operators most commonly used in

MongoDB.

Table 5.1 Summary of range query operators

Operator Description

$lt Less than

$gt Greater than

$lte Less than or equal

$gte Greater than or equal

Beginners sometimes struggle with combining these operators. A common

mistake is to repeat the search key:

db.users.find({'birth_year': {'$gte': 1985}, 'birth_year': {'$lte': 2015}})

The aforementioned query only takes into account the last condition. You

can prop- erly express this query as follows:

db.users.find({'birth_year': {'$gte': 1985, '$lte': 2015}})

SET OPERATORS

Three query operators—$in, $all, and $nin—take a list of one or more

values as their predicate, so these are called set operators. $in returns a

document if any of the given values matches the search key.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

Table 5.2 Summary of set operators

Operator Descri

ption

$in

$all

$nin

Matches if any of the arguments are in the referenced
set

Matches if all of the arguments are in the referenced

set and is used in documents that contain arrays

Matches if none of the arguments are in the referenced
set

If the following list of category IDs

[

ObjectId("6a5b1476238d3b4dd5

000048"),

ObjectId("6a5b1476238d3b4dd5

000051"),

ObjectId("6a5b1476238d3b4dd5

000057")

]

corresponds to the lawnmowers, hand tools, and work clothing categories,

the query to find all products belonging to these categories looks like

this:

db.products.find({

'main_cat_id':

{

'$in': [

ObjectId("6a5b1476238d3b4dd5

000048"),

ObjectId("6a5b1476238d3b4dd5

000051"),

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

ObjectId("6a5b1476238d3b4dd5

000057")

]

}

})

Table 5.3 Summary of Boolean operators

Operator Descri
ption

$ne Matches if the argument is not equal to
the element

$not Inverts the result of a match

$or Matches if any of the supplied set of
query terms is true

$nor Matches if none of the supplied set of
query terms are true

$and Matches if all of the supplied set of
query terms are true

$exists Matches if the element exists in the
document.

QUERYING FOR A DOCUMENT WITH A SPECIFIC KEY

The final operator we’ll discuss in this section is $exists. This operator is

necessary because collections don’t enforce a fixed schema, so you

occasionally need a way to query for documents containing a particular

key. Recall that you’d planned to use

each product’s details attribute to store custom fields. You might, for instance,

store a color field inside the details attribute. But if only a subset of all

products specify a set of colors, then you can query for the ones that

don’t like this:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

db.products.find({'details.color': {$exists: false}})

The opposite query is also possible:

db.products.find({'details.color': {$exists: true}})

ARRAYS

Arrays give the document model much of its power. As you’ve seen in the e-

commerce example, arrays are used to store lists of strings, object IDs,

and even other docu- ments.

Arrays afford rich yet comprehensible documents; it stands to reason that

MongoDB would let you query and index the array type with ease. And it’s

true: the simplest array queries look like queries on any other document

type, as you can see in table 5.4.

Table 5.4 Summary of array operators

Operator Descri
ption

$elemMatc

h

$size

Matches if all supplied terms are in the same
subdocument

Matches if the size of the array subdocument is the
same as the supplied literal value

Let’s look at these arrays in action. Take product tags again. These tags

are repre- sented as a simple list of strings:

{

_id:

ObjectId("4c4b1476238d3b4dd5003981

"), slug: "wheel-barrow-9092",

sku: "9092",

tags: ["tools", "equipment", "soil"]

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

Querying for products with the tag "soil" is trivial and uses the same syntax as

query- ing a single document value:

db.products.find({tags: "soil"})

Importantly, this query can take advantage of an index on the tags field. If

you build the required index and run your query with explain(), you’ll see

that a B-tree cursor3 is used:

db.products.ensureIndex({tags: 1})

db.products.find({tags:

"soil"}).explain()

When you need more control over your array queries, you can use dot

notation to query for a value at a particular position within the array. Here’s

how you’d restrict the previous query to the first of a product’s tags:

db.products.find({'tags.0': "soil"})

REGULAR EXPRESSIONS

The $regex operator is summarized here:

■ $regex Match the element against the supplied regex term

MongoDB is a case-sensitive system, and when using a regex, unless you

use the /i modifier (that is, /best|worst/i), the search will have to exactly

match the case of the fields being searched. But one caveat is that if you

do use /i, it will disable the use of indexes. If you want to do indexed case-

insensitive search of the contents of string fields in documents, consider

either storing a duplicate field with the contents forced to lowercase

specifically for searching or using MongoDB’s text search capabili- ties,

which can be combined with other queries and does provide an indexed

case- insensitive search.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

MISCELLANEOUS QUERY OPERATORS

Two more query operators aren’t easily categorized and thus deserve their

own sec- tion. The first is $mod, which allows you to query documents

matching a given modulo operation, and the second is $type, which

matches values by their BSON type. Both are detailed in table 5.5.

Table 5.5 Summary of miscellaneous operators

Oper

ator

Descri

ption

$mod [(quotient),(result)]

$type

$text

Matches if the element matches the

result when divided by the quotient

Matches if the element type matches a
specified BSON type

Allows you to performs a text search

on the content of the fields indexed

with a text index

For instance, $mod allows you to find all order subtotals that are evenly

divisible by 3 using the following query:

db.orders.find({subtotal: {$mod: [3, 0]}})

You can see that the $mod operator takes an array having two values. The

first is the divisor and the second is the expected remainder. This query

technically reads, “Find all documents with subtotals that return a

remainder of 0 when divided by 3.” This is a contrived example, but it

demonstrates the idea. If you end up using the $mod opera- tor, keep in

mind that it won’t use an index.

The second miscellaneous operator, $type, matches values by their

BSON type. I don’t recommend storing multiple types for the same field

within a collection, but if the situation ever arises, you have a query

operator that lets you test against type.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

Table 5.6 BSON types

BSON type $ty
pe

numb
er

Exam
ple

Double 1 123.456

“Now is the time”

{ name:"Tim",age:"myob" }

[123,2345,"string"]

BinData(2,"DgAAAEltIHNvbWUgYmlu

YXJ5")

ObjectId("4e1bdda65025ea6601560b

50") true

ISODate("2011-02-24T21:26:00Z")

null

/test/i

function() {return false;}

Not used; deprecated in

the standard function

(){return false;}

10

{ "t" :

1371429067, "i"

: 0

}

NumberLong(10)

String (UTF-8) 2

Object 3

Array 4

Binary 5

ObjectId 7

Boolean 8

Date 9

Null 10

Regex 11

JavaScript 13

Symbol 14

Scoped
JavaScript

15

32-bit integer 16

Timestamp 17

64-bit integer

18

Maxkey 127

Minkey 255

Maxkey 128

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

{"$maxKey": 1}

{ "$minKey" : 1}

{"maxkey" : { "$maxKey" : 1 }}

PROJECTIONS

■ Projections are most commonly defined as a set of

fields to return:

db.users.find({}, {'username': 1})

SORTING

db.reviews.find({}).sort({'rating': -1})

Naturally, it might be more useful to sort by helpfulness and then by rating:

db.reviews.find({}).sort({'helpful_votes':-1, 'rating': -1})

SKIP AND LIMIT

db.docs.find({}).skip(500000).limit(10).sort({date: -1})

becomes this:

previous_page_date = new Date(2013, 05, 05)

db.docs.find({'date': {'$gt': previous_page_date}}).limit(10).sort({'date': -1})

This topic covers

■ Aggregation on the e-commerce data model

■ Aggregation framework details

■ Performance and limitations

■ Other aggregation capabilities

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

Operation n

 Aggregation framework overview

A call to the aggregation framework defines a pipeline (figure 6.1), the

aggregation pipeline, where the output from each step in the pipeline

provides input to the next step. Each step executes a single operation on

the input documents to transform the input and generate output

documents.

Aggregation pipeline operations include the following:

■ $project—Specify fields to be placed in the output document (projected).

■ $match—Select documents to be processed, similar to find().

Input documents

… Output
documents

■ $limit—Limit the number of documents to be passed to the next step.

■ $skip—Skip a specified number of documents.

■ $unwind—Expand an array, generating one output document for

each array entry.

■ $group—Group documents by a specified key.

■ $sort—Sort documents.

■ $geoNear—Select documents near a geospatial location.

■ $out—Write the results of the pipeline to a collection (new in v2.6).

■ $redact—Control access to certain data (new in v2.6).

Most of these operators will look familiar if you’ve read the previous chapter

on con- structing MongoDB queries. Because most of the aggregation

framework operators work similarly to a function used for MongoDB

queries, you should make sure you have a good understanding of section

5.2 on the MongoDB query language before continuing.

This code example defines an aggregation framework pipeline that

consists of a match, a group, and then a sort:

Operation 2

Operation 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 25 of 36

$sort …

db.products.aggregate([{$match: …}, {$group: …}, {$sort: …}])

This series of operations is illustrated in figure 6.2.

1 1

$group …

$match …

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

Products

2 2 Output
documents

3 3

Select documents to be processed.

Table 6.1 SQL versus aggregation framework comparison

SQL

command

Aggregation framework

operator

SELECT

FROM

JOIN

WHER

E

GROU

P BY

HAVING

$project

$group functions: $sum, $min, $avg,
etc.

db.collectionName.aggregate(...)

$unwind

$match

$group

$match

 Products, categories, and reviews

Now let’s look at a simple example of how the aggregation framework can be

used to summarize information about a product. Chapter 5 showed an

example of counting the number of reviews for a given product using

this query:

product = db.products.findOne({'slug': 'wheelbarrow-

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

9092'}) reviews_count = db.reviews.count({'product_id':

product['_id']})

Let’s see how to do this using the aggregation framework. First, we’ll look at

a query that will calculate the total number of reviews for all products:

db.reviews.aggregate([

{$group : {
_id:'$product_id',

count:{$sum:1}
}}

]);

Group the input
documents by
product_id.

Count the
number of
reviews for
each product.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 33 of 36

This single operator pipeline returns one document for each product in

your data- base that has a review, as illustrated here:

{ "_id" : ObjectId("4c4b1476238d3b4dd5003982"), "count" : 2 }

{ "_id" : ObjectId("4c4b1476238d3b4dd5003981"), "count" : 3 }

Outputs one document for each product

Next, add one more operator to your pipeline so that you select only the

one prod- uct you want to get a count for:

product = db.products.findOne({'slug': 'wheelbarrow-9092'})

ratingSummary = db.reviews.aggregate([
{$match : { product_id: product['_id']} },
{$group : { _id:'$product_id',

Select only a single product.

]).next();

Count:{$sum:1} }}

Return the first document in the results.

is example returns the one product you’re interested in and assigns it to the

vari- able ratingSummary. Note that the result from the aggregation

pipeline is a cursor, a pointer to your results that allows you to process

results of almost any size, one docu- ment at a time. To retrieve the single

document in the result, you use the next() func- tion to return the first

document from the cursor:

{ "_id" : ObjectId("4c4b1476238d3b4dd5003981"), "count" : 3 }

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

The parameters passed to the $match operator, {'product_id': product['_id']},

should look familiar. They’re the same as those used for the query taken

from chap- ter 5 to calculate the count of reviews for a product:

db.reviews.count({'product_id': product['_id']})

CALCULATING THE AVERAGE REVIEW

To calculate the average review for a product, you use the same pipeline as in

the pre- vious example and add one more field:

product = db.products.findOne({'slug': 'wheelbarrow-9092'})

 ratingSummary = db.reviews.aggregate([

{$match : {'product_id': product['_id']}},

{$group : { _id:'$product_id', average:{$avg:'$rating'}, count:

{$sum:1}}}

]).next();

Calculate the average rating for a product.

The previous example returns a single document and assigns it to the variable

rating- Summary with the content shown here:

{

"_id" :

ObjectId("4c4b1476238d3b4dd5003981

"), "average" : 4.333333333333333,
"count" : 3

}

This example uses the $avg function to calculate the average rating for the

product. Notice also that the field being averaged, rating, is specified using

'$rating' in the

$avg function. This is the same convention used for specifying the field for the $group

_id value, where you used this:

_id:'$product_id'.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 33 of 36

count:{$sum:1}}}

]).toArray();

As shown in this snippet, you’ve once again produced a count using the

$sum func- tion; this time you counted the number of reviews for each

rating. Also note that the result of this aggregation call is a cursor that

you’ve converted to an array and assigned to the variable

countsByRating.

This aggregation call would produce an array similar to this:

[{ "_id" : 5, "count" : 5 },

{ "_id" : 4, "count" : 2 },

{ "_id" : 3, "count" : 1 }]

JOINING COLLECTIONS

Next, suppose you want to examine the contents of your database and count

the num- ber of products for each main category. Recall that a product has

only one main cate- gory. The aggregation command looks like this:

db.products.aggregate([

{$group : { _id:'$main_cat_id',

count:{$sum:1}}}

]);

This command would produce a list of output documents. Here’s an example:

{ "_id" : ObjectId("6a5b1476238d3b4dd5000048"), "count" : 2 }

SQL query

For those familiar with SQL, the equivalent SQL query would look something like this:

SELECT RATING, COUNT(*) AS COUNT

FROM REVIEWS

WHERE PRODUCT_ID = '4c4b1476238d3b4dd5003981'

GROUP BY RATING

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

option is to use the forEach function to process the cursor returned from the

aggre- gation command and add the name using a pseudo-join. Here’s an

example:

b.mainCategorySummary.remove({});

db.products.aggregate([

{$group : { _id:'$main_cat_id',

count:{$sum:1}}}

]).forEach(function(doc){

Remove existing documents from mainCategorySummary
collection

Read category for a result

var category = db.categories.findOne({_id:doc._id});
if (category !== null) {

doc.category_name = category.name;

}

else {

doc.category_name = 'not found';

}

db.mainCategorySummary.insert(doc);

})

mainCategorySummary:

db.products.aggregate([

{$group : { _id:'$main_cat_id',

count:{$sum:1}}},

{$out : 'mainCategorySummary'}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 33 of 36

])

 User and order

When the first edition of this book was written, the aggregation framework,

first intro- duced in MongoDB v2.2, hadn’t yet been released. The first edition

used the MongoDB map-reduce function in two examples, grouping reviews

by users and summarizing sales by month. The example grouping reviews by

user showed how many reviews each reviewer had and how many helpful

votes each reviewer had on average. Here’s what this looks like in the

aggregation framework, which provides a much simpler and more

intuitive approach:

db.reviews.aggregate([

{$group :

{_id : '$user_id',

count : {$sum : 1},

avg_helpful : {$avg : '$helpful_votes'}}

}

])

The result from this call looks like this:

{ "_id" :

ObjectId("4c4b1476238d3b4dd50000

03"), "count" : 1, "avg_helpful" : 10 }

{ "_id" :

ObjectId("4c4b1476238d3b4dd50000

02"), "count" : 2, "avg_helpful" : 4 }

{ "_id" :

ObjectId("4c4b1476238d3b4dd50000

01"), "count" : 2, "avg_helpful" : 5 }

FINDING BEST MANHATTAN CUSTOMERS

Now let’s extend that query to find the highest spenders in Upper

Manhattan. This pipeline is summarized in figure 6.5. Notice that the

$match is the first step in the pipeline, greatly reducing the number of

documents your pipeline has to process.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS : II M.Sc CS BATCH : 2017- 2019

 COURSE NAME : MONGODB COURSE CODE:18CSP203

Prepared by Dr.S.Veni. Dept. of CS, CA & IT Page 34 of 36

The query includes these steps:

■ $match—Find orders shipped to Upper Manhattan.

■ $group—Sum the order amounts for each customer.

■ $match—Select those customers with order totals greater than $100.

■ $sort—Sort the result by descending customer order total.

$sort

by desending

customer order

total

$match

customer

total greater

than $100

$group

sum

orders by

customer

$match

orders shipped

to Upper

Manhattan

	1.pdf (p.1-2)
	2.pdf (p.3-7)
	3.pdf (p.8-49)
	Indexes
	Replication
	Speed and durability
	Scaling
	MongoDB’s core server and tools
	Core server

	Diving into the MongoDB shell
	Starting the shell
	Inserts and queries
	Updating documents
	Deleting data

	Basic administration
	Getting database information

	MongoDB through the Ruby lens
	Installing and connecting
	Inserting documents in Ruby
	Updates and deletes
	Database commands

	How the drivers work
	Object ID generation

	Building a simple application
	Setting up
	Gathering data
	Viewing the archive

	4.pdf (p.50-85)
	Principles of schema design
	Designing an e-commerce data model
	Nuts and bolts: On databases, collections, and documents
	Databases
	Collections
	Documents and insertion

	E-commerce queries
	MongoDB’s query language
	Query criteria and selectors

	Aggregation framework overview
	Products, categories, and reviews
	User and order

