
 KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)
 Eachanari (po), Coimbatore-21

DEPARTMENT OF CS, CA & IT

 LECTURE PLAN

SUBJECT NAME: Programming Fundamentals SUBJECT CODE: 18ITU101

 Using C / C++ SEMESTER: I

BATCH: 2018-2021 CLASS: I B.Sc.IT

STAFF: Dr.D.SHANMUGA PRIYAA

S.No Lecture
Duration

(Hr)

Topics Support
Materials

UNIT -I
1. 1 Introduction to C and C++:

 History of C and C++, Overview of
Procedural Programming and Object-
Orientation Programming

S1:1-3, 12-14
S2:4-7, 28

2. 1  Using main() function, Compiling and
Executing Simple Programs in C++.

S1:12-14
S2:28

3. 1  Data Types, Variables, Constants,
Operators and Basic I/O: Declaration,
Defining and Initializing Variables,
Scope of Variables

S1:30-31,
34-35 S2:42-
46

4. 1  Using Named Constants, Keywords,
Data Types, Casting of Data Types

S1:25-30,31-34
S2:32-37

5. 1  Operators, Using Comments in programs S1:52-61
S2: 46-49

6. 1  Character I/O, Formatted and Console
I/O, Using Basic Header Files

S1:84-98
S2:21, 248-266

7. 1  Expressions, Conditional Statements
and Iterative Statements: Simple
Expressions in C++ , Understanding
Operators Precedence in Expressions

S1: 63-67
S2: 54-56

8. 1  Conditional Statements, Understanding
syntax and utility of Iterative Statements,
Use of break and continue in Loops,
Using Nested Statements,

S1:114-126

9. 1 Recapitulation and Discussion of important
questions

S1:121-126,
152-166

 1 Total No. of Periods allotted for Unit – I 9

UNIT-II

1. 1 Functions and Arrays: Utility of functions, Call
by Value, Call by Reference

S1:270-272

2. 1 Functions returning value, Void functions,
Inline Functions

S1: 269-272, 274

3. 1 Return data type of functions, Functions
parameters, Differentiating between
Declaration and Definition of Functions

S1:272-274

4. 1 Command Line Arguments/Parameters in
Functions

S1:405-408
S2:301-303

5. 1 Functions with variable number of Arguments. S1:285-286
6. 1 Creating and Using One Dimensional Arrays S1: 192-199
7. 1 Various types of arrays S1: 209-210
8. 1 Two-dimensional Arrays, Introduction to

Multi-dimensional arrays.
S1:199-209

9. 1 Recapitulation and Discussion of important
questions

 Total No. of Hours allotted for Unit – II 9
UNIT-III

1. 1 Derived Data Types (Structures and
Unions): Understanding utility of structures
and unions, Declaring, initializing and using
simple structures and unions

S1: 371-319,
322-324

2. 1 Manipulating individual members of structures
and unions

S1: 321-322

3. 1 Array of Structures, Individual data members
as structures

S1: 326-329

4. 1 Passing and returning structures from functions,
Structure with union as members, Union with
structures as members

S1: 333-337

5. 1 Pointers and References in C++:
Understanding a Pointer Variable, Simple use
of Pointers

S1:351-355

6. 1 Pointers to Pointers, Pointers to structures
Problem with Pointers

S1: 376-379

7. 1 Passing pointers as function arguments,
Returning a pointer from a function

S1:370-373

8. 1 Using arrays as pointers, Passing arrays to
functions.

S1:369-370

9. 1 Pointers vs. References,
Declaring and initializing references,
using references as function arguments and function
return values

S1:371-380

10. 1 Recapitulation and Discussion of important
questions

 Total No. of Hours allotted for Unit – III 10

 UNIT-IV

1. 1 Memory Allocation in C++:
Differentiating between static and dynamic
memory allocation,
use of malloc, calloc and free functions,

S5:469-470

2. 1 Use of new and delete operators, storage of
variables in static and dynamic memory
allocation.

S4:456-458

3. 1 File I/O, Preprocessor Directives: Opening
and closing a file

S1:389-392

Reading and writing Text Files S1:392-394
4. 1

1
Using put(), get() S1:394-398
read() functions, write()functions S1:289-294

5. 1 Random access in files S1:400-405
S2:294-299

6. 1 Understanding the Preprocessor Directives S2:444-445,
449-453

7. 1 Macros. S2:445-449
8. 1 Recapitulation and Discussion of important

questions

 Total No. of Hours allotted for Unit – IV 8
UNIT-V

1. 1 Using Classes in C++: Principles of
Object- Oriented Programming, Defining
& Using Classes

S2: 88-96

2. 1 Constructors, Constructor Overloading S2:127-133
3. 1 Function overloading, Class Variables

&Functions, Access specifiers
S2:80-82,98
107-109

4. 1 Copy Constructors,Overview of Template
classes and their use

S2:308-314

5. . 1 Operator overloading: Need of Overloading
functions and operators, Overloading functions by
number and type of arguments,

S2:150-157

6. 1 Looking at an operator as a function call,
Overloading Operators

7. 1 Inheritance, Polymorphism and Exception
Handling: Introduction to Inheritance

S2:176-179

8. 1 Polymorphism S2: 222-223
9. 1 Basics Exceptional Handling S2:326-332
10. 1 Recapitulation and Discussion of important

questions

11. 1 Discussion of previous ESE Question papers
12. 1 1 Discussion of previous ESE Question papers

Discussion of previous ESE Question papers
 Total No. of Hours allotted for Unit – V 12

Total No. of Hours: 48

Suggested Readings

S1. BjarneStroustroup, 2014. "Programming -- Principles and Practice using C++", 2nd Edition,
Addison-Wesley.

S2. BjarneStroustrup, 2013. "The C++ Programming Language", 4th Edition, Addison-Wesley.
S3. Harry, H. Chaudhary, 2014. "Head First C++ Programming: The Definitive Beginner's

Guide", First Create space Inc, O-D Publishing, LLC USA.
S4. Stanley B. Lippman, JoseeLajoie, Barbara E. Moo, 2012. "C++ Primer", Published by

Addison-Wesley, 5th Edition.
S5. Paul Deitel, Harvey Deitel, 2011. "C++ How to Program", 8th Edition, Prentice Hall.
S6. E Balaguruswamy, 2008. "Object Oriented Programming with C++", Tata McGraw-Hill

Education.
S7. Walter Savitch, 2007. "Problem Solving with C++", Pearson Education.
S8. HerbtzSchildt.(2003). C++: The Complete Reference (4thed.)New Delhi: McGraw Hill.

S9. John, R. Hubbard. (2000). Programming with C++-(2nd ed.).Schaum's Series.

S10. Andrew Koeni., Barbara, E. Moo. (2000). Accelerated C++.Addison-Wesley.

S11. Scott Meyers. (2005). Effective C++ (3rd ed.).Addison-Wesley,.

S12. Harry, H. Chaudhary. (2014). Head First C++ Programming: The Definitive Beginner's

 Guide. LLC USA:First Create space Inc, O-D Publishing,.

Websites

W1. www.cplusplus.com/doc/tutorial/
W2. www.cplusplus.com/
W3. www.cppreference.com/
W4. http://www.cs.cf.ac.uk/Dave/C/CE.html
W5. http://www2.its.strath.ac.uk/courses/c/
W6. http://www.iu.hio.no/~mark/CTutorial/CTutorial.html

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Eachanari (po), Coimbatore-21

 Semester – I

18ITU101 PROGRAMMING FUNDAMENTALS USING C / C++ 4H – 4C

Instruction Hours / week: L: 4 T: 0 P: 0 Marks: Int : 40 Ext : 60 Total: 100

SCOPE

 C is designed for developing system software, portable application software. Despite its

low-level capabilities, the language was designed to encourage cross-platform programming.

Also this course introduces the concepts of Object Oriented Programming language.

COURSE OBJECTIVES

 To impart adequate knowledge on the need of programming languages and problem

solving techniques.
 To develop programming skills using the fundamentals and basics of C Language.
 To enable effective usage of arrays, structures, functions, pointers and to implement the

memory management concepts.
 To teach the issues in file organization and the usage of file systems.

 To learn the characteristics of an object-oriented programming language: data abstraction

and information hiding, inheritance, and dynamic binding of the messages to the

methods.

 COURSE OUTCOMES

After the completion of this course, a successful student will be able to do the following:

 Obtain the knowledge about the number systems this will be very useful for bitwise

operations.

 Develop programs using the basic elements like control statements, Arrays and Strings .

 Solve the memory access problems by using pointers

 understand about the dynamic memory allocation using pointers which is essential for

utilizing memory

 Understand about the code reusability with the help of user defined functions.

 Develop advanced applications using enumerated data types, function pointers and nested

structures.

 Learn the basics of file handling mechanism that is essential for understanding the

concepts in database management systems.

 Understand the uses of preprocessors and various header file directives.

 Use the characteristics of an object-oriented programming language in a program.

 Use the basic object-oriented design principles in computer problem solving.

UNIT I

Introduction to C and C++:

History of C and C++, Overview of Procedural Programming and Object-Orientation

Programming, Using main() function, Compiling and Executing Simple Programs in C++.

Data Types, Variables, Constants, Operators and Basic I/O:

Declaring, Defining and Initializing Variables, Scope of Variables, Using Named

Constants, Keywords, Data Types, Casting of Data Types, Operators (Arithmetic, Logical and

Bitwise), Using Comments in programs, Character I/O (getc, getchar, putc, putcharetc),

Formatted and Console I/O (printf(), scanf(), cin, cout), Using Basic Header Files (stdio.h,

iostream.h, conio.hetc).

Expressions, Conditional Statements and Iterative Statements:

Simple Expressions in C++ (including Unary Operator Expressions, Binary Operator

Expressions), Understanding Operators Precedence in Expressions, Conditional Statements (if

construct, switch-case construct), Understanding syntax and utility of Iterative Statements

(while, do-while, and for loops), Use of break and continue in Loops, Using Nested Statements

(Conditional as well as Iterative)

UNIT II

Functions and Arrays: Utility of functions, Call by Value, Call by Reference, Functions

returning value, Void functions, Inline Functions, Return data type of functions, Functions

parameters, Differentiating between Declaration and Definition of Functions, Command Line

Arguments/Parameters in Functions, Functions with variable number of Arguments.

Creating and Using One Dimensional Arrays (Declaring and Defining an Array, Initializing an

Array, Accessing individual elements in an Array, Manipulating array elements using loops),

Use Various types of arrays (integer, float and character arrays / Strings) Two-dimensional

Arrays (Declaring, Defining and Initializing Two Dimensional Array, Working with Rows and

Columns), Introduction to Multi-dimensional arrays.

UNIT III

Derived Data Types (Structures and Unions):

Understanding utility of structures and unions, Declaring, initializing and using simple

structures and unions, Manipulating individual members of structures and unions, Array of

Structures, Individual data members as structures, Passing and returning structures from

functions, Structure with union as members, Union with structures as members.

Pointers and References in C++:

Understanding a Pointer Variable, Simple use of Pointers (Declaring and Dereferencing

Pointers to simple variables), Pointers to Pointers, Pointers to structures, Problems with Pointers,

Passing pointers as function arguments, Returning a pointer from a function, using arrays as

pointers, Passing arrays to functions. Pointers vs. References, Declaring and initializing

references, using references as function arguments and function return values

UNIT IV

Memory Allocation in C++:

 Differentiating between static and dynamic memory allocation, use of malloc, calloc and

free functions, use of new and delete operators, storage of variables in static and dynamic

memory allocation.

File I/O, Preprocessor Directives:

Opening and closing a file (use of fstream header file, ifstream, ofstream and fstream

classes), Reading and writing Text Files, Using put(), get(), read() and write() functions, Random

access in files, Understanding the Preprocessor Directives (#include, #define, #error, #if, #else,

#elif, #endif, #ifdef, #ifndef and #undef), Macros.

UNIT V

Using Classes in C++:

Principles of Object-Oriented Programming, Defining & Using Classes, Class

Constructors, Constructor Overloading, Function overloading in classes, Class Variables

&Functions, Objects as parameters, Specifying the Protected and Private Access, Copy

Constructors, Overview of Template classes and their use.

Overview of Function Overloading and Operator Overloading:

Need of Overloading functions and operators, Overloading functions by number and type

of arguments, Looking at an operator as a function call, Overloading Operators (including

assignment operators, unary operators).

Inheritance, Polymorphism and Exception Handling:

Introduction to Inheritance (Multi-Level Inheritance, Multiple Inheritance),

Polymorphism (Virtual Functions, Pure Virtual Functions), Basics Exceptional Handling (using

catch and throw, multiple catch statements), Catching all exceptions, Restricting exceptions,

Rethrowing exceptions.

SUGGESTED READINGS

1. Herbtz Schildt. (2003). C++: The Complete Reference (4th ed.) New Delhi: McGraw Hill.

2. Bjarne Stroustrup. (2013). The C++ Programming Language(4th ed.). New Delhi: Addison-

Wesley.

3. Bjarne Stroustroup. (2014). Programming, Principles and Practice using C++(2
nd

 ed.). New

Delhi: Addison-Wesley.

4. Balaguruswamy, E. (2008). Object Oriented Programming with C++. New Delhi: Tata

McGraw-Hill Education.

5. Paul Deitel., & Harvey Deitel. (2011). C++ How to Program (8th ed.). New Delhi: Prentice

Hall.

6. John, R. Hubbard. (2000). Programming with C++- (2nd ed.). Schaum's Series.

7. Andrew Koeni., Barbara, E. Moo. (2000). Accelerated C++. Addison-Wesley.

8. Scott Meyers. (2005). Effective C++ (3rd ed.).Addison-Wesley,.

9. Harry, H. Chaudhary. (2014). Head First C++ Programming: The Definitive Beginner's Guide.

LLC USA: First Create space Inc, O-D Publishing,.

10. Walter Savitch.(2007) Problem Solving with C++, Pearson Education,.

11. Stanley, B. Lippman., Josee Lajoie., & Barbara, E. Moo. (2012). C++ Primer, 5th ed.).

Addison-Wesley

WEB SITES

1. http://www.cs.cf.ac.uk/Dave/C/CE.html

2. http://www2.its.strath.ac.uk/courses/c/

3. http://www.iu.hio.no/~mark/CTutorial/CTutorial.html

4. http://www.cplusplus.com/doc/tutorial/

5. www.cplusplus.com/

6. www.cppreference.com/

ESE Pattern

Part – A (Online) 20 * 1 = 20

Part – B 5 * 2 = 10

Part – C (Either or) 5 * 6 = 30

Total 60 marks

Faculty HOD

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 1of 38

UNIT-I
Syllabus

Introduction to C and C++:
History of C and C++, Overview of Procedural Programming and Object-Orientation

Programming, Using main() function, Compiling and Executing Simple Programs in C++.
Data Types, Variables, Constants, Operators and Basic I/O:

Declaring, Defining and Initializing Variables, Scope of Variables, Using Named Constants,
Keywords, Data Types, Casting of Data Types, Operators (Arithmetic, Logical and Bitwise), Using
Comments in programs, Character I/O (getc, getchar, putc, putcharetc), Formatted and Console I/O
(printf(), scanf(), cin, cout), Using Basic Header Files (stdio.h, iostream.h, conio.hetc).
Expressions, Conditional Statements and Iterative Statements:

Simple Expressions in C++ (including Unary Operator Expressions, Binary Operator
Expressions), Understanding Operators Precedence in Expressions, Conditional Statements (if construct,
switch-case construct), Understanding syntax and utility of Iterative Statements (while, do-while, and
for loops), Use of break and continue in Loops, Using Nested Statements (Conditional as well as
Iterative)

Introduction to computers
Computer:

 It is an electronic device, It has memory and it performs arithmetic and logical operations.
Input:

The data entering into computer is known as input.
Output:
 The resultant information obtained by the computer is known as output.
Program:
 A sequence of instructions that can be executed by the computer to solve the given problem is known
as program.
Software:
 A set of programs to operate and controls the operation of the computer is known as software.
these are 2 types.

1. System software.
1. Application software.

System Software:
It is used to manages system resources.
Eg: Operating System.
Operating system:
 It is an interface between user and the computer. In other words operating system is a complex set of
programs which manages the resources of a computer. Resources include input, output,
processor,memory,etc. So it is called as Resource Manager.
Eg: Windows 98,WindowsXp,Windows7,Unix,
 Linux ,etc.

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 2of 38

Application Software:
It is Used to develop the applications.
It is again of 2 types.

1 Languages
1 Packages.

Language:
 It consists a set of executable instructions. Using these instructions we can communicate with the
computer and get the required results.
Eg: C, C++,Java, etc.

Hardware:
 All the physical components or units which are connecting to the computer circuit is known as
Hardware.

ASCII character Set
ASCII - American Standard Code for Information Interchange
 There are 256 distinct ASCII characters are used by the micro computers. These values range from 0
to 255. These can be grouped as follows.
Character Type No. of Characters
--
Capital Letters (A to Z) 26
Small Letters (a to z) 26
Digits (0 to 9) 10
Special Characters 32
Control Characters 34
Graphic Characters 128

 Total 256

Out of 256, the first 128 are called as ASCII character set and the next 128 are called as extended ASCII
character set. Each and every character has unique appearance.

Eg:
 A to Z 65 to 90
 a to z 97 to 122
 0 to 9 48 to 57
 Esc 27
 Backspace 8
 Enter 13
 SpaceBar 32
 Tab 9
Classification of programming languages:-
Programming languages are classifies into 2 types

1 Low level languages
2 High level languages

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 3of 38

Low level languages:
It is also known as Assembly language and was designed in the beginning. It has some simple
instructions. These instructions are not binary codes, but the computer can understand only the machine
language, which is in binary format. Hence a converter or translator is used to translate the low level
language instructions into machine language. This translator is called as assembler.

High level languages:
These are more English like languages and hence the programmers found them very easy to learn. To
convert high level language instructions into machine language compilers and interpreters are used.

Translators:
These are used to convert low or high level language instructions into machine language with the help of
ASCII character set. There are 3 types of translators for languages.
1) Assembler :
 It is used to convert low level language instructions into machine language.
2) Compiler:
 It is used to convert high level language instructions into machine language. It checks for the errors in
the entire program and converts the program into machine language.
3) Interpreter:
 It is also used to convert high level language instructions into machine language, But It checks for
errors by statement wise and converts into machine language.
 Debugging :
 The process of correcting errors in the program is called as debugging.
Introduction to C :
C is computer programming language. It was designed by Dennis Ritchie at AT &T (American
Telephones and Telegraphs) BELL labs in USA.
It is the most popular general purpose programming language. We can use the 'C' language to implement
any type of applications. Mainly we are using C language to implement system software. These are
compilers, editors, drivers, databases and operating systems.

History of C Language:
 In 1960's COBOL was being used for commercial applications and FORTRAN is used for scientific and
engineering applications. At this stage people started to develop a language which is suitable for all
possible applications. Therefore an international committee was setup to develop such a language "
ALGOL 60 " was released. It was not popular , because it seemed too general. To reduce these generality a
new language CPL(combined programming language) was developed at Cambridge University. It has very
less features. Then some other features were added to this language and a new language called BCPL(Basic
combined programming language) developed by "Martin Richards" at Cambridge University. Then " B "
language was developed by “Ken Thompson” at AT&T BELL labs. Dennis Ritchie inherited the features
of B and BCPL, added his own features and developed C language in 1972.

Features of ‘C’ Language:

1. C is a structured programming language with fundamental flow control construction.
2 . C is simple and versatile language.
3. Programs written in C are efficient and fast.

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 4of 38

4. C has only 32 keywords.
5. C is highly portable programming language. The programs written for one computer can be run

on another with or without any modifications
6. C has rich set of operators.
7. C permits all data conversions and mixed mode operations
8. Dynamic memory allocation(DMA) is possible in C.
9. Extensive varieties of data types such as arrays, pointers, structures and unions are available in

C.
10. C improves by itself. It has several predefine functions.
11. C easily manipulates bits, bytes and addresses.
12. Recursive function calls for algorithmic approach is possible in C.
13. Mainly we are using C language to implement system softwares. These are compilers ,editors,

drivers ,databases and operating systems.
14. C compiler combines the capability of an assembly level language with the features of high

level language. So it is called as middle level language.

Once the program is completed, the program is feed into the computer using the compiler to produce
equivalent machine language code. In C program compilation there are 2 mechanisms.
1. Compiler
2. Linker.
The Compiler receives the source file as input and converts that file into object file. Then the Linker
receives the object file as its input and linking with C libraries. After linking it produces an executable
file for the given code. After creation of executable file, then start the program execution and loads the
information of the program into primary memory through LOADER. After loading the information the
processor processing the information and gives output.

Compiler Interpreter
Compiler Takes Entire program as input Interpreter Takes Single instruction as input

Intermediate Object Code is Generated No Intermediate Object Code is Generated

Conditional Control Statements are
Executes faster

Conditional Control Statements are
Executes slower

Memory Requirement : More (Since
Object Code is Generated)

Memory Requirement is Less

Program need not be compiled every time Every time higher level program is
converted into lower level program

Errors are displayed after entire program
is checked

Errors are displayed for every instruction
interpreted (if any)

Example : C Compiler Example : BASIC

Basic structure of C program
 [Document section]
 Preprocessor section
 (or)
 Link section
 [Global declaration section]
 main()

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 5of 38

 {
 [Local declaration section]
 Statements
 }

 [Sub program section]
 (include user defined functions)
Document section:
 It consists of a set of comment lines giving the name of the program, author name and some other
details about the entire program.
Preprocessor Section (or) Link section:
 It provides instructions to the compiler to link the functions from the system library.
Global declaration Section:
 The Variables that are used in more than one function are called as global variables and these are
declared in global declaration section.
Main function section:
 Every C program must have one function. i.e. main function. This section contains 2 parts.

1. Local declaration section.
1. Statements .

 The Local declaration section declares all the variables used in statements. The statements part consists
a sequence of executable statements.These 2 parts must appear between opening and closing curly
braces. The program execution begins at the opening brace and ends at closing brace.
Sub programming section:
 It contains all the user defined functions.
This section may be placed before or after main function.
Comments:
 Unexecutable lines in a program are called as comments. These lines are skipped by the compiler.
 /*---------------------
 --------------------*/ Multi line comment.
 //----------- single line comment(C++ comment).
Preprocessor statements:
 The preprocessor is a program that process the source code before it passes through the compiler.
#include:
 It is preprocessor file inclusion directive and is used to include header files. It provides instructions to
the compiler to link the functions from the system library.
Syntax:
#include " file_name "
 (or)
#include < file_name >
 When the file name is included within the double quotation marks, the search for the file is made
first in the current directory and then the standard directories(TC). Otherwise when the file name is
included within angular braces, the file is search only in standard diretories(TC).
 stdio.h :- standard input and output header file.
 conio.h :- console input and output header file.
 console units: keyboard and monitor.
These 2 headers are commonly included in all C programs.

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 6of 38

If you want to work with Turbo c/c++ ,first install Turbo c/c++ software and then follow the
following steps.
Steps involved in C programming:

1) How to open a C editor(windows xp):

1. Start Menu � Run � type C:\TC\Bin\TC.exe then press Enter key
2. At the time of installation create Shortcut to C on Desktop, then it will create an icon(TC) on

desktop. Double click on that icon.
 How to open a C editor(windows 7):

1. At the time of installation it creates Shortcut to C (turboc++)on Desktop. Double click on that
icon.

 2. After entering into C editor, check the path as:
 goto Options menu -> Directories �
����windows xp

1. C :\TC\Include
2. C :\TC\Lib

3) Type C program , goto File menu � New
4) Save program , goto File menu � Save
5) Compile Program ,
 goto Compile menu � Compile
6) Run the Program , goto Run menu � Run
7) See the output ,
 goto window menu -> user screen
8) Exit from C editor , goto File menu � Quit

Shortcut Keys:
Open : F3
Save : F2
Close file : Alt + F3
Full Screen : F5
Compile : Alt + F9
Run : Ctrl + F9
Output : Alt + F5
Change to another file: : F6
Help : Ctrl + F1
Tracing : F7
Quit : Alt + X
CHARACTER SET
C characters are grouped into the following categories.
1. Letters
2. Digits
3. Special Characters
4. White Spaces
Note: The compiler ignores white spaces unless they are a part of a string constant

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 7of 38

White Spaces

 �Blank Space
 �Horizontal Tab
 �Carriage Return
 �New Line
 �Form Feed

C tokens
In C programs, the smallest individual units are known as tokens.

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 8of 38

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 9of 38

Keywords and Identifiers
Every C word is classified as either a keyword or an identifier. All keywords have fixed meanings and
these meanings cannot be changed.
Eg: auto, break, char, void etc.,
Identifiers refer to the names of variables, functions and arrays. They are user-defined names and consist
of a sequence of letters and digits, with a letter as a first character. Both uppercase and lowercase letters
are permitted. The underscore character is also permitted in identifiers.

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Constants
Constants in C refer to fixed values that do not change during the execution of a program.

Integer Constants
An integer constant refers to a sequence of digits, There are three types integers, namely, decimal, octal,
and hexa decimal.
Decimal Constant
Eg:123,-321 etc.,
Note: Embedded spaces, commas and non-digit characters are not permitted between digits.
Eg: 1) 15 750 2)$1000
Octal Constant
An octal integer constant consists of any combination of digits from the set 0 through 7, with a leading
0.
Eg: 1) 037 2) 0435
Hexadecimal Constant
A sequence of digits preceded by 0x or 0X is considered as hexadecimal integer. They may also include
alphabets A through F or a through f.
Eg: 1) 0X2 2) 0x9F 3) 0Xbcd
Real Constants

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 10of 38

Certain quantities that vary continuously, such as distances, heights etc., are
represented by numbers containing functional parts like 17.548.Such numbers are called real
(or floating point)constants.
Eg:0.0083,-0.75 etc.,
A real number may also be expressed in exponential or scientific notation.
Eg:215.65 may be written as 2.1565e2
Single Character Constants
A single character constants contains a single character enclosed within a pair of
single quote marks.
Eg: ’5’
‘X’
‘;’
String Constants
A string constant is a sequence of characters enclosed in double quotes. The
characters may be letters, numbers, special characters and blank space.
Eg:”Hello!”
“1987”
“?….!”
Backslash Character Constants
C supports special backslash character constants that are used in output functions.
These character combinations are known as escape sequences.

Variables
Definition:
A variable is a data name that may be used to store a data value. A variable may take
different values at different times of execution and may be chosen by the programmer in a
meaningful way. It may consist of letters, digits and underscore character.
Eg: 1) Average
2) Height
Rules for defining variables
��They must begin with a letter. Some systems permit underscore as the first character.
��ANSI standard recognizes a length of 31 characters. However, the length should not
 be normally more than eight characters.
��Uppercase and lowercase are significant.
��The variable name should not be a keyword.
��White space is not allowed.

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 11of 38

for e.g:
int a,b;
float x,y;
Here a and b are the variables which can hold integer data. x and y are variable to hold float data. we can
also assign value to the variable at the time of declaration for e.g:-
int a=26;
Here a is the name of variable and 26 is stored in this variable.

Assigning values to variables
The syntax is
Variable_name=constant
Eg:1) int a=20;
2) bal=75.84;
3) yes=’x’;
C permits multiple assignments in one line.
Example:
initial_value=0;final_value=100;
Declaring a variable as constant
Eg: 1) const int class_size=40;
This tells the compiler that the value of the int variable class_size must not be modified by the program.
Declaring a variable as volatile
By declaring a variable as volatile, its value may be changed at any time by some external source.
Eg:1) volatile int date;

PRIMARY DATA TYPES
The type of data which a variable can store is called its data type. C language supports following data
types:-

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 12of 38

Keyword Description Low High Bytes Format
string

Char Single character -128 127 1 %c
Int Integer -32768 32767 2 %d
Long int Long int -2147483648 2147483848 4 %ld
Float Floating 3.4 e-38 3.4 e 38 4 %f
Double Double floating 1.7 e -308 1.7 e 308 8 %lf
Long double Long double

floating
3.4 e -4932 1.1 e 4932 10 %Lf

Unsigned
char

Char with no sign 0 255 1 %c

Unsign int Int with no sign 0 65535 2 %u
Unsign long
int

Long int no sign 0 4294967295 4 %lu

Operators and expressions
C programming language provides several operators to perform different kind to operations. There are
operators for assignment, arithmetic functions, logical functions and many more. These operators
generally work on many types of variables or constants, though some are restricted to work on certain
types. Most operators are binary, meaning they take two operands. A few are unary and only take one
operand
An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. C language is rich in built-in operators and provides the following types of operators:

 Arithmetic Operators
 Relational Operators
 Logical Operators
 Bitwise Operators
 Assignment Operators
 Misc Operators

Arithmetic Operators
Following table shows all the arithmetic operators supported by C language. Assume variable A holds
10 and variable B holds 20 then:

Operator Description Example
+ Adds two operands A + B will give 30
- Subtracts second operand from the first A - B will give -10
* Multiplies both operands A * B will give 200
/ Divides numerator by de-numerator B / A will give 2

%
Modulus Operator and remainder of after an integer
division

B % A will give 0

++ Increments operator increases integer value by one A++ will give 11
-- Decrements operator decreases integer value by one A-- will give 9

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 13of 38

Relational Operators
Following table shows all the relational operators supported by C language. Assume variable A holds 10
and variable B holds 20, then:

Operator Description Example

==
Checks if the values of two operands are equal or not, if yes
then condition becomes true.

(A == B) is
not true.

!=
Checks if the values of two operands are equal or not, if values
are not equal then condition becomes true.

(A != B) is
true.

>
Checks if the value of left operand is greater than the value of
right operand, if yes then condition becomes true.

(A > B) is not
true.

<
Checks if the value of left operand is less than the value of right
operand, if yes then condition becomes true.

(A < B) is
true.

>=
Checks if the value of left operand is greater than or equal to
the value of right operand, if yes then condition becomes true.

(A >= B) is
not true.

<=
Checks if the value of left operand is less than or equal to the
value of right operand, if yes then condition becomes true.

(A <= B) is
true.

Logical Operators
Following table shows all the logical operators supported by C language. Assume variable A holds 1 and
variable B holds 0, then:

Operator Description Example

&&
Called Logical AND operator. If both the operands are non-
zero, then condition becomes true.

(A && B) is
false.

||
Called Logical OR Operator. If any of the two operands is
non-zero, then condition becomes true.

(A || B) is
true.

!
Called Logical NOT Operator. Use to reverses the logical
state of its operand. If a condition is true then Logical NOT
operator will make false.

!(A && B) is
true.

Bitwise Operators
Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |, and ^ are as
follows:

p q p & q p | q p ^ q
0 0 0 0 0
0 1 0 1 1
1 1 1 1 0
1 0 0 1 1

Assume if A = 60; and B = 13; now in binary format they will be as follows:
A = 0011 1100
B = 0000 1101

A&B = 0000 1100
A|B = 0011 1101

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 14of 38

A^B = 0011 0001
~A = 1100 0011
The Bitwise operators supported by C language are listed in the following table. Assume variable A
holds 60 and variable B holds 13, then:

Operator Description Example

&
Binary AND Operator copies a bit to the result if it
exists in both operands.

(A & B) will give 12,
which is 0000 1100

|
Binary OR Operator copies a bit if it exists in either
operand.

(A | B) will give 61,
which is 0011 1101

^
Binary XOR Operator copies the bit if it is set in
one operand but not both.

(A ^ B) will give 49,
which is 0011 0001

~
Binary Ones Complement Operator is unary and has
the effect of 'flipping' bits.

(~A) will give -61,
which is 1100 0011 in
2's complement form.

<<
Binary Left Shift Operator. The left operands value
is moved left by the number of bits specified by the
right operand.

A << 2 will give 240
which is 1111 0000

>>
Binary Right Shift Operator. The left operands value
is moved right by the number of bits specified by
the right operand.

A >> 2 will give 15
which is 0000 1111

Assignment Operators
There are following assignment operators supported by C language:

Operator Description Example

=
Simple assignment operator, Assigns values from right
side operands to left side operand

C = A + B will assign
value of A + B into C

+=
Add AND assignment operator, It adds right operand to
the left operand and assign the result to left operand

C += A is equivalent
to C = C + A

-=
Subtract AND assignment operator, It subtracts right
operand from the left operand and assign the result to left
operand

C -= A is equivalent
to C = C - A

*=
Multiply AND assignment operator, It multiplies right
operand with the left operand and assign the result to left
operand

C *= A is equivalent
to C = C * A

/=
Divide AND assignment operator, It divides left operand
with the right operand and assign the result to left operand

C /= A is equivalent
to C = C / A

%=
Modulus AND assignment operator, It takes modulus
using two operands and assign the result to left operand

C %= A is equivalent
to C = C % A

<<= Left shift AND assignment operator
C <<= 2 is same as C
= C << 2

>>= Right shift AND assignment operator
C >>= 2 is same as C
= C >> 2

&= Bitwise AND assignment operator
C &= 2 is same as C
= C & 2

^= bitwise exclusive OR and assignment operator C ^= 2 is same as C =

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 15of 38

C ^ 2

|= bitwise inclusive OR and assignment operator
C |= 2 is same as C =
C | 2

Misc Operators : sizeof & ternary
There are few other important operators including sizeof and ? : supported by C Language.

Operator Description Example

sizeof() Returns the size of an variable.
sizeof(a), where a is integer, will
return 4.

& Returns the address of an variable.
&a; will give actual address of the
variable.

* Pointer to a variable. *a; will pointer to a variable.

? : Conditional Expression
If Condition is true ? Then value X :
Otherwise value Y

Operators Precedence in C
Operator precedence determines the grouping of terms in an expression. This affects how an expression
is evaluated. Certain operators have higher precedence than others; for example, the multiplication
operator has higher precedence than the addition operator.
For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher precedence than
+, so it first gets multiplied with 3*2 and then adds into 7.
Here, operators with the highest precedence appear at the top of the table, those with the lowest appear
at the bottom. Within an expression, higher precedence operators will be evaluated first.

Operator Description Associativity

()
[]
.

->
++ --

Parentheses (function call) (see Note 1)
Brackets (array subscript)
Member selection via object name
Member selection via pointer
Postfix increment/decrement (see Note 2)

left-to-right

++ --
+ -
! ~

(type)
*
&

sizeof

Prefix increment/decrement
Unary plus/minus
Logical negation/bitwise complement
Cast (convert value to temporary value of type)
Dereference
Address (of operand)
Determine size in bytes on this implementation

right-to-left

* / % Multiplication/division/modulus left-to-right
+ - Addition/subtraction left-to-right

<< >> Bitwise shift left, Bitwise shift right left-to-right
< <=
> >=

Relational less than/less than or equal to
Relational greater than/greater than or equal to

left-to-right

== != Relational is equal to/is not equal to left-to-right

& Bitwise AND left-to-right
^ Bitwise exclusive OR left-to-right
| Bitwise inclusive OR left-to-right

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 16of 38

&& Logical AND left-to-right
| | Logical OR left-to-right
? : Ternary conditional right-to-left
=

+= -=
*= /=

%= &=
^= |=

<<= >>=

Assignment
Addition/subtraction assignment
Multiplication/division assignment
Modulus/bitwise AND assignment
Bitwise exclusive/inclusive OR assignment
Bitwise shift left/right assignment

right-to-left

, Comma (separate expressions) left-to-right
Note 1:

Parentheses are also used to group sub-expressions to force a different precedence;
such parenthetical expressions can be nested and are evaluated from inner to outer.

Note 2:
Postfix increment/decrement have high precedence, but the actual increment or
decrement of the operand is delayed (to be accomplished sometime before the
statement completes execution). So in the statement y = x * z++; the current value
of z is used to evaluate the expression (i.e., z++ evaluates to z) and z only incremented
after all else is done.

I/O Functions In C
There are numerous library functions available for I/O. These can be classified into two broad
categories:
(a)Console I/O functions-Functions to receive input from keyboard and write output to VDU.
(b) File I/O functions- Functions to perform I/O operations on a floppy disk or hard disk.
Console I/O Functions
The screen and keyboard together are called a console. Console I/O functions can be further classified
into two categories—formatted and unformatted console I/O functions. The basic difference between
them is that the formatted functions allow the input read from the keyboard or the output displayed on
the VDU to be formatted as per our requirements. For example, if values of average marks and
percentage marks are to be displayed on the screen, then the details like where this output would appear
on the screen, how many spaces would be present between the two values, the number of places after the
decimal points, etc. can be controlled using formatted functions. The functions available under each of
these two categories are shown in Figure below:

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 17of 38

Formatted Console I/O Functions
The functions printf(), and scanf() fall under the category of formatted console I/O functions. These
functions allow us to supply the input in a fixed format and let us obtain the output in the specified form.
printf():

Its general form looks like this...

printf ("format string", list of variables) ;
The format string can contain:

 Characters that are simply printed as they are
 Conversion specifications that begin with a % sign
 Escape sequences that begin with a \ sign

For example, look at the following program:
main()
{
int avg = 346 ;
float per = 69.2 ;
printf ("Average = %d\nPercentage = %f", avg, per) ;
}
The output of the program would be...
Average = 346
Percentage = 69.200000
How does printf() function interpret the contents of the format string. For this it examines the format
string from left to right. So long as it doesn’t come across either a % or a \ it continues to dump the
characters that it encounters, on to the screen. In this example Average = is dumped on the screen. The
moment it comes across a conversion specification in the format string it picks up the first variable in the
list of variables and prints its value in the specified format. In this example, the moment %d is met the
variable avg is picked up and its value is printed. Similarly, when an escape sequence is met it takes the
appropriate action. In this example, the moment \n is met it places the cursor at the beginning of the next
line. This process continues till the end of format string is not reached.
Format Specifications
The %d and %f used in the printf() are called format specifiers. They tell printf() to print the value of
avg as a decimal integer and the value of per as a float. Following is the list of format specifiers that can
be used with the printf() function.

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 18of 38

We can provide following optional specifiers in the format specifications.

The field-width specifier tells printf() how many columns on screen should be used while printing a
value. For example, %10d says, “print the variable as a decimal integer in a field of 10 columns”. If the
value to be printed happens not to fill up the entire field, the value is right justified and is padded with
blanks on the left. If we include the minus sign in format specifier (as in %-10d), this means left
justification is desired and the value will be padded with blanks on the right. Here is an example that
should make this point clear.
main()
{
int weight = 63 ;
printf ("\nweight is %d kg", weight) ;
printf ("\nweight is %2d kg", weight) ;
printf ("\nweight is %4d kg", weight) ;
printf ("\nweight is %6d kg", weight) ;
printf ("\nweight is %-6d kg", weight) ;

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 19of 38

}
The output of the program would look like this ...
Columns 0123456789012345678901234567890
weight is 63 kg
weight is 63 kg
weight is 63 kg
weight is 63 kg
weight is 63 kg
Specifying the field width can be useful in creating tables of numeric values, as the following program
demonstrates.
main()
{
printf ("\n%f %f %f", 5.0, 13.5, 133.9) ;
printf ("\n%f %f %f", 305.0, 1200.9, 3005.3) ;
}
And here is the output...
5.000000 13.500000 133.900000
305.000000 1200.900000 3005.300000
Even though the numbers have been printed, the numbers have not been lined up properly and hence are
hard to read. A better way would be something like this...
main()
{
printf ("\n%10.1f %10.1f %10.1f", 5.0, 13.5, 133.9) ;
printf ("\n%10.1f %10.1f %10.1f", 305.0, 1200.9, 3005.3);
}
This results into a much better output...
01234567890123456789012345678901
5.0 13.5 133.9
305.0 1200.9 3005.3
The format specifiers could be used even while displaying a string of characters. The following program
would clarify this point:
/* Formatting strings with printf() */
main()
{
char firstname1[] = "Sandy" ;
char surname1[] = "Malya" ;
char firstname2[] = "AjayKumar" ;
char surname2[] = "Gurubaxani" ;
printf ("\n%20s%20s", firstname1, surname1) ;
printf ("\n%20s%20s", firstname2, surname2) ;
}
And here’s the output...
012345678901234567890123456789012345678901234567890
Sandy Malya
AjayKumar Gurubaxani

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 20of 38

The format specifier %20s reserves 20 columns for printing a string and then prints the string in these
20 columns with right justification. This helps lining up names of different lengths properly. Obviously,
the format %-20s would have left justified the string.

Escape Sequences
We saw earlier how the newline character, \n, when inserted in a printf()’s format string, takes the
cursor to the beginning of the next line. The newline character is an ‘escape sequence’, so called because
the backslash symbol (\) is considered as an ‘escape’ character—it causes an escape from the normal
interpretation of a string, so that the next character is recognized as one having a special meaning.
The following example shows usage of \n and a new escape sequence \t, called ‘tab’. A \t moves the
cursor to the next tab stop. A 80-column screen usually has 10 tab stops. In other words, the screen is
divided into 10 zones of 8 columns each. Printing a tab takes the cursor to the beginning of next printing
zone. For example, if cursor is positioned in column 5, then printing a tab takes it to column 8.
main()
{
printf ("You\tmust\tbe\tcrazy\nto\thate\tthis\tbook") ;
}
And here’s the output...
1 2 3 4
01234567890123456789012345678901234567890
You must be crazy
to hate this book
The \n character causes a new line to begin following ‘crazy’. The tab and newline are probably the
most commonly used escape sequences, but there are others as well. Figure shows a complete list of
these escape sequences.

The first few of these escape sequences are more or less self- explanatory. \b moves the cursor one
position to the left of its current position. \r takes the cursor to the beginning of the line in which it is
currently placed. \a alerts the user by sounding the speaker inside the computer. Form feed advances the
computer stationery attached to the printer to the top of the next page. Characters that are ordinarily used
as delimiters... the single quote, double quote, and the backslash can be printed by preceding them with
the backslash. Thus, the statement,
printf ("He said, \"Let's do it!\"") ;
will print...
He said, "Let's do it!"

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 21of 38

scanf() function:
scanf() allows us to enter data from keyboard that will be formatted in a certain way.
The general form of scanf() statement is as follows:
scanf ("format string", list of addresses of variables) ;

For example:
scanf ("%d %f %c", &c, &a, &ch) ;

Note that we are sending addresses of variables (addresses are obtained by using ‘&’ the ‘address of’
operator) to scanf() function. This is necessary because the values received from keyboard must be
dropped into variables corresponding to these addresses. The values that are supplied through the
keyboard must be separated by either blank(s), tab(s), or newline(s). Do not include these escape
sequences in the format string.
All the format specifications that we learnt in printf() function are applicable to scanf() function as
well.

sprintf() and sscanf() Functions
The sprintf() function works similar to the printf() function except for one small difference. Instead of
sending the output to the screen as printf() does, this function writes the output to an array of
characters. The following program illustrates this.
main()
{
int i = 10 ;
char ch = 'A' ;
float a = 3.14 ;
char str[20] ;
printf ("\n%d %c %f", i, ch, a) ;
sprintf (str, "%d %c %f", i, ch, a) ;
printf ("\n%s", str) ;
}
In this program the printf() prints out the values of i, ch and a on the screen, whereas sprintf() stores
these values in the character array str. Since the string str is present in memory what is written into str
using sprintf() doesn’t get displayed on the screen. Once str has been built, its contents can be
displayed on the screen. In our program this was achieved by the second printf() statement.
The counterpart of sprintf() is the sscanf() function. It allows us to read characters from a string and to
convert and store them in C variables according to specified formats. The sscanf() function comes in
handy for in-memory conversion of characters to values. You may find it convenient to read in strings
from a file and then extract values from a string by using sscanf(). The usage of sscanf() is same as
scanf(), except that the first argument is the string from which reading is to take place.

Unformatted Console I/O Functions
getchar(), getch() and getche() Functions:

getch() and getche() are two functions which return the character that has been most recently typed.
The ‘e’ in getche() function means it echoes (displays) the character that you typed to the screen. As

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 22of 38

against this getch() just returns the character that you typed without echoing it on the screen. getchar()
works similarly and echo’s the character that you typed on the screen, but unfortunately requires Enter
key to be typed following the character that you typed. The difference between getchar() and fgetchar(
) is that the former is a macro whereas the latter is a function. Here is a sample program that illustrates
the use of these functions.
main()
{
char ch ;
printf ("\nPress any key to continue") ;
getch() ; /* will not echo the character */
printf ("\nType any character") ;
ch = getche() ; /* will echo the character typed */
printf ("\nType any character") ;
getchar() ; /* will echo character, must be followed by enter key */
printf ("\nContinue Y/N") ;
fgetchar() ; /* will echo character, must be followed by enter key */
}
And here is a sample run of this program...
Press any key to continue
Type any character B
Type any character W
Continue Y/N Y
a character on the screen. As far as the working of putch() putchar() and fputchar() is concerned it’s
exactly same. The following program illustrates this.
main()
{
char ch = 'A' ;
putch (ch) ;
putchar (ch) ;
fputchar (ch) ;
putch ('Z') ;
putchar ('Z') ;
fputchar ('Z') ;
}
And here is the output...
AAAZZZ
The limitation of putch(), putchar() and fputchar() is that they can output only one character at a time.

gets() and puts() functions:
gets() receives a string from the keyboard. Why is it needed? Because scanf() function has some
limitations while receiving string of characters, as the following example illustrates...
main()
{
char name[50] ;
printf ("\nEnter name ") ;

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 23of 38

scanf ("%s", name) ;
printf ("%s", name) ;
}
And here is the output...
Enter name Jonty Rhodes
Jonty
Surprised? Where did “Rhodes” go? It never got stored in the array name[], because the moment the
blank was typed after “Jonty” scanf() assumed that the name being entered has ended. The result is that
there is no way (at least not without a lot of trouble on the programmer’s part) to enter a multi-word
string into a single variable (name in this case) using scanf(). The solution to this problem is to use gets(
) function. As said earlier, it gets a string from the keyboard. It is terminated when an Enter key is hit.
Thus, spaces and tabs are perfectly acceptable as part of the input string. More exactly, gets() gets a
newline (\n) terminated string of characters from the keyboard and replaces the \n with a \0.
The puts() function works exactly opposite to gets() function. It outputs a string to the screen.
Here is a program which illustrates the usage of these functions:
main()
{
char footballer[40] ;
puts ("Enter name") ;
gets (footballer) ; /* sends base address of array */
puts ("Happy footballing!") ;
puts (footballer) ;
}
Following is the sample output:
Enter name
Jonty Rhodes
Happy footballing!
Jonty Rhodes
Why did we use two puts() functions to print “Happy footballing!” and “Jonty Rhodes”? Because,
unlike printf(), puts() can output only one string at a time. If we attempt to print two strings using puts(
), only the first one gets printed. Similarly, unlike scanf(), gets() can be used to read only one string at a
time.

CONTROL STATEMENTS
Normally the statements of a program will executed sequentially, one by one from the main() function.
Using the control statements can alter the sequence of execution. These statements also can be used to
take some decisions, repeating the process number of times etc.
 Any one of the following control statements will decide the order of execution.

1. Unconditional control statement
2. Conditional control statement

1. Unconditional Control Statement:
The sequence of execution can be transferred unconditionally to other part of the program using the
unconditional control statements. The goto statement, is the unconditional control statement used for

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 24of 38

this purpose using which control can be transferred to anywhere within the program without checking
any condition. The format of this statement is as follows

Where label is the location where the control has to be transferred. Name of the label is just like
any identifier and is followed by a colon (:). Example for the label declaration in the main() function,
is start.

main()
{
 /* Statements; */
 start:
 /* Statements after label to be executed; */
}

Example for the goto statement and label is
 goto start;
Here the control is transferred to the specified label start and execution is continued after the label.
The control can be transferred above or below goto statement. If the control is transferred above, it is
called backward jump.If the control is transferred below the goto statement, it is called forward
jump. The example is given below.

/* Example for goto (Backward and Forward) */
main()
{ int n,s=0;
 read1: /* Label to read repeated values */
 printf("\nEnter the number (0 to Exit) ");
 scanf("%d",&n);
 if (n==0)
 goto end; /* Transferred to end */
 else
 { s=s+n;
 goto read1; /* Transferred to read1 */
 }
end:
 printf("\nSum : %d ",s);
 getch();
}

 Output:
Enter the number (0 to Exit) 5
Enter the number (0 to Exit) 7
Enter the number (0 to Exit) 0
Sum : 12

2. Conditional Control statements:

 goto label;

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 25of 38

The goto, unconditional control statement is used to transfer the control without checking any condition.
This is not always preferable one. The conditional control statements are used to check some condition
and then transfer the control based on the condition result. There are few control statements available
and they are

1. Simple if
2. If – else
3. Nested if
4. Switch

1. Simple if - for Small Comparison
This control statement is used to check a condition and based on the result the order of execution will be
changed. The generals format and flow-chart for a simple if statement is as follows.
if (expr) // A Place to check the condition
 {
 statement-1;
 }
statement-n;

Flowchart is
 Execution Enters

 True

 False

Here expr is an expression and the result of the expression may be TRUE / FALSE.
If the result of expression is TRUE, then the statement-1 part will be executed. Otherwise the control
jumps to the statement-n part and continues the execution.The statement-1 can be a simple statement
or a compound statement. The compound statement must be enclosed with in braces { }.
/* Example for simple if statement */

main()
 {
 int a;
 printf(“\nEnter a number”);
 scanf(“%d”,&a);
 if (a>0)
 printf(“\nThe number is positive”);
 }
 Output:
 Enter a number 5
 The number is positive

Enter a number -5
2 if - else

expr statement-1

statement –

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 26of 38

By using the simple if statement we can execute only one set of statement(s) depending upon the
condition TRUE/FALSE. What we should do? If there are two possible results (TRUE/FALSE). We
have a solution with another type of control statement if-else. The general format of if-else is illustrated
with flowchart is as follows.

if (expr)
 stmt –1; // TRUE Part

else
 stmt-2; // FALSE Part

stmt-n;
Flow chart
 Starts Execution

 True False

First the expression expr will be executed and if the result is TRUE, then the stmt-1 part will be
executed, otherwise stmt-2 will be executed. There is no chance to execute both statements (stmt-1
and stmt-2) simultaneously. After the execution of any stmt-1 (or) stmt-2 process continues from the
stmt-n. The statements may be simple or compound statements.
 /* Example for if - else statement is here. */

main()
{ int n;
 printf(“\nEnter a number to check”);
 scanf(“%d”, &n);

 if (n%2 = = 0)

 printf(“\n%d is an even number”,n);
 else
 printf(“\n%d is an odd number”,n);
}

 Output:
 Enter a number to check 5

5 is an odd number
The value of a and b are compared using the relational operator >. When result of a>b is TRUE, value
of a will be assigned to the variable big, otherwise the value of b will be assigned to big. Finally the
value of variable big will be printed which holds the biggest of two numbers.
Another example to find biggest of three numbers.

3. Nested if statement - To check more conditions

 expr

 stmt - 1 stmt-2

stmt-

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 27of 38

Using the previous type of if statements we can check the conditions at only one place. Alternatively we
can check more conditions using the logical operators. Suppose there is a situation to check number of
conditions, in different part of if statement, we can use the nested if statement. That is, the if statement
contains another if statement as its body of the statement.
 Format –1 Format – 2

The execution form of format-1:
 *) First the expr1 is evaluated in both the format
 *) If the result is TRUE, then the expr2 will be evaluated. If expr2
 also returns TRUE, the statement-1 will be executed.
 *) If the result of expr-2 is FALSE the statement-2 will be executed.

The execution form of format-1:
 *) As in format-1, expr1 is evaluated first
 *) if the expr1 and expr2 are TRUE then statement-1 will be executed.
 *) if the expr1 is TRUE and expr2 is FALSE the statement-2 will be
 executed.
 *) if the expr1 is FALSE the statement-3 will be evaluated.

Note: Every else is closest to it’s if statement.

Thus of statement can be used inside the body of another if statement (nesting of ifs). The
following program is an example for nested if, to find the biggest among three numbers.

/* Example for nested if statement */
main ()
{ int a,b,c;
 int big;
 printf("\nEnter three numbers : ");
 scanf("%d%d%d",&a,&b,&c);
 if (a>b)
 if (a>c)
 big=a;
 else
 big=c;
 else
 if (b>c)
 big=b;

if (expr1)

 if (expr2)

 statement-1;

 else

 statement-2;

if (expr1)

 if (expr2)

 statement-1;

 else

 statement-2;

else

 statement-3;

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 28of 38

 else
 big=c;

 printf("\nBigget no. is : %d ",big);
 getch();
}

4 Switch – Case Statement:
 Whenever the situation occurs like to check more possible conditions for single variable,
there will be a no. of statements are necessary. the switch-case statement is used to check multiple
conditions at a time, which reduces the no. of repetition statements. The general format of switch-case is
as follows.

Way of Execution:
 *) First the expr will be evaluated and it must return a constant
 value. The constant can be numeric or character.

 *) The result of expr is checked against the constant values like c-1,
 c-2, etc., and if any value is matching, the execution starts from
 that corresponding statement. The execution will continue until the
 end of switch statement.
 To avoid this continuous execution problem we can use the break statement. The break is used to
terminate the process of block like switch, looping statements.
Here the default is an optional statement in switch. If no matching has occurred, the default part of
statement will be executed and may occur any where in the switch statement.
 /* Example for switch statement without break */
 main()
 {
 int a;
 printf(“\nEnter any value for a : “);
 scanf(“%d”,&a);
 switch(a)
 {
 case 1 : printf(“\nGood”);
 case 2 : printf(“\nWell”);
 case 3 : printf(“\nExcellent”);

switch (expr)
{
 case c-1: statement-1;

 case c-2: statement-2;

 case c-4: statement-4;

 [default : statement-n;]
}

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 29of 38

 default : printf(“\nBad Guy”);
 }
 }
 Output:
 Enter any value for a : 2
 Well
 Excellent
 Bad Guy

Enter any value for a : 5
 Bad Guy

 /* Example for the importance of break statement */

main()
 {
 int a;
 printf(“\nEnter any value for a : “);
 scanf(“%d”,&a);

 switch(a)
 {
 case 1 : printf(“\nGood”); break;
 case 2 : printf(“\nWell”); break
 case 3 : printf(“\nExcellent”); break
 default : printf(“\nBad Guy”);
 }
 }

 Output:
 Enter any value for a : 1
 Good

Enter any value for a : 5
 Bad Guy

 Upon using the break statement the statement corresponding to the matching case is only
executed. The last statement or default statement is not in need of break, because there is no more
statements for further execution in the switch.

Looping Statements:
The simple statements that we have discussed so far are used to execute the statements only once.
Suppose a programmer needs to execute the specified statements multiple times. Here comes the looping
statement, which overcomes the no. of times. For example, to print the string “Good” five times, we
have to use five individual printf() statements. But, imagine if the no. of time increases to print 1000
times or N times. By using the looping statements a statement or set of statements can be executed
repeatedly.

main()

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 30of 38

{
 for(i=1;i<=100;i++)
 printf(“\nGood morning”);
}

Just think about the no . of statements in the above programs, with and without looping statement. So,
we can use the looping statement to reduce the size of the program.

The different types of looping statements are
1. While statement
2. Do-While statement
3. for statement

1 while statement:
While is an entry controlled looping statement used to execute it’s body of the statement any no. of
times. The general format of while statement and its flowchart is as follows .

 False
 True

Way of execution:
 First the expr is evaluated, which will yield TRUE or FALSE result.
 If the condition is TRUE, the control enters inside the statements of while and after completion of

these statements once again the condition will checked with new value for the next execution.
 Entry of the loop will be determined by the condition, so it is also called entry controlled looping

statement.
 So the Body of while is executed until the condition becomes FALSE.
 If the condition is FALSE, execution jumps to the next-statement after the while statement and

continues the execution.
The following example prints the numbers from 1 to n using while loop.

/* Example for while loop */
main()
{

int i=1,n;
printf("\nHow many numbers");

scanf("%d",&n);
printf("\nThe numbers are ");
while(i<=n)
{

 while (expr)
 {

 //Statmts of while;

 }

 next-statement;

expr

Statements of While

Next - Statements

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 31of 38

 printf("%5d",i);
 i++;
}

}
 /* Reverse the given Integer number */

main()
{

int n;
printf("\nEnter a number :");
scanf("%d",&n);
printf("\nReverse of number :");
while(n != 0)
 {
 printf("%d",n%10);
 n=n/10;
 }

}

2 Do-While statement
It is also a looping statement to execute the specified statements repeatedly (or) any number of times. In
the while loop, condition is checked first, and execute it’s statement only when the result is TRUE.
What is the difference between while & do-while?
while is a entry controlled looping statement and the statement of while will be executed only when the
condition is TRUE. But in do-while, statement part will be executed first then only the condition will be
checked. So the condition may be TRUE / FALSE, but the statement part will execute at least once.
 The general format and it’s flowchart is given below.

Entry

 True

 False

Here, the Body of loop will be executed first and the expression expr will be checked after the execution
of the statement parts. If the result of expr is TRUE the control starts its execution once again from
Body of loop. This process will continuous until the result of expr is FALSE.
The following program is like a menu selection program.

do
{
 Body of loop;
}
while(expr);

next-statement;

expr

Statements of

Next -

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 32of 38

/* Example for do-while looping statement */
main()
{int ch;

do
{

printf("\n1. Add\n2. Sub");
 printf("\nSelect a choice");
 scanf("%d",&ch);
 }
 while(ch<3);

 }
 Output :

 1. Add
 2. Sub
 Select a choice 1
 1. Add
 2. Sub
 Select a choice 3

The following is another example for Decimal to Binary conversion.
/* Converting Decimal no. To binary */
main()
{

int a,n,s=0,i=1;
 printf("\nDecimal No . :");
 scanf("%d",&n);

printf("\nBinary No . :");
while(n)

 {
 printf("%d",n%2);

 n=n/2;
}

}
Output:
 Decimal No . :5
 Binary No . :101

3 For statement – Flexible looping statement
It is also a looping statement to execute the specified statements repeatedly in a simplified format than
the previous loops.

In general all the looping statements have the following three steps (Parts) in a loop
1. Initialize the loop control variable
2.Check the condition whether TRUE / FALSE
3. Modify the value of the loop control variable for next execution
In the previous type of looping statements, these statements are kept separately. But in for

statement all the three parts are kept in one place.

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 33of 38

The general format and flowchart is given below.

Where
 *) expr1 is used to initialize the value for loop control variable
 *) expr2 is used to check condition
 *) expr3 is used to modify the value
 The expr1, step 1 is the statement executed first and only once in the looping statement. The
steps 2,3 and 4 will be executed continuously until the condition becomes false, at 2nd place. 2,3,4 is the
sequence of execution in the for loop.
Way of execution:

*) First the value of loop control variable is initialized by expr1.
 *) Next the condition is checked by expr2 and if it is TRUE

then the body of loop will be executed otherwise the control
passes to the next-statement of the program.

 *) For every Body of loop execution, expr3 will be executed to
modify the variable’s value.

 *) The above process continue until the expr2 will becomes FALSE.
Examples:

1. for(i=1;i<=100;i++) /* Increasing */
 { body of loop }

 i value is initialized to 1 and for every execution i value is incremented by 1 . So body of loop will
execute 100 times.
 2. for(i=100;i>0;i=i-2) /* Decreasing */
 { body of loop }
 First value of i is initialized to 100 and for every execution i value is decremented by 2. So body
will execute 50 times.

The following program is used to calculate Factorial value for a given number N.
General formula : n! = 1 * 2 * 3 * 4* …….*n

To do so, any of the looping statements can be used. The initial value of the loop is 1, next
increment is 1 and the summation.

/* To find the factorial of a number */
main()
{
 int n, i, f=1;

1 2 4

for(expr1;expr2;expr3)

{
 //stmts. of the for loop; 3
}

next-statement;

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 34of 38

 printf("\nEnter a number");
 scanf("%d",&n);
 for(i=1;i<=n;i++)

f = f * i;
printf("\nFactorial of %d = %d ",n,f);

 }
One more example, following is a program generates a fibonacci series. The series like as

0 1 1 2 3 5 8 13 . . .
Generally the number is obtained by summing up of previous two numbers. So, first initialize 0 ,

1 to a , b respectively and find the number as c = a + b.
Next reassign the values of a and b, like b a, cb and proceed the same way for N number of

times.
 /* Fibonacci Sequence generation */

main()
 {

int a=0,b=1,c,n,i;

printf("\nHow many numbers :");
scanf("%d",&n);

printf("\nFibonacci Sequence \n");

for(i=1;i<=n;i++)
 {

 c=a+b;
 printf("%d\t",c);

 a=b; b=c;
 }

 }

Additional information about the for loop:

The for loop has three parts inside a set of parenthesis and each is separated by the semicolon
(;).

The expr1 may be placed before the for loop as
 i=10;
 for(;i<100;i++)
 { }
We can have more than one statement in the place of expr1, which are separated by commas

(,). For example
 for(a=4,i=0;i<10;i++)
 { }

The expr3 may also be placed in the body of the loop as .
 for(i=10;i<100;)
 { i++; }

If any expression in the for is missing, the semicolon must be placed.

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 35of 38

 for(i=0;i<100;)
 { i++; } /* expr3 is empty in for loop /*

The following loop is used execute the statements indefinitely, because there is initialization,
condition and modification.

 for(; ;)
 { }
More than one condition statement can be used in the expr2 place of for loop as

 for(i=1;i<10&&j<20;i++)
 { }
Nested for loop:
 Just like a nested if, nested for loop is also possible. In the nested for loop, the statement part of
the loop contains another for statement.

Where O is an outer loop
 I is an inner loop
Way of execution:
 For every value of outer loop, the inner loop will execute no. of times. In the nested loop, the
body of loop will be executed until both the expressions expr2 and expr5 becomes FALSE.

For example
 for(i=1;i<=10;i++)
 for(j=1;j<=5;j++)
 printf(“\nIndia”);
Here for every value of i the j loop execute the statement part 5 times. So totally the string

India will be printed 50 times (10 * 5 = 50).
The following example shows a clear output for you about the nested loop.
/* Example for nested for loop */
main()
{

int i,j;
for(i=1;i<=10;i++)

 for(j=1;j<=5;j++)
 printf("\ni = %d j = %d ",i,j);
}

 Output:
i = 1 j = 1
i = 1 j = 2
.
i = 2 j = 1

 for(expr1;expr2;expr3) O

 for(expr4;expr5;expr6) I

 {

// body of loop

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 36of 38

.

.
i = 10 j = 5

 Here for every value of i the j loop executes 5 times.

Break Statement - To stop the process
The looping statement is used to execute a statement repeatedly for specific no. of times, but the user
cannot exit from the looping in middle. The break statement providing a facility to exit from the loop
whenever we in need.
The break is mostly used in loops like for, while, do-while and switch statements. When it is used in the
program it terminates the execution of the block or jumps from the current block to the next.The following
program sums the positive numbers only and when user gives negative number the program break the
process.

/* Example for break statement */
main()
{

 int n,s=0;
 printf("\nEnter numbers one by one –ve to stop\n");
 do
 {
 scanf("%d",&n);

 if (n>0)

 s=s +n;
 else

 break;
 }while(1);

 printf("\nSum = %d ",s);
 }

Output:
 Enter numbers one by one and –ve to stop
 3
 5
 1
 -4
 Sum = 9

The break statement is used to terminate the execution process from the block where it is specified.

/* Example for break statement */
#include <math.h>
main()
{

 int i,j;
 for(i=1;i<=5;i++)
 for(j=1;j<=5;j++)

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 37of 38

 if (j%2= =0)
 break;
 else
 printf("\ni= %d - j=%d",i,j);
 }
Output :

i= 1 - j=1
i= 2 - j=1
i= 3 - j=1
i= 4 - j=1
i= 5 - j=1

Here, when value of j is 2, the expression j %2 is 0. So the control will exit from the inner loop (ie j
loop) and not from both. So, there is no chance to execute the j loop with more than value 2.

Continue Statement
The continue statement is used to continue the process of execution by skipping some of the statements
placed after the statement itself. It is usually used in the looping statements.
Generally a loop will execute all the statements in it. But, instead of doing so, we may skip some of the
statements according to the condition and we can continue from the beginning of the loop with next
iteration value.
For example, a mark list preparation program may be used to read details of N students. We can use the
looping statement to read the details about n students. If few students of the class had left (for example,
rollno's 10,15 and 30), how can we get details except numbers 10,15 and 30? The solution is using the
continue statement as follows:
 for(i = 1; i < 60; i++) // Assume 60 Students
 if ((rollno = =10)||(rollno = =15)||(rollno= =30))
 continue; // Continue with next student

else
 {

 // Read the details of students other than left
 }

Another example is printing all the numbers from 1 to n except the number indivisible by 3. For this
program when (i%3 == 0) the number must not be printed and the execution must continue with the
next I value.

/* Example for continue statement */
main()

 {
int n,i;
printf("\nHow many no.");
scanf("%d",&n);
for(i=1;i<=n;i++)
 if (i%3= =0)

 continue;
 else
 printf("%d\t",i);

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: I (Introduction to C Programming) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 38of 38

 }
 Output:
 How many no. 10
 1 2 4 5 7 8 10

 Here for every value of i the condition is checked. If the value of i is divisible by 3, the print
statement is skipped and the execution continues with next number.

Possible Questions
Part-B (2 marks)

1. What is an identifier?
2. Say which of the following are valid C identifiers:

1. Ralph23
2. 80shillings
3. mission_control
4. A%
5. A$
6. _off

3. Write a statement to declare two integers called i and j.
4. What is the difference between the types float and double.
5. What is the difference between the types int and unsigned int?
6. Write a statement which assigns the value 67 to the integer variable "I".
7. What type does a C function return by default?
8. If we want to declare a function to return long float, it must be done in, at least, two places.

Where are these?
9. What is the difference between getchar(), fgetchar(), getch() and getche()?
10. List the role of a field-width specifier in a printf() function.
11. If a character string is to be received through the keyboard which function would work faster?

Why?

Part-C (6 marks)
1. Give the steps to compile and execute a C program.
2. With syntax and example explain all the different forms of if statement.
3. Explain in detail about various types of operators. Provide examples for each.

4. What is while loop? Give syntax. Explain it with an example program.

5. With syntax and example explain the character Input/Output methods with example.

6. What are the functions used in Formatted I/O? Explain in detail with examples.

7. What is the use of switch statement? Give its syntax and explain with an example.

8. Write a program to calculate factorial of a given number.

9. Write a program print the fibonacci series.

QUESTIONS OPTION1 OPTION2 OPTION3 OPTION4 ANSWER

. _____ refers to finding value that

do not change during execution of

program.

 keyword identifier constant token constant

 _____ constant contains single

character enclosed within pair of

single quote marks.

 string variables character numeric character

 ______ is data name that may be

used to store a data value.

string

constant
 variables character numeric variables

 Characters are usually stored in

______ bits.
8 16 24 32 8

Floating point numbers are stored in

_____ bits.
8 16 24 32 32

 ______ imparts fixed meaning to

the compiler and these meanings

cannot be changed.

 variables constant keywords functions keywords

 ______ operator is used for

manipulating data at bit level.
 logical bitwise

arithemet

ic

sizeof bitwise

 ______ header file should be

included for calling math function in

source program

 conio.h stdio.h math.h stdlib.h math.h

 Reading a single character can be

done by using _____ function.
 getchar putchar gets putch getchar

 An arithmetic expression will be

evaluated from _______ using rules

of precedence of operation.

 left to

right
 right to left

 top to

bottom

 bottom to

top
 left to right

Execution of C Program begins from

______ function.

 user

defined
 main

 header

file
statements. main

 Every C program must have exactly

_____ main function
 one two three none one

 _____ function is predefined and is

for printing output
 scanf printf getch putch printf

KARPAGAM ACADEMY OF HIGHER EDUCATION

PART - A (ONLINE EXAMINATION)

MULTIPLE CHOICE QUESTIONS (Each question carries one mark)

SUBJECT: PROGRAMMING FUNDAMENTALS USING C/C++

 The lines beginning with /* and

ending with */ are known as

__________ lines.

document
 comment

definition
 declaration comment

______ header file should be

included for calling mathematical

function in source program

conio.h stdio.h math.h stdlib.h math.h

________ function writes character

one at a time to terminal
getchar putchar getch puts putchar

C Language supports _____ logical

operators
2 3 4 5 3

______ lines are not executable

statements and are ignored by the

complier

function comment main none comment

Every statement in C should end

with ______ mark
: ; dot none ;

_____ is new line character \b \n \d \l \n

_____ cannot be used as variable

name
constant keywords operators

function

name
keywords

Binary operators takes ___________

no.of operands
1 2 3 4 2

______ imparts fixed meaning to

the compiler and these meanings

cannot be changed

variables constant keywords functions keywords

In variable declaration, first _______

characters are treated as significant

by compilers

8 10 31 32 8

The C programs are written only in

lower

case
upper case title case

 sentence

case
lower case

The variables are initilaised using

______ operator
> = ?= + =

Which is the incorrect variable

name?
else name age char4 else

Which is the unary logical operator? && || ! all the above !

The input function scanf can use

_____ format specification to read in

string of characters

%c %s %d %l %s

printf function is used with _______

format to print strings to the screen
%c %l %s %p %s

In ASCII character set the uppercase

alphabet represent codes _____
65 to 90 96 to 45 97 to 123 1 to 26 65 to 90

 _____ statement tests value of a

given variable against list of case

values

switch if..else for while switch

 _____ statement causes exit from

switch statement
switch break goto end break

 ______ operator takes 3 operand for

making logical decisions
+ ?: = :? ?:

The _______ is powerful branching

statement used to control the flow of

execution of statements

if for goto while if

______ is two way decision making

statement and is used in conjunction

with an expression

if switch goto while if

In if condition the statement block

below is skipped if the value of the

expression is_____

TRUE FALSE one zero FALSE

In C multiway decision statement is

while if..else switch for switch

Variables declared inside for loop is

called_______ variables
Constants loop control

data

control
data loop control

Conditional operator is a

combination of ___ and ______

operator

?: &? &* ?, ?:

In conditional operator

testexp?exp1:exp2, if the testexp is

non zero _________ is evaluated

exp1 exp2 exp3 exp4 exp1

In conditional operator

testexp?exp1:exp2, if the testexp is

zero _________ is evaluated

exp1 exp2 exp3 exp4 exp2

 Case Labels end with ____ operator : ; . , :

In switch statement if the value of

the expression does not matches

with any of the case values _____ is

optional case default loop default

While loop is _______ statement
entry

controlled

exit

controlled
branching

none of the

above
entry controlled

Do.. While loop is _____ statement
entry

controlled

exit

controlled
branching

none of the

above
exit controlled

In _____ loop tests is performed at

the end of body of the loop

entry

controlled

exit

controlled
branching

none of the

above
exit controlled

 In _____ statement body of the loop

is executed first
do..while else for

none of the

above
do..while

In for loop body of the loop is

executed if the test condition is

TRUE FALSE zero one TRUE

In for loop _____ operator is used

separate the sections
; : . none ;

In for loop three sections enclosed

within parenthesis must be separated

by ______

colon semicolon comma dot semicolon

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 1of 25

UNIT II
Syllabus

Functions and Arrays: Utility of functions, Call by Value, Call by Reference, Functions returning
value, Void functions, Inline Functions, Return data type of functions, Functions parameters,
Differentiating between Declaration and Definition of Functions, Command Line
Arguments/Parameters in Functions, Functions with variable number of Arguments.
Creating and Using One Dimensional Arrays (Declaring and Defining an Array, Initializing an
Array, Accessing individual elements in an Array, Manipulating array elements using loops), Use
Various types of arrays (integer, float and character arrays / Strings) Two-dimensional Arrays
(Declaring, Defining and Initializing Two Dimensional Array, Working with Rows and Columns),
Introduction to Multi-dimensional arrays.

FUNCTIONS
Introduction
A Program is a collection of instructions and in some cases, the program may have repeated
statements. If the number of repeated statement is one or two, then it does not make any problem in
the program. Suppose the number of repeated statements is more in a program, it will automatically
increase the size of the program, unnecessarily. So, how do we reduce the size of the program? It can
be done by writing these repeated instructions in a separate program. These programs can be utilized
whenever needed. That separate code/program is called as a function. Function may also be named
as procedure. The functions are of two types

1. Library functions.
2. User defined functions.

Library function- A Readymade one
 This is a special type of function, which is pre-written and present along with the compiler
itself. For example, abs(), sqrt () etc are library functions and we have discussed about them in
the second chapter. The drawback of library function is that, it has restricted operations and it is not
allowed to alter the existing functionality.The library functions are just like our readymade dresses.
The drawback of ready made is that it will not match every ones need, but can be used on suitable
occasions.

User defined functions – Design your own:
The user can write a function according to their wish and requirements and this type of function is
called as user defined function. It is just like designing a dress depending upon one’s taste. So if you
are not satisfied with the readymade, design your own.
The purpose of having a function in a program is to reduce the size of the program and in some cases
this can also be achieved by using the looping statements. The following is a program and how the
same is reduced is illustrated.

 main()
 {
 printf(“\nHello”);
 printf(“\nGood morning”); Set 1
 printf(“\nHello”); Set 2
 printf(“\nGood morning”);
 printf(“\nHello”);
 printf(“\nGood morning”);
 printf(“\nHello”);

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 2of 25

 printf(“\nGood morning”);
 printf(“\nHello”);
 printf(“\nGood morning”);
 printf(“\nHello”);
 printf(“\nGood morning”);
 }

Can we reduce the size of the above program? Yes. We can. The following is a revised version of the
program using for looping statement.

 /* Minimized program using for loop */
 main()
 { int i;
 for(i=1;i<=3;i++)
 { printf(“\nHello”);
 printf(“\nGood morning”);
 } }

Suppose the repetition occurs in different part of the program instead of continuous one, using
looping is not a solution. Here comes the function. Yes. Keep the repeated set of statements in a
separate part of the program (some time called as sub-program). Whenever these repeated statements
are required, the sub-program can be invoked and utilized.

 Figure a Figure b
Figure (a) is a program with repeated code in three places and the aim of all the 10 lines are same. In
figure (b) the repeated statements are available as a sub-program / function. This function can be
invoked/called wherever the repeated code is necessary.
In the figure (a) the repeated code is 10 lines, totally it occupies 30 lines, because it is in 3 places (3 *
10 = 30). But in the figure (b) instead of 10 lines, only one instruction (CALL) is used to invoke the
sub program. Totally 30 lines of the figure (a) is reduced into 3 lines and 10 lines in the function.
This function can be invoked any number of times at any place.
The following diagram is illustrating how the functions are being invoked and processed with
multiple functions.

// sub program2

test2 ()

{

statements;

}

// sub program1

test1 ()

{

statements;

test2();

// Main program

main ()

{

statements;

test1();

main()
{
CALL function

Other

statements

CALL function

Other

statements

main()
{

 Other

statements

 Other

statements

10 lines

10 lines

10 lines

function code
contains 10 lines

Program

with

Program

with

Function

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 3of 25

In the above diagram there is two sub programs namely test1 and test2.

 First we know the main() function starts its execution and it calls the user defined function
test1()

 Before starting process, the status of main() is stored into stack and execution continuous in
test1()

 The function test1(), in turn calls another function test2()
 As in the previous case status of test1() is pushed in to the stack.
 Now stack contains status both test1() function and main ()
 The execution continuous in test2()
 After completion of test2(), the control is returned to the test1() and continues the execution

until the end of the function
 When test1() is completed, the control returns to main() program and once again the process

is resumed.

General format for function declaration:

Here

 Return-type is type of data returned by the function
 Function-name is the name of the function
 arg1 , arg2 … are parameters of the function

 Look the example for a function declaration
 int swap(int a, int b)
 {
 // Body of the function;
 }
 The first int is the type of data to be returned by the function swap() and a, b are the
arguments to the function.

What is parameter / arguments?
A variable, that is used to carry the data to the function, is called as parameter or argument. The
parameter may be either a value parameter, carrying value directly or a variable parameter carrying
values using the variable.
In the example the arguments a, b are belong to the same data type. The function declaration with the
parameter is as follows.
int swap(int a, int b);
 /* a & b must be declared individually */

Return-type function-name(arg1,arg2...)
 {

 Local variable declaration

 Body of the function

 [return;]
 }

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 4of 25

The arguments of the function can also be declared as shown below.

 int swap(a , b)
 int a, int b;
 {
 /* Body of the function; */
 return (5); /* Returns Integer Value */
 }
This type of declaration is called K-R declaration. (K–Kernighan and R–Ritchie, who are the
authors of C programming language)
 In case of normal variable declaration, number of variables of same type may be declared by
single declarative statement. Even though the variables are of same type, we can’t declare as above
said in a function.
int swap(int a , b); /* Error */
Note:

How to call the function?
 We used to call persons by their names. Here also the function is invoked by specifying the
function-name with required parameters. The following is an example program for function call with
parameters.

/* Simple example for function definition and calling the same
*/
 main()
 {
 display(10);
 }
 Function calls with 10
 display (int a)
 { printf("a = %d ",a); }

 The main() function calls the user defined function namely display() with the value
10 and it is an argument to the function. Now the value 10 is carried and assigned to the variable a. It
is actually an assignment statement like a = 10.
Return statement:
 This is a simple statement used to return the control to the calling function from the called
function and this is required in some cases. The return statement can be used to return a value from
called function to the calling function. The format of return statement is

 It is an optional statement in the function
 It may occur more than once in the function
 It may appear anywhere in the function.

 Let us see some of the possible usage of return statement
1. return(5) => Return value 5 to the calling function
2. return (a+b) => Result of expression a+b will be returned
3. return ('a') => Returns the character 'a' to the calling function
4. return (&a) => Returns address of 'a'
5. return => Returns the control to the called function.
(It is used to stop and return explicitly)

return (expression);

The arguments must be declared individually even if they belongs to the same data type

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 5of 25

// Main program
main()
{
 line();
 printf(“Welcome to all”);
 line();
}

Look the following program, which is a complete program illustrating the function and how it has
been invoked.

/* Complete example for a function */
main()
{ int a =10, b=20,c;
 c = sum(a,b);
 printf(“\nSum = %d “,c);
}
int sum(int x, int y)
{ return (x+y);}

 Here we are passing the value of a and b to the user defined function sum() and this function
compute the sum of these two number s and return the result to the calling function.
Types of function:
The functions are of four types, classified based on the parameter passed to the function and value
returned by the function. They are functions with

1. No argument & No Return
2. No argument & Return
3. Argument & No Return
4. Argument & Return value

No argument and No return:
 In this type of function, nothing is passed to the called function from the calling function and
also nothing is returned from the called function to the calling function. The following is an example
for this

In the above example, we are not passing any value to the function line() and it does not return any
value to the called function. The aim of the function is very simple that it prints a line. The void is a
data type, which represents returning NULL data and here the function returns nothing.

No argument and return value:
In this type of function the user may define a function to return some value without passing anything.
This type of function does not take any argument to the called function, but it returns value to the
calling function.

//User defined function
void line()
{
 int i;
 for(i=1;i<50;i++)
 printf(“-”);
}

Default return type of the function is integer

main()
{
 int a, b, c;
 a = input();
 b = input();
 c = a+b;
 printf(“Sum = %d “,c);
}

int input()
{
 int x;
 printf(“Enter a value “);
 scanf(“%d “,&x);
 return (x);
}

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 6of 25

Here the function input () is used to read an integer value without the scanf() statement in the
calling program. We can use it when we are in need of any integer value. This function does not take
any argument but it returns an integer value to the calling function.

Argument and No return value:
This type of function receives an argument but it does not return any value to the calling function.

The line() function receives an argument as no. of characters (-) to print, here 15 times and they
are printed as line. But this function does not return anything to the main () function.
With argument and a Return value:
This type of function receives an argument and also returns value to the calling function.

The function sum() takes two integer values as arguments and returns the sum to the calling
function.
The passed values are only the photocopy of a and b. If any modification is made to this value inside
the function sum(), it does not affect the main () function’s a , b values, as the modifications in
photocopy does not affect the original documents.

In functions the changes in the local variable does not affect the arguments of the calling function
value. The following example will illustrate this.

/* Example for passing values to the function and result of changes */
main()
{ int a=10;
 printf("\nBefore passing : %d ",a);
 disp(a);
 printf("\nAfter passing : %d ",a); }
void disp(int x)
{ printf("\nValue inside the function : %d ",x);
 x=100 ;
 printf("\nValue inside the function : %d ",x);}
Before passing : 10
Value inside the function : 10
Value inside the function : 100
 After passing : 10

In main() program variable a contains the value 10. The function disp(a) is called with the value of
a. Now the copy of a is passed (assigned as x=a) to the function disp(). Inside the function

main()
{
 int a =10, b=20,c;
 c = sum(a,b);
 printf(“Sum = %d“,c);
}

int sum(int x, int y)
{
 return (x+y);
}

Normally a function can't return more than one value

// Main program
main()
{
 line();
 printf(“Welcome to all”);
 line(15);
}

//User defined function
void line(int n)
{
 int i;
 for(i=1;i<n;i++)
 printf(“-”);
}

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 7of 25

disp(), x contains the value of a. In the function value of x is changed as 100, this change affects
only the local variable x and note that the value of a in main() program remains the same.
Note:
The pointer will help to solve these kind of problems such as modification should reflect everywhere
and returning more than one value etc.

Same Variable Name - No Problem
Name of the variable is an identifier and it is only for the user’s reference. System uses its own way
to access the values and to identify it. So the variable name in one function may occur in any other
function or in the block also with the same name.

/* Illustration of same variable in the program */
main()
{
 int a=10;
 disp(a); /* a is local to main() */
}
void disp(int a)
{
 a=100; /* a is local to disp() */
 printf("\na = %d ",a);
}

In the above program, the variable a occurs in both main() function and user defined function disp(
). Though the variable name seems to be identical, their memory allocations are different. The
variables are individual components of each of the function and it will not confuse the compiler.
The following program illustrates the above discussion, about the different addresses and it solves
the problem of same variable.

/* To prove the memory allocation is vary even the names of the variable are same. */
main()
{
 int a;
 printf("\n%Address of a in main : ",&a);
 test();
}
void test()
{
 int a;
 printf("\nAddress of a in function : %u",&a);
}
 Address of a in main : 23344
 Address of a in function : 24444

The output of this program is the memory address of two variables, which are equal. But the memory
address is not same. So this is not a problem in a program.

The following is a program to find maximum of two numbers using function

/* To find the maximum of two using function */
main()
{ int a ,b, big;

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 8of 25

 printf("\nEnter two numbers : ");
 scanf("%d%d",&a,&b);
 big = max(a,b);
 printf("\nBiggest no is = %d ",big);
}
int max(int x, int y)
 { int temp;
 temp = x>y ? x : y;
 return (temp);
 }
 Enter two numbers : 10 30
 Biggest no is = 30

The calculation of nCr value is a very good example using function. We have already discussed it
theoretically. In this program the function fact() is used to calculate the factorial value of a given
number.

 /* To find nCr program using function */
main()
{
 int n, r;
 float ncr;
 printf("\nEnter the value of N & R : ");
 scanf("%d%d",&n,&r);
 ncr =(float)fact(n)/(fact(n-r) * fact(r));
 printf("\nnCr value = %5.2f ",ncr);
 }
int fact(int m)
 {
 int i,f=1;
 for(i=1;i<=m;i++)
 f =f * i;
 return f;
 }
 Enter the value of N & R : 5 2
nCr value = 10.00

If function is not used in the above program we should write separate set of statements to calculate
the 3 different factorial values, as we have seen about this in the starting of this chapter.

While using function, to calculate n! value, just the statement fact(n) is enough. So fact(n) gives n! ,
fact(n-r) give (n-r)! and fact(r) gives the r!. It reduces the no. of instructions and memory
automatically.

The following is an another example to implement the pow() function.

 /* To compute xn without using library function */
 /* or Implementation of power() function */
main()
{
int n;
float x, s;

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 9of 25

No return type is specified,
by default it is an integer

Return type is specified
properly as float

printf("\nEnter the values of X & N ");
scanf("%f%d",&x,&n);
s = power(x, n);
printf("\nPower(%5.2f , %d) = %5.2f",x,n,s);
}
float power(float x, int n)
{ int i,s=1;
 for(i=1;i<=n;i++)
 s = s * x;
 return (s);}
Enter the values of X & N 10 3
Power(10.00 , 3) = 1000.00

Problems in return type – Take care:
The return type of the function should be specified carefully. If it is not proper the value may be
converted into some other format and result may go wrong. We should be careful while returning a
real value. The following program tells the importance of the return type specification.

/* Program without specifying return type */
main()
{
 float a;
 a=test();
 printf("\nResult of function calling : %f",a);
}
test()
{
return(2.5);
}
 Output:
Result of function calling: 2.000000

 The return type of the function is not properly defined here. In C, the default return type is
integer. Here the function returns the value as 2.5, using the return statement, which is actually a
float value. But the return type is not matching with it and the float value is converted into integer
value. Finally we are getting the unexpected result as 2.000000. If we add the correct return type in
the function declaration, the modified program as follows.

/* Program with correct return type */
main()
{
 float a;
 a=test();
 printf("\nResult of function calling : %f",a);
}
float test()
{
return(2.5);
}
Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 10of 25

 Result of function calling: 2.500000

Now we got the correct result from the function. So the return type of the data from the function
should be considered important.

Calling with expression:
The parameter to the function may be a value or variable or it may be an expression. The function
can be called by value is by directly giving the value as a parameter to the function. Following is a
program to illustrates the function call by giving the values directly.
 /* Calling a function with by value */
 main()
 {
 display(10);
 } Function calling with value 10
 10 is assigned to the variable a
 display (int a)
 {
 printf("a = %d ",a);
 }
Here the function disp() is called directly with value as 10. The other way to call the function is by
using a variable. In this case instead of value, a variable is used as a carrier of the value.

 / * Calling a function with variable */
 main()
 {
 int a =10;
 display(a);
 }
 Function calling with a
 display (int b)
 {
 printf("b = %d ",b); }

One more way to call the function is by passing an expression. In this case result of the expression
will be passed as argument to the function. The example below illustrates the function call done
using an expression.

 /* Calling by Expression */
main()
{ int a=5 , b=10;
 display(a + b);
}
display (int c)
{
 printf("c = %d ",c);
}

In this program the result of expression ‘a+b’ is passed as argument to the function display(). The
value of a is 5 and b is 10 and therefore a+b is 15. The result 15 is passed to the function display()
and received by the function argument c. (ie c = a + b).

Passing Array to the function:
What we have discussed so for is passing and returning one or more simple values. This is not
enough for us in all the applications and we may require passing the arrays to the function. Now let

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 11of 25

us have a view on, how to pass the array value to the function. The following is the simple example
for passing array values to the function.
/* Example for passing array to the function */
main()
{ int i, n, a[15];
 printf("\nNo. of elements :");
 scanf("%d",&n);
 printf("\nEnter %d values\n",n);
 for(i=0;i<n;i++)
 scanf("%d",&a[i]);
 printf("\nYour values are \n");
 for(i=0;i<n;i++)
 display(a[i]);}
display(int m)
 { printf("%d\t",m); }
Recursive function:
 In some cases the function invokes itself, whenever the function calls itself, this special type
of function is called as recursive function. The following example is the simple recursive function
calling.
 /* Function calling itself or recursive call */
display()
{ printf(“\nWelcome”);
 display(); /*function calls itself or recursive */}
The calling of function display(), will execute the instructions, within it and one of the instruction is
display() (ie statement for invoking itself). If the function is some where else, the control will be
transferred as usual, but here the function display() calls itself. Therefore for every execution the
function is called indefinitely. The result of the above program is
 Welcome
 Welcome
 Here there is no chance of terminating the function from execution. To avoid this indefinite
execution we have to use conditional statements to stop the recursion.
A very good example for recursive function is finding factorial of a number. The factorial value of a
number is calculated by any one of the two methods given below.
 i) n! = 1 * 2 * 3 * …….* n
 (or)
 ii) n! = n * (n-1) !
First method of calculation has been discussed already and the second method needs a different
approach.
As a part of this expression we have to calculate (n-1)! which is again similar to calculating n! value.
This process will continue until the value of n becomes 1. If the value of n is 1, the function returns
to the calling function.
n! = n * (n-1) !
 (n-1) ! = (n –1) * (n-1-1) !
 (n-1-1)! = (n-1-1) * (n-1-1-1) !

 process continues until n=1.

 n! = n* n-1 * n-1-1 * ….
Example : 3 ! = 3 * (3-1) !
 2! = 2 * (2-1) !

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 12of 25

 1 !
 Now n is 1. So it returns the value 1.
 3 ! = 3 * 2 * 1
 = 6

STRUCTURES

STRINGS
Introduction
What is a String? A String is a collection of characters that are enclosed within double quotes (“).
String can also be also called as a character array. Inside the double quotes any acceptable
character from the character set can be present. To store a single character we have to use the char
data type. But there is no data type to store a string of characters. This problem is overcome by
declaring the group of characters in an array, using char data type. Therefore a simple string is
declared in one-dimensional array. The format for declaring the string variable is as follows.

 - char is the data type of the variable
- variable represents the name given to the array.
- size represents the maximum no. of characters that can be stored in the array.

 Example:
 char str[15];

- Here str is the name of the array variable name and it can store a maximum of 15
characters.

What is end of a string?
The strings should end with a NULL character ‘\0’, an escape sequence character. It is used to
identify the end of a string. The ASCII value of this character is 0 (Zero). NULL value is assigned
automatically to the end of string. It can also be inserted explicitly by the programmer.

Assigning Values to the string variable:
 The values to the string can be assigned in any one of the formats shown below.
 1. char str[10] = {‘K’,’A’,’R’,’T’,’H’,’I’};
 =>In this one dimensional array, values are assigned character
 by character to the string variable str.

2. char str[10] = “KARTHI”;
 =>In contrast to the above mentioned character by character
 assignment, entire string can also be assigned to the string
 variable str.

 3. char str[] = “Coimbatore”;
 => Here, the size of the string variable str is automatically
 assigned to it depending on the no. of characters. Note, that
 the size of the array is not declared here. Memory allocation
 is done automatically based on the number of characters
 assigned to the variable.

The following diagram shows the values and its memory location
 char name[] = “KARTHI”;
 Location  0 1 2 3 4 5 6
 Character 

From this figure we may conclude

char variable [size];

 K A R T H I

Recursive function is just like a looping statement and the termination from the recursion is
achieved using conditions.

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 13of 25

character K is stored at name[0]
character A is stored at name[1]
character R is stored at name[2]
character T is stored at name[3]
character H is stored at name[4]
character I is stored at name[5] and
the end of string is at name[6]

How to read string?
 Characters of the string is read by using the %s format specified for usage in the scanf()
function. If scanf() function is used, blank space should not be present as a part of the string. At this
situation we can use gets () function to read string with blank space.

*) Otherwise we can use […] and [^ …] options in scanf()

/* Simple example to read and display a sting */
#include <string.h>
main()
{
 char str[15];
 scanf("%s",str);
 printf("\nString : %s ",str);
}
The statement scanf("%s",s) is used to read a string with the format string %s. Here the

array name refers to the base address of the string or character array s.
If there is a blank space in the input string the gets(s) statement can be used. If the input

string need to include the new line character, we can use the format string as ["%[^\n]"].
The string can be used to process individual characters as follows.
/* To process character based */
main()
{

char s[15];
int i=0;
scanf("%s",s);
printf("\nString : ");
while(s[i] != '\0')

printf("%c",s[i++]);
 }
The while loop will execute until the end of string (ie '\0') and it is checked by the condition

s[i] != '\0'. If the character present in the ith location is equal to '\0', then the loop will stop its
assigned function.

Library Functions in String:
 The operations like, copying a string, joining of two strings, extracting a portion of the string,
determining the length of a string etc. cannot be done with arithmetic operators. String based library
functions are used to perform this type of operations and they are located in the header file
<string.h>.

Four important string based library functions are
 1. strlen() - To find the length of a string
 2. strcpy() - To copy one string into another
 3. strcat() - To join strings

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 14of 25

 4. strcmp() - To compare two strings.

1. Length of the string - strlen():
 The function, strlen() is used to find the length of the given string. The general format is as
follows.

Where str is a string variable and it returns number of characters
present in the given string.

Example:
char str[10] = “Karthi”;
 len = strlen(s)

=> It returns length of the string as 6 and it is stored in the variable len.
char s[10] = “Welcome\0”;
 len = strlen(s);

=> This example returns length as 7, because it will not count NULL character ('\0') as a character of
the string .
len=strlen(“ABbbbCD ”);
=> where b is a blank space. In this case the blank space is also treated as a character. So, length
of this string is 7. (Including blank space)

 int strlen (str);

The Null character (\0) is not a countable character in the string

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 15of 25

2 Assigning the string - strcpy () :

 The function strcpy() is used to copy the content of one string into another. We can’t use
the assignment operator (=) to assign a string to the variable. By using this function only we can
perform assignment operation on string.
 char s[15] ;

 s = “Man”; /* This is not possible in C */
 The general format is as follows.

 Where s1 and s2 are string variable

Here s2 is the source string and s1 is the destination string. After the execution of this
function content of s2 is copied into s1 and finally both s1 and s2 contains the same values.
Example :

1. char s1[] = “Karthi”;
 char s2[] = “Good”;
 strcpy(s1,s2);

 => After the execution the content of the string s2 is copied
 into string s1. Therefor the string "Karthi" is replaced
 with the string "Good". Now both s1 and s2 contains the
 string "Good".

 2. char s1[10];
 char s2[10] = “Karthi”;
 strcpy(s1,s2);
 => Here also the content of s2 is copied into s1 and both

 contains the string as Karthi.
3 Joining Strings - strcat() :

The function strcat() is used for joining two strings. The general format is as follows

Where s1 and s2 are string variables.
Here the content of s2 is appended (or) joined to the contents of s1. After the execution s1

now contains its own content, followed by the contents of s2 and s2 retains the same.

Example:

1. char s1[10] = “Good” , s2 [10] = “Morning”;
 strcat (s1,s2);

=> After the execution of this function, s1 contains
 "GoodMorning" and s2 contains "Morning".

2. char s1[10] = “ ” , s2 [10] = “Welcome”;
strcat (s1,s2);

=> After execution, both s1, s2 has "Welcome", because
 first variable s1 does not have any character in it.

strcpy(s1, s2);

strcat(s1 , s2);

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 16of 25

4 To Compare - strcmp() :
 This function is used to compare two strings. To compare any numeric values we use
relational operators, by using these operators we can’t compare strings. The strcmp() performs the
function of comparison. The general format is as follows.

Where s1 and s2 are string variables.
This function returns any one of three possible results.
 *) Result is 0 when both strings are equal. (s1 = s2)
 *) Result is Positive value, if s1 is greater than s2 (s1>s2)
 *) Result is Negative if s1 is less than s2. (s1<s2)

Note:
 The result of comparison is obtained by calculating the difference between the ASCII value
of the corresponding characters. The comparison is made by checking the corresponding characters
(ASCII values) one by one between two strings.
 The first character of s1 is compared with the first character of s2. If they are equal, the
process passes on to the next character on the string until they meet with mismatch or no more
character to process.

The process of comparison is terminated if any mismatching occurs or end of string is
reached.
 Example:
 1. char s1[5] = “ABC”;
 char s2[5] = “ABC”;
 strcmp(s1,s2);
=> This function returns 0 as a result, because both s1 and s2 contains the same characters. The
characters of s1 is equal to the character of s2. So, the result is 0. (ASCII difference of these
characters).
 2. char s1[5] = “ABC”;
 char s2[5] = “abc”;
 strcmp(s1,s2);
 =>This function returns -32 as a result, as ASCII difference between A and a is -32 (65 – 97).
ASCII value of 'A' is 65 and 'a' is 97.
 3. char s1[5] = “ABz”;
 char s2[5] = “ABC”;
 strcmp(s1,s2);
 => This function returns 55 as a result. Because ASCII difference between z and C is 55(122 –
67). ASCII value of 'z' is 122 and 'c' is 67.

Here is a program to illustrate, how to read a string and find out its length without using the
library function.

/* Implementing strlen() function */
#include <string.h>
main()
{

 int i= 0;
 char str[25];
 printf("\nEnter a string : ");
 gets(str);
 printf("\nYour given string : ");
 while(str[i])

int strcmp(s1 , s2);

 3
 2
 1

A B C A B C

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 17of 25

 printf("%c",str[i++]);
 printf("\nLength of string : %d ",i);

 }
 Output:

Enter a string : karthi
Your given string : karthi
Length of string : 6

 /*Check whether the given string is palindrome or not*/
#include <string.h>
main()
{

 int i,l,poly=1;
 char s[50];

 printf("\nEnter a string : ");
 gets(s);
 printf("\nGiven string is : %s",s);
 l=strlen(s);

printf("\nLength of string : %d\n",l);
l = l-1;

 for(i=0;i<=l;i++)
 if (s[i]!=s[l-i])
 poly=0;

 if (poly = =1)
 printf("\n'%s' is polindrome",s);
 else

 printf("\n'%s' is not polindrome",s);
 }
strrev() => This function is used to reverse the string

char s[] =”Hello”;
 strrev(s);

 =>Now the content of the string s is reversed.

A program to find out whether the given string is palindrome or not using the library function.
 /* Palindrome checking using library function */

main()
{

char s1[15],s2[15];
 clrscr();

printf("\nEnter a string : ");
scanf("%s",s1);
strcpy(s2,s1);
strrev(s2);
if (strcmp(s1,s2)==0)
 printf("\nGiven strnig is palindrome ");
else
 printf("\nGiven string is not palindrome ");
getch(); }

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 18of 25

ARRAYS
Introduction

 What is the use of variable? Generally a variable is used to store the value which may
be used for further reference. In a simple variable only one value can be stored at a time. For
example to store 5 values, we can use the variables like a, b, c, d and e. But when the number of
values to be stored is more the difficulty will also be more. So, the solution for the above problem is
using an array.
 *) Array is a collection of elements or data items
 *) All the elements must be same data type
 *) and they are stored in consecutive memory locations

How to Declare Array variable?

Simple variables are declared as,
 int a,b,c; /* Simple variable Declaration */
data-type followed by list of variables.
Similarly, an array variable can also be as follows.

Where - data type is the type of data like int, char etc.,
 - variable is the name of the array variable

 - size is the maximum no. of elements to be stored in
 the array and the size must be an integer value.

 Example for array declaration is
 int a [5] ;

*) a is the name of the array variable of type integer *) In the variable
a, we can store 5 integer values.

 *) The memory allocation is as follows which assumes the
 starting address is 1000. Each element of the array occupies two bytes because of
integer data type.
 Element 0 1 2 3 4

 Memory 1000 1002 1004 1006 1008
 Location

How to refer the values of array variable?

In C the first element of array is stored at the location 0. So the element can be accessed as
follows:

- First element is referred as a[0] location 1000
- Second element is referred as a[1] location 1002
- Third element is referred as a[2] location 1004 etc.

 *) Here 0,1,2, … are called as subscript (or) index. So array is
 also called as subscripted variable.

*) The above array is called single dimensional array. Because
 to refer any data we need only one index.

Assigning the data into array:
 Like a simple variable assignment, the values can be assigned to the array variable as shown
in the example.
 *) int a[5] = {10,20,30,40,50};

 data type variable [size] ;

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 19of 25

Here 1st element is stored at a[0]
2nd element is stored at a[1]
3rd element is stored at a[2]
4th element is stored at a[3] and
5th element is stored at a[4]

Following are some of the ways to assign values to array variables.
 *) int a[10] = {20,30};
 => Here 10 memory locations are reserved for a. But we

 are using only 2. So the remaining spaces (eight) are
 wasted.

 *) int a[] = {10,20,30};
 => In this declaration the above problem has been solved. The
 size of array is adjusted automatically depending upon the
 no. of values assigned.

 *) The default value of variable is garbage value.
 *) The following declaration initializes all the values of array to 0.

 int a[100] = {0};
In this case all the locations are filled by the value 0.

Relationship between loop and arrays
 The elements in an array are referred by using the array name and the index number. For
example in the array

 int a[10];
The individual elements are referred by
 a[0] , a[1],a[2],a[3] ……. a[9].
If the number of elements is less, we can use the indices to refer the individual elements. But

if we have to refer 10s of 100s of elements sequentially what can we do? Can we have 100
statements to refer to the individual elements? Of course, it can be, but requires lot of typing like:

printf("%d",a[0]);
printf("%d",a[1]);
 . . .
printf("%d",a[9]);

The alternative way is to use a looping in which the index can be varied as shown below.
for (i=0;i<9;i++)
 printf("%d",a[i]);

 So, for processing array we can use the looping statements. Compare the processing
difficulties with looping statement and without.
/* Example for Reading Array and Displaying it */

main()
{
 int i, a[5];
 printf("\nEnter 5 Elements for array \n");
 for(i=0;i<5;i++)
 scanf("%d",&a[i]);
 printf("\nYour Given values are\n");
 for(i=0;i<5;i++)
 printf("%d\t",a[i]);
}

 Example: To find the biggest of N numbers, the algorithm is:

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 20of 25

1. Read n numbers into the array
2. Assign the first element of array to a variable BIG assuming that it is the biggest one.
3. Compare this element with next element of array.
4. If the next element is bigger, assign this value as the new value of big.
5. If not, keep the existing values as BIG
6. Continue steps 3 to 5 till the last element is compared.
/* To find maximum no. from the N values. */
main()
{
 int i, n, max, a[5];
 printf("\nHow many values :");
 scanf("%d",&n);
 printf("\nEnter %d values \n",n);
 for(i=0;i<n;i++)
 scanf("%d",&a[i]);
 printf("\nYour Given values are\n");
 for(i=0;i<n;i++)
 printf("%d\t",a[i]);
 max=a[0]; /* Assume a[0] is a maximum */
 for(i=1;i<n;i++)
 if (max<a[i])

 max=a[i];
 printf("\nMaximum Number : %d ",max);

 }

 Example: To insert new data item in the list.
For example, an array contains

 A[1]=10; A[2]=20; A[3]=30; A[4]=40; A[5]=50;
If we want to insert a new value in middle, we need the information like the place to insert

and value to be stored.
For example, if we want to insert a new item in the 3rd location, the 3rd location value has to

be moved to 4th and 4th moved to 5th etc. Finally the 3rd location will be empty and we can assign
the value to that location. The movement of location starts from last. Otherwise the values will be
overwritten.

In general ith location value will be adjusted to (i+1) th location.
/* To insert a new item in the specified location */

main()
{ int i,n,p,value,a[10];

printf("\nHow many values :");
scanf("%d",&n);
printf("\nEnter %d values \n",n);
for(i=0;i<n;i++)

 scanf("%d",&a[i]);
printf("\nWhere to insert a new value :");
scanf("%d",&p);
printf("\nValue of that location :");
scanf("%d",&value);
printf("\nData Before Inserting\n");
for(i=0;i<n;i++)
 printf("%d\t",a[i]);

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 21of 25

for(i=n-1;i>=p;i--)
 a[i+1] = a[i];
 /* Adjusting the ith location to i+1 */
 a[p] = value;
 printf("\nData After Inserting\n");
 for(i=0;i<=n;i++)

 printf("%d\t",a[i]);
}

 Output:
How many values :5
Enter 5 values
10 20 30 40 50
Where to insert a new value :3
Value of that location :100
Data Before Inserting
10 20 30 40 50
Data After Inserting
10 20 30 100 40 50

More Dimensions - Multi Dimensional Array:
 The single dimensional array is suitable for simple applications like storing the marks of
students in a subject. Because only one information is enough to refer the mark of a particular
student.
 But to store the marks of students in different subjects, then we need two-dimensional array.
Because to refer mark of any students, we need one more extra information to know which subject is
required.
 For example, marks [1][5] means , subject 1 and 5th student.
 A very good example for two-dimensional array is a matrix, which is having no. of columns
and no. of rows. So to refer any element of a matrix we need two information one is row number
and another one is column number.
How to Declare Two-dimensional Array?
 Similar to single dimensional array and simple variable declaration, the two-dimensional
array is declared as

 Where - size 1 refers to no. of rows
- size 2 refers to no. of columns

So totally we can store size1 * size2 values in the variable.
 Example: int a[20][10];
*) Here a is the two dimensional array variable and it has 20 rows and 10 columns. So totally we can
store 200 (20 * 10=200) values in the variable a.
*) To refer any value we have to specify the row no. and column no.
 Ex: a[2][5]

=> It refers to the element of 2nd row 5th column
Suppose there is a matrix with 3 rows & 3 Columns, the representation is as follows.

 Columns (3 Columns)

 10
(1,1)

 20
(1,2)

 30
(1,3)

Data type variable [size1] [size2] ;

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 22of 25

 40
(2,1)

 50
(2,2)

 60
(2,3)

 70
(3,1)

 80
(3,2)

 90
 (3,3)

 3rd Row , 2nd Column
How to process in two dimensional array:

The elements are processed by specifying its indexes like which row & which column. For
example the above array is accessed as follows.
 a [1] [1] = > First row's First Column's value

a [1] [2] = > First row's Second Column's value
a [1] [3] = > First row's Third Column's value
a [2] [1] = > Second row's First Column's value
a [2] [2] = > Second row's Second Column's value

 . . .
Here 9, nine statements are necessary to process all the elements of array. When the number of
dimensions increase, the number of statements will also increase.
 Is there any relationship among the index of arrays. Yes. The index is in sequence. In a
matrix (rows & Columns) each row contains number of columns. Can we simplify the above
statements. Think about the nested loops, in which for every value of first loop second loop will
execute N times. Apply this approach here. Assume there are two loops (nested) namely i and j,
for row and columns respectively. So, every value of i, j will execute N times.
 for (i=1 ; i < n; i++)
 for (j=1 ; j < n; j++)
 // Statement of nested loop
 Here statements are executed n * n times. That is for every value of i, the j will be executed
n times.
 The individual statements are simplified by using nested loop is as like below
 for (i=1 ; i < 3 ; i++)
 for (j=1 ; j < 3 ; j++)
 printf("%d", a [i][j]);
 Think about the relationship between two-dimensional arrays and the nested looping
statements.
Assigning Values
We can assign the values to the variable while declaration of it.

 Ex : int a[2] [3] = { {1,2,3},
{4,5,6} };

*) Each row is separated by braces { } and each element by
 commas.
*) Here two rows and three columns.
*) First row contains the values 1,2,3 and second row

 contains the values 4,5,6.
Example to read and display of two-dimensional array (Matrix).
/* Example for reading and displaying matrix */

main()
{
 int i,j,r,c,a[5][5]; /*Declared as 5 x 5 matrix*/

 printf("\nNumber of rows : ");
 scanf("%d",&r);

Rows (3 Rows)

80
(3,2)

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 23of 25

 printf("\nNumber of column : ");
 scanf("%d",&c);
 printf("\nEnter %d x %d matrix\n",r,c);
 for(i=0;i<r;i++)
 for(j=0;j<c;j++)

 scanf("%d",&a[i][j]);
 printf("\nYour matrix is \n");
 for(i=0;i<r;i++)

{
 for(j=0;j<c;j++)

 printf("%d\t",a[i][j]);
 printf("\n");

 }
 }

Example:
 Multiplication of the matrix is different from the addition of two matrices. In multiplication,
no. of columns in the first matrix and no. of rows in the second matrix must be equal. Simple
example for the matrix multiplication is
 /* Matrix Multiplication. with equal rows & colms */
 main()
 {
 int i,j,k,row,col,a[5][5],b[5][5],c[5][5];
 printf("\nNumber of rows : ");
 scanf("%d",&row);
 printf("\nNumber of Columns : ");
 scanf("%d",&col);
 printf("\nEnter first matrix values\n");

 for(i=0;i<row;i++)
 for(j=0;j<col;j++)

 scanf("%d",&a[i][j]);
 printf("\nEnter Second matrix values\n");

 for(i=0;i<row;i++)
 for(j=0;j<col;j++)

 scanf("%d",&b[i][j]);
 for(i=0;i<row;i++)

for(j=0;j<col;j++)
{

 c[i][j] = 0;
 for(k=0;k<col;k++)

 c[i][j] = c[i][j] + a[i][k] * b[k][j];
 }

 printf("\nResult matrix\n");
 for(i=0;i<row;i++)

 {
 for(j=0;j<col;j++)

 printf("\t%d",c[i][j]);
 printf("\n");

 }
 }
 Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 24of 25

Number of rows : 2
Number of Columns : 2
Enter first matrix values
1 2 3 4
Enter Second matrix values
1 2 3 4
Result matrix

 7 10
 15 22
 Example: To transpose of a given matrix. (Columns are posted to rows and rows are posted to
columns called transpose of a matrix).

/* Transpose of Matrix */
main()
{
 int i, j, row, col, a[5][5],b[5][5];
 printf("\nNumber of rows : ");
 scanf("%d",&row);
 printf("\nNumber of Columns : ");
 scanf("%d",&col);
 printf("\nEnter the matrix values\n");

 for(i=0;i<row;i++)
 for(j=0;j<col;j++)
 scanf("%d",&a[i][j]);
 printf("\nTransposed matrix is \n");
 for(i=0;i<row;i++)
 {
 for(j=0;j<col;j++)
 {
 b[i][j] = a[j][i];
 printf("%5d ",b[i][j]);
 }
 printf("\n");
 }
 }

 Output:
Number of rows : 2
Number of Columns : 2
Enter the matrix values
1 2 3 4
Transposed matrix is

 1 3
 2 4

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Functions and Arrays) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 25of 25

Possible Questions

Part-A (1 mark - Online Examination)

Part-B (2marks)

1. What are void functions?

2. Write notes on i) Call by value ii) Call by reference of functions.

3. Give the difference between “call by value” and “call by reference” in functions.

4. Write the syntax to define a multidimensional array.

5. What is a function? How will you define a function?

6. What is array?

Part-C (6marks)

1. Explain in detail about String functions with syntax and example.

2. What are void and inline functions? Explain in detail with syntax and example.

3. Write in detail about functions that pass variable number of arguments. Explain with syntax

and example.

4. What is an array? Explain is detail the various types of arrays with example.

5. Explain the following (a) Function (b) return value (c) arguments.

6. How will you declare and initialize a two dimensional array? Write a C program to perform

matrix addition.

7. What are functions? Explain the various categories of functions with syntax and example.

8. How will you declare and initialize a one dimensional array? Give an example program to

assign marks of a student in an array.

QUESTIONS OPTION1 OPTION2 OPTION3 OPTION4 ANSWER

____ function joins two strings together strcat strcmp strcpy strlen strcat

____ function compares two strings identified

by the arguments
strcat strcmp strcpy strlen strcmp

strcmp function returns the value______ if the

arguments are equal
zero one two three zero

_____ function assigns the contents of one

string to another
strcat strcmp strcpy strlen strcpy

.______ function counts and returns the number

of characters in a string
strcat strcmp strcpy strlen strlen

Individual values in array is referred as

subscript elements

subelement

s
pointers elements

Any subscript between _______ are valid for

an array of fifty elements
0-49 0-50 0-47 0-51 0-49

Value in a matrix can be represented by

_______ subscript
1 3 2 4 2

Arrays that do not have their dimensions

explicitly specified are called_____

unsized

arrays

undimensi

onal

arrays

initialized

arrays

to size

arrays
unsized arrays

________ statement is necessary only when the

function is returning some data
continue return exit break return

The function _____ is used to check whether

the argument is lower case alphabet
islower isupper tolower toupper islower

The function ______converts the lower case

argument into an upper case alphabet
islower isupper tolower toupper toupper

The function ______converts the upper case

argument into an lower case alphabet
islower isupper tolower toupper tolower

KARPAGAM ACADEMY OF HIGHER EDUCATION

PART - A (ONLINE EXAMINATION)

MULTIPLE CHOICE QUESTIONS (Each question carries one mark)

SUBJECT: PROGRAMMING FUNDAMENTALS USING C/C++

______ character function is used to check

white space character
isspace ispunct iswhite isalpha isspace

______ character function is used to check

alphabetic character
isspace ispunct iswhite isalpha isalpha

Character test functions return the value

________ if the condition is true
1 0 11 111 1

printf belongs to the category ____ function
user

defined
library subroutine

preprocess

or
library

_____ is self contained block of code that

performs a particular task
function instruction program process function

_____ statement is the mechanism for returning

value to the calling function
return continue break goto return

A function can return ____ value per call one zero two multiple one

______ is a special case where a function calls

itself
recursion subroutine structure union recursion

C supports _____ storage classes one two three four four

_____ static variables are those which are

declared within particular function
external internal automatic register internal

____ variables are declared outside function external internal automatic register external

_____ variables are created when the function

is called and destroyed automatically when the

function is exited

external internal automatic register automatic

Automatic variables are _____ to the function

in which they are declared
local global static protected local

Automatic variables are also referred to as

_______ variables
internal external local static internal

Automatic variables can also be defined within

set of braces known as ____
code blocks scope process blocks

Variables that are both alive and active

throughout the entire program are known as

internal external local static external

External variables are also known as ________

variables
internal external local global global

_______ variables can be accessed by any

function in the program
internal register local global global

_______ declaration does not allocate storage

space for variables
intern extern static register extern

_____ variables are those which can retain

values between function calls
static extern global register static

Accessing register variables is much faster than

_________ access
program memory instruction comment memory

All local variables of a function are destroyed

when __________

function

called

program

starts

execution

function

ends

program

ends
function ends

A static variable is initialized once, when the

program is ______
compiled executed developed closed compiled

_______ variables have local scope but its

value persists until end of the program
intern extern static register static

______ functions has to be developed by the

user at the time of developing a program

user

defined
built in subroutines structure user defined

_____ functions are not required to be written

by users

user

defined
built in subroutines structure built in

_______ header file should be decalared to call

clrscr function
stdio.h stdlib.h conio.h math.h conio.h

_____ header file should be decared to call

input and output function
stdio.h stdlib.h conio.h math.h stdio.h

Header file stdio.h calls _____ function
input/outp

ut
math character sqrt input/output

Variable initialized once during compilation are

static register local global static

Global variables are also known as ________ static register local external external

Internal variables are also called ________ static register auto global auto

 _________ function used to find the absolute

value of a floating point number
ceil() int() fabs() sqrt() fabs()

C will automatically convert _______ variables

into non register variables
internal external register auto register

Recursion is a process of function calling

another

function
itself subroutine structure itself

______ returns zero or one value per call function structure arrays pointers function

________ function is used to convert characters

into ASCII (integer) values
toupper atoi tolower itoa atoi

Individual members of structures compared

using ________ operator

arithemeti

c
logical bitwise comma logical

In function declaration if the return type is not

specified , it returns ______ by default
integer character float long integer

Functions are ___________ by default extern intern register auto extern

__________ external variables can be accessed

by other files
simple extern intern auto simple

Functions should be declared as ______ if it is

to be accessible only to the functions in the files
static extern intern auto static

Variables enclosed within function paranthesis

are called_________
arguments variables data elements arguments

Modular structure of C language enables the

program to be split into several modules called

structure union integers function function

The actual and formal arguments of functions

must match in ____

number of

arguments
type of data

order in

which they

appear

all the

above
all the above

Arguments passed in the function call statement

are called _________

actual

arguments

formal

arguments

dummy

parameters

temporary

variables

actual

arguments

Functions receives the values passed by the

calling function and stores in_____

actual

arguments
constants

dummy

parameters

temporary

variables

actual

arguments

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 1of 25

UNIT III
Syllabus

Derived Data Types (Structures and Unions):
Understanding utility of structures and unions, Declaring, initializing and using simple

structures and unions, Manipulating individual members of structures and unions, Array of
Structures, Individual data members as structures, Passing and returning structures from functions,
Structure with union as members, Union with structures as members.
Pointers and References in C++:

Understanding a Pointer Variable, Simple use of Pointers (Declaring and Dereferencing
Pointers to simple variables), Pointers to Pointers, Pointers to structures, Problems with Pointers,
Passing pointers as function arguments, Returning a pointer from a function, using arrays as pointers,
Passing arrays to functions. Pointers vs. References, Declaring and initializing references, using
references as function arguments and function return values

Structures
Introduction - What is structure & Why?

Array is a collection of data items and all data item must be of same type. In very large
applications, some data items may be related to others or group of data items may be related. Let us
consider the college and the information related to the student such as name; roll number, age, marks
etc are heterogeneous types. These items can’t be grouped using array. To group these kinds of data
items, another feature of C called structure can be used. So “structure” means that related data items
may be grouped under same name. By grouping of related items under one name called structure
name, we could write programs well.

For example, the information about an employee like employee name, department,
designation, salary details can be grouped by one name like emp_record.
How to declare the structure:
 Structure declaration is different to the conventional declarations, look the following.

 struct is a keyword to indicate that structure variable.
 member-1, member-2 are the variables of the structure.
 In the first option the <tag> name is must because using this <tag> only we can create

new structure variable as follows. The structure variable is defined as following format
only.

struct <tag> sv1,sv2...;
This declaration is just like as int a,b,c …; In the second option sv1,sv2 are the structure variables.
The structure ends with semicolon like others.
The information about students such as name, roll number and marks are grouped and declared as
follows.

struct stu
 { char name[16];
 int rollno, marks;
 };
struct stu s1,s2;

struct <tag>
 {
 member-1;
 member-2;
 ...
 member-n;
 };

struct [<tag>]
 {
 member-1;
 member-2;
 ...

member-n;
 }sv1,sv2...;

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 2of 25

Here using the tag name stu the structure variable s1, s2 are created. Alternative way to
declare the structure variable is as follows.

struct stu
 { char name[16];
 int rollno, marks;
 }s1,s2;

Now without using tag name the variables s1, s2 are created. So we can use any one of the above
declarations.

Referring the data in structure:

The aim of the array and structure is basically same. In array the elements are referred
by specifying array name with index like a[5] to refer the fifth element. But in structure, the
members are referred by entirely new method as mentioned below.

The dot (.) operator is used to refer the members of the structures. For example if we wish to access
the members of the previous structure, the following procedure have to be followed.
 s1.name, s1.marks, s1. rollno

Assigning the values to the structure variable:
The values may be assigned for the array while declaring it as follows

 int a[5] = {10,20,30,40,50};
As above we can assign the value for the members of the structure as follows.
 struct stu
 { char name[15];
 int rollno, marks;
 } s1= {“Karthi”,1000,76};
Here the string value “Karthi” will be assigned to the member name, 1000 will be assigned to the
member rollno and 76 will be assigned to marks. The following program is a first one using
structure and sees how the members of the structure are being referred.
 /* Example for structure reference and assignment */
 main()
 { struct stu

 {char name[15];
int rollno, marks;

 }s1 = {"Karthi",1000,76};
 printf("\nName = %s ",s1.name);

 printf("\nroll no = %d ",s1.rollno);
 printf("\nMarks = %d ",s1.marks); }

Suppose all the values of one structure are necessary for another structure variable. The
values can be copied one by one as usual. Here structure supports the whole structure can be
assigned using = operator. Assume s1 and s2 are the structure variables and the contents of s1 should
be copied in s2 also. How?
 strcpy(s2.name, s1.name);
 s2.rollno = s1. rollno; /* copying one by one*/
 s2.marks = s1. marks.

(or)
s2 = s1;
 /* Copying entire structure to another structure */

The second one is the best way of programming approach to copying structures. An example
program to prepares a pay slip for the employee using the structure.

structure-name. variable name;

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 3of 25

 /*To find the net pay of the employee using structure */
 main()
 { struct emp

{ char name[25];
 float bp,hra,pf,da,np;
 int empno;

 }e;
printf("\nName of the employee : ");
gets(e.name);
printf("\nEmployee No : ");
scanf("%d",&e.empno);
printf("\nBasic Pay : ");
scanf("%f",&e.bp);

 if (e.bp>5000)
 { e.da = 1.25 * e.bp; /* 125 % DA */

 e.hra = .25 * e.bp; /* 25 % HRA */
 e.pf = .12 * e.bp; /* 12 % PF */
 }
 else
 { e.da = 1.0 * e.bp; /* 100 % DA */

e.hra = .15 * e.bp; /* 15 % HRA */
e.pf = .10 * e.bp; /* 10 % PF */

 }
 e.np = e.bp + e.da + e.hra - e.pf;
 printf("\n\tKarthik Systems pvt. ltd., \n");
 printf("\nName : %s Employee No : %d \n",e.name,e.empno);
 printf("\nBasic Pay D.A H.R.A P.F Net Pay\n");
 printf("\n%5.2f %5.2f %5.2f %5.2f %5.2f ",e.bp, e.da, e.hra, e.pf,
e.np);
 }

Array of structures:

The above example is only for manipulating single record, that is only one employee
information. Suppose if we want to prepare more number of records, we can use the array of
structures. Array of structure is defined as simple as ordinary arrays as below
 struct emp e[100];
The above declaration indicates that e is a array of structure variable and we can store 100 employees
information. The reference of members is also similar to the array reference. So, first we have to
specify the index of the structure and necessary variables. To refer the first employee’s information
we have to use the notations

s[0].name, s[0].np etc.
Like wise all the employees information are referred and processed. The following example
illustrates the array of structures.

/* To find the class of the students */
main()
{ struct stu

{
 char name[25];
 int rollno,marks;
}s[50];

 int n,i;

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 4of 25

char result[15];
 printf("\nHow many students : ");

scanf("%d",&n);
 printf("\nEnter %d students information\n",n);

for(i=0;i<n;i++)
 { printf("\nEnter %d persons name : ",i+1);

 scanf("%s",s[i].name);
 printf("\nRoll No : ");
 scanf("%d",&s[i].rollno);
 printf("\nMarks : ");

 scanf("%d",&s[i].marks);
}
printf("\nResult of the students ");
for(i=0;i<n;i++)
 { if (s[i].marks >= 60)

 strcpy(result,"First");
 if ((s[i].marks >= 50) && (s[i].marks <60))

 strcpy(result,"Second");
 if ((s[i].marks >= 40) && (s[i].marks<50))

 strcpy(result,"Third");
 if (s[i].marks < 40)

 strcpy(result,"Fail");
printf("\nResult = %s class ",result);

 } }
 As we know that the elements of array are stored continuously. In structure also the members
of structure will be stored in consecutive memory locations one after another. This is illustrated in
the following program. It has a structure stu and size of single structure is 17 bytes. (2 for age and 15
for name, so 2+15=17 bytes)

/* Array of structures */
struct
{
 int age;
 char name[15];
}stu[5];
main()
{
 int i;

 for(i=0;i<5;i++)
 printf("\nAddress is : ",&stu[i]);

}
 Address is : 1200
 Address is : 1217
 Address is : 1234
 Address is : 1251
 Address is : 1268

From this output it is found that the elements in structure are also stored in consecutive
memory locations.

Nested Structure

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 5of 25

 In case of nested if, the statement part will have another if statement. In case of nested
looping also, the statement portion has another looping statement. So the nested structure also will
have another structure variable as a member.
 There is no data type for maintaining date related information. Now we are going to create a
user defined data type using structure and it can be used as a data type for date.

struct
{ int dd,mm,yy;
}d;
struct
{char name[15];
 struct d dob;
}stu;
The first structure d has three fields to represent a date by using three variables, dd (day),

mm(month) and yy(year). The second structure stu have two member fields. They are name and
date of birth (dob), which is declared using the structure d.

We have an idea about the reference of values of the structure variable. Here to access the
name is very simple and to access the dob is differ. The dob structure members are accessed by as
follows.

stu.d.dd , stu.d.dd and stu.d.dd
To refer the member dob we can simply specify stu . dob is enough. But dob is not an

ordinary variable, which is another structure variable with three members. If we made any reference
is directly via dob, we can refer by dob.membres. But if reference is through the stu, we have to use
the stu.d.dd etc., A complete program for nested structure is given below.

/* Example for Nested structure */
struct dob
{
 int dd,mm,yy;
};
struct
{
 char name[15];
 struct dob db;
}stu;
main()
{
 clrscr();
 printf("\eEnter the name :");
 scanf("%s",stu.name);
 printf("\nEnter the age (dd/mm/yy) :");
 scanf("%d%d%d",&stu.db.dd,&stu.db.mm,&stu.db.yy);
 printf("\nYour Name is : %s ",stu.name);
 printf("\nDate of Birth : %2d-%2d-%2d",
 stu.db.dd,stu.db.mm,stu.db.yy);

}
Enter the name : Karthi

 Enter the age (dd/mm/yy) : 3 4 1974
 Your name is : Karthi
 Date of Birth : 3-4-1974

Structures and functions:

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 6of 25

Passing and returning various parameters and returning various values etc also given. Now let
us see, how the functions are used in structures also. In a simple function call, we have to mention
the name of the function with necessary parameters as given below to pass one integer argument.
 void display(int a);

Now we need to pass the structure to the function. What shall we do? One solution is passing
the members of structure one by one. But it is not an optimal when there are large members in a
structure. Otherwise look the following

 void display(struct stu s)
/* Passing structure to the function */
struct stu /* structure is declared as global */

 { char name[25];
int rollno;

};
main()
{ struct stu s1; /*s1 is only local to main() */
 printf("\nName of the student : ");
 scanf("%s",s1.name);
 printf("\nRoll No. : ");

 scanf("%d",&s1.rollno);
 display(s1); /* Calling function using structure variable */ }
/* Structure stu must declared as global otherwise we can't use this name as in the
following parameter declaration */
void display(struct stu s2)
{ printf(“\nYour information is \n”);

printf("\nName : %s ",s2.name);
printf("\nRoll No : %d ",s2.rollno); }

Miscellaneous of Structures:

The structure is used to store different type of values and all the variables are stored
continuously as in the following diagram and program illustrates this.

 /* Additional to structure */
main(){ struct { int a, b; } test;

 printf("\nBase address of structure : %u ",&test);
 printf("\nAddress of first member 'a': %u ",&test.a);
 printf("\nAddress of second member 'b' : %u ",&test.b);
 printf("\nSize of the structure 'test' : %d bytes ",sizeof(test)); }
Base address of structure : 3354

Address of first member 'a' : 3354 /* 2 bytes for int */
Address of second member 'b' : 3356

Size of the structure 'test' : 4 bytes /* So 2+2=4 bytes */
Starting address of the structure test is 3354. The address of the first structure variable a is

also same i.e. 3354. The next variable b is stored in the next memory location. (i.e. 3354 + 2 = 3356
, integer needs 2 bytes memory) The size of the structure is 4 bytes, because of two integer
variables (2 + 2 = 4 bytes).

The memory representation of array of structures is also same for simple arrays and it will be
cleared in the following program.

/* Array of structure */
main()
{ struct
 { char name[16];
 int rollno,marks;

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 7of 25

 }s[5]; /* five structures */
int i;

 for(i=0;i<5;i++) printf("\nAddress of structure S[%1d]= %d ",i,&s[i]);
 printf("\nSize of the entire structure = %d bytes",sizeof(s));

Address of structure S[0] = 8650
Address of structure S[1] = 8670

 Address of structure S[2] = 8690
Address of structure S[3] = 8710
Address of structure S[4] = 8730
Size of the entire structure = 100 bytes

 In the above program the structure s is declared as array of structure with the size 5.
 Address of first structure (s[0]) is 8650 and next is at 8670 etc.
 Size of the single structure is 20 bytes (16 + 2 + 2 = 20).
 So for 5 structures 100 bytes were needed.

 8650 8670 8690 86710 86920

Here each structure occupies 20 bytes of memory and single structure is stored in the memory
as follows.

UNIONS
 Union is the best gift for the C programmers. Yes. For looking and the general declaration of
union is similar to the structure variable. Instead of the key word struct, the key word union is used.
The members of union also referred with the help of (.) dot operator.

The union variable has been mainly used to set/reset the status of the hardware, devices of the
computer system and its roll is very much in the system software development.

For example, the register has 16 bit and they are named as low byte and high byte. If any
changes in the low or high byte will affect the full word of the register.
Difference between structure and union:

In case of structure all the members occupies different memory locations depends on the
type, which it belongs to. In union memory will be allocated only for the larger size variable of the
group, no other memory allocation will be made. Now, allocated highest memory will be shared by
all the remaining variables of the union. The declaration of a union and its format is as follows

General format: Example:

We may think that the size of the union variable is 21 bytes (15+2+4). But it is not correct.
Because of union larger memory request only considered for allocation. No independent memory for
the members will be allocated.

/* Example for the union variable */
main()
{union

 1st 2nd 3rd 4th 5th

 structure structure structure structure structure …..

 name rollno marks
 (16 bytes) (2 bytes) (2 bytes)

 union

 {

member-1;

member-2;

member-3;

...

member-n;

 }union-variable;

union

 {

 char name[15];

 int rollno;

 float marks;

 } stu;

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 8of 25

{ char name[15];
 int rollno;
 float marks;
} s;

printf("\nSize of the union : %d ",sizeof(s)); }
 Size of the union : 15

In this program the maximum memory request is 15 (char name [15]). So all the remaining
members of the union rollno, marks will share the same memory area.

Let us consider a union variable with two members one is int and another one is float. In
general integer requires 2 bytes and float requires 4 bytes. But in union only the memory for float
will be allotted and this is also shared by int variable also. This discussion is illustrated in the
following diagrams.

 float

 int
Memory is shared- a proof
The following program illustrates our discussion of previous paragraph idea. The largest memory
area will be shared by the other members. If so what is going to happen when we refer. Yes.
Confusion. But be clear that two values will be accessed and changes in one disturb the other one.

/* A proof of union - sharing memory */
main()
{ union

{ char c;
 int a;
}s;
 s.c= 'z';
 printf("\nC = %c ",s.c);
 printf("\nA = %d ",s.a);
 s.a = 65;
 printf("\nNew C = %c ",s.c);
 printf("\nNew A = %d ",s.a);
 getch(); }

C = z
A = 122 /*This is not same for all execution*/
New C = A
New A = 65

First time the union variable a has some unexpected data. After changing its value the

character variable c value also has been changed as from ‘z’ to ‘A’. This is enough to prove whether
the memory in the union is shared or not.

Typedef inition :

This is also a user defined data type used to set a new name for the existing data types. Are
you feeling in the understanding of the word int instead of integer. If so, leave worries. The typedef
statement is used to create a new user defined data type. That is we can give a new name for the data
types like int, float etc. The declaration is similar to the simple variable declaration. The general
format of the declaration is

typedef data-type new-name;

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 9of 25

In feature to declare the same kind of data type we can use the new-name instead of old
data-type. Look the following example:

typedef int number;
Here number is declared as an integer data type and it is equivalent to the data type int. Now

we can use number to declare variable of integer type.
number a,b,c;

 By using the typedef the new data type string will be created as follows with the example.
There is no provision for declaring string directly.

 /* Example for typedef declaration */
 main()

{
typedef char string[80];
string name;
/* name is string type data */
printf("\nEnter a name : ");
scanf("%s",name);
printf("\n'%s' welcome to all",name);

 }
Enter a name : Sanjai

'Sanjai' welcome to all

Enumerated data type:

Enumeration is also another type of user-defined data type, for which we are allowed to
specify the possible values for the test. We can utilize this feature to keep some names instead of
values. In some cases remembering the numeric value is difficult. String or Word is always better
instead of the numbers.

For example, in C programming language, the numeric value 0 (Zero) is treated as FALSE
and 1 is treated as TRUE. When we use these values like 0 or 1, we may confuse little bit. If the
number will increases the problem also increase.

Format of the Enumerated definition is
 enum tag

 {
 Constant-Name1=Value1,

 Constant-Name2=Value2 . . .
 } variable(s);
The following is a simple example,

 enum status
 {
 FALSE,TRUE
 };
Here the user defined data type status is created and its value may be FALSE or TRUE. In

this case, as I mentioned in the introduction the value of FALSE is actually 0 and the value of
TRUE is 1.

We can change the values by specifying its value explicitly. For example the declaration
 enum status
 {
 TRUE=1,FALSE=2
 };

 Here TRUE will be interpreted as value 1 and FALSE as 2. One more example, to keep the days
of the week. The days are mentioned like sun,mon,tuesat. But there is no constant values like this

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 10of 25

for our representation. We have to use some values like 0 to represent sun, 1 to represent mon, 2
represent tue etc.
Another way of keeping the days of the week is as follows using the enumerated declaration.
 enum days
 {
 SUN, MON, TUE,WED,THU,FRI,SAT
 }dow;
Here the variable dow (day of the week) may contain any one of the value given values (SUN,MON
...) and its actual interpretation is 0,1,2 etc.
 The following is a simple program to check the value of the constant name in the enumerated
data type.

/* Example for enumerated type */
enum status
 { TRUE,FALSE };
main()

 { enum status value;
 printf("%d",TRUE); }

Bit fields :
 C permits us to use small bit fields to hold data. We have been using integer field of size 16 bit
to store data. The data item requires much less than 16 bits of space, in such case we waste memory
space. In this situation we use small bit fields in structures.
 The bit fields data type is either int or unsigned int. the maximum value that can store in
unsigned int filed is :- (2 power n) – 1 and in int filed is :- 2 power (n – 1) . Here ‘n’ is the bit
length.
Note :
scanf() statement cannot read data into bit fields because scanf() statement, scans on format data into
2 bytes address of the filed. Bit fields do not have addresses—you can't have pointers to them or
arrays of them.
Syntax :
 struct struct_name
 {
 unsigned (or) int identifier1 : bit_length;
 unsigned (or) int identifier2 : bit_length;
 ………………………………………….
 ………………………………………….
 unsigned (or) int identifierN : bit_length;
 };

Program : bit_stru.c

#include<stdio.h>
#include<conio.h>
struct emp
{
 unsigned eno:7;
 char ename[20];
 unsigned age:6;
 float sal;
 unsigned ms:1;
};

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 11of 25

void main()
{
 struct emp e;
 int n;
 clrscr();
 printf("Enter eno : ");
 scanf("%d",&n);
 e.eno=n;
 printf("Enter ename : ");
 fflush(stdin);
 gets(e.ename);
 printf("Enter age : ");
 scanf("%d",&n);
 e.age=n;
 printf("Enter salary : ");
 scanf("%f",&e.sal);
 printf("Enter Marital Status : ");
 scanf("%d",&n);
 e.ms=n;
 clrscr();
 printf("Employ number : %d",e.eno);
 printf("\nEmploy name : %s",e.ename);
 printf("\nEmploy age : %d",e.age);
 printf("\nEmploy salary : %.2f",e.sal);
 printf("\nMarital status : %d",e.ms);
 getch();
}

POINTERS
Introduction
The word pointer is not a new word for the people and we are using this word in different places with
different interpretations. People are always have some wrong opinion about pointers, like it is very
tough to understand and hard to use etc. Why? What is in a pointer? Nothing to fear, it has lot of
advantages than others. This chapter will relieve you from fear and enjoy with the pointer and its
applications.
What is pointer?

 It is a powerful feature of C Language
 It is a new kind of data type
 It stores the addresses, not values
 It allows indirect access of data
 It allows to carry whole array to the function
 It will help in returning more than one value from function
 It helps for dynamic memory allocation

What is pointer in our regular life? It is an indicator, which helps to reach particular place. It is also
like a symbol, marker, etc. Look the following and find how the pointer is helping the people to
precede towards Coimbatore, using the Hand symbol.
Way to Coimbatore

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 12of 25

 We know some basics regarding the variable declaration and how the memories are being

allotted for them. Memory is divided into small pieces to keep small data called byte (8 Bits). Our
program and data will be stored in somewhere in the memory where the free area is available. The
variables are the names used for reference but everything internally referred by the memory address.
Let us see the following diagrams and how the memory is allocated for the variables.
There is a declarative statement char ch = 'A' ;
At the time of execution the compiler will make following process.

 One byte memory is reserved for the character variable ch
 and store the character value 'A' in that memory location

 The memory allocation may be as follows

The character variable ch is stored 0001 and the value of that location is ‘A’. The address of the
variable is not constant and it may vary for next execution.

Operators in pointers:
The pointers will help us in doing variety of operations and applications. The two essential operators
are given below.

1. * -> Indirection operator, which used to retrieve the value from the memory location
2. & ->Address operator, which is used to obtain the address of variable

Now the above two operators will help in viewing address and values. Consider the declarative
statements
int a =10;

 If we refer a, it returns the value of a as 10
 If we refer &a, it returns the address of a, that is where the memory is allocated for this

variable and
 *(&a) refers to the value of a. Because &a refers the address of a and *(&a) means that

value at address of a
If we test the previous idea via a program, you may be happier. Execute the following program and
realize about the address is retrieval.

/* Program to collect the address of variable */
main()

The address of ch is not a constant for every execution and for any user-defined
variable the address is not constant

 A

 .

 .
 .

000
0

000

1
000

2
 .
 .
 .

Address Value at
the

 .

 .
 .

000
0

000

1
000

2

 .

Address
es

Content of
memory is

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 13of 25

{ int a=10;
 printf("\n Value of a = %d ",a);
 printf("\n Memory address of a = %u",&a);
}
Value of a = 10
Memory address of a = 8716

 Note:

How to declare the pointer variable?
 No need to worry about the declaration of pointer variable, it can be declared as simple
variable declaration with small change as follows.

 Here, the character ‘*’ indicates that the variable is pointer variable. For example, the
declarative statement:
 int *ptr;
 Here ptr is a pointer variable and It will point to one integer memory location.
Before any operations on pointer variable, we must store the address, because the pointer variables
will have address not values.
 int *ptr;
ptr = 10;
The compiler will show an error, because we can’t store value in a variable in this manner. We can
assign the direct address or address of the variable to the pointer variable as follows.
 int a=10;
 int *ptr;
 ptr = &a; /* Address of a is assigned to ptr */
 Now the address of a is assigned to the pointer variable ptr. So, ptr will point the same
memory location where a points to.
 ptr = 0x41700000; /* Direct Address, Hexadecimal */
This assignment statement is direct address assignment and 0x41700000 is an address not a value. So
we can assign the address to the pointer variables in any one of the manners.

How to retrieve the values from the memory? We know that the * operator will help here.
Yes. If we know the address of a, then without the assistance of variable a we can access the values
of a and its illustration is as below.
 int a=10;
 int *ptr;
The following is a pictorial representation of the above declarative statements. Before processing the
assignment statement the memory representation is as follows.

 1000 a (Ordinary Variable)

 1002

 1004 ptr (Pointer Variable)

From this diagram we can conclude the following

 Address of a is 1000.

Memory address is always a positive value. So we can use format string

character %u for printing the address.

Data-type *pointer-variable;

10

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 14of 25

 Value at memory location 1000 is 10.
 Address of pointer variable ptr is 1004.

After the assignment statement ptr = &a, the diagram is as follows
 1000 a (Ordinary Variable)

 1002

 1004 ptr (Pointer Variable)

 From this diagram we can get the following information

 Address of a is 1000 and value at memory location 1000 is 10.
 ptr holds the address of a (i.e. 1000).
 So, ptr points to a indirectly and
 memory address of ptr is 1004

If we refer the value stored at ptr by *ptr, we may expect the result as 1000. But 1000 is not a value
and it is an address of variable a. So, *ptr returns the value stored at location 1000, and returns the
value 10, which is a value of a. The following program is illustrating the previous theoretical
discussions.
/* Accessing values indirectly using pointers */
main()
{ int a=10;
 int *ptr;
 ptr = &a;
 /*Address of a is assigned to pointer variable ptr*/
 printf("\n Value of a = %d ",a);
 printf("\n Value of a = %d ",*ptr);
 printf("\n\nMemory address of variable a = %d ",&a);
 printf("\nMemory address of variable a = %d ",ptr);
 printf("\nMemory address of variable ptr = %d ",&ptr);
}
Value of a = 10
Value of a = 10
Memory address of variable a = 1000
Memory address of variable a = 1000
 Memory address of variable ptr = 5000
From the above program we can come to the conclusions that the value of a can be accessed by
referring a and using the pointer variable by *ptr.
Operations on pointer – Indirect Modification
 What we have discussed so far is about the fundamental idea of pointers. Now we are clear
about how to use pointer variable and access the value of any variable indirectly. Pointer purpose not
only stops with these operations and also is able to change the value of the specified memory
locations indirectly.
int a=10;
 int *ptr=&a; /* Address of 'a' is assigned to 'ptr' */
ptr =100; / Value of ‘a’ is changed indirectly */
We are able to refer the value of any variable indirectly without the help of that variable. The
changes on a variable can also be made without using that variable. The following program
illustrates the indirect change of value of variable.

/* Program for changing values indirectly */
main()
{ int a=10;

10

1000

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 15of 25

 int *ptr;
 ptr=&a;
 printf("\nOld Value of a = %d ",a);
 *ptr=100;
 printf("\nNew Value of a = %d ",a);
}
 Old Value of a = 10
 New Value of a = 100

In the above program we have not made any change in the value of a directly. But the statement
*ptr=100 changes the value of a as 100. Because the variable ptr is pointing to the memory address
of a. So, we changed value of a indirectly.

Pointers and Expressions:
 With the help of simple arithmetic operations a pointer variable can travel any location in the
memory and consider the following as a memory structure for our discussion.

 1000 1001 1002 1003 1004 1005 1006 1007
The declaration
 int *ptr ;
 Assume that the starting address of integer pointer variable ptr is pointing to the first memory
address 1000. If we increment the pointer variable ptr by 1, we may expect ptr will becomes 1001.
But it is not correct? Oh! Why? The variable ptr is an integer pointer variable. Each integer requires
two memory locations. So every increment in ptr will point to next integer memory location, here it
is 1002. Suppose ptr is a character pointer variable, for every increment of ptr, it will be pointing to
the adjacent memory location, because char need 1 byte memory. Look the following examples.
int *ptr;

 Assume ptr is now pointed the location 1000.
ptr++;

 After this statement ptr is pointed to the location 1002
ptr--;

 Now ptr is adjusted to the previous location 1000.
ptr = ptr+3;

 ptr is now at the location 1006
Note:

Pointers and Arrays - Single Dimensional
 Array is a collection of same elements and is stored in continuous memory locations. Are you
able to prove the last point, stored in continuous memory locations? You can prove this statement
when you execute the following program. Assume that the following array elements are stored in
memory as below
 int a[5] = {10,20,30,40,50 };

 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010

/* Program to check the definition of array */
 main()
 { int i, a[5] ={10,20,30,40,50};

 The pointer variables are always adjusted to the next memory location

depending on its data type.
 Operations other than addition and subtraction are not possible

 10 20 30 40 50

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 16of 25

 for(i=0;i<5;i++)
printf("\n%d is stored at location %d ",a[i],&a[i]); }
10 is stored at location 1000
20 is stored at location 1002
30 is stored at location 1004
40 is stored at location 1006
50 is stored at location 1008

 What is base address of array? How to obtain the same? Consider the following declaration
and see how the base address or starting address of the array will be obtained.
 int a[5] = {10,20,30,40,50};
First element of array is referred by a[0] and its address is by &a[0]. Here &a[0] refers to the starting
address or base address of the array a. Otherwise the name of the array itself refers the base address,
i.e. a. Once we know the starting address of array, we can travel through all the elements of the array
easily by making simple arithmetic operation.
int *ptr;
 ptr = &a[0]; /* &a[0] refers to the starting address of array */
 (or)
ptr = a; /* a also refers to the starting address */

The first element is referred by *ptr (or) *(ptr+0).
Second element is referred by *(ptr+1).
Third element is referred by *(ptr+2).
Fourth element is referred by *(ptr+3) and in common, element is referred by *(ptr+i).
 The following program is an example for processing the array elements using the pointer
variable.

 /* Program to process the array using pointers */
 main()
 {
 int a[5] ={10,20,30,40,50};
 int i, *ptr;
/*Starting address of array is assigned*/
ptr=&a[0];
 for(i=0;i<5;i++)
 printf("\n%d is stored at location:%d",
 *(ptr+i),(ptr+i));
 }
10 is stored at location : 1000
20 is stored at location : 1002
30 is stored at location : 1004
40 is stored at location : 1006
50 is stored at location : 1008
Now we are going to sort the numbers using pointers. We are also finding the maximum and
minimum from the set of numbers after sorting.
 /* Program to sort numbers using pointers */
 main()
{
 int a[15],n,i,j,temp,*ptr;
 printf("\nHow many numbers ");
 scanf("%d",&n);
 printf("\nEnter %d values\n",n);

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 17of 25

 for(i=0;i<n;i++)
 scanf("%d",&a[i]);
 /* Starting address of a is assigned to ptr*/
 ptr = a;
 printf("\nValues before sorting\n");
 for(i=0;i<n;i++)
 printf("%d\t",*(ptr+i));
 for(i = 0 ; i<n-1 ;i++)
 for(j =i+1 ; j<n; j++)
 if (*(ptr+i) > *(ptr+j))
 {
 temp = *(ptr+i);
 *(ptr+i) = *(ptr+j); /* Swaping */
 *(ptr+j) = temp;
 }
 printf("\nValues after sorting\n");
 for(i=0; i<n; i++)
 printf("%d\t", * (ptr + i)); }
How many numbers 5
Enter 5 values
22 55 11 44 33
Values before sorting
22 55 11 44 33
Values after sorting
11 22 33 44 55
Pointers and Strings:
 String is a collection of characters and it can be also called as character array. In the previous
topic we discussed many programs using numbers. The pointers are beneficial in character-based
application also. The character pointer variable is declared as follows
char *ptr;
Here *ptr is a pointer variable, which points to the array of characters. The string value can be
assigned to the variable as below
 char name[]="Karthikeyan";
The starting address (base address) of the string is taken any one of the following ways with the help
of above declaration
 name (or) &name[0]
 /* Both are points to the starting address of the string */
The statements
 char *ptr;
char name[] =”Karthi”;
 are declarative statements and the assignment statement is
ptr = name;
Here the starting address of the character array variable or string variable name is assigned to the
pointer variable ptr. Now both name and ptr points to the same memory location. The following
diagram illustrates the above.

K a r t h i \0

 1000 1001 1002 1003 1004 1005 1006 1007

Now we are going to see how to access the characters of the string variable using pointers.

‘ \0’ is the NULL character, which indicates end of string

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 18of 25

/* Accessing string values using pointers */
main()
{ char *ptr, name[]="Karthi";
 int i , l;
 ptr = name;
 /*Starting address is assigned to ptr*/
 l=strlen(name);

 for(i=0;i<l;i++)
 printf("%c",*(ptr+i));
 }
Karthi

How to use pointer variable to read a string value? Test the following simple program.
#include <stdio.h>
main()
{
char *s;
printf("\nEnter a string : ");
gets(s);
printf("\nYour given string is : ");
while(*s)
 printf("%c",*s++);
getch();
 }
Enter a string : You are welcome
Your given string is : You are welcome

The program given below implements the strcpy() function, it is used to copy the content of one
string to another sting variable.

 /* Implementation of strcpy command */
main()
{ char s1[15],s2[15],*ptr;
 int i,j,l;
 printf("\nEnter a source string : ");
 gets(s1);
 ptr = s1;
 l=strlen(s1);
 for(i=0;i<l;i++)
 s2[i] = *(ptr+i);
 s2[i]='\0';
 printf("\nCopied string :%s",s2);
 }
Enter a source string : karthi
Copied string :karthi

Pointers and Functions:
 We discussed the importance of function in a program and how the same is used in various
applications in the previous chapter. The drawback of simple function is that, we can't return more
than one value from it. The change made in the called function does not reflect in the calling
function. (Calling function – A function from which the new function is invoked and the Called
function – A function to which the control has to be transferred). One more problem is that we can’t

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 19of 25

pass the entire array to the function. The problem of function is explained by using the following
program.

/* Testing the values of changes */
main()
{ int a=10;
 printf("\nBefore change : %d ",a);
 change(a);
 printf("\nAfter change : %d ",a);
 getch();
}
void change(int b)
{ b=100;
 printf("\nInside the function : %d ",b);}
Before change : 10
Inside the function : 100
After change : 10

In this program the value of a in main() is 10 and it is passed to the user defined function change().
The function receives the value of a via b. Inside the function the value of b has been changed as
100. But this change will affect only in b not in the value of a, because b is local to the function. The
value of a has been copied to b. This is equivalent to the statement b=a; So any changes in b will
never affect the value of a here. Go ahead and read the next topic to solve these problems.
How to change the value using function?
 Are you able to change the value of argument in the called function? If so, how? Using
pointers you can achieve this. You can pass the address of a variable to the calling function and so
the changes made in the called function will be reflected in the calling function. The following
program example illustrates this idea.
/* To changes the values of variables using pointers */
main()
{int a=10;
printf("\nValue before change = %d ",a);
change(&a); /* Passing address of a*/
printf("\nValue After change = %d ",a);
}
void change (int *b)
{ *b=100; /* Changing values indirectly */
}
Value before change = 10
Value After change = 100
How the value of a have been changed here? From the main() we are passing the address of a to the
function by the statement
 change(&a); /* Address of a is passing */
Now we are passing the address of a, not the value of a. So the address must be received by the
pointer variable only and the function definition will be
void change(int *b)
At the time of execution the address of a has been assigned to the pointer variable b, which is
equivalent to the following statement
int *b;
b = &a;
 Now both a and b is pointing to the same memory location and any change made in b will
automatically affect the value of a.

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 20of 25

 Same variable name in many part of the program. Confusion. The name of the variable in one
function may be same in another function. The variable name is only for the user reference not for
the system. This problem is clearly presented in the following program.

/* Getting address of variable */
main()
{ int a=10;
 printf("\nAddress of 'a' in main : %d ",&a);
 change() ;
}
void change()
{ int a=100;
 printf("\nAddress of 'a' in function: %d ",&a);}
Address of 'a' in main : 5000
Address of 'a' in function : 7000

In this program there are two variables with same name as a. One is in main() and another is in the
user defined function change(). For every declaration the memory allocation for each variable is
different from others. So that the result of the above program is 5000 and 7000, two different
addresses even though names are same.

Call by Value & Call by reference
 A function can be invoked by so many ways as we discussed in the previous chapters. The
way of calling function can be classified into two,

1. Call by value
2. Call by reference

Here is a program, which finds the sum of two numbers illustrates the above ways.
Call by value:
 This can be done in two ways either using a variable or directly passing a value.
/* Passing values to the function */
main()
{int a=10,b=20,c;
c=sum(a,b); /* Passing the value of a,b */
printf("\nSum = %d ",c);}
int sum(int x, int y)
{ return (x + y);}
In this program the value of a and b has been passed to the function to find the sum. It's just like the
following simple assignment statement
 x = a and y = b;
We can pass the value to the function by giving direct value also.
 sum(10, b); sum (10,20)
Call by reference:
 What is reference? In some occasions, people may want to clarify about others using the
reference in the real life. Here the variables are indirectly using the reference instead of direct
involvement. So the function can also be invoked by using the reference that is addresses (Using
pointers). The previous program with simple modification using reference.

 /* Example for Call by Reference */
main()
{
int a=10,b=20,c;
c = sum(&a, &b); /* Passing address of a, b */
printf("\nSum = %d ",c);

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 21of 25

}
 int sum (int *x, int *y)
 {
 return (*x+*y);
 }

 What is the difference between the previous two programs? In the first one values are passed
to the function in a simple manner. But in the second one, address (i.e. reference) of those variables
is passed.
Passing array to the function:
 In general we are not allowed to carry the whole array to the function. We can pass the
elements one by one. If we need to process the whole array at the same time, this provision will not
help. Now the hidden features of pointer will be used to carry the entire array without much more
risks.
How it is possible? It is very simple. Array elements are always in the continuous memory locations.
First you obtain the base address of the array. If we get the starting address of the array, we can reach
any element in the array by making simple arithmetic operations. For the function side, just we have
to pass the base address of array to the function. This idea is illustrated in the following program.
/* Passing array to the function using pointers */
main()
{ int a[]={10,20,30,40,50};
 display(a);
 /* Passing the base address of array */
}
display (int *x)
{ int i;
 printf("\n Array elements are : ");
 for(i=0;i<5;i++)
 printf("%5d",*(x+i));
}
Array elements are : 10 20 30 40 50
In the above program the starting address of array is passed to the function by the statement
 display(a);
The function will receive the starting address of array by defining the function argument as follows.
display(int *x)
This is equivalent to the assignment as x=a; The following is a program to test the previous idea by
sending an array elements to the function and the elements are doubled in the function. Finally the
changes are ensured by displaying the values in main() function.
/* Program to pass the whole array to the function */
#include <stdio.h>
main()
{int i, a[5]={10,20,30,40,50};
clrscr();
printf("\nElements before invoking function : ");
for(i=0;i<5;i++)
 printf("%5d",a[i]);
test(a);
printf("\nElements after invoking function : ");
for(i=0;i<5;i++)
 printf("%5d",a[i]);
getch();
}

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 22of 25

test(int *x)
{ int i;
 for(i=0;i<5;i++)
 *(x+i) = *(x+i) * *(x+i);
}
Elements before invoking function : 10 20 30 40 50
Elements before invoking function : 100 400 900 1600 2500
I hope now you have an idea about how the array elements are carried to the function. Here is a
program to find the mean, variance and standard deviation of N floating point numbers. Formula to
calculate the standard deviation is
 Standard deviation = variance
Where
 Variance = 1/n  (Xi - Mean)2 and i= 1 to n
 Mean = 1/n  Xi
So , to find standard deviation the following is the general steps.

1. Find the sum and mean
2. Find the variance and
3. Finally calculate the standard deviation.

/*Program to find the standard deviation using pointers */
#include <math.h>
main()
{ float a []={1.1,2.2,3.3,4.4,5.5};
 sd(a);
}
void sd (float *x)
{
int i;
float s1=0,s2=0,s3=0,sddev,mean,var,temp;
printf("\nValues : ");
for(i=0;i<5;i++)
{
 s1 += (*(x+i)); /* Finding summation */
 printf("%5.2f\t",*(x+i));
}
mean = s1/5; /* Calculation of Mean */
for (i=0;i<5;i++)
{ temp=*(x+i)-mean;
 s2+=pow(temp,2);
}
var = s2/5; /* Calculation of variance */
sddev = sqrt(var); /* Calculation of S D */
printf("\nMean = %5.2f",mean);
printf("\nVariance = %5.2f",var);
printf("\nStd.Deviation = %5.2f",sddev); }
Values : 1.10 2.20 3.30 4.40 5.50
Mean = 3.30
Variance = 2.42
Std.Deviation = 1.56
2 D Array & Pointers

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 23of 25

 As mentioned about the pointer, it gives a very good support to arrays including two-
dimensional array. Matrix is a traditional and very famous example for a two dimensional array.
Consider the following declarative statement
 int a[2] [3] ;
This declaration tells

 a is a two dimensional array
 Maximum number of elements are 6 (2 x 3 = 6)
 and all are integer type of data .
 So, each element occupies 2 bytes (Totally 12 bytes)

The values for the above two-dimensional array are initialized as below and its corresponding
memory allocation is illustrated.
 int a[2][3] = {
 {10,20,30}, First row
 {40,50,60}, Second row
 };

 10 20 30

 1000 1002 1004
 40 50 60

 1006 1008 1010
Two-dimensional array is a collection of single dimensional arrays and each single array is pointed
by the pointer variable. Here a[0] points to the first single dimensional array, a[1] points to the
second single dimensional array etc.
a [0] can be rewritten as *(a+0) and
a [1] can be rewritten as *(a+1) etc.
So, a[0] refers to the starting address of first array, and its values are referred as,
a[0][0] => First row first column
a[0][1] => First row second column etc.
a[0][0] can be referred as *(*(a+0)+0))
 *(a + 0) => Starting address of first array i.e. a[0]
(*(a+0)+0) => address of first row’s first element i.e. &a[0][0]
((a+0)+0) => Value of first row’s first element i.e. a[0][0] (* is the value at the location
operator)
Value returned by a[0] is 1000.
Value returned by a[1] is 1006.
Value returned by &a[0][0] is 1000
Value returned by &a[0][1] is 1002 etc
The following is an example program to check the starting address of each array.

/* To get the base addresses of 2D Array */
main()
{ int a[2][3]={ {10,20,30}, {40,50,60}, };
 int i;
 for(i=0;i<2;i++)
 printf("\nBase address of %d array :%u",i+1,a[i]);
}
Base address of 1 array : 1000
Base address of 2 array : 1006

One more program is here to give more idea about two-dimensional array and pointers.
/* Accessing the elements of array */
main()
{ int a[2][3]={ {10,20,30}, {40,50,60}, };

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 24of 25

int i , j;
 for(i=0;i<2;i++)
 for(j=0;j<3;j++)
printf("\na[%d][%d] = %d is stored at:
 %u", i,j, a[i][j], &a[i][j]);
 getch();}
a[0][0] = 10 is stored at : 1000
a[0][1] = 20 is stored at : 1002
a[0][2] = 30 is stored at : 1004
a[1][0] = 40 is stored at : 1006
a[1][1] = 50 is stored at : 1008
a[1][2] = 60 is stored at : 1010
Referring the elements of two-dimensional array is little bit difficult than a single dimensional array.
The following is an example for this reference, which is based on the previous declaration and its
addresses. We are going to refer the element at a[1][2], the pointer notation is as follows. Here i is 1
and j is 2.
((a + 1)+ 2)
 1. *(a+1)

 It returns the starting address of second array equal to a[1] and it returns 1006
 2. (*(a+1)+2)

 The value returned by *(a+1) will be incremented by 2. So it returns the
address 1010.

 3. *(*(a+1)+2)
 It returns the value of that location. i.e. Value at location 1010 is 60.

 The next program illustrates how to access the elements of a two-dimensional array
using pointers

/* Accessing the elements of 2D using pointers */
main()
{
int a[2][3]={
 {10,20,30},
 {40,50,60},
 };
int i , j;
for(i=0;i<2;i++)
 for(j=0;j<3;j++)
 printf("\n%d is stored at : %u",
 ((a+i)+j),(*(a+i)+j));
 getch();
 }
10 is stored at : 1245032
20 is stored at : 1245036
30 is stored at : 1245040
40 is stored at : 1245044
50 is stored at : 1245048
60 is stored at : 1245052

Array of pointers
What is the use of array? Array is used to store number of elements in a single variable. The
elements may be of any type. But all of them must be of the same type. We have discussed many
programs using arrays with different type of values like integer, real and character etc.

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 25of 25

Can we store addresses as array elements? Yes. We can. Instead of simple data, the address can be
stored. The way of declaring array of pointer is explained in the following.
 int *ptr;
Here ptr is a pointer variable, which points to one integer memory location. With small change in the
above declaration, the statement is
 int *ptr[5];
 Here ptr is variable and it is allowed to have addresses of 5 variables not values. In this case we can
store 5 different integer addresses to this array variable. Elements of the array may contain different
addresses.
 int a,b,c;
 ptr[0] = &a;
 /* Address of a is assigned to first element of array */
 ptr[1] = &b;
 /* Address of b is assigned to second element of array */
 ptr[2] = &c;
The value of a can be referred as *ptr[0]. The following is a program gives an idea of our discussion.
 /* Example for array of pointers */
 main()
 {
int a=10,b=20,c=30;
int *ptr[5]; /* Array of pointers */
clrscr();
ptr[0]=&a;
ptr[1]=&b;
ptr[2]=&c;
 /* Value of pointer variable is accessed */
 printf("\na = %d ",*ptr[0]);
 printf("\nb = %d ",*ptr[1]);
 printf("\nc = %d ",*ptr[2]);
 printf("\n Address of a = %u",&a);
 printf("\n Value of ptr[0]= %u",ptr[0]);
 }
 A=10
 B=20
 C=30
Address of a = 12042
Value of ptr[0] = 12042
In the above program ptr[0] holds the address of variable a. So &a and ptr[0] contains the same
values (ie address).

Calling functions using Pointers:
Normally functions are invoked by specifying its name with necessary arguments. Now we are going
to invoke the function using pointers. The address of variable can be obtained as follows.
 int a;
 printf(“\nAddress = %u “,&a);
The output of above would be address of the variable a. It may be 1240, which is not always same.
Address of the function can also obtained as illustrated below.
/* Obtaining the address of function */
main()
{ int test()
 printf(“\nAddress function test = %u “,test);

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 26of 25

 }
This program returns the address of function test(). This address can be assigned to a pointer of the
function variable as like below.
int test(); /* Function prototype declaration */
int (*ptr)(); /* Pointer to function */
Address of function test() is assigned to the pointer variable ptr as
 ptr = test;
The function can be invoked using pointer as below
 (*ptr)(); /* Similar to calling as test() */
The following a complete program, which illustrate the above discussion like how the functions are
called using the pointers.
/* Illustrating function calling using pointers */
main()
{ void test();
 void (*ptr)();
 ptr = test; /* Address assignment */
 (*ptr)(); /* Function Calling */
}
void test()
{ printf("\nHello ");}
Returning address
 The previous section provides an idea about the function and pointers that indirectly returns
the address. But we can return a memory address to the calling function as like a normal function
return type. Look the following code
 int Read() => The function returns an integer value
 char Read() => The function returns an character value
 void Read() => The function returns nothing
 int * Read() => Now the function returns memory address.
The following example program illustrates the idea of returning an address from the function. The
program read the array elements in the function and returns the base address of the array to the
main() function. Later the address will be used in further process in main() function.
 /* Program which read value in function Read() and return the
address to the main() function */
#include <stdio.h>
#include <conio.h>
int * Read(int);
main()
{
int *a,n,i;
clrscr();
printf("\nEnter the size of the array :");
scanf("%d",&n);
a = Read(n);
printf("\nArray elements are \n");
for(i=0;i<n;i++)
 printf("%5d",*(a+i));
 getch();
}
int * Read(int m)
{
int *p,i;

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 27of 25

p=(int *) malloc(sizeof(int) * m);
printf("\nEnter %d values ",m);
for(i=0;i<m;i++)
 scanf("%d",(p+i));
return p;}

Structures and Pointers:
The features of pointers are not limited with simple application. It is used in the structure also. The
declaration of structure pointer is as follows.

Proceed with the following example and see how an ordinary variable and pointer variables are used
in the program.
struct stu *s1; /* s1 is structure pointer */
struct
 {
 char name[15];
 int rollno;
 }s1, *s2;
In the above declaration s1 is an ordinary structure variable, but s2 is a pointer to structure variable.
The members of the structure s1 will be referred using dot (.) operator. But the members of pointer to
structure variable will be accessed using an operator called an arrow operator (). In simple
definition, instead of dot(.) operator we have to use the arrow operator. So the members of s2 are
referred as s2name and s2rollno. The following program illustrates our discussion and may be
clarified easily.

/* Example for pointers and structures */
main()
{ struct stu
 {
 char name[25];
 int rollno;
};
struct stu s1, *s2;
printf("\nName of the student : ");
scanf("%s",s2->name);
printf("\nRoll No. : ");
scanf("%d",&s2->rollno);
 printf("\nName: %s\nRoll No :%d ",s2->name,s2->rollno);
 }

STORAGE CLASSES

The variable can be declared with additional functionality by using storage classes. When we add

these features, the variable may be with different qualifications like scope, default value etc, are

different to compare with ordinary variable declaration.
The variable declaration with storage class is
 StorageClass Datatype Variable(s);

There are four storage classes available in C and they are

1. Automatic variable

2. Static variable

 struct structure-tag * structure-pointer;

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 28of 25

3. External variable

4. Register variable

Automatic variable:

 The variable of automatic storage class can be declared using the key word auto.

 In default all the variables are automatic variable. So, it is optional.

 Automatic variable contains a garbage value by default.

 Life of the variable is local or inside the block

The variable declaration with automatic storage class is as follows.

 auto int a;

Variable Name

 Integer type

 Automatic Storage class

 Automatic is optional , so the above declaration can be replaced by the traditional statement

int a; /* Default automatic variable */

Static storage class:

 Sometime we are in a position to retain the last value of the evaluation in a program or

initialization should be only once for many function calls, to obtain this feature, static storage class

is used, some additional information about it

 It is used to keep the values as static

 Default value of static variable is 0 (Zero)

 Life is until the program termination

 Initialization of a variable is only once

 Scope is local only

When the variable is declared as static, its default value is assigned as 0 (Zero). Look the following

example and you may clear the above.

main ()

{

 static int a ;

 printf(“Value of a = %d “,a);

}

 Value of a = 0

Another characteristic is one time initialization, this is illustrated in the following program.

/* Example for static storage class */

main()

{ int i;

 for(i=1;i<=3;i++)

 { static int a=10;

 printf("\na = %d ",a);

 a++;

 } }

Here the variable a is declared inside the for block. So, for every execution there is a variable

declaration. But here with additional keyword static. So the initialization is only once not every

execution. You check the same program without static storage class. For every execution the result

is same.

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 29of 25

 Another characteristic is scope of the variable. The scope of the variable is only inside the

block not everywhere.

/* Example for static with block */

main()

{ int a=10;

 printf("\nValue of a = %d ",a);

 { static int a=100;

 printf("\nValue of a = %d ",a);

 }

 printf("\nValue of a = %d ",a);

}

Value of a = 10

Value of a = 100

 Value of a = 10

 Here the scope is local, so while exiting from the block the variable is not taken into account

and removed from the memory.

 One more characteristic is local. That is the variable could not be accessed outside of the

function.

 /* Using static */

 main ()

 {

 int i;

 for(i=1;i<=5;i++)

test(); }

 test()

 { static int a=5;

 printf("\na = %d ",a);

 a++;

 }

/* Without using static */

 main ()

 {

 int i;

 for(i=1;i<=5;i++)

 test(); }

 test()

 { int a=5;

 printf("\na = %d ",a);

 a++;

 }

 a = 5

 a = 6

 a = 7

a = 5

a = 5

 a = 5

External variable:

 We have discussed so many programs and all of them are based on the local variable.

Suppose any variable is going to be referred all the places of the program, we can declare that

variable as external variable. This type of declaration is also called as global variable declaration

and can be declared using the keyword extern.

 The external variable should be declared outside of the main() function or before the main()

function. If it is declared outside of the main() there is no need of the keyword extern. The

following is a piece of code with external variable declaration.

 int a = 10; /* Global declaration */

 main ()

 {

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 30of 25

 // Statements of main function

 }

 void test()

 {

 // Statements of user defined function

 }

 The visibility of the global variable a is illustrated in the following diagram. Here the variable

a is visible not only to main() function but also all the sub-programs.

The usage of external variable is explained in the following program.

 /* External storage Class */

extern int a=10; /* Global variable */

main()

{printf("\nIn main a = %d ",a);

test();

}

 void test()

{ printf("\nIn function a = %d ",a);

}

In main a = 10

 In function a = 10

From the result we can conclude that the variable a can be accessed any where in the

program. One more program, which illustrates that any changes will affect the global variable value.

/* Example for external variable */

int a=10;

main()

{ printf("\nBefore Call a = %d ",a);

 a=a+10;

 test();

 printf("\nAfter Call a = %d ",a);

}

void test()

{printf("\nValue of a in function = %d ",a);

a=a+10; }

Before Call a = 10

Value of a in function = 20

 After Call a = 30

Register storage Class

Main
program

Sub
Program2

Sub
Program1

Global Variable a

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 31of 25

What is register? Register is a small area, which is used to store the data temporarily while

doing calculation. Few important registers are like AX,BX, Count Register, Status register. Main

uses of these registers are to reduce the time to perform the calculations. In general the value is

stored in memory (RAM) and it will move to the register for the process. But it takes time if the

process is very often. In this situation we can keep the values in the register itself. So the memory

movement will be reduced.

register int i;

Here the value of i is stored in the register instead of memory. If it is going to be used

frequently, like in the looping statement, it is very useful.

/* Example for register storage class */

main()

{ register int i;

 for(i = 1;i < =100; i++)

 printf(“\n%d “,i);}

Note :Generally Register size is 16 bit. So there is no possibility to store the float or double value.

KARPAGAM ACADEMY OF HIGHER EDUCATION
Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: II (Structures, Unions, Pointers) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 32of 25

Review Questions

1. Define structure? Discuss the necessity of structure in a program
2. How to declare structure? Example
3. How the members of structure are accessed?
4. Write short notes on array of structure.
5. Write short notes on nested structure.
6. Explain about how the structure variables are passed to the function.
7. Explain with example how the memory allocation is made for structure.
8. What is the advantage of union?
9. Differentiate structure and union with an example
10. Write short notes on typedef.
11. Write short notes on enumerated type
12. What is the need of function in a program?
13. What are the two general types of function?
14. Write some example for library function
15. Write the general format of function definition
16. What is parameter?
17. Write short notes on return statement
18. Discuss the various types of function with necessary examples
19. How can we pass the whole array to the function?
20. What is the use of void type?
21. What is the Default return type of the function ?
22. Define recursive function. Discuss with example
23. Write a program to find sum of N numbers using recursive function
24. What is calling convention?

Review Questions

1. What is the need of pointers in a program?
2. What is the disadvantage of function?
3. How to declare pointer variables?
4. What are the operators associated with pointer variable?
5. How to obtain the address of a variable?
6. Write short notes on pointer arithmetic
7. Write short notes on pointers and function
8. Explain the role of pointers in string with an example
9. Call by value and Call be reference – Explain
10. How to pass the whole array to the function?
11. Write short notes on pointers and two – dimensional array
12. Prove that how the array elements are stored in consecutive memory locations
13. How do we use array of pointers? Explain
14. Can we call a function using pointers? If so how?
15. What is the need of Dynamic memory allocation?
16. How to allocate memory dynamically>
17. Why we have to release the memory and how?

QUESTIONS OPTION1 OPTION2 OPTION3 OPTION4 ANSWER

Process of calling a function

using pointers to pass address

of variable is known as

call by value
call by

reference
call by method call by address call by reference

The process of passing actual

values of variable is known

as ________

call by value
call by

reference
call by method call by address call by value

In pointers when function is

called ______ are passed as

actual arguments

values addresses operators objects addresses

In pointers ______ is called

arrow operator
> < * & >

_______ method is for

packaging data of different

data type

structure union pointer function structure

_____ keyword is used to

declare structure
bit struct union array struct

Fields within structure are

called ______
data variable member subelements member

Linking member and a

variable in structure is

established using

* & dot > dot

Structure must be declared

_____ if it is to be initialized

inside function

intern extern static register static

_____ operator is used to

find the number of bytes

occupied by a structure

size atoll sizeof strlen sizeof

______ is convenient tool for

handling group of logically

related data items

union structure bitfields array structure

All members of ______ use

the same storage location in

memory

union structure bitfields array union

If p is an integer pointer with

value 2800, then after the

operation p=p+1 ,the value of

2801 2802 2803 2804 2802

In incrementing pointer ,

value is increased by the

length of the data type it

increment

factor
scale factor size factor keywords scale factor

The ____ address is the

location of the first element

of the array

memory base starting end base

Pointers can be compared

using ________ operators
logical relational arithmetic conditional relational

Pointer cannot be used

in______
addition subtraction

multiplication

& division
modulo multiplication & division

A pointer contains ________

value until it is initialized
initial address garbage null garbage

In pointer scale factor for

character data is _______

byte

1 2 4 8 1

______ operator is used to

compare all members of

structure

= == + ** ==

___ operator is used to assign

value of one structure to

another variable

= == != assign =

KARPAGAM ACADEMY OF HIGHER EDUCATION

PART - A (ONLINE EXAMINATION)

MULTIPLE CHOICE QUESTIONS (Each question carries one mark)

SUBJECT: PROGRAMMING FUNDAMENTALS USING C/C++

On comparing two structure

variables of the same

structure using = = operator

0 3 1 2 1

On comparing two structure

variables of the same

structure using != operator

0 1 TRUE FALSE 0

In pointer * operator is

known as ________operator
direction indirection arrow dot indirection

__________ are constructed

or derived data types
structure integers string long double structure

_____ is a collection of

logically related data items of

different data type

array structure string float structure

The name of the structure is

called________
structure tag

structure

element
field name item name structure tag

The structure template must

end with a _____
_ underscore ; semicolon . Period : colon ; semicolon

Members of one structure

variable can be copied to that

of another variable of the

assignment

operator (=)

newline

operator (\n)

pointer

operator (*)

member

operator (.)
assignment operator (=)

 _____ is called the member

operator
* asterisks ; semicolon . Period : colon . Period

Each member of a structure

must be declared

independently for its

size and name name and type
height and

length
scope and life name and type

Convenient way of

representing the details of all

students in a class is ____

array of

structures

two

dimensional

array

array of names
structure with

arrays
array of structures

The individual members of a

structure cannot be initialized

inside the structure template.

true always
can be

initialized if it

is static

false always
can be

initialized for

arrays of

true always

Two structure variables are

of same structure. Which of

the following operations

assign one

variable to

another

compare one

variable with

other

add/multiply

one variable

with other

all the above
add/multiply one variable

with other

Unions have the same syntax

as the ____
structures arrays pointers functions structures

Unions are declared using

the keyword________
struct union define declare union

_______ contains many

members of different data

types but can handle only

structure union array strings union

C language does not permit

_________ of structures

partial

initialization

initialization of

individual

elements

initialization of

entire variable

assign values

using =

operator

initialization of individual

elements

Each memory location has a

number associated with it

called ________

bit pointer byte address address

Data type of a pointer is

signed

character or

integers

unsigned long

integers

same as the

data type of

variable to

double

precision real

numbers

same as the data type of

variable to which it points

______ is called the address

operator
& * % ~ &

Memory addresses are

_________ numbers
long integer

unsigned

integer
floating point octal unsigned integer

_______ reduces length and

complexity of program
structure union pointers integers pointers

What does the following

segment of code prints : int

x,*p; p=&x; printf(“%d”,*p);

address of

variable x

any integer

value

value stored in

variable x

address stored

in pointer p
value stored in variable x

In 16 bit machine, a pointer

that is pointed to float type of

data will have scale factor

2 4 8 16 4

Nesting of structures means

array of

structures

structure with

arrays

structure

within

structure

structure with

functions
structure within structure

_______ enables us to access

a variable that is defined

outside the function

structures unions pointers arrays pointers

Use of _________ arrays to

character strings saves

storage space in memory

character float integer pointer pointer

p is a pointer to 2 D array,

then ______ points to the

first element in ith row

p+i *(p+i) *p + i p+*i *(p+i)

*p[3] declares p as
pointer to an

array of three

elements

an array of 3

pointers

pointer to the

number 3
function of 3 an array of 3 pointers

Making a pointer point to

another pointer is called

nested

indirection

recursive

indirection

multiple

indirection

array

indirection
multiple indirection

What does the following

segment of code prints : int

x,*p; p=&x; printf(“%u”,*p);

address of

variable x

address of

pointer p

value stored in

variable x

address stored

in pointer p
value stored in variable x

Pointers can be made to point

to _____
functions arrays structures all the above all the above

During structure

initialization, the

uninitialized member will be

\0 000u 0x 0 0

During structure

initialization, the unitialized

member will be assigned a

 \0 ' 000u 0x ' \0 '

Initializing only first few

members of a structure and

leaving other members

primary secondary partial first partial

Which of the following is not

true

A pointer

variable can be

assigned the

It can be

assigned the

value of

It can be

prefixed with

an increment

It can be

multiplied by a

constant

It can be multiplied by a

constant

When an array x is assigned

to a pointer variable it points

to______

the base

address of x
address of x[1]

the last address

of x

address of x[0]

+ 1
the base address of x

Which of the following is the

correct output for the

program given below?

llo hello ello h hello

Which of the following is not

correct

char

str[5]=”good”;

char *str =

“good”;

char *str;

str=”good”;

char str[5];

str=”good”;
char str[5]; str=”good”;

Which of the following is not

correct

int *p, x=5;

p= &x;
int *p; p=&5;

int *p,x,y;

x=y+5; p=&x;
int *p; *p=5; int *p; p=&5;

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: IV (Memory Allocation, File I/O) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 1of 19

UNIT-IV
Syllabus

Memory Allocation in C++:
Differentiating between static and dynamic memory allocation, use of malloc, calloc and free

functions, use of new and delete operators, storage of variables in static and dynamic memory
allocation.
File I/O, Preprocessor Directives:

Opening and closing a file (use of fstream header file, ifstream, ofstream and fstream
classes), Reading and writing Text Files, Using put(), get(), read() and write() functions, Random
access in files, Understanding the Preprocessor Directives (#include, #define, #error, #if, #else, #elif,
#endif, #ifdef, #ifndef and #undef), Macros.

Files
Introduction
The program upon execution will require some data as input to be processed to yield the results. As
the data are stored temporarily, the data has to be reentered to see the results. Imagine, if the volume
of the data is high like 1000 records, is it possible for us to reenter the voluminous amount of data
each time. This is the major draw back of previous programs. This can be overcome by using files.
The file-based programs are used to store the data permanently and can be referred in the future.
FILE is a predefined structure, which maintains all the information about the files we create.
Information such as the location of buffer, the pointer to the character in the file, the end of file and
mode of the file etc. We may perform the following operations in a file

1. Read data from the file
2. Write data into the file

The operation of reading and writing may be performed either character by character or word by
word or line by line or record by record.
 How to declare FILE type variable?
We already know FILE as a predefined structure. The file pointer is declared as follows.

Where file-pointer is a pointer variable, which points to the first character of an opened file.
Example: FILE *fp; /* fp is a file pointer */
Here fp is a file-pointer, which points to the first character of the file (Starting address of the file). If
we know the starting address then we can access all the data of file using the features of pointers by
adjusting into its next locations.
How to Open / Close the file?
The purpose of using a file may be to read or write data. To do any of the two functions first we must
open the file. The file can be opened by using the library function fopen() and its format is

Where filename is the name of the file to be opened and mode is the purpose of opening the

file like read / write / append.
If the file exists, it is opened and the fopen() function returns the starting address of t he file. If
fail on opening the result is NULL.
For example

fopen(“stu.dat”,”r”);

FILE *fp = fopen(filename, mode);

FILE * file-pointer;

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: IV (Memory Allocation, File I/O) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 2of 19

=>”stu.dat” is the name of the file and “r” is mode of opening the file (“r” indicates the
read mode). If success, it returns the starting address of stu.dat file.

The file may be opened in any one of the following modes:-
Mode Description

w Create a new file for writing

r Open the available file for reading

a Open the file for appending

w+ Create the new file for both operations (read & write)

r+ Open the available file for both operations (read & write)

a+
Open the available file for both (read & write) operation
with append

 If an already existing file is opened in writing mode the contents of it will be lost and a new
file is created with the same name.

 If an already existing file is opened in append mode the contents of will
 not be lost and a new information can be added to the existing data.

 If you are going to handle binary files then you will use below mentioned access modes
instead of the above mentioned:

"rb", "wb", "ab", "rb+", "r+b", "wb+", "w+b", "ab+", "a+b"

Examples with different type of opening modes are given below, assume the result is assigned to a
FILE pointer variable.
1. fopen(“stu.dat”,”r”)

- stu.dat is opened for reading the data and file must exist.
- If no such file exists, this function returns NULL value.

2. fopen(“stu.dat”,”w”)
- The file stu.dat is created for writing the data.
- Every time a new file will be created with the same name.
- Data will be overwritten

3. fopen(“stu.dat”,”a”)
- The file stu.dat is opened for appending data at the end of file.
- If no such file , new file is created for writing.
- New data will be added to the end of already existing data.

4. fopen(“stu.dat”,”r+”)
- The file is opened for both purposes (Reading and Writing).

5. fopen(“stu.dat”,”w+”)
- The file is created for both purposes (Reading and Writing).

6. fopen(“stu.dat”,”a+”)
 - The file is opened for both purposes. If the file is not existing, new file is created.

The complete relationship between the file pointer and assignment of file to it is illustrated below:
FILE *fp;

 fp = fopen(“test.dat”,”r”); or
FILE *fp= fopen(“test.dat”,”r”);

In this declaration fp is a file pointer and it points to the first character of the file test.dat. Suppose
the file does not exist, the fopen() returns NULL value. You can use the following program to check
the availability of the file.
 /* Example for testing the availability of the file */
 main()
 { FILE *fp;

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: IV (Memory Allocation, File I/O) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 3of 19

 fp = fopen(“test.dat”,”r”);
 if (fp= = NULL)
 { printf(“\nNo such file in the directory.”);
 exit(1); /*To exit from the running program */
 }
 fclose(fp); }
fclose() - To close the file
The file is opened for doing the process of reading or writing data. After completion of the process
the file has to be closed. If the file is not properly closed the file pointer may be somewhere in the
file. If the file is closed the file pointer will successfully start from the first character, the next time.

The function fclose () is used to close the opened file and fcloseall() function is used to close

all the opened file. The general format of these functions is as follows. Example:
 1. fclose(fp);- It will close only the specified file.

2. fcloseall() - It will close all the opened files.
Reading / Writing character in a file
In this section we are going to discuss about, how to read the characters or write the character into a
file. The library functions fgetc(), fputc(), getc(), putc() are used for the above said operations.
The following discussions will give an idea about these functions.

getc() - To read a character from the file and adjust the file pointer
 to the next character of the file automatically.
fgetc() - to read a character from a file.
putc() - to write a character into the file.
fputc() - to write a character into the file.

The general format of the getc() and fgetc() function is as follows.

These functions reads character one by one from the file and the file pointer will be automatically
adjusted to the next location in the file. By this way we can read all the characters from the file,
sequentially. The characters are fetched from the file and it can be displayed as like below.
 ch = fgetc(fp); /* Getting character from file */
 putch(ch); /* Displaying it in the screen */
Note: File pointer will be automatically adjusted to the next location
feof() - To check end of file
During the processing of the file, the end of file can be realized by the value the file pointer returns.
The file pointer returns 0 if the end of file has been reached.
The end of file can be checked by using the library function feof(). This function returns TRUE if
the file reaches the end, otherwise FALSE. Using feof() the process to be carried out in the file can
be continued. For example, the statement
 FILE *fp=fopen(“test.dat”,”r”);
 result = feof(fp);
If the file reaches the end, the value in the result is TRUE otherwise the value in the result is
FALSE. We can use a while loop for reading no. of characters as follows.
 while(!feof(fp))
 {
 /* Statements */

 fclose (file-pointer);

 fcloseall ();

 char getc(file-pointer);

 char fgetc(file-pointer);

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: IV (Memory Allocation, File I/O) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 4of 19

 }
Here the statement part will be executed until the end of file. Using a predefined constant, EOF can
also check the end of character in the file. The following program will give an idea about how to read
and check the end of file character.

/* Reading the characters from the file */
#include <stdio.h>
main()
{ FILE *fp;
 char ch;
 fp=fopen("test.txt","r");
 if (fp= =NULL)
 { printf("\nNo such file this name");

 exit(0); }
 while (!feof(fp))
 { ch = getc(fp);

 putch(ch);
 } }

In this program the file test.txt has been opened for reading the data. Using the function getc(fp) the
characters are read, and displayed in the screen using putch(). The function feof() is used to check
the occurrence of end of file. The process will be terminated when end of file is reached.
The general format of the putc() and fputc() is as follows.

where the character denotes the character to be written and file-pointer indicating the file which is
receiving the character. These functions are used to write characters into the specified file.
For example

 fputc(‘a’, fp);
 /* character ‘a’ is written in the file */
The following example illustrates the putc() function.
 /* Creating New file by reading characters */

#include <stdio.h>
 main()

{ FILE *fp;
 char ch;
 fp=fopen("test.txt","w");

 if (fp= =NULL)
 { printf("\nNo such file");

 exit(0); }
 while((ch=getch()) != 'z')

 { putc(ch,fp);
 putch(ch); }
 fclose(fp); }

While executing this program the user can type any no. of characters and all the characters will be
stored in the file test.txt. The process will be continued until the key z is pressed. Instead of z any
other character can also be used to denote the end.
For example the user can give the following text, and the termination is with the character z.

putc (character , file-pointer);
fputc (character , file-pointer);

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: IV (Memory Allocation, File I/O) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 5of 19

 No gain without pain z
Using the functions getc() and putc(), content of one file can be copied into another file as in the
following example program.

 /* Copy the content of one file to another */

#include <stdio.h>
main()
{ FILE *fps,*fpd; /* source and destination */
 char ch, sfile[15], dfile[15];
 clrscr();
 printf("\nSource file : ");
 scanf("%s",sfile);
 printf("\nDestination file : ");
 scanf("%s",dfile);

 fps = fopen(sfile,"r"); /*source file should be opened for read */
 fpd = fopen(dfile,"w"); /* This file should be opened for write */
 if (fps= =NULL)

 { printf("\nNo source file in the directory");
 exit(0); }

 while(!feof(fps))
 { ch = getc(fps);
 putc(ch,fpd);
 }

 fcloseall(); /* Closes all the opened files */
 }
 Output:
 Source file : ek.c
 Destination file : mahi.c

After the execution, the content of ek.c is copied into the file mahi.c
Read / Write - line of characters
We have seen and discussed about how to read and write characters in the file. Let us now see how
to read or write a line or string in the file. The function fputs(), fgets() are used for this purpose.
The format of the functions is as follows.

 string is the characters to be written in to the file using file-pointer.
 string-var is the variable denoting the string
 size is the no. of characters to be accommodated in the variable.
Mostly these functions are used for line by line process and few examples are
 1. fputs(“Abdul Kalam“,fp);

 - Here the string “Abdul Kalam” is written in to the file fp.
 2. fgets(str,80,fp);

- Here 80 characters are read from the file fp and copied into the
 string variable str.

The following program is used to count the no. of lines in the specified file.

 /* To count no. of lines from the file */

fputs(string , file-pointer);

fgets(string-var, size , file-pointer);

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: IV (Memory Allocation, File I/O) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 6of 19

 #include <stdio.h>
main()
{ FILE *fp;
 int c=0;
 char ch, str[80];
 fp = fopen("test.txt","r");

 if (fp= =NULL)
 { printf("\nNo source file in the directory");
 exit(0);
 }

 while(!feof(fp))
 { fgets(str,80,fp);
 c++;
 puts(str);
 }

 printf("\nNo. of lines : %d ", c);
 fclose(fp);

 }

In the above program, for every execution, 80 characters will be picked up from the file “test.txt”,
and the counter variable c will be incremented.

Formatted Input / Output statement in File:
The readers are familiar with the use of formatted input and output functions scanf() and printf(),
as we have discussed them so far in many programs. It also supports its usage in files, the functions
fscanf() and fprintf() are utilized for the same. The format is as follows.

The function fprintf() accepts a sequence of arguments (variables) and applies it to the format
specifier, which is in the format string and redirect the formatted output to the specified file. There
must be the same number of format specifiers and arguments. The printf() function writes the data
on the screen, so do the fprintf() writes the data into the file.
The function fscanf() reads the values from the file, and each field is formatted according to the
format specifier passed to fscanf() in the format string. Finally fscanf() stores the formatted input
at an address passed to it as an argument following the format. The scanf() reads data from the
keyboard so do fscanf() reads data from the file stream.

char name[] = “Bill Gates”;
fprintf (fp,”Welcome to %s “,name);

Here the format string has been replaced with its value “Bill Gates” and is written in to the file.
fprintf(fp,”name = %s a= %f = %d “,name, a, b);
- Here format string has been combined with different data type and

 as usual they are written in the file fp.
 fscanf(fp,”%d”,&n);

- Here the data is taken from the file fp and copied into the integer variable n.
 - While reading the data we should be careful about the data type.
 - If the format string does not exactly match, then wrong data will
 be retrieved from the file.

The program below illustrates the preparation of electricity bill and the utility of fprintf()
can be visualized.

 fprintf(file-pointer , format string, variables);

 fscanf(file-pointer , format string, variables);

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: IV (Memory Allocation, File I/O) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 7of 19

 /* To prepare E.B. Bill for the consumer */
 main()
 { FILE *fp;
 int serno;
 char name[50];
 float amt, pr, cr, units;

 fp = fopen("eb.dat","w");
 printf("\nConsumer Name : ");
 gets(name);
 printf("\nConsumer N0. : ");
 scanf("%d",&serno);
 printf("\nPrevious reading :");
 scanf("%f",&pr);
 printf("\nCurrent reading : ");
 scanf("%f",&cr);
 units = cr - pr;
 amt = units * 1.25; /*Cost per unit is assumed 1.25 */
fprintf(fp,"\t\tELECTRICITY BLL\n");
 fprintf(fp,"\nName : %s \tService No. : %d \n",name,serno);
 fprintf(fp,"\n-------------------------------------");
 fprintf(fp,"\nPrevious Current Units Amount");
 fprintf(fp,"\nReading Reading Consumed Rs. ");
 fprintf(fp,"\n-------------------------------------");
 fprintf(fp,"\n%5.2f\t %5.2f %5.2f %5.2f",pr ,cr,units,amt);
 fprintf(fp,"\n-------------------------------------");
 fclose(fp);

 } /* End of file */
Output: Consumer Name : Vivekanandar

Consumer No. : 1000
Previous reading : 650
Current reading : 950

After reading the data, calculation will be made and the formatted result will be stored in the
specified file eb.dat . We can check it by opening the file and it will have the result as below.

 ELECTRICITY BLL
Name : Vivekanandar Service No. : 1000

Previous Current Units Amount
Reading Reading Consumed Rs.

650.00 950.00 300.00 375.00
--

From this example we are familiar in the area of writing formatted result in a file. It is only for one
consumer and if we want to produce many no. of bills we can use looping statements. The remaining
thing is that how to read the data from the file. Mostly fscanf() function is used to read information
from the data file and it may be used for further calculation.
For example the student file stu.dat have the information like below. They are read from the file and
in order to calculate the class of each student. Type the data and check them in the following
program. The data file may be created by any editor.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: IV (Memory Allocation, File I/O) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 8of 19

So the data file stu.dat have the informations as
Sathya 1000 75
Karthi 1001 35
murugappan 1002 56

 mahesh 1003 99

/* read data and calculate the class, display them */
/* Example for fscanf () function */
#include <stdio.h>
main()
{ FILE *fp;
 int rollno, marks;
 char name[50],rank[15];
 fp = fopen("stu.dat","r");
 if (fp= =NULL)
 { printf("\nSorry. No such file ");
 exit(0);
 }
 printf("\nName Rollno Marks Class\n");
 while (!feof(fp))
 { fscanf(fp, "%s %d %d", name, &rollno, &marks);
 if (marks>=60) strcpy(rank, "First");
 if ((marks>=50) && (marks < 60)) strcpy(rank,"Second");
 if ((marks>=40) && (marks <50)) strcpy(rank, "Third");
 if (marks<40) strcpy(rank, "Fail");
 printf("\n%s\t %6d %5d %s",name,rollno,marks,rank);
 }
 fclose(fp);
 }

 When the above program is executed the data has been read from the file stu.dat and
displayed as follows.

Name Rollno Marks Class
Sathya 1000 75 First
Karthi 1001 35 Fail
murugappan 1002 56 Second
mahesh 1003 99 First

Read / write record in the file
The data can be read or write very easily by using some library functions as above. In the previous
topics the data are written as characters, lines and formatted input and output statements were used.
In this chapter we are going to discuss like how to read or write the record into the file. This way is
very useful to write entire structure into the file instead of individual field.
The two functions which are used t perform these operations are

1. fread () - To read a structure
2. fwrite() - To write a structure

The function fread () is used to read a structure from the specified file and fwrite() is used to write
a structure into the file. Their syntax are
 fread(pointer- to structure, sizeof structure, no. of records, file-pointer)

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: IV (Memory Allocation, File I/O) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 9of 19

Both of the functions are taking four arguments. They are

1. Pointer to the structure variable
2. Size of the structure
3. No. of structures to read / write
4. File pointer to specify the process on which file

Assume the structure has the following information
struct
 { int rollno;

char name[20];
 } stu;
fwrite(&stu, sizeof(stu),1,fp);

Here &stu is a pointer to the structure, sizeof(stu) specifies the memory size of record / structure,
No. of structure is 1 and file is fp. The following is a simple example for reading and writing
structure value in the file.

/* Example for structure reading and writing in the file */
#include <stdio.h>
#include <conio.h>
#include <process.h>
#include <string.h>
struct
{ int rollno;
 char name[15];
 float avg;
}stu;

 main()
 { FILE *fp;
 int n,i;
 char res[10];
 clrscr();
 fp=fopen("test.dat","w");
 if (fp= =NULL)
 { printf("\nCan't create file");
 exit(0); }
 printf("\nNo. of students :");
 scanf("%d",&n);
 printf("\nEnter the details\n");
 for(i=1;i<=n;i++)
 { printf("\nRoll No. :");
 scanf("%d",&stu.rollno);
 printf("\nName :");
 scanf("%s",stu.name);
 printf("\nAverage :");
 scanf("%f",&stu.avg);
 fwrite(&stu,sizeof(stu),1,fp);
 }

fwrite(pointer-to structure, sizeof structure, no. of records, file-pointer)

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: IV (Memory Allocation, File I/O) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 10of 19

 fclose(fp);
 clrscr();
 fp=fopen("test.dat","r");
 printf("\n---");
 printf("\nRollNo. Name Average Result");
 printf("\n---");
 fread(&stu,sizeof(stu),1,fp);
 while(!feof(fp))
 { if (stu.avg>=40)

 strcpy(res,"Pass");
 else
 strcpy(res,"Fail");
 printf("\n%4d",stu.rollno);
 printf("\t%-15s",stu.name);
 printf("\t%5.2f ",stu.avg);
 printf("\t %s",res);
 fread(&stu,sizeof(stu),1,fp);
 }
 printf("\n--");
 fclose(fp); getch(); }

 Output:
No. of students :2
Enter the details
Roll No. :1001
Name :karthi
Average :35.50
Roll No. :1002
Name :sabari
Average :50.75

RollNo. Name Average Result

1001 karthi 35.50 Fail
1002 sabari 50.75 Pass

Error Handling
As such C programming does not provide direct support for error handling but being a system
programming language, it provides you access at lower level in the form of return values. Most of
the C or even Unix function calls return -1 or NULL in case of any error and sets an error
code errno is set which is global variable and indicates an error occurred during any function call.
You can find various error codes defined in <error.h> header file.
So a C programmer can check the returned values and can take appropriate action depending on the
return value. As a good practice, developer should set errno to 0 at the time of initialization of the
program. A value of 0 indicates that there is no error in the program.
The errno, perror() and strerror()
The C programming language provides perror() and strerror() functions which can be used to
display the text message associated with errno.
 The perror() function displays the string you pass to it, followed by a colon, a space, and then

the textual representation of the current errno value.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: IV (Memory Allocation, File I/O) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 11of 19

 The strerror() function, which returns a pointer to the textual representation of the current errno
value.

Let's try to simulate an error condition and try to open a file which does not exist. Here I'm using
both the functions to show the usage, but you can use one or more ways of printing your errors.
Second important point to note is that you should use stderr file stream to output all the errors.

#include <stdio.h>
#include <errno.h>
#include <string.h>
extern int errno ;
int main ()
{
 FILE * pf;
 int errnum;
 pf = fopen ("unexist.txt", "rb");
 if (pf == NULL)
 {
 errnum = errno;
 fprintf(stderr, "Value of errno: %d\n", errno);
 perror("Error printed by perror");
 fprintf(stderr, "Error opening file: %s\n", strerror(errnum));
 }
 else
 {
 fclose (pf);
 }
 return 0;
}

When the above code is compiled and executed, it produces the following result:

Value of errno: 2
Error printed by perror: No such file or directory
Error opening file: No such file or directory

Random file operation:

The file is used to read or write the data in permanent for further reference. The data may be
processed sequentially or randomly. In sequence the operation is from first to last, ie from the
beginning of file to the end of file. Suppose we want to process particular record of the file,
sequential is not good. Because it will takes lot of time for processing. Alternative way to process the
data is by using the random methods. The following functions are used to process the data in
random.

1. fseek ()
2. ftell ()
3. fgetpos ()
4. rewind ()

fseek - To set the file pointer
 The function fseek() is used to set the file pointer in the specified location. The format of the
fseek is as follows.

 result fseek (file-pointer , location, from where)

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: IV (Memory Allocation, File I/O) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 12of 19

Where result tells whether the operation is success or not.
 filepointer is a pointer, which points to the opened file
 location no. of location to be adjusted
 fromwhere specifies from where the process starts
 The fromwhere may be any one of these value.
 SEEK_SET => Seeks from beginning of the file
 SEEK_CUR => Seeks from current location
 SEEK_END => Seeks from end of the file
 While opening the file for first process, the file pointer always points to the first location of
the file. The file pointer can be set to any new location by using the above type of values.
For example the statements
 1. fseek (fp, 10,SEEK_SET);

=> From the first location of file, the pointer is adjusted to 11th
 location. Count from 0th location.

 2. fseek (fp, -5, SEEK_END);
=> From the last location of file, the pointer is adjusted to 5th
 location from end of file.
For example the file “test.dat” contains the following data and its locations are illustrated as

Locatio
n

0 1 2 3 4 5 6 8 9 10 11 12 13

Value I L O V E I N D I A EOF
Total no. of characters in that file is 13 including the end of file (EOF). EOF is a single

character.
After the statement, fp = fopen(“test.dat”,”r”), the file pointer fp is pointed to the first

location and is
Locatio
n

0 1 2 3 4 5 6 8 9 10 11 12 13

Value I L O V E I N D I A EOF
 fp
After the statement fseek(fp, 5 , SEEK_SET), the fp is adjusted to the 6th (Because 0 to 5)

location from beginning of the file and is

Locatio
n

0 1 2 3 4 5 6 8 9 10 11 12 13

Value I L O V E I N D I A EOF
 fp

After the statement fseek(fp, -4 , SEEK_END), the fp is adjusted to the 9th location from
end of file (last character is EOF, so 4th location from last is N.

Locatio
n

0 1 2 3 4 5 6 8 9 10 11 12 13

Value I L O V E I N D I A EOF
 fp
The following is a program to be used to display the remaining characters from the user-

specified location. For example, if the user gives 5 as input and all the remaining characters from 5th
location will be displayed.

 /*Display the characters from the user defined location */

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: IV (Memory Allocation, File I/O) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 13of 19

 #include <stdio.h>
 main()
 { FILE *fp=fopen("c:\\temp\\ek.dat","r");

 char ch;
 int n;
 printf("\nNo. of characters from first : ");
 scanf("%d",&n);
 printf("\nRemainig of file : \n");
 fseek(fp, n , SEEK_SET); /* Adjusted to the nth location */
 while(!feof(fp))
 { ch=fgetc(fp);
 printf("%c",ch);
 }}

 Output is
No. of characters from first : 3
Remainig of file :
OVE INDIA

ftell () - to find the location of the file
The function ftell() is used to find the location of the file pointer. By using the fseek() function , file
pointer can be adjusted. The format of ftell() function is as follows.

For example, the file is adjusted to the 5th location by using the function fseek(fp, 5 , SEEK_SET)
and it is ensured by checking the location of file pointer with the help of ftell().

A program which is going to display the content of file and its location.

/*Content of the file is displayed with its location */
#include <stdio.h>
main()
{
 FILE *fp=fopen("ek.dat","r");
 char ch;
 long l;
 while(!feof(fp))
 { printf("\n%c stored at location %d

",fgetc(fp),ftell(fp)); } }

output :
I stored at location 0
 stored at location 1
L stored at location 2
O stored at location 3
V stored at location 4
E stored at location 5
 stored at location 6
I stored at location 7
N stored at location 8
D stored at location 9
I stored at location 10

 long ftell(filepointer) ;

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: IV (Memory Allocation, File I/O) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 14of 19

A stored at location 11
 EOF stored at location 13

Actually the end of file is not marked as the character like EOF, it is only for user identification.
The EOF file is marked by the character -1. So, whenever the EOF is occurred the process is
terminated from the while loop.

Size of the file – A simple way
How to find the length of the file? One way is to travel up to the end of file. Another way to obtain
the length of the file is using the features ftell() function.

/* Finding the size of the file */
#include <stdio.h>
main()
 { FILE *fp=fopen("ek.dat","r");
 char ch;
 long l;
 fseek(fp,0,SEEK_END);
 l=ftell(fp);
 printf("\nLength is = %d characters",l);
}

output:
Length is = 13 characters

Reversing the content of a file
Are you able to find the reverse of file? Yes. We can reverse. The file can be reversed if we know
the length and file pointer adjustment idea. This can be achieved by using the functions fseek() and
ftell().
If calculated every thing, the file pointer is adjusted from end using the fseek(fp,-i,SEEK_END)
function. Here fp is a file pointer, i is the location variable and SEEK_END is the place to start the
process.

/* Reversing the content of file */
#include <stdio.h>
main()

 { FILE *fp;
 int n,i=0;
 char ch;
 fp = fopen("ek.dat","r");
 fseek(fp,0,SEEK_END); /*Adjusted to the end */
 n=ftell(fp); /* Getting the location */
 printf("\n File In Reverse\n");
 while(i<=n)
 {
 fseek(fp,-i,SEEK_END); /* Adjusted to each character */
 i++;

 ch=fgetc(fp); /* Reading the character */
 printf("%c",ch);
 }}
output:

 File In Reverse

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: IV (Memory Allocation, File I/O) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 15of 19

 AIDNI EVOL I

rewind() – Adjusted to the beginning
The file pointer can be adjusted and located to anywhere in the program. The additional feature of
file in C is to relocate the file pointer to the beginning of the file. It is achieved by using the function
rewind().
Suppose we have thousands of records and are going to be processed very often. Normally the data
can be processed as in the previous programs. We are in need of searching the items and the item is
in different place. How to search them? Start searching from the beginning of file and continue until
the end of file. Once again for new set of data we have to search the entire file. What we have to do
is the file pointer should be adjusted to the beginning of file by using fseek(fp,0,SEEK_SET). This
task can be achieved by simple function called rewind(). Wherever this function is occurred, the
specified file pointer is going to be readjusted to the beginning of file.

General format of rewind function is

The argument to this function is which file pointer should be adjusted.

/* Example for Rewind function */
#include <stdio.h>
main()
{ FILE *fp;
 int count,choice;
 char ch1,ch2;
 fp = fopen("ek.dat","r");
 do
 { printf("\nDo you want to check (0 - Exit)");
 scanf("%d",&choice);
 fflush(stdin); /* To remove the characters from buffer if any */
 if (choice!=0)
 { printf("\nCharacter to check :");
 scanf("%c",&ch1);
 count=0;
 while(!feof(fp))
 { ch2 = fgetc(fp);
 if (ch1==ch2)
 count++; }
 printf("\n%c has occured %d times ",ch1,count);
 rewind(fp);
 } }while(choice!=0);
 getch();}

Out put:
KARPAGAM COLLEGE
Do you want to check (0 - Exit)1
Character to check :A
A has occured 3 times
Do you want to check (0 - Exit)1
Character to check :L
L has occured 2 times
Do you want to check (0 - Exit) 0

 void rewind (file-pointer) ;

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: IV (Memory Allocation, File I/O) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 16of 19

Command Line Arguments
Operating system is a collection of programs, which is used to control the operations on the
computer system. These pre-written programs are called as commands. How do we execute these
programs or commands? File types like .COM, .BAT and .EXE can be executed from the command
prompt. It is a place where the commands can be given to the operating system or program can be
executed and it as like below depending upon the operating system.
 In DOS
 C:\ _ // For C drive
 Cursor
 Prompt
Other drive or operating systems prompt appears as like
 A:\ _ // For A drive - Floppy
 H:\ _ // May be networks
 $ _ // In Unix

The commands or programs are executed from the command line. For example the
commands can be invoked as follows.
 C: \ dir
 Here the command dir is invoked from the command line (C:\). This command returns all
the files in the current directory. If we have any executable file (.EXE), it can also be executed from
the command line. For example, we have an executable file test.exe, and it will be executed from the
command prompt as below.
 C:\test // test must be an executable file
What are command line arguments?
Argument is a variable, which is used to carry the information to the function. The value can be
passed from program and it can be received by the function as below.

/* Example for calling and passing arguments */
 main()

 { display(100); }
 void display(int x)

{ printf(“\nX = %d “,x);}

In this program the function display() is invoked from the main() with argument 100, as
display(100) and it will be received by the parameters of the function.
"Passing the arguments from the command line is called as command line arguments" or passing
arguments from command prompt to that program.
For example, take the TYPE command, which is used to display the content of the specified file. For
TYPE command we have to pass file name as argument as follows
 C:\ TYPE test.c
Here test.c is a name of the file to be displayed and it is called as command line argument. How to
pass arguments to our program? and who will receive these arguments and where it comes?
Who will receive the command line arguments?
All the C program must be with the function main() and the execution also starts at the main()
function. The main() is also a function and it is also able to receive the arguments and its prototype
declaration is as follows.

main(int count, char *s[15])
Here the count contains the no. of arguments and character array variable s contains the values of
arguments. The arguments are copied in to the string variable in sequence. For example the
arguments from the command line is as follows

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: IV (Memory Allocation, File I/O) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 17of 19

 C:\ test abc def
Here test is the name of the file to be executed, abc is the first argument and def is the second
argument to the function main() function. So these are assigned in sequence and separated by the
delimiters. How to process these arguments? No. of argument is in the variable count, and the list of
arguments are in the variable s, which is used to keep array of characters. The arguments test, abc
and def are stored in sequence like s[0], s[1] and s[2]. This discussion is illustrated in the following
program.

/* Example for Command Line Arguments */
main(int count,char *s[10])
{ int i;
 printf("\nNo. of arguments : %d ",count);
 printf("\nList of arguments");
 for(i=0;i<count;i++)
 printf("\nArgument %d is %s ",i , s[i]);
}

Type the above program and save it as "cmd.c". After converting into EXE file (By Pressing F9),
the file is executed from the command prompt and its result is as follows.

C:\ekarthi\c>cmd abc def
No. of arguments : 3
List of arguments
Argument 0 is C:\EKARTHI\C\CMD.EXE
Argument 1 is abc
Argument 2 is def

Preprocessor in C
The C preprocessor is a macro processor that is used automatically by the C compiler to transform
your program before actual compilation. It is called a macro processor because it allows you to
define macros, which are brief abbreviations for longer constructs.
A macro is used to define the short cuts for the programmer. For example we have to use the string
"Karpagam Arts and Science College" in many places. It takes time for type. Instead of repeating the
same we can define some shortcut name for this string and it can be used instead of entire string.
One more advantage when we use shortcuts. Suppose we need to change content of the string or few
characters in that. In this case instead of changing in every places, changes in macro definition will
affect whole. It is also used to include the content of another file to the currently used file. Like this
there are so many features in the macro. We will discuss about them one by one. The macro
definition is the first statement to be executed and it is started by the character #.
#define - for simple definition
It is used to define the shortcuts, simple formulas and functions also. The format is
 #deinfe shortcut actual value
In this case, instead of actual value, shortcut can be used in every where and at the time of
compilation its actual character replaces shortcuts. There is no semicolon at the end of the macro
definition statement. For example
 #define name "Karpagam Arts and Science College"
Now instead of the string "Karpagam Arts and Science College", the shortcut characters college can
be used. The changes in the string also will affect in all the places.
 #define name "Karpagam Arts and Science College"
 main ()
 { printf(name); }

Some simple example for #define statements are given below.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: IV (Memory Allocation, File I/O) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 18of 19

 #define cls clrscr()
 #define nl printf("\n")
 #define getInt(n) scanf("%d", &n)
In the last declaration, instead of complex scanf() statement getInt() can be used.
Another example for definition is that to define a simple function. To reduce the size of the program
we can utilize this feature. But it takes more long steps to implement in the program. By using the
macro, the small function can be written easily as below.
 /* Example for Macro */
 #define big(a,b) a>b?a:b
 void main()
 { int a=210,b=20;
 printf("\nBig : %d ",big(a,b));
 getch(); }

When we use the big(a,b), it will be replaced by the statement a>b?a:b So, it can be used for
defining simple functions.
A macro allows declaring more than one statement as below. Here the line(n) definition contains
group of statements.

int n,i;
#define line(n) for(i=1;i<n;i++) printf("*");
#define string "\nKarpagam College"
void main()
{
 line(35);
 printf(string);
 line(35);
 getch();
 }
CODE TO SHUT DOWN THE COMPUTER-WINDOWS

#include <stdio.h>
#include <stdlib.h>
 main()
{ char ch;
 printf("Do you want to shutdown your computer now (y/n)\n");
 scanf("%c",&ch);
 if (ch == 'y' || ch == 'Y')
 system("C:\\WINDOWS\\System32\\shutdown -s");
 return 0;
}

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: I B.Sc IT Course Name: Programming Fundamentals Using C/C++
Course Code: 18ITU101 Unit: IV (Memory Allocation, File I/O) Batch 2018-2021

Prepared By Dr.D.Shanmuga Priyaa, Department of CS, CA & IT, KAHE Page 19of 19

Possible Questions

Part-A (1 mark-Online Exam)

Part-B (2 marks)

1. What is a file?

2. Describe about the categories of preprocessor directives.

3. What is a preprocessor?

4. Explain the following i) #define ii) #include

5. What is the use of file inclusion?

6. How will you read, write and append data in a file

7. What is the significance of EOF?

8. What are Random access files?

Part-C (6 marks)

1. Write in detail about different formats for opening a file. Explain with example.

2. Explain about command line arguments with a sample program.

3. Write in detail about conditional compilation using preprocessors

4. Write a program to copy the content of a file into another using command line argument?

5. Write in detail about macro substitution with example.

6. Explain the following file functions a) ftell b)fseek c)rewind

7. Write a program to create a file for employee pay slip and manipulate it?

QUESTIONS OPTION1 OPTION2 OPTION3 OPTION4 ANSWER

In ____ mode the existing file is opened for reading only r w a f r

In _____ mode the file can be opened for writing only r w a f w

In _____ mode the file can be opened for appending data

to it
r w a f a

The getc function will return an _______ ,when end of the

file has been reached
BOF EOF SOF FOF EOF

In fseek function value of offset should be ____ to move

the pointer to beginning of file
0 1 2 3 0

In fseek function value of offset should be ____ to move

the pointer to current position
0 1 2 3 1

In fseek function value of offset should be ____ to move

the pointer to end of file
0 1 2 3 2

_____ is a parameter supplied to a program when the

program is invoked
argument parameter

command line

argument
values

command line

argument

Command line argument is supplied to the program when

it is _________
invoked developed compiled stored invoked

The file mode _____ is used to read and append some data

into an existing file from end of the file
"r" "r-" "r+" all "r+"

A _______ file is a collection of ASCII characters, with

end of line markers and end of file markers
program binary image text text

The files opened with mode “w allows
reading and

writing
reading only writing only

reading and

appending
writing only

 The files opened with mode “a+” allows
reading and

writing
reading only writing only

reading and

appending

reading and

appending

The ________ function can be used to test for an end of

file condition
eof() feof() eol() EOF feof()

The negative integer constant EOF indicates the ____ end of line new line end of file
 minimum

integer range
end of file

fclose() function is used to close editor program all the above file file

KARPAGAM ACADEMY OF HIGHER EDUCATION

PART - A (ONLINE EXAMINATION)

MULTIPLE CHOICE QUESTIONS (Each question carries one mark)

SUBJECT: PROGRAMMING FUNDAMENTALS USING C/C++

File mode must be specified while ________ opening a file reading a file writing a file closing a file opening a file

______ function is used to write a string into an ASCII

file
fwrite() writes() puts() fputs() fputs()

________ is used to read a number of items from the file

stream using format
printf() scanf() fprintf() fscanf() fscanf()

____ function is used to report the status of the file and

returns a non zero integer if an error has been detected
fstatus() ferror() fnull() ifzero() ferror()

fseek, ftell and rewind functions are used with

__________ files

sequential

files
indexed files

random access

files
all files random access files

_____ returns the current position of the file pointer in a

file
pos() fseek() ftell() fposition() ftell()

_____ is used to move the file pointer to the desired

location in a file
pos() fseek() ftell() fposition() fseek()

_________ takes the filepointer and reset the position to

the start of the file
pos() fseek() ftell() rewind() rewind()

Which of the following functions will take only the file

pointer as its argument
fclose() ferror() rewind()

all of the

above
all of the above

_______ function is used to read some bytes from the

binary files
read() readln() readf() fread() fread()

_______ function is used to write some bytes into a binary

files
writebytes() fwrite() writef() putfile() fwrite()

main() function takes ________ number of arguments one two three any two

The ______ in the main(argc, argv) function represents an

array of character pointers that points to the command line

arguments

argc argv args cptr argv

In main(argc,argv),the variable argc ____
counts the

number of

arguments in

b) counts the

number of

functions in a

arranges the

argument in

the command

sets a pointer

to the

argument in

counts the number of

arguments in

command line

In the command line argv[0] points to the ______
program

under

execution

first argument

after the

program name

the beginning

of the program

file

all the

elements in

the arguments

program under

execution

Command line arguments are used to accept argument

from

command

prompt of

operating

through

scanf()

statement

through printf()

statement

through gets

function

command prompt of

operating system

The malloc() function
allocates

memory and

not returns a

allocates

memory and

returns a

changes the

size of

allocated

deallocates or

frees the

memory

allocates memory

and returns a pointer

to the first byte of it

The ________ processes the source code before it passes

through the compiler
interpreter preprocessor linker assembler preprocessor

Preoprocessor directives must be present
before the

main ()

function

after the

main()

function

at the end of

the program

anywhere in

the program

body

before the main ()

function

When files are included using #include<filename> ,then

the file is searched in______

standard

library only

current

directory only

in all

directories

current

directories &

in standard

standard library only

FILE *fp; fp=fopen(“ fn”,”m”); In the above syntax fp is

a _____
file name file variable

pointer to data

type FILE

pointer to

function

fopen()

pointer to data type

FILE

______ is analogous to getchar() function and reads a

character from a file
getch() gets() getc() getw() getc()

_____is functions used to write integers into a file putw() puts puti() putc putw()

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

 COIMBATORE – 641 021

INFORMATION TECHNOLOGY/COMPUTER TECHNOLOGY

First Semester

FIRST INTERNAL EXAMINATION - July 2018

PROGRAMMING FUNDAMENTALS USING C/C++

Class & Section: I B.Sc (IT) & I B.Sc CT Duration: 2 hours

Date & Session : Maximum marks: 50 marks

Subj.Code: 18ITU101

PART- A (20 * 1= 20 Marks)

Answer ALL the Questions

1. _____ refers to finding value that do not change during execution of program.

a. keyword b. identifier c. constant d. token

2. _____ constant contains single character enclosed within pair of single quote marks.

a. string b. variables c. character d. numeric

3. ______ is data name that may be used to store a data value.

a. string constant

b. variables

c. character

d. numeric

4. Characters are usually stored in ______ bits.

a. 8 b. 16 c. 24 d. 32

5. Floating point numbers are stored in _____ bits.

a. 8 b. 16 c. 24 d. 32

6. ______ operator is used for manipulating data at bit level.

a. logical a. bitwise b. arithemetic c. sizeof

7. Execution of C Program begins from ______ function.

b. user defined

c. main

d. header file

e. statements

8. Every C program must have exactly _____ main function

a. one b. two c. three d. none

9. The variables are initilaised using ______ operator

a. > b. = c. ?= d. +

10. In ASCII character set the uppercase alphabet represent codes _____

a. 65 to 90 b. 96 to 45 c. 97 to 123 d. 1 to 26

11. Individual values in array is referred as _______

a. subscript b. elements c. subelements d. pointers

12. Any subscript between _______ are valid for an array of fifty elements

a. 0-49 b. 0-50 c. 0-47 d. 0-51

13. Value in a matrix can be represented by _______ subscript

a. 1 b. 3 c. 2 d. 4

14. Arrays that do not have their dimensions explicitly specified are called_____

a. unsized arrays

b. undimensional arrays

c. initialized arrays

d. to size arrays

15. printf belongs to the category ____ function

a. user defined

b. library

c. subroutine

d. preprocessor

16. Conditional operator is a combination of ___ and ______ operator

a. ?: b. &? c. &* d. ?,

17. Case Labels end with ____ operator

a. : b. ; c. . d. ,

18. In switch statement if the value of the expression does not matches with any of the

case values _____ is executed

a. optional b. case c. default d. loop

19. While loop is _______ statement

a. entry controlled

b. exit controlled

c. branching

d. none of the above

20. Do.. While loop is _____ statement

a. entry controlled

b. exit controlled

c. branching

d. none of the above

PART- B (3 * 2= 6 Marks)

Answer ALL the Questions

21. List the primary data types in C and give examples for each.

22. Define Variable. List the rules to be followed for framing variable name.

23. If a character string is to be received through the keyboard which function would

work faster? Why?

PART C (3 * 8 = 24 Marks)

Answer ALL the Questions

24. a. Explain in detail about the operators used in C. Provide examples for each.

 (OR)

b. Explain the data types used in C with example

25. a. Explain conditional control statements with neat example.

(OR)

b. List the looping statements. Explain each with neat example.

26. a. How will you declare and initialize a two dimensional array? Write a C program to

 perform matrix addition.

 (OR)

 b. What is an array? Explain in detail the various types of arrays with example.

QUESTIONS OPTION1 OPTION2 OPTION3 OPTION4 ANSWER

The wrapping up of data & function into a single
unit is known as _______________

Polymorphis

m

 encapsulation functions data members encapsulation

__________________refers to the act of

representing essential
features without including the background details

encapsulatio
n

 inheritance
 Dynamic

binding
 Abstraction Abstraction

Attributes are sometimes called______________
 data

members
 methods messages functions data members

The functions operate on the datas are

called______________
 methods data members messages classes methods

______________is the process by which objects

of one class acquire the
 properties of objects of another class

polymorphis
m

 encapsulation
 data
binding

 Inheritance Inheritance

__________________means the ability to take
more than one form

polymorphis

m

 encapsulation
 data
binding

 none polymorphism

The process of making an operator to exhibit
different behaviors
 in different instances is known as

 function
overloading

 operator
overloading

 method
overloading

 message
overloading

 operator overloading

Single function name can be used to handle
different types of tasks is known as

 function

overloading

 operator

overloading

polymorphi
sm

encapsulation
 operator overloading

_______________means that the code associated
with a given

 procedure call is not known until the time of the

 late binding
 Dynamic
binding

 Static
binding

 none Dynamic binding

Objects can be___________ created
 created &
destroyed

permanent

 temporary created & destroyed

______________helps the programmer to build
secure programs

 Dynamic
binding

 Data hiding
 Data
building

 message
passing

 Data hiding

_________________techniques for
communication between

objects makes the interface descriptions with

 message
passing

 Data binding

Encapsulati

on

 Data passing message passing

________________refers to the use of same
thing for different purposes

 overloading
 Dynamic
binding

 message
loading

 none overloading

_________________are extensively used for

handling class objects

 overloaded

functions
 methods objects messages

 overloaded

functions

____________________is used to reduce the

number of functions to be defined

 default

arguments
 methods objects classes default arguments

__________ enables an object to initialize itself
when it is created

 Destructor constructor

overloading

 none of the
above

 constructor

________ destroys the objects when they are no
longer required

 Destructor constructor

overloading

 none of the
above

 Destructor

The __________ is special because its name is
the same as the class name.

 Destructor static

constructor

 none of the
above

 constructor

Constructors are invoked automatically when the
________ are created

 Datas classes objects
 none of the
above

 objects

Constructors cannot be _________ Inherited destroyed
 both a &
b

 none of the
above

 Inherited

When more than one constructor function is

defined in a class,
 then the constructor is said to be _________

 Multiple copy default overloaded overloaded

C++ complier has a _________ constructor,

which creates objects, even though it was not
defined in the class.

 Explicit default implicit
 none of the

above
 implicit

KARPAGAM ACADEMY OF HIGHER EDUCATION

PART - A (ONLINE EXAMINATION)

MULTIPLE CHOICE QUESTIONS (Each question carries one mark)

SUBJECT: PROGRAMMING FUNDAMENTALS USING C/C++

A _________ constructor is used to declare and

initialize an object from another object
 Default copy multiple

parameterized
 copy

A destructor is preceded by ______ symbol Dot asterisk colon tilde tilde

The class can have only ______ destructor two many one four one

In overloading of binary operators, the ________

operand is used to invoke the operator function.
 Right-hand Arithmetic Left-hand

Multiplication
 Left-hand

________ functions may be used in place of
member functions for overloading a binary

operator

 Inline Member

Conversion

 Friend Friend

The operator that cannot be overloaded is

 Single of + - = Single of

The overloading operator must have atleast
________ operand that is of user-defined data

type.

 Two Three One Four One

Operator overloading is called ________
 Function

Overloading

 Compile time

polymorphism

 Casting

operator

function

 Temporary

object

 Compile time

polymorphism

The mechanism of deriving a new class from an

old one is called ________

 Operator

overloading
 Inheritance

Polymorphi

sm

 Access

mechanism
 Inheritance

________ provides the concept of reusability.

Overloading

 Message

passing

 Data

abstraction
 Inheritance Inheritance

A derived class with only one base class is called
________ inheritance.

 Single Multi-level Multiple Hierarchical Single

The derived class inherits some or all of the

properties of ________ class.
 Member Base Father Ancestor Base

The ________ class inherits some or all of the

properties of base class.

 Abstract

class
 Father class

 Derived

class
 Child class Derived class

A class that inherits properties from more than

one class is known as ________ inheritance.
 Multiple Multilevel Single Hybrid Multiple

The class that can be derived from another
derived class is known as ________ inheritance.

 Hierarchical Single
 Multi-
level

 Hybrid Multi-level

When the properties of one class are inherited by
more than one class, it is called ________

inheritance.

 Single Hybrid Multiple Hierarchical Hierarchical

A private member of a class cannot be inherited
either in public mode or in ________ mode.

 Private Protected Visibility Nesting Private

A protected member inherited in public mode
becomes ________

 Highly
protected

 Private Public Protected Protected

A protected member inherited in private mode
becomes ________

 Visibility Private Protected Public Private

The _____ are called as overloaded operators >> and << + and – * and && – and . >> and <<

The >> operator is overloaded in the _______ istream ostream iostream None istream

Templates are suitable for _______ data type. any basic derived all the above basic

Templates can be declared using the keyword

 class template try none template

Templates is also called as _______ class. generic container virtual base generic

Function Templates can accept only _______

parameters.
 one any two none. any

Select the correct Template definition _______ .
 template

<class T>

 class

<template T>

 template

<T>

 template

class <T>.
 template <class T>

Function Templates are normally defined

_______ .

 in main

function
 globally in a class anywhere in a class

The statement catches the exception _______ . catch try template throw. catch

In a multiple catch statement the number of
throw statements are .

 same as
catch

statement

 twice than
catch

 only one none. only one

The exception is generated in _________block. try catch finally throw. try

The exception handling one of the function is
implicitly invoked.

abort exit assert none. abort

The exception handling mechanism is basically

built upon ______ keyword
try catch throw all the above all the above

The point at which the throw is executed is called

_________.
try catch throw point none throw point

A template function may be overloaded by

_______ function
template ordinary

both (a)and

(b).
none both (a)and (b).

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

 COIMBATORE – 641 021

INFORMATION TECHNOLOGY/COMPUTER TECHNOLOGY

First Semester

FIRST INTERNAL EXAMINATION - July 2018

PROGRAMMING FUNDAMENTALS USING C/C++

Class & Section: I B.Sc (IT) & I B.Sc CT Duration: 2 hours

Date & Session : Maximum marks: 50 marks

Subj.Code: 18ITU101

PART- A (20 * 1= 20 Marks)

Answer ALL the Questions

1. _____ refers to finding value that do not change during execution of program.

a. keyword b. identifier c. constant d. token

2. _____ constant contains single character enclosed within pair of single quote marks.

a. string b. variables c. character d. numeric

3. ______ is data name that may be used to store a data value.

a. string constant

b. variables

c. character

d. numeric

4. Characters are usually stored in ______ bits.

a. 8 b. 16 c. 24 d. 32

5. Floating point numbers are stored in _____ bits.

a. 8 b. 16 c. 24 d. 32

6. ______ operator is used for manipulating data at bit level.

a. logical a. bitwise b. arithemetic c. sizeof

7. Execution of C Program begins from ______ function.

b. user defined

c. main

d. header file

e. statements

8. Every C program must have exactly _____ main function

a. one b. two c. three d. none

9. The variables are initilaised using ______ operator

a. > b. = c. ?= d. +

10. In ASCII character set the uppercase alphabet represent codes _____

a. 65 to 90 b. 96 to 45 c. 97 to 123 d. 1 to 26

11. Individual values in array is referred as _______

a. subscript b. elements c. subelements d. pointers

12. Any subscript between _______ are valid for an array of fifty elements

a. 0-49 b. 0-50 c. 0-47 d. 0-51

13. Value in a matrix can be represented by _______ subscript

a. 1 b. 3 c. 2 d. 4

14. Arrays that do not have their dimensions explicitly specified are called_____

a. unsized arrays

b. undimensional arrays

c. initialized arrays

d. to size arrays

15. printf belongs to the category ____ function

a. user defined

b. library

c. subroutine

d. preprocessor

16. Conditional operator is a combination of ___ and ______ operator

a. ?: b. &? c. &* d. ?,

17. Case Labels end with ____ operator

a. : b. ; c. . d. ,

18. In switch statement if the value of the expression does not matches with any of the

case values _____ is executed

a. optional b. case c. default d. loop

19. While loop is _______ statement

a. entry controlled

b. exit controlled

c. branching

d. none of the above

20. Do.. While loop is _____ statement

a. entry controlled

b. exit controlled

c. branching

d. none of the above

PART- B (3 * 2= 6 Marks)

Answer ALL the Questions

21. List the primary data types in C and give examples for each.

Char

Int

Long int

Float

Double

Long double

Unsigned char

Unsign int

Unsign long int

22. Define Variable. List the rules to be followed for framing variable name.

A variable is a data name that may be used to store a data value. A variable may

take

different values at different times of execution and may be chosen by the

programmer in a

meaningful way. It may consist of letters, digits and underscore character.

Eg: 1) Average

2) Height

Rules for defining variables

 They must begin with a letter. Some systems permit underscore as the first

character.

 ANSI standard recognizes a length of 31 characters. However, the length

should not be normally more than eight characters.

 Uppercase and lowercase are significant.

 The variable name should not be a keyword.

 White space is not allowed.

23. If a character string is to be received through the keyboard which function would

work faster? Why?

gets() function to be used

PART C (3 * 8 = 24 Marks)

Answer ALL the Questions

24. a. Explain in detail about the operators used in C. Provide examples for each.

Operators and expressions

C programming language provides several operators to perform different kind to

operations. There are operators for assignment, arithmetic functions, logical functions

and many more. These operators generally work on many types of variables or constants,

though some are restricted to work on certain types. Most operators are binary, meaning

they take two operands. A few are unary and only take one operand

An operator is a symbol that tells the compiler to perform specific mathematical or

logical manipulations. C language is rich in built-in operators and provides the following

types of operators:

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Misc Operators

Arithmetic Operators
Following table shows all the arithmetic operators supported by C language. Assume

variable A holds 10 and variable B holds 20 then:

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiplies both operands A * B will give 200

/ Divides numerator by de-numerator B / A will give 2

%
Modulus Operator and remainder of after an integer

division
B % A will give 0

++ Increments operator increases integer value by one A++ will give 11

-- Decrements operator decreases integer value by one A-- will give 9

Relational Operators
Following table shows all the relational operators supported by C language. Assume

variable A holds 10 and variable B holds 20, then:

Operator Description Example

==
Checks if the values of two operands are equal or not, if yes

then condition becomes true.

(A == B) is

not true.

!=
Checks if the values of two operands are equal or not, if values

are not equal then condition becomes true.

(A != B) is

true.

>
Checks if the value of left operand is greater than the value of

right operand, if yes then condition becomes true.

(A > B) is not

true.

<
Checks if the value of left operand is less than the value of right

operand, if yes then condition becomes true.

(A < B) is

true.

>=
Checks if the value of left operand is greater than or equal to

the value of right operand, if yes then condition becomes true.

(A >= B) is

not true.

<=
Checks if the value of left operand is less than or equal to the

value of right operand, if yes then condition becomes true.

(A <= B) is

true.

Logical Operators
Following table shows all the logical operators supported by C language. Assume

variable A holds 1 and variable B holds 0, then:

Operator Description Example

&&
Called Logical AND operator. If both the operands are non-

zero, then condition becomes true.

(A && B) is

false.

||
Called Logical OR Operator. If any of the two operands is

non-zero, then condition becomes true.

(A || B) is

true.

!

Called Logical NOT Operator. Use to reverses the logical

state of its operand. If a condition is true then Logical NOT

operator will make false.

!(A && B) is

true.

Bitwise Operators
Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |,

and ^ are as follows:

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume if A = 60; and B = 13; now in binary format they will be as follows:

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

The Bitwise operators supported by C language are listed in the following table. Assume

variable A holds 60 and variable B holds 13, then:

Operator Description Example

&
Binary AND Operator copies a bit to the result if it

exists in both operands.

(A & B) will give 12,

which is 0000 1100

|
Binary OR Operator copies a bit if it exists in either

operand.

(A | B) will give 61,

which is 0011 1101

^
Binary XOR Operator copies the bit if it is set in

one operand but not both.

(A ^ B) will give 49,

which is 0011 0001

~
Binary Ones Complement Operator is unary and has

the effect of 'flipping' bits.

(~A) will give -61,

which is 1100 0011 in

2's complement form.

<<

Binary Left Shift Operator. The left operands value

is moved left by the number of bits specified by the

right operand.

A << 2 will give 240

which is 1111 0000

>>

Binary Right Shift Operator. The left operands value

is moved right by the number of bits specified by

the right operand.

A >> 2 will give 15

which is 0000 1111

Assignment Operators
There are following assignment operators supported by C language:

Operator Description Example

=
Simple assignment operator, Assigns values from right

side operands to left side operand

C = A + B will assign

value of A + B into C

+=
Add AND assignment operator, It adds right operand to

the left operand and assign the result to left operand

C += A is equivalent

to C = C + A

-=

Subtract AND assignment operator, It subtracts right

operand from the left operand and assign the result to left

operand

C -= A is equivalent

to C = C - A

*=

Multiply AND assignment operator, It multiplies right

operand with the left operand and assign the result to left

operand

C *= A is equivalent

to C = C * A

/=
Divide AND assignment operator, It divides left operand

with the right operand and assign the result to left operand

C /= A is equivalent

to C = C / A

%=
Modulus AND assignment operator, It takes modulus

using two operands and assign the result to left operand

C %= A is equivalent

to C = C % A

<<= Left shift AND assignment operator
C <<= 2 is same as C

= C << 2

>>= Right shift AND assignment operator
C >>= 2 is same as C

= C >> 2

&= Bitwise AND assignment operator
C &= 2 is same as C

= C & 2

^= bitwise exclusive OR and assignment operator
C ^= 2 is same as C =

C ^ 2

|= bitwise inclusive OR and assignment operator
C |= 2 is same as C =

C | 2

Misc Operators : sizeof & ternary

There are few other important operators including sizeof and ? : supported by C

Language.

Operator Description Example

sizeof() Returns the size of an variable.
sizeof(a), where a is integer, will

return 4.

& Returns the address of an variable.
&a; will give actual address of the

variable.

* Pointer to a variable. *a; will pointer to a variable.

? : Conditional Expression
If Condition is true ? Then value X :

Otherwise value Y

 (OR)

b. Explain the data types used in C with example

The type of data which a variable can store is called its data type. C language supports

following data types:-

Keyword Description Low High Bytes Format

string

Char Single character -128 127 1 %c

Int Integer -32768 32767 2 %d

Long int Long int -2147483648 2147483848 4 %ld

Float Floating 3.4 e-38 3.4 e 38 4 %f

Double Double floating 1.7 e -308 1.7 e 308 8 %lf

Long double Long double

floating

3.4 e -4932 1.1 e 4932 10 %Lf

Unsigned

char

Char with no sign 0 255 1 %c

Unsign int Int with no sign 0 65535 2 %u

Unsign long

int

Long int no sign 0 4294967295 4 %lu

25. a. Explain conditional control statements with neat example.

There are few control statements available and they are

1. Simple if

2. If – else

3. Nested if

4. Switch

1. Simple if - for Small Comparison

This control statement is used to check a condition and based on the result the order of

execution will be changed. The generals format and flow-chart for a simple if statement

is as follows.
if (expr) // A Place to check the condition
 {
 statement-1;
 }
statement-n;

Flowchart is

 Execution Enters

 True

 False

Here expr is an expression and the result of the expression may be TRUE / FALSE.

If the result of expression is TRUE, then the statement-1 part will be executed.

Otherwise the control jumps to the statement-n part and continues the execution.The

statement-1 can be a simple statement or a compound statement. The compound

statement must be enclosed with in braces { }.

/* Example for simple if statement */

main()

 {

 int a;

 printf(“\nEnter a number”);

 scanf(“%d”,&a);

 if (a>0)

 printf(“\nThe number is positive”);

 }

 Output:

 Enter a number 5

 The number is positive

Enter a number -5

2 if - else

By using the simple if statement we can execute only one set of statement(s)

depending upon the condition TRUE/FALSE. What we should do? If there are two

possible results (TRUE/FALSE). We have a solution with another type of control

statement if-else. The general format of if-else is illustrated with flowchart is as follows.

expr statement-1

statement –
n;

Next

if (expr)
 stmt –1; // TRUE Part

else
 stmt-2; // FALSE Part

stmt-n;
Flow chart
 Starts Execution

 True False

First the expression expr will be executed and if the result is TRUE, then the stmt-1 part

will be executed, otherwise stmt-2 will be executed. There is no chance to execute both

statements (stmt-1 and stmt-2) simultaneously. After the execution of any stmt-1 (or)

stmt-2 process continues from the stmt-n. The statements may be simple or compound

statements.

 /* Example for if - else statement is here. */

main()

{ int n;

 printf(“\nEnter a number to check”);

 scanf(“%d”, &n);

 if (n%2 = = 0)

 printf(“\n%d is an even number”,n);

 else

 printf(“\n%d is an odd number”,n);

}

 Output:

 Enter a number to check 5

5 is an odd number

The value of a and b are compared using the relational operator >. When result of a>b is

TRUE, value of a will be assigned to the variable big, otherwise the value of b will be

assigned to big. Finally the value of variable big will be printed which holds the biggest

of two numbers.

Another example to find biggest of three numbers.

3. Nested if statement - To check more conditions
Using the previous type of if statements we can check the conditions at only one place.

Alternatively we can check more conditions using the logical operators. Suppose there is

a situation to check number of conditions, in different part of if statement, we can use the

nested if statement. That is, the if statement contains another if statement as its body of

the statement.

 Format –1 Format – 2

 expr

 stmt - 1 stmt-2

stmt-
n

The execution form of format-1:

 *) First the expr1 is evaluated in both the format

 *) If the result is TRUE, then the expr2 will be evaluated. If expr2

 also returns TRUE, the statement-1 will be executed.

 *) If the result of expr-2 is FALSE the statement-2 will be executed.

The execution form of format-1:

 *) As in format-1, expr1 is evaluated first

 *) if the expr1 and expr2 are TRUE then statement-1 will be executed.

 *) if the expr1 is TRUE and expr2 is FALSE the statement-2 will be

 executed.

 *) if the expr1 is FALSE the statement-3 will be evaluated.

Note: Every else is closest to it’s if statement.

Thus of statement can be used inside the body of another if statement (nesting of

ifs). The following program is an example for nested if, to find the biggest among three

numbers.

/* Example for nested if statement */

main ()

{ int a,b,c;

 int big;

 printf("\nEnter three numbers : ");

 scanf("%d%d%d",&a,&b,&c);

 if (a>b)

 if (a>c)

 big=a;

 else

 big=c;

 else

 if (b>c)

 big=b;

 else

 big=c;

 printf("\nBigget no. is : %d ",big);

 getch();

}

4 Switch – Case Statement:

if (expr1)

 if (expr2)

 statement-1;

 else

 statement-2;

if (expr1)

 if (expr2)

 statement-1;

 else

 statement-2;

else

 statement-3;

 Whenever the situation occurs like to check more possible conditions for

single variable, there will be a no. of statements are necessary. the switch-case statement

is used to check multiple conditions at a time, which reduces the no. of repetition

statements. The general format of switch-case is as follows.

Way of Execution:

 *) First the expr will be evaluated and it must return a constant

 value. The constant can be numeric or character.

 *) The result of expr is checked against the constant values like c-1,

 c-2, etc., and if any value is matching, the execution starts from

 that corresponding statement. The execution will continue until the

 end of switch statement.

 To avoid this continuous execution problem we can use the break statement. The

break is used to terminate the process of block like switch, looping statements.

Here the default is an optional statement in switch. If no matching has occurred, the

default part of statement will be executed and may occur any where in the switch

statement.

 /* Example for switch statement without break */

 main()

 {

 int a;

 printf(“\nEnter any value for a : “);

 scanf(“%d”,&a);

 switch(a)

 {

 case 1 : printf(“\nGood”);

 case 2 : printf(“\nWell”);

 case 3 : printf(“\nExcellent”);

 default : printf(“\nBad Guy”);

 }

 }

 Output:

 Enter any value for a : 2

 Well

 Excellent

 Bad Guy

Enter any value for a : 5

switch (expr)
{
 case c-1: statement-1;

 case c-2: statement-2;

 case c-4: statement-4;

 [default : statement-n;]
}

 Bad Guy

 /* Example for the importance of break statement */

main()

 {

 int a;

 printf(“\nEnter any value for a : “);

 scanf(“%d”,&a);

 switch(a)

 {

 case 1 : printf(“\nGood”); break;

 case 2 : printf(“\nWell”); break

 case 3 : printf(“\nExcellent”); break

 default : printf(“\nBad Guy”);

 }

 }

 Output:

 Enter any value for a : 1

 Good

Enter any value for a : 5

 Bad Guy

 Upon using the break statement the statement corresponding to the matching case

is only executed. The last statement or default statement is not in need of break, because

there is no more statements for further execution in the switch.

(OR)

b. List the looping statements. Explain each with neat example.

Looping Statements:

The simple statements that we have discussed so far are used to execute the statements

only once. Suppose a programmer needs to execute the specified statements multiple

times. Here comes the looping statement, which overcomes the no. of times. For

example, to print the string “Good” five times, we have to use five individual printf()

statements. But, imagine if the no. of time increases to print 1000 times or N times. By

using the looping statements a statement or set of statements can be executed repeatedly.

main()

{

 for(i=1;i<=100;i++)

 printf(“\nGood morning”);

}

Just think about the no . of statements in the above programs, with and without looping

statement. So, we can use the looping statement to reduce the size of the program.

The different types of looping statements are

1. While statement

2. Do-While statement

3. for statement

1 while statement:

While is an entry controlled looping statement used to execute it’s body of the statement

any no. of times. The general format of while statement and its flowchart is as follows .

 False

 True

Way of execution:

 First the expr is evaluated, which will yield TRUE or FALSE result.

 If the condition is TRUE, the control enters inside the statements of while and after

completion of these statements once again the condition will checked with new value

for the next execution.

 Entry of the loop will be determined by the condition, so it is also called entry

controlled looping statement.

 So the Body of while is executed until the condition becomes FALSE.

 If the condition is FALSE, execution jumps to the next-statement after the

while statement and continues the execution.

The following example prints the numbers from 1 to n using while loop.

/* Example for while loop */

main()

{

int i=1,n;

printf("\nHow many numbers");

scanf("%d",&n);

printf("\nThe numbers are ");

while(i<=n)

{

 printf("%5d",i);

 i++;

}

}

 /* Reverse the given Integer number */

main()

{

int n;

printf("\nEnter a number :");

scanf("%d",&n);

printf("\nReverse of number :");

while(n != 0)

 while (expr)
 {

 //Statmts of while;

 }

 next-statement;

expr

Statements of While

Next - Statements

 {

 printf("%d",n%10);

 n=n/10;

 }

}

2 Do-While statement

It is also a looping statement to execute the specified statements repeatedly (or) any

number of times. In the while loop, condition is checked first, and execute it’s

statement only when the result is TRUE.

What is the difference between while & do-while?

while is a entry controlled looping statement and the statement of while will be executed

only when the condition is TRUE. But in do-while, statement part will be executed first

then only the condition will be checked. So the condition may be TRUE / FALSE, but

the statement part will execute at least once.

 The general format and it’s flowchart is given below.

Entry

 True

 False

Here, the Body of loop will be executed first and the expression expr will be checked

after the execution of the statement parts. If the result of expr is TRUE the control starts

its execution once again from Body of loop. This process will continuous until the result

of expr is FALSE.

The following program is like a menu selection program.

/* Example for do-while looping statement */

main()

{int ch;

do

{

printf("\n1. Add\n2. Sub");

 printf("\nSelect a choice");

 scanf("%d",&ch);

 }

 while(ch<3);

 }

 Output :

do
{
 Body of loop;
}
while(expr);

next-statement;

expr

Statements of

While

Next -
Statements

 1. Add

 2. Sub

 Select a choice 1

 1. Add

 2. Sub

 Select a choice 3

The following is another example for Decimal to Binary conversion.

/* Converting Decimal no. To binary */

main()

{

int a,n,s=0,i=1;

 printf("\nDecimal No . :");

 scanf("%d",&n);

printf("\nBinary No . :");

while(n)

 {

 printf("%d",n%2);

 n=n/2;

}

}

Output:

 Decimal No . :5

 Binary No . :101

3 For statement – Flexible looping statement

It is also a looping statement to execute the specified statements repeatedly in a

simplified format than the previous loops.

In general all the looping statements have the following three steps (Parts) in a

loop

1. Initialize the loop control variable

2.Check the condition whether TRUE / FALSE

3. Modify the value of the loop control variable for next execution

In the previous type of looping statements, these statements are kept separately.

But in for statement all the three parts are kept in one place.

The general format and flowchart is given below.

Where

 *) expr1 is used to initialize the value for loop control variable

1 2 4

for(expr1;expr2;expr3)

{

 //stmts. of the for loop; 3

}

next-statement;

 *) expr2 is used to check condition

 *) expr3 is used to modify the value

 The expr1, step 1 is the statement executed first and only once in the looping

statement. The steps 2,3 and 4 will be executed continuously until the condition becomes

false, at 2
nd

 place. 2,3,4 is the sequence of execution in the for loop.

Way of execution:

*) First the value of loop control variable is initialized by expr1.

 *) Next the condition is checked by expr2 and if it is TRUE

then the body of loop will be executed otherwise the control

passes to the next-statement of the program.

 *) For every Body of loop execution, expr3 will be executed to

modify the variable’s value.

 *) The above process continue until the expr2 will becomes FALSE.

Examples:

1. for(i=1;i<=100;i++) /* Increasing */

 { body of loop }

 i value is initialized to 1 and for every execution i value is incremented by 1 . So

body of loop will execute 100 times.

 2. for(i=100;i>0;i=i-2) /* Decreasing */

 { body of loop }

 First value of i is initialized to 100 and for every execution i value is decremented

by 2. So body will execute 50 times.

The following program is used to calculate Factorial value for a given number N.

General formula : n! = 1 * 2 * 3 * 4* …….*n

To do so, any of the looping statements can be used. The initial value of the loop

is 1, next increment is 1 and the summation.

/* To find the factorial of a number */

main()

{

 int n, i, f=1;

 printf("\nEnter a number");

 scanf("%d",&n);

 for(i=1;i<=n;i++)

f = f * i;

printf("\nFactorial of %d = %d ",n,f);

 }

One more example, following is a program generates a fibonacci series. The series like as

0 1 1 2 3 5 8 13 . . .

Generally the number is obtained by summing up of previous two numbers. So,

first initialize 0 , 1 to a , b respectively and find the number as c = a + b.

Next reassign the values of a and b, like b a, cb and proceed the same way

for N number of times.

 /* Fibonacci Sequence generation */

main()

 {

int a=0,b=1,c,n,i;

printf("\nHow many numbers :");

scanf("%d",&n);

printf("\nFibonacci Sequence \n");

for(i=1;i<=n;i++)

 {

 c=a+b;

 printf("%d\t",c);

 a=b; b=c;

 }

 }

Additional information about the for loop:

The for loop has three parts inside a set of parenthesis and each is separated by

the semicolon (;).

The expr1 may be placed before the for loop as

 i=10;

 for(;i<100;i++)

 { }

We can have more than one statement in the place of expr1, which are separated

by commas (,). For example

 for(a=4,i=0;i<10;i++)

 { }

The expr3 may also be placed in the body of the loop as .

 for(i=10;i<100;)

 { i++; }

If any expression in the for is missing, the semicolon must be placed.

 for(i=0;i<100;)

 { i++; } /* expr3 is empty in for loop /*

The following loop is used execute the statements indefinitely, because there is

initialization, condition and modification.

 for(; ;)

 { }

More than one condition statement can be used in the expr2 place of for loop as

 for(i=1;i<10&&j<20;i++)

 { }

Nested for loop:

 Just like a nested if, nested for loop is also possible. In the nested for loop, the

statement part of the loop contains another for statement.

 for(expr1;expr2;expr3) O

 for(expr4;expr5;expr6) I

 {

// body of loop

 }

Where O is an outer loop

 I is an inner loop

Way of execution:

 For every value of outer loop, the inner loop will execute no. of times. In the

nested loop, the body of loop will be executed until both the expressions expr2 and

expr5 becomes FALSE.

For example

 for(i=1;i<=10;i++)

 for(j=1;j<=5;j++)

 printf(“\nIndia”);

Here for every value of i the j loop execute the statement part 5 times. So

totally the string India will be printed 50 times (10 * 5 = 50).

The following example shows a clear output for you about the nested loop.

/* Example for nested for loop */

main()

{

int i,j;

for(i=1;i<=10;i++)

 for(j=1;j<=5;j++)

 printf("\ni = %d j = %d ",i,j);

}

 Output:

i = 1 j = 1

i = 1 j = 2

.

i = 2 j = 1

.

.

i = 10 j = 5

 Here for every value of i the j loop executes 5 times.

26. a. How will you declare and initialize a two dimensional array? Write a C program to

 perform matrix addition.

 How to Declare Two-dimensional Array?

 Similar to single dimensional array and simple variable declaration, the two-

dimensional array is declared as

 Where - size 1 refers to no. of rows

- size 2 refers to no. of columns

So totally we can store size1 * size2 values in the variable.

 Example: int a[20][10];

*) Here a is the two dimensional array variable and it has 20 rows and 10 columns. So

totally we can store 200 (20 * 10=200) values in the variable a.

Data type variable [size1] [size2] ;

*) To refer any value we have to specify the row no. and column no.

 Ex: a[2][5]

=> It refers to the element of 2
nd

 row 5
th

 column

Assigning Values

We can assign the values to the variable while declaration of it.

 Ex : int a[2] [3] = { {1,2,3},

{4,5,6} };

*) Each row is separated by braces { } and each element by

 commas.

*) Here two rows and three columns.

*) First row contains the values 1,2,3 and second row

 contains the values 4,5,6.

Addition of two matrix

#include <stdio.h>

 int main()

{

 int m, n, c, d, first[10][10], second[10][10], sum[10][10];

 printf("Enter the number of rows and columns of matrix\n");

 scanf("%d%d", &m, &n);

 printf("Enter the elements of first matrix\n");

 for (c = 0; c < m; c++)

 for (d = 0; d < n; d++)

 scanf("%d", &first[c][d]);

 printf("Enter the elements of second matrix\n");

 for (c = 0; c < m; c++)

 for (d = 0 ; d < n; d++)

 scanf("%d", &second[c][d]);

 printf("Sum of entered matrices:-\n");

 for (c = 0; c < m; c++) {

 for (d = 0 ; d < n; d++) {

 sum[c][d] = first[c][d] + second[c][d];

 printf("%d\t", sum[c][d]);

 }

 printf("\n");

 }

 return 0;}

 (OR)

 b. What is an array? Explain in detail the various types of arrays with example.

Array is a collection of elements or data items

 *) All the elements must be same data type

 *) and they are stored in consecutive memory locations

How to Declare Array variable?

Simple variables are declared as,

 int a,b,c; /* Simple variable Declaration */

data-type followed by list of variables.

Similarly, an array variable can also be as follows.

Where - data type is the type of data like int, char etc.,

 - variable is the name of the array variable

 - size is the maximum no. of elements to be stored in

 the array and the size must be an integer value.

 Example for array declaration is

 int a [5] ;

*) a is the name of the array variable of type integer *) In

the variable a, we can store 5 integer values.

 *) The memory allocation is as follows which assumes the

 starting address is 1000. Each element of the array occupies two bytes

because of integer data type.

 Element 0 1 2 3 4

 Memory 1000 1002 1004 1006 1008

 Location

How to refer the values of array variable?

In C the first element of array is stored at the location 0. So the element can be

accessed as follows:

- First element is referred as a[0] location 1000

- Second element is referred as a[1] location 1002

 data type variable [size] ;

- Third element is referred as a[2] location 1004 etc.

 *) Here 0,1,2, … are called as subscript (or) index. So array is

 also called as subscripted variable.

*) The above array is called single dimensional array. Because

 to refer any data we need only one index.

Assigning the data into array:

 Like a simple variable assignment, the values can be assigned to the array variable

as shown in the example.

 *) int a[5] = {10,20,30,40,50};

Here 1
st
 element is stored at a[0]

2
nd

 element is stored at a[1]

3
rd

 element is stored at a[2]

4
th

 element is stored at a[3] and

5
th

 element is stored at a[4]

Following are some of the ways to assign values to array variables.

 *) int a[10] = {20,30};

 => Here 10 memory locations are reserved for a. But we

 are using only 2. So the remaining spaces (eight) are

 wasted.

 *) int a[] = {10,20,30};

 => In this declaration the above problem has been solved. The

 size of array is adjusted automatically depending upon the

 no. of values assigned.

 *) The default value of variable is garbage value.

 *) The following declaration initializes all the values of array to 0.

 int a[100] = {0};

In this case all the locations are filled by the value 0.

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)
 COIMBATORE – 641 021

INFORMATION TECHNOLOGY/COMPUTER TECHNOLOGY

First Semester
SECOND INTERNAL EXAMINATION - August 2018

PROGRAMMING FUNDAMENTALS USING C/C++

Class & Section: I B.Sc (IT) & I B.Sc CT Duration: 2 hours
Date & Session: 29.8.18 AN Maximum: 50 marks
Subj.Code: 18ITU101/18CTU101

PART- A (20 * 1= 20 Marks)
Answer ALL the Questions

1. ____ function joins two strings together

a. strcat b. strcmp c. strcpy d. strlen
2. ____ function compares two strings identified by the arguments

a. strcat b. strcmp c. strcpy d. strlen
3. strcmp function returns the value______ if the arguments are equal

a. zero b. one c. two d. three
4. _____ function assigns the contents of one string to another

a. strcat b. strcmp c. strcpy d. strlen
5. .______ function counts and returns the number of characters in a string

a. strcat b. strcmp c. strcpy d. strlen
6. Individual values in array is referred as _______

a. subscript
b. elements

c. subelements
d. pointers

7. ______ functions has to be developed by the user at the time of developing a program
a. user defined b. built in c. subroutines d. structure

8. _____ header file should be declared to call input and output function
a. stdio.h b. stdlib.h c. conio.h d. math.h

9. Header file stdio.h calls _____ function
a. input/output b. math c. character d. sqrt

10. In function declaration if the return type is not specified , it returns ______ by default
a. integer b. character c. float d. long

11. _______ method is for packaging data of different data type
a. structure b. union c. pointer d. function

12. _____ keyword is used to declare structure
a. bit b. struct c. union d. array

13. Fields within structure are called ______
a. data b. variable c. member d. subelements

14. Linking member and a variable in structure is established using ____operator
a. * b. & c. dot d. >

15. Structure must be declared _____ if it is to be initialized inside function
a. intern b. extern c. static d. register

16. ______ is convenient tool for handling group of logically related data items
a. union b. structure c. bitfields d. array

17. All members of ______ use the same storage location in memory
a. union b. structure c. bitfields d. array

18. _____ is called the member operator
a. * asterisks
b. ; semicolon

c. . Period
d. : colon

19. Each member of a structure must be declared independently for its ________ in a
separate statement inside the structure template
a. size and name
b. name and type

c. height and length
d. scope and life

20. Convenient way of representing the details of all students in a class is ____
a. array of structures
b. two dimensional array

c. array of names
d. structure with arrays

PART- B (3 * 2= 6 Marks)
Answer ALL the Questions

21. Write notes on i) Call by value ii) Call by reference of functions

22. What is a function? How will you define a function?

23. How the members of structure are accessed? Write example

PART C (3 * 8 = 24 Marks)
Answer ALL the Questions

24. a. Explain in detail about String functions with syntax and example.

 (OR)
b. Explain the Array of Structures with example.

25. a. Explain the various types of user-defined functions with example.
 (OR)

b. How will you declare, initialize and access a structure? Write a program to

calculate net pay of an employee using structure.

26. a. How will you declare, initialize and access a union? Explain in detail with
example.
 (OR)
b. Write a program to swap two numbers using pointers.

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

INFORMATION TECHNOLOGY/COMPUTER TECHNOLOGY

First Semester

SECOND INTERNAL EXAMINATION - August 2018

PROGRAMMING FUNDAMENTALS USING C/C++

Class & Section: I B.Sc (IT) & I B.Sc CT Duration: 2 hours

Date & Session: 29.8.18 AN Maximum: 50 marks

Subj.Code: 18ITU101/18CTU101

PART- A (20 * 1= 20 Marks)

Answer ALL the Questions

1. ____ function joins two strings together

a. strcat

b. strcmp

c. strcpy

d. strlen

2. ____ function compares two strings identified by the arguments

a. strcat

b. strcmp

c. strcpy

d. strlen

3. strcmp function returns the value______ if the arguments are equal

a. zero

b. one

c. two

d. three

4. _____ function assigns the contents of one string to another

a. strcat

b. strcmp

c. strcpy

d. strlen

5. .______ function counts and returns the number of characters in a string

a. strcat

b. strcmp

c. strcpy

d. strlen

6. Individual values in array is referred as _______

a. subscript

b. elements

c. subelements

d. pointers

7. ______ functions has to be developed by the user at the time of developing a program

a. user defined

b. built in

c. subroutines

d. structure

8. _____ header file should be declared to call input and output function

a. stdio.h

b. stdlib.h

c. conio.h

d. math.h

9. Header file stdio.h calls _____ function

a. input/output

b. math

c. character

d. sqrt

10. In function declaration if the return type is not specified , it returns ______ by default

a. integer

b. character

c. float

d. long

11. _______ method is for packaging data of different data type

a. structure

b. union

c. pointer

d. function

12. _____ keyword is used to declare structure

a. bit

b. struct

c. union

d. array

13. Fields within structure are called ______

a. data

b. variable

c. member

d. subelements

14. Linking member and a variable in structure is established using ____operator

a. *

b. &

c. dot

d. >

15. Structure must be declared _____ if it is to be initialized inside function

a. intern

b. extern

c. static

d. register

16. ______ is convenient tool for handling group of logically related data items

a. union
b. structure

c. bitfields

d. array

17. All members of ______ use the same storage location in memory

a. union

b. structure

c. bitfields

d. array

18. _____ is called the member operator

a. * asterisks

b. ; semicolon

c. . Period

d. : colon

19. Each member of a structure must be declared independently for its ________ in a

separate statement inside the structure template

a. size and name

b. name and type

c. height and length

d. scope and life

20. Convenient way of representing the details of all students in a class is ____

a. array of structures

b. two dimensional array

c. array of names

structure with arrays

PART- B (3 * 2= 6 Marks)

Answer ALL the Questions

21. Write notes on i) Call by value ii) Call by reference of functions

22. What is a function? How will you define a function?

23. How the members of structure are accessed? Write example

PART C (3 * 8 = 24 Marks)

Answer ALL the Questions

24. a. Explain in detail about String functions with syntax and example.

Library Functions in String:

 The operations like, copying a string, joining of two strings, extracting a portion of the
string, determining the length of a string etc. cannot be done with arithmetic operators. String
based library functions are used to perform this type of operations and they are located in the
header file <string.h>.

Four important string based library functions are

 1. strlen() - To find the length of a string

 2. strcpy() - To copy one string into another

 3. strcat() - To join strings

 4. strcmp() - To compare two strings.

1. Length of the string - strlen():

 The function, strlen() is used to find the length of the given string. The general format
is as follows.

Where str is a string variable and it returns number of characters

present in the given string.

Example:

char str*10+ = “Karthi”;

 len = strlen(s)

=> It returns length of the string as 6 and it is stored in the variable len.

char s*10+ = “Welcome\0”;

 int strlen (str);

 len = strlen(s);

=> This example returns length as 7, because it will not count NULL character ('\0') as a
character of the string .

len=strlen(“ABbbbCD ”);

=> where b is a blank space. In this case the blank space is also treated as a character. So,
length of this string is 7. (Including blank space)

2 Assigning the string - strcpy () :

 The function strcpy() is used to copy the content of one string into another. We can’t
use the assignment operator (=) to assign a string to the variable. By using this function only
we can perform assignment operation on string.

 char s[15] ;

 s = “Man”; /* This is not possible in C */

 The general format is as follows.

 Where s1 and s2 are string variable

Here s2 is the source string and s1 is the destination string. After the execution of this
function content of s2 is copied into s1 and finally both s1 and s2 contains the same values.

Example :

1. char s1* + = “Karthi”;

 char s2* + = “Good”;

 strcpy(s1,s2);

 => After the execution the content of the string s2 is copied

 into string s1. Therefor the string "Karthi" is replaced

 with the string "Good". Now both s1 and s2 contains the

 string "Good".

 2. char s1[10];

 char s2*10+ = “Karthi”;

The Null character (\0) is not a countable character in the string

strcpy(s1, s2);

 strcpy(s1,s2);

 => Here also the content of s2 is copied into s1 and both

 contains the string as Karthi.

3 Joining Strings - strcat() :

The function strcat() is used for joining two strings. The general format is as follows

Where s1 and s2 are string variables.

Here the content of s2 is appended (or) joined to the contents of s1. After the execution
s1 now contains its own content, followed by the contents of s2 and s2 retains the same.

Example:

1. char s1*10+ = “Good” , s2 *10+ = “Morning”;

 strcat (s1,s2);

=> After the execution of this function, s1 contains

 "GoodMorning" and s2 contains "Morning".

2. char s1*10+ = “ ” , s2 *10+ = “Welcome”;

strcat (s1,s2);

=> After execution, both s1, s2 has "Welcome", because

 first variable s1 does not have any character in it.

4 To Compare - strcmp() :

 This function is used to compare two strings. To compare any numeric values we use
relational operators, by using these operators we can’t compare strings. The strcmp() performs
the function of comparison. The general format is as follows.

Where s1 and s2 are string variables.

This function returns any one of three possible results.

 *) Result is 0 when both strings are equal. (s1 = s2)

strcat(s1 , s2);

int strcmp(s1 , s2);

 *) Result is Positive value, if s1 is greater than s2 (s1>s2)

 *) Result is Negative if s1 is less than s2. (s1<s2)

Note:

 The result of comparison is obtained by calculating the difference between the ASCII
value of the corresponding characters. The comparison is made by checking the corresponding
characters (ASCII values) one by one between two strings.

 The first character of s1 is compared with the first character of s2. If they are equal, the
process passes on to the next character on the string until they meet with mismatch or no more
character to process.

The process of comparison is terminated if any mismatching occurs or end of string is
reached.

 Example:

 1. char s1* 5 + = “ABC”;

 char s2* 5 + = “ABC”;

 strcmp(s1,s2);

=> This function returns 0 as a result, because both s1 and s2 contains the same characters.
The characters of s1 is equal to the character of s2. So, the result is 0. (ASCII difference of
these characters).

 2. char s1* 5 + = “ABC”;

 char s2* 5 + = “abc”;

 strcmp(s1,s2);

 =>This function returns -32 as a result, as ASCII difference between A and a is -32 (65 – 97).
ASCII value of 'A' is 65 and 'a' is 97.

 3. char s1* 5 + = “ABz”;

 char s2* 5 + = “ABC”;

 strcmp(s1,s2);

 => This function returns 55 as a result. Because ASCII difference between z and C is 55(122 –
67). ASCII value of 'z' is 122 and 'c' is 67.

Here is a program to illustrate, how to read a string and find out its length without using

the library function.

/* Implementing strlen() function */

#include <string.h>

 3

 2

 1

main()

{

 int i= 0;

 char str[25];

 printf("\nEnter a string : ");

 gets(str);

 printf("\nYour given string : ");

 while(str[i])

 printf("%c",str[i++]);

 printf("\nLength of string : %d ",i);

 }

 Output:

Enter a string : karthi

Your given string : karthi

Length of string : 6

 /*Check whether the given string is palindrome or not*/

#include <string.h>

main()

{

 int i,l,poly=1;

 char s[50];

 printf("\nEnter a string : ");

 gets(s);

 printf("\nGiven string is : %s",s);

 l=strlen(s);

printf("\nLength of string : %d\n",l);

l = l-1;

 for(i=0;i<=l;i++)

 if (s[i]!=s[l-i])

 poly=0;

 if (poly = =1)

 printf("\n'%s' is polindrome",s);

 else

 printf("\n'%s' is not polindrome",s);

 }

strrev() => This function is used to reverse the string

char s* + =”Hello”;

 strrev(s);

 =>Now the content of the string s is reversed.

A program to find out whether the given string is palindrome or not using the library function.

 /* Palindrome checking using library function */

main()

{

char s1[15],s2[15];

 clrscr();

printf("\nEnter a string : ");

scanf("%s",s1);

strcpy(s2,s1);

strrev(s2);

if (strcmp(s1,s2)==0)

 printf("\nGiven strnig is palindrome ");

else

 printf("\nGiven string is not palindrome ");

getch(); }

 (OR)

b. Explain the Array of Structures with example.

d. Array of structures:
e. The above example is only for manipulating single record, that is only one employee

information. Suppose if we want to prepare more number of records, we can use the array
of structures. Array of structure is defined as simple as ordinary arrays as below

f. struct emp e[100];
g. The above declaration indicates that e is a array of structure variable and we can store 100

employees information. The reference of members is also similar to the array reference.

So, first we have to specify the index of the structure and necessary variables. To refer the
first employee’s information we have to use the notations

h. s[0].name, s[0].np etc.
i. Like wise all the employees information are referred and processed. The following example

illustrates the array of structures.

/* To find the class of the students */

main()

{ struct stu

{

 char name[25];

 int rollno,marks;

}s[50];

 int n,i;

char result[15];

 printf("\nHow many students : ");

scanf("%d",&n);

 printf("\nEnter %d students information\n",n);

for(i=0;i<n;i++)

 { printf("\nEnter %d persons name : ",i+1);

 scanf("%s",s[i].name);

 printf("\nRoll No : ");

 scanf("%d",&s[i].rollno);

 printf("\nMarks : ");

 scanf("%d",&s[i].marks);

}

printf("\nResult of the students ");

for(i=0;i<n;i++)

 { if (s[i].marks >= 60)

 strcpy(result,"First");

 if ((s[i].marks >= 50) && (s[i].marks <60))

 strcpy(result,"Second");

 if ((s[i].marks >= 40) && (s[i].marks<50))

 strcpy(result,"Third");

 if (s[i].marks < 40)

 strcpy(result,"Fail");

printf("\nResult = %s class ",result);

 } }

j. As we know that the elements of array are stored continuously. In structure also the
members of structure will be stored in consecutive memory locations one after another.
This is illustrated in the following program. It has a structure stu and size of single structure
is 17 bytes. (2 for age and 15 for name, so 2+15=17 bytes)

k.
/* Array of structures */

struct

{

 int age;

 char name[15];

}stu[5];

main()

{

 int i;

 for(i=0;i<5;i++)

 printf("\nAddress is : ",&stu[i]);

}

 Address is : 1200

 Address is : 1217

 Address is : 1234

 Address is : 1251

 Address is : 1268

l. From this output it is found that the elements in structure are also stored in consecutive

memory locations.

25. a. Explain the various types of user-defined functions with example.

User defined functions – Design your own:

The user can write a function according to their wish and requirements and this type of

function is called as user defined function. It is just like designing a dress depending upon

one’s taste. So if you are not satisfied with the readymade, design your own.

The purpose of having a function in a program is to reduce the size of the program and in

some cases this can also be achieved by using the looping statements. The following is a

program and how the same is reduced is illustrated.

 main()

 {

 printf(“\nHello”);

 printf(“\nGood morning”); Set 1

 printf(“\nHello”); Set 2

 printf(“\nGood morning”);

 printf(“\nHello”);

 printf(“\nGood morning”);

 printf(“\nHello”);

 printf(“\nGood morning”);

 printf(“\nHello”);

 printf(“\nGood morning”);

 printf(“\nHello”);

 printf(“\nGood morning”);

 }

Can we reduce the size of the above program? Yes. We can. The following is a revised

version of the program using for looping statement.

 /* Minimized program using for loop */

 main()

 { int i;

 for(i=1;i<=3;i++)

 { printf(“\nHello”);

 printf(“\nGood morning”);

 } }

Suppose the repetition occurs in different part of the program instead of continuous one,

using looping is not a solution. Here comes the function. Yes. Keep the repeated set of

statements in a separate part of the program (some time called as sub-program). Whenever

these repeated statements are required, the sub-program can be invoked and utilized.

main()

{

CALL function

Other

statements

CALL function

main()

{

 Other

statements

10 lines

10 lines

10 lines

function code

contains 10

Program

with

Program

with

Function

 Figure a Figure b

Figure (a) is a program with repeated code in three places and the aim of all the 10 lines are

same. In figure (b) the repeated statements are available as a sub-program / function. This

function can be invoked/called wherever the repeated code is necessary.

In the figure (a) the repeated code is 10 lines, totally it occupies 30 lines, because it is in 3

places (3 * 10 = 30). But in the figure (b) instead of 10 lines, only one instruction (CALL) is

used to invoke the sub program. Totally 30 lines of the figure (a) is reduced into 3 lines and

10 lines in the function. This function can be invoked any number of times at any place.

The following diagram is illustrating how the functions are being invoked and processed with

multiple functions.

In the above diagram there is two sub programs namely test1 and test2.

 First we know the main() function starts its execution and it calls the user defined

function test1()

 Before starting process, the status of main() is stored into stack and execution continuous

in test1()

 The function test1(), in turn calls another function test2()

 As in the previous case status of test1() is pushed in to the stack.

 Now stack contains status both test1() function and main ()

 The execution continuous in test2()

 After completion of test2(), the control is returned to the test1() and continues the

execution until the end of the function

 When test1() is completed, the control returns to main() program and once again the

process is resumed.

General format for function declaration:

Return-type function-name(arg1,arg2...)

 {

 Local variable declaration

 Body of the function

// sub

program2

test2 ()

{

// sub

program1

test1 ()

{

statements;

// Main

program

main ()

{

statements;

Here

 Return-type is type of data returned by the function

 Function-name is the name of the function

 arg1 , arg2 … are parameters of the function

 Look the example for a function declaration

 int swap(int a, int b)

 {

 // Body of the function;

 }

 The first int is the type of data to be returned by the function swap() and a, b are the

arguments to the function.

 (OR)

b. How will you declare, initialize and access a structure? Write a program to calculate net

pay of an employee using structure.

Structure declaration is different to the conventional declarations, look the following.

 struct is a keyword to indicate that structure variable.
 member-1, member-2 are the variables of the structure.
 In the first option the <tag> name is must because using this <tag> only we can

create new structure variable as follows. The structure variable is defined as
following format only.

struct <tag> sv1,sv2...;

This declaration is just like as int a,b,c …; In the second option sv1,sv2 are the structure

variables. The structure ends with semicolon like others.

The information about students such as name, roll number and marks are grouped and

declared as follows.

struct stu

 { char name[16];

 int rollno, marks;

 };

struct stu s1,s2;

Here using the tag name stu the structure variable s1, s2 are created. Alternative way to

declare the structure variable is as follows.

struct stu

 { char name[16];

 int rollno, marks;

struct <tag>

 {

 member-1;

 member-2;

struct [<tag>]

 {

 member-1;

 member-2;

 }s1,s2;

Now without using tag name the variables s1, s2 are created. So we can use any one of the

above declarations.

Referring the data in structure:

The aim of the array and structure is basically same. In array the elements are referred by

specifying array name with index like a[5] to refer the fifth element. But in structure, the

members are referred by entirely new method as mentioned below.

The dot (.) operator is used to refer the members of the structures. For example if we wish to

access the members of the previous structure, the following procedure have to be followed.

 s1.name, s1.marks, s1. rollno

Assigning the values to the structure variable:

The values may be assigned for the array while declaring it as follows

 int a[5] = {10,20,30,40,50};

As above we can assign the value for the members of the structure as follows.

 struct stu

 { char name[15];

 int rollno, marks;

 - s1= ,“Karthi”,1000,76-;

Here the string value “Karthi” will be assigned to the member name, 1000 will be assigned to

the member rollno and 76 will be assigned to marks. The following program is a first one

using structure and sees how the members of the structure are being referred.

 /* Example for structure reference and assignment */

structure-name. variable name;

 main()

 { struct stu

 {char name[15];

int rollno, marks;

 }s1 = {"Karthi",1000,76};

 printf("\nName = %s ",s1.name);

 printf("\nroll no = %d ",s1.rollno);

 printf("\nMarks = %d ",s1.marks); }

Suppose all the values of one structure are necessary for another structure variable. The

values can be copied one by one as usual. Here structure supports the whole structure can be

assigned using = operator. Assume s1 and s2 are the structure variables and the contents of s1

should be copied in s2 also. How?

 strcpy(s2.name, s1.name);

 s2.rollno = s1. rollno; /* copying one by one*/

 s2.marks = s1. marks.

(or)

s2 = s1;

 /* Copying entire structure to another structure */

The second one is the best way of programming approach to copying structures. An example

program to prepares a pay slip for the employee using the structure.

 /*To find the net pay of the employee using structure */

 main()

 { struct emp

{ char name[25];

 float bp,hra,pf,da,np;

 int empno;

 }e;

printf("\nName of the employee : ");

gets(e.name);

printf("\nEmployee No : ");

scanf("%d",&e.empno);

printf("\nBasic Pay : ");

scanf("%f",&e.bp);

 if (e.bp>5000)

 { e.da = 1.25 * e.bp; /* 125 % DA */

 e.hra = .25 * e.bp; /* 25 % HRA */

 e.pf = .12 * e.bp; /* 12 % PF */

 }

 else

 { e.da = 1.0 * e.bp; /* 100 % DA */

e.hra = .15 * e.bp; /* 15 % HRA */

e.pf = .10 * e.bp; /* 10 % PF */

 }

 e.np = e.bp + e.da + e.hra - e.pf;

 printf("\n\tKarthik Systems pvt. ltd., \n");

 printf("\nName : %s Employee No : %d \n",e.name,e.empno);

 printf("\nBasic Pay D.A H.R.A P.F Net Pay\n");

 printf("\n%5.2f %5.2f %5.2f %5.2f %5.2f ",e.bp, e.da, e.hra, e.pf, e.np);

 }

26. a. How will you declare, initialize and access a union? Explain in detail with example.

UNIONS

 Union is the best gift for the C programmers. Yes. For looking and the general

declaration of union is similar to the structure variable. Instead of the key word struct, the key

word union is used. The members of union also referred with the help of (.) dot operator.

The union variable has been mainly used to set/reset the status of the hardware,

devices of the computer system and its roll is very much in the system software development.

For example, the register has 16 bit and they are named as low byte and high byte. If

any changes in the low or high byte will affect the full word of the register.

Difference between structure and union:

In case of structure all the members occupies different memory locations depends on

the type, which it belongs to. In union memory will be allocated only for the larger size variable

of the group, no other memory allocation will be made. Now, allocated highest memory will be

shared by all the remaining variables of the union. The declaration of a union and its format is

as follows

General format: Example:

 We may think that the size of the union variable is 21 bytes (15+2+4). But it is

not correct. Because of union larger memory request only considered for allocation. No

independent memory for the members will be allocated.

/* Example for the union variable */

main()

{union

{ char name[15];

 int rollno;

 float marks;

} s;

 union

 {

member-1;

member-2;

member-3;

union

 {

 char

name[15];

 int rollno;

printf("\nSize of the union : %d ",sizeof(s)); }

 Size of the union : 15

In this program the maximum memory request is 15 (char name [15]). So all the

remaining members of the union rollno, marks will share the same memory area.

Let us consider a union variable with two members one is int and another one is float. In

general integer requires 2 bytes and float requires 4 bytes. But in union only the memory for

float will be allotted and this is also shared by int variable also. This discussion is illustrated in

the following diagrams.

 float

 int

Memory is shared- a proof

The following program illustrates our discussion of previous paragraph idea. The largest

memory area will be shared by the other members. If so what is going to happen when we

refer. Yes. Confusion. But be clear that two values will be accessed and changes in one disturb

the other one.

/* A proof of union - sharing memory */

main()

{ union

{ char c;

 int a;

}s;

 s.c= 'z';

 printf("\nC = %c ",s.c);

 printf("\nA = %d ",s.a);

 s.a = 65;

 printf("\nNew C = %c ",s.c);

 printf("\nNew A = %d ",s.a);

 getch(); }

C = z

A = 122 /*This is not same for all execution*/

New C = A

New A = 65

First time the union variable a has some unexpected data. After changing its value the

character variable c value also has been changed as from ‘z’ to ‘A’. This is enough to prove

whether the memory in the union is shared or not.

Typedef inition :

This is also a user defined data type used to set a new name for the existing data types.

Are you feeling in the understanding of the word int instead of integer. If so, leave worries. The

typedef statement is used to create a new user defined data type. That is we can give a new

name for the data types like int, float etc. The declaration is similar to the simple variable

declaration. The general format of the declaration is

In feature to declare the same kind of data type we can use the new-name instead of

old data-type. Look the following example:

typedef int number;

Here number is declared as an integer data type and it is equivalent to the data type int.

Now we can use number to declare variable of integer type.

typedef data-type new-name;

number a,b,c;

 By using the typedef the new data type string will be created as follows with the

example. There is no provision for declaring string directly.

 /* Example for typedef declaration */

 main()

{

typedef char string[80];

string name;

/* name is string type data */

printf("\nEnter a name : ");

scanf("%s",name);

printf("\n'%s' welcome to all",name);

 }

Enter a name : Sanjai

'Sanjai' welcome to all

 (OR)

b. Write a program to swap two numbers using pointers.

AIM

 To write a program that swaps two numbers using pointers and macros.

ALGORITHM

 STEP 1 : Start the program.

 STEP 2 : Declare the necessary variables.

 STEP 3 : Get the input for first number.

 STEP 4 : Get the input for second number.

 STEP 5 : Call the function swap() by passing the address of the two

numbers as arguments.

 STEP 6 : Swap the two number using a temporary variable temp.

 STEP 7 : Print the swapped numbers.

 STEP 8 : Stop the program.

SWAPPING TWO NUMBERS

#include<stdio.h>

#include<conio.h>

void SWAP(intx,int y)

{

intt;t=x;x=y;y=t;

printf("\n Aterswaping the value of a= %d and b= %d",x,y);

}

void main ()

{

int a1,b1,x,y,*a,*b,temp,op,j;

clrscr();

do

 {

printf("\n\t options");

printf("\n 1.swaping two number using macros");

printf("\n 2.swaping two number using pointers");

printf("\n Enter your option(1/2):");

scanf("%d",&op);

switch(op)

 {

case 1:

printf("\nEnter two number: ");

scanf("%d%d",&a1,&b1);

printf("\n Before swaping the value of a= %d and b =%d",a1,b1);

SWAP(a1,b1);

break;

case 2:

printf("\nEnter the vale of x and y: ");

scanf("%d%d",&x,&y);

printf("Before swaping \n x=%d \n y=%d \n",x,y);

 a=&x;

 b=&y;

temp=*b;

 *b=*a;

 *a=temp;

printf("After swaping \n x=%d \n y=%d \n",x,y);

break;

 }

 }

while(op<2);

getch();

}

OUTPUT:

options

1.swaping two number using macros

2.swaping two number using pointers

 Enter your option(1/2):1

Enter two number: 15

10

 Before swaping the value of a= 15 and b =10

Aterswaping the value of a= 10 and b= 15

options

1.swaping two number using macros

2.swaping two number using pointers

 Enter your option(1/2):2

Enter the vale of x and y: 15

10

Before swaping

 x=15

 y=10

After swaping

 x=10

 y=15

Result:

The above program has been executed successfully and the output is verified.

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)
 COIMBATORE – 641 021

INFORMATION TECHNOLOGY/COMPUTER TECHNOLOGY

First Semester
THIRD INTERNAL EXAMINATION - October 2018

PROGRAMMING FUNDAMENTALS USING C/C++

Class & Section: I B.Sc (IT) & I B.Sc CT Duration: 2 hours
Date & Session: 8.10.18 AN Maximum: 50 marks
Subj.Code: 18ITU101/18CTU101

PART- A (20 * 1= 20 Marks)
Answer ALL the Questions

1. In ____ mode the existing file is opened for reading only

a. r b. w c. a d. f
2. In _____ mode the file can be opened for writing only

a. r b. w c. a d. f
3. In _____ mode the file can be opened for appending data to it

a. r b. w c. a d. f
4. The getc function will return an _______ ,when end of the file has been reached

a. BOF b. EOF c. SOF d. FOF
5. _____ is a parameter supplied to a program when the program is invoked

a. argument
b. parameter

c. command line argument
d. values

6. Command line argument is supplied to the program when it is _________
a. invoked b. developed c. compiled d. stored

7. The file mode _____ is used to read and append some data into an existing file from end of
the file
a. "r" b. "r-" c. "r+" d. all

8. A _______ file is a collection of ASCII characters, with end of line markers and end of file
markers
a. program b. binary c. image d. text

9. fclose() function is used to close
a. editor b. program c. all d. file

10. File mode must be specified while ________
a. opening a file
b. reading a file

c. writing a file
d. closing a file

11. Objects can be___________
a. created
b. created & destroyed

c. permanent
d. temporary

12. ______________helps the programmer to build secure programs
a. Dynamic binding
b. Data hiding

c. Data building
d. message passing

13. _________________techniques for communication between
objects makes the interface descriptions with external systems much simpler
a. message passing
b. Data binding

c. Encapsulation
d. Data passing

14. _________________are extensively used for handling class objects
a. overloaded functions
b. methods

c. objects
d. messages

15. __________________refers to the act of representing essential features without including the
background details or explanations

a. encapsulation
b. inheritance

c. Dynamic binding
d. Abstraction

16. Attributes are sometimes called______________
a. data members
b. methods

c. messages
d. functions

17. The functions operate on the datas are called______________
a. methods
b. data members

c. messages
d. classes

18. ______________is the process by which objects of one class acquire the
 properties of objects of another class

a. polymorphism
b. encapsulation

c. data binding

d. Inheritance
19. ________ is used to read a number of items from the file stream using format

a. printf() b. scanf() c. fprintf() d. fscanf()
20. A _________ constructor is used to declare and initialize an object from another object

a. Default
b. copy

c. multiple
d. parameterized

PART- B (3 * 2= 6 Marks)
Answer ALL the Questions

21. What is memory allocation in C++? Define its types.

22. How will you open a file? Give example

23. Write about new and delete operators with example.

PART C (3 * 8 = 24 Marks)
Answer ALL the Questions

24. a. Explain reading and writing text files.

(OR)
b. Write a C program to copy the content of a file into another.

25. a. List the basic concepts of C++ and explain it
(OR)

b. Explain Random access file.
26. a. Difference between procedure-oriented and object-oriented programming

 (OR)

b. Define class. How will you create class and explain with example.

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

INFORMATION TECHNOLOGY/COMPUTER TECHNOLOGY

First Semester

THIRD INTERNAL EXAMINATION - October 2018

PROGRAMMING FUNDAMENTALS USING C/C++

Class & Section: I B.Sc (IT) & I B.Sc CT Duration: 2 hours

Date & Session: Maximum: 50 marks

Subj.Code: 18ITU101/18CTU101

PART- A (20 * 1= 20 Marks)

Answer ALL the Questions

1. In ____ mode the existing file is opened for reading only

a. r

b. w

c. a

d. f

2. In _____ mode the file can be opened for writing only

a. r

b. w

c. a

d. f

3. In _____ mode the file can be opened for appending data to it

a. r

b. w

c. a

d. f

4. The getc function will return an _______ ,when end of the file has been reached

a. BOF

b. EOF

c. SOF

d. FOF

5. _____ is a parameter supplied to a program when the program is invoked

a. argument

b. parameter

c. command line argument

d. values

6. Command line argument is supplied to the program when it is _________

a. invoked

b. developed

c. compiled

d. stored

7. The file mode _____ is used to read and append some data into an existing file from end of

the file

a. "r"

b. "r-"

c. "r+"

d. all

8. A _______ file is a collection of ASCII characters, with end of line markers and end of file

markers

a. program

b. binary

c. image

d. text

9. fclose() function is used to close

a. editor

b. program

c. all

d. file

10. File mode must be specified while ________

a. opening a file

b. reading a file

c. writing a file

d. closing a file

11. Objects can be___________

a. created

b. created & destroyed

c. permanent

d. temporary

12. ______________helps the programmer to build secure programs

a. Dynamic binding

b. Data hiding

c. Data building

d. message passing

13. _________________techniques for communication between

objects makes the interface descriptions with external systems much simpler

a. message passing

b. Data binding

c. Encapsulation

d. Data passing

14. _________________are extensively used for handling class objects

a. overloaded functions

b. methods

c. objects

d. messages

15. __________________refers to the act of representing essential features without including the

background details or explanations

a. encapsulation

b. inheritance

c. Dynamic binding

d. Abstraction

16. Attributes are sometimes called______________

a. data members

b. methods

c. messages

d. functions

17. The functions operate on the datas are called______________

a. methods

b. data members

c. messages

d. classes

18. ______________is the process by which objects of one class acquire the

 properties of objects of another class

a. polymorphism

b. encapsulation

c. data binding

d. Inheritance
19. ________ is used to read a number of items from the file stream using format

a. printf()

b. scanf()

c. fprintf()

d. fscanf()

20. A _________ constructor is used to declare and initialize an object from another object

a. Default

b. copy

c. multiple
d. parameterized

PART- B (3 * 2= 6 Marks)

Answer ALL the Questions

21. What is memory allocation in C++? Define its types.

There are two ways that memory gets allocated for data storage:

1. Compile Time (or static) Allocation

o Memory for named variables is allocated by the compiler

o Exact size and type of storage must be known at compile time

o For standard array declarations, this is why the size has to be constant

2. Dynamic Memory Allocation

o Memory allocated "on the fly" during run time

o dynamically allocated space usually placed in a program segment known

as the heap or the free store

o Exact amount of space or number of items does not have to be known by

the compiler in advance.

o For dynamic memory allocation, pointers are crucial

22. How will you open a file? Give example

The purpose of using a file may be to read or write data. To do any of the two functions first we

must open the file. The file can be opened by using the library function fopen() and its format

is

Where filename is the name of the file to be opened and mode is the purpose of

opening the file like read / write / append.

If the file exists, it is opened and the fopen() function returns the starting address of t he file.

If fail on opening the result is NULL.

For example

fopen(“stu.dat”,”r”);

=>”stu.dat” is the name of the file and “r” is mode of opening the file (“r” indicates

the read mode). If success, it returns the starting address of stu.dat file.

The file may be opened in any one of the following modes:-

FILE *fp = fopen(filename, mode);

Description

w

r Open the available file for reading

a Open the file for appending

w+ Create the new file for both operations (read & write)

r+ Open the available file for both operations (read & write)

a+ Open the available file for both (read & write) operation with append

23. Write about new and delete operators with example.

new and delete operators are provided by C++ for runtime memory management. They are used

for dynamic allocation and freeing of memory while a program is running.

- The new operator allocates memory and returns a pointer to the start of it. The delete operator

frees memory previously allocated using new.

- The general form of using them is :

p_var = new type;

delete p_var;

PART C (3 * 8 = 24 Marks)

Answer ALL the Questions

24. a. Explain reading and writing text files.

to read the characters or write the character into a file. The library functions fgetc(), fputc(),
getc(), putc() are used for the above said operations. The following discussions will give an
idea about these functions.

getc() - To read a character from the file and adjust the file pointer

 to the next character of the file automatically.

fgetc() - to read a character from a file.

putc() - to write a character into the file.

fputc() - to write a character into the file.

The general format of the getc() and fgetc() function is as follows.

These functions reads character one by one from the file and the file pointer will be

automatically adjusted to the next location in the file. By this way we can read all the characters

from the file, sequentially. The characters are fetched from the file and it can be displayed as

like below.

 ch = fgetc(fp); /* Getting character from file */

 putch(ch); /* Displaying it in the screen */

Note: File pointer will be automatically adjusted to the next location
feof() - To check end of file

During the processing of the file, the end of file can be realized by the value the file pointer

returns. The file pointer returns 0 if the end of file has been reached.

The end of file can be checked by using the library function feof(). This function returns TRUE if

the file reaches the end, otherwise FALSE. Using feof() the process to be carried out in the file

can be continued. For example, the statement

 FILE *fp=fopen(“test.dat”,”r”);

 result = feof(fp);

If the file reaches the end, the value in the result is TRUE otherwise the value in the result is

FALSE. We can use a while loop for reading no. of characters as follows.

 while(!feof(fp))

 {

 /* Statements */

 }

Here the statement part will be executed until the end of file. Using a predefined constant, EOF

can also check the end of character in the file. The following program will give an idea about

how to read and check the end of file character.

/* Reading the characters from the file */

 char getc(file-pointer);

 char fgetc(file-pointer);

#include <stdio.h>

main()

{ FILE *fp;

 char ch;

 fp=fopen("test.txt","r");

 if (fp= =NULL)

 { printf("\nNo such file this name");

 exit(0); }

 while (!feof(fp))

 { ch = getc(fp);

 putch(ch);

 } }

In this program the file test.txt has been opened for reading the data. Using the function

getc(fp) the characters are read, and displayed in the screen using putch(). The function feof()

is used to check the occurrence of end of file. The process will be terminated when end of file is

reached.

The general format of the putc() and fputc() is as follows.

where the character denotes the character to be written and file-pointer indicating the file

which is receiving the character. These functions are used to write characters into the specified

file.

For example

 fputc(‘a’, fp);

 /* character ‘a’ is written in the file */

The following example illustrates the putc() function.

putc (character , file-pointer);

fputc (character , file-pointer);

 /* Creating New file by reading characters */

#include <stdio.h>

 main()

{ FILE *fp;

 char ch;

 fp=fopen("test.txt","w");

 if (fp= =NULL)

 { printf("\nNo such file");

 exit(0); }

 while((ch=getch()) != 'z')

 { putc(ch,fp);

 putch(ch); }

 fclose(fp); }

While executing this program the user can type any no. of characters and all the characters will

be stored in the file test.txt. The process will be continued until the key z is pressed. Instead of

z any other character can also be used to denote the end.

For example the user can give the following text, and the termination is with the character z.

 No gain without pain z

Using the functions getc() and putc(), content of one file can be copied into another file as in

the following example program.

 /* Copy the content of one file to another */

#include <stdio.h>

main()

{ FILE *fps,*fpd; /* source and destination */

 char ch, sfile[15], dfile[15];

 clrscr();

 printf("\nSource file : ");

 scanf("%s",sfile);

 printf("\nDestination file : ");

 scanf("%s",dfile);

 fps = fopen(sfile,"r"); /*source file should be opened for read */

 fpd = fopen(dfile,"w"); /* This file should be opened for write */

 if (fps= =NULL)

 { printf("\nNo source file in the directory");

 exit(0); }

 while(!feof(fps))

 { ch = getc(fps);

 putc(ch,fpd);

 }

 fcloseall(); /* Closes all the opened files */

 }

 Output:

 Source file : ek.c

 Destination file : mahi.c

After the execution, the content of ek.c is copied into the file mahi.c

(OR)

b. Write a C program to copy the content of a file into another.

/* Copy the content of one file to another */

#include <stdio.h>

main()

{ FILE *fps,*fpd; /* source and destination */

 char ch, sfile[15], dfile[15];

 clrscr();

 printf("\nSource file : ");

 scanf("%s",sfile);

 printf("\nDestination file : ");

 scanf("%s",dfile);

 fps = fopen(sfile,"r"); /*source file should be opened for read */

 fpd = fopen(dfile,"w"); /* This file should be opened for write */

 if (fps= =NULL)

 { printf("\nNo source file in the directory");

 exit(0); }

 while(!feof(fps))

 { ch = getc(fps);

 putc(ch,fpd);

 }

 fcloseall(); /* Closes all the opened files */

 }

 Output:

 Source file : ek.c

 Destination file : mahi.c

25. a. List the types of inheritance. Explain multi-level inheritance with program.

Inheritance

The mechanism that allows us to extend the definition of a class without making any physical

changes to the existing class is inheritance.

Inheritance lets you create new classes from existing class. Any new class that you create from

an existing class is called derived class; existing class is called base class.

The inheritance relationship enables a derived class to inherit features from its base class.

Furthermore, the derived class can add new features of its own. Therefore, rather than create

completely new classes from scratch, you can take advantage of inheritance and reduce

software complexity.

Forms of Inheritance

1. Single Inheritance: It is the inheritance hierarchy wherein one derived class inherits
from one base class.

2. Multiple Inheritance: It is the inheritance hierarchy wherein one derived class inherits
from multiple base class(es)

3. Hierarchical Inheritance: It is the inheritance hierarchy wherein multiple subclasses
inherit from one base class.

4. Multilevel Inheritance: It is the inheritance hierarchy wherein subclass acts as a base
class for other classes.

5. Hybrid Inheritance: The inheritance hierarchy that reflects any legal combination of
other four types of inheritance.

Defining Derived classes

A class that was created based on a previously existing class (i.e., base class). A derived

class inherits all of the member variables and methods of the base class from which it is

derived.

In order to derive a class from another, we use a colon (:) in the declaration of the

derived class using the following format :

class derived_class: memberAccessSpecifier base_class

{

 ...

};

Where derived_class is the name of the derived class and base_class is the name of the class on

which it is based. The member Access Specifier may be public, protected or private. This access

specifier describes the access level for the members that are inherited from the base class.

Member

Access

Specifier

How Members of the Base Class Appear in the Derived Class

Private Private members of the base class are inaccessible to the derived class.

http://www.webopedia.com/TERM/C/class.html
http://www.webopedia.com/TERM/B/base_class.html

Protected members of the base class become private members of the derived

class.

Public members of the base class become private members of the derived

class.

Protected Private members of the base class are inaccessible to the derived class.

Protected members of the base class become protected members of the

derived class.

Public members of the base class become protected members of the derived

class.

Public Private members of the base class are inaccessible to the derived class.

Protected members of the base class become protected members of the

derived class.

Public members of the base class become public members of the derived

class.

In principle, a derived class inherits every member of a base class except constructor and

destructor. It means private members are also become members of derived class. But they are

inaccessible by the members of derived class.

Multilevel Inheritance

Multilevel Inheritance is a method where a derived class is derived from another derived class.

#include <iostream.h>

class mm

 {

 protected:

 int rollno;

 public:

 void get_num(int a)

 { rollno = a; }

 void put_num()

 { cout << "Roll Number Is:\n"<< rollno << "\n"; }

 };

class marks : public mm

 {

 protected:

 int sub1;

 int sub2;

 public:

 void get_marks(int x,int y)

 {

 sub1 = x;

 sub2 = y;

 }

 void put_marks(void)

 {

 cout << "Subject 1:" << sub1 << "\n";

 cout << "Subject 2:" << sub2 << "\n";

 }

 };

class res : public marks

 {

 protected:

 float tot;

 public:

 void disp(void)

 {

 tot = sub1+sub2;

 put_num();

 put_marks();

 cout << "Total:"<< tot;

 }

 };

int main()

 {

 res std1;

 std1.get_num(5);

 std1.get_marks(10,20);

 std1.disp();

 return 0;

 }

Result:
 Roll Number Is:

 5

 Subject 1: 10

 Subject 2: 20

 Total: 30

(OR)

b. Discuss Macros with example program.

26. a. What is overloading. Describe with syntax and example for method overloading.

Function overloading

Function overloading in C++: C++ program for function overloading. Function overloading

means two or more functions can have the same name but either the number of arguments or the

data type of arguments has to be different. Return type has no role because function will return a

value when it is called and at compile time compiler will not be able to determine which function

to call. In the first example in our code we make two functions one for adding two integers and

other for adding two floats but they have same name and in the second program we make two

functions with identical names but pass them different number of arguments. Function

overloading is also known as compile time polymorphism.

#include <iostream>

 using namespace std;

 /* Function arguments are of different data type */

 long add(long, long);

float add(float, float);

 int main()

{

 long a, b, x;

 float c, d, y;

 cout << "Enter two integers\n";

 cin >> a >> b;

 x = add(a, b);

 cout << "Sum of integers: " << x << endl;

 cout << "Enter two floating point numbers\n";

 cin >> c >> d;

 y = add(c, d);

 cout << "Sum of floats: " << y << endl;

 return 0;

}

 long add(long x, long y)

{

 long sum;

 sum = x + y;

 return sum;

}

 float add(float x, float y)

{

 float sum;

 sum = x + y;

 return sum;

}

In the above program, we have created two functions "add" for two different data types you can

create more than two functions with same name according to requirement but making sure that

compiler will be able to determine which one to call. For example you can create add function

for integers, doubles and other data types in above program. In these functions you can see the

code of functions is same except data type, C++ provides a solution to this problem we can

create a single function for different data types which reduces code size which is via templates.

#include <iostream>

using namespace std;

 /* Number of arguments are different */

 void display(char []); // print the string passed as argument

void display(char [], char []);

 int main()

{

 char first[] = "C programming";

 char second[] = "C++ programming";

 display(first);

 display(first, second);

 return 0;

}

void display(char s[])

{

 cout << s << endl;

}

void display(char s[], char t[])

{

 cout << s << endl << t << endl;

}

Output of program:

C programming

C programming

C++ programming

 (OR)

b. Explain copy constructors with suitable example.

Copy Constructor-: A constructor that initializes an object using values of another object

passed to it as parameter, is called copy constructor. It creates the copy of the passed object.

student :: student(student &t)

{

 rollno = t.rollno;

}

#include<iostream>

#include<conio.h>

class Example

 {

 // Variable Declaration

 int a,b;

 public:

 //Constructor with Argument

 Example(int x,int y)

 {

 // Assign Values In Constructor

 a=x;

 b=y;

 cout<<"\nIm Constructor";

 }

 void Display()

 {

 cout<<"\nValues :"<<a<<"\t"<<b;

 }

};

int main()

{ Example Object(10,20);

 //Copy Constructor

 Example Object2=Object;

 // Constructor invoked.

 Object.Display();

 Object2.Display();

 // Wait For Output Screen

 getch();

 return 0;

}

Sample Output

Im Constructor

Values :10 20

Values :10 20

Simple Program for Copy Constructor Using C++ Programming

#include<iostream.h>

#include<conio.h>

class copy

{ int var,fact;

 public:

 copy(int temp)

 { var = temp;

 }

 double calculate()

 { fact=1;

 for(int i=1;i<=var;i++)

 {

 fact = fact * i;

 }

 return fact;

 }

};

void main()

{ clrscr();

 int n;

 cout<<"\n\tEnter the Number : ";

 cin>>n;

 copy obj(n);

 copy cpy=obj;

 cout<<"\n\t"<<n<<" Factorial is:"<<obj.calculate();

 cout<<"\n\t"<<n<<" Factorial is:"<<cpy.calculate();

 getch();

}

Output:

Enter the Number: 5

Factorial is: 120

Factorial is: 120

Copy Constructor-: A constructor that initializes an object using values of another object

passed to it as parameter, is called copy constructor. It creates the copy of the passed object.

student :: student(student &t)

{

 rollno = t.rollno;

}

#include<iostream>

#include<conio.h>

class Example

 {

 // Variable Declaration

 int a,b;

 public:

 //Constructor with Argument

 Example(int x,int y)

 {

 // Assign Values In Constructor

 a=x;

 b=y;

 cout<<"\nIm Constructor";

 }

 void Display()

 {

 cout<<"\nValues :"<<a<<"\t"<<b;

 }

};

int main()

{ Example Object(10,20);

 //Copy Constructor

 Example Object2=Object;

 // Constructor invoked.

 Object.Display();

 Object2.Display();

 // Wait For Output Screen

 getch();

 return 0;

}

Sample Output

Im Constructor

Values :10 20

Values :10 20

Simple Program for Copy Constructor Using C++ Programming

#include<iostream.h>

#include<conio.h>

class copy

{ int var,fact;

 public:

 copy(int temp)

 { var = temp;

 }

 double calculate()

 { fact=1;

 for(int i=1;i<=var;i++)

 {

 fact = fact * i;

 }

 return fact;

 }

};

void main()

{ clrscr();

 int n;

 cout<<"\n\tEnter the Number : ";

 cin>>n;

 copy obj(n);

 copy cpy=obj;

 cout<<"\n\t"<<n<<" Factorial is:"<<obj.calculate();

 cout<<"\n\t"<<n<<" Factorial is:"<<cpy.calculate();

 getch();

}

Output:

Enter the Number: 5

Factorial is: 120

Factorial is: 120

Scanned by CamScanner

	01 Lecture Plan-C.pdf (p.1-4)
	02 C Syllabus.pdf (p.5-7)
	03 Unit 1.pdf (p.8-45)
	04 Unit I.pdf (p.46-49)
	06 Unit II.pdf (p.50-74)
	07 Unit II.pdf (p.75-78)
	08 Unit III.pdf (p.79-110)
	09 Unit III.pdf (p.111-113)
	10 Unit IV.pdf (p.114-132)
	11 Unit IV.pdf (p.133-134)
	12 Internal1QP.pdf (p.135-136)
	12 Unit V.pdf (p.137-139)
	13 Internal1QP-Ans.pdf (p.140-159)
	14 Internal2QP-C.pdf (p.160-161)
	15 Internal 2 Answer.pdf (p.162-187)
	16 Internal3QP-C.pdf (p.188-189)
	17 Internal 3 Answer.pdf (p.190-207)
	18 New Doc 2018-11-09 11.33.32.pdf (p.208)

