
Syllabus
2017-2020
Batch

 DDeeppaarrttmmeenntt ooff CCSS,,CCAA && IITT KKaarrppaaggaamm AAccaaddeemmyy ooff HHiigghheerr EEdduuccaattiioonn.. Page 1/3

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 (Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2017 onwards)

DEPARTMENT OF COMPUTER SCIENCE, COMPUTER APPLICATION

 & INFORMATION TECHNOLOGY

SUBJECT : DATA STRUCTURES

SEMESTER : III

SUBJECT CODE: 17CTU301 CLASS : II B.Sc.CT

SCOPE

Data structures and algorithms are the building blocks in computer programming. This

course will give students a comprehensive introduction of common data structures, and

algorithm design and analysis. This course also intends to teach data structures and

algorithms for solving real problems that arise frequently in computer applications, and to

teach principles and techniques of computational complexity.

OBJECTIVES

 To Possess intermediate level problem solving and algorithm development skills

 on the computer

 To be able to analyze algorithms using big-Oh notation

 To understand the fundamental data structures such as lists, trees, and graphs

 To understand the fundamental algorithms such as searching, and sorting

UNIT-I

Arrays-Single and Multi-dimensional Arrays, Sparse Matrices (Array and Linked

Representation).Stacks Implementing single / multiple stack/s in an Array; Prefix, Infix

and Postfix expressions, Utility and conversion of these expressions from one to

another; Applications of stack; Limitations of Array representation of stack

UNIT-II

Linked Lists Singly, Doubly and Circular Lists (Array and Linked representation);

Normal and Circular, representation of Stack in Lists; Self Organizing Lists; Skip Lists

Queues, Array and Linked representation of Queue, De-queue, Priority Queues

UNIT-III

Trees - Introduction to Tree as a data structure; Binary Trees (Insertion, Deletion ,

Recursive and Iterative Traversals on Binary Search Trees); Threaded Binary Trees

(Insertion, Deletion, Traversals); Height-Balanced Trees (Various operations on AVL

Trees).

Syllabus
2017-2020
Batch

 DDeeppaarrttmmeenntt ooff CCSS,,CCAA && IITT KKaarrppaaggaamm AAccaaddeemmyy ooff HHiigghheerr EEdduuccaattiioonn.. Page 2/3

UNIT-IV

Searching and Sorting,Linear Search, Binary Search, Comparison of Linear and Binary

Search, Selection Sort, Insertion Sort, Insertion Sort, Shell Sort, Comparison of Sorting

Techniques

UNIT-V

Hashing - Introduction to Hashing, Deleting from Hash Table, Efficiency of Rehash

Methods, Hash Table Reordering, Resolving collusion by Open Addressing, Coalesced

Hashing, Separate Chaining, Dynamic and Extendible Hashing, Choosing a Hash

Function, Perfect Hashing, Function

Suggested Readings

1. Adam Drozdek. (2012). Data Structures and algorithm in C++(3rd ed.). New Delhi:

Cengage Learning.

2. Sartaj Sahni. (2011). Data Structures, Algorithms and applications in C++(2nd ed.).

New Delhi: Universities Press.

3. Aaron, M. Tenenbaum., Moshe, J. Augenstein., & Yedidyah Langsam. (2009). Data

Structures Using C and C++(2nd ed.). New Delhi: PHI.

4. Robert, L. Kruse. (1999). Data Structures and Program Design in C++. New Delhi:

Pearson.

5. Malik, D.S. (2010). Data Structure using C++(2nd ed.). New Delhi: Cengage

Learning,.

6. Mark Allen Weiss. (2011). Data Structures and Algorithms Analysis in Java (3rd ed.).

New Delhi: Pearson Education.

7. Aaron, M. Tenenbaum., Moshe, J. Augenstein., & Yedidyah Langsam. (2003). Data

Structures Using Java. New Delhi: PHI.

8. Robert Lafore. (2003). Data Structures and Algorithms in Java(2
nd

 ed.). New Delhi:

Pearson/ Macmillan Computer Pub.

9. John Hubbard. (2009). Data Structures with JAVA(2nd ed.) . New Delhi: McGraw Hill

Education (India) Private Limited.

10. Goodrich, M., & Tamassia, R. (2013). Data Structures and Algorithms Analysis in

Java(4th ed.). New Delhi: Wiley.

Syllabus
2017-2020
Batch

 DDeeppaarrttmmeenntt ooff CCSS,,CCAA && IITT KKaarrppaaggaamm AAccaaddeemmyy ooff HHiigghheerr EEdduuccaattiioonn.. Page 3/3

11.Herbert Schildt. (2014). Java The Complete Reference (English)(9th ed.). New Delhi:

Tata McGraw Hill.

12. Malik, D. S., & Nair, P.S. (2003).Data Structures Using Java. New Delhi: Course

Technology.

13: Dharmender Singh Kushwaha, Arun Kumar Misra, “Data Structures, A Programming

Approach with C”, PHI

14: ISRD Group, Data Structure using C, Tata Mc Hill

WEB SITES

http://en.wikipedia.org/wiki/Data_structure

http://www.cs.sunysb.edu/~skiena/214/lectures/

www.amazon.com/Teach-Yourself-Structures-Algorithms

Journals:
1.Suchait Gaurav “Algorithm for Stack with Random Operations (Stack Using Random

 Array Operations)” International Journal of Innovative Research & Development”

 Volume 2, Issue 8, August 2013

2.Karuna, Garima Gupta” Dynamic Implementation Using Linked List” International

 Journal Of Engineering Research & Management Technology”Volume 1, Issue-5,

 September - 2014

3.Parth Patel, Deepak Garg “Comparison of Advance Tree Data Structures” International

 Journal of Computer Applications” Volume 41, issue-2, March 2012

4.Ms ROOPA K,Ms RESHMA J “A Comparative Study of Sorting and Searching

 Algorithms “International Research Journal of Engineering and Technology “Volume:

 05 Issue: 01 | Jan-2018

5.B. Madhuravani, D. S. R Murthy “Cryptographic Hash Functions: SHA Family”

 International Journal of Innovative Technology and Exploring Engineering” Volume-2,

 Issue-4, March 2013.

http://www.amazon.com/Teach-Yourself-Structures-Algorithms

Syllabus
2017-2020
Batch

 DDeeppaarrttmmeenntt ooff CCSS,,CCAA && IITT KKaarrppaaggaamm AAccaaddeemmyy ooff HHiigghheerr EEdduuccaattiioonn.. Page 4/3

Continuous Internal Assessment End Semester Examination –

MarksAllocation

1
Part A

20 X 1 = 20

Online Examination

20

2
Part B

5 X 2 = 10
10

3
Part C

5 X 6 = 30

Either „A‟ OR „B‟ Choice

30

 Total Marks 60

S.No Category Marks

 1 Assignment 5

2 Attendance 5

3 Seminar 5

4 CIA I 8

5 CIA II 8

6 CIA III 9

 Total Marks 40

2017-2020

DDeeppaarrttmmeenntt ooff CCSS,,CCAA && IITT KKaarrppaaggaamm AAccaaddeemmyy ooff HHiigghheerr EEdduuccaattiioonn.. Page 1/3

Syllabus Batch

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.
(For the candidates admitted from 2017 onwards)

DEPARTMENT OF COMPUTER SCIENCE, COMPUTER APPLICATION

& INFORMATION TECHNOLOGY

SUBJECT : DATA STRUCTURES

SEMESTER : III

SUBJECT CODE: 17ITU301 CLASS : II B.Sc.IT

SCOPE

Data structures and algorithms are the building blocks in computer programming. This

course will give students a comprehensive introduction of common data structures, and

algorithm design and analysis. This course also intends to teach data structures and

algorithms for solving real problems that arise frequently in computer applications, and to

teach principles and techniques of computational complexity.

OBJECTIVES

 To Possess intermediate level problem solving and algorithm development skills

on the computer

 To be able to analyze algorithms using big-Oh notation

 To understand the fundamental data structures such as lists, trees, and graphs

 To understand the fundamental algorithms such as searching, and sorting

UNIT-I

Arrays-Single and Multi-dimensional Arrays, Sparse Matrices (Array and Linked

Representation).Stacks Implementing single / multiple stack/s in an Array; Prefix, Infix

and Postfix expressions, Utility and conversion of these expressions from one to

another; Applications of stack; Limitations of Array representation of stack

UNIT-II

Linked Lists Singly, Doubly and Circular Lists (Array and Linked representation);

Normal and Circular, representation of Stack in Lists; Self Organizing Lists; Skip Lists

Queues, Array and Linked representation of Queue, De-queue, Priority Queues

UNIT-III

Trees - Introduction to Tree as a data structure; Binary Trees (Insertion, Deletion ,

Recursive and Iterative Traversals on Binary Search Trees); Threaded Binary Trees

(Insertion, Deletion, Traversals); Height-Balanced Trees (Various operations on AVL

Trees).

DDeeppaarrttmmeenntt ooff CCSS,,CCAA && IITT KKaarrppaaggaamm AAccaaddeemmyy ooff HHiigghheerr EEdduuccaattiioonn.. Page 2/3

Syllabus Batch
2017-2020

UNIT-IV

Searching and Sorting,Linear Search, Binary Search, Comparison of Linear and Binary

Search, Selection Sort, Insertion Sort, Insertion Sort, Shell Sort, Comparison of Sorting

Techniques

UNIT-V

Hashing - Introduction to Hashing, Deleting from Hash Table, Efficiency of Rehash

Methods, Hash Table Reordering, Resolving collusion by Open Addressing, Coalesced

Hashing, Separate Chaining, Dynamic and Extendible Hashing, Choosing a Hash

Function, Perfect Hashing, Function

Suggested Readings

1. Adam Drozdek. (2012). Data Structures and algorithm in C++(3rd ed.). New Delhi:

Cengage Learning.

2. Sartaj Sahni. (2011). Data Structures, Algorithms and applications in C++(2nd ed.).

New Delhi: Universities Press.

3. Aaron, M. Tenenbaum., Moshe, J. Augenstein., & Yedidyah Langsam. (2009). Data

Structures Using C and C++(2nd ed.). New Delhi: PHI.

4. Robert, L. Kruse. (1999). Data Structures and Program Design in C++. New Delhi:

Pearson.

5. Malik, D.S. (2010). Data Structure using C++(2nd ed.). New Delhi: Cengage

Learning,.

6. Mark Allen Weiss. (2011). Data Structures and Algorithms Analysis in Java (3rd ed.).

New Delhi: Pearson Education.

7. Aaron, M. Tenenbaum., Moshe, J. Augenstein., & Yedidyah Langsam. (2003). Data

Structures Using Java. New Delhi: PHI.

8. Robert Lafore. (2003). Data Structures and Algorithms in Java(2nd ed.). New Delhi:

Pearson/ Macmillan Computer Pub.

9. John Hubbard. (2009). Data Structures with JAVA(2nd ed.) . New Delhi: McGraw Hill

Education (India) Private Limited.

10. Goodrich, M., & Tamassia, R. (2013). Data Structures and Algorithms Analysis in

Java(4th ed.). New Delhi: Wiley.

DDeeppaarrttmmeenntt ooff CCSS,,CCAA && IITT KKaarrppaaggaamm AAccaaddeemmyy ooff HHiigghheerr EEdduuccaattiioonn.. Page 3/3

Syllabus Batch
2017-2020

11. Herbert Schildt. (2014). Java The Complete Reference (English)(9th ed.). New Delhi:

Tata McGraw Hill.

12. Malik, D. S., & Nair, P.S. (2003).Data Structures Using Java. New Delhi: Course

Technology.

13: Dharmender Singh Kushwaha, Arun Kumar Misra, “Data Structures, A Programming

Approach with C”, PHI

14: ISRD Group, Data Structure using C, Tata Mc Hill

WEB SITES

http://en.wikipedia.org/wiki/Data_structure

http://www.cs.sunysb.edu/~skiena/214/lectures/

www.amazon.com/Teach-Yourself-Structures-Algorithms

Journals:
1. Suchait Gaurav “Algorithm for Stack with Random Operations (Stack Using Random

Array Operations)” International Journal of Innovative Research & Development”

Volume 2, Issue 8, August 2013

2. Karuna, Garima Gupta” Dynamic Implementation Using Linked List” International

Journal Of Engineering Research & Management Technology”Volume 1, Issue-5,

September - 2014

3. Parth Patel, Deepak Garg “Comparison of Advance Tree Data Structures” International

Journal of Computer Applications” Volume 41, issue-2, March 2012

4. Ms ROOPA K,Ms RESHMA J “A Comparative Study of Sorting and Searching

Algorithms “International Research Journal of Engineering and Technology “Volume:

05 Issue: 01 | Jan-2018

5.B. Madhuravani, D. S. R Murthy “Cryptographic Hash Functions: SHA Family”

International Journal of Innovative Technology and Exploring Engineering” Volume-2,

Issue-4, March 2013.

http://en.wikipedia.org/wiki/Data_structure
http://www.cs.sunysb.edu/~skiena/214/lectures/
http://www.amazon.com/Teach-Yourself-Structures-Algorithms

DDeeppaarrttmmeenntt ooff CCSS,,CCAA && IITT KKaarrppaaggaamm AAccaaddeemmyy ooff HHiigghheerr EEdduuccaattiioonn.. Page 4/3

Syllabus Batch
2017-2020

S.No Category Marks

1 Assignment 5

2 Attendance 5

3 Seminar 5

4 CIA I 8

5 CIA II 8

6 CIA III 9

Total Marks 40

1
Part A

20 X 1 = 20
Online Examination

20

2
Part B

5 X 2 = 10
10

3
Part C

5 X 6 = 30
Either „A‟ OR „B‟ Choice

30

 Total Marks 60

Continuous Internal Assessment End Semester Examination –

MarksAllocation

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 1/38

UNIT-I

SYLLABUS

Arrays-Single and Multi-dimensional Arrays, Sparse Matrices (Array and Linked

Representation).Stacks Implementing single / multiple stack/s in an Array; Prefix, Infix and

Postfix expressions, Utility and conversion of these expressions from one to another;

Applications of stack; Limitations of Array representation of stack

1. OVERVIEW OF DATA STRUCTURES:

An algorithm is a step by step procedure to solve a problem. In normal language, algorithm is

defined as a sequence of statements which are used to perform a task. In computer science, an

algorithm can be defined as follows...

An algorithm is a sequence of unambiguous instructions used for solving a problem,

which can be implemented (as a program) on a computer

Algorithms are used to convert our problem solution into step by step statements. These

statements can be converted into computer programming instructions which form a program.

This program is executed by computer to produce solution. Here, program takes required data as

input, processes data according to the program instructions and finally produces result as shown

in the following picture.

Performance of an algorithm is a process of making evaluative judgement about algorithms.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 2/38

Performance of an algorithm means predicting the resources which are required to an algorithm

to perform its task.

Performance analysis of an algorithm is the process of calculating space required by that

algorithm and time required by that algorithm.

Generally, the performance of an algorithm depends on the following elements...

1. Whether that algorithm is providing the exact solution for the problem?

2. Whether it is easy to understand?

3. Whether it is easy to implement?

4. How much space (memory) it requires to solve the problem?

5. How much time it takes to solve the problem? Etc.,

Performance analysis of an algorithm is performed by using the following measures...

1. Space required to complete the task of that algorithm (Space Complexity). It includes

program space and data space

2. Time required to complete the task of that algorithm (Time Complexity)

Data Structures:

* To represent and store data in main memory or secondary memory we need a model. The

different models used to organize data in the main memory are collectively referred as data

structures.

* The different models used to organize data in the secondary memory are collectively referred

as file structures.

 Every data structure is used to organize the large amount of data

 Every data structure follows a particular principle

 The operations in a data structure should not violate the basic principle of that data

structure.

Data structure is a method of organizing large amount of data more efficiently so that any

operation on that data becomes easy.

 The study of data structures includes:

 * Logical description of data structures.

 * Implementation of data structures.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 3/38

 * Quantitative analysis of the data structures.

Based on the organizing method of a data structure, data structures are divided into two types.

 Linear Data Structures

 Non - Linear Data Structures

Linear Data Structures

If a data structure is organizing the data in sequential order, then that data structure is

called as Linear Data Structure.

Example

 Arrays

 List (Linked List)

 Stack

 Queue

Non - Linear Data Structures

If a data structure is organizing the data in random order, then that data structure is called

as Non-Linear Data Structure.

Example

 Tree

 Graph

 Dictionaries

 Heaps

Common Operation on data structures: The following the main operations that can be

performed on the data structures :

1. Traversing : It means reading and processing the each and every element of a data structure at

least once.

2. Inserting : It means inserting a value at a specified position in a data structure, this is also

know as insertion.

3. Deletion : It means deleting a particular value from a specified position in a data structure.

4. Searching : It means searching a particular data in created data structure.

5. Sorting : It means arranging the elements of a data structure in a sequential manner i.e. either

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 4/38

in ascending order or in descending order.

6. Merging: Combining the elements of two similar sorted structures into a single structure.

• It contains no consideration of programming efforts • It masks (hides) potentially important

constants.

Concept of a Data Type:

Data Object

Data Object represents an object having a data.

Data Type

Data type is a way to classify various types of data such as integer, string, etc. which determines

the values that can be used with the corresponding type of data, the type of operations that can

be performed on the corresponding type of data. There are two data types −

 Built-in Data Type

 Derived Data Type

Built-in Data Type

Those data types for which a language has built-in support are known as Built-in Data types.

For example, most of the languages provide the following built-in data types.

 Integers

 Boolean (true, false)

 Floating (Decimal numbers)

 Character and Strings

Derived Data Type

Those data types which are implementation independent as they can be implemented in one or

the other way are known as derived data types. These data types are normally built by the

combination of primary or built-in data types and associated operations on them. For example −

 List

 Array

 Stack

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 5/38

 Queue

A Data-Type in programming language is an attribute of a data, which tells the computer (and

the programmer) important things about the concerned data. This involves what values it can

take and what operations may be performed upon it. i.e. it declare:

 Ø Set of values

 Ø Set of operations

Example :

Integer, Floating-point, Character (text)

Primitive Data-Type:

 A primitive data type is also called as basic data-type or built-in data type or simple data-

type. The primitive data-type is a data type for which the programming language provides built-

in support; i.e. you can directly declare and use variables of these kinds.

For example, C programming language provides built-in support for integers (int, long),

reals (float, double) and characters (char).

Abstract Data-Type:

 In computing, an abstract data type (ADT) is a specification of a set of data and the set of

operations that can be performed on the data; and this is organized in such a way that the

specification of values and operations on those values are separated from the representation of

the values and the implementation of the operations. For example, consider ‘list’ abstract data

type.

2. ARRAYS:

An array is a collection of variables of the same type that are referred to by a common

name.

Arrays offer a convenient means of grouping together several related variables, in one

dimension or more dimensions:

Example:

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 6/38

 int part_numbers[] = {123, 326, 178, 1209};

Whenever we want to work with large number of data values, we need to use that much number

of different variables. As the number of variables is increasing, complexity of the program also

increases and programmers get confused with the variable names. There may be situations in

which we need to work with large number of similar data values. To make this work more easy,

C programming language provides a concept called "Array".

An array is a variable which can store multiple values of same data type at a time.

An array can also be defined as follows...

"Collection of similar data items stored in continuous memory locations with single

name".

To understand the concept of arrays, consider the following example declaration.

int a, b, c;

Here, the compiler allocates 2 bytes of memory with name 'a', another 2 bytes of memory with

name 'b' and more 2 bytes with name 'c'. These three memory locations are may be in sequence

or may not be in sequence. Here these individual variables can store only one value at a time.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 7/38

One-Dimensional Arrays:

 A one-dimensional array is a list of related variables. The general form of a one-

dimensional array declaration is:

Syntax : type variable_name[size]

• type: base type of the array, determines the data type of each element in the array

• size: how many elements the array will hold

• variable_name: the name of the array

Examples:

int sample[10];

float float_numbers[100];

char last_name[40];

Now consider the following declaration...

int a[3];

Here, the compiler allocates total 6 bytes of continuous memory locations with single name 'a'.

But allows to store three different integer values (each in 2 bytes of memory) at a time. And

memory is organized as follows...

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 8/38

That means all these three memory locations are named as 'a'. But "how can we refer individual

elements?" is the big question. Answer for this question is, compiler not only allocates memory,

but also assigns a numerical value to each individual element of an array. This numerical value is

called as "Index". Index values for the above example are as follows...

The individual elements of an array are identified using the combination of 'name' and 'index' as

follows...

arrayName[indexValue]

For the above example the individual elements can be referred to as follows...

If I want to assign a value to any of these memory locations (array elements), we can assign as

follows...

a[1] = 100;

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 9/38

The result will be as follows...

Insertion Operation

Algorithm

Let Array be a linear unordered array of MAX elements.

Example

Result

Let LA be a Linear Array (unordered) with N elements and K is a positive integer such

that K<=N. Following is the algorithm where ITEM is inserted into the Kth position of LA −

1. Start

2. Set J = N

3. Set N = N+1

4. Repeat steps 5 and 6 while J >= K

5. Set LA[J+1] = LA[J]

6. Set J = J-1

7. Set LA[K] = ITEM

8. Stop

Deletion Operation

Deletion refers to removing an existing element from the array and re-organizing all elements of

an array.

Algorithm

Consider LA is a linear array with N elements and K is a positive integer such that K<=N.

Following is the algorithm to delete an element available at the Kth position of LA.

1. Start

2. Set J = K

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 10/38

3. Repeat steps 4 and 5 while J < N

4. Set LA[J] = LA[J + 1]

5. Set J = J+1

6. Set N = N-1

7. Stop

Search Operation

You can perform a search for an array element based on its value or its index.

Algorithm

Consider LA is a linear array with N elements and K is a positive integer such that K<=N.

Following is the algorithm to find an element with a value of ITEM using sequential search.

1. Start

2. Set J = 0

3. Repeat steps 4 and 5 while J < N

4. IF LA[J] is equal ITEM THEN GOTO STEP 6

5. Set J = J +1

6. PRINT J, ITEM

7. Stop

3. MULTIDIMENSIONAL ARRAYS:

 The general form of an N-dimensional array declaration is:

 type array_name [size_1] [size_2] ... [size_N];

Two-Dimensional Arrays:

Implementing a database of information as a collection of arrays can be inconvenient

when we have to pass many arrays to utility functions to process the database. It would be nice to

have a single data structure which can hold all the information, and pass it all at once.

2-dimensional arrays provide most of this capability. Like a 1D array, a 2D array is a

collection of data cells, all of the same type, which can be given a single name. However, a 2D

array is organized as a matrix with a number of rows and columns.

Similar to the 1D array, we must specify the data type, the name, and the size of the

array. But the size of the array is described as the number of rows and number of columns.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 11/38

For example: int a[MAX_ROWS][MAX_COLS];

 A two-dimensional array is a list of one-dimensional arrays. To declare a two-dimensional

integer array two_dim of size 10, 20 we would write:

Example : int matrix[3][3];

A two – dimensional array can be seen as a table with ‘x’ rows and ‘y’ columns where the row

number ranges from 0 to (x-1) and column number ranges from 0 to (y-1). A two – dimensional

array ‘x’ with 3 rows and 3 columns is shown below:

How do we access data in a 2D array? Like 1D arrays, we can access individual cells in a 2D

array by using subscripting expressions giving the indexes, only now we have two indexes for a

cell: its row index and its column index. The expressions look like:

a[i][j] = 0; or x = a[row][col];

We can initialize all elements of an array to 0 like:

for(i = 0; i < MAX_ROWS; i++)

 for(j = 0; j < MAX_COLS; j++)

 a[i][j] = 0;

Three-Dimensional Array:

A three-dimensional array is that array whose elements are two-dimensional arrays. In practice,

it may be considered to be an array of matrices. A three-dimensional array with int elements

may be declared as below.

int A [m] [n] [p];

For example, the following declaration creates a 4 x 10 x 20 character array, or a matrix of

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 12/38

strings:

 int x[2][3][2] =

 {

 { {0,1}, {2,3}, {4,5} },

 { {6,7}, {8,9}, {10,11} }

This requires 4 * 10 * 20 = 800 elements.

4. SPARSE MATRICES (ARRAY AND LINKED REPRESENTATION)

In computer programming, a matrix can be defined with a 2-dimensional array. Any array with

'm' columns and 'n' rows represents a mXn matrix. There may be a situation in which a matrix

contains more number of ZERO values than NON-ZERO values. Such matrix is known as sparse

matrix.

In numerical analysis, a sparse matrix is a matrix populated primarily with zeros as elements of

the table. By contrast, if a larger number of elements differ from zero, then it is common to refer

to the matrix as a dense matrix. The fraction of zero elements (non-zero elements) in a matrix is

called the sparsity (density).

Sparse matrix is a matrix which contains very few non-zero elements.

When a sparse matrix is represented with 2-dimensional array, we waste lot of space to represent

that matrix. For example, consider a matrix of size 100 X 100 containing only 10 non-zero

elements. In this matrix, only 10 spaces are filled with non-zero values and remaining spaces of

matrix are filled with zero. That means, totally we allocate 100 X 100 X 2 = 20000 bytes of

space to store this integer matrix. And to access these 10 non-zero elements we have to make

scanning for 10000 times.

A sparse matrix can be represented by using TWO representations, those are as follows...

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 13/38

1. Array Representation

2. Linked Representation

Array Representation

Method 1:

Using Arrays 2D array is used to represent a sparse matrix in which there are three rows named

as

Row: Index of row, where non-zero element is located

Column: Index of column, where non-zero element is located

Value: Value of the non zero element located at index – (row,column)

Sparse Matrix Array Representation

In this representation, we consider only non-zero values along with their row and column index

values. In this representation, the 0th row stores total rows, total columns and total non-zero

values in the matrix.

Linked Representation

In linked list, each node has four fields. These four fields are defined as:

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 14/38

 Row: Index of row, where non-zero element is located

 Column: Index of column, where non-zero element is located

 Value: Value of the non zero element located at index – (row,column)

 Next node: Address of the next node

Using Arrays

5. STACKS IMPLEMENTING SINGLE / MULTIPLE STACK/S IN AN ARRAY

STACK:

 Stack is a linear data structure in which the insertion and deletion operations are performed at

only one end. In a stack, adding and removing of elements are performed at single position

which is known as "top". That means, new element is added at top of the stack and an element is

removed from the top of the stack.

In stack, the insertion and deletion operations are performed based on LIFO (Last In First Out)

principle.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 15/38

In a stack, the insertion operation is performed using a function called "push" and deletion

operation is performed using a function called "pop".

In the figure, PUSH and POP operations are performed at top position in the stack. That means,

both the insertion and deletion operations are performed at one end (i.e., at Top)

A stack data structure can be defined as follows...

Stack is a linear data structure in which the operations are performed based on LIFO

principle.

Stack can also be defined as

"A Collection of similar data items in which both insertion and deletion operations are

performed based on LIFO principle".

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 16/38

Example

If we want to create a stack by inserting 10,45,12,16,35 and 50. Then 10 becomes the bottom

most element and 50 is the top most element. Top is at 50 as shown in the image below...

The following operations are performed on the stack...

1. Push (To insert an element on to the stack)

2. Pop (To delete an element from the stack)

3. Display (To display elements of the stack)

Stack data structure can be implement in two ways. They are as follows...

1. Using Array

2. Using Linked List

When stack is implemented using array, that stack can organize only limited number of elements.

When stack is implemented using linked list, that stack can organize unlimited number of

elements.

Implementing single stack in an Array

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 17/38

Array representation of Stack

Stack can be represented by means of a one way list or a linear array. A pointer variable top

contains the locations of the top element of the stack and a variable max stk gives the maximum

number of elements of the Stack that can be held by Stack.

the condit ion top=0 will indicate that the stack is empty.

Pu sh Ope rat ion on S t ac k

This procedure pushes an item onto the Stack via Top.

PUSH(Stack, Top, MaxStk, Item)

1. If Top == MaxStk //check Stack already fill or not

 then print "Overflow" and return

2. Set Top = Top + 1 //increase top by 1

3. Stack[Top] = Item //insert item in new top position

4. Return

Pop op e rat i on on S t ac k

This procedures deletes the top element of Stack and assigns it to the variable item.

POP(Stack, top, Item)

1. If Top == Null //check Stack top element to be deleted is empty

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 18/38

 then print "Underflow" and return

2. Item = Stack[Top] //assign top element to item

3. Set Top = Top - 1 //decrease top by 1

4. Return

Let M a xSt k= 8 , t he a rray S t ac k c ont a ins M , N, O in i t . Perf o rm

ope rat i ons on i t

i. after insert ion of P, Q

ii. pop 3 elements

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 19/38

iii. push A, B, C

iv. push D, E, F, G

v. push X

vi. pop 5 elements

vii. pop 4 elements

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 20/38

A stack data structure can be implemented using one dimensional array. But stack implemented

using array, can store only fixed number of data values. This implementation is very simple, just

define a one dimensional array of specific size and insert or delete the values into that array by

using LIFO principle with the help of a variable 'top'. Initially top is set to -1. Whenever we

want to insert a value into the stack, increment the top value by one and then insert. Whenever

we want to delete a value from the stack, then delete the top value and decrement the top value

by one.

A stack can be implemented using array as follows..

Before implementing actual operations, first follow the below steps to create an empty stack.

 Step 1: Include all the header files which are used in the program and define a

constant 'SIZE' with specific value.

 Step 2: Declare all the functions used in stack implementation.

 Step 3: Create a one dimensional array with fixed size (int stack[SIZE])

 Step 4: Define a integer variable 'top' and initialize with '-1'. (int top = -1)

 Step 5: In main method display menu with list of operations and make suitable function

calls to perform operation selected by the user on the stack.

push(value) - Inserting value into the stack

In a stack, push() is a function used to insert an element into the stack. In a stack, the new

element is always inserted at top position. Push function takes one integer value as parameter

and inserts that value into the stack. We can use the following steps to push an element on to the

stack...

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 21/38

 Step 1: Check whether stack is FULL. (top == SIZE-1)

 Step 2: If it is FULL, then display "Stack is FULL!!! Insertion is not possible!!!" and

terminate the function.

 Step 3: If it is NOT FULL, then increment top value by one (top++) and set stack[top]

to value (stack[top] = value).

pop() - Delete a value from the Stack

In a stack, pop() is a function used to delete an element from the stack. In a stack, the element is

always deleted from top position. Pop function does not take any value as parameter. We can use

the following steps to pop an element from the stack...

 Step 1: Check whether stack is EMPTY. (top == -1)

 Step 2: If it is EMPTY, then display "Stack is EMPTY!!! Deletion is not

possible!!!" and terminate the function.

 Step 3: If it is NOT EMPTY, then delete stack[top] and decrement top value by one

(top--).

display() - Displays the elements of a Stack

We can use the following steps to display the elements of a stack...

 Step 1: Check whether stack is EMPTY. (top == -1)

 Step 2: If it is EMPTY, then display "Stack is EMPTY!!!" and terminate the function.

 Step 3: If it is NOT EMPTY, then define a variable 'i' and initialize with top.

Display stack[i] value and decrement i value by one (i--).

 Step 3: Repeat above step until i value becomes '0'.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 22/38

IMPLEMENT TWO STACKS IN AN ARRAY

Create a data structure twoStacks that represents two stacks. Implementation of twoStacks should

use only one array, i.e., both stacks should use the same array for storing elements. Following

functions must be supported by twoStacks.

push1(int x) –> pushes x to first stack

push2(int x) –> pushes x to second stack

pop1() –> pops an element from first stack and return the popped element

pop2() –> pops an element from second stack and return the popped element

Method 1 (Divide the space in two halves)

A simple way to implement two stacks is to divide the array in two halves and assign the half

half space to two stacks, i.e., use arr[0] to arr[n/2] for stack1, and arr[n/2+1] to arr[n-1] for

stack2 where arr[] is the array to be used to implement two stacks and size of array be n.

The problem with this method is inefficient use of array space. A stack push operation

may result in stack overflow even if there is space available in arr[]. For example, say the array

size is 6 and we push 3 elements to stack1 and do not push anything to second stack2. When we

push 4th element to stack1, there will be overflow even if we have space for 3 more elements in

array.

Method 2 (A space efficient implementation)

This method efficiently utilizes the available space. It doesn’t cause an overflow if there

is space available in arr[]. The idea is to start two stacks from two extreme corners of arr[].

stack1 starts from the leftmost element, the first element in stack1 is pushed at index 0.

The stack2 starts from the rightmost corner, the first element in stack2 is pushed at index

(n-1). Both stacks grow (or shrink) in opposite direction. To check for overflow, all we need to

check is for space between top elements of both stacks. This check is highlighted in the below

code.

Create a data structure kStacks that represents k stacks. Implementation of kStacks should use

only one array, i.e., k stacks should use the same array for storing elements. Following functions

must be supported by kStacks.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 23/38

push(int x, int sn) –> pushes x to stack number ‘sn’ where sn is from 0 to k-1

pop(int sn) –> pops an element from stack number ‘sn’ where sn is from 0 to k-1

Method 1 (Divide the array in slots of size n/k)

A simple way to implement k stacks is to divide the array in k slots of size n/k each, and fix the

slots for different stacks, i.e., use arr[0] to arr[n/k-1] for first stack, and arr[n/k] to arr[2n/k-1] for

stack2 where arr[] is the array to be used to implement two stacks and size of array be n.

The problem with this method is inefficient use of array space. A stack push operation

may result in stack overflow even if there is space available in arr[]. For example, say the k is 2

and array size (n) is 6 and we push 3 elements to first and do not push anything to second second

stack. When we push 4th element to first, there will be overflow even if we have space for 3

more elements in array.

Method 2 (A space efficient implementation)

The idea is to use two extra arrays for efficient implementation of k stacks in an array. This may

not make much sense for integer stacks, but stack items can be large for example stacks of

employees, students, etc where every item is of hundreds of bytes. For such large stacks, the

extra space used is comparatively very less as we use two integer arrays as extra space.

Following are the two extra arrays are used:

1) top[]: This is of size k and stores indexes of top elements in all stacks.

2) next[]: This is of size n and stores indexes of next item for the items in array arr[].

Here arr[] is actual array that stores k stacks.

Together with k stacks, a stack of free slots in arr[] is also maintained. The top of this stack is

stored in a variable ‘free’.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 24/38

All entries in top[] are initialized as -1 to indicate that all stacks are empty. All entries next[i] are

initialized as i+1 because all slots are free initially and pointing to next slot. Top of free stack,

‘free’ is initialized as 0.

6. PREFIX, INFIX AND POSTFIX EXPRESSIONS

In any programming language, if we want to perform any calculation or to frame a condition etc.,

we use a set of symbols to perform the task. These set of symbols makes an expression.

An expression can be defined as follows...

An expression is a collection of operators and operands that represents a specific value.

In above definition, operator is a symbol which performs a particular task like arithmetic

operation or logical operation or conditional operation etc.,

Operands are the values on which the operators can perform the task. Here operand can be a

direct value or variable or address of memory location.

Based on the operator position, expressions are divided into THREE types. They are as follows...

1. Infix Expression

2. Postfix Expression

3. Prefix Expression

Infix Expression

In infix expression, operator is used in between operands.

The general structure of an Infix expression is as follows...

Operand1 Operator Operand2

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 25/38

Example

Postfix Expression

In postfix expression, operator is used after operands. We can say that "Operator follows the

Operands".

The general structure of Postfix expression is as follows...

Operand1 Operand2 Operator

Example

Prefix Expression

In prefix expression, operator is used before operands. We can say that "Operands follows the

Operator".

The general structure of Prefix expression is as follows...

Operator Operand1 Operand2

Example

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 26/38

Any expression can be represented using the above three different types of expressions. And we

can convert an expression from one form to another form like Infix to Postfix, Infix to

Prefix, Prefix to Postfix and vice versa.

The following table briefly tries to show the difference in all three notations −

Sr.No. Infix Notation Prefix Notation Postfix Notation

1 a + b + a b a b +

2 (a + b) ∗ c ∗ + a b c a b + c ∗

3 a ∗ (b + c) ∗ a + b c a b c + ∗

4 a / b + c / d + / a b / c d a b / c d / +

5 (a + b) ∗ (c + d) ∗ + a b + c d a b + c d + ∗

6 ((a + b) ∗ c) - d - ∗ + a b c d a b + c ∗ d -

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 27/38

7. UTILITY AND CONVERSION OF THESE EXPRESSIONS FROM ONE TO

ANOTHER

Expression Conversion

Any expression can be represented using three types of expressions (Infix, Postfix and Prefix).

We can also convert one type of expression to another type of expression like Infix to Postfix,

Infix to Prefix, Postfix to Prefix and vice versa.

Prefix to Infix Conversion

Infix : An expression is called the Infix expression if the operator appears in between the

operands in the expression. Simply of the form (operand1 operator operand2).

Example : (A+B) * (C-D)

Prefix : An expression is called the prefix expression if the operator appears in the expression

before the operands. Simply of the form (operator operand1 operand2).

Example : *+AB-CD (Infix : (A+B) * (C-D))

Given a Prefix expression, convert it into a Infix expression.

Computers usually does the computation in either prefix or postfix (usually postfix). But for

humans, its easier to understand an Infix expression rather than a prefix. Hence conversion is

need for human understanding.

Examples:

Input : Prefix : *+AB-CD

Output : Infix : ((A+B)*(C-D))

Input : Prefix : *-A/BC-/AKL

Output : Infix : ((A-(B/C))*((A/K)-L))

Algorithm for Prefix to Infix:

 Read the Prefix expression in reverse order (from right to left)

 If the symbol is an operand, then push it onto the Stack

 If the symbol is an operator, then pop two operands from the Stack

Create a string by concatenating the two operands and the operator between them.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 28/38

string = (operand1 + operator + operand2)
And push the resultant string back to Stack

 Repeat the above steps until end of Prefix expression.

Prefix to Postfix Conversion

Prefix : An expression is called the prefix expression if the operator appears in the expression

before the operands. Simply of the form (operator operand1 operand2).

Example : *+AB-CD (Infix : (A+B) * (C-D))

Postfix: An expression is called the postfix expression if the operator appears in the expression

after the operands. Simply of the form (operand1 operand2 operator).

Example : AB+CD-* (Infix : (A+B * (C-D))

Given a Prefix expression, convert it into a Postfix expression.

Conversion of Prefix expression directly to Postfix without going through the process of

converting them first to Infix and then to Postfix is much better in terms of computation and

better understanding the expression (Computers evaluate using Postfix expression).

Examples:

Input : Prefix : *+AB-CD

Output : Postfix : AB+CD-*

Explanation : Prefix to Infix : (A+B) * (C-D)

 Infix to Postfix : AB+CD-*

Input : Prefix : *-A/BC-/AKL

Output : Postfix : ABC/-AK/L-*

Explanation : Prefix to Infix : A-(B/C)*(A/K)-L

 Infix to Postfix : ABC/-AK/L-*

Algorithm for Prefix to Postfix:

 Read the Prefix expression in reverse order (from right to left)

 If the symbol is an operand, then push it onto the Stack

 If the symbol is an operator, then pop two operands from the Stack

Create a string by concatenating the two operands and the operator after them.

string = operand1 + operand2 + operator
And push the resultant string back to Stack

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 29/38

 Repeat the above steps until end of Prefix expression.

Postfix to Prefix Conversion

Postfix: An expression is called the postfix expression if the operator appears in the expression

after the operands. Simply of the form (operand1 operand2 operator).

Example : AB+CD-* (Infix : (A+B * (C-D))

Prefix : An expression is called the prefix expression if the operator appears in the expression

before the operands. Simply of the form (operator operand1 operand2).

Example : *+AB-CD (Infix : (A+B) * (C-D))

Given a Postfix expression, convert it into a Prefix expression.

Conversion of Postfix expression directly to Prefix without going through the process of

converting them first to Infix and then to Prefix is much better in terms of computation and better

understanding the expression (Computers evaluate using Postfix expression).

Examples:

Input : Postfix : AB+CD-*

Output : Prefix : *+AB-CD

Explanation : Postfix to Infix : (A+B) * (C-D)

 Infix to Prefix : *+AB-CD

Input : Postfix : ABC/-AK/L-*

Output : Prefix : *-A/BC-/AKL

Explanation : Postfix to Infix : A-(B/C)*(A/K)-L

 Infix to Prefix : *-A/BC-/AKL

Algorithm for Prefix to Postfix:

 Read the Postfix expression from left to right

 If the symbol is an operand, then push it onto the Stack

 If the symbol is an operator, then pop two operands from the Stack

Create a string by concatenating the two operands and the operator before them.

string = operator + operand2 + operand1
And push the resultant string back to Stack

 Repeat the above steps until end of Prefix expression.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 30/38

To convert any Infix expression into Postfix or Prefix expression we can use the following

procedure...

1. Find all the operators in the given Infix Expression.

2. Find the order of operators evaluated according to their Operator precedence.

3. Convert each operator into required type of expression (Postfix or Prefix) in the same

order.

Example

Consider the following Infix Expression to be converted into Postfix Expression...

D = A + B * C

 Step 1: The Operators in the given Infix Expression : = , + , *

 Step 2: The Order of Operators according to their preference : * , + , =

 Step 3: Now, convert the first operator * ----- D = A + B C *

 Step 4: Convert the next operator + ----- D = A BC* +

 Step 5: Convert the next operator = ----- D ABC*+ =

Finally, given Infix Expression is converted into Postfix Expression as follows...

D A B C * + =

To convert Infix Expression into Postfix Expression using a stack data structure, We can use the

following steps...

1. Read all the symbols one by one from left to right in the given Infix Expression.

2. If the reading symbol is operand, then directly print it to the result (Output).

3. If the reading symbol is left parenthesis '(', then Push it on to the Stack.

4. If the reading symbol is right parenthesis ')', then Pop all the contents of stack until

respective left parenthesis is poped and print each poped symbol to the result.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 31/38

5. If the reading symbol is operator (+ , - , * , / etc.,), then Push it on to the Stack. However,

first pop the operators which are already on the stack that have higher or equal

precedence than current operator and print them to the result.

Example

Consider the following Infix Expression...

(A + B) * (C - D)

The given infix expression can be converted into postfix expression using Stack data Structure as

follows...

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 32/38

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 33/38

8. APPLICATIONS OF STACK

1. Expression evaluation

2. Backtracking (game playing, finding paths, exhaustive searching)

3. Memory management, run-time environment for nested language features.

Expression evaluation and syntax parsing: Calculators employing reverse Polish notation use

a stack structure to hold values. Expressions can be represented in prefix, postfix or infix

notations and conversion from one form to another may be accomplished using a stack. Many

compilers use a stack for parsing the syntax of expressions, program blocks etc. before

translating into low level code. Most programming languages are context-free languages,

allowing them to be parsed with stack based machines.

Backtracking: Another important application of stacks is backtracking. Consider a simple

example of finding the correct path in a maze. There are a series of points, from the starting point

to the destination. We start from one point. To reach the final destination, there are several paths.

Suppose we choose a random path. After following a certain path, we realize that the path we

have chosen is wrong. So we need to find a way by which we can return to the beginning of that

path. This can be done with the use of stacks. With the help of stacks, we remember the point

where we have reached. This is done by pushing that point into the stack. In case we end up on

the wrong path, we can pop the last point from the stack and thus return to the last point and

continue our quest to find the right path. This is called backtracking.

The prototypical example of a backtracking algorithm is depth-first search, which finds all

vertices of a graph that can be reached from a specified starting vertex. Other applications of

backtracking involve searching through spaces that represent potential solutions to an

optimization problem. Branch and bound is a technique for performing such backtracking

searches without exhaustively searching all of the potential solutions in such a space.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 34/38

Backtracking (game playing, finding paths, exhaustive searching)

Backtracking is used in algorithms in which there are steps along some path (state) from some

starting point to some goal.

 Find your way through a maze.

 Find a path from one point in a graph (roadmap) to another point.

 Play a game in which there are moves to be made (checkers, chess).

In all of these cases, there are choices to be made among a number of options. We need some

way to remember these decision points in case we want/need to come back and try the alternative

Consider the maze. At a point where a choice is made, we may discover that the choice leads to

a dead-end. We want to retrace back to that decision point and then try the other (next)

alternative.

Again, stacks can be used as part of the solution. Recursion is another, typically more favored,

solution, which is actually implemented by a stack.

 Memory Management

A number of programming languages are stack-oriented, meaning they define most basic

operations (adding two numbers, printing a character) as taking their arguments from the stack,

and placing any return values back on the stack. For example, PostScript has a return stack and

an operand stack, and also has a graphics state stack and a dictionary stack. Many virtual

machines are also stack-oriented, including the p-code machine and the Java Virtual Machine.

Any modern computer environment uses a stack as the primary memory management model for

a running program. Whether it's native code (x86, Sun, VAX) or JVM, a stack is at the center of

the run-time environment for Java, C++, Ada, FORTRAN, etc.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 35/38

The discussion of JVM in the text is consistent with NT, Solaris, VMS, Unix runtime

environments.

Each program that is running in a computer system has its own memory allocation containing the

typical layout as shown below.

Limitations of Array representation of stack

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 36/38

1. We must know in advance that how many elements are to be stored in array.

2. Array is static structure. It means that array is of fixed size. The memory which is

allocated to array cannot be increased or reduced.

3. Since array is of fixed size, if we allocate more memory than requirement then the

memory space will be wasted. And if we allocate less memory than requirement, then it

will create problem.

4. The elements of array are stored in consecutive memory locations. So insertions and

deletions are very difficult and time consuming.

We have seen that we can use arrays whenever we have to store and manipulate collections of

elements.

 the dimension of an array is determined the moment the array is created, and cannot be

changed later on.

 the array occupies an amount of memory that is proportional to its size, independently of the

number of elements that are actually of interest.

 if we want to keep the elements of the collection ordered, and insert a new value in its correct

position, or remove it, then, for each such operation we may need to move many elements (on

the average, half of the elements of the array);this is very inefficient.

Under the array implementation, a fixed set of nodes represented by an array is established at the

start of execution. A pointer to a node is represented by the relative position of the node within

the array. The disadvantage of that approach is twofold. First, the number of nodes that are

needed often cannot be predicted when a program is written. Usually, the data with which the

program is executed determines the number of nodes necessary. Thus no matter how many

elements the array of nodes contains, it is always possible that the program will be executed with

input that requires a larger number.

The second disadvantage of the array approach is that whatever number of nodes are declared

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 37/38

must remain allocated to the program throughout its execution. For example, if 500 nodes of a

given type are declared, the amount of storage required for those 500 nodes is reserved for that

purpose. If the program actually uses only 100 or even 10 nodes in its execution the additional

nodes are still reserved and their storage cannot be used for any other purpose.

The solution to this problem is to allow nodes that are dynamic, rather than static. That is, when

a node is needed, storage is reserved for it, and when it is no longer needed, the storage is

released. Thus the storage for nodes that are no longer in use is available for another purpose.

Also, no predefined limit on the number of nodes is established. As long as sufficient storage is

available to the job as a whole, part of that storage can be reserved for use as a node.

Dynamic nodes use notion of pointers intensively. Pointers allow us to build and manipulate

linked lists of various types. The concept of a pointer introduces the possibility of assembling a

collection of building blocks, called nodes, into flexible structures. By altering the values of

pointers, nodes can be attached, detached, and reassembled in patterns that grow and shrink as

execution of a program progresses.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: I (Arrays & Stack) BATCH-2017-2020

Prepared by Dr PG Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 38/38

POSSIBLE QUESTIONS

UNIT-I

PART-A (20 MARKS)

(Q.NO 1 TO 20 Online Examination)

PART-B (2 MARKS)

1. Write about the Basic Terminology of Data Structures?

2. Define Array with example.

3. Define Data Structure.

4. Define Stack..

5. What is a Queue.

PART-C (6 MARKS)

1. Define Data Structure. Explain in detail about various data structures.

2. Explain about Single and Multidimensional array with example.

3. Define Sparse Matrix and how it is represented in array and Linked List.

4. Explain about Stacks Implementation using single / multiple stack/s in an Array

5. Elaborate about Prefix, Infix and Postfix Expressions with example.

6. Explain about Conversion of Expressions.

7. Write about Limitations of Array representation of stack.

 questions
Big Data is defined as high-volume, high-velocity and/or high-variety information assets that demand --------------
Knowledge workers in any pyramid structure of organization termed as _________
 Organizations are capturing, storing and analyzing data that has high volume, high velocity, and variety of _______ comes from variety of sources like social media, log files, text, image etc.,
Business value from big data is great. However some companies have significant privacy concerns
1 TB of data is equivalent to----------------
one million web pages are equivalent to---------------
 ___________ is all about diving deep at a granular level to mine and understand complex behaviors, trends, and inferences .
 _____________ identifies major customer segments and unique shopping behaviors within the segment
A ______________ is called as recommendation engine in data science
_____________ used for self driving cars is also a data product able to sense traffic lights, pedestrians, and other obstacles on road
_________________ is a software that helps software developers to work together and maintain a complete history of their work.
 _________ is a light weight markup language with plain text formatting syntax.
______________is sometimes called an epiphany, an "aha" moment or a "eureka' feeling when a solution to a problem presents itself suddenly
_________________ is not for the data beginner
Rapid Miner is an _______ source big data tool
SAS stands for___________________
SAS was developed by _____________
VCS stands for_______________
Centralized version control system (CVCS) uses a __________server to store all files and enables team collaboration
The core part of Git is written in _____________
BLOB stands for _________________
__________________ is a language for statistical calculation
________________ is a free source IDE
we cant use rstudio without ___________________programming language
_________________ is a pointer, which always points to the latest commit in the branch.
___________ provides big data tools to extract, prepare and blend data.
_______________database is widely used today to provide an effective management of large amounts of data.
__________________ is an open source big data tool.
__________________is a free and open source big data computation system.
______________delivers on a single platform, a single architecture and a single programming language for data processing.
___________________is designed to scale up from single servers to thousands of machines.
The name ________________ has become synonymous with big data
KNIME ___________ Platform is the leading open solution for data-driven innovation
The _____________ of physical world data is often based on type, time, location and the entity of interest.
The data can be represented as numerical measurement values or as________________ descriptions of occurrences in the physical world
The amount of data produced and communicated over the Internet and the Web is rapidly ______________
_______________ is a term closely associated with data science.
__________ means observations where ground truth is already known.
__________________ means automatically characterizing tagged data in ways to predict tags for unknown data points
The _______________ estimates the likelihood that any new purchase is fraudulent.
The purpose of _______________ is to literally prescribe what action to take to eliminate a future problem or take full advantage of a promising trend.
__________uses the findings of descriptive and diagnostic analytics to detect tendencies, clusters and exceptions, and to predict future trends, which makes it a valuable tool for forecasting.
___________________is a possibility to drill down, to find out dependencies and to identify patterns.
_______________answers the question of what happened.
_________________is a blend of skills in three major areas of mathematics expertise, hacking skills
using technology and business/strategy acumen.

__________ play a central role in developing data product.
______________data mines movie viewing patterns to understand what drives user interest, and uses that to make decisions on which Netflix original series to produce.
___________identifies what are major customer segments within it's base and the unique shopping behaviors within those segments, which helps to guide messaging to different market audiences
_______________ utilizes time series models to more clearly understand future demand, which help plan
for production levels more optimally.
Modulo division in R is computed using the symbol_______________
 _________________ is a software that helps software developers to work together and maintain a complete history of their work.
 _____________ identifies major customer segments and unique shopping behaviors within the segment.
 _________is a version control system for tracking changes in computer files and coordinating work on those files among multiple people.
 A ______________ is called as recommendation engine in data science
 Machine readable file formats for data processing are
A web scraper can download all web pages except ________________
_______ is a way for servers to communicate requesting specific resource such as documents, images or video.
 Organizations are capturing, storing and analyzing data that has high volume, high velocity, and variety of _______ comes from variety of sources like social media, log files, text, image etc.,
_____________ used for self driving cars is also a data product able to sense traffic lights, pedestrians, and other obstacles on road.
 Extending current internet and providing connection and communication between physical objects and devices called ________________
Which command in R used to search for help pages containing word “plotting” ____________-

 a b
quality cost-effective
MIS ESS
information knowledge
hindustan lever and protector and gamble google and facebook
1000pb 1024mb
1 lakhs 100 lakhs
big data DSS
neflix target
data insight data product
netflix big data
data insight version control system
knitr mark down
insight big data
hadoop data insight
open closed
statistical analysis system statistical analytics system
cambridge university north carolina state university
version control system various control system
central main
c c++
binary large optimizing binary large objects
R C
visual studio cinfig studio
c R
SHAI HEAD
cassandra Pentaho
pentaho flink
pentaho cassandra
rapid miner flink
cassandra rapid miner
SHAI pentaho
pentaho rapid miner
refering interface
data refining actionable knowledge
logical symbolic
decreasing low
data learning query
training models tagged data
resultant model tagged data
resultant model training models
predictive analytics prescriptive analytics
predictive analytics prescriptive analytics
predictive analytics prescriptive analytics
descriptive analysis diagnostic analysis
big data Data science

data scientists programmers
target netflix
target netflix
proctor and gamble target
% %%
data insight version control system
netflix target
git hub git
data insight data product
csv &json HTML and PDF
wikipedia CAPTCHA codes
FTP knit r
information knowledge
netflix big data
WOT IOT
?”plotting” ??”plotting”

 c d
controlability accuracy
OLAP DSS
data business value
amazon and verizone none of the above
1024yb none of the above
10 lakhs 1 crore
data science business intelligence
spotify none of the above
google none of the above
computer vision none of the above
pentaho rapid miner
r language none of the above
target data
r language DSS
both a& b none of the above
statistical analyzing system statistical accurate system
american university none of the above
version command system various connecting system
open all of the bove
java html
binary large object basic large objects
c++ python
rstudio all of the bove
both a&b none of these
TAIL TARGET
flink rapid miner
rapid miner Apache Cassandra
Rapid Miner flink
apache cassandra Storm
HPCC Storm
apache cassandra apache hadoop
Hadoop open refine
analyzing Analytics
query and discovery open refine
alphabetical none of the above
increasing. high
Machine learning none of the above
resultant model none of the above
Training models all of the bove
either a or b both a &b
predictive analysis prescriptive analysis
predictive analysis prescriptive analysis
Diagnostic Analysis none of the above
either a or b none of the above
both a &b none of the above

both a &b none of the above
data miner all of above
data miner data analysist
netflix b alone
%/% %&%
pentaho rapid miner
spotify spam filter
markdown knitr
google none of the above
XML&excel files a &c
pay walls all the above
HTML json
data business value
computer vision none of the above
knowledge none of the above
??plotting ?plotting

ot

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 1/30

UNIT-II

SYLLABUS

Linked Lists Singly, Doubly and Circular Lists (Array and Linked representation); Normal and

Circular, representation of Stack in Lists; Self Organizing Lists; Skip Lists Queues, Array and

Linked representation of Queue, De-queue, Priority Queues

LINKED LIST:

A linked list is a sequence of data structures, which are connected together via links.

Linked List is a sequence of links which contains items. Each link contains a connection to another

link. Linked list is the second most-used data structure after array. Following are the important

terms to understand the concept of Linked List.

 Link − Each link of a linked list can store a data called an element.

 Next − Each link of a linked list contains a link to the next link called Next.

 LinkedList − A Linked List contains the connection link to the first link called First.

A linked list is a data structure which can change during execution.

– Successive elements are connected by pointers.

– Last element points to NULL head

– It can grow or shrink in size during execution of a program.

– It can be made just as long as required.

– It does not waste memory space.

Linked List Representation

Linked list can be visualized as a chain of nodes, where every node points to the next node.

As per the above illustration, following are the important points to be considered.

 Linked List contains a link element called first.

 Each link carries a data field(s) and a link field called next.

 Each link is linked with its next link using its next link.

 Last link carries a link as null to mark the end of the list.

Basic Operations

Following are the basic operations supported by a list.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 2/30

 Insertion − Adds an element at the beginning of the list.

 Deletion − Deletes an element at the beginning of the list.

 Display − Displays the complete list.

 Search − Searches an element using the given key.

 Delete − Deletes an element using the given key.

Keeping track of a linked list:

 – Must know the pointer to the first element of the list (called start, head, etc.).

 • Linked lists provide flexibility in allowing the items to be rearranged efficiently.

 – Insert an element.

 – Delete an element.

For insertion:

 – A record is created holding the new item.

 – The next pointer of the new record is set to link it to the item which is to follow it in the list.

 – The next pointer of the item which is to precede it must be modified to point to the new

item.

 For deletion:

 – The next pointer of the item immediately preceding the one to be deleted is altered, and

made to point to the item following the deleted item.

TYPES OF LINKED LIST

Following are the various types of linked list.

 Simple Linked List − Item navigation is forward only.

 Doubly Linked List − Items can be navigated forward and backward.

 Circular Linked List − Last item contains link of the first element as next and the first

element has a link to the last element as previous.

LINEAR SINGLY-LINKED LIST

The formal definition of a single linked list is as follows...

Single linked list is a sequence of elements in which every element has link to its next element

in the sequence.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 3/30

In any single linked list, the individual element is called as "Node". Every "Node" contains two

fields, data and next. The data field is used to store actual value of that node and next field is used

to store the address of the next node in the sequence.

The graphical representation of a node in a single linked list is as follows..

☀ In a single linked list, the address of the first node is always stored in a reference node known as

"front" (Some times it is also known as "head").

☀ Always next part (reference part) of the last node must be NULL.

Example

Operations

In a single linked list we perform the following operations...

1. Insertion

2. Deletion

3. Display

Before we implement actual operations, first we need to setup empty list. First perform the

following steps before implementing actual operations.

Insertion Operation

Adding a new node in linked list is a more than one step activity. We shall learn this with diagrams

here. First, create a node using the same structure and find the location where it has to be inserted.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 4/30

Imagine that we are inserting a node B (NewNode), between A (LeftNode) and C (RightNode).

Then point B.next to C −

NewNode.next −> RightNode;

It should look like this −

Now, the next node at the left should point to the new node.

LeftNode.next −> NewNode;

This will put the new node in the middle of the two. The new list should look like this −

Similar steps should be taken if the node is being inserted at the beginning of the list. While

inserting it at the end, the second last node of the list should point to the new node and the new

node will point to NULL.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 5/30

Deletion Operation

Deletion is also a more than one step process. We shall learn with pictorial representation. First,

locate the target node to be removed, by using searching algorithms.

The left (previous) node of the target node now should point to the next node of the target node −

LeftNode.next −> TargetNode.next;

This will remove the link that was pointing to the target node. Now, using the following code, we

will remove what the target node is pointing at.

TargetNode.next −> NULL;

We need to use the deleted node. We can keep that in memory otherwise we can simply deallocate

memory and wipe off the target node completely.

Insertion

In a single linked list, the insertion operation can be performed in three ways. They are as follows...

1. Inserting At Beginning of the list

2. Inserting At End of the list

3. Inserting At Specific location in the list

Deletion

In a single linked list, the deletion operation can be performed in three ways. They are as follows...

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 6/30

1. Deleting from Beginning of the list

2. Deleting from End of the list

3. Deleting a Specific Node

CIRCULAR LINKED LIST:

• The pointer from the last element in the list points back to the first element.

In single linked list, every node points to its next node in the sequence and the last node points

NULL. But in circular linked list, every node points to its next node in the sequence but the last

node points to the first node in the list.

Circular linked list is a sequence of elements in which every element has link to its next

element in the sequence and the last element has a link to the first element in the sequence.

That means circular linked list is similar to the single linked list except that the last node points to

the first node in the list

Example

Circular Linked List is a variation of Linked list in which the first element points to the last

element and the last element points to the first element. Both Singly Linked List and Doubly

Linked List can be made into a circular linked list.

Singly Linked List as Circular

In singly linked list, the next pointer of the last node points to the first node.

Doubly Linked List as Circular

In doubly linked list, the next pointer of the last node points to the first node and the previous

pointer of the first node points to the last node making the circular in both directions.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 7/30

As per the above illustration, following are the important points to be considered.

 The last link's next points to the first link of the list in both cases of singly as well as doubly

linked list.

 The first link's previous points to the last of the list in case of doubly linked list.

Basic Operations

Following are the important operations supported by a circular list.

 insert − Inserts an element at the start of the list.

 delete − Deletes an element from the start of the list.

 display − Displays the list.

Insertion Operation

Following code demonstrates the insertion operation in a circular linked list based on single linked

list.

Example

//insert link at the first location

void insertFirst(int key, int data) {

 //create a link

 struct node *link = (struct node*) malloc(sizeof(struct node));

 link->key = key;

 link->data= data;

 if (isEmpty()) {

 head = link;

 head->next = head;

 } else {

 //point it to old first node

 link->next = head;

 //point first to new first node

 head = link;

 }

}

Deletion Operation

Following code demonstrates the deletion operation in a circular linked list based on single linked

list.

//delete first item

struct node * deleteFirst() {

 //save reference to first link

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 8/30

 struct node *tempLink = head;

 if(head->next == head) {

 head = NULL;

 return tempLink;

 }

 //mark next to first link as first

 head = head->next;

 //return the deleted link

 return tempLink;

}

Display List Operation

Following code demonstrates the display list operation in a circular linked list.

//display the list

void printList() {

 struct node *ptr = head;

 printf("\n[");

 //start from the beginning

 if(head != NULL) {

 while(ptr->next != ptr) {

 printf("(%d,%d) ",ptr->key,ptr->data);

 ptr = ptr->next;

 }

 }

 printf("]");

}

Application of Circular Linked List

 The real life application where the circular linked list is used is our Personal Computers,

where multiple applications are running. All the running applications are kept in a circular

linked list and the OS gives a fixed time slot to all for running. The Operating System keeps

on iterating over the linked list until all the applications are completed.

 Another example can be Multiplayer games. All the Players are kept in a Circular Linked

List and the pointer keeps on moving forward as a player's chance ends.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 9/30

DOUBLY LINKED LIST:

In a single linked list, every node has link to its next node in the sequence. So, we can traverse from

one node to other node only in one direction and we can not traverse back. We can solve this kind of

problem by using double linked list. Double linked list can be defined as follows...

Double linked list is a sequence of elements in which every element has links to its previous

element and next element in the sequence.

In double linked list, every node has link to its previous node and next node. So, we can traverse

forward by using next field and can traverse backward by using previous field. Every node in a

double linked list contains three fields and they are shown in the following figure...

Here, 'link1' field is used to store the address of the previous node in the sequence, 'link2' field is

used to store the address of the next node in the sequence and 'data' field is used to store the actual

value of that node.

As per the above illustration, following are the important points to be considered.

 Doubly Linked List contains a link element called first and last.

 Each link carries a data field(s) and two link fields called next and prev.

 Each link is linked with its next link using its next link.

 Each link is linked with its previous link using its previous link.

 The last link carries a link as null to mark the end of the list.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 10/30

Example

 In double linked list, the first node must be always pointed by head.

 Always the previous field of the first node must be NULL.

 Always the next field of the last node must be NULL.

 Pointers exist between adjacent nodes in both directions.

 The list can be traversed either forward or backward.

 Usually two pointers are maintained to keep track of the list, head and tail.

IMPLEMENTING LISTS USING ARRAYS:

 Arrays are suitable for:

 – Inserting/deleting an element at the end.

 – Randomly accessing any element.

 – Searching the list for a particular value.

Array representation of linked list

An array of linked list is an unique structure which combines a static structure (an array) and a

dynamic structure (linked lists) to form a useful data structure. This type of data structure is useful

for applications. Like, When you know the categories under a menu but have no idea about the sub-

categories under categories. For instance, we can use an array of linked lists, where each list

contains words starting with a specific letter in the alphabet. When you declare all variable, then

Creating an Array of Linked Lists

Assume that a linked list needs to be created starting at A[i]. The first node would be created as

follows.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 11/30

Now, to insert more nodes into the list.

A call to the function can be as follows.

Implementing Lists using Linked List:

Linked lists are suitable for:

 Inserting an element.

 Deleting an element.

 Applications where sequential access is required. In situations where the number of elements

cannot be predicted beforehand.

REPRESENTATION OF STACK IN LISTS

STACK USING LINKED LIST

The major problem with the stack implemented using array is, it works only for fixed number of

data values. That means the amount of data must be specified at the beginning of the

implementation itself. Stack implemented using array is not suitable, when we don't know the size

of data which we are going to use. A stack data structure can be implemented by using linked list

data structure. The stack implemented using linked list can work for unlimited number of values.

That means, stack implemented using linked list works for variable size of data. So, there is no need

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 12/30

to fix the size at the beginning of the implementation. The Stack implemented using linked list can

organize as many data values as we want.

In linked list implementation of a stack, every new element is inserted as 'top' element. That means

every newly inserted element is pointed by 'top'. Whenever we want to remove an element from the

stack, simply remove the node which is pointed by 'top' by moving 'top' to its next node in the list.

The next field of the first element must be always NULL.

Example

In above example, the last inserted node is 99 and the first inserted node is 25. The order of

elements inserted is 25, 32,50 and 99.

Operations

To implement stack using linked list, we need to set the following things before implementing

actual operations.

 Step 1: Include all the header files which are used in the program. And declare all the user

defined functions.

 Step 2: Define a 'Node' structure with two members data and next.

 Step 3: Define a Node pointer 'top' and set it to NULL.

 Step 4: Implement the main method by displaying Menu with list of operations and make

suitable function calls in the main method.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 13/30

push(value) - Inserting an element into the Stack

We can use the following steps to insert a new node into the stack...

 Step 1: Create a newNode with given value.

 Step 2: Check whether stack is Empty (top == NULL)

 Step 3: If it is Empty, then set newNode → next = NULL.

 Step 4: If it is Not Empty, then set newNode → next = top.

 Step 5: Finally, set top = newNode.

pop() - Deleting an Element from a Stack

We can use the following steps to delete a node from the stack...

 Step 1: Check whether stack is Empty (top == NULL).

 Step 2: If it is Empty, then display "Stack is Empty!!! Deletion is not possible!!!" and

terminate the function

 Step 3: If it is Not Empty, then define a Node pointer 'temp' and set it to 'top'.

 Step 4: Then set 'top = top → next'.

 Step 7: Finally, delete 'temp' (free(temp)).

display() - Displaying stack of elements

We can use the following steps to display the elements (nodes) of a stack...

 Step 1: Check whether stack is Empty (top == NULL).

 Step 2: If it is Empty, then display 'Stack is Empty!!!' and terminate the function.

 Step 3: If it is Not Empty, then define a Node pointer 'temp' and initialize with top.

 Step 4: Display 'temp → data --->' and move it to the next node. Repeat the same

until temp reaches to the first node in the stack (temp → next != NULL).

 Step 4: Finally! Display 'temp → data ---> NULL'.

Example Program

#include<iostream>
#include<process.h>

using namespace std;

struct Node
{
 int data;
 Node *next;
}*top=NULL,*p;

Node* newnode(int x)

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 14/30

{
 p=new Node;
 p->data=x;
 p->next=NULL;
 return(p);
}

void push(Node *q)
{
 if(top==NULL)
 top=q;
 else
 {
 q->next=top;
 top=q;
 }
}

void pop(){
 if(top==NULL){
 cout<<"Stack is empty!!";
 }
 else{
 cout<<"Deleted element is "<<top->data;
 p=top;
 top=top->next;
 delete(p);
 }
}

void showstack()
{
 Node *q;
 q=top;

 if(top==NULL){
 cout<<"Stack is empty!!";
 }
 else{
 while(q!=NULL)
 {
 cout<<q->data<<" ";
 q=q->next;
 }
 }
}

int main()
{
 int ch,x;

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 15/30

 Node *nptr;

 while(1)
 {
 cout<<"\n\n1.Push\n2.Pop\n3.Display\n4.Exit";
 cout<<"\nEnter your choice(1-4):";
 cin>>ch;

 switch(ch){
 case 1: cout<<"\nEnter data:";
 cin>>x;
 nptr=newnode(x);
 push(nptr);
 break;

 case 2: pop();
 break;

 case 3: showstack();
 break;

 case 4: exit(0);

 default: cout<<"\nWrong choice!!";
 }
 }

 return 0;
}

SELF ORGANIZING LIST

The worst case search time for a sorted linked list is O(n). With a Balanced Binary Search Tree, we

can skip almost half of the nodes after one comparison with root. For a sorted array, we have

random access and we can apply Binary Search on arrays.

One idea to make search faster for Linked Lists is Skip List. Another idea (which is discussed in

this post) is to place more frequently accessed items closer to head.. There can be two possibilities.

offline (we know the complete search sequence in advance) and online (we don’t know the search

sequence).

In case of offline, we can put the nodes according to decreasing frequencies of search (The element

having maximum search count is put first). For many practical applications, it may be difficult to

obtain search sequence in advance. A Self Organizing list reorders its nodes based on searches

which are done. The idea is to use locality of reference (In a typical database, 80% of the access are

to 20% of the items). Following are different strategies used by Self Organizing Lists.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 16/30

1) Move-to-Front Method: Any node searched is moved to the front. This strategy is easy to

implement, but it may over-reward infrequently accessed items as it always move the item to front.

2) Count Method: Each node stores count of the number of times it was searched. Nodes are

ordered by decreasing count. This strategy requires extra space for storing count.

3) Transpose Method: Any node searched is swapped with the preceding node. Unlike Move-to-

front, this method does not adapt quickly to changing access patterns.

Self-Organizing Organizing – lists in which the order of elements changes based

Lists on searches which are done

• speed up the search by placing the frequently accessed

elements at or close to the head

Examples – important tel. numbers placed near the front of tel. directory

Basic Strategies in Self-Organizing Lists

(1) Move-to-Front Method

(2) Count Method

(3) Exchange Method

(1) Move-to-Front Method: any node (position) searched / requested is moved to the front

Pros:

• easily implemented & memoryless – requires no extra storage

• adapts quickly to changing access patterns

Cons:

• may over-reward infrequently accessed nodes

• relatively short memory of access pattern

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 17/30

(2) Count Method: each node (position) counts the number of times it was searched for – nodes are

ordered by decreasing count

Pros:

• reflects the actual access pattern

Cons:

• must store and maintain a counter for each node

• does not adapt quickly to changing access pattern

(3) Transpose Method: any node searched is swapped with the preceding node

Pros:

• easily implemented & memoryless

• likely to keep frequently accessed nodes near the front

Cons:

• more cautious than “Move-to-Front” (it will take many

consecutive accesses to move one node to the front)

SKIP LISTS

A skip list is a data structure for storing a sorted list of items using a hierarchy of linked lists that

connect increasingly sparse subsequences of the items. These auxiliary lists allow item lookup with

efficiency comparable to balanced binary search trees (that is, with number of probes proportional

to log n instead of n).

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 18/30

Each link of the sparser lists skips over many items of the full list in one step, hence the structure's

name. These forward links may be added in a randomized way with a geometric / negative binomial

distribution. Insert, search and delete operations are performed in logarithmic expected time. The

links may also be added in a non-probabilistic way so as to guarantee amortized (rather than merely

expected) logarithmic cost.

Complexity

 Average Case Worst Case

Space O(n) O(nlogn)

Search O(logn) O(n)

Insert O(logn) O(n)

Delete O(logn) O(n)

Structure of Skip List

A skip list is built up of layers. The lowest layer (i.e. bottom layer) is an ordinary ordered linked

list. The higher layers are like ‘express lane’ where the nodes are skipped (observe the figure).

Searching Process

When an element is tried to search, the search begins at the head element of the top list. It proceeds

horizontally until the current element is greater than or equal to the target. If current element and

target are matched, it means they are equal and search gets finished.

If the current element is greater than target, the search goes on and reaches to the end of the linked

list, the procedure is repeated after returning to the previous element and the search reaches to the

next lower list (vertically).

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 19/30

Implementation Details

1. The elements used for a skip list can contain more than one pointers since they are allowed to

participated in more than one list.

2. Insertion and deletion operations are very similar to corresponding linked list operations.

Insertion in Skip List

Applications of Skip List

1. Skip list are used in distributed applications. In distributed systems, the nodes of skip list

represents the computer systems and pointers represent network connection.

2. Skip list are used for implementing highly scalable concurrent priority queues with less lock

contention (struggle for having a lock on a data item).

QUEUES

What is a Queue?

Queue is a linear data structure in which the insertion and deletion operations are performed at two

different ends. In a queue data structure, adding and removing of elements are performed at two

different positions. The insertion is performed at one end and deletion is performed at other end. In

a queue data structure, the insertion operation is performed at a position which is known as 'rear'

and the deletion operation is performed at a position which is known as 'front'. In queue data

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 20/30

structure, the insertion and deletion operations are performed based on FIFO (First In First

Out) principle.

In a queue data structure, the insertion operation is performed using a function called "enQueue()"

and deletion operation is performed using a function called "deQueue()".

Queue data structure can be defined as follows...

Queue data structure is a linear data structure in which the operations are performed based

on FIFO principle.

A queue can also be defined as

"Queue data structure is a collection of similar data items in which insertion and deletion

operations are performed based on FIFO principle".

Example

Queue after inserting 25, 30, 51, 60 and 85.

Operations on a

 Queue

The following operations are performed on a queue data structure...

1. enQueue(value) - (To insert an element into the queue)

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 21/30

2. deQueue() - (To delete an element from the queue)

3. display() - (To display the elements of the queue)

Queue data structure can be implemented in two ways. They are as follows...

1. Using Array

2. Using Linked List

When a queue is implemented using array, that queue can organize only limited number of

elements. When a queue is implemented using linked list, that queue can organize unlimited number

of elements.

ARRAY AND LINKED REPRESENTATION OF QUEUE

Queue Using Array

A queue data structure can be implemented using one dimensional array. But, queue implemented

using array can store only fixed number of data values. The implementation of queue data structure

using array is very simple, just define a one dimensional array of specific size and insert or delete

the values into that array by using FIFO (First In First Out) principle with the help of

variables 'front' and 'rear'. Initially both 'front' and 'rear' are set to -1. Whenever, we want to insert

a new value into the queue, increment 'rear' value by one and then insert at that position. Whenever

we want to delete a value from the queue, then increment 'front' value by one and then display the

value at 'front' position as deleted element.

Queue Operations using Array

Queue data structure using array can be implemented as follows...

Before we implement actual operations, first follow the below steps to create an empty queue.

 Step 1: Include all the header files which are used in the program and define a

constant 'SIZE' with specific value.

 Step 2: Declare all the user defined functions which are used in queue implementation.

 Step 3: Create a one dimensional array with above defined SIZE (int queue[SIZE])

 Step 4: Define two integer variables 'front' and 'rear' and initialize both with '-1'. (int front

= -1, rear = -1)

 Step 5: Then implement main method by displaying menu of operations list and make

suitable function calls to perform operation selected by the user on queue.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 22/30

enQueue(value) - Inserting value into the queue

In a queue data structure, enQueue() is a function used to insert a new element into the queue. In a

queue, the new element is always inserted at rear position. The enQueue() function takes one

integer value as parameter and inserts that value into the queue. We can use the following steps to

insert an element into the queue...

 Step 1: Check whether queue is FULL. (rear == SIZE-1)

 Step 2: If it is FULL, then display "Queue is FULL!!! Insertion is not possible!!!" and

terminate the function.

 Step 3: If it is NOT FULL, then increment rear value by one (rear++) and

set queue[rear] = value.

deQueue() - Deleting a value from the Queue

In a queue data structure, deQueue() is a function used to delete an element from the queue. In a

queue, the element is always deleted from front position. The deQueue() function does not take any

value as parameter. We can use the following steps to delete an element from the queue...

 Step 1: Check whether queue is EMPTY. (front == rear)

 Step 2: If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not

possible!!!" and terminate the function.

 Step 3: If it is NOT EMPTY, then increment the front value by one (front ++). Then

display queue[front] as deleted element. Then check whether both front and rear are equal

(front == rear), if it TRUE, then set both front and rear to '-1' (front = rear = -1).

display() - Displays the elements of a Queue

We can use the following steps to display the elements of a queue...

 Step 1: Check whether queue is EMPTY. (front == rear)

 Step 2: If it is EMPTY, then display "Queue is EMPTY!!!" and terminate the function.

 Step 3: If it is NOT EMPTY, then define an integer variable 'i' and set 'i = front+1'.

 Step 3: Display 'queue[i]' value and increment 'i' value by one (i++). Repeat the same until

'i' value is equal to rear (i <= rear)

QUEUE USING LINKED LIST

The major problem with the queue implemented using array is, It will work for only fixed number

of data. That means, the amount of data must be specified in the beginning itself. Queue using array

is not suitable when we don't know the size of data which we are going to use. A queue data

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 23/30

structure can be implemented using linked list data structure. The queue which is implemented

using linked list can work for unlimited number of values. That means, queue using linked list can

work for variable size of data (No need to fix the size at beginning of the implementation). The

Queue implemented using linked list can organize as many data values as we want.

In linked list implementation of a queue, the last inserted node is always pointed by 'rear' and the

first node is always pointed by 'front'.

Example

In above example, the last inserted node is 50 and it is pointed by 'rear' and the first inserted node is

10 and it is pointed by 'front'. The order of elements inserted is 10, 15, 22 and 50.

Operations

To implement queue using linked list, we need to set the following things before implementing

actual operations.

 Step 1: Include all the header files which are used in the program. And declare all the user

defined functions.

 Step 2: Define a 'Node' structure with two members data and next.

 Step 3: Define two Node pointers 'front' and 'rear' and set both to NULL.

 Step 4: Implement the main method by displaying Menu of list of operations and make

suitable function calls in the main method to perform user selected operation.

enQueue(value) - Inserting an element into the Queue

We can use the following steps to insert a new node into the queue...

 Step 1: Create a newNode with given value and set 'newNode → next' to NULL.

 Step 2: Check whether queue is Empty (rear == NULL)

 Step 3: If it is Empty then, set front = newNode and rear = newNode.

 Step 4: If it is Not Empty then, set rear → next = newNode and rear = newNode.

deQueue() - Deleting an Element from Queue

We can use the following steps to delete a node from the queue...

 Step 1: Check whether queue is Empty (front == NULL).

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 24/30

 Step 2: If it is Empty, then display "Queue is Empty!!! Deletion is not possible!!!" and

terminate from the function

 Step 3: If it is Not Empty then, define a Node pointer 'temp' and set it to 'front'.

 Step 4: Then set 'front = front → next' and delete 'temp' (free(temp)).

display() - Displaying the elements of Queue

We can use the following steps to display the elements (nodes) of a queue...

 Step 1: Check whether queue is Empty (front == NULL).

 Step 2: If it is Empty then, display 'Queue is Empty!!!' and terminate the function.

 Step 3: If it is Not Empty then, define a Node pointer 'temp' and initialize with front.

 Step 4: Display 'temp → data --->' and move it to the next node. Repeat the same until

'temp' reaches to 'rear' (temp → next != NULL).

 Step 4: Finally! Display 'temp → data ---> NULL'.

What is Circular Queue?

A Circular Queue can be defined as follows...

Circular Queue is a linear data structure in which the operations are performed based on

FIFO (First In First Out) principle and the last position is connected back to the first

position to make a circle.

Graphical representation of a circular queue is as follows...

DOUBLE ENDED QUEUE (DEQUEUE)

Double Ended Queue is also a Queue data structure in which the insertion and deletion operations

are performed at both the ends (frontand rear). That means, we can insert at both front and rear

positions and can delete from both front and rear positions.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 25/30

Double Ended Queue can be represented in TWO ways, those are as follows...

1. Input Restricted Double Ended Queue

2. Output Restricted Double Ended Queue

Input Restricted Double Ended Queue

In input restricted double ended queue, the insertion operation is performed at only one end and

deletion operation is performed at both the ends.

Output Restricted Double Ended Queue

In output restricted double ended queue, the deletion operation is performed at only one end and

insertion operation is performed at both the ends.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 26/30

Dequeue Operation:

Accessing data from the queue is a process of two tasks − access the data where front is pointing

and remove the data after access. The following steps are taken to perform dequeueoperation −

 Step 1 − Check if the queue is empty.

 Step 2 − If the queue is empty, produce underflow error and exit.

 Step 3 − If the queue is not empty, access the data where front is pointing.

 Step 4 − Increment front pointer to point to the next available data element.

 Step 5 − Return success.

Algorithm for dequeue operation

procedure dequeue

if queue is empty

return underflow

end if

data = queue[front]

front ← front + 1

return true

end procedure

Operations on Deque:

Mainly the following four basic operations are performed on queue:

insetFront(): Adds an item at the front of Deque.

insertLast(): Adds an item at the rear of Deque.

deleteFront(): Deletes an item from front of Deque.

deleteLast(): Deletes an item from rear of Deque.

In addition to above operations, following operations are also supported

getFront(): Gets the front item from queue.

getRear(): Gets the last item from queue.

isEmpty(): Checks whether Deque is empty or not.

isFull(): Checks whether Deque is full or not.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 27/30

PRIORITY QUEUE

In normal queue data structure, insertion is performed at the end of the queue and deletion is

performed based on the FIFO principle. This queue implementation may not be suitable for all

situations.

Consider a networking application where server has to respond for requests from multiple clients

using queue data structure. Assume four requests arrived to the queue in the order of R1 requires 20

units of time, R2 requires 2 units of time, R3 requires 10 units of time and R4 requires 5 units of

time. Queue is as follows...

Now, check waiting time for each request to be complete.

1. R1 : 20 units of time

2. R2 : 22 units of time (R2 must wait till R1 complete - 20 units and R2 itself requeres 2

units. Total 22 units)

3. R3 : 32 units of time (R3 must wait till R2 complete - 22 units and R3 itself requeres 10

units. Total 32 units)

4. R4 : 37 units of time (R4 must wait till R3 complete - 35 units and R4 itself requeres 5

units. Total 37 units)

Here, average waiting time for all requests (R1, R2, R3 and R4) is (20+22+32+37)/4 ≈ 27 units

of time.

That means, if we use a normal queue data structure to serve these requests the average waiting time

for each request is 27 units of time.

Now, consider another way of serving these requests. If we serve according to their required amount

of time. That means, first we serve R2 which has minimum time required (2) then serve R4 which

has second minimum time required (5) then serve R3 which has third minimum time required (10)

and finnaly R1 which has maximum time required (20).

Now, check waiting time for each request to be complete.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 28/30

1. R2 : 2 units of time

2. R4 : 7 units of time (R4 must wait till R2 complete 2 units and R4 itself requeres 5

units. Total 7 units)

3. R3 : 17 units of time (R3 must wait till R4 complete 7 units and R3 itself requeres 10

units. Total 17 units)

4. R1 : 37 units of time (R1 must wait till R3 complete 17 units and R1 itself requeres 20

units. Total 37 units)

Here, average waiting time for all requests (R1, R2, R3 and R4) is (2+7+17+37)/4 ≈ 15 units of

time.

From above two situations, it is very clear that, by using second method server can complete all

four requests with very less time compared to the first method. This is what exactly done by the

priority queue.

Priority queue is a variant of queue data structure in which insertion is performed in the

order of arrival and deletion is performed based on the priority.

There are two types of priority queues they are as follows...

1. Max Priority Queue

2. Min Priority Queue

3. Max Priority Queue

Max Priority Queue

In max priority queue, elements are inserted in the order in which they arrive the queue and always

maximum value is removed first from the queue. For example assume that we insert in order 8, 3, 2,

5 and they are removed in the order 8, 5, 3, 2.

The following are the operations performed in a Max priority queue...

1. isEmpty() - Check whether queue is Empty.

2. insert() - Inserts a new value into the queue.

3. findMax() - Find maximum value in the queue.

4. remove() - Delete maximum value from the queue.

Min Priority Queue

Min Priority Queue is similar to max priority queue except removing maximum element first, we

remove minimum element first in min priority queue.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 29/30

The following operations are performed in Min Priority Queue...

1. isEmpty() - Check whether queue is Empty.

2. insert() - Inserts a new value into the queue.

3. findMin() - Find minimum value in the queue.

4. remove() - Delete minimum value from the queue.

Min priority queue is also has same representations as Max priority queue with minimum value

removal.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: II-Bsc.IT COURSE NAME: DATA STRUCTURES
COURSE CODE: 17ITU301 UNIT: II (Linked Lists and Queues) BATCH-2017-2020

Prepared by Dr PG. Sivagaminathan, Asst Prof, Dept. of CS,CA & IT, KAHE 30/30

POSSIBLE QUESTIONS

PART-A (20 MARKS)

(Q.NO 1 TO 20 Online Examination)

PART-B (2 MARKS)

1. Define Linked List.

2. What is a Circular List.

3. What is a Doubly linked list.

4. What is Self Organizing List?

5. Define De-Queue

6. What is Queue?

PART-C (6 MARKS)

1. Discuss about Singly Linked List.

2. Discuss about Doubly Linked List.

3. Discuss about Circular List in detail.

4. Discuss about Representation of Stack in List.

5. Write about Queues, Array and Linked representation of Queue.

6. Explain about Normal and Circular Lis.

7. Explain De-queue operations.

8. Explain about Priority Queues

9. Write about the methods of Self Organizing Lists.

10. Explain about Skip Lists

http://btechsmartclass.com/DS/U3_T5.html
http://btechsmartclass.com/DS/U3_T5.html

Questions Opt1 Opt2 Opt3 Opt4 Opt5
Which of the following is used for reading tabular data read.csv dget readLines get
Which of the following is used for reading in saved workspaces ?unserialize load get read
Which of the following statement would read file “foo.txt”data <- read.table(“foo.txt”)read.data <- read.table(“foo.txt”)data <- read.data(“foo.txt”)data.read <- read(“foo.txt”)
Which of the following function is identical to read.tableread.csv read.data read.tab read.table
Which of the following code would read 100 rows initial <- read.table(“datatable.txt”, nrows = 100)tabAll <- read.table(“datatable.txt”, colClasses = classes)initial <- read.table(“datatable.txt”, nrows = 99)initial <- read.table(“datatable.txt”, ncols= 99)
Which of the following code opens a connection to the file foo.txt, reads from it, and closes the connection when its done ?data <- read.csvo(“foo.txt”)data <- read.csv(“foo.txt”)data <- readonly.csv(“foo.txt”)data <- readcsv(“foo.txt”)
Which of the following extracts first element from the following vector ? > x <- c("a", "b", "c", "c", "d", "a")x[10]. x[1]. x[0]. x[11].
Point out the correct statement : There are three operators that can be used to extract subsets of R objectsThe [operator is used to extract elements of a list or data frame by literal nameThe [[operator is used to extract elements of a list or data frame by string nameThe ((operator is used to extract elements of a list or data frame by string name
Which of the following extracts first four element from the following vector ? > x <- c("a", "b", "c", "c", "d", "a")x[0:4]. x[0:3]. x[1:4]. x[1:3].
What would be the output of the following code ? x <- c("a", "b", "c", "c", "d", "a") > x[c(1, 3, 4)]“a” “b” “c” “a” “c” “c” “a” “c” “b” “a” “b” “b”
Point out the wrong statement : $ operator semantics are similar to that of [[The [operator always returns an object of the same class as the originalThe $ operator is used to extract elements of a list or a data frameThe [[operator is used to extract elements of a list or a data frame
What would be the output of the following code ? > x <- matrix(1:6, 2, 3) > x[1, 2]3 2 1 0
What would be the output of the following code ? > x <- matrix(1:6, 2, 3) > x[1,]1 3 5 2 3 5 3 3 5 file
Which of the following code extracts the second column for the following matrix ? > x <- matrix(1:6, 2, 3)x[2,]. x[1, 2]. x[, 2]. x[2, 2].
 Point out the wrong statement : $ operator semantics are similar to that of [[The [[operator can take an integer sequence if you want to extract a nested element of a listThe $ operator can be used to extract multiple elements from a listThere are three operators that can be used to extract subsets of R objects
Which of the following code extracts 1st element of the 2nd element ? > x <- list(a = list(10, 12, 14), b = c(3.14, 2.81))x[[c(2, 1)]]. x[[c(1, 2)]]. x[[c(2, 1,1)]].x[[c(2, 0,1)]].
_________ , for dumping a textual representation of multiple R objectsdput save dump serialize
_______ , for outputting a textual representation of an R objectdput save dump serialize
_________ , for saving an arbitrary number of R objects in binary format (possibly compressed) to a file.dput save dump serialize
_______ , for converting an R object into a binary format for outputting to a connection (or file).dput save dump serialize
________ string indicating how the columns are separatedsep colClasses nrows file
___________ character vector indicating the class of each column in the datasetsep colClasses nrows file
___________ the number of rows in the dataset. By default read.table() reads an entire filesep colClasses nrows file
_________ logical indicating if the file has a header linesep colClasses nrows header
_________ character string indicating the comment charactersep colClasses comment.charheader
Partial matching of names is allowed with ____ and __[and $ [[and [[[and [$ [[and $
The _____ operator can take an integer sequence if you want to extract a nested element of a list.$ [[[((
The _____ operator can be used to extract single elements from a list$ [[[((
The ____ operator to extract elements by name $ [[[((
The ________ function can be useful for reading in lines of webpagesLoad() readLines() read() readpage()
Text files can be read line by line using the ________function.Load() readpage() read() readLines()
The ________ package is recently developed by Hadley Wickham to deal with reading in large flat files quickly.readr dplyr read dr
The _______ and _______ functions are useful because the resulting textual format is editable, and in the case of corruption, potentially recoverable.dump() and dget() dump() and dput() dget() and dput() dump() and dp()
________ opens a connection to a file file gzfile bzfile url
_________ opens a connection to a file compressed with gzipfile gzfile bzfile url
_________ opens a connection to a file compressed with bzip2file gzfile bzfile url
_____ opens a connection to a webpage file gzfile bzfile url
The ____ function has a number of arguments that are common to many other connectionf() close() file() open()
_____ open file in read only mode “r” “a” “w” "ab"
________ open a file for writing (and initializing a new file)“r” “a” “w” "ab"
_____ open a file for appending “r” “a” “w” "ab"
The_________ operator can be used to extract multiple elements of a vector by passing the operator an integer sequence$ [[[((
What would be the output of the following code ? > x <- list(foo = 1:4, bar = 0.6, baz = "hello") > name <- "foo" > x[[name]]1 2 3 4 0 1 2 3 1 2 3 4 5 1 2 3 5
What would be the output of the following code ? > x <- list(aardvark = 1:5) > x$a2 3 5 1 3 3 5 1 2 3 1 2 3 4 5
What would be the output of the following code ? > x <- list(foo = 1:4, bar = 0.6, baz = "hello") > name <- "foo" > x$name1 3 2 4
What would be the output of the following code ? > x <- list(a = list(10, 12, 14), b = c(3.14, 2.81)) > x[[c(1, 3)]]13 14 15 16

The ___________ function is used to convert individual R objects into a binary format that can be communicated across an arbitrary connection.dput() save() serialize() dump()
Matrices can be subsetted in the usual way with (i,j) type ________subset subsetting indices sets
The main functions for converting R objects into a binary format are save(), save.image(), and unserialize()save(), save.image(), and serialize()save(), unserialize, and serialize()unserialize(), save.image(), and serialize()
The __________ function is one of the most commonly used functions for reading data in Rread.csv() read.table()read.data() read()
_____________, a character vector indicating the class of each column in the datasetsep header file colClasses
The inverse of dump() is _______ function file() dput() source() dum()
Vectors are basic objects in R and they can be subsetted using the _____ operator(([[] [[
The ________ function is identical to read.table except that some of the defaults are set differentlyread.csv() read.table() read() read.data()
Factors are important in statistical modeling and are treated specially by modelling functions like ___ and _____.l() and gl() lm() and glm().lme() and glme()m() and gm()
We can also create an empty list of a prespecified length with the______functioncreate() file() vector() list()
The sequence does not have to be in order; you can specify any ________ integer vector.specified legel unarbitraryarbitrary
The [[operator can be used to extract _______ elements from a list.no all single double
The $ operator can only be used with _______ names.different literal same unique
A common task in data analysis is removing ____________missing valuessegments changing valuesnames

Opt6 Answer
read.csv
load

data.read <- read(“foo.txt”) data <- read.table(“foo.txt”)
read.csv

initial <- read.table(“datatable.txt”, ncols= 99)initial <- read.table(“datatable.txt”, nrows = 100)
data <- readcsv(“foo.txt”) data <- read.csv(“foo.txt”)

x[1].
The ((operator is used to extract elements of a list or data frame by string nameThere are three operators that can be used to extract subsets of R objects

x[1:4].
“a” “c” “c”

The [[operator is used to extract elements of a list or a data frameThe $ operator is used to extract elements of a list or a data frame
3
1 3 5
 x[, 2].

There are three operators that can be used to extract subsets of R objectsThe $ operator can be used to extract multiple elements from a list
x[[c(2, 1)]].
dump
dput
save
serialize
sep
colClasses
nrows
header
comment.char
[[and $
[[
[[
$
readLines()
readLines()
readr
dump() and dput()
file
gzfile
bzfile
url
file()
“r”
“w”
 “a”
[
1 2 3 4
1 2 3 4 5
2
14

serialize()
indices

unserialize(), save.image(), and serialize()save(), save.image(), and serialize()
read.table()
colClasses
source()
[
read.csv()
 lm() and glm().
 vector()
arbitrary
 single
literal
missing values

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 1/27

SYLLABUS

UNIT-III

Trees - Introduction to Tree as a data structure; Binary Trees (Insertion, Deletion , Recursive

and Iterative Traversals on Binary Search Trees); Threaded Binary Trees (Insertion, Deletion,

Traversals); Height-Balanced Trees (Various operations on AVL Trees)

 Trees:
Introduction to Tree as a data structure:

A tree is a data structure made up of nodes or vertices and edges without having any cycle. The

tree with no nodes is called the null or empty tree. A tree that is not empty consists of a root

node and potentially many levels of additional nodes that form a hierarchy.

 Tree

Terminology used in trees:

Root

The top node in a tree.

Child

A node directly connected to another node when moving away from the Root.

Parent

The converse notion of a child.

Siblings

A group of nodes with the same parent.

Descendant

A node reachable by repeated proceeding from parent to child.

Ancestor

A node reachable by repeated proceeding from child to parent.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 2/27

Leaf

(less commonly called External node)

A node with no children.

Branch

Internal node

A node with at least one child.

Degree

The number of sub trees of a node.

Edge

The connection between one node and another.

Path

A sequence of nodes and edges connecting a node with a descendant.

Level

The level of a node is defined by 1 + (the number of connections between the node and the

root).

Height of node

The height of a node is the number of edges on the longest path between that node and a leaf.

Height of tree

The height of a tree is the height of its root node.

Depth

The depth of a node is the number of edges from the tree's root node to the node.

Forest

A forest is a set of n ≥ 0 disjoint trees.

Binary Trees:

In a normal tree, every node can have any number of children. Binary tree is a special type of

tree data structure in which every node can have a maximum of 2 children. One is known as left

child and the other is known as right child.

A tree in which every node can have a maximum of two children is called as Binary Tree.

In a binary tree, every node can have either 0 children or 1 child or 2 children but not more than

2 children.

Binary Search Trees:

A Binary Search Tree (BST) is a tree in which all the nodes follow the below-mentioned

properties −

 The left sub-tree of a node has a key less than or equal to its parent node's key.

 The right sub-tree of a node has a key greater than to its parent node's key.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 3/27

Thus, BST divides all its sub-trees into two segments; the left sub-tree and the right sub-tree and

can be defined as −

left_subtree (keys) ≤ node (key) ≤ right_subtree (keys)

Representation:

BST is a collection of nodes arranged in a way where they maintain BST properties. Each node

has a key and an associated value. While searching, the desired key is compared to the keys in

BST and if found, the associated value is retrieved.

Following is a pictorial representation of BST −

 Binary Search Tree

We observe that the root node key (27) has all less-valued keys on the left sub-tree and the

higher valued keys on the right sub-tree.

Basic Operations:

Following are the basic operations of a tree −

Search − Searches an element in a tree.

Insert − Inserts an element in a tree.

Pre-order Traversal − Traverses a tree in a pre-order manner.

In-order Traversal − Traverses a tree in an in-order manner.

Post-order Traversal − Traverses a tree in a post-order manner.

Node:

Define a node having some data, references to its left and right child nodes.

struct node {

 int data;

 struct node *leftChild;

 struct node *rightChild;

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 4/27

};

Search Operation:

Whenever an element is to be searched, start searching from the root node. Then if the data is

less than the key value, search for the element in the left subtree. Otherwise, search for the

element in the right subtree. Follow the same algorithm for each node.

Algorithm:

struct node* search(int data){

struct node *current = root;

 printf("Visiting elements: ");

 while(current->data != data){

 if(current != NULL) {

 printf("%d ",current->data);

 //go to left tree

 if(current->data > data){

 current = current->leftChild;

 }//else go to right tree

 else {

 current = current->rightChild;

 }

 //not found

 if(current == NULL){

 return NULL;

 }

 }

 }

 return current;

}

Insert Operation:

Whenever an element is to be inserted, first locate its proper location. Start searching from the

root node, then if the data is less than the key value, search for the empty location in the left

subtree and insert the data. Otherwise, search for the empty location in the right subtree and

insert the data.

Algorithm:

 void insert(int data) {

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 5/27

 struct node *tempNode = (struct node*) malloc(sizeof(struct node));

 struct node *current;

 struct node *parent;

 tempNode->data = data;

 tempNode->leftChild = NULL;

 tempNode->rightChild = NULL;

 //if tree is empty

 if(root == NULL) {

 root = tempNode;

 } else {

 current = root;

 parent = NULL;

 while(1) {

 parent = current;

 //go to left of the tree

 if(data < parent->data) {

 current = current->leftChild;

 //insert to the left

 if(current == NULL) {

 parent->leftChild = tempNode;

 return;

 }

 }//go to right of the tree

 else {

 current = current->rightChild;

 //insert to the right

 if(current == NULL) {

 parent->rightChild = tempNode;

 return;

 }

 }

 }

 }

}

TRAVERSAL:

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 6/27

Traversal is a process to visit all the nodes of a tree and may print their values too. Because, all

nodes are connected via edges (links) we always start from the root (head) node. That is, we

cannot randomly access a node in a tree. There are three ways which we use to traverse a tree −

 In-order Traversal

 Pre-order Traversal

 Post-order Traversal

Generally, we traverse a tree to search or locate a given item or key in the tree or to print all the

values it contains.

In-order Traversal

In this traversal method, the left subtree is visited first, then the root and later the right sub-tree.

We should always remember that every node may represent a subtree itself.

If a binary tree is traversed in-order, the output will produce sorted key values in an ascending

order.

We start from A, and following in-order traversal, we move to its left subtree B. B is also

traversed in-order. The process goes on until all the nodes are visited. The output of inorder

traversal of this tree will be −

D → B → E → A → F → C → G

Algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Visit root node.

Step 3 − Recursively traverse right subtree.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 7/27

Pre-order Traversal:

In this traversal method, the root node is visited first, then the left subtree and finally the right

subtree.

We start from A, and following pre-order traversal, we first visit A itself and then move to its

left subtree B. B is also traversed pre-order. The process goes on until all the nodes are visited.

The output of pre-order traversal of this tree will be −

A → B → D → E → C → F → G

Algorithm

Until all nodes are traversed −

Step 1 − Visit root node.

Step 2 − Recursively traverse left subtree.

Step 3 − Recursively traverse right subtree.

Post-order Traversal:

In this traversal method, the root node is visited last, hence the name. First we traverse the left

subtree, then the right subtree and finally the root node.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 8/27

We start from A, and following pre-order traversal, we first visit the left subtree B. B is also

traversed post-order. The process goes on until all the nodes are visited. The output of post-

order traversal of this tree will be −

D → E → B → F → G → C → A

Algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Recursively traverse right subtree.

Step 3 − Visit root node.

THREADED BINARY TREES:

Inorder traversal of a Binary tree is either be done using recursion or with the use of a auxiliary

stack. The idea of threaded binary trees is to make inorder traversal faster and do it without

stack and without recursion. A binary tree is made threaded by making all right child pointers

that would normally be NULL point to the inorder successor of the node (if it exists).

There are two types of threaded binary trees.

Single Threaded: Where a NULL right pointers is made to point to the inorder successor (if

successor exists)

Double Threaded: Where both left and right NULL pointers are made to point to inorder

predecessor and inorder successor respectively. The predecessor threads are useful for reverse

inorder traversal and postorder traversal.

The threads are also useful for fast accessing ancestors of a node.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 9/27

Following diagram shows an example Single Threaded Binary Tree. The dotted lines represent

threads.

 Representation of a Threaded Node:

struct Node

{

 int data;

 Node *left, *right;

 bool right Thread;

}

Since right pointer is used for two purposes, the boolean variable rightThread is used to indicate

whether right pointer points to right child or inorder successor. Similarly, we can add leftThread

for a double threaded binary tree.

Inorder Taversal using Threads

Following code for inorder traversal in a threaded binary tree.

// Utility function to find leftmost node in a tree rooted with n

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 10/27

struct Node* leftMost(struct Node *n)

{

 if (n == NULL)

 return NULL;

 while (n->left != NULL)

 n = n->left;

 return n;

}

 // code to do inorder traversal in a threaded binary tree

void inOrder(struct Node *root)

{

 struct Node *cur = leftmost(root);

 while (cur != NULL)

 {

 printf("%d ", cur->data);

 // If this node is a thread node, then go to

 // inorder successor

 if (cur->rightThread)

 cur = cur->rightThread;

 else // Else go to the leftmost child in right subtree

 cur = leftmost(cur->right);

 }

}

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 11/27

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 12/27

INSERTION:

Insertion in Binary threaded tree is similar to insertion in binary tree but we will have to adjust

the threads after insertion of each element.

 representation of Binary Threaded Node:

struct Node

{

 struct Node *left, *right;

 int info;

 // True if left pointer points to predecessor

 // in Inorder Traversal

 boolean lthread;

 // True if right pointer points to successor

 // in Inorder Traversal

 boolean rthread;

};

In the following explanation, we have considered Binary Search Tree (BST) for insertion as

insertion is defined by some rules in BSTs.

Let tmp be the newly inserted node. There can be three cases during insertion:

Case 1: Insertion in empty tree

Both left and right pointers of tmp will be set to NULL and new node becomes the root.

root = tmp;

tmp -> left = NULL;

tmp -> right = NULL;

Case 2: When new node inserted as the left child

After inserting the node at its proper place we have to make its left and right threads points to

inorder predecessor and successor respectively. The node which was inorder successor. So the

left and right threads of the new node will be-

tmp -> left = par ->left;

tmp -> right = par;

Before insertion, the left pointer of parent was a thread, but after insertion it will be a link

pointing to the new node.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 13/27

par -> lthread = par ->left;

par -> left = temp;

After insertion of 13,

Predecessor of 14 becomes the predecessor of 13, so left thread of 13 points to 10.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 14/27

Successor of 13 is 14, so right thread of 13 points to left child which is 13.

Left pointer of 14 is not a thread now, it points to left child which is 13.

Case 3: When new node is inserted as the right child

The parent of tmp is its inorder predecessor. The node which was inorder successor of the

parent is now the inorder successor of this node tmp. So the left and right threads of the new

node will be-

tmp -> left = par;

tmp -> right = par -> right;

Before insertion, the right pointer of parent was a thread, but after insertion it will be a link

pointing to the new node.

par -> rthread = false;

par -> right = tmp;

Following example shows a node being inserted as right child of its parent.

After 15 inserted,

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 15/27

Successor of 14 becomes the successor of 15, so right thread of 15 points to 16

Predecessor of 15 is 14, so left thread of 15 points to 14.

Right pointer of 14 is not a thread now, it points to right child which is 15.

Height-Balanced Trees:

What if the input to binary search tree comes in a sorted (ascending or descending) manner? It

will then look like this −

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 16/27

It is observed that BST's worst-case performance is closest to linear search algorithms, that is

Ο(n). In real-time data, we cannot predict data pattern and their frequencies. So, a need arises to

balance out the existing BST.

Named after their inventor Adelson, Velski & Landis, AVL trees are height balancing binary

search tree. AVL tree checks the height of the left and the right sub-trees and assures that the

difference is not more than 1. This difference is called the Balance Factor.

Here we see that the first tree is balanced and the next two trees are not balanced −

In the second tree, the left subtree of C has height 2 and the right subtree has height 0, so the

difference is 2. In the third tree, the right subtree of A has height 2 and the left is missing, so it

is 0, and the difference is 2 again. AVL tree permits difference (balance factor) to be only 1.

BalanceFactor = height(left-sutree) − height(right-sutree)

If the difference in the height of left and right sub-trees is more than 1, the tree is balanced using

some rotation techniques.

AVL Rotations:

To balance itself, an AVL tree may perform the following four kinds of rotations −

 Left rotation

 Right rotation

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 17/27

 Left-Right rotation

 Right-Left rotation

The first two rotations are single rotations and the next two rotations are double rotations. To

have an unbalanced tree, we at least need a tree of height 2. With this simple tree, let's

understand them one by one.

Left Rotation

If a tree becomes unbalanced, when a node is inserted into the right subtree of the right subtree,

then we perform a single left rotation −

In our example, node A has become unbalanced as a node is inserted in the right subtree of A's

right subtree. We perform the left rotation by making A the left-subtree of B.

Right Rotation:

AVL tree may become unbalanced, if a node is inserted in the left subtree of the left subtree.

The tree then needs a right rotation.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 18/27

As depicted, the unbalanced node becomes the right child of its left child by performing a right

rotation.

Left-Right Rotation:Double rotations are slightly complex version of already explained

versions of rotations. To understand them better, we should take note of each action performed

while rotation. Let's first check how to perform Left-Right rotation. A left-right rotation is a

combination of left rotation followed by right rotation.

 A node has been inserted into the right subtree of the left subtree. This makes C an

unbalanced node. These scenarios cause AVL tree to perform left-right rotation.

 We first perform the left rotation on the left subtree of C. This

makes A, the left subtree of B.

State

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 19/27

Node C is still unbalanced, however now, it is because of the left-subtree of the left-subtree.

We shall now right-rotate the tree, making Bthe new root node of this subtree. C now becomes

the right subtree of its own left subtree.

The tree is now balanced.

Right-Left Rotation:

The second type of double rotation is Right-Left Rotation. It is a combination of right rotation

followed by left rotation

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 20/27

 A node has been inserted into the left subtree of the right subtree. This makes A,

an unbalanced node with balance factor 2.

 First, we perform the right rotation along Cnode, making C the right subtree

of its own left subtree B. Now, B becomes the right subtree of A.

 Node A is still unbalanced because of the right subtree of its right subtree and requires a left

rotation.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 21/27

 A left rotation is performed by making B the new root node of the subtree. A becomes the left

subtree of its right subtree B.

The tree is now balanced.

Operations on an AVL Tree:

The following operations are performed on an AVL tree

 Search

 Insertion

 Deletion

Search Operation in AVL Tree:

In an AVL tree, the search operation is performed with O(log n) time complexity. The search

operation is performed similar to Binary search tree search operation. We use the following

steps to search an element in AVL tree...

Step 1: Read the search element from the user

Step 2: Compare, the search element with the value of root node in the tree.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 22/27

Step 3: If both are matching, then display "Given node found!!!" and terminate the function

Step 4: If both are not matching, then check whether search element is smaller or larger than

that node value.

Step 5: If search element is smaller, then continue the search process in left subtree.

Step 6: If search element is larger, then continue the search process in right subtree.

Step 7: Repeat the same until we found exact element or we completed with a leaf node

Step 8: If we reach to the node with search value, then display "Element is found" and

terminate the function.

Step 9: If we reach to a leaf node and it is also not matching, then display "Element not found"

and terminate the function.

Insertion Operation in AVL Tree: In an AVL tree, the insertion operation is performed with

O(log n) time complexity. In AVL Tree, new node is always inserted as a leaf node. The

insertion operation is performed as follows...

Step 1: Insert the new element into the tree using Binary Search Tree insertion logic.

Step 2: After insertion, check the Balance Factor of every node.

Step 3: If the Balance Factor of every node is 0 or 1 or -1 then go for next operation.

Step 4: If the Balance Factor of any node is other than 0 or 1 or -1 then tree is said to be

imbalanced. Then perform the suitable Rotation to make it balanced. And go for next

operation.

Example: Construct an AVL Tree by inserting numbers from 1 to 8.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 23/27

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 24/27

Deletion Operation in AVL Tree:

In an AVL Tree, the deletion operation is similar to deletion operation in BST. But after every

deletion operation we need to check with the Balance Factor condition. If the tree is balanced

after deletion then go for next operation otherwise perform the suitable rotation to make the tree

Balanced.

Skip List (Introduction):

Can we search in a sorted linked list in better than O(n) time?

The worst case search time for a sorted linked list is O(n) as we can only linearly traverse the

list and cannot skip nodes while searching. For a Balanced Binary Search Tree, we skip almost

half of the nodes after one comparison with root. For a sorted array, we have random access and

we can apply Binary Search on arrays.

A schematic picture of the skip list data structure. Each box with an arrow represents a pointer

and a row is a linked list giving a sparse subsequence; the numbered boxes (in yellow) at the

bottom represent the ordered data sequence. Searching proceeds downwards from the sparsest

subsequence at the top until consecutive elements bracketing the search element are found.

A skip list is built in layers. The bottom layer is an ordinary ordered linked list. Each higher

layer acts as an "express lane" for the lists below, where an element in layer i appears in layer

i+1 with some fixed probability p (two commonly used values for p are 1/2 or 1/4).

Implementation details:

The elements used for a skip list can contain more than one pointer since they can participate in

more than one list.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 25/27

Insertions and deletions are implemented much like the corresponding linked-list operations,

except that "tall" elements must be inserted into or deleted from more than one linked list.

 Inserting element to skip list

Can we augment sorted linked lists to make the search faster?

The answer is Skip List. The idea is simple, we create multiple layers so that we can skip some

nodes. See the following example list with 16 nodes and two layers. The upper layer works as

an “express lane” which connects only main outer stations, and the lower layer works as a

“normal lane” which connects every station. Suppose we want to search for 50, we start from

first node of “express lane” and keep moving on “express lane” till we find a node whose next is

greater than 50. Once we find such a node (30 is the node in following example) on “express

lane”, we move to “normal lane” using pointer from this node, and linearly search for 50 on

“normal lane”. In following example, we start from 30 on “normal lane” and with linear search,

we find 50.

What is the time complexity with two layers?

The worst case time complexity is number of nodes on “express lane” plus number of nodes in a

segment (A segment is number of “normal lane” nodes between two “express lane” nodes) of

“normal lane”. So if we have n nodes on “normal lane”, √n (square root of n) nodes on “express

lane” and we equally divide the “normal lane”, then there will be √n nodes in every segment of

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 26/27

“normal lane” . √n is actually optimal division with two layers. With this arrangement, the

number of nodes traversed for a search will be O(√n). Therefore, with O(√n) extra space, we are

able to reduce the time complexity to O(√n)

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: III (Trees) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 27/27

POSSIBLE QUESTIONS

 UNIT-III

PART-A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART-B (2 MARKS)

1. What is a Tree?

2. Define Binary Tree.

3. Write about Threaded Binary Tree.

4. Define Height-Balanced Tree.

5. Explain about AVL Trees.

PART-C (6 MARKS)

1. Explain Insertion, Deletion and Recursive Operations in Binary Search Tree.

2. What is Threaded Binary Tree explain in detail.

3. Write in detail about the Operations of Binary Search Tree.

4. Write about Iterative, Traversal Operations on Binary Search Trees.

5. Write about (i) Tree (ii)Binary Tree (iii)Height Balanced Trees.

UNIT-3
SI.NO

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60

QUESTION
 is a language for printers and does not retain much information on the structure of the data that is displayed within a document.
 extracting structured content from a normal web page with the help of a scraping utility.
Machine_________data is created for processing by a computer, instead of the presentation to a human user.
Extraction of information in__________ is very difficult.
________method is very powerful and can be used in many places, it requires a bit of understanding about how the web works.
___________ are more concerned with the visual layout of the information.
_________is a language which talks directly to your printer.
_________ systems that are supposed to prevent automatic access.
__________system use browser cookies to keep track of what the user has been doing.
Example for authentication systems are_________
_______tool helps to extract text from a page.
_______tool allows you to download many files at once.
________extension was explicitly built to extract tables from web sites.
________track exactly how a web site is structured and what communications happen between your browser and the server.
_________is a web site that allows you to code scrapers in a number of different programming languages.
________are small pieces of code written in a programming language such as Python, Ruby or PHP.
__________is a way to communicate with server and to request specific resource like documents, images or videos.
________is the language in which web sites are composed.
_________is the International Atomic Energy Agency’s portal on world-wide radiation incidents.
__________will be presented with a text area that is mostly empty, except for some scaffolding code.
________methodalogy includes all data sources potentially errors and missing values.
________data do not usually contain a high percentage of anomalies, sheer volume of responses.
________data is business surveys generally have less responses, more variables,more anomalies than social surveys.
_________ data is traditional data cleaning techniques do not work for administrative data due to size of the datasets.
Missing data can be characterized as ____types.
________the missing responses are a random subsample of the overall sample.
_______sends a set of parameters, a query to an endpoint and then receives an answer.
__________sends data to be processed at the remote system,receiving only a success message as an answer.
________is able to interact with databases directly by translating the dplyr verbs into SQL queries.
The _______ package provides a concise set of operations for managing data frames.
Which of the following return a subset of the columns of a data frame ?
_________data is a standard way of mapping the meaning of a dataset to its structure.
_________ generate summary statistics of different variables in the data frame, possibly within strata.
The _______ operator is used to connect multiple verb actions together into a pipeline.
________ add new variables/columns or transform existing variables.
The dplyr package can be installed from GitHub using the _______ package.
The dplyr package can be installed from CRAN using :
Which of the following object is masked from ‘package:stats’ ?
The _________ function can be used to select columns of a data frame that you want to focus on.
_______ function is similar to the existing subset() function in R but is quite a bit faster.
Columns can be arranged in descending order too by using the special ____ operator.
The ______ operator allows you to string operations in a left-to-right fashion.
There is an SQL interface for relational databases via the _______ package.
dplyr can be integrated with the ________ package for large fast tables.
Which of the following function is similar to summarize ?
______can take place at different levels, and use different methods – the choice is known as the data editing strategy.

Editing can take place at different levels, and use different methods is known as__________strategy.
Editing can be in _______forms.
Editing individual records is known as _________editing.
Editing aggregate outputs is known as __________editing.
____________methods are numerous and well-established, and are appropriate for a S-DWH.
__________is generally subjective – eye-balling the output, in isolation and/or relative to similar outputs.
_________edits do not require validation and can be treated automatically.
___________edits (all remaining) require external validation.
_________editing is commonly used for business survey data as cost and measure when responses fail hard edits.
_______editing is also like automatic editing, is a cost- and burden-saving measure.
 _________data takes place once responses fail edit rules, and are not treated automatically.
The process involves human intervention to decide on the most appropriate treatment for each failure based on _____sources.
_______source answer given during a telephone call querying the response, or additional written information.
The final stage of data cleaning is__________ for partial missing response.

OPTION1 OPTION2 OPTION3 OPTION4 ANSWER
API PDF XML CSV PDF
screen scraping Google Yahoo firefox screen scraping
readable writable both A&B none of these readable
PDF API excel files XML PDF
CAPTCHA paywalls screen scraper none of these screenscraper
HTML pages PDF files excel files both A&B both A&B
XML HTML PDF JSON PDF
commercial Authentication session-based both A&B Authentication
 session-based commercial Authentication both A&B session-based
CAPTCHA codes paywalls both A&B none of these both A&B
firebug Readability Scraper DownThemAll Readablility
Scraper Readability DownThemAll firebug DownThemAll
firefox scraper firebug none of these Sraper
firebug scraper firefox paywalls firebug
Scraperwiki firebug chrome firefox Scraperwiki
 web scraper CAPTCHAcodes firebug XML web scraper
PHP HTTP XML HTML HTTP
HTML XML JSON none of these HTML
IAEA site NEWS web scraper scraperwiki NEWS
firebug IAEA site scraper wiki firefox Scraper wiki
Data cleaning Macro editing Micro editing Data editing Data cleaning
census survey Adminstrative none of these census
census survey Adminstrative none of these survey
census survey Adminstrative none of these Adminstrative

1 2 3 4 3
MACR MCAR MAR NMAR MCAR
GET POST HOLD SET GET
GET POST HOLD SET POST
dplyr dpl dplr dbyr dplyr
dpl dplyr dyr dplr dplyr
select retrieve get hold select
Tidy Hard Soft none of these Tidy
subset summarize rename filter summarize
pipe piper start end pipe
mutate add append arrange mutate
dtool dev devtools none of these devtools
install("dplyr") install.packages("dplyr") installed("dplyr") install.dplyr install.packages("dplyr")
filter union difference setdifference filter
get hold select rename select
filter set subet rename filter
desc() asc() descending des() desc()
%>% %<% %>%> >%>%> %>%
DBI DIB DB DB2 DBI
data.table read.table table.data table.read data.table
rename() group_by() group() subset() group_by()
Editing Macro editing Micro editing none of these Editing

data editing data cleaning Micro editing Macro editing data editing
one two three none of these two
micro level macro level primary level secondary level micro level
micro level macro level primary level none of these macro level
Micro-editing primary-editing data-editing Macro-editing Micro-editing
Micro-editing Macro-editing primary level none of these Macro-editing
Hard Soft Primary Data Hard
Hard Soft Primary Data Soft
Automatic Selective Data Hard Automatic
Selective Hard Soft Data Selective
Validation Verificaion Micro level Macro level Validation
two four three one three
primary secondary tertiary none of these primary
imputation item response unit response missingness imputation

install.packages("dplyr")

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 1/23

UNIT-IV

SYLLABUS

Searching and Sorting: Linear Search, Binary Search, Comparison of Linear and Binary

Search, Selection Sort, Insertion Sort, Insertion Sort, Shell Sort, Comparison of Sorting

Techniques

SEARCHING:

Search is a process of finding a value in a list of values. In other words, searching is the

process of locating given value position in a list of values.

LINEAR SEARCH:

Linear search is a very simple search algorithm. In this type of search, a sequential search

is made over all items one by one. Every item is checked and if a match is found then that

particular item is returned, otherwise the search continues till the end of the data

collection.

Algorithm:

Linear Search (Array A, Value x)

Step 1: Set i to 1

Step 2: if i > n then go to step 7

Step 3: if A[i] = x then go to step 6

Step 4: Set i to i + 1

Step 5: Go to Step 2

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 2/23

Step 6: Print Element x Found at index i and go to step 8

Step 7: Print element not found

Step 8: Exit

Pseudocode

procedure linear_search (list, value)

 for each item in the list

 if match item == value

 return the item's location

 end if

 end for

end procedure

BINARY SEARCH:

Binary search is a fast search algorithm with run-time complexity of Ο(log n). This

search algorithm works on the principle of divide and conquer. For this algorithm to work

properly, the data collection should be in the sorted form.

Binary search looks for a particular item by comparing the middle most item of the

collection. If a match occurs, then the index of item is returned. If the middle item is

greater than the item, then the item is searched in the sub-array to the left of the middle

item. Otherwise, the item is searched for in the sub-array to the right of the middle item.

This process continues on the sub-array as well until the size of the subarray reduces to

zero.

How Binary Search Works:

For a binary search to work, it is mandatory for the target array to be sorted. We shall

learn the process of binary search with a pictorial example. The following is our sorted

array and let us assume that we need to search the location of value 31 using binary

search.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 3/23

First, we shall determine half of the array by using this formula −

mid = low + (high - low) / 2

Here it is, 0 + (9 - 0) / 2 = 4 (integer value of 4.5). So, 4 is the mid of the array.

Now we compare the value stored at location 4, with the value being searched, i.e. 31.

We find that the value at location 4 is 27, which is not a match. As the value is greater

than 27 and we have a sorted array, so we also know that the target value must be in the

upper portion of the array.

We change our low to mid + 1 and find the new mid value again.

low = mid + 1

mid = low + (high - low) / 2

Our new mid is 7 now. We compare the value stored at location 7 with our target value

31.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 4/23

The value stored at location 7 is not a match, rather it is more than what we are looking

for. So, the value must be in the lower part from this location.

Hence, we calculate the mid again. This time it is 5.

We compare the value stored at location 5 with our target value. We find that it is a

match.

We conclude that the target value 31 is stored at location 5.

Binary search halves the searchable items and thus reduces the count of comparisons to

be made to very less numbers.

Pseudocode

The pseudocode of binary search algorithms should look like this –

Procedure binary_search

 A ← sorted array

 n ← size of array

 x ← value to be searched

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 5/23

 Set lowerBound = 1

 Set upperBound = n

 while x not found

 if upperBound < lowerBound

 EXIT: x does not exists.

 set midPoint = lowerBound + (upperBound - lowerBound) / 2

 if A[midPoint] < x

 set lowerBound = midPoint + 1

 if A[midPoint] > x

 set upperBound = midPoint - 1

 if A[midPoint] = x

 EXIT: x found at location midPoint

 end while

 end procedure

Comparison of Linear Search vs Binary Search:

Linear Search

Binary Search

A linear search scans one item at a time, without jumping to any item .

The worst case complexity is O(n), sometimes known an O(n) search

Time taken to search elements keep increasing as the number of elements are increased.

A binary search however, cut down your search to half as soon as you find middle of a

sorted list.

The middle element is looked to check if it is greater than or less than the value to be

searched.

Accordingly, search is done to either half of the given list

Important Differences

Input data needs to be sorted in Binary Search and not in Linear Search

Linear search does the sequential access whereas Binary search access data randomly.

Time complexity of linear search -O(n) , Binary search has time complexity O(log n).

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 6/23

 Linear search performs equality comparisons and Binary search performs ordering

comparisons

Let us look at an example to compare the two:

Linear Search to find the element “J” in a given sorted list from A-X

 linear-search

Binary Search to find the element “J” in a given sorted list from A-X

 binary-search

SORTING:

Sorting is nothing but storage of data in sorted order, it can be in ascending or

descending order. The term Sorting comes into picture with the term Searching. There

are so many things in our real life that we need to search, like a particular record in

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 7/23

database, roll numbers in merit list, a particular telephone number, any particular page in

a book etc.

Sorting arranges data in a sequence which makes searching easier. Every record which is

going to be sorted will contain one key. Based on the key the record will be sorted. For

example, suppose we have a record of students, every such record will have the following

data:

 Roll No.

 Name

 Age

 Class

Here Student roll no. can be taken as key for sorting the records in ascending or

descending order. Now suppose we have to search a Student with roll no. 15, we don't

need to search the complete record we will simply search between the Students with roll

no. 10 to 20.

Selection Sort:

Selection sort is a simple sorting algorithm. This sorting algorithm is an in-place

comparison-based algorithm in which the list is divided into two parts, the sorted part at

the left end and the unsorted part at the right end. Initially, the sorted part is empty and

the unsorted part is the entire list.

The smallest element is selected from the unsorted array and swapped with the leftmost

element, and that element becomes a part of the sorted array. This process continues

moving unsorted array boundary by one element to the right.

This algorithm is not suitable for large data sets as its average and worst case

complexities are of Ο(n2), where n is the number of items.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 8/23

How Selection Sort Works:

Consider the following depicted array as an example.

For the first position in the sorted list, the whole list is scanned sequentially. The first

position where 14 is stored presently, we search the whole list and find that 10 is the

lowest value.

So we replace 14 with 10. After one iteration 10, which happens to be the minimum value

in the list, appears in the first position of the sorted list.

For the second position, where 33 is residing, we start scanning the rest of the list in a

linear manner.

We find that 14 is the second lowest value in the list and it should appear at the second

place. We swap these values.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 9/23

After two iterations, two least values are positioned at the beginning in a sorted manner.

The same process is applied to the rest of the items in the array. Following is a pictorial

depiction of the entire sorting process −

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 10/23

Algorithm:

Step 1 − Set MIN to location 0

Step 2 − Search the minimum element in the list

Step 3 − Swap with value at location MIN

Step 4 − Increment MIN to point to next element

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 11/23

Step 5 − Repeat until list is sorted

Pseudocode:

procedure selection sort

 list : array of items

 n : size of list

for i = 1 to n - 1

 /* set current element as minimum*/

 min = i

 /* check the element to be minimum */

 for j = i+1 to n

 if list[j] < list[min] then

 min = j;

 end if

 end for

 /* swap the minimum element with the current element*/

 if indexMin != i then

 swap list[min] and list[i]

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 12/23

 end if

 end for

end procedure

Insertion Sort:

This is an in-place comparison-based sorting algorithm. Here, a sub-list is maintained

which is always sorted. For example, the lower part of an array is maintained to be

sorted. An element which is to be 'insert'ed in this sorted sub-list, has to find its

appropriate place and then it has to be inserted there. Hence the name, insertion sort.

The array is searched sequentially and unsorted items are moved and inserted into the

sorted sub-list (in the same array). This algorithm is not suitable for large data sets as its

average and worst case complexity are of Ο(n2), where n is the number of items.

 Insertion Sort Works:

We take an unsorted array for our example.

Insertion sort compares the first two elements.

It finds that both 14 and 33 are already in ascending order. For now, 14 is in sorted sub-

list.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 13/23

Insertion sort moves ahead and compares 33 with 27.

And finds that 33 is not in the correct position.

It swaps 33 with 27. It also checks with all the elements of sorted sub-list. Here we see

that the sorted sub-list has only one element 14, and 27 is greater than 14. Hence, the

sorted sub-list remains sorted after swapping.

By now we have 14 and 27 in the sorted sub-list. Next, it compares 33 with 10.

These values are not in a sorted order.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 14/23

So we swap them.

However, swapping makes 27 and 10 unsorted.

Hence, we swap them too.

Again we find 14 and 10 in an unsorted order.

We swap them again. By the end of third iteration, we have a sorted sub-list of 4 items.

This process goes on until all the unsorted values are covered in a sorted sub-list. Now

we shall see some programming aspects of insertion sort.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 15/23

Algorithm

Now we have a bigger picture of how this sorting technique works, so we can derive

simple steps by which we can achieve insertion sort.

Step 1 − If it is the first element, it is already sorted. return 1;

Step 2 − Pick next element

Step 3 − Compare with all elements in the sorted sub-list

Step 4 − Shift all the elements in the sorted sub-list that is greater than the

 value to be sorted

Step 5 − Insert the value

Step 6 − Repeat until list is sorted

Pseudocode

procedure insertionSort (A : array of items)

 int holePosition

 int valueToInsert

 for i = 1 to length(A) inclusive do:

 /* select value to be inserted */

 valueToInsert = A[i]

 holePosition = i

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 16/23

 /*locate hole position for the element to be inserted */

 while holePosition > 0 and A[holePosition-1] > valueToInsert do:

 A[holePosition] = A[holePosition-1]

 holePosition = holePosition -1

 end while

 /* insert the number at hole position */

 A[holePosition] = valueToInsert

 end for

end procedure

Shell Sort:

Shell sort is a highly efficient sorting algorithm and is based on insertion sort algorithm.

This algorithm avoids large shifts as in case of insertion sort, if the smaller value is to the

far right and has to be moved to the far left.

This algorithm uses insertion sort on a widely spread elements, first to sort them and then

sorts the less widely spaced elements. This spacing is termed as interval. This interval is

calculated based on Knuth's formula as −

Knuth's Formula

h = h * 3 + 1 where − h is interval with initial value 1

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 17/23

This algorithm is quite efficient for medium-sized data sets as its average and worst case

complexity are of Ο(n), where n is the number of items.

Shell Sort Works:Let us consider the following example to have an idea of how shell

sort works. We take the same array we have used in our previous examples. For our

example and ease of understanding, we take the interval of 4. Make a virtual sub-list of

all values located at the interval of 4 positions. Here these values are {35, 14}, {33, 19},

{42, 27} and {10, 44}

We compare values in each sub-list and swap them (if necessary) in the original array.

After this step, the new array should look like this −

Then, we take interval of 2 and this gap generates two sub-lists - {14, 27, 35, 42}, {19,

10, 33, 44}

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 18/23

We compare and swap the values, if required, in the original array. After this step, the

array should look like this −

Finally, we sort the rest of the array using interval of value 1. Shell sort uses insertion

sort to sort the array.

Following is the step-by-step depiction −

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 19/23

We see that it required only four swaps to sort the rest of the array

Algorithm:

Following is the algorithm for shell sort.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 20/23

Step 1 − Initialize the value of h

Step 2 − Divide the list into smaller sub-list of equal interval h

Step 3 − Sort these sub-lists using insertion sort

Step 3 − Repeat until complete list is sorted

Pseudocode:

Following is the pseudocode for shell sort.

procedure shellSort()

 A : array of items

 /* calculate interval*/

 while interval < A.length /3 do:

 interval = interval * 3 + 1

 end while

 while interval > 0 do:

 for outer = interval; outer < A.length; outer ++ do:

 /* select value to be inserted */

 valueToInsert = A[outer]

 inner = outer;

 /*shift element towards right*/

 while inner > interval -1 && A[inner - interval] >= valueToInsert do:

 A[inner] = A[inner - interval]

 inner = inner - interval

 end while

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 21/23

 /* insert the number at hole position */

 A[inner] = valueToInsert

 end for

 /* calculate interval*/

 interval = (interval -1) /3;

 end while

 end procedure

Comparison of Sorting Techniques:

Sorting: The process of ordering of elements is known as sorting. It is very important in

day to day life. Nor we neither computer can understand the data stored in an irregular

way. Sorting of comparisons can be done on the basis of complexity.

Complexity: Complexity of an algorithm is a measure of the amount of time and/or

space required by an algorithm for an input of a given size (n).There are two types of

complexity: 1.Space complexity 2. time complexity

Space complexity measures the space used by algorithm at running time. Time

complexity for an algorithm is different for different devices as different devices have

different speeds so, we measure time complexity as the no. of statements executed

indifferent cases of inputs.

 SORTING TECHNIQUES

1.Selection Sorting:-In selection sort we find the smallest number and place it at first

position, then at second and so on.

 Complexity: - An array in sorted or unsorted form doesn’t make any difference. It is

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 22/23

same in both best & worst cases. The first pass makes (n-1) comparisons to find smallest

number, second pass makes (n-2) and so on, then Time Complexity T(n) will be :

2.Insertion Sort: -It takes list in two parts, sorted list and unsorted list. In this sorting

technique, first element of unsorted list gets placed in previous sorted list and runs till all

elements are in sorted list.

Complexity:-

Best Case: -All elements are sorted or almost sorted. Therefore, comparison occurs

atleast one time in inner loop, then time Complexity T(n) will be

Average Case: - We consider that there will be approximately (n-1)/2 comparisons in

inner loop.

Worst Case: - In this case comparison in inner loop is done almost one in first time, 2

times in second turn, and (n-1) times in (n-1) turns.

3.Shell Sort: - This technique is mainly based on insertion sort. In a pass it sorts the

numbers when are separated at equal distance. In each consecutive pass distance will be

gradually decreases till the distance becomes 1. It uses insertion sort to sort elements with

a little change in it.

Complexity: - Shell sort analysis is very difficult some time complexities for certain

sequences of increments are known.

 Base Case: - O (n)

 Average Case: - nlog 2n or n 3/2

Worse Case: - It depends on gap sequence. The best known is nlog 2n.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 23/23

 POSSIBLE QUESTIONS

UNIT-IV

PART-A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART-B (2 MARKS)

1. Define Searching.

2. What is Sorting.

3. What is Linear Search.

4. What is Binary Search.

5. Define Shell Sort.

PART-C (6 MARKS)

1. Define Searching. Write an Algorithm for Linear Search.

2. Write an Algorithm for Binary Search.

3. Compare Linear and Binary Search .

4. Write an Algorithm for Binary Search.

5. Write an Algorithm for Linear Search.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 1/23

UNIT-IV

SYLLABUS

Searching and Sorting: Linear Search, Binary Search, Comparison of Linear and Binary

Search, Selection Sort, Insertion Sort, Insertion Sort, Shell Sort, Comparison of Sorting

Techniques

SEARCHING:

Search is a process of finding a value in a list of values. In other words, searching is the

process of locating given value position in a list of values.

LINEAR SEARCH:

Linear search is a very simple search algorithm. In this type of search, a sequential search

is made over all items one by one. Every item is checked and if a match is found then that

particular item is returned, otherwise the search continues till the end of the data

collection.

Algorithm:

Linear Search (Array A, Value x)

Step 1: Set i to 1

Step 2: if i > n then go to step 7

Step 3: if A[i] = x then go to step 6

Step 4: Set i to i + 1

Step 5: Go to Step 2

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 2/23

Step 6: Print Element x Found at index i and go to step 8

Step 7: Print element not found

Step 8: Exit

Pseudocode

procedure linear_search (list, value)

 for each item in the list

 if match item == value

 return the item's location

 end if

 end for

end procedure

BINARY SEARCH:

Binary search is a fast search algorithm with run-time complexity of Ο(log n). This

search algorithm works on the principle of divide and conquer. For this algorithm to work

properly, the data collection should be in the sorted form.

Binary search looks for a particular item by comparing the middle most item of the

collection. If a match occurs, then the index of item is returned. If the middle item is

greater than the item, then the item is searched in the sub-array to the left of the middle

item. Otherwise, the item is searched for in the sub-array to the right of the middle item.

This process continues on the sub-array as well until the size of the subarray reduces to

zero.

How Binary Search Works:

For a binary search to work, it is mandatory for the target array to be sorted. We shall

learn the process of binary search with a pictorial example. The following is our sorted

array and let us assume that we need to search the location of value 31 using binary

search.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 3/23

First, we shall determine half of the array by using this formula −

mid = low + (high - low) / 2

Here it is, 0 + (9 - 0) / 2 = 4 (integer value of 4.5). So, 4 is the mid of the array.

Now we compare the value stored at location 4, with the value being searched, i.e. 31.

We find that the value at location 4 is 27, which is not a match. As the value is greater

than 27 and we have a sorted array, so we also know that the target value must be in the

upper portion of the array.

We change our low to mid + 1 and find the new mid value again.

low = mid + 1

mid = low + (high - low) / 2

Our new mid is 7 now. We compare the value stored at location 7 with our target value

31.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 4/23

The value stored at location 7 is not a match, rather it is more than what we are looking

for. So, the value must be in the lower part from this location.

Hence, we calculate the mid again. This time it is 5.

We compare the value stored at location 5 with our target value. We find that it is a

match.

We conclude that the target value 31 is stored at location 5.

Binary search halves the searchable items and thus reduces the count of comparisons to

be made to very less numbers.

Pseudocode

The pseudocode of binary search algorithms should look like this –

Procedure binary_search

 A ← sorted array

 n ← size of array

 x ← value to be searched

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 5/23

 Set lowerBound = 1

 Set upperBound = n

 while x not found

 if upperBound < lowerBound

 EXIT: x does not exists.

 set midPoint = lowerBound + (upperBound - lowerBound) / 2

 if A[midPoint] < x

 set lowerBound = midPoint + 1

 if A[midPoint] > x

 set upperBound = midPoint - 1

 if A[midPoint] = x

 EXIT: x found at location midPoint

 end while

 end procedure

Comparison of Linear Search vs Binary Search:

Linear Search

Binary Search

A linear search scans one item at a time, without jumping to any item .

The worst case complexity is O(n), sometimes known an O(n) search

Time taken to search elements keep increasing as the number of elements are increased.

A binary search however, cut down your search to half as soon as you find middle of a

sorted list.

The middle element is looked to check if it is greater than or less than the value to be

searched.

Accordingly, search is done to either half of the given list

Important Differences

Input data needs to be sorted in Binary Search and not in Linear Search

Linear search does the sequential access whereas Binary search access data randomly.

Time complexity of linear search -O(n) , Binary search has time complexity O(log n).

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 6/23

 Linear search performs equality comparisons and Binary search performs ordering

comparisons

Let us look at an example to compare the two:

Linear Search to find the element “J” in a given sorted list from A-X

 linear-search

Binary Search to find the element “J” in a given sorted list from A-X

 binary-search

SORTING:

Sorting is nothing but storage of data in sorted order, it can be in ascending or

descending order. The term Sorting comes into picture with the term Searching. There

are so many things in our real life that we need to search, like a particular record in

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 7/23

database, roll numbers in merit list, a particular telephone number, any particular page in

a book etc.

Sorting arranges data in a sequence which makes searching easier. Every record which is

going to be sorted will contain one key. Based on the key the record will be sorted. For

example, suppose we have a record of students, every such record will have the following

data:

 Roll No.

 Name

 Age

 Class

Here Student roll no. can be taken as key for sorting the records in ascending or

descending order. Now suppose we have to search a Student with roll no. 15, we don't

need to search the complete record we will simply search between the Students with roll

no. 10 to 20.

Selection Sort:

Selection sort is a simple sorting algorithm. This sorting algorithm is an in-place

comparison-based algorithm in which the list is divided into two parts, the sorted part at

the left end and the unsorted part at the right end. Initially, the sorted part is empty and

the unsorted part is the entire list.

The smallest element is selected from the unsorted array and swapped with the leftmost

element, and that element becomes a part of the sorted array. This process continues

moving unsorted array boundary by one element to the right.

This algorithm is not suitable for large data sets as its average and worst case

complexities are of Ο(n2), where n is the number of items.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 8/23

How Selection Sort Works:

Consider the following depicted array as an example.

For the first position in the sorted list, the whole list is scanned sequentially. The first

position where 14 is stored presently, we search the whole list and find that 10 is the

lowest value.

So we replace 14 with 10. After one iteration 10, which happens to be the minimum value

in the list, appears in the first position of the sorted list.

For the second position, where 33 is residing, we start scanning the rest of the list in a

linear manner.

We find that 14 is the second lowest value in the list and it should appear at the second

place. We swap these values.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 9/23

After two iterations, two least values are positioned at the beginning in a sorted manner.

The same process is applied to the rest of the items in the array. Following is a pictorial

depiction of the entire sorting process −

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 10/23

Algorithm:

Step 1 − Set MIN to location 0

Step 2 − Search the minimum element in the list

Step 3 − Swap with value at location MIN

Step 4 − Increment MIN to point to next element

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 11/23

Step 5 − Repeat until list is sorted

Pseudocode:

procedure selection sort

 list : array of items

 n : size of list

for i = 1 to n - 1

 /* set current element as minimum*/

 min = i

 /* check the element to be minimum */

 for j = i+1 to n

 if list[j] < list[min] then

 min = j;

 end if

 end for

 /* swap the minimum element with the current element*/

 if indexMin != i then

 swap list[min] and list[i]

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 12/23

 end if

 end for

end procedure

Insertion Sort:

This is an in-place comparison-based sorting algorithm. Here, a sub-list is maintained

which is always sorted. For example, the lower part of an array is maintained to be

sorted. An element which is to be 'insert'ed in this sorted sub-list, has to find its

appropriate place and then it has to be inserted there. Hence the name, insertion sort.

The array is searched sequentially and unsorted items are moved and inserted into the

sorted sub-list (in the same array). This algorithm is not suitable for large data sets as its

average and worst case complexity are of Ο(n2), where n is the number of items.

 Insertion Sort Works:

We take an unsorted array for our example.

Insertion sort compares the first two elements.

It finds that both 14 and 33 are already in ascending order. For now, 14 is in sorted sub-

list.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 13/23

Insertion sort moves ahead and compares 33 with 27.

And finds that 33 is not in the correct position.

It swaps 33 with 27. It also checks with all the elements of sorted sub-list. Here we see

that the sorted sub-list has only one element 14, and 27 is greater than 14. Hence, the

sorted sub-list remains sorted after swapping.

By now we have 14 and 27 in the sorted sub-list. Next, it compares 33 with 10.

These values are not in a sorted order.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 14/23

So we swap them.

However, swapping makes 27 and 10 unsorted.

Hence, we swap them too.

Again we find 14 and 10 in an unsorted order.

We swap them again. By the end of third iteration, we have a sorted sub-list of 4 items.

This process goes on until all the unsorted values are covered in a sorted sub-list. Now

we shall see some programming aspects of insertion sort.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 15/23

Algorithm

Now we have a bigger picture of how this sorting technique works, so we can derive

simple steps by which we can achieve insertion sort.

Step 1 − If it is the first element, it is already sorted. return 1;

Step 2 − Pick next element

Step 3 − Compare with all elements in the sorted sub-list

Step 4 − Shift all the elements in the sorted sub-list that is greater than the

 value to be sorted

Step 5 − Insert the value

Step 6 − Repeat until list is sorted

Pseudocode

procedure insertionSort (A : array of items)

 int holePosition

 int valueToInsert

 for i = 1 to length(A) inclusive do:

 /* select value to be inserted */

 valueToInsert = A[i]

 holePosition = i

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 16/23

 /*locate hole position for the element to be inserted */

 while holePosition > 0 and A[holePosition-1] > valueToInsert do:

 A[holePosition] = A[holePosition-1]

 holePosition = holePosition -1

 end while

 /* insert the number at hole position */

 A[holePosition] = valueToInsert

 end for

end procedure

Shell Sort:

Shell sort is a highly efficient sorting algorithm and is based on insertion sort algorithm.

This algorithm avoids large shifts as in case of insertion sort, if the smaller value is to the

far right and has to be moved to the far left.

This algorithm uses insertion sort on a widely spread elements, first to sort them and then

sorts the less widely spaced elements. This spacing is termed as interval. This interval is

calculated based on Knuth's formula as −

Knuth's Formula

h = h * 3 + 1 where − h is interval with initial value 1

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 17/23

This algorithm is quite efficient for medium-sized data sets as its average and worst case

complexity are of Ο(n), where n is the number of items.

Shell Sort Works:Let us consider the following example to have an idea of how shell

sort works. We take the same array we have used in our previous examples. For our

example and ease of understanding, we take the interval of 4. Make a virtual sub-list of

all values located at the interval of 4 positions. Here these values are {35, 14}, {33, 19},

{42, 27} and {10, 44}

We compare values in each sub-list and swap them (if necessary) in the original array.

After this step, the new array should look like this −

Then, we take interval of 2 and this gap generates two sub-lists - {14, 27, 35, 42}, {19,

10, 33, 44}

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 18/23

We compare and swap the values, if required, in the original array. After this step, the

array should look like this −

Finally, we sort the rest of the array using interval of value 1. Shell sort uses insertion

sort to sort the array.

Following is the step-by-step depiction −

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 19/23

We see that it required only four swaps to sort the rest of the array

Algorithm:

Following is the algorithm for shell sort.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 20/23

Step 1 − Initialize the value of h

Step 2 − Divide the list into smaller sub-list of equal interval h

Step 3 − Sort these sub-lists using insertion sort

Step 3 − Repeat until complete list is sorted

Pseudocode:

Following is the pseudocode for shell sort.

procedure shellSort()

 A : array of items

 /* calculate interval*/

 while interval < A.length /3 do:

 interval = interval * 3 + 1

 end while

 while interval > 0 do:

 for outer = interval; outer < A.length; outer ++ do:

 /* select value to be inserted */

 valueToInsert = A[outer]

 inner = outer;

 /*shift element towards right*/

 while inner > interval -1 && A[inner - interval] >= valueToInsert do:

 A[inner] = A[inner - interval]

 inner = inner - interval

 end while

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 21/23

 /* insert the number at hole position */

 A[inner] = valueToInsert

 end for

 /* calculate interval*/

 interval = (interval -1) /3;

 end while

 end procedure

Comparison of Sorting Techniques:

Sorting: The process of ordering of elements is known as sorting. It is very important in

day to day life. Nor we neither computer can understand the data stored in an irregular

way. Sorting of comparisons can be done on the basis of complexity.

Complexity: Complexity of an algorithm is a measure of the amount of time and/or

space required by an algorithm for an input of a given size (n).There are two types of

complexity: 1.Space complexity 2. time complexity

Space complexity measures the space used by algorithm at running time. Time

complexity for an algorithm is different for different devices as different devices have

different speeds so, we measure time complexity as the no. of statements executed

indifferent cases of inputs.

 SORTING TECHNIQUES

1.Selection Sorting:-In selection sort we find the smallest number and place it at first

position, then at second and so on.

 Complexity: - An array in sorted or unsorted form doesn’t make any difference. It is

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 22/23

same in both best & worst cases. The first pass makes (n-1) comparisons to find smallest

number, second pass makes (n-2) and so on, then Time Complexity T(n) will be :

2.Insertion Sort: -It takes list in two parts, sorted list and unsorted list. In this sorting

technique, first element of unsorted list gets placed in previous sorted list and runs till all

elements are in sorted list.

Complexity:-

Best Case: -All elements are sorted or almost sorted. Therefore, comparison occurs

atleast one time in inner loop, then time Complexity T(n) will be

Average Case: - We consider that there will be approximately (n-1)/2 comparisons in

inner loop.

Worst Case: - In this case comparison in inner loop is done almost one in first time, 2

times in second turn, and (n-1) times in (n-1) turns.

3.Shell Sort: - This technique is mainly based on insertion sort. In a pass it sorts the

numbers when are separated at equal distance. In each consecutive pass distance will be

gradually decreases till the distance becomes 1. It uses insertion sort to sort elements with

a little change in it.

Complexity: - Shell sort analysis is very difficult some time complexities for certain

sequences of increments are known.

 Base Case: - O (n)

 Average Case: - nlog 2n or n 3/2

Worse Case: - It depends on gap sequence. The best known is nlog 2n.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES
 COURSE CODE: 17ITU301 UNIT: IV (Searching & Sorting) BATCH-2017-2020

Prepared by Dr PG.Sivakaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 23/23

 POSSIBLE QUESTIONS

UNIT-IV

PART-A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART-B (2 MARKS)

1. Define Searching.

2. What is Sorting.

3. What is Linear Search.

4. What is Binary Search.

5. Define Shell Sort.

PART-C (6 MARKS)

1. Define Searching. Write an Algorithm for Linear Search.

2. Write an Algorithm for Binary Search.

3. Compare Linear and Binary Search .

4. Write an Algorithm for Binary Search.

5. Write an Algorithm for Linear Search.

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 1/30

UNIT-V

SYLLABUS

Hashing - Introduction to Hashing, Deleting from Hash Table, Efficiency of Rehash

Methods, Hash Table Reordering, Resolving collusion by Open Addressing, Coalesced

Hashing, Separate Chaining, Dynamic and Extendible Hashing, Choosing a Hash

Function, Perfect Hashing, Function

Hash Table is a data structure which stores data in an associative manner. In a hash

table, data is stored in an array format, where each data value has its own unique index

value. Access of data becomes very fast if we know the index of the desired data.

Thus, it becomes a data structure in which insertion and search operations are very fast

irrespective of the size of the data. Hash Table uses an array as a storage medium and

uses hash technique to generate an index where an element is to be inserted or is to be

located from.

Hashing

Hashing is a technique to convert a range of key values into a range of indexes of an

array. We're going to use modulo operator to get a range of key values. Consider an

example of hash table of size 20, and the following items are to be stored. Item are in the

(key,value) format.

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 2/30

Hash Function

(1,20)

(2,70)

(42,80)

(4,25)

(12,44)

(14,32)

(17,11)

(13,78)

(37,98)

Sr. No. Key Hash Array Index

1 1 1 % 20 = 1 1

2 2 2 % 20 = 2 2

3 42 42 % 20 = 2 2

4 4 4 % 20 = 4 4

5 12 12 % 20 = 12 12

6 14 14 % 20 = 14 14

7 17 17 % 20 = 17 17

8 13 13 % 20 = 13 13

9 37 37 % 20 = 17 17

Linear Probing

As we can see, it may happen that the hashing technique is used to create an already used

index of the array. In such a case, we can search the next empty location in the array by

looking into the next cell until we find an empty cell. This technique is called linear

probing.

Sr. No. Key Hash Array Index After Linear Probing, Array Index

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 3/30

1 1 1 % 20 = 1 1 1

2 2 2 % 20 = 2 2 2

3 42 42 % 20 = 2 2 3

4 4 4 % 20 = 4 4 4

5 12 12 % 20 = 12 12 12

6 14 14 % 20 = 14 14 14

7 17 17 % 20 = 17 17 17

8 13 13 % 20 = 13 13 13

9 37 37 % 20 = 17 17 18

Basic Operations

Following are the basic primary operations of a hash table.

Search − Searches an element in a hash table.

Insert − inserts an element in a hash table.

delete − Deletes an element from a hash table.

DataItem

Define a data item having some data and key, based on which the search is to be

conducted in a hash table.

struct DataItem {

 int data;

 int key;

};

Hash Method

Define a hashing method to compute the hash code of the key of the data item.

int hashCode(int key){

 return key % SIZE;

}

Search Operation

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 4/30

Whenever an element is to be searched, compute the hash code of the key passed and

locate the element using that hash code as index in the array. Use linear probing to get the

element ahead if the element is not found at the computed hash code.

Insert Operation

Whenever an element is to be inserted, compute the hash code of the key passed and

locate the index using that hash code as an index in the array. Use linear probing for

empty location, if an element is found at the computed hash code.

Delete Operation

Whenever an element is to be deleted, compute the hash code of the key passed and

locate the index using that hash code as an index in the array. Use linear probing to get

the element ahead if an element is not found at the computed hash code. When found,

store a dummy item there to keep the performance of the hash table intact.

Example

struct DataItem* delete(struct DataItem* item) {

 int key = item->key;

 //get the hash

 int hashIndex = hashCode(key);

 //move in array until an empty

 while(hashArray[hashIndex] !=NULL) {

 if(hashArray[hashIndex]->key == key) {

 struct DataItem* temp = hashArray[hashIndex];

 //assign a dummy item at deleted position

 hashArray[hashIndex] = dummyItem;

 return temp;

 }

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 5/30

 //go to next cell

 ++hashIndex;

 //wrap around the table

 hashIndex %= SIZE;

 }

 return NULL;

}

EFFICIENCY OF REHASH METHODS:

RE-HASHING:

 Re-hashing schemes use a second hashing operation when there is a collision. If there is

a further collision, we re-hash until an empty "slot" in the table is found.

Rehashing code:

// Grows hash array to twice its original size.

 private void rehash() {

 List<Integer>[] oldElements = elements;

 elements = (List<Integer>[])

 new List[2 * elements.length];

 for (List<Integer> list : oldElements) {

 if (list != null) {

 for (int element : list) {

 add(element);

 }

 }

 }

}

Efficiency of rehash methods:

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 6/30

Hash table

Type Unordered associative array

Invented 1953

Time complexity in big O notation

Algorithm Average Worst Case

Space O(n) O(n)

Search O(1) O(n)

Insert O(1) O(n)

Delete O(1) O(n)

Hash Table Reordering:

If the table size increases or decreases by a fixed percentage at each expansion, the total

cost of these resizings, amortized over all insert and delete operations, is still a constant,

independent of the number of entries n and of the number m of operations performed.

For example, consider a table that was created with the minimum possible size and is

doubled each time the load ratio exceeds some threshold. If m elements are inserted into

that table, the total number of extra re-insertions that occur in all dynamic resizings of the

table is at most m − 1. In other words, dynamic resizing roughly doubles the cost of each

insert or delete operation.

Alternatives to all-at-once rehashing:

Some hash table implementations, notably in real-time systems, cannot pay the price of

enlarging the hash table all at once, because it may interrupt time-critical operations. If

one cannot avoid dynamic resizing, a solution is to perform the resizing gradually:

Disk-based hash tables almost always use some alternative to all-at-once rehashing, since

the cost of rebuilding the entire table on disk would be too high.

Incremental resizing:

https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/Associative_array
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Big_O_notation

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 7/30

One alternative to enlarging the table all at once is to perform the rehashing gradually:

 During the resize, allocate the new hash table, but keep the old table unchanged.

 In each lookup or delete operation, check both tables.

 Perform insertion operations only in the new table.

 At each insertion also move r elements from the old table to the new table.

 When all elements are removed from the old table, deallocate it.

To ensure that the old table is completely copied over before the new table itself needs to

be enlarged, it is necessary to increase the size of the table by a factor of at least (r + 1)/r

during resizing.

RESOLVING COLLUSION :

When two different keys produce the same address, there is a collision. The keys

involved are called synonyms. Coming up with a hashing function that avoids collision is

extremely difficult. It is best to simply find ways to deal with them. The possible

solution, can be:

Spread out the records

Use extra memory

Put more than one record at a single address.

An example of Collision

Hash table size: 11

Hash function: key mod hash size

So, the new positions in the hash table are:

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 8/30

Some collisions occur with this hash function as shown in the above figure.

Another example (in a phonebook record):

Here, the buckets for keys 'John Smith' and 'Sandra Dee' are the same. So, its a collision

case.

Collision Resolution:Collision occurs when h(k1) = h(k2), i.e. the hash function gives

the same result for more than one key. The strategies used for collision resolution are:

 Chaining

o Store colliding keys in a linked list at the same hash table index

 Open Addressing

o Store colliding keys elsewhere in the table

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 9/30

Chaining:

Separate Chaining

Strategy:

Maintains a linked list at every hash index for collided elements.

Lets take the example of an insertion sequence: {0 1 4 9 16 25 36 49 64 81}.

Here, h(k) = k mod tablesize = k mod 10 (tablesize = 10)

Hash table T is a vector of linked lists

Insert element at the head (as shown here) or at the tail

Key k is stored in list at T[h(k)]

So, the problem is like: "Insert the first 10 preface squares in a hash table of size 10"

The hash table looks like:

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 10/30

Collision Resolution by Chaining: Analysis

 Load factor λ of a hash table T is defined as follows:

N = number of elements in T (“current size”)

M = size of T (“table size”)

λ = N/M (“ load factor”)

i.e., λ is the average length of a chain

 Unsuccessful search time: O(λ)

Same for insert time

 Successful search time: O(λ/2)

 Ideally, want λ ≤ 1 (not a function of N)

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 11/30

Potential diadvantages of Chaining

 Linked lists could get long

Especially when N approaches M

Longer linked lists could negatively impact performance

 More memory because of pointers

 Absolute worst-case (even if N << M):

All N elements in one linked list!

Typically the result of a bad hash function

Open Addressing:

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 12/30

Open Addressing

As shown in the above figure, in open addressing, when collision is encountered, the next

key is inserted in the empty slot of the table. So, it is an 'inplace' approach.

Advantages over chaining

 No need for list structures

 No need to allocate/deallocate memory during insertion/deletion (slow)

Diadvantages

 Slower insertion – May need several attempts to find an empty slot

 Table needs to be bigger (than chaining-based table) to achieve average-case

constant-time performance

Load factor λ ≈ 0.5

Probing

The next slot for the collided key is found in this method by using a technique

called "Probing". It generates a probe sequence of slots in the hash table and we need to

chose the proper slot for the key 'x'.

 h0(x), h1(x), h2(x), …

 Needs to visit each slot exactly once

 Needs to be repeatable (so we can find/delete what we’ve inserted)

 Hash function

o hi(x) = (h(x) + f(i)) mod TableSize

o f(0) = 0 ==> position for the 0th probe

o f(i) is “the distance to be traveled relative to the 0th probe position, during

the ith probe”.

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 13/30

Some of the common methods of probing are:

1. Linear Probing:

Suppose that a key hashes into a position that has been already occupied. The simplest

strategy is to look for the next available position to place the item. Suppose we have a set

of hash codes consisting of {89, 18, 49, 58, 9} and we need to place them into a table of

size 10. The following table demonstrates this process

The first collision occurs when 49 hashes to the same location with index 9. Since 89

occupies the A[9], we need to place 49 to the next available position. Considering the

array as circular, the next available position is 0. That is (9+1) mod 10. So we place 49 in

A[0].

Several more collisions occur in this simple example and in each case we keep looking to

find the next available location in the array to place the element. Now if we need to find

the element, say for example, 49, we first compute the hash code (9), and look in A[9].

Since we do not find it there, we look in A[(9+1) % 10] = A[0], we find it there and we

are done.

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 14/30

So what if we are looking for 79? First we compute hashcode of 79 = 9. We probe in

A[9], A[(9+1)]=A[0], A[(9+2)]=A[1], A[(9+3)]=A[2], A[(9+4)]=A[3] etc. Since A[3] =

null, we do know that 79 could not exists in the set.

Issues with Linear Probing:

 Probe sequences can get longer with time

 Primary clustering

o Keys tend to cluster in one part of table

o Keys that hash into cluster will be added to the end of the cluster (making

it even bigger)

o Side effect: Other keys could also get affected if mapping to a crowded

neighborhood

2. Quadratic Probing:

Although linear probing is a simple process where it is easy to compute the next available

location, linear probing also leads to some clustering when keys are computed to closer

values. Therefore we define a new process of Quadratic probing that provides a better

distribution of keys when collisions occur. In quadratic probing, if the hash value is K ,

then the next location is computed using the sequence K + 1, K + 4, K + 9 etc..

The following table shows the collision resolution using quadratic probing.

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 15/30

 Avoids primary clustering

 f(i) is quadratic in i: eg: f(i) = i2

 hi(x) = (h(x) + i2) mod tablesize

Quadratic Probing: Analysis

 Difficult to analyze

 Theorem

New element can always be inserted into a table that is at least half empty and

TableSize is prime

 Otherwise, may never find an empty slot, even is one exists

 Ensure table never gets half full If close, then expand it

 May cause “secondary clustering”

 Deletion Emptying slots can break probe sequence and could cause find stop

prematurely

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 16/30

 Lazy deletion:Differentiate between empty and deleted slot

When finding skip and continue beyond deleted slots

If you hit a non-deleted empty slot, then stop find procedure returning “not found”

 May need compaction at some time

3. Double Hashing

Double hashing uses the idea of applying a second hash function to the key when a

collision occurs. The result of the second hash function will be the number of positions

form the point of collision to insert.

There are a couple of requirements for the second function:

 it must never evaluate to 0

 must make sure that all cells can be probed

A popular second hash function is: Hash2(key) = R - (key % R) where R is a prime

number that is smaller than the size of the table.

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 17/30

4. Hashing with Rehashing:

 Once the hash table gets too full, the running time for operations will start to take

too long and may fail. To solve this problem, a table at least twice the size of the original

will be built and the elements will be transferred to the new table.

The new size of the hash table:

 should also be prime

 will be used to calculate the new insertion spot (hence the name rehashing)

 This is a very expensive operation! O(N) since there are N elements to rehash and

the table size is roughly 2N. This is ok though since it doesn't happen that often.

Coalesced Hashing:

The chaining method discussed above requires additional space for maintaining

pointers. The table stores only pointers but each node of the linked list requires

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 18/30

storage space for data as well as one pointer field. Thus, for n keys, n + MAX_SIZE

pointers are needed, where MAX_SIZE is the maximum size of the table in which

values are to be inserted. If the value of n is large, the space required to store this

table is quite large.

The solution to this problem is called coalesced hashing or coalesced chaining. This

method is the hybrid of chaining and open addressing. Each index position in the

table stores key value and a pointer to the next index position. The pointer generally

points to the index position where the colliding key value will be stored.

In this method, the next available position is searched for a colliding key and is

placed in that position. After each such insertion, pointer re – adjustment is required.

After inserting the key values at the right place, the next pointer of the previous

position is made to point to the position where the colliding key is inserted. In this

method, instead of allocating new nodes for the linked list of keys with collision,

empty position from the table itself is allocated.

 For Example, the values 25, 36, and 47 will be inserted thus in the table –

 Now, we insert key value 85 into this table. This method starts inserting the collided

key values from the bottom of the table. Key value 85 will go in at index position 9 in

the table and the pointer will be re – adjusted. That is, the next pointer of position 5

will point to index position 9.

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 19/30

Index position 9 is full and any key value hashing into this position will have to be

inserted into the next available empty location, starting from the bottom of the table.

So, if we insert key value 49 into the table, it will go into index position 8 with

pointer re – adjustment. The table will look like –

This process will continue for all the colliding key values.

 DYNAMIC AND EXTENDIBLE HASHING:

For a huge database structure, it can be almost next to impossible to search all the index

values through all its level and then reach the destination data block to retrieve the

desired data. Hashing is an effective technique to calculate the direct location of a data

record on the disk without using index structure.

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 20/30

Hashing uses hash functions with search keys as parameters to generate the address of a

data record.

Hash Organization:

Bucket − A hash file stores data in bucket format. Bucket is considered a unit of storage.

A bucket typically stores one complete disk block, which in turn can store one or more

records.

Hash Function − A hash function, h, is a mapping function that maps all the set of

search-keys K to the address where actual records are placed. It is a function from search

keys to bucket addresses.

Static Hashing

In static hashing, when a search-key value is provided, the hash function always

computes the same address. For example, if mod-4 hash function is used, then it shall

generate only 5 values. The output address shall always be same for that function. The

number of buckets provided remains unchanged at all times.

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 21/30

Operation

 Insertion − When a record is required to be entered using static hash, the hash

function h computes the bucket address for search key K, where the record will

be stored.

Bucket address = h(K)

 Search − When a record needs to be retrieved, the same hash function can be

used to retrieve the address of the bucket where the data is stored.

 Delete − This is simply a search followed by a deletion operation.

Bucket Overflow

The condition of bucket-overflow is known as collision. This is a fatal state for any

static hash function. In this case, overflow chaining can be used.

 Overflow Chaining − When buckets are full, a new bucket is allocated for the

same hash result and is linked after the previous one. This mechanism is

called Closed Hashing.

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 22/30

 Linear Probing − When a hash function generates an address at which data is

already stored, the next free bucket is allocated to it. This mechanism is

called Open Hashing.

Dynamic Hashing:

The problem with static hashing is that it does not expand or shrink dynamically as the

size of the database grows or shrinks. Dynamic hashing provides a mechanism in which

data buckets are added and removed dynamically and on-demand. Dynamic hashing is

also known as extended hashing.

Hash function, in dynamic hashing, is made to produce a large number of values and only

a few are used initially.

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 23/30

Organization

The prefix of an entire hash value is taken as a hash index. Only a portion of the hash

value is used for computing bucket addresses. Every hash index has a depth value to

signify how many bits are used for computing a hash function. These bits can address 2n

buckets. When all these bits are consumed − that is, when all the buckets are full − then

the depth value is increased linearly and twice the buckets are allocated.

Operation

Querying − Look at the depth value of the hash index and use those bits to compute the

bucket address.

Update − Perform a query as above and update the data.

Deletion − Perform a query to locate the desired data and delete the same.

Insertion − Compute the address of the bucket

 If the bucket is already full.

1. Add more buckets.

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 24/30

2. Add additional bits to the hash value.

3. Re-compute the hash function.

 Else

1. Add data to the bucket,

 If all the buckets are full, perform the remedies of static hashing.

Hashing is not favorable when the data is organized in some ordering and the queries

require a range of data. When data is discrete and random, hash performs the best.

Hashing algorithms have high complexity than indexing. All hash operations are done in

constant time.

Extendible hashing:

 Extendible hashing is a type of hash system which treats a hash as a bit string, and

uses a trie for bucket lookup. Because of the hierarchical nature of the system, re-hashing

is an incremental operation (done one bucket at a time, as needed). This means that time-

sensitive applications are less affected by table growth than by standard full-table

rehashes.

Choosing a Hash Function:

Choosing a good hash function is of the utmost importance. An uniform hash function is

one that equally distributes data items over the whole hash table data structure. If the hash

function is poorly chosen data items may tend to clump in one area of the hash table and

many collisions will ensue. A non-uniform dispersal pattern and a high collision rate

cause an overall data structure performance degradation. There are several strategies for

maximizing the uniformity of the hash function and thereby maximizing the efficiency of

the hash table.

https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Trie

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 25/30

One method, called the division method, operates by dividing a data item's key value by

the total size of the hash table and using the remainder of the division as the hash

function return value. This method has the advantage of being very simple to compute

and very easy to understand.

Selecting an appropriate hash table size is an important factor in determining the

efficiency of the division method. If you choose to use this method, avoid hash table sizes

that simply return a subset of the data item's key as the hash value. For instance, a table

one-hundred items large will result put key value 12345 at location forty-five, which is

undesirable. Further, an even data item key should not always map to an even hash value

(and, likewise, odd key values should not always produce odd hash values). A good rule

of thumb in selecting your hash table size for use with a division method hash function is

to pick a prime number that is not close to any power of two (2, 4, 8, 16, 32...).

int hash_function(data_item item)

{

 return item.key % hash_table_size;

}

Sometimes it is inconvenient to have the hash table size be prime. In certain cases only a

hash table size which is a power of two will work. A simple way of dealing with table

sizes which are powers of two is to use the following formula to computer a key: k = (x

mod p) mod m. In the above expression x is the data item key, p is a prime number, and

m is the hash table size. Choosing p to be much larger than m improves the uniformity of

this key selection process.

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 26/30

Yet another hash function computation method, called the multiplication method, can

be used with hash tables with a size that is a power of two. The data item's key is

multiplied by a constant, k and then bit-shifted to compute the hash function return value.

A good choice for the constant, k is N * (sqrt(5) - 1) / 2 where N is the size of the hash

table.

The product key * k is then bitwise shifted right to determine the final hash value. The

number of right shifts should be equal to the log2 N subtracted from the number of bits in

a data item key. For instance, for a 1024 position table (or 210) and a 16-bit data item

key, you should shift the product key * k right six (or 16 - 10) places.

int hash_function(data_item item)

{

 extern int constant;

 extern int shifts;

 return (int)((constant * item.key) >> shifts);

}

Note that the above method is only effective when all data item keys are of the same,

fixed size (in bits). To hash non-fixed length data item keys another method is variable

string addition so named because it is often used to hash variable length strings. A table

size of 256 is used. The hash function works by first summing the ASCII value of each

character in the variable length strings. Next, to determine the hash value of a given

string, this sum is divided by 256. The remainder of this division will be in the range of 0

to 255 and becomes the item's hash value.

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 27/30

int hash_function (char *str)

{

 int total = 0;

 while (*str) {

 total += *str++;

 }

 return (total % 256);

}

Yet another method for hashing non fixed-length data is called compression function

and discussed in the one-way hashing section.

Perfect hash function:

In computer science, a perfect hash function for a set S is a hash function that maps

distinct elements in S to a set of integers, with no collisions. In mathematical terms, it is

an injective function.

 In most general applications, we cannot know exactly what set of key values will

need to be hashed until the hash function and table have been designed and put to

use.

 At that point, changing the hash function or changing the size of the table will be

extremely expensive since either would require re-hashing every key.

 A perfect hash function is one that maps the set of actual key values to the table

without any collisions.

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Hash_collision
https://en.wikipedia.org/wiki/Injective_function

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 28/30

 A minimal perfect hash function does so using a table that has only as many

slots as there are key values to be hashed.

 If the set of keys IS known in advance, it is possible to construct a specialized

hash function that is perfect, perhaps even minimal perfect.

 Algorithms for constructing perfect hash functions tend to be tedious, but a

number are known.

Dynamic perfect hashing:

Using a perfect hash function is best in situations where there is a frequently queried

large set, S, which is seldom updated. This is because any modification of the set S may

cause the hash function to no longer be perfect for the modified set. Solutions which

update the hash function any time the set is modified are known as dynamic perfect

hashing, but these methods are relatively complicated to implement.

Minimal perfect hash function

A minimal perfect hash function is a perfect hash function that maps n keys

to n consecutive integers – usually the numbers from 0 to n − 1 or from 1 to n. A more

formal way of expressing this is: Let j and k be elements of some finite setS. F is a

minimal perfect hash function if and only if F(j) = F(k) implies j = k (injectivity) and

there exists an integer a such that the range of F is a..a + |S| − 1.

Order preservation

A minimal perfect hash function F is order preserving if keys are given in some

order a1, a2, ..., an and for any keys aj and ak, j < k implies F(aj) < F(ak). In this case, the

function value is just the position of each key in the sorted ordering of all of the keys. A

simple implementation of order-preserving minimal perfect hash functions with constant

access time is to use an (ordinary) perfect hash function or cuckoo hashing to store a

lookup table of the positions of each key. If the keys to be hashed are themselves stored

in a sorted array, it is possible to store a small number of additional bits per key in a data

https://en.wikipedia.org/wiki/Dynamic_perfect_hashing
https://en.wikipedia.org/wiki/Dynamic_perfect_hashing
https://en.wikipedia.org/wiki/Injectivity
https://en.wikipedia.org/wiki/Cuckoo_hashing

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 29/30

structure that can be used to compute hash values quickly. Order-preserving minimal

perfect hash functions require necessarily Ω(n log n) bits to be represented.

I KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT COURSE NAME: DATA STRUCTURES

 COURSE CODE: 17ITU301 UNIT: V (Hashing) BATCH-2017-2020

Prepared by Dr PG.Sivagaminathan,Asst Prof,Dept. of CS,CA & IT, KAHE 30/30

POSSIBLE QUESTIONS

UNIT-V

PART-A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

 PART-B (2 MARKS)

1. What is Hashing?

2. Explain about Hash Table.

3. Define Hash Function.

4. Write about Resolving Collisions.

5. Write about Separate Chaining.

PART-C (6 MARKS)

1. Write about Deleting from Hash Table.

2. Discuss about Efficiency of Rehash Methods.

3. Discuss about Resolving Collusion by Open Addressing.

4. What is Coalesced Hashing

5. What is Resolving Collusion by Open Addressing.

unit 5

s.no
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

question
______provide all the necessary data and the computer codes to run the analysis again, re-creating the results.
_____study that arrives at the same scientific findings as another study,
____measurement can be obtained with stated precision by the same team using the same measurement procedure
______measurement can be ob-tained with stated precision by a different team, a different measuring system.
___Package can be used to blend the subject and single document defines the content and the analysis.
______ & _____ Packages contain alternative approaches to embedding R code into various markups.
____Can create LaTeX documents from scratch.
_____ contains a function to correctly escape special
____Creates resumes.
Standardized exams can be created using the ____ package.
____Package can process HTML files directly
____can also work with HTML by way of the R2HTML package
____can create HTML format documents from scratch.
The packages ____ & ____ have general tools for working with documents in this format.
____package can write R objects to the AsciiDoc format.
___can lead to an excessive dependence of our results on small details and a situation
_____Should be loaded at the top of the script
R supports plenty of__________ formats
Our_____ tells a story about the past.
R mark down documents are fully________.
One of the neat tools available via a variety of packages in R is the creation of beautiful tables using data frames stored in ____.
The______ provides for the development of a lot of interesting questions.
The ______package was written to combine elements of RMarkdown and R code within a single document
______runs all the bits of code in the file.
______generates a markdown file, including bits of the original document and it’s output.
______ converts the markdown document into html.
R Markdown is the file with the file extension______
knitr package will then transform the file into a Markdown file with the extension______
Rstudio will load another package called markdown to transform the file into_____
______includes a powerful and flexible system for creating dynamic reports
R includes a powerful and flexible system for creating_______ reports
______enables the embedding of R code within LaTeX documents to generate a PDF file
system.time function returns an object of class _______ which contains two useful bits of information.
________ time is time charged to the CPU(s) for the R expression.
The elapsed time may be ________ than the user time if your machine has multiple cores/processors
Parallel processing is done via __________ package can make the elapsed time smaller than the user time.
 You can time ________ expressions by wrapping them in curly braces within the call to system.time().
The profiler can be turned off by passing _________ to Rprof().
The _______ function will first print out the function call stack when an error occurrs.
In simulating linear model can also simulate from__________________ where the errors are no longer from a Normal distribution but come from some other distribution.
Simulating ________ numbers is useful but sometimes we want to simulate values that come from a specific model.
The function call stack is the __________ of functions that was called before the error occurred.
In which case the ________function tried to evaluate the formula y ∼ x and realized the object y did not exist.
________ time charged to the CPU(s) for this expression

 What will be the output of the following code ? > set.seed(10)> x <- rbinom(100, 1, 0.5)> str(x)
_________ distribution is commonly used to model data that come in the form of counts.

What will be the output of the following code ? > rpois(10, 1)
Which of the following code represents count with mean of 2 ?
The _______ function draws randomly from a specified set of (scalar) objects allowing you to sample from arbitrary distributions of numbers.
_________ is an important (and big) topic for both statistics and for a variety of other areas where there is a need to introduce randomness.
Setting the ________ number generator seed via set.seed() is critical for reproducibility
The __________ function tabulates the R profiler output and calculates how much time is spend in which function.
Interactive debugging tools _______,_________,________,________ and _________ can be used to find problematic code in functions
_______ allows you to modify the error behavior so that you can browse the function call stack
______ suspends the execution of a function wherever it is called and puts the function in debug mode
debug() flags a function for ______ mode in R mode.

 What would be the output of the following code ? > mean(x) Error in mean(x) : object 'x' not found> traceback()
The recover() function will first print out the function call stack when an _______ occurs.
________ is a systematic way to examine how much time is spent in different parts of a program.
Which of the following is primary tool for debugging ?
________ allows you to insert debugging code into a function a specific places
_____ evaluate the cumulative distribution function for a Normal distribution
_______ generate random Poisson variates with a given rate

option 1
Author
Replication
Replication
Reproducible
knitr
knitr & brew
brew
resumer
Hmisc
exame
knitr
Sweave
brew
markdown & knitr
ascii
complexity
Package
Static
Information
Rroducible
R studio
Data
Knitr
Knitr
Knitr
Knitr
. Rmd
. Rmd
. html
R
Static
Sweave
debug_time
elapsed
smaller
parallel
 smaller
0
debug()
 generalized model
arbitrary
arbitrary
debug()
sample.time
int [1:100] 1 0 0 1 0 0 0 0 1 0 ...
Gaussian

[1] 7 0 1 1 2 1 1 4 1 2
rpois(10, 2)
sam()
Simulation
arbitrary
prof()
trace, debug, browser, backtrace, and recover
debug()
debug()
debug
1: mean(x)
Error
Profiling
debug()
debug()
dnorm
dnorm

option 2
programmer
Reproducible
Reproducible
Repeatability
brew
brew & R.rsp
R.rsp
Hmisc
exams
Hmisc
Hmisc
brew
lazyweave
rmarkdown & mark
numeric
Entropy
function
Dynamic
Data
Reproducible
R
Dates
R
Knitr HTML
Knitr HTML
Knitr HTML
. md
. md
. Rmd
Rstudio
Dynamic
Knitr
proc_time
user
greater
statistics
longer
1
trace()
 generalized linear model
sample
sample
trace()
user time
int [1:100] 10 0 01 1 0 0 01 0 1 0 ...
Parametric

[1] 0 8 1 1 2 1 1 4 1 2
rpois(10, 20)
seed()
samplie
sample
summaryRprof()
traceback, debug, browser, trace, and recover
trace()
trace()
run
Null
Warning
Monitoring
trace()
trace()
rnorm
rnorm

option 3
Analyzer
Repeatability
Repeatability
Replication
R.rsp
R.rsp & knitr
lazyweave
exams
resumer
resumer
exam
scratch
knitr
markdown & rmarkdown
constant
Reproducibility
procedure
Both A&B
Files
Responsible
. Net
Dataset
R studio
R studio
R studio
R studio
. Rpubs
. rd
. md
Knitr
Rstudio
Rstudio
procedure_time
response
 equal to
distributed
error
2
recover()
 linear model
random
random
eval()
elapsed time
int [1:100] 1 03 0 1 0 0 0 02 1 0 ...
Poisson

[1] 0 0 1 1 2 1 1 4 1 2
rpois(20, 2)
sample()
distribution
random
Rprof()
traceback, debug, browser, trace, and request
recover()
recover()
compile
0
Messages
Logging
browser()
browser()
pnorm
pnorm

option 4
Researcher
none of these
None of these
Reproducibility
lazyweave
brew & lazyweave
knitr
knitr
lazyweave
brew
lazyweave
knitr
Sweave
none of these
integer
Repeatability
characters
None of these
Forms
Response
Vb
Files
 R Markdown
HTML
HTML
HTML
. rd
. Rpubs
. rd
None
None
Rpubs
proced_time
request
not equal to
equal
warning
NULL
traceback()
ungeneralized linear model
sequence
sequence
traceback()
system.time
int [1:100] 1 2 3 1 1 0 0 0 1 0 ...
Paradox

[1] 0 9 1 1 2 1 1 5 1 2
rpois(2, 20)
samp()
normal
sequence
Rpro()
traceback, debug, browser, request, and recover
traceback()
browser()
recover
1
stop
Scheduling
traceback()
traceback()
rpois
rpois

Ans
Author
Replication
Repeatability
Reproducibility
knitr
brew & R.rsp
lazyweave
Hmisc
resumer
exam
knitr
Sweave
lazyWeave
markdown & rmarkdown
ascii
Complexity
package
Both A&B
Data
Reproducible
R
Dataset
Knitr
Knitr HTML
Knitr HTML
Knitr HTML
. Rmd
. md
.html
R
Dynamic
Sweave
proc_time
elapsed
smaller
parallel
longer
NULL
recover()
 generalized linear model
random
sequence
eval()
user time
int [1:100] 1 0 0 1 0 0 0 0 1 0 ...
Poisson

[1] 0 0 1 1 2 1 1 4 1 2
rpois(10, 2)
sample()
Simulation
random
summaryRprof()
traceback, debug, browser, trace, and recover
recover()
browser()
run
1: mean(x)
Error
Profiling
debug()
trace()
pnorm
rpois

 Register No ________________

 (17ITU301)

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021
B.Sc DEGREE EXAMINATION

FIRST INTERNAL EXAMINATION- JULY 2018
THIRD SEMESTER

INFORMATION TECHNOLOGY
Subject Code:17ITU301 DATA STRUCTURES
Class:II B.Sc(IT) Duration : 2Hours :
Date &Session: Maximum: 50 Marks

 PART A (20 X 1 = 20 Marks)

1. _________ is a collection of data and links

a) links b)Node C)List d)Item

2. The array elements are referenced by its _____________.
a)subscript b)index c)size d)none

 3. In c, array reference starts with

 a)one b)two c)zero d) none
 4. A type of search used to compare all elements from the beginning of array called

 a)Fibonacci search b)linear search c)binary search d)none

 5. __________ list allows traversing in only one direction

 a)doubly linked list b)singly linked list c)circular linked list d)list
 6. In stack, we can add elements at ______________ .

 a)bottom b)top c)front d)rear

 7. In a singly linked list each node has _________ fields.
 a)one b)two c)three d)five

 8. Choose the principle followed in Queue

 a)LIFO b)FIFO c)circular d)none of the above

 9. The data field of _____node usually do not contain any information.
 a)first b)head c)tail d)last

 10. When top=bottom in stack, the total no of elements in the stack is.

 a) 1 b)2 c)3 d)none of the above
 11. Choose stack full condition in array implementation of stack.

 a)top=-1 b)top=n c)top=0 d)top<=n

 12. Evaluate the given expression for a =3, b=4, c=3, d=1
 X = a+b/(c-d)

 a)3 b)2 c)5 d)none of the above

 13. Choose stack empty condition in array implementation of stack.

 a)top=1 b)top= -1 c)top<0 d)top=n
 14. Infix to postfix conversion internally uses _______ data structure.

 a)queue b)stack c)array d)list

 15. pick out prefix form of expression v=ax+b
 a)+b*ax b)ax*b+ c)b+*ax d)none

 16. Address part of last node of every singly linked contains

 a)address of next node b)NULL c)\null d)none
 17. Sizeof() operator in dynamic memory allocation is used to determine

 a)the size of program b)number of bytes c)number of bytes for each node d)none

 18. List data structure contains data elements in

 a)proper order b)unordered collection c)reverse order d)none
 19. Main application of doubly linked list is in

 a)compiler b)editor c)games d)none

 20. Forward and backward traversal is allowed using pointers are
 a)singly linked list b)list c)doubly linked list d)array

 PART B (3 X 2 = 6 Marks)

 21. What is data structure?

 22.What is the difference between array and list.

 23.What is dynamic memory allocation?

 PART C (3 X 8 = 24 Marks)

 24. a) What is sparse matrix? What are the two ways to represent sparse matrix. Give examples.

 (or)

 b)Explain various operations on stack with relevant diagrams.

 25. a)Explain how stack is used in evaluation of expression.

 (or)

 b)Write an algorithm/program to implement stack in an array

 26.a)Write an algorithm/program to implement linear search.

 (or)

 b) Discuss the basic operations of a doubly linked list.

 PART A
1.node
2.Index or subscript
3.zero
4.linear search
5.linked list
6.top
7.two
8.FIFO
9.head
10.1
11.top-n
12.5
13.top<0 or top=-1
14.stack
15.+b*ax
16.NULL
17.number of bytes for each nde
18.unordered collection
19.games
20.doubly linked list
 Part B

21 What is data structure?
 Deals with how data is represented in memory for effective storage and retrieval when it is required.
22. Difference between array and list
 Array is an example for static memory allocation. Array size is fixed. Runtime of the code we cannot increase or
 decrease the size
23. What is dynamic memory allocation?
 During runtime of a program it is possible to create unlimited data dynamically. It is also possible to delete node
 values dynamically using pointer referencing. Pointer referencing reduces searching time when compared to statc
 memory allocation.

24. In a matrix of two dimensional and above, if the number of zero terms dominates over non-zero terms then it is
called sparse matix. In sparse matrix, we need not store all values in memory. Its possible to store only non-zero
entries in memory.

There are two ways of representation.

1) Using array
2) Linked representation of sparse matrix

X= 0 1 0
 0 0 0
 0 0 0

25.a) evaluation of expression

25 b) implement stack using array

 Register No ________________

(17ITU301)

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021
B.Sc DEGREE EXAMINATION

FIRST INTERNAL EXAMINATION- JULY 2018
THIRD SEMESTER

INFORMATION TECHNOLOGY
Subject Code:17ITU301 DATA STRUCTURES
Class:IIB.Sc(IT) Duration : 2Hours :
Date &Session: Maximum: 50 Marks

 PART A (20X 1 = 20 Marks)

1. _________ is a collection of data and links
a) links b)Node C)List d)Item

2. The array elements are referenced by its _____________.
a)subscript b)index c)size d)none

 3. In c, array reference starts with
a)one b)two c)zero d) none
 4. A type of search used to compare all elements from the beginning of array called
a)Fibonacci search b)linear search c)binary search d)none
 5. __________ list allows traversing in only one direction
a)doubly linked list b)singly linked list c)circular linked list d)list
 6. In stack, we can add elements at ______________ .
a)bottom b)top c)front d)rear
 7. In a singly linked list each node has _________ fields.
a)one b)two c)three d)five
 8. Choose the principle followed in Queue
a)LIFO b)FIFO c)circular d)none of the above
 9. The data field of _____node usually do not contain any information.
a)firstb)head c)tail d)last
 10. When top=bottom in stack, the total no of elements in the stack is.
 a) 1 b)2 c)3 d)none of the above
11. Choose stack full condition in array implementation of stack.
a)top=-1 b)top=n c)top=0 d)top<=n
 12. Evaluate the given expression for a =3, b=4, c=3, d=1
 X = a+b/(c-d)
a)3 b)2 c)5 d)none of the above
 13. Choose stack empty condition in array implementation of stack.
a)top=1 b)top= -1 c)top<0 d)top=n
 14. Infix to postfix conversion internally uses _______ data structure.
a)queue b)stack c)array d)list
 15. pick out prefix form of expression v=ax+b
a)+b*axb)ax*b+ c)b+*ax d)none
 16. Address part of last node of every singly linked contains
a)address of next node b)NULL c)\null d)none
 17. Sizeof() operator in dynamic memory allocation is used to determine
a)the size of program b)number of bytes c)number of bytes for each node d)none

18. List data structure contains data elements in
a)proper order b)unordered collection c)reverse order d)none
 19. Main application of doubly linked list is in
a)compiler b)editor c)games d)none
 20. Forward and backward traversal is allowed using pointers are
a)singly linked list b)list c)doubly linked list d)array

 PART B (3X 2 = 6 Marks)
21. What is data structure?

22.What is the difference between array and list.

23.What is dynamic memory allocation?

PART C (3 X8 = 24 Marks)

24. a) What is sparse matrix? What are the two ways to represent sparse matrix. Give examples.

 (or)

b)Explain various operations on stack with relevant diagrams.

 25. a)Explain how stack is used in evaluation of expression.

 (or)

b)Write an algorithm/program to implement stack in an array

26.a)Write an algorithm/program to implement linear search.

 (or)

 b) Discuss the basic operations of a doubly linked list.

 PART A
1.node
2.Index or subscript
3.zero
4.linear search
5.linked list
6.top
7.two
8.FIFO
9.head
10.1
11.top-n
12.5
13.top<0 or top=-1
14.stack
15.+b*ax
16.NULL
17.number of bytes for each nde
18.unordered collection
19.games
20.doubly linked list
 Part B

21 What is data structure?
Deals with how data is represented in memory for effective storage and retrieval when it is required.
22. Difference between array and list
 Array is an example for static memory allocation. Array size is fixed. Runtime of the code we cannot increase or
decrease the size
23. What is dynamic memory allocation?
During runtime of a program it is possible to create unlimited data dynamically. It is also possible to delete node
values dynamically using pointer referencing. Pointer referencing reduces searching time when compared to statc
memory allocation.

24. In a matrix of two dimensional and above, if the number of zero terms dominates over non-zero terms then it is
called sparse matix. In sparse matrix, we need not store all values in memory. Its possible to store only non-zero
entries in memory.

There are two ways of representation.

1) Using array
2) Linked representation of sparse matrix

X= 0 1 0
 0 0 0
 0 0 0

25.a) evaluation of expression

25 b) implement stack using array

Register No________

 [17ITU301]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

 (Established under Section 3 of UGC Act 1956)

B.Sc DEGREE EXAMINATION

SECOND INTERNAL EXAMINATION - August 2018

Third Semester

INFORMATION TECHNOLOGY

DATA STRUCTURES

Class : II B.Sc (IT) Duration: 2 hours

Date & Session : 14/08/2018 (FN) Maximum : 50 marks

PART- A (20 * 1= 20 Marks)

Answer ALL the Questions

1. The Number of sub trees of a node is called its _______.

 a) leaf b) terminal c) children d) degree

2. X is a root then X is the ______ of its children.

 a) sub tree b) Parent c) Siblings d) subordinate

3. A tree with any node having at most two branches is called a _____________.

 a) branched tree b) sub tree c) binary tree d) forest

4. A ---- is a tree that can have almost two children.

 a) Binary tree b) Tree c) Heap d)Hash

 5. Each item in a node is called a_______.

 a) Field b) Data item c) Pointer d) Data

6. Nodes that have degree zero are called ________.

 a) End node b) leaf nodes c) Subtree d) root node

7. All node except the leaf nodes are called________.

 a) Terminal node b) Percent node c) Non terminal d) Children node

8. _______of a node are all the nodes along the path form the root to that node.

 a)Degree b) sub tree c) Ancestors d) parent

9. Node at the highest level of the tree is known as _______.

 a) Child b) Root c) Siblings d) Parent

10. The _____ of a path is the number if edges on it.

 a) Degree b) Length c) Edges d) Height

11. A matrix is ------ iff B(i,j)=0 for i≠j

 a) Diagonal b) Tridiagonal c) Lower d) Upper

12. Height – balanced trees are also referred as as ___________trees.

 a) AVL trees b) Binary Trees c) Subtree d) Branch Tree

13. _____is a subset of a tree that is itself a tree.

 a)Branch b)Root c)Leaf d)Subtree

14. In a tree structure a link between parent and child is called _______

 a)Branch b)Root c)Leaf d)Subtree

15. Visiting each node in a tree exactly once is called _________

 a)searching b)travering c)walk through d)path

16. A _________ is a collection of elements such that each element has been assigned a

priority.

 a)Priority Queue b)De Queue c)Circular Queue d)En Queue

17. In________traversal ,the node is visited between the subtrees.

 a)PreOrder b)PostOrder c)Inorder d)End Order

18. In________traversal ,the node is visited after the subtrees.

 a)PreOrder b)PostOrder c)Inorder d)End Order

19. _________ data structure is used to implement symbol tables

 a) directed graphs b) binary search trees c) circular queue d) None

20. A queue also called a ----- system.

 a) LIFO b) FIFO c) LILO d) FILO

PART- B (3 * 2= 6 Marks)

Answer ALL the Questions

21. Define Circular Linked List.

22. What is a Binary Search tree?

23. Define Queue.

PART C (3 * 8 = 24 Marks)

 Answer ALL the Questions

24.a) Discuss about circular queue and priority queue.

 (or)

 b) Write a algorithm and program for queue operations

25. a) Write about (i) Tree (ii)Binary Tree (iii)Height Balanced Trees.

 (or)

 b) Write about Iterative, Traversal Operations on Binary Search Trees.

26. a)Write any ten tree terminologies

 (or)

 b) Discuss about Threaded Binary Trees

 Answer Key

 Part A

1. Degree

2. parent

3. binary tree

4. binary tree

5. field

6.leaf nodes

7.non-terminal

8.ancestors

9.root

10.length

11.diagonal

12.AVL trees

13.subtree

14.branch

15.traversing

16.priority queue

17. inorder

18. post order

19. binary search trees

20. FIFO

 PART B

21. Circular linked list is a linear data structure which is similar to single linked list.

Single linked list contain data and address of the next node. The address of last node is

NULL. In circular linked list, the link pointer of the last node points to first node of

linked list for circular traversal. There is no NULL pointer in circular linked list

22. Binary search tree is a kind of data structure in computer science where insertion and

deletion takes place according to the following properties. Elements are deleted in the

same way it was inserted.

 BST has at-most two children similar to binary tree

 In BST, Left subtree is always <= the root of BST

 In BST, right subtree is greater than the root of BST

 BST elements are stored in an ordered way

23. Queue is a linear data structure where insertion takes place at REAR end deletion

takes place at FRONT end of queue thus it maintains FIFO principle. There are different

type of queues like circular queue, double ended queue and priority queue.

24. a) Distinguish between circular queue and priority queue

A queue whose rear and front ends are in folded form are called circular queue.

Circular queue use modulus function to insert and delete values in a array location.

Insertion is done through rear end of the queue and deletion is done at front end of the

queue. A modulus function returns a remainder which is considered as a specific location

to store and retrieve vale in circular queue.

Priority queue can also be constructed using circular queue or normal queue. In addition

to the value stored in location it contains a numeric value called priority number. There

are two possibility of priority queue

1) maximum priority queue- This kind of priority queue give priority to higher number

jobs. Higher the number will be given maximum priority to avail the CPU. When there

are two jobs having same priority number, jobs will be given preference to order in which

both jobs are appearing for processing.

2)minimum priority queue: This kind of priority queue give priority to lower number

jobs. Lower the number higher the priority to avail the CPU. When there are two jobs

having same priority number, jobs will be given preference to order in which both jobs

are appearing for processing.

Priority queue are used in round robin scheduling in operating systems. In

multiprocessing/multiuser environment priority queues manages several processes

effectively with a single CPU than circular queue.

 <<diagram of circular queue>>

 <<diagram of priority queue>>

b)

Queue is a linear data structure in which the insertion and deletion operations are

performed at two different ends. In a queue data structure, adding and removing of

elements are performed at two different positions. The insertion is performed at one end

and deletion is performed at other end. In a queue data structure, the insertion operation is

performed at a position which is known as 'rear' and the deletion operation is performed

at a position which is known as 'front'. In queue data structure, the insertion and deletion

operations are performed based on FIFO (First In First Out) principle.

Queue after inserting 25, 30, 51, 60 and 85.

Operations on a

 Queue

The following operations are performed on a queue data structure...

1. enQueue(value) - (To insert an element into the queue)

2. deQueue() - (To delete an element from the queue)

3. display() - (To display the elements of the queue)

Queue data structure can be implemented in two ways. They are as follows...

1. Using Array

2. Using Linked List

When a queue is implemented using array, that queue can organize only limited number

of elements. When a queue is implemented using linked list, that queue can organize

unlimited number of elements.

ARRAY AND LINKED REPRESENTATION OF QUEUE

Queue Using Array

A queue data structure can be implemented using one dimensional array. But, queue

implemented using array can store only fixed number of data values. The implementation

of queue data structure using array is very simple, just define a one dimensional array of

specific size and insert or delete the values into that array by using FIFO (First In First

Out) principle with the help of variables 'front' and 'rear'. Initially both 'front' and

'rear' are set to -1. Whenever, we want to insert a new value into the queue, increment

'rear' value by one and then insert at that position. Whenever we want to delete a value

from the queue, then increment 'front' value by one and then display the value at 'front'

position as deleted element.

Queue Operations using Array

Queue data structure using array can be implemented as follows...

Before we implement actual operations, first follow the below steps to create an empty

queue.

 Step 1: Include all the header files which are used in the program and define a

constant 'SIZE' with specific value.

 Step 2: Declare all the user defined functions which are used in queue

implementation.

 Step 3: Create a one dimensional array with above defined SIZE (int

queue[SIZE])

 Step 4: Define two integer variables 'front' and 'rear' and initialize both with '-

1'. (int front = -1, rear = -1)

 Step 5: Then implement main method by displaying menu of operations list and

make suitable function calls to perform operation selected by the user on queue.

enQueue(value) - Inserting value into the queue

In a queue data structure, enQueue() is a function used to insert a new element into the

queue. In a queue, the new element is always inserted at rear position. The enQueue()

function takes one integer value as parameter and inserts that value into the queue. We

can use the following steps to insert an element into the queue...

 Step 1: Check whether queue is FULL. (rear == SIZE-1)

 Step 2: If it is FULL, then display "Queue is FULL!!! Insertion is not

possible!!!" and terminate the function.

 Step 3: If it is NOT FULL, then increment rear value by one (rear++) and

set queue[rear] = value.

deQueue() - Deleting a value from the Queue

In a queue data structure, deQueue() is a function used to delete an element from the

queue. In a queue, the element is always deleted from front position. The deQueue()

function does not take any value as parameter. We can use the following steps to delete an

element from the queue...

 Step 1: Check whether queue is EMPTY. (front == rear)

 Step 2: If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not

possible!!!" and terminate the function.

 Step 3: If it is NOT EMPTY, then increment the front value by one (front ++).

Then display queue[front] as deleted element. Then check whether

both front and rear are equal (front == rear), if it TRUE, then set

both front and rear to '-1' (front = rear = -1).

display() - Displays the elements of a Queue

We can use the following steps to display the elements of a queue...

 Step 1: Check whether queue is EMPTY. (front == rear)

 Step 2: If it is EMPTY, then display "Queue is EMPTY!!!" and terminate the

function.

 Step 3: If it is NOT EMPTY, then define an integer variable 'i' and set

'i = front+1'.

 Step 3: Display 'queue[i]' value and increment 'i' value by one (i++). Repeat the

same until 'i' value is equal to rear (i <= rear)

QUEUE USING LINKED LIST

The major problem with the queue implemented using array is, It will work for only fixed

number of data. That means, the amount of data must be specified in the beginning itself.

Queue using array is not suitable when we don't know the size of data which we are

going to use. A queue data structure can be implemented using linked list data structure.

The queue which is implemented using linked list can work for unlimited number of

values. That means, queue using linked list can work for variable size of data (No need to

fix the size at beginning of the implementation). The Queue implemented using linked

list can organize as many data values as we want.

In linked list implementation of a queue, the last inserted node is always pointed by 'rear'

and the first node is always pointed by 'front'.

Example

In above example, the last inserted node is 50 and it is pointed by 'rear' and the first

inserted node is 10 and it is pointed by 'front'. The order of elements inserted is 10, 15,

22 and 50.

Operations

To implement queue using linked list, we need to set the following things before

implementing actual operations.

 Step 1: Include all the header files which are used in the program. And declare

all the user defined functions.

 Step 2: Define a 'Node' structure with two members data and next.

 Step 3: Define two Node pointers 'front' and 'rear' and set both to NULL.

 Step 4: Implement the main method by displaying Menu of list of operations and

make suitable function calls in the main method to perform user selected

operation.

enQueue(value) - Inserting an element into the Queue

We can use the following steps to insert a new node into the queue...

 Step 1: Create a newNode with given value and set 'newNode → next' to NULL.

 Step 2: Check whether queue is Empty (rear == NULL)

 Step 3: If it is Empty then, set front = newNode and rear = newNode.

 Step 4: If it is Not Empty then, set rear →

next = newNode and rear = newNode.

deQueue() - Deleting an Element from Queue

We can use the following steps to delete a node from the queue...

 Step 1: Check whether queue is Empty (front == NULL).

 Step 2: If it is Empty, then display "Queue is Empty!!! Deletion is not

possible!!!" and terminate from the function

 Step 3: If it is Not Empty then, define a Node pointer 'temp' and set it to 'front'.

 Step 4: Then set 'front = front → next' and delete 'temp' (free(temp)).

display() - Displaying the elements of Queue

We can use the following steps to display the elements (nodes) of a queue...

 Step 1: Check whether queue is Empty (front == NULL).

 Step 2: If it is Empty then, display 'Queue is Empty!!!' and terminate the

function.

 Step 3: If it is Not Empty then, define a Node pointer 'temp' and initialize

with front.

 Step 4: Display 'temp → data --->' and move it to the next node. Repeat the

same until 'temp' reaches to 'rear' (temp → next != NULL).

 Step 4: Finally! Display 'temp → data ---> NULL'.

25 a)

i) Tree

 A tree is a data structure which is made up of vertices and edges. A tree maintains data

in hierarchical structure. A tree which do not have any node is called empty tree.

Tree terminologies are root, edge, parent node, child node, degree, height, ancestors,

subtree etc.,

ii) Binary tree

 A binary tree is a data structure where every node contain 0,1,2 children. A node

without and tree is also a binary tree. Every node of a binary tree can have at-most two

children. Binary tree need not store values in order as in the case of Binary search tree. A

binary search tree is a subset of binary tree.

iii) Height balanced tree

Height-Balanced Trees:

What if the input to binary search tree comes in a sorted (ascending or descending)

manner? It will then look like this −

It is observed that BST's worst-case performance is closest to linear search algorithms,

that is Ο(n). In real-time data, we cannot predict data pattern and their frequencies. So, a

need arises to balance out the existing BST.

Named after their inventor Adelson, Velski & Landis, AVL trees are height balancing

binary search tree. AVL tree checks the height of the left and the right sub-trees and

assures that the difference is not more than 1. This difference is called the Balance

Factor.

Here we see that the first tree is balanced and the next two trees are not balanced −

In the second tree, the left subtree of C has height 2 and the right subtree has height 0, so

the difference is 2. In the third tree, the right subtree of A has height 2 and the left is

missing, so it is 0, and the difference is 2 again. AVL tree permits difference (balance

factor) to be only 1.

BalanceFactor = height(left-sutree) − height(right-sutree)

If the difference in the height of left and right sub-trees is more than 1, the tree is

balanced using some rotation techniques.

AVL Rotations:

To balance itself, an AVL tree may perform the following four kinds of rotations −

 Left rotation

 Right rotation

 Left-Right rotation

 Right-Left rotation

The first two rotations are single rotations and the next two rotations are double rotations.

To have an unbalanced tree, we at least need a tree of height 2. With this simple tree, let's

understand them one by one.

Left Rotation

If a tree becomes unbalanced, when a node is inserted into the right subtree of the right

subtree, then we perform a single left rotation −

In our example, node A has become unbalanced as a node is inserted in the right subtree

of A's right subtree. We perform the left rotation by making A the left-subtree of B.

Right Rotation:

AVL tree may become unbalanced, if a node is inserted in the left subtree of the left

subtree. The tree then needs a right rotation.

As depicted, the unbalanced node becomes the right child of its left child by performing

a right rotation.

Left-Right Rotation:Double rotations are slightly complex version of already explained

versions of rotations. To understand them better, we should take note of each action

performed while rotation. Let's first check how to perform Left-Right rotation. A left-

right rotation is a combination of left rotation followed by right rotation.

 A node has been inserted into the right subtree of the left subtree. This makes C an

unbalanced node. These scenarios cause AVL tree to perform left-right rotation.

 We first perform the left rotation on the left subtree of C. This

makes A, the left subtree of B.

State

Node C is still unbalanced, however now, it is because of the left-subtree of the left-

subtree.

We shall now right-rotate the tree, making Bthe new root node of this subtree. C now

becomes the right subtree of its own left subtree.

The tree is now balanced.

Right-Left Rotation:

The second type of double rotation is Right-Left Rotation. It is a combination of right

rotation followed by left rotation

 A node has been inserted into the left subtree of the right subtree. This

makes A, an unbalanced node with balance factor 2.

 First, we perform the right rotation along Cnode, making C the right

subtree of its own left subtree B. Now, B becomes the right subtree of A.

 Node A is still unbalanced because of the right subtree of its right subtree and requires a

left rotation.

25 b) Traversal Operations on BST

Pre-order Traversal − Traverses a tree in a pre-order manner.

In-order Traversal − Traverses a tree in an in-order manner.

Post-order Traversal − Traverses a tree in a post-order manner.

Node:

Define a node having some data, references to its left and right child nodes.

struct node {

 int data;

 struct node *leftChild;

 struct node *rightChild;

};

Search Operation:

Whenever an element is to be searched, start searching from the root node. Then if the

data is less than the key value, search for the element in the left subtree. Otherwise,

search for the element in the right subtree. Follow the same algorithm for each node.

Algorithm:

struct node* search(int data){

struct node *current = root;

 printf("Visiting elements: ");

 while(current->data != data){

 if(current != NULL) {

 printf("%d ",current->data);

 //go to left tree

 if(current->data > data){

 current = current->leftChild;

 }//else go to right tree

 else {

 current = current->rightChild;

 }

 //not found

 if(current == NULL){

 return NULL;

 }

 }

 }

 return current;

}

Insert Operation:

Whenever an element is to be inserted, first locate its proper location. Start searching

from the root node, then if the data is less than the key value, search for the empty

location in the left subtree and insert the data. Otherwise, search for the empty location in

the right subtree and insert the data.

Algorithm:

 void insert(int data) {

 struct node *tempNode = (struct node*) malloc(sizeof(struct node));

 struct node *current;

 struct node *parent;

 tempNode->data = data;

 tempNode->leftChild = NULL;

 tempNode->rightChild = NULL;

 //if tree is empty

 if(root == NULL) {

 root = tempNode;

 } else {

 current = root;

 parent = NULL;

 while(1) {

 parent = current;

 //go to left of the tree

 if(data < parent->data) {

 current = current->leftChild;

 //insert to the left

 if(current == NULL) {

 parent->leftChild = tempNode;

 return;

 }

 }//go to right of the tree

 else {

 current = current->rightChild;

 //insert to the right

 if(current == NULL) {

 parent->rightChild = tempNode;

 return;

 }

 }

 }

 }

}

TRAVERSAL:

Traversal is a process to visit all the nodes of a tree and may print their values too.

Because, all nodes are connected via edges (links) we always start from the root (head)

node. That is, we cannot randomly access a node in a tree. There are three ways which we

use to traverse a tree −

 In-order Traversal

 Pre-order Traversal

 Post-order Traversal

Generally, we traverse a tree to search or locate a given item or key in the tree or to print

all the values it contains.

In-order Traversal

In this traversal method, the left subtree is visited first, then the root and later the right

sub-tree. We should always remember that every node may represent a subtree itself.

If a binary tree is traversed in-order, the output will produce sorted key values in an

ascending order.

We start from A, and following in-order traversal, we move to its left subtree B. B is also

traversed in-order. The process goes on until all the nodes are visited. The output of

inorder traversal of this tree will be −

D → B → E → A → F → C → G

Algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Visit root node.

Step 3 − Recursively traverse right subtree.

Pre-order Traversal:

In this traversal method, the root node is visited first, then the left subtree and finally the

right subtree.

We start from A, and following pre-order traversal, we first visit A itself and then move

to its left subtree B. B is also traversed pre-order. The process goes on until all the nodes

are visited. The output of pre-order traversal of this tree will be −

A → B → D → E → C → F → G

Algorithm

Until all nodes are traversed −

Step 1 − Visit root node.

Step 2 − Recursively traverse left subtree.

Step 3 − Recursively traverse right subtree.

Post-order Traversal:

In this traversal method, the root node is visited last, hence the name. First we traverse

the left subtree, then the right subtree and finally the root node.

We start from A, and following pre-order traversal, we first visit the left subtree B. B is

also traversed post-order. The process goes on until all the nodes are visited. The output

of post-order traversal of this tree will be −

D → E → B → F → G → C → A

Algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Recursively traverse right subtree.

Step 3 − Visit root node.

26a) Tree Terminologies

Terminology used in trees:

Root

The top node in a tree.

Child

A node directly connected to another node when moving away from the Root.

Parent

The converse notion of a child.

Siblings

A group of nodes with the same parent.

Descendant

A node reachable by repeated proceeding from parent to child.

Ancestor

A node reachable by repeated proceeding from child to parent.

Leaf

(less commonly called External node)

A node with no children.

Branch

Internal node

A node with at least one child.

Degree

The number of sub trees of a node.

Edge

The connection between one node and another.

Path

A sequence of nodes and edges connecting a node with a descendant.

Level

The level of a node is defined by 1 + (the number of connections between the node and

the root).

Height of node

The height of a node is the number of edges on the longest path between that node and a

leaf.

Height of tree

The height of a tree is the height of its root node.

Depth

The depth of a node is the number of edges from the tree's root node to the node.

Forest

A forest is a set of n ≥ 0 disjoint trees.

26 b) Threaded binary tree

Inorder traversal of a Binary tree is either be done using recursion or with the use of a

auxiliary stack. The idea of threaded binary trees is to make inorder traversal faster and

do it without stack and without recursion. A binary tree is made threaded by making all

right child pointers that would normally be NULL point to the inorder successor of the

node (if it exists).

There are two types of threaded binary trees.

Single Threaded: Where a NULL right pointers is made to point to the inorder successor

(if successor exists)

Double Threaded: Where both left and right NULL pointers are made to point to inorder

predecessor and inorder successor respectively. The predecessor threads are useful for

reverse inorder traversal and postorder traversal.

The threads are also useful for fast accessing ancestors of a node.

Following diagram shows an example Single Threaded Binary Tree. The dotted lines

represent threads.

 Representation of a Threaded Node:

struct Node

{

 int data;

 Node *left, *right;

 bool right Thread;

}

Since right pointer is used for two purposes, the boolean variable rightThread is used to

indicate whether right pointer points to right child or inorder successor. Similarly, we can

add leftThread for a double threaded binary tree.

Inorder Taversal using Threads

Following code for inorder traversal in a threaded binary tree.

// Utility function to find leftmost node in a tree rooted with n

struct Node* leftMost(struct Node *n)

{

 if (n == NULL)

 return NULL;

 while (n->left != NULL)

 n = n->left;

 return n;

}

 // code to do inorder traversal in a threaded binary tree

void inOrder(struct Node *root)

{

 struct Node *cur = leftmost(root);

 while (cur != NULL)

 {

 printf("%d ", cur->data);

 // If this node is a thread node, then go to

 // inorder successor

 if (cur->rightThread)

 cur = cur->rightThread;

 else // Else go to the leftmost child in right subtree

 cur = leftmost(cur->right);

 }

}

INSERTION:

Insertion in Binary threaded tree is similar to insertion in binary tree but we will have to

adjust the threads after insertion of each element.

 representation of Binary Threaded Node:

struct Node

{

 struct Node *left, *right;

 int info;

 // True if left pointer points to predecessor

 // in Inorder Traversal

 boolean lthread;

 // True if right pointer points to successor

 // in Inorder Traversal

 boolean rthread;

};

In the following explanation, we have considered Binary Search Tree (BST) for insertion

as insertion is defined by some rules in BSTs.

Let tmp be the newly inserted node. There can be three cases during insertion:

Case 1: Insertion in empty tree

Both left and right pointers of tmp will be set to NULL and new node becomes the root.

root = tmp;

tmp -> left = NULL;

tmp -> right = NULL;

Case 2: When new node inserted as the left child

After inserting the node at its proper place we have to make its left and right threads

points to inorder predecessor and successor respectively. The node which was inorder

successor. So the left and right threads of the new node will be-

tmp -> left = par ->left;

tmp -> right = par;

Before insertion, the left pointer of parent was a thread, but after insertion it will be a link

pointing to the new node.

par -> lthread = par ->left;

par -> left = temp;

After insertion of 13,

Predecessor of 14 becomes the predecessor of 13, so left thread of 13 points to 10.

Successor of 13 is 14, so right thread of 13 points to left child which is 13.

Left pointer of 14 is not a thread now, it points to left child which is 13.

Case 3: When new node is inserted as the right child

The parent of tmp is its inorder predecessor. The node which was inorder successor of the

parent is now the inorder successor of this node tmp. So the left and right threads of the

new node will be-

tmp -> left = par;

tmp -> right = par -> right;

Before insertion, the right pointer of parent was a thread, but after insertion it will be a

link pointing to the new node.

par -> rthread = false;

par -> right = tmp;

Following example shows a node being inserted as right child of its parent.

After 15 inserted,

Successor of 14 becomes the successor of 15, so right thread of 15 points to 16

Predecessor of 15 is 14, so left thread of 15 points to 14.

Right pointer of 14 is not a thread now, it points to right child which is 15.

	01 syllabus.pdf (p.1-4)
	02 Lecture Plan.pdf (p.5-8)
	DEPARTMENT OF COMPUTER SCIENCE, COMPUTER APPLICATION & INFORMATION TECHNOLOGY
	OBJECTIVES
	UNIT-I
	UNIT-II
	UNIT-III
	UNIT-IV
	UNIT-V
	Suggested Readings
	WEB SITES
	Continuous Internal Assessment End Semester Examination – MarksAllocation

	03 nOTES.pdf (p.9-46)
	Data Object
	Data Type
	Built-in Data Type
	Derived Data Type
	int a, b, c;
	int a[3];
	arrayName[indexValue]
	a[1] = 100;

	Insertion Operation
	Algorithm
	Example

	Deletion Operation
	Algorithm

	Search Operation
	Algorithm

	Array Representation
	Linked Representation
	Example
	Array representation of Stack
	Let MaxStk=8, the array Stack contains M, N, O in it. Perform operations on it

	push(value) - Inserting value into the stack
	pop() - Delete a value from the Stack
	display() - Displays the elements of a Stack
	IMPLEMENT TWO STACKS IN AN ARRAY
	Infix Expression
	Example (1)
	Example (2)
	Example (3)
	Prefix to Infix Conversion
	Prefix to Postfix Conversion
	Postfix to Prefix Conversion
	Example (4)
	D = A + B * C
	D A B C * + =

	Example (5)
	(A + B) * (C - D)

	04 UNIT I ONE MARK.pdf (p.47-54)
	05 Course Notes.pdf (p.55-84)
	Linked List Representation
	Basic Operations
	TYPES OF LINKED LIST
	Example
	Operations
	Insertion Operation
	Deletion Operation

	Insertion
	Deletion
	Example (1)
	Singly Linked List as Circular
	Doubly Linked List as Circular
	Basic Operations
	Insertion Operation
	Example

	Deletion Operation
	Display List Operation

	In a single linked list, every node has link to its next node in the sequence. So, we can traverse from one node to other node only in one direction and we can not traverse back. We can solve this kind of problem by using double linked list. Double li...
	Example (2)
	Creating an Array of Linked Lists

	STACK USING LINKED LIST
	Example (3)
	Operations (1)
	push(value) - Inserting an element into the Stack
	pop() - Deleting an Element from a Stack
	display() - Displaying stack of elements
	SELF ORGANIZING LIST
	Complexity
	Structure of Skip List
	Searching Process
	Implementation Details
	Applications of Skip List

	What is a Queue?
	Example (4)
	Operations on a Queue
	Queue Using Array
	Queue Operations using Array
	enQueue(value) - Inserting value into the queue
	deQueue() - Deleting a value from the Queue
	display() - Displays the elements of a Queue
	QUEUE USING LINKED LIST
	Example (5)
	Operations (2)
	enQueue(value) - Inserting an element into the Queue
	deQueue() - Deleting an Element from Queue
	display() - Displaying the elements of Queue
	What is Circular Queue?
	DOUBLE ENDED QUEUE (DEQUEUE)
	Input Restricted Double Ended Queue
	Output Restricted Double Ended Queue
	PRIORITY QUEUE
	Max Priority Queue
	Min Priority Queue

	06 UNIT II ONE MARK.pdf (p.85-88)
	07 Course Notes.pdf (p.89-115)
	Right-Left Rotation:
	Implementation details:

	08 UNIT III ONE MARK.pdf (p.116-122)
	09 Unit IV.pdf (p.123-145)
	Algorithm:
	Pseudocode:

	11 Unit IV.pdf (p.146-168)
	Algorithm:
	Pseudocode:

	12 Course Notes.pdf (p.169-198)
	Open Addressing:
	Operation
	Bucket Overflow
	Dynamic perfect hashing:
	Minimal perfect hash function
	Order preservation

	13 UNIT V ONE MARK.pdf (p.199-212)
	14 CIA I with Answer key.pdf (p.213-215)
	15 CIA I with Answer key.pdf (p.216-218)
	16CIA II.pdf (p.219-220)
	17 CIA II Key.pdf (p.221-245)
	24. a) Distinguish between circular queue and priority queue
	b)
	Operations on a Queue
	Queue Using Array
	Queue Operations using Array
	enQueue(value) - Inserting value into the queue
	deQueue() - Deleting a value from the Queue
	display() - Displays the elements of a Queue
	QUEUE USING LINKED LIST
	Example
	Operations
	enQueue(value) - Inserting an element into the Queue
	deQueue() - Deleting an Element from Queue
	display() - Displaying the elements of Queue
	Right-Left Rotation:

