

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act 1956)

Eachanari (po), Coimbatore-21

DEPARTMENT OF CS, CA & IT

Semester – V

18ITU501B SOFTWARE TESTING 4H – 4C

Instruction Hours / week: L: 4 T: 0 P: 0 Marks: Int : 40 Ext : 60 Total: 100

SCOPE

Software Testing is designed to establish that the software is working satisfactorily as per the

requirements.

COURSE OBJECTIVES:

 Software Testing is a process designed to prove that the program is error free.

 Software The job of testing is to certify that the software does its job correctly and can be

used in production.

COURSE OUTCOMES:

Various test procesess and continuous quality improvement

1. Types of errors and fault models

2. Methods of test generation from requirements

3. Input space modeling using combinatorial designs

4. Combinatorial test generation

5. Test adequacy assessment using: control flow, data flow, and program mutations

6. The use of various test tools

7. Application of software testing techniques in commercial environments

UNIT – I Testing Fundamentals

Examining the Specification: Getting started – Performing a high-level review of the

specification – Low-level specification test techniques. Testing the software with blinders on:

Dynamic Black-Box Testing- Test-to-Pass and Test-to-Fail- Equivalence Partitioning- Data

testing – State testing – Other Black-box test techniques.

UNIT – II Examining the code
Static White-Box testing- Formal reviews – Coding Standards and Guidelines- Generic Code

Review Checklist. Testing the software with X-Ray glasses: Dynamic White-Box testing-

Dynamic White-Box testing versus Debugging-Testing the Pieces- Data Coverage- Code

Coverage.

Flowgraphs and Path Testing

Path-testing Basics – Predicates, Path Predicates and Achievable Paths-Path sensitizing-Path

Instrumentation-Implementation and Application of Path Testing

UNIT – III Transaction-Flow Testing and Data-Flow Testing

Transaction Flows-Transaction Flow Testing Techniques. Data-Flow Testing Basics-Data-Flow

Testing Strategies-Application, Tools, Effectiveness

UNIT – IV Domain Testing

Domains and Paths-Domain Testing-Domains and Interface Testing-Domains and Testability

UNIT – V Logic-Based Testing and State Graphs

Motivational Overview-Decision Tables-Path Expressions Again-KV Charts-Specifications

State Graphs-Good State Graphs and Bad-State Testing

References:

1. Boris Beizer (2009), Software Testing Techniques (2
nd

 ed.). New Delhi Dreamtech Press

2. Ron Patton (2002) Software Testing (2
nd

 ed.). New Delhi: Pearson Education

3. Dorothy Graham, Erik Van Veenendaal, Isabel Evans, Rex Black (2007). Foundations of

Software Testing, ISTQB Certification.

4. Brian Hambling, Peter Morgan, Angelina Samaroo, Geoff Thompson (2010). Software

Testing , (2
nd

 ed.). An ISEB Foundation, BCS

5. Renu Rajani, Pradeep Oak (2004). Software Testing- Effective Methods, Tools and

Techniques, Tata McGraw Hill, New Delhi

Web Sites

1. www.testinggeek.com

2. www.softwaretestinghelp.com

3. www.softwaretestinginstitute.com

http://www.softwaretestinginstitute.com/

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act 1956)

Eachanari (po), Coimbatore-21

DEPARTMENT OF CS, CA & IT

SUBJECT NAME: SOFTWARE TESTING

SUBJECT CODE: 16ITU501B SEMESTER: V

STAFF: M.SARANYA CLASS: III B.Sc. IT

S.No

Lecture

Duration

(Hr)

Topics to be Covered
Support

Materials

Unit I

1. 1

Software Testing Fundamentals - Examining the

Specification

Getting started

Black box and White box testing

S1: 53-55

W1

2. 1
Static and Dynamic testing

S2 : 56

3. 1 Static Black-box testing S2 : 56-57

4. 1

Performing a High-level Review of Specification Test

Techniques

S2: 57-58

W1

5. 1 Low-level Specification Test Techniques S2: 61-62

6.

1
Testing the software with Blinders on

Dynamic Black-Box Testing

Test-to-pass and Test-to-fail

S2: 63-67

7. 1 Equivalence Partitioning
S2: 67-69

W1

8.. 1 Data Testing, State testing
S2: 70-80

W1

9. 1
Other Black-Box test Techniques

S2: 87-89

W1

10 1 Recapitulation and discussion of important questions

Total No. of Hours Planned for Unit I 10

Unit II

1. 1
Examining the code

Static White-Box testing, Formal reviews

S2: 91-95

2. 1
Coding Standards and Guidelines

Generic Code Review Checklist

S2: 96-103

W1

3. 1

Testing the software with X-Ray glasses

Dynamic White-Box testing

Dynamic White-Box testing versus Debugging

Testing the Pieces Data Coverage , Code Coverage.

S2:105-108

W1

4. 1
Flowgraphs and Path Testing

S2: 108-121

W1

5. 1

Path-testing Basics

 Motivation and Assumptions

 Control Flowgraphs

S1:59-70

6. 1

Predicates, Path Predicates and Achievable Paths

 General

 Predicates

 Predicate Expressions

S1: 92 - 97

7. 1

Path Sensitizing

 Review; Achievable and Unachievable Paths

 Pragmatic Observations

 Heuristic Procedures for sensitizing Paths

 Examples

S1: 101-109

8. 1

Path Instrumentation

 The Problem

 General Strategy

 Link Markers

 Link Counters

 Other Instrumentation Methods

 Implementation

S1: 109-114

9. 1

Implement and Application of Path Testing

 Integration, Coverage and Paths in Called Components

 New code

 Maintenance

 Rehosting

S1: 115-118

10. 1 Recapitulation and discussion of important questions

Total No. of Hours Planned for Unit II 10

Unit III

1. 1

Transaction Flow Testing

Transaction Flows

 Definitions

 Example

 Usage

 Implementation

S1: 122-128

2. 1

 Perspective

 Complications

 Transaction Flow Structure

S1: 128-133

3. 1

Transaction flow Testing Techniques

 Get the Transaction Flows

 Inspection Reviews and Walkthroughs

 Path Selection

S1: 133 - 136

4. 1

 Sensitization

 Instrumentation

 Test Databases

 Execution

S1: 136-140

5. 1
Data Testing

Data Flow Testing Basics

 Motivation and Assumptions

S1: 145-150

6. 1 Data Flowgraphs S1: 150-157

7. 1 The Data-Flow model S1: 157-161

8. 1

Data-Flow Testing Strategies

 General

 Terminology

S1: 161-163

9. 1

 The Strategies

 Slicing, Dicing, Data Flow and Debugging, Application,

Tools, Effectiveness

S1: 161-171

10. 1 Recapitulation and discussion of important questions

Total No. of Hours Planned for Unit III 10

Unit IV

1. 1

Domain Testing

Domains and Paths

 The Model

 A Domain Is a Set

 Domains, Paths and Predicates

S1:173-176

2. 1
 Domain Closure

 Domain Dimensionality
S1: 176-182

3. 1

Domain Testing

 Overview

 Domain Bugs and How to Test for them

S1: 176-182

S1: 192-200

4. 1
 Procedure

 Variations, Tools, Effectiveness
S1: 200-202

5. 1

Domains and Interface Testing

 General

 Domains and Range

 Closure Compatibility

 Span Compatibility

S1: 202 – 205

6. 1

 Interface Range/Domain Compatibility Testing

 Finding the values

Domains and Testability

 General

 Linearizing Transformations

 Coordinate Transformations

S1: 206 – 209

7. 1
 A Canonical Program Form

 Great Insights?
S1: 209 - 211

8. 1 Recapitulation and discussion of important questions

Total No. of Hours Planned for Unit IV 8

Unit V

1. 1

Motivational Overview

 Programmers and Logic

 Hardware and Logic Testing

 Specification Systems and Languages

 Knowledge-Based Systems

 Overview

S1: 320 – 322

2. 1

Decision Tables

 Definitions and Notation

 Decision-Table Processors

 Decision Tables as a Basis for Test Case Design

 Expansion of Immaterial Cases

 Test Case Design

 Decision Tables and structure

S1: 322– 332

3. 1

Path Expression Again

 General

 Boolean Algebra

 Boolean Equations

S1: 332 – 334

Suggested Reading

S1: Ron Patton, 2002 Software Testing, 2
nd

 Edition, New Delhi: Pearson Education, New Delhi.

S2: Boris Beizer, 2003, Software Testing Techniques, 2
nd

 Edition, Dreamtech Press, New Delhi

References
R1: William E. Perry, 2001 Effective methods for Software Testing, 2

nd
 Edition, New Delhi:

John Wiley & Sons, Inc.,

R2: Dorothy Graham, Erik Van Veenendaal, Isabel Evans, Rex Black, 2007, Foundations of

Software Testing, ISTQB Certification.

R3: Brian Hambling, Peter Morgan, Angelina Samaroo, Geoff Thompson, 2010, Software

Testing, 2
nd

 Edition, an ISEB Foundation, BCS

R4: Renu Rajani, Pradeep Oak, 2004, Software Testing- Effective Methods, Tools and

Techniques, Tata McGraw Hill, New Delhi

4. 1

KV Charts

 The Problem

 Simple Forms

 Three Variables

 Four Variables and More

 Even More Testing Strategies

S1: 343 – 352

5. 1

Specifications

 General

 Finding and Translating the Logic

 Ambiguities and Contradictions

 Don’t Care and Impossible Terms, State Graphs

S1: 352 – 355

S1: 355 – 359

6. 1
Good State Graphs and Bad, State Testing

S1: 373 – 391

7. 1 Recapitulation and Discussion of Important Questions

8. 1 Discussion of Previous ESE Question Papers

9. 1 Discussion of Previous ESE Question Papers

10. 1 Discussion of Previous ESE Question Papers

Total No. of Hours Planned for Unit V 10

Total No. of Hours: 48

Web Sites

W1: www.testinggeek.com

W2: www.softwaretestinghelp.com

W3: www.softwaretestinginstitude.com

W4: www.effectivesoft.com

W5: www.softwaresucks.com

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: I (Testing Fundamentals) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 1/18

Unit- I

Testing Fundamentals

Examining the Specification: Getting started – Performing a high-level review of the

specification – Low-level specification test techniques. Testing the software with blinders on:

Dynamic Black-Box Testing- Test-to-Pass and Test-to-Fail- Equivalence Partitioning- Data

testing – State testing – Other Black-box test techniques.

References:

1. Boris Beizer (2009), Software Testing Techniques (2
nd

 ed.). New Delhi Dreamtech Press

2. Ron Patton (2002) Software Testing (2
nd

 ed.). New Delhi: Pearson Education

3. Dorothy Graham, Erik Van Veenendaal, Isabel Evans, Rex Black (2007). Foundations of

Software Testing, ISTQB Certification.

4. Brian Hambling, Peter Morgan, Angelina Samaroo, Geoff Thompson (2010). Software

Testing , (2
nd

 ed.). An ISEB Foundation, BCS

5. Renu Rajani, Pradeep Oak (2004). Software Testing- Effective Methods, Tools and

Techniques, Tata McGraw Hill, New Delhi

Web Sites

1. www.testinggeek.com

2. www.softwaretestinghelp.com

3. www.softwaretestinginstitute.com

http://www.softwaretestinginstitute.com/

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: I (Testing Fundamentals) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 2/18

EXAMINING THE SPECIFICATION

1.1 Getting started

"The Software Development Process" involves the following models big-bang, code-and-fix,

waterfall, and spiral. In each of the software development model, except big-bang, the

development team creates a product specification from the requirements document to define

what the software will become. The product specification is a written document using words and

pictures to describe the intended product.

Figure 2.1 Standard Windows Calculator displaying the drop-down Edit menu.

In a windows calculator the product specification might be something like this

 The EDIT menu will have two selections Copy and Paste. These can be chosen by one of

the three methods: pointing and clicking to the menu items with the mouse, using access

keys(Alt+E and then C for Copy and V for Paste), or using the standard windows

shortcut keys of Ctrl+C for Copy and Ctrl+V for paste

 The copy function will copy the current entry displayed in the number text box into the

Windows Clipboard. The paste function will paste the value stored in the Windows

Clipboard into the number text box.

 The only way to assure that the end product is what the customer required and to properly

plan the test effort is to thoroughly describe the product in a specification.

 The other advantage of having a detailed specification is that a tester will have a

document as a testable item and it can be used to find bugs before the first line of code is

written

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: I (Testing Fundamentals) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 3/18

Black box and White box testing

Two terms that software testers use to describe the approach of testing are black-box testing and

white-box testing. Figure 2.2 shows the difference between the two approaches. In black-box

testing, the tester only knows what the software is supposed to do he can't look in the box to see

how it operates. If he types in a certain input, he gets a certain output. He doesn't know how or

why it happens, just that it does.

Figure 2.2 Black-box testing and White box testing

Black box Testing

 Black-box testing is sometimes referred to as functional testing or behavioral testing.

 In Windows Calculator shown in Figure 2.1, if a number 3.14159 is typed and the SQRT

button is pressed, the result is displayed as 1.772453102341

 With black-box testing, it doesn't matter what gyrations the software goes through to

compute the square root of pi. It just does it.

 As a software tester, the result on "certified" calculator is only verified and determined if

the Windows Calculator is functioning correctly.

White box Testing

 White-box testing is sometimes called clear-box testing

 The software tester has access to the program's code and can examine it for clues to help

him with his testing.

 He can see inside the box

 Based on what he sees, the tester may determine that certain numbers are more or less

likely to fail and can tailor his testing based on that information.

file:///C:/Documents%20and%20Settings/Vivek%20Jain/Local%20Settings/Temp/~hh75EC.htm%23ch04fig02
file:///C:/Documents%20and%20Settings/Vivek%20Jain/Local%20Settings/Temp/~hh75EC.htm%23ch04fig01

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: I (Testing Fundamentals) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 4/18

 There is a risk to white-box testing. It's very easy to become biased and fail to objectively

test the software because the tester may tailor the tests to match the code's operation.

Static and Dynamic Testing

Two other terms used to describe method software is tested are static testing and dynamic

testing. Static testing refers to testing something that's not running that is examining and

reviewing it. Dynamic testing is that software is tested while running and using the software. The

best analogy for these terms is the process you go through when checking out a used car. Kicking

the tires, checking the paint, and looking under the hood are static testing techniques. Starting it

up, listening to the engine and driving down the road are dynamic testing techniques.

Static Black Box Testing

 It is a method for testing the Specification. Specification is represented as a document but

not an executing program.

 A specification is created using data from many sources.

 There is no need to get the reason why that information was collected.

 Just take the document perform static black box testing and examine for bugs.

 Specification may not be always in text format. Its format may be drawings also.

 If there is no specification found then source may be taken from developer, project

manager or marketer. Then record and circulate it for review

1.2 Performing High Level Review of Specification

 While testing don’t jump straight and look for bugs in code.

 Stand back and view it from high level.

 If there is better understanding of why and how then examination will be in detail.

1. Pretend to be a customer:

 Get known about end user.

 Understand customer expectation.

 Don’t assume anything to be correct.

 If bugs are found, it is better.

 Test security of the software also.

2. Research existing standards and guidelines

 Back in days every software structure of every company like Microsoft and Apple are

different. So it requires retraining.

 Now all software and hardware are standardized. So products are similar in look and feel.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: I (Testing Fundamentals) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 5/18

 Standard should be strictly adhered

 Specifying Guidelines is optional but should be followed.

Example of standards and guidelines:

 Corporate terminology and conventions.

 Industry requirements.

 Government standards.

 Graphical User Interface

 Security standards.

Tester – It defines guidelines and standards applied to product developed.

 A tester tests if standards are used and not overlooked.

3. Review and test similar software

The following are the things to be looked when reviewing competitive product.

 Scale – features included

 Complexity

 Testability

 Quality / Reliability

 Security

Read online and printed software reviews and articles about competitor.

1.3 Low Level Specification Test technique

 Testing specification at lower level.

Specification attributes checklists – The following attributes must be verified

1. Complete. Is anything missing or forgotten? Is it thorough? Does it include everything

necessary to make it stand alone?

2. Accurate. Is the proposed solution correct? Does it properly define the goal? Are there

any errors?

3. Precise, Unambiguous, and Clear. Is the description exact and not vague? Is there a single

interpretation? Is it easy to read and understand?

4. Consistent. Is the description of the feature written so that it doesn't conflict with itself or

other items in the specification?

5. Relevant. Is the statement necessary to specify the feature? Is it extra information that

should be left out? Is the feature traceable to an original customer need?

6. Feasible. Can the feature be implemented with the available personnel, tools, and

resources within the specified budget and schedule?

7. Code-free. Does the specification stick with defining the product and not the underlying

software design, architecture, and code?

8. Testable. Can the feature be tested? Is enough information provided that a tester could

create tests to verify its operation?

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: I (Testing Fundamentals) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 6/18

Specification Terminology Characteristics

 Always, Every, All, None, Never. If these words are seen such as these that denote

something as certain or absolute, make sure that it is, indeed, certain.

 Certainly, Therefore, Clearly, Obviously, Evidently. These words tend to persuade you

into accepting something as a given. Don't fall into the trap.

 Some, Sometimes, Often, Usually, Ordinarily, Customarily, Most, Mostly. These words

are too vague. It's impossible to test a feature that operates "sometimes."

 Etc., And So Forth, And So On, Such As. Lists that finish with words such as these aren't

testable. Lists need to be absolute or explained so that there's no confusion as to how the

series is generated and what appears next in the list.

 Good, Fast, Cheap, Efficient, Small, Stable. These are unquantifiable terms. They aren't

testable. If they appear in a specification, they must be further defined to explain exactly

what they mean.

 Handled, Processed, Rejected, Skipped, Eliminated. These terms can hide large amounts

of functionality that need to be specified.

 If…Then (but missing Else). Look for statements that have "If…Then" clauses but don't

have a matching "Else." Ask yourself what will happen if the "if" doesn't happen.

TESTING THE SOFTWARE WITH BLINDERS ON

1.4 Dynamic Black Box Testing

Testing software blindfolded.

 Testing without having insight into details of code

 Dynamic because code is running

 Enter input, receive output and check results

 Another name for Dynamic testing is behavioral testing

 Requires production specification or requirement documentation

 Define test cases. Test cases are specific input that is tried

 Test cases are the specific inputs that you'll try and the procedures that you'll follow when

you test the software

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: I (Testing Fundamentals) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 7/18

Figure 2.3 Test cases show the different inputs and the steps to test a program.

If test case is improved it result is,

 Too much testing

 Too little testing

 Wrong testing

If no specification is defined, then

 Treat software as specification.

 Take notes on what it does.

 Test with dynamic black box testing.

 Not effective as if with specification.

1.5.Test-to-pass and Test-to-fail

There are two fundamental approaches to testing software: test-to-pass and test-to-fail. When

test-to-pass is executed it really assures only that the software minimally works. So it is not

pushed to its capabilities. It is not seen what is done to break it. It is treated with kid gloves,

applying the simplest and most straightforward test cases.

Two Approaches to testing

 Test-to-pass: apply simple and straight forward test cases.

 Test-to-fail : intend to find bugs by any means

Example: Testing newly developed car

o Test-to-fail: run at full speed.

o Test-to-pass : low speed, normal driving condition

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: I (Testing Fundamentals) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 8/18

Figure 2.4 Use test-to-pass to reveal bugs before you test-to-fail.

While designing test cases

 Run test-to-pass cases first. If assures that it perform its normal work then go for test-to-

fail.

 Test-to-fail (error forcing)

1.6. Equivalence partitioning (or) Equivalence classing

 It is means by which test cases are selected.

 Process of reducing huge set of possible test cases into smaller ones. But equally

effective.

Example : - calculator

 Not possible to check all cases of adding 2 numbers together.

 Check 1+1, 1+2, 1+3, safely assure if 1+5, 1+6 also works correct.

Example :

1. 1+999999999999 looks different and so may have a bug in it.

2. We provide five options to copy and paste. But all options perform same operation

a) Click copy

b) type c or C if menu displayed

c) ctrl + C or ctrl + shift + C

d) Click command to menu

e) press Ctrl + C

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: I (Testing Fundamentals) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 9/18

Figure 2.5 Multiple ways to invoke the copy function with same result.

3. Giving name in Save As dialog box - A name must be checked for a valid character,

invalid character, valid length, name too short and name too long.

Figure 2.6 File Name text box in the Save As dialog box illustrates several

equivalence partition possibilities.

A Windows filename can contain any characters except \ / : * ? " < > and |. Filenames can

have from 1 to 255 characters. If test cases are created for filenames, have equivalence

partitions for valid characters, invalid characters, valid length names, names that are too

short, and names that are too long.

Goals of Equivalence partitioning

 The aim of equivalence partitioning should not be to reduce number of test cases

 This process may lead to bugs.

 If the person is new to testing then get classes from an experienced person.

1.7. Data Testing

 Divide software into data and program

 Data – input, output, printout, mouse clicks etc.,

 Program – flow, transitions, logic, computation.

Examples of data

 Words typed in word processor.

 Numbers typed in spreadsheet

 Number of shots in your game

 Picture printed by your software

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: I (Testing Fundamentals) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 10/18

 Backup files stored on floppy disk

 Data sent to modem over phone lines.

Tester should reduce test cases by Equivalence partitioning based on few concepts. They are

boundary conditions, sub-boundary conditions, nulls and bad data.

1. Boundary conditions

 If it is possible to walk along the edge of a cliff, then it also possible to walk on

the middle.

 If software operates on edge of its capabilities, almost operates under normal

condition.

Figure 2.7 Software boundary is much like the edge of a cliff.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: I (Testing Fundamentals) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 11/18

Basic program

1) Rem create a 10 element integer array

2) Rem initialize each element to -1

3) Dim data(10) as integer

4) Dim i as integer

5) For i = 1 to 10

6) Data(i) = -1

7) Next i

8) End

 This program actually creates a data array of 11 elements from data (0) to data (10).

 The program loops from 1 to 10 and initializes those values of the array to 1, but since

the first element of our array is data (0), it doesn't get initialized.

 When the program completes, the array values look like this:

data(0) = 0 data(6) = 1

data(1) = 1 data(7) = 1

data(2) = 1 data(8) = 1

data(3) = 1 data(9) = 1

data(4) = 1 data(10) = 1

data(5) = 1

 The data (0)'s value is 0, not 1.

 If the same programmer later forgot about, or a different programmer wasn't aware of

how this data array was initialized, he might use the first element of the array, data (0),

thinking it was set to 1.

 Problems such as this are very common and, in large complex software, can result in very

nasty bugs.

Types of Boundary Conditions

Boundary conditions are situations at edge of planned operational limits of free software.

When a tester is presented with a software test problem that involves identifying boundaries,

he must look for the following types:

Numeric Speed

Character Location

Position Size

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: I (Testing Fundamentals) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 12/18

Numeric Speed

Quantity

And, the following are the characteristics of those types:

First/Last Min/Max

Start/Finish Over/Under

Empty/Full Shortest/Longest

Slowest/Fastest Soonest/Latest

Largest/Smallest Highest/Lowest

Next-To/Farthest-From

Testing the Boundary Edges

 Create 2 Equivalence partitions

 First partition should be such that it is the last value of a data and 2 points to be chosen

inside boundary.

 Second partition should be chosen as the data that can cause error and 2 invalid points

outside boundary

Testing outside boundary

 First -1 / last + 1

 Start -1 / finish + 1

 Less than empty / more than full

 Even slower / even faster

 Largest+1 / smallest -1

 Testing

 Text allowing 1-255 character. Test by entering 1 and 255

 Flight simulator – try at ground level and maximum height allowed

 If software allows 9 digit zip code enter and test 000000000 and 999999999

Sub Boundary Condition

 Not important for end user but must be checked.

 It is also called internal boundary conditions.

 Example: ASCII codes; powers–of-two

 These conditions are discussed with programmers and checked.

 It checks for default, empty, blank, null, zero and more.

 It also checks data that are invalid, wrong, incorrect and garbage data

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: I (Testing Fundamentals) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 13/18

 It includes testing the logic flow of software

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: I (Testing Fundamentals) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 14/18

1.8. State testing

 State testing is performed for verification of program logic

 Software state – It is the condition that the software is currently in.

 Example: paint program using menus or clicking button changes its state.

 In paint program a blank page may be called as a static state

 Selecting a pencil tool and drawing changes its state.

Figure 2.8 Windows Paint program in the pencil drawing state.

Figure 2.9 Windows Paint program in the airbrushing state.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: I (Testing Fundamentals) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 15/18

A software tester must test a program's states and the transitions between them.

1) Testing software logic flow:

 If the program to be tested is difficult it is impossible to traverse through all

possible paths.

 In such cases apply equivalence partitioning to select state and paths.

2) Creating a transition map

 If transition map is provided in production specification then test it according

to the specification

 If specification is not provided prepare new one and start testing

Figure 2.10 State transition diagrams can be drawn by using different techniques

 Items in State Transition Map

The following may be the components of a state transition map

 State of software that is unique.

 Input that takes software to another state.

 Set conditions and produced output when state is entered or exited.

 Create static transition map from user’s view.

3) Reducing no of states and transitions to test

Following are the five ways to set reasonable amount of states using equivalence

partitioning.

1) Visit each state at least once.

2) Test state-to-state transition that looks popular

3) Test least common paths between states.

4) Test all error state and returning from error states

5) Test random state transitions.

4) What to specifically test

 Identify specific states and state transitions.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: I (Testing Fundamentals) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 16/18

 Define test cases

Figure 2.11 Windows Paint opening screen in the startup state

 Startup state of paint

 Window size set to previous opened window

 Drawing area is black

 Toolbox, color box and status bar is displayed

 Pencil tool is selected

 Default color black foreground and white background.

 Dirty Document Flag:

 It is an invisible state but may be important

 Example: if word document is opened dirty document flag is in “clean

state”.

 If anything is typed the state changes to dirty.

 For every event this bit changes

 5) Testing states to fail:

Some of the conditions that lead to test-to-fail is race condition, repetition stress and

load.

1. Race condition and bad timing

 Handle interrupt at any time

 Run concurrently with everything else on the system

 Share resource like memory, disk, communication, hardware etc.,

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: I (Testing Fundamentals) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 17/18

Bad timing - two or more events line up and confess software that didn’t expect

to be interrupted.

 Race condition

 Saving and loading same document at same time by two programs.

 Sharing same printer.

 Pressing keys or mouse click when software is loading.

 Shutting down or sharing up two or more instance of software at same

time.

 Different program accessing common database.

b)Repetition, Stress and load

 Repetition: Doing same operation over and over

System behave erratically over time

 Stress: Running software under less than ideal condition.

Example: slow memory, low disturbance, slow CPU etc.

 Load: Feed software with largest possible data files.

2 considerations:

 Testers may say “User will not use the software like this”. Convince them to test and find

bugs

 It is not possible to check these conditions manually. So find automation software for

testing.

1.9. Other black box testing techniques

1. Behave like a dumb user

 Act like a new in-experienced user.

 Throw out any preconceived ideas about software.

2. Look for bugs where you have already found them

 Once the error is found correct it.

 Check again with same input and more than that limit.

3. Think like a hacker

4. Follow experience, intuition and hunches

 Gain experience

 Learn to test different types and size of products.

 Try different approaches

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

CLASS : III B.Sc IT

 Subject : Software Testing

Unit - I

Option 1 Option 2 Option 3 Option 4 Answer

1 Black box testing is sometime referred as ___________________. Glass Functional Structural All the above Functional

2 The term ANSI is referred__________________ Glass Functional Structural American National Standards Institute Glass

3 White box testing is sometime called as ___________________. American Networking Standard Institute American National Standard Institute American National Standardize Institute To Allow American National Standards Institute

4 Usage of equal partitioning is __________ test cases To Reduce To Increase To Avoid Equivalence Directory To Reduce

5 Other name for sub boundary condition______________ Internal Boundary Condition External Boundary Condition Incoming Boundary Value Quality Condition Internal Boundary Condition

6 State testing is performed for ______________ Verification Of Programming Codes Verification Of Programming Logic Transmission Of Programming Codes Both A & B Verification Of Programming Logic

7 Other name for equal partitioning _______________ Equivalence Classes Equivalence Objects Equivalence Methods Code Analysis Equivalence Classes

8 Multiple set of condition in the testing called as Library Procedure Race Condition Both A & B Race Condition

9 Static white box testing is the process of examining _____________ Design Code Logic International Electro Technical Consortium Both A & B

10 Review in software design , architecture or code for bugs is called _____________ Logic Analysis Structural Analysis Design Analysis International Organizing Standards Structural Analysis

11 Structural analysis can be tested by ____________ Programmers Testers End User None Of The Above Both A & B

12 IEC stands for _________ International Engineering Commission International Engineering Consortium International Electro Technical Commission American Computer Module International Engineering Consortium

13 ISO stands for __________ International Standard Organization International Software Organization International Organization For Standards Institution For Electrical And Electronic Engineering’sInternational Organization For Standards

14 NCITS stands for __________ National Cooperation For Information Technology Standards National Committee For Information Technology Standards National Conference For Information Technology StandardsTest Drivers

National Committee For Information

Technology Standards

15 ACM stands for__________ Association For Computing Machinery American Computing Machinery Association For Coding Machinery Test Drivers Association For Computing Machinery

16 IEEE stands for___________ Institute For Electrical And Electronic Engineering Inc Institution For Electrical And Electronic Engineering Institute For Electrical And Electronic Engineering Instruction

 Institute For Electrical And Electronic

Engineering Inc

17 Bottom – up right own modules are called ______ Drivers Dataflow Big-Bang Instruction Test Drivers

18 Top-down sometime called as ______ Drivers Dataflow Big-Bang Instruction Big-Bang

19 A process block is a sequence of program statements uninterrupted by Decisions Process Block Case Statement None Of The Above Decisions

20 A ________ is a program point at which the control flow can diverge Decisions Process Block Case Statement None Of The Above Decisions

21 . A __________ is a multi-way branch or decisions Decisions Process Block Case Statement None Of The Above Case Statement

22 _________ Execute all possible control flow paths through the program Path Testing Statement Testing Branch Testing Self Blindness Path Testing

23 _________Execute all statement in the program at least once under some test Path Testing Statement Testing Branch Testing Path Statement Testing

24 _________Execute enough tests to assure that every branch alternative has been Path Testing Statement Testing Branch Testing Path Branch Testing

25 Predicates of the form A OR B, A AND B and more complicated Boolean expressions Compound Predicates Associated Predicates Assignment Blindness Case Statements Compound Predicates

26 The input for a particular test is mapped as a one dimensional array called as Dynamic Vector Input Vector Predicate No.Of Path Input Vector

27 The logical function evaluated at a decision is called _______ Dynamic Vector Input Vector Predicate Transmission Of Programming Logic Predicate

28 A ________ is a point in the program where the control flow can merge Process Block Decisions Junctions Structural d)All the above Junctions

29 The length of path is measured by ___________ In it No.Of Links No.Of Nodes No.Of Branches Equivalence Partitioning No.Of Links

30 _____________ occurs when the buggy predicate is a multiple of the correct Testing Blindness Assignment Blindness Equality Blindness Self Blindness Self Blindness

31 Testing helps to Fix defect Improve quality Measure quality All of the above. Measure quality

32 Bug is same name of Error Incident Mistake Defect Defect

33 Which of the following is largest bug producer? Code Design Specification other Specification

34 In software development life cycle , who is the best person to catch a defect? Software Tester Customers Designer Developer Business Analyst

35 Defects are less costly if detected in which of the following phases Coding Design Requirements Gathering Implementation Implementation

36 User Acceptance testing is User Acceptance testing is Black box testing Gray box testing unit testing Black box testing

37 . Error guessing is a Test verification techniques Test execution techniques Test control management techniques Test data management technique Test data management technique

38 Which of the following term describes testing? Finding broken code Evaluating deliverable to find errors A stage of all projects None of the mentioned Evaluating deliverable to find errors

39 What are the various Testing Levels? Unit Testing System Testing ntegration Testing All of the mentioned All of the mentioned

40 Boundary value analysis belong to? Boundary value analysis belong to? Black Box Testing White Box & Black Box Testing Gray-box testing Black Box Testing

 ……………… is black-box testing method that divides the input domain of a program into

classes of data from which test cases can be derived. Condition testing Graph-based testing Equivalence partitioning loop testing Equivalence partitioning

41

……………. is the first step in black-box testing in order to understand the objects that are

modeled in software and the relationships that connect these objects. Condition testing Graph-based testing Comparison testing loop testing Graph-based testing

42

The independent versions from the basis of a black-box testing technique are called

……………. Condition testing Graph-based testing Comparison testing loop testing Comparison testing

43

 ……………….. tests are designed to validate functional requirements without regard to the

internal working of program. White-box test Control structure test Black-box test Gray-box test Black-box test

44 Which of the following is black box testing Basic path testing Boundary value analysis Code path analysis None of the mentioned Boundary value analysis

48 Which things are measured by Software Test Effectiveness? How many customer requirements are implemented in system? How well the customer specifications are achieved by the system? How much effort is put in developing the system? All of the above All of the above

49 What is the order in which test levels are performed? Unit, Integration, System, Acceptance Unit, System, Integration, Acceptance Unit, Integration, Acceptance, System It depends on nature of a project It depends on nature of a project

50 Who is responsible for Component Testing? Software tester Designer User Developer Developer

51 In which of the following is / are methodologies of walkthrough? Scenario, Dry Run, Peer Group Includes Metrics Formal Follow Up Process Kick off meetings Scenario, Dry Run, Peer Group

52 To check whether coding standards are followed, which type of testing will be beneficial? Dynamic Testing Static Testing Parameter Testing Computation Testing Static Testing

53 Which of the following is / are not an important goal of a walkthrough? Gather information Discuss alternatives Establish common understanding Find defects Find defects

54 Which of the following is / are the Review Technique documented? Inspection walkthrough Both of These None of these Inspection

55 Who generally uses the Static Analysis Tools? Developer Tester Customer All of the above Developer

56 Which of the following comes under the Control Structure Testing? Condition testing Loop testing Data Flow Testing All of the above All of the above

57
When should company stop the testing of a particular software? After system testing done It depends on the risks for the system being tested After smoke testing done None of the above

It depends on the risks for the system being

tested

58
When should company stop the testing of a particular software? After system testing done It depends on the risks for the system being tested After smoke testing done None of the above

It depends on the risks for the system being

tested

59 Which of the following is / are the type of Cohesion? Functional Layer Communicational All of the above All of the above

60 Which is a procedure? Wait Exit WaitForProperty None of these Wait

61 _______ is user created alert. Alert Me Follow up Flag Email Follow up

62 Who leads a walkthrough? Author Moderator Reviewer Scribe Author

63 Which of the following Review Technique is / are not time bound? Inspection walkthrough Both of These None of These walkthrough

64 Requirement Engineering is not concern with ____________. Requirement Design Requirement Elicitation Requirement Analysis Requirement Documentation Requirement Design

65

A retail company purchased commercial off the shelf application for automating their billing

process. But before introducing it on large scale they are going for beta testing .What will be

the reason for doing this?

To find defects To train employees To gain confidence in system All of the above All of the above

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 1/27

UNIT – II

Examining the code
Static White-Box testing- Formal reviews – Coding Standards and Guidelines- Generic Code

Review Checklist. Testing the software with X-Ray glasses: Dynamic White-Box testing- Dynamic

White-Box testing versus Debugging-Testing the Pieces- Data Coverage- Code Coverage.

Flowgraphs and Path Testing

Path-testing Basics – Predicates, Path Predicates and Achievable Paths-Path sensitizing-Path

Instrumentation-Implementation and Application of Path Testing

References:

1. Boris Beizer (2009), Software Testing Techniques (2
nd

 ed.). New Delhi Dreamtech Press

2. Ron Patton (2002) Software Testing (2
nd

 ed.). New Delhi: Pearson Education

3. Dorothy Graham, Erik Van Veenendaal, Isabel Evans, Rex Black (2007). Foundations of

Software Testing, ISTQB Certification.

4. Brian Hambling, Peter Morgan, Angelina Samaroo, Geoff Thompson (2010). Software Testing ,

(2
nd

 ed.). An ISEB Foundation, BCS

5. Renu Rajani, Pradeep Oak (2004). Software Testing- Effective Methods, Tools and Techniques,

Tata McGraw Hill, New Delhi

Web Sites

1. www.testinggeek.com

2. www.softwaretestinghelp.com

3. www.softwaretestinginstitute.com

http://www.softwaretestinginstitute.com/

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 2/27

EXAMINING THE CODE

1.10. Static white box testing

It is the process of examining design and code. It includes

 Reviewing software design, architecture or code for bugs with execution.

 Also called structured analysis

 This method finds bugs early during the development process

 It finds bugs that are difficult to uncover

 Highly cost effective

 Many companies treat this time consuming

 But nowadays people have identified its importance

Person who perform this testing
1. Programmers

2. Testers

1.11 Formal review

 It is a meeting between two programmers

 It is a rigorous method of inspection of software design and code.

 4 elements:
1. Identify problem - find wrong and missing items. The criticism is only to the product. It

should not extend to the programmer

2. Follow rules - amount of code to be reviewed, time spent, what can be commented on

etc. are provided in the rules

3. Prepare for review – the reviewers must know what is their duty, role, responsibility

during the review and fulfill them.

4. Write a report: Finally after the review a written report summarizing the result of review

must be prepared.

Figure 2.12 Formal reviews are the first nets used in catching bugs

Use of formal review

 It increases communication between testers

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 3/27

 Improves quality of the software product

 Team camaraderie

 It provides a solution even for tough problem.

1. Peer review or buddy review

 It is done by designer, programmer and tester together.

 They review the code and look for problems

 Since it is informal method of testing, the testers may not follow the four elements of testing

2. Walkthroughs

 Programmer who wrote the code formally presents the application to a small group of

reviewers

 One senior programmer must be a reviewer

 The reviewer can write comments and questions

 There will be large number of people. So this method looks much formal

 Presenter writes report on how bugs were found and how to solve it

3. Inspections

 It is a highly structured method of testing

 The participants here needs training

 The presenter is not a programmer.

 Some other person learn and explain the code to others

 Other participants are called inspectors

 Using this method identify different bugs

 The review process is done backwards

 After the testing process is done, prepare a written report.

 This report identifies rework

 A re-inspection is done to locate remaining bugs

1.12 Coding standards and guidelines

Standards are specifications that are established, fixed and have-to-follow-them rules. It also

specifies the rules that must be followed and that must not be followed.

Guidelines may be a bit loose rule. There are 3 rules to adhere to standards and guidelines

1. Reliability – code is reliable if standard is followed

2. Readability/Maintainability – Easy to read, understand and maintain

3. Portability – code can be moved to any platform

Example of programming standards and guidelines

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 4/27

These standards and guidelines specified below are defined for use of ‘goto’, ‘while’ and ‘if-

else’ in C

The 4 parts to be mentioned for standard and guideline

1. Title describes what topic the standard covers.

2. Standard (or guideline) describes the standard or guideline explaining exactly what's

allowed and not allowed.

3. Justification gives the reasoning behind the standard so that the programmer understands

why it's good programming practice.

4. Example shows simple programming samples of how to use the standard. This isn't

always necessary.

Figure 2.13 Sample coding standard

Example for guideline

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 5/27

Figure 2.14. An example of a programming guideline

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 6/27

Standards obtained from

1. ANSI – American National Standards Institute

2. IEC – International Engineering Consortium

3. ISO – International Organization for Standardization

4. NCITS – National Committee for Information Technology Standards

Guidelines obtained from

 1. ACM – Association for Computing Machinery

 2. IEEE – Institute for Electrical and Electronics Engineering Inc.

1.13. Generic Code Review Checklist

There are many types of errors that must be listed before going into the process of testing. They are

1. Data reference error

 Is uninitialized variable referenced?

 Is array out of bound

 Is there any problem in index references of array?

 Is any variable used instead of constant?

 Is floating point number assigned to integer variable?

 Is memory allocated for pointers?

2. Data declaration error

 Is all variables assigned correct length, type etc?

 Check if variable initialized while declared

 Is there variable name with similar name?

 Are there any unreferenced variable

 Are all variable explicitly declared?

3. Computation error

 Existence of two variables of different data type – integer and float

 Existence of two variable of different length – byte and word

 Variable in assignment smaller than Right hand side of expression

 Overflow, underflow

 Division by zero

 Value of variable outside range. Example percentage value only between 0-100

 Confusion in order of expression if there are multiple operators

4. Comparison error

 Is comparison correct?

 Is there comparison between fractional and floating point?

 Is there any confusion in order of evaluation in Boolean expression?

 Whether operators in Boolean expression are Boolean?

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 7/27

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 8/27

5. Control flow error

 Matching groups, begin-end, do-while

 Whether loop terminates correctly?

 Possibility if a loop never executes

 Switch index exceeds number of existing branches

 Unexpected flow through loop

6. Subroutine parameter error

 Type, size and order of precedence correct or not

 Multiple entry point in subroutine

 Change in order of parameters if send as constant

 Is there any alteration in parameters?

 Whether formal and actual arguments match?

 Whether definition of global variable same everywhere

7. I/O error

 Data format read/printed

 Device not ready

 Device disconnected

 Error handled in expected way

 Check error message for spelling and grammar

8. Other checks

 Will the software work with language other than English?

 Will the software work with other compilers and CPU’s?

 Will the software work with different amount of memory, hardware, sound card etc?

 Whether compilation of program produce warning or informational message

TESTING SOFTWARE WITH X-RAY GLASSES

1.14. Dynamic White-Box Testing

It is a structured method of testing. This method use underlying structure of code to design and run

the tests.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 9/27

Figure 2.15 A test case containing a computer and other a person with a pencil and paper.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 10/27

The four areas that dynamic white-box testing encompasses are

1. Directly testing low-level functions, procedures, subroutines, or libraries. In

Microsoft Windows, these are called Application Programming Interfaces (APIs).

2. Testing the software at the top level, as a completed program, but adjusting your test

cases based on what you know about the software's operation.

3. Gaining access to read variables and state information from the software to help you

determine whether your tests are doing what you thought. And, being able to force

the software to do things that would be difficult if you tested it normally.

4. Measuring how much of the code and specifically what code you "hit" when you run

your tests and then adjusting your tests to remove redundant test cases and add

missing ones.

1.15. Dynamic white box testing versus debugging

It's important not to confuse dynamic white-box testing with debugging. The two techniques may

appear similar because they both involve dealing with software bugs and looking at the code, but

they're very different in their goals

Figure 2.16 Dynamic white-box testing and debugging have different goals but they do

overlap in the middle

White box testing – Find bugs to perform testing

Debugging – Programming is done and fix the bugs

Tester – Performs white box testing. He includes information about suspicious code.

Programmer – Debugs and picks process from tester. He determines the reason for bug and fixes it.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 11/27

1.16. Testing the pieces

Testing cost of software if errors found late in the program

2 reasons for high cost

1. Difficult to find place of error

2. Some bugs hide others

a. Unit and integration testing

Testing at lowest level – unit or module testing

Testing after integration modules – Integration testing

Testing entire or major portion of software – System testing

Figure 2.17 Individual pieces of code are built up and tested separately, and then integrated

and tested again

b. Approaches to this incremental testing

i)Bottom-up

 Write own modules called test drivers

 These drivers send test-case data to testing modules

 Read results

 Verify whether they are correct or not

ii) Top-down

Top-down testing may sound like big-bang testing on a smaller scale.

After all, if the higher-level software is complete

It must be too late to test the lower modules

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 12/27

Figure 2.18 A test driver can replace the real software and more efficiently test a low-level

module.

1.17. Data Coverage

It divides the code into data and states. A data is a variable, constant, arrays, data structures or input

files.

a. Data flow

 It involves tracking a piece of data completely

 If function is tested at low level, use debugger and watch variables to view data as

program runs

 Black box testing - This type of testing is done where the start and end value of

variable

 White box testing – check intermediate values also

b. Sub-boundaries

 Sub-boundaries of a program are also checked. For example in tax calculation

application this must be checked for the respective range of income values.

 It also verifies the execution of a system working in an operating system with low

RAM.

 This testing is also performed for complex numerical analysis programs.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 13/27

Figure 7.8 A debugger and watch variables can help you trace a variable's values

through a program.

c. Formulas and Equations

 Testing must be performed for the expressions also

 Example for the formula of Compound interest calculation

A=p (1+r/n)
nt

 Black box testing – A black box testing involves the test case chosen as n=0.

 A black-box tester is not aware of the ‘division by zero’ error. He finds the result of

 execution given the value of n as 0.

 A white box tester is aware of the ‘division by zero’ error if the value given for n=0.

He checks if there is any way that n can ever become zero

d. Error forcing

 It is a method used to force the software to test specific values

 In the compound Interest calculation, even if value of n is not zero, force it to

become zero.

 Check what the software does to handle it.

1.18. Code coverage

This involves the following process

 Enter and Exit every module.

 Execute every line of code

 Follow every logic and decision path through software

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 14/27

Figure 7.9 Debugger allows to single-step through the software to see lines of code and

modules are executed while running test cases.

Process

 Code coverage is a dynamic white box testing method

 This method have full access to code

 This method views all part of the software when test cases are minimum

 The simplest way of code coverage process is using compiler’s debugger to view lines of

code.

 If the program size is small use the debugger to test

 If the program is large, the tester must use some specialized tool for code coverage analysis

 The code coverage analyzer runs transparently in the background execution of the software.

Each time a line of code is executed, the analyzer records the information.

 The results obtained from the analyzer are

o Which part of software test cases don’t cover? If so, write additional test cases

o Which test cases are redundant? If it exists remove it.

o What new cases are to be created for better coverage? Find those cases and add to

 the existing test cases.

Types of Code coverage

a. Program statements and line coverage

 Execute every statement of program atleast once

 But it cannot be assured that all paths of the code are covered fully

b. Branch coverage

 Covering all the paths in the software is called path testing. A form of path testing is branch

coverage testing

 It tests all statements and all branches

c. Condition coverage

 It takes extra conditions on branch statements into account

 Example

o If Date=01-01-2000 and Time-00.00.00, then test cases should be

 01-01-1999 11.11.11

 01-01-1999 00.00.00

 01-01-2000 11.11.11

 01-01-2000 00.00.00

 Check for condition coverage and achieve branch coverage and automatically statement

coverage is achieved

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 15/27

FLOWGRAPHS AND PATH TESTING

2.1 Path Testing Basics

2.1.1. Motivations and Assumptions

 Path Testing
o Path Testing is the name given to a family of test techniques based on

judiciously selecting a set of test paths through the program.

o If the set of paths are properly chosen then we have achieved some measure of

test thoroughness. For example, pick enough paths to assure that every source

statement has been executed at least once.

o Path testing techniques are the oldest of all structural test techniques.

o Path testing is most applicable to new software for unit testing. It is a structural

technique.

o It requires complete knowledge of the program's structure.

o It is most often used by programmers to unit test their own code.

o The effectiveness of path testing rapidly deteriorates as the size of the software

aggregate under test increases.

 The Bug Assumption
o The bug assumption for the path testing strategies is that something has gone

wrong with the software that makes it take a different path than intended.

o As an example "GOTO X" where "GOTO Y" had been intended.

o Structured programming languages prevent many of the bugs targeted by path

testing: as a consequence the effectiveness for path testing for these languages

is reduced and for old code in COBOL, ALP, FORTRAN and Basic, the path

testing is indispensable.

2.1.2. Control Flow Graphs
o The control flow graph is a graphical representation of a program's control

structure. It uses the elements named process blocks, decisions, and junctions.

o The flow graph is similar to the earlier flowchart, with which it is not to be

confused.

o Flow Graph Elements: A flow graph contains four different types of

elements. (1) Process Block (2) Decisions (3) Junctions (4) Case Statements

1. Process Block:
 A process block is a sequence of program statements

uninterrupted by either decisions or junctions.

 It is a sequence of statements such that if any one of statement of

the block is executed, then all statement thereof is executed.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 16/27

 Formally, a process block is a piece of straight line code of one

statement or hundreds of statements.

 A process has one entry and one exit. It can consists of a single

statement or instruction, a sequence of statements or instructions,

a single entry/exit subroutine, a macro or function call, or a

sequence of these.

2. Decisions
 A decision is a program point at which the control flow can

diverge.

 Machine language conditional branch and conditional skip

instructions are examples of decisions.

 Most of the decisions are two-way but some are three way

branches in control flow.

3. Case Statements
 A case statement is a multi-way branch or decisions.

 Examples of case statement are a jump table in assembly

language, and the PASCAL case statement.

 From the point of view of test design, there are no differences

between Decisions and Case Statements.

4. Junctions
 A junction is a point in the program where the control flow can

merge.

 Examples of junctions are: the target of a jump or skip instruction

in ALP, a label that is a target of GOTO.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 17/27

Figure 2.1: Flowgraph Elements

2.1.3 Path Testing

Paths, Nodes and Links

 A path through a program is a sequence of instructions or statements that starts

at an entry, junction or decision and ends at another or possibly the same

junction, decision or exit.

 Path goes through several segments. The smallest segment is a link that is a

single process that lies between two nodes.

 A path segment is a succession of consecutive links that belongs to some path.

 The length of path is measured by the no. of links in it.

 The name of the path is the name of the nodes along the path

 The path has a loop in it if any node name is repeated.

Multi-Entry/Multi-Exit Routines

The trouble with multi- entry and multi-exit routines is that it can be very

difficult to determine what the interprocess control flow is. The use of multi-entry

and multi-exit routines increases the number of entries and exits and therefore the number

of interfaces.

Fundamental Path Selection Criteria

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 18/27

1. Exercise every path from entry to exit.

2. Exercise every statement or instruction at least once.

3. Exercise every branch and case statement, in each direction, at least once.

Path –Testing Criteria

We have, therefore, explored three different testing criteria or strategies out of a

potentially infinite family of strategies

1.Path Testing – Execute all possible control flow paths through the program.

2.Statement Testing-Execute all statement in the program at least once under some test.

3.Branch Testing –Execute enough tests to assure that every branch alternative has been

exercised at least once under some test.

2.1.4. Loops

The Kinds of Loops - There are only three kinds of loops: nested, concatenated and horrible.

Cases for a Single Loop

A single loop can be covered with two cases: looping and not looping.

Case 1-Single Loop, Zero Minimum, N Maximum, No Excluded Values

1. Try bypassing the loop.

2. Could the loop-control variable be negative? Could it appear to specify a negative number of

 iterations? What happens to such a value?

3. One pass through the loop.

4. Two passes through the loop for reason discussed below.

5. A typical number of iterations, unless covered by a previous test.

6. One less than the maximum number of iterations.

7. The maximum number of iterations.

8. Attempt one more than the maximum number of iterations.

Case 2-Single Loop, Nonzero Minimum, No Exclude Values

1. Try one less than the expected minimum. What happens if the loop control variable’s value is

 less than the minimum? What prevents the value from being less than the minimum?

2. The minimum number of iterations.

3. One more than the minimum number of iterations.

4. Once, unless covered by a previous test.

5. Twice, unless covered by a previous test.

6. A typical value.

7. One less than the maximum value.

8. The maximum number of iterations.

9. Attempt one more than the maximum number of iterations.

Case 3-Single Loops with Excluded Values

Treat single loops with excluded values as two sets of tests consisting of loops without excluded

values, such as Cases 1to2.

Nested Loops

1. Start at the innermost loop. Set all the outer loops to their minimum values.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 19/27

2. Test the minimum, minimum+1, typical, maximum-1,and maximum for the innermost loop,

 while holding the outer loops at their minimum-iteration-parameter values.

3. If done with outer most loop go to step 5 else move out one loop and set it up as in step 2

4. Continue outward in this manner until all loops have been covered.

5. Do the five cases for all loops in the nest simultaneously

Concatenated Loops

This loop falls between single and nested loops with respect to test cases. Two loops are

concatenated if it is possible to reach one after exiting the other while still on a path from entrance

to exit. if the loops cannot be on the same path, then they are not concatenated and can be treated as

individual loops .

Horrible Loops

It is use of code that jumps into and out of loops, intersecting loops, hidden loops and cross-

connected loops make iteration-value selection for test cases which is an ugly task that should be

avoided

2.2 Predicates, Path Predicates and Achievable Paths

2.2.1 Predicate

The logical function evaluated at a decision is called Predicate. The direction taken at a

decision depends on the value of decision variable. Some examples are: A>0, x+y>=90.......

Path Predicate

A predicate associated with a path is called a Path Predicate. For example, "x is greater than

zero", "x+y>=90", "w is either negative or equal to 10 is true" is a sequence of predicates

whose truth values will cause the routine to take a specific path.

Multiway Branches

 The path taken through a multiway branch such as a computed GOTO's, case

statement, or jump tables cannot be directly expressed in TRUE/FALSE terms.

 Although, it is possible to describe such alternatives by using multi valued logic, an

expedient (practical approach) is to express multiway branches as an equivalent set

of if..then..else statements.

 For example a three way case statement can be written as: If case=1 DO A1 ELSE

(IF Case=2 DO A2 ELSE DO A3 ENDIF)ENDIF.

Inputs

 In testing, the word input is not restricted to direct inputs, such as variables in a

subroutine call, but includes all data objects referenced by the routine whose values

are fixed prior to entering it.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 20/27

 For example, inputs in a calling sequence, objects in a data structure, values left in

registers, or any combination of object types.

 The input for a particular test is mapped as a one dimensional array called as an

Input Vector.

2.2.2 Predicate Expressions

Predicate Interpretation

 The simplest predicate depends only on input variables.

 For example if x1,x2 are inputs, the predicate might be x1+x2>=7, given the

values of x1 and x2 the direction taken through the decision is based on the

predicate is determined at input time and does not depend on processing.

 Another example, assume a predicate x1+y>=0 that along a path prior to

reaching this predicate we had the assignment statement y=x2+7. although our

predicate depends on processing, we can substitute the symbolic expression for

y to obtain an equivalent predicate x1+x2+7>=0.

 The act of symbolic substitution of operations along the path in order to express

the predicate solely in terms of the input vector is called predicate

interpretation.

 Some times the interpretation may depend on the path; for example,

 INPUT X

 ON X GOTO A, B, C, ...

 A: Z := 7 @ GOTO HEM

 B: Z := -7 @ GOTO HEM

 C: Z := 0 @ GOTO HEM

 HEM: DO SOMETHING

 HEN: IF Y + Z > 0 GOTO ELL ELSE GOTO EMM

The predicate interpretation at HEN depends on the path we took through the

first multi way branch. It yields for the three cases respectively, if Y+7>0, Y-

7>0, Y>0.

 The path predicates are the specific form of the predicates of the decisions along

the selected path after interpretation.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 21/27

Independence Of Variables And Predicates
 The path predicates take on truth values based on the values of input variables,

either directly or indirectly.

 If a variable's value does not change as a result of processing, that variable is

independent of the processing.

 If the variable's value can change as a result of the processing, the variable is

process dependent.

 A predicate whose truth value can change as a result of the processing is said to

be process dependent and one whose truth value does not change as a result of

the processing is process independent.

 Process dependence of a predicate does not always follow from dependence of

the input variables on which that predicate is based.

Correlation Of Variables And Predicates

 Two variables are correlated if every combination of their values cannot be

independently specified.

 Variables whose values can be specified independently without restriction are

called uncorrelated.

 A pair of predicates whose outcomes depend on one or more variables in

common are said to be correlated predicates.

For example, the predicate X==Y is followed by another predicate X+Y == 8. If

we select X and Y values to satisfy the first predicate, we might have forced the

2nd predicate's truth value to change.

 Every path through a routine is achievable only if all the predicates in that

routine are uncorrelated.

Path Predicate Expressions

 A path predicate expression is a set of Boolean expressions, all of which must

be satisfied to achieve the selected path.

Example:

 X1+3X2+17>=0

 X3=17

 X4-X1>=14X2

Any set of input values that satisfy all of the conditions of the path predicate

expression will force the routine to the path.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 22/27

Some times a predicate can have an OR in it.

Example:

A: X5 > 0

B: X1 + 3X2 + 17 >= 0

C: X3 = 17

D: X4 - X1 >= 14X2

E: X6 < 0

B: X1 + 3X2 + 17 >= 0

C: X3 = 17

D: X4 - X1 >= 14X2

Boolean algebra notation to denote the Boolean expression:

ABCD+EBCD=(A+E)BCD

2.2.3. Predicate Coverage

Compound Predicate: Predicates of the form A OR B, A AND B and more

complicated Boolean expressions are called as compound predicates.

Some times even a simple predicate becomes compound after interpretation.

Example: the predicate if (x=17) whose opposite branch is if x.NE.17 which is

equivalent to x>17 . Or. X<17.

Predicate coverage is being the achieving of all possible combinations of truth

values corresponding to the selected path have been explored under some test.

As achieving the desired direction at a given decision could still hide bugs in the

associated predicates.

2.2.4.Testing Blindness

Testing Blindness is a pathological (harmful) situation in which the desired path is

achieved for the wrong reason.

There are three types of Testing Blindness:

Assignment Blindness

Assignment blindness occurs when the buggy predicate appears to work

correctly because the specific value chosen for an assignment statement works

with both the correct and incorrect predicate.

For Example:

Correct Buggy

X = 7 X = 7

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 23/27

........

if Y > 0 then ...

........

if X+Y > 0 then ...

If the test case sets Y=1 the desired path is taken in either case, but there is

still a bug.

Equality Blindness

Equality blindness occurs when the path selected by a prior predicate results

in a value that works both for the correct and buggy predicate.

For Example:

Correct Buggy

if Y = 2 then

........

if X+Y > 3 then ...

if Y = 2 then

........

if X > 1 then ...

The first predicate if y=2 forces the rest of the path, so that for any positive

value of x. the path taken at the second predicate will be the same for the

correct and buggy version.

Self Blindness

Self blindness occurs when the buggy predicate is a multiple of the correct

predicate and as a result is indistinguishable along that path.

For Example:

Correct Buggy

X = A

........

if X-1 > 0 then ...

X = A

........

if X+A-2 > 0 then ...

The assignment (x=a) makes the predicates multiples of each other, so the

direction taken is the same for the correct and buggy version.

2.3. Path Sensitizing

2.3.1. Review: Achievable and Unachievable Paths

Select and test enough paths to achieve a satisfactory notion of test completeness

such as C1+C2.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 24/27

Extract the programs control flow graph and select a set of tentative covering paths.

For any path in that set, interpret the predicates along the path as needed to express

them in terms of the input vector. In general individual predicates are compound or

may become compound as a result of interpretation.

Trace the path through multiplying the individual compound predicates to achieve a

Boolean expression such as

(A+BC) (D+E) (FGH) (IJ) (K) (l) (L).

Multiply out the expression to achieve a sum of products form:

ADFGHIJKL+AEFGHIJKL+BCDFGHIJKL+BCEFGHIJKL

Each product term denotes a set of inequalities that if solved will yield an input

vector that will drive the routine along the designated path.

Solve any one of the inequality sets for the chosen path and you have found a set of

input values for the path.

If you can find a solution, then the path is achievable.

If you can’t find a solution to any of the sets of inequalities, the path is un

achievable.

The act of finding a set of solutions to the path predicate expression is called PATH

SENSITIZATION.

2.3.2. Heuristic Procedures For Sensitizing Paths

 This is a workable approach, instead of selecting the paths without considering

how to sensitize, attempt to choose a covering path set that is easy to sensitize

and pick hard to sensitize paths only as you must to achieve coverage.

 Identify all variables that affect the decision.

 Classify the predicates as dependent or independent.

 Start the path selection with un correlated, independent predicates.

 If coverage has not been achieved using independent uncorrelated predicates,

extend the path set using correlated predicates.

 If coverage has not been achieved extend the cases to those that involve

dependent predicates.

 Last, use correlated, dependent predicates.

2.4. Path Instrumentation

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 25/27

 Path instrumentation is what we have to do to confirm that the outcome was

achieved by the intended path.

 Co-incidental Correctness: The coincidental correctness stands for achieving

the desired outcome for wrong reason.

 Figure 2.2: Coincidental Correctness

 The above figure is an example of a routine that, for the (unfortunately) chosen input

value (X = 16), yields the same outcome (Y = 2) no matter which case we select.

Therefore, the tests chosen this way will not tell us whether we have achieved

coverage. For example, the five cases could be totally jumbled and still the outcome

would be the same. Path Instrumentation is what we have to do to confirm that the

outcome was achieved by the intended path.

 The types of instrumentation methods include:

Interpretive Trace Program:

 An interpretive trace program is one that executes every statement in

order and records the intermediate values of all calculations, the

statement labels traversed etc.

 If we run the tested routine under a trace, then we have all the

information we need to confirm the outcome and, furthermore, to

confirm that it was achieved by the intended path.

 The trouble with traces is that they give us far more information than

we need. In fact, the typical trace program provides so much

information that confirming the path from its massive output dump is

more work than simulating the computer by hand to confirm the path.

Traversal Marker or Link Marker:

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 26/27

 A simple and effective form of instrumentation is called a traversal

marker or link marker.

 Name every link by a lower case letter.

 Instrument the links so that the link's name is recorded when the link is

executed.

 The succession of letters produced in going from the routine's entry to

its exit should, if there are no bugs, exactly correspond to the path

name.

0. Figure 2.12: Single Link Marker

Instrumentation

 Why Single Link Markers aren't

enough: Unfortunately, a single link marker

may not do the trick because links can be

chewed by open bugs.

1. Figure 2.13: Why Single Link Markers

aren't enough.

2. We intended to traverse the link path, but

 Figure 2.3 Single Link Marker Instrumentation

 Because of a rampaging GOTO in the middle of the m link, we go to

process B. If coincidental correctness is against us, the outcomes will be

the same and we won't know about the bug.

Two Link Marker Method

 The solution to the problem of single link marker method is to

implement two markers per link: one at the beginning of each link and

on at the end.

 The two link markers now specify the path name and confirm both the

beginning and end of the link.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 27/27

Figure 2.4: Double Link Marker Instrumentation.

Link Counter

 A less disruptive (and less informative) instrumentation method is based on

counters. Instead of a unique link name to be pushed into a string when the link

is traversed, we simply increment a link counter. We now confirm that the path

length is as expected. The same problem that led us to double link markers also

leads us

to

double link counters.

2.5 Implementation and Application of Path Testing

2.5.1. Integration, Coverage and Path in Called Components

Path testing methods are mainly used in unit testing. However to create an environment in order to

provide required inputs and also to receive the outputs from such units, we need to do test harness in

order to create environment with required test stubs and test drivers

In order to perform testing in sub routines that need to be integrated, we have to think about paths

within the sub routine. Then to achieve test coverage both statement coverage (C1) and branch

coverage (C2) are to be done

The components must be then integrated with its called subroutines by carefully probing the

interface issues. Once the integrations have been tested we retest the integrated components.

2.5.2.New Code

Wholly new or substantially modified code should always be subjected to enough path testing to

achieve C2

2.5.3.Maintenance

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: II (Examining the code) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 28/27

Path testing is used first on the modified component, as for new software but called and co requisite

components will invariably be real rather than simulated.

2.5.4.Rehosting

Path testing with C1+C2 coverage is a powerful tool for rehosting old software. When used in

conjunction with automatic or semi automatic structural test generators, a powerful effective

rehosting process can be done.

2.6. Testability tips

1. Keep in mind three numbers: the total number of paths, the total number of achievable

Paths and the number of paths required to achieve C2 coverage.

2. Make decision once and only once and stick to them

3. Don’t squeeze he code

4. If you cant test it, don’t build it

5. If you don’t test it rip it out

6. Introduce no extras and unwanted generalizations

7. If it is not possible to sensitize then we don’t know what we are doing

8. Easy cover beats elegance every time

9. Covering paths make functional sense

10. Deeply nested and/or horrible loops are not a mark of genius but of a murky mind

11. Flags switches and instruction modification are evil

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: III (Transaction Flow Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 1/15

Unit III

Transaction-Flow Testing and Data-Flow Testing

Transaction Flows-Transaction Flow Testing Techniques. Data-Flow Testing Basics-Data-Flow Testing

Strategies-Application, Tools, Effectiveness

References:

1. Boris Beizer (2009), Software Testing Techniques (2
nd

 ed.). New Delhi Dreamtech Press

2. Ron Patton (2002) Software Testing (2
nd

 ed.). New Delhi: Pearson Education

3. Dorothy Graham, Erik Van Veenendaal, Isabel Evans, Rex Black (2007). Foundations of

Software Testing, ISTQB Certification.

4. Brian Hambling, Peter Morgan, Angelina Samaroo, Geoff Thompson (2010). Software

Testing , (2
nd

 ed.). An ISEB Foundation, BCS

5. Renu Rajani, Pradeep Oak (2004). Software Testing- Effective Methods, Tools and

Techniques, Tata McGraw Hill, New Delhi

Web Sites

1. www.testinggeek.com

2. www.softwaretestinghelp.com

3. www.softwaretestinginstitute.com

http://www.softwaretestinginstitute.com/

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: III (Transaction Flow Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 2/15

2. Transaction-Flow Testing

2.7 Transaction Flows

2.7.1 Definitions
o A transaction is a unit of work seen from a system user's point of view.

o A transaction consists of a sequence of operations, some of which are

performed by a system, persons or devices that are outside of the system.

o Transaction begins with Birth-that is they are created as a result of some

external act.

o At the conclusion of the transaction's processing, the transaction is no longer in

the system.

2.7.2 Example of a transaction

A transaction for an online information retrieval system might consist of the following

steps or tasks:

 Accept input (tentative birth)

 Validate input (birth)

 Transmit acknowledgement to requester

 Do input processing

 Search file

 Request directions from user

 Accept input

 Validate input

 Process request

 Update file

 Transmit output

 Record transaction in log and clean up (death)

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: III (Transaction Flow Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 3/15

Transaction Flow Graphs
o Transaction flows are introduced as a representation of a system's processing.

o The methods that were applied to control flow graphs are then used for

functional testing.

o Transaction flows and transaction flow testing are to the independent system

tester what control flows are path testing is to the programmer.

o The transaction flow graph is to create a behavioral model of the program that

leads to functional testing.

o The transaction flow graph is a model of the structure of the system's behavior

(functionality).

o An example of a Transaction Flow is as follows:

Figure 3.1: An Example of a Transaction Flow

2.7.3 Usage
o Transaction flows are indispensable for specifying requirements of complicated

systems, especially online systems.

o A big system such as an air traffic control or airline reservation system, has not

hundreds, but thousands of different transaction flows.

o The flows are represented by relatively simple flow graphs, many of which have

a single straight-through path.

o Loops are infrequent compared to control flow graphs.

o The most common loop is used to request a retry after user input errors. An

ATM system, for example, allows the user to try, say three times, and will take

the card away the fourth time.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: III (Transaction Flow Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 4/15

2.7.4 Implementation

o The implementation of transaction flow is usually implicit in the design of the

system’s control structure and associated database.

o A transaction flow is a representation of a path taken by a transaction through a

succession of processing modules.

o Think of each transaction as represented by a token-such as a transaction control

block that is passed from routine to routine as it progresses through its flow.

o The transaction flow graph is a pictorial representation of what happens to the

tokens; it is not the control structure of the program that manipulates those

tokens

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: III (Transaction Flow Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 5/15

2.7.5 Perspective

o Transaction flow graphs are a kind of dataflow graph

o In control flow graphs we defined a link or block as a set of instructions such

that if any one of them was executed, all (barring bugs) would be executed.

o For data flow graph in general and transaction flow graphs in particular we

change the definition to identify all processes of interest.

2.7.6 Complications

o In simple cases, the transactions have a unique identity from the time they're

created to the time they're completed.

o In many systems the transactions can give birth to others, and transactions can

also merge.

Births

There are three different possible interpretations of the decision symbol, or nodes

with two or more out links. It can be a Decision, Biosis or Mitosis.

1. Decision: Here the transaction will take one alternative or the other alternative

but not both. (See Figure 3.2 (a))

2. Biosis: Here the incoming transaction gives birth to a new transaction, and both

transactions continue on their separate paths, and the parent retains it identity.

(See Figure 3.2 (b))

3. Mitosis: Here the parent transaction is destroyed and two new transactions are

created.(See Figure 3.2 (c))

Figure 3.2: Nodes with multiple out links

 Mergers
 Transaction flow junction points are potentially as troublesome as transaction flow

 splits. There are three types of junctions: (1) Ordinary Junction (2) Absorption (3)

 Conjugation

0. Ordinary Junction: An ordinary junction which is similar to the junction in a

control flow graph. A transaction can arrive either on one link or the other. (See

Figure 3.3 (a))

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: III (Transaction Flow Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 6/15

1. Absorption: In absorption case, the predator transaction absorbs prey

transaction. The prey gone but the predator retains its identity. (See Figure 3.3

(b))

2. Conjugation: In conjugation case, the two parent transactions merge to form a

new daughter. In keeping with the biological flavor this case is called as

conjugation.(See Figure 3.3 (c))

Figure 3.3: Transaction Flow Junctions and Mergers

 We have no problem with ordinary decisions and junctions. Births, absorptions, and

conjugations are as problematic for the software designer as they are for the

software modeler and the test designer; as a consequence, such points have more

than their share of bugs. The common problems are: lost daughters, wrongful

deaths, and illegitimate births.

2.7.7 Transaction-Flow Structure

o Transaction flows are often ill structured and there is nothing you can do about

it.

o Here are some of the reasons

 It is a model of a process, not just code

 Parts of the flows may incorporate the behavior of other systems over

which we have no control

 No small part of the totality of transaction flows exists to model error

conditions, failures, malfunctions and subsequent recovery actions

 The number of transactions and the complexity of individual transaction

flows grow over time as features are added and enhanced.

 Systems are build out of modules and the transaction flows result from

the interactions of those modules

 Our models are just that – approximations to reality

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: III (Transaction Flow Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 7/15

2.8 Transaction Flow Testing Techniques

2.8.1 Get the Transactions Flows

o Complicated systems that process a lot of different, complicated transactions

should have explicit representations of the transactions flows, or the

equivalent.

o Transaction flows are like control flow graphs, and consequently we should

expect to have them in increasing levels of detail.

o The system's design documentation should contain an overview section that

details the main transaction flows.

o Detailed transaction flows are a mandatory pre requisite to the rational

design of a system's functional test.

2.8.2 Inspections, Reviews And Walkthroughs

o Transaction flows are natural agenda for system reviews or inspections.

o In conducting the walkthroughs, you should:

 Discuss enough transaction types to account for 98%-99% of the

transaction the system is expected to process.

 Discuss paths through flows in functional rather than technical

terms.

 Ask the designers to relate every flow to the specification and to

show how that transaction, directly or indirectly, follows from the

requirements.

o Make transaction flow testing the corner stone of system functional testing

just as path testing is the corner stone of unit testing.

o Select additional flow paths for loops, extreme values, and domain

boundaries.

o Design more test cases to validate all births and deaths.

o Publish and distribute the selected test paths through the transaction flows as

early as possible so that they will exert the maximum beneficial effect on

the project.

2.8.3 Path Selection

o Select a set of covering paths (c1+c2) using the analogous criteria you used

for structural path testing.

o Select a covering set of paths based on functionally sensible transactions as

you would for control flow graphs.

o Try to find the most tortuous, longest, strangest path from the entry to the

exit of the transaction flow.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: III (Transaction Flow Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 8/15

2.8.4 Sensitization

 Most of the normal paths are very easy to sensitize-80% - 95% transaction flow

coverage (c1+c2) is usually easy to achieve.

 The remaining small percentage is often very difficult.

 Sensitization is the act of defining the transaction. If there are sensitization

problems on the easy paths, then bet on either a bug in transaction flows or a design

bug.

 The paths like off-paths, the exception conditions, the path segments, are difficult to

sensitize.

 This is because they correspond to error conditions, synchronization problems,

overload responses, and other anomalous situations.

 To test these systems perform the following

o Use Patches – It is a lot easier to fake an error return from another system by

a judicious patch than to negotiate a joint test session.

o Mistune – Test the system sized with grossly inadequate resources

o Break the Rules – Bypass the database generator and use patches to break

any and all rules embodied in the database and system configuration that

will help you to go down the desired path.

2.8.5 Path Instrumentation

 Instrumentation plays a bigger role in transaction flow testing than in unit path

testing.

 The information of the path taken for a given transaction must be kept with that

transaction and can be recorded by a central transaction dispatcher or by the

individual processing modules.

 In some systems, such traces are provided by the operating systems or a running

log.

2.8.6 Test Databases

o About 30% - 40% of the effort of transaction- flow test is the design and

maintenance of test database (S).

o Its decided that test databases must be configuration-controlled and centrally

administered under a comprehensive design plan.

o In order to avoid the repetition of the previous chaos, it is decided that there will

be one comprehensive database that will satisfy all testing needs

o A typical system of a half-million lines of source code will probably need four

or five different, incompatible databases to support testing

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: III (Transaction Flow Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 9/15

2.8.7 Execution

o If transaction-flow testing is done for a system of any size, be committed to test

execution automation from the start

o If more than a few hundred test cases are required to achieve C1+ C2

transaction flows coverage, do not bother with transaction-flow testing if ther is

no time and resources to almost completely automate all test execution.

DATA-FLOW TESTING

1. Synopsis

Data-flow testing uses the control flowgraph to explore the unreasonable things that can

happen to data (data-flow anomalies).

2. Data-Flow Testing Basics

2.1 Motivation and Assumption

2.1.1 What is it?

Data flow testing is the name given to a family of test strategies based on selecting

paths through the program’s control flow in order to explore sequence of events related

to the status of data objects

2.1.2 Motivation

At least half of contemporary source code consists of data declaration statements –that

is statements that define data structures, individual objects, initial or default values and

attributes.

2.1.3 New Paradigms-Data Flow Machines

Most computers today are Von Neumann machines. This architecture features

interchangeable storage of instruction and data in the same memory units. The Von

Neumann Architecture executes one instruction at a time in the following typical micro

instruction sequence.

1. Fetch instruction from memory.

2. Interpret instruction.

3. Fetch operand(s).

4. Process (execute).

5. Store Result (perhaps in registers).

6. Increment program counter (pointer to next instruction).

7. GOTO 1

Massively parallel (multi-instruction, multidata-MIMD)machines, by contrast, have

multiple mechanisms for executing steps 1-7 above and can therefore fetch several

instruction and/or objects in parallel. They also do arithmetic or logical operations

simultaneously on different data objects.

 Given L, t and d, solve for Z and Hc.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: III (Transaction Flow Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 10/15

 cos C = cos L sin t

 tan M =cot L cos t

 tan (Z + F) = - sin L tan t

 tan F = cos C tan (m + d)

 sin Hc = sin C sin (m+d)

 Z = (Z + F) – F

t1 := cot L t3 : =t3*t4 */cos C /*

t2 := cos t t4 : =tan t1 */ tan (m+d) /*

t3:=t1*t2 */ tan M /* t4 :=t3*t4 */ tan F /*

t1:=tan-1 t3 */M /* t4 :=tan-1 t4 */ F /*

t1:=t1 + d * / M + d /* Z := t2 –t4

t2 := sin L t3 := cos-1 t3 * /C /*

t3:= tan t t3 := sin t3 * / sin C /*

t2:= t2*t3 */ tan (Z + F) /* t1 := sin t1 */ sin (M + d) /*

t2:= tan-1 t2 */ Z + F /* Hc :=t1*t3 */ sin Hc /*

t3 := cos L Hc :=sin-1 Hc

t4 := sin t

Fig: 3.1 von Neumann Navigation Calculation PDL

Fig: 3.1 show the PDL for solving some navigation equations (BOWD77). On a von

Neumann machine that has a coprocessor to calculate trigonometric functions the control

flowgraph corresponding to fig:3.1 is trivial : it has exactly one link , the implementation

shown requires twenty- one steps and four temporary memory locations.

2.1.4 The Bug Assumptions

Control flow is generally correct and that something has gone wrong with the software so

that data objects are not available when they should be if there is a control-flow problem,

we expect it to have symptoms that can be deducted by data flow analysis.

2.2 Data Flowgraphs

2.2.1 General

 The data flowgraph is a consisting of nodes and directed links (links with arrows on

them).

2.2.2 Data Object State and Usage

Data objects can be created, killed and/or used. They can be used in two distinct ways: in a

calculation as part of a control flow predicate. The following symbols denote these

possibilities:

 d - defined, created, initialized etc,

 k - killed, undefined, released.

 u - used for something.

 c - used in calculation.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: III (Transaction Flow Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 11/15

 p - used in predicate.

1. Defined- an object is defined explicitly when it appear in data declaration or implicitly

(as in FORTRAN) when it appears on the left-hand side of an assignment statement.

2. Killed or undefined - An object is killed or undefined when it is released or otherwise

made unavailable, or when its contents or no longer known with certitude.

3. Usage- A variable is used for computation © when it appears on right-hand side of an

assignment statement as a pointer as part of a pointer calculation, a file record read or

written, and so on.

2.2.3 Data flow anomalies
What is an anomaly may depend on an application for example ,the sequence

 A : = C + D

 IF A >0 THEN X : =1 ELSE X := -1

 A : = B + C

Seems reasonable because it corresponds to dpd for variable A, but in the context of some secure

systems it might be objectionable because the system doctrine might require several assignments

of A to ZERO prior to reuse.

There are nine possible two letter combinations for d, k and u. some are bugs, some or suspicious,

and some are okay.

dd – probably harmless but suspicious. Why define the object twice without an intervening usage

?

dk - probably a bug. Why define the object without using it?

du - the normal case the object is defined then used.

kd - normal situation, an object is killed, then redefined.

kk - harmless but probably buggy. Did you want to be sure it as really killed?

ku- a bug the object doesn’t exist in the sense that is value is undefined or indeterminate. For

 example, the loop control value in a FORTAN program after exit from the loop.

ud- usually not a bug because the language permits re-assignments at almost any time.

uk- normal situation

uu- normal situation.

Trailing dash means that nothing after point of interest to the exit.

 -k : possibly anomalous because from the entrance to this point on the path, the variable had not

been defined

-d : okay. this is just the first definition along this path

-u : possibly anomalous. Nct anomalous if the variable is global and has been previously defined.

k- : not anomalous. The last thing done on this path was to kill the variable.

 d- : possibly anomalous.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: III (Transaction Flow Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 12/15

2.2.4 Data flow Anomaly state graph

 Our data flow anomaly model prescribes that an object one of four distinct states:

 K – undefined, previously killed, and does not exist.

 D- defined but not yet used for anything.

 U- has been used for computation or in predicate.

 A – anomalous.

Fig: 3.2 Unforgiving Data Flow Anomaly State graph

FIG – 3.2 shows what is called as the “unforgiving model,” because it holds that once that

variable

becomes anomalous it can never return to a state of grace.

2.2.5. Static Vs Dynamic Anomaly Detection

Static analysis is an analysis done on source code without actually executing it. Dynamic

analysis is

done on the fly as the program is being executed and is based on intermediate values that result

from the program’s execution.

Barring un-solvability problems, through there are many things for which current notions of

static analysis are inadequate.

1. Dead variables – although is it often possible to prove that a variable is dead or alive at a given

point in the program. The general problem is unsolvable.

2. Arrays – arrays are problematic in that array is defined or killed as a single object, but

reference is to specific location within the array.

K

U D A

k
u,k

d

d d,k

u
k,u,d

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: III (Transaction Flow Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 13/15

3. Records and Pointers – the array problem and the difficulty with pointers is a special case of

multipart data structures.

4. Dynamic Subroutine or Function Names in a call – A subroutine or function name is a

dynamic variable in a call.

5. False Anomalies – anomalies are specific to paths. Even a “clear bug” such as ku may not be a

bug if the path along which the anomaly exists is unachievable.

6. Recoverable Anomalies and Alternate state graphs- the language processor must have a built-

in anomaly definition with which you may or may not (with good reason) agree.

7. Concurrency, Interrupts, System issues

2.3 The Data Flow Model

2.3.1 General

Our data-flow model is based on the program’s control flow-graph – don’t confuse with the

program’s data flow-graph. we annotate each link with symbols (like Eg: d, k, u, c, p)or

sequence of symbols (for example dd, du, ddd)that denote the sequence of the data operation on

that link with respect to variable of interest such annotation called link weights.

2.3.2 Components of the Model

 Here are the modeling rules,

1. To every statement there is a node, whose name (number)is unique.

2. Exit nodes are dummy nodes placed at the outgoing arrowheads of exit statement s(e.g.,

END RETURN) to complete the graph.

3. The outlink of simple statements (statements with only one outline) are weighted by the

proper sequence of data-flow action for that statement.

4. Predicate nodes (e.g., IF-THEN-ELSE, DO WHILE, CASE) are weighted with the p-

use(s) on every outlink, appropriate to that out link.

5. Every sequence of simple statements (e.g., a sequence can be replaced by a pair of nodes

that has, as weights on the link between them, the concatenation of link weights.

6. If there are several data-flow actions on a given link for given variable, then the weight of

the link is denoted by the sequence of action on that link for that variable.

7. Conversely, a link with several data-flow actions on it can be replaced by a succession of

equivalent links, each of which has at most one data- flow action for any variable.

3. Data-Flow Testing Strategies

3.1 General,

Data-flow testing strategies are structural strategies. it is a way of generating a family of test

strategies based on a structural characterization of the way test cases are to be defined(i.e., how

we pick nodes, links, and/or sequences of nodes or links to be included in a test case)and a

functional characterization that test causes must satisfy. In path testing strategies the only

structural characteristics used was the raw program-control flow-graph without consideration of

what happened on those links. higher-level path testing strategies based, say ,on adjustment link

pairs or triplets take more of the control-flow structure into account, but still no other

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: III (Transaction Flow Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 14/15

information than is implicit in the control flow-graph, data-flow strategies taken into the account

what happen to the data object on the links in addition to the raw connectivity of the graph. data-

flow testing strategies are based on selecting test path segments (also called subpath) that satisfy

some characteristics of data flows for all data objects.

3.2 Terminology

Some terminology :

1. A definition clear path segment*(with respect to variable x)is a connected

sequence of links such that X is (possibly)defined on the first link and not

redefined or killed on any subsequent link of that path segment.

2. A loop-free path segment is a path segment for which every node is visited at

most once.

3. A simple path segment is a segment in which at most one node is visited twice.

4. A du path from node I to k is a path segment such that if the last link has a

computational use of X, then the path is simple and definition-clear.

3.3 The Strategies

3.3.1 Overview

The structural test strategies (FRAN88, RAPP82, and RAPP85) are based on the program’s

control flow graph. They differ in the extent to which predicate uses and/or computational uses

of variables are included in the test set.

3.3.2 All-du paths

The all-du paths (ADUP) strategy is the strongest data-flow testing strategy discussed here. It

requires that every du path from every definition of every variable to every use of that definition

be exercised under some test. The all-du paths strategy is a criterion, but it does not take as many

tests as it might seem at first because any one test simultaneously satisfies the criterion for

several definition and uses of several different variables.

3.3.3 All- Uses Strategy

We can reduce the number of test causes by asking that the test set include at least one path

segment from every definition to every use that can be reached by that definition – this is

called the all-uses (AU) strategy. The strategy is that at least one definition-clear path from

every definition of every variable to every use of that definition be exercised under some test.

3.3.4 ALL-P-Uses/Some –c-Uses and All-c-Uses/some-p-uses strategy

The all-p-uses/some-c-uses (APU+C) strategy is defined as follows; for every variable and every

definition of that variable, include at least one definition-free path from the definition to every

predicate use. The all-c-uses/some-p-uses (ACU-P) strategy reverses the bias; first ensure

coverage by computational-use cases and if any definition is not covered by the previously

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: III (Transaction Flow Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 15/15

selected paths, add such predicate-use cases as are needed to assure that every definition is

included in some test.

3.3.5 All-Definition strategy

The all-definition (AD) strategy asks only that every definition of every variable be covered by

at least one use of that variable, be that use a computational use or a predicate use.

3.3.6 All-predicate-uses, All-computational uses strategy

The all-predicate-uses (APU) strategy is derived from the APU +C strategy by dropping the

requirement that we include a c-use for the variable if there are o p-uses for the variable

following each definition. Similarly, the all-computation-uses (ACU) strategy is derived from

ACU-P by dropping the requirement that we include a p-use if there are no c-use instances

following a definition.

3.3.7 Ordering the strategies

Although ACU+P are stronger than ACU, both are incomparable to the predicate-biased

strategies. Note also that “all definitions” is not comparable to ACU or APU.

3.4 Slicing, Dicing, Data flow, and Debugging

3.4.1. General

Testing in a maintenance context is not the same as testing new code-for which most testing

theory and testing strategies have been developed. Maintenance testing is in many ways

similar to debugging.

3.4.2 Slices and Dices

A (static) slice (WEIS82) is a part of a program(e.g. a selected set of statements) defined with

respects to a given variable X (where X is a simple variable or a data vector) and a statement

I: it is a set of all statements that could (potentially, under static analysis) affect the value of X

at a statement i-where the influence of a faulty statement could result from an improper

computational use or predicate use of some other variables at a prior statements. If X is

incorrect at a statement-i it follows that bug must be in the program slice for X with respect to

i. A program dice (LYLE87)is a part of slice in which all statements which are known to be

correct have been removed. In other words, a dice is obtained from a slice by incorporating

information obtained through testing or experiment (e.g., debugging). Dynamic slicing

(KORE88C) is a refinement of a static slicing in which only statements on achievable paths to

the statement in question are included.

4. Application, Tools, Effectiveness

Ntafos (NTAF84B) compared random testing, p2 and AU strategies on fourteen of the

Kernighan and plauger (KERN76) programs (a set of mathematical programs with known

bugs, often used to evaluate test strategies).the experiment had the following outcome:

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: III (Transaction Flow Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 16/15

Strategy Mean no. test cases Bugs found (%)

 Random testing 35 93.7

 Branch testing 3.8 91.6

 All uses 11.3 96.3

The second experiment (NTAF84A) on seven similar programs showed the following:

Strategy Mean no. test cases Bugs found (%)

 Random testing 100 79.5

 Branch testing 34 85.5

 All uses 84 90.0

Sneed (SNEE86) reports experience with real programs and compares branch coverage

effectiveness at catching bugs to data-flow testing criteria. Weyuker (WEYU88A,WEYU90)

has

published the most through comparison of data flow testing strategies to date. her study is

based on

twenty nine programs from the Kernighan and plauger set. Tests were designed using the

ASSET

testing system (FRAN88).the number of test cases is normalized to the number of binary

decision

in the program. just as statement and branch coverage were found to be cost-effective testing

strategies, even when unsupported by automation, data-flow testing has been found effective.

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

CLASS : III B.Sc IT

 Subject : Software Testing

Unit - III

Option 1 Option 2 Option 3 Option 4 Answer

1 _____________ Testing is uses the control flow graph to explore the unreasonable things that happen to data Segment Node Data flow Path Data flow

2 Data flow testing is the name given to a family of test strategies based on selecting _______________ through the program Node Path Link Error Path

3 The data flow graph is consisting of __________________ and ________________ Node and Path Node and Segment Link and Segment Node and DirectedLink Node and DirectedLink

4 An object is _____________ When it appears in data decleration or appears on the left hand side of an assignment statement Defined implicitly Defined explicitly Constent None of these Defined explicitly

5 An object is _____________ or undefined when it is released or otherwise made unavailable Not defined Dead Killed Both A and B killed

6 _______________ mens that nothing after point of interest to the exit Trailing Timing Pointing Exiting Trailing

7 ________________ is an analysis done on source code without actually executing it Static analysis Dynamic analysis valid analysis Barring analysis Static analysis

8 ______________ is done on the fly as the prrogram is being executing and is based on intermediate values that result from the program's execution Static analysis Dynamic analysis valid analysis Barring analysis Dynamic analysis

9 ____________ are dummy nodes placed at the outgoing arrowheads of exit statements to compleat the graph Entry node Exit node Constent node Valid node Exit node

10 A _________________ path segment is a connected sequence of links Loop free Simple Definitio clear None of these definition clear

11 A _________________ path segment is a path segment for which every node is visited at most once Loop free Simple Definitio clear None of these Loop free

12 A ______________ path segment is a segment in whicch at most one node is visited twice Loop free Simple Definitio clear None of these Simple

13 The _______________ strategy is the strongest data-flow testing strategy all-du paths non-du paths Valid-du paths Strong paths all-du paths

14 A ________________ strategy is reduce the number of test cases by asking that the test set include atleast one path segment from every definition all-du paths non-du paths Valid-du paths all-uses paths all-uses paths

15 The ___________________ strategy asks only that every definition of every variable be covered by atleast one use of that variable all-du paths all-Definition non-du paths Valid-du paths all-Definition

16 A _______________ is a part of slice in which all statements which are known to be correct have been removed Slice Dice Role Para Dice

17 ________________ testing is attempt to determine wheather the classification is or is not correct Statement path domain segment domain

18 If domain testing is based on _____________ then it is a functional test technique Specification Qualification Implementation association Specification

19 If domain testing is based on _____________ then it is a structural test technique Specification Qualification Implementation association Implementation

20 If domain testing is applied to ______________,then predicate intrepretation must be based on actual paths through the routin path Model Structure Link Path Structure

21 compount predicate that includes Ors can create________________ Small domains large domains concave domains convex domains concave domains

22 domains are defined by their_________________ nodes conditions paths boundaries boundaries

23 Every boundary serves atleast _______________ different domains 2 3 1 4 2

24 A __________________ is a point that does not lie between any two other arbitary but distnict points of a domain Boundary point Extream point Boundary point interior point Extream point

25 A _______________ point is a point in the domain such that all point with in the arbitary small diatance are also in domain Boundary point Extream point Boundary point interior point interior point

26 A ______________- boundary occures when coeffecient in the boundary inequality are wrong Tilted boundry Extra boundary mixed boundary Shifted boundary Tilted boundry

27 The bug is a shift up,which converts part of domain B into A processing is __________________ Tilted boundry Extra boundary mixed boundary Shifted boundary Shifted boundary

28 An extra boundary is created by _________________ Extra predicate strain predicate Shifted predicate Mixed predicate Extra predicate

29 An _______________ will slice through many different domain and will therefore cause many test failures for the same bug Tilted boundry Extra boundary mixed boundary Shifted boundary Extra boundary

30 A ______________ boundary will merge different domain and as the extra boundary can,will cause many Tilted boundry Extra boundary mixed boundary missing boundary missing boundary

31 A good ________________ should have include all interesting domain testing cases Component test Path test Valid test Invalid test Component test

32 We can often convert nonlinear boundaries to Equalent linear boundaries.This is done by appliying_________________ Debugging the problem Linearizing transformation Validation process None of these Linearizing transformation

33 ________________ boundary set are sets of linear related boundaries Linear Non linear Parrlel None of these linear

34 What types of errors are not done by Black-Box Testing and can be uncovered by White-Box Testing? Logic errors Performance errors Behavioral errors None of the above Logic errors

35 ______ is a white-box testing technique first proposed by Tom McCabe. Equivalence Partitioning Basis Path Testing Boundary Value Analysis None of the above Basis Path Testing

36 Which of the following Review Technique is / are not time bound? Inspection walkthrough Both of These None of These walkthrough

37 Which of the following comes under the Control Structure Testing? Condition testing Loop testing Data Flow Testing All of the above All of the above

38 Which of the following is / are characteristics of testable software? Observability Simplicity Stability All of the above All of the above

39
Which of the following categories, Black-box testing attempts to find errors?

Incorrect or missing

functions
Interface errors

Behavior or performance

errors
All of the above All of the above

40 Equivalence Partitioning comes under which type of Testing? White Box Testing Black Box Testing Grey Box Testing None of the above Black Box Testing

41 Black Box Testing is also known as ________ . Behavioral Testing Flow Testing Data Testing None of the above Behavioral Testing

42 Which of the following is NOT a white box technique? Statement testing Path testing State transition testing Data flow testing State transition testing

43 Which of these activities provides the biggest potential cost saving from the use of CAST? Test management Test execution Test design Test planning Test execution

44 Which of the following would NOT normally form part of a test plan? Risks Schedule Incident reports Features to be tested Incident reports

45 Increasing the quality of the software, by better development methods, will affect the time needed for testing (the test phases) by: Reducing test time Increasing test time No change Can’t say Reducing test time

46 A program with high cyclometic complexity is almost likely to be: Difficult to test Small Difficult to write Large Difficult to test

47

A failure is:
Found in the software; the

result of an error

A human action that

produces an incorrect

result

An incorrect step, process

or data definition in a

computer program

Departure from specified

behavior

Departure from specified

behavior

48
The most important thing about early test design is that it:

Means inspections are not

required

Makes test preparation

easy

Can prevent fault

multiplication
Will find all faults

Can prevent fault

multiplication

49

Alpha testing is:

Post-release testing by

end user representatives

at the developer’s

The first testing that is

performed

Pre-release testing by end

user representatives at

their sites

Pre-release testing by

end user representatives

at the developer’s site

Pre-release testing by end user

representatives at the

developer’s site

50

An incident logging system

Is a valuable source of

project information

during testincontains all

incidents

Is of limited value Only records defects
Should be used only by

the test team

Is a valuable source of project

information during

testincontains all incidents

51 Both station can transmit and receive data simultaneously in Half duplex mode simplex mode Full duplex mode None of Above Full duplex mode

52
………….. may be used to show how the system reacts to internal and external events. Entity-relation diagram Data flow diagram Objects class diagram

State transaction

diagram
State transaction diagram

53 …………….. always identify the entities in a database their attributes and explicit relationship between them. Data flow models System models Semantic data models Objects models Semantic data models

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: IV (Domain Testing) Batch- 2016-2019

Karpagam University, Coimbatore – 21 45

Unit IV

Domain Testing

Domains and Paths-Domain Testing-Domains and Interface Testing-Domains and Testability

References:

1. Boris Beizer (2009), Software Testing Techniques (2
nd

 ed.). New Delhi Dreamtech Press

2. Ron Patton (2002) Software Testing (2
nd

 ed.). New Delhi: Pearson Education

3. Dorothy Graham, Erik Van Veenendaal, Isabel Evans, Rex Black (2007). Foundations of Software

Testing, ISTQB Certification.

4. Brian Hambling, Peter Morgan, Angelina Samaroo, Geoff Thompson (2010). Software Testing , (2
nd

ed.). An ISEB Foundation, BCS

5. Renu Rajani, Pradeep Oak (2004). Software Testing- Effective Methods, Tools and Techniques, Tata

McGraw Hill, New Delhi

Web Sites

1. www.testinggeek.com

2. www.softwaretestinghelp.com

3. www.softwaretestinginstitute.com

http://www.softwaretestinginstitute.com/

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: IV (Domain Testing) Batch- 2016-2019

Karpagam University, Coimbatore – 21 46

DOMAIN TESTING

1. Synopsis

Programs as input data classifiers: domain testing attempts to determine whether the classification is

or is not correct.

2. Domains and Paths

2.1 The model

Domain testing can be based on specifications and/or equivalent implementation information. If

domain testing is based on specification, it is a functional test technique; if based on

implementations, it is a structural technique. A routine must classify the input and set it moving on

the right path. Processing begins with a classifier section that partition the input vector into cases. An

invalid input (e.g., value too big) is just a special processing case called ‘’reject’’ say. The input then

passes to a hypothetical subroutine or path that does the processing. In domain testing we focus on

the classification aspect of the routine rather than on the calculations.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: IV (Domain Testing) Batch- 2016-2019

Karpagam University, Coimbatore – 21 47

Fig 3.3 Schematic Representation of Domain Testing

2.2 A Domain is a set

An input domain is a set. If the source language supports set definition (e.g. Pascal set types, C

enumerated types) less testing is needed because the compiler (compile time and run time) does

much of it for us.

The language of set theory is natural for domain testing.

2.3 Domains, paths and predicates

If domain testing is applied to structure, then predicate interpretation must be based on actual paths

through the routine that is, based on implementation control flow graph. Conversely, if domain

testing is applied to specification, interpretation is based on a specified data flowgraph for the

routine.

For every domain there is at least one path through the routine. There may be more than one path if

the domain consists of disconnected parts or if the domain is defined by the union of two or more

domains. For every boundary there is at least one predicate that specifies what numbers belong to the

domain and what numbers don’t.

For e.g. in the statement

IF x>0 THEN ALPHA ELSE BETA

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: IV (Domain Testing) Batch- 2016-2019

Karpagam University, Coimbatore – 21 48

We know that numbers greater than zero belong to ALPHA processing domain(s) while zero and

smaller numbers belong to BETA domain(s). A domain might be defined by a sequence of predicate-

say A,B, and C. first evaluate A and process the A cases, then evaluate B and do B processing, and

then evaluate C and finish up. With three binary predicates, there are up to eight (2
3
) domains.

To review:

1. A domain for a loop-free program corresponds to a set of number defined over the input

vector.

2. For every domain there is at least one path through the routine, along which that domain

processing is done.

3. The set of interpreted predicates transverse on that path (i.e. The path’s predicate expression)

defines the domain’s boundary.

2.4 Domain Closure

As in set theory, a domain boundary is closed with respect to a domain if the parts on the boundary

belong to the domain. If the boundary points belong to some other domain, the boundary is said to be

open.

Fig 3.4 Open and Closed Domains

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: IV (Domain Testing) Batch- 2016-2019

Karpagam University, Coimbatore – 21 49

2.5 Domain Dimensionality

Every boundary slices through the input vector space with a dimensionality which is less than the

dimensionality of the space. Thus, planes are cut by lines and points, volume by planes, lines and

points, and n-spaces by hyperplanes. Spaces of more than three dimensions are called n-spaces.

Things that cut though n-spaces are called hyperplanes (not starships). An input array with

dimension 100 is not unusual, but it is a 100-dimensional space.

2.6 The Bug Assumptions

An incorrectly implemented domain means that boundary is wrong, which may in turn mean that

control-flow predicates are wrong. Many different bugs can result in domain errors. Here is a sample

of more common ones:

1. DOUBLE ZERO representation

2. Floating-point zero check

3. Contradictory domains - A contradictory domain specification means that at least two

supposedly distinct domain overlap

4. Ambiguous Domain – It means that the union of specified domains is incomplete.

5. Over Specified Domains- The domain can be over loaded with so many conditions that

the result is a null domain.

6. Boundary Errors

7. Closure Reversal - The predicate is defined in terms of >=. The programmer chooses to

implement the logical complement and incorrectly uses <= for the new predicate; i.e.

x>=0 is incorrectly negated as x<=0.

8. Faulty Logic – Compound predicates (especially) are subject to faulty logic

transformation and improper simplification.

2.7 Restriction

2.7.1 General

In testing (other than faulty outcome prediction, improper execution, or other test design and execution

bugs) there are no invalid tests – only unproductive tests.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: IV (Domain Testing) Batch- 2016-2019

Karpagam University, Coimbatore – 21 50

2.7.2 Coincidental Correctness

If the domain is a disconnected mess of small sub domain testing may not be revealing.

2.7.3 Representative Outcome

Domain testing is an example of partition-testing strategies divide the program’s input spaces into

domain such that all inputs within domain equivalent (not equal, but equivalent) in the sense that any

input represents all inputs in that domain. Most test technique, functional or structural, fall under

partition testing and therefore make this representative outcome assumption. Another way to say it is that

only one functions.

2.7.4 Simple Domain Boundaries and Compound Predicates

Compound predicates that include ORs can create concave domains. Domains that is not simply

connected. These sub domains can be separated, adjacent but not overlapped, partially overlapped, or

one can be contained within the other; all of these are problematic.

2.7.5 Functional Homogeneity of Bugs

For linear predicates (i.e. boundary predicates that are linear function) the bug is such that the resulting

predicate will still be linear.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: IV (Domain Testing) Batch- 2016-2019

Karpagam University, Coimbatore – 21 51

2.7.6 Linear vector space

A linear (boundary) predicate is defined by a linear inequality (after interpretation in terms of input

variable).* using only the simple relational operators >, >=, =, <=, <> and <.A more general assumption

is that boundaries can be embedded in a linear vector space.

For e.g. the predicate x2 + y2 >a2 is not linear in rectangular co-ordinates, but by transforming to polar

coordinates we obtain the equivalent linear predicate r >a.

2.7.7 Loop-Free Software

If a loop is an overall control loop on transaction, say there’s no problem. We ‘’break’’ the loop and use

domain transaction process. If the loop is definite (that is, if we know on entry exactly how many times

it will loop), then domain testing may be useful for the processing within the loop.

Domains are and will be defined by an imperfect iterative process aimed at achieving (user, buyer, voter)

satisfaction. The first step in applying the domain testing should be to analyze domain definition in order

to get (atleast) consistent and complete domain specifications.

3. Domain Testing

3.1. Overview

The domain-testing strategy is simple, albeit possibly tedious.

1. Domains are defined by their boundaries; therefore, domain testing concentrates test points

on or near boundaries.

2. Classify what can go wrong with boundaries, and then define a test strategy for each case.

Pick enough points to test for all recognized kinds of boundary errors.

3. Because every boundary serves at least two different domains, test points used to check one

domain can also be used to check adjacent domains. Remove redundant test points.

4. Run the tests and by posttest analysis (the tedious part) determine if any boundaries are

faulty and if so, how.

5. Run enough tests to verify every boundary of every domain.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: IV (Domain Testing) Batch- 2016-2019

Karpagam University, Coimbatore – 21 52

3.2. Domain Bugs and How to Test For Them

3.2.1 General

An interior point is a point in the domain such that all points within an arbitrarily small distance

(called epsilon neighborhood) are also in domain.

A boundary point is one such that within the epsilon neighborhood there are points both in the

domain and not in the domain.

An extreme point is a point that does not lie between any two other arbitrary but distinct points of a

(convex) domain.

An on point is a point on the boundary. If the domain boundary is closed, an off point is a point near

the boundary but in the adjacent domain.

Fig 3.5 Interior, Boundary and Extreme Points

Fig 3.6 On Points and Off Points

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: IV (Domain Testing) Batch- 2016-2019

Karpagam University, Coimbatore – 21 53

Fig 3.7 Generic Domain Bugs

3.2.2 Testing One-Dimensional Domains

The Fig shows possible domain bugs for one dimensional open domain boundary. The closure can be

wrong (i.e., assigned to the wrong domain). Or the boundary (a point in the case) can be shifted one

way or the other, we can be missing a boundary, or we can have an extra boundary.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: IV (Domain Testing) Batch- 2016-2019

Karpagam University, Coimbatore – 21 54

Fig 3.8 One-Dimensional Domain Bugs, Open Boundaries

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: IV (Domain Testing) Batch- 2016-2019

Karpagam University, Coimbatore – 21 55

Fig 3.9 One-Dimensional Domain Bugs, Closed Boundaries

The Figure 3.8 shows domain boundary bugs for two dimensional domains A and B are adjacent

domains and the boundary is closed with respect to A. which means that it is open with respect to

B.

3.2.3 Two Dimensional Domain Bugs

Closure Bug- shows a faulty closure such as might be caused by using a wrong operator.

Shifted Boundary- the bug is a shift up, which converts part of domain B into A processing, denoted

by A.

Tilted Boundary- A tilted boundary occurs when co efficient in the boundary inequality are wrong.

Extra Boundary- an extra boundary is created by an extra predicate. An extra boundary will slice

through many different domains and will therefore cause many test failures for the same bug.

Missing Boundary- A missing boundary is created by leaving a boundary predicate out. A missing

boundary will merge different domains and as the extra boundary can, will cause many

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: IV (Domain Testing) Batch- 2016-2019

Karpagam University, Coimbatore – 21 56

test failure although there is only one bug.

3.2.4 Equality and Inequality Predicates

Equality predicates such as x +y =17 define lower-dimensional domains. For example, if there are

two input variables. A two dimensional space, an equality predicate defines a line- a one dimensional

domain. Similarly, an equality predicate in three dimensions defines a planner domain.

3.2.5 Random Testing

Domain testing, especially when it incorporates extreme points, has two virtues; it verifies domain

boundary efficiently, and many selected test cases (on points an extreme points) corresponds to cases

where experience shows programmers have trouble.

3.2.6 Testing n-Dimensional Domains

For domains defined over an n-dimensional input space with p boundary segments, the domain testing

strategy generalizes to require at most (n+l) p test points per domain, consisting of n on points and

one off point.

3.3. Procedure

The procedure is conceptually straight-forward. It can be done by hand for two domains and few

domains.

 Identify input variables

Identify variables which appear in domain-defining predicates, such as control-flow

predicates.

Interpret all domain predicates in terms of input variables.

For p binary predicates, there are at most 2(P) combinations of TRUE –FALSE values and

therefore at 2(p) domains. Find the set of non-null domains. Each product term (that is,

term consisting of predicates joined by ANDs) is a set of linear inequalities that defines

a domain or a part of multiply domain.

Solve these inequalities to find all the extreme points of each domain.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: IV (Domain Testing) Batch- 2016-2019

Karpagam University, Coimbatore – 21 57

 Use the extreme points to solve for nearby on points and to locate mid span off points for every

domain.

 3.4. Variation, Tools, Effectiveness

Variation has been explored that vary the number of on and off points and/or the extreme points.

Some specification based tools such as T (PROG88), use heuristic domain-testing. The fact testing is

tool –intensive should not be barrier to its effective exploitations.

4. Domains and Interface Testing

 4.1 General

Integration testing is testing the correctness of the interface between two otherwise correct

components. For a single variable, the domain span is the set of numbers between (including) the

smallest value and largest value. For every input variable we need (atleast); compatible domain span

and incompatible closures.

4.2 Domains and range

The set of output values produced by a function, in correct with the domain, which is the set of input

values over which the function is defined.

 An interface test consists of exploring the correctness of the following mappings

caller domain → caller range (caller unit test)

caller range → called domain (integration test)

called domain → called range (called unit test)

4.3 Closure Compatibility

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: IV (Domain Testing) Batch- 2016-2019

Karpagam University, Coimbatore – 21 58

Fig 3.10 shows the four ways in which the caller’s range closure and called’s domain closure can

agree. The thick line means closed and the thin line means open.

Fig 3.10 Range/Domain Closure Compatibility

Fig 3.11 shows the twelve different ways the caller and the called can be disagree about closure. The

four cases in which a caller boundary is open and the called is closed (marked with a ‘’?’’) are

probably not buggy.

Fig 3.11 Equal-Span Range/Domain Compatibility Bugs

4.4. Span Compatibility

Fig 3.12 shows three possible harmless span incompatibilities. consider, for example, a square- root

routine that accepts negative numbers and provides an imaginary square root for them. The routine is

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: IV (Domain Testing) Batch- 2016-2019

Karpagam University, Coimbatore – 21 59

used by many callers; some require complex number answer and some don’t. This kind of span

incompatibility is a bug only if the caller expects the called routine to validate the called numbers for

the callers. If that’s so, there are values that can be included the call, which from the caller’s point of

view are invalid, but for which the called routine will not provide an error response.

Fig 3.12 Harmless Range/Domain Span Incompatibility Bug. (Caller Span Is Smaller Than Called.)

Fig 3.13a shows the opposite situation, in which the called routine’s domain has a smaller span than the

caller expects. All of these examples are buggy. In Fig 3.12 b the ranges and domains don’t line up;

hence good values are rejected, bad values are accepted, and if the called routine isn’t robust enough,

we have crashes. Fig 3.13 c combines these notions to show various ways we can have holes in the

domain: these are all probably buggy.

mk:@MSITStore:C:/Documents%20and%20Settings/kowsi/Desktop/Coriolis_Group_-_Software_Testing_Techniques__2nd_Edition.chm::/st2/ch06.html#figure06.22#figure06.22
mk:@MSITStore:C:/Documents%20and%20Settings/kowsi/Desktop/Coriolis_Group_-_Software_Testing_Techniques__2nd_Edition.chm::/st2/ch06.html#figure06.22#figure06.22
mk:@MSITStore:C:/Documents%20and%20Settings/kowsi/Desktop/Coriolis_Group_-_Software_Testing_Techniques__2nd_Edition.chm::/st2/ch06.html#figure06.22#figure06.22

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: IV (Domain Testing) Batch- 2016-2019

Karpagam University, Coimbatore – 21 60

Fig 3.13 Buggy Range/Domain Mismatches

4.5 Interface Range/Domain compatibility Testing

Test every input variable independently of other input variables to conform compatibility of the

caller’s range and the called routine’s domain span and closure of every domain defined for that

variable for sub-routine’s that classified input as ‘’valid/invalid’’ the called routine’s domain span and

closure (for valid cases) is usually broader than the caller’s span and closure. if domains divide

processing into several cases, you must use normal domain –testing ideas and look for exact

range/domain boundary matches.

4.6 Finding the Values

A good component test should have included all interesting domain-testing cases, and as a consequence

there’s no need to repeat the work. Those test cases are the values for which you must find the input

values of the caller. If the caller’s domains are linear, then this is anther exercise in solving inequalities.

Some things to consider:

1. The solution may not be unique

2. There may be no for the specific points you need

3. Find and evaluate an inverse function for the caller. Note ’’an inverse’’ rather than ‘’the inverse’’.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: IV (Domain Testing) Batch- 2016-2019

Karpagam University, Coimbatore – 21 61

4. Unless we are a mathematical whiz we won’t be able to do this without tools for more than one

variable at a time.

5. Domains and Testability

 5.1 General

 The best way to domain testing is to avoid it by making things so simple that it isn’t needed.

5.2 Linearizing transformation

We can often convert nonlinear boundaries to equivalent linear boundaries. This is done by applying

linearizing transformation.

 1. Polynomials

A boundary is specified by a polynomial or multinomial in several variables.

 2. Logarithmic transforms

Products such as XYZ can be linearized by substitute u=log(x), v=log(y), w=log (z). The original

predicate (xyz > 17, say) now becomes u+v+w >2.83.

 3. More general transforms

Other linearizable forms include x/ (ax+b) and ax (b). We can also linearize (approximately) by

using the Taylor series expansion of nonlinear functions which yields an infinite polynomial.

5.3 Coordinate Transformation

Nice boundaries come in parallel sets. Parallel boundary set are sets of linear related boundaries: that

is, they differ only by the value of constant. Finding such sets is straightforward. pick a variable, say x.

it has a co-efficient; in inequality i. divided each inequality by it’s x coefficient so that the coefficient

of the transformed set of inequalities is unity for variable x. if to inequality are parallel, then all the

coefficients will be the same and they will differ only by a constant. from the set of nonparallel

inequality. a subset that can, by suitable coordinate transformation, be converted into a set of

orthogonal inequality. the reason for doing this to obtain a new set of variables in-terms of which the

inequalities can be tested one at a time, independentely of the other inequalities.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501B Unit: IV (Domain Testing) Batch- 2016-2019

Karpagam University, Coimbatore – 21 62

5.4 A Canonical Program Form

 1. Input the data

 2. Applying linearizing transforms to as many predicates as possible.

 3. Tranform to an orthogonal coordinate system.

 4. For each set of hyperplanes in the orthogonal space, determine case by table lookup by an

 efficient search procedure (e.g., binary halving) to put the value of that variable into the right

 bin.

 5. Test the remaining inequalities.

 6. Direct the program to correct case processing routine by a table lookup or by a tree control-flow

 predicates based on the case number for each dimension.

Testing is clearly divided into the following: testing the predicates and coordinate transformations,

testing the individual case selection, testing the control flow and then testing the case processing.

5.5 Great insights

Sometimes programmer’s have great insights into programming problems that result in much simpler

programs than one might have expected. Insights can make a tough programming problem easy; many of

them can be explained in terms of a judicious change to a new coordinate system in which the problem

becomes easy. There’s ample precedence for such things tin other engineering disciplines—a good coordinate

systems can break the back of many tough problems

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

CLASS : III B.Sc IT

 Subject : Software Testing

Unit - IV

Option 1 Option 2 Option 3 Option 4 Answer

1 Fundamental problems in our most popular metric are seemingly obvious _______________ process of code functions of code lines of code Parameters of code Lines of code

2 __________________must be objective in the same that the measurement process is algorithmic and will yields the same result no matter who applies it Ruler scale non-metrics metrics metrics

3 A useful metric can be calculated ________________ for all programs to which we apply it. randomly uniquely dynamically none of these uniquely

4 The metrics are classified into ______________types 2 5 3 4 3

5 ________________ is based on measuring properties of program or specification text without interpreting what the text means structural metrics hybrid metrics linguistic metrics parallel metrics linguistic metrics

6 __________________ is based on structural relations between objects in the program structural metrics hybrid metrics linguistic metrics parallel metrics structural metrics

7 ______________ is bassed on some combination of structural and linguistic properties of program structural metrics hybrid metrics linguistic metrics parallel metrics hybrid metrics

10 ________________ is strongly typed languages that force the explicit declarartion of all types and prohibit mixed typed operation operator types data type distinction data type declaration both B and C data type distinction

11 __________________ is a structural prototype and therefore the criticism applies to all linguistic metric operator types call depth depth call structure call call depth

12 ___________________ in a programming language is the basic syntactic unit from which programs are constructed token keyword identifier none of these token

13 structural metric take the opposite view point of ____________________ structural metrics hybrid metrics parallel metrics linguistic metrics linguistic metrics

14 McCabe's cyclomatic complexity metric is defined as ______________________ M=L-M+2P M=N-L+2P M=L-N+2P none of these M=L-N+2P

15 A ___________________ statement in a language such as FORTRAN can contain the compound predicate of the form looping stateement jump statement decision statement case statement decision statement

16 ___________________ are introduced as an algebric representation of sets of paths in a graph path expression segment expression flow expression none of these path expression

17 Path name is also called as _________________ base product path product identification of product none of these path product

18 The ____________denotes the path in parallel between two nodes base product path product identification of product path sum path sum

19 ____________ can be understood as an infinite set of parallel paths loops segments transaction none of these loops

20 The ___________ is the fundamental step of the reduction algorithm parallel term cross term step direct term indirect term cross term step

21 A ____________________ is one that can be reduced to a single link by successive application of the transformation conditional flow graphcontrol flow graph structured flow graph none of these structured flow graph

22 The processing time for the link is denoted by ________________ S M H T T

23 The processing time component consists of _________ parts 2 3 4 5 2

24 push and pop are the ________________ operations arithemetic operation Complementary operations logical operation none of these Complementary operations

25 A ____________ table is needed to interpret the weight addition and multiplication operation arithmetic table complementary table logical table none of these arithmetic table

26 _________________ theorem can be easily generalized to cover sequence of greater length than two character Huang's theorem dennis theorem walkman theorem none of these Haung's thorem

27 __________________ that denotes all the possible sequence of operators in the graphs irregular expression segment expression transaction expression regular expression regular expression

28 Combine all ________________ by multiplying their path expression segment links transaction links serial links process links serial links

29
The most important feature of spiral model is requirement analysis risk management quality management

configuration

management
risk management

30

Which is not true?

 Condition coverage

is also known as

Predicate Coverage

100% condition coverage

does not guarantee 100%

decision coverage

Error guessing has rules

for testing

Predicate Coverage uses

Boolean values

Error guessing has rules

for testing

31 Who prioritizes product backlog? Scrum team Product owner Scrum master All the above Scrum master

32

When Testing should be stopped?
When enough money

are spend on testing

It depends on risk

associated with that project
When time runs out

When manager asks to

stop

It depends on risk

associated with that project

33 Shortcut key for Requirement menu bar is ___________. F9 F1 Ctrl + R Alt +Shift+ R F9

34 __________ indicates that the alert has already been read. Green flag Grey flag Red flag Black flag Grey flag

35

Trace From grid in the Requirement traceability displays ________ . All the requirements

Requirement that are

affected by the selected

requirements

Requirement that affect a

selected requirement
Only A and B

Requirement that affect a

selected requirement

36
The expected results of the software is _________________.

Derived from the

code

Most useful when specified

in advance

Only used in component

testing

Only important in

system testing

Only important in system

testing

37 Testing beyond normal operational capacity is __________. Performance testing All of these Stress testing Load testing Stress testing

38
Verification and Validation uses __________.

External resources

only

Internal and External

resources respectively
Internal resources only.

External and Internal

resources respectively

Internal and External

resources respectively

39 Which Testing is performed first? Static testing Dynamic testing White box testing Black box testing Static testing

40 Verification is the responsibility of _______. Developer Tester QA Team Designer QA Team

41 By Default time of WAITFOR command is ______. 15 sec 20 sec 25 sec 30 sec 30 sec

42
The ' // ' tells the query that ___________. This is comment The path of the file or folder

It needs to stop at the

first element that it finds
All of these

It needs to stop at the first

element that it finds

43 ________ calls the function and passes it test data.. Test Stub Test Driver Proxy None of the above Test Driver

44 Shortcut key for Low Level Recording is _________. CTRL+SHIFT+F3 SHIFT+ALT+F3 SHIFT+ALT+F4 ALT+F9 CTRL+SHIFT+F3

45 Which shortcut is used to access the first step in Design Step Editor? Alt + Up Alt + Home Alt + Right Alt + Left Alt + Home

46 Which of the following option is present in QuickTest_Test option? Test plan tree Version Test type list Requirement Test type list

47 Cyclomatic Complexity cannot be applied in __________. Risk Management Test Planning . Re-engineering Reverse engineering Reverse engineering

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 1/28

Unit V

Logic-Based Testing and State Graphs

Motivational Overview-Decision Tables-Path Expressions Again-KV Charts-Specifications

State Graphs-Good State Graphs and Bad-State Testing

References:

1. Boris Beizer (2009), Software Testing Techniques (2
nd

 ed.). New Delhi Dreamtech Press

2. Ron Patton (2002) Software Testing (2
nd

 ed.). New Delhi: Pearson Education

3. Dorothy Graham, Erik Van Veenendaal, Isabel Evans, Rex Black (2007). Foundations of

Software Testing, ISTQB Certification.

4. Brian Hambling, Peter Morgan, Angelina Samaroo, Geoff Thompson (2010). Software

Testing , (2
nd

 ed.). An ISEB Foundation, BCS

5. Renu Rajani, Pradeep Oak (2004). Software Testing- Effective Methods, Tools and

Techniques, Tata McGraw Hill, New Delhi

Web Sites

1. www.testinggeek.com

2. www.softwaretestinghelp.com

3. www.softwaretestinginstitute.com

http://www.softwaretestinginstitute.com/

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 2/28

2. Motivational Overview

2.1. Programmers and Logic

Boolean algebra is to logic as arithmetic is to mathematics. Without it, the tester or programmer

is cut off from many test and design techniques and tools that incorporate those techniques.

2.2. Hardware Logic Testing

Hardware logic test design, are intensely automated. Many test methods developed for hardware

logic can be adapted to software logic testing

2.3. Specification Systems and Languages

Boolean algebra (also known as the sentential calculus) is the most basic of all logic systems.

Higher-order logic systems are needed and used for formal specifications

2.4. Knowledge-Based Systems

The knowledge-based system (also expert system or “artificial intelligence” system has

become the programming construct of choice for many applications that were once considered

very difficult. Knowledge-based systems incorporate knowledge from a knowledge domain such

as medicine, law, or civil engineering into a database. The data can then be queried and

interacted with to provide solutions to problems in that domain.

2.5. Overview

 Start with decision tables they are extensively used in business data processing.

 Review of Boolean algebra

 The Karnaugh-Veitch diagram - Without it, Boolean algebra is tedious and error-prone

3. Decision Tables

3.1. Definitions and Notation

It consists of four areas called the condition stub, the condition entry, the action stub, and the

action entry. The condition stub is a list of names of conditions. A rule specifies whether a

condition should or should not be met for the rule to be satisfied. “YES” means that the condition

must be met, “NO” means that the condition must not be met, and “I” means that the condition

plays no part in the rule, or it is immaterial to that rule. The action stub names the actions the

routine will take or initiate if the rule is satisfied. If the action entry is “YES,” the action will

take place; if “NO,” the action will not take place

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 3/28

Fig 5.2 An Example of a Decision Table

1. Action 1 will be taken if predicates 1 and 2 are true and if predicates 3 and 4 are false

 (rule 1), or if predicates 1, 3, and 4 are true (rule 2).

2. Action 2 will be taken if the predicates are all false, (rule 3).

3. Action 3 will take place if predicate 1 is false and predicate 4 is true (rule 4).

 RULE 5 RULE 6 RULE 7 RULE 8

CONDITION 1 1 NO YES YES

CONDITION 2 1 YES 1 NO

CONDITION 3 YES 1 NO NO

CONDITION 4 NO NO YES 1

DEFAULT

ACTION

YES YES YES YES

Table 5.1 The Default Rules

In addition to the stated rules, therefore, we also need a default rule that specifies the default

action to be taken when all other rules fail.

3.2. Decision-Table Processors

The decision table’s translator checks the source decision table for consistency and completeness

and fills in any required default rules. The usual processing order in the resulting object code is,

first, to examine rule 1. If the rule is satisfied, the corresponding action takes place. Otherwise,

rule 2 is tried. This process continues until either a satisfied rule results in an action or no rule is

satisfied and the default action is taken

3.3. Decision Tables as a Basis for Test Case Design

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 4/28

if a program’s logic is to be implemented as decision tables, decision tables should also be used

as a basis for test design

The use of a decision-table model to design tests is warranted when:

1. The specification is given as a decision table or can be easily converted into one.

2. The order in which the predicates are evaluated does not affect interpretation of the

rules or the resulting action

3. The order in which the rules are evaluated does not affect the resulting action

4. Once a rule is satisfied and an action selected, no other rule need be examined.

5. If several actions can result from satisfying a rule, the order in which the actions are

executed doesn’t matter.

3.4. Expansion of Immaterial Cases

Improperly specified immaterial entries (I) cause most decision-table contradictions. If a

condition’s truth value is immaterial in a rule, satisfying the rule does not depend on the

condition. It doesn’t mean that the case is impossible. For example,

Rule 1: “If the persons are male and over 30, then they shall receive a 15% raise.”

Rule 2: “But if the persons are female, then they shall receive a 10% raise.”

The above rules state that age is material for a male’s raise, but immaterial for determining a

female’s raise. No one would suggest that females either under or over 30 are impossible

Table 5.2. The Expansion of an Inconsistent Specification.

Rules 1 and 2 are contradictory because the expansion of rule 1 via condition 2 leads to the same

set of predicate truth values as the expansion of rule 2 via condition 3. Therefore action 1 or

action 2 is taken depending on which rule is evaluated first.

3.5. Test Case Design

Test case design by decision tables begins with examining the specification’s consistency and

completeness. Once the specifications have been verified, the objective of the test cases is to

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 5/28

show that the implementation provides the correct action for all combinations of predicate

values.

1. If there are k rules over n binary predicates, there are at least k cases to consider and at

most 2
n
 cases.

2. It is not usually possible to change the order in which the predicates are evaluated

because that order is built into the program

3. It is not usually possible to change the order in which the rules are evaluated because that

order is built into the program, but if the implementation allows the rule evaluation order

to be modified, test different orders for the rules by pairwise interchanges.

4. Identify the places in the routine where rules are invoked. Identify the places where

actions are initiated.

3.6. Decision Tables and Structure

Decision tables can also be used to examine a program’s structure

Fig 5.3. A Sample Program

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 6/28

 RULE 1 RULE 2 RULE 3 RULE 4 RULE 5 RULE 6

CONDITION A YES YES YES NO NO NO

CONDITION B YES NO YES 1 1 1

CONDITION C 1 1 1 YES NO NO

CONDITION D YES 1 NO 1 YES NO

ACTION 1 YES YES NO NO NO NO

ACTION 2 NO NO YES YES YES NO

ACTION 3 NO NO NO NO NO

Table 5.3. The Decision Table

Sixteen cases are represented in Table 10.5, and no case appears twice. Consequently, the

flowgraph appears to be complete and consistent. As a first check, before you look for all sixteen

combinations, count the number of Y’s and N’s in each row. They should be equal.

4. Path Expressions Again

4.1. General

4.1.1. The Model

In logic-based testing we focus on the truth values of control flow predicates.

4.1.2. Predicates and Relational Operators

A predicate is implemented as a process whose outcome is a truth-functional value. Predicates

are based on relational operators, of which the arithmetic relational operators are merely the

most common.

4.1.3. Case Statements and Multivalued Logics

Logic-based testing is restricted to binary predicates. If you have case statements, you have to

analyze things one case at a time if you’re to use these methods

4.1.4. What Goes Wrong with Predicates

mk:@MSITStore:C:/Documents%20and%20Settings/kowsi/Desktop/Coriolis_Group_-_Software_Testing_Techniques__2nd_Edition.chm::/st2/ch10.html#table10.05#table10.05
mk:@MSITStore:C:/Documents%20and%20Settings/kowsi/Desktop/Coriolis_Group_-_Software_Testing_Techniques__2nd_Edition.chm::/st2/ch10.html#table10.05#table10.05

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 7/28

Several things can go wrong with predicates, especially if the predicate has to be interpreted in

order to express it as a predicate over input values.

1. The wrong relational operator is used: e.g., > instead of <=.

2. The predicate expression of a compound predicate is incorrect: e.g., A + B instead of

AB.

3. The wrong operands are used: e.g., A > X instead of A > Z.

4. The processing leading to the predicate (along the predicate’s interpretation path) is

faulty.

4.1.5. Overview

 convert the path expressions into Boolean algebra, using the predicates’ truth values as

weights

 examine the logical sum of those expressions for consistency and ambiguity

 consider a hierarchy of logic-based testing strategies and associated coverage concepts

4.2. Boolean Algebra

4.2.1. Notation

Let’s take a structural viewpoint for the moment and review the steps taken to get the predicate

expression of a path.

1. Label each decision with an uppercase letter that represents the truth value of the

predicate. The YES or TRUE branch is labeled with a letter and the NO or FALSE

branch with the same letter overscored.

2. The truth value of a path is the product of the individual labels. Concatenation or

products mean “AND.”

3. If two or more paths merge at a node, the fact is expressed by use of a plus sign (+)

which means “OR.”

4.2.2. The Rules of Boolean Algebra

Boolean algebra has three operators:

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 8/28

× meaning AND. Also called multiplication. A statement such as AB means “A and

B are both true.” This symbol is usually left out as in ordinary algebra.

+ meaning OR. “A + B” means “either A is true or B is true or both.”

 meaning NOT. Also negation or complementation.

Laws of Boolean algebra

4.2.3. Examples

The path expressions of Section 4.2 can now be simplified by applying the rules

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 9/28

4.2.4. Paths and Domains

Consider a loop-free entry/exit path and assume for the moment that all predicates are simple. If

a literal appears twice in a product term then not only can one appearance be removed but it also

means that the decision is redundant. If a literal appears both barred and unbarred in a product

term, then by rule 10 the term is equal to zero, which is to say that the path is unachievable.

A product term on an entry/exit path specifies a domain because each of the underlying predicate

expressions specifies a domain boundary over the input space. Because the predicates are

compound, the Boolean expression corresponding to the path will be (after simplification) a sum

of product terms. Because this expression was derived from one path, the expression also

specifies a domain. However, the domain now need not be simply connected

4.2.5. Test Case Design

Although it is possible to have ambiguities and contradictions in a specification (given, say, as a

list of conditions), it is not possible for a program to have contradictions or ambiguities if:

1. The routine has a single entry and a single exit.

2. No combination of predicate values leads to nonterminating loops.

3. There are no pieces of dangling code that lead nowhere.

The set of paths used to reach any point of interest in the flowgraph (such as the exit) can be

characterized by an increasingly more thorough set of test cases:

1. Simplest—Use any prime implicant in the expression to the point of interest as a basis

for a path.

2. Prime Implicant Cover—Pick input values so that there is at least one path for each

prime implicant at the node of interest.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 10/28

3. All Terms—Test all expanded terms for that node

4. Path Dependence—Because in general, the truth value of a predicate is obtained by

interpreting the predicate, its value may depend on the path taken to get there. Do every

term by every path to that term.

4.3. Boolean Equations

Loops complicate things because we may have to solve a Boolean equation to determine what

predicate-value combinations lead to where. Furthermore, the Boolean expression for the end

point does not necessarily equal 1

Fig 5.4. A Flowgraph with Loops.

Assign a name to any node. It’s usually convenient to give names to links. The names represent

the Boolean expression corresponding to that link

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 11/28

The fact that the expression for the end point does not reduce to 1 means that there are predicate-

value combinations for which the routine will loop indefinitely. If the predicate values are

independent of the processing, this routine must loop indefinitely.

5. KV CHARTS

5.1. The Problem

The Karnaugh-Veitch chart (this is known by every combination of “Karnaugh” and/or “Veitch”

with any one of “map,” “chart,” or “diagram”) reduces Boolean algebraic manipulations to

graphical trivia

5.2. Simple Forms

Fig 5.5 shows all the Boolean functions of a single variable and their equivalent representation as

a KV chart. The charts show all possible truth values that the variable A can have. The heading

above each box in the chart denotes this fact. A “1” means the variable’s value is “1” or TRUE.

A “0” means that the variable’s value is 0 or FALSE.

mk:@MSITStore:C:/Documents%20and%20Settings/kowsi/Desktop/Coriolis_Group_-_Software_Testing_Techniques__2nd_Edition.chm::/st2/ch10.html#figure10.04#figure10.04

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 12/28

Fig 5.5. KV Charts for Functions of a Single Variable.

Fig 5.6 shows eight of the sixteen possible functions of two variables. Each box corresponds to

the combination of values of the variables for the row and column of that box

Fig 5.6. Functions of Two Variables.

mk:@MSITStore:C:/Documents%20and%20Settings/kowsi/Desktop/Coriolis_Group_-_Software_Testing_Techniques__2nd_Edition.chm::/st2/ch10.html#figure10.05#figure10.05

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 13/28

Fig 5.7. More Functions of Two Variables.

Since n variables lead to 2
n
 combinations of 0 and 1 for the variables, and each such combination

(box) can be filled or not filled, leading to 2
2n

 ways of doing this

5.3. Three Variables

KV charts for three variables are shown below. As before, each box represents an elementary

term of three variables with a bar appearing or not appearing according to whether the row-

column heading for that box is 0 or 1

A three-variable chart can have groupings of 1, 2, 4, and 8 boxes. A few examples shown below

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 14/28

5.4. Four Variables and More

The same principles hold for four and more variables. A four-variable chart and several possible

adjacencies are shown below. Adjacencies can now consist of 1, 2, 4, 8, and 16 boxes, and the

terms resulting will have 4, 3, 2, 1, and 0 literals in them respectively:

6. SPECIFICATIONS

6.1. General

The procedure for specification validation is straightforward:

1. Rewrite the specification using consistent terminology.

2. Identify the predicates on which the cases are based. Name them with suitable letters,

such as A, B, C.

3. Rewrite the specification in English that uses only the logical connectives AND, OR,

and NOT, however stilted it might seem.

4. Convert the rewritten specification into an equivalent set of Boolean expressions.

5. Identify the default action and cases, if any are specified.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 15/28

6. Enter the Boolean expressions in a KV chart and check for consistency. If the

specifications are consistent, there will be no overlaps, except for cases that result in

multiple actions.

7. Enter the default cases and check for consistency.

8. If all boxes are covered, the specification is complete.

9. If the specification is incomplete or inconsistent, translate the corresponding boxes of

the KV chart back into English and get a clarification, explanation, or revision.

10. If the default cases were not specified explicitly, translate the default cases back into

English and get a confirmation.

6.2. Finding and Translating the Logic

We cast the specifications into sentences of the following form:

“IF predicate THEN action.”

The predicates are written using the AND, OR, and NOT Boolean connectives.

IF A AND B AND C, THEN A1,

IF C AND D AND F, THEN A1,

IF A AND B AND D, THEN A2,

. . .

Now identify all the NOTs, which can be knotty because some sentences may have the form

or . Put phrases in parentheses if that helps to clarify things.

6.3. Ambiguities and Contradictions

There is an ambiguity, probably related to the default case. You might get contradictory

answers, in which case, you may have to rephrase your question or, better yet, lay out all the

combinations in a table and ask for a resolution of the ambiguities. There are several boxes that

call for more than one action

6.4. Don’t-Care and Impossible Terms

1. Identify all “impossible” and “illogical” cases and confirm them.

2. Document the fact that you intend to take advantage of them.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 16/28

3. Fill out the KV chart with the possible cases and then fill in the impossible cases. Use

the combined symbol φ, which is to be interpreted as a 0 or 1, depending on which value

provides the greatest simplification of the logic. These terms are called don’t-care terms,

because the case is presumed impossible, and we don’t care which value (0 or 1) is used.

STATES, STATE GRAPHS

1. State Graphs

1.1. States

We define “state” as: “A combination of circumstances or attributes belonging for the time being

to a person or thing.”

A person’s checkbook can have the following states with respect to the bank balance:

1. Equal

2. Less than

3. Greater than

A word processing program menu can be in the following states with respect to file

manipulation:

1. Copy document

2. Delete document

3. Rename document

4. Create document

5. Compress document

6. Copy disc

7. Format disc

8. Backup disc

9. Recover from backup

States are represented by nodes. States are numbered or may be identified by words

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 17/28

Fig 5.8. One-Time ZCZC Sequence-Detector State Graph.

2. Good State Graphs And Bad

2.1. General

some principles for judging:

1. The total number of states is equal to the product of the possibilities of factors that

make up the state.

2. For every state and input there is exactly one transition specified to exactly one,

possibly the same, state.

3. For every transition there is one output action specified. That output could be trivial,

but at least one output does something sensible.
*

4. For every state there is a sequence of inputs that will drive the system back to the

same state.
**

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 18/28

Fig 5.9. Improper State Graphs.

2.2. State Bugs

2.2.1. Number of States

The number of states in a state graph is the number of states we choose to recognize or model.

Because explicit state-table mechanization is not typical, the opportunities for missing states

abound. Find the number of states as follows:

1. Identify all the component factors of the state.

2. Identify all the allowable values for each factor.

3. The number of states is the product of the number of allowable values of all the

factors.

2.2.2. Impossible States

Because the states we deal with inside computers are not the states of the real world but rather a

numerical representation of real-world states, the “impossible” states can occur. A robust piece

of software will not ignore impossible states but will recognize them and invoke an illogical-

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 19/28

condition handler when they appear to have occurred. That handler will do whatever is necessary

to reestablish the system’s correspondence to the world.
*

2.2.3. Equivalent States

Two states are equivalent if every sequence of inputs starting from one state produces exactly

the same sequence of outputs when started from the other state.

Fig 5.10. Equivalent States.

Fig 5.11 Equivalent States of Figure 5.10 Merged.

Equivalent states can be recognized by the following procedures:

1. The rows corresponding to the two states are identical with respect to

input/output/next state but the name of the next state could differ. The two states are

differentiated only by the input that distinguishes between them.

2. There are two sets of rows which, except for the state names, have identical state

graphs with respect to transitions and outputs. The two sets can be merged

2.3. Transition Bugs

2.3.1. Unspecified and Contradictory Transitions

Every input-state combination must have a specified transition. If the transition is impossible,

then there must be a mechanism that prevents that input from occurring in that state. Exactly one

transition must be specified for every combination of input and stat. Ambiguities are impossible

because the program will do something (right or wrong) for every input

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 20/28

2.3.2. An Example

Specifications are one of the most common sources of ambiguities and contradictions. The

following example illustrates how to convert a specification into a state graph and how

contradictions can come about. Here is the first statement of the specification:

Rule 1: The program will maintain an error counter, which will be incremented whenever there’s

an error. The initial state graph might look like this:

There are only two input values, “okay” and “error.” A state table will be easier to work with,

and it’s much easier to spot ambiguities and contradictions. Here’s the first state table:

 INPUT

STATE OKAY ERROR

0 0/none 1/

1 2/

2 3/

3 4/

4 5/

5 6/

6 7/

7 8/

There are no contradictions yet, but lots of ambiguities

Here are the rest of the rules; study them to see if you can find the problems, if any:

Rule 2: If there is an error, rewrite the block.

Rule 3: If there have been three successive errors, erase 10 centimeters of tape and then rewrite

the block.

Rule 4: If there have been three successive erasures and another error occurs, put the unit out

of service.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 21/28

Rule 5: If the erasure was successful, return to the normal state and clear the error counter.

Rule 6: If the rewrite was unsuccessful, increment the error counter, advance the state, and try

another rewrite.

Rule 7: If the rewrite was successful, decrement the error counter and return to the previous

state.

Adding rule 2, we get

 INPUT

STATE OKAY ERROR

0 0/NONE 1/REWRITE

1 2/REWRITE

2 3/REWRITE

3 4/REWRITE

4 5/REWRITE

5 6/REWRITE

6 7/REWRITE

7 8/REWRITE

Rule 3: If there have been three successive errors, erase 10 centimeters of

tape and then rewrite the block.

 INPUT

STATE OKAY ERROR

0 0/NONE 1/REWRITE

1 2/REWRITE

2 3/REWRITE, ERASE, REWRITE

3 4/REWRITE, ERASE, REWRITE

4 5/REWRITE, ERASE, REWRITE

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 22/28

5 6/REWRITE, ERASE, REWRITE

6 7/REWRITE, ERASE, REWRITE

7 8/REWRITE, ERASE, REWRITE

Rule 3, if followed blindly, causes an unnecessary rewrite. It’s a minor bug, so let it go for now,

but it pays to check such things. There might be an arcane security reason for rewriting, erasing,

and then rewriting again.

Rule 4: If there have been three successive erasures and another error

occurs, put the unit out of service.

 INPUT

STATE OKAY ERROR

0 0/NONE 1/RW

1 2/RW

2 3/ER, RW

3 4/ER, RW

4 5/ER, RW

5 6/OUT

6

7

Rule 4 terminates our interest in this state graph so we can dispose of states beyond 6. The

details of state 6 will not be covered by this specification; presumably there is a way to get back

to state 0. Also, we can credit the specifier with enough intelligence not to have expected a

useless rewrite and erase prior to going out of service.

Rule 5: If the erasure was successful, return to the normal state and clear the

counter.

 INPUT

STATE OKAY ERROR

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 23/28

0 0/NONE 1/RW

1 2/RW

2 3/ER, RW

3 0/NONE 4/ER, RW

4 0/NONE 5/ER, RW

5 0/NONE 6/OUT

6

Rule 6: If the rewrite was unsuccessful, increment the error counter,

advance the state, and try another rewrite.

Because the value of the error counter is the state, and because rules I and 2 specified the same

action, there seems to be no point to rule 6 unless yet another rewrite was wanted. Furthermore,

the order of the actions is wrong. If the state is advanced before the rewrite, we could end up in

the wrong state. The proper order should have been: output = attempt-rewrite and then increment

the error counter.

Rule 7: If the rewrite was successful, decrement the error counter and return to the previous

state.

 INPUT

STATE OKAY ERROR

0 0/NONE 1/RW

1 0/NONE 2/RW

2 1/NONE 3/ER, RW

3 0/NONE

2/NONE

4/ER, RW

4 0/NONE

3/NONE

5/ER, RW

5 0/NONE 6/OUT

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 24/28

4/NONE

6

Rule 7 got rid of the ambiguities but created contradictions. The specifier’s intention was

probably:

Rule 7A: If there have been no erasures and the rewrite is successful, return to the previous state.

The only thing you can assume is that it’s unlikely that a satisfactory implementation will result

from a contradictory specification

2.3.3. Unreachable States

An unreachable state is like unreachable code—a state that no input sequence can reach.

Unreachable states can come about from previously “impossible” states. There are two

possibilities: (1) There is a bug; that is, some transitions are missing. (2) The transitions are

there, but you don’t know about it; in other words, there are other inputs and associated

transitions to reckon with.

2.3.4. Dead States

A dead state, (or set of dead states) is a state that once entered cannot be left. A set of states may

appear to be dead because the program has two modes of operation. In the first mode it goes

through an initialization process that consists of several states. The initialization states are

unreachable to the working states, and the working states are dead to the initialization states.

2.4. Output Errors

Output actions must be verified independently of states and transitions. The likeliest reason for

an incorrect output is an incorrect call to the routine that executes the output. This is usually a

localized and minor bug.

2.5. Encoding Bugs

Make it a point not to use the programmer’s state numbers and/or input codes. The behavior of a

finite-state machine is invariant under all encodings. That is, say that the states are numbered 1 to

n. If you renumber the states by an arbitrary permutation, the finite-state machine is

unchanged—similarly for input and output codes.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 25/28

3. State Testing

3.1. Impact of Bugs

Let’s say that a routine is specified as a state graph that has been verified as correct in all details.

Program code or tables or a combination of both must still be implemented. A bug can manifest

itself as one or more of the following symptoms:

1. Wrong number of states.

2. Wrong transition for a given state-input combination.

3. Wrong output for a given transition.

4. Pairs of states or sets of states that are inadvertently made equivalent (factor lost).

5. States or sets of states that are split to create inequivalent duplicates.

6. States or sets of states that have become dead.

7. States or sets of states that have become unreachable.

3.2. Principles

Even though most state testing can be done as a single case in a grand tour, it’s impractical to do

it that way for several reasons:

1. In the early phases of testing, you’ll never complete the grand tour because of bugs.

2. Later, in maintenance, testing objectives are understood, and only a few of the states

and transitions have to be retested. A grand tour is a waste of time.

3. There’s so much history in a long test sequence and so much has happened that

verification is difficult.

The starting point of state testing is:

1. Define a set of covering input sequences that get back to the initial state when starting

from the initial state.

2. For each step in each input sequence, define the expected next state, the expected

transition, and the expected output code.

A set of tests, then, consists of three sets of sequences:

1. Input sequences.

2. Corresponding transitions or next-state names.

3. Output sequences.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 26/28

3.3. Limitations and Extensions

-transition coverage in a state-graph model does not guarantee complete testing

Work continues and progress in the form of semiautomatic test tools and effective methods are

sure to come. Meanwhile, we have the following experience:

1. Simply identifying the factors that contribute to the state, calculating the total number

of states, and comparing this number to the designer’s notion catches some bugs.

2. Insisting on a justification for all supposedly dead, unreachable, and impossible states

and transitions catches a few more bugs.

3. Insisting on an explicit specification of the transition and output for every combination

of input and state catches many more bugs.

4. A set of input sequences that provide coverage of all nodes and links is a mandatory

minimum requirement.

5. In executing state tests, it is essential that means be provided (e.g., instrumentation

software) to record the sequence of states (e.g., transitions) resulting from the input

sequence and not just the outputs that result from the input sequence.

3.4. What to Model

Because every combination of hardware and software can in principle be modeled by a

sufficiently complicated state graph, this representation of software behavior is applicable to

every program.

Here are some situations in which state testing may prove useful:

1. Any processing where the output is based on the occurrence of one or more sequences

of events, such as detection of specified input sequences, sequential format validation,

parsing, and other situations in which the order of inputs is important.

2. Most protocols between systems, between humans and machines, between

components of a system.

3. Device drivers such as for tapes and discs that have complicated retry and recovery

procedures if the action depends on the state.

4. Transactions flow where the transactions are such that they can stay in the system

indefinitely—for example, online users, and tasks in a multitasking system.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 27/28

5. High-level control functions within an operating system. Transitions between user

states, supervisor’s states, and so on. Security handling of records, permission for

read/write/modify privileges, priority interrupts and transitions between interrupt states

and levels, recovery issues and the safety state of records and/or processes with respect to

recording recovery data.

6. The behavior of the system with respect to resource management and what it will do

when various levels of resource utilization are reached. Any control function that

involves responses to thresholds where the system’s action depends not just on the

threshold value, but also on the direction in which the threshold is crossed. This is a

normal approach to control functions. A threshold passage in one direction stimulates a

recovery function, but that recovery function is not suspended until a second, lower

threshold is passed going the other way.

7. A set of menus and ways that one can go from one to the other. The currently active

menus are the states, the input alphabet is the choices one can make, and the transitions

are invocations of the next menu in a menu tree. Many menu-driven software packages

suffer from dead states—menus from which the only way out is to reboot.

8. Whenever a feature is directly and explicitly implemented as one or more state-

transition tables.

3.5. Getting the Data

getting the data on which the model is to be based is half the job or more. There’s no magic for

doing that: reading documents, interviews, and all the rest

3.6. Tools

The telecommunications industry, especially in telephony, has been using finite-state machine

implementations of control functions for decades (BAUE79). They also use several

languages/systems to code state tables directly. Similarly, there are tools to do the same for

hardware logic designs. The bad news is that these systems and languages are proprietary, of the

home-brew variety, internal, and/or not applicable to the general use of software

implementations of finite-state machines.

KARPAGAM ACADEMY OF HIGHER EDUCATION

Class: III BSc IT Course Name: SoftwareTesting

Course Code: 16ITU501 Unit: V (Logic-Based Testing) Batch- 2016-2019

Prepared by M.Saranya, Assistant Professor, Department of CS,CA & IT, KAHE 28/28

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

CLASS : III B.Sc IT

 Subject : Software Testing

Unit - V

Option 1 Option 2 Option 3 Option 4 Answer

1 The _________________ may be optional or several alternate formats may be acceptable Backus-Naur form Back_Naur form Backus_Nour form None of these Backus-Naur form

2 Field-value errors are clearly a ____________ issue Declaration Transaction Method Syntax Syntax

3 A scripting language and processor such as _________________ has the features needed to automate the replacement of good substrings by bad ones on the fly Data declaration Data Abstraction Data Validation Data Transaction Data Validation

4 _______________ is also an excellent way of convincing a novice tester that testing is infinite and that the tester’s problem is not generating tests but knowing which ones to cullFlow of characters Array of characters String of characters None of these String of characters

5 Build or buy a _____________ that the program automatically sequences through a set of test cases usually stored as data Data declaration Data Abstraction Data Validation Data Transaction Data Validation

6 Which of the following is under compilation steps: String generator String recognizer String of characters Syntax String generator

7 __________________kind of error causes adjacent fields to merge Strings Delimeters Literals None of these Delimeters

8 ________________ are characters or strings placed between two fields to denote where one ends and the other begin. Missing delimeters Delimeters Wrong delimeters None of these Missing delimeters

9 The tester attempts to generate strings and is said to be a ______________________ Missing delimeters Delimeters Wrong delimeters None of these wrong delimeters

10 ________________________routine is designed to recognize strings that have been Missing delimeters Too many delimeters Wrong delimeters delimeters Too many delimeters

11 Every input can be considered as if it were a _________________________ Missing delimeters Too many delimeters Tolerant Delimiters Wrong delimeters Tolerant Delimiters

12 ________________________consists (in part) of checking the input for correct syntax Path testing domain-testing validate testing Segment testing domain-testing

13 Every input has ___________________ transaction Declaration Syntax None of these transaction

14 Internal and external inputs conform to formats, which can usually be expressed in _____________________________ complete consistent neither consistent nor complete None of these neither consistent nor complete

15 _________________several different delimiters are used and there are rules that specify which can be used where. capture capture/replay replay None of these capture/replay

16 The string or field value that may be acceptable at one instant may not be acceptable at the next because validity depends on the _____________ Driver Hardware software None of these Driver

17 If you get the designer to create the first version of the BNF specification, you may find that it is ___________ CACL CALC CASL None of these CASL

18 A ______________ system captures your keystrokes and stuff sent to the screen and stores them for later execution Path testing black box testing white box testing syntax testing Syntax testing

19 Compilation consists of ________________main steps 2 3 4 5 3

20 The approach/document used to make sure all the requirements are covered when writing test cases Test Matrix Checklist Test bed Traceablity Matrix Traceablity Matrix

21 Executing the same test case by giving the number of inputs on same build called as Regression Testing Ad hoc Testing ReTesting Sanity Testing ReTesting

22 To check whether we are developing the right product according to the customer requirements are not. It is a static process Verification Validation Quality Assurance Quality Control Verification

23 To check whether we have developed the product according to the customer requirements r not. It is a Dynamic process. Verification Validation Quality Assurance Quality Control Validation

24

It is a set of levels that defines a testing maturity hieraecy

TQM(Total

Quantity

Management)

TQM(Total Quality

Management)

TMM (Testing Maturity

Model)

TIM (Testing Improving

Model)
TIM (Testing Improving Model)

25 A Non-Functional Software testing done to check if the user interface is easy to use and understand Unit testing Security Testing Usability Testing Block Box Testing Usability Testing

26 The review and approved document (i.e. Test plan, System Requirement Specification’s) is called as Delivery Document Baseline Document Checklist Flowlist Baseline Document

27
What are the Testing Levels? All of the below Integration Testing Unit Testing

System Testing and

Acceptance Testing
All of the below

28 A useful tool to visualize, clarify, link, identify, and classify possible cause of a problem. This is also called as “ fishbone diagram ” what is this? Pareto Analysis Cause-and-Effect Diagram Causes Cause-and-Effect Diagram

29 Variance from product specifications is called? Report Requirement Defect Distruct Defect

30 Verification is Product base Process based Check based Use Based Process based

31 White box testing is not called as___________ Closed box testing Glass box testing OPen box testing Clear box testing Closed box testing

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

 COIMBATORE – 641 021

Department of CS,CA & IT

Fifth Semester

FIRST INTERNAL EXAMINATION - July 2018

Software testing

Class & Section: III B.Sc (IT) Duration: 2 hours

Date & Session : 13.7.18FN Maximum marks: 50 marks

Subj.Code: 16ITU501B

1. Black box testing is sometime referred as ___________________

a) Glass b) Functional c) Structural d) All the above

2. White box testing is sometime called as ___________________.

a) Glass b) Functional c) Structural d)All the above

3. The term ANSI is referred__________________

a) American Networking Standard Institute

b) American National Standard Institute

c) American National Standardize Institute

d) American National Standards Institute

4. Usage of equal partitioning is __________ test cases

1) To Reduce b) To Increase c) To Avoid d) To Allow
5. Other name for equal partitioning _______________

a) Equivalence Classes b) Equivalence Objects

c) Equivalence Methods d) Equivalence Directory

6. State testing is performed for ______________

a) Verification Of Programming Codes b) Verification Of Programming Logic

c) Transmission Of Programming Codes d)Transmission Of Programming Logic

7. Static white box testing is the process of examining _____________

a) Design b) Code c) Logic d) Both A & B

8. View in software design , architecture or code for bugs is called _____________

a)Logic Analysis b)Structural Analysis c) Design Analysis d) Code

Analysis

9. Bottom – up right own modules are called ______

a) Drivers b) Dataflow c) Big-Bang d) Test Drivers

10) Top-down sometime called as ______

a) Drivers b) Dataflow c) Big-Bang d) Test Drivers

11) A process block is a sequence of program statements uninterrupted by

a) Decisions b) Process Block c) Case Statement d) Instruction

12._________ Execute all possible control flow paths through the program

a) Path Testing b) Statement Testing c) Branch Testing d) Self Blindness

13._________ Execute all possible control flow paths through the program

a) Path Testing b) Statement Testing c) Branch Testing d) Self Blindness

14. _________Execute all statement in the program at least once under some test

a) Path Testing b) Statement Testing c) Branch Testing d) Path

15. _________Execute enough tests to assure that every branch alternative has been

a) Path Testing b) Statement Testing c) Branch Testing d) Path

16. Predicates of the form A OR B, A AND B and more complicated Boolean

expressions

 a) Compound Predicates b) Associated Predicates

 c) Assignment Blindness d) Case Statements

17. The input for a particular test is mapped as a one dimensional array called as

a) Dynamic Vector b) Input Vector c) Predicate d) No.Of Path

18. The logical function evaluated at a decision is called _______

 a) Dynamic Vector b) Input Vector

 c) Predicate d)Transmission Of Programming Logic

19. Bug is same name of________

a) Error b) Incident c) Mistake d) Defect

20. Which of the following is largest bug producer?

a) Code b)Design c)Specification d) other

PART-B [3 * 2 = 6 Marks]

 Answer any 10 Questions

21. Differentiate between black box and white box testing

22. What are the two approaches for testing?

23. What is static white box testing?

PART-B [3 * 8 = 24 Marks]

 Answer any 10 Questions

24. a)Describe in detail about the strategies used to perform high-level review of specification.

 (or)

b) Explain in detail about low level specification test techniques.

25) a) Write in detail about the approach used in equivalence partitioning method. Provide neat

 sketches wherever necessary.

 (or)

 b) What strategies are followed to perform the data testing? With an example program

 describe its process and uses.

26) a)Explain about Generic Code Review Checklist

(or)

b)Discuss about the Formal review

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

 COIMBATORE – 641 021

Department of CS,CA & IT

Fifth Semester

FIRST INTERNAL EXAMINATION - July 2018

Software testing

Class & Section: III B.Sc (IT) Duration: 2 hours

Date & Session : 13.7.18FN Maximum marks: 50 marks

Subj.Code: 16ITU501B

1. Black box testing is sometime referred as ___________________

a) Glass b) Functional c) Structural d) All the above

2. White box testing is sometime called as ___________________.

a) Glass b) Functional c) Structural d)All the above

3. The term ANSI is referred__________________

a) American Networking Standard Institute

b) American National Standard Institute

c) American National Standardize Institute

d) American National Standards Institute

4. Usage of equal partitioning is __________ test cases

a)To Reduce b) To Increase c) To Avoid d) To Allow

5. Other name for equal partitioning _______________

a) Equivalence Classes b) Equivalence Objects

c) Equivalence Methods d) Equivalence Directory

6. State testing is performed for ______________

a) Verification Of Programming Codes b) Verification Of Programming Logic

c) Transmission Of Programming Codes d)Transmission Of Programming Logic

7. Static white box testing is the process of examining _____________

a) Design b) Code c) Logic d) Both A & B

8. View in software design , architecture or code for bugs is called _____________

a)Logic Analysis b)Structural Analysis c) Design Analysis d) Code Analysis

9. Bottom – up right own modules are called ______

a) Drivers b) Dataflow c) Big-Bang d) Test Drivers

10) Top-down sometime called as ______

a) Drivers b) Dataflow c) Big-Bang d) Test Drivers

11) A process block is a sequence of program statements uninterrupted by

a) Decisions b) Process Block c) Case Statement d) Instruction

12. A __________ is a multi-way branch or decisions

a)Decisions b) Process Block c) Case Statement d) Instruction

13._________ Execute all possible control flow paths through the program

a) Path Testing b) Statement Testing c) Branch Testing d) Self Blindness

14. _________Execute all statement in the program at least once under some test

a) Path Testing b) Statement Testing c) Branch Testing d) Path

15. _________Execute enough tests to assure that every branch alternative has been

a) Path Testing b) Statement Testing c) Branch Testing d) Path

16. Predicates of the form A OR B, A AND B and more complicated Boolean

expressions

 a) Compound Predicates b) Associated Predicates

 c) Assignment Blindness d) Case Statements

17. The input for a particular test is mapped as a one dimensional array called as

a) Dynamic Vector b) Input Vector c) Predicate d) No.Of Path

18. The logical function evaluated at a decision is called _______

 a) Dynamic Vector b) Input Vector

 c) Predicate d)Transmission Of Programming Logic

19. Bug is same name of________

a) Error b) Incident c) Mistake d) Defect

20. Which of the following is largest bug producer?

a) Code b)Design c)Specification d) other

PART-B [3 * 2 = 6 Marks]

 Answer any 10 Questions

21. Differentiate between black box and white box testing

ANSWER:

Black box Testing:

 Black-box testing is sometimes referred to as functional testing or

behavioral testing.

 In Windows CalculatoR, if a number 3.14159 is typed and the SQRT button is

pressed, the result is displayed as 1.772453102341

White box Testing

 White-box testing is sometimes called clear-box testing

 The software tester has access to the program's code and can examine it for clues

to help him with his testing.

22. What are the two approaches for testing?

ANSWER:

Test-to-pass and Test-to-fail

There are two fundamental approaches to testing software: test-to-pass and test-to-fail.

When test-to-pass is executed it really assures only that the software minimally works. So

it is not pushed to its capabilities. It is not seen what is done to break it. It is treated with

kid gloves, applying the simplest and most straightforward test cases.

Two Approaches to testing

Test-to-pass: apply simple and straight forward test cases.

 Test-to-fail : intend to find bugs by any means

23. What is static white box testing?

ANSWER:

Static white box testing

It is the process of examining design and code. It includes

 Reviewing software design, architecture or code for bugs with execution.

 Also called structured analysis

 This method finds bugs early during the development process

 It finds bugs that are difficult to uncover

PART-B [3 * 8 = 24 Marks]

 Answer any 10 Questions

24. a)Describe in detail about the strategies used to perform high-level review of specification.

ANSWER:

 Performing High Level Review of Specification

 While testing don’t jump straight and look for bugs in code.

 Stand back and view it from high level.

 If there is better understanding of why and how then examination will be in detail.

1. Pretend to be a customer:

 Get known about end user.

 Understand customer expectation.

 Don’t assume anything to be correct.

 If bugs are found, it is better.

 Test security of the software also.

2. Research existing standards and guidelines

 Back in days every software structure of every company like Microsoft and Apple

are different. So it requires retraining.

 Now all software and hardware are standardized. So products are similar in look

and feel.

 Standard should be strictly adhered

 Specifying Guidelines is optional but should be followed.

Example of standards and guidelines:

 Corporate terminology and conventions.

 Industry requirements.

 Government standards.

 Graphical User Interface

 Security standards.

Tester – It defines guidelines and standards applied to product developed.

 A tester tests if standards are used and not overlooked.

3. Review and test similar software

The following are the things to be looked when reviewing competitive product.

 Scale – features included

 Complexity

 Testability

 Quality / Reliability

 Security

Read online and printed software reviews and articles about competitor.

 (or)

b) Explain in detail about low level specification test techniques.

ANSWER:

1. Low Level Specification Test technique

 Testing specification at lower level.

Specification attributes checklists – The following attributes must be verified

1. Complete. Is anything missing or forgotten? Is it thorough? Does it include

everything necessary to make it stand alone?

2. Accurate. Is the proposed solution correct? Does it properly define the goal? Are

there any errors?

3. Precise, Unambiguous, and Clear. Is the description exact and not vague? Is there

a single interpretation? Is it easy to read and understand?

4. Consistent. Is the description of the feature written so that it doesn't conflict with

itself or other items in the specification?

5. Relevant. Is the statement necessary to specify the feature? Is it extra information

that should be left out? Is the feature traceable to an original customer need?

6. Feasible. Can the feature be implemented with the available personnel, tools, and

resources within the specified budget and schedule?

7. Code-free. Does the specification stick with defining the product and not the

underlying software design, architecture, and code?

8. Testable. Can the feature be tested? Is enough information provided that a tester

could create tests to verify its operation?

Specification Terminology Characteristics

 Always, Every, All, None, Never. If these words are seen such as these that

denote something as certain or absolute, make sure that it is, indeed, certain.

 Certainly, Therefore, Clearly, Obviously, Evidently. These words tend to

persuade you into accepting something as a given. Don't fall into the trap.

 Some, Sometimes, Often, Usually, Ordinarily, Customarily, Most, Mostly. These

words are too vague. It's impossible to test a feature that operates "sometimes."

 Etc., And So Forth, And So On, Such As. Lists that finish with words such as

these aren't testable. Lists need to be absolute or explained so that there's no

confusion as to how the series is generated and what appears next in the list.

 Good, Fast, Cheap, Efficient, Small, Stable. These are unquantifiable terms. They

aren't testable. If they appear in a specification, they must be further defined to

explain exactly what they mean.

 Handled, Processed, Rejected, Skipped, Eliminated. These terms can hide large

amounts of functionality that need to be specified.

 If…Then (but missing Else). Look for statements that have "If…Then" clauses

but don't have a matching "Else." Ask yourself what will happen if the "if" doesn't

happen.

25) a) Write in detail about the approach used in equivalence partitioning method. Provide neat

 sketches wherever necessary.

ANSWER:

. Equivalence partitioning (or) Equivalence classing

 It is means by which test cases are selected.

 Process of reducing huge set of possible test cases into smaller ones. But equally

effective.

Example : - calculator

 Not possible to check all cases of adding 2 numbers together.

 Check 1+1, 1+2, 1+3, safely assure if 1+5, 1+6 also works correct.

Example :

1. 1+999999999999 looks different and so may have a bug in it.

2. We provide five options to copy and paste. But all options perform same

operation

a) Click copy

b) type c or C if menu displayed

c) ctrl + C or ctrl + shift + C

d) Click command to menu

e) press Ctrl + C

Figure 2.5 Multiple ways to invoke the copy function with same result.

3. Giving name in Save As dialog box - A name must be checked for a valid

character, invalid character, valid length, name too short and name too long.

Figure 2.6 File Name text box in the Save As dialog box illustrates several

equivalence partition possibilities.

A Windows filename can contain any characters except \ / : * ? " < > and |.

Filenames can have from 1 to 255 characters. If test cases are created for

filenames, have equivalence partitions for valid characters, invalid characters,

valid length names, names that are too short, and names that are too long.

Goals of Equivalence partitioning

 The aim of equivalence partitioning should not be to reduce number of test cases

 This process may lead to bugs.

 If the person is new to testing then get classes from an experienced person.

 (or)

 b) What strategies are followed to perform the data testing? With an example program

 describe its process and uses.

ANSWER:

. Data Testing

 Divide software into data and program

 Data – input, output, printout, mouse clicks etc.,

 Program – flow, transitions, logic, computation.

Examples of data

 Words typed in word processor.

 Numbers typed in spreadsheet

 Number of shots in your game

 Picture printed by your software

 Backup files stored on floppy disk

 Data sent to modem over phone lines.

Tester should reduce test cases by Equivalence partitioning based on few concepts. They

are boundary conditions, sub-boundary conditions, nulls and bad data.

1. Boundary conditions

 If it is possible to walk along the edge of a cliff, then it also possible to

walk on the middle.

 If software operates on edge of its capabilities, almost operates under

normal condition.

Figure 2.7 Software boundary is much like the edge of a cliff.

Basic program

1) Rem create a 10 element integer array

2) Rem initialize each element to -1

3) Dim data(10) as integer

4) Dim i as integer

5) For i = 1 to 10

6) Data(i) = -1

7) Next i

8) End

 This program actually creates a data array of 11 elements from data (0) to data (10).

 The program loops from 1 to 10 and initializes those values of the array to 1, but

since the first element of our array is data (0), it doesn't get initialized.

 When the program completes, the array values look like this:

data(0) = 0 data(6) = 1

data(1) = 1 data(7) = 1

data(2) = 1 data(8) = 1

data(3) = 1 data(9) = 1

data(4) = 1 data(10) = 1

data(5) = 1

 The data (0)'s value is 0, not 1.

 If the same programmer later forgot about, or a different programmer wasn't

aware of how this data array was initialized, he might use the first element of the

array, data (0), thinking it was set to 1.

 Problems such as this are very common and, in large complex software, can result

in very nasty bugs.

Types of Boundary Conditions

Boundary conditions are situations at edge of planned operational limits of free

software.

When a tester is presented with a software test problem that involves identifying

boundaries, he must look for the following types:

Numeric Speed

Character Location

Position Size

Quantity

And, the following are the characteristics of those types:

First/Last Min/Max

Start/Finish Over/Under

Empty/Full Shortest/Longest

Slowest/Fastest Soonest/Latest

Largest/Smallest Highest/Lowest

Next-To/Farthest-From

Testing the Boundary Edges

 Create 2 Equivalence partitions

 First partition should be such that it is the last value of a data and 2 points to be

chosen inside boundary.

 Second partition should be chosen as the data that can cause error and 2 invalid

points outside boundary

Testing outside boundary

 First -1 / last + 1

 Start -1 / finish + 1

 Less than empty / more than full

 Even slower / even faster

 Largest+1 / smallest -1

 Testing

 Text allowing 1-255 character. Test by entering 1 and 255

 Flight simulator – try at ground level and maximum height allowed

 If software allows 9 digit zip code enter and test 000000000 and

999999999

Sub Boundary Condition

 Not important for end user but must be checked.

 It is also called internal boundary conditions.

 Example: ASCII codes; powers–of-two

 These conditions are discussed with programmers and checked.

 It checks for default, empty, blank, null, zero and more.

 It also checks data that are invalid, wrong, incorrect and garbage data

 It includes testing the logic flow of software

26) a)Explain about Generic Code Review Checklist

ANSWER:

Generic Code Review Checklist

There are many types of errors that must be listed before going into the process of testing.

They are

1. Data reference error

 Is uninitialized variable referenced?

 Is array out of bound

 Is there any problem in index references of array?

 Is any variable used instead of constant?

 Is floating point number assigned to integer variable?

 Is memory allocated for pointers?

2. Data declaration error

 Is all variables assigned correct length, type etc?

 Check if variable initialized while declared

 Is there variable name with similar name?

 Are there any unreferenced variable

 Are all variable explicitly declared?

3. Computation error

 Existence of two variables of different data type – integer and float

 Existence of two variable of different length – byte and word

 Variable in assignment smaller than Right hand side of expression

 Overflow, underflow

 Division by zero

 Value of variable outside range. Example percentage value only between 0-100

 Confusion in order of expression if there are multiple operators

4. Comparison error

 Is comparison correct?

 Is there comparison between fractional and floating point?

 Is there any confusion in order of evaluation in Boolean expression?

 Whether operators in Boolean expression are Boolean?

5. Control flow error

 Matching groups, begin-end, do-while

 Whether loop terminates correctly?

 Possibility if a loop never executes

 Switch index exceeds number of existing branches

 Unexpected flow through loop

6. Subroutine parameter error

 Type, size and order of precedence correct or not

 Multiple entry point in subroutine

 Change in order of parameters if send as constant

 Is there any alteration in parameters?

 Whether formal and actual arguments match?

 Whether definition of global variable same everywhere

7. I/O error

 Data format read/printed

 Device not ready

 Device disconnected

 Error handled in expected way

 Check error message for spelling and grammar

8. Other checks

 Will the software work with language other than English?

 Will the software work with other compilers and CPU’s?

 Will the software work with different amount of memory, hardware, sound card

etc?

 Whether compilation of program produce warning or informational message

(or)

b)Discuss about the Formal review

ANSWER:

Formal review

 It is a meeting between two programmers

 It is a rigorous method of inspection of software design and code.

 4 elements:
1. Identify problem - find wrong and missing items. The criticism is only to the

product. It should not extend to the programmer

2. Follow rules - amount of code to be reviewed, time spent, what can be

commented on etc. are provided in the rules

3. Prepare for review – the reviewers must know what is their duty, role,

responsibility during the review and fulfill them.

4. Write a report: Finally after the review a written report summarizing the result

of review must be prepared.

Figure 2.12 Formal reviews are the first nets used in catching bugs

Use of formal review

 It increases communication between testers

 Improves quality of the software product

 Team camaraderie

 It provides a solution even for tough problem.

1. Peer review or buddy review

 It is done by designer, programmer and tester together.

 They review the code and look for problems

 Since it is informal method of testing, the testers may not follow the four elements

of testing

2. Walkthroughs

 Programmer who wrote the code formally presents the application to a small

group of reviewers

 One senior programmer must be a reviewer

 The reviewer can write comments and questions

 There will be large number of people. So this method looks much formal

 Presenter writes report on how bugs were found and how to solve it

3. Inspections

 It is a highly structured method of testing

 The participants here needs training

 The presenter is not a programmer.

 Some other person learn and explain the code to others

 Other participants are called inspectors

 Using this method identify different bugs

 The review process is done backwards

 After the testing process is done, prepare a written report.

 This report identifies rework

 A re-inspection is done to locate remaining bugs

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

 COIMBATORE – 641 021

Department of CS,CA& IT

Fifth Semester

SECOND INTERNAL EXAMINATION - August 2018

SOFTWARE TESTING

Class & Section: III B.Sc (IT) & (CT) Duration: 2 hours

Date &Session :14.8.18 (FN) Maximum marks: 50 marks

Subj.Code: 16ITU501B & 16CTU501B

PART-A [20 * 1 = 20Marks]

 Answer All the Questions

1. White box techniques are also called as_______________

a) design based testing b)structural testing c)error guessing d) testing

2. Which of the following is not a white box technique_____________

a) statement testing b)bath testing c)state transition testing d)data flow testing

3. Which of these activities provides the biggest potential cost saving from the use of

CAST__________

a) test management

b) test execution

c) test design

d) test planning

4. Which of the following would not normally from part of a test plan___________

a) futures to be tested

b) ricks

c) incident reports

d) schedue

5. Test vectors in sensitized bath based testing is generated___________

a) before enumerating faults

b) after enumerating faults

c) after designing

d) before designing

6. A safety program consist of

a) three E's b) four E's c) Five E's d) six E's

7. Abstract dependency injection spring context tests supports dependency injection

a) auto wires beans methods

b) auto beans via protected fields

c) none of the mentioned

d) all of the mentioned

8. Exhaustive testing is suitable when N is

a) small b) any value for N c)very large d)large

9. __________testing technique on the manual examination and automated analysis of the

code or other project documentation without the execution of the code

a) static testing

b) dynamic testing

c) reviews

d) all

10. Explaining the objectives, process and documents to the participant is the main activity performed on

____________phase of formal review.

a) follow ofb) review meeting c) rework d)kick off

11. _____________ Testing is uses the control flow graph to explore the unreasonable things

that happen to data

a) Segment b) Node c) Data flow d) Path

12. Data flow testing is the name given to a family of test strategies based on selecting

_______________ through the program

a) Node b) Path c)Link d)Error

13. The data flow graph is consisting of __________________ and ________________

a) Node and Path

b) Node and Segment

c) Link and Segment

d) Node and Directed Link

14. An object is _____________ When it appears in data declaration or appears on the left

hand side of an assignment statement

a) implicitly b) explicitly c) Consent d) None of these

15. An object is _____________ or undefined when it is released or otherwise made

unavailable

a) Not defined b) Dead c) Killed d) Both A and B

16. _______________ means that nothing after point of interest to the exit

a) Trailing b) Timing c) Pointing d) Exiting

17. ________________ is an analysis done on source code without actually executing it

a) Static analysis b) Dynamic analysis c) valid analysis d) Barring analysis

18. ______________ is done on the fly as the program is being executing and is based on

intermediate values that result from the program's execution

a) Static analysis b) Dynamic analysis c) valid analysis d) Barring analysis

19. ____________ are dummy nodes placed at the outgoing arrowheads of exit statements to

complete the graph

a) Entry node b) Exit node c) Constant node d) Valid node

20. A _________________ path segment is a connected sequence of links

a) Loop free b) Simple c) Definition clear d) None of these

PART-B [3 * 2 = 6Marks]

 Answer All the Questions

21. Define data coverage.

22. What is transaction?

23. What type of link is used in dataflow graph?

PART-C [3 * 8 = 24Marks]

 Answer All the Questions

24.a) Narrate the steps involved in creating Testing Blindness.

(OR)

 b) Explain in detail the following i) Path Sensitizing ii) Path Instrumentation

 25.a) Discuss in detail the various data flow testing

(OR)

 b) Enumerate the data-flow testing strategies.

 26.a) Discuss in details about Transaction Flow Testing Techniques

(OR)

 b) Discuss in detail about Testing Strategies-Application, Tools & Effectiveness

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

 COIMBATORE – 641 021

Department of CS,CA& IT

Fifth Semester

SECOND INTERNAL EXAMINATION - August 2018

SOFTWARE TESTING

Class & Section: III B.Sc (IT) & (CT) Duration: 2 hours

Date &Session :14.8.18 (FN) Maximum marks: 50 marks

Subj.Code: 16ITU501B & 16CTU501B

PART-A [20 * 1 = 20Marks]

 Answer All the Questions

1. White box techniques are also called as_______________

a) design based testing b)structural testing c)error guessing d) testing

2. Which of the following is not a white box technique_____________

a) statement testing b)bath testing c)state transition testing d)data flow testing

3. Which of these activities provides the biggest potential cost saving from the use of

CAST__________

a) test management

b) test execution

c) test design

d) test planning

4. Which of the following would not normally from part of a test plan___________

a) futures to be tested

b) ricks

c) incident reports

d) schedue

5. Test vectors in sensitized bath based testing is generated___________

a) before enumerating faults

b) after enumerating faults

c) after designing

d) before designing

6. A safety program consist of

a) three E's b) four E's c) Five E's d) six E's

7. Abstract dependency injection spring context tests supports dependency injection

a) auto wires beans methods

b) auto beans via protected fields

c) none of the mentioned

d) all of the mentioned

8. Exhaustive testing is suitable when N is

a) small b) any value for N c)very large d)large

9. __________testing technique on the manual examination and automated analysis of the

code or other project documentation without the execution of the code

a) static testing

b) dynamic testing

c) reviews

d) all

10. Explaining the objectives, process and documents to the participant is the main activity performed on

____________phase of formal review.

a) follow ofb) review meeting c) rework d)kick off

11. _____________ Testing is uses the control flow graph to explore the unreasonable things

that happen to data

a) Segment b) Node c) Data flow d) Path

12. Data flow testing is the name given to a family of test strategies based on selecting

_______________ through the program

a) Node b) Path c)Link d)Error

13. The data flow graph is consisting of __________________ and ________________

a) Node and Path

b) Node and Segment

c) Link and Segment

d) Node and Directed Link

14. An object is _____________ When it appears in data declaration or appears on the left

hand side of an assignment statement

a) implicitly b) explicitly c) Consent d) None of these

15. An object is _____________ or undefined when it is released or otherwise made

unavailable

a) Not defined b) Dead c) Killed d) Both A and B

16. _______________ means that nothing after point of interest to the exit

a) Trailing b) Timing c) Pointing d) Exiting

17. ________________ is an analysis done on source code without actually executing it

a) Static analysis b) Dynamic analysis c) valid analysis d) Barring analysis

18. ______________ is done on the fly as the program is being executing and is based on

intermediate values that result from the program's execution

a) Static analysis b) Dynamic analysis c) valid analysis d) Barring analysis

19. ____________ are dummy nodes placed at the outgoing arrowheads of exit statements to

complete the graph

a) Entry node b) Exit node c) Constant node d) Valid node

20. A _________________ path segment is a connected sequence of links

a) Loop free b) Simple c) Definition clear d) None of these

PART-B [3 * 2 = 6Marks]

 Answer All the Questions

21. Define data coverage.

22. What is transaction?

23. What type of link is used in dataflow graph?

PART-C [3 * 8 = 24Marks]

 Answer All the Questions

24.a) Narrate the steps involved in creating Testing Blindness.

(OR)

 b) Explain in detail the following i) Path Sensitizing ii) Path Instrumentation

 25.a) Discuss in detail the various data flow testing

(OR)

 b) Enumerate the data-flow testing strategies.

 26.a) Discuss in details about Transaction Flow Testing Techniques

(OR)

 b) Discuss in detail about Testing Strategies-Application, Tools & Effectiveness

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

 COIMBATORE – 641 021

Department of CS,CA& IT

Fifth Semester
THIRD INTERNAL EXAMINATION - September 2018

SOFTWARE TESTING

Class & Section: III B.Sc (IT) & (CT) Duration: 2 hours
Date &Session : 08.10.2018 (FN) Maximum marks: 50 marks

Subj.Code: 16ITU501B & 16CTU501B

PART-A [20 * 1 = 20Marks]
 Answer All the Questions

1. Fundamental problems in our most popular metric are seemingly obvious _______________

a) process of code
b) functions of code

c) lines of code
d) Parameters of code

2. __________________must be objective in the same that the measurement process is algorithmic
and will yields the same result no matter who applies it
a) Ruler b)scale c)non-metrics d)metrics

3. A useful metric can be calculated ________________ for all programs to which we apply it.
a)randomly b)uniquely c) dynamically d)none of these

4. The metrics are classified into ______________types
a) 2 b)5 c) 3 d)4

5. ________________ is based on measuring properties of program or specification text without
interpreting what the text means
a) structural metrics
b) hybrid metrics

c) linguistic metrics
d) parallel metrics

6. __________________ is based on structural relations between objects in the program
a) structural metrics
b) hybrid metrics

c) linguistic metrics
d) parallel metrics

7. ______________ is based on some combination of structural and linguistic properties of program
a) structural metrics
b) hybrid metrics

c) linguistic metrics
d) parallel metrics

8. ________________is to count the coding of a program and use that number as a measure of
complexity
a) number of errors
b) number of lines

c) both a and b
d) none of these

9. The most solid confirmation of the bug predication equation is by ______________________
a) lipow b) lipwo c)lipo d) none of these

10. ________________ is strongly typed languages that force the explicit declarartion of all types
and prohibit mixed typed operation
a) operator types
b) data type distinction

c) data type declaration
d) both B and C

11. ______________ is the number of delimiters appearing at a field boundary may be variable
a) Backus-Naur form
b) Back_Naur form

c) Backus_Nour form
d) None of these

12. The _________________ may be optional or several alternate formats may be acceptable
a) Declaration b) Transaction c) Method d) Syntax

13. Field-value errors are clearly a ____________ issue
a) Data declaration
b) Data Abstraction

c) Data Validation
d) Data Transaction

14. A scripting language and processor such as _________________ has the features needed to
automate the replacement of good substrings by bad ones on the fly
a) Flow of characters
b) Array of characters

c) String of characters
d) None of these

15. _______________ is also an excellent way of convincing a novice tester that testing is infinite
and that the tester’s problem is not generating tests but knowing which ones to cull
a) Data declaration
b) Data Abstraction

c) Data Validation
d) Data Transaction

16. Build or buy a _____________ that the program automatically sequences through a set of test
cases usually stored as data
a) String generator
b) String recognizer

c) String of characters
d) Syntax

17. Which of the following is under compilation steps:
a) Strings b) Delimeters c) Literals d) None of these

18. __________________kind of error causes adjacent fields to merge
a) Missing delimeters
b) Delimeters

c) Wrong delimeters
d) None of these

19. ________________ are characters or strings placed between two fields to denote where one ends
and the other begin.
a) Missing delimeters
b) Delimeters

c) Wrong delimeters
d) None of these

20. The tester attempts to generate strings and is said to be a ______________________
a) Missing delimeters
b) Too many delimeters

c) Wrong delimeters
d) delimeters

PART-B [3 * 2 = 6Marks]

 Answer All the Questions

21. What is Domain Testing?

22. Differentiate On points and Off points with diagram.

23. Define Decision Table.

PART-C [3 * 8 = 24Marks]
 Answer All the Questions

24. a)Explain in detail about Domains and Paths.
(OR)

 b) Discuss in detail about Domains and Interface Testing.
25. a)Explain in details about Decision Tables.

(OR)
b)Discuss in detail Specifications of State Graphs

26. a)What are KV Charts? explain in detail with examples.
(OR)

b)Elucidate in detail about the variations done for Good State graphs and Bad Graphs.
Explain the areas where transition bugs occur.

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

 COIMBATORE – 641 021

Department of CS,CA& IT

Fifth Semester
THIRD INTERNAL EXAMINATION - September 2018

SOFTWARE TESTING

Class & Section: III B.Sc (IT) & (CT) Duration: 2 hours
Date &Session : 08.10.2018 (FN) Maximum marks: 50 marks

Subj.Code: 16ITU501B & 16CTU501B

PART-A [20 * 1 = 20Marks]
 Answer All the Questions

1. Fundamental problems in our most popular metric are seemingly obvious _______________

a) process of code
b) functions of code

c) lines of code
d) Parameters of code

2. __________________must be objective in the same that the measurement process is algorithmic
and will yields the same result no matter who applies it
a) Ruler b)scale c)non-metrics d)metrics

3. A useful metric can be calculated ________________ for all programs to which we apply it.
a)randomly b)uniquely c) dynamically d)none of these

4. The metrics are classified into ______________types
a) 2 b)5 c) 3 d)4

5. ________________ is based on measuring properties of program or specification text without
interpreting what the text means
a) structural metrics
b) hybrid metrics

c) linguistic metrics
d) parallel metrics

6. __________________ is based on structural relations between objects in the program
a) structural metrics
b) hybrid metrics

c) linguistic metrics
d) parallel metrics

7. ______________ is based on some combination of structural and linguistic properties of program
a) structural metrics
b) hybrid metrics

c) linguistic metrics
d) parallel metrics

8. ________________is to count the coding of a program and use that number as a measure of
complexity
a) number of errors
b) number of lines

c) both a and b
d) none of these

9. The most solid confirmation of the bug predication equation is by ______________________
a) lipow b) lipwo c)lipo d) none of these

10. ________________ is strongly typed languages that force the explicit declarartion of all types
and prohibit mixed typed operation
a) operator types
b) data type distinction

c) data type declaration
d) both B and C

11. ______________ is the number of delimiters appearing at a field boundary may be variable
a) Backus-Naur form
b) Back_Naur form

c) Backus_Nour form
d) None of these

12. The _________________ may be optional or several alternate formats may be acceptable
a) Declaration b) Transaction c) Method d) Syntax

13. Field-value errors are clearly a ____________ issue
a) Data declaration
b) Data Abstraction

c) Data Validation
d) Data Transaction

14. A scripting language and processor such as _________________ has the features needed to
automate the replacement of good substrings by bad ones on the fly
a) Flow of characters
b) Array of characters

c) String of characters
d) None of these

15. _______________ is also an excellent way of convincing a novice tester that testing is infinite
and that the tester’s problem is not generating tests but knowing which ones to cull
a) Data declaration
b) Data Abstraction

c) Data Validation
d) Data Transaction

16. Build or buy a _____________ that the program automatically sequences through a set of test
cases usually stored as data
a) String generator
b) String recognizer

c) String of characters
d) Syntax

17. Which of the following is under compilation steps:
a) Strings b) Delimeters c) Literals d) None of these

18. __________________kind of error causes adjacent fields to merge
a) Missing delimeters
b) Delimeters

c) Wrong delimeters
d) None of these

19. ________________ are characters or strings placed between two fields to denote where one ends
and the other begin.
a) Missing delimeters
b) Delimeters

c) Wrong delimeters
d) None of these

20. The tester attempts to generate strings and is said to be a ______________________
a) Missing delimeters
b) Too many delimeters

c) Wrong delimeters
d) delimeters

PART-B [3 * 2 = 6Marks]

 Answer All the Questions

21. What is Domain Testing?

ANS: An input domain is a set. If the source language supports set definition (e.g. Pascal set

types, C enumerated types) less testing is needed because the compiler (compile time and run

time) does much of it for us.

The language of set theory is natural for domain testing.

22. Differentiate On points and Off points with diagram.

ANS:

23. Define Decision Table.

ANS:

If the action entry is “YES,” the action will take place; if “NO,” the action will not take place

PART-C [3 * 8 = 24Marks]
 Answer All the Questions

24. a)Explain in detail about Domains and Paths.

ANS:

Domains and Paths

2.1 The model

Domain testing can be based on specifications and/or equivalent implementation information. If

domain testing is based on specification, it is a functional test technique; if based on

implementations, it is a structural technique. A routine must classify the input and set it moving

on the right path. Processing begins with a classifier section that partition the input vector into

cases. An invalid input (e.g., value too big) is just a special processing case called ‘’reject’’ say.

The input then passes to a hypothetical subroutine or path that does the processing. In domain

testing we focus on the classification aspect of the routine rather than on the calculations.

Fig 3.3 Schematic Representation of Domain Testing

2.2 A Domain is a set

An input domain is a set. If the source language supports set definition (e.g. Pascal set types, C

enumerated types) less testing is needed because the compiler (compile time and run time) does

much of it for us.

The language of set theory is natural for domain testing.

2.3 Domains, paths and predicates

If domain testing is applied to structure, then predicate interpretation must be based on actual

paths through the routine that is, based on implementation control flow graph. Conversely, if

domain testing is applied to specification, interpretation is based on a specified data flowgraph

for the routine.

For every domain there is at least one path through the routine. There may be more than one path

if the domain consists of disconnected parts or if the domain is defined by the union of two or

more domains. For every boundary there is at least one predicate that specifies what numbers

belong to the domain and what numbers don’t.

For e.g. in the statement

IF x>0 THEN ALPHA ELSE BETA

We know that numbers greater than zero belong to ALPHA processing domain(s) while zero and

smaller numbers belong to BETA domain(s). A domain might be defined by a sequence of

predicate-say A,B, and C. first evaluate A and process the A cases, then evaluate B and do B

processing, and then evaluate C and finish up. With three binary predicates, there are up to eight

(23) domains.

To review:

1. A domain for a loop-free program corresponds to a set of number defined over the

input vector.

2. For every domain there is at least one path through the routine, along which that

domain processing is done.

3. The set of interpreted predicates transverse on that path (i.e. The path’s predicate

expression) defines the domain’s boundary.

2.4 Domain Closure

As in set theory, a domain boundary is closed with respect to a domain if the parts on the

boundary belong to the domain. If the boundary points belong to some other domain, the

boundary is said to be open.

Fig 3.4 Open and Closed Domains

2.5 Domain Dimensionality

Every boundary slices through the input vector space with a dimensionality which is less than the

dimensionality of the space. Thus, planes are cut by lines and points, volume by planes, lines and

points, and n-spaces by hyperplanes. Spaces of more than three dimensions are called n-spaces.

Things that cut though n-spaces are called hyperplanes (not starships). An input array with

dimension 100 is not unusual, but it is a 100-dimensional space.

(OR)

 b) Discuss in detail about Domains and Interface Testing.

ANS:

4. Domains and Interface Testing

 4.1 General

Integration testing is testing the correctness of the interface between two otherwise correct

components. For a single variable, the domain span is the set of numbers between (including) the

smallest value and largest value. For every input variable we need (atleast); compatible domain

span and incompatible closures.

4.2 Domains and range

The set of output values produced by a function, in correct with the domain, which is the set of

input values over which the function is defined.

 An interface test consists of exploring the correctness of the following mappings

caller domain → caller range (caller unit test)

caller range → called domain (integration test)

called domain → called range (called unit test)

4.3 Closure Compatibility

Fig 3.10 shows the four ways in which the caller’s range closure and called’s domain closure can

agree. The thick line means closed and the thin line means open.

Fig 3.10 Range/Domain Closure Compatibility

Fig 3.11 shows the twelve different ways the caller and the called can be disagree about closure.

The four cases in which a caller boundary is open and the called is closed (marked with a ‘’?’’)

are probably not buggy.

Fig 3.11 Equal-Span Range/Domain Compatibility Bugs

4.4. Span Compatibility

Fig 3.12 shows three possible harmless span incompatibilities. consider, for example, a square-

root routine that accepts negative numbers and provides an imaginary square root for them. The

routine is used by many callers; some require complex number answer and some don’t. This kind

of span incompatibility is a bug only if the caller expects the called routine to validate the called

numbers for the callers. If that’s so, there are values that can be included the call, which from the

caller’s point of view are invalid, but for which the called routine will not provide an error

response.

Fig 3.12 Harmless Range/Domain Span Incompatibility Bug. (Caller Span Is Smaller Than Called.)

Fig 3.13a shows the opposite situation, in which the called routine’s domain has a smaller span

than the caller expects. All of these examples are buggy. In Fig 3.12 b the ranges and domains

don’t line up; hence good values are rejected, bad values are accepted, and if the called routine

isn’t robust enough, we have crashes. Fig 3.13 c combines these notions to show various ways

we can have holes in the domain: these are all probably buggy.

Fig 3.13 Buggy Range/Domain Mismatches

4.5 Interface Range/Domain compatibility Testing

Test every input variable independently of other input variables to conform compatibility of the

caller’s range and the called routine’s domain span and closure of every domain defined for that

variable for sub-routine’s that classified input as ‘’valid/invalid’’ the called routine’s domain

span and closure (for valid cases) is usually broader than the caller’s span and closure. if domains

divide processing into several cases, you must use normal domain –testing ideas and look for

exact range/domain boundary matches.

25. a)Explain in details about Decision Tables.

ANS:

. Decision Tables

3.1. Definitions and Notation

It consists of four areas called the condition stub, the condition entry, the action stub, and the

action entry. The condition stub is a list of names of conditions. A rule specifies whether a

condition should or should not be met for the rule to be satisfied. “YES” means that the condition

must be met, “NO” means that the condition must not be met, and “I” means that the condition

plays no part in the rule, or it is immaterial to that rule. The action stub names the actions the

routine will take or initiate if the rule is satisfied. If the action entry is “YES,” the action will

take place; if “NO,” the action will not take place

Fig 5.2 An Example of a Decision Table

1. Action 1 will be taken if predicates 1 and 2 are true and if predicates 3 and 4 are false

 (rule 1), or if predicates 1, 3, and 4 are true (rule 2).

2. Action 2 will be taken if the predicates are all false, (rule 3).

3. Action 3 will take place if predicate 1 is false and predicate 4 is true (rule 4).

 RULE 5 RULE 6 RULE 7 RULE 8

CONDITION 1 1 NO YES YES

CONDITION 2 1 YES 1 NO

CONDITION 3 YES 1 NO NO

CONDITION 4 NO NO YES 1

DEFAULT

ACTION

YES YES YES YES

Table 5.1 The Default Rules

In addition to the stated rules, therefore, we also need a default rule that specifies the default

action to be taken when all other rules fail.

3.2. Decision-Table Processors

The decision table’s translator checks the source decision table for consistency and completeness

and fills in any required default rules. The usual processing order in the resulting object code is,

first, to examine rule 1. If the rule is satisfied, the corresponding action takes place. Otherwise,

rule 2 is tried. This process continues until either a satisfied rule results in an action or no rule is

satisfied and the default action is taken

3.3. Decision Tables as a Basis for Test Case Design

if a program’s logic is to be implemented as decision tables, decision tables should also be used

as a basis for test design

The use of a decision-table model to design tests is warranted when:

1. The specification is given as a decision table or can be easily converted into one.

2. The order in which the predicates are evaluated does not affect interpretation of the

rules or the resulting action

3. The order in which the rules are evaluated does not affect the resulting action

4. Once a rule is satisfied and an action selected, no other rule need be examined.

5. If several actions can result from satisfying a rule, the order in which the actions are

executed doesn’t matter.

3.4. Expansion of Immaterial Cases

Improperly specified immaterial entries (I) cause most decision-table contradictions. If a

condition’s truth value is immaterial in a rule, satisfying the rule does not depend on the

condition. It doesn’t mean that the case is impossible. For example,

Rule 1: “If the persons are male and over 30, then they shall receive a 15% raise.”

Rule 2: “But if the persons are female, then they shall receive a 10% raise.”

The above rules state that age is material for a male’s raise, but immaterial for determining a

female’s raise. No one would suggest that females either under or over 30 are impossible

Table 5.2. The Expansion of an Inconsistent Specification.

Rules 1 and 2 are contradictory because the expansion of rule 1 via condition 2 leads to the same

set of predicate truth values as the expansion of rule 2 via condition 3. Therefore action 1 or

action 2 is taken depending on which rule is evaluated first.

3.5. Test Case Design

Test case design by decision tables begins with examining the specification’s consistency and

completeness. Once the specifications have been verified, the objective of the test cases is to

show that the implementation provides the correct action for all combinations of predicate

values.

1. If there are k rules over n binary predicates, there are at least k cases to consider and at

most 2n cases.

2. It is not usually possible to change the order in which the predicates are evaluated

because that order is built into the program

3. It is not usually possible to change the order in which the rules are evaluated because that

order is built into the program, but if the implementation allows the rule evaluation order

to be modified, test different orders for the rules by pairwise interchanges.

4. Identify the places in the routine where rules are invoked. Identify the places where

actions are initiated.

3.6. Decision Tables and Structure

Decision tables can also be used to examine a program’s structure

Fig 5.3. A Sample Program

 RULE 1 RULE 2 RULE 3 RULE 4 RULE 5 RULE 6

CONDITION A YES YES YES NO NO NO

CONDITION B YES NO YES 1 1 1

CONDITION C 1 1 1 YES NO NO

CONDITION D YES 1 NO 1 YES NO

ACTION 1 YES YES NO NO NO NO

ACTION 2 NO NO YES YES YES NO

ACTION 3 NO NO NO NO NO

Table 5.3. The Decision Table

Sixteen cases are represented in Table 10.5, and no case appears twice. Consequently, the

flowgraph appears to be complete and consistent. As a first check, before you look for all sixteen

combinations, count the number of Y’s and N’s in each row. They should be equal.

(OR)

 b)Discuss in detail Specifications of State Graphs

ANS:

STATES, STATE GRAPHS

1. State Graphs

1.1. States

We define “state” as: “A combination of circumstances or attributes belonging for the time being to a

person or thing.”

A person’s checkbook can have the following states with respect to the bank balance:

1. Equal

2. Less than

3. Greater than

A word processing program menu can be in the following states with respect to file

manipulation:

1. Copy document

2. Delete document

3. Rename document

4. Create document

5. Compress document

6. Copy disc

7. Format disc

8. Backup disc

9. Recover from backup

States are represented by nodes. States are numbered or may be identified by words

Fig 5.8. One-Time ZCZC Sequence-Detector State Graph.

2. Good State Graphs And Bad

2.1. General

some principles for judging:

1. The total number of states is equal to the product of the possibilities of factors that

make up the state.

2. For every state and input there is exactly one transition specified to exactly one,

possibly the same, state.

3. For every transition there is one output action specified. That output could be trivial,

but at least one output does something sensible.*

4. For every state there is a sequence of inputs that will drive the system back to the

same state.**

Fig 5.9. Improper State Graphs.

 26. a)What are KV Charts? explain in detail with examples.
ANS:

KV CHARTS

5.1. The Problem

The Karnaugh-Veitch chart (this is known by every combination of “Karnaugh” and/or “Veitch” with

any one of “map,” “chart,” or “diagram”) reduces Boolean algebraic manipulations to graphical trivia

5.2. Simple Forms

Fig 5.5 shows all the Boolean functions of a single variable and their equivalent representation as

a KV chart. The charts show all possible truth values that the variable A can have. The heading

above each box in the chart denotes this fact. A “1” means the variable’s value is “1” or TRUE.

A “0” means that the variable’s value is 0 or FALSE.

Fig 5.5. KV Charts for Functions of a Single Variable.

Fig 5.6 shows eight of the sixteen possible functions of two variables. Each box corresponds to

the combination of values of the variables for the row and column of that box

Fig 5.6. Functions of Two Variables.

Fig 5.7. More Functions of Two Variables.

Since n variables lead to 2n combinations of 0 and 1 for the variables, and each such combination

(box) can be filled or not filled, leading to 22n ways of doing this

5.3. Three Variables

KV charts for three variables are shown below. As before, each box represents an elementary

term of three variables with a bar appearing or not appearing according to whether the row-

column heading for that box is 0 or 1

A three-variable chart can have groupings of 1, 2, 4, and 8 boxes. A few examples shown below

5.4. Four Variables and More

The same principles hold for four and more variables. A four-variable chart and several possible

adjacencies are shown below. Adjacencies can now consist of 1, 2, 4, 8, and 16 boxes, and the

terms resulting will have 4, 3, 2, 1, and 0 literals in them respectively:

 (OR)

 b)Elucidate in detail about the variations done for Good State graphs and Bad Graphs.
 Explain the areas where transition bugs occur.
ANS:

Good State Graphs And Bad

2.1. General

some principles for judging:

1. The total number of states is equal to the product of the possibilities of factors that

make up the state.

2. For every state and input there is exactly one transition specified to exactly one,

possibly the same, state.

3. For every transition there is one output action specified. That output could be trivial,

but at least one output does something sensible.*

4. For every state there is a sequence of inputs that will drive the system back to the

same state.**

Fig 5.9. Improper State Graphs.

	01 Sofware testing Theory.pdf (p.1-3)
	02 LECTURE PLAN.pdf (p.4-9)
	03 Unit I st.pdf (p.10-26)
	04 unit1.pdf (p.27)
	05 Unit II st.pdf (p.28-55)
	06 unit iii st.pdf (p.56-71)
	07 unit3.pdf (p.72)
	08 Unit IV st.pdf (p.73-90)
	09 unit4.pdf (p.91)
	10 Unit V st.pdf (p.92-119)
	11 unit5.pdf (p.120)
	12 ST CIA I QP.pdf (p.121-122)
	13 STCIA-I ANSWER KEY.pdf (p.123-134)
	14 CIA_II_QP.pdf (p.135-136)
	15 CIA_II_QP.pdf (p.137-138)
	16 ST III Internal.pdf (p.139-140)
	17 Ans QP ST III Internal1.pdf (p.141-158)

