

Karpagam Academy of Higher Education

 (Deemed to be University)

(Established Under Section 3 of UGC Act 1956)
Coimbatore – 641 021

DEPARTMENT OF INFORMATION TECHNOLOGY

17ITU404A INTERNET TECHNOLOGIES 4H – 4C

Instruction Hours / week:L: 3 T: 0 P: 0 Marks:Int :40 Ext : 60 Total: 100

SCOPE
This course relates to the interface between web servers and their clients. The course provides

information includes markup languages, programming interfaces and languages, and standards

for document identification adn display. The use of Web technology makes to enhance active

student learning and improves their creativity in making web pages.

OBJECTIVES

 To create new web page

 To understand the fundamental features of web applications

 To understand the objects and components needed for a web designing.

UNIT – I
Java: Use of Objects, Array and ArrayList class JavaScript: Datatypes, operators, functions,
control structures, events and event handling.

UNIT – II
JDBC: JDBC fundamentals, Establishing Connectivity and working with connection interface,
working with statements, creating and executing SQL statements, working with ResultSet
objects.

UNIT – III
JSP: Introduction to JavaServerPages, HTTP and Servlet Basics, The Problem with Servlets, The
Anatomy of a JSP Page, JSP Processing, JSP Application Design with MVC, Setting Up the JSP
Environment.

UNIT – IV
JSP: Implicit Objects, conditional processing, displaying values, Using an expression to Set an
Attribute, declaring variables and methods, error handling and debugging, sharing data between
JSP pages, Requests, and Users, Database Access.

UNIT – V
Java beans: Jaba Beans Fundamentals, JAR Files, Introspection, Developing a simple Bean,
Connecting to DB.

Suggested Readings
1. Ivan Bayross (2009). Web Enabled Commercial Application Development Using Html,

Dhtml, Javascript, PerlCgi. BPB Publications.
2. Cay Hortstmann (2009). BIG Java (3

rd
ed.). Wiley Publication

3. Herbert Schildt (2009). Java 7 The Complete Reference (8
th

 ed.).
4. Jim Keogh (2002). The Complete Reference J2EE. TMH.

5. Hans Bergsten (2003). Java ServerPages (3
rd

ed.). O’Reilly.

Lesson Plan 201 7-2020
Batch

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act

1956) Coimbatore – 641 021.

LECTURE PLAN

DEPARTMENT OF INFORMATION

TECHNOLOGY

 STAFF NAME: P.A.MONISHA

 SUBJECT NAME: INTERNET TECHNOLOGIES

 SUB.CODE: 17ITU404A

 SEMESTER: IV CLASS: II B.SC IT

S.No Lecture Topics to be Covered Support

 Duration Material/Page Nos

 Period

 UNIT-I

1. 1 Introduction to Java T2,W1

2. 1 Introduction to Java T2,W1

3. 1 Array and array list class T2,W1

4. 1 Introduction to java script T1,W1

5. 1 Datatype T1,W1

6. 1 Operators W2

7. 1 Functions T1:126-129

8. 1 Control structure Event Handling T1:133-136

9. 1 Recapitulation & Important topic

 Total No of Hours Planned For Unit 1=9

 UNIT-II

1. 1 Introduction to JDBC T4:123-124

2. 1 JDBC fundamentals T4:124-129

3. 1 JDBC fundamentals T4:124-129

4. 1 Establishing connectivity T4:130-133

5. 1 working with statement T4:135-140

 Prepared by P.A.Monisha ,Department of CS,CA&IT ,KAHE 1

 Lesson Plan Batch

 201 6-2020

6.

1
Creating and executing SQL

W1

7.

1
Creating and executing SQL

W1

8. 1 Network with Result Set Object T4:141-148

9.

1
Recapitulation &Important

 Question Discussion

 Total No of Hours Planned For Unit II=9

 UNIT-III

1. 1 Introduction to Java Server Pages T4:379

2. 1 HTTP and Servlet Basics T4:347

3. 1 The Problem with Servlets T4:348-350

4. 1 The Anatomy of a JSP Page T4:352

5. 1 JSP Processing W1

6.

1
JSP Application Design with

W1

MVC

7. 1 Setting up the JSP Environment W2

8.

1
Recapitulation &Important

Question Discussion

 Total No of Hours Planned For Unit III=8

 UNIT-IV

1. 1 JSP: Implicit objects T4:384

2. 1 Conditional processing W1

3. 1 JSP: displaying values W1

4.

1
Using an expression to set an

W1

 attribute

5.

1
Declaring variables and methods,

W1

 Error Handling and Debugging

6. 1 Sharing data between JSP pages W1

7.

1
Requests, and users, Database

W1

access

8.

1
Recapitulation &important

questions discussion

 Total No of Hours Planned For Unit IV=8

 UNIT-V

 Prepared by P.A.Monisha ,Department of CS,CA&IT ,KAHE 2

 Lesson Plan Batch

 201 6-2020

1. 1 Java beans T4:18

2. 1
Java beans: java beans

T4:443

fundamentals

3. 1 Jar files T4:443

4. 1 Jar files T4:443

5. 1 Introspection W1

6. 1 Developing a simple bean W1

7. 1 Developing a simple bean W1

8. 1 Connecting to db W1

9. 1 Connecting to db W1

10. 1
Recapitulation & important

questions discussion

11. 1
Discussing previous years

question papers

 Total No of Hours Planned for unit V=16

Total 45

Planned

Hours

Suggested Readings
1. Ivan Bayross (2009). Web Enabled Commercial Application Development

Using Html, Dhtml, Java script, PerlCgi. BPB Publications.
2. Cay Hortstmann (2009). BIG Java (3

rd
ed.). Wiley Publication

3. Herbert Schildt (2009). Java 7 The Complete Reference (8
th

 ed.).
4. Jim Keogh (2002). The Complete Reference J2EE. TMH.

5. Hans Bergsten (2003). Java Server Pages (3
rd

ed.). O’Reilly.
Websites:

W1:www.http:/tutorialpoint.com

W2:www.w3.schools.com

Prepared by P.A.Monisha ,Department of CS,CA&IT ,KAHE 3

http://www.w3.schools.com/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A UNIT: I(JAVA) BATCH-2017-2020

 UNIT-I

 SYLLABUS

JAVA: Use of Objects, Array and ArrayList class JavaScript: Datatypes, operators, functions,

control structures, events and event handling.

INTRODUCTION TO JAVA:

Java programming language was originally developed by Sun Microsystems which was

initiated by James Gosling and released in 1995 as core component of Sun Microsystems' Java

platform (Java 1.0 [J2SE]).

The latest release of the Java Standard Edition is Java SE 8. With the advancement of

Java and its widespread popularity, multiple configurations were built to suit various types of

platforms. For example: J2EE for Enterprise Applications, J2ME for Mobile Applications.

The new J2 versions were renamed as Java SE, Java EE, and Java ME respectively. Java

is guaranteed to be Write Once, Run Anywhere.

Java is −

 Object Oriented − In Java, everything is an Object. Java can be easily extended since it

is based on the Object model.

 Platform Independent − Unlike many other programming languages including C and

C++, when Java is compiled, it is not compiled into platform specific machine, rather

into platform independent byte code. This byte code is distributed over the web and

interpreted by the Virtual Machine (JVM) on whichever platform it is being run on.

 Simple − Java is designed to be easy to learn. If you understand the basic concept of

OOP Java, it would be easy to master.

 Secure − With Java's secure feature it enables to develop virus-free, tamper-free systems.

Authentication techniques are based on public-key encryption.

 Architecture-neutral − Java compiler generates an architecture-neutral object file

format, which makes the compiled code executable on many processors, with the

presence of Java runtime system.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 1/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

 Portable − Being architecture-neutral and having no implementation dependent aspects

of the specification makes Java portable. Compiler in Java is written in ANSI C with a

clean portability boundary, which is a POSIX subset.

 Robust − Java makes an effort to eliminate error prone situations by emphasizing mainly

on compile time error checking and runtime checking.

 Multithreaded − With Java's multithreaded feature it is possible to write programs that

can perform many tasks simultaneously. This design feature allows the developers to

construct interactive applications that can run smoothly.

 Interpreted − Java byte code is translated on the fly to native machine instructions and

is not stored anywhere. The development process is more rapid and analytical since the

linking is an incremental and light-weight process.

 High Performance − With the use of Just-In-Time compilers, Java enables high

performance.

 Distributed − Java is designed for the distributed environment of the internet.

 Dynamic − Java is considered to be more dynamic than C or C++ since it is designed to

adapt to an evolving environment. Java programs can carry extensive amount of run-

time information that can be used to verify and resolve accesses to objects on run-time.

History of Java:

James Gosling initiated Java language project in June 1991 for use in one of his many

set-top box projects. The language, initially called ‘Oak’ after an oak tree that stood outside

Gosling's office, also went by the name ‘Green’ and ended up later being renamed as Java, from

a list of random words.

Sun released the first public implementation as Java 1.0 in 1995. It promised Write

Once, Run Anywhere (WORA), providing no-cost run-times on popular platforms.

On 13 November, 2006, Sun released much of Java as free and open source software

under the terms of the GNU General Public License (GPL).

On 8 May, 2007, Sun finished the process, making all of Java's core code free and open-

source, aside from a small portion of code to which Sun did not hold the copyright.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 2/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

CREATING OBJECT:

An object is created from a class. In Java, the new keyword is used to create new objects.

There are three steps when creating an object from a class:

 Declaration − A variable declaration with a variable name with an object type.

 Instantiation − The 'new' keyword is used to create the object.

 Initialization − The 'new' keyword is followed by a call to a constructor. This call

initializes the new object.

Following is an example of creating an object −

Example:

public class Puppy {

public Puppy(String name) {

// This constructor has one parameter, name.

System.out.println("Passed Name is :" + name);

}

public static void main(String []args) {

// Following statement would create an object

myPuppy Puppy myPuppy = new Puppy("tommy");

}

}

If we compile and run the above program, then it will produce the following result −

Output:

Passed Name is :tommy

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 3/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

Declaring, Instantiating and Initializing an

Object import java.util.Date;

class DateApp {
public static void main (String args[]) {

Date today = new Date();

System.out.println(today);

}
}

The main () method of the DateApp application creates a Date object named today. This single

statement performs three actions: declaration, instantiation, and initialization. Date today declares to the

compiler that the name today will be used to refer to an object whose type is Date, the newoperator

instantiates new Date object, and Date() initializes the object.

Declaring an Object:

Declarations can appear as part of object creation as you saw above or can appear alone like this

Date today;

Either way, a declaration takes the form of

type name

where type is either a simple data type such as int, float, or boolean, or a complex data type such

as a class like the Date class. name is the name to be used for the variable. Declarations simply notify the

compiler that you will be using name to refer to a variable whose type is type. Declarations do not

instantiate objects. To instantiate a Date object, or any other object, use the new operator.

Instantiating an Object:

The new operator instantiates a new object by allocating memory for it. new requires a single argument:

a constructor method for the object to be created. The constructor method is responsible for initializing

the new object.

Initializing an Object:

Classes provide constructor methods to initialize a new object of that type. In a class declaration,

constructors can be distinguished from other methods because they have the same name as the class and

have no return type. For example, the method signature for

Date constructor used by the DateApp application is

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 4/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

Date()

A constructor such as the one shown, that takes no arguments, is known as the default constructor. Like

Date, most classes have at least one constructor, the default constructor. However, classes can have

multiple constructors, all with the same name but with a different number or type of arguments. For

example, the Date class supports a constructor that requires three integers:

Date(int year, int month, int day)

that initializes the new Date to the year, month and day specified by the three parameters.

ARRAY IN JAVA:

 Simple fixed sized arrays that we create in Java, like below

int arr[] = new int[10]

 An array is basic functionality provided by Java.
 Array can contain both primitive data types as well as objects of a class depending on the

definition of the array.
 Array can be multi dimensional

Example: Integer addarrayobject[][] = new Integer[3][2];

 In array we insert elements using the assignment operator.

Example: addarrayobject[0]= new Integer(8) ; //new object is added to the array object

 Each array object has the length variable which returns the length of the array.

Example: arraylength= arrayobject.length ; //uses arrayobject length variable

ARRAYLIST IN JAVA:

 Dynamic sized arrays in Java that implement List interface.

ArrayList<Type> arrL = new ArrayList<Type>();

Here Type is the type of elements in ArrayList to

be created

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 5/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A UNIT: I(JAVA) BATCH-2017-2020

 ArrayList is part of collection framework in Java. Therefore array members are accessed using

[],ArrayList has a set of methods to access elements and modify them.

 One need not to mention the size of Arraylist while creating its object. Even if we specify some

initial capacity, we can add more elements.

 ArrayList only supports object entries, not the primitive data types.

 ArrayList can not contains primitive data types (like int , float , double) it can only contains

Object

Example: ArrayList arraylistobject = new ArrayList();

 Length of the ArrayList is provided by the size() method

Example: Integer arrayobject[] = new Integer[3];

 We can insert elements into the arraylist object using the add()

method Example: Integer addarrayobject[] = new Integer[3];

 ArrayList is always single dimensional.

Example:Integer addarrayobject[][] = new Integer[3][2];

Example Program for Array and ArrayList:

import java.util.ArrayList;

import java.util.Iterator;

public class ArrayArrayListExample {

public static void main(String[] args) {

// ArrayList Example

ArrayList<String> arrlistobj = new

ArrayList<String>(); arrlistobj.add("Alive is

awesome"); arrlistobj.add("Love yourself");

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 6/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A UNIT: I(JAVA) BATCH-2017-2020

Iterator it = arrlistobj.iterator();
System.out.print("ArrayList object output :");
while(it.hasNext())
System.out.print(it.next() + " ");

// Array Example

String[] arrayobj = new String[3];

arrayobj[0]= "Love yourself";

arrayobj[1]= "Alive is awesome";

arrayobj[2]= "Be in Present";

System.out.print("Array object output :");

for(int i=0; i < arrayobj.length ;i++)

System.out.print(arrayobj[i] + " ");

}

}

DIFFERENCE OF ARRAY AND ARRAY LIST

ARRAY

ARRAYLIST

 Stores primitive data types and also objects Stores only objects

Defined in Java language itself as a

fundamental data structure

Fixed size

Belongs to collections framework

Growable and resizable. Elements can

be added or removed

 Stores similar data of one type Can store heterogeneous data types

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 7/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A UNIT: I(JAVA) BATCH-2017-2020

It is not a class

Cannot be synchronized

Elements retrieved with for loop

Elements accessible with index number

It is a class with many methods

Can be obtained a synchronized version

Can be retrieved with for loop

and iterators

Accessing methods like get() etc. are

available

Can be multidimensional

—

SIMILIRITIES OF ARRAY AND ARRAYLIST:

 add and get method : Performance of Array and ArrayList are similar for the add and get
operations .Both operations runs in constant time.

 Duplicate elements: Both array and arraylist can contain duplicate elements.

Null Values: Both can store null values and uses index to refer to their elements.

 Unordered: Both do not guarantee ordered elements.

JAVASCRIPTS DATATYPES:

JavaScript includes data types similar to other programming languages like Java or C#.
Data type indicates characteristics of data. It tells the compiler whether the data value is numeric,
alphabetic; date etc., so that it can perform the appropriate operation.

JavaScript provides different data types to hold different types of values. There are two

types of data types in JavaScript.

1. Primitive data type

2. Non-primitive (reference) data type

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 8/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

JavaScript is a dynamic type language, means you don't need to specify type of the variable

because it is dynamically used by JavaScript engine. You need to use var here to specify the data type. It

can hold any type of values such as numbers, strings etc. For example:

var a=40;//holding number

var b="Rahul";//holding string

JavaScript primitive data types:

There are five types of primitive data types in JavaScript. They are as follows:

Data Type

Description

 String represents sequence of characters e.g. "hello"

Number

represents numeric values e.g. 100

 Boolean represents boolean value either false or true

Undefined

represents undefined value

 Null represents null i.e. no value at all

JavaScript Number Data types:

JavaScript has only one Number (numeric) data types. Number data type can store normal

integer, floating-point values.

A floating-point represent a decimal integer with either decimal points or fraction expressed (refer

to another decimal number).

 1. var num1 = 5; // Numeric integer value

 2. var num2 = 10.5; // Numeric float value

 3. var num3 = -30.47; // Negative numeric float value

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 9/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A UNIT: I(JAVA) BATCH-2017-2020

 4. var num4 = 5E4; // 5 x 10 Powers of 4 = 50000

 5. var num5 = 5E-4 // 5 x 10 Powers of -4 = -50000

 6. var num6 = 10 / 0; // Number divide by zero, result is: Infinity

 7. var num7 = 10 / -0; // Number divide by negative zero, result is: -

 Infinity

8. var num8 = 10, num9 = 12.5; // Multiple variable declare and initialize

JavaScript String Data types:

JavaScript string data type represent textual data surrounding to single/double quotes.

Each character is represent as a element that occupies the position of that string. Index value

0, starting from first character of the string.

1. var name = 'Hello, I am run this town.!'; // Single quote

2. var name = "Hello, I am run this town.!"; // Double quote

Whatever quote you use to represent string, but you should take care that quote

can't repeat in string statement.

1. var name = "Hello, I'm run this town.!"; // Single quote use inside string

2. var name1 = ""; // empty string

Note : JavaScript empty string is different from the NULL value.

JavaScript Boolean Data types:

JavaScript Boolean type can have two value true or false. Boolean type is use to perform

logically operator to determine condition/expression is true.

1. var val1 = true;

2. var val2 = false;

JavaScript Symbol Data types:

JavaScript Symbol data type new (Currently ECMAScript 6 Drafted) used for identifier

unique object properties.

Symbol([description])

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 10/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

Parameters : description is optional for identify unique symbol.

1. var s1 = Symbol();

2. var s1 = Symbol('name');

JavaScript Null:

JavaScript Null specifies variable is declare but values of this variable is empty.

1. var str = null; // Value assign null

2. document.writeln(str == undefined); // Returns true

3. document.writeln(null == undefined); // Equality check Returns true

4. document.writeln(null === undefined); // Equality with type check Returns

 false
JavaScript empty variables boolean context return false.

1. var bool = Boolean();

2. console.log(bool); // Default Boolean context Returns false

3. var bool = Boolean(true);

4. console.log(bool); // Returns true

JavaScript undefined:

JavaScript uninitialized variables value are undefined.Uninitialized variable (value

undefined) equal to null. JavaScript uninitialized variables boolean context return false.

1. var str; // Declare variable without value. Identify as undefined value.

2. document.writeln(str == null); // Returns true

3. document.writeln(undefined == null); // Returns true

4. var bool = Boolean(str); // str is undefined passed into Boolean object

5. document.writeln(bool); // Boolean context Returns false
JavaScript non-primitive data types :

The non-primitive data types are as follows:

Data Type

Description

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 11/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A UNIT: I(JAVA) BATCH-2017-2020

Object represents instance through which we can access members

Array represents group of similar values

RegExp represents regular expression

JAVASCRIPT OPERATORS:

JavaScript operators are symbols that are used to perform operations on operands. For example:

1. var sum=10+20;

Here, + is the arithmetic operator and = is the assignment operator.

There are following types of operators in JavaScript.

1. Arithmetic Operators

2. Comparison (Relational) Operators

3. Bitwise Operators

4. Logical Operators

5. Assignment Operators

6. Special Operators

JavaScript Arithmetic Operators:

Arithmetic operators are used to perform arithmetic operations on the operands. The following operators are known

as JavaScript arithmetic operators.

Operator

Description

Example

+ Addition 10+20 = 30

Subtraction

20-10 = 10

-

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 12/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A UNIT: I(JAVA) BATCH-2017-2020

* Multiplication 10*20 = 200

Division

20/10 = 2

/

%

Modulus (Remainder)

20%10 = 0

++ Increment var a=10; a++; Now a = 11

-- Decrement var a=10; a--; Now a = 9

JavaScript Comparison Operators:

The JavaScript comparison operator compares the two operands. The comparison operators are as follows:

Operator

Description

Example

Is equal to

10==20 = false

 ==

===

Identical (equal and of same type)

10==20 = false

 != Not equal to 10!=20 = true

 !== Not Identical 20!==20 = false

 > Greater than 20>10 = true

>=

Greater than or equal to

20>=10 = true

< Less than 20<10 = false

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 13/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A UNIT: I(JAVA) BATCH-2017-2020

Less than or equal to

20<=10 = false

<=

JavaScript Bitwise Operators:

The bitwise operators perform bitwise operations on operands. The bitwise operators are as follows:

Operator

Description

Example

& Bitwise AND (10==20 & 20==33) = false

 | Bitwise OR (10==20 | 20==33) = false

^ Bitwise XOR (10==20 ^ 20==33) = false

~

Bitwise NOT

(~10) = -10

<< Bitwise Left Shift (10<<2) = 40

>>

Bitwise Right Shift

(10>>2) = 2

 >>> Bitwise Right Shift with Zero (10>>>2) = 2

JavaScript Logical Operators:

The following operators are known as JavaScript logical operators.

Operator

Description

Example

 && Logical AND (10==20 && 20==33) = false

||

Logical OR

(10==20 || 20==33) = false

 ! Logical Not !(10==20) = true

 Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 14/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

JavaScript Assignment Operators:

The following operators are known as JavaScript assignment operators.

Operator

Description

Example

=

Assign

10+10 = 20

+= Add and assign var a=10; a+=20; Now a = 30

-= Subtract and assign var a=20; a-=10; Now a = 10

= Multiply and assign var a=10; a=20; Now a = 200

/=

Divide and assign

var a=10; a/=2; Now a = 5

%= Modulus and assign var a=10; a%=2; Now a = 0

JavaScript Special Operators:

The following operators are known as JavaScript special operators.

Operator

Description

Conditional Operator returns value based on the condition. It is like if-else.

(?:)

, Comma Operator allows multiple expressions to be evaluated as single statement.

 delete Delete Operator deletes a property from the object.

 in In Operator checks if object has the given property

 instanceof checks if the object is an instance of given type

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 15/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A UNIT: I(JAVA) BATCH-2017-2020

new creates an instance (object)

typeof checks the type of object.

void it discards the expression's return value.

yield checks what is returned in a generator by the generator's iterator.

JAVASCRIPT FUNCTION:

A JavaScript function is a block of code designed to perform a particular task.

A JavaScript function is executed when "something" invokes it (calls it).

function myFunction(p1, p2) {

return p1 * p2; // The function returns the product of p1 and p2

}

JavaScript Function Syntax:

A JavaScript function is defined with the function keyword, followed by a name, followed

by parentheses ().

Function names can contain letters, digits, underscores, and dollar signs (same rules as variables).

The parentheses may include parameter names separated by commas:

(parameter1, parameter2, ...)

The code to be executed, by the function, is placed inside curly brackets: {}

function name(parameter1, parameter2, parameter3) {

code to be executed

}

Function parameters are listed inside the brackets () of the function definition.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 16/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

Function arguments are the values received by the function when it is invoked.

Inside the function, the arguments (the parameters) behave as local variables.

A Function is much the same as a Procedure or a Subroutine, in other programming languages.

Function Invocation:

The code inside the function will execute when "something" invokes (calls) the function:

 When an event occurs (when a user clicks a button)

 When it is invoked (called) from JavaScript code

 Automatically (self invoked)

You will learn a lot more about function invocation later in this tutorial.

Function Return:

When JavaScript reaches a return statement, the function will stop executing.

If the function was invoked from a statement, JavaScript will "return" to execute the code after

the invoking statement.

Functions often compute a return value. The return value is "returned" back to the "caller":

Example:

Calculate the product of two numbers, and return the result:

var x = myFunction(4, 3); // Function is called, return value will end up in x

function myFunction(a, b) {

return a * b; // Function returns the product of a and b

}

The result in x will be:

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 17/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

12

JavaScript Function Definitions:

JavaScript functions are defined with the function keyword.

Function Definition:

Before we use a function, we need to define it. The most common way to define a function in

JavaScript is by using the functionkeyword, followed by a unique function name, a list of

parameters (that might be empty), and a statement block surrounded by curly braces.

Syntax:

The basic syntax is shown here.

<script type="text/javascript">

<!--

function functionname(parameter-list)

{

statements

}

//-->

</script>

Function Declarations:

Earlier in this tutorial, you learned that functions are declared with the following syntax:

function functionName(parameters) {
code to be executed

}

Declared functions are not executed immediately. They are "saved for later use", and will

be executed later, when they are invoked (called upon).

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 18/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A UNIT: I(JAVA) BATCH-2017-2020

 Example:

function myFunction(a, b) {

return a * b;

}

Function Expressions:

A JavaScript function can also be defined using an expression.

A function expression can be stored in a variable:

Example:

var x = function (a, b) {return a * b};

Example:

var x = function (a, b) {return a * b};

var z = x(4, 3);

The function above is actually an anonymous function (a function without a name).

Functions stored in variables do not need function names. They are always invoked (called) using

the variable name.

The Function() Constructor:

As you have seen in the previous examples, JavaScript functions are defined

with the function keyword.

Functions can also be defined with a built-in JavaScript function constructor called Function().

Example:

var myFunction = new Function("a", "b", "return a * b");

var x = myFunction(4, 3);

Functions Can Be Used as Values:

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 19/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

JavaScript functions can be used as values:

Example:

function myFunction(a, b) {

return a * b;

}

var x = myFunction(4, 3);

Functions are Objects:

The typeof operator in JavaScript returns "function" for functions.

But, JavaScript functions can best be described as objects.

JavaScript functions have both properties and methods.

The arguments.length property returns the number of arguments received when the function

was invoked:

Example:

function myFunction(a, b) {

return arguments.length;

}

CONTROL STRUCTURE:

 The control structures within JavaScript allow the program flow to change within a

unit of code or function. These statements can determine whether or not given

statements are executed, as well as repeated execution of a block of code.

 Most of the statements enlisted below are so-called conditional statements that can

operate either on a statement or a block of code enclosed with braces ({ and }). The

same structures utilize Booleans to determine whether or not a block gets executed,

where any defined variable that is neither zero nor an empty string is treated as true.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 20/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

Control structure actually controls the flow of execution of a program. Following are the several

control structure supported by javascript.

 if … else

 switch case

 do while loop

 while loop

 for loop

If … else

The if statement is the fundamental control statement that allows JavaScript to make decisions

and execute statements conditionally.

Syntax

if (expression){

Statement(s) to be executed if expression is true

}

Example

<script type="text/javascript">

<!--

var age = 20;

if(age > 18){

document.write("Qualifies for driving");

}

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 21/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

//-->

</script>

Switch case

The basic syntax of the switch statement is to give an expression to evaluate and several

different statements to execute based on the value of the expression. The interpreter checks each

case against the value of the expression until a match is found. If nothing matches, a default

condition will be used.

Syntax

switch (expression)

{

case condition 1: statement(s)

break;

case condition 2: statement(s)

break;

...

case condition n: statement(s)

break;

default: statement(s)

}

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 22/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

Example

<script type="text/javascript">

<!--

var grade='A';

document.write("Entering switch block
");

switch (grade)

{

case 'A': document.write("Good job
");

break;

case 'B': document.write("Pretty good
");

break;

case 'C': document.write("Passed
");

break;

case 'D': document.write("Not so good
");

break;

case 'F': document.write("Failed
");

break;

default: document.write("Unknown grade
")

}

document.write("Exiting switch block");

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 23/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

//-->

</script>

Do while Loop

The do...while loop is similar to the while loop except that the condition check happens at the

end of the loop. This means that the loop will always be executed at least once, even if the

condition is false.

Syntax

do{

Statement(s) to be executed;

} while (expression);

Example

<script type="text/javascript">

<!--

var count = 0;

document.write("Starting Loop" + "
");

do{

document.write("Current Count : " + count + "
");

count++;

}while (count < 0);

document.write("Loop stopped!");

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 24/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

//-->

</script>

This will produce following result −

Starting Loop

Current Count : 0

Loop stopped!

While Loop

The purpose of a while loop is to execute a statement or code block repeatedly as long as

expression is true. Once expression becomes false, the loop will be exited.

Syntax

while (expression){

Statement(s) to be executed if expression is true

}

Example

<script type="text/javascript">

<!--

var count = 0;

document.write("Starting Loop" + "
");

while (count < 10){

document.write("Current Count : " + count + "
");

count++;

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 25/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

}

document.write("Loop stopped!");

//-->

</script>

This will produce following result −

Starting Loop

Current Count : 0

Current Count : 1

Current Count : 2

Current Count : 3

Current Count : 4

Current Count : 5

Current Count : 6

Current Count : 7

Current Count : 8

Current Count : 9

Loop stopped!

For Loop

The for loop is the most compact form of looping and includes the following three important

parts −

 The loop initialization where we initialize our counter to a starting value. The

initialization statement is executed before the loop begins.

 The test statement which will test if the given condition is true or not. If condition is true

then code given inside the loop will be executed otherwise loop will come out.

 The iteration statement where you can increase or decrease your counter.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 26/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

Syntax

for (initialization; test condition; iteration statement){

Statement(s) to be executed if test condition is true

}

Example

<script type="text/javascript">

<!--

var count;

document.write("Starting Loop" + "
");

for(count = 0; count < 10; count++){

document.write("Current Count : " + count);

document.write("
");

}

document.write("Loop stopped!");

//-->

</script>

This will produce following result which is similar to while loop −

Starting Loop

Current Count : 0

Current Count : 1

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 27/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

Current Count : 2

Current Count : 3

Current Count : 4

Current Count : 5

Current Count : 6

Current Count : 7

Current Count : 8

Current Count : 9

Loop stopped!

with

The with statement is used to extend the scope chain for a block
[1]

 and has the following syntax:

with (expression) {

// statement

}

Pros

The with statement can help to

 reduce file size by reducing the need to repeat a lengthy object reference, and

 relieve the interpreter of parsing repeated object references.

However, in many cases, this can be achieved by using a temporary variable to store

a reference to the desired object.

Cons

The with statement forces the specified object to be searched first for all name

lookups. Therefore

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 28/36

https://en.wikibooks.org/wiki/JavaScript/Control_structures#cite_note-1

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

 all identifiers that aren't members of the specified object will be found more slowly in a 'with'

block and should only be used to encompass code blocks that access members of the object.

 with makes it difficult for a human or a machine to find out which object was meant

by searching the scope chain.

 Used with something else than a plain object, with may not be forward-compatible.

Therefore, the use of the with statement is not recommended, as it may be the source of

confusing bugs and compatibility issues.

Example

var area;

var r = 10;

with (Math) {

a = PI*r*r; // == a = Math.PI*r*r

x = r*cos(PI); // == a = r*Math.cos(Math.PI); y

= r*sin(PI/2); // == a = r*Math.sin(Math.PI/2);

}

JAVASCRIPT EVENTS:

What is an Event ?

 JavaScript's interaction with HTML is handled through events that occur when the user

or the browser manipulates a page.

 When the page loads, it is called an event. When the user clicks a button, that click too is

an event. Other examples include events like pressing any key, closing a window,

resizing a window, etc.

 Developers can use these events to execute JavaScript coded responses, which cause

buttons to close windows, messages to be displayed to users, data to be validated, and

virtually any other type of response imaginable.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 29/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

 Events are a part of the Document Object Model (DOM) Level 3 and every HTML

element contains a set of events which can trigger JavaScript Code.

 Please go through this small tutorial for a better understandingHTML Event Reference.

Here we will see a few examples to understand a relation between Event and JavaScript

Event Handlers:

An event occurs when something happens in a browser window. The kinds of events that might

occur are due to:

 A document loading

 The user clicking a mouse button

 The browser screen changing size

When a function is assigned to an event handler, that function is run when that event occurs.

A handler that is assigned from a script used the syntax '[element].[event] = [function];', where

[element] is a page element, [event] is the name of the selected event and [function] is the name of

the function that occurs when the event takes place.

Different event handlers with with different HTML tags. For example, while "onclick" can be

inserted into most HTML tags to respond to that tag's onclick action, something like "onload"

(see below) only works inside the <body> and tags. Below are some of the most

commonly used event handlers supported by JavaScript:

Event Handlers:

onclick: Use this to invoke JavaScript upon clicking (a link, or form boxes)

onload: Use this to invoke JavaScript after the page or an image has finished loading.

onmouseover: Use this to invoke JavaScript if the mouse passes by some link

onmouseout: Use this to invoke JavaScript if the mouse goes pass some link

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 30/36

https://www.tutorialspoint.com/html/html_events_ref.htm

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A UNIT: I(JAVA) BATCH-2017-2020

 onunload: Use this to invoke JavaScript right after someone leaves this page.

onClick Event handler

Ok, lets see how the onclick event-handler can help us. Remember, any event handlers are added

inside html tags, not inside <script></script> (there is an alternate way, which will not be

discussed in this section). First of all, does that mean we can add event handlers inside any html

tag? Noooo! In the case of the" onClick" event handler, which executes a piece of JavaScript

when an element is clicked on, it can only be added to visible elements on the page such as <a>,

form buttons, check boxes, a DIV etc. You wouldn't expect to be able to add this event handler

inside the <head> tag for example, and you can't. With that understanding, lets see an example:

Click here for output:

<script>

1
function inform(){

2

alert("You have activated me by clicking the grey button! Note that the event handler is
3

added within the event that it handles, in this case, the form button event tag")

4}

5

</script>

6

7

<form>

8
<input type="button" name="test" value="Click me" onclick="inform()">

9

</form>

The function inform() is invoked when the user clicks the button.

Ok, let me show you another example that adds the onclick event inside form radio buttons:

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 31/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

Try this: (it will change the background color of a document interactively)

<form name="go">
1

<input type="radio" name="C1" onclick="document.bgColor='lightblue'">

2

<input type="radio" name="C2" onclick="document.bgColor='lightyellow'">

3

4input type="radio" name="C3" onclick="document.bgColor='lightgreen'"<font face="Courier

New">>

5

</form>

I've put the actual demo of this example onto another window. Click the button to see it.

Here used the onclick handler to change the background color. Notice that we just wrote in plain

English the name of the bgcolor...you can do that, for most colors, or for a greater selection, use

its hex value (ie: #000000).

onLoad Event handlers

The onload event handler is used to call the execution of JavaScript after a page, frame or image

has completely loaded. It is added like this:

1<body onload="inform()"> //Execution of code //will begin after the page has loaded.

<frameset onload="inform()"> //Execution of code //will begin after the current frame has
1

loaded.

 //Execution of code will begin after the image has
1

loaded.

Lets see an example of an onload handler:

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 32/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

1<html>

2<head><title>Body onload example</title>

3</head>

4<body onload="alert('This page has finished loading!')">

5Welcome to my page

6
</body>

7

</html>

Depending on the complexity or nature of your JavaScript, sometimes it is necessary to wait until

the entire page has loaded before that script is run to prevent any potential problems or make

sure the aspect of the page you're manipulating has been downloaded. This is where the onload

event handler comes in handy.

Executing a JavaScript function after the page has loaded is necessary sometimes

onMouseover, onMouseout

Next up, the onMouseover and onMouseout event handlers. Just like the "onClick" event, these

events can be added to visible elements such as a link (<a>), DIV, even inside the <BODY> tag,

and are triggered when the mouse moves over and out of the element (big surpise). Lets create a

once very popular effect- display a status bar message when the mouse moves over a link:

Output: Dynamic Drive

<a href="blabla.htm" onmouseover="status='DHTML code library!';return true"

1
onmouseout="status=' '">Dynamic Drive

Several new concepts arise here, so I'll go over each one of them.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 33/36

http://www.dynamicdrive.com/

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

 the "status" refers to window.status, which is how you write to the status bar.

 Note that instead of calling a function, we called directly two JavaScript statements inside the

event handler :"status='Do not click here, its empty!';return true" This is ok, but you must

separate multiple statements with a semicolon (;). You could have, alternatively, written everything

up until "return true" as a function and then calling it:function writestatus(){status="Do not click

here, its empty!" }andthen:onmouseover="writestatus();returntrue"

 So you're thinking, "what is return true?" Good question. You need to add this line of code to set

the status property with the mouseover effect. Uh? I know, don't worry so much now, it really isn't

important. Just remember you need this to "activate" the status onmouseover effect.

 onmouseout="status=' '" clears the status after the mouse leaves the link. Whenever the mouse

moves away from the link, the status bar is "reset" again. If you don't insert this code, the status bar

will still have those words you entered into it even after taking away the cursor.

 Whenever we have nested quotations, the inner ones are always singled.

Ie: onclick="alert('hello')

onUnload event handler

onunload executes JavaScript immediately after someone leaves the page. A common use

(though not that great) is to thank someone as that person leaves your page for coming and

visiting.

<body onunload="alert('Thank you. Please come back to this site and visit us soon, ok?')">

There are other event handlers, many belonging to forms. These event handlers are discussed in

the tutorialAccessing and validating forms using Javascript.

Here is a list of commonly used event handlers in JavaScript:

Event Handlers Applicable inside:

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 34/36

http://www.javascriptkit.com/javatutors/form1.shtml

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A UNIT: I(JAVA) BATCH-2017-2020

 onAbort tags

 onBlur window object, all form objects (ie: <input>), and <frame>.

 onClick Most visible elements such as <a>, <div>, <body> etc.

 onChange Use this to invoke JavaScript if the mouse goes pass some link

 onError Text fields, textareas, and select lists.

 onFocus Most visible elements such as <a>, <div>, <body> etc.

 onLoad <body>, , and <frame>

 onMouseover Most visible elements such as <a>, <div>, <body> etc.

 onMouseout Most visible elements such as <a>, <div>, <body> etc.

 onReset <form> tag, triggered when the form is reset via <input type="reset">.

 onSelect Elements with textual content. Most commonly used inside text fields and textareas.

 onSubmit <form> tag, triggered when the form is submitted.

 onUnload <body>

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 35/36

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: I(JAVA) BATCH-2017-2020

Possible Questions:

Part B (2 Marks)

1) Define object with example

2) Define Arraylist with example
3) Define Array with example

4) How to define function in JavaScript?
5) What is mean by operator?

6) What is mean by event handling?
7) Define datatype with example

8) What is mean by control structure?
9) How to declare function?

10) List out what are the operators in javascript

Part C (6 Marks)

1) What is mean by array,arraylist?Explain similarities between array and arraylist?

2) Difference between Array and ArrayList
3) Explain in Detail about datatype with example

4) Explain in detail about Operators with examples
5) Explain in detail about control structure with example

6) Explain in detail about Event handling
7) What is mean by event, explain in detail about to handling java scripts event?

8) Explain in detail about Object, how to declare, Instantiating and initializing an object
9) Explain in detail about function with example

10) Explain in detail about object

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 36/36

SUBJECT: INTERNET TECHNOLOGY

QUESTION OPTION 1 OPTION 2 OPTION 3 OPTION4 ANSWER

 Java programming language was originally developed

by______
 IBM Sun microsystem Oracle Microsoft Sun microsystem

 Java makes an effort to eliminate error prone situation

by emphasizing mainly on compile time error

checking and runtime checking

 Interpreted distributed multithread robust robust

 Java is guaranteed to be
write anywhere

run once

write once run

once

write once run

anywhere
none of these

write anywhere

run once

James Gosling initiated java language in Jul-91 Jun-91 Jul-95 Jun-98 Jun-91

_______keyword used to create a instance of object auto new this static new

constructor that takes low argument is known as

copy constructor

parameterized

constructor
default constructor destructor default constructor

which of the option does not support array list object entries primitive non primitive primitive

Defined in java language itself as a________data

structure
fundamental non fundamental primitive non primitive fundamental

Java script is the ______type language means you

don’t nead to specify type of variable
static auto register dynamic dynamic

________can store heterogenous data type array arraylist linked list data link array

Java programs can carry extensive amount of ___time

information
compile execution none of these execution

which compiler enables high performance java compiler
java virtual

machine
just in out just in time just in time

The new keyword is followed by a call to a

constructor this call_____new object
declaration initialiation instantiation creating instantiation

An array is the basic functionality provided by ______ c++ java script java vb.net java

KARPAGAM ACADEMY OF HIGHER EDUCATION

PART - A (ONLINE EXAMINATION)

MULTIPLE CHOICE QUESTIONS (Each question carries one mark)

SUB CODE: 17ITU404A Class: II B.Sc IT

Unit - I

______represents instance through which can access

member
class object array union object

Unintialize variable equal to _______ string character null integer null

Which is not a nonprimitive datatype are as follows object class array RegExp class

In java script null document.writeln(str==undefined)it

returns
FALSE null TRUE empty FALSE

Java script empty variable Boolean contest

return_____
FALSE TRUE null char null

Java script as only one ______data type decimal float numeric string numeric

To instantiate a data object, or any other object use the

____operator.
exist new free create new

New requires a single argument _______method for

the object to be created.
constructor destructor argument defaultconstructo argument

Declaration do not _____object initialization instantiate creating generalization initialization

In array we insert elements using ______operators conditional logical assignment relational assignment

Array list is the part of ______frame work in java array list collection none of these collection

Arraylist has set of _____to access and modify them

function class object methods methods

Java is designed for the ________environment of the

internet
dynamic distributed add replace distributed

We can insert element into the arraylist object using

_____method
delete insert add replace add

Length of arraylist is provided by _____method add size create update size

There are______types of primitive datatype in

javascript
3 5 4 2 5

Javascript Boolean type can have______value 2 1 0 3 2

_____initiated java language project lampsalt dennis Ritchie james gosling bjarne stroustrup james gosling

Javascript symbol datatype it is used for _____unique

object property.
variable identifier datatype none of the above identifier

Sun relased much of java as free and ____software

under the terms of GNU.
open source code free JVM None open source

_____Java byte code is translated on the fly to native

machine instruction and is not stored anywhere
dynamic interpreted distrubuted robust interpreted

GPL means
General Protected

License

General Private

License

General Public

License

General Protocol

License

General Public

License

Date class supports the constructor that requires ____

integer
2 3 4 1 3

There are ____ ways to creating objects 3 4 2 5 3

javascript includes similar to other programming

languages like ___
Java C# both a and b C++ C#

In java script they are ____types of data types 2 3 5 6 2

Sun released the first public implementation as

Java1.0 in_____
1998 1993 1995 1997 1995

In array how many types of class____ 1 2 3 0 1

In arraylist the elements can ______ size Growable sizable both a and b no size both a and b

In array elements retrieved with _____loop for while dowhile none for

Arraylist can be retrieved with loop and ____ operators iterators sizable all of the above iterators

Arraylist can be obtained a ____version Synchronized Asynchronized both a and b none of the above Synchronized

Array and Arraylist are similar for the ___ and

___operations
get,add get,insert insert,del add,get get,add

 ______ indicates the characteristics of data variable identifier datatype keyword datatype

Java can be easily extended since it is based on

_______model
object system dynamic analysis object

Compiler in java is written in ________ ASCII ANSIC C# none. ANSIC

SUB CODE: 17ITU404A Class: II B.Sc IT

Unit - I

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A UNIT: II(JDBC) BATCH-2017-2020

 UNIT-II

 SYLLABUS

JDBC: JDBC fundamentals, Establishing Connectivity and working with connection interface,

working with statements, creating and executing SQL statements, working with ResultSet

objects.

INTRODUCTION TO JDBC:
Java Database Connectivity(JDBC) is an Application Programming Interface(API) used to

connect Java application with Database. JDBC is used to interact with various type of Database

such as Oracle, MS Access, My SQL and SQL Server. JDBC can also be defined as the

platform-independent interface between a relational database and Java programming. It allows

java program to execute SQL statement and retrieve result from database.

JDBC FUNDAMENTALS:

JDBC Driver

JDBC Driver is required to process SQL requests and generate result. The following are the
different types of driver available in JDBC.

 Type-1 Driver or JDBC-ODBC bridge

 Type-2 Driver or Native API Partly Java Driver
 Type-3 Driver or Network Protocol Driver
 Type-4 Driver or Thin Driver

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 1/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: II(JDBC) BATCH-2017-2020

JDBC-ODBC Bridge

Type-1 Driver act as a bridge between JDBC and other database connectivity

mechanism(ODBC). This driver converts JDBC calls into ODBC calls and redirects the request

to the ODBC driver.

Advantage

 Easy to use
 Allow easy connectivity to all database supported by the ODBC Driver.

Disadvantage

 Slow execution time

 Dependent on ODBC Driver.
 Uses Java Native Interface(JNI) to make ODBC call.

Native API Driver

This type of driver make use of Java Native Interface(JNI) call on database specific native client

API. These native client API are usually written in C and C++.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 2/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: II(JDBC) BATCH-2017-2020

Advantage

 faster as compared to Type-1 Driver
 Contains additional features.

Disadvantage

 Requires native library
 Increased cost of Application

Network Protocol Driver

This driver translate the JDBC calls into a database server independent and Middleware server-

specific calls. Middleware server further translate JDBC calls into database specific calls.

Advantage

 Does not require any native library to be installed.

 Database Independency.
 Provide facility to switch over from one database to another database.

Disadvantage

 Slow due to increase number of network call.

Thin Driver

This is Driver called Pure Java Driver because. These drivers interact directly with database. It
does not require any native database library, that is why it is also known as Thin Driver.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 3/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A UNIT: II(JDBC) BATCH-2017-2020

Advantage

 Does not require any native library.
 Does not require any Middleware server.
 Better Performance than other driver.

Disadvantage

 Slow due to increase number of network call.

JDBC 4.0 API

JDBC 4.0 API is mainly divided into two package

1. java.sql
2. javax.sql

java.sql package

This package include classes and interface to perform almost all JDBC operation such as

creating and executing SQL Queries.

Important classes and interface of java.sql package

classes/interface Description

 java.sql.BLOB Provide support for BLOB(Binary Large Object) SQL type.

 java.sql.Connection creates a connection with specific database

 java.sql.CallableStatement Execute stored procedures

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 4/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

 COURSE CODE: 17ITU404A UNIT: II(JDBC) BATCH-2017-2020

 java.sql.CLOB Provide support for CLOB(Character Large Object) SQL type.

 java.sql.Date Provide support for Date SQL type.

 java.sql.Driver create an instance of a driver with the DriverManager.

 java.sql.DriverManager This class manages database drivers.

 java.sql.PreparedStatement Used to create and execute parameterized query.

 java.sql.ResultSet It is an interface that provide methods to access the result row-

 by-row.

 java.sql.Savepoint Specify savepoint in transaction.

 java.sql.SQLException Encapsulate all JDBC related exception.

 java.sql.Statement This interface is used to execute SQL statements.

javax.sql package

This package is also known as JDBC extension API. It provides classes and interface to access
server-side data.

Important classes and interface of javax.sql package

classes/interface Description

 javax.sql.ConnectionEvent Provide information about occurence of event.

 javax.sql.ConnectionEventListener Used to register event generated

 by PooledConnectionobject.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 5/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

 COURSE CODE: 17ITU404A UNIT: II(JDBC) BATCH-2017-2020

 javax.sql.DataSource Represent the DataSource interface used in an

 application.

 javax.sql.PooledConnection provide object to manage connection pools.

ESTABLISHING CONNECTIVITY AND WORKING WITH CONNECTION INTERFACE:

Steps to connect a Java Application to Database:

The following 5 steps are the basic steps involve in connecting a Java application with Database
using JDBC.

1. Register the Driver
2. Create a Connection

3. Create SQL Statement
4. Execute SQL Statement
5. Closing the connection

Register the Driver

Class.forName() is used to load the driver class explicitly.

Example to register with JDBC-ODBC Driver

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Create a Connection

getConnection() method of DriverManager class is used to create a connection.

Syntax

getConnection(String url)

getConnection(String url, String username, String password)

getConnection(String url, Properties info)

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 6/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: II(JDBC) BATCH-2017-2020

Example establish connection with Oracle Driver

Connection con = DriverManager.getConnection

("jdbc:oracle:thin:@localhost:1521:XE","username","password");

CREATING AND EXECUTING SQL STATEMENTS:

Create SQL Statement

createStatement() method is invoked on current Connection object to create a SQL
Statement.

Syntax

public Statement createStatement() throws SQLException

Example to create a SQL statement

Statement s=con.createStatement();

Execute SQL Statement

executeQuery() method of Statement interface is used to execute SQL statements.

Syntax

public ResultSet executeQuery(String query) throws SQLException

Example to execute a SQL statement

ResultSet rs=s.executeQuery("select * from user");

while(rs.next())

{

System.out.println(rs.getString(1)+" "+rs.getString(2));

}

Closing the connection

After executing SQL statement you need to close the connection and release the session.
The close() method of Connection interface is used to close the connection.

Syntax

public void close() throws SQLException

Example of closing a connection

con.close();

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 7/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: II(JDBC) BATCH-2017-2020

Connecting to Access Database using Type-1 Driver

To connect a Java application with Access database using JDBC-ODBC Bridge(type-1) Driver.

You need to follow the following steps

Create DSN Name

1. Go to control panel

2. Go to Administrative tools

3. Select Data Source(ODBC)

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 8/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: II(JDBC) BATCH-2017-2020

4. Add new DSN name, select add

5. Select Access driver from the list, click on finish

6. Give a DSN name, click ok

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 9/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: II(JDBC) BATCH-2017-2020

WORKING WITH STATEMENTS:

There are 3 types of Statements, as given below:

Statement:

It can be used for general-purpose access to the database. It is useful when you are using static
SQL statements at runtime.

Before you can use a Statement object to execute a SQL statement, you need to create one using
the Connection object's createStatement() method, as in the following example −

Statement stmt = null;

try {

stmt = conn.createStatement();

. . .

}

catch (SQLException e) {

. . .

}

finally {

. . .

}

Once you've created a Statement object, you can then use it to execute an SQL statement with
one of its three execute methods.

 boolean execute (String SQL): Returns a boolean value of true if a ResultSet object can

be retrieved; otherwise, it returns false. Use this method to execute SQL DDL statements
or when you need to use truly dynamic SQL.

 int executeUpdate (String SQL): Returns the number of rows affected by the execution

of the SQL statement. Use this method to execute SQL statements for which you expect
to get a number of rows affected - for example, an INSERT, UPDATE, or DELETE

statement.

 ResultSet executeQuery (String SQL): Returns a ResultSet object. Use this method

when you expect to get a result set, as you would with a SELECT statement.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 10/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A UNIT: II(JDBC) BATCH-2017-2020

 PreparedStatement:

It can be used when you plan to use the same SQL statement many times. The
PreparedStatement interface accepts input parameters at runtime.

The PreparedStatement interface extends the Statement interface, which gives you added
functionality with a couple of advantages over a generic Statement object.

This statement gives you the flexibility of supplying arguments dynamically.

Creating PreparedStatement Object

PreparedStatement pstmt = null;

try {

String SQL = "Update Employees SET age = ? WHERE id = ?";

pstmt = conn.prepareStatement(SQL);

. . .

}

catch (SQLException e) {

. . .

}

finally {

. . .

}

All parameters in JDBC are represented by the ? symbol, which is known as the parameter
marker. You must supply values for every parameter before executing the SQL statement.

Closing PreparedStatement Object

Just as you close a Statement object, for the same reason you should also close the
PreparedStatement object.

A simple call to the close() method will do the job. If you close the Connection object first, it
will close the PreparedStatement object as well. However, you should always explicitly close
the PreparedStatement object to ensure proper cleanup.

PreparedStatement pstmt = null;

try {

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 11/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: II(JDBC) BATCH-2017-2020

String SQL = "Update Employees SET age = ? WHERE id =

?"; pstmt = conn.prepareStatement(SQL); . . .

}

catch (SQLException e) {

. . .

}

finally {

pstmt.close();

}

CallableStatement:

CallableStatement can be used when you want to access database stored procedures.

Creating CallableStatement Object

Suppose, you need to execute the following Oracle stored procedure −

CREATE OR REPLACE PROCEDURE getEmpName

(EMP_ID IN NUMBER, EMP_FIRST OUT VARCHAR) AS

BEGIN

SELECT first INTO EMP_FIRST

FROM Employees

WHERE ID = EMP_ID;

END;

NOTE: Above stored procedure has been written for Oracle, but we are working with MySQL

database so, let us write same stored procedure for MySQL as follows to create it in EMP
database −

DELIMITER $$

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 12/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: II(JDBC) BATCH-2017-2020

DROP PROCEDURE IF EXISTS `EMP`.`getEmpName` $$

CREATE PROCEDURE `EMP`.`getEmpName`

(IN EMP_ID INT, OUT EMP_FIRST VARCHAR(255))

BEGIN

SELECT first INTO EMP_FIRST

FROM Employees

WHERE ID = EMP_ID;

END $$

DELIMITER ;

Three types of parameters exist: IN, OUT, and INOUT. The PreparedStatement object only uses
the IN parameter. The CallableStatement object can use all the three.

Here are the definitions of each −

Parameter Description

IN A parameter whose value is unknown when the SQL statement is

 created. You bind values to IN parameters with the setXXX()

 methods.

OUT A parameter whose value is supplied by the SQL statement it

 returns. You retrieve values from theOUT parameters with the

 getXXX() methods.

INOUT A parameter that provides both input and output values. You

 bind variables with the setXXX() methods and retrieve values

 with the getXXX() methods.

The following code snippet shows how to employ the Connection.prepareCall() method to
instantiate a CallableStatementobject based on the preceding stored procedure −

CallableStatement cstmt = null;

try {

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 13/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: II(JDBC) BATCH-2017-2020

String SQL = "{call getEmpName (?, ?)}";

cstmt = conn.prepareCall (SQL);

. . .

}

catch (SQLException e) {

. . .

}

finally {

. . .

}

The String variable SQL, represents the stored procedure, with parameter placeholders.

Using the CallableStatement objects is much like using the PreparedStatement objects. You
must bind values to all the parameters before executing the statement, or you will receive an
SQLException.

If you have IN parameters, just follow the same rules and techniques that apply to a
PreparedStatement object; use the setXXX() method that corresponds to the Java data type you
are binding.

When you use OUT and INOUT parameters you must employ an additional CallableStatement
method, registerOutParameter(). The registerOutParameter() method binds the JDBC data type,

to the data type that the stored procedure is expected to return.

Once you call your stored procedure, you retrieve the value from the OUT parameter with the
appropriate getXXX() method. This method casts the retrieved value of SQL type to a Java data
type.

Closing CallableStatement Object

Just as you close other Statement object, for the same reason you should also close the
CallableStatement object.

A simple call to the close() method will do the job. If you close the Connection object first, it
will close the CallableStatement object as well. However, you should always explicitly close the
CallableStatement object to ensure proper cleanup.

CallableStatement cstmt = null;

try {

String SQL = "{call getEmpName (?, ?)}";

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 14/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: II(JDBC) BATCH-2017-2020

cstmt = conn.prepareCall (SQL);

. . .

}

catch (SQLException e) {

. . .

}

finally {

cstmt.close();

}

For a better understanding, I would suggest to study Callable - Example Code

Closing Statement Object

Just as you close a Connection object to save database resources, for the same reason you
should also close the Statement object.

A simple call to the close() method will do the job. If you close the Connection object first, it
will close the Statement object as well. However, you should always explicitly close the
Statement object to ensure proper cleanup.

Statement stmt = null;

try {

stmt = conn.createStatement();

. . .

}

catch (SQLException e) {

. . .

}

finally {

stmt.close();

}

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 15/21

https://www.tutorialspoint.com/jdbc/callablestatement-object-example.htm

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: II(JDBC) BATCH-2017-2020

For a better understanding, we suggest you to study the Statement - Example tutorial

WORKING WITH RESULTSET OBJECTS.

A ResultSet object maintains a cursor that points to the current row in the result set. The term
"result set" refers to the row and column data contained in a ResultSet object.

The methods of the ResultSet interface can be broken down into three categories −

 Navigational methods: Used to move the cursor around.

 Get methods: Used to view the data in the columns of the current row being pointed by

the cursor.

 Update methods: Used to update the data in the columns of the current row. The

updates can then be updated in the underlying database as well.

The cursor is movable based on the properties of the ResultSet. These properties are designated
when the corresponding Statement that generates the ResultSet is created.

JDBC provides the following connection methods to create statements with desired ResultSet −

 createStatement(int RSType, int RSConcurrency);

 prepareStatement(String SQL, int RSType, int RSConcurrency);

 prepareCall(String sql, int RSType, int RSConcurrency);

The first argument indicates the type of a ResultSet object and the second argument is one of
two ResultSet constants for specifying whether a result set is read-only or updatable.

Type of ResultSet

The possible RSType are given below. If you do not specify any ResultSet type, you will
automatically get one that is TYPE_FORWARD_ONLY.

Type

Description

 ResultSet.TYPE_FORWARD_ONLY The cursor can only move forward in the result set.

 ResultSet.TYPE_SCROLL_INSENSITIVE The cursor can scroll forward and backward, and

 the result set is not sensitive to changes made by

 others to the database that occur after the result set

 was created.

 ResultSet.TYPE_SCROLL_SENSITIVE. The cursor can scroll forward and backward, and

 the result set is sensitive to changes made by

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 16/21

https://www.tutorialspoint.com/jdbc/statement-object-example.htm

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A UNIT: II(JDBC) BATCH-2017-2020

 others to the database that occur after the result set

 was created.

Concurrency of ResultSet

The possible RSConcurrency are given below. If you do not specify any Concurrency type, you
will automatically get one that is CONCUR_READ_ONLY.

Concurrency

Description

ResultSet.CONCUR_READ_ONLY Creates a read-only result set. This is the default

ResultSet.CONCUR_UPDATABLE Creates an updateable result set.

All our examples written so far can be written as follows, which initializes a Statement object to
create a forward-only, read only ResultSet object −

try {

Statement stmt = conn.createStatement(

ResultSet.TYPE_FORWARD_ONLY,

ResultSet.CONCUR_READ_ONLY);

}

catch(Exception ex) {

....

}

finally {

....

}

Navigating a Result Set
There are several methods in the ResultSet interface that involve moving the cursor, including −

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 17/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

 COURSE CODE: 17ITU404A UNIT: II(JDBC) BATCH-2017-2020

 S.N. Methods & Description

1 public void beforeFirst() throws SQLException

Moves the cursor just before the first row.

2 public void afterLast() throws SQLException

Moves the cursor just after the last row.

3 public boolean first() throws SQLException

Moves the cursor to the first row.

4 public void last() throws SQLException

Moves the cursor to the last row.

5 public boolean absolute(int row) throws

SQLException Moves the cursor to the specified row.

6 public boolean relative(int row) throws SQLException

Moves the cursor the given number of rows forward or backward, from where it is
currently pointing.

7 public boolean previous() throws SQLException

Moves the cursor to the previous row. This method returns false if the previous row is off
the result set.

8 public boolean next() throws SQLException

Moves the cursor to the next row. This method returns false if there are no more rows in
the result set.

9 public int getRow() throws SQLException

Returns the row number that the cursor is pointing to.

10 public void moveToInsertRow() throws SQLException

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 18/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: II(JDBC) BATCH-2017-2020

Moves the cursor to a special row in the result set that can be used to insert a new row
into the database. The current cursor location is remembered.

11 public void moveToCurrentRow() throws SQLException

Moves the cursor back to the current row if the cursor is currently at the insert row;
otherwise, this method does nothing

For a better understanding, let us study Navigate - Example Code.

Viewing a Result Set

The ResultSet interface contains dozens of methods for getting the data of the current row.

There is a get method for each of the possible data types, and each get method has two versions

−

 One that takes in a column name.

 One that takes in a column index.

For example, if the column you are interested in viewing contains an int, you need to use one of
the getInt() methods of ResultSet −

S.N. Methods & Description

1 public int getInt(String columnName) throws SQLException

Returns the int in the current row in the column named columnName.

2 public int getInt(int columnIndex) throws SQLException

Returns the int in the current row in the specified column index. The column index starts
at 1, meaning the first column of a row is 1, the second column of a row is 2, and so on.

Similarly, there are get methods in the ResultSet interface for each of the eight Java primitive
types, as well as common types such as java.lang.String, java.lang.Object, and java.net.URL.

There are also methods for getting SQL data types java.sql.Date, java.sql.Time,
java.sql.TimeStamp, java.sql.Clob, and java.sql.Blob. Check the documentation for more
information about using these SQL data types.

For a better understanding, let us study Viewing - Example Code.

Updating a Result Set

The ResultSet interface contains a collection of update methods for updating the data of a result
set.

As with the get methods, there are two update methods for each data type −

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 19/21

https://www.tutorialspoint.com/jdbc/navigate-result-sets.htm
https://www.tutorialspoint.com/jdbc/viewing-result-sets.htm

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: II(JDBC) BATCH-2017-2020

 One that takes in a column name.

 One that takes in a column index.

For example, to update a String column of the current row of a result set, you would use one of
the following updateString() methods −

S.N. Methods & Description

1 public void updateString(int columnIndex, String s) throws

SQLException Changes the String in the specified column to the value of s.

2 public void updateString(String columnName, String s) throws SQLException

Similar to the previous method, except that the column is specified by its name instead of
its index.

There are update methods for the eight primitive data types, as well as String, Object, URL, and
the SQL data types in the java.sql package.

S.N. Methods & Description

1 public void updateRow()

Updates the current row by updating the corresponding row in the database.

2 public void deleteRow()

Deletes the current row from the database

3 public void refreshRow()

Refreshes the data in the result set to reflect any recent changes in the database.

4 public void cancelRowUpdates()

Cancels any updates made on the current row.

5 public void insertRow()

Inserts a row into the database. This method can only be invoked when the cursor is
pointing to the insert row.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 20/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: II(JDBC) BATCH-2017-2020

Possible Question

Part B (2 Marks)

1) What is Network Protocol Driver?

2) Write syntax for create and execute SQL Statement?
3) What is the use of SQL STATEMENT?

4) What is mean by interface?
5) How to establish connectivity?

6) What is mean by Resultset object
7) What is mean by JDBC

8) What are the types of drivers in JDBC
9) Define Statement

10) How Resultset object works in JDBC

Part C (6 Marks)

1) How to working with connection interface in JDBC?
2) Explain in details about Establishing connectivity in JDBC

3) Explain in detail about JDBC Fundamentals
4) What is mean by JDBC? Explain types of drivers in JDBC with neat diagram

5) Explain In Detail about working with statement
6) How to working with SQL statement in JDBC

7) Explain how to create and execute SQL statement with example
8) Explain in detail about result set object with example

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 21/21

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 PART - A (ONLINE EXAMINATION)

 MULTIPLE CHOICE QUESTIONS (Each question carries one mark)

SUBJECT: INTERNET TECHNOLOGY

Sub.code : 17ITU404A CLASS: II B.Sc IT

Unit II

QUESTIONS OPTION 1 OPTION2 OPTION3 OPTION4 ANSWER

What is the expansion of JDBC_______

Java

Database

connectivity

java data

connectivity

java

database

control

java

database

connection

Java

Database

connectivity

JDBC belongs to which interface______

application

programmin

g interface

plat form

independent

interface

java

national

interface None

application

programmin

g interface

What is the Type-2 driver in JDBC driver____

JDBC-

ODBC

bridge Thin driver

network

protocol

driver

Native API

partly java

driver

Native API

partly java

driver

 Which is used to make ODBC cal ____

 Java

network

java

national

 java

interface

java native

interface

java native

interface

 Native client API are usually written in _____ and______

 Java &

oracle c & C++ C++ & java Networking c & C++

Which driver translates the JDBC calls into a database server independent ______

National

protocol

Network

protocol

JDBC

driver Networking

Network

protocol

Which driver as database independency ________

ODBC

driver

Network

protocol Thin driver

JDBC

driver

Network

protocol

Thin driver is also called _____ Thin driver java driver

ODBC

driver

pure java

driver

pure java

driver

Which deriver does not require any middle ware server_____

ODBC

driver

none of the

above Thin driver

Network

protocol Thin driver

JDBC and OAPI is mainly divided into _____ packages 2 4 8 1 2

Which class/interface executes stored procedures _____

Java.sql.call

able

statement

java.sql.pre

pared

statement

java.sql.sav

e point

all the

above

Java.sql.call

able

statement

Which class/interface provide support for date sql type_____

java.sql.driv

er

java.sql.CL

OB

java.sql.Dat

e

None of the

above

java.sql.Dat

e

Which classes/interface manages database drivers____

java.sql.sql

Exception

java.sql.con

nection

java.sql.driv

er

java.sql.Dat

e

java.sql.Dat

e

Which class/interface encapsulate all JDBC related exception ____

java.sql.sql

Exception

java.sql.Res

ultbet

java.sql.sav

epoint both a and b

java.sql.sql

Exception

Which classes/interface represent the data source interface used in an application_____

java.sql.stat

ement

javax.sql.dat

asource

java.sql.data

source

none of the

above

javax.sql.dat

asource

_____method of driver manager class is used to create a connect on

set

connection()

gets

connection()

get

connection()

None of the

above

get

connection()

All parameters in JDBC are represented by the ______ ; != : ? ?

? symbol in JDBC is known as ______ parameter A parameter K parameter X parameter Y parameter K

callable statement can be used when you want to access _____ procedures

Database

stored

procedure

Database

stored

process

Database

stored

protocol

Database

procedure

Database

stored

procedure

There are ____ types of parameters. 6 3 2 5 3

A parameter whose value is unknown when the sql statement is created___ OUT INOUT IN

all the

above IN

A parameter whose value is supplied by the sql statement it returns ____parameters INOUT OUT IN

all the

above OUT

INOUT parameter that provides both ____ & ______ INOUT OUT IN

None of

these INOUT

paind variable use ____ method. get XXX () set XXX () get set set XXX ()

_____ method is used to move the cursor around. set methods get methods

update

methods

navigational

methods

navigational

methods

A_______ object maintains a cursor that points to the current row in the result set. savepoint result set

Driver

manager

sql

exception result set

_________ methods is used to view the data in the columns of the current row. get methods

update

methods

navigational

methods set methods get methods

_______ method is used to update the data in the coloumns of the current row update method.get methods

update

methods set methods

navigational

methods

update

methods

The cursor is movable based on the properties of________ .

drive

manager savepoint result set driver result set

The cursor can only move forward in the result set .

Result

set.Type_Ba

ckward_onl

Result

set.Type_fo

rward_only;

Result

set.Type_Re

ad_only;

Result

set.Type_W

rite_only;

Result

set.Type_fo

rward_only;

which type of result set is used to scroll the cursor forward and backward and the result set is sensitive.

Type_Forw

ard only

Type_scroll

_Inserting

Type_scroll

_backward

only

Type_scroll

_sensitive

Type_scroll

_sensitive

Which type of result set is not sensitive.

Type_Forw

ard only

Type_scroll

_Insensitive

Type_Back

ward only

Type_scroll

_sensitive

Type_scroll

_Insensitive

_________creates read only result set.

Result

set.concur_u

pdatable

Result set.

Concur_writ

ing_only

Result

set.concur_

Getable

Result

set.concur_

Read_only

Result

set.concur_

Read_only

________ creates updateable result set.

Resultset.co

ncur_read

only

Resultset.co

ncur_getabl

e

Resultset.co

ncur_updata

ble

Resultset.co

ncur _write

only

Resultset.co

ncur_updata

ble

There are several methods in the resultset interface that involve ______.

Moving the

cursor

create the

cursor

change the

cursor

all the

above

Moving the

cursor

_____ Result set interface moves the cursor to the last row.

public void

afterlast()

public void

last()

public void

before both b & c

public void

last()

When Javascript function invokes_____

when an

event occurs

when a

statement

return

when a

function

define

none of

these

when an

event occurs

 _____ returns the row number that the cursor is pointing to.

public int

getRow()

public void

moveto

insert row()

public void

moveto

currentrow()

public void

getRow()

public int

getRow()

The resultset interface contains dozens of methods for getting the data of the _______. set row insert row current row getrow current row

Each get method has _____versions 3 1 2 4 2

The resultset interface contains a collection of ____ for updating the data of a result set.

update

methods

create

methods get methods

none of

these

update

methods

there are _____ update methods for each datatype. 3 2 5 6 2

Among the following primitive datatypes which are used for update methods _______ stringint char string

none of

these string

There are update methods for the ____ primitive datatypes 4 2 6 8 8

Updating a row in the result set changes _______of the current row in the result set object.insert row current row row column column

Updates the current row by updating the corresponding row in the database.

public void

deleterow()

public void

insertrow()

public void

currentrow()

public void

updaterow()

public void

updaterow()

______ deletes the current roe from the database.

public void

deleterow()

public void

updaterow()

public void

delete()

public void

insertrow()

public void

deleterow()

public void cancel row updates() cancels any updates made on the _____. insert row()

update

row()

current

row() delete row()

current

row()

_____ inserts a row into the database.

public void

deleterow()

public void

insertrow()

public void

currentrow()

public void

updaterow()

public void

insertrow()

JDBC is used to interact with various type of ______

database

connectivity

data

analysis database data control database

_______ allows java program to execute sql statement and retrieve from database.

JDBC

driver

ODBC

driver JDBC ODBC JDBC

 ______ is required to process sql requests and generate result.

JDBC

driver

 ODBC

driver ODBC JDBC

JDBC

driver

______ act as a bridge between JDBC and other database connectivity mechanism. JDBC ODBC

ODBC

driver both a and b ODBC

Type 7 driver contains JDBC calls into ODBC calls and redirects the request to the ____ JDBC ODBC

ODBC

driver

none of

these ODBC

Native API driver is faster when compared with _______.

TYPE-3

driver

TYPE-4

driver

TYPE-2

driver

TYPE-1

driver

TYPE-1

driver

Which classes/ interface creates a connection with specific database.

Java. sql.

BLOB

Java. sql.

Connection

Java.

sql.driver

Java. sql.

Driver

Java. sql.

BLOB

Which classes/ interface create an instance of a driver with a driver manager.

Java. sql.

Callable

statement

Java. sql.

Driver

Java.

sql.connecti

on

Java. sql.

BLOB

Java.

sql.connecti

on

Which classes/ interface create an instance of a driver with a driver manager.

Java. sql.

Resultset

Java. sql.

Driver

Java. sql.

CLOB

 none of

these

Java. sql.

Driver

Which classes/ interface used to create and execute parameterized query.

Java. sql.

Savepoint

Java.

sql.driver

manager

Java.

sql.driver

manager

Java.

sql.prepared

statement

Java.

sql.prepared

statement

Which classes/ interface specifies savepoint in transaction.

Java. sql.

Resultset

Java.

sql.connecti

Java. sql.

Savepoint

None of the

above

Java. sql.

Savepoint

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A UNIT: III(JSP) BATCH-2017-2020

 UNIT-III

 SYLLABUS

JSP: Introduction to JavaServerPages, HTTP and Servlet Basics, The Problem with Servlets,

The Anatomy of a JSP Page, JSP Processing, JSP Application Design with MVC, Setting Up the

JSP Environment.

JSP: Introduction to JavaServerPages

Introducing JavaServer Pages The Java 2 Enterprise Edition (J2EE) has taken the once-

chaotic task of building an Internet presence and transformed it to the point where developers

can use Java to efficiently create multitier, server-side applications. Today, the Java Enterprise

APIs have expanded to encompass a number of areas: RMI and CORBA for remote object

handling, JDBC for database interaction, JNDI for accessing naming and directory services,

Enterprise JavaBeans for creating reusable business components, JMS (Java Messaging Service)

for message-oriented middleware, and JTA (Java Transaction API) for performing atomic

transactions. In addition, J2EE supports servlets , an extremely popular Java substitute for CGI

scripts.

The combination of these technologies allows programmers to create distributed business

solutions for a variety of tasks. In late 1999, Sun Microsystems added a new element to the

collection of Enterprise Java tools: JavaServer Pages (JSP). JavaServer Pages are built on top of

Java servlets and are designed to increase the efficiency in which programmers, and even

nonprogrammers, can create web content. This book is all about JavaServer Pages.

What Is JavaServer Pages?

JavaServer Pages is a technology for developing web pages that include dynamic content.

Unlike a plain HTML page, which contains static content that always remains the same, a JSP

page can change its content based on any number of variable items, including the identity of the

user, the user's browser type, information provided by the user, and selections made by the user.

Functionality such as this can be used to create web applications like shopping carts and

employee directories. A JSP page contains standard markup language elements, such as HTML

tags, just like a regular web page. However, a JSP page also contains special JSP elements that

allow the server to insert dynamic content in the page. JSP elements can be used for a wide

variety of purposes, such as retrieving information from a database or registering user

preferences. When a user asks for a JSP page, the server executes the JSP elements, merges the

results with the static parts of the page, and sends the dynamically composed page back to the

browser

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 1/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: III(JSP) BATCH-2017-2020

Why Use JSP?

I n the early days of the Web, the Common Gateway Interface (CGI) was the only tool for

developing dynamic web content. However, CGI is not an efficient solution. For every request

that comes in, the web server has to create a new operating system process, load an interpreter

and a script, execute the script, and then tear it all down again. This is very taxing for the server

and doesn't scale well when the amount of traffic increases. Numerous CGI alternatives and

enhancements, such as FastCGI, mod_ perl from Apache, NSAPI from Netscape, ISAPI from

Microsoft, and Java Servlets from Sun Microsystems, have been created over the years. While

these solutions offer better performance and scalability, all of these technologies suffer from a

common problem: they generate web pages by embedding HTML directly in programming

language code. This pushes the creation of dynamic web pages exclusively into the realm of

programmers. JavaServer Pages, however, changes all that.

What You Need to Get Started Before

We begin, let's quickly look at what you need to run the examples and develop your own

applications. You really need only three things: · A PC or workstation with a connection to the

Internet, so you can download the software you need · A Java 2-compatible Java Software

Development Kit (Java 2 SDK) · A JSP 1.1-enabled web server, such as Apache Tomcat from

the Jakarta Project The Apache Tomcat server is the reference implementation for JSP 1.1.

All the examples in this book were tested on Tomcat. In Chapter 4, I'll show you how to

download, install, and configure the Tomcat server, as well as all the examples from this book. In

addition, there are a wide variety of other tools and servers that support JSP, from both open

source projects and commercial companies. Close to 30 different server products support JSP to

date, and roughly 10 authoring tools with varying degrees of JSP support are listed on Sun's JSP

web site (http://java.sun.com/products/jsp/).

You may want to evaluate some of these products when you're ready to start developing

your application, but all you really need to work with the examples in this book are a regular text

editor, such as Notepad, vi, or Emacs, and of course the Tomcat server. So let's get going and

take a closer look at what JSP has to offer. We need a solid ground to stand on, though, so in the

next chapter we will start with the foundations upon which JSP is built: HTTP and Java servlets.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 2/21

http://java.sun.com/products/jsp/

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: III(JSP) BATCH-2017-2020

HTTP and Servlet Basics

The HTTP Request/Response Model HTTP and all extended protocols based on HTTP are based

on a very simple but powerful communications model. Here's how it works: a client, typically a

web browser, sends a request for a resource to a server, and the server sends back a response

corresponding to the requested resource (or a response with an error message if it can't deliver

the resource for some reason). A resource can be a simple HTML file, or it can be a program that

stores the information sent in a database and generates a dynamic response.

This simple model implies three things you need to be aware of:

1. HTTP is a stateless protocol. This means that the server does not keep any information about

the client after it sends its response, and therefore cannot recognize that multiple requests from

the same client may be related.

2. Web applications cannot easily provide the kind of immediate feedback typically found in

standalone GUI applications such as word processors or traditional client-server applications.

Every interaction between the client and the server requires a request/response exchange.

Performing a request/response exchange when a user selects an item in a list box or fills out a

form element is usually too taxing on the bandwidth available to most Internet users.

3. There's nothing in the protocol that tells the server how a request is made; consequently, the

server cannot distinguish between various methods of triggering the request on the client. For

example, the HTTP protocol does not allow a web server to differentiate between an explicit

request caused by clicking a link or submitting a form and an implicit request caused by resizing

the browser window or using the browser's Back button. In addition, HTTP does not allow the

server to invoke client-specific functions, such as going back in the browser history list or

sending the response to a certain frame.

Requests in Detail

A user sends a request to the server by clicking a link on a web page, submitting a form, or

explicitly typing a web page address in the browser's address field. To send a request, the

browser needs to know which server to talk to and which resource to ask for. This information is

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 3/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: III(JSP) BATCH-2017-2020

specified by the Uniform Resource Identifier (URI), also commonly referred to as a Uniform

Resource Locator (URL). URI is the general term, while a URL is the specific type of URI used

to completely identify a web resource such as an HTML page. Here is an example of a URL:

URL: http://www.gefionsoftware.com/index.html

The first part of this URL specifies that the HTTP protocol is used to request the resource. This

is followed by the name of the server, www.gefionsoftware.com. The web server waits for

requests to come in on a special TCP/IP port. Port number 80 is the standard port for HTTP

requests. If the web server uses another port, the URL must specify the port number in addition

to the server name. For example:

http://www.gefionsoftware.com:8080/index.html

This URL is sent to a server that uses port 8080 instead of 80. The last part of the URL,

/index.html, identifies the resource that the client is requesting. This is sometimes called the URI

path.

The client browser always makes a request by sending a request message. An HTTP request

message consists of three things: a request line, request headers, and sometimes a request body.

The request line starts with the request method name, followed by a resource identifier and the

protocol version used by the browser:

GET /index.html HTTP/1.0

The most commonly used request method is named GET. As the name implies, a GET request is

used to retrieve a resource from the server. It's the default request method, so if you type a URL

in the browser's address field or click on a link, the request will be sent to the server as a GET

request.

The request headers provide additional information the server may need to process the request.

The message body is included only in some types of requests, like the POST request discussed

later.

Responses in Detail

When the web server receives the request, it looks at the URI and decides, based on

configuration information, how to handle it. It may handle it internally by simply reading an

HTML file from the filesystem, or it may forward the request to some component that is

responsible for the resource corresponding to the URI.

This might be a program that uses a database to dynamically generate an appropriate response.

To the client, it makes no difference how the request is handled; all it cares about is getting a

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 4/21

http://www.gefionsoftware.com/index.html
http://www.gefionsoftware.com:8080/index.html

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: III(JSP) BATCH-2017-2020

response. The response message looks similar to the request message. It consists of three things:

a status line, response headers, and possibly a response body. Here's an example:

HTTP/1.0 200 OK

Last-Modified: Mon, 20 Dec 1999 23:26:42 GMT

Date: Tue, 11 Jan 2000 20:52:40 GMT

Status: 200

Content-Type: text/html

Servlet-Engine: Tomcat Web Server/3.2
Content-Length: 59

Request Parameters

Besides the URI and headers, a request message can contain additional information in the

form of parameters. If the URI identifies a server-side program for displaying weather

information, for example, request parameters can provide information about which city the user

wants to see a forecast for.

In an e-commerce application, the URI may identify a program that processes orders,

with the user's customer number and the list of items to be purchased transferred as parameters.

Parameters can be sent in one of two ways: tacked on to the URI in the form of a query string , or

sent as part of the request message body. Here is an example of a URI with a query string:

http://www.weather.com/forecast?city=Hermosa+Beach&state=CA

Request Methods

GET is the most commonly used request method, intended to retrieve a resource without causing

anything else to happen on the server. The POST method is almost as common as GET. A POST

request is intended to request some kind of processing on the server, for instance, updating a

database or processing a purchase order. The way parameters are transferred is one of the most

obvious differences between the GET and POST request methods. A GET request always uses a

query string to send parameter values, while a POST request always sends them as part of the

body (additionally, it can send some parameters as a query string, just to make life interesting). If

you code a link to a URI in an HTML page using an element, clicking on the link results in a

GET request being sent to the server. Since the GET request uses a query string to pass

parameters, you can include hardcoded parameter values in the link URI:

Hermosa Beach weather forecast

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 5/21

http://www.weather.com/forecast?city=Hermosa+Beach&state=CA

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: III(JSP) BATCH-2017-2020

When you use a form to send user input to the server, you can specify whether to use the GET or

POST method with the method attribute, as shown below:

form action="/forecast" method="POST">

City: <input name="city" type="text">

State: <input name="state" type="text">

<p>

<input type="SUBMIT">

</form>

If the user enters "Hermosa Beach" and "CA" in the form fields and clicks on the Submit button,

the browser sends a request message like this to the server:

POST /index.html HTTP/1.0

Host: www.gefionsoftware.com

User-Agent : Mozilla/4.5 [en] (WinNT; I)

Accept: image/gif, image/jpeg, image/pjpeg, image/png, */*

Accept-language : en

Accept-charset : iso-8859-1,*,utf-8

city=Hermosa+Beach&state=CA

Besides GET and POST, HTTP specifies the following methods:

OPTIONS

The OPTIONS method is used to find out what options (e.g., methods) a server or resource

offers.

HEAD

HEAD method is used to get a response with all headers that would be generated by a GET

request, but without the body. It can be used to make sure a link is valid or to see when a

resource was last modified.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 6/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: III(JSP) BATCH-2017-2020

PUT

The PUT method is used to store the message body content on the server as a resource identified

by the URI.

DELETE

The DELETE method is used to delete the resource identified by the URI.

TRACE

The TRACE method is used for testing the communication between the client and the server.

The server sends back the request message, exactly as it was received, as the body of the

response. Note that these methods are not normally used in a web application.

State Management

As I touched on earlier, HTTP is a stateless protocol; when the server sends back the response

corresponding to the request, it forgets all about the transaction. If a user sends a new request, the

server has no way of knowing if it is related to the previous request.

This is fine for static content such as regular HTML files, but it's a problem for web applications

where a number of requests may be needed to complete a transaction. Consider a shopping cart

application: the server-side application needs to allow the user to select items in multiple steps,

check the inventory when the user is ready to make the purchase, and finally process the order.

In this scenario, the application needs to keep track of information provided by multiple requests

from the same browser. In other words, it needs to remember the client's transaction state.

There are two ways to solve this problem, and both have been used extensively for web

applications with a variety of server-side technologies. The server can either return the complete

state with each response and let the browser send it back as part of the next request; or, it can

save the state somewhere on the server and send back only an identifier that the browser returns

with the next request. The identifier is then used to locate the state information saved on the

server.

In both cases, the information can be sent to the browser in one of three ways:

·As a cookie

· Embedded as hidden fields in an HTML form

· Encoded in the URIs in the response body, typically as links to other application pages (this is

known as URL rewriting)

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 7/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: III(JSP) BATCH-2017-2020

The Problem with Servlets

In many Java servlet-based applications, processing the request and generating the response are

both handled by a single servlet class. A example servlet looks like this:

public class OrderServlet extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 8/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: III(JSP) BATCH-2017-2020

response.setContentType("text/html");

PrintWriter out = response.getWriter();

if (isOrderInfoValid(request)) {

saveOrderInfo(request);

out.println("<html>");

out.println(" <head>");

out.println(" <title>Order Confirmation</title>");

out.println(" </head>");

out.println(" <body>");

out.println(" <h1>Order Confirmation</h1>");

renderOrderInfo(request);

out.println(" </body>");

out.println("</html>");

}

...

Detailed Java programming knowledge is needed to develop and maintain all aspects of the

application, since the processing code and the HTML elements are lumped together. · Changing

the look and feel of the application, or adding support for a new type of client (such as a WML

client), requires the servlet code to be updated and recompiled.

·It's hard to take advantage of web page development tools when designing the application

interface. If such tools are used to develop the web page layout, the generated HTML must then

be manually embedded into the servlet code, a process that is time-consuming, error-prone, and

extremely boring.

Adding JSP to the puzzle lets you solve these problems by separating the request processing and

business logic code from the presentation, as illustrated in Figure 3.1. Instead of embedding

HTML in the code, you place all static HTML in JSP pages, just as in a regular web page, and

add a few JSP elements to generate the dynamic parts of the page. The request processing can

remain the domain of servlet programmers, and the business logic can be handled by JavaBeans

and Enterprise JavaBeans (EJB) components.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 9/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: III(JSP) BATCH-2017-2020

The Anatomy of a JSP Page A JSP page is simply a regular web page with JSP elements for

generating the parts of the page that differ for each request, as shown in Figure 3.2. Everything in

the page that is not a JSP element is called template text .

Template text can really be any text: HTML, WML, XML, or even plain text. Since HTML is by

far the most common web page language in use today, most of the descriptions and examples in

this book are HTML-based, but keep in mind that JSP has no dependency on HTML; it can be

used with any markup language. Template text is always passed straight through to the browser.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 10/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: III(JSP) BATCH-2017-2020

JSP Elements

There are three types of elements with JavaServer Pages: directive, action, and scripting

elements. The directive elements, shown in Table 3.1, are used to specify information about the

page itself that remains the same between page requests, for example, the scripting language

used in the page, whether session tracking is required, and the name of a page that should be

used to report errors, if any.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 11/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: III(JSP) BATCH-2017-2020

JSP Processing

A JSP page cannot be sent as-is to the browser; all JSP elements must first be processed by the

server. This is done by turning the JSP page into a servlet, and then executing the servlet. Just as

a web server needs a servlet container to provide an interface to servlets, the server needs a JSP

container to process JSP pages. The JSP container is often implemented as a servlet configured

to handle all requests for JSP pages.

In fact, these two containers - a servlet container and a JSP container - are often combined into

one package under the name web container (as it is referred to in the J2EE documentation). A

JSP container is responsible for converting the JSP page into a servlet (known as the JSP page

implementation class) and compiling the servlet.

These two steps form the translation phase . The JSP container automatically initiates the

translation phase for a page when the first request for the page is received. The translation phase

takes a bit of time, of course, so a user notices a slight delay the first time a JSP page is

requested. The translation phase can also be initiated explicitly; this is referred to as

precompilation of a JSP page.

The JSP container is also responsible for invoking the JSP page implementation class to process

each request and generate the response. This is called the request processing phase.

As long as the JSP page remains unchanged, any subsequent processing goes straight to the

request processing phase (i.e., it simply executes the class file). When the JSP page is modified,

it goes through the translation phase again before entering the request processing phase. So in a

way, a JSP page is really just another way to write a servlet without having to be a Java

programming wiz. And, except for the translation phase, a JSP page is handled exactly like a

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 12/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: III(JSP) BATCH-2017-2020

regular servlet: it's loaded once and called repeatedly, until the server is shut down. By virtue of

being an automatically generated servlet, a JSP page inherits all of the advantages of servlets

described in Chapter 2 : platform and vendor independence, integration, efficiency, scalability,

robustness, and security. Let's look at a simple example of a servlet. In the tradition of

programming books for as far back as anyone cares to remember, we start with an application

that just writes Hello World, but this time we will add a twist: our application will also show the

current time on the server. Example 3.1 shows a hand-coded servlet with this functionality.

Example 3.1. Hello World Servlet

public class HelloWorldServlet implements Servlet {

public void service(ServletRequest request,

ServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html>");

out.println(" <head>");

out.println(" <title>Hello World</title>");

out.println(" </head>");

out.println(" <body>");

out.println(" <h1>Hello World</h1>");

out.println(" It's " + (new java.util.Date().toString()) +

" and all is well.");

out.println(" </body>");

out.println("</html>");

}

}

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 13/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: III(JSP) BATCH-2017-2020

JSP Application

Design with MVC JSP technology can play a part in everything from the simplest web

application, such as an online phone list or an employee vacation planner, to full-fledged

enterprise applications, such as a human resource application or a sophisticated online shopping

site. How large a part JSP plays differs in each case, of course. In this section, we introduce a

design model suitable for both simple and complex applications called Model-ViewController

(MVC).

MVC was first described by Xerox in a number of papers published in the late 1980s. The key

point of using MVC is to separate components into three distinct units: the Model, the View, and

the Controller. In a server application, we commonly classify the parts of the application as:

business logic, presentation, and request processing. Business logic is the term used for the

manipulation of an application's data, i.e., customer, product, and order information. Presentation

refers to how the application is displayed to the user, i.e., the position, font, and size. And finally,

request processing is what ties the business logic and presentation parts together. In MVC terms,

the Model corresponds to business logic and data, the View to the presentation logic, and the

Controller to the request processing.

Why use this design with JSP? The answer lies primarily in the first two elements. Remember

that an application data structure and logic (the Model) is typically the most stable part of an

application, while the presentation of that data (the View) changes fairly often. Just look at all

the face-lifts that web sites have gone through to keep up with the latest fashion in web design.

Yet, the data they present remains the same. Another common example of why presentation

should be separated from the business logic is that you may want to present the data in different

languages or present different subsets of the data to internal and external users. Access to the

data through new types of devices, such as cell phones and Personal Digital Assistants (PDAs),

is the latest trend. Each client type requires its own presentation format. It should come as no

surprise, then, that separating business logic from presentation makes it easier to evolve an

application as the requirements change; new presentation interfaces can be developed without

touching the business logic.

This MVC model is used for most of the examples in this book. In Part II, JSP pages are used as

both the Controller and the View, and JavaBeans components are used as the Model. The

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 14/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: III(JSP) BATCH-2017-2020

examples in Chapter 5 through Chapter 7 use a single JSP page that handles everything, while

Chapter 8 through Chapter 11 show how you can use separate pages for Control and View to

make the application easier to maintain. Many types of real-world applications can be developed

this way, but what's more important is that this approach allows us to examine all the JSP

features without getting distracted by other technologies. In Part III, we look at other possible

role assignments when JSP is combined with servlets and Enterprise JavaBeans.

Setting Up the JSP Environment.

In this chapter you will learn how to install the Tomcat server and add a web application

containing all the examples used in this book. You can, of course, use any web server that

supports JSP 1.1, but Tomcat is a good server for development and test purposes. You can learn

more about the Jakarta project and Tomcat, as well as how you can participate in the

development, at the Jakarta web site: http://jakarta.apache.org.

Installing the Java Software Development Kit

Tomcat is a pure Java web server with support for the Servlet 2.2 and JSP 1.1 specifications. To

use it, you must first install a Java runtime environment. If you don't already have one, you can

download a Java SDK for Windows, Linux, and Solaris at http://java.sun.com/j2se/. I

recommend that you install the Java 2 SDK as opposed to the slimmed-down Runtime

Environment (JRE) distribution.

The reason is that JSP requires a Java compiler, which is included in the SDK but not in the JRE.

Sun Microsystems has made the javac compiler from the SDK available separately for

redistribution by the Apache Software Foundation. So technically, you could use the JRE and

download the Java compiler as part of the Tomcat package, but even as I write this chapter, the

exact legal conditions for distributing the compiler are changing.

Another alternative is to use the Jikes compiler from IBM

(http://www10.software.ibm.com/developerworks/opensource/jikes/). Tomcat can be configured

to use Jikes instead of the javac compiler from Sun; read the Tomcat documentation if you would

like to try this. To make things simple, though, I suggest installing the Java 2 SDK from Sun.

The examples were developed and tested with Java 2 SDK, Standard Edition, v1.2.2 and v1.3. I

recommend that you use the latest version of the SDK available for your platform.

If you need an SDK for a platform other than Windows, Linux, or Solaris, there's a partial list of

ports made by other companies at Sun's web site http://java.sun.com/cgi-bin/java-ports.cgi/

Also check your operating system vendor's web site. Most operating system vendors have their

own SDK implementation available for free.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 15/21

http://jakarta.apache.org/
http://java.sun.com/cgi-bin/java-ports.cgi/

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: III(JSP) BATCH-2017-2020

Installation of the SDK varies depending on platform but is typically easy to do. Just follow the

instructions on the web site where you download the SDK.

Before you install and run Tomcat, make sure that the JAVA_HOME environment variable is set

to the installation directory of your Java environment, and that the Java bin directory is included

in the PATH environment variable. On a Windows system, you can see if an environment

variable is set by typing the following command in a Command Prompt window:

C:\> echo %JAVA_HOME%

C:\jdk1.1.2

If JAVA_HOME is not set, you can set it and include the bin directory in the PATH like this on

a Windows system

(assuming Java is installed in C:\jdk1.2.2):

C:\> set JAVA_HOME=C:\jdk1.1.2

C:\> set PATH=%JAVA_HOME%\bin;%PATH%

On a Windows 95/98 system, you can add these commands to the C:\AUTOEXEC.BAT file to

set them permanently. Just use a text editor, such as Notepad, and add lines with the set

commands. The next time you boot the PC, the environment variables will be set automatically.

For Windows NT and 2000, you can set them permanently from the Environment tab in the

System Properties tool.

If you use Linux or some other Unix platform, the exact commands depend on which shell you

use. With bash, which is commonly the default for Linux, use the following commands

(assuming Java is installed in

/usr/local/jdk1.2.2):

[hans@gefion /] export JAVA_HOME=/usr/local/jdk1.2.2

[hans@gefion /] export PATH=$JAVA_HOME/bin:$PATH

echo $PATH

/usr/local/jdk1.2.2/bin:/usr/local/bin:/bin:/usr/bin

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 16/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: III(JSP) BATCH-2017-2020

Installing the Tomcat Server

You can download the Tomcat Server either in binary format or as source code that you compile

yourself. If you're primarily interested in learning about JSP, I recommend that you use the

binary download to run the examples in this book and develop your own applications. If you're a

Java programmer and interested in seeing how Tomcat is implemented, feel free to download the

source and take a look at the internals.

The binary distribution is available at http://jakarta.apache.org/downloads/binindex.html

On this page you find three types of builds:

· Release builds

· Milestone builds

· Nightly builds

Release builds are stable releases that have been tested extensively and verified to comply with

the servlet and JSP specifications. Milestone builds are created as intermediary steps towards a

release build. They often contain new features that are not yet fully tested, but are generally

known to work. A nightly build, however, may be very unstable. It's actually a snapshot of the

latest source code and may have been tested only by the person who made the latest change. You

should use a nightly build only if you're involved in the development of Tomcat.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 17/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: III(JSP) BATCH-2017-2020

Windows Platforms

The Windows files are named startup.bat, shutdown.bat, and tomcat.bat. The tomcat.bat file is

the main script for controlling the server; it's called by the two other scripts startup.bat and

shutdown.bat. To start the server in a separate window, change directory to the bin directory and

run the startup.bat file:

C:\Jakarta> cd jakarta-tomcat\bin

C:\Jakarta\jakarta-tomcat\bin> startup

A new Command Prompt window pops up and you see startup messages like this:

2000-09-01 09:27:10 - ContextManager: Adding context Ctx(/examples)

2000-09-01 09:27:10 - ContextManager: Adding context Ctx(/admin)

Starting tomcat. Check logs/tomcat.log for error messages

2000-09-01 09:27:10 - ContextManager: Adding context Ctx()

2000-09-01 09:27:10 - ContextManager: Adding context Ctx(/test)

2000-09-01 09:27:13 - PoolTcpConnector: Starting HttpConnectionHandler on 8080

2000-09-01 09:27:13 - PoolTcpConnector: Starting Ajp12ConnectionHandler on 8007

For some installations, this command may not work. If it doesn't work, try this instead:

1. Close the Command Prompt window and open a new one.

2. Click on the MS-DOS icon at the top-left of the window.

3. Select the Properties option.

4. Click on the Memory tab.

5. Change the Initial Environment value from Auto to 4096.

6. Click on OK and try to start the server again.

Unix Platforms

For Unix, the corresponding scripts are named startup.sh, shutdown.sh, and tomcat.sh. Start the

server with this command:

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 18/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: III(JSP) BATCH-2017-2020

[hans@gefion /usr/local/jakarta-tomcat/bin] ./startup.sh

If you want Tomcat to start each time you boot the system, you can add the following commands

to your

/etc/rc.d/rc.local (or equivalent) startup script:

export JAVA_HOME=/usr/local/jdk1.2.2

export TOMCAT_HOME=/usr/local/jakarta-tomcat

$TOMCAT_HOME/bin/startup.sh &

Two more subdirectories under the Tomcat home directory are then created the first time you

start the

server:

Testing Tomcat

To test the server - assuming you're running Tomcat on the same machine as the browser and

that you're using the default port for Tomcat (8080) - open a browser and enter the following

URL in the Location/Address field:

http://localhost:8080/

Installing the Book Examples

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 19/21

http://localhost:8080/

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: III(JSP) BATCH-2017-2020

All JSP pages, HTML pages, Java source code, and class files for the book examples can be

downloaded directly from the O'Reilly web site: http://www.oreilly.com/catalog/jserverpages/

They can also be downloaded from the book web site: http://www.TheJSPBook.com The file

that contains all the examples is called jspbook.zip. Save the file on your hard drive, for instance

in C:\JSPBook on a Windows platform, and unpack it:

C:\JSPBook> jar xvf jspbook.zip You can use the same command on a Unix platform.

To install the example application for Tomcat, copy the web application directory structure to

Tomcat's default directory for applications, called webapps.

Use this command on a Windows platform: C:\JSPBook> xcopy /s /i ora

%TOMCAT_HOME%\webapps\ora On a Unix platform it looks like this:

[hans@gefion /usr/local/jspbook] cp -R ora $TOMCAT_HOME/webapps

At this point, you must shut down and restart the Tomcat server. After that, you can point your

browser to the ora application with the following URL: http://localhost:8080/ora/

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 20/21

http://www.oreilly.com/catalog/jserverpages/
http://localhost:8080/ora/

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: III(JSP) BATCH-2017-2020

Possible Question

Part B (2 marks)

1) Define JSP

2) List out any 3 elements of JSP

3) Define State Management

4) Write short notes on anatomy of JSP?

5) What is mean by HTTP?

6) Define servlet

7) Define MVC

8) Define problem with servlet

9) What is mean by JSP page?

10) How to set of JSP Environment?

Part C (6 marks)

1) Explain in detail about what is JSP? what are the problems with servlet in JSP

2) Explain in detail about JSP Processing

3) What is mean by JSP, how to working with JSP environment?

4) Explain in detail about JSP environment
5) Explain in detail about JSP application design with MVC

6) Explain In Detail about JSP page

7) Explain in Detail about anatomy of JSP page

8) How to Display values in JSP

9) Explain in detail about HTTP and servlet basics
10) Explain in Detail about problem with servlets

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 21/21

KARPAGAM ACADEMY OF HIGHER EDUCATION

 PART - A (ONLINE EXAMINATION)

 MULTIPLE CHOICE QUESTIONS (Each question carries one mark)

SUBJECT: INTERNET TECHNOLOGY

SUB.CODE: 17ITU404A CLASS : II B.Sc IT

UNIT III

QUESTIONS OPTION A OPTION B OPTION C OPTION D ANSWERS

1.JSP stands for _____________

java server

page

java servlet

page

java server

packet

java servlet

packet

java server

pages

2.Developers can use java to efficiently create multi tier ___________ side applications. server client a &b none server

3.Java server pages is a technology for developing web pages that include__________

content. static dynamic both a&b none dynamic

4.CGI stands for ___________

common

gateway

common

gateway

common

gateway

computer

gateway

common

gateway

5.J2EE stands for________________

java 2

enterprise

java 2

edition

java 2

entering

java 2

entered exit

java 2

enterprise

6._____________ acessing naming and directory services. JTA JNDI JNDI2 JDBC JNDI

7.Java beans uses for creating reusable _________________.

software

components

bussiness

components

hardware

components both a&c

bussiness

components

8.___________is a message oriented middleware. JTA J2EE CGI JMS JMS

9.____________ is used to handling remote objects. JSP J2EE RMI CGI RMI

10.RMI and ____________ is used to handling remote objects. corba cobra coarb none corba

11.JMS is a message oriented____________. hardware software middleware upperware middleware

12.JTA stands for_________________.

java

transaction

java

transformati

java

transaction

java truncat

API

java

transaction

13._____________ is used for performing atomic transactions. J2EE JDBC

none of

these JTB none of this

14.A JSP page contains ___________ elements

standard

markup

temprovery

language

integrated

language both a&c

standard

markup

15.JSP is used to________________data from database retrieving deleting editing all of this retrieving

16.Jakarta project________ Apache windows saffari none of this Apache

17.JSP supports ____________different server products. >30 30 both b&d <31 both b&d

18._____________authoring tools supports by JSP 10 11 12 13 10

19.HTTP stands for____________________

Hyper text

transmission

hyper text

transfer

hyper

texture none of this

hyper text

transfer

20.In HTTP a client is a ________________ web page web browser server all the above web browser

21.A HTML file is a ____________ document reference source resource resource

22.HTTP is a ___________protocol statefull

connection-

oriented stateless

connection

less stateless

23.GUI stands for ________________

Graphical

user

Geo-

graphical

Graphics

user none

Graphical

user

24._____________ is a example for standalone GUI application Word excel

Word

processor

word

document

Microsoft

word

Word

processor

25.URI stands for _________________

Uniform

Resource

Uniform

Relocation

Uniform

Resource

Uniform

Relocation

Uniform

Resource

26.URL stands for________

Uniform

Resource

Uniform

Resource

Uniform

Resource

Unified

Resource

Uniform

Resource

27.HTTP port number 8080 808 8082 8022 8080

28.The URL send to server that uses __________port number instead of 80 8022 8048 8032 8080 8080

29.In ___________application,URI may identify a program. E-Campus

E-

Commerce E-Tracking

E-

Attendance

E-

Commerce

30.URI headers request a message in the form of__________ Parameters Arguments both a&b none of this both a&b

31.___________is most commonly used request method. gets set get puts get

32.____________ is used to retrieve message from server. gets set get getm get

33.The message body request is______________. puts put post post/get post

34.____________method is used to find out the option. select select option option none of this option

35.HEAD method is used to get ___________ with all headers. retrieving response request resource response

36.________ method is used to check that the link is valid or not. head put delete trace head

37.______method is used to store the meaasge body. head none of this delete trace none of this

38.put method is used to store the meaasge _______. body header details all the above body

39.________ method is used to delete the resource indentified by URI head put delete trace delete

40.__________ method is used for testing communication between client-server. head put trace connect trace

41.trace method is used for testing ________________ between client-server connection

communicati

on connectivity

none of

these

communicati

on

42.trace method is used for testing communication between ________________. staff-admin user-admin client-server user-server client-server

43.the information can be sent to the browser in _________ ways. 4 3 5 1 3

44.URIs in the response body,typically as links to other application pages is

called__________.

URI

rewritting

URI

connection URI writing URI to URI

URI

rewritting

45.processing the reuqest and generating the response are handled by______________. JVM

single

servlet class

double

servlet class servlet class

single

servlet class

46.EJB stands for__________________.

entering java

beans

enterprise

java beans

exiting java

beans

entering java

beans

enterprise

java beans

47.<%!.....%> used for declaration definition initialization

none of

these declaration

48.design model for simple and complex application is ____________. MCV VCM MVC MV2C MVC

49.MVC expansion____________.

model view

controller

machine

view

model

virtual

model view

creator

model view

controller

50.applications of MVC classifies into __________ parts 2 3 4 3

51.___________ is used to manipulation of applications data

business

logic

business

components presentation

request

procesing

business

logic

52._____________ deals with view of application

business

logic presentation

request

processing both a&c presentation

53.________ is combination of businesslogic and presentation retrieving

request

processing b only both b&c both b&c

54.most stable part of application design model is ________ model view controller both a&b model

55.PDA stands for_________________________

personal

diagram

personal

diagram

private

diagram

personal

digital

personal

digital

56.JRE expansion__________________________

java

retreiveing

java runtime

environment

java runtime

engine

java running

environment

java runtime

environment

57._______________ is the best server for development and testing tomcat both a&b apache all the above tomcat

58.which method is not commonly used in web application _____. head all the above trace put all the above

59.the problems with servlets is __________.

timeconsumi

ng error-prone both a&b

none of

these both a&b

60.there are ______________ type of elements with jsp. 2 4 3 5 3

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A UNIT: IV(JSP) BATCH-2017-2020

 UNIT-IV

 SYLLABUS

JSP: Implicit Objects, conditional processing, displaying values, Using an expression to Set an

Attribute, declaring variables and methods, error handling and debugging, sharing data between

JSP pages, Requests, and Users, Database Access.

What is JSP Implicit object?

 JSP implicit objects are created during the translation phase of JSP to the servlet.
 These objects can be directly used in scriplets that goes in the service method.
 They are created by the container automatically, and they can be accessed using objects.

There are 9 types of implicit objects available in the container:

What is JSP Implicit object?

 JSP implicit objects are created during the translation phase of JSP to the servlet.

 These objects can be directly used in scriplets that goes in the service method.
 They are created by the container automatically, and they can be accessed using objects.

There are 9 types of implicit objects available in the container:

1. out
2. request

3. response
4. config

5. application
6. session

7. pageContext
8. page

9. exception
10. A list of the 9 implicit objects is given below:

Object

Type

 out JspWriter

 request HttpServletRequest

 response HttpServletResponse

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 1

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A UNIT: IV(JSP) BATCH-2017-2020

config ServletConfig

application ServletContext

session HttpSession

pageContext PageContext

page Object

exception Throwable

1.OUT

 Out is one of the implicit objects to write the data to the buffer and send output to the
client in response

 Out object allows us to access the servlet's output stream
 Out is object of javax.servlet.jsp.jspWriter class
 While working with servlet, we need printwriter object

2.REQUEST

 The request object is an instance of java.servlet.http.HttpServletRequest and it is one of

the argument of service method
 It will be created by container for every request.
 It will be used to request the information like parameter, header information , server

name, etc.
 It uses getParameter() to access the request parameter.

3.RESPONSE

 "Response" is an instance of class which implements HttpServletResponse interface
 Container generates this object and passes to _jspservice() method as parameter

 "Response object" will be created by the container for each request.
 It represents the response that can be given to the client
 The response implicit object is used to content type, add cookie and redirect to response

page

4.CONFIG

 "Config" is of the type java.servlet.servletConfig
 It is created by the container for each jsp page
 It is used to get the initialization parameter in web.xml

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 2

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

5.APPLICATION

 Application object (code line 10) is an instance of javax.servlet.ServletContext and it is
used to get the context information and attributes in JSP.

 Application object is created by container one per application, when the application gets
deployed.

 Servletcontext object contains a set of methods which are used to interact with the servlet
container.We can find information about the servlet container

6.SESSION

 The session is holding "httpsession" object(code line 10).
 Session object is used to get, set and remove attributes to session scope and also used to

get session information

7.PAGECONTEXT:

 This object is of the type of pagecontext.
 It is used to get, set and remove the attributes from a particular scope

Scopes are of 4 types:

 Page

 Request
 Session
 Application

8.PAGE

 Page implicit variable holds the currently executed servlet object for the corresponding
jsp.

 Acts as this object for current jsp page.

9.EXCEPTION

 Exception is the implicit object of the throwable class.
 It is used for exception handling in JSP.

CONDITIONAL PROCESSING:

In most web applications, you produce different output based on runtime conditions, such

as the state of a bean or the value of a request header such as UserAgent (containing information

about the type of client that is accessing the page). If the differences are not too great, you can

 useJSPscriptingelementstocontrol whichpartsofthe JSPpage

 Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 3

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

are sent to the browser, generating alternative outputs from the same JSP page. However, if the

outputs are completely different, I recommend using a separate JSP page for each alternative and

passing control from one page to another. This chapter contains a number of examples in which

one page is used. In the remainder of this book you'll see plenty of examples where multiple

pages are used instead.

Using JavaBeans Properties:

How to use the <jsp:getProperty> and the <jsp:setProperty> actions to access a bean's properties.

However, a bean is just a Java class that follows certain coding conventions, so you can also call

its methods directly.

Briefly, a bean is a class with a constructor that doesn't take an argument. This makes it

possible for a tool, such as the JSP container, to create an instance of the bean class simply by

knowing the class name. The other condition of a bean that we are concerned with is the naming

of the methods used to access its properties. The method names for reading and writing a

property value, collectively known as the bean's accessor methods, must be composed of the

keywords get and set, respectively, plus the name of the property. For instance, you can retrieve

the value of a property named month in a bean with the method getMonth() and set it with the

method setMonth(). Individually, the accessor method for reading a property value is known as

the getter method, and the accessor method for writing a property value is the setter method. A

property can be read-only, write-only, or read/write depending on whether a getter method, a

setter method, or both methods are provided in the class. The Java type for a property, finally, is

the type returned by the getter method and the type of the setter methods argument.

Conditional Greeting Page (greeting.jsp)

<%@ page language="java" contentType="text/html" %>

<html>

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 4

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

<body bgcolor="white">

<jsp:useBean id="clock" class="java.util.Date" />

<% if (clock.getHours() < 12) { %>

Good morning!

<% } else if (clock.getHours() < 17) { %>

Good day!

<% } else { %>

Good evening!

<% } %>

</body>

</html>

Using Request Information:

The implicit object request is used to display different messages
depending on whether the Internet Explorer or Netscape Navigator browser is used. Example

shows the complete page.

Browser-Dependent Page (browser.jsp)

<%@ page language="java" contentType="text/html" %>

<html>

<body bgcolor="white">

<% if (request.getHeader("User-Agent").indexOf("MSIE") != -1) { %>

You're using Internet Explorer.

<%

} else

if (request.getHeader("User-Agent").indexOf("Mozilla") != 1) {

%>

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 5

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

You're using Netscape.

<% } else { %>

You're using a browser I don't know about.

<% } %>

</body>

</html>

The request object is not a bean, since it doesn't follow all the JavaBeans conventions described

above, but it does provide a number of methods you can use to get information about the

request. For instance, the request object's getHeader() method is used to get the value of a

specific request header.

Working with Arrays:

Another common use of scriptlets is to loop over an array. In Example, we let the user pick a

number of items from a group of checkboxes, and then use scriptlets to display all the choices.

Looping Over Parameter Array (loop.jsp)

<%@ page language="java" contentType="text/html" %>

<html>

<body bgcolor="white">

<form action="loop.jsp">

<input type="checkbox" name="fruits" value="Apple">Apple

<input type="checkbox" name="fruits" value="Banana">Banana

<input type="checkbox" name="fruits" value="Orange">Orange

<input type="submit" value="Enter">

</form>

<%

String[] picked = request.getParameterValues("fruits");

if (picked != null && picked.length != 0) {

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 6

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

%>

You picked the following fruits:

<%

for (int i = 0; i < picked.length; i++) {

out.println("" + picked[i]);

}

%>

<% } %>

</body>

</html>

Displaying Values:

Besides using scriptlets for conditional output, one more way to employ scripting elements is by
using a JSP expression element to insert values into the response. A JSP expression element can

be used instead of the <jsp:getProperty> action in some places, but it is also useful to insert the
value of any Java expression that can be treated as a String. An expression starts with <%= and

ends with %>. Note that the only syntax difference compared to a scriptlet is the equals sign (=)

in the start identifier. An example is: <%= userInfo.getUserName() %>

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 7

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

<%@ page import="com.ora.jsp.util.*" %>

...

<tr>

<td>Name:</td>

<td><input type="text" name="userName"

value="<%= StringFormat.toHTMLString(userInfo.getUserName()) %>" >

</td>

</tr>

Packages:

A large application may use many different classes, some of them part of the standard Java

libraries, and others developed in-house or by third parties. To organize all these classes, Java

provides the notion of a package. A package is a group of related classes. The fully qualified

name of a class is the combination of the package name and the class name. For instance, the

fully qualified name of the class used in Example is com.ora.jsp.util.StringFormat. You can

always use the fully qualified name in your Java code, but to save you some typing, you can also

import a package and then refer to the class with just the short class name. If you look at the top

of Example, you see a page directive with the import attribute set to the name of the package the

StringFormat class belongs to:

<%@ page import="com.ora.jsp.util.*" %>

Importing a package doesn't mean that it's physically included in the page. It only tells Java to

look for classes with short names in the named package. You can use multiple page directives

with import attributes in the same page, or use one with a comma-separated list of import

declarations, if you need to import more than one package. In other words, this directive:

<%@ page import="java.util.*, com.ora.jsp.util.*" %>

has the same effect as these two directives:

<%@ page import="java.util.* " %>

<%@ page import="com.ora.jsp.util.*" %>

Checking Off Checkboxes Dynamically:

In Example, a for statement is used to loop through an array, but arrays can also be used in many

other ways. If the array represents choices the user can make at one time and change at a later

time, a form for changing the information can contain a set of checkboxes with the current

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 8

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

choices checked off. An application like this typically gets the current choices from a database,

and you will see an example of this in To demonstrate a technique for dynamically checking off

checkboxes in a form, however, we keep it simple and use the String[] with fruit choices from

Example

Setting Checkbox Values Dynamically (checkbox.jsp)

<%@ page language="java" contentType="text/html" %>

<%@ page import="com.ora.jsp.util.*" %> <html>

<body bgcolor="white">

<form action="checkbox.jsp">

<input type="checkbox" name="fruits" value="Apple">Apple

<input type="checkbox" name="fruits"

value="Banana">Banana
 <input type="checkbox"

name="fruits" value="Orange">Orange
 <input type="submit"

value="Enter"> </form>

<%

String[] picked = request.getParameterValues("fruits");

if (picked != null && picked.length != 0) { %>

You picked the following fruits:

<form>

<input type="checkbox" name="fruits"

value="Apple" <%= ArraySupport.contains(picked,

"Apple") ? "checked" : "" %> >Apple

<input type="checkbox" name="fruits"

value="Banana" <%= ArraySupport.contains(picked,

"Banana") ? "checked" : "" %> >Banana

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 9

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

<input type="checkbox" name="fruits" value="Orange"

<%= ArraySupport.contains(picked, "Orange") ?

"checked" : "" %> >Orange

</form>

<% } %>

</body>

</html>

Using More Request Methods

We have already used one of the methods of the implicit request object, but this object provides a

wealth of information you may be interested in. So let's use some more request methods.

Displaying Request Info (reqinfo.jsp)

<%@ page language="java" contentType="text/html" %>

<html>

<body bgcolor="white">

The following information was received:

Request Method: <%= request.getMethod() %>

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 10

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

Request URI: <%= request.getRequestURI() %>

Request Protocol: <%= request.getProtocol() %>

Servlet Path: <%= request.getServletPath() %>

Query String: <%= request.getQueryString() %>

Server Name: <%= request.getServerName() %>

Server Port: <%= request.getServerPort() %>

Remote Address: <%= request.getRemoteAddr() %>

Remote Host: <%= request.getRemoteHost() %>

Browser Type: <%= request.getHeader("User-Agent") %>

</body>

</html>

Using an Expression to Set an Attribute:

In all our JSP action element examples so far, the attributes are set to literal string values. But in

many cases, the value of an attribute is not known when you write the JSP page; instead, the

value must be calculated when the JSP page is requested. For situations like this, you can use a

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 11

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

JSP expression as an attribute value. This is called a request-time attribute value. Here is an

example of how this can be used to

set an attribute of a fictitious log entry bean:

<jsp:useBean id="logEntry" class="com.foo.LogEntryBean" />

<jsp:setProperty name="logEntry" property="entryTime"

value="<%= new java.util.Date() %>" />

This bean has a property named entryTime that holds a timestamp for a log entry, while other

properties hold the information to be logged. To set the timestamp to the time when the JSP page

is requested, a <jsp:setProperty> action with a request-time attribute value is used. The attribute

value is represented by the same type of JSP expression as in the previous snippet, here an

expression that creates a new java.util.Date object (representing the current date and time). The

requesttime attribute is evaluated when the page is requested, and the corresponding attribute is

set to the result of the expression. One reason is that some attribute values must be

known when the page is converted into a servlet. For instance, the class attribute value in the

<jsp:useBean> action must be known in the translation phase so that the JSP container can

generate valid Java code for the servlet. Request-time attributes also require a bit more

processing than static string values, so it's up to the custom action developer to decide if request-

time attribute values are supported or not.

Declaring Variables and Methods:

We have used two of the three JSP scripting elements in this chapter: scriptlets and expressions.

There's one more, called a declaration element, which is used to declare Java variables and

methods in a JSP page. My advice is this: don't use it. Let me explain why.

Java variables can be declared either within a method or outside the body of all methods,

like this:

public class SomeClass {

// Instance variable

private String anInstanceVariable;

// Method

public void doSomething() {

String aLocalVariable;

}}

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 12

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

A variable declared outside the body of all methods is called an instance variable. Its value can

be accessed from any method in the class, and it keeps its value even when the method that sets it

returns. A variable declared within the body of a method is called a local variable. A local

variable can be accessed only from the method where it's declared. When the method returns, the

local variable disappears.

Each user is assigned what is called a thread in the server, and each thread executes the main

method in the JSP object. When more than one thread executes the same code, you have to make

sure the code is thread-safe.

This means that the code must behave the same when many threads are executing as when just

one thread executes the code.Multithreading and thread-safe code strategies are best left to

programmers. However, you should know that using a JSP declaration element to declare

variables exposes your page to multithreading problems. That's because a variable declared using

a JSP declaration element ends up as an instance variable in the generated servlet, not as a local

variable in a method.

. If one thread changes the value of the instance variable, the value is changed for all threads. To

put this in JSP terms, if the instance variable is changed because one user accesses the page, all

users accessing the same page will use the new value.When you declare a variable within a

scriptlet element instead of in a JSP declaration block, the variable ends up as a local variable in

the generated servlet's request processing method. Each thread has its own copy of a local

variable, so local variables can't cause any problems if more than one thread executes the same

code. If the value of a local variable is changed, it will not affect the other threads.

<%@ page language="java" contentType="text/html" %>

<%!

int globalCounter = 0;

%>

<html>

<head>

<title>A page with a counter</title>

</head>

<body bgcolor="white">

This page has been visited: <%= ++globalCounter %> times.

<p>

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 13

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

<%

int localCounter = 0;

%>

This counter never increases its value: <%= ++localCounter %>

</body>

</html>

jspInit() and jspDestroy()

servlet has two methods that the container calls when the servlet

is loaded and shut down. These methods are called init() and destroy(), and they allow the

servlet to initialize instance variables when it's loaded and clean up when it's shut down,

respectively. As you already know, a JSP page is turned into a servlet, so it has the same

capability. However, with JSP, the methods are

called jspInit() and jspDestroy() instead.

Again, recommend that you do not declare any instance variables for your JSP pages. If you

follow this advice, there's also no reason to declare the jspInit() and jspDestroy() methods. But I

know you're curious, so here's an example of how they can be used.

<%@ page language="java" contentType="text/html" %>

<%@ page import="java.util.Date" %>

<%!

int globalCounter = 0;

Date startDate;

public void jspInit() {

startDate = new Date();

}

public void jspDestroy() {

ServletContext context = getServletConfig().getServletContext();

context.log("test.jsp was visited " + globalCounter +

" times between " + startDate + " and " + (new Date()));

}
Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 14

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

%>

<html>

<head>

<title>A page with a counter</title>

</head>

<body bgcolor="white">

This page has been visited: <%= ++globalCounter %> times

since <%= startDate %>.

</body>

</html>

Error Handling and Debugging:

When you develop any application that's more than a trivial example, errors are inevitable. A

JSP-based application is no exception. There are many types of errors you will deal with. Simple

syntax errors in the JSP pages are almost a given during the development phase. And even after

you have fixed all the syntax errors, you may still have to figure out why the application doesn't

work as you intended due to design mistakes. The application must also be designed to deal with

problems that can occur when it's deployed for production use. Users can enter invalid values

and try to use the application in ways you never imagined. External systems, such as databases,

can fail or become unavailable due to network problems. Since a web application is the face of a

company, making sure it behaves well, even when the users misbehave and the world around it

falls apart, is extremely important for a positive customer perception.

Dealing with Syntax Errors:

Element Syntax Errors

Tomcat reports some typical syntax errors in JSP directives and action elements.

Example shows a version of the date.jsp page with a syntax error.

<%@ page language="java" contentType="text/html" >

<html>

<body bgcolor="white">

<jsp:useBean id="clock" class="java.util.Date" />

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

The current time at the server is:

Date: <jsp:getProperty name="clock" property="date" />

Month: <jsp:getProperty name="clock" property="month" />

Year: <jsp:getProperty name="clock" property="year" />

Hours: <jsp:getProperty name="clock" property="hours" />

Minutes: <jsp:getProperty name="clock" property="minutes" />

</body>

</html>

The syntax error here is that the page directive on the first line is not closed properly with %>;

the percent sign is missing.

Improperly Terminated Action (error2.jsp):

<%@ page language="java" contentType="text/html" %>

<html>

<body bgcolor="white">

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 16

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

<jsp:useBean id="clock" class="java.util.Date" >

The current time at the server is:

Date: <jsp:getProperty name="clock" property="date" />

Month: <jsp:getProperty name="clock" property="month" />

Year: <jsp:getProperty name="clock" property="year" />

Hours: <jsp:getProperty name="clock" property="hours" />

Minutes: <jsp:getProperty name="clock" property="minutes" />

</body>

</html>

The syntax error here is almost the same as the "unterminated tag" in Example, but now it's the

<jsp:useBean> action element that's not terminated properly (it's missing the closing slash). The

message

reported by Tomcat in this case is:

D:\ch7\error2.jsp(16,0) useBean tag must begin and end in the same physical file

Scripting Syntax Errors:

syntax errors in scripting elements result in error messages that are much harder to interpret. This

is because of the way the JSP container deals with scripting code when it converts a JSP page

into a servlet. The container reads the JSP page and generates servlet code by replacing all JSP

directives and actions with code that produces the appropriate result. To do this, it needs to

analyze these types of elements in detail. If there's a

syntax error in a directive or action element, it can easily tell which element is incorrect (as you

saw in the previous section). Scripting elements, on the other hand, are more or less used as-is in

the generated servlet code.

A syntax error in scripting code is not discovered when the JSP page is read, but instead when

the generated servlet is compiled. The compiler reports an error in terms of its location in the

generated servlet code (as opposed to the location in the JSP page), with messages that don't

always make sense to a JSP page author. Let's look at some examples to illustrate this.

Missing End Brace (error4.jsp)

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 17

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

<%@ page language="java" contentType="text/html" %>

<html>

<body bgcolor="white">

<jsp:useBean id="clock" class="java.util.Date" />

<% if (clock.getHours() < 12) { %>

Good morning!

<% } else if (clock.getHours() < 17) { %>

Good day!

<% } else { %>

Good evening!

</body>

</html>

Debugging a JSP-Based Application

After you have fixed all syntax errors, pat yourself on the back and enjoy the moment. If the

application is more than a trivial example, however, this moment will probably be short-lived:

you will likely find that one or more things still don't work as you expected. Logic errors, such as

not taking care of all possible input combinations, can easily slip into an application during

development. Finding and correcting this type of problem is called debugging.

For applications developed in compiled languages such as Java, C, or C++, a tool called a

debugger is often used in this phase. A debugger steps through the program line by line or runs

until it reaches a break point that you have defined, and lets you inspect the values of all

variables in the program. With careful analysis of the program flow in runtime, you can discover

why it works the way it does, and not the way you want it to.

There are debuggers for JSP as well, such as IBM's Visual Age for Java. This product lets you

debug a JSP page exactly the same way as you would a program written in a more traditional

programming language.

Testing Header Values in the Wrong Order (browser.jsp)

<%@ page language="java" contentType="text/html" %>

<html>

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 18

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

<body bgcolor="white">

<% if (request.getHeader("User-Agent").indexOf("Mozilla") != -1) { %>

You're using Netscape.

<%

} else

if (request.getHeader("User-Agent").indexOf("MSIE") != 1) {

%>

You're using Internet Explorer.

<% } else { %>

You're using a browser I don't know about.

<% } %>

</body>

</html>

Dealing with Runtime Errors

Eventually, your application will work as you like. But things can still go wrong due to problems

with external systems that your application depends on, such as a database. And even though you

have tested and debugged your application, there may be runtime conditions that you didn't

anticipate. Well-behaved components such as JavaBeans or JSP actions (standard and custom)

deal with expected error conditions in a graceful manner. For instance, the UserInfo bean used in

a valid attribute that is false unless all properties are set to valid values. Your JSP page can then

test the property value and present the user with an appropriate message.

Page with an Error Page Definition (calc.jsp)

<%@ page language="java" contentType="text/html" %>

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 19

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

<%@ page errorPage="errorpage.jsp?debug=log" %>

<% request.setAttribute("sourcePage", request.getRequestURI());

%> <html>

<body bgcolor="white">

<jsp:useBean id="calc"

class="com.ora.jsp.beans.calc.CalcBean"> <jsp:setProperty

name="calc" property="*" /> </jsp:useBean>

<%-- Calculate the new numbers and state info --%>

<% String currentNumber = calc.getCurrentNumber();

%> <form action="calc.jsp" method="post"> <table

border=1>

<tr>

<td colspan="4" align="right">

<%= currentNumber.equals("") ? " " :

currentNumber %>

<input type="hidden" name="currentNumber"

value="<%= currentNumber %>">

<input type="hidden" name="previousNumber"

value="<%= calc.getPreviousNumber() %>">

<input type="hidden" name="currentOperation"

value="<%= calc.getCurrentOperation() %>">

<input type="hidden"

name="previousOperation" value="<%=

calc.getPreviousOperation() %>"> <input

type="hidden" name="reset" value="<%=

calc.getReset() %>"> </td>

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 20

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

</tr>

<tr>

<td><input type="submit" name="digit" value=" 7 "></td>

<td><input type="submit" name="digit" value=" 8 "></td>

<td><input type="submit" name="digit" value=" 9 "></td>

<td><input type="submit" name="oper" value=" / "></td>

</tr>

<tr>

<td><input type="submit" name="digit" value=" 4 "></td>

<td><input type="submit" name="digit" value=" 5 "></td>

<td><input type="submit" name="digit" value=" 6 "></td>

<td><input type="submit" name="oper" value=" * "></td>

</tr>

<tr>

<td><input type="submit" name="digit" value=" 1 "></td>

<td><input type="submit" name="digit" value=" 2 "></td>

<td><input type="submit" name="digit" value=" 3 "></td>

<td><input type="submit" name="oper" value=" - "></td>

</tr>

<tr>

<td><input type="submit" name="digit" value=" 0

"></td> <td> </td>

<td><input type="submit" name="dot" value=" . "></td>

<td><input type="submit" name="oper" value=" + "></td>

</tr>

<tr>

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A UNIT: IV(JSP) BATCH-2017-2020

<td> </td>

<td> </td>

<td><input type="submit" name="clear" value=" C "></td>

<td><input type="submit" name="oper" value=" = "></td>

</table>

</form>

</body>

</html>

Sharing Data Between JSP Pages, Requests, and Users

Any real application consists of more than a single page, and multiple pages often need access to

the same information and server-side resources. When multiple pages are used to process the

same request, for instance one page that retrieves the data the user asked for and another that

displays it, there must be a way to pass data from one page to another. In an application in which

the user is asked to provide information in multiple steps, such as an online shopping application,

there must be a way to collect the information received with each request and get access to the

complete set when the user is ready. Other information and resources need to be shared among

multiple pages, requests, and all users. Examples are information about currently logged-in users,

database connection pool objects, and cache objects to avoid frequent database lookups.

Passing Control and Data Between Pages

Using different JSP pages as Controller and View means that

process a request. To make this happen, you need to 1. Pass

control from one page to another.

more than one page is used to

be able to do two things:

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 22

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

2. Pass data from one page to another.

In this section, we look at a concrete example of how to separate the different aspects of an

application and how JSP supports the two requirements above. Let's revisit the User Info

example developed in Chapter 5, to describe how the different aspects of an application can be

separated. In this example, the business logic piece is trivial. However, it sets the stage for more

advanced application examples in the next section and the remaining We can categorize the

different aspects of the User Info example like this:

· Display the form for user input (presentation).

· Validate the input (request processing and business logic).

· Display the result of the validation (presentation).

Passing Data from One Page to Another

JSP provides different scopes for sharing data objects between pages, requests, and users. The

scope defines for how long the object is available and whether it's available only to one user or to

all application users. The following scopes are defined:

· Page

· Request

· Session

· Application

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 23

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

Sharing Session and Application Data:

HTTP is a stateless, request-response protocol. This means that the browser sends a request for a

web resource, and the web server processes the request and returns a response. The server then

forgets this transaction ever happened. So when the same browser sends a new request, the web

server has no idea that this request is related to the previous one. This is fine if you're dealing

with static files, but it's a problem in an interactive web application. In a travel agency

application, for instance, it's important to remember the dates and destination entered to book the

flight so the customer doesn't have to enter the same information again when it's time to make

hotel and rental car reservations.

The way to solve this problem is to let the server send a piece of information to the

browser that the browser then includes in all subsequent requests. This piece of information,

called a session ID, is used by the server to recognize a set of requests from the same browser as

related: in other words, as part of the same session.

A session starts when the browser makes the first request for a JSP page in a particular

application. The session can be ended explicitly by the application, or the JSP container can end

it after a period of user inactivity (the default value is typically 30 minutes after the last request).

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 24

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

URL Rewriting:

As I mentioned earlier, the session ID needed to keep track of requests within the same session

can be transferred between the server and the browser in a number of different ways. One way is

to encode it in the URLs created by the JSP pages, called URL rewriting . This approach works

even if the browser doesn't support cookies (perhaps because the user has disabled them). A

URL with a session ID looks like this:

counter3.jsp;jsessionid=be8d691ddb4128be093fdbde4d5be54e00

When the user clicks on a link with an encoded URL, the server extracts the session ID from the

request URI and associates the request with the correct session. The JSP page can then access the

session data in the same fashion as when cookies are used to keep track of the session ID, so you

don't have to worry about how it's handled. What you do need to do, however, is to call a method

that lets the JSP container encode the URL when needed. To see how it's done, let's create two

pages that reference each other using a regular HTML link. A CounterBean in the session scope

is used to increment a counter for each page.

Using Custom Actions

A custom action is just like the standard actions we've used so far. It has a start tag, which may

contain attributes, and an end tag. It can also have a body. Here's what a custom action looks

like:

<ora:incrementCounter scope="session"/>

The JSP specification defines how the standard set of actions can be extended with custom

actions developed by Java programmers in the team or by a third party. A custom action is used

in a JSP page in exactly the same way as the standard JSP actions you have seen in previous

examples, such as <jsp:getProperty>.

This makes them easier to use than beans with methods that must be invoked with scripting code,

since you don't have to worry about missing braces and semicolons and other syntax details. A

custom action can do pretty much anything: it has access to all information about the request and

can add content to the response body as well as set response headers.

Page with Counter Custom Actions (counter4.jsp)

<%@ page language="java" contentType="text/html" %>

<%@ taglib uri="/orataglib" prefix="ora" %>

<html>

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 25

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

<head>

<title>Counter page 1</title>

</head>

<body bgcolor="white">

<ora:incrementCounter scope="session"/>

<ora:incrementCounter scope="application"/>

<h1>Counter page 1</h1>

This page has been visited

<ora:showCounter scope="session"/>

 times by the current user in the current session, and

<ora:showCounter scope="application"/>

 times by all users since the counter was reset.

<p>

To see that a unique counter is maintained per page,

take a look at

<a href="<ora:encodeURL url="counter5.jsp" />">Counter page 2.

</body>

</html>

Online Shopping

An online shopping site Besides showing you how the session and application scopes can be

used effectively in a larger application, this example also introduces many other useful tools.

You'll see a number of generic custom actions you can use in your own applications, and learn

how to use the java.text.NumberFormat class to format numbers. The application consists of

three pages. The main page lists all available products.

Each product is linked to a product description page, where the product can be added to the

shopping cart. A product is added to the shopping cart by a request processing page. The main

page with the product list is then displayed again, but now with the current contents of the

shopping cart

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 26

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

Memory Usage Considerations

All objects you save in the application and session scopes take up memory in the server process.

It's easy to calculate how much memory is used for application objects since you have full

control over the number of objects you place there. But the total number of objects in the session

scope depends on the number of concurrent sessions, so in addition to the size of each object,

you also need to know how many concurrent users you have and how long a session lasts. Let's

look at an example. The CartBean used in this chapter is small. It stores only references to

ProductBean instances, not copies of the beans. An object reference in Java is 8 bytes, so with

three products in the cart we need 24 bytes. The java.util.Vector object used to hold the

references adds some overhead, say 32 bytes. All in all, we need 56 bytes per shopping cart bean

with three products.

Here are some things you can do to keep the memory requirements under control:

· Place only those objects that really need to be unique for each session in the session scope.

In the shopping cart example, for instance, each cart contains references only to the shared

product beans, and the catalog bean is shared by all users.

· Set the timeout period for sessions to a lower value than the default. If you know it's rare

that your users leave the site for 30 minutes and then return, use a shorter period. You can

change the timeout for all sessions in an application through the application's Deployment

Descriptor or call session.setMax-InactiveInterval () to change it for an individual session.

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 27

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B
COURSE CODE: 17ITU404A

COURSE NAME: INTERNET TECHNOLOGIES

UNIT: IV(JSP) BATCH-2017-2020

Possible Question

Part B

(2Marks)

1) Define implicit object

2) How to declare variable and methods?
3) What is mean by conditional processing?

4) What is mean by Error Handling?
5) What is mean by Expression?

6) What is mean sharing data?
7) What is mean by Database Access?

8) What is mean by Debugging?
9) What is mean by Request?

10) Define displaying values

Part C (6Marks)

1) Explain in details about implicit object with example
2) Explain in detail about conditional processing

3) How to Display values in JSP?
4) How to use an expression to set an attributes?

5) How to declare variable&Methods with example?
6) Explain in detail about Error handling with example

7) Explain in detail about error handling and debugging with example
8) How to sharing data between JSP pages

9) Explain in detail about request and user database access
10) Explain in detail about methods with example

Prepared by: Mr.G.Manivasagam, Dept. of CS,CA & IT, KAHE Page 28

KARPAGAM ACADEMY OF HIGHER EDUCATION

 PART - A (ONLINE EXAMINATION)

MULTIPLE CHOICE QUESTIONS (Each question carries one mark)

SUBJECT: INTERNET TECHNOLOGY

SUB.CODE: 17ITU404A CLASS : 17ITU404A

UNIT-IV

QUESTIONS OPTION1 OPTION2 OPTION3 OPTION4 ANSWER

JSP implicits objects are created during the _____________ of JSP to the servlet.

Application

phase

Translation

phase

Modulation

phase

object

phase

Translation

phase

JSP expansion_______________

Java Server

Page

Java

Scripting

Phase

Java Server

Phase

Java

Scripting

Phase

Java Server

Page

There are ___________ types of implicit objects available in the container. 7 8 9 10 9

Which is not a implicit object? out request accept config accept

The ____________ object is an instance of java.servlet.http.HttpServletRequest . out request response config request

__________ object is used to get,set and remove attributes to session scope and also used

to get session information. response config out session session

_________ is the object of javax.servlet.jsp.jspwriter class. out request response config out

________ is an instance of class which implements HttpServletResponse interface. out application request response response

_________ is used to get,set and remove the attributes from a particular scope.

Pagecontex

t Page Exception Session Pagecontext

______ implicit variable holds the currently executed servlet object for the corresponding

jsp.

Pagecontex

t Page Exception Session Page

_________ is the implicit object of the throwable class.

Pagecontex

t Page Exception Session Exception

bean is a class with a __________ that doesnt take an argument. constructor object class javabean constructor

The accessor method for reading a property value is known as ______

getter

method

accessor

method

accessor

method

constructor

method

getter

method

The accessor method for writing a property value is known as __________

getter

method

accessor

method

accessor

method

constructor

method

getter

method

The implicit object ___________ is used to display diffrent messages. request response accept reject request

The requset object's __________ method is used to get value of a specific request header.

getHeader(

)

getFunction

()

getConstur

ctor()

getPointer(

) getHeader()

Another common use of ____________ is to loop over an array Servlets Scriptlets Server none Scriptlets

An expression starts with _____ and ends with %>. % <% <%= < <%=

An example for a expression

<userInfo.g

etUserNam

e()>

<%userInfo

.getUserNa

me()%>

<=userInfo.

getUserNa

me()=>

<=userInfo.

getUserNa

me()=>

<%userInfo.

getUserNam

e()%>

To organize all diffrent classes,Java provides the notation of a _______ Package Packets Groups none Package

A ___________ is a group of related classes. Package Packets Groups none Package

Java to look for classes with _______ names in the named package. Short Long minimum maximum Short

Displaying Request Info is also known as _______ disreq.jsp reqdis.jsp inforeq.jsp reqinfo.jsp reqinfo.jsp

The attributes are set to literal _________ values. string array constant char string

The value must be calculated when the JSP page is ____ compilied requested responsed none requested

We can use a JSP expression as an __________ value. object class constructor attribute attribute

When the JSP expression is used as an attribute then it will be called as _

request

time

attribute

value

compile

time

attribute

value

response

time

attribute

value

none of

these

request time

attribute

value

The request time attribute is evaluated when the page is ________ . compiled requested responsed none requested

JSP scripting elements are scriptlets, ___________ and declaration expressions attributes methods none expressions

_____ element id used to declare java variables and methods in a JSP page. scriptlets expressions declaration done declaration

Java variables are can be declared either within a method or ______ of all methods.

inside the

body

outside the

body

between

the classes

outside the

method

outside the

body

 A variable declared outside the body of all methos is called an _____.

local

variable

private

variable

public

variable

instance

variable

instance

variable

A variable declared within the body of a method is called _______

local

variable

private

variable

public

variable

instance

variable

public

variable

A local variable can be accessed only from the method where it is ___ declared initialized compiled none declared

Each _______ executes the main method in the JSP object. object class variable thread thread

When more than one thread is execute in the same code then we have to make sure the

code is __. execute thread safe correct none thread safe

______ and thread safe code stratergies are best left to programmers

Multithread

ing

 Multi

processing

Multi

tasking none

Multithreadi

ng

If one thread changes the value of the _______ the value is changed for all threads.

local

variable

 private

variable

public

variable

instance

variable

instance

variable

If the value of the __________ is changed ,it will not affect the other threads.

local

variable

 private

variable

public

variable

instance

variable

local

variable

Servlet has ______ methods. 1 2 3 4 2

Servlet methods are init() and _________ destroy() execute() run() none destroy()

When init() is used it will allow the servlet to _______ instance variables. initialize declare destroy none initialize

When destroy() is used it will allow the servlet to _______ when its shut down. initialize declare destroy clean clean

Finding and correcting a type of problem is called _________. detecting correcting debugging none debugging

Any application consists of more than one page often need access to the same information

and_____ side resourses.

client server user admin server

In an application in which the _______ is asked to provide information in multiple steps client server user admin user

Using diffrent JSP pages as ____ and view means that more than one page is used to

process a request. Constructor Controller Connector none Controller

Passing control and _______ from one page to another is supports in JSP pages. data object class none data

The buisness logic piece is _______ thrice trivial both a&b none trivial

JSP provides diffrent __________ for sharing data objects between pages,requests&

users. string char object scope scope

Which is not a scope?

pageconten

t request session application pagecontent

 ___________ is a stateless, request-response protocol. HTTP SNMP HTML none HTTP

The server send a piece of information to the browser that the browser includes in all

subsequent requests, this piece of information called __________.

page ID

application

ID session ID request ID session ID

To encode it in the URLs created by the JSP pages, called ________.

URL

writing

URL

rewriting

URL

scanning

URL

reading

URL

scanning

A CounterBean in the session scope is used to ______ a counter for each page. increment decrement mulitplies divides increment

An ________ site besides showing you how the session & application scopes can be used

effectively.

account

managing

image

processing

online

shopping both a & b

image

processing

The application consist of _______ pages.The main page lists all available products. 1 2 3 4 3

 A _______ is added to the shopping cart by a req processing page. items modules product none product

An example of a way to end the session explicity in memory requirements, ___________.

login

function

logout

function both a&b none

logout

function

All objects saved in the application and session scopes takeup _____ in the server

process. memory space data both a&b memory

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A UNIT: V(JAVA BEAN) BATCH-2017-2020

 UNIT-V

 SYLLABUS

Java beans: Java Beans Fundamentals, JAR Files, Introspection, Developing a simple Bean,
Connecting to DB.

JavaBeans

JavaBeans is an object-oriented programming interface from Sun Microsystems that lets you

build re-useable applications or program building blocks called components that can be deployed

in a network on any major operating system platform. Like Java applets, JavaBeans components

(or "Beans") can be used to give World Wide Web pages (or other applications) interactive

capabilities such as computing interest rates or varying page content based on user or browser

characteristics.

A Java Bean is a java class that should follow following conventions:

o It should have a no-arg constructor.

o It should be Serializable.

o It should provide methods to set and get the values of the properties, known as getter and
setter methods.

Why use Java Bean?

According to Java white paper, it is a reusable software component. A bean encapsulates many

objects into one object, so we can access this object from multiple places. Moreover, it provides

the easy maintenance.

Simple example of java bean class

//Employee.java

package mypack;
public class Employee implements

java.io.Serializable{ private int id;
private String name;

public Employee(){}
public void setId(int id){this.id=id;}

public int getId(){return id;}
public void setName(String name){this.name=name;}

public String getName(){return name;} }

How to access the java bean class?

Prepared by P.A.Monisha, Asst Prof, Department of CS, CA & IT, KAHE Page 1/15

http://searchsoa.techtarget.com/definition/object-oriented-programming
http://whatis.techtarget.com/definition/component
http://searchsoa.techtarget.com/definition/Java
http://searchsoa.techtarget.com/definition/Java
http://searchsoa.techtarget.com/definition/Bean
http://searchwindevelopment.techtarget.com/definition/browser
http://searchwindevelopment.techtarget.com/definition/browser

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B

COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A

UNIT: V(JAVA BEAN) BATCH-2017-2020

To access the java bean class, we should use getter and setter methods.

package mypack;
public class Test{

public static void main(String args[]){
Employee e=new Employee();//object is created

e.setName("Arjun");//setting value to the object
System.out.println(e.getName());
}}

Java Beans Fundamentals

Java Enterprise Edition (Java EE) has a powerful facility dedicated to expressing the business

logic of an application and for accessing a database using a JavaBeans-like concept. That facility

is Enterprise JavaBeans, known as EJBs for short.

In this, we'll begin exploring the world of EJBs, which is a very important capability of the Java
EE platform. EJBs provide infrastructure for developing and deploying mission-critical,

enterprise applications. We'll first look at some EJB fundamentals, and then focus on one type of

EJB: the session bean.

In this article, you will learn the following:

 The benefits of using EJBs

 The three kinds of EJBs: session, entity, and message-driven beans
 The makeup of session beans

 How to develop session beans
 Differences between stateful and stateless session beans

Understanding EJBs

Application architectures often consist of several tiers that each has its own responsibilities. One

such architecture that consists of three tiers is illustrated in the Unified Modeling Language

(UML) diagram shown in Figure 1

Figure 1. The classic model of a multitiered, or layered, architecture
The two elements on the left side of the diagram in Figure 1 are called components in the UML
notation. Components represent software modules. The diagram describes what is called a

multitiered, or layered, architecture. Multitiered architectures have many advantages, not the

least of which is the ability to change any one of the layers without affecting all of the other

layers. This is in contrast to a single-tier architecture, within which all aspects of the program

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 2/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B

COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A

UNIT: V(JAVA BEAN) BATCH-2017-2020

design coexist in a single element. Changes or actions that affect one portion of the single-tier
element also potentially affect the other members of that element.

Consider the three-layer architecture shown in Figure 1, consisting of user interface, application

logic, and database layers. If the database layer is changed, only the application logic layer is

affected. The application logic layer shields the user interface layer from changes to the database

layer. This facilitates ongoing maintenance of the application and also increases the application's

ability to incorporate new technologies in its layers.These layers provide an excellent model of

how EJBs fit into your overall program design. EJBs provide an application logic layer and a

JavaBeans-like abstraction of the database layer. The application logic layer is also known as the

middle tier.

Why use EJBs?
Not too long ago, when system developers wanted to create an enterprise application, they would

often start by "rolling their own" (or purchasing a proprietary) application server to support the

functionality of the application logic layer. Some of the features of an application server include

the following:

 Client communication: The client, which is often a user interface, must be able to

call the methods of objects on the application server via agreed-upon protocols.
 Session state management: You'll recall our discussions on this topic in the context

of JSP (JavaServer Pages) and servlet development back in Chapter 6.
 Transaction management: Some operations, for example, when updating data, must

occur as a unit of work. If one update fails, they all should fail.
 Database connection management: An application server must connect to a

database, often using pools of database connections for optimizing resources.
 User authentication and role-based authorization: Users of an application must

often log in for security purposes. The functionality of an application to which a user

is allowed access is often based on the role associated with a user ID.
 Asynchronous messaging: Applications often need to communicate with other

systems in an asynchronous manner; that is, without waiting for the other system to

respond. This requires an underlying messaging system that provides guaranteed

delivery of these asynchronous messages.
 Application server administration: Application servers must be administered. For

example, they need to be monitored and tuned.

The EJB specification
The EJB specification defines a common architecture, which has prompted several vendors to

build application servers that comply with this specification. Now developers can get off-the-

shelf application servers that comply with a common standard, benefiting from the competition

(in areas such as price, features, and performance) among those vendors.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 3/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B

COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A

UNIT: V(JAVA BEAN) BATCH-2017-2020

The three kinds of EJBs
There are actually three kinds of EJBs: session beans, entity beans, and message-driven beans.

Here, we will present a brief introduction to each type of bean. The balance of this article will

then focus on session beans.

Session beans

One way to think about the application logic layer (middle tier) in the sample architecture shown

in Figure 1 is as a set of objects that, together, implement the business logic of an application.

Session beans are the construct in EJBs designed for this purpose. As shown in Figure 2, there

may be multiple session beans in an application. Each handles a subset of the application's

business logic.

There are two types of session beans, which are defined by their use in a client interaction:

 Stateless: These beans do not declare any instance (class-level) variables, so that the methods

contained within can act only on any local parameters. There is no way to maintain state across
method calls.

 Stateful: These beans can hold client state across method invocations. This is possible with the

use of instance variables declared in the class definition. The client will then set the values for

these variables and use these values in other method calls.

Entity beans

Before object orientation became popular, programs were usually written in procedural

languages and often employed relational databases to hold the data. Because of the strengths and

maturity of relational database technology, it is now often advantageous to develop object-

oriented applications that use relational databases. The problem with this approach is that there is

an inherent difference between object-oriented and relational database technologies, making it

less than natural for them to coexist in one application. The use of entity beans is one way to get

the best of both of these worlds, for the following reasons:

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 4/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B

COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A

UNIT: V(JAVA BEAN) BATCH-2017-2020

 Entity beans are objects, and they can be designed using object-oriented principles and
used in applications as objects.

 The data in these entity bean objects are persisted in some data store, usually relational

databases. All of the benefits of relational technologies—including maturity of
products, speed, reliability, ability to recover, and ease of querying—can be leveraged.

Message-driven beans

 When an EJB-based application needs to receive asynchronous messages from other

systems, it can leverage the power and convenience of message-driven beans.

Asynchronous messages between systems can be analogous to the events that are fired

from a UI component to an event handler in the same JVM.

JAR file:

A JAR (Java ARchive) is a package file format typically used to aggregate many Java class files
and associated metadata and resources (text, images, etc.) into one file for distribution.

JAR files are archive files that include a Java-specific manifest file. They are built on the ZIP

format and typically have a .jar file extension.

JAR file allows you to efficiently deploy a set of classes and their associated resources. JAR file
makes it much easier to deliver, install, and download. It is compressed.

Java Archive File • The files of a JavaBean application are compressed and grouped as JAR files

to reduce the size and the download time of the files. • The syntax to create a JAR file from the
command prompt is: • jar • The file_names

JAR files are packaged with the ZIP file format, so you can use them for tasks such as lossless
data compression, archiving, decompression, and archive unpacking. These tasks are among the

most common uses of JAR files, and you can realize many JAR file benefits using only these

basic features.

Even if you want to take advantage of advanced functionality provided by the JAR file format
such as electronic signing, you'll first need to become familiar with the fundamental operations.

To perform basic tasks with JAR files, you use the Java Archive Tool provided as part of the
Java Development Kit (JDK). Because the Java Archive tool is invoked by using the jar

command, this tutorial refers to it as 'the Jar tool'.

As a synopsis and preview of some of the topics to be covered in this section, the following table
summarizes common JAR file operations:

 Common JAR file operations

 Operation Command

 Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 5/15

https://en.wikipedia.org/wiki/Package_format
https://en.wikipedia.org/wiki/Package_format
https://en.wikipedia.org/wiki/Java_class_file
https://en.wikipedia.org/wiki/Java_class_file
https://en.wikipedia.org/wiki/Java_class_file
https://en.wikipedia.org/wiki/Metadata
https://en.wikipedia.org/wiki/Archive_file
https://en.wikipedia.org/wiki/Manifest_file
https://en.wikipedia.org/wiki/ZIP_(file_format)
https://en.wikipedia.org/wiki/ZIP_(file_format)
https://en.wikipedia.org/wiki/File_extension

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A UNIT: V(JAVA BEAN) BATCH-2017-2020

To create a JAR file

To view the contents of a JAR file

To extract the contents of a JAR file

To extract specific files from a JAR file

To run an application packaged as a JAR file (requires the
Main-class manifest header)

To invoke an applet packaged as a JAR file

 jar cf jar-file input-file(s)

 jar tf jar-file

 jar xf jar-file

 jar xf jar-file archived-file(s)

java -jar app.jar

<applet
code=AppletClassName.class

archive="JarFileName.jar"

width=width height=height>

</applet>

Let us see how to create a .jar file and related commands which help us to work with .jar files

1. Create a JAR file: To create a .jar file , we can use jar cf command in the following

way: jar cf jarfilename inputfiles

Here, cf represents create the file. For example , assuming our package pack is available in

C:\directory , to convert it into a jar file into the pack.jar , we can give the command as:

C:\> jar cf pack.jar pack Now

, pack.jar file is created

2. Viewing a JAR file: To view the contents of .jar files, we can use the command

as: jar tf jarfilename

Here , tf represents table view of file contents. For example, to view the contents of our

pack.jar file , we can give the command:

C:/> jar tf pack.jar

Now , the contents of pack.jar are displayed as:

META-INF/

META-

INF/MANIFEST.MF pack/

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 6/15

https://docs.oracle.com/javase/tutorial/deployment/jar/appman.html

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B

COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A

UNIT: V(JAVA BEAN) BATCH-2017-2020

pack/class1.class

pack/class2.class

..

..

where class1 , class2 etc are the classes in the package pack. The first two entries

represent that there is a manifest file created and added to pack.jar. The third entry

represents the sub-directory with the name pack and the last two represent the files name

in the directory pack.

When we create .jar files , it automatically receives the default manifest file. There can be

only one manifest file in an archive , and it always has the pathname.

META-INF/MANIFEST.MF

This manifest file is useful to specify the information about other files which are
packaged.

3. Extracting a JAR file: To extract the files from a .jar file , we can

use: jar xf jarfilename

Here, xf represents extract files from the jar files. For example , to extract the contents of
our pack.jar file, we can write:

C:\> jar xf pack.jar

This will create the following directories in C:\

META-INF

pack // in this directory , we can see class1.class and class2.class.

4. Updating a JAR File The Jar tool provides a ‘u’ option which you can use to update the

contents of an existing JAR file by modifying its manifest or by adding files. The basic

command for adding files has this format:

jar uf jar-file input-file(s)

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 7/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B

COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A

UNIT: V(JAVA BEAN) BATCH-2017-2020

here uf represent update jar file. For example , to update the contents of our pack.jar file,
we can write:

C:\>jar uf pack.jar

5. Running a JAR file: In order to run an application packaged as a JAR file (requires the

Main-class manifest header) , following command can be used:

C:\>java -jar pack.jar

The various options that you can specify while creating a JAR file are:

c: Indicates the new JAR file is created.

f: Indicates that the first file in the file_names list is the name of the JAR file.

m: Indicates that the second file in the file_names list is the name of the manifest file.

t: Indicates that all the files and resources in the JAR file are to be displayed in a tabular format.

v: Indicates that the JAR file should generate a verbose output.

x: Indicates that the files and resources of a JAR file are to be extracted.

o: Indicates that the JAR file should not be compressed.

Introspection:

1. Introspection can be defined as the technique of obtaining information about bean properties,

events and methods.

2. Basically introspection means analysis of bean capabilities.

3. Introspection is the automatic process by which a builder tool finds out which properties,

methods, and events a bean supports.

4. Introspection describes how methods, properties, and events are discovered in the beans that
you write.

5. This process controls the publishing and discovery of bean operations and properties Without

introspection, the JavaBeans technology could not operate

6. Basically introspection means analysis of bean capabilities There are two ways in which the
developer of a Bean can indicate which of its properties, events, and methods should be exposed

by an builder tool.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 8/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B

COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A

UNIT: V(JAVA BEAN) BATCH-2017-2020

The first method, simple naming conventions are used. These allow the introspection
mechanisms to infer information about a Bean.

In the second way, an additional class is provided that explicitly supplies this

information. Introspection

Introspection is the automatic process of analyzing a bean's design patterns to reveal the bean's

properties, events, and methods. This process controls the publishing and discovery of bean

operations and properties. This lesson explains the purpose of introspection, introduces the

Introspection API, and gives an example of introspection code.

Purpose of Introspection

A growing number of Java object repository sites exist on the Internet in answer to the demand

for centralized deployment of applets, classes, and source code in general. Any developer who

has spent time hunting through these sites for licensable Java code to incorporate into a program

has undoubtedly struggled with issues of how to quickly and cleanly integrate code from one

particular source into an application.

The way in which introspection is implemented provides great advantages, including:

1. Portability - Everything is done in the Java platform, so you can write

components once, reuse them everywhere. There are no extra specification files

that need to be maintained independently from your component code. There are

no platform-specific issues to contend with. Your component is not tied to one
component model or one proprietary platform. You get all the advantages of the

evolving Java APIs, while maintaining the portability of your components.
2. Reuse - By following the JavaBeans design conventions, implementing the

appropriate interfaces, and extending the appropriate classes, you provide your

component with reuse potential that possibly exceeds your expectations.

Introspection API

The JavaBeans API architecture supplies a set of classes and interfaces to provide introspection.

The BeanInfo(in the API reference documentation) interface of the java.beans package defines a

set of methods that allow bean implementors to provide explicit information about their beans.

By specifying BeanInfo for a bean component, a developer can hide methods, specify an icon for

the toolbox, provide descriptive names for properties, define which properties are bound
properties, and much more.

The getBeanInfo(beanName)(in the API reference documentation) of the Introspector(in the API

reference documentation) class can be used by builder tools and other automated environments
to provide detailed information about a bean. The getBeanInfo method relies on the naming

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 9/15

http://java.sun.com/javase/6/docs/api/java/beans/BeanInfo.html
http://java.sun.com/javase/6/docs/api/java/beans/Introspector.html#getBeanInfo(java.lang.Class)
http://java.sun.com/javase/6/docs/api/java/beans/Introspector.html

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B

COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A

UNIT: V(JAVA BEAN) BATCH-2017-2020

conventions for the bean's properties, events, and methods. A call to getBeanInfo results in the
introspection process analyzing the bean’s classes and superclasses.

The Introspector class provides descriptor classes with information about properties, events, and

methods of a bean. Methods of this class locate any descriptor information that has been

explicitly supplied by the developer through BeanInfo classes. Then the Introspector class

applies the naming conventions to determine what properties the bean has, the events to which it

can listen, and those which it can send.

The following figure represents a hierarchy of the FeatureDescriptor classes:

Each class represented in this group describes a particular attribute of the bean. For example,
the isBound method of the PropertyDescriptorclass indicates whether a

PropertyChangeEventevent is fired when the value of this property changes.

Developing a Simple Bean

This section presents an example that shows how to develop a simple Bean and connect it to
other components via BDK.

Following steps to be adopted to create a new Bean:

 Create the Java source file.

 Compile the source file.

 Create a manifest file.

 Generate a JAR file.

 Start the BDK.

 Test.

This example creates a simple bean button

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 10/15

http://java.sun.com/javase/6/docs/api/java/beans/PropertyDescriptor.html

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B

COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A

UNIT: V(JAVA BEAN) BATCH-2017-2020

Diagram 25.9 Type run in the command prompt

Working of the Code:

To create a bean, type the above code and save it as SimpleBean.java. Comiple the above code
using the javac.exe compiler as under:

javac SimpleBean.java

Create a manifest file with a .mf extension as under. The Manifest file is a text file which
contains the name of the class file.

SimpleBean.mf

Name: SimpleBean.class

Java-Bean: True

Creating a jar (Java Archive) file

As you are aware that javac.exe creates a separate .class file for every class defined in the

program. Hence, if a program has five classes, the compiler will create five class file each with
their respective name and a .class extension

This proved to be drawback as the applet loader makes separate connections for each file while
loading the applet. To overcome this problem, the engineers at Java Soft, the Sun Microsystems

subsidiary for Java introduced the idea fo compressing all the files together which can be
unzipped at the applet's client machine when the applet executes.

Jar is a zip or compression utility tailored to Java's needs. Pass the names of all the files in the

project to the JAR utility, which compresses all of them together and creates a compressed file

with a .jarextension.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 11/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B

COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A

UNIT: V(JAVA BEAN) BATCH-2017-2020

Usage of JAR is as under

jar [-cvfmOM][jar-file name][manifest-file name] list of .class file
Options:

 Options: Description

-c Creates a new archive.

-t List table of contents for archive.

-x Extracts named (or all) files from archive.

-f Specify archive file name.

-m Include manifest information from specified manifest file.

-O Store only: use no Zip compression.

-M Do not create a manifest file for the entries.

 Creating a JAR file for the example code created eariler on.

This will create a jar file:SimpleBean.jar. Copy this file in the jars directory under the BDK

folder and start the Bean Box. The ToolBox of the Bean Box now displays the bean created
underline.

Connecting to DB

Creating a Java Bean that issues an SQL statement
You can use the Create a Java™ Bean that executes an SQL statement wizard to create a Java
Bean that issues a specific SQL statement.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 12/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B

COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A

UNIT: V(JAVA BEAN) BATCH-2017-2020

Before you begin
Prerequisites: To use this wizard, you must create and save an SQL statement in a data

development project.
About this task

To create a Java Bean that issues an SQL statement:
Procedure

1. Switch to the Data perspective.
2. In the SQL Scripts folder for a data development project in the Data Project

Explorer, right-click the SQL statement that you want to use, and select Generate

Java Bean from the pop-up menu.
3. On the Java Class Specification page of the wizard, complete the following steps.
a. In the Source Folder field, type the name of the folder where you want to create

the Java Bean or click Browse to select the folder.
b. In the Package field, type the name of Java package in which you want to create

your Java Bean or click Browse to select the package. Leave this field empty to
create the new class in the default package.

c. In the Name field, type a name for the new class. To conform to Java
conventions, the class name must start with a capital letter.

d. If the SQL statement returns a result set, specify whether you want to include a
parameter in the execute() method to limit the size of the result set. By default,
the execute() method retrieves all rows in the result set.

4. On the Specify Runtime Database Connection Information page, specify whether

to use a data source connection or a driver manager connection. A data source is

defined in an application server that implements Java Database Connectivity

(JDBC), and is generally the preferred way for Web applications to connect to a

database, because it provides pooled connections. When the application

initializes, the server requests a pool of database connections. Each time a Web

application requires a database connection, the server provides one from the pool.

When the Web application is done with the connection, it releases the connection

back to the pool. Because connecting to the database is one of the slowest

operations an application can perform, this approach is usually the most efficient.

In contrast, for a driver manager connection, each time a Web application requires
a database connection, it requests a connection from the database server.

o Use DataSource Connection: Enter the Java Naming and Directory Interface
(JNDI) name of the data source, as defined in the server configuration.

o Use DriverManager Connection: Type the fully-qualified class name of the
driver in the Driver Name field, and the associated JNDI address in

the URL field. For example, for DB2®

enter COM.ibm.db2.jdbc.app.DB2Driver for the driver name

and jdbc:db2:SAMPLE for the URL.
Specify how the Java Bean will provide user authentication. To run the SQL

statement, you must supply a user ID and password that are valid for the database.
You can specify that the Java Bean will provide a valid user ID and password

within its execute() method. This means that the Java Bean will always connect

using the same user ID and password. If you do not include the user ID and

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 13/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B

COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A

UNIT: V(JAVA BEAN) BATCH-2017-2020

password inside the execute() method, the application must provide the user ID
and password as input parameters to the execute() method.

o To include user authentication within the method, click Inside the execute()
method. Type a user ID and password in the appropriate fields to access the
database. The initial values are the ones originally used to load the existing
database model. The password will be masked when you type it in the field.

o To require the user ID and password to be provided as parameters to the

execute()method, click By the execute() method's caller
On the final page of the wizard, review the specifications for the new Java Bean,
then click Finish to complete the wizard.

Results
The wizard creates the Java Bean, along with all the necessary deployment descriptors to
build, run, and deploy it with your application.

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 14/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BSC IT A&B

COURSE NAME: INTERNET TECHNOLOGIES

COURSE CODE: 17ITU404A

UNIT: V(JAVA BEAN) BATCH-2017-2020

Possible Question:

Part B (2Marks)

1) What is mean by java bean?
2) Define Introspection

3) What is mean by JAR FILES?
4) Write short notes developing simple java bean

5) What is mean by Datatype
6) How to develop simple bean

Part C (6 Marks)

1) What is mean by introspection? how it works in javabean?

2) What is javabean? write the steps to connect DB to simple bean?
3) What is javabean, how to connect javabean with database?

4) What is javabean, how to create and develop simple bean with example?
5) Explain in detail about Connecting Javabean to DB

6) How to create simple bean,with example?
7) Explain in detail about Introspection

8) How to develop simple bean with example?
9) Explain in Detail about JAR files

10) What is mean by javabean?,Explain In Detail about fundamental concepts of javabeans?

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 15/15

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 PART - A (ONLINE EXAMINATION)

 MULTIPLE CHOICE QUESTIONS (Each question carries one mark)

SUBJECT: INTERNET TECHNOLOGY

 SUB.CODE : 17ITU404A CLASS:II B.Sc IT

UNIT-V

QUESTIONS OPTION1 OPTION2 OPTION3 OPTION4 Answer

Java bean is an ……………………………

Structure

oriented

Object

oriented Both a&b none

Object

oriented

Program building blocks are called as…………………

Component

s Elements

Applicatio

ns none

Compone

nts

Java class should follow ……………… following convention Constructor

arg

constructor

no-arg

constructo

r Both a&b

no-arg

constructo

r

EJB stands for ……………………………………

Edision

java bean

Element

java bean

Enterprise

java bean none

Enterprise

java bean

EJBs provide infrastructure for developing and deploying ………………..

EJB

fundamenta

ls

 EJB

functions

EJB

elements

Mission

critical

Mission

critical

UML stands for ………

Unified

Modified

Language

User

Modified

Language

Unified

Markup

Language

 User

Markup

Language

Unified

Modified

Language

The Application Logic layer is also known as ………………. Upper tier Middle tier

 Lower

tier

 Bottom

tier

Middle

tier

Application often need to communicate with other systems is an ……………….

Manner.

Synchronou

s

Asynchron

ous

Authentica

tion none

Asynchro

nous

There are ….. kinds of EJB. 1 2 3 4 3

Session beans are ………………….. Stateful Stateless Both a&b none Both a&b

Entity beans are …………… Elements objects Attributes Class objects

JAR stands for …………….

Java

ARchitecht

ure

Java

ARchive Java Arc none

Java

ARchive

JAR files are ………………..

Archive

files Auto files

Compress

files

 De-

compress

files

Archive

files

JDK stands for ………………

Java

Developme

nt Kit

Java

Details Kit

Java

Design Kit none

Java

Developm

ent Kit

To create a JAR file ……….

jar cf jar-

file input-

file(s)

jar tf jar-

file

 jar xf jar-

file

jar xf jar-

file

archived-

file(s)

jar cf jar-

file input-

file(s)

To extract the contents of a JAR file …………………..

jar cf jar-

file input-

file(s)

 jar tf jar-

file

jar xf jar-

file

jar xf jar-

file

archived-

file(s)

jar xf jar-

file

To view the content of a JAR file ………………………….

jar cf jar-

file input-

file(s)

jar tf jar-

file

jar xf jar-

file

jar xf jar-

file

archived-

file(s)

jar tf jar-

file

To extract specific files from a JAR file …………………

jar cf jar-

file input-

file(s)

jar tf jar-

file

jar xf jar-

file

jar xf jar-

file

archived-

file(s)

jar xf jar-

file

archived-

file(s)

To run an application packaged as a JAR file …………

java –jar

app.jar

 jar tf jar-

file

jar xf jar-

file

jar xf jar-

file

archived-

file(s)

java –jar

app.jar

To update a JAR file……………………….

java –jar

app.jar

 jar tf jar-

file

jar uf jar-

file input

file(s)

jar xf jar-

file

archived-

file(s)

jar uf jar-

file input

file(s)

…………….……… is the automatic process of analyzing a bean’s design patterns

to reveal the bean’s properties ,events,and methods.

Introspectio

n

Extraspecti

on

Abstractio

n none

Introspecti

on

Advantages of introspection is ………………………….. Portability Reuse

Inheritanc

e Both a&b Both a&b

 Introspection means analysis Of bean …………………… Capabilities Reusability

inheritanc

e

comparabi

lity

Capabiliti

es

…………………………… is the automatic process

Introspectio

n

Extraspecti

on

Abstractio

n none

Introspecti

on

which is a java package………………………. Beaninfo infojava javaifo none Beaninfo

API expansion is ……………………

advanced

package

interface

Application

package

interface

applicatio

n

programmi

ng

interface

Advanced

Programm

ing

interchang

e

Applicatio

n package

interface

IsBound Method comes under ……………………… class

Bean

descriptor

method

descriptor

property

descriptor none

property

descriptor

BDK means ……………….

Button

developme

nt kit

bean

developme

nt kit

bean

describing

kit none

bean

developm

ent kit

How many steps to be adapted to create a new bean……………… 7 3 10 6 6

Manifest file denoted as……….. .mf .manif .manifest .mfexe .mf

JVM stands for……

java virtual

machine

java virtual

mechanism

java

versibility

machine none

java

virtual

machine

creates new archive………… –c -a -t -f –c

List table of contents for archive………. –c -a -t -f -t

Extracts named files from archive………… –c -a -x -f -x

Specify archive file name………… –c -a -x -f -f

Include manifest information from specified manifest file…………. –m -a -x -f –m

Store only : use no ZIP compression………… –c -a -x -O -O

 Do not create a manifest file for the entries… –c -M -x -f -M

By default the execute() method retrieves…………

all rows in

result set

all columns

in result set

limited

rows in

result set

limited

rows in

result set

limited

rows in

result set

JDBC is used to……………

connectivit

y between

web

application

to DB

connectivit

y between

program to

DB

connectivi

ty between

a

pplication

to DB none

connectivi

ty

between

program

to DB

 JNDI stands………

Java

Naming &

Directory

Interface

Java

Naming &

Dictionary

Interface

Java

Namespac

e &

Directory

Interface

 Java

Naming &

Domain

Interface

 Java

Naming &

Domain

Interface

For user authentication ……………… method is use

inside the

execute()

 outside the

execute()

bottom the

execute()

down the

execute()

inside the

execute()

On the final page of the wizard, review the specification for the new java bean, then

click ----- to complete the wizard.

Complete finish final

conculsio

n final

The password will be _________ when you type it in the field . covered masked changed duplicate duplicate

The data source is defined in an ____

application

server

web

application

SQL

server

database

server

SQL

server

___ is a zip or compression utility tailored to java’s needs. jar

jar

extension pass applet applet

There are ________ advantages in introspection. 2 3 4 6 4

The introspector class provides _____ class. developer information beaninfo descriptor descriptor

A call to________ results in the introspection process analyzing the bean classes and

super class setbeaninfo getbeaninfo

beansetinf

o

beangetinf

o

getbeaninf

o

Basically introspection means analysis of _____ capabilities beans applets classes API beans

Introspection describes how methods , properties , and ______ are discovered in

the beans that you write. event tool properties methods event

Introspection describes how methods, _________ , and event are discovered

beans that you write. event tool properties methods properties

Introspection describes how ________ , properties , and event are discovered

beans that you write. event tool properties methods methods

Indicates the new jar file is created c f t x c

Indicates that the first file in the file _ name list is the name of the jar file. c f t x f

Indicates that the second file in the file _ name list is the name of the manifest file c m t x m

 Indicates that all the files and resources in the jar file are to be displayed in a tabular

form c t x m t

Indicates that the jar file should generate a verbose output. c t v m v

Indicates that the files and resources of a jar are to be extracted. c x o t x

Indicates that the jar file should not be compressed. c v

SQL

server t o

	1Syllabus.pdf (p.1-2)
	2lesson plan.pdf (p.3-5)
	3UNIT I_Theory.pdf (p.6-41)
	4unit I_MCQ.pdf (p.42-45)
	5Unit_II.pdf (p.46-66)
	6unit II_MCQ.pdf (p.67-70)
	7UNIT III.pdf (p.71-91)
	8unit III_MCQ.pdf (p.92-94)
	9UNIT IV.pdf (p.95-122)
	10unit IV_MCQ.pdf (p.123-126)
	11UNIT V.pdf (p.127-141)
	12unit V_MCQ.pdf (p.142-146)

