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Scope: On successful completion of course the learners gain about the real number system,
sequences and series.

Objectives: To enable the students to learn and gain knowledge about suprema and infima
points, Root test, Ratio test, alternating series, series of functions.

UNIT I
Finite and infinite sets, examples of countable and uncountable sets. Real line, bounded sets,
suprema and infima, completeness property of R, Archimedean property of R, intervals.

UNIT 11

Real Sequence, Bounded sequence, Cauchy convergence criterion for sequences. Limit of a
sequence. Limit Theorems. Cauchy’ stheorem on limits, order preservation and squeeze theorem,
monotone sequences and their convergence (monotone convergence theorem without proof).

UNIT 111

Infinite series. Cauchy convergence criterion for series, positive term series, geometric
series,comparison test, convergence of p-series, Root test, Ratio test, alternating series,
Leibnitz’s test(Tests of Convergence without proof). Definition and examples of absolute and
conditional convergence.

UNIT IV

Monotone Sequences, Monotone Convergence Theorem. Subsequences, Divergence Criteria,
Monotone Subsequence Theorem (statement only), Bolzano Weierstrass Theorem for Sequences.
Cauchy sequence, Cauchy’s Convergence Criterion. Concept of cluster points and statement of
Bolzano -Weierstrass theorem.

UNIT V

Sequence of functions, Series of functions, Pointwise and uniform convergence. Mn-test, M-
test,Statements of the results about uniform convergence and integrability and differentiability of
functions, Power series and radius of convergence.
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LESSON PLAN
DEPARTMENT OF MATHEMATICS

STAFF NAME: Y.SANGEETHA

SUBJECT NAME: REAL ANALYSIS SUB.CODE:17MMU203

SEMESTER: Il CLASS: | B.SC MATHEMATICS
S.No [Lecture Topics to be covered Support
Duration Materials/Page Nos
Period
Unit -1
1 1 Introduction to set R1: Ch:1, Pg.No:1-5
2 1 Set operations R1: Ch:1, Pg.No:5-10
3 1 Finite sets T1: Ch: 1, Pg.No0:14-16
4 1 Tutorial-I
5 1 Infinite sets T1: Ch :1, Pg.N0:16-17
6 1 Examples of finite and infinite set T1: Ch :1, Pg.No: 17
7 1 Countable sets T1:Ch :1,Pg.No:18-19
8 1 Tutorial-I11
9 1 Uncountable sets T1:Ch: 1,Pg.No:19-20
10 1 Examples of countable and uncountable| R1: Ch:1,Pg.N0:18-19
sets.
11 1 Real line R1: Ch: 2, Pg.No0:33-34
12 1 Tutorial-111
13 1 Bounded sets R1: Ch :2, Pg.No:34
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14 1 Theorems on supremum of a set R1: Ch: 2, Pg.N0:34-35
15 1 Theorems on infimum of a set R1: Ch: 2,Pg.No: 34-35
16 1 Tutorial-1V
17 1 Completeness property of R R1: Ch :2,Pg.No: 37
18 1 Archimedean property of R R1: Ch :2, Pg.No:40
19 1 Intervals R1: Ch :2, Pg.No:44-47
20 1 Tutorial-V
21 1 Continuation of intervals R1: Ch: 2, Pg.No0:50
22 1 Concept of cluster points R1: Ch:2, Pg.No0:50-51
23 1 Tutorial-VI
24 1 Recapitulation and Disscussion of
possible questions
Total No of Hours Planned For Unit 1=24
Unit-11
1 1 Introduction to sequence R1: Ch :3,Pg.No: 52
2 1 Real Sequence R1: Ch: 3,Pg.NO: 53
3 1 Bounded sequence R1: Ch :3, Pg.No:54
4 1 Tutorial-I
5 1 Examples of real and bound Sequence R1: Ch :3, Pg.No:54
6 1 Cauchy convergence criteria for sequences | R1: Ch: 3, Pg.No:54-56
7 1 Limit theorems T1:Ch:3,Pg.N0:60-63
8 1 Tutorial-11
9 1 Cauchy’s theorem on limits R1: Ch :3, Pg.NO:56-59
10 1 Continuation of Cauchy’stheorem on R1: Ch: 3, Pg.No0:60-62
limits
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1 1 Order preservation R1: Ch: 3, Pg.No0:62-64
12 1 Tutorial-111
13 1 Squeeze theorem R1: Ch: 3, Pg.No0:64-67
14 1 Continuation of Squeeze theorem R1: Ch: 3, Pg.No:68
15 1 Monotone sequences R1: Ch :3, Pg.No0:68-69
16 1 Tutorial-1V
17 1 Convergence R1: Ch: 3, Pg.No:69
18 1 Convergence of monotone sequences R1: Ch :3, Pg.N0:69-70
19 1 Continuation on convergence of R1: Ch: 3,Pg.No: 70-72
monotone sequences
20 1 Tutorial -V
21 1 Monotone convergence theorem R1: Ch :3, Pg.No:72-73
22 1 Continuation on monotone convergence | R1: Ch: 3, Pg.No:73-75
theorem
23 1 Tutorial —VI
24 1 Recapitulation and Di_sscussion of possible
questions
Total No of Hours Planned For Unit Il =24
Unit-111
1 1 Introduction to Infinite series R1: Ch :3,Pg.No: 89
2 1 Cauchy convergence thoorem R1: Ch :3, Pg.N0:90
3 1 Cauchy convergence criterion for series| R1: Ch :3,Pg.No: 90
4 1 Tutorial |
5 1 Theorems on positive term series R1: Ch :3, Pg.No0:91
6 1 Theorems on geometric series R3: Ch: 10, Pg.N0:388
7 1 Comparison test R3: Ch :10,Pg.No: 394
8 1 Tutorial 11

Prepared by: Y. Sangeetha ,Department of Mathematics, KAHE

Page 3/7



Lesson Plan

2017-2020 batch

9 Convergence of p-series R1: Ch: 3,Pg.No: 93-94
10 Root test R3:Ch :10,Pg.NO:399-400
11 Continuation on Root test R3:Ch :10,Pg.N0:399-400
12 Tutorial 11
13 Ratio test R1: Ch :10,Pg.N0:401-402
14 Continuation of Ratio test R1: Ch :10,Pg.N0:401-402
15 Alternating series R1: Ch :3, Pg.N0:95-96
16 Tutorial IV
17 Leibnitz’s test R2: Ch :2, Pg.N0:105-109
18 Definition of absolute convergence | R3: Ch :10, Pg.No0:406
19 Examples of absolute convergence | R3: Ch :10,Pg.No: 406
20 Tutorial V
21 Definition of conditional convergence | R3: Ch: 10, Pg.No:407
22 Examples of conditional convergence | R3: Ch :10, Pg.No:407
23 Tutorial VI
24 Recapitulation & discussion of possible questions

Total No of Hours Planned For Unit 111=24

Unit-1Vv

1 Introduction to Sequences R3: Ch :4, Pg.N0:257-260
2 Theorems on bounded sequence T1: Ch: 3, Pg.N0:66-67
3 Examples of bounded sequence T1: Ch: 3, Pg.No:67
4 Tutorial |
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5 1 Convergent sequence R3: Ch: 3,Pg.No: 81-86
6 1 Examples of Convergent sequence R3: Ch: 3,Pg.No 84-86
7 1 Limit of a sequence R3: Ch :4, Pg.N0:294-297
8 1 Tutorial 11
9 1 Limit Theorems T1: Ch: 4, Pg.N0:125
10 1 Monotone Sequences T1: Ch: 4, Pg.N0:126
11 1 Monotone convergence Theorem T1: Ch: 3, Pg.No:78
12 1 Tutorial 111
13 1 Subsequences T1: Ch: 3,Pg.N0:79
14 1 Divergence Criteria T1: Ch: 3,Pg.No:79
15 1 Monotone subsequence Theorem T1: Ch :3,Pg.N0:79-80
16 1 Tutorial IV
17 1 Bolzano Weierstrass Theorem for T1: Ch: 3,Pg.N0:80
Sequences
18 1 Bolzano Weierstrass Theorem for R3: Ch :3,Pg.N0:80-81
Sequences
19 1 Cauchy sequence T1: Ch :3, Pg.No:81
20 1 Tutorial V
21 1 Cauchy’s Convergence Criterion T1: Ch :3, Pg.N0:81-82
22 1 Cauchy’s Convergence Criterion R3: Ch :3,Pg.No: 82-83
23 1 Tutorial VI
24 1 Recapitulation and Disscussion of possible
guestions
Total No of Hours Planned For Unit 1V =24
Unit-V
1 1 Introduction to Series of functions

R3: Ch :9, Pg.No0:266
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2 1 Pointwise convergence R3: Ch :9, Pg.N0:266
3 1 Tutorial-I
4 1 Uniform convergence R3: Ch: 9 Pg.NOZ 266-267
5 1 M-test R3: Ch :9, Pg.N0:267
6 1 Tutorial-11
! 1 M-test R3: Ch :9, Pg.N0:267
8 1 Results about uniform convergence R3: Ch: 9,Pg.No: 267-268
9 1 Tutorial-I11
10 1 Results about uniform convergence R3: Ch :9, Pg.N0:267-268
11 1 Subsequences R3: Ch: 9, Pg.N0:268
12 1 Continuation on subsequences R3: Ch :9, Pg.N0:268-269
13 1 Tutorial-1VvV
14 1 Integrability of functions R3: Ch: 9, Pg.N0:269-270
15 1 Differentiability of functions R3: Ch: 9,Pg.No: 270
16 1 Power series R3: Ch :9, Pg.N0:270-271
17 1 Tutorial-V
18 1 Radius of convergence R3: Ch: 9, Pg.N0:271-272
19 1 Radius of convergence R3: Ch :9, Pg.N0:272
20 1 Tutorial-VI
21 1 Recapitulation and Disscussion of possible
guestions

22 1 Discussion of previous ESE Question

papers
23 1 Discussion of previous ESE Question

papers
24 1 Discussion of previous ESE Question

papers

Total No of Hours Planned For Unit V=24
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Text book:
1. Bartle, R.G. and Sherbert D. R., 2000. Introduction to Real Analysis,John Wiley and

Sons (Asia) Pvt. Ltd.

References:

1. Fischer, E., (1983). Intermediate Real Analysis, Springer Verlag.
2. Ross, K.A,, (2003). Elementary Analysis- The Theory of Calculus Series — Undergraduate

Texts in Mathematics, Springer Verlag.

3. T Apostol T. M., (2002). Calculus (Vol. 1), John Wiley and Sons (Asia) P. Ltd.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc Mathematics COURSE NAME: REAL ANALYSIS
COURSE CODE: 17MMU203 UNIT: I BATCH-2017-2020
UNIT-I
SYLLABUS

Finite and infinite sets, examples of countable and uncountable sets. Real line, bounded sets,
suprema and infima, completeness property of R, Archimedean property of R, intervals.

Sets:
A set is any collection of objects, for example, set of numbers. The objects of a set are called
the elements of the set.

Finite Set

If a set contains a finite number of elements then we say that the set is finite. Otherwise we
say that the set is infinite.

The cardinality of a finite set is the number of elements that it contains. We denote the
cardinality of a set A by |A|.

Examples

JIfA= {1, 4,8, 10} then |A| = 4.

JIf X = {x:x € Nandx<T7} then|X|=6.
Countable set

A set A is countable, if it can be put in a one to one correspon-dence with the set Z+ of positive
integers

Uncountable sets
A set is uncountable, if it is infinite and is not countable.

A sel S is said to be countable if il is either finite or denumerable.
A set S is said to be uncountable if it is not countable.

" Examples (a) TheselE := {2n: n € N} of even natural numbers is denumerable.

(b) The set Z of all integers is denumerable.
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CLASS: I B.Sc Mathematics COURSE NAME: REAL ANALYSIS
COURSE CODE: 17MMU203 UNIT: I BATCH-2017-2020
Theorem

The following statements are equivalent

(a) S is a countable set.
(b) There exists a surjection of N onto S.
(c) There exists an injection of S into N,

Proof. (a) = (b) If §is finite, there exists a bijection A of some set N, onto § and we
define H on N by
| h(k) for k=1,...,n,
H{k) == {h{n] for k> n.
Then H is a surjection of N onto S.
If § is denumerable, there exists a bijection H of M onto S, which is also a surjection of
M onto §.

(b) = (c) I His a surjection of N onto S, we define H, : § — M by letting H,(s) be the
least element in the set H~'(s) := {n € N : H(n) = 5}. To see that H, is an injection of §
into M, note that if s, r € § and ny, := Hy(s) = H(t), then s = H(n,) = t.

(¢) = (a) If H, is an injection of S into N, then it is a bijection of S onto H,(S) C N. By

Cantor’s Theorem

If A is any set then there is no surjection of A onto the set P(A) of all subsets of A.

Proof. Suppose that ¢ : A — P(A) is a surjection. Since @(a) is a subset of A, either a
belongs to @(a) or it does not belong to this set. We let

D:={acA:a¢ ¢la)}.

Since D is a subset of A, if ¢ is a surjection, then D = g(ay) for some a; € A.

We must have either ay € D or ag ¢ D. If ay € D, then since D = @(ay), we must have
ap € @(ap), contrary to the definition of D. Similarly, if @y ¢ D, then ag ¢ @(ap) so that
ay € D, which is also a contradiction.

Therefore, ¢ cannot be a surjection. QED.

Triangle Inequality: If a,b belongs to R then |a+b| < |a| +|b|

Proof. From 2.2.2(d), we have —|a| <a < |a| and —|b| < b < |b|. On adding these
inequalities, we obtain

—(la| + b)) <a+b < |a| + |b].
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COURSE CODE: 17MMU203 UNIT: I BATCH-2017-2020

we have |a + b| < |a| + |b].

Real line:
A convenient and familiar geometric interpretation of the real number system is the real
line. In this interpretation, the absolute value |a| of an element a in R is regarded as the
distance from a to the origin 0. More generally, the distance between elements ¢ and b in R

is |a-b.
Suprema and infima

Definition: Let S be a nonempty subset of R
(a) The set S is said to be bounded above if there exists a number u € IR such that s < u
for all 5 € S. Each such number u is called an upper bound of 5.

(b) The set S is said to be bounded below if there exists a number w & B such that w < s
for all s € 5. Each such number w is called a lower bound of S.

(c) A setis said to be bounded if it is both bounded above and bounded below. A set is
said to be unbounded if it is not bounded.

Definition: Let S be a nonempty subset of R

(a) If S is bounded above, then a number u is said to be a supremum (or a least upper
bound) of § il it satisfies the conditions:

(1) u is an upper bound of S, and
(2) if v is any upper bound of §, then u < v.

(b) If §is bounded below, then a number w is said to be an infimum (or a greatest lower
bound) of § il it satisfies the conditions:

(1') w is a lower bound of S, and
(2"} if t is any lower bound of §, then 1 < w.

If the supremum or the infimum of a set § exists, we will denote them by

sup S and inf §.

The Completeness Property of R Every nonempty set of real numbers that has
an upper bound also has a supremum in R.
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Applications of the Supremum Property

Let § be a nonempty subset of R that is bounded above, and let a be any number in R.
Define the set a + S := {a+ 5 : 5 € §}. We will prove that

sup(a + §) =a + sup §.

If we let u := sup S, then x < u forall x € §, sothata + x < a + w. Therefore, a + u
is an upper bound for the set a + § ; consequently, we have sup(a+ §) < a+ u.

Now if v is any upper bound of the set a+ 5, then a+x < v for all x € §.
Consequently x < v — a for all x € §, so that v — a is an upper bound of §. Therefore,
u — sup S < v — a, which gives us @ + u < v. Since v is any upper bound of a 4 5, we can
replace v by sup(a + §) to get a + u < sup(a + S).

Combining these inequalities, we conclude that

sup(a + S) =a+u=a+sup§.

Archimedean Property If x € R, then there exists n, € N such that x < n,.

Proof. 1I the assertion is lalse, then n < x for all #n € M; therefore, x is an upper bound
of M. Therefore, by the Compleleness Property, the nonempty set M has a supremum u € R.
Subtracting 1 from u gives a number u — 1, which is smaller than the supremum u of 1.
Therefore u — 1 is not an upper bound of M, so there exists m € Nwithu — 1 < m. Adding

1 gives u < m+ 1, and since m + 1 € [N, this inequality contradicts the fact that u is an
upper bound of M.

Corollary If S:= {1/n:n € N}, then inf § = 0.

Proof. Since S # () is bounded below by 0, it has an infimum and we let w := inf S. It is
clear that w > 0. For any ¢ > 0, the Archimedean Property implies that there exists n € N
such that 1/e < n, which implies 1/n < &. Therefore we have

0<w<l/n<e

But since & > 0 is arbitrary, w=10.
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Intervals

The Order Relation on R determines a natural collection of subsets called ““intervals.”
The notations and terminology for these special sets will be familiar from earlier
courses. If a,b € R satisfy a < b, then the open interval determined by a and b is
the set

(a,b) :={xeR:a<x<b}.

The points a and b are called the endpoints of the interval; however, the endpoints are not
included in an open interval. If both endpoints are adjoined (o this open interval, then we
oblain the closed interval determined by a and b; namely, the set

la,b] :={xcR:a<x<bh}.

The two half-open (or half-closed) intervals determined by a and b are [a, b), which
includes the endpoint a, and (a, b], which includes the endpoint b.

Each of these four intervals is bounded and has length defined by b — a.

(a,00) :={x€eR:x>a} and (—oo,b):={xcR:x<bh}.

[a,00) :={xeR:a<x} and (—oc0,b]:={xecR:x <bh}.

It 15 often convenient to think of the entire set R as an infinite interval; in this case, we write
(—oo, o0) := R. No point is an endpoint of (—oo, 00).

-

[
ed S
=

——

Iy

!5

Mested intervals
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Nested Intervals Property If I, = [an, by], n € N, is a nested sequence of closed
bounded intervals, then there exists a number & € R such that & € I, for all n € M.

— ——

Proof. Since the intervals are nested, we have I, C I forall n € M, so that a, < b, for all
n € M. Hence, the nonempty set {a, : n € N} is bounded above, and we let & be its
supremum. Clearly a, < & for all n € N.

We claim also that £ < b, for all n. This is established by showing that for any
particular #, the number b, is an upper bound for the set {ax : kK € N}. We consider two
cases. (i) If n < k, then since [, 2 [, we have a; < by < b,. (ii) If &k < n, then since
Ie 21, wehavea, < a, < b,.

Thus, we conclude that g < b, for all
k, so that by, is an upper bound of the set {ay, : kK € M}. Hence, § < b, foreachn € N. Since
ay < E< b, for all n, we have £ € I, for all n € N.

Da— ~
e
| 3 | |
ay ay b, by

Iifk<n thenl, CI;

Note: The set of real numbers can also be divided into two subsets of numbers called
algebraic numbers and transcendental numbers. A real number is called algebraic if it is a
solution of a polynomial equation P(x) = 0 where all the coefficients of the polynomial P
are integers. A real number is called franscendental if it is not an algebraic number. It can
be proved that the set of algebraic numbers is countably infinite, and consequently the set of
transcendental numbers is uncountable. The numbers 7 and e are transcendental numbers
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POSSIBLE QUESTIONS

PART-B (5 x 2 =10 Marks)
Answer all the questions
Define an uncountable set.
Give two examples for uncountable sets.
Define countable set.
Define bounded set.
Define unbounded set.

RN .

PART-C (5 x 6 =30 Marks)
Answer all the questions
. Prove that the set of all rational number is countable
If a,b €R, ptove that |a + b| < |a| + |b]

. State and prove Archimedean property.
. Let S be a subset of R and a € R. Prove that a + sup § = sup(a + 5)

. State and prove Uniqueness theorem on limits

. State and prove Cantor’s Theorem.

. Prove that (0,1) is uncountable.

. Suppose that A and B are non-empty subsets of R, suchthat a <b for all acA and beB then

sup A<infB .

9. Suppose that S and T are sets and that T is contained in S.
a) If S is a finite set, then T is a finite set.
b) If T is an infinite set, then S is an infinite set.

10. The following statements are equivalent:

a) S is a countable set.

b) There exists a surjection of N onto S.

c) There exists an injection of S into N

O NN O AW NP
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\gg/ KARPAGAM ACADEMY OF HIGHER EDUCATION
K /:EP A C-;;\ M (Deemed to be University Established Under Section 3 of UGC Act 1956)
ACADEMY OF HIGHER EDUCATION Pollachi Main Road, Eachanari (PO),

{Deemed to be University)

Coimbatore —641 021

Subject: Real Analysis Subject Code: 177MMU203
Class :1I - B.Sc. Mathematics Semester :1II

Unit I

Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
The set of all points between a and b is called ------------ integer interval elements set interval
The set {x: a < x < b} i§ -------m-m---- (a, b) [a, b] (a, b] [a, b) (a, b)
A real number is called a positive integer if it belongs to --
--------- interval open interval closed interval inductive set inductive set
Rational numbers is of the form ----------------- pq p+q p/q p-q p/q
€ s - rational irrational prime composite irrational
An integer n is called ----------- if the only possible
divisors of n are 1 and n rational irrational prime composite prime
A set with no upper bound is called ------------ bounded above bounded below |prime function bounded above
A set with no lower bound is called ------------ bounded above bounded below |prime function bounded below
The least upper bound is called ----------- bounded above bounded below |supremum infimum supremum
The greatest lower bound is called ----------- bounded above bounded below |supremum infimum infimum
The supremum of {3, 4} is ---------- 3 4(3,4) [3, 4] 4
Every finite set of numbers is ---------- bounded unbounded prime bounded above bounded
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A set S of real numbers which is bounded above and

bounded below is called -------- bounded set inductive set super set subset bounded set
The set N of natural numbers is ---------- bounded not bounded irrational rational not bounded
The infimum of {3, 4} is -=--------—- 3 4(3,4) (3, 4]

Sup C = Sup A + Sup B is called -------------- property approximation | additive archimedean comparison additive

For any real x, there is a positive integer n such that -------

- n>x n<x n=x n=0 n > x

If x > 0 and if y is an arbitrary real number, there is a

positive number n such that nx >y is -------------- property approximation additive archimedean comparison archimedean

The set of positive integers is -------------

bounded above

bounded below

unbounded above

unbounded below

unbounded above

The absolute value of x is denoted by --------------- [x] [ 1x]] x<0 x>0 [x|
If x <0 then --------------- [x]| =x [Ix]]=]x] | 1x]] =-x [x]| =-x [x] =-x
If S =10, 1) then sup S = -—------—-—--——- 0 1(0,1) [0,1]
|a| + |b]| greater
than equal to |a |a +b]| less than |a + b] less than equal
Triangle inequality is ------------------- +b| |a] > |a+Db] |b| >]a+b]| equalto |a | + |b| tola|+|b]
[x + y| greater than equal to ---------------- Ix| + Iyl x| Iyl IxI - lyl 11 - Iyl | L 1xI - Iyl |
If (x, y) belongs to F and (x, z) belongs to F, then -----------
- X=z X=y Xy =2 y=1z y=1z
A mapping S into itself is called ------------ function relation domain transformation transformation
If F(x) = F(y) implies x =y is @ --------------- function one-one onto into inverse one-one
One-one function is also called ----------- injective bijective transformation codomain injective
S ={(a,b): (b,a) is in S} is called --------------- inverse domain codomain converse converse
If Aand B are two sets andif there exists a one-one
correspondence between them,then it is called -----------
- set denumerable uncountable finite equinumerous equinumerous

A set which is equinumerous with the set of all positive

integers is called ---------------- set finite infinite countably infinite |countably finite countably infinite
A set which is either finite or countably infinite is called -

——————————— set countable uncountable similar equal countable
Uncountable sets are also called ------------- set denumerable non-denumerable similar equal non-denumerable
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Countable sets are also called --------------- set denumerable non-denumerable similar equal denumerable
Every subset of a countable set is ------------ countable uncountable rational irrational countable
The set of all real numbers is ---------------- countable uncountable rational irrational uncountable
The cartesian product of the set of all positive integers

[ countable uncountable rational irrational countable
The set of those elements which belong either to A or

to B or to both is called --------- complement intersection union disjoint union

The set of those elements which belong to both A and B

is called ------------ complement intersection union disjoint intersection
Union of sets is -------------- commutative not commutative not associative disjoint commutative
The complement of A relative to B is denoted by ----------

B-A B A A-B B-A

If Aintersection B is the empty set, then A and B are

called -------- commutative not commutative not associative disjoint disjoint

B - (intersection

B - (union A) = ~-—---—---—-————- union (B -A) A) intersection (B - A) |{} intersection (B - A)
B - (intersection A) = union (B -A) B - (union A) intersection (B - A) {} union (B -A)
Union of countable sets is ----------------- uncountable infinite countable disjoint countable
The set of all rational numbers is --------------- uncountable infinite countable disjoint countable
The set S of intervals with rational end points is ----------
set uncountable infinite countable disjoint countable
The product of two prime numbers will always be neither P”me nor . .
even number odd number composite composite composite
Let A be the set of all prime numbers. Then
number of elements in A is countable uncountable finite empty countable
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UNIT-1I
SYLLABUS

Real Sequence, Bounded sequence, Cauchy convergence criterion for sequences. Limit of a
sequence. Limit Theorems. Cauchy’ s theorem on limits, order preservation and squeeze
theorem, monotone sequences and their convergence (monotone convergence theorem

without proof).

Sequences and their limits

__. Definition A sequence of real numbers {(or a sequence in R) is a function defined
on the set ¥ = (I, 2, - - -} of natural numbers whose range is contained in the set B of real

numbers.

(a) Ifb € R, thesequence B := (b, b, b, - ), all of whose terms equal
b, is called the constant sequence b. Thus the constant sequence [ is the sequence
(1,1,1,--), and the constant sequence 0 is the sequence (0,0,0, -- ).

The celebrated Fibonacci sequence F := (f ) is given by the inductive definition

fi=L f=1 fa=fLa+f (hz2).
The limit of a sequence

Definition A sequence X = (x ) in R is said to converge to x € R, or x is said to
be a limit of (x), if for every £ > 0 there exists a natural number K (¢} such that for all

n = K(g), the terms x  satisfy [x — x| < ¢.
[f a sequence has a limit, we say that the sequence is convergent; if it has no limit, we
say that the sequence is divergent.
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We will sometimes use the symbolism x, — x, which indicates the intuitive idea that the
values x, “approach” the number x as n = o0.

When a sequence has limit x, we will use the notation

ImX =x or Iim(x ) = x.

We will sometimes use the symbolism x_ — x, which indicates the intuitive idea that the
values x, “approach” the number x as n = o0.

Uniqueness of Limits A sequence in R can have at most one limit.

Proof

Proof. Suppose that x” and x” are both limits of (x,). For each & > 0 there exist K’ such
that |x_— x| < g/2 forall n > K, and there exists K" such that |x_— x"| < ¢/2 for all
n > K" We let K be the larger of X" and K”. Then for n > K we apply the Triangle
Inequality to get
lx" — x"| =[x —x, +x, —x"|
<l =x |+, —x"|<e/2+e/2=¢

Since £ > 0 s an arbitrary positive number, we conclude that x” — x" = Q.

For x € IR and £ > 0, recall that the e-neighborhood of x is the set
Vix)i={uelkR:|u—x| < ¢}

. Since u € V_(x) is equivalent to |u — x| < ¢, the definition of conver-
gence of a sequence can be formulated in terms of neighborhoods. We give several different
ways of saying that a sequence x_ converges to x in the following theorem.
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Theorem Let X = (x,) beasequence of real numbers, and let x € R. The following
statements are equivalent.

(a) X convergestox.

(b) Forevery e > O, there exists a natural number K such that for alin = K, the terms x|
satisfy |x_ — x| < &.

(¢} Forevery¢ > 0, there exists a natural number K such that foralln > K, the terms X,
satisfyx — e <x_ < x+e.

(d) For every €-neighborhood V: (x) of x, there exists a natural number K such that for
alln > K, the terms x, belong to V, (x).

Proof. The equivalence of (a) and (b) is just the definition. The equivalence of (b), (c),
and (d) follows from the following implications:

it —xl<e & —Ee<u—x<g & x—e<u<x+e < wneV(x).

Examples (a) lm(l/n) =0.

If £ > 0 is given, then 1/¢ > 0. By the Archimedean Property 2.4.5, there is a nat-
ural number K = K (&) such that 1/K < ¢g. Then, if n > K, we have 1l/n < 1/K < ¢.
Consequently, if n > K, then
1.

| 1
- =0 =- <g.
n n

Therefore, we can assert that the sequence (1/n) converges to 0.

(b) lim(1/(n*+ 1)) =0.
Let £ > 0 be given. To find K, we first note that if n € M, then

1 1 1
oyl
Now choose K such that | /K < ¢, asin (a) above. Then n > K implies that 1/n < g, and
therefore
1 I ]

=5 = — =&
n? + 1 nP41  n

Hence, we have shown that the limit of the sequence is zero.
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3n+2
¢) lm =3
© ( n+1 )
Given & > 0, we want to obtain the inequality

3n+2

(1) ~3 <
n+1

when n is sufficiently large. We first simplify the expression on the left:

In+2 3 In+2-3n-3 -1 | 1
-3 = = < —.
n—+1 n+1 n+ 1

n+1 b

Now if the inequality 1/n < ¢ is satisfied, then the mnequality (1) holds. Thus if 1/K < &,
then for any n > K, we also have 1/n < & and hence (1) holds. Therefore the limit of the
sequence is 3.

(d) If0 < b < 1, then lim(b"™) = 0.
We will use elementary properties of the natural logarithm function. If € = 015 given,
we see that

b" <& & nlnb<lne <+ n>Ing/inb

(The last inequality 1s reversed because Inb < 0.) Thus if we choose K to be a number such
that K > Ing/Inb, then we will have 0 < 6" < ¢ foralla = K. Thus we have lim{y") = 0.

For example, if b = .8, and if ¢ = .01 is given, then we wouldneed K > In.01/In .8 =
20.6377. Thus K = 21 would be an appropriate choice for £ = .01. 0J

Theorem Let (x,) be a sequence of real numbers and let x e R. If (a,) is a
sequence of positive real numbers with lim(a ) = 0 and if for some constant C > 0 and
some m € N we have

lx, — x| = Ca, forall n=m,
then it follows thatlim(x ) = x.
Proof. Ife > Ois given, then since im(a, ) = 0, we know there exists K = K (g/C) such
that n > K implies
a =la —0| <e¢/C.
Therefore it follows that if both#n > K and n > m, then
|x, — x| = Ca, < C(e/C) =¢.

Since £ > 0 is arbitrary, we conclude that x = lim(x ).
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If0 < b < 1, then lim(b™) = 0,

This limit was obtained earlier in Example 3.1.6(d). We will give a second proof that
llustrates the use of Bernoulhi's Inequality (see Example 2.1.13(c)).

Since 0 < b < 1, we can write b = 1/(1 4+ a), where a := (1/b) — 1 so thata > 0.

By Bernoulli's Inequality, we have (1 + a)” > 1 + na. Hence
1 1 1

= < .
(l+a) ~ l+na hna
Thus we conclude that im(b") = 0.

D<b" =

Squeeze Theorem Suppose that X = (x,), Y = (y,), and Z = () are sequences
of real numbers such that :

— < X =V, 22, forall neHN,
and thatlim(x ) = lim(z,). Then ¥ = (y,) is convergent and
Him(x,) = lim(y, ) =lim(z ).
Proof. Letw :=lim(x, ) = lm(z ).If¢ > Ois given, then it follows from the convergence
of X and Z to w that there exists a natural number K such thatif n = K then
lx, —w| < ¢ and |z, —w| < &
Since the hypothesis implies that

- i
x, —w<y —w<z —w forall n e N,

—E€ <y —w<E¢E

foralln = K. Since ¢ = 0 is arbitrary, this implies that lim(y_) = w.

Examples (a) The sequence (n) is divergent.
It follows from Theorem 3.2.2 that if the sequence X := (n) is convergent, then there
exists a real number M > O such that n = |n| < M for all n € M. )

2n+1

lim = 2.

rn
If we let X :=(2) and Y := (1/n), then ((2n + 1)/n) = X + Y. Hence it follows
thatim(X + YY) =lmX +1lim¥=2+0=2.
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Definition Let X = (x, ) beasequence of real numbers. We say that X is increasing
if it satisfies the inequalities

x =

‘_:-rz":"'Ex

1 n xn-i-lE"-'

We say that X is decreasing if it satisfies the inequalities

X, =X, 2o 2x >x

n n+|2'

We say that X is monotone if it is either increasing or decreasing.

Monotone Convergence Theorem A monotone sequence of real numbers is con-
vergent if and only if it is bounded. Further:

(a) IfX = (x,} is a bounded increasing sequence, then
im(x ) = sup{x, :n € NJ,
(b) IfY = (y,) is a bounded decreasing sequence, then

lim(y,) = inf{y, : n € N}.

Proof. Tt was seen in Theorem 3.2.2 that a convergent sequence must be bounded.

Conversely, let X be a bounded monotone sequence. Then X is either increasing or
decreasing.

(a) We first treat the case where X = (x ) is a bounded, increasing sequence. Since
X is bounded, there exists a real number M such that x < M for all n € N. According to
the Completeness Property 2.3.6, the supremum x* = sup{x, : n € N} exists in R; we will
show that x™ = lim(x, ).

If £ > 0 is given, then x* — £ is not an upper bound of the set {x_:n € N}, and hence
there exists a member of set x, such that x* — g < x,. The fact that X is an increasing
sequence implies that x, < x, whenever n > K, so that

xf—g<xy <x <x"<xt+e forall n> K.
Therefore we have
|x, —x%| < ¢ forall n=> K.

Since & > 0 is arbitrary, we conclude that (x ) converges to x*.
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(b) If ¥ = (y,) is a bounded decreasing sequence, then it is clear that X := -Y =

(—y,) is a bounded increasing sequence. It was shown in part (a) that lim X = sup{—y -
n € N}. Now lim X = —1lim Y and also, by Exercise 2.4.4(b), we have

sup{—y, :n € N} = —inf{y :n e N).
Therefore im Y = —lim X =inf{y_:n & N).

Definition A sequence X = (x,) of real numbers is said to be a Cauchy sequence
if for every £ > 0 there exists a natural number H(g) such that for all natural numbers
n,m > H(e), theterms x . x_ satisfy [x —x | < ¢.

Lemma IfX = (x,) 1s a convergent sequence of real numbers, then X is a Cauchy
sequence.

Proaf. 1If x :=lim X, then given £ > 0 there is a natural number K (£/2) such that if
n = K(¢/2) then |x, — x| < &/2. Thus, if H(¢) := K(¢/2) and if n, m > H(g), then we
have

e, = X, =1(x, —x) + (x — x)
Slx, —x[+x, —x| <e/2+e/2=z¢

Since & > 0 1s arbitrary, it follows that (x ) is a Cauchy sequence.

Lemma A Cauchy sequence of real numbers is bounded.

Proof. Let X := (x_) be a Cauchy sequence and let e ;= 1. If ¥ := H(l) and n > H,
then |x, — x| < 1. Hence, by the Tnangle Inequality, we have |x,| = lxy|+1 for all
n > H.If we set

M = sup x|, |x,] s by | x| + 17,

then it follows that |x | < M foralln € N.

Cauchy Convergence Criterion A sequence of real numbers 1s convergent if and
only if it is a Cauchy sequence.
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Proof. We have seen, in Lemma 3.5.3, that a convergent sequence is a Cauchy sequence.

Conversely, let X = (x_) be a Cauchy sequence; we will show that X is convergent to
some real number. First we observe from Lemma 3.5.4 that the sequence X 1s bounded.
Therefore, by the Bolzano-Weierstrass Theorem 3.4.8, there is a subsequence X' = (xﬂ*)

of X that converges to some real number x*. We shall complete the proof by showing that
X converges to x".
Since X = (x ) is a Cauchy scquence, given & > 0 there is a natural number H (£/2)

such thatif n, m > H(eg/2) then
(1) lx, —x, | < &/2.

Since the subsequence X' = (.rnt} converges to x”, there 1s a natural number K = H(z/2)
belonging to the set {n, n,, - -} such that

lx, —x*| < &/2.
Since K = H(e/2), it follows from (1) with m = K that
[x, — x| <&/2 for n > H(e/2).
Therefore, 1f n = H(g/2), we have

lx, = x| = |(x, —xg) + (x —x")|
< |x, = x| +{x, — x|
<£/24¢c/2 =c¢.

Since ¢ > Ois arbitrary, we infer that lim(x,_) = x*. Therefore the sequence X is convergent.
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POSSIBLE QUESTIONS

PART-B (5 x 2 =10 Marks)
Answer all the questions

Define supremum.

Define a convergent sequence.
Define a bounded sequence.
Define a sequence

Define a convergent sequence

gk~ owpneE

PART-C (5 x 6 =30 Marks)
Answer all the questions

1. Prove that lim nn = 0
2. LetX = (x,) and ¥ = (¥, ) be sequence of real numbers that converges to x and ¥
respectively.Prove that the sequences X + ¥ and XY converge to x + ¥ and Xy, respectively.

3. State and prove Squeeze theorem.

4. Prove that a convergent sequence of real numbers is bounded.

5. State and prove uniqueness theorem on limit.

6. State and prove Monotone convergence theorem.

7. If (xn) is a convergent sequence of real numbers and if X, > 0 for all neN, then x=lim(xn) >0
8. If ¢>0, then lim(c'") =1

9. If a = 0, then prove that lim (1;:) =0

10. Prove that a convergent sequence of real numbers is bounded. Also prove that the converse
is need not be true.
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Part A (20x1=20 Marks) (Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
If A is the set of even prime numbers and B is the set of Aand B are A and B are not
odd prime numbers. Then Ais a subset of B B is a subset of A |disjoint disjoint A and B are disjoint
{(2,1),(2,3).(3,4),(4

which relation is not a function? {(2,5),(3,6).(4,7)} {(2,1),(3,2).(4,7)} , 1))} {(2)1),(3,3),(4,1)} {(2,1),(2,3).(3,4),(4,1))}

Given the relation A={(5,2),(7,4),(9,10),(x,5)}. Which of
the following value for x will make relation on A as a
function? 7 9 4 5 4

Let A be the set of letters in the word " trivial" and let
B be the set of letters in the word difficult. Then A-B= {a,r,v} {d,f,c,u} {I,L.t} {a,L,Lr,t,v} {a,r,v}

Let S be the set of of all 26 letters in the alphabet and
let A be the set of letters in the word "trivial". Then the

number of elements in is 19 20 21 22 21
{(1,1)(1,2),(2,2),(2,

Let A={1,2}. Then AX A= {(2,1),(2,2)} {(1,2),(2,1)} 2)} {(1,1),(2,2),(2,1)} {(2,1)(1,2),(2,1),(2,2)}

Let A={1,2} and B={a,b,c}. Then number of elements in

AXB= 2 3 2%2%2 2*3 2*3

Suppose n(A)=a and n(B)=b. Then number of elements

inAXBis a b ab a+b ab
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Let A={1,2} and B={a,b,c}. Then which of the following

element does not belongsto AXB = (1,a) (3,c) (c,2) (1,c) (c,2)
Let F be a function and (x,y) in F and (x,z) in F. Then we
must have X=y y=z z=X X=X y=z
If the number of elements in a set S are %. Then the
number of elements of the power set P(S)= 5 6 16 32 32
If range of f is equal to codain set, then fis into onto one-one many to one onto
Converse of function is a function only if fis into onto one-one bijection bijection
Inverse function is always into onto one-one bijection bijection
If A and B contains n elements then number bijection
between A and B is n! n n+1 n-1 n!
Let f be afunction from A to B. Then we call fas a set of positive set of all real
sequence only if Aisa integers numbers set of all rationals |set of irrationals set of positive integers
Two sets A and B are said to be similar iff there is a
function f exists such that f is into one-one onto bijection bijection
If two sets A={1,2,...,m} and B={1,2,..,n} are smilar then |m<n n<m n=m n>0 n=m

set of real set of all
Which of the following is an example for countable? numbers irrationals set of all rationals (0,1) set of all rationals
Number of elements in the set of all real numbers is finite countably infinite 1000000 uncountable uncountable
The union of elements A and B is the set of elements
belongs to either Aor B neither AnotB  both Aand B Aand notinB either Aor B
The set of elements belongs A and notin B is B A B-A A-B A-B
The set of elements belongs B and not in A'is B A B-A A-B B-A
Countable union of countable set is uncountable countable finite countably infinite countable
N X N is uncountable countable finite countably infinite countable
ZXRis uncountable countable finite countably infinite uncountable
RxRis uncountable countable finite countably infinite uncountable
The set of sequences consists of only 1 and O is uncountable countbale finite countably infinite uncountable
Every subset of a countable set is uncountable countable finite countably infinite countable
Every subset of a finite set is uncountable countable finite countably infinite finite
Fibonnaci numbers is an example for uncountable set countable set finite set infinte set countable
Suppose A and B is countable then AX B is uncountable countable finite infinite countable
AXBis similar to A B A XA AXB AXB
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The set of all even integers is uncountable countable finite infinite countable
(0,1] is uncountable countable finite countably infinite uncountable
{1,2,.....,100000} uncountable countable infinite countably infinite countable
Suppose fis a one to one function. Then x not eqauly  f(x) is not equal

implies to f(y) f(x)=F(y) f(x)<f(y) f(x)>f(y) f(x) is not equal to f(y)
Suppose fis a one to one function. Then f(x)=f(y)

implies X=-y y=x+10 X=y x is not eqaul y X=y

Let f be a bijection between Aand Band A is

counatble then B is uncountable countable finite similar to R countable
Let f be a function defined on A and itself such that neither one to one

f(x)=x. Then fis onto one to one bijection nor onto bijection
Constant function is an example for onto one to one many to one bijection many to one
Stricly increasing function is an onto function one to one many to one bijection one toone
Strictly decreasing function is an onto function one to one many to one bijection one to one
If g(x) =3x+x+5, evaluate g (2) 8 9 13 17 13

A ={x: x # X Jrepresents {1} {} {0} {2} {}

If a set A has n elements, then the total number of

subsets of A is n! 2n 2" n 2"
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Infinite series. Cauchy convergence criterion for series, positive term series, geometric series,
comparison test, convergence of p-series, Root test, Ratio test, alternating series, Leibnitz’s
test(Tests of Convergence without proof). Definition and examples of absolute and conditional

convergence.

Series : Let (a,) be a sequence of real numbers. Then an expression of the form aq +as + a3+ ...
denoted by S0 | a,, is called a series.

- 1 1 1 . co 1 1 1 =l 1
Examples : 1. 1+5+ 3+ ... or 3 7, 2. 1+3+g+ . oOF 3.7 55
Partial sums : 5, = ay + as + ag + ...... + a, is called the nth partial sum of the series Zf;‘:] (7

Convergence or Divergence of ")_‘,” { Gn

If 5, — S for some S then we say that the series Zf;‘:] iy converges to S. If (5;,) does not
converge then we say that the series Y a, diverges.

Examples :
1. Im}['”“ ) diverges because S, = log(n + 1).
2. _m""‘ i ?ﬂ_ converges because S, =1 — L — 1.
3. If 0 < z < 1, then the geometric series 3, 2" converges to 1= because S, = 5% 'rH

Necessary condition for convergence

If En"‘:] iy converges then a, — 0.

Examples :
1. If|[x]| =1, then 3~ _] x"™ diverges because a, — (.
2. Y., sinn diverges because a, - 0.

oL ]

: ",S_‘R_] E(_JU{ J diverges, however, f(){;{ ]l — (.

L
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Necessary and sufficient condition for convergence

Suppose ap = 0% n. Then Zf;‘:] an converges if and only if (Sn) is bounded above.

Example : The Harmonic series > | = diverges because

n=1mn
o1 11 ey 1 k
Sok = 1+=-+2-—+4.- -+ ..+2 = =14+ =
ok + 9 4 + 8 + + Ek + 9
for all k.
If >0 | an | converges then Y o= | an converges.

Proof: Since Y | | a, | converges the sequence of partial sums of 3, | a, | satisfies the Cauchy
criterion. Therefore, the sequence of partial sums of > - | a, satisfies the Cauchy criterion.

Remark : Note that 3~ , a, converges if and only if } ;7  a, converges for any p > 1.

n=p

(Comparison test ) Suppose 0 < a, < b, for n > k for some k. Then
(1) The convergence of > .o | b, implies the convergence of 30" | an.

(2) The divergence of Y .- | a, implies the divergence of > 7 | b,

Examples:

; 9] 1 . , .
L Y2, )T converges because This implies that } >~ —2' converges.

1
(n+1)(n+1) < ‘n{n.-l—L)

L 1
2. Yoo | U —= diverges because - < T

3. 30, r—:, converges because n? < n! for n = 4.

(Limit Comparison Test) Suppose an,b, > 0 eventually. Suppose %:L — L.

1. IfLeR,L >0, then both 5_°° 1 bn and S | @n converge or diverge together.

n=1 n=1

2. IfLeR,L=0, and Y ;- , by converges then Y " | a, converges.

n=1

3. If L =00 and 3, | b, diverges then > - a, diverges.

n=1
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Examples :

LY >.(1— n,e:in%] converges, Take b, = ;‘T in the previous result.
o0 1 1 . . T 1 - _ , ;
2. Y -1 7log(l+ ) converges. Take b, = — in the previous result.

(Cauchy Test or Cauchy condensation test) If a, = 0 and a,, 1 < a, ¥V n, then
S | an converges if and only if 5 28aq converges.

Examples:
LY >, ﬂ'—p converges if p > 1 and diverges if p < 1.

fs 4] 1 . s . . e o .
2. 3 e llagn)e CONVeTZes if p > 1 and diverges if p < 1.

s s

(Ratio test) Consider the series Y . | an, Gn # 0V n.
1. If| % | < q eventually for some 0 < g < 1, then 30 | ay, | converges.

2. If | ==L | = 1 eventually then >, a, diverges.

Suppose an # 0% n, and | == | — L for some L.
1. IfL <1 then Y " | | an | converges.
2. IfL > 1 then Y7 | an diverges.

3. If L =1 we cannot make any conclusion.

Examples :
oo ] . . a1yan Sntl
1. » = 77 converges because - — 0.
L O S Lo . ey Dl - 1yvn . ;
2. ) 1 5y diverges because 2= = (1+ )" —e> L

o0 1 Jiys . = | : . P ; n raopg 2ntl 1
3. % ey 5 diverges and  * , -7 converges, however, in both these cases _ = 1.
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{(Root Test ) If0 <ap <z" or0 < anl/™ <z eventually for some 0 < x < 1
then 37 | a, | converges.

i~

Suppose | a, lm _ L for some L. Thﬁﬂl
1. If L < 1 then Z;":] | an, | converges.
2. If L =1 then zn‘x:] i, diverges.

3. If L =1 we cannot make any conclusion.

Examples :
e 1 ] . I 1/n 1
Lo} o Togn)™ converges because a, = Toon Q.
2. Y% (17 converges because al/" = L 1<
“ Aun=1\n+ = e LT g e :
mn
o . s . 1/m
3. 5.0 + diverges and 307 | f—}g' converges, however, in both these cases a/  — 1.

Leibniz test ) If (ay) is decreasing and a, — 0. then S°°° (—1)"la,, converges.
':. } q _.-_."i".l_ll:. } q

oo ¢ qynl o0 ¢ qyn_l oo ¢ qyn_1 .
Py g § B I o § and » - 5(—1) Togn COTIVETZE.

Definition Let X := (x_) be a sequence in R. We say that the series ) x,_ is
absolutely convergent if the series % |x,| is convergent in R. A series is said to be
conditionally (or nonabsolutely) convergent if it is convergent, but it is not absolutely
convergent.
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Theorem If a series in R is absolutely convergent, then it is convergent.
Proof. Since }_ |x,| 18 convergent, the Cauchy Criterion 3.7 .4 implies that, given € > ()
there exists M(e) € M such thatif m > n > M (&), then
I, |+ X+ x] <6
However, by the Triangle Inequality, the left side of this expression dominates
15, — sl =lx ., +x, s+ +x_|

Since £ > 0 is arbitrary, Cauchy’s Criterion implies that 3 x_ converges. \

Theorem [Ifaseres ) x, is convergent, then any series obtained from it by group-
ing the terms is also convergent and to the same value.
Proaf. Suppose that we have
WiEX ot Yp = Xt b X

If 5, denotes the nth partial sum of 3 x, and #, denotes the kth partial sum of }_ y,, then
we have

=Y =S, fy =Dy T ¥ =5,

Thus, the sequence (¢,) of partial sums of the grouped series 3 y, is a subsequence of the
sequence (s, ) of partial sums of  x_. Since this latter series was assumed to be convergent,

so is the grouped series 3 y, .

It is clear that the converse to this theorem is not true. [ndeed, the grouping
I-D+0=-D+d -1+

produces a convergent series from > oo (—1)"
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Definition A sequence X := (x_) of nonzero real numbers is said to be alternating
if the terms (— lj"Hxﬂ. n € N, are all positive (or all negative) real numbers, If the sequence
X = (x,) is alternating, we say that the series ) | x_ it generates is an alternating series.

In the casc of an alternating series, itisusefulto setx = (— ! z [orx, = (=1)"z ],
where z > Oforallz € N.

Alternating Series Test Let Z .= (z,) be a decreasing sequence of strictly positive
numbers with lim(z,) = 0. Then the alternating series Z(-—l}"“zﬁ is convergent,

Proof. Since we have
S3p = (Z) =)+ (23— z) + -+ (5, — 5,)

and since z, — z, ., = 0, it follows that the subsequence (s,,) of partial sums is increasing.
Since

Sop =2y = (2 —2y) — - = (25,5 — 2y, ) — s

it also follows that 5, < z, for all n € N. It follows from the Monotone Convergence
Theorem 3.3.2 that the subsequence (s,, ) converges to some number s € [R.

We now show that the entire sequence (s, ) converges to 5. Indeed, if ¢ > 0, let X be
suchthatifn > K then |5, —s| < e and |z, | < L& It follows that if n > K then

S0t = 8| = |52, + 2301 — 5
. 1 1. _
= |‘S-2n _S[ + |£2H+|| = EE + EE = £
Therefore every partial sum of an odd number of terms is also within £ of 5 if n is large

enough. Since & > O is arbitrary, the convergence of (s,} and hence of }_ (=1)"*' z, is
established. . Q.E.D.

Note It is an exercise to show that if 5 is the sum of the alternating series and if 5 is its
nth pactial sum, then

(2) |.ﬁ'—"§'n‘=_:?_'n|].

It is clear that this Alternating Series Test establishes the convergence of the two series
already mentioned, in (1).
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Abel’'s Lemma Let X := (x ) and ¥ := (y, ) be sequences in R and let the partial
sums of y_ v, be denoted by (s,) withs, := 0. If m > n, then

m

m=1
D M= (S, — XS+ D (= X5

k=n+1 k=n+1

Proof. Since v, =35, —5,_, fork =1, 2,--, the left side of (3) is seen to be equal to
Yoty X (5, — 5, )). If we collect the terms multiplying s, 5, .- -+, $,, We obtain the

right side of (3). QED.

Dirichlet’s Test If X := (x,) is a decreasing sequence with imx_= 0, and if the
partial sums (s_) of 3y, are bounded, then the series }_ x_y_is convergent.

Proof. Let |5'n| < Bforalln € M. If m > n, it follows from Abel’s Lemma 9.3.3 and the

fact that X, — X, = 0that
."l\ m=]
L V| < x, +x,)B + Z (X —x,.y)B
k=n+) k=n+]
= ((x,, +x,. )+ (x,, = x,)]B
=2x ., B.

Since lim(x,) = 0, the convergence of " x,y, follows from the Cauchy Convergence
Cniterion 3.7 4. Q.ED.

Abel's Test If X := (x ) is a convergent monotone sequence and the series )_ y,
is convergent, then the series ) x y, Is also convergent.

Proof. If (x ) is decreasing with limit x, letu, :=x_— x, n € N, so that (1 ) decreases
to 0. Then x, = x +u,_, whence x,y, = xy_ +u,¥y,. It follows from the Dirichlet Test
9.3.4 that 3 u, y, is convergent and, since ) xy, converges (because of the assumed
convergence of the series )y, ), we conclude that Y x ¥ is convergent.

if (x”] is increasing with limit x, let U =X =X, nE M, so that (vn) decreases to 0.
Here x, = x — v ,whence x,y = xy_ —uv y ,and the argument proceeds as before.

n?
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POSSIBLE QUESTIONS

PART-B (5 x 2 =10 Marks)

Answer all the questions

RN .

Define a geometric series.

State the nth term test.

Define a harmonic sequence.
Define alternating harmonic series.
Define a harmonic sequence.

PART-C (5 x 6 =30 Marks)

Answer all the questions

1
2
3.
4
5

. Discuss about the series (i) Z

o 120

. Test the convergence of series 27 -

. Prove the p — series converges if p = 1.
Show that Zf;= =

n{nt+1)in+2) 4

. State & prove the n'"term test for series.

. Let (Xn) be a sequence of non-negative real numbers.Then the series > xn converges iff the

sequence S= (sk) of partial sums is bounded. In this case Y (Xn) = lim(sk) = sup {sk: keN}

6. State and prove Cauchy criterion for series.
7.
8
9

State and prove the comparison test for the series

—— (i)Z=

n®+n

. Prove that if x,, converges then lim(x,) = 0

10. Prove that the Z — series converges.
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Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
segeunce sequence
converges to inf converges to sup sequence sequence converges | sequence converges to
If an increasing sequence is bounded above then of its range of its range convergesto 1 to0 sup of its range
segeunce sequence sequence sequence converges | sequence converges to
If an decreasing sequence is bounded below then converges to inf |converges to sup |converges to 2 to1l inf of its range
an increasing a decresing constant
Fibonacci sequence is sequence sequence sequence bounded sequence an incresing sequence
segeunce sequence
converges to inf converges to sup sequence sequence converges | sequence converges to
If an increasing sequence is bounded above then of its range of its range converges to 3 to2 sup of its range
Suppose a sequence in a metric space (S,d) converges
to both a and b. Then we must have a<b a>b a-b=1 a=b a=b
In a metric space (S,d), a sequence converges to p.
Then range of the sequence is bounded unbounded finite infinite bounded
The range of a constant sequence is infinite countably infinite uncountable singlton set singleton set

an adherent
point of S

Suppose in a metric space (S,d), a sequence converges
to p. Then the pointpis

an accumulation
point of S

an isolated point
of S

not an adherent
point of S

an adherent point of S
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Suppose in a metric space (S,d) , a sequence converges

an adherent

an accumulation

an isolated point

not an accumulation

an accumulation point

to p and the rnage of the sequence is infinite. Then pis point of S point of S of S point of S of S
every some
subsequence of subsequence of

every sequence |convergent convergent some sequence ina | every subsequence of
Suppose in a metric space, a sequence converges. in a metric sequence sequence metric space convergent sequence
Then space converges converges converges converges converges
A sequence is said to be bounded if if its range is unbounded bounded countable uncountable bounded
The range of the sequence {1/n} is finite {1} {} infinite infinite
The range of the sequence {1/n}is unbounded bounded {} {1,0} bounded
The esequence {1/n} converges diverges oscilates converges to 1 converges
In Euclidean metric space every cauchy sequence is convergent divergent oscilates convergentto O converges

constant increasing
Every convergent sequence is a segeunce cauchy sequence |sequence decreasing sequence cauchy sequence
The sequence {n"2} converges diverges oscilates converges to 2 diverges
The range of the sequence {n"2}is unbounded bounded {} {0.1} unbounded
The range of the sequence {n"2}is finite {1} {} infinite infinite
The sequence {i*n} converges diverges oscilates converges to 0 diverges
The range of the sequence {i*n}is unbounded bounded {} {0,1} bounded
The range of the sequence {i*n}is finite infinite {} {0,1} finite
The sequence {1} converges diverges oscilates convergesto 0 converges
The range of the sequence {1} is {} {1} {1,0} {1,2,3} {1}
The range of the sequence {1} is bounded unbounded {1,0} {0} bounded
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SYLLABUS

Monotone Sequences, Monotone Convergence Theorem. Subsequences, Divergence Criteria,
Monotone Subsequence Theorem (statement only), Bolzano Weierstrass Theorem for
sequences.Cauchy sequence, Cauchy’s Convergence Criterion. Concept of cluster points and
statement of Bolzano -Weierstrass theorem.

Definition Let X = (x, ) beasequence of real numbers. We say that X is increasing
if it satisfies the inequalities

X, SX, < - Sx

n4+l —

We say that X is decreasing if it satisfies the inequalities

We say that X is monotone if it is either increasing or decreasing.

The following sequences are increasing:

(1,2,3,4,---,n, ), (1,2,2,3,3,3,--4),

(ﬂ1ﬂ21ﬂ]1'uﬂn1') if d:"l.

The following sequences are decreasing:

(1,1/2,1/3,-- -, 1/n, .-, (1,172,1/2% ... 1/2"7 .,
(blbl1b3ribnl) lf U{:b{l

The following sequences are not monotone:
(FL =L Lo (=D ) (=1, 42,=3, -, (=) )
The following sequences are not monotone, but they are “uttimately” monotone:

(7,6,2.1,2.3,4,-.),  (=2,0.1,1/2,1/3, 1/4,--2).
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Monotone Convergence Theorem A monotone sequence of real numbers is con-
vergent if and only if it is bounded. Further:

(a) IfX = (x,) is a bounded increasing sequence, then
hm(x ) = sup{x, : n € N},
(b) IfY = (y,) is a bounded decreasing sequence, then

lim(y,) = inf{y, : n € N}.

Proof. Ttwas seen in Theorem 3.2.2 that a convergent sequence must be bounded.

Conversely, let X be a bounded monotone sequence. Then X is either increasing or
decreasing.

(a) We first treat the case where X = (x ) is a bounded, increasing sequence. Since
X is bounded, there exists a real number M such that x < M for all n € N. According to
the Completeness Property 2.3.6, the supremum x* = sup{x, : n € N} exists in R; we will
show that x* = lim(x ).

If £ > O is given, then x* — ¢ is not an upper bound of the set {x, : n € N}, and hence
there exists a member of set x, such that x* — & < x,. The fact that X is an increasing
sequence implies that x, < x, whenever n > K, so that

xT—g<xp <x <x"<x'+e¢ forall n=> K.
Therefore we have
lx, —x%| < e forall n=> K.

Since & > 0 is arbitrary, we conclude that (x, ) converges to x*.

(b) If ¥ = (y,) is a bounded decreasing sequence, then it is clear that X := -Y =
(—y,) is a bounded increasing sequence. It was shown in part (a) that lim X = sup{—y_:
n € N}. Now lim X = — lim ¥ and also, by Exercise 2.4.4(b), we have

sup{—y, i n € N} = —inf{y, : n € NJ.
Therefore imY = —lim X =inf{y_:n e N}.
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Examples (a) hm(1/./n) =0.
It is possible to handle this sequence by using Theorem 3.2.10; however, we shall
use the Monotone Convergence Theorem. Clearly 0 is a lower bound for the set {I/./n:
n € N}, and it is not difficult to show that 0 is the infimum of the set {1/./n: n € N}, hence
= lim(1/./n).
On the other hand, once we know that X := (1/./n) is bounded and decreasing, we
know that it converges to some real number x. Since X = (1/./n) convergesto x, it follows
from Theorem 3.2.3 that X - X = (1/n) converges (o x*. Therefore x* = 0, whence x = 0.

Examples (a) LetY = (y,) be defined inductively by y, := 1,y ,, = :7(2)’;1 -
3) forn > 1. We shall show that lim Y = 3/2.
Direct calculation shows that y, = 5/4. Hence we have y, < y, < 2. We show, by
Induction, that y, < 2 for all n € M. Indeed, this is true forn = 1, 2. If y, < 2 holds for
some k € M, then

Vi = 1+ <@ +H =] <2,

so thaty, ., < 2. Therefore y, < 2foralln € I.

We now show, by Induction, that y, <y, foralln € N. The truth of this assertion has
been verfiedforn = 1. Now supposethaty, < y,,, forsome k;then2y, +3 <2y, ., +3,
whence 1t follows that

Yer = %(2}’& +3) < ?:(Eykﬂ +3) =y

Thus y, < y,,, impliesthaty, , < y,,, Thereforey <y ., forallneN.

We have shown that the sequence Y = (y,) is increasing and bounded above by 2.
It follows from the Monotone Convergence Theorem that ¥ converges to a limit that is
at most 2, In this case it is not so easy to evaluate lim(y,) by calculating sup{y,: n € NJ.
However, there is another way to evaluate its limit. Since y, |, = i(?y" + X foralln e N,
the nth term in the 1-tail ¥, of ¥ has a simple algebraic relation to the nth term of ¥. Since,
by Theorem 3.1.9, we have y :=lim ¥, = lim Y, it therefore follows from Theorem 3.2.3

(why?) that
= 12y +3),
from which it follows that y = 3/2.
(b) Let Z = (z,) be the sequence of real numbers defined by z, = 2z, for

1 € M. We will Show that lim(z ) = 2.

Note that z, = 1 and z, = V2 hence 1 < z, <z, < 2. We claim that the sequence
Z 15 increasing and bounded above by 2. To show this we will show, by Induction, that

Prepared by Y.Sangeetha, Asst Prof, Department of Mathematics, KAHE Page 3/11




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BSC MATHEMATICS COURSE NAME: REAL ANALYSIS
COURSE CODE: 17MMU203 UNIT: IV BATCH-2017-2020
1=z <z,,<2foralln €N This fact has been verified for n = 1. Suppose that it is

true forn = k; then 2 < 2z, < 2z, ., < 4, whence it follows (why?) that

I{ﬁfzk_'_] = EZk{zkH: H22k+1 < J4 =2

[In this last step we have used Example 2.1.13(a).] Hence the validity of the inequality 1 <
z, < z,,, < 2implies the validityof 1 <2, <z, <2 Thereforel <z <z, <2
foralln € M.

Since Z = (z,) is a bounded increasing sequence, it follows from the Monotone
Convergence Theorem that it converges to a number z := sup{z, }. It may be shown directly
that sup{z_} = 2, so that z = 2. Alternatively we may use the method employed in part (a).
The relation z, | = ,/2z_gives arelation between the nth term of the 1-tail Z, of Z and the
nth term of Z. By Theorem 3.1.9, we have lim Z, = z = lum Z. Moreover, by Theorems
3.2.3 and 3.2.10, it follows that the limit z must satisfy the relation

z=4/2z.

Hence z must satisfy the equation z* = 2z which has the roots z = 0, 2. Since the terms of
z=(z )allsatisfy 1 <z < 2,itfollows from Theorem 3.2.6 that we musthave 1 = z = 2.
Therefore z = 2. _ O

Example Leta > 0; we will construct a sequence (s,) of real numbers that con-

verges to ./a.

Lets, > Obe arbitrary and define 5, | = %(sﬂ +a/s,) forn € N. We now show that
the sequence (s,) converges to ,/a. (This process for calculating square roots was known
in Mesopotamia before 1500 B.C.)

We first show that .rf > a for n = 2. Since s satisfies the quadratic equation 3‘3 -
25, .15, +a = 0, this equation has a real root. Hence the discriminant 452, | — 4a must be
nonnegative; that is, 53+1 =>aforn = 1.

To see that (s,) is ultimately decreasing, we note that for n > 2 we have

1 a 1 (s} —a)
—y =5 — — — =21 > 0.
Sn n+l1 n 2 (.5'" + g ) 2 § —-_

n n

Hence, s, ., < s, for all n > 2, The Monotone Convergence Theorem implies that s :=

=

lim(s, ) exists. Moreover, from Theorem 3.2.3, the limit s must satisfy the relation

3 (5+9)
s==(s+-},
2 8
whence it follows (why?) that s = a/s or s> = a. Thus s = ./a.

For the purposes of calculation, it is often important to have an estimate of how rapidly
the sequence (s, ) converges to ./a. As above, we have /a < s, for all n > 2, whence it
follows that a/s, < \/a < s,. Thus we have

DESH—ﬁfsn—a,‘:ﬂ=(s;‘:—a)/.§" for n=>2.

-

Prepared by Y.Sangeetha, Asst Prof, Department of Mathematics, KAHE Page 4/11




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BSC MATHEMATICS COURSE NAME: REAL ANALYSIS
RSE DE: 1 203 UNIT: IV BATCH-2017-2020
Definition Let X = (x,) be a sequence of real numbers and letn, <n;, < -~ <

n, < - -beastrictly increasing sequence of natural numbers. Then the sequence X' = (I"k)

given by

is called a subsequence of X.

Example 1

Let (s, ) be the sequence defined by s, = n?(—1 J™. The positive terms
of this sequence comprise a subsequence. In this case, the sequence
(8 ) 18

(—1,4,—9,16, —25,36, —49.64,...)
and the subsequence is
(4,16,36,64, 100, 144, .. .).

More precisely, the subsequence is (sp, Jpemw Where ngp=2k so
that Hﬂkz{ﬂk‘]g[—l}lg‘["zékg. The selection function « is given by
a(k)=2k. |

Example 2
Consider the sequence a, = sin{% and its subsequence (ay, ) of
nonnegative terms. The sequence (ay )n=m 1S

1 1 - 1 1 1 — 1 1 1
[Eq’_.iqﬁ,ﬂ,—if.—ﬁvﬁ,n,iﬁ,ﬁﬁ,ﬂ.—55,—5»@,0....:
and the desired subsequence is

1 1 1 1 _
I[ﬁv"ﬁ. ?ﬁ, 0,0, Evﬁ. Evﬁ, 0,0,...).

It is evident that nqy = 1, na = 2, g = 3, ng = 6. ns = 7, ng = 8,

e = 9, ng = 12, ng = 13, ete. We won'’t need a formula for ng,
but here is one: ng = k + EL%J for &k = 1, where |x| is the *floor
function,” i.e., |r]| is the largest integer less than or equal to x, for
r e R. 1
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Theorem.

Let (sn) be a sequence.
(1) Ift is in R, then there is a subsequence of (s, ) converging to t
if and only if the set {n € M : |8, — t| < €} is infinite for all
e = 0.
(i1) If the sequence (sy) is unbounded above, it has a subsequence
with limit 4o00.
(1) Similarly, if (sn) ts unbounded below, a subsequence has limit
— .
In each case, the subsequence can be ftaken fo be monotonic.-

Proof
The forward implications — in (i)—(iili) are all easy to check. For
example, if limy, s;,, =t and € = 0, then all but finitely many of the
ngs are in {n € M : |s, —t| < €}. We focus on the other implications.
(i) First suppose the set {n € M : 5, = t} is infinite. Then
there are subsequences (sp, )pem such that s,, = ¢ for all
k. Such subsequences of (s, ) are boring monotonic sequences
converging to f.
Henceforth, we assume {n € M : s, = t} is finite. Then

fneM:0 < |s; — 1] < e} 1s infinite for all € = 0.
Since these sets equal
[neM:f—e<sp<tlU{neM:t<s, <t+ e},
and these sets get smaller as € — (0, we have
fneM:t—€< s, <t} isinfinite for all € = 0, (1)
or
fneM:t <s, <t+e} 1sinfinite for all e = 0; (2)

otherwise, for sufficiently small € = 0, the sets in both (1)
and (2) would be finite.
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a subsequence (s, Jremn satisfying t — 1 < 5, < ¢

and
1 B .
max 4 Sp,_, .t — = < 8p, <t for k=2 (3)
Specifically, we will assume 4. 19, ..., ni_1 have been selected

satisfying (3) and show how to select ny. This will give us an
infinite increasing sequence (71 )ker and hence a subsequence
(8n, ) of (s,) satisfying (3). Since we will have s,, , < s,
for all k. this subsequence will be monotonically increasing.
Since (3) also will imply ¢ —]17 = 8p, < t for all k, we will have
limy, s, = &

Select nq so that £ — 1 < 5,, <
t; this is possible by (1). Suppose n1,n2,...,7n;_1 have been
selected so that

Tig << Mg < --- << Tip_q (4)

and
1 B _ : =
max 4 Sp._,,t — 3 < 8p; <t for 7=2,....k—1. (5)

Using (1) with € = max{sn, ,.f— ;}5} we can select ng = np_1q
satisfying (5) for j = k, so that (3) holds for k. The procedure
defines the sequence (ng)rem. This completes the proof of (i),
and is the crux of the full proof.

(ii) Let iy = 1, say. Given 1y < --- << ng_q, select ng so that
8p, = max{sn,_,.k}. This is possible, since (sy) is unbounded
above. The sequence so obtained will be monotonic and have
limit +oc. A similar proof verifies (1ii). |
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The Bolzano-Weierstrass Theorem A bounded sequence of real numbers has a
convergent subsequence.

First Proof. Tt follows from the Monotone Subsequence Theorem that if X = (x ) is
a bounded sequence, then it has a subsequence X' = (x, ) that is monotone. Since this
¥

subsequence is also bounded, it follows from the Monotone Convergence Theorem 3.3.2
that the subsequence is convergent. QE.D.

Second Proof. Since the set of values {x_: n € N} is bounded, this set is contained in an
interval I, := [a, b]. We take n, := 1.

We now biscct /, into two equal subintervals I{ and /7', and divide the set of indices
[n € N:n > 1} into two parts:

Aji={neN:n>n,x, €l} Bi={neN:n>n,x €l}

If A, is infinite, we take I, := I{ and let n, be the smallest natural number in A,. (See
1.2.1.) If A, is a finite set, then B, must be infinite, and we take /, := I’ and Jet n, be the
smallest natural number in B,.

We now bisect 7, into two equal subintervals /, and /3, and divide the set {n € N :
n > n,}into two parts:

A,={nelN:n>n,x €l B,:={neN:n>n,x €l}

If A, is infinite, we take /Iy := [, and let n, be the smallest natural number in A, If A, isa
finite set, then B, must be infinite, and we take I, := Iy and let n, be the smallest natural

number in B,.
We continue in this way to obtain a sequence of nested intervals [, 2 1, 2 -+ 2 [ 2
- and a subsequence {x_) of X such that x, € I, for k € N. Since the length of J, 1s
k k

equal to (b — a},‘lk“ , it follows from Theorem 2.5.3 that there 15 a (unique) common point
£ € [, forall k € N. Moreover, since Xy and & both belong to J,, we have

I, — &l = (b —a)/2"7",

whence it follows that the subsequence (x, ) of X converges (o £. QED.
k
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Theorem LetX = (x,) be a bounded sequence of real numbers and let x € R have
the property that every convergent subsequence of X converges to x. Then the sequence X
CONVErges to x.

Proof. Suppose M > 0 is a bound for the sequence X so that |x | < M for all n € N.
If X does not converge to x, then Theorem 3.4.4 implies that there exist £, > 0 and a
subsequence X' = (x, ) of X such that

(1) I)-:ﬂJt — x| =g, forall kel

Since X' is a subsequence of X, the number M is also a bound for X’. Hence the Bolzano-
Weierstrass Theorem implies that X’ has a convergent subsequence X”. Since X" is also a
subsequence of X, it converges to x by hypothesis. Thus, its terms ultimately belong to the
£,-neighborhood of x, contradicting (1). QED.

Definition A sequence X = (x, ) of real numbers 15 said to be a Cauchy sequence
if for every £ > 0 there exists a natural number H(e) such that for all natural numbers
n,m > Hfe), theterms x . x_satisfy [x, —x | <e.

Examples (a) The sequence (1/n) is a Cauchy sequence.
If £ > 0 is given, we choose a natural number H = H (&) such that H > 2/e. Then
if m,n> H, we have 1/n < 1/H < £/2 and similarly 1/m < £/2. Therefore, it follows
thatif m, n = H, then

1 ]

1 mn

c:l+1 £+5
— 4 — =« -4+ — =&
“n m 2 2

Since £ = 0 is arbitrary, we conclude that (1 /n) is a Cauchy sequence.

Lemma A Cauchy sequence of real numbers is bounded.

Proof. Let X := (x_ ) be a Cauchy sequence and let & ;= 1, If  := H (1) and n = H,
then |x, — x| < 1. Hence, by the Tnangle Ineguality, we have |x,| < |x |+ 1 for all
n > H.If we set

M i=sup {|x |, 1%,], -, [x g | X gl + 1},

then it follows that |x_| < M foralln € M.
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Cauchy Convergence Criterion A sequence of real numbers is convergent if and
only if it is a Cauchy sequence.

Proof. We have seen, in Lemma 3.5.3, that a convergent sequence is a Cauchy sequence.

Conversely, let X = (x ) be a Cauchy sequence; we will show that X is convergent to
some real number. First we observe from Lemma 3.5.4 that the sequence X 1s bounded.
Therefore, by the Bolzano-Weierstrass Theorem 3.4.8, there is a subsequence X' = (X”k)

of X that converges to some real number x*. We shall complete the proof by showing that
X convergesto x".
Since X = (x_) is a Cauchy scquence, given ¢ > 0 there is a natural number H (¢/2)

such thatif n, m = H{(e/2) then
(1) lx, — x| < ¢&/2.

Since the subsequence X' = (x_ ) converges to x”, there is a natural number K > H (£/2)
belonging to the set {n, n,, - -} such that

| —x7| < &/2.
Since K = H(g/2), it follows from (1) with m = K that
lx, — x| <€&/2 for n> H(e/2).
Therefore, if n = H(g/2), we have

lx, = x| = |(x, —xp) + (x, —x7)|
< |x, — xgl| + lx, — 27|
<e/24€6/2=¢

Since ¢ > Otis arbitrary, we infer thatlim(x ) = x*. Therefore the sequence X is convergent.
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POSSIBLE QUESTIONS

PART-B (5 x 2 =10 Marks)

Answer all the questions

RN .

Give an example of a bounded sequence that is not a Cauchy sequence.
State monotone subsequence theorem.

Give an example for Cauchy sequence.

Define a subsequence.

Give an example of a bounded sequence that is not a Cauchy sequence.

PART-C (5 x 6 =30 Marks)

Answer all the questions

1.

2
3.
4

\l

9

State and prove Bolzano- Weirstrass theorem.

. Prove that a Cauchy sequence of real numbers is bounded

Test the convergence of the series Y (cos nxt )/(n? +1)

. Prove that any subsequence of a convergent sequence is convergent. Also prove that the
converse need not be true.

. If a sequence X=(xn) of real numbers converges to a real number x,then any subsequence

X’:(x,zk) of X, also converges to Xx.

. Prove that any convergent sequence is a Cauchy sequence.

. State and prove Cauchy convergence criterion

. Prove that any subsequence of a convergent sequence is convergent. Also prove that the
converse need not be true.

. State and prove monotone subsequence theorem.

10. Prove that a bounded sequence converges to X if every subsequence converges to X.
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Part A (20x1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)

Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
Constant sequence converges oscillates diverges converges to 1 Converges
The sequence {1,1,1,1,1,.....} converges oscillates diverges converges to 1 converges to 1
The sequence {1,0,1,0,1,0,...} converges oscillates diverges convergesto 1 Oscillates
The harmonic series converges if P=1 p>1 P<1 P=0 p>1
In limit comparison test both the series converges ris not equal to
i P 8 r=1 r=0 g R=2 ris not equal to zero
absolutely if zero
For the absolute convergence of the series, the ratio Less than or equal |Greater than equal
Less thanr Greater thanr Less than or equal tor
between n+1th term and nth term must be tor tor
For the absolute convergence of the series, the nth Less than or equal |Greater than equal
Less thanr Greater thanr Less than or equal tor
root of nth term must be tor tor
The alternating harmonic series converges oscillates diverges convergesto 1 Converges
If a series converges absolutely, the series converges oscillates diverges converges to 1 Converges
A series converges iff converges absolutely if the series . . . .
. positive negative Non zero Eitheraorb Positive
consists of ----terms
The series 1-1+1-1+1-1+... converges oscillates diverges converges to 1 Diverges
{1,2,.....,100000} uncountable countable infinite countably infinite countable
Suppose fis a one to one function. Then x not eqauly  f(x) is not equal
implies to f(y) f(x)=f(y) f(x)<f(y) f(x)>f(y) f(x) is not equal to f(y)
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Suppose fis a one to one function. Then f(x)=f(y)

implies X=-y y=x+10 X=y x is not eqaul y X=y

Let f be a bijection between Aand Band Ais

counatble then B is uncountable countable finite similar toR countable
Let f be a function defined on A and itself such that neither one to one

f(x)=x. Then fis onto one to one bijection nor onto bijection
Constant function is an example for onto one to one many to one bijection many to one
Stricly increasing function is an onto function one to one many to one bijection one toone
Strictly decreasing function is an onto function one to one many to one bijection one to one
If g(x) =3x +x+ 5, evaluate g (2) 8 9 13 17 13

A ={x: x # X Jrepresents {1} {} {0} {2} {}

If a set A has n elements, then the total number of

subsets of A is n! 2n 2" n 2"
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UNIT-V
SYLLABUS

Sequence of functions, Series of functions, Pointwise and uniform convergence. M-test,
Statements of the results about uniform convergence and integrability and differentiability of
functions, Power series and radius of convergence.

Power Series

Given a sequence (a,);> ; of real numbers, the series 3 7° , a,x™ is
called a power series. Observe the variable . Thus the power series
is a function of xr provided it converges for some or all x. Of course,
it converges for * = 0; note the convention 0 = 1. Whether it
converges for other values of  depends on the choice of coefficients

(@n). It turns out that, given any sequence (an), one of the following
holds for its power series:

(a) The power series converges for all x € R;

(b) The power series converges only for @ = 0;

(c) The power series converges for all & in some bounded interwval
centered at (; the interval may be open, half-open or closed.

Theorem.

For the power series > anpx™, let

. , ; 1
B = limsup |a,|"'"* and R = —

[If 3 =0 we set R = +oc, and if 3 = +oo we set R = 0.] Then
(1) The power series converges for |r| < K
(ii) The power series diverges for |x| = R.

R is called the radius of convergence for the power series. Note
that (i) is a vacuous statement if # = 0 and that (i1) is a vacuous
statement if # = +oo. Note also that (a) above corresponds to the
case i = 400, (b) above corresponds to the case B = 0, and (c)
above corresponds to the case 0 < R < +o00.
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Proof

The proof follows quite easily from the Root Test 14.9. Here are the
details. We want to apply the Root Test to the series » ~ apx™. So for
each r € R, let o, be the number or symbol defined in 14.9 for the
series »  an,x™. Since the nth term of the series is a,x=™, we have

-n.ll,-"n

axy = limsup |apx = lim sup |z||an| Y™ = |z| - limsup |ax|"'™ = 8|z|.

The third eguality is justified by Exercise 12.6(a). Now we consider
CASES.

Case 1. Suppose 0 < R < +oo. In this case o, = Flz| = lfril
If |x| = K then o, < 1, so the series converges by the Root Test.
Likewise, if || = R, then a; = 1 and the series diverges.

Case 2. Suppose R = +oo. Then § = 0 and o, = 0 no matter
what x is. Hence the power series converges for all & by the Root
Test.

Case 3. Suppose i = 0. Then 8 = 400 and a, = +oo for = £ (.
Thus bv the Root Test the series diverces for © £ (0. _

The series > -~ ;nlz™ has radius of convergence R = 0 because we
(n+1)0,
| il | -

have lim +oo. It diverges for every = £ (.

Clonsider the series

o {_1}?‘:+1

S @—-nn (1)

n—1

Th dius of fi T R e ) i S _ .

e radius of convergence for the series > .~ 4 —y s =1, s0
the interval of convergence for the series (1) is the interval (0, 2) plus
perhaps an endpoint or two. Direct substitution shows the series (1)
converges at r = 2 [it’s an alternating series| and diverges to —oo at
x = (). So the exact interval of convergence is (0. 2]. It turns out that
the series (1) represents the function log, > on (0, 2]. i
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Uniform Convergence

Definition.
Let (f;;) be a sequence of real-valued functions defined on a set S5 C
. The sequence (fn) converges pointwise [i.e., at each point] to a
function f defined on S if

lim frn(x)= f(z) forall zeS.
R—rOD
We often write lim f,, = f pointwise [on S| or f, — [ pointwise
[en S].
Example

Let fn(xz) = 2™ for x € [0,1]. Then fn — f pointwise on [0, 1] where
f(z)=0for x € [0.1) and f(1) = 1.

Now obhserve f, — f pointwise on S means exactly the following:

for each € = 0 and x in 5 there exists W such that 1
| fn(z) — fz)| < € for n > N. (1)

Note the value of N depends on both € = 0 and x in 5. If for each
€ = 00 we could find N =so that

|fr(xz) — fiz)| <€ forall z€& and n = N,

then the values f,(x) would be *uniformly” close to the values f(x).
Here N would depend on € but not on x. This concept is extremely
useful.

Definition.
Let (fn) be a sequence of real-valued functions defined on a set
S5 C K. The sequence ( f,) converges uniformly on S to a function f
defined on 5 if

for each € = 0 there exists a number N such that

|fr(x) — f(x)| <eforall x € 5 and all n > N. (1)

We write lim f, = f uniformly on S or f, — f uniformly on S.
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Theorem

The uniform limit of continuous functions is continuous. More pre-
cisely. let (fy) be a sequence of functions on a set S C R, suppose
fan — [ uniformly on S, and suppose S = dom(f). If each fn is
continuwous at xp in S, then f is continuous at xp. [So if each fn is
continuwous on S, then [ is continuous on S.]

Proof

This involves the famous %

7 argument.” The critical inequality is
|flz) — flzo)] = |f(x) — falx)| + | fu(x) — falzo)| + [fulzo) — flzo)l-
(1)
If n is large enough, the first and third terms on the right side of (1)
will be small, since f,, — [ uniformly. Once such n is selected, the

continity of f,;, implies that the middle term will be small provided
x is close to xp.

For the formal proof, let € = (). There exists N in M such that
n > N implies |fa(x)— f(x)| < % for all =& 5.
In particular.
€

|lfv+i(z) — f(z)] < 3

Since fp i is continuous at xp there is a 4 = 0 such that

for all z € S. (2)

. . €
z€S and |r—zo| <4 imply |[fyi1(T)—FfNn+i(zo)l <3 (3)

see Theorem 17.2. Now we apply (1) with n = N + 1, (2) twice [once

for r and once for zg| and (3) to conclude

€

3

reS and |r—xo0| <d imply |[f(z)— f(zo)| < 3- €.

This proves that f is continuous at rg.
_ Remark

Uniform convergence can be reformulated as follows. A sequence ( frn)
of functions on a set S C R converges uniformily to a function f on
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S if and only if
Jim sup{|f(z) — fa(z)| :x € 5}

(a) If g and h are integrable on [a,b] and if g(x) < hix) for all
x € [a.b], then fj glx)dr < _j;bh[::r] dx. See Theorem 33.4(1).
We also use the following corollary:
(b) If g is integrable on [a,b], then

B b
f gl(x)dx Ef |lg(x)| dx.
" Definition.

A sequence (f,) of functions defined on a set S C R is uniformly

Cauchy on S if

for each € = 0 there exists a number N such that 1
| fn(x) — fmm(x)| < € for all x € S and all m.n = N. (1)

Theorem
If a series > .- ggr of functions satisfies the Cauchy criterion
uniformly on a set S, then the series converges uniformly on S.

Proof
Let f, = EE:D gi. The sequence (f,) of partial sums is uni-

formly Cauchy on 5, so (fn) converges uniformly on S

Weierstrass M-test.
Let (M) be a sequence of nonnegative real numbers where > M, <
oo, If |ge(x)] <= My for all x in a set S, then > gp converges

uniformly on S.
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Example

Show that if the series > gn converges uniformly on a set S, then

lim sup{|gn(z)|:z = S5} =0. (1)
T—r D

Solution
Let € = 0. Since the series } _ g, satisfies the Cauchy criterion, there

exists WV such that
T

D ak(x)

k=m

n>=m>N implies < e forall =eS.

In particular.
n >N implies |ga(z)|<e forall z=e& S
Therefore
n > N implies sup{|gn(z)|:rc S} < e

This establishes (1).

Theorem
Let Ef:,:, anx™ be a power series with radius of convergence R = (0
[possibly R = +oc]. If 0 < Ry < R, then the power series converges
uniformly on [—Ry. R1] to a continuous function.

Proof

Consider 0| < R; < R. A glance at shows the se-
ries »  apx™ and 3 |ap|r™ have the same radius of convergence,
since [ and i are defined in terms of |an|. Since || < R, we
have %" |a,| R} < oo. Clearly we have |a,x"| < |a,|RT for all x in

[— Ry, 4], so the series 3~ a,x™ converges uniformly on [—Ry. I24] by
the Weierstrass M -test

The limit funetion is continuous at each
point of [— Ry, R4
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Corollary.

The power series » _ anz" converges to a continuous function on the
open intervel (—R, R).

Proof
If rp € (— K., R), then g € (—FR1. K1) for some K1 < K. The theorem
shows the limit of the series is continuous at .

Abel’s Theorem
Let f(x) = 502 papz™ be a power series with finite positive radius of
convergence K. If the series converges at * = R, then [ is continuous
at * = R. If the series converges at xr = — R, then [ is continuous
at * = —H.

Proof of Abel’s Theorem
The heart of the proof is in Case 1.

Cage 1. Suppose f(x) = Ef:ﬂ i, " has radius of convergence 1
and the series converges at ©* = 1. We will prove f is continuous
on [0, 1]. By subtracting a constant from f, we may assume f(1) =
3o pan = 0. Let fu(z) = Y _parr® and s, = Y. p_gar = fa(l)
forn = 0.1.2,.... Since fn(x) — f(x) pointwise on [0, 1] and each
frn 18 continuous,

For m = n. we have

fr(z) — fm(x) = Z arx® Z (sk — sk—1)x"

k=m+1 _m+1
m
= Z QF.-T — & Z Qk—lf
k=m-+1 k=m-+1
m n—1
= Z Q;ﬁ.‘]“ — I Z E-ki"
k=m+1 k—=m
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and therefore
—1

fr(x) — fm(x) = sna®™ — sma™ T+ (1—x) D sz, (1)
k:m—l—l
Since im s, = Eif;ﬂ ap = f(1) = 0, given € = 0, there is an integer NV
so that |s,| < § for alln = N. Then for n > m = N and x in [0, 1),
we have

n—1 n—1

(1 —x) Z spa® {_:g{l_l-} Z *

k=m-+1 k=m-+1
£ 1 — gn—m-1 € .
— (1 — pyr™t! - 2
gl - =z ~3 @
The first term in Inequality (2) is also less than § for = = 1.

Therefore, for n > m = N and = in [0, 1], (1) and (2) show
. € € £ €
|fn[_I) - fm{IH = |Sﬂ|In + |Sm|il'm+1 -+ E = E + E -+ E = E.
Thus the sequence (f,;) is uniformly Cauchy on [0, 1], and its limit
f is continuous.

Case 2. Suppose f(x) = i 5 anz™ has radius of convergence R,
0 <= R < oo, and the series converges at * = K. Let g(xr) = f(H=x)
and note that

s ]
g(zr) = Zanf?“:r:”' for |x| < 1.
n=>0

This series has radius of convergence 1, and it converges at @ = 1.
By Case 1, g is continuous at = = 1. Since f(x) = g{%}, it follows
that f is continuous at = = K.

Case 3. Suppose f(x) =322 , a,z™ has radius of convergence R,
0 < R < oo, and the series converges at * = —R. Let h(x) = f(—=x)
and note that

L ]
h(z) = (—1)"ana™ for |z| < R.
n=I{0

The series for h converges at © = K, so h is continuous at @ = K by
Case 2. It follows that f{x) = h(—=z) i1s continuous at r = — K. -
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.SC MATHEMATICS COURSE NAME: REAL ANALYSIS
RSE DE: 1 203 UNIT: V BATCH-2017-2020
Lemma.
Forxre B and n = 0, we have
ik mn i

Z['n:r — P:}E -:rf"l[l N nr(l —zr) < —. (1)

k=0
Proof

Since k‘(z] = n {f:}:l for & = 1. we have

- AT ke am—k — (n—1 kpq _ oon—k
E R(k‘)l (1—x) —HE (E—I)T (1 —x)
=0
el 1
= nr E _ (1 — p)y 13
( J ) '

= 7. (2)

Since k(k — 1)(}) = n(n — 1)(}°3) for k = 2, we have

n n—2 o . . -
Z k(k — L;'(?:) Tk{l - -ﬂ}“_k = n(n — 1)z* E (ﬂ _ h):rjl[l Y
: : J
=0

=0
= n(n — 1)z2. (3)

Adding the results in (2) and (3)., we find

kL
Z k2 (2) (1 —x)"F = nn—1)22 + nz = n?2? +na(1 —z). (4)
k=0

Since (nx — k)2 = n?x? — 2nzx -k + k2,
to obtain
Z{nr — k}z(z)rku —z)" % = n?z? _ Inx(nz) + [R?x? 4+ nx(l — )]
k=0
=nx(l —x).

This establishes the equality in (1). The inequality in (1) simply
reflects the inequality z(1 —x) < —1{ which is equivalent to 4r? —4x +
1 =0 or (Eﬂ"—l}gf_}[}.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 1 B.SC MATHEMATICS COURSE NAME: REAL ANALYSIS
RSE DE:1 203 UNIT: V BATCH-2017-2020

POSSIBLE QUESTIONS

PART-B (5 x 2 =10 Marks)
Answer all the questions
Define absolutely convergent of a series.
Define radius of convergence.
Define power series.
Define uniformly convergent of a series.
Define convergent of a series.

gk~ owpneE

PART-C (5 x 6 =30 Marks)
Answer all the questions

1. State and prove Weierstrass M test

2. State and prove Cauchy Hadamard theorem.

3. If R is the radius of convergence of the power series Xa,x™, prove that the series absolutely
convergent if |x| < R and divergent if |x| = R.

4. State and prove differentiation theorem

. State and prove Cauchy criterion for series of functions.

6. If R is the radius of convergence of the power series X a,,x™, prove that the series absolutely

(621

convergent if |x| < R and divergent if x| = R.

7.1f Ta,x™and Xb,x™ converges on some interval (—r,r),r = 0, to the same function £,
then prove that @,, = b,, forallm € N.

8. State and prove M test

9. State and prove Cauchy criterion for series of functions.
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Unit-V / 2017-2020 Batch

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),

Coimbatore —641 021

Subject: Real Analysis

Subject Code: 17MMU203

Class :1-B.Sc. Mathematics Semester :1I
Unit V
Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
If R is the radius of convergence of the series, the series SR R <R Less than or equal to <R
converges absolutely if |x| - R
If rho=infinity, the radius of convergence R is 0 2 3
If rho=0, the radius of convergence R is 0 2]infinity Infinity
If rho is finite, the radius of convergence R is OJRho Reciprocal of rho [Jinfinity Reciprocal of rho
If R is the radius of convergence of the series, the series Less than or equal to
. . >R =R <R >R
diverges if | x| R
If R is the radius of convergence then the interval of
. (_RIR] [_RIR] (-RIR) [_RIR) ('R,R)
convergence is
The sequence of functions (x/n) converges to a function 0 1 5 3
X=
Th f functi t
es.equencc?o }Jnc ions x power n converges to a 1and 2 1and1 0and 1 1and 0 1and1

function x=0 if x lies between

. - . converges .
A series of positive terms converges then the series converges only absolutely both A and B neither A nor B both A and B
A convergent series contains only finite number of converges .

. o converges only both A and B neither A nor B converges absolutely
negative terms then it is absolutely
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. . - N = — - ~ (¥ ~ =
A convergent series contains only -------- number of GG G~G G=G G ~G G¥G
. . infinite finite countable finite
negative terms then it is converges absolutely 10
A convergent series contains only finite number of ------ . . .
. negative positive zero negative
-- terms then it is converges absolutely 1
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images under T

8.lim 2 =
Reg NO.wieiinrreiencrniiecrnieniinenns n
a.-1 b. 1 ¢.2 d. 0
[16MMU103]
9. Geometric series . =1" converges if
KARPAGAM UNIVERSITY L% b 1 cig e
Karpagam Academy of Higher Education S Fe i == =l
(Established Under Section 3 of UGC Act 1956)
COIMBATORE - 641 021 10. For the series Z:("l)", S.=1lifnis
(For the candidates admitted from 2016 onwards) s b Biant c. prime d. composite
B.Sc., DEGREE EXAMINATION, NOVEMBER 2017
First Semester 11. If the series ZX,, converges, limx, =
MATHEMATICS a.0 b.-1 (| d. 2
REAL ANALYSIS . 1 )
f Time: 3 hours Maximum : 60 marks 12. The series Zn_p converges if p
. p< . p= . p> Lp=
PART — A (20 x 1 =20 Marks) (30 Minutes) %Pl L2 w c.p>1 dug 1
(Question Nos. 1 to 20 Online Examinations) ;
13. A convergent sequence is ------- sequence
1. Which of the following is a rational number? a. unbounded b. constant c. bounded d. non constant
a.e b. n c.v2 d.ﬁ 111
. The series | ——+——=+... i
\ 2. For every real x there is an integer n such that B ThisRgnes 2 3 4 lS
f a.n<x b.x<n c.n=x d.x<n a. diverges b. converges c. converges to 1 d. converges to 2
|
|
‘ 3. Which of the following is not true? 5 7.9 11
15. The series 7= +—-——+
a ol +b[<fa+b b la-lbl<fa+b] e larbi<fal+]b] . jat=[alp 246 8
a. diverges b. converges c. oscillates d. converges to 0

4. Let f: R — R be a function defined by f(x) =x* . Then range of fis L1 1111

a. [0,,] : b.[- ©,0] c. [0,:0] d.R T SO SN AR o 0: EOTE e WO PRI
16. The series 5™ 1002 2 log3 2 log

5. Fibonacci sequence is a ------- function a. converges b. diverges c. oscillates d. converges to 0

a. bounded b. onto . one-one d. unbounded

. 1+_L__l._i+i+i_ 1 £ 1

6. { Xa}is a constant sequence if ¥, = ¢, a constant for 17.Theseries 1+ 57 =7~ T2 T r "7 Tgr

a. Some n €N b. allnen C.NONEN d.onlyonenen a. converges b. diverges c. oscillates d. converges to 1
7. A sequence in R has ------- one limit iX 1 a

a. atmost b. atleast c.no d. all the above 18. Tx,, is absolutely convergent if 3 ------- and n>N such thatl X'H =

aa>1 bast Cra=t d. None of these
1 2




o+l

X
19. Ifa=lim (n[l—
X

}) exists the ) x, converges absolutely when

n

a.a>1 b.a<1 c.a=1 dax1

20.If Y ¢, sinnx converges uniformly and (c,) is a decreasing sequence then

lim nc,
a. l b. 2 ¢.3 d. 0

PART B (5 x 2 = 10 Marks) (2 2 Hours)
Answer ALL the Questions

21. Define countable set.

22. Define a bounded sequence.

23. Define a harmonic sequence.

24. Give an example for Cauchy sequence.
25. Define power series.

PART C (5 x 6 = 30 Marks)
Answer ALL the Questions

26. a. Prove that the set of all rational number is countable.
Or

b.Ifab e R, plove that a + b|< |a|+ lb\

27.a. If a >0, then prove that 1im(—]——) =0
1+na

Or
b. Prove that a convergent sequence of real numbers is bounded. Also prove that
the converse is need not be true. ’

28. a. State and prove Cauchy criterion for series
Or
b. Prove the p- series converges if p> 1.

29. a. State and prove Bolzano- Weirstrass theorem.
Or
b. Prove that every convergent sequence is Cauchy sequence. Also prove that the
converse need not be true.

30. a. State and prove Weierstrass# test
Or
b. State and prove Cauchy Hadamard theorem.

Time!
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(17MMU203)

KARPAGAM ACADEMY OF HIGHER EDUCATION

COIMBATORE - 641021
Department of Mathematics
SECOND SEMESTER
Il Internal Test
REAL ANALYSIS
Date: 01.03.2018( ) Time: 2 Hours
Class: | B.Sc Mathematics Maximum: 50 Marks

PART — A (20 x 1 = 20 marks)
ANSWER ALL THE QUESTIONS

1.Which of the following is a geometric series?

1

— n

2. For the series Yo—o(—1)", s, =0ifnis

a. odd b. even C. prime d. composite
. . 1
3. The series Yo-4 —y converges to
a. 0 b.-1 c.1 d.2

. 1 .
4. The series Yo s
a. converges b. diverges  c.oscilates  d. convergesto 1
5. Geometric series Y%, " converges if

ar=1 b.r<1 cr=1 dr<1
6. For the series Yo o(—=1)™, s, =1 ifnis

a. odd b. even C. prime d. composite
7. |Ifthe series Y x,, converges, limx,, =

a. 0 b.-1 c.1 d. 2/*

8. The series }3° nipconverges if p
a. p<l b. p=1 c.p>1 dp=>1

9. Geometric series Yo, " diverges if

a r=>1 h.r<1 cr=1
10. If lim |x,,| = Othen limx,, =
a. -1 h.0 c. 1
11. For the series 2.5 r™ , s, =
1 T 1-r"
— ) C.
1-r 1-r 1+7r

12. The series 2.3° ﬁ is

a. diverges b. oscillates c. converges

. n
13. lim (m) =
a. -1 b.1 C. 2
1
n-n —————
a. diverges b. converges c. oscillates

101 _
15. If 1+\/—§+\/—§+"'—

a. diverges b. converges c. oscillates

14. Geometric series Yo,

16. The series X.7° m is

a. diverges b. oscillates c. converges

17. The series X.5° nl;gn

a. converges b. diverges  c. oscillates
18. lim (1 + i)n =
L 1m n =

a e b.m c. 1.6018
. 1

19. lim (m) -
a -1 b. 1 C.2

20. The series 1+~ 4+~ += .. ..
2 3 4 5

a .diverges b. converges c. oscillates

1_rn+1

1+r

. convergesto 0

. convergesto 1

. convergesto 1

. convergesto 0

. convergesto 0

2

. convergesto 1



PART-B ( 3 X 2 =6 Marks)
ANSWER ALL THE QUESTIONS
21. Define a bounded sequence.
22. Define a monotone sequence.
23. State the n'" term test.

PART-C (3 X 8 = 24 Marks)
ANSWER ALL THE QUESTIONS
24. a)State and prove Monotone convergence theorem.
(OR)
b)Prove that the 2 — series converges.

25 a) Let X = (x,) and Y = (y,,) be sequence of real numbers that
converges to x and y respectively. Prove that the sequences X + Y
andXY converge to x + y and xy respectively.

(OR)
b) State and prove Squeeze theorem.

26. a) Show that X§ D) 2
(OR)

oo n!(2n)

b) Test the convergence of series ).7 -



Reg. NO -------------
(17MMU203)
KARPAGAM ACADEMY OF HIGHER EDUCATION

COIMBATORE - 641021
Department of Mathematics
SECOND SEMESTER
I Internal Test - Jan' 18
REAL ANALYSIS
Date: 20.01.2018 (AN)
Class: | B.Sc Mathematics

Time: 2 Hours
Maximum: 50 Marks

PART — A (20 x 1 = 20 marks)
ANSWER ALL THE QUESTIONS

1) Areal number E, (p,q € Z) is a rational number if --------

a)g=0 b)g=0 c)g=0 d)g=
2) For every real x there is an integer n such that ----------
an < x byx<n c)n=x dx=n

3) Which of the following is the triangle inequality?
a)lal + 16l < |a+ b| b)lal — |b] < |a— b]

c)la+ bl = |al + |b| d)lal = |b]
4) Let f: R = R be a function defined byf(x) = |x|. Then range of f
IS -----m---
a)[0,,00) b) (—o0,0)  c) (0,00) d) R

5. Let f: R = R be a function defined byf(x) = x. Then f is ------
a)onto Db)one-one c)bothaandb d)neither anorb

6. A sequence in R has------- one limit

a) atmost b)atleast C) no d) exactly
7. Letf:A—E be an onto function. Then we have -------
a)R;c A b)R; = B C)Rs = A dR;=E
8. Which of the following is a rational number?
a) e b) c) V2 d) —
9. Every nonempty set of real numbers that has an
upper bound also has a --------- in R.

a) infimum  b) supremum  c)countable  d)finite
10. A set Sissaid to be countably infinite if there is a
-------- between N and S

a)one-to-one b)onto c)bijection d) injection
11. The set N of natural numbers is an -------- set.
a) uncountable b)finite c)infinite d)empty

12. The union of two disjoint denumerable sets is --------
a) denumerable  b)uncountable c)finite  d)infinite
13. AsetS issaid to be infinite if it is -------

a) finite b)not finite  c)empty d)countable
14. Which of the following is a rational number?
a) e b) c) V2 d)—

100

15. Let f: R — R be a function defined byf(x) = x2. Then range

a) [0,, ) b) (=o2,0)  ¢) (0, ) d) R
16. The nth (n>2) term of the Fibonacci sequence is --------
A = fa—z + fa-1 D)fer = fra+fy
C)fo=rfa—2Xfa-1 d)n



17. If S={1/n: ne N}, then inf S=------

a) 0 b) 1 c)2

18. The empty set ¢ is said to have --------- elements
a) 2 b) 8 c) 0

19. lim(l/n) = ------
a) 2 b) 3 c)0

20. If O<b<l, then lim(b"= ---------
a)0 b)6 c)3

PART-B (3 X 2 =6 Marks)
ANSWER ALL THE QUESTIONS
21. Define countable set.

22. Give two examples for uncountable sets.
23. Define a convergent sequence.

PART-C ( 3 X 8 = 24 Marks)

ANSWER ALL THE QUESTIONS

d)3
d) 5

d) 9

d) 2

24. a) Prove that the set of all rational number is countable.

(OR)
b) If a,b €R, then prove that |a + b| = |al + ||

25. a) State and prove uniqueness theorem on limit.
(OR)
b) State and prove Archimedean property.

26. a) State and prove Cantor ’s Theorem

(OR)
b) Let S beasubsetof Rand a €R. Prove that
a+supS = sup{a +5)
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SECOND SEMESTER
Il Internal Test
REAL ANALYSIS
Time: 2 Hours

I B.Sc Mathematics Maximum: 50 Marks

PART — A (20 x 1 = 20 marks)

ANSWER ALL THE QUESTIONS

1.

Constant sequence is

a) converges b)oscillates c)diverges
d)convergesto 1

The sequence {1,1,1,1,1,.....}

a)converges b)oscillates c)diverges
d)convergesto 1

The sequence {1,0,1,0,1,0,...}

a)converges b)oscillates c)diverges

d)converges to 1

The harmonic series is converges if

a)p=1 b)p>1 c)p<1 d)p=0

For the absolute convergence of the series, the nth root of
nth term must be

a)less than r b)greater than r c)less than or
equaltor d)greater than or equal to r

The alternating harmonic series is

10.

11.

12.

13.

14.

15.

a)converges
d)convergesto 1
If a series converges absolutely, then the series
a)converges b)oscillates c)diverges
d)convergesto 1

A series converges iff converges absolutely if the series
consists of terms

b)oscillates c) diverges

a)positive b)negative c)non zero d)eitheraorb
The series 1-1+1-1+1-1+... is

a)converges b)oscillates c)diverges
d)convergesto 1

{1,2,.....,100000} is

a)uncountable b)countable c)infinite

d)countably infinite

Let f be a function defined on A and itself such that f(x)= x.
Then fis

a)onto b)one to one c)bijection
to one nor onto

Constant function is an example for
a)onto b)onetoone c)many to one
Strictly increasing function is an

a) onto function b)one to one
d)bijection

Strictly decreasing function is an
a)onto function b)one to one
d)bijection

If rho=infinity, the radius of convergence R is
a0 bl c)2 d)3

d)neither one

d)bijection

c)many to one

c)many to one



16. If rho=0, the radius of convergence R is

a) 0 b)1 c)2 d)infinity
17. If rho is finite, the radius of convergence R is
a)0 b)Rho c)Reciprocal of rho
d)infinity
18. If R is the radius of convergence of the series, the series
diverges if |x|
a)>R b)=R C)<R d)less than or equal to R

19. If R is the radius of convergence then the interval of
convergence is
a) (-RR] b)[-R.R] 0)(-R.R) d)[-R.R)
20."If the series converges at X = R, then f is continuous at

a)x=R b)x<R c)x>R d)x#R

PART-B (3 X 2 =6 Marks)
ANSWER ALL THE QUESTIONS
21. State monotone subsequence theorem.
22. Define radius of convergence.
23. Give an example of a bounded sequence that is not a
Cauchy sequence.

PART-C (3 X 8 =24 Marks)
ANSWER ALL THE QUESTIONS
24. a) State and prove Bolzano- Weirstrass theorem.
(OR)

b) Prove that a Cauchy sequence of real numbers is bounded

25. a) Test the convergence of the series Y (cos nm )/(n? +1)
(OR)
b)Prove that a sequence (f,) of bounded function on A contained
in R converges uniformly on A to f if and only if || f,— f|| — 0.

26. a)Prove that any subsequence of a convergent sequence is
convergent. Also prove that the converse need not be true.
(OR)
b) State and prove M test
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