

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

Semester – VI

16ITU603A

NUMERICAL METHODS

3H – 3C

Instruction Hours / week:L: 3 T: 0 P: 0	Marks:Int :40 Ext : 60	Total: 100
---	------------------------	-------------------

SCOPE

It exposes the students to study numerical techniques as powerful tools in scientific computing

OBJECTIVES

This course a deep knowledge to the learners to understand the basic concepts of numerical methods which utilize computers to solve Engineering problems that are not easily solved or even impossible to solve by analytical means.

UNIT I

Floating point representation and computer arithmetic – significant digits. Errors: round-off error – local truncation error – global truncation error – order of a method convergence and terminal conditions – efficient computations – bisection method – secant methods – Regula-Falsi method – Newton – Raphson method – Newton's method for solving non-linear systems.

UNIT II

Gauss elimination method (with row pivoting) and Gauss-Jordan method – Gauss thomas method for tridiagonal systems. Interative methods: Jacobi and Gauss-seidalinterative methods.

UNIT III

Interpolation: Lagrange's form and Newton's form – Finite difference operators – Gregory Newton forward and backward differences inerpolation Piecewise polynomial interpolation: Linear interpolation – Cubic spline interpolation (only method).

UNIT IV

Numerical differentiation: First derivatives and second order derivates – Richardson extrapolation. Numerical integration: traphezoid rule – simpson's rule (only method) – newton – Cotes open formulas.

UNIT V

Extrapolation method : Romberg integration- Cosine quadrature. Ordinary differential equations: Euler's method modified Euler's methods – Heun method and mid-point method – Runge-kutta second methods – Heun method without iteration – mid-point method and Ralston's method – classical 4th order Runge-Kutta method.

Suggested Readings

- 1. Laurence V. Fausett (2012). Applied Numerical analysis using MATLAB. Pearson.
- 2. M.K.Jain, S.R.K.Iyengar, R.K.Jain (2012). Numerical methods for scientific and engineering computation. New Age International Publisher.
- 3. Steven C. Chopra (2010). Applied Numerical methods with MATLAB for Engineers and Scientists. Tata McGraw Hill.

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

LECTURE PLAN DEPARTMENT OF MATHEMATICS

Staff name: M.Indhumathi Subject Name: Numerical Methods Semester: VI

Sub.Code:16ITU603A Class: III B.Sc (IT)

S.No	Lecture Duration Period	Topics to be Covered	Support Material/Page Nos
	·	UNIT-I	
1.	1	Introduction: Floating Point Representation & Computer Arithmetic & Significant Digits. Explanation of Example problems.	T ₁ :Chap1 P.No:1-7
2.	1	Errors: Round off Errors & Local Truncation Error and Global Truncation Error.	T ₁ :Chap1 P.No:7-8
3.	1	Order of a Method Convergence and Problems on Terminal Conditions, Efficient Computations & Bisection Methods, Problems on Secant Methods & Regula – Falsi method.	T ₁ :Chap2 P.No:20-26,
4.	1	Newton-Raphson Method, Problems on Newton's Method for Solving non-Linear System.	T1:Chap2 P.No:26-29
5.	1	Recapitulation and Discussion of possible questions	
Total No of	Hours Planned H	For Unit I=5	
		UNIT-II	
1.	1	Problems on Gauss Elimination Method (With Row Pivoting).	T ₁ :Chap 3 P.No:114-118
2.	1	Problems Gauss – Jordan Method & Gauss Thomas Method for Tridiagonal Systems.	T ₁ :Chap 3 P.No:119-120,

Lesson Plan ²⁰¹ Bate

	1		T CI 2 D N 146 150
3.	1	Interative Methods: Problems	T ₁ :Chap 3 P.No:146-150
	1	on Jacobi Interative Method.	T CI 2 D N 150 150
4.	1	Problems on Gauss- Seidal	T ₁ :Chap 3 P.No:150-152
		Interative methods.	
5.	1	Recapitulation and Discussion	
		of possible questions	
Total No of	Hours Planne	d For Unit II=5	
		UNIT-III	
1.	1	Interpolation : Lagrange's Form &	T ₁ :Chap 4 P.No:213-214
1.	1	Newton's Form and Finite Difference	-
		Operator.	
2.	1	Problems on Linear Interpolation.	T ₁ :Chap 4 P.No:214-216
2.	1	Troblems on Emeta Interpolation.	11.enap + 1.10.21+ 210
3.	1	Problems on Gregory Newton Forwar	rd T ₁ :Chap 4 P.No:235-236
		& Backward Differences,	
		Interpolations Piecewise Polynomial	
		Interpolation.	
4.	1	Problems on Cubic Spline Interpolation	on T ₁ :Chap 4 P.No:260-266
		(Only Method)	
5.	1	Recapitulation and Discussion of	
		possible questions	
Total No of	Hours Planne	l For Unit III=5	
		UNIT-IV	
1	1	Numerical Differentiation: Problems	T. Chap 4 P No. 267 271
1.	1	Numerical Differentiation: Problems	T ₁ :Chap 4 P.No:267-271
1.	1	on First Derivatives and Second Orde	-
		on First Derivatives and Second Orde Derivatives.	r
2.	1	on First Derivatives and Second Orde Derivatives. Problems on Richardson Extrapolation	r R ₂ :Chap 19 P.No:455
		 on First Derivatives and Second Orde Derivatives. Problems on Richardson Extrapolation Numerical Integration: Problems on 	r
2.	1	 on First Derivatives and Second Orde Derivatives. Problems on Richardson Extrapolation Numerical Integration: Problems on Traphezoidal Rule. 	r n. R ₂ :Chap 19 P.No:455 T ₁ :Chap 5 P.No:387
2.	1	 on First Derivatives and Second Order Derivatives. Problems on Richardson Extrapolation Numerical Integration: Problems on Traphezoidal Rule. Problems on Simpson's Rule (Only 	r n. R ₂ :Chap 19 P.No:455 T ₁ :Chap 5 P.No:387
2. 3. 4.	1	 on First Derivatives and Second Order Derivatives. Problems on Richardson Extrapolation Numerical Integration: Problems on Traphezoidal Rule. Problems on Simpson's Rule (Only Method) 	r n. R ₂ :Chap 19 P.No:455 T ₁ :Chap 5 P.No:387 T ₁ :Chap 5 P.No:388-390
2. 3.	1	 on First Derivatives and Second Order Derivatives. Problems on Richardson Extrapolation Numerical Integration: Problems on Traphezoidal Rule. Problems on Simpson's Rule (Only 	r R ₂ :Chap 19 P.No:455 T ₁ :Chap 5 P.No:387 T ₁ :Chap 5 P.No:388-390 R ₂ : Chap 17 P. No:
2. 3. 4.	1 1 1 1	 on First Derivatives and Second Order Derivatives. Problems on Richardson Extrapolation Numerical Integration: Problems on Traphezoidal Rule. Problems on Simpson's Rule (Only Method) 	r n. R ₂ :Chap 19 P.No:455 T ₁ :Chap 5 P.No:387 T ₁ :Chap 5 P.No:388-390
2. 3. 4.	1 1 1 1	 on First Derivatives and Second Order Derivatives. Problems on Richardson Extrapolation Numerical Integration: Problems on Traphezoidal Rule. Problems on Simpson's Rule (Only Method) 	r R ₂ :Chap 19 P.No:455 T ₁ :Chap 5 P.No:387 T ₁ :Chap 5 P.No:388-390 R ₂ : Chap 17 P. No:
2. 3. 4. 5.	1 1 1 1 1	on First Derivatives and Second Orde Derivatives. Problems on Richardson Extrapolation Numerical Integration: Problems on Traphezoidal Rule. Problems on Simpson's Rule (Only Method) Newton – Cotes Open Formulas.	r R ₂ :Chap 19 P.No:455 T ₁ :Chap 5 P.No:387 T ₁ :Chap 5 P.No:388-390 R ₂ : Chap 17 P. No:
2. 3. 4. 5.	1 1 1 1 1	on First Derivatives and Second Orde Derivatives. Problems on Richardson Extrapolation Numerical Integration: Problems on Traphezoidal Rule. Problems on Simpson's Rule (Only Method) Newton – Cotes Open Formulas. Recapitulation and Discussion of	r R ₂ :Chap 19 P.No:455 T ₁ :Chap 5 P.No:387 T ₁ :Chap 5 P.No:388-390 R ₂ : Chap 17 P. No:
2. 3. 4. 5. 6.	1 1 1 1 1 1	on First Derivatives and Second Orde Derivatives. Problems on Richardson Extrapolation Numerical Integration: Problems on Traphezoidal Rule. Problems on Simpson's Rule (Only Method) Newton – Cotes Open Formulas. Recapitulation and Discussion of	r R ₂ :Chap 19 P.No:455 T ₁ :Chap 5 P.No:387 T ₁ :Chap 5 P.No:388-390 R ₂ : Chap 17 P. No:
2. 3. 4. 5. 6.	1 1 1 1 1 1	on First Derivatives and Second Orde Derivatives. Problems on Richardson Extrapolation Numerical Integration: Problems on Traphezoidal Rule. Problems on Simpson's Rule (Only Method) Newton – Cotes Open Formulas. Recapitulation and Discussion of possible questions	r R ₂ :Chap 19 P.No:455 T ₁ :Chap 5 P.No:387 T ₁ :Chap 5 P.No:388-390 R ₂ : Chap 17 P. No:
2. 3. 4. 5. 6.	1 1 1 1 1 1	 on First Derivatives and Second Order Derivatives. Problems on Richardson Extrapolation Numerical Integration: Problems on Traphezoidal Rule. Problems on Simpson's Rule (Only Method) Newton – Cotes Open Formulas. Recapitulation and Discussion of possible questions H For Unit IV=6 	r R ₂ :Chap 19 P.No:455 T ₁ :Chap 5 P.No:387 T ₁ :Chap 5 P.No:388-390 R ₂ : Chap 17 P. No: 396-398
2. 3. 4. 5. 6. Total No of	1 1 1 1 1 Hours Plannee	on First Derivatives and Second Orde Derivatives. Problems on Richardson Extrapolation Numerical Integration: Problems on Traphezoidal Rule. Problems on Simpson's Rule (Only Method) Newton – Cotes Open Formulas. Recapitulation and Discussion of possible questions For Unit IV=6 UNIT-V	r n. R ₂ :Chap 19 P.No:455 T ₁ :Chap 5 P.No:387 T ₁ :Chap 5 P.No:388-390 R ₂ : Chap 17 P. No:

Lesson Plan

2016-	2019
Batch	

	Total	Planned Hours	30
Total No of	Hours Planned	l for unit V=9	
9.	1	Discuss on Previous ESE Question Papers	
8.	1	Discuss on Previous ESE Question Papers	
7.	1	Discuss on Previous ESE Question Papers	
6.	1	Recapitulation and Discussion of possible questions	
5.	1	Problems on Ralston's Method & Classical Fourth Order Runge-Kutta Method.	T ₁ :Chap 6 P.No:451-456
4.	1	Mid – Point Method & Runge- Kutta Second Methods.	T ₁ :Chap 6 P.No:440-442
3.	1	Problems on Heun Method without Iteration	T ₁ :Chap 6 P.No:431-433
2.	1	Ordinary Differential Equations: Problems on Euler's Method Modified Euler's Methods.	T ₁ :Chap 6 P.No: 425- 431
	1		

SUGGESTED READINGS

TEXT BOOK

1. M.K.Jain, S.R.K.Iyengar, R.K.Jain(2012). Numerical Methods for Scientific and engineering computation. New Age International Publisher.

REFERENCES

1. Laurence V. Fausett(2012). Applied Numerical analysis using MATLAB. Pearson.

2. Steven C. Chopra (2010). Applied Numerical methods with MATLAB for Engineers and Scientists. Tata McGraw Hill.

CLASS: III B.Sc IT COURSE CODE: 16ITU603A COURSENAME: NUMERICAL METHODS UNIT: I BATCH-2016-2019

<u>UNIT-I</u>

SYLLABUS

Floating point representation and computer arithmetic – significant digits. Errors: round-off error – local truncation error – global truncation error – order of a method convergence and terminal conditions – efficient computations – bisection method – secant methods – Regula-Falsi method – Newton – Raphson method – Newton's method for solving non-linear systems.

CLASS: III B.Sc IT COURSE CODE: 16ITU603A

COURSENAME: NUMERICAL METHODS UNIT: I

BATCH-2016-2019

UNIT - I

SOLUTION OF EQUATIONS

3.1 Bisection Method

After reading this unit , you should be able to:

- 1. follow the algorithm of the bisection method of solving a nonlinear equation,
- 2. use the bisection method to solve examples of finding roots of a nonlinear equation, and
- 3. enumerate the advantages and disadvantages of the bisection method.

Bisection method

Since the method is based on finding the root between two points, the method falls under the category of bracketing methods.

Since the root is bracketed between two points, x_{ℓ} and x_{μ} , one can find the mid-point, x_{m}

between x_{ℓ} and x_{u} . This gives us two new intervals

- 1. x_{ℓ} and x_m , and
- 2. x_m and x_u .

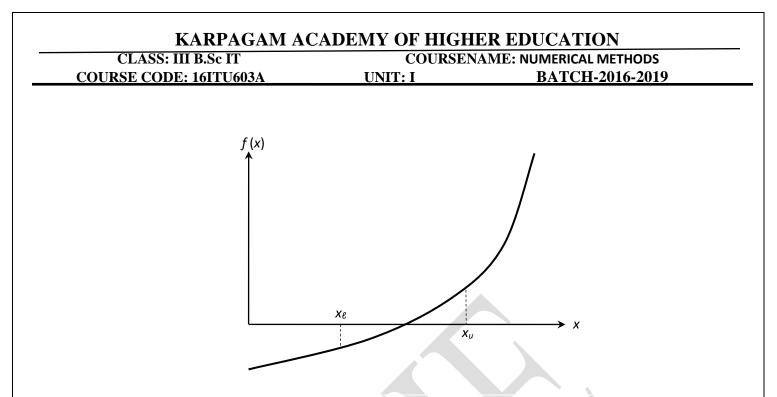


Figure 1 At least one root exists between the two points if the function is real, continuous, and changes sign.

Formula for false position (or) Regula falsi method:

$$x = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

Gauss Seidal method:

Let the rearranged form of a given set of equation be

$$x = \frac{1}{a_1} (d_1 - b_1 y - c_1 z)$$
$$y = \frac{1}{b_2} (d_2 - a_2 x - c_2 z)$$
$$z = \frac{1}{c_3} (d_3 - a_3 x - b_3 y)$$

we start with the initial values $y^{(0)}$, $z^{(0)}$ for y and z get $x^{(1)}$ from $x^{(1)} = \frac{1}{a_1} \left(d_1 - b_{1y}^{(0)} - c_{1z}^{(0)} \right)$

KARPAGAM ACADEMY OF HIGHER EDUCA		
CLASS: III B.Sc IT		NAME: NUMERICAL METHODS
COURSE CODE: 16ITU603A	UNIT: I	BATCH-2016-2019
Condition for Gauss – Jacobi method o	of converges:	
Let the given equation be		
$a_1x + b_1y + c_1z = d_1$		
$a_2x + b_2y + c_2z = d_2$		
$a_2x + b_2y + c_3z = d_3$		
$a_3x + b_3y + b_3z - a_3$		
a ₁ ≥ b ₁ +	- C ₁	
The sufficient condition is $ \mathbf{b}_2 \ge \mathbf{a}_2 $		
	. [-2]	*

Newton's algorithm for finding the Pth root of a Number N:

 $|c_3| \ge |a_3| + |b_3|$

The Pth root of the a positive number N is the root of the equation.

$$\begin{split} x^{p} - N &= 0 \\ f(x) &= x^{p} - N \\ f^{1}(x) &= px^{p-1} \\ \text{By Newton's algorithm} \\ x_{k} &= 1 - \frac{f(x)}{f'(x)} \\ x_{k} &= \left(\frac{x_{k}^{p} - N}{Px_{k}^{p-1}}\right) + 1 \\ &= \frac{Px_{k}^{p} - x_{k}^{p} - N}{Px_{k}^{p-1}} \\ &= \frac{(p-1)x_{k}^{p} + N}{Px_{k}^{p-1}} \end{split}$$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc IT COURSENAME: NUMERICAL METHOD

COURSE CODE: 16ITU603A

COURSENAME: NUMERICAL METHODS UNIT: I BATCH-2016-2019

Newton Raphson formula for cube root of a positive number k.

$$x = \sqrt[3]{k}$$

f(x) = x³ - k = 0
f¹(x) = 3x²
$$x_{n+1} = x_n - \frac{x_n^3 - k}{3x_n^2}$$
$$= \frac{1}{3} \left[2x_n + \frac{k}{x_n^2} \right]$$

Gauss – elimination method to solve Ax = B:

In this method the given system is transformed into an equivalent system with upper – triangular co efficient matrix i.e. a matrix in which all elements below the diagonal elements are zero which can be solved by back substitution.

Newtons – Raphson – formula \sqrt{a} or \sqrt{N} Or

$$\mathbf{x}_{n+1} = \frac{1}{2} \left(\mathbf{x}_{n} + \frac{a}{\mathbf{x}_{n}} \right) \mathbf{n} = \mathbf{0}, \mathbf{1}, \mathbf{2}, \dots$$

Let

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc IT
COURSE NUMERICAL METHODS
DUNT: ICOURSE CODE: 16ITU603AUNIT: IBATCH-2016-2019x = \sqrt{a} ,x^2 - a = 0f(x) = x^2 - af^1(x) = 2xx_{n+1} = x_n $-\frac{f(x_n)}{f^1(x_n)}$ = $x_n - \frac{x_n^2 - a}{2x_n}$ $= \frac{x_n^2 + a}{2x_n} = \left[x_n + \frac{a}{x_n}\right] \frac{1}{2}$

Example:02

Evaluate $\sqrt{12}$ applying Newton formula.

Solution:

Let x = $\sqrt{12}$ x²= 12 \Rightarrow x² - 12 = 0 f(x) = x² - 12 f(3) = -ve, f(4) = +ve

take $x_0 = 3$

$$\therefore x_1 = x_0 - \frac{f(x_0)}{f^1(x_0)} = 3 - \frac{f(3)}{f^1(3)} = 3.5$$
$$x_2 = x_1 - \frac{f(x_1)}{f^1(x_1)} = 3.5 - \frac{(3.5)^2 - 12}{2(3.5)} = 3.464$$

The root is 3.464

Numerical Examples:

01. Find the square root of 8. (by Newton – Raphson).

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METHODSCOURSE CODE: 16ITU603AUNIT: IBATCH-2016-2019

Solution:

Given N = 8 Clearly $2 < \sqrt{8} < 3$ taking $x_0 = 2.5$ we get

$$\begin{aligned} x_{1} &= \frac{1}{2} \left[x_{0} + \frac{N}{x_{0}} \right] = \frac{1}{2} \left[2.5 + \frac{8}{2.5} \right] = 2.85 \\ x_{2} &= \frac{1}{2} \left[x_{1} + \frac{N}{x_{1}} \right] = \frac{1}{2} \left[2.85 + \frac{8}{2.85} \right] = 2.8285 \\ x_{3} &= \frac{1}{2} \left[x_{2} + \frac{N}{x_{2}} \right] = \frac{1}{2} \left[2.828 + \frac{8}{2.828} \right] = 2.8284 \\ x_{4} &= \frac{1}{2} \left[x_{3} + \frac{N}{x_{3}} \right] = \frac{1}{2} \left[2.8284 + \frac{8}{2.8284} \right] = 2.8284 \\ \therefore \sqrt{8} = 2.8284 \end{aligned}$$

02. By applying Newton's method twice, find the real root near 2 of the equation $x^4 - 12x + 7 = 0$

Solution:

Let
$$f(x) = x^4 - 12x + 7$$

$$f(x) = 4x^3 - 12$$

Put $x_0 = 2$, $f(x_0) = -1$

 $f(x_0) = 20$

$$x_{1} = x_{0} - \frac{f(x_{0})}{f^{1}(x_{0})} = 2 - \frac{(-1)}{20} = \frac{41}{20} = 2.05$$
$$x_{2} = x_{1} - \frac{f(x_{1})}{f^{1}(x_{1})} = 2.05 - \frac{(2.05)^{4} - 12(2.05) + 1}{4(2.05)^{3} - 12}$$
$$= 2.6706$$

The root of the equation is 2.6706.

03. Find the approximately value of the root of equation $x^3 + x - 1 = 0$ near x = 1, by the method of false using the formula twice.

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METHODSCOURSE CODE: 16ITU603AUNIT: IBATCH-2016-2019

Solution:

$$\begin{split} f(x) &= x^3 + x - 1 \\ f(0.5) &= -0.675, \ f(1) = 1 \\ \text{Hence the root lies between } 0.5 \& 1 \\ a &= 0.5, \ b = 1 \\ x_0 &= \frac{af(b) - bf(a)}{f(b) - f(a)} = 0.64 \\ f(0.64) &= -0.097a < 0 \\ \text{The root lies between } 0.64 \& 1 \\ x_1 &= \frac{(0.64) - (1)(-0.0979)}{1 - (-0.0979)} = 0.672 \end{split}$$

04. Use the iteration method to find a root of the equation $x = \frac{1}{2} + \sin x$?

Solution:

Let $f(x) = \sin x - x + \frac{1}{2}$

 $f(1) = \sin 1 - 1 + \frac{1}{2} = 0.84 - 0.5 = +ve$

 $f(2) = \sin 2 - 2 + \frac{1}{2} = 0.9.9 - 1.5 = -ve.$

A root lies between 1 and 2. The given equation can be written as

$$x = \sin x + \frac{1}{2} = \phi(x)$$

 $|\phi^1(x)| = |\cos x| < 1 \text{ in } (1,2).$

Hence the iteration method can be applied. Le the approximation be $x_0 = 1$.

The successive approximation are as follows:

 $x_1 = \phi(x_0) = \sin 1 + \frac{1}{2} = 0.8414 + 0.5 = 1.3414$

 $x_2 = \phi(x_1) = \sin(1.3414) + \frac{1}{2} = 0.9738 + 0.5 = 1.4738$

CLASS: III B.Sc IT COURSE CODE: 16ITU603A

COURSENAME: NUMERICAL METHODS UNIT: I BATCH-2016-2019

 $x_3 = \phi(x_2) = \sin(1.4738) + \frac{1}{2} = 0.9952 + 0.5 = 1.4952$

 $x_4 = \phi(x_3) = \sin(1.4952) + \frac{1}{2} = 0.9971 + 0.5 = 1.4971$

 $x_5 = \phi(x_4) = \sin(1.4971) + \frac{1}{2} = 0.9972 + 0.5 = 1.4972$

Since x_4 and x_5 are almost equal the required root is 1.497.

05. If an approximate root of the equation x (I- logx) = 0.5 lies between 0.1 and 0.2 find the value of the root correct to three decimal places.

Solution:

Given
$$f(x) = x(1 - \log x) - 0.5$$

$$f^{1}(x) = (1 - \log x) + x \left(-\frac{1}{x} \right)^{1}$$

= - log x

$$x_0 = 0.9$$

$$\begin{aligned} x_1 &= x_0 - \frac{f(x_0)}{f^1(x_0)} \\ &= 0.2 - \frac{0.2(1 - \log(0.2) - 0.5)}{-\log(0.2)} \\ &= 0.2 - \frac{0.02188}{1.6094} = 0.1864 \end{aligned}$$

$$\begin{aligned} x_2 &= x_1 - \frac{f(x_1)}{f^1(x_1)} \\ &= 0.1864 - \frac{0.1864(1 - \log(0.1864) - 0.5)}{-\log(0.1864)} \\ &= 0.1864 + \frac{0.0004666}{1.6799} = 0.1866 \end{aligned}$$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc IT COURSENAME: NUMERICAL METHODS

COURSE CODE: 16ITU603A

UNIT: I BATCH-2016-2019

$$x_{3} = x_{1} - \frac{f(x_{2})}{f^{1}(x_{2})}$$

= 0.1866 - $\frac{0.1866(1 - \log(0.1866) - 0.5)}{-\log(0.1866)}$
= 0.1866

Hence the approximate root is 0.1866.

06. Find the root between (2, 3) of $x^3 - 2x - 5 = 0$ by regula falsi method

Solution:

Given
$$f(x) = x^3 - 2x - 5$$

$$f(2) = 8 - 4 - 5 = -1$$

f(3) = 27 - 6 - 5 = 16

Let us take a = 2, b = 3

The first approximation to the root is x_1 and is given by

$$x_{1} = \frac{af(b) - bf(a)}{f(b) - f(a)} = \frac{2f(3) - 3f(2)}{f(3) - f(2)}$$
$$= \frac{2 \times 16 - 3(-1)}{16 - (-1)} = 2.058$$
$$f(2.058) = (2.058)^{3} - 2(2.058) - 5$$
$$= -0.4$$

The root lies between 2.058 and 3

Taking a = 2.058 and b = 3 we have the second approximation to the root given by

CLASS: III B.Sc IT		NAME: NUMERICAL METHODS
COURSE CODE: 16ITU603A	UNIT: I	BATCH-2016-2019
af(b)-bf(a)		
$x_2 = \frac{af(b) - bf(a)}{f(b) - f(a)}$		
	0.4)	
$=\frac{(2.058)\times16-3(-0)}{16-(-0.4)}$	/	
= 2.081		
f (2.081) = $(2.081)^3 - 2(2.081)$	-5	
= -0.15		
- 0.10		
The root lies between 2.081 and 3		
Take a = 2.081, b = 3		
The third approximation to the root	t is given by	
af(b) bf(a)		
$x_3 = \frac{af(b) - bf(a)}{f(b) - f(a)}$		
	5)	
$=\frac{2.081\times16-3(-0.11)}{16-(-0.15)}$	<u>o,</u>	
= 2.089		
Now		
f (2.089) = $(2.089)^3 - 2(2.089)^3$)-5	
= -0.062		
- 0.002		
The root lies between 2.089 and 3		
Take a = 2.089, b = 3		
$x_1 = \frac{2.089 \times 16 - 3(-0.062)}{16 - (-0.062)}$		
$\lambda_1 = -16 - (-0.062)$		
= 2.093		
The required root is 2.09.		
07. Find the approximate root of $xe^x = 3$	3 by Newton's Raphs	on method correct to three deci

Solution:

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METHODSCOURSE CODE: 16ITU603AUNIT: IBATCH-2016-2019

Given $f(x) = xe^x - 3$

 $f^{1}(x) = xe^{x} + e^{x}$ f(1) = 1e⁻¹ - 3 = 2.7182 - 3 = - 0.2817 (-ve) f(1.5) = 1.5e^{1.5} - 3 = 3.7223 (+ve)

Here f(1) is -ve (Negative) and f(1.5) is +ve (positive). Therefore the root lies between 1 ad 1.5. Since the magnitude of f(1) < f(1.5) we can take the initial approximate $x_0 = 1$. The first approximation is

$$x_{1} = x_{0} \frac{f(x_{0})}{f^{1}(x_{0})}$$
$$= 1 - \frac{-0.2817}{5.4363} = 1.0518$$

The second approximation

$$x_{2} = x_{1} - \frac{f(x_{1})}{f^{1}(x_{1})}$$
$$= 1.0518 - \frac{-0.0111}{5.8739}$$
$$= 1.0499$$

The third approximation is

$$x_{3} = x_{2} - \frac{f(x_{2})}{f^{1}(x_{2})}$$

= 1.0499 - $\frac{1.0499 e^{1.0499} - 3}{1.0499 e^{1.0499} + e^{1.04999}}$
= 1.0499

Hence the root of xe^x is 1.0499

UNIT II

KARPAGAM AC	ADEMY OF HIGH	IER EDUCATION
CLASS: III B.Sc IT	COURSE	NAME: NUMERICAL METHODS
COURSE CODE: 16ITU603A	UNIT: I	BATCH-2016-2019

1. Solve the following system by Gaussian elimination method

$$x_1 - x_2 + x_3 = 1$$

- $3x_1 + 2x_2 - 3x_3 = -6$
 $2x_1 - 5x_2 + 4x_3 = 5$

Solution:

Write the given system as in the matrix form

(1	-1	1	1
	-3	2	-3	-6
	2	-5	4	5

From the first column with non – zero component select the component with the large absolute value this component is called the pivot.

 $\rightarrow \begin{pmatrix} 1 & -1 & 1 & | & 1 \\ -3 & 2 & -3 & | & -6 \\ 2 & -5 & 4 & | & 5 \end{pmatrix}$

Rearrange the row to move the pivot to the top eg.

First column. Here we interchange the first and second row.

	(-3	2	-3 -	-6)
\rightarrow	1	-1	1	1
	2	-5	4	5)

Make the pivot as 1, by dividing the first row by the pivot.

$$= \begin{pmatrix} -1 & -2/3 & 1 & | +2 \\ 1 & -1 & 1 & | \\ 2 & -5 & 4 & | 5 \end{pmatrix}$$

$$\begin{split} \begin{array}{c|c} \hline \textbf{KARPAGAM ACADEMY OF HIGHER EDUCATION} \\ \hline \textbf{CLASS: III B.Sc IT} & \textbf{COURSENAME: NUMERICAL METHODS} \\ \hline \textbf{COURSE CODE: INTUG03A} & \textbf{UNT: I} & \textbf{BATCH-2016-2019} \\ \hline \textbf{action of the state of the stat$$

$$\begin{pmatrix} 1 & -2/3 & 1 & 2 \\ 0 & 1 & -6/11 & -3/11 \\ 0 & 0 & 1 & 6 \end{pmatrix}$$
$$\boxed{x_3 = 6} x_2 - 6/11 x_3 = -3/11 \\ \boxed{x_2 = 3} \\ x_1 - 2/3 x_2 + x_3 = 2 \Longrightarrow \boxed{x_1 = -2}$$

CLASS: III B.Sc IT	CADEMY OF HIGHER EDUCATION COURSENAME: NUMERICAL METHODS
URSE CODE: 16ITU603A	UNIT: I BATCH-2016-2019
Using the Gauss – Jordan method so	olve the following equation.
10x + y + z = 12	
2x + 10y +z = 13	
x + y + 5z = 7	
ution:	
Step 1 $\Rightarrow \begin{pmatrix} 10 & 1 & 1 & 12 \\ 2 & 10 & 1 & 13 \\ 1 & 1 & 5 & 7 \end{pmatrix}$	
Step 2 $\Rightarrow \begin{pmatrix} 1 & \frac{1}{10} & \frac{1}{10} & 12 \\ 2 & 10 & 1 & 1 \\ 1 & 1 & 5 & 5 \end{pmatrix}$	$ R_{1} \rightarrow \frac{R_{1}}{10} $
Step 3 $\Rightarrow \begin{pmatrix} 1 & \frac{1}{10} & \frac{1}{10} & 12 \\ 0 & \frac{49}{5} & \frac{4}{5} & \frac{1}{5} \\ 0 & \frac{9}{10} & \frac{49}{10} & \frac{49}{5} \end{pmatrix}$	$ \begin{array}{c} 2/10\\ \hline 106\\ \hline 10\\ 58 \end{array} \right \begin{array}{c} R_2 \rightarrow R_2 - 2R_1\\ R_3 \rightarrow R_3 - R_1 \end{array} $

CLARSE III EXS IIICOURSENAME: NUMERICAL METHODS
COURSE CODE: IdITIdeaaCOURSE CODE: IdITIdeaaCOURSENAME: NUMERICAL METHODS
BATCH-2016-2019Sup 4 =
$$\begin{pmatrix} 1 & \frac{1}{10} & \frac{1}{10} & \frac{12}{10} \\ 0 & 1 & \frac{4}{9} & \frac{53}{49} \\ 0 & \frac{9}{10} & \frac{49}{10} & \frac{58}{10} \end{pmatrix} R_2 \rightarrow R_2 + \frac{49}{5}$$
Step 5 = $\begin{pmatrix} 1 & 0 & 0.0918 & 1.0918 \\ 0 & 1 & \frac{4}{9} & \frac{53}{49} \\ 0 & 0 & 4.8265 & 4.8265 \end{pmatrix} R_3 \rightarrow R_3 - 9/10R_2 \\ R_1 \rightarrow R_1 - 1/10R_2 \end{pmatrix}$ Step 6 = $\begin{pmatrix} 1 & 0 & 0.0918 & 1.0918 \\ 0 & 1 & \frac{4}{9} & \frac{53}{49} \\ 0 & 0 & 1 & 1 \end{pmatrix} R_2 \rightarrow R_3 + 4.8265 \\ Step 7 = \begin{pmatrix} 1 & 0 & 0.0918 & 1.0918 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} R_2 \rightarrow R_2 - 0.0918R_3 \\ Step 7 = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} R_2 \rightarrow R_2 - 0.0918R_3 \\ Step 7 = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} R_2 \rightarrow R_2 - 4/49R_3 \end{pmatrix}$ The matrix finally reduced to the form(1 & 0 & 0) $X = 1 \\ X = Y = I \end{pmatrix}$ Stop the following equation using Jacobi Iteration method:

CLASS: III B.Sc IT	COURSENAME: NUMERICAL METHODS	
COURSE CODE: 16ITU603A UNIT: I	UNIT: I BATCH-2016-2	
20x + y - 2z = 17		
3x + 20y - z = - 18		
2x – 3y + 20z = 25		

Solution:

The above equation can be written as

$$x = \frac{1}{20} (17 - y + 2z)$$
$$y = \frac{1}{20} (-18 - 3x + z)$$
$$z = \frac{1}{20} (25 - 2x + 3y)$$

First approximation =

$$x_{1} = \frac{1}{20} (17 - y_{0} + 2z_{0})$$
$$y_{1} = \frac{1}{20} (-18 - 3x_{0} + z_{0})$$
$$z_{1} = \frac{1}{20} (25 - 2x_{0} + 3y_{0})$$

Put $x_0 = y_0 = z_0 = 0 \Longrightarrow x_1 = 0.85$, $y_1 = -0.9$, $z_1 = 1.25$

Second approximation

$$x_{2} = \frac{1}{20} (17 - y_{1} + 2z_{1})$$

$$y_{2} = \frac{1}{20} (-18 - 3x_{1} + z_{1})$$

$$z_{2} = \frac{1}{20} (25 - 2x_{1} + 3y_{1})$$

 x_1 = 0.85, y_1 = - 0.9, z_1 = 1.25 we get

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc IT COURSENAME: NUMERICAL METHODS

COURSE CODE: 16ITU603A

UNIT: I BATCH-2016-2019

 $x_2 = 1.02 \ y_2 = -0.965 \ z_2 = 1.1515$

Third approximation

$$\begin{aligned} x_{3} &= \frac{1}{20} (17 - y_{2} + 2z_{2}) \\ y_{3} &= \frac{1}{20} (-18 - 3x_{2} + z_{2}) \\ z_{3} &= \frac{1}{20} (25 - 2x_{2} + 3y_{2}) \\ x_{2} &= 1.02, \quad y_{2} = -0.965, \quad z_{2} = 1.1515 \text{ we get} \\ x_{3} &= 1.0134, \quad y_{3} = -0.9954, \quad z_{3} = 1.0032 \\ x_{4} &= \frac{1}{20} (17 - y_{3} + 2z_{3}) \\ y_{4} &= \frac{1}{20} (-18 - 3x_{3} + z_{3}) \\ z_{4} &= \frac{1}{20} (25 - 2x_{3} + 3y_{3}) \\ x_{3} &= 1.0134, \quad y_{3} = -0.9954, \quad z_{3} = 1.0032 \text{ we get} \end{aligned}$$

 $x_4 = 1.009, y_4 = -1.0018, z_4 = 0.9993$

Fifth approximation

CLASS: III B.Sc IT COURSE CODE: 16ITU603A

COURSENAME: NUMERICAL METHODS UNIT: I BATCH-2016-2019

$$\begin{aligned} x_5 &= \frac{1}{20} \big(17 - y_4 + 2z_4 \big) \\ y_5 &= \frac{1}{20} \big(-18 - 3x_4 + z_4 \big) \\ z_5 &= \frac{1}{20} \big(25 - 2x_4 + 3y_4 \big) \\ x_4 &= 1.009, \quad y_4 = -1.0018, \ z_4 = 0.994 \text{ we get} \end{aligned}$$

$$x_5 = 1$$
, $y_5 = -1.0002$, $z_5 = 0.9996$
 $\therefore x = 1$, $y = -1$, $z = 1$

11. Solve by Gauss – seidal method of iteration the equation.

$$10x_1 + x_2 + x_3 = 12$$

$$2x_1 + 10x_2 + x_3 = 13$$

$$2x_1 + 2x_2 + 10x_3 = 14$$

Solution:

From the above equation

$$x_{1} = \frac{1}{10} (12 - x_{2} - x_{3})$$

$$x_{2} = \frac{1}{10} (13 - 2x_{1} - x_{3})$$

$$x_{3} = \frac{1}{10} (14 - 2x_{1} - 2x_{2})$$
Put $x_{2} = x_{3} = 0$ we get $x_{1} = 1.2$, i.e $x_{1}^{(1)} = 1.2$
Put $x_{2}^{(1)} = \frac{1}{10} [13 - 2.4 - 0] = \frac{10.6}{10} = 1.06$

$$x_{1}^{(1)} = 1.2 \quad x_{2}^{(1)} = 1.06$$

$$x_{3}^{(1)} = \frac{1}{10} [14 - 2.4 - 2.12] = 0.948$$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc IT

COURSENAME: NUMERICAL METHODS

COURSE CODE: 16ITU603A

UNIT: I BATCH-2016-2019

$$\begin{aligned} x_1^{(2)} &= \frac{1}{10} (12 - 1.06 - 0.948) = 0.992 \\ x_2^{(2)} &= \frac{1}{10} (13 - 2(0.9992) - 0.948) = 1.00536 \\ x_3^{(2)} &= \frac{1}{10} (14 - 2(0.9992) - 2(1.00536)) = 0.999098 \end{aligned}$$

Thus the iteration process is continued.

i	X ⁽ⁱ⁾	X ⁽ⁱ⁾ ₂	X ₃ ⁽ⁱ⁾
0	1.2000	0.000	0.000
1	1.2000	1.0600	0.9480
2	0.9992	1.0054	0.9991
3	0.9996	1.001	1.001
4	1.0000	1.0000	1.00
5	1.000	1.000	1.000

The exact values of the roots are

 $X_1 = 1$, $x_2 = 1$, $x_3 = 1$.

12. Find the inverse of the matrix
$$\begin{pmatrix} 2 & 1 & 1 \\ 3 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}$$
 using Gauss Jordan method.

Solution:

Let $A = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}$

CLASS: III B.Sc IT		CNAME: NUMERICAL METHODS
COURSE CODE: 16ITU603A	UNIT: I	BATCH-2016-2019
$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & 2_{22} & x_{33} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}$		
$\begin{pmatrix} \mathbf{x}_{11} & \mathbf{x}_{12} & \mathbf{x}_{33} \\ \mathbf{x}_{31} & \mathbf{x}_{32} & \mathbf{x}_{33} \end{pmatrix}$		
Ax = I		
Step 1 $\Rightarrow \begin{pmatrix} 2 & 1 & 1 & 1 & 0 & 0 \\ 3 & 2 & 3 & 0 & 1 & 0 \\ 1 & 4 & 9 & 0 & 0 & 1 \end{pmatrix}$		
)	
Step 2 $\Rightarrow \begin{pmatrix} 2 & 1 & 1 & 1 & 0 \\ 0 & \frac{1}{2} & \frac{3}{2} & \frac{-3}{2} & 1 \\ 0 & \frac{7}{2} & \frac{17}{2} & \frac{-1}{2} & 0 \end{pmatrix}$	$\binom{0}{R_2 \rightarrow R_2 - \frac{3}{2}R_1}$	
Step 2 \Rightarrow 0 $\frac{1}{2}$ $\frac{3}{2}$ $\frac{-3}{2}$ 1		
$0 \frac{7}{10} \frac{17}{10} \frac{-1}{10} 0$	$\begin{bmatrix} R_3 \rightarrow R_3R_1 \\ 2 \end{bmatrix}$	
222)	
))	
Step 3 $\Rightarrow \begin{pmatrix} 2 & 1 & 1 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{3}{2} & \frac{-3}{2} & 1 & 0 \\ 0 & 0 & -2 & 10 & -7 & 2 \end{pmatrix}$	$R \rightarrow R - 7R$	
2 2 2 2		
$(0 \ 0 \ -2 \ 10 \ -7$	')	
(200-65	-1)	
Step 4 $\Rightarrow \begin{pmatrix} 2 & 0 & 0 & -6 & 5 \\ 0 & \frac{1}{2} & 0 & 6 & \frac{-17}{4} \\ 0 & 0 & -2 & 10 & -7 \end{pmatrix}$	$\frac{3}{B} \rightarrow B + \frac{1}{B}$	
$\begin{vmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 2 & 10 & 7 \end{vmatrix}$	$4 1 2^{3}$	
$(0 \ 0 \ -2 \ 10 \ -7$	1)	
200-65	-1)	
Step 5 $\Rightarrow \begin{pmatrix} 2 & 0 & 0 & -6 & 5 \\ 0 & \frac{1}{2} & 0 & 6 & \frac{-17}{4} \\ 0 & 0 & -2 & 10 & -7 \end{pmatrix}$	$\frac{3}{4}$ $ R_1 \rightarrow R_1 + 2R_2$	
	4 1	
)	

CLASS: III B.Sc IT	ACADEMY OF HIGH COURSEN	ER EDUCATION AME: NUMERICAL METHODS
COURSE CODE: 16ITU603A	UNIT: I	BATCH-2016-2019
Step 6 $\Rightarrow \begin{pmatrix} 1 & 0 & 0 & -3 & \frac{5}{2} \\ 0 & 1 & 0 & 12 & \frac{-17}{2} \\ 0 & 0 & 1 & -5 & \frac{7}{2} \end{pmatrix}$	$ \begin{array}{c} -1 \\ 2 \\ \frac{3}{2} \\ \frac{1}{2} \end{array} \right \begin{array}{c} R_1 \rightarrow R_1 \\ R_2 \rightarrow R_2 X_2 \\ R_3 \rightarrow R_3 (-Y_2) \end{array} $	
Hence the inverse of the given matrix		
$ \begin{pmatrix} -3 & \frac{5}{2} & \frac{-1}{2} \\ 12 & \frac{-17}{2} & \frac{3}{2} \\ -5 & \frac{-7}{2} & \frac{-1}{2} \end{pmatrix} $		

Question

----- Method is based on the repeated application of the intermediate value theorem.

The formula for Newton Raphson method is -----.

The order of convergence of Newton Raphson method is ------

Graeffe's root squaring method is useful to find ------

The approximate value of the root of f(x) given by the bisection method is ----

In Newton Raphson method, the error at any stage is proportional to the ------

of the error in the previous stage.

The convergence of bisection method is -----.

The order of convergence of Regula falsi method may be assumed to -----.

----- Method is also called method of tangents.

If f(x) contains some functions like exponential, trigonometric, logarithmic etc.,

then f (x) is called ----- equation.

A polynomial in x of degree n is called an algebraic equation of degree n if -----

The method of false position is also known as ----- method.

The Newton Rapson method fails if ------.

The bisection method is simple but -----.

Method is also called as Bolzano method or interval having method.

The another name of Bisection method is

The convergence of Bisection is Very_

In Regula-Falsi method, to reduce the number of iterations we start with ______ interval

The rate of convergence in Newton-Raphson method is of order

Newton's method is useful when the graph of the function crosses the x-axis is nearly

If the initial approximation to the root is not given we can find any two values of x say a and bsuch that f (a) and f(

The Newton – Raphson method is also known as method of

If the derivative of f(x) = 0, then _____ method should be used.

The rate of convergence of Newton – Raphson method is _____

If f(a) and f(b) are of opposite signs the actual root lies between _

The convergence of root in Regula-Falsi method is slower than

Regula-Falsi method is known as method of

method converges faster than Regula-Falsi method.

If f(x) is continuous in the interval (a, b) and if f (a) and f (b) are of opposite signs the equation f(x) = 0 has at leas

 $x^2 + 3x - 3 = 0$ is a polynomial of order

Errors which are already present in the statement of the problem are called ______ errors.

Rounding errors arise during

The other name for truncation error is ______ error.

Rounding errors arise from the process of _____ the numbers.

Absolute error is denoted by

Truncation errors are caused by using _____ results.

Truncation errors are caused on replacing an infinite process by _____ one.

If a word length is 4 digits, then rounding off of 15.758 is

The actual root of the equation lies between a and b when f (a) and f (b) are of _____ signs.

Opt 1	Opt 2	Opt 3	Opt 4
Gauss Seidal	Bisection	Regula Falsi	Newton Raphson
$x_{n+1} = f(x_n) / f'(x_n)$	$x_{n+1} = xn + f(x_n) / f'(xn)$	$x_{n+1} = xn - f(x_n) / f'(xn)$	$x_{n+1} = xn - f'(x_n) / f(xn)$
4	2	1	0
complex roots	single roots	unequal roots	polynomial roots
$\mathbf{x}_0 = \mathbf{a} + \mathbf{b}$	$\mathbf{x}_0 = \mathbf{f}(\mathbf{a}) + \mathbf{f}(\mathbf{b})$	$x_0 = (a + b)/2$	$x_0 = (f(a) + f(b))/2$
cube	square	square root	equal
linear	quadratic	slow	fast
1	1.618	0	0.5
Gauss Seidal	Secant	Bisection	Newton Raphson
Algebraic	transcendental	numerical	polynomial
f(x) = 0	f(x) = 1	f(x) < 1	f(x) > 1
Gauss Seidal	Secant	Bisection	Regula falsi
f'(x) = 0	f(x) = 0	f(x) = 1	f(x)≠0
slowly divergent	fast convergent	slowly convergent	divergent
Bisection	false position	Newton raphson	Horner's
Bozano	Regula falsi	Newtons	Giraffes
slow	fast	moderate	normal
Small	large	equal	none
1	2	3	4
vertical	horizontal	close to zero	none
opposite	same	positive	negative
secant	tangent	iteration	interpolation
Newton – Raphson	Regula-Falsi	iteration	interpolation
quadratic	cubic	4	5
(a, b)	(0, a)	(0, b)	(0, 0)
Gauss – Elimination	Gauss – Jordan	Newton – Raphson	Power method
secant	tangent	chords	elimination
Newton – Raphson	Power method	elimination	interpolation
equation	function	root	polynomial
2	3	1	0
Inherent	Rounding	Truncation	Absolute
Solving	Algorithm	Truncation	Computation
Absolute	Rounding	Inherent	Algorithm
Truncating	Rounding off	Approximating	Solving
Ea	Er	Ер	Ex
Exact	True	Approximate	Real
Approximate	True	Finite	Exact
15.75	15.76	15.758	16
Opposite	same	negative	positive

Opt 5	Opt 6	Answer
		Bisection
		$x_{n+1} = xn - f(x_n) / f'(x_n)$
		2
		polynomial roots
		$x_0 = (a + b)/2$
		square
		slow
		1.618
		Newton Raphson
		transcendental
		f(x) = 0
		Regula falsi
		f'(x) = 0
		slowly convergent
		Bisection
		Bozano
		slow
		Small
		2
		vertical
		opposite
		tangent
		Regula-Falsi
		quadratic
		(a, b)
		Newton – Raphson
		chords
		Newton – Raphson
		root
		2
		Inherent
		Computation
		Algorithm
		Rounding off
		Ea
		Approximate
		Finite
		15.76
		Opposite

CLASS: III B.Sc IT COURSE CODE: 16ITU603A COURSENAME: NUMERICAL METHODS UNIT-II BATCH-2016-2019

<u>UNIT-II</u>

SYLLABUS

Gauss elimination method (with row pivoting) and Gauss-Jordan method – Gauss thomas method for tridiagonal systems. Interative methods: Jacobi and Gauss-seidalinterative methods.

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METHODSCOURSE CODE: 16ITU603AUNIT-IIBATCH-2016-2019

Consider a system of n linear algebraic equations in n unknowns x_1, x_2, \ldots, x_n .

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$ \vdots $a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$

where a_{ij} (i = 1, 2, ..., n & j = 1, 2, ..., n) are the known coefficients, b_i (i = 1, 2, ..., n) are the known values and x_i (i = 1, 2, ..., n) are the unknowns to be determined.

Above system of linear equations may be represented at the matrix equations as follow

$$AX = b$$

where

					-	$\begin{bmatrix} x_1 \end{bmatrix}$	and		$\begin{bmatrix} b_1 \end{bmatrix}$
_	a ₁₁	<i>a</i> ₁₂	 a_{1n}]	-	<i>x</i> ₂			b_2
4 =	<i>a</i> ₂₁	<i>a</i> ₂₂	 a_{1n} a_{2n} a_{nn}		X =		and	h =	
1-			 •	,	<i>A</i> –	•	unu	0-	
	a_{n1}	a_{n2}	 a_{nn}	0					
					3.6	x_n			b_n

The system of equations given above is said to be homogeneous if all the b_i (i = 1, 2, ..., n) vanish otherwise it is called as non-homogeneous system of equations.

By finding a solution of a system of equations we mean to obtain the value of x_1, x_2, \ldots, x_n such that they satisfy the given equations and a solution vector of system of equations (1) is a vector X whose components constitute a solution of (1)

There are two types of numerical methods to solve the above system of equations

(I) **Direct Methods:** direct methods such as Gauss Elimination method, in such methods the amount of computation to get a solution can be specified in advance.

(II) Indirect or Iterative Methods: Such as Gauss-Siedel Methods, in such methods we start from a (possibly crude) approximation and improve it stepwise by repeatedly performing the same cycle of composition with changing data.

(1)

KARPAGAM AC	CADEMY OF HIGH	IER EDUCATION
CLASS: III B.Sc IT	COURSEN	AME: NUMERICAL METHODS
COURSE CODE: 16ITU603A	UNIT-II	BATCH-2016-2019

Gauss Elimination Method:

Gauss elimination method for solving linear systems is a systematic process of elimination that reduces the system of linear equations to triangular form. In Gauss elimination method, we proceed with the following steps.

Step 1: Elimination of x_1 from the second, third, ..., n^{th} equations

In the first step of Gauss elimination method we eliminate x_1 from the second, third, . . . , n^{th} equations by subtracting suitable multiple of first equation from second, third, . . . , n^{th} equations.

The first equation is called the pivot equation and the coefficient of x_1 in the first equation i.e., $a_{11} \neq 0$ is called the pivot. Thus first step gives the new system as follows.

 $a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$ $a'_{22}x_{2} + \dots + a'_{2n}x_{n} = b'_{2}$ $a'_{n2}x_{2} + \dots + a'_{nn}x_{n} = b'_{n}$

Step 2: Elimination of x₂ from the third, . . . , nth equation

In the second step of Gauss elimination method, we take the new second equation (which no longer contains x_1) as the pivot equation and use it to eliminate x_2 from the third, fourth, ..., nth equation.

In the third step we eliminate x_3 and in the fourth step we eliminate x_4 and so on. After (n-1) steps when the elimination is complete this process gives upper triangular system of the form

$$c_{11}x_{1} + c_{12}x_{2} + \ldots + c_{1n}x_{n} = d_{1}$$

$$c_{22}x_{2} + \ldots + c_{2n}x_{n} = d_{2}$$

$$\vdots$$

$$c_{nn}x_{n} = d_{n}$$

Thus, the new system of equations is of upper triangular form that can be solved by the back substitution.

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc IT COURSENAME: NUMERICAL METHODS

COURSE CODE: 16ITU603A

UNIT-II BATCH-2016-2019

Example 7: Solve the system of equations

 $8x_2 + 2x_3 = -7$ $3x_1 + 5x_2 + 2x_3 = 8$ $6x_1 + 2x_2 + 8x_3 = 26$

using Gauss elimination method.

ACADEMY OF HIGHER EDUCATION COURSENAME: NUMERICAL METHODS		
BATCH-2016-2019		
(1)		
(2)		
(3)		
ro therefore we must rearrange . hird i.e.,		
(4)		
(5)		
(6)		
ation (5) we have		
(7)		
(8)		
(9)		
ation (9) we have		
(10)		
(11)		

On solving equation (10), (11) and (12) by back substitution we have

$$x_3 = \frac{1}{2}, x_2 = -1 \text{ and } x_1 = 4$$
.

Thus, the required solution is

$$x_1 = 4, \ x_2 = -1 \ and \ x_3 = \frac{1}{2}.$$

CLASS: III B.Sc IT	COURSEN	AME: NUMERICAL METHODS
COURSE CODE: 16ITU603A	UNIT-II	BATCH-2016-2019
xample Solve the system of ec	juations	
$10x_1 - 7x_2 + 3x_3 + 5x_4 = 6$		
$-6x_1 + 8x_2 - x_3 - 4x_4 = 5$		
$3x_1 + x_2 + 4x_3 + 11x_4 = 2$		
$5x_1 - 9x_2 - 2x_3 + 4x_4 = 7$		
using Gauss elimination method.		
Solution: Given system of equation	ons can be written as	
$x_1 - 0.7x_2 + 0.3x_3 + 0.5x_4 = 0.6$		(1)
$-6x_1 + 8x_2 - x_3 - 4x_4 = 5$		(2)
$3x_1 + x_2 + 4x_3 + 11x_4 = 2$		(3)
$5x_1 - 9x_2 - 2x_3 + 4x_4 = 7$		(4)

Step 1: Elimination of x₁:

On subtracting (-6) times of equation (1) from equation (2), 3 times of equation (1) from equation (3) and 5 times of equation (1) from equation (4) we have

$$x_1 - 0.7x_2 + 0.3x_3 + 0.5x_4 = 0.6$$
(5)

$$3.8x_2 + 0.8x_3 - x_4 = 8.6$$
(6)

$$3.1x_2 + 3.1x_3 + 9.5x_4 = 0.2\tag{7}$$

$$-5.5x_2 - 3.5x_3 + 1.5x_4 = 4 \tag{8}$$

Step 2: Elimination of x₂:

In the above equations (6), (7) and (8) coefficient of x_2 is maximum (numerically) in equation (8) therefore interchanging the equation (6) and (8) After that x_2 is eliminated from equations (7) and (8) we have

$$x_1 - 0.7x_2 + 0.3x_3 + 0.5x_4 = 0.6 \tag{9}$$

KARPAGAM ACA	ADEMY OF HIGH	IER EDUCATION					
CLASS: III B.Sc IT	CLASS: III B.Sc IT COURSENAME: NUMERICAL METHODS						
COURSE CODE: 16ITU603A	UNIT-II	BATCH-2016-2019					
$x_2 + 0.6363x_3 - 0.27275x_3$	$x_4 = -0.72727$	(10)					
$-1.61818x_3 + 0.03630$	$6x_4 = 11.36364$	(11)					
$1.12727x_3 + 10.3454$	$1.12727x_3 + 10.34545x_4 = 2.45455$						
Step 3: Elimination of x ₃ :	Step 3: Elimination of x ₃ :						
On eliminating x_3 from equation (12) we have						
$x_1 - 0.7x_2 + 0.3x_3 + 0.5x_4 = 0.6$	$x_1 - 0.7x_2 + 0.3x_3 + 0.5x_4 = 0.6$						
$x_2 + 0.6363x_3 - 0.27275x_3$	$x_2 + 0.6363x_3 - 0.27275x_4 = -0.72727$						
$x_3 - 0.02247$	$x_4 = -7.02247$	(15)					
10.36079	$947x_4 = 10.37079$	(16)					

On solving equation (13), (14), (15) and (16) by back substitution we have

 $x_4 = 1, x_3 = -7, x_2 = 4$ and $x_1 = 5$.

Thus, the required solution is

 $x_1 = 5$, $x_2 = 4$, $x_3 = -7$ and $x_4 = 1$.

Gauss-Jordan Elimination Method:

M. Jordan in 1920 introduced another variant of the Gauss elimination method. In Gauss-Jordan method the coefficient matrix is reduced to a diagonal form rather than a triangular form in the Gauss elimination and we have the solution without further computations. Generally, this method is not used for the solution of a system of equations, because the reduction from the Gauss triangular to diagonal form requires more operations than back substitution does. Therefore this method is disadvantageous for solving system of equations. However it gives a simple method for finding the inverse of a given matrix by operating on the unit matrix I in the same way as the Gauss-Jordan method reducing A to I.

Example 11: Solve the system of equations

 $x_1 + 2x_2 + x_3 = 8$ $2x_1 + 3x_2 + 4x_3 = 20$ $4x_1 + 3x_2 + 2x_3 = 16$

using Gauss elimination method.

CLASS: III B.Sc IT	COURSEN	AME: NUMERICAL METHODS
COURSE CODE: 16ITU603A	UNIT-II	BATCH-2016-2019
Solution: Given system of equa	tions is	
$x_1 + 2x_2 + x_3 = 8$		(1)
$2x_1 + 3x_2 + 4x_3 = 20$		(2)
$4x_1 + 3x_2 + 2x_3 = 16$		(3)
Step 1: Elimination of x_1 :		
On eliminating x_1 from equations	(2) and (3) we have	
$x_1 + 2x_2 + x_3 = 8$		(4)
$-x_2 + 2x_3 = 4$		(5)
$-5x_2 - 2x_3 = -16$		(6)
Step 2: Elimination of x ₂ :		
On eliminating x ₂ from equations	(4) and (6) we have	
$x_1 + 0.x_2 + 5x_3 = 16$		(7)
$-x_2 + 2x_3 = -36$		(8)
$-12x_3 = -36$		(9)
Step 2: Elimination of x ₃ :		
On eliminating x ₃ from equations	(7) and (8) we have	
x ₁ = 1		(7)
$-x_2 = -2$		(8)
$12x_3 = 36$		(9)
This gives		
$x_1 = 1$, $x_2 = 2$ and $x_3 = 3$.		

Example 12: Find the inverse of the coefficient matrix of the given system of equations

 $x_1 + x_2 + x_3 = 1$ $4x_1 + 3x_2 - 1x_3 = 6$ $3x_1 + 5x_2 + 3x_3 = 4$

using Gauss elimination method with partial pivoting and hence solve the system of the equations.

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc IT **COURSENAME: NUMERICAL METHODS COURSE CODE: 16ITU603A BATCH-2016-2019** UNIT-II Solution: Given system of equations is AX = b(1)where $A = \begin{vmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{vmatrix}, \quad X = \begin{vmatrix} x_1 \\ x_2 \\ x_1 \end{vmatrix} \quad and \quad b = \begin{vmatrix} 1 \\ 6 \\ 4 \end{vmatrix}$ Using the augmented matrix [A | I], we have $[A | I] = \begin{bmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 4 & 3 & -1 & 0 & 1 & 0 \\ 3 & 5 & 3 & 0 & 0 & 1 \end{bmatrix}$ $\approx \begin{bmatrix} 4 & 3 & -1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 3 & 5 & 3 & 0 & 0 & 1 \end{bmatrix}$ $[R_1 \leftrightarrow R_2]$ $\approx \begin{bmatrix} 1 & \frac{3}{4} & -\frac{1}{4} & 0 & \frac{1}{4} & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 3 & 5 & 3 & 0 & 0 & 1 \end{bmatrix}$ $R_1 \rightarrow \frac{1}{4}R_1$ $\approx \begin{vmatrix} 1 & \frac{3}{4} & -\frac{1}{4} \\ 0 & \frac{1}{4} & \frac{5}{4} \\ 0 & \frac{11}{4} & \frac{5}{4} \end{vmatrix} \begin{pmatrix} 0 & \frac{1}{4} & 0 \\ 1 & -\frac{1}{4} & 0 \\ 0 & -\frac{3}{4} & 1 \end{vmatrix}$ $R_2 \rightarrow R_2 - R_1$ $R_3 \rightarrow R_3 - 3R_1$ $\approx \begin{bmatrix} 1 & \frac{3}{4} & -\frac{1}{4} & 0 & \frac{1}{4} & 0 \\ 0 & \frac{11}{4} & \frac{15}{4} & 0 & -\frac{3}{4} & 1 \\ 0 & \frac{1}{4} & \frac{5}{4} & 1 & -\frac{1}{4} & 0 \end{bmatrix}$

 $R_2 \leftrightarrow R_3$

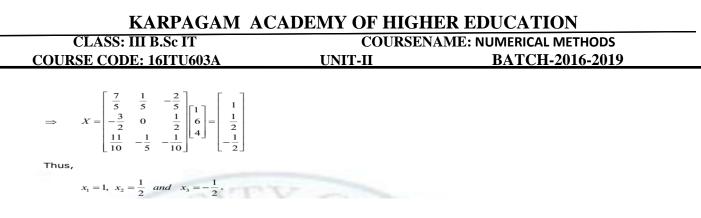
	RSENAME: NUMERICAL METHODS
OURSE CODE: 16ITU603A UNIT-II	BATCH-2016-2019
$\approx \begin{bmatrix} 1 & \frac{3}{4} & -\frac{1}{4} & 0 & \frac{1}{4} & 0 \\ 0 & 1 & \frac{15}{11} & 0 & -\frac{3}{11} & \frac{4}{11} \\ 0 & \frac{1}{4} & \frac{5}{4} & 1 & -\frac{1}{4} & 0 \end{bmatrix}$	$R_2 \rightarrow \frac{4}{11}R_2$
$\approx \begin{bmatrix} 1 & 0 & -\frac{14}{11} & 0 & \frac{5}{11} & -\frac{3}{11} \\ 0 & 1 & \frac{15}{11} & 0 & -\frac{3}{11} & \frac{4}{11} \\ 0 & 0 & \frac{10}{11} & 1 & -\frac{2}{11} & -\frac{1}{11} \end{bmatrix}$	$R_1 \rightarrow R_1 - \frac{3}{4}R_2$ $R_3 \rightarrow R_3 - \frac{1}{4}R_2$
$\approx \begin{bmatrix} 1 & 0 & -\frac{14}{11} & 0 & \frac{5}{11} & -\frac{3}{11} \\ 0 & 1 & \frac{15}{11} & 0 & -\frac{3}{11} & \frac{4}{11} \\ 0 & 0 & 1 & \frac{11}{10} & -\frac{1}{5} & -\frac{1}{10} \end{bmatrix}$	$R_3 \rightarrow \frac{11}{10}R_3$
$\approx \begin{bmatrix} 1 & 0 & 0 & & \frac{7}{5} & \frac{1}{5} & -\frac{2}{5} \\ 0 & 1 & 0 & & -\frac{3}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 1 & & \frac{11}{10} & -\frac{1}{5} & -\frac{1}{10} \end{bmatrix}$	$R_1 \rightarrow R_1 + \frac{14}{11}R_3$ $R_2 \rightarrow R_2 - \frac{15}{11}R_3$

$$A^{-1} = \begin{bmatrix} \frac{7}{5} & \frac{1}{5} & -\frac{2}{5} \\ -\frac{3}{2} & 0 & \frac{1}{2} \\ \frac{11}{10} & -\frac{1}{5} & -\frac{1}{10} \end{bmatrix}$$

[7 1 2]

Therefore the solution of the system of equation (1) is

$$X = A^{-1}b$$



Jacobi-Iterative Method or Gauss-Jacobi Iterative Method:

Let us consider the system of simultaneous linear equation as In the matrix form the solution of system of equations can be written as

 $\widehat{X} = HX + C$

where H is called iteration matrix.

Thus, the (n+1)th approximation of iteration formula can be written as

 $X^{(n+1)} = HX^{(n)} + C$.

This method is also called the method of simultaneous displacements.

Example 6: Solve the system of equations

 $27x_1 + 6x_2 - x_3 = 85$ $6x_1 + 15x_2 + 2x_3 = 72$ $x_1 + x_2 + 54x_3 = 110$

by Jacobi iterative method.

Solution: Given system of equations is

$$27x_1 + 6x_2 - x_3 = 85$$

$$6x_1 + 15x_2 + 2x_3 = 72$$

$$x_1 + x_2 + 54x_3 = 110$$

Rearranging the equations for the unknown with the largest coefficient in terms of the remaining unknowns,

$$x_{1} = \frac{1}{27} (85 - 6x_{2} + x_{3})$$
$$x_{2} = \frac{1}{15} (72 - 6x_{1} - 2x_{3})$$
$$x_{3} = \frac{1}{54} (110 - x_{1} - x_{2})$$

Starting with the approximations

 $x_1 = 0, x_2 = 0 \text{ and } x_3 = 0$

we have, first approximation

$$x_1^{(1)} = \frac{85}{27} = 3.15, \ x_2^{(1)} = \frac{72}{15} = 4.8 \ and \ x_3^{(1)} = \frac{110}{54} = 2.04$$

Second approximations to the solution,

Prepared by M.Indhumathi, Asst Prof, Department of Mathematics KAHE

(2)

(1)

$$x_{1}^{(2)} = \frac{1}{27} \left(85 - 6x_{2}^{(1)} + x_{3}^{(1)} \right)$$
$$x_{2}^{(2)} = \frac{1}{15} \left(72 - 6x_{1}^{(1)} - 2x_{3}^{(1)} \right)$$
$$x_{3}^{(2)} = \frac{1}{54} \left(110 - x_{1}^{(1)} - x_{2}^{(1)} \right)$$

on putting the values of $x_1^{(1)}$, $x_2^{(1)}$ and $x_3^{(1)}$ in (3) we have

$$x_1^{(2)} = 2.16, x_2^{(2)} = 3.27$$
 and $x_3^{(2)} = 1.89$

Third approximations to the solution,

$$x_{1}^{(3)} = \frac{1}{27} \left(85 - 6x_{2}^{(2)} + x_{3}^{(2)} \right)$$
$$x_{2}^{(3)} = \frac{1}{15} \left(72 - 6x_{1}^{(2)} - 2x_{3}^{(2)} \right)$$
$$x_{3}^{(3)} = \frac{1}{54} \left(110 - x_{1}^{(2)} - x_{2}^{(2)} \right)$$

on putting the values of $x_1^{(2)}$, $x_2^{(2)}$ and $x_3^{(2)}$ in (4) we have

$$x_1^{(3)} = 2.426, x_2^{(2)} = 3.572$$
 and $x_3^{(2)} = 1.926$

Fourth approximations to the solution,

$$x_{1}^{(4)} = \frac{1}{27} \left(85 - 6x_{2}^{(3)} + x_{3}^{(3)} \right)$$

$$x_{2}^{(4)} = \frac{1}{15} \left(72 - 6x_{1}^{(3)} - 2x_{3}^{(3)} \right)$$

$$x_{3}^{(4)} = \frac{1}{54} \left(110 - x_{1}^{(3)} - x_{2}^{(3)} \right)$$
(5)

on putting the values of $x_1^{(3)}$, $x_2^{(3)}$ and $x_3^{(3)}$ from (5) we have

$$x_1^{(4)} = 2.4257, x_2^{(4)} = 3.5728$$
 and $x_3^{(4)} = 1.9259$

Since the values of $x_1^{(4)}$, $x_2^{(4)}$ and $x_3^{(4)}$ are sufficiently close to $x_1^{(3)}$, $x_2^{(3)}$ and $x_3^{(3)}$ respectively. Hence the values $x_1^{(4)} = 2.4257, x_2^{(4)} = 3.5728$ and $x_3^{(4)} = 1.9259$ can be considered as the solution of the given system.

Prepared by M.Indhumathi, Asst Prof, Department of Mathematics KAHE

(4)

(3)

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc IT COURSENAME: NUMERICAL METHOD		
CLASS: III B.SC II COURSE CODE: 16ITU603A	UNIT-II	BATCH-2016-2019
Gauss-Seidel Iterative	Method:	
·		

Gauss-Seidel iterative method is of great practical importance. This method is a modification to Jacobi iteration method.

Let us consider the system of simultaneous linear equation as

Let the diagonal coefficients a_{ii} in (1) do not vanish. If this condition is not satisfied then rearrange the equation to satisfy this condition.

Now rearrange the equations as

$$x_{1} = \frac{b_{1}}{a_{11}} - \frac{a_{12}}{a_{11}} x_{2} - \frac{a_{13}}{a_{11}} x_{3} - \dots - \frac{a_{1n}}{a_{11}} x_{n}$$

$$x_{2} = \frac{b_{2}}{a_{22}} - \frac{a_{21}}{a_{22}} x_{1} - \frac{a_{23}}{a_{22}} x_{3} - \dots - \frac{a_{2n}}{a_{22}} x_{n}$$

$$- \dots - \dots - \frac{a_{n(n-1)}}{a_{nn}} x_{n}$$

$$x_{n} = \frac{b_{n}}{a_{nn}} - \frac{a_{n1}}{a_{nn}} x_{1} - \frac{a_{n2}}{a_{nn}} x_{2} - \dots - \frac{a_{n(n-1)}}{a_{nn}} x_{(n-1)}$$
(2)

Let the first approximations to the unknowns $x_1, x_2, x_3, ..., x_n$ be $x_1^{(1)}, x_2^{(1)}, x_3^{(1)}, ..., x_n^{(1)}$. Then the second approximation system of next approximations is given by

(1)

$$x_{1}^{(2)} = \frac{b_{1}}{a_{11}} - \frac{a_{12}}{a_{11}} x_{2}^{(1)} - \frac{a_{13}}{a_{11}} x_{3}^{(1)} - \dots - \frac{a_{1n}}{a_{11}} x_{n}^{(1)}$$

$$x_{2}^{(2)} = \frac{b_{2}}{a_{22}} - \frac{a_{21}}{a_{22}} x_{1}^{(2)} - \frac{a_{23}}{a_{22}} x_{3}^{(1)} - \dots - \frac{a_{2n}}{a_{22}} x_{n}^{(1)}$$

$$x_{3}^{(2)} = \frac{b_{2}}{a_{33}} - \frac{a_{31}}{a_{33}} x_{1}^{(2)} - \frac{a_{32}}{a_{33}} x_{2}^{(2)} - \dots - \frac{a_{3n}}{a_{33}} x_{n}^{(1)}$$

$$x_{n}^{(2)} = \frac{b_{n}}{a_{nn}} - \frac{a_{n1}}{a_{nn}} x_{1}^{(2)} - \frac{a_{n2}}{a_{nn}} x_{2}^{(2)} - \dots - \frac{a_{n(n-1)}}{a_{nn}} x_{(n-1)}^{(2)}$$
(3)

Continuing in this way let $x_1^{(n)}, x_2^{(n)}, x_3^{(n)}, \dots, x_n^{(n)}$ be the nth approximations, then the system of $(n+1)^{th}$ approximations is given by

(4)

This arrangement may also be written as

$$a_{11}x_{1}^{(n+1)} = -\sum_{i=2}^{n} a_{1i}x_{i}^{(n)} + b_{1}$$

$$a_{21}x_{1}^{(n+1)} + a_{22}x_{2}^{(n+1)} = -\sum_{i=3}^{n} a_{2i}x_{i}^{(n)} + b_{2}$$

$$a_{n1}x_{1}^{(n+1)} + a_{n2}x_{2}^{(n+1)} + \dots + a_{nn}x_{n}^{(n+1)} = b_{n}$$
(5)

In matrix notation, the system of equations (3) can be written as

$$(D+L)X^{(n+1)} = -UX^{(n)} + b$$

$$X^{(n+1)} = -(D+L)^{-1}UX^{(n)} + (D+L)^{-1}b$$

$$= HX^{(n)} + C, \quad n = 0, 1, 2, \dots$$
(6)

or

where $H = -(D+L)^{-1}U$ and $C = (D+L)^{-1}b$.

This solution can also be written as

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc IT COURSENAME: NUMERICAL MET

COURSE CODE: 16ITU603A

COURSENAME: NUMERICAL METHODS UNIT-II BATCH-2016-2019

$$\begin{split} X^{(n+1)} &= X^{(n)} - \left[I + (D+L)^{-1} U \right] X^{(n)} + (D+L)^{-1} b \\ &= X^{(n)} - (D+L)^{-1} (D+L+U) X^{(n)} + (D+L)^{-1} b \\ &= X^{(n)} - (D+L)^{-1} A X^{(n)} + (D+L)^{-1} b \\ &= X^{(n)} + (D+L)^{-1} \left(b - A X^{(n)} \right). \end{split}$$

 $\Rightarrow \qquad X^{(n+1)} - X^{(n)} = (D+L)^{-1} \left(b - A X^{(n)} \right)$

$$\Rightarrow \qquad (D+L)\left(X^{(n+1)}-X^{(n)}\right) = \left(b-AX^{(n)}\right)$$

or we may write it as

$$(D+L)V^{(n)} = r^{(n)}$$

where $V^{(n)} = X^{(n+1)} - X^{(n)}$ and $r^{(n)} = b - AX^{(n)}$

Solve the equation (7) for $V^{(n)}$ by forward substitution. The solution is then found from

 $X^{(n+1)} = X^{(n)} + V^{(n)}$.

This gives the final solution of the Gauss-Seidel method.

We proceed in this way until we get a result of desired accuracy. Gauss-Seidel method is also called the method of successive displacements.

Example 9: Solve the system of equations

 $27x_1 + 6x_2 - x_3 = 85$ $6x_1 + 15x_2 + 2x_3 = 72$ $x_1 + x_2 + 54x_3 = 110$

by Gauss-Seidel iterative method.

Solution: Given system of equations is

 $27x_1 + 6x_2 - x_3 = 85$ $6x_1 + 15x_2 + 2x_3 = 72$ $x_1 + x_2 + 54x_3 = 110$

(1)

Rearranging the equations for the unknown with the largest coefficient in terms of the remaining unknowns,

Prepared by M.Indhumathi, Asst Prof, Department of Mathematics KAHE

(7)

$$x_{1} = \frac{1}{27} (85 - 6x_{2} + x_{3})$$

$$x_{2} = \frac{1}{15} (72 - 6x_{1} - 2x_{3})$$

$$x_{3} = \frac{1}{54} (110 - x_{1} - x_{2})$$
(2)

let $x_1^{(n)}$, $x_2^{(n)}$ and $x_3^{(n)}$ be the nth approximations, then the $(n+1)^{th}$ approximations is given by

$$x_{1}^{(n+1)} = \frac{1}{27} \left(85 - 6x_{2}^{(n)} + x_{3}^{(n)} \right)$$

$$x_{2}^{(n+1)} = \frac{1}{15} \left(72 - 6x_{1}^{(n+1)} - 2x_{3}^{(n)} \right)$$
(3)
(4)

$$x_3^{(n+1)} = \frac{1}{54} \left(110 - x_1^{(n+1)} - x_2^{(n+1)} \right)$$
(5)

Starting with the initial approximations

$$x_1^{(0)} = 0, \ x_2^{(0)} = 0 \ and \ x_3^{(0)} = 0$$

first approximation to x_1 *i.e.* $x_1^{(1)}$, using equation (3) we have

$$x_1^{(1)} = \frac{1}{27} \left(85 - 6x_2^{(0)} + x_3^{(0)} \right)$$
$$x_1^{(1)} = \frac{85}{27} = 3.15$$

first approximation to x_2 *i.e.* $x_2^{(1)}$, using equation (4) we have

$$x_{2}^{(1)} = \frac{1}{15} \left(72 - 6x_{1}^{(1)} - 2x_{3}^{(0)} \right)$$
$$\Rightarrow \qquad x_{2}^{(1)} = \frac{1}{15} \left(72 - 6 \times 3.15 - 2 \times 0 \right) = 3.54$$

first approximation to x_3 *i.e.* $x_3^{(1)}$, using equation (5) we have

$$x_{3}^{(1)} = \frac{1}{54} \left(110 - x_{1}^{(1)} - x_{2}^{(1)} \right)$$
$$\Rightarrow \qquad x_{3}^{(1)} = \frac{1}{54} \left(110 - 3.15 - 3.54 \right) = 1.91$$

Thus first approximation to the solution is

 $x_1^{(1)} = 3.15, x_2^{(1)} = 3.54 \text{ and } x_3^{(1)} = 1.91$

second approximation to x_1 *i.e.* $x_1^{(2)}$, using equation (3) we have

$$x_1^{(2)} = \frac{1}{27} \left(85 - 6x_2^{(1)} + x_3^{(1)} \right)$$

$$\Rightarrow \qquad x_1^{(1)} = \frac{1}{27} (85 - 6 \times 3.54 + 1.91) = 2.43$$

second approximation to x_2 *i.e.* $x_2^{(2)}$, using equation (4) we have

$$x_{2}^{(2)} = \frac{1}{15} \left(72 - 6x_{1}^{(2)} - 2x_{3}^{(1)} \right)$$

$$\Rightarrow \qquad x_{2}^{(2)} = \frac{1}{15} \left(72 - 6 \times 2.43 - 2 \times 1.91 \right) = 3.57$$

second approximation to x_3 *i.e.* $x_3^{(2)}$, using equation (5) we have

$$x_{3}^{(2)} = \frac{1}{54} \left(110 - x_{1}^{(2)} - x_{2}^{(2)} \right)$$
$$\Rightarrow \qquad x_{3}^{(2)} = \frac{1}{54} \left(110 - 2.43 - 3.57 \right) = 1.926$$

Thus second approximation to the solution is

$$x_1^{(2)} = 2.43, x_2^{(2)} = 3.57$$
 and $x_3^{(2)} = 1.926$

Similarly third approximation to the solution is

$$x_1^{(3)} = 2.426, \ x_2^{(3)} = 3.572 \ and \ x_3^{(3)} = 1.926$$

Since the values of $x_1^{(2)}$, $x_2^{(2)}$ and $x_3^{(2)}$ are sufficiently close to $x_1^{(3)}$, $x_2^{(3)}$ and $x_3^{(3)}$ respectively. Hence the values $x_1^{(3)} = 2.426$, $x_2^{(3)} = 3.572$ and $x_3^{(3)} = 1.926$ can be considered as the solution of the given system

Method of Factorization (Triangularization Method):

This method is also known as decomposition method. This method is based on the fact that a square matrix A can be factored into the product of a lower triangular matrix L and an upper triangular matrix U, if all the principal minors of A are non-singular, i.e. if

$$|a_{11}| \neq 0,$$
 $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \neq 0,$ $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{22} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \neq 0,$ etc.

Thus, the matrix A can be expressed as

A = LU(1)

where

$\left[l_{11}\right]$	0	0		0]					u_{1n}
l_{21}	l_{22}	0		0		0	<i>u</i> ₂₂	<i>u</i> ₂₃	 u_{2n}
1.00			•••		U =				<i>u</i> _{3<i>n</i>}
•	٠		• • •						 .
l_{n1}	l_{n2}	l_{n3}		l_{nn}		0	0	0	 u_{nn}

Using the matrix multiplication rule to multiply the matrices L and U and comparing the elements of the resulting matrix with those of A we obtain

$$l_{i1}u_{1j} + l_{i2}u_{2j} + ... + l_{in}u_{nj} = a_{ij}$$
 (*i* = 1, 2, ..., *n* and *j* = 1, 2, ..., *n*)

where

$$l_{ii} = 0$$
 if $i < j$ and $u_{ii} = 0$ if $i > j$

this system of equations involves $n^2 + n$ unknowns. Thus there are n parameters family of solutions. To produce a unique solution it is convenient to choose either

$$u_{ii} = 1 \text{ or } l_{ii} = 1 \quad i = 1, 2, ..., n$$

Now,

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc IT COURSENAME: NUMERICAL METHODS

COURSE CODE: 16ITU603A

UNIT-II BATCH-2016-2019

If we take $l_{ii} = 1$, in the factorization method then the factorization method is called Doolittle's method.

Now if $l_{ii} = 1$, then we have

	1	0	0	0	9.11	<i>u</i> ₁₁	<i>u</i> ₁₂	<i>u</i> ₁₃	u_{1n}
	l_{21}	1	0	0		0	<i>u</i> ₂₂	$u_{13} \ldots u_{23} \ldots$	u_{2n}
<i>L</i> =	<i>l</i> ₃₁	<i>l</i> ₃₂	1	0	and $U =$	0	0	<i>u</i> ₃₃	<i>u</i> _{3n}
			l_{n3}					0	

thus, for the system of equations

We have

Putting UX = y in equation (3), we have

$$Ly = b \tag{4}$$

On solving equation (4) by forward substitution, we find the vector y now solv the system of equations

$$UX = b$$

by backward substitution we get the values

 $x_1, x_2, ..., x_n$.

We have

UX = y

and Ly = b

 \Rightarrow $y = L^{-1}b$ and $x = U^{-1}y$

Thus the inverse of A can also be determined as

 $A^{-1} = U^{-1}L^{-1}$.

Example 3: Solve the system of equations

2x+3y+z=9x+2y+3z=63x+y+2z=8

using factorization method (Doolittle's method).

Solution (Doolittle's method): We have system of equations

AX = b

where

	2	3	1		x	1 A A		9	
<i>A</i> =	1	2	3	, <i>X</i> =	y	and	<i>b</i> =	6	
	3	1	2_		Z	-		8	

Now let

$$A = L U$$

where

$$L = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \text{ and } U = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

Thus from equation (2) we have

Prepared by M.Indhumathi, Asst Prof, Department of Mathematics KAHE

(1)

(2)

8

$$L U = A$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$$

$$u_{11} = 2, u_{12} = 3, u_{13} = 1$$

$$l_{21}u_{11} = 1 \Rightarrow l_{21} = \frac{1}{2} \text{ and } l_{31}u_{11} = 3 \Rightarrow l_{31} = \frac{3}{2}$$

$$l_{21}u_{12} + u_{22} = 2 \Rightarrow u_{22} = \frac{1}{2} \text{ and } l_{21}u_{13} + u_{23} = 3 \Rightarrow u_{23} = \frac{5}{2}$$

$$l_{31}u_{12} + l_{32}u_{22} = 1 \Rightarrow l_{32} = -7 \text{ and } l_{31}u_{13} + l_{32}u_{23} + u_{33} = 2 \Rightarrow u_{33} = 1$$

Thus, we have

5,	1	0	0			2	3	1]	
<i>L</i> =	$\frac{1}{2}$	1	0	and	U =	0	$\frac{1}{2}$	$\frac{5}{2}$	
	$\frac{3}{2}$	-7	1			0	0	18	

Now using equation (1) and (2) we have

LUX = b

Let

 y_1 where Y = y_2 V.

$$\Rightarrow$$
 LY = t

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{3}{2} & -7 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 9 \\ 6 \\ 8 \end{bmatrix}$$

Prepared by M.Indhumathi, Asst Prof, Department of Mathematics KAHE

(3)

KARPAGAM A	ACADEMY OF HIGH	ER EDUCATION
CLASS: III B.Sc IT	COURSEN	AME: NUMERICAL METHODS
COURSE CODE: 16ITU603A	UNIT-II	BATCH-2016-2019
$v_{1} = 9$		

$$\Rightarrow \quad \frac{1}{2}y_1 + y_2 = 6$$
$$\frac{3}{2}y_1 - 7y_2 + y_3 = 8$$

On solving using forward substitution we have

$$y_1 = 9, y_2 = \frac{3}{2} \text{ and } y_3 = 5$$

Now using the equation (3) we have

	2	3	1	$ r\rangle$	[9]
	0	$\frac{1}{2}$	$\frac{5}{2}$	y	$=\frac{3}{2}$
	0	0	18_		5
	2 <i>x</i> +	3 <i>y</i> +	z=9		
⇒	$\frac{1}{2}y +$	$-\frac{5}{2}z$	$=\frac{3}{2}$		
	18z =	= 5			

On solving using backward substitution we have

$$x = \frac{35}{18}, y = \frac{29}{18}$$
 and $z = \frac{5}{18}$

Thus, the solution of the given system of equations is

$$x = \frac{35}{18}, y = \frac{29}{18}$$
 and $z = \frac{5}{18}$.

If we take $u_{ii} = 1$, in the factorization method then the factorization method is called the Crout's method.

For the matrix A where

A = LU

if $l_{ii} = 1$, then we have

Prepared by M.Indhumathi, Asst Prof, Department of Mathematics KAHE

(1)

CLASS: III B.Sc IT		NAME: NUMERICAL METHODS
URSE CODE: 16ITU603A	UNIT-II	BATCH-2016-2019
$L = \begin{bmatrix} l_{11} & 0 & 0 & \dots & 0 \\ l_{21} & l_{22} & 0 & \dots & 0 \\ l_{31} & l_{32} & l_{33} & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ l_{n1} & l_{n2} & l_{n3} & \dots & l_{nn} \end{bmatrix} $ and	$U = \begin{bmatrix} 1 & u_{12} & u_{13} & \dots & u_{1n} \\ 0 & 1 & u_{23} & \dots & u_{2n} \\ 0 & 0 & 1 & \dots & u_{2n} \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}$	r 2n 3n
thus, for the system of equation	S	
AX = b		(2)
We have		
LUX = b		(3)
Putting UX = y in equation (3) ,	we have	
Ly = b		(4)
On solving equation (4) by forw the system of <mark>equations</mark>	vard substitution, we fin	d the vector y now solve
UX = b		
by backward substitution we get	t the values	
$x_1, x_2,, x_n$.		
We have		
UX = y		
and Ly = b		
$\Rightarrow y = L^{-1}b \text{ and } x = U^{-1}y$		
Thus the inverse of A can also b	e determined as	
$A^{-1} = U^{-1}L^{-1}.$		
Example 4: Solve the system o	f equations	
x + y + z = 1		
4x + 3y - z = 6		
3x + 5y + 3z = 4		
	ut's method).	
using factorization method (Cro		
using factorization method (Cron Solution (Crout's method): W		ions

where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } b = \begin{bmatrix} 1 \\ 6 \\ 4 \end{bmatrix}$$

Now let

A = L U

where

$$L = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \text{ and } U = \begin{bmatrix} 1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1 \end{bmatrix}$$

Thus from equation (2) we have

$$= \begin{array}{c} \mathsf{L} \ \mathsf{U} = \mathsf{A} \\ \Rightarrow \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} 1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix} \\ \begin{array}{c} l_{11} = 1, \ l_{21} = 4, \ l_{31} = 3 \\ l_{11}u_{12} = 1 \Rightarrow u_{12} = 1 \ and \ l_{11}u_{13} = 1 \Rightarrow u_{13} = 1 \\ l_{21}u_{12} + l_{22} = 3 \Rightarrow \ l_{22} = -1 \ and \ l_{21}u_{13} + l_{22}u_{23} = -1 \Rightarrow u_{23} = 5 \\ l_{31}u_{12} + l_{32} = 5 \Rightarrow \ l_{32} = 2 \ and \ l_{31}u_{13} + l_{32}u_{23} + l_{33} = 3 \Rightarrow \ l_{33} = -1 \end{array}$$

Thus, we have

	1	0	0]			1	1	1]
L =	4	-1	0	and	U =	0	1	5
	3	2	-10			0	0	1

Now using equation (1) and (2) we have

$$LUX = b$$

Let

UX=Y

where
$$Y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Prepared by M.Indhumathi, Asst Prof, Department of Mathematics KAHE

Page 27/28

(2)

(3)

0

CLASS: III B.Sc IT	HER EDUCATION ENAME: NUMERICAL METHODS	
OURSE CODE: 16ITU603A	UNIT-II	BATCH-2016-2019
\Rightarrow LY = b		
$\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 4 & -1 & 0 \\ 3 & 2 & -10 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \\ 4 \end{bmatrix}$		
$y_1 = 1$ $\Rightarrow 4y_1 - y_2 = 6$ $3y_1 + 2y_2 - 10y_3 = 4$		
On solving using forward subst	itution we have	
$y_1 = 1, y_2 = -2$ and $y_3 = -\frac{1}{2}$	1 2	
Now using the equation (3) we	have	
F 1		

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ -\frac{1}{2} \end{bmatrix}$$

$$x + y + z = 1$$

$$y + 5z = -2$$

$$z = -\frac{1}{2}$$

On solving using backward substitution we have

$$x = 1, y = \frac{1}{2}$$
 and $z = -\frac{1}{2}$

Thus, the solution of the given system of equations is

$$x = 1, y = \frac{1}{2} and z = -\frac{1}{2}$$

UNIT II

Iterative method is a ----- method

----- is also a self-correction method.

The condition for convergence of Gauss Seidal method is that the ------

should be diagonally dominant

In ----- method, the coefficient matrix is transformed into diagonal matrix

----- Method takes less time to solve a system of equations

The iterative process continues till ------ is secured.

In Gauss elimination method, the solution is getting by means of -----from which the unknowns are found by back substitution.

The ----- is reduced to an upper triangular matrix or a diagonal matrix in direct methods.

The augment matrix is the combination of ------.

The given system of equations can be taken as in the form of ------Which is the condition to apply Gauss Seidal method to solve a system of equations? Crout's method and triangularisation method are ----- method.

The solution of simultaneous linear algebraic equations are found by using-----

The matrix is _____ if the numerical value of the leading diagonal element in each row is greater than or equal to the If the Eigen values of A are -6, 2, 4 then _____ is dominant.

The Gauss – Jordan method is the modification of _____ method.

 $x^{2} + 5x + 4 = 0$ is a _____ equation.

a + b logx + c sinx + d = 0 is a _____ equation.

In Gauss – Jordan method, the augmented matrix is reduced into _____matrix

The 1st equation in Gauss – Jordan method, is called ______ equation.

The element a11 in Gauss – Jordan method is called ______ element.

The system of simultaneous linear equation in n unknowns AX = B if A is diagonally dominant then the system is sa

The convergence of Gauss – Seidal method is roughly _____ that of Gauss – Jacobi method

Jacobi's method is used only when the matrix is _____

Gauss Seidal method always ----- for a special type of systems.

Condition for convergence of Gauss Seidal method is -----.

Modified form of Gauss Jacobi method is ----- method.

In Gauss elimination method by means of elementary row operations,

from which the unknowns are found by ----- method

In iterative methods, the solution to a system of linear equations will exist if the absolute value of the lar In ------ iterative method, the current values of the unknowns at each stage of iteration are used in r The direct method fails if any one of the pivot elements become ----.

In Gauss elimination method the given matrix is transformed into -----.

If the coefficient matrix is not diagonally dominant, then by ------

that diagonally dominant coefficient matrix is formed.

Gauss Jordan method is a -----.

Gauss Jacobi method is a -----.

The modification of Gauss – Jordan method is called ------Gauss Seidal method always converges for ----- of systems In solving the system of linear equations, the system can be written as ---In solving the system of linear equations, the augment matrix is ------In the direct methods of solving a system of linear equations, at first the given system is written as ----- form. All the row operations in the direct methods can be carried out on the basis of --The direct method fails if -----. The elimination of the unknowns is done not only in the equations below, but also in the equations above the leading diagonal is called ------In Gauss Jordan method, we get the solution ------If the coefficient matrix is diagonally dominant, then ------ method converges quickly. Which is the condition to apply Jocobi's method to solve a system of equations Iterative method is a ----- method As soon as a new value for a variable is found by iteration it is used immediately in the equations is called -----. ----- is also a self-correction method. The condition for convergence of Gauss Seidal method is that the -----should be diagonally dominant In ----- method, the coefficient matrix is transformed into diagonal matrix We get the approximate solution from the -----. The iterative process continues till ------ is secured. In Gauss elimination method, the solution is getting by means of -----from which the unknowns are found by back substitution. The method of iteration is applicable only if all equation must contain one coefficient of different unknowns as ----- than other coefficients. The ----- is reduced to an upper triangular matrix or a diagonal matrix in direct methods.

The augment matrix is the combination of -----.

The given system of equations can be taken as in the form of ------The sufficient condition of iterative methods will be satisfied if the large coefficients are along the ------ of the coefficient matrix. Which is the condition to apply Gauss Seidal method to solve a system of equations.

In the absence of any better estimates, the -----of the function are taken as x = 0, y = 0, z = 0.

The solution of simultaneous linear algebraic equations are found by using-

Direct method Iteration method	InDirect method Direct method	both 1st & 2nd Interpolation
Constant matrix	unknown matrix	Coefficient matrix
Gauss elimination Direct method convergency	Gauss jordan Indirect method divergency	Gauss jacobi Regula falsi oscillation
Elementary operations	Elementary column operations	Elementary diagonal operations
Coefficient matrix	Constant matrix	unknown matrix
Coefficient matrix and constant matrix	Unknown matrix and constant matrix	Coefficient matrix and Unknown matrix
A = B 1st row is dominant Direct Direct method orthogonal 2 Gauss –Elimination algebraic algebraic upper triangular pivotal Eigen value dominant twice symmetric Converges Coefficient matrix is diagonally dominant Gauss Jordan	BX= A 1st column is dominant Indirect Indirect method symmetric -6 Gauss – Jacobi transcendental transcendental lower triangular dominant Eigen vector diagonal thrice skew-symmetric diverges pivot element is Zero Gauss Siedal	AX= B diagonally dominant Iterative both 1st & 2nd diagonally dominant 4 Gauss – Seidal wave wave diagonal reduced pivot scalar once singular oscillates Coefficient matrix is not diagonally dominant Gauss Jacobbi
Forward substitution	Backward substitution	random
less than Gauss Siedal Zero Unit matrix	greater than or equal to Gauss Jacobi one diagonal matrix	equal to Gauss Jordan two Upper triangular matrix
Interchanging rows	Interchanging Columns	adding zeros
Direct method Direct method	InDirect method InDirect method	iterative method iterative method

Gauss Jordan Only the special type BX = B	Gauss Siedal all types AX = A	Gauss Jacobbi quadratic types AX = B
(A, A)	(B, B)	(A, X)
An augment matrix	a triangular matrix	constant matrix
all elements	pivot element	negative element
1st row elements 0	1st column elements 0	Either 1st or 2nd
Gauss elimination	Gauss jordan	Gauss jacobi
without using back substitution method	By using back substitution method	by using forward substitution method
Gauss elimination	Gauss jordan	Direct
1st row is dominant Direct method	1st column is dominant InDirect method	diagonally dominant Interpolation
Iteration method	Direct method	Interpolation
Iteration method	Direct method	Interpolation
Constant matrix	unknown matrix	Coefficient matrix
Gauss elimination Direct method convergency	Gauss jordan InDirect method divergency	Gauss jacobi fast method oscillation
Elementary operations	Elementary column operations	Elementary diagonal operations
smaller	larger	equal
Coefficient matrix	Constant matrix	unknown matrix
Coefficient matrix and constant matrix A = B	Unknown matrix and constant matrix BX= A	Coefficient matrix and Unknown matrix AX= B
Rows	Coloumns	Leading Diagonal
1st row is dominant	1st column is dominant	diagonally dominant
initialapproximations	roots	points
Direct method	InDirect method	fast method

either 1st &2nd none Unit matrix Gauss seidal Bisection none Elementary row operations Augment matrix Coefficient matrix, constant matrix and Unknown matrix AB = Xlast row dominant Interpolation Bisection singular -2 interpolation heat heat scalar normal root singular 4 times non-singular equal pivot element is non Zero **Gauss Elimination Gauss Elimination** not equal **Gauss Elimination** negative lower triangular matrix Interchangingrow and Columns convergent convergent

gauss elemination first type AB = X (A, B)

Coefficient matrix

positiveelement

2 nd row is dominant

Gauss siedal

Without using forward substitution method

Gauss siedal

2 nd row is dominant extrapolation

extrapolation

extrapolation

extrapolation

Gauss seidal Bisection point

Elementary row operations

non zero

Augment matrix Coefficient matrix, constant matrix and Unknown matrix AB = X elements

Leading Diagonal

final value

Bisection

InDirect method Iteration method

Coefficient matrix Gauss jordan Direct method convergency

Elementary row operations

Augment matrix Coefficient matrix and constant matrix

AX= B diagonally dominant

Direct InDirect method

diagonally dominant

Gauss – Elimination algebraic transcendental

diagonal pivotal pivot diagonal twice symmetric Converges Coefficient matrix is diagonally dominant Gauss Siedal Backward substitution greater than or equal to Gauss Siedal Zero Upper triangular matrix Interchangingrow and Columns Direct method InDirect method Gauss Siedal Only the special type AX = B(A, B)An augment matrix pivot element Either 1st or 2nd Gauss jordan By using back substitution method Gauss siedal diagonally dominant InDirect method Iteration method Iteration method Coefficient matrix Gauss jordan InDirect method convergency Elementary row operations larger Augment matrix Coefficient matrix and constant matrix

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc IT COURSE CODE: 16ITU603A COURSENAME: NUMERICAL METHODS UNIT: III BATCH-2016-2019

<u>UNIT-III</u>

SYLLABUS

Gauss elimination method (with row pivoting) and Gauss-Jordan method – Gauss thomas method for tridiagonal systems. Interative methods: Jacobi and Gauss-seidalinterative methods.

First differences of the function.

Let y = f(x) be any function given by the values y_0 , y_1 , y_n . Which it takes for the equidistant values x_0 , x_1 , x_n of the independent variable x then $y_1 - y_0$, $y_2 - y_1$, $y_n - y_{n-1}$ are called the first differences of the function y. Denoted by Δy_0 , Δy_1 ,

Shift operator:

Let y = f(x) be function of x and x, $x+h_1 x + 2h$... etc. be the consecutive values of x, then the operator E is defined as E[f(x)] = f(x+h) : E is called Shift Operator.

Formula for Newton forward and Newton Backward differences:

The Newton's forward interpolation formula is

$$y(x_0 + nh) = y_0 + n\Delta y_0 + \frac{n(n-1)}{2!}\Delta^2 y_0 + \frac{n(n-1)(n-2)}{3!}\Delta^3 y_0 + \dots$$

The Newton's backward interpolation formula is

$$y(x_0 + nh) = y_0 + n\nabla y_0 + \frac{n(n+1)}{2!}\nabla^2 y_0 + \dots$$

Formula for Lagrange's interpolation .

Let Y = f(x) be a function which assumes the values $f(x_0)$, $f(x_1)$ $f(x_n)$ corresponding to the values x: x_1 , x_1 x_n .

$$Y = f(x) = \frac{(x - x_1)(x - x_2)...(x - x_n)}{(x_0 - x_1)(x_0 - x_2)...(x_0 - x_n)} f(x_0) + \frac{(x - x_0)(x - x_2)...(x - x_n)}{(x_1 - x_0)(x_1 - x_2)...(x_1 - x_n)} f(x_1) + \dots$$

Formula for inverse Lagrange's interpolation:

$$x = \frac{(y - y_1)(y - y_2)...(y - y_n)}{(y_0 - y_1)(y_0 - y_2)...(y_0 - y_n)} x_0 + \frac{(y - y_0)(y - y_2)...(y - y_n)}{(y_1 - y_0)(y_1 - y_2)...(y_1 - y_n)} x_1 + \dots$$

Operator Δ , ∇ , E, δ , μ .

(i) $\Delta y_x = y_{x+h} - y_x$

(ii)
$$\nabla y_x = y_x - y_{x-h}$$

(iii)
$$\delta y_x = y_{x+\frac{1}{2}h} - y_{x-\frac{1}{2}h}$$

$$\mu = Y_2 \left(y_{x + \frac{1}{2}h} + y_{x - \frac{1}{2}h} \right)$$

Relation between the operator δ and E:

$$\delta f(x) = f\left(x + \frac{1}{2}h\right) - f\left(x - \frac{1}{2}h\right)$$
$$= E^{\frac{1}{2}}f(x) - E^{-\frac{1}{2}}f(x)$$
$$= \left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)f(x)$$
$$\delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}} = E^{-\frac{1}{2}}(E-1)$$

 $=E^{-\frac{1}{2}}\Lambda$

Relation between the operator μ and E:

$$\mu [f(\mathbf{x})] = \frac{1}{2} \left[f(x + \frac{1}{2}h) + f(x - \frac{1}{2}h) \right]$$
$$= \frac{1}{2} \left[E^{\frac{1}{2}} + E^{-\frac{1}{2}} \right] f(x)$$
$$\mu = \frac{1}{2} \left[E^{\frac{1}{2}} + E^{-\frac{1}{2}} \right]$$

Error formula in interpolation:

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc IT **COURSENAME: NUMERICAL METHODS** COURSE CODE: 16ITU603A **BATCH-2016-2019** UNIT: III $f(t) = f(t) - \phi(t) - \left(f(x) - \phi(x)\right) \frac{(t - x_0)(t - x_1)\dots(t - x_n)}{(x - x_0)(x - x_1)\dots(x - x_n)}$ The above function f(t) is continuous in $[x_0, x_n]$. **Numerical Examples:** 01. Prove that if m and n are positive integers then $\Delta^{m} \Delta^{n} f(\mathbf{x}) = \Delta^{m+n} f(\mathbf{x}).$ Proof: $\Delta^{m} \Delta^{n} f(x) = (\Delta \times m \text{ times}) (\Delta \times \Delta \times \times n \text{ times}) f(x)$ = Δ . Δ (m + n) times f(x) $= \Delta^{m+n} f(\mathbf{x}).$ **02.** Find $\Delta \log x$.

Solution:

 $\Delta \log x = \log (x + h) - \log x$

$$=\log\left(\frac{x+h}{x}\right)$$

 $\Delta \log x = \log (1 + h/x)$

03. Find $\Delta \tan^{\text{-1}} x$

Solution:-

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc IT **COURSENAME: NUMERICAL METHODS COURSE CODE: 16ITU603A BATCH-2016-2019** UNIT: III $\Delta \tan^{-1} x$ = tan⁻¹ (x + h) - tan⁻¹ (x) $=\tan^{-1}\left[\frac{\cancel{x}+h-\cancel{x}}{1+(x+h)x}\right]$ $=\tan^{-1}\left(\frac{h}{x^2+hx+1}\right).$ 04. It n is a positive integer then $y_n = y_0 + nc_1 \Delta y_0 + nc_2 \Delta^2 y_0 + \dots + \Delta^n y_0.$ Proof: From the let $y_1 = Ey_0 = (1 + \Delta) y_0$ $= y_0 + \Delta y_0$ $y_2 = E^2 y_0 = (1 + \Delta)^2 y_0$ $= (1 + 2c_1 \Delta + \Delta^2) y_0$ $= \mathbf{y}_0 + 2\mathbf{c}_1 \,\Delta \mathbf{y}_0 + \Delta^2 \mathbf{y}_0$ Similarly $y_n = E^n y_0 = (1 + \Delta)^n y_0$ $= (1 + nc_1\Delta +\Delta^n) y_0$ $= \mathbf{y}_0 + \mathbf{n}\mathbf{c}_1\,\Delta\mathbf{y}_0 + \dots \Delta^n\mathbf{y}_0$ Hence proved. **05.** Prove that $E \Delta \equiv \Delta E$

Proof:-

 $E\Delta f(x) = E [f(x + h) - f(x)]$

COURSE CODE: 16ITU603A		
	UNIT: III	BATCH-2016-2019
= E [f(x + h) – E [f(x)]]	
= f(x + 2h) - f(x + h)	1	
06. Prove that f(4) = f(3) + Δ f(2) + Δ^2 f(1) + Δ	∆³ f(1)	
Solution:-		
$f(4) - f(3) = \Delta f(3)$		
= $\Delta [f(2) + \Delta f(2)]$:: $f(3) - f(2)$) = ∆ f(2)	
$= \qquad \Delta f(2) + \Delta^2 f(2)$		
= $\Delta f(2) + \Delta^2 [f(1) + \Delta f(1)]$		
= $\Delta f(2) + \Delta^2 f(1) + \Delta^3 f(1)$.	$\boldsymbol{\lambda}$	
$f(4) = f(3) + \Delta f(2) + \Delta^2 f(1) + \Delta^3 f(1).$		
07. Express f(x) = x ⁴ – 5x ³ + 3x + 4 in terms o	of factorial polynomials	
Solution:		
Synthetic division method:-		
Given $f(x) = x^4 - 5x^3 + 3x + 4$		
By Synthetic division		
$1\begin{vmatrix} 1 & -5 & 0 & 3 & 4(=E) \\ 0 & 1 & -4 & -4 \end{vmatrix}$		
$\begin{vmatrix} 0 & 1 & -4 & -4 \\ 1 & -4 & -4 & -1 & = (-D) \end{vmatrix}$		
$2 \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & -4 \end{bmatrix}$		
$3 \begin{vmatrix} 1 & -2 & -8 & (=C) \\ 0 & 3 \end{vmatrix}$		

1(=A) 1(=B)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc IT COURSE CODE: 16ITU603A

COURSENAME: NUMERICAL METHODS UNIT: III BATCH-2016-2019

 $f(x) = x^{(4)} + x^{(3)} - 8x^{(2)} - x^{(1)} + 4.$

08. Estimate y₂ from the following table.

Х	1	2	3	4	5
Yx	7	?	13	21	37

Solution:-

Here we are given four entries

Viz. y_1 , y_3 , y_4 and y_5 . Therefore the function y_x can be represented by a third degree polynomial $\Delta^3 y_x$ = Constant and $\Delta^4 y_x$ = 0 in particular

 $\Delta^4 y_1 = 0 \Longrightarrow (E - 1)^4 y_1 = 0; (E^4 - 4E^3 + 6E^2 - 4E + 1) y_1 = 0$ y_5 - 4y_4 + 6y_3 - 4y_2 + 7 = 0; 38 - 4y_2 = 0; y_2 = 9.5

09. Obtain a function whose first differences is

$6x^2 + 16x + 11$

Solution:-

Expressing the function in factorial notation, we get

 $6x^2 + 16x + 11 = 6x^{(2)} + 16x^{(1)} + 11$

$$\Delta f(x) = 6x^{(2)} + 16x^{(1)} + 11$$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc IT

COURSENAME: NUMERICAL METHODS

COURSE CODE: 16ITU603A

UNIT: III BATCH-2016-2019

Integrating we get

$$f(x) = \frac{6x^{(3)}}{3} + \frac{16x^{(2)}}{2} + \frac{11x^{(1)}}{1} + K$$
$$= 2x^{(3)} + 8x^{(2)} + 11x^{(1)} + K$$

which is the required function.

10. Find $\Delta^{10} (1 - ax) (1 - bx^2) (1 - cx^3) (1 - dx^4)$.

Solution:-

Let $f(x) = (1 - ax) (1 - bx^2) (1 - cx^3) (1 - dx^4)$.

f(x) is a polynomial of degree 10 and the coefficient of x^{10} is a, b, c, d.

 $\Delta^{10} f(x) =$ Δ^{10} (abcd x¹⁰)

> abcd $\Delta^{10} x^{10} = 10!$ abcd. =

11. Find Δ^n (1/x).

Solution:-

Now
$$\Delta\left(\frac{1}{x}\right) = \frac{1}{x+1} - \frac{1}{x}$$
$$= \frac{-1}{x(x+1)}$$

$$\Delta^{2}(\frac{1}{x}) = \frac{(-1)^{2}}{x(x+1) \ (x+2)}$$

and so on

Preceding like this

$$\Delta^{n}\left(\frac{1}{x}\right) = \frac{(-1)^{n}}{x(x+1)(x+2)....(x+n)}$$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc IT COURSENAME: NUMERICAL METHODS COURSE CODE: 16ITU603A UNIT: III BATCH-2016-2019 (Δ^2) 2

12. Evaluate
$$\left(\frac{\Delta^2}{E}\right) x^3$$

Solution:-

Let h be the interval of differencing

$$\left(\frac{\Delta^2}{E}\right) x^3 = (\Delta^2 E^{-1}) x^3$$

= $(E-1)^2 E^{-1} x^3$
= $(E^2 - 2E + 1) E^{-1} x^3$
= $(E-2+E^{-1}) x^3 \Longrightarrow Ex^3 - 2x^3 + E^{-1} x^3$
= $(x+h)^3 - 2x^3 + (x-h)^3$
= $6xh$.

13. Given $u_0 = 1$, $u_1 = 11$, $u_2 = 21$, $u_3 = 28$ and $u_4 = 29$ find $\Delta^4 y_0$.

Solution:-

$$\Delta^{4}y_{0} = (E^{4} - 4C_{1} E^{3} + 4C_{2} E^{2} - 4C_{3} E + 1) y_{0}$$

$$= E^{4}y_{0} - 4E^{3}y_{0} + 6E^{2}y_{0} - 4Ey_{0} + y_{0}$$

$$= y_{4} - 4y_{3} + 6y_{2} - 4y_{1} + y_{0}$$

$$= 29 - 112 + 126 - 44 + 1$$

$$= 0.$$

14. Write the relation between E and Δ .

Solution:

$$\Delta f(x) = f(x) - f(x - h)$$

= $f(x) - E^{-1} f(x)$

COURSENAME: NUMERICAL METHODS
UNIT: III BATCH-2016-2019
¹) f(x)
f(x)
(x-h)]
f(x - h)] + f(x - h)
f(x) + f(x - h)
[f(x) - f(x - h)]
. – E⁻¹) f(x)
∃ ⁻¹)] f(x)
(: f

COURSE CODE: 10	8.Sc IT 61T11603A	COURSEN UNIT: III	NAME: NUMERICAL METHODS BATCH-2016-2019
17. Prove that $\nabla f(x)$:		01411.111	DATE CIT-2010-2017
	(/ · (··)·		
Proof:-			
$\nabla f(x)$	= f(x) - f(x - h)		
E ⁻¹ [∇f(x)]	$= E^{-1} [f(x + h) - f(x)]$		
	$= f(x) - f(x - h) \nabla$		
	$ abla$ = E ⁻¹ Δ		
18. Prove that $\nabla_{0^3}^2 =$	$ 6, \nabla_{0^3}^3 = 6 $		
Solution:-			
$\therefore \Lambda^n = 0$: n > r		
$\therefore \Delta_{0^r}^n = 0 \therefore \\ \Delta^n \ 0^n = n!$			
-			
$\Delta^{n} 0^{n} = n!$ $\Delta 0^{r} = 1^{r} =$	1		
$\Delta^n 0^n = n!$	2 -1 5		
$\Delta^{n} 0^{n} = n!$ $\Delta 0^{r} = 1^{r} =$ $\nabla_{0^{3}}^{2} = 2^{3} - 2.1^{3} = 6$	2 -1 5		
$\Delta^{n} 0^{n} = n!$ $\Delta 0^{r} = 1^{r} =$ $\nabla_{0^{3}}^{2} = 2^{3} - 2.1^{3} = 6$ $\nabla_{0^{3}}^{3} = 3^{3} - 3.2^{3} + 3$	i = 1 5 $3 \cdot i^3 = 6$		
$\Delta^{n} 0^{n} = n!$ $\Delta 0^{r} = 1^{r} =$ $\nabla_{0^{3}}^{2} = 2^{3} - 2.1^{3} = 6$	2 -1 5		
$\Delta^{n} 0^{n} = n!$ $\Delta 0^{r} = 1^{r} =$ $\nabla_{0^{3}}^{2} = 2^{3} - 2.1^{3} = 6$ $\nabla_{0^{3}}^{3} = 3^{3} - 3.2^{3} + 3$	i = 1 5 $3 \cdot i^3 = 6$		
$\Delta^{n} \ 0^{n} = n!$ $\Delta 0^{r} = 1^{r} =$ $\nabla_{0^{3}}^{2} = 2^{3} - 2.1^{3} = 6$ $\nabla_{0^{3}}^{3} = 3^{3} - 3.2^{3} + 3$ 19. Calculate (i) $\nabla_{0^{6}}^{3}$	i = 1 5 $3 \cdot i^3 = 6$		
$\Delta^{n} \ 0^{n} = n!$ $\Delta 0^{r} = 1^{r} =$ $\nabla_{0^{3}}^{2} = 2^{3} - 2.1^{3} = 6$ $\nabla_{0^{3}}^{3} = 3^{3} - 3.2^{3} + 3$ 19. Calculate (i) $\nabla_{0^{6}}^{3}$	$i = 1$ 5 $3.i^{3} = 6$ (ii) $\nabla_{0^{6}}^{5}$		

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc IT **COURSENAME: NUMERICAL METHODS COURSE CODE: 16ITU603A UNIT: III BATCH-2016-2019** (ii) $\nabla_{0^6}^5 = 5^6 - 5.4^6 + 10.3^6 - 10.2^6 + 5.1^6$ =15625 - 20480 + 7290 - 640 + 5 =1800. 20. Prove that $E^{\frac{1}{2}} = \mu + \frac{1}{2}\delta$, $E^{\frac{1}{2}} = \mu - \frac{1}{2}\delta$. Solution:- $\mu + \frac{1}{2}\delta = \frac{1}{2}\left(E^{\frac{1}{2}} + E^{-\frac{1}{2}}\right) + \frac{1}{2}\left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)$ $=\frac{1}{2}\left[2E^{\frac{1}{2}}\right]=E^{\frac{1}{2}}$ $\mu - \frac{1}{2}\delta = \frac{1}{2}\left(E^{\frac{1}{2}} + E^{-\frac{1}{2}}\right) - \frac{1}{2}\left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)$ $=E^{-1/2}$ 21. Prove that $\Delta = \frac{1}{2}\delta^2 + \delta\sqrt{1+\delta^2/4}$ **Proof:-** $\frac{1}{2}\delta^{2} + \delta\sqrt{1 + \delta^{2}/4} = \frac{1}{2}\left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)^{2} + \delta\sqrt{1 + \frac{\left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)^{2}}{4}}$ $=\frac{1}{2}\left(E^{\frac{1}{2}}-E^{-\frac{1}{2}}\right)^{2}+\left(E^{\frac{1}{2}}-E^{-\frac{1}{2}}\right)\sqrt{\frac{4+E+E^{-1-2}}{4}}$ $=\frac{1}{2}\left(E+E^{-1}-2\right)+\left(E^{\frac{1}{2}}-E^{-\frac{1}{2}}\right)\sqrt{\frac{\left(E^{\frac{1}{2}}-E^{-\frac{1}{2}}\right)^{2}}{4}}$ $=\frac{1}{2}\left(E+E^{-1}-2\right)+\left(\frac{E^{\frac{1}{2}}-E^{-\frac{1}{2}}}{2}\right)\left(E^{\frac{1}{2}}E^{-\frac{1}{2}}\right)$

Prepared by M.Indhumathi, Asst Prof, Department of Mathematics KAHE

 $= E - 1 = \Delta.$

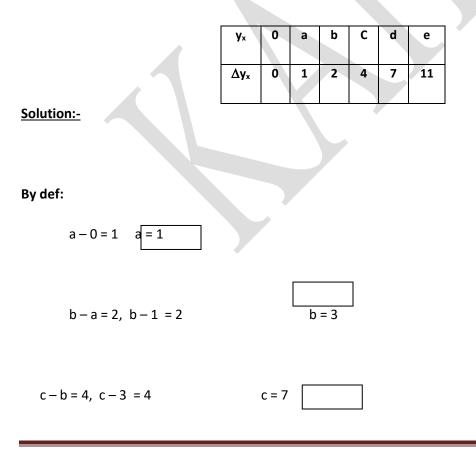
KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METHODSCOURSE CODE: 16ITU603AUNIT: IIIBATCH-2016-2019

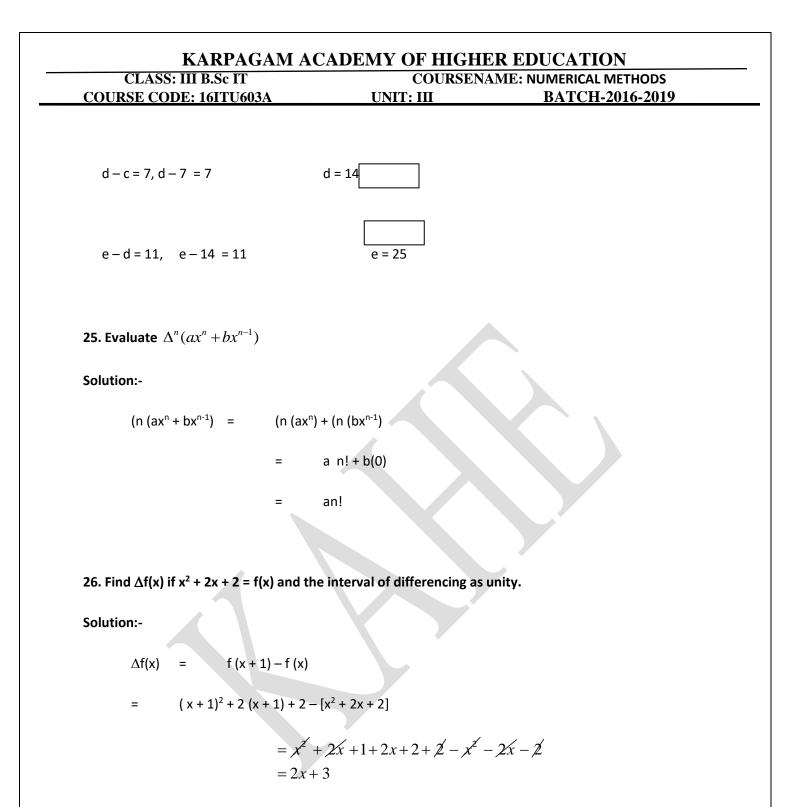
23. Prove that (E + 1) δ = 2 (E – 1) μ .

Solution:-

$$(E+1)\delta = (E+1)\left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)$$
$$= \left(E^{\frac{1}{2}} \cdot E^{\frac{1}{2}} + E^{\frac{1}{2}} \cdot E^{-\frac{1}{2}}\right)\left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)$$
$$= E^{\frac{1}{2}}\left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)\left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)$$
$$= E^{\frac{1}{2}}\left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)\left(E^{\frac{1}{2}} + E^{-\frac{1}{2}}\right)$$
$$= (E-1) - 2\cdot\left(\frac{E^{\frac{1}{2}} + E^{-\frac{1}{2}}}{2}\right)$$
$$= 2(E-1)\mu.$$

24. Find the missing y_x values from the first differences provided.





27. Find the second degree polynomial fitting the following data.

x 1 2 4 y 4 5 13

Solution:-

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METHODSCOURSE CODE: 16ITU603AUNIT: IIIBATCH-2016-2019

$$x_0 = 1, x_1 = 2, x_2 = 4, y_0 = 4, y_1 = 5, y_2 = 13$$

By Lagrange's formula

$$f(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} y_0 + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} y_1 + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_0)} y_2$$

$$=\frac{(x-2)(x-4)}{3}4 + \frac{(x-1)(x-4)}{-2}5 + \frac{(x-1)(x-2)}{6}13$$
$$=\frac{1}{6}\left[8x^2 - 48x + 64 - 15x^2 + 75x - 60 + 13x^2 - 39x + 26\right]$$

$$= \frac{1}{6} \Big[6x^2 - 12x + 30 \Big]$$
$$= x^2 - 2x + 5$$

28. Prove that
$$\left(\frac{\Delta^2}{E}\right)e^x \cdot \frac{Ee^x}{\Delta^2 e^x} = e^x$$

Solution:-

$$(\Delta^2 E^{-1})e^x \cdot \frac{Ee^x}{\Delta^2 e^x} = \Delta^2 e^{x-h} \frac{Ee^x}{\Delta^2 e^x}$$
$$= \Delta^2 e^x \cdot e^{-h} \frac{Ee^x}{\Delta^2 e^x} = e^{-h} Ee^x$$
$$= e^{-h} - x^{x+h} = e^x$$

29. Show that $\sum_{bcd}^{3} \left(\frac{1}{a}\right) = -\frac{1}{abcd}$

CLASS: III B.Sc IT	COURSEN	AME: NUMERICAL METHODS
COURSE CODE: 16ITU603A	UNIT: III	BATCH-2016-2019
Solution:		
If $f(x) = 1/x$, $f(a) = 1/a$		
f(a, b) = $\Delta_{b}\left(\frac{1}{a}\right) = \frac{\frac{1}{b} - \frac{1}{a}}{b - a} = -\frac{1}{ab}$		
f(a, b, c) = $\frac{f(b,c) - f(a,b)}{c-a} = \frac{-1}{a}$	$\frac{\frac{1}{bc} + \frac{1}{ab}}{c - a}$	
$=\frac{1}{abc}$		
$f(a,b,c,d) = \frac{f(b,c,d) - f(a,b,c)}{d-a}$	$\langle \rangle$	
$=\frac{\frac{1}{bcd}-\frac{1}{abc}}{d-a}=-\frac{1}{abcd}$		

30. A function f(x) is given by the following table. Find f(0.2) by a suitable formula.

x	0	1	2	3	4	5	6
F(x)	176	185	194	203	212	220	229

Solution:

The difference table is follows:-

х	y = f(x)	Δ	Δ2	(3	(4	(5	(6
---	----------	---	----	----	----	----	----

	CLASS:	III B.Sc	Π			COU	RSENAN	IE: NUMERICAL METHODS
COL	URSE COD	<u>E: 16ITU</u>	J603A		UN	[T: III		BATCH-2016-2019
)	176	(у0						
-	185	9	(2y0					
2	194	9	0	(3 y0				
3	203	9	0	0	$\Delta^4 \gamma_0$			
4	212	9	0	0	0	Δ ⁵ y ₀		
5	220	8	-1	-1	-1	-1	$\Delta^6 y_0$	
6	229	9	1	2	3	4	5	

Here $x_0 = 0$, h = 1, $y_0 = 176 = f(x)$

We have to find the value of f (0.2). By Newton's forward interpolation formula we have

$$f(x_0 + nh) = y_0 + n\Delta y_0 + \frac{n(n-1)}{2!}\Delta^2 y_0 + \dots$$

$$f(0.2) = ?$$

 $x_0 + nh = 0.2$

 $0 + n = 0.2 \Rightarrow n = 0.2$

$$f(0.2) = 176 + (0.2) 9 + \frac{(0.2)(0.2 - 1)}{2} 0$$
$$= 176 + 1.8$$
$$= 177.8$$

31. From the given table compute the value of sin 38.

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METH

COURSE CODE: 16ITU603A

COURSENAME: NUMERICAL METHODS UNIT: III BATCH-2016-2019

x	0	10	20	30	40
Sin x	0	0.17365	0.34202	0.5	0.64276

Solution:-

As we have to determine the value of $y = \sin x$ near the lower end, we apply Newton's backward interpolation formula.

The difference table is as given below.

y(x) = Sin x ⁰	Δγ	Δ^2_{y}	Δ^{3}_{y}	Δ^4_{y}
0				
0.17365	0.17365			
0.34202	0.16837	- 0.00528		
0.5000	0.15798	- 0.01039	- 0.00511	
0.64279	0.14279	- 0.01519	- 0.0048	0.00031
Y ₀	Δy_0	$\Delta^2 y_0$	$\Delta^3 y_0$	$\Delta^4 y_0$
	0 0.17365 0.34202 0.5000 0.64279	0 0.17365 0.34202 0.5000 0.15798 0.64279	0 4 0.17365 0.17365 0.34202 0.16837 - 0.00528 0.5000 0.15798 - 0.01039 0.64279 0.14279 - 0.01519	0

Here $x_0 = 40$, h = 0.64279, h = 10

Newton's backward differences formula

KARPAGAM ACADEMY OF HIGHER EDUCATION

COURSENAME: NUMERICAL METHODS

COURSE CODE: 16ITU603A

CLASS: III B.Sc IT

UNIT: III BATCH-2016-2019

$$y(x_0 + nh) = y_0 + n\nabla y_0 + \frac{n(n+1)}{2!}\nabla^2 y_0 + \dots$$

y(38) =

 $x_0 + nh = 38$ 40 + n(10) = 38 n = -0.2

$$y (38) = 0.64279 + (-0.2) (0.14279) + \frac{(-0.2) (-0.2 + 1)}{2!} (-0.01519) + \frac{(-0.2) (-0.2 + 1) (-0.2 + 2)}{3!} (-0.0048) + neglible term$$
$$= 0.64279 - 0.028558 + 0.0012152 + 0.0002304$$
$$= 0.61566$$

32. If $U_x = ax^2 + bx + C$, then show that

$$U_{2n} - nC_1 2U_{2n-1} + nC_2 2U_{2n-2} + (-2)^n u_n = (-1)^n (1 - 2an)$$

Solution:-

Given that

 $U_x=ax^2 + bx + C$

 $U_n = an^2 + bn + C$, Uni > a polynomial of

degree 2 in n

 $\Delta^3 u_n = \Delta^4 u_n = 0$

Let the interval of differencing be equal to 1. Now

 $U_n = an^2 + bn + C$

 ΔU_n = a (n + 1)² + b (n + 1) + C - an² - bn - C

= 2 an + a + b

CL	ASS: III B.Sc IT	COUI	RSENAME: NUMERICAL	
COURSE	CODE: 16ITU603A	UNIT: III	BATCH-	2016-2019
$\Delta^2 U_n =$	$\Delta[\Delta U_n)$			
=	2a (n + 1) + a + b – 2an	— a — b		
=	2a			
LHS :-				
U ₂	$n - nC_1 2U_{2n-1} + nC_2 U_{2n-2} - \dots$			
=	$[E^n U_n - nC_1 2E^{n-1} U_n + n]$	$DC_2 E^{n-2} \dots] U_n$		
=	$[E^n - nC_1 2E^{n-1} U_n + nC_2$	E ⁿ⁻²] U _n		
=	(E – 2) ⁿ U _n			
=	(E – 1 -1) ⁿ u _n			
=	(Δ - 1) ⁿ U _n	\therefore E-1= Δ	$\land Y$	
=	$(-1)^{n} (1 - \Delta)^{n} U_{n}$			
=	$(-1)^{n} [1 - nC_{1} \Delta + nC_{2} \Delta^{2}]$	² +]U _n		
=	$(-1)^{n} [U_{n} - n \Delta U_{n} + \frac{n(r)}{2}]$			
=	$(-1)^n \left[an^2 + bn + C - r \right]$	$n(2an+a+b)+\frac{n^2-n}{2}$	2a	
		2		
= (-1)" (C – 2an)			
= F	RHS.			
		UNIT IV		
Simpson's	Rule.			

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc IT **COURSENAME: NUMERICAL METHODS**

COURSE CODE: 16ITU603A

UNIT: III **BATCH-2016-2019**

Evaluate $\int e^{-x^2} dx$ by dividing the range of initiation in to 4 equal parts using (i) Trapezoidal rule (ii)

Simpson's rule.

Solution:

Here the length of the interval is $h = \frac{1-0}{u} = 0.25$. The values of the function $y = e^{-x^2}$ for each

point of sub divisions are given below.

Х	0	0.25	0.5	0.75	1
e ^{-x2}	1	0.9394	0.7784	0.5694	0.3628
	Y ₀	Y ₁	Y ₂	Y ₃	Y ₄

(i) By Trapezoidal rule

$$\int_{0}^{1} e^{-x^{2}} dx = \frac{h}{2} \Big[(y_{0} + y_{4}) + 2(y_{1} + y_{2} + y_{3}) \Big]$$
$$= \frac{0.25}{2} \Big[1.3678 + 2(2.8761) \Big]$$
$$= (0.125)(5.943)$$
$$= 0.7428$$

(ii) By Simpson's rule:

$$\int_{0}^{1} e^{-x^{2}} dx = \frac{h}{3} \Big[(y_{0} + y_{4}) + 2y_{2} + 4(y_{1} + y_{3}) \Big]$$
$$= \frac{0.25}{2} \Big[1.3678 + 1.5576 + 6.0352 \Big]$$
$$= 0.7467$$

14. The velocity v of a partial ad distances from a point on its path is given by the table.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc IT COURSE CODE: 16ITU603A COURSENAME: NUMERICAL METHODS

UNIT: III BATCH-2016-2019

F	0	10	20	30	40	50	60	Feet
V	47	58	64	65	61	52	38	Feet/fer

Estimate the time taken to travel 60feet by using Simpson's one third value. Compare the result with Simpson's 3/8 rule.

Solution:

We know that the rate of charge of displacement is velocity

$$\frac{ds}{dt} = V$$

ds = vdt
dt = $\frac{1}{v}$ ds \rightarrow (1)

Here we find to find the time taken to travel 60 feet. Therefore interstate (1) from 0 to 60

We get

$$\int_{0}^{60} dt = \int_{0}^{60} \frac{1}{v} ds$$

The time taken to travel 60 feet is

$$t = \int_{0}^{60} \frac{1}{v} ds = \int_{0}^{60} y dx$$

The given table can write as given below:

X(5)	0	10	20	30	40	50	60
Y= 1/V	0.2127	0.017	0.0156	0.01538	0.0164	0.01923	0.0263

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc IT COURSE CODE: 16ITU603A COURSENAME: NUMERICAL METHODS

Ľ .	CODE.	1011	UUUJA		Ľ

UNIT: III BATCH-2016-2019

Y ₀	Y ₁	Y ₂	Y ₃	Y ₄	Y ₅	Y ₆

Simpson's one third we have

$$\int_{0}^{60} y dx = \frac{h}{3} \Big[(y_0 + y_6) + 2(y_2 + y_4) + 4(y_1 + y_3 + y_5) \Big]$$

= $\frac{10}{3} \Big[(0.02127 + 0.0263) + 2(0.01563 + 0.0164) + 4(0.01724 + 0.01538 + 0.01923) \Big]$
= $\frac{10}{3} \Big[0.04758 + 0.020740 + 0.06406 \Big]$
= 1.06 sec

Hence time taken to travel 60 feet is 1.063 feets

By Simpson's 3/8 rule

$$\int_{0}^{60} y dx = \frac{3h}{8} \Big[(y_0 + y_6) + 3(y_1 + y_2 + y_4 + y_5) + 2(y_3) \Big]$$

= $\frac{3(10)}{8} \Big[(0.02127 + 0.02630) + 3(0.01723 + 0.0156) + (0.01640 + 0.01923) + 2(0.01538) \Big]$
= $3.75 \Big[0.04757 + 0.20547 + 0.03076 \Big]$
= $1.064 \sec$

15. Evaluate
$$\int_{0.2}^{1.4} (\sin x - \ln x + e^x) dx$$
 by Simpson's 1/3 rule.

Solution:

Let us divide the interval at integration in to twelve equal parts by taking h = 0.1. Now the table of values of the given function $y = sinx - lnx + e^x$ at each point of subdivision is as given below.

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METH

COURSE CODE: 16ITU603A

COURSENAME: NUMERICAL METHODS UNIT: III BATCH-2016-2019

Х	0.2	0.3	0.4	0.5	0.6	0).7	0.8	0.9	1.0
Y	3.0291	2.8493	2.7975	2.8213	2.8915	3.	014	3.348	3.559	3.559
							-			
Х	1.1	1.2	2	1.3	1.4					
Y	3.8007	4.06	98	4.3705	4.704	1				

Simpson's rule

$$\int_{0.2}^{1.4} y dx = \frac{h}{3} \Big[(y_0 + y_{12}) + 2(y_2 + y_4 + y_6 + y_8 + y_{10}) \\ + 4(y_1 + y_3 + y_5 + y_7 + y_9 + y_{11}) \Big] \\ = \frac{0.1}{3} \Big[7.73369 + 2(16.49077) + 4(20.20418) \Big] \\ = 4.05106$$

33. In an examination the number of candidates who obtained marks between certain limits were as follows:-

Marks	30 - 40	40 – 50	50 – 60	60 - 70	70 – 80
No. of Students	31	42	51	35	31

Find the number at candidate whose scores lie between 45 and 50.

Solution:-

First we construct a cumulative frequency table for the given table.

CL	ASS: II	I B.Sc	IT			COURSENAME: NUMERICAL METHODS		
COURSE	CODE	: 16IT	<u>U603A</u>			UNIT: III BATCH-2016-2019		
Upper lin	nits 4	0 50	60	70	80			
<i>C.F</i> .	3	1 73	124	159	190			
The differe	ence tab	le is						
x	У							
Marks	C.F.	Δ _y	Δ^2_{y}	Δ^{3}_{y}	Δ^4 y			
40	31							
50	73	42						
60	124	51	9					
70	159	35	-16	- 25				
80	190	31	- 4	12	37			
We have x	. = 40 v	- 45	h = 10					
We have x	0 – 40, X		1 - 10					

 $y_0 = 73, \ \Delta y_0 = 42, \ \Delta^2 y_0 = 9, \ \Delta^3 y_0 = -25, \ \Delta^4 y_0 = 37$

From Newton's forward interpolation formula

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc IT COURSENAME: NUMERICAL METHODS

COURSE CODE: 16ITU603A

UNIT: III BATCH-2016-2019

$$\begin{split} f(x) &= y_0 + U \Delta y_0 + \frac{U(U-1)}{2!} \Delta^2 y_0 + \frac{U(U-1)(U-2)}{3!} \Delta^3 y_0 \\ &+ \frac{U(U-1)(U-2)(U-3)}{4!} \Delta^4 y_0 + \dots \end{split}$$

$$f(45) = 31 + (0.5) \ 42 + \frac{(0.5) \ (-0.5)}{2!} \ (9) \ + \ \frac{(0.5) \ (0.5 - 1) \ (0.5 - 2)}{6} \ (-25) + \frac{(0.5) \ (-0.5) \ (-1.5) \ (-2.5)}{24} \ (37)$$

= 47.8673 = 48 approximately.

The number of students who obtained marks less than 45 = 48, and the number of students who scored marks between 45 and 50 = 73 - 48 = 25.

X	0	1	2	5
f(x)	2	3	12	147

34. Find the form of the function f(x) under suitable assumption from the following

Solution:-

The divided differences table is given below.

X	f(x)	∆f(x)	∆²f(x)	∆³f(x)
0	2			
1	3	$\frac{3-2}{1-0} = 1$		

CLASS: III B.Sc	: IT	CO	URSENAME:	NUMERICAL MI	ETHODS
URSE CODE: 16IT	'U603A	UNIT: III		BATCH-20	16-2019
2	12	$\frac{12-3}{2-1} = 9$	$\frac{9-1}{2-0} = 4$		
5	147	$\frac{147 - 12}{5 - 2} = 45$	$\frac{45-9}{5-1} = 9$	$\frac{9-4}{5-0} = 1$	

We have $x_0 = 0$, $f(x_0 = 2, f(x_0, x_1) = 1, f(x_0, x_1, x_2) = 4$

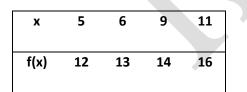
 $f(x_0, x_1, x_2, x_3) = 1$

The Newton's divided difference interpolation formula is

$$f(x) = (fx_0) + (x - x_0)f(x_0, x_1) + (x - x_0)(x - x_1)f(x_0, x_1, x_2)$$

+ (x - x_0)(x - x_1)(x - x_2)f(x_0, x_1, x_2, x_3)
= 2 + (x - 0) 1 + (x - 0)(x - 1) 4 + (x - 0)(x - 1)(x - 2) 1
= x³ + x² - x + 2

35. Using Lagrange's interpolation formula, find the value of y corresponding to x = 10 from the following table.



Solution:-

We have $x_0 = 5$, $x_1 = 6$, $x_2 = 9$, $x_3 = 11$

$$Y_0 = 12, y_1 = 13, y_2 = 14, y_3 = 16$$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METHODSCOURSE CODE: 16ITU603AUNIT: IIIBATCH-2016-2019

Using Lagrange's interpolation formula, we have

$$y = f(x) = \frac{(x - x_1) (x - x_2) (x - x_3)}{(x_0 - x_1) (x_0 - x_2) (x_0 - x_3)} y_0 + \frac{(x - x_0) (x - x_2) (x - x_3)}{(x_1 - x_0) (x_1 - x_2) (x_1 - x_3)} y_1$$

$$+\frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3$$

Substitute

$$f(10) = \frac{(10-6)(10-9)(10-11)}{(5-6)(5-9)(5-11)}(12) + \frac{(10-5)(10-9)(10-11)}{(6-5)(6-9)(6-11)}(13)$$
$$+ \frac{(10-5)(10-6)(10-11)}{(9-6)(9-6)(9-11)}14 + \frac{(10-5)(10-6)(10-9)}{(11-5)(11-6)(11-9)} \times 16$$

$$2 - \frac{3}{3} + \frac{3}{3} + \frac{3}{3} - \frac{3}{3}$$

36. Find the value of x when y = 85, using Lagrange's formula from the following table.

х	2	5	8	14
У	94.8	87.9	81.3	68.7

Solution:-

 $x_0 = 2, x_1 = 5, x_2 = 8, x_3 = 14$

$$y_0 = 94.8$$
, $y_1 = 87.9$, $y_2 = 81.3$, $y_3 = 68.7$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METHODSCOURSE CODE: 16ITU603AUNIT: IIIBATCH-2016-2019

We know that the Lagrange's inverse formula is

$$x = \frac{(y - y_1)(y - y_2)(y - y_3)}{(y_0 - y_1)(y_0 - y_2)(y_0 - y_3)} x_0 + \frac{(y - y_0)(y - y_2)(y - y_3)}{(y_1 - y_0)(y_1 - y_2)(y_1 - y_3)} x_1$$
$$+ \frac{(y - y_0)(y - y_1)(y - y_3)}{(y_2 - y_0)(y_2 - y_1)(y_2 - y_3)} x_2 + \frac{(y - y_0)(y - y_1)(y - y_2)}{(y_3 - y_0)(y_3 - y_1)(y_3 - y_2)} x_3$$

Substituting the above values we get,

$$x = \frac{(85 - 87.9) (85 - 81.3) (85 - 68.7)}{(94.8 - 87.9) (94.8 - 81.3) (94.8 - 68.7)} \times 2$$
$$+ \frac{(85 - 94.8) (85 - 81.3) (85 - 68.7)}{(87.9 - 94.8) (87.9 - 81.3) (87.9 - 68.7)}.$$

$$+\frac{(85-94.8) (85-87.9) (85-68.7)}{(81.3-94.8) (81.3-87.9) (81.3-68.7)} (8) \\+\frac{(85-94.8) (85-87.9) (85-68.7)}{(68.7-94.8) (68.7-87.9) (68.7-81.3)} 14$$

x = 6.5928.

37. Find the first term of the series whose second and subsequent terms are 8, 3, 0, -1, 0

Solution:-

Given f(2) = 8, f(3) = 3, f(4) = 0, f(4) = -1, f(5) = 0

We are to find f(1)

We construct the difference table with the given values.

X	f(x)	∆f(x)	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$
2	8				

	CLASS:	III B.Sc IT		COURSENAME: NUMERICAL METHODS				
COURSE CODE: 16ITU603A			UNIT: III		BATCH-2016-2019			
3	3	-5						
4	0	-3	2					
5	-1	-1	2	0				
5	-1	-1	Z	U				
6	0	1	2	0	0			

We have $\Delta^3 f(x) = \Delta^4 f(x) = 0$

Using the displacement operator

$$f(1) = E^{-1} (f(2))$$

$$= (1 + \Delta)^{-1} f(2)$$

$$= (1 - \Delta + \Delta^{2} - \Delta^{3} +) f(2)$$

$$= f(2) - \Delta f(2) + \Delta^{2} f(2) - \Delta^{3} f(2) +$$

$$= 8 - (-5) + 2$$

$$= 15$$

$$f(1) = 15$$

38. Find f(x) as a polynomial in x for the following data by Newton's divided difference formula

X :	-4	-1	0	2	5
F(x) :	1245	33	5	9	1335

Solution:

CLASS: III B.Sc IT					COURSENAME: NUMERICAL METHODS			
COL	COURSE CODE: 16ITU603A				UNIT: III	BATCH-2016-2019		
Х	F(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$			
-4	1245							
		-404						
-1	33		94					
		-28		-14				
0	5		10		3			
		2		13				
2	9		88					
		442						
5	1335							

By Newton's divided difference interpolation formula

$$f(x)= 1245 + (x+4)(-404) + (x+4)(x+1)94 + (x+4)$$

(x+1) x(-14) + (x+4) (x+1) x(x-2)3

$$= 3x^4 + x^3 - 14x + 5$$

39. The following table gives same relation between steam pressure and temperature. find the pressure at temperature 372.1°

Т	361 ⁰	367 ⁰	378 ⁰	387 ⁰	399 ⁰
Р	154.9	167.9	191.0	212.5	244.2

Solution:

	CLAS	S: III B.Sc I	T	COURSENAME: NUMERICAL METHODS					
COU	RSE CC)DE: 16ITU	J603A	1	UNIT: III	BATCH-2016-2019			
Г	Р	Δp	$\Delta^2 p$	$\Delta^3 P$	$\Delta^4 p$				
361	154.9								
		2.016666							
367	167.0		0.0097147						
		2.18181818		0.000024					
378	191.0		0.0103535		0.0000073				
		2.388889		0.000052					
387	212.5		0.01203703						
		2.641667							
399	244.2								

By Newton's divided difference formula

 $P(T=372.1^{\circ}) = 154.9 + (11.1)(2.016666) + (11.1)$

(5.1) (0.009914) + (11.1) (5.1) (-5.9) (0.000024)

+ (11.1) (5.1) (-5.9) (-14.9) (0.00000073)

= 177.8394819

40. From the data given below, find the number of students whose weight is between 60 to 70

Weight	0-40	40-60	60-80	80-100	100-120
No of	250	120	100	70	50
Students					

Solution:

	LASS: III B.Sc			COURSENAME: NUMERICAL METHODS			
COURSE CODE: 16ITU603A			UNIT: III		BATCH-2016-2019		
x	Y	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$		
Weight	No of Students						
3elow 40	250						
		120					
Below 60	370		-20				
		100		-10			
Below 80	470		-30		20		
		70		10			
3elow 100	540	50	-20				
2-1 120	500	50					
Below 120	590						

$$u = \frac{x - x_0}{h} = \frac{70 - 40}{20} = 1.5$$

$$y(70) = y_0 + u\Delta y_0 + \frac{u(u - 1)}{2!}\Delta^2 y_0 + \dots$$

$$= 250 + (1.5)(120) + \frac{(1.5)(1.5)}{2}(-20) + \frac{(0.5)(0.5)(0.5)}{6}(-10)$$

$$+ \frac{(1.5)(0.5)(-0.5)(-1.5)}{24}$$

$$= 424$$

∴ Number of students whose weight is between

60 and 70

Questions

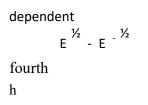
The x values of Interpolating polynomial of newton -Gregory has The value of E is We use the central difference formula such as ----- Formula can be used for unequal intervals. The difference value $\nabla y_1 - \nabla y_0$ in a Newton forward differenc table is denoted by By putting n = 3 in Newton cote's formula we get ----- rule. The process of computing the value of a function outside the range is called -----The process of computing the value of a function inside the range is called ------The difference value $y_2 - y_1$ in a Newton's forward difference table is denoted by Formula can be used for interpolating the value of f(x) near the end of the tabular values. The technique of estimating the value of a function for any intermediate value is The (n+1)th and higher differences of a polynomial of the nth degree are ------Numerical evaluation of a definite integral is called ------The values of the independent variable are not given at equidistance intervals, we use ----- formula. To find the unknown values of y for some x which lies at the ----- of the table, we use Newton's Backward formula. To find the unknown values of y for some x which lies at the ------ of the table, we use Newton's Forward formula. To find the unknown value of x for some y, which lies at the unequal intervals we use ----- formula. If the values of the variable y are given, then the method of finding the unknown variable x is called ------In Newton's backward difference formula, the value of n is calculated by ------. In Newton's forward difference formula, the value x can be written as ------. In Newton's backward difference formula, the value x can be written as ----------- Interpolation formula can be used for equal and unequal intervals. The fourth differences of a polynomial of degree four are -----. If the values $x_0 = 0$, $y_0 = 0$ and h = 1 are given for Newton's forward method, then the value of x is ------The second difference $\Delta^2 y_0$ is equal to The second difference $\Delta^3 y_0$ is equal to The differences of constant functions are ----- $\Delta y_2 = \dots$

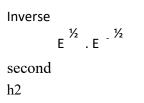
 $y_n = y_0 + n \Delta y_0 + n (n-1) / 2! \Delta^2 y_0 + n (n-1) (n-2)/3! \Delta^3 y_0 + \dots$ is known as In Newton's forward interpolation formula, the first two terms will give the -----In Newton's forward interpolation formula, the three terms will give the -----The difference $\Delta^3 f(x)$ is called ------differences f(x). n th difference of a polynomial of n th degree are constant and all higher order difference are In divided difference the value of any difference is ----- of the order of their argument

Central difference equivalent to shift operator is The differences Δy are called -----differences f(x). The value (delta +1) is _____

Opt 1	Opt 2	Opt 3
even space	equal space	odd space
delta -1	1-delta	delta+1
lagrange's	Newton	Euler
Newton's forward	Newton's backward	Lagrange
$\nabla^2 y_0$	$\nabla^2 y_1$	∇y_1
Simpson's 1/3 rule	Simpson's 3/8 rule	Trapezoidal rule
interpolation	extrapolation	triangularisation
interpolation	extrapolation	triangularisation
Δy_0	∇y_1	Δy_2
Newton's forward	Newton's backward	Lagrange
interpolation	extrapolation	forward method
zero	one	two
integration	differentiation	interpolation
Newton's forward	Newton's backward	Lagrange
beginning	end	center
beginning	end	center
Newton's forward Newton's forward $n = (x-x_n) / h$ x_0-nh Newton's forward zero 0	Newton's backward Newton's backward $n = (x_n-x) / h$ x_n-nh Newton's backward one	Lagrange interpolation $n = (x-x_0) / h$ $x_n + nh$ Lagrange two n
$y_2 + 2y_1 - y_0$ $y_3 - 3y_2 + 3y_1 - y_0$ Not equal to zero $y_2 - y_3$ Newton's formula for equal intervals extrapolation extrapolation first constant	$y_2 - 2y_1 - y_0$ $y_3 + 3y_2 + 3y_1 - y_0$ zero $y_1 - y_2$ Bessel's formula linear interpolation linear interpolation fourth variable	$y_2 - 2y_1 + y_0$ $y_3 + 3y_2 + 3y_1 + y_0$ one $y_0 - y_2$ Newton's formula for unequal intervals parabolic interpolation parabolic interpolation second zero

Independent
$E^{\frac{1}{2}} + E^{-\frac{1}{2}}$
first
ind v
E





Opt 4 unequal delta+2 bessel's stirling Δy_0 Simpson's rule integration integration $\nabla^2 y_0$	Opt 5	Opt 6	Answers equal space delta+1 bessel's Lagrange $\nabla^2 y_0$ Simpson's 3/8 rule extrapolation interpolation ∇y_1
stirling backward method three triangularisation			Newton's backward interpolation zero integration
stirling outside			Lagrange end
outside			beginning
inverse interpolation			Lagrange
inverse interpolation $n = (x_0-x) / h$ $x_0 + nh$ $x_0 + nh$ none three X $y_2 + 2y_1 + y_0$ $y_3 + 3y_2 + 3y_1 + y_3$ two y_3-y_2 Newton's formula for Equal and unequal intervals interpolation interpolation third			inverse interpolation $n = (x-x_n) / h$ $x_0 + nh$ $x_n + nh$ Lagrange zero n $y_2 - 2y_1 + y_0$ $y_3 - 3y_2 + 3y_1 - y_0$ zero $y_3 - y_2$ Newton's formula for equal intervals linear interpolation parabolic interpolation third
negative			zero

direct

E third

h4

Independent E^{$\frac{1}{2}$}.E^{$-\frac{1}{2}$} first E

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc IT COURSE CODE: 16ITU603A COURSENAME: NUMERICAL METHODS UNIT: IV BATCH-2016-2019

<u>UNIT-IV</u>

SYLLABUS

Numerical differentiation: First derivatives and second order derivates – Richardson extrapolation. Numerical integration: traphezoid rule – simpson's rule (only method) – newton – Cotes open formulas.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc IT COURSE CODE: 16ITU603A

COURSENAME: NUMERICAL METHODS UNIT: IV BATCH-2016-2019

Numerical differentiation:

Numerical differentiation is the process of calculating the derivatives of a given function by means of a table given values of that function. i.e., if y (x_i, y_i) are the given set of values, then the process of computing the values of $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ is called numerical differentiation.

Formula of forward difference formula to compute the derivatives:

$$f^{1}(\mathbf{x}_{0}) = \frac{1}{h} \left[\Delta y_{0} - \frac{1}{2} \Delta^{2} y_{0} + \frac{1}{3} \Delta^{3} y_{0} - \frac{1}{4} \Delta^{4} y_{0} \dots \right]$$

$$f^{11}(\mathbf{x}_{0}) = \frac{1}{h^{2}} \left[\Delta^{2} y_{0} - \Delta^{3} y_{0} + \frac{11}{12} \Delta^{4} y_{0} \dots \right]$$

$$f^{111}(\mathbf{x}_{0}) = \frac{1}{h^{3}} \left[\Delta^{3} y_{0} - \frac{3}{2} \Delta^{4} y_{0} + \dots \right]$$

Formula of backward difference formula to computer the derivatives:

$$f^{1}(\mathbf{x}_{0}) = \frac{1}{h} \left[\nabla y_{0} + \frac{1}{2} \nabla^{2} y_{0} + \frac{1}{3} \nabla^{4} y_{0} \dots \right]$$

$$f^{11}(\mathbf{x}_{0}) = \frac{1}{h^{2}} \left[\nabla^{2} y_{0} + \nabla^{3} y_{0} + \frac{11}{12} \nabla^{4} y_{0} + \dots \right]$$

$$f^{111}(\mathbf{x}_{0}) = \frac{1}{h^{3}} \left[\nabla^{3} y_{0} + \frac{3}{2} \nabla^{4} y_{0} + \dots \right]$$

Numerical Integration:

The term numerical integration is the numerical evaluation of a definite integral.

$$A = \int_{a}^{b} f(x) dx$$
 Where a and b are given constants and f(x) is a function.

Formula for Trapezoidal Rule:

$$\int_{x_0}^{x_0+nh} y(x) dx = \frac{h}{2} \Big[(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1}) \Big]$$

CLASS: III B.Sc IT

COURSENAME: NUMERICAL METHODS COURSE CODE: 16ITU603AUNIT: IVBATCH-2016-2019

Formula for Simpson's 1/3 rule:

$$\int_{x_0}^{x_0+nh} f(x) dx = \frac{h}{3} \left[y_0 + y_n + 4 \left(\text{sum of odd ordinates} \right) \right]$$
$$+2 \left(\text{sum of even ordinates} \right) \right]$$

Formula for Simpson's 3/8 rule:

$$\int_{x_0}^{x_0+nh} f(x) dx = \frac{3h}{8} \left[(y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_5 + \dots + y_{n-6}) + 2(y_3 + y_6 + \dots + y_{n-3}) \right]$$

Truncation error in the Trapezoidal rule:

The total error

$$E = \frac{-h^{3}}{12} \left[y_{1}^{11} + y_{2}^{11} + \dots + y_{n}^{11} \right]$$
$$E < \frac{nh^{3}}{12} y^{11}(\epsilon)$$

Error in the trapezoidal rule is of the order h^2 .

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METHODSCOURSE CODE: 16ITU603AUNIT: IVBATCH-2016-2019

Truncation error in Simpson rules:

The error in the interval (r_1, r_3)

$$\begin{split} &= \left(\frac{4}{15} - \frac{5}{18}\right) h^5 y_1^{iv} \\ &= \left(\frac{24 - 25}{90}\right) h^5 y^{iv} \\ &= \frac{-h^5}{90} y_1^{iv} \end{split}$$

∴ The total error:
$$-\frac{nh^5}{90}y^{iv}(\epsilon)$$

Error in the Simpson 1/3 rule is of the order h⁴.

Formula for Romberg method:

$$I = I_2 + \frac{(I_2 - I_1)}{3}$$

 $I_1 \rightarrow \text{dividing h into two parts} \left(\frac{h}{2}\right)$

- $I_2 \rightarrow$ dividing h into four parts
- $I_3 \rightarrow$ dividing h into eight parts

05. Using Simpson rule find $\int_{0}^{4} e^{x} dx$ given that $e^{0} = 1$, $e^{1} = 2.72$, $e^{2} = 7.39$, $e^{3} = 20.09$,

e⁴ = 54.6.

Solution:

By Simpson rule we have

CLASS: III B.Sc IT COURSENAME: N COURSE CODE: 16ITU603A UNIT: IV

COURSENAME: NUMERICAL METHODS IT: IV BATCH-2016-2019

$$\int_{0}^{4} e^{x} dx = \frac{h}{u} \Big[(y_{0} + y_{4}) + 2y_{2} + 4(y_{1} + y_{3}) \Big]$$
$$= \frac{1}{3} \Big[(54.6 + 1) + 2(7.39) + 4(2.72 + 20.04) \Big]$$
$$= 53.8733$$

06. Write the polynomial to calculate the value of x when?

Х	3	5	7	9
Y	6	24	58	108

Solution:

Х	Y	Δγ	Δ²y	Δ³y
3	6			
		18		
5	24		16	
		34		0
3	58		16	
		50		
9	108			

$$\mathbf{x}_0 + \mathbf{n}\mathbf{x} = \mathbf{x}$$

$$3+n2 = x; 2n = x - 3; n = \frac{x-3}{2}$$

CLASS: III B.Sc IT COURSE CODE: 16ITU603A

COURSENAME: NUMERICAL METHODS UNIT: IV BATCH-2016-2019

$$y(x_{0} + nx) = y_{0} + n\Delta y_{0} + \frac{n(n-1)}{2!}\Delta^{2}y_{0} + \dots$$
$$y(x) = 6 + \left(\frac{x-3}{2}\right)18 + \frac{\left(\frac{x-3}{2}\right)\left(\frac{x-3}{2}-1\right)}{2}(16)$$
$$y(x) = 2x^{2} - 3x + 9$$

07. Evaluating $\int_{0}^{1} \frac{dx}{1+x^2}$ by a numerical iteration method, Find this value?

Solution:

$$\int_{0}^{1} \frac{dx}{1+x^{2}} = \left[\tan^{-1}(x) \right]_{0}^{1}$$
$$= \tan^{-1}(1) - \tan^{-1}(0)$$
$$= \tan^{-1}(1)$$
$$= \frac{\pi}{2}$$

09. Find the value of log 2^{1/3} from $\int_{0}^{1} \frac{x^2}{1+x^3} dx$ using Simpson's 1/3 rule with h = 0.25.

Solution:

Given h = 0.25

Х	0	0.25	0.5	0.75	1
Y	0	0.06154	0.222	0.395	0.5

By Simpson's 1/3 rule

$$\int_{0}^{1} \frac{x^{2}}{1+x^{3}} dx = \frac{h}{3} \Big[(y_{0} + y_{4}) + 2y_{2} + 4(y_{1} + y_{3}) \Big]$$

=0.23log3

We know that

Prepared by M.Indhumathi, Asst Prof, Department of Mathematics KAHE

Page 6/21

CLASS: III B.Sc IT

COURSENAME: NUMERICAL METHODS COURSE CODE: 16ITU603AUNIT: IVBATCH-2016-2019

$$\int_{0}^{1} \frac{x^{2}}{1+x^{3}} dx = \left[\frac{1}{3}\log(1+x^{3})\right]_{0}^{1}$$
$$= \frac{1}{3}\log e^{2}$$
$$\log\left(2^{\frac{1}{3}}\right) = \int_{0}^{1} \frac{x^{2}}{1+x^{3}} dx = 0.231083$$

10. Find the first second and 3rd derivatives of the function tabulated below at the point x=1.5?

x	1.5	2.0	2.5	3.0	3.5	4.0
F(x)	3.325	7.0	13.625	24.0	38.87	59.0

Solution:

The table of difference is as follows:

X	F(x)	Δγ	Δ²γ	Δ³γ	Δ⁴γ
1.5	3.375				
		3.625			
2.0	7.0		3.0		
		6.625		0.75	
2.5	13.625		3.25		0
		10.375		0.75	
3.0	24.0		4.50		0
		14.875		0.75	
3.5	38.875		5.25		

CLASS: III B.Sc IT COURSE CODE: 16ITU603A COURSENAME: NUMERICAL METHODS UNIT: IV BATCH-2016-2019

		20.125		
4.0	59.0			

Here we have to find the derivatives at the point x = 1.5 which is the starting value of the table. Therefore newton's forward differences formula for derivatives at $x = x_0$, we have

$$f^{1}(x_{0}) = \frac{1}{h} \left[\Delta y_{0} - \frac{1}{2} \Delta^{2} y_{0} + \frac{1}{3} \Delta^{3} y_{0} \dots \right]$$

$$f_{0} = 1.5, h = 0.5$$

$$f^{1}(1.5) = \frac{1}{0.5} \left[3.625 - \frac{1}{2}(3) + \frac{1}{3}(0.75) \right]$$

$$= 4.75$$

$$f^{11}(x_{0}) = \frac{1}{h^{2}} \left[\Delta^{2} y_{0} - \Delta^{3} y_{0} + \frac{11}{12} \Delta^{4} y_{0} \dots \right]$$

$$= \frac{1}{(0.5)^{2}} \left[3.0 - 0.75 \right]$$

$$= 9.0$$

$$f^{111}(x_{0}) = \frac{1}{h^{3}} \left[\Delta^{3} y_{0} - \frac{3}{2} \Delta^{4} y_{0} \right]$$

$$= \frac{1}{(0.5)^{3}} \left[0.75 \right]$$

$$= 6.0$$

11. The population of certain town is shown in the following table.

Year	1931	1941	1951	1961	1971
Population	40.6	60.8	79.9	103.6	132.7
(in thousands)					

CLASS: III B.Sc IT COURSE CODE: 16ITU603A COURSENAME: NUMERICAL METHODS UNIT: IV BATCH-2016-2019

Find the rate of growth of the population in the year 1961.

Solution:

The table of difference is as follows:

X	Y	Δy	Δ²y	Δ³y	Δ⁴y
1931	40.6				
1551	40.0				
		20.2			
1941	60.8		-1.1		
-					
		19.1		5.7	
1951	79.9		4.6		-4.9
		23.7		0.8	
1961	103.6		5.4		
		29.7			
		29.7			
1971	132.7				

Here h = 10, x₀ = 1971

We know that

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc IT

COURSENAME: NUMERICAL METHODS

COURSE CODE: 16ITU603A

UNIT: IV BATCH-2016-2019

$$y^{1}(x_{0} + nh) = \frac{1}{h} \left[\nabla y_{0} + \frac{2n+1}{2} \nabla^{2} y_{0} + \frac{3r^{2} + 6r + 2}{6} \nabla^{3} y_{0} + \frac{2r^{3} + 9r^{2} + 11r + 3}{12} \nabla^{4} y_{0} \right]$$

$$y^{1}(1961) = ?$$

$$x_{0} + nh = 1961$$

$$1971 + n10 = 1961$$

$$n10 = -10 \Rightarrow \boxed{n=-1}$$

$$y^{1}(1961) = \frac{1}{10} \left[29.1 + \left(-\frac{1}{2}\right) 5.4 + \left(-\frac{1}{6}\right) (0.8) + \left(-\frac{1}{12}\right) (-4.9) \right]$$

$$y'(1961) = \frac{1}{10} [29.1 + (-\frac{1}{2})5.4 + (-\frac{1}{6})(0.8) + (-\frac{1}{12})(-4.9)]$$

= $\frac{1}{10} [29.1 - 2.7 - 0.1334 + 0.4083]]$
= 2.6775
= $\frac{1}{3} [4 \times 0.7899 - 0.7943] = 0.7884$

we get

$$I(h_{1}, h_{2}, h_{4}) = \pm I(0.6, 0.3, 0.15)$$

= $\frac{1}{3} [4 \times I(0.15) 0.3 - I(0.3, 0.6)]$
= $\frac{1}{3} [4 \times 0.7884 - 0.7886]$
= 0.7883

The table of these values

0.8113		
	0.7886	
0.7948		0.7883
	0.7884	
0.7899		

CLASS: III B.Sc IT	ACADEMY OF HIGHER EDUCATION COURSENAME: NUMERICAL METHODS		
COURSE CODE: 16ITU603A	UNIT: IV	BATCH-2016-2019	
e^{2} dx			
$I = \int_{0}^{2} \frac{dx}{1+x} = 0.7883$			
U U			

17. Evaluate to integral $I = \int_{1}^{2} \int_{1}^{2} \frac{dxdy}{x+y}$ Using the trapezoidal rule with h = k = 0.5 and h = k = 0.25

Solution:

When h = k = 0.5

У _х	Y ₀ =1	Y ₁ =1.5	Y ₂ =2
X ₀ =1	f ₀₀ =0.5	f ₀₁ = 0.4	f ₀₂ =0.33
X ₁ =1.5	f ₂₀ =0.33	f ₁₁ =0.33	f ₂₂ =0.25
X ₂ = 2		f ₂₁ =0.285	

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METHOR

COURSE CODE: 16ITU603A

COURSENAME: NUMERICAL METHODS UNIT: IV BATCH-2016-2019

$$I = \frac{hk}{u} \Big[f_{00} + f_{02} + f_{21} + f_{22} + 2(f_{01} + f_{10} + f_{21}) + 4(f_{11}) \Big]$$

= $\frac{1}{16} \Big[(0.5 + 0.33 + 0.25 + 0.33) + 2(0.4 + 0.4 + 0.285) + 0.285 + 4(0.33) \Big]$
= 0.3418

When

У _х	Y ₀ =1	Y ₁ =1.25	Y ₂ =1.5	Y ₃ =1.25	Y ₄ =2.0
X ₀ =1	f(1,1)	f(1,1.25)	f(1,1.5)	f(1,1.75)	f(1,2.0)
		[
	f(1.25,1)				f(1.25,2)
		f(1.25,1.25)	f(1.25,1.5)	f(1.25,1.75)	
X ₁ =1.25					
	f(1.5,1)	f(1.5,1.25)	f(1.5,1.5)	f(1.5,1.75)	f(1.5,2)
		f(2,1.25)	f(2,1.5)	f(2,1.75)	
X ₂ =1.5	f(2,1)				f(2,2)
		f(1.75,1.25)	f(1.75,1.5)	f(1.75,1.75)	
X ₃ =1.75					
			<u></u>		
X ₄ =2.0					

KARPAGAM AC		AME: NUMERICAL METHODS
OURSE CODE: 16ITU603A	UNIT: IV	BATCH-2016-2019
$=\frac{1}{65}\left\{f(1,1)+f(1,2)+f(2,1)+f(2,1)\right\}$	2) + 2f(1,1.25) + f(1,1.5)	
+f(1,1.75)+f(1.25,1)+f(1.5,1)	+ f(1.75,1) + f(2,1.25)	
+f(2,1.5)+f(2,1.75)+f(1.25,2)	2 + f(1.5,2) + f(1.75,2)	
$+4\{f(1.25,1.25)+f(1.25,1.5)+f(2)\}$	1.25,1.25)+f(1.5,1.25)	
+f(1.5,1.25)+f(1.5,1.5)+f(1.5,1.5)	1.75)+	
f(1.75, 1.25) + f(1.25, 1.5) + f(1.25, 1.5)	25,1.25)}	
= 0.3401		

18. Using Trapezoidal and Simpson's rule evaluate $I = \int_{4}^{4.4} \int_{2}^{2.6} \frac{dydx}{xy}$

Solution:

Taking h = 0.3 along x direction and k =0.2 along y direction we can construct the following table where

$$f(x,y) = \frac{1}{xy}$$

y/x	2.0	2.3	2.6
X ₀ =4.0	f(x ₀ ,y ₀)=0.125	f(x ₀ ,y ₁)=0.108	f(x ₀ ,y ₂)=0.0961
X ₁ =4.2	f(x ₁ ,y ₀)=0.119	f(x1,y1)=0.1035	f(x1,y1)=0.0916

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METH

COURSE CODE: 16ITU603A

COURSENAME: NUMERICAL METHODS UNIT: IV BATCH-2016-2019

X ₂ =4.4	f(x ₂ ,y ₀)=0.1236	f(x ₂ ,y ₁)=0.0988	f(x ₂ ,y ₂)=0.0874

$$I = \frac{0.2 \times 0.3}{4} [0.1250 + 0.0961 + 0.1136 + 0.0874 + 2(0.1190 + 0.1087 + 0.0916 + 0.0988) + 4(0.1035)]$$

= 0.0250

using Simpson's rule

$$I = \frac{hk}{9} \Big[f_{00} + f_{20} + f_{22} + 4 \big(f_{10} + f_{01} + f_{11} + f_{21} \big) + 16 f_{11} \Big]$$

= $\frac{0.2 \times 0.3}{9} \Big[0.1250 + 0.0961 + 0.1136 + 0.0874 + 4 (0.1087 + 0.1190 + 0.0916 + 0.988) + 16 \big(0.1035 \big) \Big]$
= 0.0250

19. If D, E, δ and μ be the operators with usual meaning and if hD = u where h13 the interval at differencing. Prove that the following relations between the operator's.

(ii) $\delta = 2 \sinh \left(\frac{u}{2} \right)$

(iii) $\mu = \cosh\left(\frac{u}{2}\right)$

(iv) (E+1) δ=2(E-1)μ

Solution:

(i) $E = e^{hD}$

=E^u (hD=u)

KARPAGAM ACA CLASS: III B.Sc IT		NAME: NUMERICAL METHODS
COURSE CODE: 16ITU603A	UNIT: IV	BATCH-2016-2019
i) 2 sin h $\frac{u}{2}$		
$= 2 \left[\frac{e^{\frac{u}{2}} - e^{-\frac{u}{2}}}{2} \right]$		
$= (E^{u})^{\frac{1}{2}} - (E^{u})^{-\frac{1}{2}}$		
$=\delta(by dt)$		
ii) $\cos \frac{u}{2}$		
$=\frac{1}{2}\left(E^{\frac{1}{2}}+E^{-\frac{1}{2}}\right)$		
$=\frac{(E^{u})^{\frac{1}{2}}+(E^{u})^{-\frac{1}{2}}}{2}$		
_		
$=\frac{E^{\frac{1}{2}}+E^{-\frac{1}{2}}}{2}$		
= µ		
v)		
$(E+1)\delta = (E+1)(E^{\frac{1}{2}}-E^{-\frac{1}{2}})$		
	- -½)	
$= E^{\frac{1}{2}} \left(E^{\frac{1}{2}} + E^{-\frac{1}{2}} \right) \left(E^{\frac{1}{2}} - E^{-\frac{1}{2}} \right)$	- E ^{/2})	
=(E-1)2 $\left(\frac{E^{\frac{1}{2}}+E^{-\frac{1}{2}}}{2}\right)$		
=2(E-1)µ		
=2(E-1)µ		

20. Given that

 $\sqrt{12500} = 111.8034, \sqrt{125110} = 111.8481$

find the value of $\sqrt{12516}$.

CLASS: III B.Sc IT

COURSENAME: NUMERICAL METHODS

COURSE CODE: 16ITU603A

UNIT: IV **BATCH-2016-2019**

The difference table

x	$y = \sqrt{x}$	Δγ	Δ²γ
12500	111.8034		
		0.0471	
12510	111.8481		0
		0.0447	
12520	111.8928		0
		0.0447	
12530	111.9375		

We have x₀ = 12500, h = 10, x = 12516

$$u = \frac{x - x_0}{h} = \frac{12516 - 12510}{10} = 1.6$$

$$f(x) = y_0 + u\Delta y_0 + \frac{u(u-1)}{21}\Delta^2 y_0 + \dots$$

$$f(12516) = 111.8034 + 1.6 \times 0.0447$$

$$= 111.8034 + 0.07152$$

$$= 111.87492$$

$$\sqrt{12516} = 111.87492$$

21.Use Newton's forward interpolation and find value of sin 52 from the following data. Estimate the error.

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METH

COURSE CODE: 16ITU603A

COURSENAME: NUMERICAL METHODS UNIT: IV BATCH-2016-2019

Х	45	50	55	60
Y=sinx	0.7071	0.7660	0.8192	0.8660

Solution:The difference table

X	Sin x	Δγ	Δ²y	Δ³γ
45	0.7071			
		0.0589		
50	0.7660		-0.0057	
		0.0532		-0.0007
55	0.8192		-0.0064	
		0.0462		
60	0.8660			

We have $x_0 = 45$, $x_1 = 52$, $y_0 = 0.7071$, $\Delta y_0 = 0.0589$,

 $\Delta^2 y_0 = -0.0057$, $\Delta^3 y_0 = -0.0007$

$$u = \frac{x - x_0}{h} = \frac{52^\circ - 45^\circ}{5^\circ} = 1.4$$

Newton's formula

CLASS: III B.Sc IT COURSE CODE: 16ITU603A

COURSENAME: NUMERICAL METHODS UNIT: IV BATCH-2016-2019

$$y = u_0 + u\Delta y_0 + \frac{u(u-1)}{2!}\Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!}\Delta^3 y_0 + \dots$$

$$f(52) = 0.7071 + 1.4(0.0589) + \frac{(1.4)(1.4-1)}{2}(-0.0057)$$

$$+ \frac{(1.4)(1.4-1)(1.4-2)}{3!}(-0.0007)$$

$$= 0.7071 + 0.8246 - 0.001596 + 0.000392$$

 $sin52^{\circ} = 0.7880032$

$$Error = \frac{u(u-1)(u-2)....(u-n)}{(n+1)!}\Delta^{n+1}y_0$$

using n = 2 we get

$$= \frac{u(u-1)(u-2)}{3!} \Delta^{3} y_{0}$$

= $\frac{(1.4)(1.4-1)(1.4-2)}{6} (-0.0007) = 0.0000392$

22. The following table gives the values of the probability integral $y = \frac{2}{\sqrt{\pi}} \int_{0}^{n} e^{-x^2} dx$ corresponding to

certain values of x. For what value of x is this integral equation of to ½?

X	0.46	0.47	0.48	0.49
$y = \frac{2}{\sqrt{\pi}} \int_{0}^{n} e^{-x^{2}} dx$	0.4846	0.4937	0.5027	0.5116

Solution:

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc IT COURSENAME: NUMERICAL METHODS

COURSE CODE: 16ITU603A

UNIT: IV BATCH-2016-2019

Here $x_0=0.46$, $x_1=0.47$, $y_0=0.487$ y = $\frac{1}{2}$

From Laurens's inverse interpolation formula

$$\mathbf{x} = \frac{(\mathbf{y} - \mathbf{y}_1)(\mathbf{y} - \mathbf{y}_2)(\mathbf{y} - \mathbf{y}_3)}{(\mathbf{y}_0 - \mathbf{y}_1)(\mathbf{y}_0 - \mathbf{y}_2)(\mathbf{y}_0 - \mathbf{y}_3)} \mathbf{x}_0 + \frac{(\mathbf{y} - \mathbf{y}_0)(\mathbf{y} - \mathbf{y}_2)(\mathbf{y} - \mathbf{y}_3)}{(\mathbf{y}_1 - \mathbf{y}_0)(\mathbf{y}_1 - \mathbf{y}_2)(\mathbf{y}_1 - \mathbf{y}_3)} \mathbf{x}_1 \\ + \frac{(\mathbf{y} - \mathbf{y}_0)(\mathbf{y} - \mathbf{y}_1)(\mathbf{y} - \mathbf{y}_3)}{(\mathbf{y}_2 - \mathbf{y}_0)(\mathbf{y}_2 - \mathbf{y}_1)(\mathbf{y}_2 - \mathbf{y}_3)} \mathbf{x}_2 + \frac{(\mathbf{y} - \mathbf{y}_0)(\mathbf{y} - \mathbf{y}_1)(\mathbf{y} - \mathbf{y}_2)}{(\mathbf{y}_3 - \mathbf{y}_0)(\mathbf{y}_3 - \mathbf{y}_1)(\mathbf{y}_3 - \mathbf{y}_2)} \mathbf{x}_3$$

$$= \frac{(0.5 - 0.49)(0.5 - 0.5274)(0.5 - 0.51)}{(0.48 - 0.49)(0.48 - 0.52)(0.48 - 0.51)}(0.46) + \frac{(0.5 - 0.48)(0.5 - 0.502)(0.5 - 0.511)}{(0.49 - 0.48)(0.49 - 0.502)(0.49 - 0.511)}(0.47) + \frac{(0.5 - 0.48)(0.5 - 0.49)(0.5 - 0.511)}{(0.52 - 0.48)(0.52 - 0.49)(0.52 - 0.511)}(0.48) + \frac{(0.5 - 0.48)(0.5 - 0.49)(0.5 - 0.502)}{(0.51 - 0.48)(0.51 - 0.49)(0.51 - 0.502)}(0.49)$$
$$= -0.0207787 + 0.157737 + 0.369928 - 0.0299495$$
$$= 0.476937$$

CLASS: III B.Sc IT	CADEMY OF HIGHI COURSEN	AME: NUMERICAL METHODS
OURSE CODE: 16ITU603A	UNIT: IV	BATCH-2016-2019

CLASS: III B.Sc IT	CADEMY OF HIGHI COURSENA	AME: NUMERICAL METHODS
OURSE CODE: 16ITU603A	UNIT: IV	BATCH-2016-2019

Questions

If the given integral is approximated by the sum of 'n' trapezoids, then the rule is called as
The order of error in Trapezoidal rule is
The general quadratic formula for equidistant ordinates is
h/2[(sum of the first and last ordinates)+2(sum of the remaining ordinates)] is
Use trapezoidal rule for y(x)
Simpson's rule is exact for a even though it was derived for a
Quadratic.
What is the order of the error in Simpson's formula?
Simpson's $1/3$ is findind y(x) upto
In simpson's 1/3, the number of intervels must be
In simpson's 1/3, the number of ordinates must be
Simpson's one-third rule on numerical integration is called a formula.
In simphson's 3/8 rule, we calculate the polynomial of degree
The number of interval is multiple of three the use
The number of interval is multiple of six
The error in Simpson's 1/3 is
Modulus of E is
The order of error is h^2 for
h^4 is the error of
The value of integral e^x is evaluated from 0 to 0.4 by the following formula. Which method will give the least error
Using Simpson's rule the area in square meters included between the chain line, irregular boundary and the first and
By putting $n = 1$ in Newton cote's formula we get rule.
$I = (3h / 8) \{ (y_0 + y_n) + 3 (y_1 + y_2 + y_4 + y_5 + \dots) + 2(y_3 + y_6 + y_9 + \dots) \}$
is known as
$I = (h / 3) \{ (y_0 + y_n) + 2 (y_2 + y_4 + y_6 + y_8 + \dots) + 4(y_1 + y_3 + y_5 + \dots) \} $ is
known as
The differentiation of logx is
$\int f(x) dx of (a, b) is$
h/3[(sum of first and last ordinates)+2(sum of even ordinates)+4(sum of odd ordinates)] is the formula for
In simpson 1/3 rule, the integral value is $h/3[y0+4(y1)+y2]$
Differentiation of sinx is
Integration of cosx
If y(x) is linear then use
The differentiation of secx is
The notation h is
While evaluating the definite integral by Trapezoidal rule, the accuracy can be increased by taking

Numerical integration when applied to a function of a single variable, it is known as------

Opt 1	Opt 2	Opt 3
Newton's method	Trapezoidal rule	simpson's rule
h	h^3	h^2
raphson	Newton-cote's	interpolation
simphson's 3/8	simphson's 1/3	trapezoidal
linear	second degree	third degree
cubic	less than cubic	linear
Four	three	two
linear	second degree	degree n
any integer	odd	even
any integer	odd	prime
closed	open	semi closed
degree n	linear	second degree
simpson's 1/3	trapezoidal	simpson's 3/8
simpson's 1/3	simphson's 3/8	weddle
h	h^3	h^2
<m(b-a)h4 180<="" td=""><td>0</td><td>>M(b-a)h4/180</td></m(b-a)h4>	0	>M(b-a)h4/180
lagrange's	trapezoidal	weddle
simphson's 3/8	simphson's 1/3	trapezoidal
Trapezoidal rule with $h = 0.2$	Trapezoidal rule with $h = 0.1$	Simpson's $1/3$ rule with $h = 0.1$.
7.33.28 sq-m	744.18 sq-m	880.48 sq-m.
Simpson's 1/3 rule	Simpson's 3/8 rule	Trapezoidal rule
Simpson's 1/3 rule	Simpson's 3/8 rule	Trapezoidal rule
Simpson's 1/3 rule	Simpson's 3/8 rule	Trapezoidal rule
1/x	e(x)	sinx
F(a)		F(a+b)
trapezoidal	simphson's 1/3	simphson's 3/8
for n=1	for n=2	for n=3
COSX	tanx	sinx
COSX	tanx	sinx
simphson's 3/8	simphson's 1/3	trapezoidal
secx tanx	cotx	cosecx
differece of ordinates	sum of ordinates	number of ordinates
Large number of sub-intervals	even number of sub-intervals	multipleof6
maxima	minima	quadrature

power	Trapezoidal rule
h ⁴	h ²
divide difference	Newton-cote's
taylor series	trapezoidal
degree n	linear
quadratic	linear
one	Four
third degree	second degree
prime	even
even	odd
semi opened	closed
third degree	third degree
taylor series	simpson's 3/8
trapezoidal	weddle
h ⁴	h ⁴
M(b-a)h4/180	<m(b-a)h4 180<="" td=""></m(b-a)h4>
simpson's 1/3	trapezoidal
taylor series	simphson's 1/3
weddle	Simpson's 1/3 rule with h = 0.1.
820.38 sq-m	820.38 sq-m
Simpson's rule	Trapezoidal rule
Simpson's rule	Simpson's 3/8 rule
Simpson's rule	Simpson's 1/3 rule
cosx	1/x
F(b)-F(a)	F(b)-F(a)
taylor series	simphson's 1/3
for n=4	for n=2
logx	cosx
logx	sinx
taylor series	trapezoidal
tanx	secx tanx
product of ordinates	differece of ordinates
has multiple of 3	Large number of sub-intervals
quadrant	quadrature

CLASS: III B.Sc IT COURSE CODE: 16ITU603A COURSENAME: NUMERICAL METHODS UNIT-V BATCH-2016-2019

<u>UNIT-V</u>

SYLLABUS

Extrapolation method : Romberg integration- Cosine quadrature. Ordinary differential equations: Euler's method modified Euler's methods – Heun method and mid-point method – Runge-kutta second methods – Heun method without iteration – mid-point method and Ralston's method – classical 4th order Runge-Kutta method.

CLASS: III B.Sc IT COURSE CODE: 16ITU603A COURSENAME: NUMERICAL METHODS UNIT-V BATCH-2016-2019

Formula for Taylor series:

$$\mathbf{Y}_{n+1} = y_n + \frac{h}{1!} y_n^1 + \frac{h^2}{2!} y_n^{II} + \frac{h^3}{3!} y_n^{III} + \dots$$

Formula for Euler's method or Euler's algorithm:

 $Y_{n+1} = y_n + h f(x_n, y_n), n = 0, 1, 2, \dots$

Formula for improved Euler's method?:

 $Y_{n+1} = y_n + \frac{1}{2} h [f(x_n, y_n) + f(x_n+h, y_n + h f(x_n, y_n))]$

Formula for modified Eulers method:

$$Y_{n+1} = y_n + h[f(x_n+h/2, y_n+h/2 f(x_n, y_n))]$$

Formula for fourth order Runge-kutta method:

$$K_{1} = h f(x,y)$$

$$K_{2} = h f (x+h/2, y+k_{1}/2)$$

$$K_{3} = h f(x+h/2, y+k_{2}/2)$$

$$K_{4} = h f (x+h, y+k_{3})$$

$$\Delta y = \frac{1}{6}(K_{1} + 2k_{2} + 2K_{3} + k_{4})$$

$$y(x+h) = y(x) + \Delta y$$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METHODSCOURSE CODE: 16ITU603AUNIT-VBATCH-2016-2019

Runge-kutta method for simultaneous first order differential equations:

To solve numerically the simultaneous equations

$$\frac{dy}{dx} = f_{1(x,y,z)}, and \quad \frac{dz}{dx} = f_{2}(x, y, z) given \text{ the initial conditions } y(x_{0}) = y_{0},$$
$$z(\mathbf{r}_{0}) = Z_{0}$$

we starting from (x_0, Y_0, z_0) the increments Δy and ΔZ in y and z respectively are given by formulae

 $K_1 = hf_1(x_0, y_0, z_0)$ $l_1 = hf_2(x_0, y_0, z_0)$

$$\begin{split} \mathbf{K}_{2} &= \mathbf{h} \mathbf{f}_{1} (\mathbf{x}_{0} + \frac{\mathbf{h}}{2}, \mathbf{y}_{0} + \frac{\mathbf{k}_{1}}{2} + \mathbf{Z}_{0} + \frac{\mathbf{l}_{1}}{2}) \quad \mathbf{l}_{2} = h f_{2} (x_{0} + \frac{\mathbf{h}}{2}, y_{0} + \frac{\mathbf{k}_{1}}{2}, z_{0} + \frac{\mathbf{l}_{1}}{2}) \\ \mathbf{K}_{3} &= \mathbf{h} \mathbf{f}_{1} (\mathbf{x}_{0} + \frac{\mathbf{h}}{2}, \mathbf{y}_{0} + \frac{\mathbf{k}_{2}}{2} + \mathbf{Z}_{0} + \frac{\mathbf{l}_{2}}{2}) \quad \mathbf{l}_{3} = h f_{2} (x_{0} + \frac{\mathbf{h}}{2}, y_{0} + \frac{\mathbf{k}_{2}}{2}, z_{0} + \frac{\mathbf{l}_{2}}{2}) \\ \mathbf{K}_{4} &= \mathbf{h} \mathbf{f}_{1} (\mathbf{x}_{0} + \mathbf{h}, \mathbf{y}_{0} + \mathbf{k}_{3}, \mathbf{Z}_{0} + \mathbf{l}_{3}) \quad \mathbf{l}_{4} = h f_{2} (x_{0} + \mathbf{h}, y_{0} + \mathbf{k}_{3}, z_{0} + \mathbf{l}_{3}) \\ \Delta y &= \frac{1}{6} (k_{1} + 2k_{2} + 2k_{3} + k_{4}) \ \Delta z = \frac{1}{6} (l_{1} + 2l_{2} + 2l_{3} + l_{4}) \end{split}$$

$$y_1 = y_0 + \Delta y$$
 and $z_1 = z_0 + \Delta z$

having got (x_1, y_1, z_1) we get (x_2, y_2, z_2) by repeating the above algorithm once again starting from (x_1, y_1, z_1)

Runge-kutta method for second order differential equation (or R-K-method of order from to solve $y^{\parallel} = f(x,y, y^1)$, given $y(x_0) = y_0$ and $y^1(x_0) = y_0^1$?

To solve
$$y^{II} = f(x, y, y^1)$$
, given $y(x_0) = y_0 y^1(x_0) = y_0^1 y^1(x_0)$

Now, set $y^1 = Z$ and $y'' = z^1$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METHODSCOURSE CODE: 16ITU603AUNIT-VBATCH-2016-2019

Hence, differential equation reduce to $\frac{dy}{dx} = y^1 = z$ and

$$\frac{dz}{dx} = z^{1} = y'' = f(x, y, y'') = f(x, y, z)$$

 $\therefore \frac{dy}{dx} = z \text{ and } \frac{dz}{dy} = f(x, y, z) \text{ are simultaneous equation Where } f_1(x, y, z) = z, f_2(x, y, z) = f(x, y, z)$

y, z) given

Also y (0) and z (0) are given

Starting from these equations, we can use the R - K method for simultaneous equation and solve the problem.

Milne's predictor formula:

$$Y_{n+1,P} = y_{n-3} + \frac{4h}{3} (2y_{n-2}^{1} - y_{n-1}^{1} + 2y_{n}^{1})$$

Milne's corrector formula:

$$Y_{n+1, C} = y_{n-1} + \frac{h}{3} (y_{n-1}^{1} + 4y_{n}^{1} + y_{n+1}^{1})$$

Adam – Bashforth predictor formula:

$$Y_{n+1, P} = y_n + \frac{h}{24} \left[55y_n^1 - 59y_n^1 + 37y_{n-2}^1 - 9y_{n-3}^1 \right]$$

Adam – Bashforth corrector formula:

$$Y_{n+1, C} = y_n + \frac{h}{24} \left[9y^1_{n+1} + 19y^1_n - 5y^1_{n-1} + y^1_{n-2}\right]$$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc IT **COURSENAME: NUMERICAL METHODS**

COURSE CODE: 16ITU603A

UNIT-V BATCH-2016-2019

Relation between Runge - kutta method of second order and modified Euler's method:

In second order Runge – kutta method,

$$\begin{aligned} \Delta_{y0} &= k_2 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right) \\ \Delta y_0 &= hf\left(x_0 + \frac{h}{2}, y_0 + \frac{1}{2}h f(x_0, y_0)\right) \\ \therefore y_1 &= y_0 + \Delta y_0 + y_0 + hf\left(x_0 + \frac{h}{2}, y_0 + \frac{h}{2}f(x_0, y_0)\right) \end{aligned}$$

This is exactly the modified Euler method

So, the Runge – kutta method of second order is nothing but the modified Euler method.

Numerical Examples:

01. Using Taylor series method, find correct to four decimal places, the values of y (0.1), given $\frac{dy}{dx} = x^2 + y^2$ and y (0) = 1

Solution:

We have $y^1 = x^2 + y^2$ $\mathbf{Y}^{\mathrm{ii}} = 2\mathbf{x} + 2\mathbf{y}\mathbf{y}'$ $Y^{iii} = 2 + 2yy'' + 2'^2$ $Y^{iv}=2yy^{iii}+2y^iy^{ii}+4y^iy^{ii}$ $=2yy^{iii}+6y^{i}y^{ii}$ $x_0 = 0, y_0 = 1, h = 0.1$

CLASS: III B.Sc IT COURSE CODE: 16ITU603A	COURSEN UNIT-V	DEMY OF HIGHER EDUCATION COURSENAME: NUMERICAL METHODS UNIT-V BATCH-2016-2019		
	UNIT-V	DATCII-2010-2017		
$x_1 = 0.1, y_1 = y(0.1) = ?$				
$Y_0{}^1 = x_0{}^2 + y_0{}^2 = 0 + 1 = 1$				
$Y_0{}^{ii} = 2x_0 + 2y_0y_0{}^1 = 2$				
$Y_0^{iii} = 2 + 2(1) (2) + 2 (1)^2 = 8$				
$Y_0^{iv} = 2 \times 1 \times 8 + 6 (1) (2) = 28$				
By Taylor series method				
$Y_1 = y_0 + \frac{h}{1!}y_0^1 + \frac{h^2}{2!}y_0^2 + \frac{h^3}{3!}y_0^3 + \dots$				
$Y(0.1) = y_1 = 1 +$				
$\frac{0.1}{1}(1) + \frac{(0.1)^2}{2}(2) + \frac{(0.1)^3}{6}(8) + \frac{(0.1)^4}{24}$				
= 1 + 0.1 +0.01 +0.0013333 + 0.0001	16666			
= 1.11144999				
= 1.11145				
02. Using Taylor series method, fir	nd y (1.1) correct to for	ur decimal places given $\frac{dy}{dt}$ =		

and y(1) = 1

Solution:

Take $x_0 = 1$, $y_0 = 1$, h = 0.1

$$Y^1 = xy^{1/3}$$

$$\mathbf{Y}^{\rm ii} = \frac{1}{3} \, \mathbf{x} \mathbf{y}^{-2/3} \, \mathbf{y}^1 + \mathbf{y}^{2/3}$$

CLASS: III B.Sc IT COURSE CODE: 16ITU603A	COURSENAME: NUMERICAL METHODS UNIT-V BATCH-2016-2019
$= \frac{1}{3} x^2 y^{-1/3} + y^{1/3}$	
$y^{\text{iii}} = \frac{x^2}{3} \left(\frac{-1}{3}\right) y^{-\frac{4}{3}} y^1 + \frac{2x}{3} y^{-\frac{1}{3}} + \frac{1}{3} y^{-\frac{2}{3}} y^1$	
$y_0^1 = 1 \ (1)^{1/3} = 1$	
By Taylor series $Y_1 = y(1.1) = 1+0.1 + 0.1$	$+ \frac{(0.2)^2}{2} \left(\frac{4}{3}\right) + \frac{(0.1)^3}{6} \left(\frac{8}{9}\right) + \dots$
= 1+0.1 + 0.00666 + 0.000148 +	
= 1.10681	
03. Using Taylor series method, find	y (0.1) given $\frac{dy}{dx} = \mathbf{x}^2 - \mathbf{y}, \mathbf{y}$ (0) = 1 (correct to 4 decin
places)	
Solution:	
$X_0 = 0, y_0 = 1, h = 0.1, x_1 = 0.1$	
$\mathbf{Y}^1 = \mathbf{x}^2 - \mathbf{y}$	
$\mathbf{Y}^{ii} = 2\mathbf{x} - \mathbf{y}^1$	
$\mathbf{Y}^{\mathrm{iii}} = 2 - \mathbf{y}^{\mathrm{ii}}$	
$\mathbf{Y}^{iv} = -\mathbf{y}^{iii}$	
$Y_0{}^1 = x_0{}^2 - y_0 = 0 - 1 = -1$	
$Y_0^{11} = 2x_0 - y_0^1 = 0 - (-1) = 1$	
$Y_0^{iii} = 2 - 1 = 1$	
$\mathbf{Y}_0^{\mathbf{iv}} = -1$	

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METHODSCOURSE CODE: 16ITU603AUNIT-VBATCH-2016-2019 $\frac{0.01}{2}(1) + \frac{(0.001)}{6}(1) + \frac{(0.0001)}{24}(-1, +....)$

=0.905125

04. Given $y^1 = -y$ and y(0) = 1, determine the value of y at x = (0.01) (0.01) (0.04) by Euler method

Solution:

 $Y^1 = -y, x_0 = 0, y_0 = 1, x_1 = 0.01, x_2 = 0.02, x_3 = 0.03, x_4 = 0.04$

We have to find y_1 , y_2 , y_3 , y_4 takes h = 0.01

By Euler algorithm, $y_{n+1} = y_n + hy_n^1 = y_n + hf(x_n, y_n)$

 $Y_1 = y_0 + h f(x_0, y_0) = 1 + (0.01)(-1) = 0.99$

 $Y_2 = y_1 + hy_1^1 = 0.99 + (0.01) (-y_1)$

= 0.99 + (0.01) (-0.99)

=0.9801

 $y_3 = y_2 + hf(x_2, y_2) = 0.9801 + (0.01)(-0.9801)$

= 0.9703

 $y_4 = y_3 + h f(x_3, y_3) = 0.9703 + (0.01) (-0.9703) = 0.9606$

05. Compute y at x = 0.25 by modified Euler method given $y^1 = 2xy$, y(0) = 1

Solution:

Here $f(x, y) = 2xy, x_0 = 0, y_0 = 1$

Take h = 0.25, $x_1 = 0.25$

COURSENAME: NUMERICAL METHODS

CLASS: III B.Sc IT COURSE CODE: 16ITU603A

UNIT-V BATCH-2016-2019

By modified Euler method

 $Y_{1} = y_{0} + h \left[f \left(x_{0} + \frac{h}{2}, y_{0} + \frac{h}{2} f (x_{0}, y_{0}) \right) \right]$ $f (x_{0}, y_{0}) = f (0, 1) = 2 (0) (1) = 0$ $\therefore y_{1} = 1 + 0.25 \left[6 (0.125, 1) \right]$ $= 1 + 0.25 \left[2 \times 0.125, 1 \right]$ $= 1 = 0.25 \left[2 \times 0.125 \times 1 \right]$ = 1.0625

06. Solve $\frac{dy}{dx}$ = -2x - y, y (0) = -1 by Taylor series method to find y (0.1) compare it with exact solution?

Solution:

Here $x_0 = 0$, $y_0 = -1$, h = 0.1 $Y^1 = -2x - y$ $Y^{ii} = -2 - y^1$ $Y^{iii} = -y^{iii}$ $Y^{iv} = -y^{iii}$ $Y_0^1 = -2x_1 - y_0 = 1$ $Y_0^{11} = -2 - 1 = -3$ $Y_0^{iii} = 3$ $Y_0^{iv} = -3$

KARPAGAM ACADEMY OF HIGHER EDUCATION		
CLASS: III B.Sc IT COURSE CODE: 16ITU603A	COURSE UNIT-V	NAME: NUMERICAL METHODS BATCH-2016-2019
$\therefore y_1 = 1 + \frac{0.1}{1!} \times 1 + \frac{(0.1)^2}{2!} \times (-3) + \frac{(0.1)^3}{3!} \times 3 + \frac{(0.1)^3}{3!} \times $		D/11 C11 2010 2017
= 1+ 0.1 -0.015 +0.0005 - 0.0000125		
= -0.91451		
)7. Solve $\frac{dy}{dx} = x (1+x^3y), y (0) = 3$ by Eul	ler's method for y	(0.1)
Solution:		
$X_0 = 0, y_0 = 3, h = 0.1, x_1 = 0.1$		
By Euler's algorithm is $y_1 = y_0 + hf(x_0, y_0)$	0)	
= 3 + 0.1 f(0, 3) = 3 + 0.1(0)		
= 3		
18. Solve $\frac{dy}{dx} = 2x + 3y$, $y(0) = 1$ by Euler	's method for y (0	.1), y (0.2)
Solution:		
$X_0 = 0, y_0 = 1, x_1 = 0.1$		

- $Y_2 = y_1 + hf(x_1, y_1)$
- = 1.3 + 0.1 f [0.1, 1.3]
- $= 1.3 + 0.1 [2 \times 0.1 + 3 \times 1.3] = 1.71$

09. Obtain the values of y at x = 0.1 using Runge – kutta method of fourth order for the differential equation $y^1 = -y$, given y (0) = 1

Solution:

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METHODSCOURSE CODE: 16ITU603AUNIT-VBATCH-2016-2019

Here f (x, y) = - y, x₀ = 0, y₀ = 1, x₁ = 0.1
K₁ = hf (x₀, y₀) = 0.1 f (0, 1) = -0.1
K₂ = hf (x₀ +
$$\frac{h}{2}$$
, y₀ + $\frac{k_1}{2}$) = (0.1) f (0.05, 0.95) = - 0.095
K₃ = hf $\left(x_0 + \frac{h}{2}, y_0, \frac{K_2}{2}\right)$ = (0.1) f (0.05, 0.9525) = -0.09525
K₄ = hf (x₀+h, y₀ + K₃) = (0.1) f (0.1, 0.90475) = - 0.090475
 $\Delta y = \frac{1}{6}$ (k₁+2k₂ + 2k₃ + k₄)

 $y_1 = y_0 + \Delta y = 0.9048375$

10. Compute y (0.3) given $\frac{dy}{dx}$ +y+xy² = 0, y (0) = 1 by taking h = 0.1 using R.K method of fourth order?

Solution:

$$Y^{1} = -(xy^{2} + y) = f(x, y), x_{0} = 0, y_{0} = 1, h = 0.1 x_{1} = 0.1$$

$$K_{1} = h f(x_{0}, y_{0}) = 0.1 [-(x_{0}y_{0}^{2} + y_{0})] = -0.1$$

$$K_{2} = h f\left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{1}}{2}\right) = -0.1 [(0.05) (0.95)^{2} + 0.95] = -0.0995$$

$$K_{3} = h f\left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{2}}{2}\right) = (0.1) f(0.1, 0.9005) = -0.0982$$

$$\therefore y_{1} = 1 + \frac{1}{6} [-0.1 + 2 (-0.0995) + 2 (-0.0995) - 0.0982]$$

= 0.9006

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METHODSCOURSE CODE: 16ITU603AUNIT-VBATCH-2016-2019

11. What are the values of k_1 and l_1 to solve $y^{11} + xy^1 + y = 0$; y(0) = 1, $y^1(0) = 0$ by Runge kutta method of fourth order

$$y^{11} = -xy^1 - y, x_0 = 0, y_0 = 1$$

Setting $y^1 = z$, the equation becomes $y^{11} = z^1 = -xz - y$

$$\therefore \frac{dy}{dx} = z = 6, (x, y, z), \frac{dz}{dx} = -xz - y = f_2(x, y, z)$$

given $y_0 = 1$, $z_0 = y_0^1 = 0$

By algorithm, $k_1 = hf_1 (x_0, y_0, z_0) = 0.1 f_1 (0, 1, 0) = 0$

 $L_1 = hf_2 (x_0, y_0, z_0) = 0.1 f_2 (0, 1, 0) = -1 (0.1) = -0.1$

12. What are the values of k_1 and l_1 solve $y^{11} + 2xy^1 - 4y = 0$, y(0) = 0.2, $y^1(0) = 0.5$.

Solution:

Let
$$\frac{dy}{dx} = z$$
 then $\frac{d^2}{dx^2} = \frac{dy}{dx}$ the given differential equation becomes

$$\frac{dz}{dx} = -2xz + 4y$$
 now $\frac{dy}{dx} = z$ and $\frac{dz}{dx} = 2xz + 4y$

$$x_0 = 0, y_0 = 0.2 \ h = 0.2 \ f_1(x, y, z) = z, \ f_2(x_1, x_2, x_3) = -2x2 + 4yK_1 = hf_1(x_0, y_0, z_0) = 0.1 \times 0.5 = 0.05, \ h = 0.2 \ h = 0$$

 $l_1 = ht_2(x_0, y_0, z_0) = 0.1[-2 \times 0 \times 0.5 + 4 \times .5] = 0.8$

13. What are the values of k_1 and l_1 to solve $y^{11} - x^2y^1 - 2xy = 1$ y (0) = 1, y^1 (0) = 0

Solution:

Let
$$\frac{dy}{dx} = z$$

... The given differential equation becomes $\frac{d^2y}{dx^2} = x^2y^1 + 2xy + 1$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc IT COURSENAME: NUMERICAL METHODS COURSE CODE: 16ITU603A UNIT-V BATCH-2016-2019 $\frac{dz}{dx} = x^2z + 2xy + 1, x_0 = 0, y_0 = 1, z_0 = 0, f_1(x, y, z) = z$ $f_2(x, y, z) = x^2z + 2xy + 1, h = 0.1$ $x_1 = hf_1(x_0, y_0, z_0) = 0.1 f(0, 1, 0) = 0.1 \times 0 = 0$ $l_1 = hf_2(x_0, y_0, z_0) = 0.1$

14. What are the values of k₁, k₂, l₁ and l₂ from the system of equations, $\frac{dy}{dx} = \mathbf{x} + \mathbf{z}$, $\frac{dz}{dx} = \mathbf{x} - \mathbf{z}$

y given y (0) =2, z (0) = 1 using Runge – Kutta method of fourth order.

Solution:

 $f_1(x, y, z) = x + z; f_2(x, y, z) = x - y$

 $X_0 = 0, y_0 = 2, z_0 = 1, h = 0.1$

Now

 $K_1 = hf_1 (x_0, y_0, z_0)$

 $= (0.2) f_1 (0, 2, 1)$

= (0.1) (0+1)

= 0.1

$$K_2 = hf_1\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}, z_0 + \frac{l_1}{2}\right)$$

$$= 0.1 f_1 (0.05, 2.05, 0.8)$$

= 0.085

 $l_1 = (0.1) f_2 (0, 2, 1)$

$$= (0.1) (0 - 2^2)$$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METHODSCOURSE CODE: 16ITU603AUNIT-VBATCH-2016-2019= - 0.4 $l_2 = hf_2 \left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}, z_0 + \frac{1}{2} \right)$ = (0.1) f_2 (0.05, 2.05, 0.8)= - 0.4152515. Solve by Euler's method $\frac{dy}{dx} = x^2 + y, y(0) = 1$ of x = 0.02, 0.04Solution:Here $x_0 = 0, y_0 = 1, f(x, y) = x^2 + y, h = 0.2$

By Euler's algorithm, $y_1 = y_0 + h f(x_0, y_0)$

i.e. $y_1 = 1 + 0.02 (x_0^2 + y_0) = 1.02$

$$y_2 = y_1 + hf(x_1, y_1)$$

$$= 1.02 + 0.02 [(0.02)^2 + 1.02]$$

16. Solve $\frac{dy}{dx} = \mathbf{x} + \mathbf{y}$, given $\mathbf{y}(1) = \mathbf{0}$ and get $\mathbf{y}(1.1)$ by Taylor series method?

Solution:

Here $x_0 = 1$, $y_0 = 0$, h = 0.1 $Y^1 = x + y$ $Y^{ii} = 1 + y^1$ $Y^{iii} = y^{ii}$ $Y^{iv} = y^{iii}$

CLASS: III B.Sc IT		AME: NUMERICAL METHODS
COURSE CODE: 16ITU603A	UNIT-V	BATCH-2016-2019
$Y_0{}^1 = x_0 + y_0 = 1 + 0 = 1$		
$Y_0{}^{11} = 1 + y_0{}^1 = 2$		
$Y_0^{iii} = 2$		
$Y_0^{iv} =$		
By Taylor series, we have		
$\mathbf{Y}_1 = \mathbf{y}_0 + \frac{\mathbf{h}}{1!} \mathbf{y}_0^1 + \frac{\mathbf{h}^2}{2!} \mathbf{y}_0^{11} + \frac{\mathbf{h}^3}{3!} \mathbf{y}_0^{111} + \dots$		
$Y_1 = y(1.1) = 0 +$		
$\frac{0.1}{1}(1) + \frac{(0.1)^2}{2} + \frac{(0.1)^3}{6} \times 2 + \frac{(0.1)^4}{24} \times \frac{1}{24}$	<2+	

and y(0) = 0

Solution:

Here $x_0 = 0$, $y_0 = 0$, h = 0.2 $Y^1 = 1 - 2xy$ $Y^{11} = -2 (xy^1 + y)$ $Y^{iii} = -2 [xy^{11} + 2y^1]$ $Y^{iv} = -2 [xy^{iii} + 3y^{11}]$ $Y^v = -2 (xy^{iv} + 4y^{iii}]$ $Y_0^1 = 1 - 2.0.0 = 1$

CLASS: III B.Sc IT	I ACADEMY OF HIGHER EDUCATION COURSENAME: NUMERICAL METHODS	
COURSE CODE: 16ITU603A	UNIT-V	BATCH-2016-2019
$Y_0^{11} = 0$		
$Y_0^{111} = -4$		
$Y_0^{iv} = 0$		
$Y_0^v = 32$		
By Taylor series,		
$Y_1 = y(0.2) = 0 +$		
$\frac{0.2}{1}(1) + \frac{(0.2)^2}{2}(0) + \frac{(0.2)^3}{6}(-4) + 0 + $	$\frac{(0.2)^5}{120}(32) + \dots$	
= 0.1948		

18. Solve dy/dx = x+y, given y(1) = 0, and get y(1.1), y(1.2) by Taylor series method. Compare your result with the analysis.

Solution:

 $Y^1 = x + y$ $y_0^I = x0 + y0 = 1 + 0 = 1$

 $y^{II} = 1 {+} y^1 \qquad \qquad y_0{}^{II} {=} 1 x y_0{}^1 = 2$

 $y^{III} = y^{II} \qquad \qquad y_0^{III} = y_0^{II} = 2$

 $y^{IV} = y^{III} \qquad \qquad y_0{}^{iv} = 2 \ etc$

By Taylor series, are have

$$y_{1} = y_{0} + \frac{h}{1!} y_{0}^{1} + \frac{h^{2}}{Z!} y_{0}^{II} + \frac{h^{3}}{3!} y_{0}^{III} + \dots$$

$$\therefore y_{1} = y(1.1) = 0 + \frac{0.1}{1} (1) + \frac{(0.1)^{2}}{2} (2) + \frac{(0.1)^{3}}{6} + \frac{(0.1)^{4}}{24} (2)$$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METHODSCOURSE CODE: 16ITU603AUNIT-VBATCH-2016-2019 $+\frac{0.1^5}{120}.2+...--(2)$

 $= 0.1 + 0.01 + 0.00033 + 0.00000833 + 0.000000166 + \dots$

Y(1.1) = 0.11033847

Now, take $x_0 = 0.1103847$

Now, take $x_0 = 1.1 h = 0.1$,

 $y_{2} = y_{1} + \frac{h}{1!} y_{1}^{1} + \frac{h^{2}}{2!} y_{I}^{II} + \frac{h^{3}}{3!} y_{I}^{III} + \frac{h^{4}}{4!} y_{1}^{IV} + \dots - -(3)$

we calculate y_1^I , y_1^{II} , y_1^{III} ,, $x_1 = 1.1$, $y_1 = 0.11033847$ $y_1^I = x_1 + y_1 = 1.1 + 0.11033847 = 1.21033847$ $y_1^{II} = 1 + y_1^I = 2.21033847$ $y_1^{III} = y_1^{II} = y_1^{IV} = y_1^V = = 2.21033847$

using in (3),

 $y_2 = y(1.2) = 0.11033847 + 0.1 / 1 (1.21033847)$

 $+\frac{(0.1)^2}{2}(2.21033847)+\frac{(0.1)^3}{6}(2.21033847)+\frac{(0.1)^h}{2h}(2.21033847)+\dots$

= 0.11033847 + 2.21033847(0.005 + 0.0016666 +)

= 0.2461077

The exact solution $\frac{dy}{dx} = x + y$ is $y = -x-1+2e^{x-1}$

CLASS: III B.Sc IT	COURSEN	AME: NUMERICAL METHODS
COURSE CODE: 16ITU603A	UNIT-V	BATCH-2016-2019
$Y(1.1) = -1 \ 1 \ -1 \ +2e^{0.1}$		
= 0.11034		
$y(1.2) = -1.2 - 1 + ze^{0.2} = 0.2428$		
y(1.2) = 1.2 + 1+20 = 0.2+20		
y (1.1) = 0.11033847		
y(1.2) = 0.2461077		

Exact values: y(1.1) = 0.110341876

Y(1.2) = 0.24280552

19.Using Taylor method compute y (0.2) **and** y(0.4) **correct to 4 decimal places given**

$$\frac{dy}{dx} = 1 - 2xy \text{ and } y(0) = 0$$

Soln

We know
$$y^1 = 1 - 2xy$$
Here $x_0 = 0$ $y_0 = 0$, $h = 0.2$ $y^{II} = -2(xy^1 + y)$ $y_0^1 = 1 - zx_0y_0 = 1$ $y^{III} = -2(xy^{II} + 2y^I)$ $y_0^{II} = 0$ $y^{IV} = -2(xy^{III} + Jy^{II})$ $y_o^{III} = -4$ $y^V = -2(xy^{iv} + 4y^{III})$ $y^{iv}_o = 0$ $y_0^{II} = J 32$

by Taylor series

By Taylor series, for y_1 and z we have

$$\mathbf{Y}_{1} = \mathbf{y} (0.1) = \mathbf{y}_{0} + \mathbf{h} \mathbf{y}_{0}^{1} + \frac{h^{2}}{2!} \mathbf{y}_{0}^{II} + \frac{h^{3}}{3!} \mathbf{y}_{0}^{III} + \dots - - - (1)$$

And
$$Z_1 = Z(0,1) = Z_0 + hZ_0^1 + \frac{h^2}{2}Z_0^{II} + \frac{h^3}{6}Z_0^{III} + \dots (2)$$

 $Y_0 = 1$
 $Y_0^1 = Z_0 - x_0 = 1 - 0 = 1$
 $Y_0^{II} = Z_0^1 - 1 = 1 - 1 = 0$
 $Z_0^{II} = x_0 + y_0 + 0 = 1 = 1$
 $Z_0^{II} = 1 + y_0^1 = 1 + 1 = 2$
 $Y_0^{III} = z_0^{II} = 2$
 $Z_0^{III} = y_0^{II} = 0$

Substituting in (1) and (2), we get $z_0^{IV} = y_0^{III} = 2$

$$Y_{1} = y (0.1) = 1 + (0.1) + \frac{(0.01)}{2} (0) + \frac{(0.001)}{6} 2 + \dots$$
$$= 1 + 0.1 + 0.000333 + \dots = 1.1007 \text{ (correct to 4 decimals)}$$
$$z_{1} = z (0.1) = 1 + (0.1) + \dots$$

$$\frac{(0.01)}{2}2 + \frac{(0.001)}{6}(0) + \frac{0.0001}{24} \times 2 + \dots$$

=1+0.1+0.01 +0.0000083+....

=1.1100 (correct to 4 decimal places)

 \therefore y (0.1) = 1.1003 and z (0.1) = 1.1100

20. Solve $\frac{dy}{dx} = z - x$, $\frac{dz}{dx} = y + x$ with y (0) = 1, z (0) = 1, by taking h = 0.1, to get y (0.1) and z

(0.1). Here y and z are dependent variables and x is independent.

Solution:

$$\begin{array}{ll} Y^1 = z - x & \mbox{and } z^1 = x + y \\ Take \; x_0 = 0, \; y_0 = 1 & \mbox{take } x_0 = 0, \; z_0 = 1 \; \mbox{and } h = 0.1 \end{array}$$

 $Y_1 = y(0.1) =?$ $Z_1 = z(0.1) =?$

t

Using in (6)

$$Y_1 = y(0.1) = 0 + \frac{0.1}{2}[1+0.9] = \frac{0.19}{2} = 0.095$$

$$Y_2 = y_1 + \frac{1}{2} h [f(x_1, y_1) + f(x_2, y_1 + hf(x_1, y_1)] \rightarrow (7)$$

 $F(x_1, y_1) = 1 - y_1 = 1 - 0.095 = 0.905$

 $F(x_2, y_1 + h f (x_1, y_1) = f (0.2, 0.095 + (0.1) (0.905)) = 0.8145$

Using in (7) we get
$$y_2 = y (0.2) = 0.095 + \frac{0.1}{2} [0.905 + 0.8145]$$

Y (0.2) = 0.18098

$$Y_{3} = y_{2} + \frac{1}{2} h [f (x_{2}, y_{2}) + 6 (x_{3}, x_{2} + h f (x_{2}, y_{2}))] \rightarrow (8)$$

Using in (8)

$$Y_3 = y (0.3) = 0.18098 + \frac{0.1}{2} (0.81902 + 1 - 0.26288)$$

Y (0.3) = 0.258787

The values are tabulated

Х	Modified	Improved	Exact solution
	Euler	Euler	
0.1	0.095	0.095	0.09516
0.2	0.18098	0.18098	0.18127
0.3	0.258787	0.258787	0.25918

Modified Euler and improved Euler methods give the same values come A to sin decimal places.

21. Evaluate the values of y (0.1) and y (0.2) given $y^{II} - x (y^1)^2 + y^2 = 0$; y (0) =1, y¹ (0) =0 by using Taylor series method?

Solution:

 $Y^{II} - x \ (y^1)^2 + y^2 = 0$

Put $y^1 = z \rightarrow (1)$

CLASS: III B.Sc IT COURSE CODE: 16ITU603A	COURSENAME: NUMERICAL METHODS UNIT-V BATCH-2016-2019
Hence the eqn reduces to $z^1 - xz^2 + y^2$	= 0
$\therefore z^1 = xz^2 - y^2 \rightarrow (2)$	
By initial condition, $y_0 = y(0) = 1$, $z_0 =$	$= y_0^1 = 0 \rightarrow (3)$
$\mathbf{Y}_1 = 0.2 - 0.00533333 + 0.000085333$	3
= 0.194752003	
Now again starting with $x = 0.2$ as the	starting value so, use again eqn (1)
Now $y_0 = 0.2$, $y_0 = 0.194752003$, $h = 0.194752003$	0.2
$Y_0^1 = 1 - 2x_0y_0 = 1 - 2(0.2) (0.194752)$	2003) = 0.9220992
$Y_0^{II} = -2 (x_0 y_0^1 + y_0) = -2 [(0.2) (0.922)]$	20992) + 0.194752003]
-0.758343686	
$y_0^{III} = -2 [x_0 y_0^{II} + 2 y_0^{1}]$	
= -2 [(0.2) (-0.758343686) +2 (0.9220	992)]
= -3.38505933	
$y_0^{IV} = -2 [(0.2) (-3.38505933) + 3 (-0.7)]$	758343686)]
= 5.90408585	
Using eqn (1), again	
$Y_2 = y(0.4) = 0.194752003 + (0.2)(0.4)$.9220992)
$\frac{(0.2)^2}{2}(-0.758343686) + \frac{(0.2)^3}{6}(-3.38505933)$	$+\frac{(0.2)^4}{24}(5.90408585) = 0.359883723$
22. Using improved Euler method fi	nd y at x = 0.1 and y at x = 0.2 give $\frac{dy}{dx} = y - \frac{2x}{y}$,

Solution:

By improved Euler method,

$$Y_{n+1} = y_n + \frac{1}{2} h [f(x_n, y_n) + f(x_n + h, y_n + hf(x_n, y_n))] \rightarrow (1)$$

$$\therefore y_1 = y_0 + \frac{1}{2} h [f(x_0, y_0 + h f(x_0, y_0))] \rightarrow (2)$$

f (x₀, y₀) = y₀ -
$$\frac{2x_0}{y_0} = 1 - 0 = 1$$

$$f(x_1, y_0 + h f(x_0, y_0)) = f(0.1, 1.1) = 1.1 - \frac{2 \times (0.1)}{1.1} = 0.91818$$

$$y(0.1) = y_1 = 1 + \frac{0.1}{2} [1+0.91818] = 1.095909$$

$$y_2 = y(0.2) = y_1 + \frac{1}{2}h[f(x_1, y_1) + f(x_2, x_1 + hf(x_1, y_1))] \rightarrow (3)$$

$$f(x_1, y_1) = y_1 - \frac{2x_1}{y_1} = 1.095909 - \frac{2 \times 0.1}{1.095909}$$

= 0.913412

$$f(x_2, y_1 + h f(x_1, y_1) = f(0.2, 1.095909 + (0.1) (0.9134121))$$

$$= f(0.2, 1.18732) = 1.18732 - \frac{2 \times 0.2}{1.18732} = 0.8594268$$

Using in (3), $y_2 = 1.095909 + \frac{0.1}{2} [0.913412 + 0.850427]$

= 1. 1841009

KARPAGAM	ACADEMY OF HIGH	HER EDUCATION
CLASS: III B.Sc IT	COURSEN	NAME: NUMERICAL METHODS
COURSE CODE: 16ITU603A	UNIT-V	BATCH-2016-2019

Х	0	0.1	0.2
Y	1	1.095907	1.1841009

23. Apply the fourth order Runge – kutta method, to find y (0.2) given that $y^1 = x + y$,

y (0) = 1

Solution:

Since h is not mentioned in the question we take h = 0.1

 $Y^1 = x + y; y(0) = 1$

 \therefore f (x, y) = x+y, x₀ = 0, y₀ = 1

$$x_1 = 0.1, x_2 = 0.2$$

By fourth order Runge – kutta method, for the first interative

$$K_{1} = h f (x_{0}, y_{0}) = (0.1) (x_{0} + y_{0}) = (10.1) (0+1) = 0.1$$

$$K_{2} = h f (x_{0} + \frac{1}{2} h, y_{0} + \frac{1}{2} k_{1})$$

$$= (0.1) f (0.05, 1.05) = (1.0) (0.05 + 1.05) = 0.11$$

$$k_{3} = h f (x_{0} + \frac{1}{2} h, y_{0} + \frac{1}{2} k_{2}) = (0.1) f (0.05, 1.055)$$

$$= (0.1) (0.05 + 1.055) = 0.1105$$

$$k_{4} = h f (x_{0} + h, y_{0} + k_{3})$$

$$= (0.1) f (0.1, 11 05) = (0.1) (0.1 + 1.1105)$$

$$= 0.12105$$

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc IT	COURSEN	NAME: NUMERICAL METHODS	-
COURSE CODE: 16ITU603A	UNIT-V	BATCH-2016-2019	
$\therefore \Delta y = \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$			

$$= \frac{1}{6}[0.1 + 0.22 + 0.2210 + 0.12105) = 0.110341667$$

$$y~(0.1) = y_1 = y_0 + \Delta y = 1.110341667 \ \sqcup \ 1.110342$$

Now starting from (x_1, y_1) we get (x_2, y_2) again

Apply Runge kutta algorithm replacing (x_0, y_0) by (x_1, y_1)

$$K_1 = h f(x_1, y_1) = (0.1) (x_1+y_1) = (0.1) (0.1 + .110342) = 0.1210342$$

$$K_2 = h f(x_1 + \frac{h}{2}, y_1 + \frac{1}{2}k_1) = (0.1) f(0.15, 1.170859)$$

$$= (0.1) (0.15 + 1.170859) = 0.1320859$$

$$k_3 = hf(x_1 + \frac{h}{2}, y_1 + \frac{1}{2}k_2) = (0.1) f(0.15, 1.1763848)$$

$$= (0.1) (0.15 + 1.1763848) = 0.13262848$$

 $k_4 = hf (x_1 + h, y_1 + k_3) = (0.1) f (0.2, 1.24298048)$

= 0.144298048

$$Y(0.2) = y(0.1) + \frac{1}{6} [k_1 + 2k_2 + 2k_3 + k_4]$$

$$= 1.110342 + \frac{1}{6} \ (0.794781008$$

Y(0.2) = 1.2428055.Correct to four decimals places, y(0.2) = 1.2428

24. Using the Runge – kutta method, tabulate the solution of the system $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x + z$,

Solution:

Given f (x, y, z) = x + z, g (x, y, z) = x - y, $x_0 = 0$, $y_0 = 0$, $z_0 = 1$ and h = 0.1

To compute y(0.1) and z(0.1)

$K_1 = hf(x_0, y_0, z_0)$	$L_1 = hg(x_0, y_0, z_0)$
$= h (x_0 + z_0)$	$= h (x_0 - y_0)$
= (0.1) (0 + 1) = 0.1	= (0.1) (0 - 0) = 0
K ₂ = hf (x ₀ + $\frac{h}{2}$, y ₀ + $\frac{k_1}{2}$, z ₀ + $\frac{l_1}{2}$)	L ₂ = hg $\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}, z_0 + \frac{l_1}{2}\right)$
$= h\left[\left(x_0 + \frac{h}{2}\right) + \left(z_0 + \frac{l_1}{2}\right)\right]$	$= h\left[\left(x_0 + \frac{h}{2}\right) - \left(y_0 + \frac{k_2}{2}\right)\right]$
$= (0.1) \left[\left(0 + \frac{0.1}{2} \right) + \left(1 + \frac{0}{2} \right) \right]$	$= (0.1)\left[\left(0+\frac{0.1}{2}\right)-\left(0+\frac{0.1}{2}\right)\right]$
=0.105	
K ₃ = hf $\left[x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}, z_0 + \frac{l_2}{2} \right]$	L ₃ =hg $\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}, z_0 + \frac{l_2}{2}\right)$
$= \mathbf{h}\left[\left(x_0 + \frac{h}{2}\right) + \left(z_0 + \frac{l_2}{2}\right)\right]$	$=4\left[\left(x_0+\frac{h}{2}\right)-\left(y_0+\frac{kl2}{2}\right)\right]$
$= (0.1) \left[\left(0 + \frac{0.1}{2} \right) + \left(1 + \frac{0}{2} \right) \right]$	$= (0.1) \left[\left(0 + \frac{0.1}{2} \right) - \left(0 + \frac{0.105}{2} \right) \right]$
= 0.105	= - 0.00026

CLASS: III B.Sc IT	COURSENAME: NUMERICAL METHODS
COURSE CODE: 16ITU603A	UNIT-V BATCH-2016-2019
$K_4 = hf(x_0 + h, y_0 + k_3, z_0 + l_3)$	$L_4 = hg (x_0 + h, y_0 + k_3, z_0 + l_3)$
$= h [x_0 + h) + (z_0 + l_3)$	$= h [x_0 + h) - (y_0 + k_3)$
= (0.1) [(0+0.1) + (1 - 0.00026)	= (0.1) [(0 + 0.1) - (0 + 0.105)]
= 0.1099	= - 0.0005
$\Delta y = \frac{1}{6} \left[k_1 + 2k_2 + 2k_3 + k_4 \right]$	$\Delta z = \frac{1}{6} [l_1 + 2l_2 + 2l_3 + l_4]$
$= \frac{1}{6} [0.1 + 2 (0.105) + 2 (0.105) + 0.1099)]$	$=\frac{1}{6}[0+0+2(-0.00026)-0.0005]$
=0.1050	= 0.00017
$Y_1 = y_0 + \Delta y$	$Z_1 = z_0 + \Delta z$
= 0 + 0.1050	= 1 - 0.00017
y (0.1) = 0.1050	z (0.1) = 0.9998

To compute y(0.2) and z(0.2)

Here $x_1 = 0.1$, $y_1 = 0.1050$, $z_1 = 0.9998$

$\mathbf{K}_1 = \mathbf{h} \mathbf{f} \left(\mathbf{x}_1, \mathbf{y}_1, \mathbf{z}_1 \right)$	$L_1 = hg(x_1, y_1, z_1)$
$=h\left(x_{1}+z_{1}\right)$	$= h (x_1 - y_1)$
=(0.1)(0.1+0.9998)	=(0.1)(0.1-0.1050)
= 0.1099	= - 0.0005

KARPAGAMACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METHODSCOURSE CODE: 16ITU603AUNIT-VBATCH-2016-2019		
K ₂ = hf $\left(x_1 + \frac{h}{2}, y_1 + \frac{k_1}{2}, z_1 + \frac{l_1}{2}\right)$	L ₂ =hg $\left(x_1 + \frac{h}{2}, y_1 + \frac{k_1}{2}, z_1 + \frac{l_1}{2}\right)$	
$= \mathbf{h}\left[\left(x_1 + \frac{h}{2}\right) + \left(z_1 + \frac{l_1}{2}\right)\right]$	$=\mathbf{h}\left[\left(x_1 + \frac{h}{2}\right) - \left(y_1 + \frac{k_1}{2}\right)\right]$	
$= (0.1) \left[\left(0.1 + \frac{0.1}{2} \right) + \left(0.9998 + \frac{0.0005}{2} \right) \right]$	$=(0.1)\left[\left(0.1+\frac{0.1}{2}\right)\left(0.105+\frac{0.1099}{2}\right)\right]$	
= 0.1149	= -0.0099	
$\mathbf{K}_{3} = \mathbf{hf}\left(x_{1} + \frac{h}{2}, y_{1} + \frac{k_{2}}{2}, z_{1} + \frac{l_{2}}{2}\right)$	L ₃ = hg $\left(x_1 + \frac{h}{2}, y_1 + \frac{k_2}{2}, z_1 + \frac{l_2}{2}\right)$	
$= \mathbf{h}\left(\left(x_1 + \frac{h}{2}\right) + \left(z_1 + \frac{l_2}{2}\right)\right)$	$= h\left[\left(x_1 + \frac{h}{2}\right) - \left(y_1 + \frac{k_2}{2}\right)\right]$	
$= (0.1) \left[\left(0.1 + \frac{0.1}{2} \right) + \left(0.9998 + \frac{0.00099}{2} \right) \right]$	$=(0.1)\left[\left(0.1+\frac{0.1}{2}\right)-\left(0.1050+\frac{0.1149}{2}\right)\right]$	
= 0.1149	= -0.00125	
$K_4 = hf(x_1 + h, y_1 + k_3, z_1 + l_3)$	$L_4 = hg [x_1+h, y_1+k_3, z_1 + l_3]$	
$= h [(x_1 + h) + z_1 + l_3)]$	$= h [(x_1+h) - (y_1 + k_3)]$	
= (0.1) [(0.1+0.1) + (0.9998 - 0.00125)]	= (0.1) [(0.1 + 0.1) - (0.1050 + 0.1149)]	
= 0.1198	= -0.00199	
$\Delta y = \frac{1}{6} [k_1 + 2k_2 + 2k_3 + k_4]$	$\Delta z = \frac{1}{6} [l_1 + 2l_2 + 2l_3 + l_4]$	
$= \frac{1}{6} [0.1099 + 2 (0.1149) + 2 (0.1149) +$	$= \frac{1}{6} [-0.0005 + 2(-0.00049) + 2(-0.00125) -$	
0.1198)]	0.001199]	

CLASS: III B.Sc IT	COURSEN	AME: NUMERICAL METHODS
COURSE CODE: 16ITU603A	UNIT-V	BATCH-2016-2019
$= \frac{1}{6} [0.1099 + 0.2298 + 0.2298 + 0.1198]$	$=\frac{1}{6}[-0.000]$	5 -0.00198 -0.00199]
= 0.1149	$=\frac{1}{6}[-0.000]$	05 - 0.00198 - 0.00199
	= -0.00116	
$Y_2 = y_1 + \Delta y$	$Z_2 = z_1 + \Delta$	Z
= 0.1050 +0.1149	= 0.9998 -	0.00116
= 0.2199	= 0.9986	
y (0.2) = 0.2199	z (0.1) = 0.	9986

	X=0	X = 0.1	X = 0.2
Y	0	0.1050	0.2199
Х	1	0.9998	0.9986

25. Solve $\frac{d^2 y}{dx^2} - x \left(\frac{dy}{dx}\right)^2 + y^2 = 0$ using Runge – kutta method for x = 0.2 correct to 4 decimal

places. Initial condition are x = 0, y = 1, $y^1 = 0$

Solution:

Given:

$$\frac{d^2 y}{dx^2} - x \left(\frac{dy}{dx}\right)^2 + y^2 = 0 \rightarrow (1)$$

Put
$$\frac{dy}{dx} = z \rightarrow (2)$$

$$\therefore \frac{d^2 y}{dx} = \frac{d^2}{dx} \rightarrow (3)$$

Substituting (2) and (3) in (1), we get

$$\frac{dz}{dx} = \mathbf{x}\mathbf{z}^2 - \mathbf{y}^2$$

Let
$$\frac{dz}{dx} = xz^2 - y^2 = g(x, y, z)$$

$$\frac{dz}{dx} = xz^2 - y^2 = g(x, y, z)$$

Also we are give that $y_0 = 0$, $y_0 = 1$, $y_0^1 = 0$ (or) $z_0 = 0$, h = 0.2

Now

$$K_{1} = hf(x_{0}, y_{0}, z_{0}) \qquad l_{1} = hg(x_{0}, y_{0}, z_{0})$$

$$= hz_{0} = 0 \qquad = h(x_{0}z_{0}^{2} - y_{0}^{2})$$

$$= (0.2)(0-1) = -0.2$$

$$k_{2} = hf\left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{1}}{2}, z_{0} + \frac{l_{1}}{2}\right)$$

$$= h\left[z_{0} + \frac{l_{1}}{2}\right] = (0.2)\left(0 - \frac{0.2}{2}\right) = -0.02$$

$$l_{2} = hg\left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{1}}{2}, z_{0} = \frac{l_{1}}{2}\right)$$

$$= h\left[\left(x_{0} + \frac{h}{2}\right)\left(z_{0} + \frac{l_{1}}{2}\right)^{2} - \left(y_{0} + \frac{k_{1}}{2}\right)^{2}\right]$$

Prepared by M.Indhumathi, Asst Prof, Department of Mathematics KAHE

Page 30/44

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METHODS

COURSE CODE: 16ITU603A

UNIT-V BATCH-2016-2019

$$\begin{split} l_{2} &= (0.2) \left[\left(0 + \frac{0.2}{2} \right) \left(0 - \frac{0.2}{2} \right)^{2} - \left(1 + \frac{0}{2} \right)^{2} \right] \\ &= -0.1998 \\ k_{3} &= hf \left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{2}}{2}, z_{0} + \frac{l_{2}}{2} \right) \\ &= h \left[z_{0} + \frac{l_{1}}{2} \right] = (0.2) \left(0 - \frac{0.1998}{2} \right) \\ &= -0.01998 \\ l_{3} &= hg \left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{2}}{2}, z_{0} + \frac{l_{2}}{2} \right) \\ &= h \left[\left(x_{0} + \frac{h}{2} \right) \left(z_{0} + \frac{l_{2}}{2} \right)^{2} - \left(y_{0} + \frac{k_{2}}{2} \right)^{2} \right] \\ &= (0.2) \left[\left(0 + \frac{0.2}{2} \right) \left(0 - \frac{0.01998}{2} \right)^{2} - \left(1 - \frac{0.02}{2} \right)^{2} \right] \\ &= -0.1958 \\ k_{4} &= hf (x_{0} + h, y_{0} + k_{3}, z_{0} + h_{2}) \\ &= h (z_{0} + l_{3}) = (0.2) (0 - 0.1958) \\ &= -0.0392 \\ l_{4} &= hg (x_{0} + h, y_{0} + k_{3}, z_{0} + l_{3}) \\ &= h [(x_{0} + h) (z_{0} + l_{3})^{2} - (y_{0} + k_{3})^{2}] \\ &= (0.2) [(0.2) (0 - 0.1958)^{2} - (1 - 0.01998)^{2}] \\ &= -0.1906 \end{split}$$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METHODSCOURSE CODE: 16ITU603AUNIT-VBATCH-2016-2019 $\Delta y = \frac{1}{6} [k_1 + 2k_2 + 2k_3 + k_4]$ $= \frac{1}{6} [0 + 2 (-0.02) + 2 (-0.01998) - 0.0392]$ = -0.0199

- $\therefore \mathbf{y} (0.2) = \mathbf{y}_1 = \mathbf{y}_0 + \Delta \mathbf{y}$
- =1 0.0199
- = 0.9801
- ∴ y (0.2) = 0.9801

26. The differential equation $\frac{dy}{dx} = y - x^2$ is satisfied by y (0) = 1, y (0.2) = 1.12186, y (0.4) = 1.46820, y (0.6) = 1.7379 compute the value of y (0.8) by Milne's predictor corrector formula?

Solution:

- Given $\frac{dy}{dx} = y^1 = y x^2$ and h = 0.2
- $X_0=0 \qquad \qquad y_0=1$
- $X_1 = 0.2$ $y_1 = 1.12186$
- $X_2 = 0.4$ $y_2 = 1.46820$
- $X_3 = 0.6$ $y_3 = 1.7379$
- $X_4 = 0.8$ $y_4 = ?$

By Milne's predictor formula, we have

KARPAGAM ACADEMY OF HIGHER EDUCATION			
CLASS: III B.Sc IT COURSE CODE: 16ITU603A	COURSEN UNIT-V	AME: NUMERICAL METHODS BATCH-2016-2019	
$Y_{n+1, P} = y_{n-3} + \frac{4h}{3} [zy_{n-2}^{1} - y_{n-1}^{1} + 2y]$		BATCH-2010-2017	
3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2			
To get y_n , put $n = 3$ in (1) we get			
$Y_{n, P} = y_0 + \frac{4h}{3} [2y_1^1 - y_2^1 + 2y_3^1] \rightarrow (2)$	2)		

Now
$$y_{1}^{1} = (y - x)_{1}^{2} = y_{1} - x_{1}^{2}$$

= 1.12186 - (0.2)² = 1.08186 \rightarrow (3)
 $y_{2}^{1} = (y - x^{2})_{2} = y_{2} - x_{1}^{2}$
= 1.46820 - (0.4)² = 1.3082 \rightarrow (4)
 $y_{3}^{1} = (y - x^{2})_{3} = y_{3} - x_{3}^{2}$
=1.7379 - (0.6)² = 1.3779 \rightarrow (5)
Substituting (3), (4) and (5) and (2), we get

$$Y_{h,\,g} = 1 + \; \frac{4(0.2)}{3} \; \left[2(1.08186) - 1.3082 + 2\; (1.3779) \right]$$

= 1+0.266 [2.1637 - 1.3082 + 2.7558]

= 1.9630187

 \therefore y (0.8) = 1.9630187 (by predictor formula)

By Milne's corrector formula we have

$$Y_{n+1, C} = y_{n-1} + \frac{h}{3} (y^{1}_{n-1} + 4y^{1}_{n} + y^{1}_{n+1})$$

To get y_h , put n = 3, we get

$$Y_{h, C} = y_2 + \frac{h}{3}(y_2^1 + hy_3^1 + y_n^1) \rightarrow (6)$$

Now $y_n^1 = (y - x^2)_h = y_h - x_h^2$

 $= 1.96277 - (0.8)^2$

 $= 1.3230187 \rightarrow (7)$

Substituting (4), (5), (7) in (6) we get

$$Y_{4, C} = 1.46820 + \frac{0.2}{3} [1.3082 + 4 (1.3779) + 1.3230187]$$

= 2.0110546

i.e.
$$y(0.8) = 2.0110546$$

27. Using Taylor's series method, solve $\frac{dy}{dx} = xy + y^2$, y (0) = 1 at x = 0.1, 0.2 and 0.3 continue the solve at x = 0.4 by Milne's predictor corrector method?

Solution:

Given $y^1 = xy + y^2$, and $x_0 = 0$, $y_0 = 1$ and h = 0.1Now $y^1 = xy + y^2$ $Y^{11} = xy^1 + y + 2yy^1$ $Y^{III} = xy^{II} + 2y^1 + 2yy^{II} + 2y^{12}$

To find y(0.1)

By Taylor series we have

	ADEMY OF HIGHI	
CLASS: III B.Sc IT COURSE CODE: 16ITU603A	COURSENA UNIT-V	AME: NUMERICAL METHODS BATCH-2016-2019
y (0.1) = y ₁ + hy ₀ ¹ + $\frac{h^2}{2!}y_0^{II} + \frac{h^3}{3!}y_0^{III}$		
$y_0^{II} = (xy + y^2)_0 = (x_0y_0 + y_0^2) = 1 \dots$	(2)	
$y_0^{II} = (xy^1 + y + 2yy^1)$		
$y_0^{II} = (x_0 y_0^1 + y_0 + 2y_0 y_0^1) = 3 \dots (3)$	3)	
$y_0^{III} = (xy_0^{II} + 2y^1 + 2yy^{II} + 2y^{12})_0 = 10$) (4)	
Substituting (2). (3) and (4) in (1) we g	get	
Y (0.1) = 1 + 0.1 + $\frac{(0.1)^2}{2} \times 3 + \frac{(0.1)^3}{6}$	- × 10	
= 1 + 0.1 + 0.016 + 0.001666		
y (0.1) = 1.11666		
To find y (0.2)		
By Taylor series we have		
$Y_2 = y_1 + hy_1^1 + \frac{h^2}{2!}y_1^{II} + \frac{h^3}{3!}y_1^{III} + \dots$	(5)	
Now $y_1^1 = (xy + y^2) = x_1y_1 + y_1^2$		
$= (0.1) (1.11666) + (1.11666)^2$		
= 0.111666 + 1.2469		
= 1.3585 (6)		
$y_1^{II} = (xy^1 + y + 2yy^1)$		

 $= x_1 y_1{}^1 + y_1 + 2 y_1 \,\, y_1{}^1$

= (0.1) (1.3585) + 1.11666 + 2 (1.11666) (1.3585)

KARPAGAM AC CLASS: III B.Sc IT	COURSENAME: NUMERICAL METHODS	
COURSE CODE: 16ITU603A	UNIT-V	BATCH-2016-2019
= 0.13585 + 1.11666 + 3.0339		
= 4.2865 (6)		
$y_1^{III} = (xy^{II} + 2y^I + 2yy^{II} + 2y^{12})$		
$= (x_1 y_1^{II} + 2y_1^{I} + 2y_1y_1^{II} + 2y_1^{12})$		
= (0.1) (4.2865) + 2 (1.3585) + 2 (1.11)	167) (4.2865) + 2 (1.358	85) ²
= 0.4287 + 2.717 + 9.5735 + 3.6916		
= 16. 4102 (8)		
Substituting (6), (7) and (8) in (5) we g	get	
$Y(0.2) = 1.1167 + (0.1)(1.3585) + \frac{(0.1)}{2}$	$\frac{(0.1)^2}{2}(4.2865) + \frac{(0.1)^3}{6}($	(16. 4102)

 $Y(0.2) = 1.1167 + 0.\ 13585 + 0.\ 0214 + 0.002735$

Y (0.2) = 1.27668

To find y(0.3)

By Taylor series we have

$$\begin{split} \mathbf{Y}_{3} &= \mathbf{y}_{2} + \mathbf{h}\mathbf{y}_{2}^{1} + \frac{h^{2}}{2!}\mathbf{y}_{2}^{II} + \frac{h^{3}}{3!}\mathbf{y}_{2}^{III} + \dots (9) \\ \text{Now } \mathbf{y}_{2}^{1} &= (\mathbf{x}\mathbf{y} + \mathbf{y}^{2})_{2} = (\mathbf{x}_{2}\mathbf{y}_{2} + \mathbf{y}_{2}^{2}) \\ &= (0.2) \ (1.2767) + (1.2767)^{2} \\ &= 0.2553 + 1.6299 \\ &= 1.\ 8852 \ \dots \dots \ (10) \\ \mathbf{y}_{2}^{II} &= (\mathbf{x}\mathbf{y}^{1} + \mathbf{y} + 2\mathbf{y}\mathbf{y}^{1})^{2} \end{split}$$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc IT COURSENAME: NUMERICAL METHODS COURSE CODE: 16ITU603A UNIT-V BATCH-2016-2019 $= x_2y_2^1 + y_2 + 2y_2y_2^1$ = (0.2) (1.8852) + 1.2767 + 2 (1.2767) (1.8852) = 0.33770 + 1.2767 + 4.8136 $= 6.4674 \dots (11)$ $y_2^{III} = (xy^{III} + 2y^1 + 2yy^{II} 2y^{12})_2$ $= (x_2y_2^{II} + 2y_2^1 + 2y_2y_2^{II} + 2y_2^{12})$ $= (x_2y_2^{II} + 2y_2^1 + 2y_2y_2^{II} + 2y_2^{12})$

 $= (0.2) (6.4674) + 2 (1.8852) + 2 (1.2767) (6.4774) + 2 (1.8852)^{2}$

$$= 1.2974 + 3.7704 + 16.5138 + 7.1079$$

= 28.6855

Substituting (10), (11) and (12) in (9), we get

Y (0.3) = 1.2767 + (0.1) (1.8852) + $\frac{0.1^2}{2}$ (6.4674) + $\frac{(0.1)^3}{6}$ (28.6855)

$$= 1.2767 + 0.18852 + 0.0323 + 0.004780$$

= 1.5023

∴ y (0.3) = 1.5023

We have the following values

- $X_0 = 0$ $y_0 = 1$
- $X_1 = 0.1$ $y_1 = 1.11666$
- $X_2 = 0.2$ $y_2 = 1.27668$

 $X_3 = 0.3$ $y_3 = 1.50233$

To find y (0.4) by Milne's predictor formula

KARPAGAM ACA		
CLASS: III B.Sc IT COURSE CODE: 16ITU603A	COURSE UNIT-V	NAME: NUMERICAL METHODS BATCH-2016-2019
$Y_{n+1, P} = y_{n+3} + \frac{4h}{3} [2y_{n-2}^{1} - y_{n-2}^{1} + 2y_{n}^{1}]$		
$Y_3^1 = (xy + y_2)_3$		
$=(x_3y_3+y_3^2)$		
$= [(0.3) (1.5023) + (1.5023)^2]$		
= 0.45069 + 2.2569		
= 2. 7076		
Putting n =3, we get		
$Y_{4, P} = y_0 + \frac{4h}{3} [2y_1^1 - y_2^1 + 2y_3^1]$		
$= 1 + \frac{4(0.1)}{3} \left[2 \left(1.3585 \right) - 1.8852 + 2 \left(2 \right) \right]$	2.7076)]	
= 1 + 0.1333 [2.717 - 1.0852 + 5.4152]		
y _{4, P} = 1.8329		
To find y (.04) by Milne's corrector for	mula	
By Milne's corrector formula we have		
$y_{n+1, C} = y_{n-1} + \frac{h}{3} [y_{n-1}^{1} + 4y_{n}^{1} + y_{n+1}^{1}] \dots$	(14)	
Now $y_4^1 = (x^2 + y^2)_4 = (x_4y_4 + y_4^2)$		
$= [(0.4) (1.8327) + (1.8327)^2]$		

= 0.7330 + 3.3588

$$= 4.0918$$

Putting n = 3 in (14) we get

$$\mathbf{Y}_{4, C} = \mathbf{y}_{2} + \frac{h}{2} \left[\mathbf{y}_{2}^{1} + 4\mathbf{y}_{3}^{1} + \mathbf{y}_{4}^{1} \right]$$

 $Y_{4, C} = 1.27668 + \frac{(0.1)}{3} [1.8852 + 4(2.7076) + 4.0918]$

$$= 1.27668 + 0.0333 [1.8852 + 10.8304 + 4.0918]$$

= 1.8369

28. Solve and get y (2) given $\frac{dy}{dx} = \frac{1}{2} (x + y), y (0) = 2$

method?

Solution:

By Milne's method, we have $y_0^1 = \frac{1}{2}(0+2) = 1$

 $Y_1^1 = 1.5680, y_2^1 = 2.2975, y_3^1 = 3.2340$

By Adam's predictor formula

$$Y_{n+1, P} = y_n + \frac{h}{24} [55y_n^1 - 59y_{n-1}^1 + 37y_{n-2}^1 - 9y_{n-3}^1]$$

$$\therefore y_{4, P} = y_3 + \frac{h}{24} \left[55y_{n}^1 - 59y_{2}^1 + 37y_{1}^1 - 9y_{0}^1 \right] \dots \dots (1)$$

$$=4.968 + \frac{0.5}{24} [55 (3.2340) - 59 (2.2975) + 37 (1.5680) - 9 (1)]$$

= 68708

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III B.Sc IT **COURSENAME: NUMERICAL METHODS**

COURSE CODE: 16ITU603A

UNIT-V **BATCH-2016-2019**

$$y_4{}^1 = \frac{1}{2} (x_4 + y_4) = \frac{1}{2} (2 + 6.8708) = 4.4354$$

By corrector,
$$y_{4, C} = y_3 + \frac{h}{24} [9y_n^1 + 19y_3^1 - 5y_2^1 + y_1^1]$$
. (2)

$$= 4.968 + \frac{0.5}{24} [9 (4.4354) + 19 (3.234) - (2.2975) + 1.5680]$$

= 6.8731

29. Find y (0.1), y (0.2), y (0.3) from $\frac{dy}{dx} = xy + y^2$, y (0) = 1 by using Runge – kutta method and hence obtain y (0.4) using Adam's method?

Solution:

$$f (x, y) = xy + y^{2}, x_{0} = 0, x_{1} = 0.1, x_{2} = 0.2,$$

$$xy = 0.4, x_{4} = 0.4, y_{0} = 1$$

$$k_{1} = hf (x_{0}, y_{0}) = (0.1) f (0, 1) = (0.1) 1 = 0.1$$

$$k_{2} = hf (0.05, y_{0} + \frac{k_{1}}{2}) = (0.1) f (0.05, 1.05)$$

$$= (0.1) [(0.05) (1.05) + (1.05)^{2}] = 0.1155$$

$$k_{3} = hf (0.05, y_{0} + \frac{k_{2}}{2}) = (0.1) f (0.05, 1.0578)$$

$$= (0.1) [(0.5) (1.0578) + (1.0578)^{2}]$$

$$= 0.1172$$

$$k_{4} = hf (x_{0} + h, y_{0} + k_{3})$$

$$= (0.1) f (0.1, 1.1172)$$

KARPAGAM AC	CADEMY OF HIGH	ER EDUCATION AME: NUMERICAL METHODS
COURSE CODE: 16ITU603A	UNIT-V	BATCH-2016-2019
$= (0.1) [(0.10 (1.1172) + (1.1172)^2] =$	= 0.13598	
$y_1 = y_0 + \frac{1}{6}[k_1 + 2k_2 + 2k_3 + k_4]$		
= 1.1169		
f(0.1) = 1.1169		
Again, start from y ₁		
$x_1 = hf(x_1, y_1) = (0.1) f(0.1, 1.1169)$		
0.1359		
$h_2 = hf(x_1 + \frac{h}{2}, y_1 + \frac{k_1}{2}) = (0.1) f(0.1)$	5, 1.1849)	
0.1582		
$k_3 = hf(0.15, y_1 + \frac{k_3}{2}) = (0.1) f(0.15, y_1 + \frac{k_3}{2})$, 1.196)	
0.16098		
t ₄ = (0.1) f (0.2, 1.2779) = 0.1889		
$x_2 = 1.1169 + \frac{1}{6}[0.1359 + 2(0.1582 - 10.1582)]$	+ 0.16098) + 0.1889]	
f(0.2) = 1.2774		
tart from (x_2, y_2) to get y_3		
$X_1 = hf(x_2, y_2) = (0.1) f(0.2, 1.2774)$) = 0.1887	
$K_2 = hf(x_2 + \frac{h}{2}, y_2 + \frac{k_1}{2}) = (0.1) f(0.1)$.25, 1.3718) = 0.2225	

$$\begin{split} & K_{3} = hf \left(x_{2} + \frac{h}{2}, y_{2} + \frac{k_{2}}{2} \right) \\ &= (0.1) f \left(0.25, 1.3887 \right) = 0.2274 \\ & k_{4} = hf \left(x_{3}, y_{2} + \frac{k_{3}}{2} \right) = (0.1) f \left(0.3, 1.5048 \right) \\ &= 0.2716 \\ & y_{3} = 1.2774 + \frac{1}{6} [0.1887 + 2 (0.2225) + 2 (0.2274) + 0.2716] = 1.5041 \\ & \text{Now we use Adam's predictor formula} \\ & Y_{4,P} = y_{3} + \frac{h}{24} [55y_{3}^{1} - 59y_{2}^{1} + 37y_{1}^{1} - 9y_{0}^{1}] \dots (2) \\ & Y_{0}^{1} = x_{0}y_{0} + y_{0}^{2} = 1 \\ & Y_{1}^{1} = x_{1}y_{1} + y_{1}^{2} = 1.3592 \\ & Y_{2}^{1} = x_{2}y_{2} + y_{2}^{2} = 1.8872 \\ & Y_{3}^{1} = x_{3}y_{3} + y_{3}^{2} = 2.7135 \\ & \text{Using (2)} \end{split}$$

$$Y_{4,P} = 1.5041 + \frac{0.1}{2} [55 (2.7135) - 59 (1.8872) + 37 (1.3592) - 9 (1)]$$

= 1.8341

$$y^{1}_{4, P} = x_{4}y_{4} + y^{2}_{4} = (0.4)(1.8341) + (1.8341)^{2} = 4.0976$$

$$y_{4, P} = y_3 + \frac{h}{24} [9y_4^1 + 19y_3^1 - 5y_2^1 + y_1^1]$$

$$= 1.5041 + \frac{0.1}{24} [9 (4.0976) + 19 (2.7135) - 5 (1.8872) + 1.3592)$$

= 1.8389

y (0.4) = 1.8389

30. Solve $y^1 = \frac{y^2 - x^2}{y^2 + x^2}$; y (0) = 1 by Runge – kutta method of fourth order to find y (0.2)

Solution:

Y¹ =f (x, y) =
$$\frac{y^2 - x^2}{y^2 + x^2}$$
, x₀ = 0, h = 0.2, x₁ = 0.2

$$f(x_0, y_0) = f(0, 1) = \frac{1-0}{1+0} = 1$$

$$k_1 = hf(x_0, y_0) = 0.2 \times 1 = 0.2$$

$$k_2 = hf(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}) = (0.2) f(0.1, 1.1)$$

$$= 0.2 \left[\frac{1.21 - 0.01}{1.21 + 0.01} \right] = 0.9167213$$

$$k_3 = hf(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}) = (0.2) f(0.1, 1.0983606)$$

= 0.1967

$$k_4 = hf(x_0 + 4, y_0 + k_3) = 0.2 f(0.2, 1.1967)$$

= 0.1891

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III B.Sc ITCOURSENAME: NUMERICAL METHODS

COURSE CODE:	16ITU603A

UNIT-V BATCH-2016-2019

$$\therefore \Delta y = \frac{1}{6} [k_1 + 2k_2 + 2k_3 + k_4]$$

$$= \frac{1}{6} [0.2 + 2 (0.19672) + 2 (1.1967) + 0.1891]$$

= 0.19598

 $y(0.2) = y_1 = y_0 + \Delta y = 1.19598$

Questions

The numerical backward differentiation of y w.r.t. x once is
The second derivative of the Newton's forward differentiation is
The second derivative of the Newton's backward differentiation is
The order of error in Trapezoidal rule is
The order of error in Simpson's rule is
Numerical evaluation of a definite integral is called
Simpson's ³ / ₈ rule can be applied only if the number of sub interval is
in By putting n = 2 in Newton cote's formula we get rule.
The Newton Cote's formula is also known as formula. By putting n = 3 in Newton cote's formula we get rule.
By putting $n = 1$ in Newton cote's formula we get rule.
The systematic improvement of Richardon's method is called
method
Simpson's 1/3 rule can be applied only when the number of interval is
Simpson's rule is exact for a even though it was
derived for a
Quadratic.
The accuracy of the result using the Trapezoidal rule can be improved by
A particular case of Runge Kutta method of second order is
Runge Kutta of first order is nothing but the
In Runge Kutta second and fourth order methods, the values of k1 and
k2 are
The formula of Dy in fourth order Runge Kutta method is given by
In second order Runge Kutta method the value of k2 is calculated by
values are calculated in Runge Kutta fourth order method.

The use of Runge kutta method gives ----- to the solutions of the differential equation than Taylor's series method.

In Runge – kutta method the value x is taken as -----.

In Runge – kutta method the value y is taken as -----.

In fourth order Runge Kutta method the value of k3 is calculated by ----

In fourth order Runge Kutta method the value of k4 is calculated by ----

______is nothing but the modified Euler method. In all the three methods of Rungekutta methods, the values -----are same.

The formula of Δy in third order Runge Kutta method is given by ------

The formula of Δy in second order Runge Kutta method is given by ----

In second order Runge Kutta method the value of k1 is calculated by --------.

The Runge – Kutta methods are designed to give ------ and they posses the advantage of requiring only the function values at some selected points on the sub intervals

If dy/dx is a function x alone, then fourth order Runge – Kutta method reduces to -----.

In Runge Kutta methods, the derivatives of ------ are not require and we require only the given function values at different points. The use of ------ method gives quick convergence to the solutions of the differential equation than Taylor's series method. If dy/dx is a function x alone, then ------ Runge – Kutta method reduces to Simpson method

If dy/dx is a function of ----- then fourth order Runge – Kutta method reduces to Simpson method.

Opt 1

Opt 2

f'(x) = (1/h)* (Dy₀ + (2r-1)/2* $D^2y_0 + (3r^2 - 6r + 2)/6$ * $D^3y_0 + y = y_n + n \tilde{N}y_n + \{n(n+1)/2!\} \tilde{N}^2y_n + \{n(n+1)(n+2)/2!\} \tilde{N}^2y_n + (n(n+1)(n+2)/2) \tilde{N}^2y$ /3! $\tilde{N}^{3}v_{n}$ +)) y" = $(1/h^2)$ * { $D^2y_0 - D^3y_0 +$ $y'' = (1/h^2) \{ D^2 y_0 + D^3 y_0 + (11/12) D^4 y_0 \dots \}$ $(11/12) D^4 y_0 \dots \}$ $y'' = (1/h^2) * \{D^2 y_0 + D^3 y_0 +$ $(11/12) D^4 y_0 \dots$ $y'' = (1/h^2) \{ D^2 y_0 - D^3 y_0 + (11/12) D^4 y_0 \dots \}$ h^3 h h^3 h Integration Differentiation Equal even Simpson's 1/3 Simpson's 3/8 Equal even cubic less than cubic Increasing the interval h Decreasing the interval h Milne's method Picard's method modified Euler method Euler method disfe≡ s‱næ $1/6 * (k_1 + 2k_2 + 3k_3 + 4k_4)$ $1/6 * (k_1 + k_2 + k_3 + k_4)$ h f(x + h/2 , y + $k_1/2$) h f(x - h/2 , y - k_1/2) k_1, k_2, k_3, k_4 and Dy k_1, k_2 and Dy Slow convergence quick convergence

$\mathbf{x} = \mathbf{x}_0 + \mathbf{h}$	$\mathbf{x}_0 = \mathbf{x} + \mathbf{h}$
$y = y_0 + h$	$\mathbf{y}_0 = \mathbf{x}_0 + \mathbf{h}$
h f(x - h/2 , y - $k_2/2$)	h f(x + h/2 , y + $k_2/2$)
h f(x + h/2 , y + $k_1/2$) Runge kutta method of second orde	h f(x + h/2 , y + $k_2/2$) er Runge kutta method of third order
k ₄ & k ₃	k ₃ & k ₂
$1/6 * (k_1 + 2k_2 + 3k_3 + 4k_4)$	$1/6 * (k_1 + 4k_2 + k_3)$
\mathbf{k}_1	k ₂
$h \ f(x + h/2 \ , y + k_1/2)$	$h \ f(x + h/2 \ , y + k_2/2)$
greater accuracy	lesser accuracy
Trapezoidal rule	Taylor series
higher order	lower order
Taylor series	Euler
fourth order	third order
x alone	y alone

Opt 3	Opt 4 f'(x) = $(1/h)^* (\tilde{N}y_n +$	Opt 5
$f'(x) = (1/h)^* (Dy_n +$	$(2r+1)/2 * \tilde{N}^2 y_n +$	
$(2r+1)/2 * D^2y_n + (3r^2+6r+2)/6 *$	$(3r^2+6r+2)/6 * \tilde{N}^3v_{\mu} +$	
$D^{3}y_{n} + \dots$)	
$y'' = (1/h) * \{D^2 y_0 + D^3 y_0 +$	$y'' = (1/h) * \{D^2 y_0 - D^3 y_0 +$	
(11/12) $D^4 y_0 \dots$	(11/12) $D^4 y_0 \dots$	
$y'' = (1/h) * {D^2 y_0 + D^3 y_0 + }$	$y'' = (1/h) * \{D^2 y_0 - D^3 y_0 +$	
$(11/12) D^4 y_0 \dots $	$(11/12) D^4 y_0 \dots \}$	
h ²	h^4	
h^2	h^4	
Interpolation	Triangularization	
multiple of three	unequal	
Trapezoidal	Romberg	
Trapezoidal	quadrature	
Trapezoidal	Romberg	
Trapezoidal	newton's	
Trupozotaal		
Trapezoidal	Romberg	
multiple of three	unequal	
linear	quadratic	
Increasing the	altering the	
number of iterations	given function	
	-	
Modified Euler method	Runge's method	
Taylor series	none of these	
al States positivo	al grown nagative	
al ⊗ ⁄a ys positive	a regative	
$(k_1 + 2k_2 + 2k_3 + k_4)$	$1/6 * (k_1 + 2k_2 + 2k_3 + k_4)$)
h f(x , y)	h f(0,0)	
	6.1	
k_1, k_2, k_3 and Dy	none of these	
	diversones	
oscillation	divergence	

$\mathbf{h} = \mathbf{x}_0 + \mathbf{x}$	$\mathbf{h} = \mathbf{x}_0 - \mathbf{x}$
$y = y_0 - Dy$	$y = y_0 + Dy$
h f(x , y)	h f(x - h/2 , y - k ₁ /2)
h f(x + h , y + k_3) h f(x - h , y - k_3) Runge kutta method of fourth ord Taylor series method	
k ₂ & k ₁	$k_1, k_2, k_3 \& k_4$
$1/6 * (4k_1 + 4k_2 + 4k_3)$	$1/6 * (k_1 + 2k_2 + 2k_3 + k_4)$
k ₃	k_4
h f(x , y)	h f(x - h/2 , y - k_1/2)
average accuracy	equal
Euler method	Simpson method
middle order	zero
Runge – Kutta	Simpson method
second order	first order
both x and y	none

```
f'(x) = (1/h)^* (\tilde{N}y_n + (2r+1)/2 * \tilde{N}^2y_n +
(3r^2+6r+2)/6 * \tilde{N}^3y_n + \dots)
y'' = (1/h^2) * \{D^2 y_0 - D^3 y_0 + (11/12) D^4 y_0
.....}
y" = (1/h^2)* {D<sup>2</sup>y<sub>0</sub> + D<sup>3</sup>y<sub>0</sub> + (11/12) D<sup>4</sup>y<sub>0</sub>
.....}
h^2
h^4
Integration
multiple of three
Simpson's 1/3
quadrature
Simpson's 3/8
Trapezoidal
Romberg
even
linear
Increasing the
number of iterations
Modified Euler method
Euler method
samæ
1/6 * (k_1 + 2k_2 + 2k_3 + k_4)
h f(x + h/2 , y + k_1/2)
```

 $k_1,\,k_2,\,k_3,\,k_4$ and Dy

quick convergence

 $x = x_{0} + h$ $y = y_{0} + Dy$ $h f(x + h/2 , y + k_{2}/2)$ $h f(x + h , y + k_{3})$ Runge kutta method of second order $k_{2} \& k_{1}$ $1/6 * (k_{1} + 4k_{2} + k_{3})$ k_{2} h f(x , y)greater accuracy Simpson method higher order

Runge – Kutta

fourth order

x alone

Reg no------(16ITU603A) KARPAGAM ACADEMY OF HIGHER EDUCATION Coimbatore-21 DEPARTMENT OF MATHEMATICS Sixth Semester I Internal Test - Dec'2018 Numerical Methods hte: 18 -12-2018 (FN) Time: 2 Hours

Date: 18 -12-2018 (FN)Time: 2 HoursClass: III-B.Sc ITMaximum Marks:50

PART-A (20×1=20 Marks)

Answer all the Questions:

1. The equation $3x - \cos x - 1 = 0$ is known as ----- equation.

a) polynomial	b) transcedental
c) algebraic	d) exponential

2. If f(a) and f(b) are of opposite signs, a root of f(x) = 0 lies between ------.

a) 0 & b b) a & b c) a & 0 d) 0 & 1

3. The convergence of bisection method is ------.

a) linear b) quadratic c) slow d) fast

- 4. In Iteration method if the convergence is ------ then the convergence is of order one.
 - a) cubic b) quadratic c) linear d) zero
- 5. ----- Method is also called as Bolzano method or interval having method.
 - a) Bisection b) False position
 - c) Newton Rapson d) Euler
- 6. The convergence of iteration method is -----.a) zerob) polynomialc) quadraticd) linear
- 7. The order of convergence of Regula falsi method may be assumed to ---
 - a) 1.513 b) 1.618 c) 1.234 d)1.638
- 8. The Newton Rapson method fails if -----a) f'(x) = 0 b) f(x) = 0 c) f(x) = 1 d) f(x) $\neq 0$ 9. The order of convergence of Newton Pankson method is
- 9. The order of convergence of Newton Raphson method is ------. a) 4 b) 2 c) 1 d) 0

10		ositive root of first approximation
	of $x^3 - 4x + 1 = 0$ lies between	
	a) 0 & 1 b) 1 & 2	
11	. Graeffe's root squaring method	
	a) Complex roots	b) single rootd) polynomial roots
12	. Gauss elimination method is a -	
	a) Indirect methodc) iterative method	b) direct method
13	. The sufficient condition for con	vergence of iterations is
	a) $ \phi'(x) = 1$	b) $ \phi'(x) > 1$
	a) $ \phi'(x) = 1$ c) $ \phi'(x) < 1$	d) $ \phi'(x) < 0$
14	method is also	called method of tangents.
	a) Gauss Seidal c) Bisection	b) Secant
	•) 215••••••	
15	. In method, first find t	
	a) Iteration	b) Regula Falsi
	c) Bisection	d) Horner's
16		ent matrix, all the elements above
	the diagonal are	
	a) Zero b) non – zero	
17	. The modification of Gauss – El	imination method is called
	a) Gauss Jordan	b) Gauss Seidal
	c) Gauss Jacobbi	d) Crout's
18	. The bisection method is simple	
	a) slowly convergent	-
	c) slowly divergent	d) fast divergent
19	. In Newton Raphson method, the	e error at any stage is proportional
	to the of the error in the p	
	-	c) square root d) equal
20	_	also known as method.
20	-	
	a) Iteration	b) Regula Falsi
	c) Bisection	d) Newton Rapson

PART-B(3×2=6 Marks)

- 21. Convert the decimal number 47 into its binary equivalent.
- 22. Explain about Floating point Representation.
- 23. Write the aim of Bisection method.

PART-C (3×8=24 Marks)

24. a) Find the positive root of $x^3 - x = 1$ correct to four decimal places by bisection method.

(**OR**)

b) Explain about types of Error.

25. a) Solve for a positive root of $x^3 - 4x + 1 = 0$ by Regula Falsi method.

(**OR**)

b) Find the positive root of $f(x) = 2x^3 - 3x - 6 = 0$ by Newton Raphson method correct to five decimal places.

26. a) Solve the system by Gauss Elimination method

2x+3y-z=5; 4x+4y-3z=3; 2x-3y+2z=2.

(**OR**)

b) Solve the system by Gauss Jordan method x+2y+z=3; 2x+3y+3z=10; 3x-y+2z=13.

KARPAGAN ACADEMY OF HIGHER EDUCATION Department of Nathamatica I Internal Answerkey Subject : Numerical Methode class: II B.& IT Subject cade : 162TU603A the provide a patrick of PART-A 19. Square root 20. Regula Faksi 1. transcendental 2. Q46 3. slow A. linear 5. Bisection 6. quadratic 7.1.618 palariaj . 2. 32.0 8. f'(a)=0 9. 2 10. 041 11. Complex roots 12. direct method 13. 10'(3) <1 124 Specarat Newton Raphson 13 18 h a. 15. Horner's 16. Lero mittlein 201 1 17 Gauss Jacobbi 18. slocoly convergent

PART- C

a) Gliven:

$$a^{3} - \alpha = 1$$
, $f(x) = \chi^{3} - \chi - 1 = 0$

Scanned by CamScanner

will

Nº.

$$g_{5}$$

$$a) Soln:$$

$$f(x) = x^{3} - 4x + 1$$

$$f'(x) = 3x^{2} - 4$$

$$24 \quad x_{0} + f(x)$$

$$f(x) = 3x^{2} - 4$$

$$24 \quad x_{0} + f(x)$$

$$f(x) = y_{0} + f(x)$$

$$f(x) = y_{0} + y_{0} + y_{0}$$

$$f(x) = y_{0} + y_{0$$

a) Glauss Elimination method $(A,B) = \begin{bmatrix} 2 & 3 & -1 & | 5 \\ 4 & 4 & -3 & | 3 \\ 2 & -3 & 2 & | 2 \end{bmatrix}$

-> & marks

$$\chi = 3$$

 $\chi = 2$
 $\chi = 1$ $\implies 2$ mark

b) Grauss Jordan Method: (A,B) = $\begin{bmatrix} 1 & 2 & 1 & | & 2 \\ 2 & 3 & 3 & | & 10 \\ 2 & -1 & 2 & | & 12 \end{bmatrix}$ Reducing as diagonal Matrix Reducing As diagonal Matrix A Pinding X,Y,X ______, I mark.

	Reg no	
	(16ITU603A)	
KARPAGAM ACADEMY OF HI	GHER EDUCATION	
Coimbatore-2	21	
DEPARTMENT OF INFORMATION TECHNOLOGY		
Second Semest	ter	
II Internal Test - Fe	eb'2019	
Numerical Meth	nods	
Date: 05-02-2019 (FN)	Time: 2 Hours	
Class: III-B.Sc IT	Maximum Marks:50	

PART-A(20×1=20 Marks) ANSWER ALL THE QUESTIONS

- 1. Gauss Seidal method always ----- for a special type of systems.
 - a) converges b) diverges
 - c) oscillates d) zero
- 2. Condition for convergence of Gauss Seidal method is ----a) coefficient matrix is not diagonally dominantb) pivot element is Zero
 - c) coefficient matrix is diagonally dominant
 - d) diagonal zero
- 3. The process of computing the value of the function inside the given range is called ______
 - a) Interpolation b) extrapolation
 - c) reduction d) expansion
- 4. If the point lies inside the domain [x₀, x_n], then the estimation of f(y) is called _____

a) Interpolation	b) extrapolation
------------------	------------------

c) reduction d) expansion

Modified form of Gauss Jacobi method is ------method.

a) Gauss Jordanb) Gauss Seidalc) Gauss Jacobid) Gauss elimanation

_			
5.	5 5		
	-	unknowns are found by	
	method.		
	a) random	b) back substitution	
6	c) Forward substitution	,	
0.	Δ is called diff	-	
	a) forward b) backward		
7.	In the forward difference tab	ble y_0 is called	
	element.		
	a) leading b) ending	c) middle d) positive	
8.	Gauss Seidal method always	s converges for of	
	systems		
	a) Only the special type	b) all types	
	c) quadratic types	d) first type	
9.	∇ is called diff	ference operator	
	a) forward b) backward	-	
10	. The elimination of the unkno	, , ,	
	equations below, but also in t	the equations above the	
	leading diagonal is called	-	
	a) Gauss elimination	b) Gauss Jordan c)	
	,	d) Gauss siedal	
11	. The difference of first forwa	,	
11.	. The difference of first forwa	ind difference is called	
	a) divided difference	b) 2nd forward difference	
	,	,	
	c) 3 rd forward difference	,	
12.	. In the forward difference tab	ble $\Delta y_0, \Delta^2 y_0, \dots$ are called	
	difference.		
	a) leading b) ending	c) middle d) positive	
13.	. Gregory – Newton forward	interpolation formula is also	
	called as Gregory - Newton	forwardformula.	
	a) Elimination b) iteration	c) difference d) distance	

14. In Gregory – Newton forward interpolation formula 1 st
three terms of this series give the result for the

	interp	olation.			
	a) ordinary linear	r	b) ordinary differential		
	c) parabolic		d) central		
15.	Gauss – Jacobi m	ethod is	Method	1.	
	a)direct		b)indirect		
	c)elimination		d) interpolatio	n	
16.	In Gregory – New	vton forward	l interpolation	formula 1 st	
	two terms of this	series give t	he result for th	e	
	interpolation.				
	a) Ordinary linear	ſ	b) ordinary di	fferential	
	c) parabolic		d) central		
17.	Gregory – Newto	n forward in	terpolation for	mula is	
	mainly used for in	nterpolating	the values of y	near the	
	(of the set of	tabular values.		
	a) beginning		b) end		
	c) centre		d) side		
18.	The value of E is				
	a) delta -1		b) 1-delta		
10	c) delta+1	1 - 1 -	d)delta+2		
19.	The difference va			n backward	
	difference table is a) $\nabla^2 y_0$		c) ∇ y ₀ .	d) ∇y_1	
20	The $(n+1)$ th and	· •	•	•	
20.	the nth degree are	-		Juomia or	
	the min degree und				

PART-B (3×2=6 Marks) ANSWER ALL THE QUESTIONS

- 21. Write the formula for Newton forward and backward difference.
- 22. Define iterative method.

23. Write the difference between Gauss Jacobi and seidel method.

PART-C (3×8=24 Marks) ANSWER ALL THE QUESTIONS

					YUL D	10110		
24. a) Solve the following system of equations by Gauss-								
Ja	acobi	method						
				5y -2z =				
				y +3z =				
			x + 6y	y +10z				
				(0	R)			
1		lve the idal me	followiı thod.	ng syste	m of eq	uations	by Ga	iuss-
		28x +	4y – z =	= 32				
		x + 3y	r + 10z =	= 24				
		2x +17	7y +4z =	= 35				
		d the va	lues of a.	y at x =	21 and	x = 28	from t	he
	x:	20		23		26		29
	y:	0.3420)	0.3907	7	0.4384	1	0.4848
	(OR)							
b) From the following data find the value of θ at x = 43 and x= 84								
	x:	40	50	60	70	80	90	
	y:	184	204	226	250	276	304	
26. a) Solve the following system by Gauss Jacobi method.								
8x + y + z = 8								
$2\mathbf{x} + 4\mathbf{y} + \mathbf{z} = 4$								
x + 3y + 3z = 5								

(**OR**)

b) From the following table, find the value of tan $45^{\circ}15'$

x°	: 45		46	47
tan x°	: 1.0000		1.0355	1.0723
48	49	50		
1.1106	1.1503	1.1917		

ЛN KARPAGIAM ACADEMY OF HIGHER EDUCATION Internal Answerkey I S.C. Subject : Numerical Methods class: II B.S. IT Subject code: 16JTU 603A PART-A 1. converges 2. Coefficient matrix à diagonally dominant 3. Boterpolation 18. delta +1 A. Interpolation 19. VZY, 5. Gauss Seidal. 20. three. forward 6. 7. leading 8. Only the special type 9. backward Grauss Jordan Sugar Haraco 10. 2nd forward difference 11. 12. leading 13. difference 4. Parabolic 15. indirect 16 . Ordinary linear 17 . beginning

PART-B PART-B 21 Forward difference. $\frac{dy}{da} = \frac{1}{n} \left[\Delta y_0 + \frac{\partial p - 1}{\partial 1} \Delta^2 y_0 + \cdots \right]$ al with a draption) mark $P = \frac{\chi - \chi_0}{l}$ Backward difference : $y_P = y_n + P \nabla y_n + \frac{P(P+1)}{2!} \nabla^2 y_n + \cdots$ noitriogoing $P = \chi - \chi_n$ -> 1 mark mark RTA PAL Graces Paristal bicordan Iterative method: 22 > Imaik Defo example -> 1 magb. Difference blud Claurs Jacobi 4 Sei des 23 nettrod. marshi toward the i) slowdown Prouss. fast Process ii) Indirect method Indiract method , a marby all and the state

RA) a) finding $\chi = \frac{1}{10} \left[5y + 2x + 2 \right]$ $y = \frac{1}{15} \left[-42 - 32 - 3 \right]$ $X = \frac{1}{10} \left[-x - 6y - 3 \right]$ finding Solution by iterations 5 marke Ans Hidden in taking 2 = 0.341 7 = 0.285 2 = _ 0.505 1 mark de prin H CASI -6) finding $a = \frac{1}{28} \left[-\frac{1}{24} + \frac{1}{24} + \frac{1}{28} \right]$ $\alpha = \frac{1}{28} \left[- \frac{1}{28} \left[-\frac{1}{28} + \frac{1}{32} \right] \right]$ $\gamma = \frac{1}{17} [35 - 2x - 4x]$ $X = \frac{1}{10} \left[24 - 2 - 34 \right]$ Finding dolution by iterations mars Ans. 2 = 0.9936y = 1.5069prive11 mer/c 1.8981

Scanned by CamScanner

25 a) tor difference table -> 2 marks Toeward difference formula inding! Y(21) = 0.3583 -> (mark finding ! backward différence formula ______ Mark Finding Y (28) = 0.4695 ____ (mark. b). difference table _> 2 marks Formula (Forward) -> Imare Y(43) = 189.79 -> 1mark Formula ____ marie. Y (84) = 286.96 -> 1 mark 26 finding 9) $\chi = \frac{1}{2} \left[8 - y - \chi \right]$ Y = 1 [22 - x+4] $\chi = \frac{1}{3} \left[-\chi - 3\chi + 5 \right]$ finding root of x, y, x _ 5 marks Ans -> I mark.

	Reg no		
	(16ITU603A)		
KARPAGAM ACADEMY O	F HIGHER EDUCATION		
Coimbate	ore-21		
DEPARTMENT OF INFORM	DEPARTMENT OF INFORMATION TECHNOLOGY		
Sixth Ser	nester		
III Internal Tes	t - Mar'2019		
Numerical	Methods		
Date: 12 -03-2019 (FN)	Time: 2 Hours		
Class: III-B.Sc IT	Maximum Marks:50		

PART-A(20×1=20 Marks) ANSWER ALL THE QUESTIONS

1.	The Euler Method Predicator is		
	a) $Y_{n+1} = y_n + y_n'$	b) $\mathbf{Y}_{n+1} = \mathbf{y}_n + \mathbf{h} \mathbf{y}_n$ '	
	c) $_{X n+1} = X_n + h X_n'$	d) $Y_{n+1} = y_n - h y_n'$	
2.	The differences of constant functions are		
	a)Not equal to zero	b) zero	
	c) one	d) two	
3.	The Euler Method of second categor	ry are called	
	a)one step method	b) two step method	
	c) step by step method	d) Multi step method	
4.	In R - k method derivatives of highe	r order are	
	a)required	b) not required	
	a)required c) may be required	b) not required d) must required	
5.		, -	
5.	c) may be required	, -	
5.	c) may be requiredIf y(x) is linear then use	d) must required	
5. 6.	 c) may be required If y(x) is linear then use a) simphson's 3/8 	 d) must required b) simphson's 1/3 d) taylor series 	
	 c) may be required If y(x) is linear then use a) simphson's 3/8 c) trapezoidal 	 d) must required b) simphson's 1/3 d) taylor series 	
	 c) may be required If y(x) is linear then use a) simphson's 3/8 c) trapezoidal The numerical integral of a single in a) boundary quadrature b) mechanical quadrature 	 d) must required b) simphson's 1/3 d) taylor series 	
	 c) may be required If y(x) is linear then use a) simphson's 3/8 c) trapezoidal The numerical integral of a single in a) boundary quadrature 	 d) must required b) simphson's 1/3 d) taylor series 	

7.	The number of interval is multiple of three the use		
	a) simpson's 1/3	b) trapezoidal	
	c) simpson's 3/8	d) taylor series	
8.	The x values of Interpolating	g polynomial of newton -Gregory	
	has		
	a) even space	b) equal space	
	c) odd space	d) unequal	
9.	In simpson's 3/8 rule, we cal	culate the polynomial of degree	
	a) degree n	b) linear	
	c) second degree	d) third degree	
10	Differentiation of sin x is		
	a) cosx	b) tanx	
	c) sinx	d) logx	
11	. In divided difference the value	ue of any difference is of the	
	order of their argument		
	a) independent	b) dependent	
	c) inverse	d) none of these	
12	2. 18. If g is continuous on interval (a,b) and g (x) E (a,b) for all x E (a,b) then		
	a) g has fixed point in [a, b]	
	b) g has not fixed point in [a, b]	
	c) g has fixed point in (a, b)	
	d) none of these		
13	In Newton cote formula if f(x) is interpolate at equally spaced	
	nodes by a polynomial of deg	gree three then it represents	
	a) Trapezoidal rule	b) Simpson's rule	
	c) 3/8 Simpson's rule	d) Booles rule	
14	. In Euler's Method averaged	the	
	a) points	b) slopes	
	c) slopes and points	d) chords	

15	. In Eu	ler's	Method	solution	of the	differential	equation	denoted
	by							

a) continuous line graph	b) graph					
c) line graph	d) diagram					
16. In Modified Euler's Method averaged the						
a) points	b) slopes					
c) slopes and points	d) chords					
17. The Euler Method and Modified Euler's Method are						
a) convergent	b) slow convergent					
c) fast Convergent	d) divergent					
18. The order of error in Trapezoidal rule is						
a) h b) h^3	c) h^2 d) h^4					
19. The accuracy of the result using the Trapezoidal rule can be						
improved by						
a) increasing the interval h						
b) decreasing the interval h						
c) increasing the number of iterations						
d) altering the given function						
20. The augment matrix is the combination of						
a) coefficient matrix and constant matrix						
b) unknown matrix and constant matrix						
c) coefficient matrix and Unknown matrix						
d) coefficient unknown and constant matrix						
PART-B(3×2=6 Marks)						

ANSWER ALL THE QUESTIONS

- 21. Write the difference between Euler and modified Euler Method.
- 22. Write the Simpson's 3/8th rule formula.
- 23. Define R-K method with formula.

PART-C(3×8=24 Marks) ANSWER ALL THE QUESTIONS

- 24. a) Evaluate $\int_{-3}^{3} x^4 dx$ by using (i) Trapezoidal rule (ii) Simpson's
 - rule. Verify your results by actual integration.

(**OR**)

b) Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by (i) Trapezoidal rule (ii) Simpson's rule.

Also check up the result by actual integration

25. a) Compute y at x=0.25 by modified Euler method. Given y'=2xy,y(0)=1

(OR)

- b) Apply fourth order Runge-Kutta method to find y(0.2) given that y' = x + y, y(0) = 1.
- 26. a) Obtain the values of y at x=0.1,0.2 using R-K method of
 - (i) second order
 - (ii) third order
 - (iii) fourth order
 - For the differential equation y'=-y given y(0) = 1.

(**OR**)

 b) Using Euler method, find y(0.2),y(0.1) given dy/dx=x²+y²,y(0)=1

3. Step by Step method 9. Third 4. not required 5. trapezoidal 2. Lero 6 12. ghas fixed point in [a, b] 8. equal Space . 1. Ynti - Yn thyn 17. Clow convergent 15. Continuous line graph 10. COS X 14. Slopes. 11. Endependent 100 13 . Trapezoidal rule mechanical quadrature Subject code: 16ITU603A Simpson's 1/3 Subject pounts 2p KARPAGIAM ACADEMY OF HIGHER ELSO Department of Information Technology : Numerical Methods I Intornal Answer Key. PART- A and constant Ulataix. 20. Coefficient unknown 19. decreasing the Interval h. Class: II B.Sc IT

PART - B Euler Modified Euler i) Yn+i= Yn+h+f(xn+1/2h, Yn+i= Yn+h+f(xn+1/2h, al. landed in the for + 1/2 h f (x, y) ii) fix) is not reduced it reduced to half 318th rule: and today i share to glass forder = 3h [lyo+yn) + 2 (y3+yb+...)+3(y,+y,+y) 22. > 2 marks Crock Stride . Ma 1 lovistal & 3 R K Mettrod formula. $\kappa_1 = f(x,h)$ Ko=f (2+1/2h, y+1/2ki) K3: f (2+1/2h, y=1/2 k2) ∆y = (K, + 2K2 + 2K3) Wind? Louge PART-C Trapexordal rule ZA 2) has the and f (xª da = 115 > 2 marps Simpons rule: fx4 dr = 98 -> 2 marts detual integration f xt dx = 97.2 -> 2 marks

Scanned by CamScanner

25
a) Modified Iller method
Formula

$$\rightarrow$$
 2 marks
 $y(0,25)$ for $y'=1$ is 1.0625
 \rightarrow 4 marks
b) $y'=2+y$, $y(0)=1$
Howell Order $R-k$ huthod formula
 \rightarrow 2 merking
 $\dot{y}(0,2)=1.110342 \rightarrow 2$ marks
 $\Delta = 1.2429 \rightarrow 2$ marks
 $2 = 1.2429 \rightarrow 2$ marks
 $1 = 0.905$
 $y(0,2) = 0.819$
How the Order
 $y(0,1) = 0.905$
 $y(0,2) = 0.819$
 $1 = 0.81875$

b)
$$\frac{dy}{dz} = 3^{2} + y^{2}$$
 (Eulesmethod)
 $y'(0, 2) = 1 \cdot 1105$ 3 marks
 $y'(0, 1) = 1 \cdot 2502$.
 $3 \mod 44$

•