
Semester – VI 

16ITU603B           SYSTEM PROGRAMMING     3H – 3C 

 

Instruction Hours / week: L: 4 T: 0 P: 0      Marks: Int : 40 Ext : 60 Total: 100 

 

SCOPE 

This course enables for good understanding of the role of system programming and the scope of 

duties and tasks of a system programmer. This course enables to learn the concepts and 

principles of developing system-level software (e.g., compiler, and networking software) 

OBJECTIVES 

 To introduce students the concepts and principles of system programming 

 To provide students the knowledge about both theoretical and practical aspects of system 

programming, teaching them the methods and techniques for designing and implementing 

system-level programs.   

 To train students in developing skills for writing system software with the aid of 

sophisticated OS services, programming languages and utility tools. 

 

UNIT-I 

Assemblers & Loaders, Linkers: One pass and two pass assembler design of an assembler, 

Absolute loader, relocation and linking concepts, relocating loader and Dynamic Linking., 

overview of compilation, Phases of a compiler. 

 

UNIT-II 

Lexical Analysis: 

Role of a Lexical analyzer, Specification and recognition of tokens, Symbol table, lexical 

 

UNIT-III 

Parsing: 

Bottom up parsing- LR parser, yaITU. Intermediate representations: Three address code 

generation, syntax directed translation, translation of types, control Statements. 

 

UNIT-IV 

Storage organization: Activation records stack allocation. 

 

UNIT-V 

Code Generation: Object code generation 

 

Suggested Readings  
1.    Santanu Chattopadhyaya. (2011). Systems Programming. New Delhi: PHI. 

2. Alfred, V. Aho., Monica, S. Lam., Ravi Sethi.,& Jeffrey, D. Ullman. (2006). Compilers: 

Principles, Techniques, and Tools (2nd ed.). New Delhi: Prentice Hall. 

3. Dhamdhere, D. M. (2011). Systems Programming. New Delhi: Tata McGraw Hill. 



4. Leland Beck., & Manjula, D. (2008). System Software: An Introduction to System 

Programming (3
rd

 ed.). New Delhi: Pearson Education.  

Grune, D., Van Reeuwijk, K., Bal, H. E., Jacobs, C. J. H., & Langendoen, K.(2012). Modern 

Compiler Design (2nd ed.). Springer. 



LECTURE PLAN 2018-2019 
Batch 

 

Prepared by Dr.B.Firdaus Begam, Department of CS, CA & IT, KAHE Page 1/6 
 
 

 

KARPAGAM ACADEMY OF HIGHER EDUCATION 

(Deemed to be University) 

 (Established Under Section 3 of UGC Act 1956) 

COIMBATORE – 641 021. 

                                     

LECTURE PLAN 

              DEPARTMENT OF COMPUTER SCIENCE 

STAFF NAME:  Dr. B.Firdaus Begam 

SUBJECT NAME: SYSTEM PROGRAMMING                   SUB.CODE: 16ITU603B          

SEMESTER: VI                         CLASS:  III B. Sc -IT 

 

Sl.No 

Lecture 

Duration 

(Periods) 

 

Topics to be covered 

Support 

 

 Materials 

UNIT- I 

1 1 

Assemblers & Loaders, Linkers: One pass and 

two pass assembler design of an assembler 
T2: 71-118 

2 1 
Absolute loader T2:161-162 

3 1 
relocation and linking concepts T2 : 162-169 

4 1 
relocating loader and Dynamic Linking T2:170-183 

5 1 
overview of compilation T2: 183-185 

6 1 Phases of a compiler 
T2: 185-192 

7 1 
Recapitulation and Discussion of Possible Questions  

   

 
Total No. Of Hours Planned for unit I 07 

 

Sl.No 

Lecture 

Duration 

(Periods) 

 

Topics to be covered 

Support 

 

 Materials 

UNIT- II 

1 1 Role of a Lexical analyzer T1: 109-113 



LECTURE PLAN 2018-2019 
Batch 

 

Prepared by Dr.B.Firdaus Begam, Department of CS, CA & IT, KAHE Page 2/6 
 
 

2 1 Contd... Role of a Lexical analyzer T1: 116-135 

3 1 Contd… Specification and recognition of tokens T1: 116-135 

4 1 Contd…Specification and recognition of tokens T1: 116-135 

5 1 Contd…Specification and recognition of tokens T1: 116-135 

6 1 Symbol table T1: 85-99 

7 1 Contd…Symbol table T1: 85-99 

8 1 Contd…Symbol table T1: 85-99 

9 1 Recapitulation and Discussion of Possible Questions  

 Total No. Of Hours Planned for unit II: 09 

 

Sl.No 

Lecture 

Duration 

(Periods) 

 

Topics to be covered 

Support 

 

 Materials 

UNIT- III 

1 1 Bottom up parsing- LR parser T1: 233-253 

2 1 yaCSU W1 

3 1 Intermediate representations: Three address code 

generation 
T1: 363-369 

4 1 syntax directed translation T1: 303-306 

5 1 translation of types T1: 370-378 

6 1 
control Statements. 

T1: 399-408 

7 1 Recapitulation and Discussion of Possible Questions  

8 1 Recapitulation and Discussion of Possible Questions  

  

Total No. Of Hours Planned for unit III:  08 

 

Sl.No 

Lecture 

Duration 

(Periods) 

 

Topics to be covered 

Support 

 

Materials 

UNIT- IV 



LECTURE PLAN 2018-2019 
Batch 

 

Prepared by Dr.B.Firdaus Begam, Department of CS, CA & IT, KAHE Page 3/6 
 
 

1 1 Storage organization T2: 435-459 

2 1 Contd… Storage organization T2: 435-459 

3 1 Contd… Storage organization T2: 435-459 

4 1 
Contd…Activation records stack allocation 

T2: 463-481 

5 1 Contd…Activation records stack allocation T2: 463-481 

6 1 Contd…Activation records stack allocation T2: 463-481 

7 1 Recapitulation and Discussion of Possible Questions  

8 1 Recapitulation and Discussion of Possible Questions   

  

Total No. Of Hours Planned for unit IV: 

 

 

08 

 

Sl.No 

Lecture 

Duration 

(Periods) 

 

Topics to be covered 

Support 

 Materials 

UNIT- V 

1 
1 Code Generation T1:505-

520,W2 

2 
1 Contd… Code Generation T1:505-

520,W2 

3 
1 Object code generation 

T1:520-530 

4 
1 Contd… Object code generation 

T1:520-530 

5 
1 Recapitulation and Discussion of Possible Questions 

 

6 
1 Recapitulation and Discussion of Possible Questions 

 

7 
1 Discussion of Previous ESE Question Paper 

 

8 1 Discussion of Previous ESE Question Paper 
 

  Total No. Of Hours Planned for unit V:  08 

Overall Planned Hours        :          40 

 

 



LECTURE PLAN 2018-2019 
Batch 

 

Prepared by Dr.B.Firdaus Begam, Department of CS, CA & IT, KAHE Page 4/6 
 
 

SUGGESTED READINGS  

 

  

T1 - Alfred, V. Aho., Monica, S. Lam., Ravi Sethi.,& Jeffrey, D. Ullman. (2006). Compilers: 

Principles, Techniques, and Tools (2nd ed.). New Delhi: Prentice Hall. 

T2- Dhamdhere, D. M.,(2011).  Systems Programming, Tata McGraw Hill. 

WEBSITES 
     W1 -cs.lmv.edu\~ray\notes\sysprog 

     W2 – www.tutorialspoint.com 

 

 

 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 1/23 
 

KARPAGAM ACADEMY OF HIGHER EDUCATION 

(Deemed to be University) 

(Established under section 3 of UGC Act,1956 

 

CLASS : II B.SC IT                COURSE NAME: System Programming 

COURSE CODE: 16ITU603B              BATCH: 2016-2019 

UNIT I: ASSEMBLERS, LOADERS AND LINKERS  

 

UNIT I 

SYLLABUS 

 

 

Assemblers & Loaders, Linkers: One pass and two pass assembler design of an 

assembler, Absolute loader, relocation and linking concepts, relocating loader and 

Dynamic Linking., overview of compilation, Phases of a compiler. 

 

Assemblers & Loaders, Linkers: 

Assembly language is a low-level programming language for a computer or other 

programmable device specific to particular computer architecture in contrast to most 

high-level programming languages, which are generally portable across multiple systems. 

Assembly language is converted into executable machine code by a utility program 

referred to as an assembler like NASM, MASM, etc. 

Linker and Loader are the utility programs that plays a major role in the execution 

of a program. The Source code of a program passes through compiler, assembler, linker, 

loader in the respective order, before execution. On the one hand, where the 

linker intakes the object codes generated by the assembler and combine them to generate 

the executable module. On the other hands, the loader loads this executable module to 

the main memory for execution.  

Linker 

• Tool that merges the object files produced by separate compilation or 
assembly and creates an executable file 

• Three tasks 

– Searches the program to find library routines used by program, e.g. 
printf(), math routines,… 

– Determines the memory locations that code from each module will 
occupy and relocates its instructions by adjusting absolute references 

– Resolves references among files 

 

Translation Hierarchy 

 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 2/23 
 

• Compiler 

– Translates high-level language program into assembly language 
(CS 440) 

• Assembler 

– Converts assembly language programs into 

object files 

• Object files contain a combination of machine instructions, data, 
and information needed to place instructions properly in memory 

Assemblers 

• Assemblers need to 

– translate assembly instructions and pseudo-instructions into machine 
instructions 

– Convert decimal numbers, etc. specified by programmer 
into binary 

• Typically, assemblers make two passes over the assembly file 

– First pass: reads each line and records labels in a 
symbol table 

– Second pass: use info in symbol table to produce actual machine code 
for each line 

 

 

Differences between Linkers and Loaders 

 

BASIS FOR 

COMPARISON 
LINKER LOADER 

Basic It generates the executable 

module of a source program. 

It loads the executable module to 

the main memory. 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 3/23 
 

BASIS FOR 

COMPARISON 
LINKER LOADER 

Input It takes as input, the object code 

generated by an assembler. 

It takes executable module 

generated by a linker. 

Function It combines all the object modules 

of a source code to generate an 

executable module. 

It allocates the addresses to an 

executable module in main 

memory for execution. 

Type/Approach Linkage Editor, Dynamic linker. Absolute loading, Relocatable 

loading and Dynamic Run-time 

loading. 

 

 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 4/23 
 

 
 

 

Object file format 

 

Object 

file 

header 

Text 

segme

nt 

Data 

segmen

t 

Relocati

on 

informati

on 

Sym

bol 

table 

Debuggi

ng 

informat

ion 

 

• Object file header describes the size and position of the other pieces of the file 

• Text segment contains the machine instructions 

• Data segment contains binary representation of data in assembly file 

• Relocation info identifies instructions and data that depend on absolute addresses 

• Symbol table associates addresses with external labels and lists unresolved references 

• Debugging info 

 

One pass and two pass assembler design of an assembler  

 

One pass assemblers perform single scan over the source code. If it encounters 

any undefined label, it puts it into symbol table along with the address so that the label 

can be replaced later when its value is encountered. On the other hand two pass 

assembler performs two sequential scans over the source code. 

 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 5/23 
 

An assembler program creates object code by translating combinations of 

mnemonics and syntax for operations and addressing modes into their numerical 

equivalents. This representation typically includes an operation code ("opcode") as well 

as other control bits and data. The assembler also calculates constant expressions and 

resolves symbolic names for memory locations and other entities. The use of symbolic 

references is a key feature of assemblers, saving tedious calculations and manual address 

updates after program modifications. Most assemblers also include macro facilities for 

performing textual substitution – e.g., to generate common short sequences of 

instructions as inline, instead of called subroutines. 

Some assemblers may also be able to perform some simple types of instruction 

set-specific optimizations. One concrete example of this may be the 

ubiquitous x86 assemblers from various vendors. Most of them are able to perform jump-

instruction replacements (long jumps replaced by short or relative jumps) in any number 

of passes, on request. Others may even do simple rearrangement or insertion of 

instructions, such as some assemblers for RISC architectures that can help optimize a 

sensible instruction scheduling to exploit the CPU pipeline as efficiently as possible. 

Like early programming languages such as Fortran, Algol, Cobol and Lisp, 

assemblers have been available since the 1950s and the first generations of text 

based computer interfaces. However, assemblers came first as they are far simpler to 

write than compilers for high-level languages. This is because each mnemonic along with 

the addressing modes and operands of an instruction translates rather directly into the 

numeric representations of that particular instruction, without much context or analysis. 

There have also been several classes of translators and semi automatic code 

generators with properties similar to both assembly and high level languages, 

with speedcode as perhaps one of the better known examples. 

There may be several assemblers with different syntax for a 

particular CPU or instruction set architecture. For instance, an instruction to add memory 

data to a register in a x86-family processor might be add eax,[ebx] , in original Intel 

syntax, whereas this would be written addl (%ebx),%eax  in the AT&T syntax used by 

the GNU Assembler. Despite different appearances, different syntactic forms generally 

generate the same numeric machine code, see further below. A single assembler may also 

have different modes in order to support variations in syntactic forms as well as their 

exact semantic interpretations (such as FASM-syntax, TASM-syntax, ideal mode etc., in 

the special case of x86 assembly programming). 

https://en.wikipedia.org/wiki/Object_code
https://en.wikipedia.org/wiki/Syntax
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Identifier
https://en.wikipedia.org/wiki/Macro_(computer_science)
https://en.wikipedia.org/wiki/Inline_expansion
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Compiler_optimization
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/RISC
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Instruction_scheduling
https://en.wikipedia.org/wiki/CPU_pipeline
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/ALGOL
https://en.wikipedia.org/wiki/Cobol
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Computer_interface
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/High-level_language
https://en.wikipedia.org/wiki/Code_generator
https://en.wikipedia.org/wiki/Code_generator
https://en.wikipedia.org/wiki/High_level_language
https://en.wikipedia.org/wiki/Speedcode
https://en.wikipedia.org/wiki/Syntax_(programming_languages)
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Intel_syntax
https://en.wikipedia.org/wiki/Intel_syntax
https://en.wikipedia.org/wiki/AT%26T_syntax
https://en.wikipedia.org/wiki/GNU_Assembler
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/FASM
https://en.wikipedia.org/wiki/TASM
https://en.wikipedia.org/wiki/X86_assembly_language


 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 6/23 
 

Number of passes 

There are two types of assemblers based on how many passes through the source are 

needed (how many times the assembler reads the source) to produce the object file. 

 One-pass assemblers go through the source code once. Any symbol used before 

it is defined will require "errata" at the end of the object code (or, at least, no earlier 

than the point where the symbol is defined) telling the linker or the loader to "go 

back" and overwrite a placeholder which had been left where the as yet undefined 

symbol was used. 

 Multi-pass assemblers create a table with all symbols and their values in the first 

passes, then use the table in later passes to generate code. 

In both cases, the assembler must be able to determine the size of each instruction on 

the initial passes in order to calculate the addresses of subsequent symbols. This means 

that if the size of an operation referring to an operand defined later depends on the type or 

distance of the operand, the assembler will make a pessimistic estimate when first 

encountering the operation, and if necessary pad it with one or more "no-operation" 

instructions in a later pass or the errata. In an assembler with peephole optimization, 

addresses may be recalculated between passes to allow replacing pessimistic code with 

code tailored to the exact distance from the target. 

The original reason for the use of one-pass assemblers was speed of assembly – often 

a second pass would require rewinding and rereading the program source on tape or 

rereading a deck of cards or punched paper tape. Later computers with much larger 

memories (especially disc storage), had the space to perform all necessary processing 

without such re-reading. The advantage of the multi-pass assembler is that the absence of 

errata makes the linking process (or the program load if the assembler directly produces 

executable code) faster.
[10]

 

Example: in the following code snippet a one-pass assembler would be able to determine 

the address of the backward reference BKWD when assembling statement S2, but would 

not be able to determine the address of the forward referenceFWD when assembling the 

branch statement S1; indeed FWD may be undefined. A two-pass assembler would 

determine both addresses in pass 1, so they would be known when generating code in 

pass 2, 

S1   B    FWD 

  ... 

FWD   EQU * 

  ... 

https://en.wikipedia.org/wiki/Erratum
https://en.wikipedia.org/wiki/Linker_(computing)
https://en.wikipedia.org/wiki/NOP_(code)
https://en.wikipedia.org/wiki/Peephole_optimization
https://en.wikipedia.org/wiki/Magnetic_tape_data_storage
https://en.wikipedia.org/wiki/Punch_cards
https://en.wikipedia.org/wiki/Punched_tape
https://en.wikipedia.org/wiki/Linker_(computing)
https://en.wikipedia.org/wiki/Loader_(computing)
https://en.wikipedia.org/wiki/Assembly_language#cite_note-10


 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 7/23 
 

BKWD  EQU * 

  ... 

S2    B   BKWD 

High-level assemblers 

More sophisticated high-level assemblers provide language abstractions such as: 

 High-level procedure/function declarations and invocations 

 Advanced control structures (IF/THEN/ELSE, SWITCH) 

 High-level abstract data types, including structures/records, unions, classes, and 

sets 

 Sophisticated macro processing (although available on ordinary assemblers since 

the late 1950s for IBM 700 series and since the 1960s for IBM/360, amongst other 

machines) 

 Object-oriented programming features such 

as classes, objects, abstraction, polymorphism, and inheritance 

A program written in assembly language consists of a series of mnemonic processor 

instructions and meta-statements (known variously as directives, pseudo-instructions and 

pseudo-ops), comments and data. Assembly language instructions usually consist of 

an opcode mnemonic followed by a list of data, arguments or parameters.
[12]

 These are 

translated by anassembler into machine language instructions that can be loaded into 

memory and executed. 

For example, the instruction below tells an x86/IA-32 processor to move an immediate 8-

bit value into a register. The binary code for this instruction is 10110 followed by a 3-bit 

identifier for which register to use. The identifier for the AL register is 000, so the 

following machine code loads the AL register with the data 01100001.
[13]

 

10110000 01100001 

This binary computer code can be made more human-readable by expressing it 

in hexadecimal as follows. 

B0 61 

Here, B0  means 'Move a copy of the following value into AL', and 61  is a hexadecimal 

representation of the value 01100001, which is 97 in decimal. Assembly language for the 

https://en.wikipedia.org/wiki/High-level_assembler
https://en.wikipedia.org/wiki/IBM_700/7000_series
https://en.wikipedia.org/wiki/IBM/360
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Class_(computer_programming)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Type_polymorphism
https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
https://en.wikipedia.org/wiki/Mnemonic
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Assembly_language#cite_note-intel-1999-12
https://en.wikipedia.org/wiki/Assembly_language_assembler
https://en.wikipedia.org/wiki/Machine_language
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/IA-32
https://en.wikipedia.org/wiki/Constant_(programming)
https://en.wikipedia.org/wiki/Constant_(programming)
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Assembly_language#cite_note-intel-1999-MOV-13
https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/Decimal


 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 8/23 
 

8086 family provides the mnemonic MOV (an abbreviation ofmove) for instructions such 

as this, so the machine code above can be written as follows in assembly language, 

complete with an explanatory comment if required, after the semicolon. This is much 

easier to read and to remember. 

MOV AL, 61h       ; Load AL with 97 decimal (61 hex) 

In some assembly languages the same mnemonic such as MOV may be used for a family 

of related instructions for loading, copying and moving data, whether these are immediate 

values, values in registers, or memory locations pointed to by values in registers. Other 

assemblers may use separate opcode mnemonics such as L for "move memory to 

register", ST for "move register to memory", LR for "move register to register", MVI for 

"move immediate operand to memory", etc. 

The x86 opcode 10110000 ( B0 ) copies an 8-bit value into the AL register, while 

10110001 ( B1 ) moves it into CL and 10110010 ( B2 ) does so into DL. Assembly 

language examples for these follow.
[13]

 

MOV AL, 1h        ; Load AL with immediate value 1 

MOV CL, 2h        ; Load CL with immediate value 2 

MOV DL, 3h        ; Load DL with immediate value 3 

The syntax of MOV can also be more complex as the following examples show.
[14]

 

MOV EAX, [EBX]   ; Move the 4 bytes in memory at the address contained in 

EBX into EAX 

MOV [ESI+EAX], CL ; Move the contents of CL into the byte at address ESI+EAX 

In each case, the MOV mnemonic is translated directly into an opcode in the ranges 88-

8E, A0-A3, B0-B8, C6 or C7 by an assembler 

 

Algorithm for Pass-1 Assembler 

https://en.wikipedia.org/wiki/Mnemonic
https://en.wikipedia.org/wiki/MOV_(x86_instruction)
https://en.wikipedia.org/wiki/Assembly_language#cite_note-intel-1999-MOV-13
https://en.wikipedia.org/wiki/Assembly_language#cite_note-14


 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 9/23 
 

 

 

 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 10/23 
 

Two-pass assembler 

Uses of two-pass assembler 

 A two-pass assembler reads through the source code twice. Each read-through is 

called a pass.  

On pass one the assembler doesn't write any code. It builds up a table of symbolic 

names against values or addresses.  

On pass two, the assembler generates the output code, using the table to resolve 

symbolic names, enabling it to enter the correct values.  

The advantage of a two-pass assember is that it allows forward referencing in the 

source code because when the assembler is generating code it has already found 

all references. 

 

 

 

 

 

 

 

 

 

 

 

Algorithm for Pass-2 Assembler 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 11/23 
 

 

 

 
 

 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 12/23 
 

Absolute loader 

In computer systems a loader is the part of an operating system that is 

responsible for loading programs and libraries. It is one of the essential stages in the 

process of starting a program, as it places programs into memory and prepares them for 

execution. 

An absolute loader is the simplest type of loading scheme that loads the file into 

memory at the location specified by the beginning portion (header) of the file, then it 

passes control to the program. 

There are two types of loaders, relocating and absolute. The absolute loader is the 

simplest and quickest of the two. The loader loads the file into memory at the location 

specified by the beginning portion (header) of the file, then passes control to the program. 

If the memory space specified by the header is currently in use, execution cannot 

proceed, and the user must wait until the requested memory becomes free. 

 The absolute loader is a kind of loader in which relocated object files are created, 

loader accepts these files and places them at a specified location in the memory. 

 This type of loader is called absolute loader because no relocating information is 

needed, rather it is obtained from the programmer or assembler. 

 The starting address of every module is known to the programmer, this 

corresponding starting address is stored in the object file then the task of loader 

becomes very simple that is to simply place the executable form of the machine 

instructions at the locations mentioned in the object file. 

 In this scheme, the programmer or assembler should have knowledge of memory 

management. The programmer should take care of two things: 

 Specification of starting address of each module to be used. If some 

modification is done in some module then the length of that module may vary. 

This causes a change in the starting address of immediate next modules, it's then 

the programmer's duty to make necessary changes in the starting address of 

respective modules. 

 While branching from one segment to another the absolute starting address 

of respective module is to be known by the programmer so that such address can 

be specified at respective JMP instruction. 

 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 13/23 
 

 
 

 

Advantages: 

1. It is simple to implement. 

2. This scheme allows multiple programs or the source programs written in different 

languages. If there are multiple programs written in different languages then the 

respective language assembler will convert it to the language and common object file 

can be prepared with all the ad resolution. 

3. The task of loader becomes simpler as it simply obeys the instruction regarding 

where to place the object code to the main memory. 

4. The process of execution is efficient. 

Disadvantages: 

1. In this scheme, it's the programmer's duty to adjust all the inter-segment addresses 

and manually do the linking activity. For that, it is necessary for a programmer to 

know the memory management. 

2. If at all any modification is done to some segment the starting address of 

immediate next segments may get changed the programmer has to take care of this 

issue and he/she needs to update the corresponding starting address on any 

modification in the source. 

 

 

 

 

 

 

 

 

 

 

 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 14/23 
 

The relocating loader 

 

            The relocating loader will load the program anywhere in memory, altering the 

various addresses as required to ensure correct referencing. The decision as to where in 

memory the program is placed is done by the Operating System, not the programs header 

file. This is obviously more efficient, but introduces a slight overhead in terms of a small 

delay whilst all the relative offsets are calculated. The relocating loader can only relocate 

code that has been produced by a linker capable of producing relative code. 

Types of Loaders: 

Absolute Loader.  

Bootstrap Loader. 

   Relocating Loader (Relative Loader) 

   Linking Loader. 

 

Two methods for specifying relocation as part of the object program: 

 

The first method:  

 A Modification is used to describe each part of the object code that must be 

changed when the program is relocated.  

Consider the program 

 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 15/23 
 

 
 

  

 Most of the instructions in this program use relative or immediate addressing.  

 The only portions of the assembled program that contain actual addresses are the 

extended format instructions on lines 15, 35, and 65. Thus these are the only items 

whose values are affected by relocation. 

 

 

 

 

 

 

 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 16/23 
 

Object program 

 

 
 

 Each Modification record specifies the starting address and length of the field 

whose value is to be altered.  

 It then describes the modification to be performed.  

 In this example, all modifications add the value of the symbol COPY, which 

represents the starting address of the program. 

The second method:  

 

 There are no Modification records.  

 The Text records are the same as before except that there is a relocation bit 

associated with each word of object code.  

 Since all SIC instructions occupy one word, this means that there is one relocation 

bit for each possible instruction. 

Object program with relocation by bit mask 

 

 
 

 

 

  

 

 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 17/23 
 

Dynamic Linking 

 

          An application that depends on dynamic linking calls the external files as needed 

during execution. The subroutines are typically part of the operating system, but may be 

auxiliary files that came with the application. 

 

            Dynamic linking has the following advantages: Saves memory and reduces 

swapping. Many processes can use a single DLL simultaneously, sharing a single copy of 

the DLL in memory. In contrast, Windows must load a copy of the library code into 

memory for each application that is built with a static link library. 

 

            A dynamic link library (DLL) is a collection of small programs that can be loaded 

when needed by larger programs and used at the same time. The small program lets the 

larger program communicate with a specific device, such as a printer or scanner. It is 

often packaged as a DLL program, which is usually referred to as a DLL file. DLL files 

that support specific device operation are known as device drivers. 

 

 Link editors are commonly known as linkers. The compiler automatically invokes 

the linker as the last step in compiling a program. The linker inserts code (or maps in 

shared libraries) to resolve program library references, and/or combines object modules 

into an executable image suitable for loading into memory. On Unix-like systems, the 

linker is typically invoked with the ld command. 

Static linking is the result of the linker copying all library routines used in the 

program into the executable image. This may require more disk space and memory than 

dynamic linking, but is both faster and more portable, since it does not require the 

presence of the library on the system where it is run. 

Dynamic linking is accomplished by placing the name of a sharable library in the 

executable image. Actual linking with the library routines does not occur until the image 

is run, when both the executable and the library are placed in memory. An advantage of 

dynamic linking is that multiple programs can share a single copy of the library. 

Linking is often referred to as a process that is performed when the executable 

is compiled, while a dynamic linker is a special part of an operating system that loads 

external shared libraries into a running process and then binds those shared libraries 

dynamically to the running process. This approach is also called dynamic linking or late 

linking. 

 

 

 

https://searchenterprisedesktop.techtarget.com/definition/device-driver
https://en.wikipedia.org/wiki/Compile_time
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Dynamic_dispatch
https://en.wikipedia.org/wiki/Process_(computing)


 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 18/23 
 

Overview of compilation: 

 

         The process of compiling a set of source files into a corresponding set of class files 

is not a simple one, but can be generally divided into three stages. Different parts of 

source files may proceed through the process at different rates, on an "as needed" basis. 

 

 

This process is handled by the JavaCompiler class. 

1. All the source files specified on the command line are read, parsed into 

syntax trees, and then all externally visible definitions are entered into the 

compiler's symbol tables. 

2. All appropriate annotation processors are called. If any annotation processors 

generate any new source or class files, the compilation is restarted, until no 

new files are created. 

3. Finally, the syntax trees created by the parser are analyzed and translated 

into class files. During the course of the analysis, references to additional 

classes may be found. The compiler will check the source and class path for 

these classes; if they are found on the source path, those files will be 

compiled as well, although they will not be subject to annotation processing. 

Parse and Enter 

Source files are processed for Unicode escapes and converted into a stream of tokens by 

the Scanner. 

The token stream is read by the Parser, to create syntax trees, using a TreeMaker. Syntax 

trees are built from subtypes of JCTree which implementcom.sun.source.Tree and its 

subtypes. 

Each tree is passed to Enter, which enters symbols for all the definitions encountered into 

the symbols. This has to done before analysis of trees which might reference those 

symbols. The output from this phase is a To Do list, containing trees that need to be 

analyzed and have class files generated. 

Enter consists of phases; classes migrate from one phase to the next via queues. 

class enter → Enter.uncompleted → MemberEnter (1) 

 → MemberEnter.halfcompleted → MemberEnter (2) 

 → To Do → (Attribute and Generate) 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 19/23 
 

1. In the first phase, all class symbols are entered into their enclosing scope, 

descending recursively down the tree for classes which are members of other 

classes. The class symbols are given a MemberEnter object as completer. 

In addition, if any package-info.java files are found, containing package 

annotations, then the top level tree node for the file is put on the To Do list as 

well. 

2. In the second phase, classes are completed using MemberEnter.complete(). 

Completion might occur on demand, but any classes that are not completed 

that way will be eventually completed by processing theuncompleted queue. 

Completion entails 

 (1) determination of a class's parameters, supertype and 

interfaces. 

 (2) entering all symbols defined in the class into its scope, with 

the exception of class symbols which have been entered in phase  

3. After all symbols have been entered, any annotations that were encountered 

on those symbols will be analyzed and validated. 

Whereas the first phase is organized as a sweep through all compiled syntax trees, the 

second phase is on demand. Members of a class are entered when the contents of a class 

are first accessed. This is accomplished by installing completer objects in class symbols 

for compiled classes which invoke the MemberEnter phase for the corresponding class 

tree. 

Annotation Processing 

This part of the process is handled by JavacProcessingEnvironment. 

Conceptually, annotation processing is a preliminary step before compilation. This 

preliminary step consists of a series of rounds, each to parse and enter source files, and 

then to determine and invoke any appropriate annotation processors. After an initial 

round, subsequent rounds will be performed if any of the annotation processors that are 

called generate any new source files or class files that need to be part of the eventual 

compilation. Finally, when all necessary rounds have been completed, the actual 

compilation is performed. 

Analyse and Generate 

Once all the files specified on the command line have been parsed and entered into the 

compiler's symbol tables, and after any annotation processing has 

occurred,JavaCompiler can proceed to analyse the syntax trees that were parsed with a 

view to generating the corresponding class files. 

 

 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 20/23 
 

Attr 

The top level classes are "attributed", using Attr, meaning that names, expressions 

and other elements within the syntax tree are resolved and associated with the 

corresponding types and symbols. Many semantic errors may be detected here, 

either by Attr, or by Check. 

Flow 

If there are no errors so far, flow analysis will be done for the class, using Flow. 

Flow analysis is used to check for definite assignment to variables, and 

unreachable statements, which may result in additional errors. 

TransTypes 

Code involving generic types is translated to code without generic types, 

usingTransTypes. 

 

 

Phases of a compiler: 

            The compilation process is a sequence of various phases. Each phase takes input 

from its previous stage, has its own representation of source program, and feeds its output 

to the next phase of the compiler. Let us understand the phases of a compiler. 

Lexical Analysis 

          The first phase of scanner works as a text scanner. This phase scans the source 

code as a stream of characters and converts it into meaningful lexemes. Lexical analyzer 

represents these lexemes in the form of tokens as: 

<token-name, attribute-value> 

Syntax Analysis 

         The next phase is called the syntax analysis or parsing. It takes the token produced 

by lexical analysis as input and generates a parse tree (or syntax tree). In this phase, 

token arrangements are checked against the source code grammar, i.e. the parser checks 

if the expression made by the tokens is syntactically correct. 

 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 21/23 
 

 
 

 

 

 

 

 

 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 22/23 
 

 

Semantic Analysis 

Semantic analysis checks whether the parse tree constructed follows the rules of 

language. For example, assignment of values is between compatible data types, and 

adding string to an integer. Also, the semantic analyzer keeps track of identifiers, their 

types and expressions; whether identifiers are declared before use or not etc. The 

semantic analyzer produces an annotated syntax tree as an output. 

Intermediate Code Generation 

After semantic analysis the compiler generates an intermediate code of the source code 

for the target machine. It represents a program for some abstract machine. It is in 

between the high-level language and the machine language. This intermediate code 

should be generated in such a way that it makes it easier to be translated into the target 

machine code. 

Code Optimization 

The next phase does code optimization of the intermediate code. Optimization can be 

assumed as something that removes unnecessary code lines, and arranges the sequence 

of statements in order to speed up the program execution without wasting resources 

(CPU, memory). 

Code Generation 

In this phase, the code generator takes the optimized representation of the intermediate 

code and maps it to the target machine language. The code generator translates the 

intermediate code into a sequence of (generally) re-locatable machine code. Sequence of 

instructions of machine code performs the task as the intermediate code would do. 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 23/23 
 

 

 

Symbol Table 

It is a data-structure maintained throughout all the phases of a compiler. All the 

identifier's names along with their types are stored here. The symbol table makes it 

easier for the compiler to quickly search the identifier record and retrieve it. The symbol 

table is also used for scope management. 

 



S.N

o
Questions Opt1 Opt2 Opt3 opt4

Answer

1

In a two pass assembler 

the object code generation 

is done during the ?

Second pass First pass
Zeroeth 

pass

Not done 

by 

assembler

Second 

pass

2

Which of the following is 

not a type of assembler ?
one pass two pass three pass load and go three pass

3

In a two pass assembler, 

adding literals to literal 

table and address 

resolution of local 

symbols are done using ?

First pass 

and second 

respectively

Both 

second pass

Second 

pass and 

first 

respectivel

y

Both first 

pass

Both first 

pass

4

In a two pass assembler 

the pseudo code EQU is 

to be evaluated during ?
Pass 1 Pass 2

not 

evaluated 

by the 

assembler

None of 

above
Pass 1

5

Which of the following 

system program foregoes 

the production of object 

code to generate absolute 

machine code and load it 

into the physical main 

storage location from 

which it will be executed 

immediately upon 

Macro 

processor

Load and 

go 

assembler

Two pass 

assembler
Compiler

Load and 

go 

assembler

6

Translator for low level 

programming language 

were termed as

Assembler Compiler Linker Loader Assembler

7

An assembler is programmin

g language 

dependent

syntax 

dependant

machine 

dependant

data 

dependant

machine 

dependant

8

An imperative statement

Reserves 

areas of 

memory and 

associates 

names with 

them

Indicates 

an action to 

be 

performed 

during 

execution 

of 

assembled 

program

Indicates 

an action 

to be 

performed 

during 

optimizatio

n

None of 

the above

Indicates 

an action 

to be 

performed 

during 

execution 

of 

assembled 

program

9

In a two-pass assembler, 

the task of the Pass II is to 

 

separate the 

symbol, 

mnemonic 

opcode and 

operand 

fields.

build the 

symbol 

table.

construct 

intermediat

e code.

synthesize 

the target 

program.

synthesize 

the target 

program.

UNIT -I



10

TII stands for

Table of 

incomplete 

instructions

Table of 

information 

instructions

Translatio

n of 

instruction

s 

informatio

n

Translation 

of 

informatio

n 

instruction

Table of 

incomplete 

instruction

s

11

Which of the following 

system software resides in 

main memory always ?

Text editor Assembler Linker Loader Loader

12

Daisy chain is a device 

for ?

Interconnecti

ng a number 

of devices to 

number of 

controllers

Connecting 

a number 

of devices 

to a 

controller

Connectin

g a number 

of 

controller 

to devices

All of 

above

Connectin

g a 

number of 

devices to 

a 

controller

13

Which of the following 

type of software should 

be used if you need to 

create,edit and print 

document  ?

Word 

processing

Spreadshee

t

Desktop 

publishing

UNIX Word 

processing

14

Producer consumer 

problem can be solved 

using ?

semaphores event 

counters

monitors all of 

above

all of 

above

15 What is bootstraping? 

A language 

interpreting 

other 

language 

program

A language 

compiling 

other 

language 

program

A language 

compile 

itself

All of 

above

A 

language 

compile 

itself

16

Shell is the exclusive 

feature of

UNIX DOS System 

software

Applicatio

n software

UNIX

17

A program in execution is 

called Process Instruction Procedure Function Process

18

A UNIX device driver is Structured 

into two 

halves called 

top half and 

bottom half

Three equal 

partitions

Unstructur

ed

None of 

the above

Structured 

into two 

halves 

called top 

half and 

bottom 

19

Memory is an device 

that performs 

a sequence 

of operations 

specified by 

instructions 

in memory

is the 

device 

where 

information 

is stored

is a 

sequence 

of 

instruction

s

is a 

computatio

nal unit to 

perform 

specific 

functions

is the 

device 

where 

informatio

n is stored

20

In which addressing 

mode, the operand is 

given explicitly in the 

instruction itself

absolute 

mode

immediate 

mode

indirect 

mode

index mode immediate 

mode

21

In which addressing mode 

the effective address of 

the operand is generated 

by adding a constant 

value to the context of 

absolute 

mode

immediate 

mode

indirect 

mode

index mode indirect 

mode



22

A garbage is _________ un-allocated 

storage

allocated 

storage 

with all 

across path 

to it 

destroyed

allocated 

storage

uninitialize

d storage

allocated 

storage 

with all 

across 

path to it 

destroyed

23

Which of the following 

program is not a utility?

Debugger Editor Spooler All of the 

above

Spooler

24

A development stategy 

whereby the executive 

control modules of a 

system are coded and 

tested first, is known as 

Bottom-up 

development

Top-down 

developme

nt

Left-Right 

developme

nt

All of the 

above

Top-down 

developme

nt

25

Which of the following 

systems software does the 

job of merging the 

records from two flies 

into one?

Documentati

on system

Utility 

program

Networkin

g software

Security 

software

Utility 

program

26

A computer can not boot 

if it does not have the

compiler loader operating 

system

assembler loader

27

The Process Manager has 

to keep track 

of:____________

the status of 

each 

program

the priority 

of each 

program

the 

informatio

n 

manageme

nt support 

to a 

programme

r using the 

system

both a and 

b

both a and 

b

28

A sequence of 

instructions, in a 

computer language, to get 

the desired result, is 

Algorithm Decision 

Table

Program All of the 

above

Program

29

Action implementing 

instruction’s meaning are 

a actually carried out by 

_______________

Instruction 

fetch

Instruction 

decode

Instruction 

execution

Instruction 

program

Instruction 

execution

30

A bottom up parser 

generates

Right most 

derivation

Right most 

derivation 

in reverse

Left most 

derivation

Left most 

derivation 

in reverse

Right most 

derivation 

in reverse

31

Object program is a Program 

written in 

machine 

language

Program to 

be 

translated 

into 

machine 

language

Translatio

n of high-

level 

language 

into 

machine 

language

None of 

the 

mentioned

Translatio

n of high-

level 

language 

into 

machine 

language

32

Software that allows your 

computer to interact with 

the user, applications, and 

hardware is called

application 

software

word 

processor

system 

software

database 

software

system 

software



33

Programs that coordinate 

computer resources, 

provide an interface 

between users and the 

computer, 

utilities operating 

systems

device 

drivers

language 

translators

operating 

systems

34

Specialized programs that 

allow particular input or 

output devices to 

communicate with the rest 

of the computer system 

operating 

systems

utilities device 

drivers

language 

translators

device 

drivers

35

Also known as a service 

program, this type of 

program performs specific 

tasks related to managing 

computer resources.

utility operating 

system

language 

translator

device 

driver

utility

36

In order for a computer to 

understand a program, it 

must be converted into 

machine language by

operating 

system

utility device 

driver

language 

translator

language 

translator

37

Which of the following is 

not a function of the 

operating system?

Manage 

resources

Internet 

access

Provide a 

user 

interface

Load and 

run 

application

s

Internet 

access

38

The items that a computer 

can use in its functioning 

are collectively called its

resources stuff capital properties resources

39

Programs that coordinate 

all of the computer’s 

resources including 

memory, processing, 

storage, and devices such 

as printers are collectively 

referred to as

language 

translators

resources application

s

interfaces resources

40

A compiler is a software 

tool that translates 

___________that the 

computer can understand.

Algorithm 

into data

Source 

code into 

data

Computer 

language 

into data

None of 

the above

Source 

code into 

data

41

The object code is then 

passed through a program 

called a ___________ 

which turns it into an 

executable program.

Integer Source 

code

Linker None of 

the above

Linker

42

When a computer is first 

turned on or restarted, a 

special type of absolute 

loader is executed, called 

a

Compile and 

Go loader

Boot loader Bootstrap 

loader

Relating 

loader

Bootstrap 

loader



43

What is memory in 

Computer ?

is a sequence 

of 

instructions

is the 

device 

where 

information 

is stored

is an 

device that 

performs a 

sequence 

of 

operations 

specified 

by 

instruction

s in 

memory

none of 

these

is the 

device 

where 

informatio

n is stored

44 A program -

is a sequence 

of 

instructions

is the 

device 

where 

information 

is stored

is a device 

that 

performs a 

sequence 

of 

operations 

specified 

by 

instruction

s in 

memory

none of 

these

is a 

sequence 

of 

instruction

s

45

The __ of a system 

includes the program s or 

instructions.

icon software hardware informatio

n

software

46

Various applications and 

documents are 

represented on the 

Windows desktop by __.

icons labels graphs symbols icons

47

The coordination of 

processor operation in 

CPU is controled by

CU ALU Registers All of the 

above

CU

48

The name of the first 

microprocessor chip was

Intel1004 Intel2004 Intel3004 Intel4004 Intel4004

49

Intel introduced first 32 

bit processor in

1985 1987 1989 1993 1985

50

In a microprocessor there 

are 120 instructions, how 

many bits needed to 

implement this

5 6 7 8 7

51

Which device can 

understand the difference 

data and programs?

ALU Registers Motherboa

rd

Microproce

ssor

Microproc

essor

52

A memory bus is used for 

communication between

ALU and 

Register

Processor 

and 

Memory

Input and 

Output 

devices

All of the 

above

Processor 

and 

Memory

53

The fourth generation 

computer was made up of

chips transistor vaccume 

tubes

microproce

ssor chips

microproc

essor chips

54

The number of clock 

cycles necessary to 

complete 1 fetch cycle in 

8085 is

3 or 4 4 or 5 4 or 6 6 or 7 4 or 6



Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 1 
 

KARPAGAM ACADEMY OF HIGHER EDUCATION 

(Deemed to be University) 
(Established under section 3 of UGC Act,1956 

 

CLASS : II B.SC IT                COURSE NAME: System Programming 

COURSE CODE: 16ITU603B              BATCH: 2016-2019 

UNIT II: LEXICAL ANALYSIS   

 

UNIT -2 

SYLLABUS 

Lexical Anlysis: Role of Lexical Analyzer, Specification and recognition of tokens, symbol 

table, lexical analysis 

 

OVER VIEW OF LEXICAL ANALYSIS 

To identify the tokens we need some method of describing the possible tokensthat can appear in 

the input stream. For this purpose we introduce regular expression, anotation that can be used to 

describe essentially all the tokens of programminglanguage. 

Secondly , having decided what the tokens are, we need some mechanism torecognize these in 

the input stream. This is done by the token recognizers, which aredesigned using transition 

diagrams and finite automata. 

ROLE OF LEXICAL ANALYZER 

The LA is the first phase of a compiler. It main task is to read the input characterand produce as 

output a sequence of tokens that the parser uses for syntax analysis. 

 

 

 



Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 2 
 

Upon receiving a „get next token‟ command form the parser, the lexical analyzer reads the input 

character until it can identify the next token. The LA return to the parser representation for the 

token it has found. The representation will be an integer code, if the token is a simple construct 

such as parenthesis, comma or colon. 

 LA may also perform certain secondary tasks as the user interface. One such task is striping out 

from the source program the commands and white spaces in the form of blank, tab and new line 

characters. Another is correlating error message from the compiler with the source program. 

LEXICAL ANALYSIS VS PARSING 

Lexical analysis  Parsing 

A Scanner simply turns an input String 

(say a file) into a list of tokens. These 

tokens represent things like identifiers, 

parentheses, operators etc.  

 

The lexical analyzer (the "lexer") parses 

individual symbols from the source code 

file into tokens. From there, the "parser" 

proper turns those whole tokens into 

sentences of your grammar 

A parser converts this list of tokens into 

a Tree-like object to represent how the 

tokens fit together to form a cohesive 

whole (sometimes referred to as a 

sentence). 

 A parser does not give the nodes any 

meaning beyond structural cohesion. 

The next thing to do is extract meaning 

from this structure (sometimes called 

contextual analysis). 

 

TOKEN, LEXEME, PATTERN:  

Token: Token is a sequence of characters that can be treated as a single logical entity.  

Typical tokens are, 1) Identifiers 2) keywords 3) operators 4) special symbols 5)constants 

Pattern: A set of strings in the input for which the same token is produced as output. This set of 

strings is described by a rule called a pattern associated with the token.  

Lexeme: A lexeme is a sequence of characters in the source program that is matched by the 

pattern for a token. Example: 

Token  lexeme  pattern 

const const const 

if if if 

relation <,<=,= 

,<>,>=,> 

< or <= or = or <> or >= or letter 

followed by letters & digit 

i pi any numeric constant 

nun 3.14 any character b/w “and “except" 

literal "core" pattern 

A patter is a rule describing the set of lexemes that can represent a particular token in source 

program. 



Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 3 
 

 

DIFFERENCE BETWEEN COMPILER AND INTERPRETER 

 A compiler converts the high level instruction into machine language while aninterpreter 

converts the high level instruction into an intermediate form. 

 Before execution, entire program is executed by the compiler whereas aftertranslating the 

first line, an interpreter then executes it and so on. 

 List of errors is created by the compiler after the compilation process while aninterpreter 

stops translating after the first error. 

 An independent executable file is created by the compiler whereas interpreter isrequired by 

an interpreted program each time. 

 The compiler produce object code whereas interpreter does not produce object code. 

 In the process of compilation the program is analyzed only once and then the code 

isgenerated whereas source program is interpreted every time it is to be executed andevery 

time the source program is analyzed. hence interpreter is less efficient thancompiler. 

 Examples of interpreter: A UPS Debugger is basically a graphical source leveldebugger but it 

contains built in C interpreter which can handle multiple source files.example of compiler: 

Borland c compiler or Turbo C compiler compiles the programswritten in C or C++. 

Need of Lexical Analyzer 

 Simplicity of design of compiler The removal of white spaces and comments enables the 

syntax analyzer for efficient syntactic constructs. 

 Compiler efficiency is improved Specialized buffering techniques for reading characters 

speed up the compiler process. 

 Compiler portability is enhanced 

Issues in Lexical Analysis 

Lexical analysis is the process of producing tokens from the source program. It has the following 

issues: 

• Lookahead 

• Ambiguities 

Lookahead 

Lookahead is required to decide when one token will end and the next token will begin. 

The simple example which has lookahead issues are i vs. if, = vs. ==. Therefore a way to 

describe the lexemes of each token is required. 

A way needed to resolve ambiguities 

• Is if it is two variables i and f or if? 

• Is == is two equal signs =, = or ==? 



Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 4 
 

• arr(5, 4) vs. fn(5, 4) II in Ada (as array reference syntax and function call syntax are 

similar. 

Hence, the number of lookahead to be considered and a way to describe the lexemes of 

each token is also needed. 

Regular expressions are one of the most popular ways of representing tokens. 

Ambiguities 

The lexical analysis programs written with lex accept ambiguous specifications and choose the 

longest match possible at each input point. Lex can handle ambiguous specifications. When more 

than one expression can match the current input, lex chooses as follows: 

• The longest match is preferred. 

• Among rules which matched the same number of characters, the rule given first is preferred. 

LEXICAL ERRORS 

Lexical errors are the errors thrown by your lexer when unable to continue. This means that 

there‟s no way to recognize a lexeme as a valid token for you lexer. Syntax errors, on the other 

side, will be thrown by your scanner when a given set of already recognised valid tokens don't 

match any of the right sides of your grammar rules. simple panic-mode error handling system 

requires that we return to a high-level parsing function when a parsing or lexical error is 

detected.  

 Error-recovery actions are:  

 Delete one character from the remaining input.  

 Insert a missing character in to the remaining input. 

 Replace a character by another character. 

 Transpose two adjacent characters. 

Lexical error handling approaches 

Lexical errors can be handled by the following actions: 

 Deleting one character from the remaining input. 

 Inserting a missing character into the remaining input. 

 Replacing a character by another character. 

 Transposing two adjacent characters. 

Specification of tokens 

There are 3 specifications of tokens: 

1) Strings 

2) Language 



Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 5 
 

3) Regular expression 

Strings and Languages 

An alphabet or character class is a finite set of symbols. 

A string over an alphabet is a finite sequence of symbols drawn from that alphabet. 

 A language is any countable set of strings over some fixed alphabet. In language theory, the 

terms "sentence" and "word" are often used as synonyms for "string." 

 The length of a string s, usually written |s|, is the number of occurrences of symbols in s. For 

example, banana is a string of length six. The empty string, denoted ε, is the string of length zero 

Operations on strings 

The following string-related terms are commonly used: 

1. A prefix of string s is any string obtained by removing zero or more symbols from the end of 

string s. 

For example, ban is a prefix of banana. 

2. A suffix of string s is any string obtained by removing zero or more symbols from the 

beginning of s. 

For example, nana is a suffix of banana. 

3. A substring of s is obtained by deleting any prefix and any suffix from s. 

For example, nan is a substring of banana. 

4. The proper prefixes, suffixes, and substrings of a string s are those prefixes, suffixes, and 

substrings, respectively of s that are not ε or not equal to s itself. 

5. A subsequence of s is any string formed by deleting zero or more not necessarily consecutive 

positions of s. 

For example, ban is a subsequence of banana. 

Operations on languages: 

The following are the operations that can be applied to languages: 

1.Union 

2.Concatenation 

3.Kleene closure 

4.Positive closure 

The following example shows the operations on strings: 



Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 6 
 

Let L={0,1} and S={a,b,c} 

1. Union : L U S={0,1,a,b,c} 

2. Concatenation : L.S={0a,1a,0b,1b,0c,1c} 

3. Kleene closure : L*={ ε,0,1,00….} 

4. Positive closure : L+ ={0,1,00….} 

 

REGULAR EXPRESSIONS  

s Each regular expression r denotes a language L(r). 

 Regular expressions are notation for specifying patterns. 

 Each pattern matches a set of strings. 

 Regular expressions will serve as names for sets of strings. 

Here are the rules that define the regular expressions over some alphabet Σ and the languages 

that 

those expressions denote: 

1. ε is a regular expression, and L(ε) is { ε }, that is, the language whose sole member is the 

empty string. 

2. If „a‟ is a symbol in Σ, then „a‟ is a regular expression, and L(a) = {a}, that is, the language 

with 

one string, of length one, with „a‟ in its one position.  

3. Suppose r and s are regular expressions denoting the languages L(r) and L(s). Then, 

a) (r)|(s) is a regular expression denoting the language L(r) U L(s). 

b) (r)(s) is a regular expression denoting the language L(r)L(s). c) 

(r)* is a regular expression denoting (L(r))*. 

d) (r) is a regular expression denoting L(r). 

4. The unary operator * has highest precedence and is left associative. 

5. Concatenation has second highest precedence and is left associative. 

6. | has lowest precedence and is left associative. 

Regular set 



Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 7 
 

A language that can be defined by a regular expression is called a regular set. If two regular 

expressions r and s denote the same regular set, we say they are equivalent and write r = s. 

There are a number of algebraic laws for regular expressions that can be used to manipulate into 

equivalent forms. 

For instance, r|s = s|r is commutative; r|(s|t)=(r|s)|t is associative. 

Regular Definitions 

Giving names to regular expressions is referred to as a Regular definition. If Σ is an 

alphabet of basic symbols, then a regular definition is a sequence of definitions of the form 

dl → r 1 

d2 → r2 

……… 

dn → rn 

1. Each di is a distinct name. 

2. Each ri is a regular expression over the alphabet Σ U {dl 

, d2,. . . , di-l}. 

Example: Identifiers is the set of strings of letters and digits beginning with a letter. Regular 

definition for this set: 

letter → A | B | …. | Z | a | b | …. | z | 

digit → 0 | 1 | …. | 9 

id → letter ( letter | digit ) * 

 

Shorthands 

Certain constructs occur so frequently in regular expressions that it is convenient to introduce 

notational shorthands for them. 

1. One or more instances (+): 

- The unary postfix operator + means “ one or more instances of” . 



Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 8 
 

- If r is a regular expression that denotes the language L(r), then ( r )+  is a regular expression 

that denotes the language (L (r ))+ 

- Thus the regular expression a+ denotes the set of all strings of one or more a‟s. 

- The operator + has the same precedence and associativity as the operator * 

. 2. Zero or one instance ( ?): 

- The unary postfix operator ? means “zero or one instance of”. - 

The notation r? is a shorthand for r | ε. 

- If „r‟ is a regular expression, then ( r )? is a regular expression that denotes the language L( r ) 

U { ε }. 

3. Character Classes: 

- The notation [abc] where a, b and c are alphabet symbols denotes the regular expression a | b |c. 

- Character class such as [a - z] denotes the regular expression a | b | c | d | ….|z. 

- We can describe identifiers as being strings generated by the regular expression, [AZa-z][A-Za-

z0-9]* 

Non-regular Set A language which cannot be described by any regular expression is a non-

regular set. 

Example: The set of all strings of balanced parentheses and repeating strings cannot be described 

by a 

regular expression. This set can be specified by a context-free grammar. 

 

RECOGNITION OF TOKENS 

Consider the following grammar fragment: 

stmt → if expr then stmt 

| if expr then stmt else stmt 

| ε 

expr → term relop term 

| term 

term → id 

| num 



Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 9 
 

where the terminals if , then, else, relop, id and num generate sets of strings given by the 

following regular definitions: 

if → if 

then → then 

else → else 

relop → <|<=|=|<>|>|>= 

id → letter(letter|digit)* 

num → digit+(.digit+)?(E(+|-)?digit+)? 

For this language fragment the lexical analyzer will recognize the keywords if, then, else, as well 

as the lexemes denoted by relop, id, and num. To simplify matters, we assume keywords are 

reserved; that is, they cannot be used as identifiers. 

Transition Diagrams (TD) 

As an intermediate step in the construction of a lexical analyzer, we first produce flowchart, 

called a Transition diagram. Transition diagrams depict the actions that take place when a lexical 

analyzer is called by the parser to get the next token. 

The TD uses to keep track of information about characters that are seen as the forward pointer 

scans the input. it dose that by moving from position to position in the diagram as characters are 

read. 

Components of Transition Diagram 

 

One state is labeled the Start State;                            it is the initial state of 

the transition diagram where control resides whenwe begin to recognize a 

token 

Positions in a transition diagram are drawn as circles and are called states 

The states are connected by Arrows,              called edges. Labels on edges 

are indicating the input characters 

The Accepting states in which the tokens has been found.  

 

 

Retract one character use * to indicate states on which this input retraction 

. 

Start type 



Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 10 
 

 

 

FINITE AUTOMATA 

Finite Automata is one of the mathematical models that consist of a number of states and 

edges. It is a transition diagram that recognizes a regular expression or grammar. 

Types of Finite Automata 

There are two types of Finite Automata : 

 Deterministic Finite Automata (DFA) 

 -Non-deterministic Finite Automata (NFA) 

Non-deterministic Finite Automata 

NFA is a mathematical model that consists of five tuples denoted by M = {Qn, Ʃ, δ, q0, fn} 

Qn - finite set of states 

Ʃ - finite set of input symbols 

δ - transition function that maps state-symbol pairs to set of states 

q0 - starting state 

fn - final state 

 

Deterministic Finite Automata 



Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 11 
 

DFA is a special case of a NFA in which 

i) no state has an ε-transition. 

ii) there is at most one transition from each state on any input. 

 

DFA has five tuples denoted by M = {Qd, Ʃ, δ , q0, fd} 

Qd - finite set of states 

Ʃ - finite set of input symbols 

δ - transition function that maps state-symbol pairs to set of states 

q0 - starting state 

fd - final state 

 

SYMBOL TABLE 

Symbol table is an important data structure created and maintained by compilers in order to store 

information about the occurrence of various entities such as variable names, function names, 

objects, classes, interfaces, etc. Symbol table is used by both the analysis and the synthesis parts 

of a compiler. 

 A symbol table may serve the following purposes depending upon the language in hand: 

 To store the names of all entities in a structured form at one place. 

 To verify if a variable has been declared. 

 To implement type checking, by verifying assignments and expressions in the source 

code are semantically correct. 

 To determine the scope of a name (scope resolution). 

 

A symbol table is simply a table which can be either linear or a hash table. It maintains an entry 

for each name in the following format: 

<symbol name,  type,  attribute> 

For example, if a symbol table has to store information about the following variable declaration: 

static int interest; 

then it should store the entry such as: 

<interest, int, static> 

The attribute clause contains the entries related to the name. 



Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 12 
 

Implementation 

If a compiler is to handle a small amount of data, then the symbol table can be implemented as 

an unordered list, which is easy to code, but it is only suitable for small tables only. A symbol 

table can be implemented in one of the following ways: 

 Linear (sorted or unsorted) list 

 Binary Search Tree 

 Hash table 

Among all, symbol tables are mostly implemented as hash tables, where the source code symbol 

itself is treated as a key for the hash function and the return value is the information about the 

symbol. 

Operations 

A symbol table, either linear or hash, should provide the following operations. 

insert() 

This operation is more frequently used by analysis phase, i.e., the first half of the compiler where 

tokens are identified and names are stored in the table. This operation is used to add information 

in the symbol table about unique names occurring in the source code. The format or structure in 

which the names are stored depends upon the compiler in hand. 

An attribute for a symbol in the source code is the information associated with that symbol. This 

information contains the value, state, scope, and type about the symbol. The insert() function 

takes the symbol and its attributes as arguments and stores the information in the symbol table. 

For example: 

int a; 

should be processed by the compiler as: 

insert(a, int); 

lookup() 

lookup() operation is used to search a name in the symbol table to determine: 

 if the symbol exists in the table. 

 if it is declared before it is being used. 

 if the name is used in the scope. 

 if the symbol is initialized. 

 if the symbol declared multiple times. 



Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 13 
 

The format of lookup() function varies according to the programming language. The basic format 

should match the following: 

lookup(symbol) 

This method returns 0 (zero) if the symbol does not exist in the symbol table. If the symbol exists 

in the symbol table, it returns its attributes stored in the table. 

Scope Management 

A compiler maintains two types of symbol tables: a global symbol table which can be accessed 

by all the procedures and scope symbol tables that are created for each scope in the program. 

To determine the scope of a name, symbol tables are arranged in hierarchical structure as shown 

in the example below: 

 

 



Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 14 
 

The above program can be represented in a hierarchical structure of symbol 

tables:  

 

 

The global symbol table contains names for one global variable (int value) and two procedure 

names, which should be available to all the child nodes shown above. The names mentioned in 

the pro_one symbol table (and all its child tables) are not available for pro_two symbols and its 

child tables. 

This symbol table data structure hierarchy is stored in the semantic analyzer and whenever a 

name needs to be searched in a symbol table, it is searched using the following algorithm: 

 first a symbol will be searched in the current scope, i.e. current symbol table. 

 if a name is found, then search is completed, else it will be searched in the parent symbol table until, 

 either the name is found or global symbol table has been searched for the name. 

 

 



Sno Questions Opt1 Opt2 Opt3 Opt4 Answer

1 Which of the 

following electronic 

component are not 

found in ordinary ICs?

Diodes Resistors Inductors Transistor

s

Inductors

2 Intel 486 is___ bit 

microprocessor.

8 Bit 16 Bit 32 Bit 64 Bit 32 Bit

3 The graph that shows 

basic blocks and their 

successor relationship 

is called

DAG Flow graph Control 

graph

Hamiltoni

on graph

Flow graph

4 When a computer is 

first turned on or 

resrarted, a special 

type of absolute 

loader is executed 

called

Boot loader Relating 

loader

Boot strap 

loader

" Compile 

and GO " 

loader

Boot strap 

loader

5 Sotware that 

measures, monitors, 

analyzes and controls 

real world events is 

called

System 

software

Business 

software

Scientific 

software

Real time 

software

Real time 

software

6 The root directory of 

a disk should be 

placed

at a fixed 

address in 

main 

memory

at a fixed 

location on 

the disk

anywhere on 

the disk

none of 

these

at a fixed 

location on the 

disk

7 Linker and Loader are 

the _______. 

Utility 

programs

 Sub-Task  Sub-

problems

 Process Utility 

programs

8 Dividing a project 

into segments and 

smaller units in order 

to simplify analysis, 

design and 

programming efforts 

is called

Left right 

approach

Modular 

approach

Top down 

approach

Bottom up 

approach

Modular 

approach

9 System generation is always 

quite simple

is always 

very 

difficult

varies in 

difficulty 

between 

systems

requires 

extensive 

tools to be 

understan

dable

requires 

extensive tools 

to be 

understandable

UNIT II



10 While running DOS 

on a PC, command 

which can be used to 

duplicate the entire 

diskette is

COPY DISKCOPY CHKDSK TYPE DISKCOPY

11 A system program 

which sets up an 

executable program in 

main memory ready 

for execution, is

assembler linker loader compiler loader

12 Operating system for 

the laptop computer 

called MacLite is

windows DOS MS-DOS OZ OZ

13 Computer general-

purpose software is 

basically a

system 

software

data base 

software

package 

software

applicatio

n software

system 

software

14 Special purpose 

software are

application 

softwares

system 

softwares

utility 

softwares

Bespoke 

softwares

application 

softwares

15 In computers, 

operating system and 

utility programs are 

examples of

system 

software

device 

drivers

application 

software

customize

d software

system 

software

16 Control, usage and 

allocation of different 

hardware components 

of computer is done 

by

address bus system 

software

application 

software

data bus system 

software

17 Computer software 

which is designed 

only for the use of 

particular customer or 

organization is called

program application customized 

software

system 

software

customized 

software

18 Computer software 

designed for the use 

of sale to general 

public is called

package 

software

application 

software

system 

software

customize

d software

package 

software

19 The linker ? is same as 

the loader

is required 

to create a 

load module

is always 

used before 

programs 

are executed

None of 

above

is required to 

create a load 

module



20 A system program 

that combines the 

separately compiled 

modules of a program 

into a form suitable 

for execution  ?

Assembler Linking 

loader

Cross 

compiler

Load and 

Go

Linking loader

21 Loading process can 

be divided into two 

separate programs, to 

solve some problems. 

The first is binder the 

other is ?

Linkage 

editor

Module 

Loader

Relocator None of 

these

Module 

Loader

22 Load address for the 

first word of the 

program is called

Linker 

address 

origin

Load 

address 

origin

Phase 

library

Absolute 

library

Load address 

origin

23 A linker program places the 

program in 

the memory 

for the 

purpose of 

execution.

relocates the 

program to 

execute 

from the 

specific 

memory 

area 

allocated to 

it.

links the 

program 

with other 

programs 

needed for 

its 

execution.

interfaces 

the 

program 

with the 

entities 

generating 

its input 

data.

links the 

program with 

other programs 

needed for its 

execution.

24 Resolution of 

externally defined 

symbols is performed 

by

Linker Loader Compiler Editor Linker

25 Relocatable programs cannot be 

used with 

fixed 

partitions

can be 

loaded 

almost 

anywhere in 

memory

do not need 

a linker

can be 

loaded 

only at 

one 

specific 

location

can be loaded 

almost 

anywhere in 

memory

26 Static memory 

allocation is typically 

performed during 

_____________.

compilation execution loading linking compilation

27 Dynamic memory 

allocation is typically 

performed during 

_______________.

loading of 

the program

compilation 

of the 

program

execution of 

the program

None of 

the above

execution of 

the program

28 Dynamic memory 

allocation is 

implementing using 

________________.

queue and 

stacks

trees stack and 

heaps

graphs stack and 

heaps



29 ________________ 

are used for reduce 

the main memory 

requirements of 

program.

Heaps Overlays Graphs None of 

the above

Overlays

30 ________________is 

used for reducing 

relocation 

requirements.

Relocation 

register

Track 

register

Binding 

register

Segment 

Register

Segment 

Register

31 Linking is process of 

binding

Internal part 

of a program 

external 

functional 

call

External 

reference to 

the correct 

link time 

address

None of 

the above

External 

reference to 

the correct link 

time address

32 If load origin is not 

equal to linked origin 

then relocation is 

performed by

Loader Linker By program 

itself

Relocation 

not 

performed

Loader

33 If linked origin is not 

equal to translated 

address then 

relocation is 

performed 

by____________.

Absolute 

Loader

Loader Linker None of 

the above

Linker

34 Which is not a 

funciton of a loader

allocation translation relocation loading translation

35 A system program 

that set up an 

executable program in 

main memory ready 

for execution is

assembler linker loader text-editor loader

36 Linker and Loader are 

the 

Utility 

programs

Sub-Task Sub-

problems

Process Utility 

programs

37 _______ converts 

assembly language 

programs into object 

files

Compiler    Assembler       Linker  Loader    Assembler     

38 ______ loads the 

executable module to 

the main memory.

Interpreter                   Linker  Compiler   Loader    

39 _______ is the type of 

linker.

Informal         Linkage 

Editor           

 Assembler Loader    Linkage 

Editor           

40 _______ header 

describes the size and 

position of the other 

pieces of the file.

Object file                         Donald 

Knuth

Source file Obj file  Object file                         



41 _______ 

assemblers perform si

ngle scan over the 

source code.

Two pass   One pass Three pass All of 

these

One pass 

42 “opcode” is otherwise 

called as ______.

operation 

code  

operable 

code

ope code Obj code operation code  

43 The mnemonic used 

to move data from 

"register to register" is 

______.

L    R LRU LR LR

44 Relocating Loader is 

otherwise called as 

_______ loader.

Relative       Relational Redo Recursive Relative       

45 DLL files that support 

specific device 

operation are known 

as _______.

Bootstrap  device 

drivers

Parsing Schedulin

g

device drivers

46 Source files are 

converted into a 

stream of tokens by 

______.

Scanner         Memory Register Unicode Scanner         

47 _______ is a sequence 

of characters that can 

be treated as a single 

logical entity.

Function  Method Definition Token Token 

48 A ________ is a 

sequence of 

characters in the 

source program that is 

matched by the 

Pattern.

lexagon lexeme Analyser combine lexeme

49 A _______ converts 

the high level 

instruction into 

machine language.

Loader          Assembler Interpreter compiler compiler

50 NASM, MASM are 

the examples for 

________.

Analyser    Assembler Compiler Linker Assembler 

51 Resolving references 

among files is done by 

_________.

Linker     Unicode Source file All of 

these

Linker     

52 _______ files contain 

a combination of 

machine instructions, 

data, and information.

Source Register Object Obj code Object

https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Opcode


53 _______ pass reads 

each line and records 

labels in a symbol 

table.

First           Second Third First & 

Second

First           

54 _______ takes 

executable module 

generated by a linker.

Assembler Linker 

editor

Loader Compiler Loader 

55 ______ segment 

contains binary 

representation of data 

in assembly file.

Data           Text Object file Header Data           



S.NoQuesiton Option A Option B OPtionC Option D Answer

1 _______ is 

considered as a 

sequence of 

Texeme Pattern Lexeme Mexeme Lexeme

2 What is the name 

of the process 

that determining 

whether a string 

 Analysing Recognizin

g

 Translating  Parsing  Parsing

3 A _________ is a 

software utility 

that translates 

code written in 

Converter Compiler  Text editor Code 

optimizer

Compiler

4 Which of the 

following 

derivations does a 

top-down parser 

use while parsing 

an input string?

 Leftmost 

derivation

 Leftmost 

derivation 

in reverse

Rightmost 

derivation

 Rightmost 

derivation 

in reverse

 Leftmost 

derivation

5 The process of 

assigning load 

addresses to the 

various parts of 

the program and 

adjusting the code 

and data in the 

program to reflect 

the assigned 

addresses is 

called 

______________

 Assembly  Parsing  Relocation  Symbol 

resolute

 Relocation

6 . Which of the 

following 

statements is 

false?

 Left as well 

as right most 

derivations 

can be in 

Unambiguou

s grammar

 An LL (1) 

parser is a 

top-down 

parser

 LALR is 

more 

powerful 

than SLR

 

Ambiguous 

grammar 

can’t be LR 

(k)

 Left as well 

as right most 

derivations 

can be in 

Unambiguous 

grammar

Unit III



7  Given the 

following 

expression 

grammar:E -> E * 

F | F+E | F                   

F -> F-F | id                                    

which of the 

following is true?

* has higher 

precedence 

than +

 – has 

higher 

precedence 

than *

 + and — 

have same 

precedence

 + has 

higher 

precedence 

than *

 – has higher 

precedence 

than *

8 Which of the 

following 

grammers are not 

phase-structured?

regular context 

free 

grammer

context 

senstive

none none

9 LR stands for 

___________

left to right left to right 

reduction

right to left left to right 

and right 

most 

derivation 

in reverse

left to right 

and right 

most 

derivation in 

reverse

10 Which of 

thefoloowing 

parsersare more 

powefull

linear list search tree hash table self-

organizing 

list

self-

organizing 

list

11 Which of the 

following cannot 

be used as 

intermediate 

form?

Postfix 

notation

Three 

address 

code

Syntax trees qudraples qudraples

12 Which of the 

following symbol 

table 

implementation is 

based on ptoperty 

of locality of 

reference

search tree hash table self-

organizing 

list

self-

organizing 

list

13 Synthenized 

attribute can be 

easily simulated 

by _________

LL grammer ambiguious 

grammer

LR 

grammer 

RR 

grammer

LR grammer



14  A pictorial 

representation of 

value computed 

by each statement 

in basic block is 

__________

tree DAG Graph none DAG

15 Three address 

code involves 

__________

excatly 3 

address

at the most 

3 address

no unary 

operators

none at the most 3 

address

16 When is type 

checking is done 

?

during syntax 

directed 

translation

during 

lexical 

analysis

during 

syntax 

analysis

during code 

optimizatio

n

during syntax 

directed 

translation

17 Which of the 

following is/are 

grouped together 

into sematic 

structures?

Syntax 

analyzer

Semantic 

analyzer

Lexical 

analyzer

Intermediat

e code 

generation

Lexical 

analyzer

18 Which of the 

following 

describes a 

handle (as 

applicable to LR-

parsing) 

appropriately?

It is the 

position in a 

sentential 

form where 

the next shift 

or reduce 

operation will 

occur

It is non-

terminal 

whose 

production 

will be 

used for 

reduction 

in the next 

step

It is a 

production 

that may be 

used for 

reduction in 

a future 

step along 

with a 

position in 

the 

sentential 

form where 

the next 

shift or 

reduce 

operation 

will occur

It is the 

production 

p that will 

be used for 

reduction in 

the next 

step along 

with a 

position in 

the 

sentential 

form where 

the right 

hand side 

of the 

production 

may be 

found

It is the 

production p 

that will be 

used for 

reduction in 

the next step 

along with a 

position in 

the sentential 

form where 

the right hand 

side of the 

production 

may be found

19 Which one of the 

following is a top-

down parser?

Recursive 

descent 

parser

Operator 

precedence 

parse

An LR(k) 

parser

An 

LALR(k) 

parser

Recursive 

descent 

parser



20 Which of the 

following suffices 

to convert an 

arbitrary CFG to 

an LL(1) 

grammar?

Removing 

left recursion 

alone

Factoring 

the 

grammar 

alone

Removing 

left 

recursion 

and 

factoring 

the 

grammar

None of 

these

None of these

21 In a bottom-up 

evaluation of a 

syntax directed 

definition, 

inherited 

attributes can

always be 

evaluated

be 

evaluated 

only if the 

definition 

is L-

attributed

be 

evaluated 

only if the 

definition 

has 

synthesized 

attributes

never be 

evaluated

be evaluated 

only if the 

definition is L-

attributed

22 Consider the 

grammar shown 

below.             S 

→ C C                                               

C → c C | d  The 

grammar is

LL(1) SLR(1) but 

not LL(1)

LALR(1) 

but not 

SLR(1)

LR(1) but 

not 

LALR(1)

LL(1)

23 Which of the 

following 

statements is 

false?

An 

unambiguous 

grammar has 

same leftmost 

and rightmost 

derivation

An LL(1) 

parser is a 

top-down 

parser

LALR is 

more 

powerful 

than SLR

An 

ambiguous 

grammar 

can never 

be LR(k) 

for any k

An 

unambiguous 

grammar has 

same leftmost 

and rightmost 

derivation

24 Which one of the 

following is True 

at any valid state 

in shift-reduce 

parsing?

Viable 

prefixes 

appear only 

at the bottom 

of the stack 

and not 

inside

Viable 

prefixes 

appear only 

at the top 

of the stack 

and not 

inside

The stack 

contains 

only a set of 

viable 

prefixes

The stack 

never 

contains 

viable 

prefixes

The stack 

contains only 

a set of viable 

prefixes



25 In the context of 

abstract-syntax-

tree (AST) and 

control-flow-

graph (CFG), 

which one of the 

following is 

True?

In both AST 

and CFG, let 

node N2 be 

the successor 

of node N1. 

In the input 

program, the 

code 

correspondin

g to N2 is 

present after 

the code 

correspondin

g to N1

For any 

input 

program, 

neither 

AST nor 

CFG will 

contain a 

cycle

The 

maximum 

number of 

successors 

of a node in 

an AST and 

a CFG 

depends on 

the input 

program

Each node 

in AST and 

CFG 

corresponds 

to at most 

one 

statement 

in the input 

program

The 

maximum 

number of 

successors of 

a node in an 

AST and a 

CFG depends 

on the input 

program

26 Some code 

optimizations are 

carried out on the 

intermediate code 

because 

________

they enhance 

the 

portability of 

the compiler 

to other target 

processors

program 

analysis is 

more 

accurate on 

intermediat

e code than 

on machine 

code

the 

information 

from 

dataflow 

analysis 

cannot 

otherwise 

be used for 

optimizatio

n

the 

information 

from the 

front end 

cannot 

otherwise 

be used for 

optimizatio

n

they enhance 

the portability 

of the 

compiler to 

other target 

processors

27 One of the 

purposes of using 

intermediate code 

in compilers is to 

________

make parsing 

and semantic 

analysis 

simpler

improve 

error 

recovery 

and error 

reporting

increase the 

chances of 

reusing the 

machine-

independent 

code 

optimizer in 

other 

compilers

improve the 

register 

allocation

increase the 

chances of 

reusing the 

machine-

independent 

code 

optimizer in 

other 

compilers



28 What is the 

maximum 

number of reduce 

moves that can be 

taken by a bottom-

up parser for a 

grammar with no 

epsilon- and unit-

production (i.e., 

of type A -> є and 

A -> a) to parse a 

string with n 

tokens?

n/2 n-1 2n-1 2n n-1

29 The grammar S 

→ aSa | bS | c is

LL(1) but not 

LR(1)

LR(1)but 

not LL(1)

Both 

LL(1)and 

LR(1)

Neither 

LL(1)nor 

LR(1

Both 

LL(1)and 

LR(1)

30 For predictive 

parsing the 

grammar A->AA 

I (A) I ε is not 

suitable because

The grammar 

is right 

recursive

The 

grammar is 

left 

recursive

The 

grammar is 

ambiguous

The 

grammar is 

an operator 

grammar

The grammar 

is left 

recursive

31 How many tokens 

are there in the 

following C 

statement?                       

printf (―j=%d, 

&j=%x‖, j&j)

4 5 9 10 10

32 In a compiler, the 

data structure 

responsible for 

the management 

of information 

about variables 

and their 

attributes is

Semantic 

stack

Parser table Symbol 

table

Abstract 

syntax-tree

Symbol table



33 One of the 

purposes of using 

intermediate code 

in compilers is to

make parsing

and semantic

analysis 

simpler.

improve 

error 

recovery 

and error 

reporting

increase the 

chances of 

reusing the 

machine-

independent 

code 

optimizer in 

other 

compilers.

improve the 

register 

allocation.

increase the 

chances of 

reusing the 

machine-

independent 

code 

optimizer in 

other 

compilers.

34 Syntax directed 

translation 

scheme is 

desirable because 

It is based on 

the syntax

Its 

description 

is 

independen

t of any 

implementa

tion

It is easy to 

modify

All of these It is easy to 

modify

35 A top down 

parser generates 

Right most 

derivation

Right most 

derivation 

in reverse

Left most 

derivation

Left most 

derivation 

in reverse

Left most 

derivation

36  Intermediate 

code generation 

phase gets input 

from 

Lexical 

analyzer

Syntax 

analyzer

Semantic 

analyzer

Error 

handling

Semantic 

analyzer

37 An intermediate 

code form is

Postfix 

notation

Syntax 

trees

Three 

address 

code

All of these All of these

38 Input to code 

generator

Source code Intermediat

e code

Target code All of the 

above

Intermediate 

code

39 A grammar is 

meaningless

If terminal set 

and non 

terminal set 

are not 

disjoint

If left hand 

side of a 

production 

is a single 

terminal

If left hand 

side of a 

production 

has no non 

terminal

All of these If terminal set 

and non 

terminal set 

are not 

disjoint

40 Pee hole 

optimization

Loop 

optimization

Local 

optimizatio

n

Constant 

folding

Data flow 

analysis

Constant 

folding

41 Which is not true 

about syntax and 

semantic parts of 

a computer 

language

syntax is 

generally 

checked by 

the 

programmer

semantics 

is the 

responsibili

ty of the 

programme

r

semantics is 

checeked 

mechanicall

y by a 

computer

both (b) 

and (c)

both (b) and 

(c)



42 Which of the 

following 

grammers are not 

phase structured ?

regular context 

free gramm

context 

sensitive

none of 

these

none of these

43 Any syntactic 

constrct that can 

be described by a 

regular 

expression can 

also be described 

by a ________

context 

sensitive 

grammar

non-

context 

free 

grammar

context free 

grammar

none of 

these

context free 

grammar

44 In which 

addressing mode, 

the operand is 

given explicitly in 

the instruction 

itself?

absolute 

mode

immediate 

mode

.indirect 

mode

index mode immediate 

mode

45 YACC stands for 

______________

__

yet accept 

compiler 

constructs

.yet accept 

compiler 

compiler

yet another 

compiler 

constructs

yet another 

compiler 

compiler

yet another 

compiler 

compiler

46 An ideal 

computer should 

a) be small in size 

b) produce object 

code that is 

smaller in size 

and executes into 

tokens in a 

compiler

parser cose 

optimize

.code 

generator

.scanner .scanner

47 A lex program 

consists of 

__________

declarations .auxillary 

procedure

.translation 

rules

.all of these .all of these

48 Which of the 

following pairs is 

the most 

powerful?

 SLR, LALR Canonical 

LR ,LALR

 SLR 

canonical 

LR

LALR 

canonical 

LR

 SLR 

canonical LR

49 Which phase of 

compiler is 

Syntax Analysis?

First Second Third Fourth Second



50 What is Syntax 

Analyser also 

known as ?

Hierarchical 

Analysis

Hierarchica

l Parsing

None of the 

mentioned

Hierarchica

l Analysis 

& Parsing

Hierarchical 

Analysis & 

Parsing

51 Syntax Analyser 

takes Groups 

Tokens of source 

Program into 

Grammatical 

Production

TRUE FALSE NULL None TRUE

52 Parsers are 

expected to parse 

the whole code

TRUE FALSE NULL None TRUE

53 A grammar for a 

programming 

language is a 

formal 

description of 

_________

Syntax Semantics Structure Library Structure

54  An LR-parser 

can detect a 

syntactic error as 

soon as 

_________

The parsing 

starts

 It is 

possible to 

do so a left-

to-right 

scan of the 

input.

 It is 

possible to 

do so a 

right-to-left 

scan of the 

input.

Parsing 

ends

 It is possible 

to do so a left-

to-right scan 

of the input.

55 Which of the 

following is 

incorrect for the 

actions of A LR-

Parser I) shift s ii) 

reduce A->ß iii) 

Accept iv) reject?

 Only I)  I) and ii)  I), ii) and 

iii)

I), ii) , iii) 

and iv)

 I), ii) and iii)

56 If a state does not 

know whether it 

will make a shift 

operation or 

reduction for a 

terminal is called

Shift/reduce 

conflict

Reduce 

/shift 

conflict

 Shift 

conflict

Reduce 

conflict

Shift/reduce 

conflict



57 When there is a 

reduce/reduce 

conflict?

 If a state 

does not 

know 

whether it 

will make a 

shift 

operation 

using the 

If a state 

does not 

know 

whether it 

will make a 

shift or 

reduction 

operation 

If a state 

does not 

know 

whether it 

will make a 

reduction 

operation 

using the 

None of the 

mentioned

If a state does 

not know 

whether it 

will make a 

reduction 

operation 

using the 

production 58  Which of these is 

also known as 

look-head LR 

parser?

SLR LR LLR None LLR

59 What is the 

similarity 

between LR, 

LALR and SLR?

Use same 

algorithm, 

but different 

parsing table

Same 

parsing 

table, but 

different 

algorithm.

Their 

Parsing 

tables and 

algorithm 

are similar 

but uses top 

down 

approach.

Both 

Parsing 

tables and 

algorithm 

are 

different.

Use same 

algorithm, but 

different 

parsing table



Prepared By Dr.B.Firdaus Begam, Asst.Prof, Department of CS, CA & IT, KAHE Page 1 
 

KARPAGAM ACADEMY OF HIGHER EDUCATION 

CLASS : II B.SC CS                COURSE NAME: System Programming 

COURSE CODE: 16CSU601B              BATCH: 2016-2019 

UNIT III: PARSING  

 

UNIT III 

SYLLABUS 

Bottom up parsing- LR parser, YACC. Intermediate representations: Three address code 

generation, syntax directed translation, translation of types, control Statements. 

 

Syntax Analyzer 

A syntax analyzer or parser takes the input from a lexical analyzer in the form of token 

streams. The parser analyzes the source code (token stream) against the production rules to 

detect any errors in the code. The output of this phase is a parse tree. 

 

 Working principle Syntax Analyzer 

 

  In this way, the parser accomplishes two tasks, i.e., parsing the code and looking forerrors. 

Finally a parse tree is generated as the output of this phase.   Parsers are expected to parse the 

whole code even if some errors exist in the program.Parsers use error recovering strategies. 

Limitations of Syntax Analyzers 

Syntax analyzers receive their inputs, in the form of tokens, from lexical analyzers. Lexical 

analyzers are responsible for the validity of a token supplied by the syntax analyzer. Syntax 

analyzers have the following drawbacks: 

 it cannot determine if a token is valid, 

 it cannot determine if a token is declared before it is being used, 

 it cannot determine if a token is initialized before it is being used, 

 It cannot determine if an operation performed on a token type is valid or not. 



Prepared By Dr.B.Firdaus Begam, Asst.Prof, Department of CS, CA & IT, KAHE Page 2 
 

These tasks are accomplished by the semantic analyzer, which we shall study inSemantic 

Analysis. 

Types of Parsing 

Syntax analyzers follow production rules defined by means of context-free grammar.The way 

the production rules are implemented (derivation) divides parsing into two types:top-down 

parsing and bottom-up parsing. 

 

 

Top-down Parsing 

When the parser starts constructing the parse tree from the start symbol and thentries to 

transform the start symbol to the input, it is called top-down parsing. 

Recursive descent parsing: It is a common form of top-down parsing. It is calledrecursive, as 

it uses recursive procedures to process the input. Recursive descentparsing suffers from 

backtracking. 

Backtracking: It means, if one derivation of a production fails, the syntax analyser restarts the 

process using different rules of same production. This technique mayprocess the input string 

more than once to determine the right production. 

Bottom-up Parsing 

As the name suggests, bottom-up parsing starts with the input symbols and tries toconstruct 

the parse tree up to the start symbol. 

Note: 

In both the cases the input to the parser is being scanned from left to right, onesymbol at a 

time.The bottom-up parsing method is called “Shift Reduce” parsing. The top-down parsingis 

called “Recursive Decent” parsing. 

Bottom-up parsing starts from the leaf nodes of a tree and works in upward directiontill it 

reaches the root node. Here, we start from a sentence and then apply productionrules in 

reverse manner in order to reach the start symbol. The image given below depictsthe bottom-

up parsers available 

An operator-precedence parser is one kind of shift reduce parser and predictive parseris one 

kind of recursive descent parser. 



Prepared By Dr.B.Firdaus Begam, Asst.Prof, Department of CS, CA & IT, KAHE Page 3 
 

 

 

Shift reduce parsing methods 

  It is called as bottom up style of parsing. Shift-reduce parsing uses two unique steps for 

bottom-up parsing. These steps are known as shift-step and reduce-step.  

Shift step  

  The shift step refers to the advancement of the input pointer to the next input symbol, which  

is  called  the  shifted  symbol.  This  symbol  is  pushed  onto  the  stack.  The  shifted 

symbol is treated as a single node of the parse tree.  

Reduce step  

  When  the parser  finds a complete grammar rule  (RHS) and replaces  it  to  (LHS),  it  is 

known  as  reduce-step.  This  occurs  when  the  top  of  the  stack  contains  a  handle.  To 

reduce, a POP function is performed on the stack which pops off the handle and replaces it 

with LHS non-terminal symbol. 

Reducing a string W to the start symbol S of a grammar.  

  At each step a string matching the right side of a production is replaced by the symbol on 

the left.  

Example:  

 

  Each replacement of the right side of the production the left side in the process above is 

called   reduction .by reverse of a right most derivation is called Handle  

in partition following is a handle of αβw. The string w to 

the right of the handle contains only terminal symbol.  



Prepared By Dr.B.Firdaus Begam, Asst.Prof, Department of CS, CA & IT, KAHE Page 4 
 

  A  rightmost  derivation  in  reverse  often  called  a  canonical  reduction  sequence,  is 

obtained by “Handle Pruning”.  

 

 

 

LR Parser  

  The LR parser is a non-recursive, shift-reduce, bottom-up parser. It uses a wide classof 

context-free grammar which makes it the most efficient syntax analysis technique. LR parsers 

are also known as LR(k) parsers, where L stands  for  left-to-right scanning of the input  

stream;  R  stands  for  the  construction  of  right-most  derivation  in  reverse,  and  k 

denotes the number of look ahead symbols to make decisions.  

  An LL Parser accepts LL grammar. LL grammar  is a  subset  of  context-free grammar but  

with  some  restrictions  to  get  the  simplified  version,  in  order  to  achieve  easy 

implementation. LL grammar can be implemented by means of both algorithms, namely, 

recursive-descent or table-driven.  

  LL parser is denoted as LL(k). The first L in LL(k) is parsing the input from left to right, the 

second L in LL(k) stands for left-most derivation and k itself represents the number of look 

aheads. Generally k = 1, so LL(k) may also be written as LL(1). 

LL LR 

Does a leftmost derivation.   Does a rightmost derivation in reverse.      

Starts  with  the  root  nonterminal  on  the 

stack 

Ends with the root nonterminal on the stack. 

Ends when the stack is empty  Starts with an empty stack.  

Uses thestack for designating what is still to 

be expected. 

Uses the stack for designating what is already 

seen 

Builds the parse tree top-down.   Builds the parse tree bottom-up. 

Continuously  pops  a  nonterminal  off  the  

stack, and pushes  the  corresponding  right  

hand side. 

Tries to recognize a right hand side on 

thestack, pops it, and pushes the 

corresponding nonterminal. 



Prepared By Dr.B.Firdaus Begam, Asst.Prof, Department of CS, CA & IT, KAHE Page 5 
 

Expands the non-terminals Reduces the non-terminals. 

Reads  the  terminals  when  it  pops  one  off  

the stack. 

Reads the terminalswhile itpushes them on 

the stack. 

  Pre-order traversal of the parse tree. Post-order traversal of the parse tree 

 

INTERMEDIATE CODE GENERATION 

Intermediate code forms: 

An intermediate code form of source program is an internal form of a program created by the 

compiler while translating the program created by the compiler while translating the program 

from a high –level language to assembly code(or)object code(machine code).an intermediate 

source form represents a more attractive form of target code than does assembly. An 

optimizing Compiler performs optimizations on the intermediate source form and produces 

an object module. 

Analysis + syntheses=translation 

Creates an generate   target code 

Intermediate code 

 

Logical Structure of a Compiler Front End 

In the analysis –synthesis model of a compiler, the front-end translates a source program into 

anintermediate representation from which the back-end generates target code, in many 

compilers thesource code is translated into a language which is intermediate in complexity 

between a HLL andmachine code .the usual intermediate code introduces symbols to stand 

for various temporaryquantities. 

Intermediate representations span the gap between the source and target languages. 

• High Level Representations 

 closer to the source language 

 easy to generate from an input program 

 code optimizations may not be straightforward 

• Low Level Representations 

 closer to the target machine 

 Suitable for register allocation and instruction selection 

 easier for optimizations, final code generation 



Prepared By Dr.B.Firdaus Begam, Asst.Prof, Department of CS, CA & IT, KAHE Page 6 
 

There are several options for intermediate code. They can be either Specific to the language 

being implemented 

 P-code for Pascal 

 Byte code for Java 

We assume that the source program has already been parsed and statically checked.. the 

variousintermediate code forms are: 

 

 

 

 

 

 

 

 

Postfix  

The ordinary (infix) way of writing the sum of a and b is with the operator in the middle: a+b. 

thepostfix (or postfix polish)notation for the same expression places the operator at the right 

end, as ab+.In general, if e1 and e2 are any postfix expressions, and Ø to the values denoted 

by e1 and e2 isindicated in postfix notation nby e1e2Ø.no parentheses are needed in postfix 

notation because theposition and priority (number of arguments) of the operators permits only 

one way to decode apostfix expression. 

Example: 

1. (a+b)*c in postfix notation is ab+c*,sinceab+ represents the infix expression(a+b). 

2. a*(b+c)is abc+* in postfix. 

3. (a+b)*(c+d) is ab+cd+* in postfix. 

Postfix notation can be generalized to k-ary operators for any k>=1.if k-ary operator Ø is 

applied topostfix expression e1,e2,……….ek, then the result is denoted by e1e2…….ek Ø. if 

we know thepriority of each operator then we can uniquely decipher any postfix expression 

by scanning it fromeither end. 

Example: 

Consider the postfix string ab+c*. 

The right hand * says that there are two arguments to its left. since the next –to-rightmost 

symbol isc, simple operand, we know c must be the second operand of *.continuing to the 

left, we encounterthe operator +.we know the sub expression ending in + makes up the first 

operand of 

a) Polish notation 

b) Abstract syntax trees(or)syntax trees 

c) Quadruples 

d) Triples          three address code 

e) Indirect triples 

f) Abstract machine code(or)pseudocopde 

 



Prepared By Dr.B.Firdaus Begam, Asst.Prof, Department of CS, CA & IT, KAHE Page 7 
 

*.continuing in this way ,we deduce that ab+c* is “parsed” as (((a,b)+),c)*. 

b. syntax tree: 

The parse tree itself is a useful intermediate-language representation for a source 

program,especially in optimizing compilers where the intermediate code needs to extensively 

restructure. 

A parse tree, however, often contains redundant information which can be eliminated, 

Thusproducing a more economical representation of the source program. One such variant of 

a parse treeis what is called an (abstract) syntax tree, a tree in which each leaf represents an 

operand and eachinterior node an operator. 

Exmples: 1) Syntax tree for the expression a*(b+c)/d 

 

c.Three-Address Code: • In three-address code, there is at most one operator on the right 

side of aninstruction; that is, no built-up arithmetic expressions are permitted. 

x+y*z t1 = y * z t2 = x + t1 • Example 

 

LANGUAGE INDEPENDENT 3-ADDRESS CODE 

IR can be either an actual language or a group of internal data structures that are shared by 

the phases of the compiler. C used as intermediate language as it is flexible, compiles into 

efficient machine code and its compilers are widely available.In all cases, the intermediate 

code is a linearization of the syntax tree produced during syntax and semantic analysis. It is 

formed by breaking down the tree structure into sequential instructions, each of which is 

equivalent to a single, or small number of machine instructions. 



Prepared By Dr.B.Firdaus Begam, Asst.Prof, Department of CS, CA & IT, KAHE Page 8 
 

 Machine code can then be generated (access might be required to symbol tables etc). TAC 

can range from high- to low-level, depending on the choice of operators. In general, it is a 

statement containing at most 3 addresses or operands. The general form is x := y op z, where 

“op” is an operator, x is the result, and y and z are operands. x, y, z are variables, constants, 

or “temporaries”. A three-address instruction consists of at most 3 addresses for each 

statement. 

It is a linear zed representation of a binary syntax tree. Explicit names correspond to 

interiornodes of the graph. E.g. for a looping statement , syntax tree represents components of 

thestatement, whereas three-address code contains labels and jump instructions to represent 

theflow-of-control as in machine language. A TAC instruction has at most one operator on 

theRHS of an instruction; no built-up arithmetic expressions are permitted. 

e.g. x + y * z can be translated as 

t1 = y * z 

t2 = x + t1 

Where t1 & t2 are compiler–generated temporary names. 

Since it unravels multi-operator arithmetic expressions and nested control-flow statements,it 

is useful for target code generation and optimization. 

Addresses and Instructions 

• TAC consists of a sequence of instructions, each instruction may have up to threeaddresses, 

prototypically t1 = t2 op t3 

• Addresses may be one of: 

o A name. Each name is a symbol table index. For convenience, we writethe namesas the 

identifier. 

o A constant. 

o A compiler-generated temporary. Each time a temporary address is needed, thecompiler 

generates another name from the stream t1, t2, t3, etc. 

• Temporary names allow for code optimization to easily move Instructions 

• At target-code generation time, these names will be allocated to registers or to 

memory. 

• TAC Instructions 

o Symbolic labels will be used by instructions that alter the flow of control. 

The instruction addresses of labels will be filled in later. 

L: t1 = t2 op t3 

o Assignment instructions: x = y op z 

 • Includes binary arithmetic and logical operations 



Prepared By Dr.B.Firdaus Begam, Asst.Prof, Department of CS, CA & IT, KAHE Page 9 
 

o Unary assignments: x = op y 

 Includes unary arithmetic op (-) and logical op (!) and typeconversion 

o Copy instructions: x = y 

o Unconditional jump: goto L 

 • L is a symbolic label of an instruction 

o Conditional jumps: 

if x goto L If x is true, execute instruction L next 

ifFalse x goto L If x is false, execute instruction L next 

o Conditional jumps: 

if x relop y goto L 

– Procedure calls. For a procedure call p(x1, …,xn) 

param x1 

… 

paramxn 

call p, n 

– Functioncalls : y= p(x1, …, xn) y = call p,n , return y 

Types of three address code 

There are different types of statements in source program to which three address code has to 

be generated. Along with operands and operators, three address code also use labels to 

provide flow of control for statements like if-then-else, for and while. The different types of 

three address code statements are: 

Assignment statement 

a = b op c 

In the above case b and c are operands, while op is binary or logical operator. The result of 

applying op on b and c is stored in a. 

Unary operation 

a = op b This is used for unary minus or logical negation. 

Example: a = b * (- c) + d 

Three address code for the above example will be 



Prepared By Dr.B.Firdaus Begam, Asst.Prof, Department of CS, CA & IT, KAHE Page 10 
 

t1 = -c 

t2 = t1 * b 

t3 = t2 + d 

a = t3 

Copy Statement 

a=b 

The value of b is stored in variable a. 

Unconditional jump 

goto L 

Creates label L and generates three-address code „goto L‟ 

v. Creates label L, generate code for expression exp, If the exp returns value true then go to 

the statement labelled L. exp returns a value false go to the statement immediately following 

the if statement. 

Function call 

For a function fun with n arguments a1,a2,a3….an ie., 

fun(a1, a2, a3,…an), 

the three address code will be 

Param a1 

Param a2 

… 

Param an 

Call fun, n 

Where param defines the arguments to function. 

Array indexing 

In order to access the elements of array either single dimension ormultidimension, three 

address code requires base address and offset value. Base addressconsists of the address of 

first element in an array. Other elements of the array can beaccessed using the base address 

and offset value. 

Example: x = y[i] 

Memory location m = Base address of y + Displacement i 

x = contents of memory location m 



Prepared By Dr.B.Firdaus Begam, Asst.Prof, Department of CS, CA & IT, KAHE Page 11 
 

similarly x[i] = y 

Memory location m = Base address of x + Displacement i 

The value of y is stored in memory location m 

Pointer assignment 

x = &y x stores the address of memory location y 

x = *y y is a pointer whose r-value is location 

*x = y sets r-value of the object pointed by x to the r-value of y 

Intermediate representation should have an operator set which is rich to implement. 

Theoperations of source language. It should also help in mapping to restricted instruction set 

oftarget machine. 

QUADRUPLES- 

Quadruples consists of four fields in the record structure. One field to store operator op, 

twofields to store operands or arguments arg1and arg2 and one field to store result res. res = 

arg1op arg2 

Example: a = b + c 

b is represented as arg1, c is represented as arg2, + as op and a as res. 

Unary operators like „-„do not use agr2. Operators like param do not use agr2 nor result. 

Forconditional and unconditional statements res is label. Arg1, arg2 and res are pointers 

tosymbol table or literal table for the names. 

Example: a = -b * d + c + (-b) * d 

Three address code for the above statement is as follows 

t1 = - b 

t2 = t1 * d 

t3 = t2 + c 

t4 = - b 

t5 = t4 * d 

t6 = t3 + t5 

a = t6 

Quadruples for the above example is as follows 



Prepared By Dr.B.Firdaus Begam, Asst.Prof, Department of CS, CA & IT, KAHE Page 12 
 

 

TRIPLES 

Triples uses only three fields in the record structure. One field for operator, two fields 

foroperands named as arg1 and arg2. Value of temporary variable can be accessed by 

theposition of the statement the computes it and not by location as in quadruples. 

Example: a = -b * d + c + (-b) * d 

Triples for the above example is as follows 

 

Arg1 and arg2 may be pointers to symbol table for program variables or literal table 

forconstant or pointers into triple structure for intermediate results.Example: Triples for 

statement x[i] = y which generates two records is as follows 



Prepared By Dr.B.Firdaus Begam, Asst.Prof, Department of CS, CA & IT, KAHE Page 13 
 

 

INDIRECT TRIPLES 

Indirect triples are used to achieve indirection in listing of pointers. That is, it uses pointers 

totriples than listing of triples themselves. 

Example: a = -b * d + c + (-b) * d 

 

Conditional operator and operands. Representations include quadruples, triples and indirect 
triples 

SYNTAX DIRECTED TRANSLATION 

 The Principle of Syntax Directed Translation states that the meaning of an input sentence 

is related to its syntactic structure, i.e., to its Parse-Tree. 

 By Syntax Directed Translations we indicate those formalisms for specifying translations 

for programming language constructs guided by context-free grammars. 

o We associate Attributes to the grammar symbols representing the language 

constructs. 

o Values for attributes are computed by Semantic Rules associated with grammar 

productions. 

 Evaluation of Semantic Rules may: 

o Generate Code; 

o Insert information into the Symbol Table; 



Prepared By Dr.B.Firdaus Begam, Asst.Prof, Department of CS, CA & IT, KAHE Page 14 
 

o Perform Semantic Check; 

o Issue error messages; 

o etc. 

There are two notations for attaching semantic rules: 

1. Syntax Directed Definitions. High-level specification hiding many implementationdetails 

(also called Attribute Grammars). 

2. Translation Schemes. More implementation oriented: Indicate the order in whichsemantic 

rules are to be evaluated. 

Syntax Directed Definitions 

• Syntax Directed Definitions are a generalization of context-free grammars in which: 

1. Grammar symbols have an associated set of Attributes; 

2. Productions are associated with Semantic Rules for computing the values of attributes. 

 Such formalism generates Annotated Parse-Trees where each node of the tree is a 

record with a field for each attribute (e.g.,X.a indicates the attribute a of the 

grammarsymbol X). 

 The value of an attribute of a grammar symbol at a given parse-tree node is defined 

bya semantic rule associated with the production used at that node. 

We distinguish between two kinds of attributes: 

1. Synthesized Attributes. They are computed from the values of the attributes of thechildren 

nodes. 

2. Inherited Attributes. They are computed from the values of the attributes of both 

thesiblings and the parent nodes 

Syntax Directed Definitions: An Example 

• Example. Let us consider the Grammar for arithmetic expressions. TheSyntax Directed 

Definition associates to each non terminal a synthesizedattribute called val. 

 



Prepared By Dr.B.Firdaus Begam, Asst.Prof, Department of CS, CA & IT, KAHE Page 15 
 

 

S-ATTRIBUTED DEFINITIONS 

Definition. An S-Attributed Definition is a Syntax Directed Definition that usesonly 

synthesized attributes. 

• Evaluation Order. Semantic rules in a S-Attributed Definition can beevaluated by a bottom-

up, or PostOrder, traversal of the parse-tree. 

• Example. The above arithmetic grammar is an example of an S-AttributedDefinition. The 

annotated parse-tree for the input 3*5+4n is: 

 

L-attributed definition 

 A SDD its L-attributed if each inherited attribute of Xi in the RHS of A !X1 : 

:Xn depends only on 

1. attributes of X1;X2; : : : ;Xi�1 (symbols to the left of Xi in the RHS) 



Prepared By Dr.B.Firdaus Begam, Asst.Prof, Department of CS, CA & IT, KAHE Page 16 
 

2. inherited attributes of A. 

Restrictions for translation schemes: 

1. Inherited attribute of Xi must be computed by an action before Xi. 

2. An action must not refer to synthesized attribute of any symbol to the right of that action. 

3. Synthesized attribute for A can only be computed after all attributes it references have 

been completed (usually at end of RHS). 

Applications of Syntax-Directed Translation 

• Construction of syntax Trees 

– The nodes of the syntax tree are represented by objects with a suitable number of fields. 

– Each object will have an op field that is the label of the node. 

– The objects will have additional fields as follows 

• If the node is a leaf, an additional field holds the lexical value for the leaf. A constructor 

function Leaf (op, val) creates a leaf object. 

• If nodes are viewed as records, the Leaf returns a pointer to a new record for a leaf. 

• If the node is an interior node, there are as many additional fields as the node has children in 

the syntax tree. A constructor function 

Node takes two or more arguments: 

Node (op , c1,c2,…..ck) creates an object with first field op and k additional fields for the k 

children c1,c2,…..ck 

Syntax-Directed Translation Schemes 

A SDT scheme is a context-free grammar with program fragments embedded within 

production bodies .The program fragments are called semantic actions and can appear at any 

position within the production body. 

Any SDT can be implemented by first building a parse tree and then pre-forming the actions 

in a left-to-right depth first order. i.e during preorder traversal. 

The use of SDT‟s to implement two important classes of SDD‟s 

1. If the grammar is LR parsable, then SDD is S-attributed. 

2. If the grammar is LL parsable, then SDD is L-attributed. 

Postfix Translation Schemes 

The postfix SDT implements the desk calculator SDD with one change: the action for the 

first production prints the value. As the grammar is LR, and the SDD is S-attributed. 

L →E n {print(E.val);} 



Prepared By Dr.B.Firdaus Begam, Asst.Prof, Department of CS, CA & IT, KAHE Page 17 
 

E → E1 + T { E.val = E1.val + T.val } 

E → E1 - T { E.val = E1.val - T.val } 

E → T { E.val = T.val } 

T → T1 * F { T.val = T1.val * F.val } T → F { T.val = F.val } 

F → ( E ) { F.val = E.val } 

F → digit { F.val = digit.lexval } 

 



S.No Question Option A Option B Option C Option D Answer

1 The average 

time required 

to reach a 

storage 

Seek time Turn 

around 

time

transfer time access time access time

2 What 

characteristic 

of RAM 

memory makes 

it not suitable 

for permanent 

storage?

Too slow Unreliable It is volatile Too bulky It is volatile

3  Assembly 

language 

________

Uses 

alphabetic 

codes in 

place of 

Is the 

easiest 

language 

to write 

 Need not be 

translated 

into machine 

language

None of the 

mentioned

Uses 

alphabetic 

codes in place 

of binary 
4 Select a 

Machine 

Syntax 

Analysis

Intermedi

ate Code 

Lexical 

analysis 

all the above all the above

5 Which of the 

following 

system 

software 

resides in the 

main memory 

always

Text Editor Assemble

r 

Linker Loader Loader

6 Which of these 

features of 

Instruction 

formats

Addressin

g modes

Program 

relocation

All of the 

mentioned

All of the 

mentioned
7 Which of these 

is not true 

about Symbol 

All the 

labels of the 

instructions 

Table has 

entry for 

symbol 

Perform the 

processing of 

the 

Created 

during pass 1

Perform the 

processing of 

the assembler 
8  In Reverse 

Polish notation, 

expression 

A*B+C*D is 

written as

AB*CD*+ A*BCD*

+

AB*CD+* A*B*CD+ AB*CD*+

9 The circuit 

converting 

binary data in 

to decimal 

is_____

Encoder Multiplex

er

 Decoder Code 

converter

Code 

converter

UNIT IV



10  In computers, 

subtraction is 

carried out 

generally 

by____

1’s 

complemen

t method

2’s 

compleme

nt method

signed 

magnitude 

method

BCD 

subtraction 

method

2’s 

complement 

method

11 The 

identification 

of common sub-

expression and 

replacement of 

run-time 

computations 

by compile-

time 

computations is

local 

optimizatio

n

loop 

optimizati

on

constant 

folding

data flow 

analysis

constant 

folding

12 The graph that 

shows basic 

blocks and 

their successor 

relationship is 

called

DAG Hamiltoni

on graph

Flow graph control graph Flow graph

13 The specific 

task storage 

manager 

performs 

allocation/ 

deallocation 

of storage 

to programs

protection 

of storage 

area 

allocated 

to a 

program 

from 

illegal 

access by 

othere 

programs 

in the 

system

the status of 

each 

program

both ( a ) and 

( b ) 

both ( a ) and 

( b ) 

14 When a 

computer is 

first turned on 

or resrarted, a 

special type of 

absolute loader 

is executed 

called

" Compile 

and GO " 

loader

Boot 

loader

Boot strap 

loader

Relating 

loader

Boot strap 

loader



15 Function of the 

storage 

assignment is

assign 

storage to 

all variables 

referenced 

in the 

source 

program

assign 

storage to 

all 

temporary 

locations 

that are 

necessary 

for 

intermedi

ate results

assign 

storage to 

literals, and 

to ensure that 

the storage is 

allocated and 

appropriate 

locations are 

initialized

all of these all of these

16 Relocation bits 

used by 

relocating 

loader are 

specified by

relocating 

loader itself

linker assembler macro 

processor

linker

17 Running time 

of a program 

depends on

the way the 

registers 

and 

addressing 

modes are 

use

the order 

in which 

computati

ons are 

performed

the usage of 

machine 

idioms

all of these all of these

18 Advantage of 

panic mode of 

error recovery 

is that

it is simple 

to 

implement

it never 

gets into 

an infinite 

loop

both (a) and 

(b)

none of these both (a) and 

(b)

19 Which of the 

following can 

be accessed by 

transfer vector 

approach of 

linking ?

external 

data 

segments

external 

sub-

routines

data located 

in other 

procedure

all of these external sub-

routines

20 Generation of 

intermediate 

code based on 

a abstract 

machine model 

is useful in 

compilers 

because

it makes 

implementa

tion of 

lexical 

analysis and 

syntax 

analysis 

easier

syntax 

directed 

translation

s can be 

written for 

intermedi

ate code 

generation

it enhances 

the 

portability of 

the front end 

of the 

compiler

it is not 

possible to 

generate 

code for real 

machines 

directly from 

high level 

language 

programs

it makes 

implementati

on of lexical 

analysis and 

syntax 

analysis 

easier



21 Which of the 

following 

module does 

not incorporate 

initialization of 

values changed 

by the module 

?

non 

reusable 

module

serially 

reusable 

module

re-enterable 

module

all of these non reusable 

module

22 A self-

relocating 

program is one 

which

cannot be 

made to 

execute in 

any area of 

storage 

other than 

the one 

designated 

for it at the 

time of its 

coding or 

translation

consists of 

a program 

and 

relevant 

informatio

n for its 

relocation

can itself 

perform the 

relocation of 

its address 

sensitive 

portions 

all of these can itself 

perform the 

relocation of 

its address 

sensitive 

portions 

23 The string 

(a)|((b)*(c)) is 

equivalent to

Empty abcabc b*c|a None of the 

mentioned

b*c|a

24 Which one of 

the following 

statements is 

FALSE ?

Context-

free 

grammar 

can be used 

to specify 

both lexical 

and syntax 

rules.

Type 

checking 

is done 

before 

parsing.

High-level 

language 

programs can 

be translated 

to different 

Intermediate 

Representati

ons.

Arguments 

to a function 

can be 

passed using 

the program 

stack.

Type 

checking is 

done before 

parsing.

25 Some code 

optimizations 

are carried out 

on the 

intermediate 

code because

they 

enhance the 

portability 

of the 

compiler to 

other target 

processors

program 

analysis is 

more 

accurate 

on 

intermedi

ate code 

than on 

machine 

code

the 

information 

from 

dataflow 

analysis 

cannot 

otherwise be 

used for 

optimization

the 

information 

from the 

front end 

cannot 

otherwise be 

used for 

optimization

they enhance 

the portability 

of the 

compiler to 

other target 

processors



26  A non 

relocatable 

program is the 

one which

cannot be 

made to 

execute in 

any area of 

storage 

other than 

the one 

designated 

for it at the 

time of its 

coding or 

translation

consists of 

a program 

and 

relevant 

informatio

n for its 

relocation

can itself 

perform the 

relocation of 

its address 

sensitive 

portions

all of these cannot be 

made to 

execute in 

any area of 

storage other 

than the one 

designated 

for it at the 

time of its 

coding or 

translation

27 A  relocatable 

program form 

is one which

cannot be 

made to 

execute in 

any area of 

storage 

other than 

the one 

designated 

for it at the 

time of its 

coding or 

translation

consists of 

a program 

and 

relevant 

informatio

n for its 

relocation

can be 

processed to 

relocate it to 

a desired 

area of 

memory

all of these can be 

processed to 

relocate it to 

a desired area 

of memory

28 A self-

relocating 

program is one 

which

cannot be 

made to 

execute in 

any area of 

storage 

other than 

the one 

designated 

for it at the 

time of its 

coding or 

translation

consists of 

a program 

and 

relevant 

informatio

n for its 

relocation

can itself 

perform the 

relocation of 

its address 

sensitive 

portions 

all of these can itself 

perform the 

relocation of 

its address 

sensitive 

portions 

29 In which 

storage 

allocation 

stragey size is 

required at 

compile time

static 

allocation

dynamic 

allocation

stack 

allocation

all static 

allocation



30 Which field is 

not present in 

activation 

record

saved 

machine 

status

register 

allocation

optional 

control link

temporaries register 

allocation

31 Which of the 

following are 

activation 

records?

return value local data temporaries all all

32 which of the 

following are 

storage 

stack 

allocation

static 

allocation

heap 

allocation

all all

33 ___________ 

tree is used to 

depict the way 

control enters 

and leaves 

activation

Activation 

tree

tree parse tree none Activation 

tree

34 In activation 

tree each node 

represent

activation 

of main 

program

activaiton 

of 

procedure

both (a) and 

(b)

none

35 ________ can 

be used to keep 

track of live 

control 

stack

activation 

tree

activation 

node

none

36 if the 

occurance of 

the name in the 

procedure is in 

the scope of 

declaration 

within the 

procedure then 

it is said to be

local nonlocal global none local

37 subdivision of 

runtime 

memory 

consists of

code static data stack all stack 

38 In activation 

record, optional 

control link 

points to

activation 

record of 

caller

activation 

record of 

callee

both (a) and 

(b)

none activation 

record of 

caller



39 The field of 

actual 

parameter in 

activation 

record is used 

by which 

procedure?

calling 

procedure

called 

procedure

both (a) and 

(b)

none calling 

procedure

40 Allocation of 

activation 

record and 

entering 

information 

into fields is 

done by

return 

sequence

call 

sequence

both (a) and 

(b)

none call sequence

41 call by 

reference is 

also called as

call-by-

address

call-by-

location

both (a) and 

(b)

none both (a) and 

(b)

42 In which 

allocation, 

names are 

bound to 

static heap stack none static

43 Flow of control 

in a program 

corresponds to 

which traversal 

of activation 

tree ?

Depth first 

traversal

Breadth 

first 

traversal

both (a) and 

(b)

none Depth first 

traversal

44 Which is the 

correct 

sequence of 

compilation 

process?

Assembler 

→ 

Compiler 

→ 

Preprocesso

Compiler 

→ 

Assenbler 

→ 

Preproces

Preprocessor 

→ Compiler 

→ 

Assembler 

→ Linking

Assembler 

→ Compiler 

→ Linking 

→ 

Preprocessor

Preprocessor 

→ Compiler 

→ Assembler 

→ Linking

45 Why 

is calloc() funct

ion used for?

allocates 

the 

specified 

number of 

bytes

increases or 

decreases the 

size of the 

specified 

block of 

memory and 

reallocates it 

if needed

calls the 

specified 

block of 

memory for 

execution.

allocates the 

specified 

number of 

bytes and 

initializes 

them to zero

46  The instruction 

‘ORG O’ is 

a______

 Machine 

Instruction

Pseudo 

instructio

n

High level 

instruction

Memory 

instruction

Pseudo 

instruction



47  Memory unit 

accessed by 

content is 

called______

 Read only 

memory

Programm

able 

Memory

Virtual 

Memory

Associative 

Memory

Associative 

Memory

48 ________ 

register keeps 

tracks of the 

instructions 

stored in 

program stored 

in memory.

AR 

(Address 

Register)

XR (Index 

Register)

PC (Program 

Counter)

AC 

(Accumulato

r)

PC (Program 

Counter)

49 The circuit 

converting 

binary data in 

to decimal 

is_____

Encoder Multiplex

er

Decoder Code 

converter

Code 

converter

50 In computers, 

subtraction is 

generally done 

by ________

1's 

complemen

t method

2's 

compleme

nt method

BCD 

subtraction 

method

signed 

magnitude 

method

2's 

complement 

method

51 PSW is saved 

in stack when 

there is a 

_____

Interrupt 

recognized

 Executio

n of RST 

instructio

n

Execution of 

CALL 

instruction

All of these Interrupt 

recognized

52 Memory unit 

accessed by 

content is 

called______

 Read only 

memory

Programm

able 

Memory

Virtual 

Memory

Associative 

Memory

Associative 

Memory

53  ‘Aging 

registers’ are 

_______

Counters 

which 

indicate 

how long 

ago their 

associated 

pages have 

been 

Referenced.

Registers 

which 

keep track 

of when 

the 

program 

was last 

accessed

Counters to 

keep track of 

last accessed 

instruction

Counters to 

keep track of 

the latest 

data 

structures 

referred

Counters 

which 

indicate how 

long ago their 

associated 

pages have 

been 

Referenced.

54 The size of the 

activation 

record can be 

determined at 

___________

Run time Compile 

time

both (a) and 

(b)

none of these both (a) and 

(b)



55 Which of the 

following are 

parameter 

passing method

call by 

value

call by 

reference

call by 

restore 

all all

56 Which one of 

the following 

statement is 

false for the 

SLR (1) and 

LALR (1) 

parsing tables 

for a context 

free grammar?

The reduce 

entries in 

both the 

tables may 

be different

The error 

entries in 

both the 

tables 

may be 

different

The go to 

part of both 

tables may 

be different 

The shift 

entries in 

both the 

tables may 

be identical

The go to part 

of both tables 

may be 

different 



 

1  

 

KARPAGAM ACADEMY OF HIGHER EDUCATION 

(Deemed to be University) 
(Established under section 3 of UGC Act,1956 

 

CLASS : II B.SC IT               COURSE NAME: System Programming 

COURSE CODE:16ITU603B              BATCH: 2016-2019 

UNIT II: STORAGE ORGANIZATION  

UNIT -4 

SYLLABUS 

Storage organization: Activation records stack allocation. 

RUNTIME ENVIRONMENT 

 A program as a source code is merely a collection of text (code, statements etc.) and to 

make it alive, it requires actions to be performed on the target machine. A program needs 

memory resources to execute instructions. A program contains names for procedures, 

identifiers etc., that require mapping with the actual memory location at runtime. 

By runtime, we mean a program in execution. Runtime environment is a state of the target 

machine, which may include software libraries, environment variables, etc., to provide 

services to the processes running in the system. 

Runtime support system is a package, mostly generated with the executable program itself 

and facilitates the process communication between the process and the runtime environment. 

It takes care of memory allocation and de-allocation while the program is being executed. 

 Runtime organization of different storage locations 

 Representation of scopes and extents during program execution. 

 Components of executing program reside in blocks of memory (supplied by OS). 

 Three kinds of entities that need to be managed at runtime (code, variables and 

procedures) 

Generated code for various procedures and programs. forms text or code segment 

of your program: size known at compile time. 

Data objects: 

 Global variables/constants: size known at compile time 

 Variables declared within procedures/blocks: size known 

 Variables created dynamically: size unknown. 

 



 

2  

 

Stack to keep track of procedure activations. 

Subdivide memory conceptually into code (program) and data areas  

STATIC VERSUS DYNAMIC STORAGE ALLOCATION 

 Much (often most) data cannot be statically allocated. Either its size is not known at 

compile time or its lifetime is only a subset of the program's execution. 

 Early versions of Fortranused only statically allocated data. This required that each 

array had a constant size specified in the program. Another consequence of supporting 

only static allocation was that recursion was forbidden (otherwise the compiler could 

not tell how many versions of a variable would be needed). 

 Modern languages, including newer versions of Fortran, support both static and 

dynamic allocation of memory. 

 The advantage supporting dynamic storage allocation is the increased flexibility and 

storage efficiency possible (instead of declaring an array to have a size adequate for 

the largest data set; just allocate what is needed). The advantage of static storage 

allocation is that it avoids the runtime costs for allocation/deallocation and may 

permit faster code sequences for referencing the data. 

 An (unfortunately, all too common) error is a so-called memory leak where a long 

running program repeated allocates memory that it fails to delete, even after it can no 

longer be referenced. To avoid memory leaks and ease programming, several 

programming language systems employ automatic garbage collection. That means the 

runtime system itself can determine if data can no longer be referenced and if so 

automatically deallocates it. 

STORAGE ALLOCATION:  

 Compiler must do the storage allocation and provide access to variables and data 

 Memory management  

 Stack allocation  

 Heap management  

 Garbage collection 

Storage Allocation Strategies  

• Static allocation (Code): lays out storage at compile time for all data objects  



 

3  

 

• Stack allocation(Procedures): manages the runtime storage as a stack  

• Heap allocation (Variables): allocates and deallocates storage as needed at runtime from 

heap 

 

STORAGE ORGANIZATION 

 

   Assumes a logical address space 

 Operating system will later map it to physical addresses, decide how touse cache 

memory, etc.  

 Memory typically divided into areas for 

  Program code  

  Other static data storage, including global constants and compiler generated data  

  Stack to support call/return policy for procedures  

  Heap to store data that can outlive a call to a procedure  



 

4  

 

STATIC ALLOCATION  

Statically allocated names are bound to storage at compile time. Storage bindings of statically 

allocated names never change, so even if a name is local to a procedure, its name is always 

bound to the same storage. The compiler uses the type of a name (retrieved from the symbol 

table) to determine storage size required. The required number of bytes (possibly aligned) is 

set aside for the name.The address of the storage is fixed at compile time. 

Limitations: 

 The size required must be known at compile time. 

 Recursive procedures cannot be implemented as all locals are statically allocated. 

 No data structure can be created dynamically as all data is static. 

 

 Stack-dynamic allocation 

 Storage is organized as a stack. 

 Activation records are pushed and popped. 

 Locals and parameters are contained in the activation records for the call. 

 This means locals are bound to fresh storage on every call. 



 

5  

 

 If we have a stack growing downwards, we just need a stack_top pointer. 

 To allocate a new activation record, we just increase stack_top. 

 To deallocate an existing activation record, we just decrease stack_top. 

RUN-TIME STACK AND HEAP 

The STACK is used to store: 

o Procedure activations. 

o The status of the machine just before calling a procedure, so that the status can be 

restored when the called procedure returns. 

o The HEAP stores data allocated under program control (e.g. by malloc() in C). 

ACTIVATION RECORDS 

Any information needed for a single activation of a procedure is stored in the ACTIVATION 

RECORD (sometimes called the STACK FRAME). Today, we’ll assume the stack grows 

DOWNWARD, as on, e.g., the Intel architecture. The activation record gets pushed for each 

procedure call and popped for each procedure return. 

A program is a sequence of instructions combined into a number of procedures. Instructions 

in a procedure are executed sequentially. A procedure has a start and an end delimiter and 

everything inside it is called the body of the procedure. The procedure identifier and the 

sequence of finite instructions inside it make up the body of the procedure.The execution of 

a procedure is called its activation. An activation record contains all the necessary 

information required to call a procedure.  

Each time the flow of control enters a function or procedure, we update its procedure 

activation record. This maintains the values of the function arguments and all local variables 

defined inside the function, and pointers to the start of the code segment, the current location 

in the code segment, and the segment of code to which we return on exit. 

Whenever a procedure is executed, its activation record is stored on the stack, also known as 

control stack. When a procedure calls another procedure, the execution of the caller is 

suspended until the called procedure finishes execution. At this time, the activation record of 

the called procedure is stored on the stack. 

We assume that the program control flows in a sequential manner and when a procedure is 

called, its control is transferred to the called procedure. When a called procedure is 



 

6  

 

executed, it returns the control back to the caller. This type of control flow makes it easier to 

represent a series of activations in the form of a tree, known as the activation tree. 

Example:  

Consider the quick sort program 

 

Activation for Quicksort: 



 

7  

 

 

Activation tree representing calls during an execution of quicksort: 

 

Activation records 

 Procedure calls and returns are usually managed by a run-time stack called the control 

stack.  

 Each live activation has an activation record (sometimes called a frame)  

 The root of activation tree is at the bottom of the stack  

 The current execution path specifies the content of the stack with the last  

 Activation has record in the top of the stack. 

A General Activation Record 



 

8  

 

 

Activation Record 

Fields Elements 

Temporaries Stores temporary and intermediate values of 

an expression. 

Local Data Stores local data of the called procedure. 

Machine Status Stores machine status such as Registers, 

Program Counter etc., before the procedure is 

called. 

Control Link Stores the address of activation record of the 

caller procedure. 

Access Link Stores the information of data which is 

outside the local scope. 

Actual Parameters Stores actual parameters, i.e., parameters 

which are used to send input to the called 

procedure. 

Return Value Stores return values. 

 



 

9  

 

Downward-growing stack of activation records: 

 

Address generation in stack allocation 

The position of the activation record on the stack cannot be determined statically. Therefore 

the compiler must generate addresses RELATIVE to the activation record. If we have a 

downward-growing stack and a stack_top pointer, we generate addresses of the form 

stack_top + offset 

HEAP ALLOCATION 

Some languages do not have tree-structured allocations. In these cases, activations have to be 

allocated on the heap. This allows strange situations, like callee activations that live longer 

than their callers’ activations. This is not common Heap is used for allocating space for 

objects created at run timeFor example: nodes of dynamic data structures such as linked lists 

and trees 

 Dynamic memory allocation and deallocation based on the requirements of the 

programmalloc() and free() in C programs  

 new()and delete()in C++ programs  

 new()and garbage collection in Java programs 



 

10  

 

 Allocation and deallocation may be completely manual (C/C++), semi-automatic(Java), 

or fully automatic (Lisp) 

PARAMETERS PASSING 

The communication medium among procedures is known as parameter passing. The values 

of the variables from a calling procedure are transferred to the called procedure by some 

mechanism. Before moving ahead, first go through some basic terminologies pertaining to 

the values in a program. 

r-value 

The value of an expression is called its r-value. The value contained in a single variable also 

becomes an r-value if it appears on the right-hand side of the assignment operator. r-values 

can always be assigned to some other variable. 

l-value 

The location of memory (address) where an expression is stored is known as the l-value of 

that expression. It always appears at the left hand side of an assignment operator. 

A language has first-class functions if functions can be declared within any scope passed as 

arguments to other functions returned as results of functions. 

 In a language with first-class functions and static scope, a function value is generally 

represented by a closure. 

 A pair consisting of a pointer to function code a pointer to an activation record. 

 Passing functions as arguments is very useful in structuring of systems using upcalls 

Formal Parameters 

Variables that take the information passed by the caller procedure are called formal 

parameters. These variables are declared in the definition of the called function. 

Actual Parameters 

Variables whose values or addresses are being passed to the called procedure are called 

actual parameters. These variables are specified in the function call as arguments. 

Formal parameters hold the information of the actual parameter, depending upon the 

parameter passing technique used. It may be a value or an address. 



 

11  

 

Pass by Value 

In pass by value mechanism, the calling procedure passes the r-value of actual parameters 

and the compiler puts that into the called procedure’s activation record. Formal parameters 

then hold the values passed by the calling procedure. If the values held by the formal 

parameters are changed, it should have no impact on the actual parameters. 

Pass by Reference 

In pass by reference mechanism, the l-value of the actual parameter is copied to the 

activation record of the called procedure. This way, the called procedure now has the 

address (memory location) of the actual parameter and the formal parameter refers to the 

same memory location. Therefore, if the value pointed by the formal parameter is changed, 

the impact should be seen on the actual parameter as they should also point to the same 

value. 

Pass by Copy-restore 

This parameter passing mechanism works similar to ‘pass-by-reference’ except that the 

changes to actual parameters are made when the called procedure ends. Upon function call, 

the values of actual parameters are copied in the activation record of the called procedure. 

Formal parameters if manipulated have no real-time effect on actual parameters (as l-values 

are passed), but when the called procedure ends, the l-values of formal parameters are 

copied to the l-values of actual parameters. 

Pass by Name 

Languages like Algol provide a new kind of parameter passing mechanism that works like 

preprocessor in C language. In pass by name mechanism, the name of the procedure being 

called is replaced by its actual body. Pass-by-name textually substitutes the argument 

expressions in a procedure call for the corresponding parameters in the body of the 

procedure so that it can now work on actual parameters, much like pass-by-reference. 

 

 

 

 

 



 

12  

 

 

 

 

 

 

  

 

 

 

 

 

Designing Calling Sequences: 

 Values communicated between caller and callee are generally placed at the beginning of 

callee’s activation record  

 Fixed-length items: are generally placed at the middle  

 Items whose size may not be known early enough: are placed at the end of activation 

record  We must locate the top-of-stack pointer judiciously: a common approach is to 

have it point to the end of fixed length fields  

An example:  

main() 

{ int x = 4;  

int f (int y) {  

return x*y;  

}  

int g (int →int h){  

int x = 7;  

return h(3) + x;  

} 

g(f);//returns 12 

} 

Passing Functions as Parameters – Implementation with 

Static Scope 



 

13  

 

Access to dynamically allocated arrays: 

 

Memory Manager: 

 Two basic functions:  

 Allocation  

 Deallocation  

 Properties of memory managers: 

 Space efficiency  

 Program efficiency  

 Low overhead 

Typical Memory Hierarchy Configurations 



 

14  

 

 

Locality in Programs: 

The conventional wisdom is that programs spend 90% of their time executing 10% of the 

code: 

 Programs often contain many instructions that are never executed.  

 Only a small fraction of the code that could be invoked is actually executed in typical 

run of the program.  

 The typical program spends most of its time executing innermost loops and tight 

recursive cycles in a program. 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 1 
 

KARPAGAM ACADEMY OF HIGHER EDUCATION 

(Deemed to be University) 

(Established under section 3 of UGC Act,1956 

 

CLASS : II B.SC IT               COURSE NAME: System Programming 

COURSE CODE: 16ITU603B                                       BATCH: 2016-2019 

UNIT II: Code Generation 

UNIT -5 

SYLLABUS 

Code Generation: Object code generation 

 

CODE GENERATION 

Introduction  

 

Optimization is a program transformation technique, which tries to improve the code  

by making it consume less resources (i.e. CPU, Memory) and deliver high speed.  

 

1. The  term  “code  optimization”  refers  to  techniques,  a  compiler  can  employ  in  an  

attempt to produce a better object language program than the most obvious for a given  

source program.  

2. The  quality  of  the  object  program  is  generally  measured  by  its  size  (for  small  

computation) or its running time (for large computation).  

3. It is theoretically impassible for a compiler to produce the best possible object program  

for every source program under any reasonable cast function.  

4. The accurate term for “code optimization” is “code improvement”.  

5. There are many aspects to code optimization.  

a. Cast     

b. Quick & straight forward translation (time).  

  

 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 2 
 

The Principal Sources Of Optimization  

It consists of detecting patterns in the program and replacing these patterns by equivalent and 

more efficient construct. 

 The  code  optimization  techniques  consist  of  detecting  patterns  in  the  program  

and  

Inner Loops  

 “90-10” rule states that 90%  of  the  time  is  spent in  10% of  the  code. Thus the  

most  

Language Implementation Details Inaccessible To the User:  

The optimization can be done by  

1) Programmer- Write source program (user can write)  

2) Compiler           -e.g.: array references are made by indexing, rather than by pointer or  

address  calculation  prevents  the  programmer  from  dealing  with  offset  calculations  in  

arrays.  

  

 The term constant folding is used for the latter optimization.  

Example:  

        A [i+1]:=B [i+1] is easier.  

        J: =i+1  

        A[j]:=B[j]  

 

 There are three types of code optimization   

I. Local optimization-performed within a straight line and no jump.  

II. Loop optimization  

III. Data  flow  analysis-the  transmission  of  useful  information  from  one  part  of  

the program to another. 

 

Optimization 

 

 Optimization is a program transformation technique, which tries to improve the code by 

making it consume less resource (i.e. CPU, Memory) and deliver high speed. In optimization, 

high-level general programming constructs are replaced by very efficient low-level 

programming codes. A code optimizing process must follow the three rules given below: 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 3 
 

 

 The output code must not, in any way, change the meaning of the program. 

 Optimization should increase the speed of the program and if possible, the program 

should demand less number of resources. 

 Optimization should itself be fast and should not delay the overall compiling process. 

 

Efforts for an optimized code can be made at various levels of compiling the process. 

 

 At the beginning, users can change/rearrange the code or use better algorithms to 

write the code. 

 After generating intermediate code, the compiler can modify the intermediate code by 

address calculations and improving loops. 

 While producing the target machine code, the compiler can make use of memory 

hierarchy and CPU registers. 

 

Optimization can be categorized broadly into two types : machine independent and machine 

dependent. 

 

What Is a Loop? 

 

Before we discuss loop optimizations, we should discuss what we identify as a loop. In our 

source language, this is rather straightforward, since loops are formed with while or for, 

where it is convenient to just elaborate a for loop into its corresponding while form. 

 

The key to a loop is a back edge in the control-flow graph from a node l to a node h that 

dominates l. We call h the header node of the loop. The loop itself then consists of the nodes 

on a path from h to l. It is convenient to organize the code so that a loop can be identified 

with its header node. We then write loop(h, l) if line l is in the loop with header h. 

 

When loops are nested, we generally optimize the inner loops before the outer loops. For one, 

inner loops are likely to be executed more often. For another, it could move computation to 

an outer loop from which it is hoisted further when the outer loop is optimized and so on 

 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 4 
 

Machine-dependent Optimization 

Machine-dependent optimization is done after the target code has been generated and when 

the code is transformed according to the target machine architecture. It involves CPU 

registers and may have absolute memory references rather than relative references. Machine-

dependent optimizers put efforts to take maximum advantage of memory hierarchy. 

For example: 
do 

{ 

   item = 10; 

   value = value + item;  

} while(value<100); 

This code involves repeated assignment of the identifier item, which if we put this way: 

Item = 10; 

do 

{ 

   value = value + item;  

} while(value<100); 

 

should not only save the CPU cycles, but can be used on any processor. 

Basic Blocks 

Source codes generally have a number of instructions, which are always executed in sequence 

and are considered as the basic blocks of the code. These basic blocks do not have any jump 

statements among them, i.e., when the first instruction is executed, all the instructions in the 

same basic block will be executed in their sequence of appearance without losing the flow 

control of the program. 

A program can have various constructs as basic blocks, like IF-THEN-ELSE, SWITCH-

CASE conditional statements and loops such as DO-WHILE, FOR, and REPEAT-UNTIL, 

etc. 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 5 
 

Basic block identification 

We may use the following algorithm to find the basic blocks in a program: 

 Search header statements of all the basic blocks from where a basic block starts: 

o First statement of a program. 

o Statements that are target of any branch (conditional/unconditional). 

o Statements that follow any branch statement. 

 Header statements and the statements following them form a basic block. 

 A basic block does not include any header statement of any other basic block. 

Basic blocks are important concepts from both code generation and optimization point of 

view. 

 

Basic blocks play an important role in identifying variables, which are being used more than 

once in a single basic block. If any variable is being used more than once, the register 

memory allocated to that variable need not be emptied unless the block finishes execution. 

Advantages of Code Optimization-  

 Optimized code has faster execution speed 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 6 
 

 Optimized code utilizes the memory efficiently 

 Optimized code gives better performance 

Techniques for Code Optimization- 

 

 

1. Compile Time Evaluation 

2. Common sub-expression elimination 

3. Dead Code Elimination 

4. Code Movement 

5. Strength Reduction 

 

1.Compile Time Evaluation- 

 Two techniques that falls under compile time evaluation are- 

A) Constant folding- 

 As the name suggests, this technique involves folding the constants by evaluating the 

expressions that involves the operands having constant values at the compile time. 

 Example- 

Circumference of circle  = (22/7) x Diameter 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 7 
 

Here, this technique will evaluate the expression 22/7 and will replace it with its result 3.14 at 

the compile time which will save the time during the program execution. 

 B) Constant Propagation- 

 In this technique, if some variable has been assigned some constant value, then it replaces 

that variable with its constant value in the further program wherever it has been used during 

compilation, provided that its value does not get alter in between. 

 Example- 

pi = 3.14 

radius = 10 

Area of circle = pi x radius x radius 

Here, this technique will substitute the value of the variables „pi‟ and „radius‟ at the compile 

time and then it will evaluate the expression 3.14 x 10 x 10 at the compile time which will 

save the time during the program execution. 

2. Common sub-expression elimination- 

 The expression which has been already computed before and appears again and again in the 

code for computation is known as a common sub-expression. 

As the name suggests, this technique involves eliminating the redundant expressions to avoid 

their computation again and again. The already computed result is used in the further 

program wherever its required. 

Example- 

Code before Optimization Code after Optimization 

S1 = 4 x i 

S2 = a[S1] 

S3 = 4 x j 

S1 = 4 x i 

S2 = a[S1] 

S3 = 4 x j 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 8 
 

S4 = 4 x i  // Redundant  Expression 

S5 = n 

S6 = b[S4] + S5 

S5 = n 

S6 = b[S1] + S5 

3. Code Movement- 

 As the name suggests, this technique involves the movement of the code where the code is 

moved out of the loop if it does not matter whether it is present inside the loop or it is present 

outside the loop. 

Such a code unnecessarily gets executed again and again with each iteration of the loop, thus 

wasting the time during the program execution. 

 Example- 

Code before Optimization Code after Optimization 

for ( int j = 0 ; j < n ; j ++) 

{ 

x = y + z ; 

a[j] = 6 x j; 

} 

x = y + z ; 

for ( int j = 0 ; j < n ; j ++) 

{ 

a[j] = 6 x j; 

} 

 4. Dead code elimination- 

 As the name suggests, this technique involves eliminating the dead code where those 

statements from the code are eliminated which either never executes or are not reachable or 

even if they get execute, their output is never utilized. 

 Example- 

Code before Optimization Code after Optimization 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 9 
 

i = 0 ; 

if (i == 1) 

{ 

a = x + 5 ; 

} 

i = 0 ; 

  

Dead code is one or more than one code statements, which are: 

 Either never executed or unreachable, 

 Or if executed, their output is never used. 

Thus, dead code plays no role in any program operation and therefore it can simply be 

eliminated. First fig. depicts partial dead code, second fig. depicts complete dead code.  

  

 

5. Strength reduction- 

 As the name suggests, this technique involves reducing the strength of the expressions by 

replacing the expensive and costly operators with the simple and cheaper ones. 

 Example- 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 10 
 

Code before Optimization Code after Optimization 

B = A x 2 B = A + A 

  

Here, the expression “A x 2” has been replaced with the expression “A + A” because the cost 

of multiplication operator is higher than the cost of addition operator. 

Loop Optimization 

Most programs run as a loop in the system. It becomes necessary to optimize the loops in 

order to save CPU cycles and memory. Loops can be optimized by the following techniques: 

 Invariant code: A fragment of code that resides in the loop and computes the same 

value at each iteration is called a loop-invariant code. This code can be moved out of 

the loop by saving it to be computed only once, rather than with each iteration. 

 Induction analysis: A variable is called an induction variable if its value is altered 

within the loop by a loop-invariant value. 

 Strength reduction: There are expressions that consume more CPU cycles, time, and 

memory. These expressions should be replaced with cheaper expressions without 

compromising the output of expression. For example, multiplication (x * 2) is 

expensive in terms of CPU cycles than (x << 1) and yields the same result. 

PEEPHOLE OPTIMIZATION 

 A statement-by-statement code-generations strategy often produce target code that contains 

redundant instructions and suboptimal constructs .The quality of such target code can be 

improved by applying “optimizing” transformations to the target program.  

 A simple but effective technique for improving the target code is peephole optimization, a 

method for trying to improving the performance of the target program by examining a short 

sequence of target instructions (called the peephole) and replacing these instructions by a 

shorter or faster sequence, whenever possible.  



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 11 
 

 The peephole is a small, moving window on the target program. The code in the peephole 

need not contiguous, although some implementations do require this.it is characteristic of 

peephole optimization that each improvement may spawn opportunities for additional 

improvements.  

 We shall give the following examples of program transformations that are characteristic of 

peephole optimizations:  

 Redundant-instructions elimination  

 Flow-of-control optimizations  

 Algebraic simplifications  

 Use of machine idioms  

 Unreachable Code  

Code Generator 

A code generator is expected to have an understanding of the target machine‟s runtime 

environment and its instruction set. 

 

 

 

 The code generator should take the following things into consideration to generate the code: 

 Target language : The code generator has to be aware of the nature of the target 

language for which the code is to be transformed. That language may facilitate some 

machine-specific instructions to help the compiler generate the code in a more 

convenient way. The target machine can have either CISC or RISC processor 

architecture. 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 12 
 

 IR Type: Intermediate representation has various forms. It can be in Abstract Syntax 

Tree (AST) structure, Reverse Polish Notation, or 3-address code. 

 Selection of instruction: The code generator takes Intermediate Representation as 

input and converts (maps) it into target machine‟s instruction set. One representation 

can have many ways (instructions) to convert it, so it becomes the responsibility of 

the code generator to choose the appropriate instructions wisely. 

 Register allocation: A program has a number of values to be maintained during the 

execution. The target machine‟s architecture may not allow all of the values to be 

kept in the CPU memory or registers. Code generator decides what values to keep in 

the registers. Also, it decides the registers to be used to keep these values. 

 Ordering of instructions: At last, the code generator decides the order in which the 

instruction will be executed. It creates schedules for instructions to execute them. 

Descriptors 

The code generator has to track both the registers (for availability) and addresses (location of 

values) while generating the code. For both of them, the following two descriptors are used: 

 Register descriptor: Register descriptor is used to inform the code generator about 

the availability of registers. Register descriptor keeps track of values stored in each 

register. Whenever a new register is required during code generation, this descriptor 

is consulted for register availability. 

 Address descriptor: Values of the names (identifiers) used in the program might be 

stored at different locations while in execution. Address descriptors are used to keep 

track of memory locations where the values of identifiers are stored. These locations 

may include CPU registers, heaps, stacks, memory or a combination of the 

mentioned locations. 

Code generator keeps both the descriptor updated in real-time. For a load statement, LD R1, 

x, the code generator: 

 updates the Register Descriptor R1 that has value of x and 

 updates the Address Descriptor (x) to show that one instance of x is in R1. 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 13 
 

Code Generation 

Basic blocks comprise of a sequence of three-address instructions. Code generator takes 

these sequence of instructions as input. 

Note : If the value of a name is found at more than one place (register, cache, or memory), 

the register‟s value will be preferred over the cache and main memory. Likewise cache‟s 

value will be preferred over the main memory. Main memory is barely given any preference. 

getReg : Code generator uses getReg function to determine the status of available registers 

and the location of name values. getReg works as follows: 

 If variable Y is already in register R, it uses that register. 

 Else if some register R is available, it uses that register. 

 Else if both the above options are not possible, it chooses a register that requires 

minimal number of load and store instructions. 

For an instruction x = y OP z, the code generator may perform the following actions. Let us 

assume that L is the location (preferably register) where the output of y OP z is to be saved: 

 Call function getReg, to decide the location of L. 

 Determine the present location (register or memory) of yby consulting the Address 

Descriptor of y. If y is not presently in register L, then generate the following 

instruction to copy the value of y to L: 

MOV y‟, L 

where y’ represents the copied value of y. 

 Determine the present location of z using the same method used in step 2 for y and 

generate the following instruction: 

OP z‟, L 

where z’ represents the copied value of z. 



 

Prepared By Dr. B. FIRDAUS BEGAM, Asst.Prof, Department of CS, CA & IT, KAHE Page 14 
 

 Now L contains the value of y OP z that is intended to be assigned to x. So, if L is a 

register, update its descriptor to indicate that it contains the value of x. Update the 

descriptor of x to indicate that it is stored at location L. 

 If y and z has no further use, they can be given back to the system. 

Other code constructs like loops and conditional statements are transformed into assembly 

language in general assembly way. 

 



sno Questions opt1 opt2 opt3 opt4 Answer

1

Which of the 

following 

comment 

about peep-

hole 

optimization 

is true?

they 

enhance 

the 

portability 

of the 

compiler 

to other 

program 

analysis is 

more 

accurate on 

intermediate 

code than 

on machine 

the 

information 

from 

dataflow 

analysis 

cannot 

otherwise be 

the 

informat

ion from 

the front 

end 

cannot 

otherwis

they 

enhance 

the 

portability 

of the 

compiler to 

other target 

2

The method 

which 

merges the 

bodies of 

Loop 

rolling

Loop 

jamming

Constant 

folding

None of 

the 

mention

ed

Loop 

jamming

3

Running 

time of a 

program 

 Addressin

g mode

Order of 

computation

s

The usage of 

machine 

idioms

All of 

the 

mention

All of the 

mentioned

4

Which of the 

following is 

the fastest 

TTL ECL CMOS LSI ECL

5

he 

optimization 

which 

avoids test at 

Loop 

unrolling

Loop 

jamming

Constant 

folding

None of 

the 

mention

ed

Loop 

unrolling

6

Scissoring 

enables

 A part of 

data to be 

displayed

Entire data 

to be 

displayed

None of the 

mentioned

No data 

to be 

displaye

 A part of 

data to be 

displayed

7

Compiler 

should 

report the 

presence of 

________in 

source 

data object errors text errors

8

Compiler 

can check 

_______ 

syntax logical content both a 

and b

syntax

9

Reduction in 

strength 

means

Replacing 

run time 

computati

on by 

compile 

emoving 

loop 

invariant 

computation

Removing 

common sub 

expression

Replacin

g a 

costly 

operatio

n by a 

Replacing 

run time 

computatio

n by 

compile 

10

A 

optimizing 

compiler

Is 

optimized 

to occupy 

less space

Is optimized 

to take less 

time for 

execution

Optimized 

the code

None of 

the 

above.

Optimized 

the code

11

Code can be 

optimized at

Source 

from user

Target code Intermediate 

code

All of 

the 

above

Source 

from user



12

In which 

way(s) a 

macroproces

sor for 

assembly 

language can 

be 

implemented 

?

Independe

nt two-

pass 

processor

Independent 

one-pass 

processor

Expand 

macrocalls 

and 

substitute 

arguments

All of 

the 

above

All of the 

above

13

A compiler 

for a high 

level 

language 

that runs on 

one machine 

and produce 

code for 

different 

machine is 

called 

Optimizin

g compiler

One pass 

compiler

Cross 

compiler

Multipas

s 

compiler

Cross 

compiler

14

Local and 

loop 

optimization 

in turn 

provide 

motivation 

for 

Data flow 

analysis

Constant 

folding

Pee hole 

optimization

DFA and 

constant 

folding

Data flow 

analysis

15

What is 

responsible 

for 

generation 

of final 

machine 

code tailored 

to target 

system?

Interpreter Semantic 

analyzer 

Code 

generator

Code 

optimize

r

Code 

generator

16

Which 

programmin

g language 

use compiler 

as well as 

interpreter to 

produce 

output?

C 

language

C++ Java Cobol Java



17

Optimizatio

n of program 

that works 

within a 

single basic 

block is 

called

A. Local optimizationA. Global optimizationA. Loop un-controllingA. Loop controlling A. Local optimization

18

Variable that 

can be 

accessed 

through out 

program is 

known as

A. Local variableA. Global VariableA. Integer A. Constant A. Global Variable

19

Gcc level of 

procedure 

integration, 

can be 

calculated as

1 2 3 4 3

20

Which 

languages 

necessarily 

need heap 

allocation in 

the runtime 

environment

?

Those that

support 

recursion

Those that

use dynamic

scoping

hose that 

allow 

dynamic 

data 

structures

Those 

that use 

global 

variables

hose that 

allow 

dynamic 

data 

structures

21

Some code 

optimization

s are carried 

out on the 

intermediate 

code 

because They enhance the portability of the compiler to other target processorsProgram analysis is more accurate on intermediate code than on machine code The information from dataflow analysis cannot otherwise be used for optimizatio

The 

informat

ion from 

the front 

end 

cannot 

otherwis

e be 

used for 

optimiza

tion

They 

enhance 

the 

portability 

of the 

compiler to 

other target 

processors

22

 Input buffer 

is symbol table    

divided into 

two halves 

 divided into 

Three halves

not 

divided

divided 

into two 

halves 



23

Which of the 

following 

type of 

software 

should be 

used if you 

need to 

create,edit 

and print 

document  ?

Word 

processing

Spreadsheet Desktop 

publishing

UNIX Word 

processing

24

What is 

bootstraping

? 

A 

language 

interpretin

g other 

language 

program

A language 

compiling 

other 

language 

program

A language 

compile 

itself

All of 

above

A language 

compile 

itself

25

Shell is the 

exclusive 

feature of

UNIX DOS System 

software

Applicat

ion 

software

UNIX

26

A program 

in execution 

is 

called_____

__

Process Instruction Procedure Function Process

27

A UNIX 

device 

driver is ___

Structured 

into two 

halves 

called top 

half and 

bottom 

half

Three equal 

partitions

Unstructured None of 

the 

above

Structured 

into two 

halves 

called top 

half and 

bottom half

28

Memory 

______

is an 

device that 

performs a 

sequence 

of 

operations 

specified 

by 

instruction

s in 

memory

is the device 

where 

information 

is stored

is a 

sequence of 

instructions

is a 

computa

tional 

unit to 

perform 

specific 

function

s

is the 

device 

where 

informatio

n is stored



29

In what 

module 

multiple 

instances of 

execution 

will yield 

the same 

result even if 

one instance 

has not 

terminated 

before the 

next one has 

begun ?

Serially 

usable

Re-entrable 

module

Non 

reusable 

module

None of 

these

Re-entrable 

module

30

The segment 

base is 

specified 

using the 

register 

named is 

________

ORG 

instruction

s

TITLE 

instruction

ASSUME 

instruction

SEGME

NT 

instructi

on

ORG 

instructions

31

If special 

forms are 

needed for 

printing the 

output, the 

programmer 

specifies 

these forms 

through 

______

IPL JCL Load 

modules

Utility 

program

s

JCL

32

Register or 

main 

memory 

location 

which 

contains the 

effective 

address of 

the operand 

is known as 

______

pointer indexed 

register

special 

location

scratch 

pad

pointer



33

Name given 

to the 

organized 

collection of 

software that 

controls the 

overall 

operation of 

a computer 

is 

__________

working 

system

peripheral 

system

operating 

system

controlli

ng 

system

operating 

system

34

Which of the 

following is 

not a 

function of 

the 

operating 

system?

Manage 

resources

Internet 

access

Provide a 

user 

interface

Load 

and run 

applicati

ons

Internet 

access

35

The items 

that a 

computer 

can use in its 

functioning 

are 

collectively 

called its

resources stuff capital propertie

s

36

Programs 

that 

coordinate 

all of the 

computer’s 

resources 

including 

memory, 

processing, 

storage, and 

language 

translators

resources applications interface

s

resources

37

A compiler 

is a software 

tool that 

translates 

__________

_that the 

computer 

can 

understand.

Algorithm 

into data

Source code 

into data

Computer 

language 

into data

None of 

the 

above

Source 

code into 

data



38

The object 

code is then 

passed 

through a 

program 

called a 

__________

_ which 

turns it into 

an 

executable 

program.

Integer Source code Linker None of 

the 

above

Linker

39

What is 

memory in 

Computer ?

is a 

sequence 

of 

instruction

s

is the device 

where 

information 

is stored

is an device 

that 

performs a 

sequence of 

operations 

specified by 

instructions 

in memory

none of 

these

is the 

device 

where 

informatio

n is stored

40

A program 

__________

_

is a 

sequence 

of 

instruction

s

is the device 

where 

information 

is stored

is a device 

that 

performs a 

sequence of 

operations 

specified by 

instructions 

in memory

none of 

these

is a 

sequence 

of 

instructions

41

The __ of a 

system 

includes the 

program s or 

instructions.

icon software hardware informat

ion

software

42

System 

generation

is always 

quite 

simple

is always 

very 

difficult

varies in 

difficulty 

between 

systems

requires 

extensiv

e tools to 

be 

understa

ndable

requires 

extensive 

tools to be 

understand

able

43

In 

computers, 

application 

software 

executes

all the 

time

when 

required

any time for few 

hours

when 

required



44

To perform 

specific 

tasks or 

calculations 

in the 

computer we 

use

system 

software

application 

software

customized 

software

package 

software

application 

software

45

Computer 

can run 

without

applicatio

n software

system 

software

operating 

system

windows application 

software

46

Computer 

software 

which is also 

known as 

Off-the-shelf 

software is

customize

d software

package 

software

system 

software

utility 

program

package 

software

47

The number 

of clock 

cycles 

necessary to 

complete 1 

fetch cycle 

in 8085 is

3 or 4 4 or 5 4 or 6 6 or 7 4 or 6

48

Which of the 

following 

electronic 

component 

are not 

found in 

ordinary 

ICs?

Diodes Resistors Inductors Transist

ors

Inductors

49

The root 

directory of 

a disk 

should be 

placed

at a fixed 

address in 

main 

memory

at a fixed 

location on 

the disk

anywhere on 

the disk

none of 

these

at a fixed 

location on 

the disk



50

 In analyzing 

the 

compilation 

of PL/I 

program the 

description " 

creation of 

more 

optimal 

matrix " is 

assosiated 

with 

__________

___

assembly 

and output

code 

generation

syntax 

analysis

machine 

independ

ent 

optimiza

tion

machine 

independen

t 

optimizatio

n

51

Substitution 

of values for 

names 

whose 

values are 

constant, is 

done in

local 

optimizati

on

oop optimiz

ation

constant 

folding

none of 

these

constant 

folding

52

A compiler 

for a high-

level 

language 

that runs on 

one machine 

and 

produces 

code for a 

different 

machine is 

called

optimizing 

compiler

one 

pass compil

er

cross compil

er

multipas

s compil

er

cross comp

iler

53

 A linker 

reads four 

modules 

whose 

lengths are 

200, 800, 

600 and 500 

words, 

respectively. 

If they are 

loaded in 

that order, 

what are the 

relocation 

constants ?

0, 200, 

500, 600

0, 200, 

1000, 1600

200, 500, 

600, 800

200, 

700, 

1300, 

2100

200, 500, 

600, 800



54

Daisy chain 

is a device 

for ?

Interconne

cting a 

number of 

devices to 

number of 

controllers

Connecting 

a number of 

devices to a 

controller

Connecting 

a number of 

controller to 

devices

Not 

connecte

d to any 

devices

Connecting 

a number 

of devices 

to a 

controller

55

Input of Lex 

is ?

set to 

regular 

expression

statement
Numeric 

data

 ASCII 

data

set to 

regular 

expression

56

Which of the 

following 

software 

tool is parser 

generator ?

Lex Yacc
Lex and 

Yacc

assemble

r
Yacc

57

A Compiler 

has ....... 

phases ?

7 6 5 9 8

58

A Lex 

compiler 

generates ?

Lex object 

code

Transition 

tables
C Tokens Table

Transition 

tables







A. Local optimization

A. Global Variable



Register Number____________ 

   

 

KARPAGAM ACADEMY OF HIGHER EDUCATION 
(Deemed to be University) 

(Established under section 3 of UGC Act,1956) 

Coimbatore-641021. 

B.Sc INFORMATION TECHNOLOGY 

FIRST INTERNAL EXAMINATION - DECEMBER 2018 

Sixth Semester 

SYSTEM PROGRAMMING    

 

Date & Session:  18.12.2018 & FN                          Duration:        2  Hours 

Maximum        :   50 Marks      Subject Code: 16ITU603B 

 

SECTION A – (20 X 1 = 20 Marks) 

ANSWER ALL THE QUESTIONS 

 

1. An assembler is  _______.  

a. programming language dependent  b. Syntax dependent 

c. machine dependent d. data dependent 

2. Translator for low level programming languages were termed as _________ 

            a. Compiler      b. Assembler      c. Loader      d. Linker 

3.  ______ loads the executable module to the main memory. 

a. Interpreter         b. Linker           c. Compiler     d. Loader     

4. In two pass assembler the object code generation is done during ____________ . 

a. second pass          b.  one pass          c. zeorth pass  d. third pass 

5. _______ header describes the size and position of the other pieces of the file. 

a. Object file           b. Source file            c. Obj file     d. Donald Knuth 

6. _______ assemblers perform single scan over the source code. 

a. Two pass   b. One pass   c. Three pass   d. All of these 

7. The instructions like MOV or ADD are called  ______. 

a. opcode  b. operable code            c. ope code d. Obj code 

8.The assembler stores all the names and their corresponding values in ________. 

 a. special purpose register   b. Symbol table             c. Value mapset 

d.  register 

9.  Relocating Loader is otherwise called as _______ loader. 

a. Relative          b. Relational        c. Recursive d. Redo 

10. DLL files that support specific device operation are known as _______. 

a. Bootstrap  b. device drivers           c. Parsing   d. Scheduling 

11.  Source files are converted into a stream of tokens by ______. 

a. Scanner          b. Memory            c. Register          d. Unicode 

12.  _______ is a sequence of characters that can be treated as a single logical entity. 

a. Function  b. Method       c. Definition  d. Token  

13. A ________ is a sequence of characters in the source program that is matched by the  

       Pattern. 

a. lexical     b. lexeme         c. Analyser  d. combine 

14.Forward reference table is arranged like _________ 

a. stack          b. queue          c. linked list  d. double linked list 

https://searchenterprisedesktop.techtarget.com/definition/device-driver


 

 

 

 

 

 

15. Function of lexical analyzer are  ________. 

a. removing white space    b. removing constants, identifiers & keywords 

c. removing comments    d. all the above   

16. The output of a lexical analyzer is_________. 

            a. a prase tree     b. intermediate code   c. machine code        d. a stream of tokens 

17.  Which grammar defines Lexical Syntax. 

a. Regular Grammar  b. Syntactic Grammar  

c. Lexical Grammar d. Context free Grammar  

18. _______ pass reads each line and records labels in a symbol table. 

a. First           b. Second          c. Third d. First & Second 

19. _______ takes executable module generated by a linker. 

a. Assembler  b. Linker editor     c. Loader     d. Compiler 

20.A program in execution is called _________. 

a. process            b. instruction              c. procedure  d. function 

 

SECTION – B (3 X 2 =6 Marks) 

                     ANSWER ALL THE QUESTIONS  
 

21. Define compiler. 

22. State the difference between linker and loader 

23. What is known as a symbol table? 

 

            SECTION – C (3 X 8 =24 Marks) 

                     ANSWER ALL THE QUESTIONS 

 

24. (a) Write a short note on i) Assemblers, ii) Loaders and iii) Linkers.       [OR] 

   

 (b). Discuss in detail about one pass assembler.     

 

25. (a) Explain the concept of dynamic linking.                                               [OR] 

 

 (b). Discuss in detail about phases of compiler with diagram 

 

26.  (a) Elaborate Relocating loader.                                            [OR] 

   

 (b) Explain in detail about role of lexical analyzer in compiler. 



Register Number____________ 

   

 

KARPAGAM ACADEMY OF HIGHER EDUCATION 
(Deemed to be University) 

(Established under section 3 of UGC Act,1956) 

Coimbatore-641021. 

B.Sc INFORMATION TECHNOLOGY 

FIRST INTERNAL EXAMINATION - DECEMBER 2018 

Sixth Semester 

SYSTEM PROGRAMMING    

 

Date & Session:  18.12.2018 & FN               Duration:        2  Hours 

Maximum        :   50 Marks     Subject Code: 16ITU603B 

 

SECTION A – (20 X 1 = 20 Marks) 

ANSWER ALL THE QUESTIONS 

 

1. An assembler is  _______.  

a. programming language dependent  b. Syntax dependent 

c. machine dependent d. data dependent 

2. Translator for low le.l vel programming languages were termed as _________ 

            a. Compiler      b. Assembler      c. Loader      d. Linker 

3.  ______ loads the executable module to the main memory. 

a. Interpreter         b. Linker           c. Compiler     d. Loader     

4. In two pass assembler the object code generation is done during ____________ . 

a. second pass          b.  one pass          c. zeorth pass  d. third pass 

5. _______ header describes the size and position of the other pieces of the file. 

a. Object file           b. Source file            c. Obj file     d. Donald Knuth 

6. _______ assemblers perform single scan over the source code. 

a. Two pass   b. One pass   c. Three pass   d. All of these 

7. The instructions like MOV or ADD are called  ______. 

a. opcode  b. operable code            c. ope code d. Obj code 

8.The assembler stores all the names and their corresponding values in ________. 

 a. special purpose register   b. Symbol table             c. Value mapset 

d.  register 

9.  Relocating Loader is otherwise called as _______ loader. 

a. Relative          b. Relational        c. Recursive d. Redo 

10. DLL files that support specific device operation are known as _______. 

a. Bootstrap  b. device drivers           c. Parsing   d. Scheduling 

11.  Source files are converted into a stream of tokens by ______. 

a. Scanner          b. Memory            c. Register          d. Unicode 

12.  _______ is a sequence of characters that can be treated as a single logical entity. 

a. Function  b. Method       c. Definition  d. Token  

13. A ________ is a sequence of characters in the source program that is matched by the  

       Pattern. 

a. lexical     b. lexeme         c. Analyser  d. combine 

14.Forward reference table is arranged like _________ 

a. stack          b. queue          c. linked list  d. double linked list 

https://searchenterprisedesktop.techtarget.com/definition/device-driver


15. Function of lexical analyzer are  ________. 

a. removing white space    b. removing constants, identifiers & keywords 

c. removing comments    d. all the above   

16. The output of a lexical analyzer is_________. 

            a. a prase tree     b. intermediate code   c. machine code        d. a stream of tokens 

17.  Which grammar defines Lexical Syntax. 

a. Regular Grammar  b. Syntactic Grammar  

c. Lexical Grammar d. Context free Grammar  

18. _______ pass reads each line and records labels in a symbol table. 

a. First           b. Second          c. Third d. First & Second 

19. _______ takes executable module generated by a linker. 

a. Assembler  b. Linker editor     c. Loader     d. Compiler 

20.A program in execution is called _________. 

a. process            b. instruction              c. procedure  d. function 

 

SECTION – B (3 X 2 =6 Marks) 

ANSWER ALL THE QUESTIONS 
 

21. Define compiler. 

 

 A compiler is a software program that transforms high-level source code that is 

written by a developer in a high-level programming language into a low level object code 

(binary code) in machine language, which can be understood by the processor. The process 

of converting high-level programming into machine language is known as compilation. 

 

22. State the difference between linker and loader 

BASIS FOR 

COMPARISON 

LINKER LOADER 

Basic It generates the executable module 

of a source program. 

It loads the executable module to 

the main memory. 

Input It takes as input, the object code 

generated by an assembler. 

It takes executable module 

generated by a linker. 

Function It combines all the object modules 

of a source code to generate an 

executable module. 

It allocates the addresses to an 

executable module in main 

memory for execution. 
Type/Approach Linkage Editor, Dynamic linker. Absolute loading, Relocatable 

loading and Dynamic Run-time 

loading. 

 

23. What is known as a symbol table? 

 



 Symbol table is an important data structure created and maintained by compilers in 

order to store information about the occurrence of various entities such as variable names, 

function names, objects, classes, interfaces, etc. Symbol table is used by both the analysis 

and the synthesis parts of a compiler. 

 

SECTION – C (3 X 8 =24 Marks) 

ANSWER ALL THE QUESTIONS 

 

24. (a) Write a short note on i) Assemblers, ii) Loaders and iii) Linkers.       [OR] 

 

Assemblers & Loaders, Linkers: 

Assembly language is a low-level programming language for a computer or other 

programmable device specific to particular computer architecture in contrast to most high-

level programming languages, which are generally portable across multiple systems. 

Assembly language is converted into executable machine code by a utility program referred 

to as an assembler like NASM, MASM, etc. 

Linker and Loader are the utility programs that plays a major role in the execution of 

a program. The Source code of a program passes through compiler, assembler, linker, loader 

in the respective order, before execution. On the one hand, where the linker intakes the 

object codes generated by the assembler and combine them to generate the executable 

module. On the other hands, the loader loads this executable module to the main memory 

for execution.  

Assemblers 

• Assemblers need to 

– translate assembly instructions and pseudo-instructions into machine 
instructions 

– Convert decimal numbers, etc. specified by programmer into 
binary 

• Typically, assemblers make two passes over the assembly file 

– First pass: reads each line and records labels in a 
symbol table 

– Second pass: use info in symbol table to produce actual machine code for 
each line 

Loader 

It loads the executable module to the main memory. It takes executable module generated 

by a linker. It allocates the addresses to an executable module in main memory for 

execution. Absolute loading, Relocatable loading and Dynamic Run-time loading. 

Linker 

• Tool that merges the object files produced by separate compilation or 
assembly and creates an executable file 

• Three tasks 

– Searches the program to find library routines used by program, e.g. 
printf(), math routines,… 

– Determines the memory locations that code from each module will 
occupy and relocates its instructions by adjusting absolute references 

– Resolves references among files 

–  



 

 
   

(b). Discuss in detail about one pass assembler.     

One-pass assemblers go through the source code once. Any symbol used before it is 

defined will require "errata" at the end of the object code (or, at least, no earlier than the 

point where the symbol is defined) telling the linker or the loader to "go back" and 

overwrite a placeholder which had been left where the as yet undefined symbol was 

used. 

Multi-pass assemblers create a table with all symbols and their values in the first 

passes, then use the table in later passes to generate code. 

In both cases, the assembler must be able to determine the size of each instruction on the 

initial passes in order to calculate the addresses of subsequent symbols. This means that if 

the size of an operation referring to an operand defined later depends on the type or distance 

of the operand, the assembler will make a pessimistic estimate when first encountering the 

operation, and if necessary pad it with one or more "no-operation" instructions in a later 

pass or the errata. In an assembler with peephole optimization, addresses may be 

recalculated between passes to allow replacing pessimistic code with code tailored to the 

exact distance from the target. 

The original reason for the use of one-pass assemblers was speed of assembly – often a 

second pass would require rewinding and rereading the program source on tape or rereading 

a deck of cards or punched paper tape. Later computers with much larger memories 

(especially disc storage), had the space to perform all necessary processing without such re-

reading. The advantage of the multi-pass assembler is that the absence of errata makes 

the linking process (or the program load if the assembler directly produces executable code) 

faster.
[10]

 

Example: in the following code snippet a one-pass assembler would be able to determine 

the address of the backward reference BKWD when assembling statement S2, but would not 

https://en.wikipedia.org/wiki/Erratum
https://en.wikipedia.org/wiki/Linker_(computing)
https://en.wikipedia.org/wiki/NOP_(code)
https://en.wikipedia.org/wiki/Peephole_optimization
https://en.wikipedia.org/wiki/Magnetic_tape_data_storage
https://en.wikipedia.org/wiki/Punch_cards
https://en.wikipedia.org/wiki/Punched_tape
https://en.wikipedia.org/wiki/Linker_(computing)
https://en.wikipedia.org/wiki/Loader_(computing)
https://en.wikipedia.org/wiki/Assembly_language#cite_note-10


be able to determine the address of the forward referenceFWD when assembling the branch 

statement S1; indeed FWD may be undefined. A two-pass assembler would determine both 

addresses in pass 1, so they would be known when generating code in pass 2, 

S1   B    FWD 

  ... 

FWD   EQU * 

  ... 

BKWD  EQU * 

  ... 

S2    B   BKWD 

Algorithm for Pass-1 Assembler 

 

 

 



 
 

25. (a) Explain the concept of dynamic linking.                                               [OR] 

 

Dynamic Linking 

          An application that depends on dynamic linking calls the external files as needed 

during execution. The subroutines are typically part of the operating system, but may be 

auxiliary files that came with the application. 

 

            Dynamic linking has the following advantages: Saves memory and reduces 

swapping. Many processes can use a single DLL simultaneously, sharing a single copy of 

the DLL in memory. In contrast, Windows must load a copy of the library code into 

memory for each application that is built with a static link library. 

 

            A dynamic link library (DLL) is a collection of small programs that can be loaded 

when needed by larger programs and used at the same time. The small program lets the 

larger program communicate with a specific device, such as a printer or scanner. It is often 

packaged as a DLL program, which is usually referred to as a DLL file. DLL files that 

support specific device operation are known as device drivers. 

 

 Link editors are commonly known as linkers. The compiler automatically invokes 

the linker as the last step in compiling a program. The linker inserts code (or maps in shared 

libraries) to resolve program library references, and/or combines object modules into an 

executable image suitable for loading into memory. On Unix-like systems, the linker is 

typically invoked with the ld command. 

Static linking is the result of the linker copying all library routines used in the 

program into the executable image. This may require more disk space and memory than 

dynamic linking, but is both faster and more portable, since it does not require the presence 

of the library on the system where it is run. 

Dynamic linking is accomplished by placing the name of a sharable library in the 

executable image. Actual linking with the library routines does not occur until the image is 

run, when both the executable and the library are placed in memory. An advantage of 

dynamic linking is that multiple programs can share a single copy of the library. 

https://searchenterprisedesktop.techtarget.com/definition/device-driver


Linking is often referred to as a process that is performed when the executable is compiled, 

while a dynamic linker is a special part of an operating system that loads external shared 

libraries into a running process and then binds those shared libraries dynamically to the 

running process. This approach is also called dynamic linking or late linking. 

 

(b). Discuss in detail about phases of compiler with diagram 

 

Phases of a compiler: 

            The compilation process is a sequence of various phases. Each phase takes input 

from its previous stage, has its own representation of source program, and feeds its output to 

the next phase of the compiler. Let us understand the phases of a compiler. 

Lexical Analysis 

          The first phase of scanner works as a text scanner. This phase scans the source code 

as a stream of characters and converts it into meaningful lexemes. Lexical analyzer 

represents these lexemes in the form of tokens as: 

<token-name, attribute-value> 

Syntax Analysis 

         The next phase is called the syntax analysis or parsing. It takes the token produced 

by lexical analysis as input and generates a parse tree (or syntax tree). In this phase, token 

arrangements are checked against the source code grammar, i.e. the parser checks if the 

expression made by the tokens is syntactically correct. 

 

https://en.wikipedia.org/wiki/Compile_time
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Dynamic_dispatch
https://en.wikipedia.org/wiki/Process_(computing)


 

 

Semantic Analysis 

Semantic analysis checks whether the parse tree constructed follows the rules of language. 

For example, assignment of values is between compatible data types, and adding string to 

an integer. Also, the semantic analyzer keeps track of identifiers, their types and 

expressions; whether identifiers are declared before use or not etc. The semantic analyzer 

produces an annotated syntax tree as an output. 

Intermediate Code Generation 

After semantic analysis the compiler generates an intermediate code of the source code for 

the target machine. It represents a program for some abstract machine. It is in between the 

high-level language and the machine language. This intermediate code should be generated 

in such a way that it makes it easier to be translated into the target machine code. 



Code Optimization 

The next phase does code optimization of the intermediate code. Optimization can be 

assumed as something that removes unnecessary code lines, and arranges the sequence of 

statements in order to speed up the program execution without wasting resources (CPU, 

memory). 

Code Generation 

In this phase, the code generator takes the optimized representation of the intermediate 

code and maps it to the target machine language. The code generator translates the 

intermediate code into a sequence of (generally) re-locatable machine code. Sequence of 

instructions of machine code performs the task as the intermediate code would do. 

 

26.  (a) Elaborate Relocating loader.                                            [OR] 

 

The relocating loader 

 

          The relocating loader will load the program anywhere in memory, altering the various 

addresses as required to ensure correct referencing. The decision as to where in memory the 

program is placed is done by the Operating System, not the programs header file. This is 

obviously more efficient, but introduces a slight overhead in terms of a small delay whilst 

all the relative offsets are calculated. The relocating loader can only relocate code that has 

been produced by a linker capable of producing relative code. 

Types of Loaders: 

Absolute Loader.  

Bootstrap Loader. 

   Relocating Loader (Relative Loader) 

   Linking Loader. 

 

Two methods for specifying relocation as part of the object program: 

 

The first method:  

 A Modification is used to describe each part of the object code that must be changed 

when the program is relocated.  

 Most of the instructions in this program use relative or immediate addressing.  

 The only portions of the assembled program that contain actual addresses are the 

extended format instructions on lines 15, 35, and 65. Thus these are the only items 

whose values are affected by relocation. 

 Each Modification record specifies the starting address and length of the field whose 

value is to be altered.  

 It then describes the modification to be performed.  

The second method:  

 

 There are no Modification records.  

 The Text records are the same as before except that there is a relocation bit 

associated with each word of object code.  



 Since all SIC instructions occupy one word, this means that there is one relocation 

bit for each possible instruction. 

 

(b) Explain in detail about role of lexical analyzer in compiler. 

 

Over view of lexical analysis 

To identify the tokens we need some method of describing the possible tokensthat can 

appear in the input stream. For this purpose we introduce regular expression, anotation that 

can be used to describe essentially all the tokens of programminglanguage. 

Secondly , having decided what the tokens are, we need some mechanism torecognize these 

in the input stream. This is done by the token recognizers, which aredesigned using 

transition diagrams and finite automata. 

Role of lexical analyzer 

The LA is the first phase of a compiler. It main task is to read the input characterand 

produce as output a sequence of tokens that the parser uses for syntax analysis. 

 
 

Upon receiving a ‘get next token’ command form the parser, the lexical analyzer 

reads the input character until it can identify the next token. The LA return to the parser 

representation for the token it has found. The representation will be an integer code, if the 

token is a simple construct such as parenthesis, comma or colon. 

 

 LA may also perform certain secondary tasks as the user interface. One such task is 

striping out from the source program the commands and white spaces in the form of blank, 

tab and new line characters. Another is correlating error message from the compiler with the 

source program. 

 

Lexical analysis vs parsing 

 

Lexical analysis  Parsing 

A Scanner simply turns an input String 

(say a file) into a list of tokens. These 

tokens represent things like identifiers, 

parentheses, operators etc.  

 

The lexical analyzer (the "lexer") parses 

individual symbols from the source code 

file into tokens. From there, the "parser" 

proper turns those whole tokens into 

sentences of your grammar 

A parser converts this list of tokens into 

a Tree-like object to represent how the 

tokens fit together to form a cohesive 

whole (sometimes referred to as a 

sentence). 

 A parser does not give the nodes any 

meaning beyond structural cohesion. 

The next thing to do is extract meaning 

from this structure (sometimes called 

contextual analysis). 

Need of Lexical Analyzer 

 Simplicity of design of compiler The removal of white spaces and comments enables the 

syntax analyzer for efficient syntactic constructs. 



 Compiler efficiency is improved Specialized buffering techniques for reading characters 

speed up the compiler process. 

 Compiler portability is enhanced 

Issues in Lexical Analysis 

Lexical analysis is the process of producing tokens from the source program. It has the 

following issues: 

• Lookahead 

• Ambiguities 

Lookahead 

Lookahead is required to decide when one token will end and the next token will 

begin. The simple example which has lookahead issues are i vs. if, = vs. ==. 

Therefore a way to describe the lexemes of each token is required. 

A way needed to resolve ambiguities 

• Is if it is two variables i and f or if? 

• Is == is two equal signs =, = or ==? 

Hence, the number of lookahead to be considered and a way to describe the lexemes 

of each token is also needed. 

Ambiguities 

The lexical analysis programs written with lex accept ambiguous specifications and choose 

the longest match possible at each input point. Lex can handle ambiguous specifications. 

When more than one expression can match the current input, lex chooses as follows: 

• The longest match is preferred. 

• Among rules which matched the same number of characters, the rule given first is 

preferred. 

 



Register Number____________ 

   

 

KARPAGAM ACADEMY OF HIGHER EDUCATION 
(Deemed to be University) 

(Established under section 3 of UGC Act,1956) 

Coimbatore-641021. 

B.Sc INFORMATION TECHNOLOGY 

SECOND INTERNAL EXAMINATION - DECEMBER 2018 

Sixth Semester 

SYSTEM PROGRAMMING    

 

Date & Session:  05.02.2019 & FN                          Duration:        2  Hours 

Maximum        :   50 Marks      Subject Code: 16ITU603B 

 

SECTION A – (20 X 1 = 20 Marks) 

ANSWER ALL THE QUESTIONS 

1. Resolution of externally defined symbols is performed by ___________ 

a. Linker    b. Loader    c. Compiler     d. Editor 

2. System generation _______. 

a.   is always quite simple       b. is always very difficult 

c. varies between systems                      d. requires extensive tools  

3. Which of the following grammars are phase-structured? 

a. irregular   b. context free grammer   c. Active        d. none 

4. A pictorial representation of each statement in basic block is _______. 

a. tree             b. DAG            c. Graph          d. none 

5. Linker and Loader are the _______.  

a. Utility programs      b. Sub-Task     c. Sub-problems     d. Process  

6. Which one of the following is a top-down parser? 

a. Recursive descent parser     b. Operator precedence parse 

 c. An LRk.parser       d. An LALRk. parser 

7. Which phase of compiler is Syntax Analysis? 

a. First     b. Second    c.Third     d. Fourth   

8. Which of the following derivations does a top-down parser use while parsing an input 

string? 

a. Leftmost derivation     b. Leftmost derivation in reverse 

c. Rightmost derivation    d. Rightmost derivation in reverse 

9. Three address code involves __________ 

a. excatly 3 address      b. at the most 3 address    c. no unary operators         d. none 

10. What is the name of the process that determining whether a string of tokens can be 

generated by a grammar? 

a. Analyzing   b. Recognizing     c. Translating       d. Parsing 

11. A grammar for a programming language is a formal description of ______. 

a. Syntax        b.  Semantics  c. Structure     d. Library 

12. The graph that shows basic blocks and relationship is called _______. 

a.DAG      b. Flow graph  c. Control graph        d. Hamiltonian graph 



13. When is type checking is done ? 

a. during syntax directed translation     b. during lexical analysis 

c. during syntax analysis      d. during code optimization 

14. Syntax directed translation scheme is desirable because __________. 

a. It is based on the syntax    b. Its description is independent of any implementation 

c. It is easy to modify      d. All of these 

15. A lex program consists of __________. 

a. declarations    b. auxillary procedure   c. translation rules  d. all of these 

16. Which of these is also known as look-head LR parser? 

a. SLR    b. LR     c. LLR     d. LR(1)    

17. Parsers are expected to parse the whole code. 

a. True     b. False    c. NULL   d. None 

18. YACC stands for __________________. 

a. yet accept compiler constructs     b. yet accept compiler compiler  

c. yet another compiler constructs    d. yet another compiler compiler 

19. An intermediate code form is ___________ 

a. Postfix notation    b. Syntax trees         c. Three address code    d. All of these 

20. Input to code generator is ______________. 

a. Source Code   b. Intermediate code   c. Target code   d. All of these 

 

SECTION – B (3 X 2 =6 Marks) 

ANSWER ALL THE QUESTIONS 

 

21. What are the functions of symbol table? 

22. What is parsing? 

23. Differentiate compiler and Interpreter. 

 

SECTION – C (3 X 8 =24 Marks) 

ANSWER ALL THE QUESTIONS 

24. a) Discuss in detail about specification and recognition of tokens.      [OR] 

      b) What is symbol table? Explain the data structures of symbol table in detail. 

25. a) Explain any one parser type in detail.         [OR] 

      b) Explain three address code generation concepts in detail. 

26. a) What is intermediate representation? Discuss in detail.       [OR] 

      b) How Bottom-up parser works in compiler design? Explain. 

 

 

 

 

 

 

 

 



 

 

Register Number____________ 

   

 

KARPAGAM ACADEMY OF HIGHER EDUCATION 
(Deemed to be University) 

(Established under section 3 of UGC Act,1956) 

Coimbatore-641021. 

B.Sc INFORMATION TECHNOLOGY 

SECOND INTERNAL EXAMINATION - DECEMBER 2018 

Sixth Semester 

SYSTEM PROGRAMMING    

 

Date & Session:  05.02.2019 & FN                          Duration:        2  Hours 

Maximum        :   50 Marks      Subject Code: 16ITU603B 

 

SECTION A – (20 X 1 = 20 Marks) 

ANSWER ALL THE QUESTIONS 

1. Resolution of externally defined symbols is performed by ___________ 

a. Linker    b. Loader    c. Compiler     d. Editor 

2. System generation _______. 

a.   is always quite simple       b. is always very difficult 

c. varies between systems                      d. requires extensive tools  

3. Which of the following grammars are phase-structured? 

a. irregular   b. context free grammer   c. Active        d. none 

4. A pictorial representation of each statement in basic block is _______. 

a. tree             b. DAG            c. Graph          d. none 

5. Linker and Loader are the _______.  

a. Utility programs      b. Sub-Task     c. Sub-problems     d. Process  

6. Which one of the following is a top-down parser? 

a. Recursive descent parser     b. Operator precedence parse 

 c. An LRk.parser       d. An LALRk. parser 

7. Which phase of compiler is Syntax Analysis? 

a. First     b. Second    c.Third     d. Fourth   

8. Which of the following derivations does a top-down parser use while parsing an input 

string? 

a. Leftmost derivation     b. Leftmost derivation in reverse 

c. Rightmost derivation    d. Rightmost derivation in reverse 

9. Three address code involves __________ 

a. excatly 3 address      b. at the most 3 address    c. no unary operators         d. none 

10. What is the name of the process that determining whether a string of tokens can be 

generated by a grammar? 

a. Analyzing   b. Recognizing     c. Translating       d. Parsing 

11. A grammar for a programming language is a formal description of ______. 

a. Syntax        b.  Semantics  c. Structure     d. Library 

12. The graph that shows basic blocks and relationship is called _______. 

a.DAG      b. Flow graph  c. Control graph        d. Hamiltonian graph 



 

 

13. When is type checking is done ? 

a. during syntax directed translation     b. during lexical analysis 

c. during syntax analysis      d. during code optimization 

14. Syntax directed translation scheme is desirable because __________. 

a. It is based on the syntax    b. Its description is independent of any implementation 

c. It is easy to modify      d. All of these 

15. A lex program consists of __________. 

a. declarations    b. auxillary procedure   c. translation rules  d. all of these 

16. Which of these is also known as look-head LR parser? 

a. SLR    b. LR     c. LLR     d. LR(1)    

17. Parsers are expected to parse the whole code. 

a. True     b. False    c. NULL   d. None 

18. YACC stands for __________________. 

a. yet accept compiler constructs     b. yet accept compiler compiler  

c. yet another compiler constructs    d. yet another compiler compiler 

19. An intermediate code form is ___________ 

a. Postfix notation    b. Syntax trees         c. Three address code    d. All of these 

20. Input to code generator is ______________. 

a. Source Code   b. Intermediate code   c. Target code   d. All of these 

 

SECTION – B (3 X 2 =6 Marks) 

ANSWER ALL THE QUESTIONS 

 

21. What are the functions of symbol table? 

Symbol table is an important data structure created and maintained by compilers in order 

to store information about the occurrence of various entities such as variable names, 

function names, objects, classes, interfaces, etc. Symbol table is used by both the analysis 

and the synthesis parts of a compiler. Operations performed are insert() and lookup(). 

22. What is parsing? 

A parser is a compiler or interpreter component that breaks data into smaller elements for 

easy translation into another language. A parser takes input in the form of a sequence of 

tokens or program instructions and usually builds a data structure in the form of a parse 

tree or an abstract syntax tree. 

23. Differentiate compiler and Interpreter. 

Interpreter Compiler 

Translates program one statement at a time. 
Scans the entire program and translates it as a 

whole into machine code. 

It takes less amount of time to analyze the 

source code but the overall execution time is 

slower. 

It takes large amount of time to analyze the 

source code but the overall execution time is 

comparatively faster. 

No intermediate object code is generated, 

hence are memory efficient. 

Generates intermediate object code which 

further requires linking, hence requires more 

memory. 

Continues translating the program until the first 

error is met, in which case it stops. Hence 

It generates the error message only after 

scanning the whole program. Hence debugging 



 

 

debugging is easy. is comparatively hard. 

Programming language like Python, Ruby use 

interpreters. 

Programming language like C, C++ use 

compilers. 

 

 

SECTION – C (3 X 8 =24 Marks) 

ANSWER ALL THE QUESTIONS 

24. a) Discuss in detail about specification and recognition of tokens.  

Specification of tokens 

There are 3 specifications of tokens: 

1) Strings 

2) Language 

3) Regular expression 

Strings and Languages 

An alphabet or character class is a finite set of symbols. 

A string over an alphabet is a finite sequence of symbols drawn from that alphabet. 

 A language is any countable set of strings over some fixed alphabet. In language theory, the 

terms "sentence" and "word" are often used as synonyms for "string." 

 The length of a string s, usually written |s|, is the number of occurrences of symbols in s. For 

example, banana is a string of length six. The empty string, denoted ε, is the string of length zero 

Operations on strings 

The following string-related terms are commonly used: 

1. A prefix of string s is any string obtained by removing zero or more symbols from the end of 

string s. 

For example, ban is a prefix of banana. 

2. A suffix of string s is any string obtained by removing zero or more symbols from the 

beginning of s. 

For example, nana is a suffix of banana. 

3. A substring of s is obtained by deleting any prefix and any suffix from s. 

For example, nan is a substring of banana. 

4. The proper prefixes, suffixes, and substrings of a string s are those prefixes, suffixes, and 

substrings, respectively of s that are not ε or not equal to s itself. 

5. A subsequence of s is any string formed by deleting zero or more not necessarily consecutive 

positions of s. 

For example, ban is a subsequence of banana. 

Operations on languages: 

The following are the operations that can be applied to languages: 

1.Union 

2.Concatenation 

3.Kleene closure 

4.Positive closure 

The following example shows the operations on strings: 



 

 

Let L={0,1} and S={a,b,c} 

1. Union : L U S={0,1,a,b,c} 

2. Concatenation : L.S={0a,1a,0b,1b,0c,1c} 

3. Kleene closure : L*={ ε,0,1,00….} 

4. Positive closure : L+ ={0,1,00….} 

 

REGULAR EXPRESSIONS  

s Each regular expression r denotes a language L(r). 

 Regular expressions are notation for specifying patterns. 

 Each pattern matches a set of strings. 

 Regular expressions will serve as names for sets of strings. 

Here are the rules that define the regular expressions over some alphabet Σ and the languages 

that 

those expressions denote: 

1. ε is a regular expression, and L(ε) is { ε }, that is, the language whose sole member is the 

empty string. 

2. If „a‟ is a symbol in Σ, then „a‟ is a regular expression, and L(a) = {a}, that is, the language 

with 

one string, of length one, with „a‟ in its one position.  

3. Suppose r and s are regular expressions denoting the languages L(r) and L(s). Then, 

a) (r)|(s) is a regular expression denoting the language L(r) U L(s). 

b) (r)(s) is a regular expression denoting the language L(r)L(s). c) 

(r)* is a regular expression denoting (L(r))*. 

d) (r) is a regular expression denoting L(r). 

4. The unary operator * has highest precedence and is left associative. 

5. Concatenation has second highest precedence and is left associative. 

6. | has lowest precedence and is left associative. 

Regular set 

A language that can be defined by a regular expression is called a regular set. If two regular 

expressions r and s denote the same regular set, we say they are equivalent and write r = s. 

There are a number of algebraic laws for regular expressions that can be used to manipulate into 

equivalent forms. 

For instance, r|s = s|r is commutative; r|(s|t)=(r|s)|t is associative. 

Regular Definitions 

Giving names to regular expressions is referred to as a Regular definition. If Σ is an 

alphabet of basic symbols, then a regular definition is a sequence of definitions of the form 

dl → r 1 

d2 → r2 

……… 

dn → rn 

1. Each di is a distinct name. 



 

 

2. Each ri is a regular expression over the alphabet Σ U {dl 

, d2,. . . , di-l}. 

Example: Identifiers is the set of strings of letters and digits beginning with a letter. Regular 

definition for this set: 

letter → A | B | …. | Z | a | b | …. | z | 

digit → 0 | 1 | …. | 9 

id → letter ( letter | digit ) * 

Shorthands 

Certain constructs occur so frequently in regular expressions that it is convenient to introduce 

notational shorthands for them. 

1. One or more instances (+): 

- The unary postfix operator + means “ one or more instances of” . 

- If r is a regular expression that denotes the language L(r), then ( r )+  is a regular expression 

that denotes the language (L (r ))+ 

- Thus the regular expression a+ denotes the set of all strings of one or more a‟s. 

- The operator + has the same precedence and associativity as the operator * 

. 2. Zero or one instance ( ?): 

- The unary postfix operator ? means “zero or one instance of”. - 

The notation r? is a shorthand for r | ε. 

- If „r‟ is a regular expression, then ( r )? is a regular expression that denotes the language L( r ) 

U { ε }. 

3. Character Classes: 

- The notation [abc] where a, b and c are alphabet symbols denotes the regular expression a | b |c. 

- Character class such as [a - z] denotes the regular expression a | b | c | d | ….|z. 

- We can describe identifiers as being strings generated by the regular expression, [AZa-z][A-Za-

z0-9]* 

Non-regular Set A language which cannot be described by any regular expression is a non-

regular set. 

Example: The set of all strings of balanced parentheses and repeating strings cannot be described 

by a 

regular expression. This set can be specified by a context-free grammar. 

RECOGNITION OF TOKENS 

Consider the following grammar fragment: 

stmt → if expr then stmt 

| if expr then stmt else stmt 

| ε 

expr → term relop term 

| term 

term → id 

| num 

where the terminals if , then, else, relop, id and num generate sets of strings given by the 

following regular definitions: 



 

 

if → if 

then → then 

else → else 

relop → <|<=|=|<>|>|>= 

id → letter(letter|digit)* 

num → digit+(.digit+)?(E(+|-)?digit+)? 

For this language fragment the lexical analyzer will recognize the keywords if, then, else, as well 

as the lexemes denoted by relop, id, and num. To simplify matters, we assume keywords are 

reserved; that is, they cannot be used as identifiers. 

   

 

      b) What is symbol table? Explain the data structures of symbol table in detail. 

SYMBOL TABLE 

Symbol table is an important data structure created and maintained by compilers in order to store 

information about the occurrence of various entities such as variable names, function names, 

objects, classes, interfaces, etc. Symbol table is used by both the analysis and the synthesis parts 

of a compiler. 

 A symbol table may serve the following purposes depending upon the language in hand: 

 To store the names of all entities in a structured form at one place. 

 To verify if a variable has been declared. 

 To implement type checking, by verifying assignments and expressions in the source 

code are semantically correct. 

 To determine the scope of a name (scope resolution). 

 

A symbol table is simply a table which can be either linear or a hash table. It maintains an entry 

for each name in the following format: 

<symbol name,  type,  attribute> 

For example, if a symbol table has to store information about the following variable declaration: 

static int interest; 

then it should store the entry such as: 

<interest, int, static> 

The attribute clause contains the entries related to the name. 

Implementation 

If a compiler is to handle a small amount of data, then the symbol table can be implemented as 

an unordered list, which is easy to code, but it is only suitable for small tables only. A symbol 

table can be implemented in one of the following ways: 

 Linear (sorted or unsorted) list 

 Binary Search Tree 

 Hash table 

Among all, symbol tables are mostly implemented as hash tables, where the source code symbol 

itself is treated as a key for the hash function and the return value is the information about the 

symbol. 

Operations 



 

 

A symbol table, either linear or hash, should provide the following operations. 

insert() 

This operation is more frequently used by analysis phase, i.e., the first half of the compiler where 

tokens are identified and names are stored in the table. This operation is used to add information 

in the symbol table about unique names occurring in the source code. The format or structure in 

which the names are stored depends upon the compiler in hand. 

An attribute for a symbol in the source code is the information associated with that symbol. This 

information contains the value, state, scope, and type about the symbol. The insert() function 

takes the symbol and its attributes as arguments and stores the information in the symbol table. 

For example: 

int a; 

should be processed by the compiler as: 

insert(a, int); 

lookup() 

lookup() operation is used to search a name in the symbol table to determine: 

 if the symbol exists in the table. 

 if it is declared before it is being used. 

 if the name is used in the scope. 

 if the symbol is initialized. 

 if the symbol declared multiple times. 

The format of lookup() function varies according to the programming language. The basic format 

should match the following: 

lookup(symbol) 

This method returns 0 (zero) if the symbol does not exist in the symbol table. If the symbol exists 

in the symbol table, it returns its attributes stored in the table. 

Scope Management 

A compiler maintains two types of symbol tables: a global symbol table which can be accessed 

by all the procedures and scope symbol tables that are created for each scope in the program. 

To determine the scope of a name, symbol tables are arranged in hierarchical structure as shown 

in the example below: 



 

 

 

 

The above program can be represented in a hierarchical structure of symbol 

tables:  



 

 

 

 

The global symbol table contains names for one global variable (int value) and two procedure 

names, which should be available to all the child nodes shown above. The names mentioned in 

the pro_one symbol table (and all its child tables) are not available for pro_two symbols and its 

child tables. 

This symbol table data structure hierarchy is stored in the semantic analyzer and whenever a 

name needs to be searched in a symbol table, it is searched using the following algorithm: 

 first a symbol will be searched in the current scope, i.e. current symbol table. 

 if a name is found, then search is completed, else it will be searched in the parent symbol table until, 

 either the name is found or global symbol table has been searched for the name. 

 

25. a) Explain any one parser type in detail.         [OR] 

 

LR Parser  

  The LR parser is a non-recursive, shift-reduce, bottom-up parser. It uses a wide classof context-

free grammar which makes it the most efficient syntax analysis technique. LR parsers are also 

known as LR(k) parsers, where L stands  for  left-to-right scanning of the input  stream;  R  

stands  for  the  construction  of  right-most  derivation  in  reverse,  and  k denotes the number of 

look ahead symbols to make decisions.  

  An LL Parser accepts LL grammar. LL grammar  is a  subset  of  context-free grammar but  

with  some  restrictions  to  get  the  simplified  version,  in  order  to  achieve  easy 

implementation. LL grammar can be implemented by means of both algorithms, namely, 

recursive-descent or table-driven.  

  LL parser is denoted as LL(k). The first L in LL(k) is parsing the input from left to right, the 

second L in LL(k) stands for left-most derivation and k itself represents the number of look 

aheads. Generally k = 1, so LL(k) may also be written as LL(1). 

 

 



 

 

 
LL LR 

Does a leftmost derivation.   Does a rightmost derivation in reverse.      

Starts  with  the  root  nonterminal  on  the 

stack 

Ends with the root nonterminal on the stack. 

Ends when the stack is empty  Starts with an empty stack.  

Uses thestack for designating what is still to 

be expected. 

Uses the stack for designating what is already 

seen 

Builds the parse tree top-down.   Builds the parse tree bottom-up. 

Continuously  pops  a  nonterminal  off  the  

stack, and pushes  the  corresponding  right  

hand side. 

Tries to recognize a right hand side on 

thestack, pops it, and pushes the 

corresponding nonterminal. 

Expands the non-terminals Reduces the non-terminals. 

Reads  the  terminals  when  it  pops  one  off  

the stack. 

Reads the terminalswhile itpushes them on 

the stack. 

  Pre-order traversal of the parse tree. Post-order traversal of the parse tree 

 

There are three widely used algorithms available for constructing an LR parser: 

• SLR(l) - Simple LR 

    o Works on smallest class of grammar. 

        Few number of states, hence very small table. 

    o Simple and fast construction. 

• LR( 1) - LR parser 

    o Also called as Canonical LR parser. 

    o Works on complete set of LR(l) Grammar. 



 

 

    o Generates large table and large number of states. 

    o Slow construction. 

• LALR(l) - Look ahead LR parser 

    o Works on intermediate size of grammar. 

    o Number of states are same as in SLR(l). 

Reasons for attractiveness of LR parser 

• LR parsers can handle a large class of context-free grammars. 

• The LR parsing method is a most general non-back tracking shift-reduce parsing method. 

• An LR parser can detect the syntax errors as soon as they can occur. 

• LR grammars can describe more languages than LL grammars. 

Drawbacks of LR parsers 

• It is too much work to construct LR parser by hand. It needs an automated parser generator. 

• If the grammar contains ambiguities or other constructs then it is difficult to parse in a left-to-

right scan of the input. 

Model of LR Parser 
LR parser consists of an input, an output, a stack, a driver program and a parsing table that has 

two functions 

1. Action 

2. Goto 

The driver program is same for all LR parsers. Only the parsing table changes from one parser to 

another. 

The parsing program reads character from an input buffer one at a time, where a shift reduces 

parser would shift a symbol; an LR parser shifts a state. Each state summarizes 

the information contained in the stack. 

The stack holds a sequence of states, so, s1, · ·· , Sm, where Sm is on the top. 

http://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information


 

 

 

Action This function takes as arguments a state i and a terminal a (or $, the input end marker). 

The value of ACTION [i, a] can have one of the four forms: 

i) Shift j, where j is a state. 

ii) Reduce by a grammar production A---> β. 

iii) Accept. 

iv) Error. 

Goto This function takes a state and grammar symbol as arguments and produces a state. 

If GOTO [Ii ,A] = Ij, the GOTO also maps a state i and non terminal A to state j. 

Behavior of the LR parser 

1. If ACTION[sm, ai] = shift s. The parser executes the shift move, it shifts the next state s onto 

the stack, entering the configuration 

a) Sm - the state on top of the stack. 

b) ai- the current input symbol. 

2. If ACTION[sm, ai] =reduce A---> β, then the parser executes a reduce move, entering the 

configuration 

                                   (s0s1 ... S(m-r)S, ai+l ... an$) 

a) where r is the length of β and s= GOTO[sm - r, A]. 

b) First popped r state symbols off the stack, exposing state Sm-r· 

 Then pushed s, the entry for GOTO[sm-r, A], onto the stack. 

3. If ACTION[sm, ai] = accept, parsing is completed. 

4. If ACTION[sm, ai] = error, the parser has discovered an error and calls an error recovery 

routine. 

 

      b) Explain three address code generation concepts in detail. 



 

 

Addresses and Instructions 
• TAC consists of a sequence of instructions, each instruction may have up to three addresses, 

proto typically t1 = t2 op t3 

• Addresses may be one of: 

o A name. Each name is a symbol table index. For convenience, we write the names as the 

identifier. 

o A constant. 

o A compiler-generated temporary. Each time a temporary address is needed, the compiler 

generates another name from the stream t1, t2, t3, etc. 

• Temporary names allow for code optimization to easily move Instructions 

• At target-code generation time, these names will be allocated to registers or to memory. 

• TAC Instructions 

o Symbolic labels will be used by instructions that alter the flow of control. 

The instruction addresses of labels will be filled in later. 

L: t1 = t2 op t3 

Types of three address code 

There are different types of statements in source program to which three address code has to be 

generated. Along with operands and operators, three address code also use labels to provide flow 

of control for statements like if-then-else, for and while. The different types of three address 

code statements are: 

Assignment statement 

a = b op c 

In the above case b and c are operands, while op is binary or logical operator. The result of 

applying op on b and c is stored in a. 

Unary operation 

a = op b This is used for unary minus or logical negation. 

Example: a = b * (- c) + d 

Three address code for the above example will be 

t1 = -c 

t2 = t1 * b 

t3 = t2 + d 

a = t3 

Copy Statement 

a=b 

The value of b is stored in variable a. 

Unconditional jump 

goto L 

Creates label L and generates three-address code „goto L‟ 

v. Creates label L, generate code for expression exp, If the exp returns value true then go to 

the statement labelled L. exp returns a value false go to the statement immediately following 

the if statement. 

Function call 

For a function fun with n arguments a1,a2,a3….an ie., 

fun(a1, a2, a3,…an), 

the three address code will be 

Param a1 



 

 

Param a2 

… 

Param an 

Call fun, n 

Where param defines the arguments to function. 

Array indexing 

In order to access the elements of array either single dimension or multidimension, three address 

code requires base address and offset value. Base address consists of the address of first element 

in an array. Other elements of the array can be accessed using the base address and offset value. 

Example: x = y[i] 

Memory location m = Base address of y + Displacement i 

x = contents of memory location m 

similarly x[i] = y 

Memory location m = Base address of x + Displacement i 

The value of y is stored in memory location m 

Pointer assignment 

x = &y x stores the address of memory location y 

x = *y y is a pointer whose r-value is location 

*x = y sets r-value of the object pointed by x to the r-value of y 

Intermediate representation should have an operator set which is rich to implement. The 

operations of source language. It should also help in mapping to restricted instruction set of 

target machine. 

QUADRUPLES- 

Quadruples consists of four fields in the record structure. One field to store operator op, two 

fields to store operands or arguments arg1and arg2 and one field to store result res. res = arg1op 

arg2 

Example: a = b + c 

b is represented as arg1, c is represented as arg2, + as op and a as res. 

Unary operators like „-„do not use agr2. Operators like param do not use agr2 nor result. For 

conditional and unconditional statements res is label. Arg1, arg2 and res are pointers to symbol 

table or literal table for the names. 

Example: a = -b * d + c + (-b) * d 

Three address code for the above statement is as follows 

t1 = - b 

t2 = t1 * d 

t3 = t2 + c 

t4 = - b 

t5 = t4 * d 

t6 = t3 + t5 

a = t6 

Quadruples for the above example is as follows 



 

 

 
TRIPLES 

Triples uses only three fields in the record structure. One field for operator, two fields 

foroperands named as arg1 and arg2. Value of temporary variable can be accessed by theposition 

of the statement the computes it and not by location as in quadruples. 

Example: a = -b * d + c + (-b) * d 

Triples for the above example is as follows 

 
Arg1 and arg2 may be pointers to symbol table for program variables or literal table forconstant 

or pointers into triple structure for intermediate results.Example: Triples for statement x[i] = y 

which generates two records is as follows 



 

 

 
INDIRECT TRIPLES 
Indirect triples are used to achieve indirection in listing of pointers. That is, it uses pointers 

totriples than listing of triples themselves. 

Example: a = -b * d + c + (-b) * d 

 
Conditional operator and operands. Representations include quadruples, triples and indirect triples 

 

26. a) What is intermediate representation? Discuss in detail.    

Intermediate code forms: 

An intermediate code form of source program is an internal form of a program created by the 

compiler while translating the program created by the compiler while translating the program 

from a high –level language to assembly code(or)object code(machine code).an intermediate 

source form represents a more attractive form of target code than does assembly. An optimizing 

Compiler performs optimizations on the intermediate source form and produces an object 

module. 

Analysis + syntheses=translation 

Creates an generate   target code 

Intermediate code 



 

 

 
Logical Structure of a Compiler Front End 

In the analysis –synthesis model of a compiler, the front-end translates a source program into 

anintermediate representation from which the back-end generates target code, in many compilers 

thesource code is translated into a language which is intermediate in complexity between a HLL 

andmachine code .the usual intermediate code introduces symbols to stand for various 

temporaryquantities. 

Intermediate representations span the gap between the source and target languages. 

• High Level Representations 

 closer to the source language 

 easy to generate from an input program 

 code optimizations may not be straightforward 

• Low Level Representations 

 closer to the target machine 

 Suitable for register allocation and instruction selection 

 easier for optimizations, final code generation 

There are several options for intermediate code. They can be either Specific to the language 

being implemented 

 P-code for Pascal 

 Byte code for Java 

We assume that the source program has already been parsed and statically checked.. the 

variousintermediate code forms are: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Postfix  

The ordinary (infix) way of writing the sum of a and b is with the operator in the middle: a+b. 

thepostfix (or postfix polish)notation for the same expression places the operator at the right end, 

a) Polish notation 

b) Abstract syntax trees(or)syntax trees 

c) Quadruples 

d) Triples          three address code 

e) Indirect triples 

f) Abstract machine code(or)pseudocopde 

 



 

 

as ab+.In general, if e1 and e2 are any postfix expressions, and Ø to the values denoted by e1 and 

e2 isindicated in postfix notation nby e1e2Ø.no parentheses are needed in postfix notation 

because theposition and priority (number of arguments) of the operators permits only one way to 

decode apostfix expression. 

Example: 

1. (a+b)*c in postfix notation is ab+c*,sinceab+ represents the infix expression(a+b). 

2. a*(b+c)is abc+* in postfix. 

3. (a+b)*(c+d) is ab+cd+* in postfix. 

Postfix notation can be generalized to k-ary operators for any k>=1.if k-ary operator Ø is applied 

topostfix expression e1,e2,……….ek, then the result is denoted by e1e2…….ek Ø. if we know 

thepriority of each operator then we can uniquely decipher any postfix expression by scanning it 

fromeither end. 

Example: 

Consider the postfix string ab+c*. 

The right hand * says that there are two arguments to its left. since the next –to-rightmost symbol 

isc, simple operand, we know c must be the second operand of *.continuing to the left, we 

encounterthe operator +.we know the sub expression ending in + makes up the first operand of 

*.continuing in this way ,we deduce that ab+c* is “parsed” as (((a,b)+),c)*. 

b. syntax tree: 

The parse tree itself is a useful intermediate-language representation for a source 

program,especially in optimizing compilers where the intermediate code needs to extensively 

restructure. 

A parse tree, however, often contains redundant information which can be eliminated, 

Thusproducing a more economical representation of the source program. One such variant of a 

parse treeis what is called an (abstract) syntax tree, a tree in which each leaf represents an 

operand and eachinterior node an operator. 

Exmples: 1) Syntax tree for the expression a*(b+c)/d 

 
c.Three-Address Code: • In three-address code, there is at most one operator on the right 

side of aninstruction; that is, no built-up arithmetic expressions are permitted. 

x+y*z t1 = y * z t2 = x + t1 • Example 



 

 

 
LANGUAGE INDEPENDENT 3-ADDRESS CODE 

IR can be either an actual language or a group of internal data structures that are shared by the 

phases of the compiler. C used as intermediate language as it is flexible, compiles into efficient 

machine code and its compilers are widely available.In all cases, the intermediate code is a 

linearization of the syntax tree produced during syntax and semantic analysis. It is formed by 

breaking down the tree structure into sequential instructions, each of which is equivalent to a 

single, or small number of machine instructions. 

 Machine code can then be generated (access might be required to symbol tables etc). TAC can 

range from high- to low-level, depending on the choice of operators. In general, it is a statement 

containing at most 3 addresses or operands. The general form is x := y op z, where “op” is an 

operator, x is the result, and y and z are operands. x, y, z are variables, constants, or 

“temporaries”. A three-address instruction consists of at most 3 addresses for each statement. 

It is a linear zed representation of a binary syntax tree. Explicit names correspond to 

interiornodes of the graph. E.g. for a looping statement , syntax tree represents components of 

thestatement, whereas three-address code contains labels and jump instructions to represent 

theflow-of-control as in machine language. A TAC instruction has at most one operator on 

theRHS of an instruction; no built-up arithmetic expressions are permitted. 

e.g. x + y * z can be translated as 

t1 = y * z 

t2 = x + t1 

Where t1 & t2 are compiler–generated temporary names. 

Since it unravels multi-operator arithmetic expressions and nested control-flow statements,it is 

useful for target code generation and optimization. 

 

 

      b) How Bottom-up parser works in compiler design? Explain. 

 

 

 

Bottom-up Parsing 

As the name suggests, bottom-up parsing starts with the input symbols and tries toconstruct the 

parse tree up to the start symbol. 

Note: 



 

 

In both the cases the input to the parser is being scanned from left to right, onesymbol at a 

time.The bottom-up parsing method is called “Shift Reduce” parsing. The top-down parsingis 

called “Recursive Decent” parsing. 

Bottom-up parsing starts from the leaf nodes of a tree and works in upward directiontill it 

reaches the root node. Here, we start from a sentence and then apply productionrules in reverse 

manner in order to reach the start symbol. The image given below depictsthe bottom-up parsers 

available 

An operator-precedence parser is one kind of shift reduce parser and predictive parseris one kind 

of recursive descent parser. 

 

 
Shift reduce parsing methods 

  It is called as bottom up style of parsing. Shift-reduce parsing uses two unique steps for bottom-

up parsing. These steps are known as shift-step and reduce-step.  

Shift step  

  The shift step refers to the advancement of the input pointer to the next input symbol, which  is  

called  the  shifted  symbol.  This  symbol  is  pushed  onto  the  stack.  The  shifted symbol is 

treated as a single node of the parse tree.  

Reduce step  

  When  the parser  finds a complete grammar rule  (RHS) and replaces  it  to  (LHS),  it  is 

known  as  reduce-step.  This  occurs  when  the  top  of  the  stack  contains  a  handle.  To 

reduce, a POP function is performed on the stack which pops off the handle and replaces it with 

LHS non-terminal symbol. 

Reducing a string W to the start symbol S of a grammar.  

  At each step a string matching the right side of a production is replaced by the symbol on the 

left.  

Example:  

 
  Each replacement of the right side of the production the left side in the process above is called   

reduction .by reverse of a right most derivation is called Handle  



 

 

in partition following is a handle of αβw. The string w to the 

right of the handle contains only terminal symbol.  

  A  rightmost  derivation  in  reverse  often  called  a  canonical  reduction  sequence,  is 

obtained by “Handle Pruning”.  

 

 

 
 

 

 

 

 



 Reg. No………………… 

 

KARPAGAM ACADEMY OF HIGHER EDUCATION   

(Deemed to be University) 

(Established Under Section 3 of UGC Act 1956) 

COIMBATORE – 641 021 
 

INFORMATION TECHNOLOGY 

First Semester 

THIRD INTERNAL EXAMINATION - March 2019 
 

SYSTEM PROGRAMMING 

Class & Section: III B.Sc (IT),           Duration: 2 hours 

Date & Session : 12.03.2019(FN)                 Maximum marks: 50 marks 

Sub.Code: 16ITU603B 
 

PART- A (20 * 1= 20 Marks) 

Answer ALL the Questions 

1. What characteristic of RAM memory makes it not suitable for permanent storage? 

      a) Too slow  b) Unreliable  c) It is volatile  d) Too bulky 

2. Select a Machine Independent phase of the compiler  

      a) Syntax Analysis     b) Intermediate Code generation c) Lexical analysis   d) all the above 

3. Which of the following system software resides in the main memory always ________  

      a) Text Editor b) Assembler     c) Linker  d) Loader 

4. The graph that shows basic blocks and their successor relationship is called _____ 

      a) DAG  b) Hamiltonian graph   c) Flow graph          d)control graph 

5. When a computer is first turned on or restarted, a special type of absolute loader is executed  

    called __________ 

      a) " Compile and GO " loader    b) Boot loader   

      c) Boot strap loader     d) Relating loader 

6. Which of the following are storage allocation strategies?  

      a) stack allocation  b) static allocation  c) heap allocation  d) all 

7. Flow of control in a program corresponds to which traversal of activation tree ?  

     a) Depth first traversal b) Breadth first traversal c) both (a) and (b)  d)none 

8. Memory unit accessed by content is called______ . 

     a) Read only memory      b) Programmable Memory 

      c) Virtual Memory      d) Associative Memory 

9.   ________ register keeps tracks of the instructions stored in program stored in memory.  

      a) AR (Address Register)      b) XR (Index Register) 

      c) PC (Program Counter)      d) AC (Accumulator) 

10. In computers, subtraction is generally done by ________  

      a)  1's complement method     b) 2's complement method 

      c) BCD subtraction method     d) signed magnitude method 

11. Which of the following comment about peep-hole optimization is true?  

      a) they enhance the portability of the compiler to other target processors  

      b) program analysis is more accurate on intermediate code than on machine code  

      c) the information from dataflow analysis cannot otherwise be used for optimization  



      d) the information from the front end cannot otherwise be used for optimization 

12. Which of the following is the fastest logic? 

      a) TTL  b) ECL   c) CMOS   d) LSI 

13. he optimization which avoids test at every iteration is _________ 

     a) Loop unrolling b) Loop jamming  c) Constant folding  d)None  

14. Compiler should report the presence of ________in source program, in translation process. 

     a) data  b) object   c) errors    d) text 

15. What is responsible for generation of final machine code tailored to target system? 

    a) Interpreter b) Semantic analyzer   c) Code generator Code optimizer 

16. Optimization of program that works within a single basic block is called ______ 

     a)  Local optimization      b)  Global optimization 

     c) Loop un-controlling     d)  Loop controlling  

17. Variable that can be accessed through out program is known as ________. 

      a)  Local variable  b) Global Variable  c) Integer  d) Constant 

18. What is boot strapping?   

      a) A language interpreting other language program  

      b) A language compiling other language program  

      c) A language compile itself     d) All of above 

19. Name given to the organized collection of software that controls the overall operation of a  

      computer is _____________. 

      a) working system    b) peripheral system      c) operating system d) controlling system 

20. The __ of a system includes the program s or instructions. 

       a) icon   b) software  c) hardware  d) information 

PART- B (3 * 2= 6 Marks) 

Answer ALL the Questions 

21. Differentiate between static and dynamic storage allocation. 

22. Write the function of activation record in run-time environment. 

23. What is Optimization? 

 

PART- C (3 * 8= 24 Marks) 

Answer ALL the Questions 

24. a) Discuss in detail about storage allocation in run-time environment.   [OR] 

      b) Explain the structure and working principles of activation record in detail. 

25. a) Write a detail note on Parameter passing techniques.     [OR] 

      b) What is machine independent optimization? Discuss in detail. 

26. a) Explain Peep-hole optimization.       [OR] 

     b) Discuss code generator phase in compiler design in detail. 

 

 



KARPAGAMACADEMY OF HIGHER EDUCATION 

(Deemed to be University) 

(Established Under Section 3 of UGC Act 1956) 

COIMBATORE – 641 021 
 

INFORMATION TECHNOLOGY 

Second Semester 

THIRD INTERNAL EXAMINATION - March 2019 
 

PROGRAMMING IN JAVA 

Class & Section: III B.Sc (IT),     Duration: 2 hours 

Date & Session :      Maximum marks: 50 marks 

Subj.Code: 16ITU613B 
 

PART- A (20 * 1= 20 Marks) 

Answer ALL the Questions 

1. What characteristic of RAM memory makes it not suitable for permanent storage? 

 a) Too slow  b) Unreliable  c) It is volatile  d) Too bulky 

2. Select a Machine Independent phase of the compiler  

a) Syntax Analysis     b) Intermediate Code generation c) Lexical analysis   d) all the above 

3.Which of the following system software resides in the main memory always ________  

a) Text Editor b) Assembler     c) Linker  d) Loader 

4. The graph that shows basic blocks and their successor relationship is called _____ 

  a) DAG  b) Hamiltonian graph   c) Flow graph          d)control graph 

5. When a computer is first turned on or restarted, a special type of absolute loader is executed  

called __________ 

  a) " Compile and GO " loader    b) Boot loader   

c) Boot strap loader     d) Relating loader 

6. Which of the following are storage allocation strategies?  

a) stack allocation  b) static allocation  c) heap allocation  d) all 

7.Flow of control in a program corresponds to which traversal of activation tree ?  

  a) Depth first traversal b) Breadth first traversal c) both (a) and (b)  d)none 

8.Memory unit accessed by content is called______  . 

 a) Read only memory      b) Programmable Memory 



 c) Virtual Memory      d) Associative Memory 

9.________ register keeps tracks of the instructions stored in program stored in memory.  

 a) AR (Address Register)      b) XR (Index Register) 

  c) PC (Program Counter)      d) AC (Accumulator) 

10. In computers, subtraction is generally done by ________  

  a)  1's complement method     b) 2's complement method 

 c) BCD subtraction method     d) signed magnitude method 

11. Which of the following comment about peep-hole optimization is true?  

 a) they enhance the portability of the compiler to other target processors  

  b) program analysis is more accurate on intermediate code than on machine code  

  c) the information from dataflow analysis cannot otherwise be used for optimization  

 d) the information from the front end cannot otherwise be used for optimization 

12. Which of the following is the fastest logic? 

 a) TTL  b) ECL   c) CMOS   d) LSI 

13. he optimization which avoids test at every iteration is _________ 

 a) Loop unrolling b) Loop jamming  c) Constant folding  d)None  

14. Compiler should report the presence of ________in source program, in translation process. 

 a) data  b) object   c) errors   d) text 

15. What is responsible for generation of final machine code tailored to target system? 

 a) Interpreter b) Semantic analyzer   c) Code generator Code optimizer 

16. Optimization of program that works within a single basic block is called ______ 

   a) Local optimization     b)  Global optimization 

  c) Loop un-controlling     d)  Loop controlling  

17. Variable that can be accessed through out program is known as ________. 

a)  Local variable  b)Global Variable  c) Integer  d) Constant 

18. What is bootstrapping?   

  a) A language interpreting other language program  

 b) A language compiling other language program  



   c) A language compile itself     d) All of above 

19. Name given to the organized collection of software that controls the overall operation of a  

computer is _____________. 

   a) working system    b) peripheral system      c) operating system d) controlling system 

20. The __ of a system includes the program s or instructions. 

  a) icon   b) software  c) hardware  d) information 

PART- B (3 * 2= 6 Marks) 

Answer ALL the Questions 

21. Differentiate between static and dynamic storage allocation. 

he major difference between static and dynamic memory allocations are: 

Static Memory Allocation Dynamic Memory Allocation 

In this case, variables get allocated 
permanently 

In this case, variables get allocated only 
if your program unit gets active 

Allocation is done before program 
execution 

Allocation is done during program 
execution 

It uses the data structure called stack 
for implementing static allocation 

It uses the data structure called heap for 
implementing dynamic allocation 

Less efficient More efficient 

There is no memory reusability There is memory reusability and memory 
can be freed when not required 

 

22. Write the function of activation record in run-time environment. 

Activation Record 

 Control stack is a run time stack which is used to keep track of the live procedure 

activations i.e. it is used to find out the procedures whose execution have not been 

completed. 



 When it is called (activation begins) then the procedure name will push on to the stack 

and when it returns (activation ends) then it will popped. 

 Activation record is used to manage the information needed by a single execution of a 

procedure. 

 An activation record is pushed into the stack when a procedure is called and it is popped 

when the control returns to the caller function. 

23. What is Optimization? 

Optimization is a program transformation technique, which tries to improve the code by making 

it consume less resources (i.e. CPU, Memory) and deliver high speed. 

In optimization, high-level general programming constructs are replaced by very efficient low-

level programming codes. A code optimizing process must follow the three rules given below: 

 The output code must not, in any way, change the meaning of the program. 

 Optimization should increase the speed of the program and if possible, the program 

should demand less number of resources. 

 Optimization should itself be fast and should not delay the overall compiling process. 

 

 

PART- C (3 * 8= 24 Marks) 

Answer ALL the Questions 

24. a)Discuss in detail about storage allocation in run-time environment.  [OR] 

Storage Allocation 

Runtime environment manages runtime memory requirements for the following entities: 

Code : It is known as the text part of a program that does not change at runtime. Its memory 

requirements are known at the compile time. 

Procedures : Their text part is static but they are called in a random manner. That is why, stack 

storage is used to manage procedure calls and activations. 

Variables : Variables are known at the runtime only, unless they are global or constant. Heap 

memory allocation scheme is used for managing allocation and de-allocation of memory for 

variables in runtime. 

Static Allocation 



In this allocation scheme, the compilation data is bound to a fixed location in the memory and it 

does not change when the program executes. As the memory requirement and storage locations 

are known in advance, runtime support package for memory allocation and de-allocation is not 

required. 

Stack Allocation 

Procedure calls and their activations are managed by means of stack memory allocation. It 

works in last-in-first-out (LIFO) method and this allocation strategy is very useful for recursive 

procedure calls. 

Heap Allocation 

Variables local to a procedure are allocated and de-allocated only at runtime. Heap allocation is 

used to dynamically allocate memory to the variables and claim it back when the variables are 

no more required. 

Except statically allocated memory area, both stack and heap memory can grow and shrink 

dynamically and unexpectedly. Therefore, they cannot be provided with a fixed amount of 

memory in the system. 

 

As shown in the figure above, the text part of the code is allocated a fixed amount of memory. 

Stack and heap memory are arranged at the extremes of total memory allocated to the program. 

Both shrink and grow against each other. 

      b) Explain the structure and working principles of activation record in detail. 



The information needed for each invocation of a procedure is kept in a runtime data structure 

called an activation record (AR) or frame. The frames are kept in a stack called the control 

stack. 

Note that this is memory used by the compiled program, not by the compiler. The compiler's job 

is to generate code that obtains the needed memory and to correctly reference the variables 

stored in the ARs. 

At any point in time the number of frames on the stack is the current depth of procedure calls. 

For example, in the fibonacci execution shown above when f(4) is active there are three 

activation records on the control stack. 

ARs vary with the language and compiler implementation. Typical components are described 

below and pictured to the right. In the diagrams the stack grows down the page. 

1. The arguments (sometimes called the actual parameters). The first few arguments are 

often placed in registers. 

2. The returned value. This is often placed in a register (if it is a scalar). 

3. The control link connects the ARs by pointing to the AR of the caller. 

4. The access link (described below). 

5. Saved status from the caller, which typically includes the return address and the machine 

registers. The register values are restored when control returns to the caller. 

6. Data local to the procedure being activated. 

7. Temporaries. For example, recall the temporaries generated during expression evaluation. 

Often these can be held in machine registers. When that is not possible (e.g., there are 

more temporaries than registers), the temporary area is used. 

The diagram on the right shows (part of) the control stack for the fibonacci example at three 

points during the execution. The solid lines separate ARs; the dashed lines separate components 

within an AR. 

In the upper left we have the initial state, We show the global variable a, although it is not in an 

activation record and actually is allocated before the program begins execution (it is statically 

allocated; recall that the stack and heap are each dynamically allocated). Also shown is the 

activation record for main, which contains storage for the local variable i. Recall that local 

variables are near the end of the AR. 

Below the initial state we see the next state when main has called f(1) and there are two 

activation records, one for main and one for f. The activation record for f contains space for the 

argument n and and also for the returned value. Recall that arguments and the return value are 

allocated near the beginning of the AR. There are no local variables in f. 

At the far right is a later state in the execution when f(4) has been called by main and has in turn 

called f(2). There are three activation records, one for main and two for f. It is these multiple 

activations for f that permits the recursive execution. There are two locations for n and two for 

the returned value. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

25 a) Write a detail note on Parameter passing techniques.    [OR] 

Calling Sequences 

The calling sequence, executed when one procedure (the caller) calls another (the 

callee), allocates an activation record (AR) on the stack and fills in the fields. Part of 

this work is done by the caller; the remainder by the callee. Although the work is 

shared, the AR is called the callee's AR. 

Since the procedure being called is defined in one place, but normally called from 

many places, we would expect to find more instances of the caller activation code 

than of the callee activation code. Thus it is wise, all else being equal, to assign as 

much of the work to the callee as possible. 

Although details vary among implementations, the following principles are often 

followed. 

1. Values computed by the caller are placed before any items of size unknown by 

the caller. This way they can be referenced by the caller using fixed offsets. 

One possibility is to place values computed by the caller at the beginning of the 

activation record, i.e., near the AR of the caller. The number of arguments may 



not be the same for different calls of the same function (so called varargs, e.g. 

printf() in C). However the (compiler of the) caller knows how many 

arguments there are so, where pink calls blue, the compilers knows how far the 

return values is from the beginning of the blue AR. Since this beginning of the 

blue AR is the end of the pink AR (or is one location further depending on how 

you count), the caller knows (but only at run time) the offset of the return value 
location from its own stack pointer (sp, see below). 

2. Fixed length items are placed next. Their sizes are known to the caller and 

callee at compile time. Examples of fixed length items include the links and the 

saved status. 

3. Finally come items allocated by the callee whose size is known only at run-
time, e.g., arrays whose size depends on the parameters. 

4. The stack pointer sp is between the last two. One consequence of this location 

is that the temporaries and local data are actually above the stack. This would 

seem more surprising if I used the book's terminology, which is top_sp. Fixed 

length data can be referenced by fixed offsets (known to the intermediate code 

generator) from the sp. 

The picture above illustrates the situation where a pink procedure (the caller) calls a 

blue procedure (the callee). Also shown is Blue's AR. Note that responsibility for this 

single AR is shared by both procedures. The picture is just an approximation: For 

example, the returned value is actually Blue's responsibility, although the space might 

well be allocated by Pink. Also some of the saved status, e.g., the old sp, is saved by 

Pink. 

The picture to the right shows what happens when Blue, the callee, itself calls a green 

procedure and thus Blue is also a caller. You can see that Blue's responsibility 

includes part of its AR as well as part of Green's. 

Calling Sequence 

The following actions occur during a call. 

1. The caller begins the process of creating the callee's AR by evaluating the 

arguments and placing them in the AR of the callee. (I use arguments for the 
caller, parameters for the callee.) 

2. The caller stores the return address and the (soon-to-be-updated) sp in the 

callee's AR. 



3. The caller increments sp so that instead of pointing into its AR, it points to the 
corresponding point in the callee's AR. 

4. The callee saves the registers and other (system dependent) information. 

5. The callee allocates and initializes its local data. 

6. The callee begins execution. 

Return Sequence 

When the procedure returns, the following actions are performed by the callee, 

essentially undoing the effects of the calling sequence. 

1. The callee stores the return value. Note that this address can be determined by 
the caller using the old (soon-to-be-restored) sp. 

2. The callee restores sp and the registers. 

3. The callee jumps to the return address. 

Note that varagrs are supported. 

Also note that the values written during the calling sequence are not erased and the 

space is not explicitly reclaimed. Instead, the sp is restored and, if and when the caller 

makes another call, the space will be reused. 

 Variable-Length Data on the Stack 

There are two flavors of variable-length data. 

 Data obtained by malloc/new have hard to determine lifetimes and are stored in 

the heap instead of the stack. 

 Data, such as arrays with bounds determined by the parameters are still stack 

like in their lifetimes (if A calls B, these variables of A are allocated before and 

released after the corresponding variables of B). 

It is the second flavor that we wish to allocate on the stack. The goal is for the callee 

to be able to access these arrays using addresses determined at compile time even 

though the size of the arrays is not known until the program is called, and indeed often 

differs from one call to the next (even when the two calls correspond to the same 

source statement). 



The solution is to leave room for pointers to the arrays in the AR. These pointers are 

fixed size and can thus be accessed using static offsets. When the procedure is 

invoked and the sizes are known, the pointers are filled in and the space allocated. 

A difficulty caused by storing these variable size items on the stack is that it no longer 

is obvious where the real top of the stack is located relative to sp. Consequently 

another pointer (call it real-top-of-stack) is also kept. This is used on a call to tell 

where the new allocation record should begin. 

 

 

 

 

 

 

 

 

 

 

 

 

      b) What is machine dependent optimization? Discuss in detail. 

Machine-independent Optimization 

In this optimization, the compiler takes in the intermediate code and transforms a part of the 

code that does not involve any CPU registers and/or absolute memory locations. For example: 

do 

{ 

   item = 10; 

   value = value + item;  

} while(value<100); 

This code involves repeated assignment of the identifier item, which if we put this way: 



Item = 10; 

do 

{ 

   value = value + item;  

} while(value<100); 

should not only save the CPU cycles, but can be used on any processor. 

Machine-dependent Optimization 

Machine-dependent optimization is done after the target code has been generated and when the 

code is transformed according to the target machine architecture. It involves CPU registers and 

may have absolute memory references rather than relative references. Machine-dependent 

optimizers put efforts to take maximum advantage of memory hierarchy. 

Basic Blocks 

Source codes generally have a number of instructions, which are always executed in sequence 

and are considered as the basic blocks of the code. These basic blocks do not have any jump 

statements among them, i.e., when the first instruction is executed, all the instructions in the 

same basic block will be executed in their sequence of appearance without losing the flow 

control of the program. 

A program can have various constructs as basic blocks, like IF-THEN-ELSE, SWITCH-CASE 

conditional statements and loops such as DO-WHILE, FOR, and REPEAT-UNTIL, etc. 

Basic block identification 

We may use the following algorithm to find the basic blocks in a program: 

 Search header statements of all the basic blocks from where a basic block starts: 

o First statement of a program. 

o Statements that are target of any branch (conditional/unconditional). 

o Statements that follow any branch statement. 

 Header statements and the statements following them form a basic block. 

 A basic block does not include any header statement of any other basic block. 

Basic blocks are important concepts from both code generation and optimization point of view. 



 
Basic blocks play an important role in identifying variables, which are being used more than 

once in a single basic block. If any variable is being used more than once, the register memory 

allocated to that variable need not be emptied unless the block finishes execution. 

Control Flow Graph 

Basic blocks in a program can be represented by means of control flow graphs. A control flow 

graph depicts how the program control is being passed among the blocks. It is a useful tool that 

helps in optimization by help locating any unwanted loops in the program. 

 
Loop Optimization 

Most programs run as a loop in the system. It becomes necessary to optimize the loops in order 

to save CPU cycles and memory. Loops can be optimized by the following techniques: 

 Invariant code : A fragment of code that resides in the loop and computes the same 

value at each iteration is called a loop-invariant code. This code can be moved out of the 

loop by saving it to be computed only once, rather than with each iteration. 

 Induction analysis : A variable is called an induction variable if its value is altered 

within the loop by a loop-invariant value. 

 Strength reduction : There are expressions that consume more CPU cycles, time, and 

memory. These expressions should be replaced with cheaper expressions without 

compromising the output of expression. For example, multiplication (x * 2) is expensive 

in terms of CPU cycles than (x << 1) and yields the same result. 



Dead-code Elimination 

Dead code is one or more than one code statements, which are: 

 Either never executed or unreachable, 

 Or if executed, their output is never used. 

Thus, dead code plays no role in any program operation and therefore it can simply be 

eliminated. 

Partially dead code 

There are some code statements whose computed values are used only under certain 

circumstances, i.e., sometimes the values are used and sometimes they are not. Such codes are 

known as partially dead-code. 

 
The above control flow graph depicts a chunk of program where variable „a‟ is used to assign 

the output of expression „x * y‟. Let us assume that the value assigned to „a‟ is never used inside 

the loop.Immediately after the control leaves the loop, „a‟ is assigned the value of variable „z‟, 

which would be used later in the program. We conclude here that the assignment code of „a‟ is 

never used anywhere, therefore it is eligible to be eliminated. 

 
Likewise, the picture above depicts that the conditional statement is always false, implying that 

the code, written in true case, will never be executed, hence it can be removed. 

Partial Redundancy 

Redundant expressions are computed more than once in parallel path, without any change in 

operands.whereas partial-redundant expressions are computed more than once in a path, without 

any change in operands. For example, 



 

[redundant expression] 

 
[partially redundant expression] 

Loop-invariant code is partially redundant and can be eliminated by using a code-motion 

technique. 

Another example of a partially redundant code can be: 

If (condition) 

{ 

   a = y OP z; 

} 

else 

{ 

   ... 

} 

c = y OP z; 

We assume that the values of operands (y and z) are not changed from assignment of 

variable a to variable c. Here, if the condition statement is true, then y OP z is computed twice, 

otherwise once. Code motion can be used to eliminate this redundancy, as shown below: 

If (condition) 

{ 

   ... 

   tmp = y OP z; 

   a = tmp; 

   ... 

} 



else 

{ 

   ... 

   tmp = y OP z; 

} 

c = tmp; 

Here, whether the condition is true or false; y OP z should be computed only once. 

 

26. a) Explain Peep-hole optimization.       [OR] 

Peephole Optimization 

This optimization technique works locally on the source code to transform it into an optimized 

code. By locally, we mean a small portion of the code block at hand. These methods can be 

applied on intermediate codes as well as on target codes. A bunch of statements is analyzed and 

are checked for the following possible optimization: 

Redundant instruction elimination 

At source code level, the following can be done by the user: 

int add_ten(int x) 

   { 

   int y, z; 

   y = 10; 

   z = x + y; 

   return z; 

   } 

int add_ten(int x) 

   { 

   int y; 

   y = 10; 

   y = x + y; 

   return y; 

   } 

int add_ten(int x) 

   { 

   int y = 10; 

   return x + y; 

   } 

    

    

int add_ten(int x) 

   { 

   return x + 10; 

   } 

    

    

    

At compilation level, the compiler searches for instructions redundant in nature. Multiple 

loading and storing of instructions may carry the same meaning even if some of them are 

removed. For example: 

 MOV x, R0 

 MOV R0, R1 

We can delete the first instruction and re-write the sentence as: 

MOV x, R1 



Unreachable code 

Unreachable code is a part of the program code that is never accessed because of programming 

constructs. Programmers may have accidently written a piece of code that can never be reached. 

Example: 

void add_ten(int x) 

{ 

   return x + 10; 

   printf(“value of x is %d”, x); 

} 

In this code segment, the printf statement will never be executed as the program control returns 

back before it can execute, hence printf can be removed. 

Flow of control optimization 

There are instances in a code where the program control jumps back and forth without 

performing any significant task. These jumps can be removed. Consider the following chunk of 

code: 

...   

MOV R1, R2 

GOTO L1 

... 

L1 :   GOTO L2 

L2 :   INC R1 

In this code, label L1 can be removed as it passes the control to L2. So instead of jumping to L1 

and then to L2, the control can directly reach L2, as shown below: 

...   

MOV R1, R2 

GOTO L2 

... 

L2 :   INC R1 

Algebraic expression simplification 

There are occasions where algebraic expressions can be made simple. For example, the 

expression a = a + 0 can be replaced by a itself and the expression a = a + 1 can simply be 

replaced by INC a. 



Strength reduction 

There are operations that consume more time and space. Their „strength‟ can be reduced by 

replacing them with other operations that consume less time and space, but produce the same 

result. 

For example, x * 2 can be replaced by x << 1, which involves only one left shift. Though the 

output of a * a and a
2
 is same, a

2
 is much more efficient to implement. 

Accessing machine instructions 

The target machine can deploy more sophisticated instructions, which can have the capability to 

perform specific operations much efficiently. If the target code can accommodate those 

instructions directly, that will not only improve the quality of code, but also yield more efficient 

results. 

 

     b) Discuss code generator phase in compiler design in detail. 

Code Generator 

A code generator is expected to have an understanding of the target machine‟s runtime 

environment and its instruction set. The code generator should take the following things into 

consideration to generate the code: 

 Target language : The code generator has to be aware of the nature of the target 

language for which the code is to be transformed. That language may facilitate some 

machine-specific instructions to help the compiler generate the code in a more 

convenient way. The target machine can have either CISC or RISC processor 

architecture. 

 IR Type : Intermediate representation has various forms. It can be in Abstract Syntax 

Tree (AST) structure, Reverse Polish Notation, or 3-address code. 

 Selection of instruction : The code generator takes Intermediate Representation as input 

and converts (maps) it into target machine‟s instruction set. One representation can have 

many ways (instructions) to convert it, so it becomes the responsibility of the code 

generator to choose the appropriate instructions wisely. 

 Register allocation : A program has a number of values to be maintained during the 

execution. The target machine‟s architecture may not allow all of the values to be kept in 

the CPU memory or registers. Code generator decides what values to keep in the 

registers. Also, it decides the registers to be used to keep these values. 

 Ordering of instructions : At last, the code generator decides the order in which the 

instruction will be executed. It creates schedules for instructions to execute them. 

Descriptors 

The code generator has to track both the registers (for availability) and addresses (location of 

values) while generating the code. For both of them, the following two descriptors are used: 

 Register descriptor : Register descriptor is used to inform the code generator about the 

availability of registers. Register descriptor keeps track of values stored in each register. 



Whenever a new register is required during code generation, this descriptor is consulted 

for register availability. 

 Address descriptor : Values of the names (identifiers) used in the program might be 

stored at different locations while in execution. Address descriptors are used to keep 

track of memory locations where the values of identifiers are stored. These locations 

may include CPU registers, heaps, stacks, memory or a combination of the mentioned 

locations. 

Code generator keeps both the descriptor updated in real-time. For a load statement, LD R1, x, 

the code generator: 

 updates the Register Descriptor R1 that has value of x and 

 updates the Address Descriptor (x) to show that one instance of x is in R1. 

Code Generation 

Basic blocks comprise of a sequence of three-address instructions. Code generator takes these 

sequence of instructions as input. 

Note : If the value of a name is found at more than one place (register, cache, or memory), the 

register‟s value will be preferred over the cache and main memory. Likewise cache‟s value will 

be preferred over the main memory. Main memory is barely given any preference. 

getReg : Code generator uses getReg function to determine the status of available registers and 

the location of name values. getReg works as follows: 

 If variable Y is already in register R, it uses that register. 

 Else if some register R is available, it uses that register. 

 Else if both the above options are not possible, it chooses a register that requires minimal 

number of load and store instructions. 

For an instruction x = y OP z, the code generator may perform the following actions. Let us 

assume that L is the location (preferably register) where the output of y OP z is to be saved: 

 Call function getReg, to decide the location of L. 

 Determine the present location (register or memory) of y by consulting the Address 

Descriptor of y. If y is not presently in register L, then generate the following instruction 

to copy the value of y to L: 

MOV y‟, L 

where y’ represents the copied value of y. 

 Determine the present location of z using the same method used in step 2 for y and 

generate the following instruction: 

OP z‟, L 

where z’ represents the copied value of z. 

 Now L contains the value of y OP z, that is intended to be assigned to x. So, if L is a 

register, update its descriptor to indicate that it contains the value of x. Update the 

descriptor of x to indicate that it is stored at location L. 



 If y and z has no further use, they can be given back to the system. 

Other code constructs like loops and conditional statements are transformed into assembly 

language in general assembly way. 

 


	1System Programming Syllabus.pdf (p.1-2)
	2lecture plan-SP.pdf (p.3-6)
	3Unit-I.pdf (p.7-29)
	4SP-Unit1.pdf (p.30-34)
	5UNIT II.pdf (p.35-48)
	6SP-Unit2.pdf (p.49-54)
	7SP Unit 3.pdf (p.55-64)
	8UNIT III.pdf (p.65-81)
	9Sp Unit 4.pdf (p.82-90)
	10UNIT IV.pdf (p.91-104)
	11Unit V.pdf (p.105-118)
	12SP-Unit5.pdf (p.119-131)
	14Internal-1-IT-SP.pdf (p.132-133)
	15Internal-1-IT-SP_answer.pdf (p.134-144)
	16CIA II QP _Q.pdf (p.145-146)
	17CIA II QP.pdf (p.147-167)
	18Model SP QP.pdf (p.168-169)
	19Model SP QP _An.pdf (p.170-188)

