
KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Eachanari (po), Coimbatore-21

Semester – II

19ITU201 PROGRAMMING IN JAVA 4H – 4C

Instruction Hours / week: L: 4 T: 0 P: 0 Marks: Internal : 40 External : 60 Total: 100

 End Semester Exam : 3 Hours

Course Objectives

 To understand the fundamentals of programming such as variables, conditional and

iterative execution, methods, etc.

 To understand fundamentals of object-oriented programming in Java, including

defining classes, invoking methods, using class libraries, etc.

 To use the Java SDK environment to create, debug and run simple Java programs.

 To use Java in various technologies in different platforms.

 To understand the fundamental of Packages and access modifiers and interface in

java.

 To understand the fundamental of Exception Handling and AWT component and

AWT classes.

Course Outcomes (COs)

1. Student will obtain knowledge of the structure and model of the Java programming

language.

2. How to use the Java programming language for various programming technologies

(understanding)

3. Develop software in the Java programming language (application)

4. Evaluate user requirements for software functionality required to decide whether the

Java programming language can meet user requirements (analysis)

5. propose the use of certain technologies by implementing them in the Java

programming language to solve the given problem (synthesis)

6. choose an engineering approach to solving problems, starting from the acquired

knowledge of programming and knowledge of operating systems. (evaluation)

Unit I

Introduction to Java: Object Oriented Paradigm and Concepts-Structured versus Object

Oriented Approach. Java Language: Features of Java -Environment-Java Architecture-Java

Development Kit-Types of Java Program. Variable Declaration and Arrays: Data Types-Java

Tokens –Variable Declaration – Type Casting and Conversion – Arrays, Operators, And

Control Statements: Selection Constructs – Iteration Constructs –Jump Statements.

Unit II

Classes and Objects

Introduction to classes: Instance variables, Class variables, Instance Methods, Constructors,

Class methods, Declaring Objects, Garbage Collection, Method Overloading - Constructor

Overloading - This Reference. Inheritance: Super class variables- Method Overriding - final

Keyword, Abstract Classes and Interfaces.

Unit III

Exception Handling: Fundamentals – Hierarchy of Classes – Types of Exceptions-Exception

Class – Uncaught Exceptions – Handling Exceptions – User Defined Exceptions.

Multithreaded Programming: The Java Thread Model – Runnable Interface - Thread Class –

Thread Creation – Thread’s Life Cycle – Thread Scheduling -Synchronization and Deadlock.

Packages and Access Modifiers: Package Declaration – The CLASSPATH variable - import

statement – The Java Language Packages - Access Protection.

Unit IV

Strings: Creation – Operation on strings - Character Extraction Methods – Comparison –

Searching and Modifying –Data Conversion and valueOf() Methods – Changing case of

characters - String Buffer Class and its methods. Collection and Utilities: Collection of

Objects – Core Interfaces and Classes – Iterators – List, Set, Map Implementations.

Unit V

Input Output Classes: I/O Operations –Hierarchy of Classes – File class – Input Stream,

Output Stream, FilterInputStream, FilterOutputStream, Reader and Writer classes – Random

Access File class –Stream Tokenizer. Applets: Basics – Life Cycle –Methods –Graphics

Class- Color, Font, and Font Metrics Class – Using the Status window – Passing parameters

to Applets – getDocumentBase() and getCodeBase(). AWT Components: AWT Classes –

Basic Component and Container Classes – Frame Window in an Applet.

Suggested Readings

1. Herbert Schildt, 2014, Java Complete Reference, 9
th

 Edition, Tata McGraw Hill, New

Delhi.

2. ISRD Group, 2007, Introduction to Object Oriented Programming through Java, 1
st

Edition, Tata McGraw Hill, New Delhi.[Unit -I (3-104), Unit -II (105-127), Unit -III

(129-164), Unit -IV (219-236, 253-280), Unit -V (165-199, 283-307)]

3. Deitel H.M. and P.J.Deitel, 2005, Java-How to Program, 6
th

 Edition, Pearson Education,

New Delhi.

4. Dr.S Somasundaram, 2004, Java Programming, 1
st
 Edition, Techmedia. New Delhi.

5. E.Balagurusamy, 2010, Programming with Java – A Primer, 4
th

 Edition, Tata McGraw

Hill, New Delhi.

Web Sites

1. www.java.sun.com

2. www.knking.com

3. www.webdeveloper.com

4. www.forums.sun.com

5. www.netbeans.com

6. java.sun.com/docs/books/tutorial/

7. www.java.net/

ESE Pattern

Part – A (Online) 20 * 1 = 20

Part – B 5 * 2 = 10

Part – C (Either or) 5 * 6 = 30

Total 60 marks

Faculty HOD

CIA Pattern

Part – A 20 * 1 = 20

Part – B 3 * 2 = 6

Part – C (Either or) 3 * 8 = 24

Total 50 marks

sKARPAGAM UNIVERSITY

Karpagam Academy of Higher Education
(Deemed University Established Under Section 3 of UGC Act 1956)

Eachanari (po), Coimbatore-21

LECTURE PLAN

SUBJECT NAME: PROGRAMMING IN JAVA

SUBJECT CODE: 19ITU201 SEMESTER: II

STAFF: Dr.D.SHANMUGA PRIYAA CLASS: I B.Sc. IT

S. No

Lecture

Duration

(Hr)

Topics to be Covered
Support

Materials

Unit I

1.

1

Introduction to Object Oriented Programming - Object

Oriented Paradigm and Concepts, Structured vs Object

oriented approach

S1: 1-9

2. 1
The JAVA Language - Features of Java - Java

Architecture, JDK - Types of Java Program
S1: 10-19

3. 1 Variable Declaration and Arrays - Data types in Java
S1: 20-30

4. 1
Java Tokens - Variable declaration, Type casting and

conversion - Arrays

S5: 45 -57

W1

5. 1
Operators in Java – Operators, Operators - Operator

precedence

S1: 31 - 40

S5: 60 - 76

W1

6. 1
Control Statements – Introduction - Selection constructs,

Iteration constructs - Jump statements

S1: 41 - 53

7. 1 Recapitulation and discussion of important questions

 Total No. of Hours planned for Unit-I 7

Unit II

1. 1
Introduction to Classes - Class-An Introduction -

Instance variables, Constructors - Class methods
S1: 54 -65

2. 1
Declaring objects - Garbage collection, Classes and

Methods - Method overloading

S1: 65-78

W1

3. 1 Constructor overloading , this reference S1: 79 - 88

4. 1
Inheritance - Basics of inheritance - Super class

variables
S1: 89 - 97

W1

5. 1 Method overriding - The final keyword S1: 98-106

6. 1
Abstract classes and Interfaces - The abstract classes and

methods - Defining interfaces

S1: 107 - 111

W1

7. 1
Implementing interfaces - Extending interface - Interface

reference

S1: 112 - 119

8. 1 Recapitulation and discussion of important questions

 Total No. of Hours planned for Unit-II 8

Unit - III

1. 1
Exception Handling – Fundamentals, Hierarchy of

exception class

S1: 120 - 125

S5: 220 - 233

W2

2. 1
Types of exceptions - Exception class, Uncaught

exceptions - Handling exceptions
S1: 120 - 137

3. 1
Multithreaded Programming - Java thread model,

Runnable interface - Thread class

S1: 138 -150

S5: 198 - 219

4. 1 Synchronization and Deadlock S1: 151 - 160

5. 1
Packages and Access Modifiers – Introduction, Package

declaration - Classpath variable, Import statement -

Access protection

S1: 161 -176

W1

6. 1 Recapitulation and discussion of important questions

 Total No. of Hours planned for Unit-III 6

Unit – IV

1. 1
Handling Strings - Creating strings, Operations on

strings
S1: 177 -183

2. 1
Character extraction methods - Comparison –Searching

and Modifying
S1: 184 -187

3. 1
Data Conversion and valueOf() Methods – Changing

case of characters
S1: 188 -191

4. 1 Searching and modifying strings - StringBuffer class

S1: 192-194

5. 1
Collection and Utilities - Collections of objects, Core

interfaces and classes- Iterators, List implementations

S1: 218 - 243

6. 1
Set implementations

S1: 244-249

7. 1 Map implementations S1: 250 - 252

8. 1 Recapitulation and discussion of important questions

 Total No. of Hours planned for Unit-IV 8

Unit – V

1. 1
Input Output Classes -I/O operations - Hierarchy of

classes

S1: 253 -255

W2

2. 1 File class - InputStream and OutputStream S1: 256 -260

Total No. of Hours planned: 40

Text Books

S1. Herbert Schildt, 2014, Java Complete Reference, 9
th

 Edition, Tata McGraw Hill, New Delhi.

S2. ISRD Group, 2007, Introduction to Object Oriented Programming through Java, 1
st
 Edition,

Tata McGraw Hill, New Delhi.

S3. Deitel H.M. and P.J.Deitel, 2005, Java-How to Program, 6
th

 Edition, Pearson Education,

New Delhi.

S4. Dr.S Somasundaram, 2004, Java Programming, 1
st
 Edition, Techmedia. New Delhi.

S5. E.Balagurusamy, 2010, Programming with Java – A Primer, 4
th

 Edition, Tata McGraw Hill,

New Delhi.

Web Sites

W1. www.java.sun.com

W2. www.knking.com

W3. www.webdeveloper.com

W4. www.forums.sun.com

W5. www.netbeans.com

Faculty HOD

3. 1 FilterInputStream - FilterOutputStream S1: 261 -265

4. 1
Reader and Writer classes, RandomAccessFile class -

Stream tokenizer
S1: 266 - 275

5. 1
Applets - Applet Basics - Applet Life cycle, Running

applets - Methods of applet class

 S1: 292 - 295

 S5: 234 - 260

W3

6. 1
Graphics class, Color class, Font class - FontMetrics

class - Limitations of applet
S1: 296 -310

7. 1
AWT Components - AWT classes - Basic component

class

S1: 311 -320

W4

8. 1 Container classes - Frame window in an applet S1: 321 -330

9. 1 Recapitulation and discussion of important questions

10. 1 Previous ESE Question Paper Discussion

11. 1 Previous ESE Question Paper Discussion

 Total No. of Hours planned for Unit-V 11

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 1/26

SYLLABUS

Introduction to Object Oriented Programming: Object Oriented Paradigm and Concepts-

Structured versus Object Oriented Approach. Java Language: Features of Java -Environment-

Java Architecture-Java Development Kit-Types of Java Program. Variable Declaration and

Arrays: Data Types-Java Tokens –Variable Declaration – Type Casting and Conversion –

Arrays, Operators,

And Control Statements: Selection Constructs – Iteration Constructs –Jump Statements.

Introduction to Object Oriented Programming

Is car an Object, how will you decide that?

If you want to term something as an object then sure it must have properties and behaviors. What

are the properties and behaviors of a car? Let’s list out

Properties of a car

Behavior of a car

Yes of course, car is an object simply because it has its own properties and behavior. In other

words object is a collection of properties and behavior. Properties can be handled by the data and

the behaviors can be handled by the methods.

Finally, Object is a collection of data and methods.

Properties

Name

Color

Gas_Accepted

Passenger Capacity

Top Speed

Current Speed

Behavior

Accelerate (speed up)

Brake (slow down)

Turn Left (turn the wheels)

Turn right (turn the wheels)

Beep (horn)

Monitor_Tank

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 2/26

Definition

Object oriented programming approach organizes data about real world entities (objects) in

problem domain and a set of well defined interfaces to the data.

Object Oriented Paradigm and Concepts

1) Object

In object oriented programming, the object is the basic unit; the focus is mainly

on data and behaviors. The purpose of object oriented programming is to combine

data and behavior into a package, just as objects in the real world do.

2) Class

Classes are the base-structures or blueprints or templates from which objects are

created. These structures define all the properties and behavior an object will

possess.

3) Data and Behavior

In OOP, the properties used to describe an object are known as data. Data

generally defines how an object looks like.

The behaviors are implemented as functions called methods.

For example, Mobile Phone

Data defines size, color, screen size of the mobile phone whereas the behavior

describes making calls, sending messages and taking pictures etc.

 These data and methods combined together into single, self contained unit

 called object.

4) Abstraction

Abstraction enables us to focus only on essential and ignore the non-essential. I

other words exposing only the necessary details and ignore the unnecessary.

For example,

1) To drive a car it is not mandatory that one has to be aware of internal

workings of a car engine

2) Coimbatore to Salem, what’s the route map.

 Coimbatore Avinashi PerunduraiSalem. Only the major towns

are focused and the small villages, houses, trees in between them are

ignored.

5) Encapsulation

Capsules may be used when more mixes of sensitive drugs needs to be taken, but

those drugs can’t be viewed from outside world.Similarly encapsulation or information

hiding permits objects to operate as complete independent, self contained package of data

and methods. It hides the data and method implementation from the outside world.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 3/26

6) Inheritance

Inheritance allows the new class to automatically inherit the data and methods of

another class. It also allows adding new data and methods to the inherited ones.

This dynamically increases the proficiency.

7) Message Passing

Communication among the objects can be made through message passing, any

object can send message to any other object.

8) Polymorphism

Polymorphism is a feature that allows one interface to be used for a general class

of actions. For example, a single button of a mobile phone is used to call, take

pictures, send messages etc.

Polymorphism achieves extensibility.

Structured versus Object Oriented Approach

 In conventional programming methodology the focus is only on algorithm whereas in

object oriented programming the focus is on data rather than the algorithm.

In the traditional approach the problem is divided into functions whereas in OOP the

problem is divided into objects. Complex real world objects can be modeled/represented only on

object oriented programming which is a tedious task in traditional method.

In structured approach, the data are mostly defined as global so that any function can

access which leads to lack in data security and data integrity. In OOP this is avoided with the

help of encapsulation concept.

The Java Language: Features of Java

 Java changes the passive nature of the Internet and World Wide Web by enabling

architecturally neutral code to be dynamically loaded and run on a heterogeneous network of

machines. It is also a leading programming language for wireless technology and real-time

systems. ·

Sun Microsystems officially describes Java as a programming language with the following

attributes:

• Compiled and Interpreted

• Platform independent and Portable

• Object oriented

• Robust and Secure

• Distributed

• Multithreaded

• Dynamic

Compiled and Interpreted

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 4/26

 Java is both a compiled and an interpreted language. Java translates source code into bytecode

instructions. Java interpreter generates machine code that can directly be executed by the

particular machine that is running the Java program.

Platform Independent and Portable

Java programs once written can be run anywhere anytime .Java's portability is one of the major

reasons for its popularity. A program written in Java can easily be moved from one computer

system to another.

The Java programmer need not make any alterations in the code for using it on a computer

having a different operating system, processor and system resources.

This feature has made Java a popular language for the Internet.

Object Oriented

Java is clean, usable, pragmatic approach to object orientation. The object model in java is

simple and easy to extend, while simple types, such as integers are kept as high performance non

objects.

Robust and Secure

The multiplatform environment of the Web places extraordinary demands on a program, because

the program must execute reliably on a variety of systems. Accordingly, the ability to create

robust programs was given a high priority in the design of Java. To gain reliability, java restricts

you in a few key areas, to force you to find your mistakes early in program development life

cycle.

 Further, it also checks your code at runtime. ln fact, many hard-to-track-down bugs that often

tum up in hard-to-reproduce runtime situations arc simply impossible to occur in Java.

For a language that is widely used for programming on the Internet, security becomes a crucial

issue. Java systems safeguard the memory by ensuring that no viruses are communicated with an

applet. As there are no pointers in Java, the programs are not allowed to gain access to memory

locations without proper authorization.

Distributed

Java is a distributed language; it can be used for creating applications that can be run on

networks. It can share both data and programs and Java applications can easily access remote

objects on Internet.

Multithreaded

The word Multithreaded implies handling multiple tasks simultaneously. Java supports

multithreaded programs. i.e. the user need not wait for the application to execute one task

completely before starting the other. For example. one can Listen 10 sound clip while browsing

a page and at the same time download an applet from a remote computer.

A multithreaded application can have several threads of execution running independently and

simultaneously. These threads may communicate and cooperate and will appear to be a single

stream to the user.

Dynamic

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 5/26

Java was designed to adapt in a constantly evolving environment It is capable of incorporating

new functionality whether it comes from local system, local network or the Internet. Java

dynamically links new class libraries and methods at runtime. This gives Java programs a high

level of flexibility during execution.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 6/26

Environment: Java Architecture

The Java technology is actually a group of technologies. It not only provides the language part

for developing applications, but also supports architecture for running these applications. It

concurrently provides necessary tools to develop compile and run the Java applications. The Java

architecture provides a portable, high-performance, robust runtime environment within which the

Java language can be used.

The Bytecode

The first step in the Java application life cycle is the compilation of code. The Java compiler acts

just as any other compiler. lt creates the machine code for execution from a higher level language

Java compiler compiles the code for a machine that physically does not exist. i.e. for a virtual

machine.

This compiled code is known as bytecode, and hypothetical machine is called Java Virtual

Machine (JVM). Bytecode is a highly optimized set or instructions designed to be executed by

JVM. Converting a Java program into bytecode makes it easier to run a program in a wide

variety of environments.

Java Virtual Machine

Java language is platform independence. usually referred to as "write once run anywhere

(WORA) ... This is accomplished by tbc JVM that runs on the local machine, interprets

the Java bytecode, and converts it into platform-specific machine code.

 The JVM is invoked differently depending on the type of Java program.

JVM performs the following functions:

I. When a class file is executed. JVM loads all required classes automatically from the local disk

from across the network. This is the function of “Class loader”' utility of JVM.

2. After loading the required classes. JVM verifies to make sure that the classes do not violate

any of the basic rules of the Java language, This is the function of the “Bytecode verifier”

3. Theo JVM keeps track of all memory usage. It takes care of memory allocation and also

performs the release of memory after the object is no longer needed. This process which

manages dereferenced objects is called Garbage Collection.

Just In Time (JIT) Compilers

Within JVM, Just-In-Time (JIT) compilers are used to improve performance. JIT compiler

translates bytecodes only the first time. If repeated execution of the code is required. it is

automatically mapped to the corresponding native machine code. This is especially effective in

repetitive code such as loops or recursive functions.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 7/26

Java Development Kit (JDK)

The package that provides the basic functionality of Java language as a series of classes and

methods, and the tools that are used to develop and execute Java programs is known as Java

Development Kit (JDK).

The major part of it comprises of Software Development Kit (SDK). Java 2 SDK 1.4 (j2sdk)

includes the following: sets of tools:

Javac The compiler for the java language

Java The launcher for java applications

Javadoc API document generator

Appletviewer Run and debug applets without a web browser

Jar Manage Java archive files

Jdb The Java debugger

Javah C header generator

Javap Class file disassemble

bin It contains the executable files for the development toots contained in the JDK. like javac,

java , appletviewer etc. The PATH environment variable shou1d contain an entry for this

directory.

lib This directory contains files used by the development tools. It includes rools.jar, which

contains non-core classes for support of the tools and utilities in the SDK.

Jre This is the root directory of the Java runtime environment used by the SDK development

tools. This is the directory represented by the Java “.home” system property.

Types of Java Program

Though Java was created by James Gosling for developing small, platform-independent and

robust programs that were used in consumer electronics it can be used to develop more dynamic

programs. It is the leading programming language for wireless technology, web services and

real-time embedded programming for cell phones. Broadly we can categorize Java programs into

the following two main groups:

• Applets

• Applications

Applets

A Java applet is a small program embedded in a web page and is run when that page is browsed

using a web browser. Applets arc downloaded over the network and can make network

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 8/26

connections only to the host they are issued from. Applets arc inherently graphical in nature and

lend to contain controls such as buttons, labels, text fields, etc..

For execution of an applet, JVM is built into the browser. Applets can connect into a database on

the Web server communicate with the web server and can play audio clips, animations and

images. But they are restricted from accessing a local machine.

Applications
Applications are stand-alone program written in Java. They are invoked by using a JVM which

resides within a local operating system. Unlike applets, Java applications can access the local

file- system or establish connections with other machines on the network.

An application must contain a static method 'main()' from where its execution begins. .

Java applications can also execute on the server machine. The multitier model of Internet

computing uses these types of server-side Java applications.

Simple Java Program

class Condition {

 public static void main(String[] args) {

 boolean learning = true;

 if (learning) {

 System.out.println("Java programmer");

 }

 else {

 System.out.println("What are you doing here?");

 }

 }

}

Variable declaration and arrays

Primitive Data Types:

There are totally eight primitive data types in Java. They can be categorized as given below:

Integer types (Does not allow decimal places)

o byte

o short

o int

o long

Rational Numbers(Numbers with decimal places)

o float

o double

 characters

o char

 conditional

o boolean

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 9/26

Please notice that all the data type keywords are in small letters. These are part of the java

keywords and every keyword in java is in small letters.

In the integer data types, we have four different data types. But, why do we need four different

types when one can do the job. Yes, it is extremely important to understand that each and every

data type has limitations to the amount of numbers it can represent. There is a memory constraint

defined for every data type.

Understanding the memory limitations is extremely important in deciding which data type should

be used. For example, when you are representing the age of a person, for sure it will not cross

120, so, using short data type is enough instead of long which has very big memory foot print.

The following should be understood for every data type:

1. Memory size allocated.

2. Default value

3. Range of values it can represent.

Data types in Java details

Data Type Memory Size Default value Declaration

Byte 8 bits 0 byte a=9;

Short 16 bits 0 short b=89;

Int 32 bits 0 int c=8789;

Long 64 bits 0 long=9878688;

Float 32 bits 0.0f float b=89.8f;

Double 64 bits 0.0 double c =87.098

Char 16 bits 'u0000' char a ='e';

Boolean JVM Dependent false boolean a =true;

Java Tokens

A token is the smallest element in a program that is meaningful to the compiler. These tokens

define the structure of the language. The Java token set can be divided into five categories:

Identifiers, Keywords, Literals, Operators, and Separators.

1. Identifiers

Identifiers are names provided by you. These can be assigned to variables, methods, functions,

classes etc. to uniquely identify them to the compiler.

2. Keywords

Keywords are reserved words that have a specific meaning for the compiler. They cannot be used

as identifiers. Java has a rich set of keywords. Some examples are: boolean, char, if, protected,

new, this, try, catch, null, threadsafe etc.

http://java9s.com/topic/memory-size

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 10/26

3. Literals

Literals are variables whose values remain constant throughout the program. They are also called

Constants. Literals can be of four types. They are:

a. String Literals

String Literals are always enclosed in double quotes and are implemented using the

java.lang.String class. Enclosing a character string within double quotes will automatically create

a new String object. For example,String s = "this is a string";. String objects are immutable,

which means that once created, their values cannot be changed.

b. Character Literals

These are enclosed in single quotes and contain only one character.

c. Boolean Literals

They can only have the values true or false. These values do not correspond to 1 or 0 as in C or

C++.

d. Numeric Literals

Numeric Literals can contain integer or floating point values.

4. Operators

An operator is a symbol that operates on one or more operands to produce a result.

5. Separators

Separators are symbols that indicate the division and arrangement of groups of code. The

structure and function of code is generally defined by the separators. The separators used in Java

are as follows:

parentheses ()

Used to define precedence in expressions, to enclose parameters in method definitions,

and enclosing cast types.

braces { }

Used to define a block of code and to hold the values of arrays.

brackets []

Used to declare array types.

semicolon ;

Used to separate statements.

comma ,

Used to separate identifiers in a variable declaration and in the for statement.

period .

Used to separate package names from classes and subclasses and to separate a variable or

a method from a reference variable.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 11/26

Variables

There are different types of variables in Java. They are as follows:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 12/26

1. Instance Variables (Non-Static Fields)

Objects store their individual states in “non-static fields”, that is, fields declared without

the static keyword.

Non-static fields are also known as instance variables because their values are unique to each

instance of a class. For example, the currentSpeed of one bicycle is independent from

the currentSpeed of another.

2. Class Variables (Static Fields)

A class variable is any field declared with the static modifier; this tells the compiler that there is

exactly one copy of this variable in existence, regardless of how many times the class has been

instantiated. A field defining the number of gears for a particular kind of bicycle could be

marked as static since, conceptually, the same number of gears will apply to all instances. The

code static int numGears = 6; would create such a static field.

3. Local Variables

A method stores its temporary state in local variables. The syntax for declaring a local variable is

similar to declaring a field (for example, int count = 0;). There is no special keyword designating

a variable as local; that determination comes entirely from the location in which the variable is

declared—between the opening and closing braces of a method. As such, local variables are only

visible to the methods in which they are declared; they are not accessible from the rest of the

class.

4. Parameters

They are the variables that are passed to the methods of a class.

Variable Declaration

Identifiers are the names of variables. They must be composed of only letters, numbers, the

underscore, and the dollar sign ($). They cannot contain white spaces. Identifiers may only begin

with a letter, the underscore, or the dollar sign. A variable cannot begin with a number. All

variable names are case sensitive.

Syntax for variable declaration

datatype1 variable1, datatype2 variable2, … datatypen variablen;

For example:

int a, char ch;

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 13/26

Initialisation

Variables can be assigned values in the following way: Variablename = value;

For example;

ch='a';

a=0;

Type Casting and Conversions

Java data type casting comes with 3 flavors.

1. Implicit casting

2. Explicit casting

3. Boolean casting.

1. Implicit casting

A data type of lower size (occupying less memory) is assigned to a data type of higher size. This

is done implicitly by the JVM. The lower size is widened to higher size. This is also named as

automatic type conversion.

Examples:

 int x = 10; // occupies 4 bytes

 double y = x; // occupies 8 bytes

 System.out.println(y); // prints 10.0

In the above code 4 bytes integer value is assigned to 8 bytes double value.

2. Explicit casting

A data type of higher size (occupying more memory) cannot be assigned to a data type of lower

size. This is not done implicitly by the JVM and requires explicit casting; a casting operation to

be performed by the programmer. The higher size is narrowed to lower size.

 double x = 10.5; // 8 bytes

 int y = x; // 4 bytes ; raises compilation error

In the above code, 8 bytes double value is narrowed to 4 bytes int value. It raises error. Let us

explicitly type cast it.

 double x = 10.5;

 int y = (int) x;

The double x is explicitly converted to int y. The thumb rule is, on both sides, the same data type

should exist.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 14/26

3. Boolean casting

A boolean value cannot be assigned to any other data type. Except boolean, all the remaining 7

data types can be assigned to one another either implicitly or explicitly; but boolean cannot. We

say, boolean is incompatible for conversion. Maximum we can assign a boolean value to another

boolean.

Following raises error.

 boolean x = true;

 int y = x; // error

 boolean x = true;

 int y = (int) x; // error

byte –> short –> int –> long –> float –> double

In the above statement, left to right can be assigned implicitly and right to left requires explicit

casting. That is, byte can be assigned to short implicitly but short to byte requires explicit

casting.

Arrays in Java

Introduction to Arrays

A Java array is an ordered collection of primitives, object references, or other arrays.

Java arrays are homogeneous: except as allowed by polymorphism, all elements of an array must

be of the same type.

Each variable is referenced by array name and its index.

Arrays may have one or more dimensions.

One-Dimensional Arrays
A one-dimensional array is a list of similar-typed variables. The general form of a one-

dimensional array declaration is:

type var-name[];

type declares the array type.

type also determines the data type of each array element.

The following declares an array named days with the type "array of int":

int days[];

days is an array variable.

The value of days is set to null.

Allocate memory for array

You allocate memory using new and assign it to array variables. new is a special operator that

allocates memory. The general form is:

arrayVar = new type[size];

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 15/26

type specifies the type of data being allocated.

size specifies the number of elements.

arrayVar is the array variable.

The following two statements first create an int type array variable and then allocate memory for

it to store 12 int type values.

int days[];

days = new int[12];

days refers to an array of 12 integers.

All elements in the array is initialized to zero.

Array creation is a two-step process.

declare a variable of the desired array type.

allocate the memory using new.

In Java all arrays are dynamically allocated.

You can access a specific element in the array with [index].

All array indexes start at zero.

For example, the following code assigns the value 28 to the second element of days.

public class Main {

 public static void main(String[] argv) {

 int days[];

 days = new int[12];

 days[1] = 28;

 System.out.println(days[1]);

 }

}

It is possible to combine the declaration of the array variable with the allocation of the array

itself.

int month_days[] = new int[12];

Multidimensional Arrays

In Java, multidimensional arrays are actually arrays of arrays. For example, the following

declares a two-dimensional array variable called twoD.

int twoD[][] = new int[4][5];

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 16/26

This allocates a 4-by-5 array and assigns it to twoD. This array will look like the one shown in

the following:

 [leftIndex][rightIndex]

 [0][0] [0][1] [0][2] [0][3] [0][4]

 [1][0] [1][1] [1][2] [1][3] [1][4]

 [2][0] [2][1] [2][2] [2][3] [2][4]

 [3][0] [3][1] [3][2] [3][3] [3][4]

The wrong way to think about multi-dimension arrays

+----+----+----+

| 1| 2| 3|

+----+----+----+

| 4| 5| 6|

+----+----+----+

| 7| 8| 9|

+----+----+----+

right way to think about multi-dimension arrays

| |--------| 1| 2| 3|

+--+ +----+----+----+ +----+----+----+

| |-----------------------------| 4| 5| 6|

+--+ +----+----+----+ +----+----+----+

| |---| 7| 8| 9|

+--+ +----+----+----+

An irregular multi-dimension array

+--+ +----+----+

| |--------| 1| 2|

+--+ +----+----+ +----+----+----+

| |-----------------------------| 4| 5| 6|

+--+ +----+----+----+----+ +----+----+----+

| |---| 7| 8| 9| 10|

+--+ +----+----+----+----+

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 17/26

The following code use nested for loop to assign values to a two-dimensional array.

public class Main {

 public static void main(String args[]) {

 int twoD[][] = new int[4][5];

 for (int i = 0; i < 4; i++) {

 for (int j = 0; j < 5; j++) {

 twoD[i][j] = i*j;

 }

 }

 for (int i = 0; i < 4; i++) {

 for (int j = 0; j < 5; j++) {

 System.out.print(twoD[i][j] + " ");

 }

 System.out.println();

 }

 }

}

Java Operators

Java provides a rich set of operators to manipulate variables. We can divide all the Java operators

into the following groups:

 Arithmetic Operators

 Relational Operators

 Bitwise Operators

 Logical Operators

 Assignment Operators

 Misc Operators

The Arithmetic Operators:

Arithmetic operators are used in mathematical expressions in the same way that they are used in

algebra. The following table lists the arithmetic operators:

Assume integer variable A holds 10 and variable B holds 20, then:

Operator Description Example

+ Addition - Adds values on either side of the operator A + B will give 30

-
Subtraction - Subtracts right hand operand from left

hand operand
A - B will give -10

*
Multiplication - Multiplies values on either side of

the operator
A * B will give 200

/
Division - Divides left hand operand by right hand

operand
B / A will give 2

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 18/26

%
Modulus - Divides left hand operand by right hand

operand and returns remainder
B % A will give 0

++ Increment - Increases the value of operand by 1 B++ gives 21

-- Decrement - Decreases the value of operand by 1 B-- gives 19

The Relational Operators:

There are following relational operators supported by Java language

Assume variable A holds 10 and variable B holds 20, then:

Operator Description Example

==
Checks if the values of two operands are equal or

not, if yes then condition becomes true.
(A == B) is not true.

!=

Checks if the values of two operands are equal or

not, if values are not equal then condition becomes

true.

(A != B) is true.

>

Checks if the value of left operand is greater than

the value of right operand, if yes then condition

becomes true.

(A > B) is not true.

<

Checks if the value of left operand is less than the

value of right operand, if yes then condition

becomes true.

(A < B) is true.

>=

Checks if the value of left operand is greater than or

equal to the value of right operand, if yes then

condition becomes true.

(A >= B) is not true.

<=

Checks if the value of left operand is less than or

equal to the value of right operand, if yes then

condition becomes true.

(A <= B) is true.

The Bitwise Operators:

Java defines several bitwise operators, which can be applied to the integer types, long, int, short,

char, and byte.

Bitwise operator works on bits and performs bit-by-bit operation. Assume if a = 60; and b = 13;

now in binary format they will be as follows:

a = 0011 1100

b = 0000 1101

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001

~a = 1100 0011

The following table lists the bitwise operators:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 19/26

Assume integer variable A holds 60 and variable B holds 13 then:

Show Examples

Operator Description Example

&

Binary AND

Operator copies a bit

to the result if it

exists in both

operands.

(A & B) will give 12 which is 0000 1100

|

Binary OR Operator

copies a bit if it

exists in either

operand.

(A | B) will give 61 which is 0011 1101

^

Binary XOR

Operator copies the

bit if it is set in one

operand but not both.

(A ^ B) will give 49 which is 0011 0001

~

Binary Ones

Complement

Operator is unary and

has the effect of

'flipping' bits.

(~A) will give -61 which is 1100 0011 in 2's

complement form due to a signed binary number.

<<

Binary Left Shift

Operator. The left

operands value is

moved left by the

number of bits

specified by the right

operand.

A << 2 will give 240 which is 1111 0000

>>

Binary Right Shift

Operator. The left

operands value is

moved right by the

number of bits

specified by the right

operand.

A >> 2 will give 15 which is 1111

>>>

Shift right zero fill

operator. The left

operands value is

moved right by the

number of bits

specified by the right

A >>>2 will give 15 which is 0000 1111

http://www.tutorialspoint.com/java/java_bitwise_operators_examples.htm

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 20/26

operand and shifted

values are filled up

with zeros.

The Logical Operators:

The following table lists the logical operators:

Assume Boolean variables A holds true and variable B holds false, then:

Operator Description Example

&&
Called Logical AND operator. If both the operands

are non-zero, then the condition becomes true.
(A && B) is false.

||

Called Logical OR Operator. If any of the two

operands are non-zero, then the condition becomes

true.

(A || B) is true.

!

Called Logical NOT Operator. Use to reverses the

logical state of its operand. If a condition is true then

Logical NOT operator will make false.

!(A && B) is true.

The Assignment Operators:

There are following assignment operators supported by Java language:

Operator Description Example

=

Simple assignment operator,

Assigns values from right

side operands to left side

operand

C = A + B will assign value of A + B into C

+=

Add AND assignment

operator, It adds right

operand to the left operand

and assign the result to left

operand

C += A is equivalent to C = C + A

-=

Subtract AND assignment

operator, It subtracts right

operand from the left

operand and assign the

result to left operand

C -= A is equivalent to C = C - A

*=

Multiply AND assignment

operator, It multiplies right

operand with the left

operand and assign the

C *= A is equivalent to C = C * A

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 21/26

result to left operand

/=

Divide AND assignment

operator, It divides left

operand with the right

operand and assign the

result to left operand

C /= A is equivalent to C = C / A

%=

Modulus AND assignment

operator, It takes modulus

using two operands and

assign the result to left

operand

C %= A is equivalent to C = C % A

<<=
Left shift AND assignment

operator
C <<= 2 is same as C = C << 2

>>=
Right shift AND assignment

operator
C >>= 2 is same as C = C >> 2

&=
Bitwise AND assignment

operator
C &= 2 is same as C = C & 2

^=
bitwise exclusive OR and

assignment operator
C ^= 2 is same as C = C ^ 2

|=
bitwise inclusive OR and

assignment operator
C |= 2 is same as C = C | 2

Misc Operators

There are few other operators supported by Java Language.

Conditional Operator (? :):

Conditional operator is also known as the ternary operator. This operator consists of three

operands and is used to evaluate Boolean expressions. The goal of the operator is to decide

which value should be assigned to the variable. The operator is written as:

variable x = (expression) ? value if true : value if false

Following is the example:

public class Test {

 public static void main(String args[]){

 int a , b;

 a = 10;

 b = (a == 1) ? 20: 30;

 System.out.println("Value of b is : " + b);

 b = (a == 10) ? 20: 30;

 System.out.println("Value of b is : " + b);

 }

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 22/26

}

This would produce the following result:

Value of b is : 30

Value of b is : 20

Control Statements in Java

Java Control statements in a programming language are very useful as they allow a programmer

to change the flow of program execution i.e. altering the normal program flow to jump directly

on some statement(s) or to skip a statement(s). In Java control statements are divided into

following 3 categories:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 23/26

Selection/Decision making Statements

Using these statements, a piece of code would be executed only if a certain condition(s) is true.

These are of 3 types:

1. if

Statement(s) between the set of curly braces ‘{ }’ will be executed only if the condition(s),

between the set of brackets ‘()’ after ‘if’ keyword, is/are true.

Syntax:

if (Condition) {

 // statements;

}

2. if-else

If the condition(s) between the brackets ‘()’ after the ‘if’ keyword is/are true then the

statement(s) between the immediately following set of curly braces ‘{ }’ will be executed else

the statement(s) under, the set of curly braces after the ‘else’ keyword will be executed.

Syntax:

if (condition) {

 // statements;

} else {

 // statements;

}

3. switch

When there is a long list of cases & conditions, then if/if-else is not good choice as the code

would become complicated.

Syntax:

switch (expression)

{

 case value1:

 //statement;

 break;

 case value2:

 //statement;

 break;

 default:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 24/26

 //statement;

}

In the above piece of code, the user’s choice (add/sub/mul) will be stored in variable ‘ch’. The

moment user enters his choice, it will be matched with the cases’ names & program execution

will jump to the matching ‘Case’ & the statement under that case will be executed till the

keyword ‘break’ comes. It is very important else the other unwanted cases will also get executed.

After the last case there is ‘default’ keyword. Statements between ‘default:’ and the closing

bracket of switch-case region will be executed only if the user has entered any wrong value as

his choice i.e. other than the cases’ names.

Loop/ Iteration Statements

4. while

while statement continually executes a block of statements while a particular condition is true.

Entry controlled

Syntax:

while(conditions)

{

//Loop body

}

5. do-while

It will enter the loop without checking the condition first and checks the condition after the

execution of the statements. That is it will execute the statement once and then it will evaluate

the result according to the condition. Exit controlled

Syntax:

Do

{

//Loop body

}while(condition);

6. for

The concept of Iteration has made our life much easier. Repetition of similar tasks is what

Iteration is and that too without making any errors. Until now we have learnt how to use

selection statements to perform repetition.

Syntax:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 25/26

for(initialization;test condition;increment)

{

//Loop body

}

Branching/ Transfer statements

7. break

Sometimes we use Jumping Statements in Java. Using for, while and do-while loops is not

always the right idea to use because they are cumbersome to read. . Break statement skips the

following code lets the execution jump to point after, where the program execution has jumped

from to switch-case region.

Syntax:

for(initialization;test condition;increment)

{

 if(condition)

 {

 //statements

 break;

 }

}

8. continue

Continue statement is just similar to the break statement in the way that a break statement is used

to pass program control immediately after the end of a loop and the continue statement is used to

force program control back to the top of a loop.

Example

for(initialization;test condition;increment)

{

 if(condition)

 {

 //statements

 continue;

 }}

Possible Questions

Part – B (2 Marks)

1. Define Abstraction

2. What is inheritance?

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: I (Introduction, Datatypes) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 26/26

3. List the features of Java

4. What is bytecode?

5. List the functions performed by java virtual machine

6. Mentio nthe two types of java program

7. What is symbolic constants

Part – C (6 Marks)

1. Explain Object Oriented Paradigm Concept in detail.

2. Write note on

a. Features of Java

b. Java Architecture

3. Describe Java data type with neat example.

4. Explain Java Tokens.

5. Describe about Operators with example for each.

6. Explain various Control statements in Java with example.

Questions opt1 opt2 opt3 opt4 answer

Java is a ___________ language structured

programming

object oriented procedural

oriented

machine object oriented

OOPS follows______________ approach

in program design

bottom_up top_down middle top bottom_up

Objects take up ______________in the

memory

 Space Address Memory bytes Space

 _________________is a collection of

objects of similar type

Objects methods classes messages classes

The wrapping up of data & function into

a single unit is known as

Polymorphism encapsulation functions data members encapsulation

__________________refers to the act of

representing essential features without

including the background details or

Encapsulation inheritance Dynamic binding Abstraction Abstraction

Attributes are sometimes

called______________

data members methods messages functions data members

The functions operate on the datas are

called______________

Methods data members messages classes Methods

______________is the process by which

objects of one class acquire the properties

of objects of another class

Polymorphism encapsulation data binding Inheritance Inheritance

__________________means the ability to

take more than one form

Polymorphism encapsulation data binding Inheritance Polymorphism

The process of making an operator to

exhibit different behaviors in different

instances is known as

function

overloading

operator

overloading

method

overloading

message

overloading

operator

overloading

Single function name can be used to

handle different types of tasks is known

as ___________

function

overloading

operator

overloading

polymorphism encapsulation function

overloading

.Variables are declared

in_________________

 only in main() anywhere in the

scope

before the main()

only

only at the

beginning

 anywhere in the

scope

.____________________refers to permit

initialization of the variables at run time

Dynamic

initialization

 Dynamic

binding

Data binding Dynamic

message

Dynamic

initialization

Keyword _________ indicates that

method do not return any value.

Static Final void null void

_________ is used to define the objects class functions methods variables class

An _________ is a single instance of a

class that retains the structure and

behaivour as defined by a class

 class member object instances reference object

A _________ is a message to take some

action on an object

member variable method class method

Java does not have _________ statement goto if do do while goto

_________ is used to separate package

names from sub_packages and classes

 : , . ! .

The ________ is the basic unit of storage

in a Java program

 identifier variable class object variable

byte belongs to _________ type. character Boolean floating integer integer

In Java an int is _____ bits 16 64 52 32 32

byte is a signed ______ type 16 bit 8 bit 32 bit 64 bit 8 bit

The ________ statement is often used in

switch statement

 break end do loop break

The keywords private and public are

known as _________ labels

 Static Dynamic Visibility const Visibility

The class members that have been

declared as ________ can be accessed

only from within the class

 Private Public Static protected Private

The class members that have been

declared as ________ can be accessed

from outside the class also

 Private Public Static protected Public

The class variables are known as

 Functions members objects none of the

above

 objects

The ____________ command from

J2SDK compiles a Java program.

Java Appletviewer Javac javad Javac

File produced by the java compiler

contains _________

ASCII Class Pnemonics ByteCodes ByteCodes

The file produced by java compiler ends

with _______ file extension

Java html class applet class

Objects are instantiated from__________ Java methods groups class

Which of the following lines is not a Java

comment?

 /** comments */ // comments – comments /* comments */ – comments

Which of the following statements is

correct?

system.out.printl

n('Welcome to

Java');

System.out.printl

n("Welcome to

Java");

System.println('

Welcome to

Java');

System.out.print(

'Welcome to

Java');

System.out.printl

n("Welcome to

Java");A block is enclosed inside __________. Parentheses Braces Brackets Quotes Braces

Wich of the following is a correct

signature for the main method?

static void

main(String[]

args[])

public static void

main(String[]

args)

public void

main(String[]

args)

public static void

main(Strings[]

args)

public static void

main(String[]

args) Which of the following lines is not a

Java comment?

 /** comments */ // comments . – comments /* comments */ – comments

 __________ translates the Java

sourcecode to bytecode files that the

interpreter can understand

 javac java javap jdk javac

 In java the functions are called as

 fields method variables final method

 _________ an object is also called as

instantiating an objects

 deleting creating destroy new creating

Keyword _________ indicates that

method do not return any value.

Static Final void null void

Java interpreter is JVM Javac Compiler JAR JVM

The __________ method terminates the

program.

System.terminate

(0);

System.halt(0); System.exit(0); System.stop(0); System.exit(0);

 Java has no ______ function. malloc free malloc and free calloc malloc and free

 Java supports __________ inheritance single multiple single and

multiple

multilevel single

Java does not have _________ sturct header files union All All

 __________ is a access specifier static void main public protected public

Java is a __________ type language. Weak strong correct incorrect strong

Data type Short occupies _________

bytes.

1 2 4 8 2

The Properties used to describe an object

are known as

Data Attributes Entities Relations Data

It enables us to ignore the non_essential Inheritance Encapsulation Abstraction DataBinding Abstraction

It is the most powerful feature of any

programming technique

 top_down bottom up Code reusability Security Code reusability

Encapsulation is also known as Abstraction Information

hiding

Polymorphism Inheritence Information

hiding

Well defined entities that are capable of

interacting with themselves

Encapsulation Message Passing Abstraction Binding Message Passing

Which of the following is a valid

identifier?

 area Class 9X 8+9 area

 A literal character is represented inside a

pair of ______

single quotes double quotes brackets paraenthesis single quotes

 short is a signed _________ type 8 bit 16 bit 32 bit 64 but 16 bit

Single precision is specified by

________keyboard

int double float char float

To add number to sum, you write (Note:

Java is case-sensitive).

 number += sum; number = sum +

number;

 sum = Number

+ sum;

 sum += number; sum += number;

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 1/31

SYLLABUS

Introduction to classes: Instance variables, Class variables, Instance Methods, Constructors,

Class methods, Declaring Objects, Garbage Collection, Method Overloading - Constructor

Overloading - This Reference. Inheritance: Super class variables- Method Overriding - final

Keyword, Abstract Classes and Interfaces.

Introduction to classes

A class is a template or a prototype defines a type of object. A class is to an object what a

blueprint is to a house. A class is a collection of data variables and methods that define a

particular entity. A class can be either user-defined or provided by one of the built in java

packages.

Defining a Class

The class is defined using a keyword class followed by a user defined class name. The body of

the class is contained in the block that is defined by curly braces{}

 class classname

 {

 [variable declarations;]

 [method declarations;]

 }

The data or variables defined within a classes are called instance variables. The code is contained

within methods, these are also called members of the class.

For example

 class exampleclass

 {

 char cc;

 int f1;

 double dd;

 void examplemethod1()

 {

 System.out.println(“Hello world”);

 }

 void examplemethod2()

 {

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 2/31

 System.out.println(“Hai World”);

 }

 }

A class is an encapsulated collection of data, and methods to operate on data. A class definition

typically includes the following

1. Access Modifier

2. The class keyword

3. Instance fields

4. Constructors

5. Instance methods

6. Class fields

7. Class method

There are three kinds of variables in Java:

 Local variables

 Instance variables

 Class/static variables

Local variables

 Local variables are declared in methods, constructors, or blocks.

 Local variables are created when the method, constructor or block is entered and the

variable will be destroyed once it exits the method, constructor or block.

 Access modifiers cannot be used for local variables.

 Local variables are visible only within the declared method, constructor or block.

 Local variables are implemented at stack level internally.

 There is no default value for local variables so local variables should be declared and an

initial value should be assigned before the first use.

For example

Here, age is a local variable. This is defined inside pupAge() method and its scope is limited

to this method only.

public class Test{

 public void pupAge(){

 int age = 0;

 age = age + 7;

 System.out.println("Puppy age is : " + age);

 }

 public static void main(String args[]){

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 3/31

 Test test = new Test();

 test.pupAge();

 }

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 4/31

Instance variables:

 Instance variables are declared in a class, but outside a method, constructor or any block.

 When a space is allocated for an object in the heap, a slot for each instance variable value

is created.

 Instance variables are created when an object is created with the use of the keyword 'new'

and destroyed when the object is destroyed.

 Instance variables hold values that must be referenced by more than one method,

constructor or block, or essential parts of an object's state that must be present throughout

the class.

 Instance variables can be declared in class level before or after use.

 Access modifiers can be given for instance variables.

 The instance variables are visible for all methods, constructors and block in the class.

Normally, it is recommended to make these variables private (access level). However

visibility for subclasses can be given for these variables with the use of access modifiers.

 Instance variables have default values. For numbers the default value is 0, for Booleans it

is false and for object references it is null. Values can be assigned during the declaration

or within the constructor.

 Instance variables can be accessed directly by calling the variable name inside the class.

However within static methods and different class (when instance variables are given

accessibility) should be called using the fully qualified name

. ObjectReference.VariableName.

import java.io.*;

public class Employee{

 // this instance variable is visible for any child class.

 public String name;

 // salary variable is visible in Employee class only.

 private double salary;

 // The name variable is assigned in the constructor.

 public Employee (String empName){

 name = empName;

 }

 // The salary variable is assigned a value.

 public void setSalary(double empSal){

 salary = empSal;

 }

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 5/31

 // This method prints the employee details.

 public void printEmp(){

 System.out.println("name : " + name);

 System.out.println("salary :" + salary);

 }

 public static void main(String args[]){

 Employee empOne = new Employee("Ransika");

 empOne.setSalary(1000);

 empOne.printEmp();

 }

}

Class/static variables:

 Class variables also known as static variables are declared with the static keyword in a

class, but outside a method, constructor or a block.

 There would only be one copy of each class variable per class, regardless of how many

objects are created from it.

 Static variables are rarely used other than being declared as constants. Constants are

variables that are declared as public/private, final and static. Constant variables never

change from their initial value.

 Static variables are stored in static memory. It is rare to use static variables other than

declared final and used as either public or private constants.

 Static variables are created when the program starts and destroyed when the program

stops.

 Visibility is similar to instance variables. However, most static variables are declared

public since they must be available for users of the class.

 Default values are same as instance variables. For numbers, the default value is 0; for

Booleans, it is false; and for object references, it is null. Values can be assigned during

the declaration or within the constructor. Additionally values can be assigned in special

static initializer blocks.

 Static variables can be accessed by calling with the class name

. ClassName.VariableName.

 When declaring class variables as public static final, then variables names (constants) are

all in upper case. If the static variables are not public and final the naming syntax is the

same as instance and local variables.

import java.io.*;

public class Employee{

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 6/31

 // salary variable is a private static variable

 private static double salary;

 // DEPARTMENT is a constant

 public static final String DEPARTMENT = "Development ";

 public static void main(String args[]){

 salary = 1000;

 System.out.println(DEPARTMENT+"average salary:"+salary);

 }

}

Instance Methods

A java method is equivalent to a function, procedure, or subroutine in other languages except

that it must be defined inside a class definition. Instance methods are the foundation of

encapsulation and provide a consistent interface to the class.

Adding methods to the class

Methods are declared inside the body of the class but immediately after the declaration of the

instance and class variables. The general form of a method declaration is

returntype methodname(parameter_list)

{

 Method body;

}

A returntype can be a primitive type such as int, or a class type such as string or void.

A methodname begin with a lowercase letter and according to java convention, compund words

in the method name should begin with uppercase letters.

The method body must be enclosed in curly braces.

An optional parameter_list/argument_list must be inside parenthesis, seperated by commas.

For example

String gettitle()

 {

 return title;

 }

void printdetails()

 {

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 7/31

 System.out.println(“Title is:”+title);

 }

Constructors

A java constructor has the same name as the name of the class to which it belongs.

Constructor’s syntax does not include a return type, since constructors never return a value.

Constructors may include parameters of various types. When the constructor is invoked using the

new operator, the types must match those that are specified in the constructor definition.

Java provides a default constructor which takes no arguments and performs no special actions or

initializations, when no explicit constructors are provided.

The only action taken by the implicit default constructor is to call the superclass constructor

using the super() call. Constructor arguments provide you with a way to provide parameters for

the initialization of an object.

Below is an example of a cube class containing 2 constructors. (one default and one

parameterized constructor).

public class Cube1 {

 int length;

 int breadth;

 int height;

 public int getVolume() {

 return (length * breadth * height);

 }

 Cube1() {

 length = 10;

 breadth = 10;

 height = 10;

 }

 Cube1(int l, int b, int h) {

 length = l;

 breadth = b;

 height = h;

 }

 public static void main(String[] args) {

 Cube1 cubeObj1, cubeObj2;

 cubeObj1 = new Cube1();

 cubeObj2 = new Cube1(10, 20, 30);

 System.out.println("Volume of Cube1 is : " + cubeObj1.getVolume());

 System.out.println("Volume of Cube1 is : " + cubeObj2.getVolume());

 }

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 8/31

Class Methods

A class/static method is similar to a class variable in that it is assigned to a class and not an

object of that class. These methods are shared by all instances of that class. A class method can

only access the class variables and other class methods of its class. A static method is declared

as any other method of the class except that its header is preceded by keyword static. The

general form of a class method is

static returntype class_method_name(parameter_list)

{

 Method_body

}

To invoke static method from other class, the following method can be used

class_name.class_method_name(parameter_list)

(or)

Object_name. class_method_name(parameter_list)

For example

1. static void printtotalmovies()

Declaring, Instantiating and Initializing an Object

import java.util.Date;

class DateApp {

 public static void main (String args[]) {

 Date today = new Date();

 System.out.println(today);

 }

}

The main() method of the DateApp application creates a Date object named today. This single

statement performs three actions: declaration, instantiation, and initialization. Date

today declares to the compiler that the name today will be used to refer to an object whose type

is Date, the new operator instantiates new Date object, and Date() initializes the object.

Declaring an Object

Declarations can appear as part of object creation as you saw above or can appear alone like this

Date today;

Either way, a declaration takes the form of type name where type is either a simple data type

such as int, float, or boolean, or a complex data type such as a class like the Date class. name is

the name to be used for the variable. Declarations simply notify the compiler that you will be

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 9/31

using name to refer to a variable whose type is type. Declarations do not instantiate objects. To

instantiate a Date object, or any other object, use the newoperator.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 10/31

Instantiating an Object

The new operator instantiates a new object by allocating memory for it. new requires a single

argument: a constructor method for the object to be created. The constructor method is

responsible for initializing the new object.

Initializing an Object

Classes provide constructor methods to initialize a new object of that type. In a class declaration,

constructors can be distinguished from other methods because they have the same name as the

class and have no return type. For example, the method signature for Date constructor used by

the DateApp application is

Date()

A constructor such as the one shown, that takes no arguments, is known as the default

constructor. Like Date, most classes have at least one constructor, the default constructor.

However, classes can have multiple constructors, all with the same name but with a different

number or type of arguments. For example, the Date class supports a constructor that requires

three integers:

Date(int year, int month, int day)

that initializes the new Date to the year, month and day specified by the three parameters.

Complete Java Program

class Rectangle {

 double length;

 double breadth;

}

// This class declares an object of type Rectangle.

class RectangleDemo {

 public static void main(String args[]) {

 Rectangle myrect = new Rectangle();

 double area;

 // assign values to myrect's instance variables

 myrect.length = 10;

 myrect.breadth = 20;

 // Compute Area of Rectangle

 area = myrect.length * myrect.breadth ;

 System.out.println("Area is " + area);

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 11/31

 }

}

Garbage Collection

Garbage collection is the process that handles memory deallocation. It is incharge of cleaning the

memory space allocated to the objects that are not in use.

When an object is created, memory space is allocated for the object. When there are no more

references to that object , it is marked for garbage collection.

While a constructor method initializes an object, finalize() method can be created to optimize the

disposing of an object.

Method Overloading

The Java programming language supports overloading methods, and Java can distinguish

between methods with different method signatures. This means that methods within a class can

have the same name if they have different parameter list

For example

class MyClass {

 int height;

 MyClass() {

 System.out.println("bricks");

 height = 0;

 }

 MyClass(int i) {

 System.out.println("Building new House that is "

 + i + " feet tall");

 height = i;

 }

 void info() {

 System.out.println("House is " + height

 + " feet tall");

 }

 void info(String s) {

 System.out.println(s + ": House is "

 + height + " feet tall");

 }

}

public class MainClass {

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 12/31

 public static void main(String[] args) {

 MyClass t = new MyClass(0);

 t.info();

 t.info("overloaded method");

 //Overloaded constructor:

 new MyClass();

 }

}

Constructor Overloading

Like other methods in java constructor can be overloaded i.e. we can create as many constructors

in our class as desired. Number of constructors depends on the information about attributes of an

object we have while creating objects

For example

class Language {

 String name;

 Language() {

 System.out.println("Constructor method called.");

 }

 Language(String t) {

 name = t;

 }

 public static void main(String[] args) {

 Language cpp = new Language();

 Language java = new Language("Java");

 cpp.setName("C++");

 java.getName();

 cpp.getName();

 }

 void setName(String t) {

 name = t;

 }

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 13/31

 void getName() {

 System.out.println("Language name: " + name);

 }

}

this Reference

Within an instance method or a constructor, this is a reference to the current object — the object

whose method or constructor is being called. You can refer to any member of the current object

from within an instance method or a constructor by using this.

Using this with a Field

The most common reason for using the this keyword is because a field is shadowed by a method

or constructor parameter.

For example, the Point class was written like this

public class Point {

 public int x = 0;

 public int y = 0;

 //constructor

 public Point(int a, int b) {

 x = a;

 y = b;

 }

}

but it could have been written like this:

public class Point {

 public int x = 0;

 public int y = 0;

 //constructor

 public Point(int x, int y) {

 this.x = x;

 this.y = y;

 }

}

Each argument to the constructor shadows one of the object's fields — inside the constructor x is

a local copy of the constructor's first argument. To refer to the Point field x, the constructor must

use this.x.

Using this with a Constructor

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 14/31

From within a constructor, you can also use the this keyword to call another constructor in the

same class. Doing so is called an explicit constructor invocation.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 15/31

public class Rectangle {

 private int x, y;

 private int width, height;

 public Rectangle() {

 this(0, 0, 1, 1);

 }

 public Rectangle(int width, int height) {

 this(0, 0, width, height);

 }

 public Rectangle(int x, int y, int width, int height) {

 this.x = x;

 this.y = y;

 this.width = width;

 this.height = height;

 }

 ...

}

Inheritance

Inheritance is one of the key features of object oriented programming. Inheritance provided a

mechanism that allowed a class to inherit property of another class. When a class extends another

class it inherits all non private members including fields and methods. Inheritance in java can be

best understood in terms of parent and child relationship, also known as super class(parent) and

sub class(child).

extends and implements keywords are used in inheritance in java.

Purpose of Inheritance

1. To promote code reuse

2. To use polymorphism

 For example

class Box {

 double width;

 double height;

 double depth;

 Box() {

 }

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 16/31

 Box(double w, double h, double d) {

 width = w;

 height = h;

 depth = d;

 }

 void getVolume() {

 System.out.println("Volume is : " + width * height * depth);

 }

}

public class MatchBox extends Box {

 double weight;

 MatchBox() {

 }

 MatchBox(double w, double h, double d, double m) {

 super(w, h, d);

 weight = m;

 }

 public static void main(String args[]) {

 MatchBox mb1 = new MatchBox(10, 10, 10, 10);

 mb1.getVolume();

 System.out.println("width of MatchBox 1 is " + mb1.width);

 System.out.println("height of MatchBox 1 is " + mb1.height);

 System.out.println("depth of MatchBox 1 is " + mb1.depth);

 System.out.println("weight of MatchBox 1 is " + mb1.weight);

 }

}

Types of Inheritance

1. Single Inheritance

2. Multilevel Inheritance

3. Hierarchical Inheritance

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 17/31

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 18/31

Why Multiple Inheritance isn’t supported in Java

1. To remove ambiguity

2. To provide more maintenable and clear design

super keyword

In java, super keyword is used to refer to immediate parent class of a class. In other words, super

keyword is used by a subclass whenever it need to refer to its immediate super class

class Vehicle {

 // Instance fields

 int noOfTyres; // no of tyres

 private boolean accessories; // check if accessorees present or not

 protected String brand; // Brand of the car

 // Static fields

 private static int counter; // No of Vehicle objects created

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 19/31

 // Constructor

 Vehicle() {

 System.out.println("Constructor of the Super class called");

 noOfTyres = 5;

 accessories = true;

 brand = "X";

 counter++;

 }

 // Instance methods

 public void switchOn() {

 accessories = true;

 }

 public void switchOff() {

 accessories = false;

 }

 public boolean isPresent() {

 return accessories;

 }

 private void getBrand() {

 System.out.println("Vehicle Brand: " + brand);

 }

 // Static methods

 public static void getNoOfVehicles() {

 System.out.println("Number of Vehicles: " + counter);

 }

}

class Car extends Vehicle {

 private int carNo = 10;

 public void printCarInfo() {

 System.out.println("Car number: " + carNo);

 System.out.println("No of Tyres: " + noOfTyres); // Inherited.

 // System.out.println("accessories: " + accessories); // Not Inherited.

 System.out.println("accessories: " + isPresent()); // Inherited.

 // System.out.println("Brand: " + getBrand()); // Not Inherited.

 System.out.println("Brand: " + brand); // Inherited.

 // System.out.println("Counter: " + counter); // Not Inherited.

 getNoOfVehicles(); // Inherited.

 }

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 20/31

}

public class VehicleDetails { // (3)

 public static void main(String[] args) {

 new Car().printCarInfo();

 }

}

Method Overriding

In a class hierarchy, when a method in a subclass has the same name and type signature as a

method in its superclass, then the method in the subclass is said to override the method in the

superclass. When an overridden method is called from within a subclass, it will always refer to

the version of that method defined by the subclass. The version of the method defined by the

superclass will be hidden. Consider the following:

// Method overriding.

class A {

int i, j;

A(int a, int b) {

i = a;

j = b;

}

// display i and j

void show() {

System.out.println("i and j: " + i + " " + j);

}

}

class B extends A {

int k;

B(int a, int b, int c) {

super(a, b);

k = c;

}

// display k – this overrides show() in A

void show() {

System.out.println("k: " + k);

}

}

class Override {

public static void main(String args[]) {

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 21/31

B subOb = new B(1, 2, 3);

subOb.show(); // this calls show() in B

}

}

The output produced by this program is shown here:

k: 3

When show() is invoked on an object of type B, the version of show() defined within B is used.

That is, the versio n of show() inside B overrides the version declared in A. If you wish to

access the superclass version of an overridden function, you can do so by using super. For

example, in this version of B, the superclass version of show() is invoked within the subclass'

version. This allows all instance variables to be displayed.

class B extends A {

int k;

B(int a, int b, int c) {

super(a, b);

k = c;

}

void show() {

super.show(); // this calls A's show()

System.out.println("k: " + k);

}

}

If you substitute this version of A into the previous program, you will see the following output:

i and j: 1 2

k: 3

Here, super.show() calls the superclass version of show(). Method overriding occurs only when

the names and the type signatures of the two methods are identical. If they are not, then the two

methods are simply overloaded. For example, consider this modified version of the preceding

example:

// Methods with differing type signatures are overloaded – not

// overridden.

class A {

int i, j;

A(int a, int b) {

i = a;

j = b;

}

// display i and j

void show() {

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 22/31

System.out.println("i and j: " + i + " " + j);

}

}

// Create a subclass by extending class A.

class B extends A {

int k;

B(int a, int b, int c) {

super(a, b);

k = c;

}

// overload show()

void show(String msg) {

System.out.println(msg + k);

}

}

class Override {

public static void main(String args[]) {

B subOb = new B(1, 2, 3);

subOb.show("This is k: "); // this calls show() in B

subOb.show(); // this calls show() in A

}

}

The output produced by this program is shown here:

This is k: 3

i and j: 1 2

Final Keyword

The final keyword in java is used to restrict the user. The final keyword can be used in many

context. Final can be:

1. variable

2. method

3. class

The final keyword can be applied with the variables, a final variable that have no value it is

called blank final variable or uninitialized final variable. It can be initialized in the constructor

only. The blank final variable can be static also which will be initialized in the static block only.

1) final variable

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 23/31

If you make any variable as final, you cannot change the value of final variable(It will be

constant).

Example of final variable

There is a final variable speedlimit, we are going to change the value of this variable, but It can't

be changed because final variable once assigned a value can never be changed.

class Bike{

 final int speedlimit=90;//final variable

 void run(){

 speedlimit=400;

 }

 public static void main(String args[]){

 Bike obj=new Bike();

 obj.run();

 }

}//end of class

Output:Compile Time Error

2) final method

If you make any method as final, you cannot override it.

Example of final method

class Bike{

 final void run(){System.out.println("running");}

}

class Honda extends Bike{

 void run(){System.out.println("running safely with 100kmph");}

 public static void main(String args[]){

 Honda honda= new Honda();

 honda.run();

 }

}

Output:Compile Time Error

3) final class

If you make any class as final, you cannot extend it.

Example of final class

final class Bike{}

class Honda extends Bike{

 void run(){System.out.println("running safely with 100kmph");}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 24/31

 public static void main(String args[]){

 Honda honda= new Honda();

 honda.run();

 }

}

Compile Error

Abstract Classes and Interfaces

Abstract Class in java

Java Abstract classes are used to declare common characteristics of subclasses. An abstract

class cannot be instantiated. It can only be used as a superclass for other classes that extend the

abstract class. Abstract classes are declared with the abstract keyword. Abstract classes are used

to provide a template or design for concrete subclasses down the inheritance tree.

Like any other class, an abstract class can contain fields that describe the characteristics and

methods that describe the actions that a class can perform. An abstract class can include methods

that contain no implementation. These are called abstract methods. The abstract method

declaration must then end with a semicolon rather than a block. If a class has any abstract

methods, whether declared or inherited, the entire class must be declared abstract. Abstract

methods are used to provide a template for the classes that inherit the abstract methods.

Abstract classes cannot be instantiated; they must be subclassed, and actual implementations

must be provided for the abstract methods. Any implementation specified can, of course, be

overridden by additional subclasses. An object must have an implementation for all of its

methods. You need to create a subclass that provides an implementation for the abstract method.

A class abstract Vehicle might be specified as abstract to represent the general abstraction of a

vehicle, as creating instances of the class would not be meaningful.

abstract class Vehicle {

 int numofGears;

 String color;

 abstract boolean hasDiskBrake();

 abstract int getNoofGears();

}

Example of a shape class as an abstract class

abstract class Shape {

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 25/31

 public String color;

 public Shape() {

 }

 public void setColor(String c) {

 color = c;

 }

 public String getColor() {

 return color;

 }

 abstract public double area();

}

We can also implement the generic shapes class as an abstract class so that we can draw lines,

circles, triangles etc. All shapes have some common fields and methods, but each can, of course,

add more fields and methods. The abstract class guarantees that each shape will have the same

set of basic properties. We declare this class abstract because there is no such thing as a generic

shape. There can only be concrete shapes such as squares, circles, triangles etc.

public class Point extends Shape {

 static int x, y;

 public Point() {

 x = 0;

 y = 0;

 }

 public double area() {

 return 0;

 }

 public double perimeter() {

 return 0;

 }

 public static void print() {

 System.out.println("point: " + x + "," + y);

 }

 public static void main(String args[]) {

 Point p = new Point();

 p.print();

 }

}

Output

point: 0, 0

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 26/31

Notice that, in order to create a Point object, its class cannot be abstract. This means that all of

the abstract methods of the Shape class must be implemented by the Point class.

The subclass must define an implementation for every abstract method of the abstract superclass,

or the subclass itself will also be abstract. Similarly other shape objects can be created using the

generic Shape Abstract class.

A big Disadvantage of using abstract classes is not able to use multiple inheritance. In the sense,

when a class extends an abstract class, it can’t extend any other class.

Java Interface

In Java, this multiple inheritance problem is solved with a powerful construct called interfaces.

Interface can be used to define a generic template and then one or more abstract classes to define

partial implementations of the interface. Interfaces just specify the method declaration (implicitly

public and abstract) and can only contain fields (which are implicitly public static final).

Interface definition begins with a keyword interface. An interface like that of an abstract class

cannot be instantiated.

Multiple Inheritance is allowed when extending interfaces i.e. one interface can extend none, one

or more interfaces. Java does not support multiple inheritance, but it allows you to extend one

class and implement many interfaces.

If a class that implements an interface does not define all the methods of the interface, then it

must be declared abstract and the method definitions must be provided by the subclass that

extends the abstract class.

Example 1: Below is an example of a Shape interface

interface Shape {

 public double area();

 public double volume();

}

Below is a Point class that implements the Shape interface.

public class Point implements Shape {

 static int x, y;

 public Point() {

 x = 0;

 y = 0;

http://americanportal.com/
http://americanportal.com/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 27/31

 }

 public double area() {

 return 0;

 }

 public double volume() {

 return 0;

 }

 public static void print() {

 System.out.println("point: " + x + "," + y);

 }

 public static void main(String args[]) {

 Point p = new Point();

 p.print();

 }

}

Similarly, other shape objects can be created by interface programming by implementing generic

Shape Interface.

Example 2: Below is a java interfaces program showing the power of interface programming in

java

Listing below shows 2 interfaces and 4 classes one being an abstract class.

Note: The method toString in class A1 is an overridden version of the method defined in the class

named Object. The classes B1 and C1 satisfy the interface contract. But since the class D1 does

not define all the methods of the implemented interface I2, the class D1 is declared abstract.

Also,i1.methodI2() produces a compilation error as the method is not declared in I1 or any of its

super interfaces if present. Hence a downcast of interface reference I1 solves the problem as

shown in the program. The same problem applies to i1.methodA1(), which is again resolved by a

downcast.

When we invoke the toString() method which is a method of an Object, there does not seem to

be any problem as every interface or class extends Object and any class can override the default

toString() to suit your application needs. ((C1)o1).methodI1() compiles successfully, but

produces a ClassCastException at runtime. This is because B1 does not have any relationship

with C1 except they are “siblings”. You can’t cast siblings into one another.

When a given interface method is invoked on a given reference, the behavior that results will be

appropriate to the class from which that particular object was instantiated. This is runtime

polymorphism based on interfaces and overridden methods.

interface I1 {

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 28/31

 void methodI1(); // public static by default

}

interface I2 extends I1 {

 void methodI2(); // public static by default

}

class A1 {

 public String methodA1() {

 String strA1 = "I am in methodC1 of class A1";

 return strA1;

 }

 public String toString() {

 return "toString() method of class A1";

 }

}

class B1 extends A1 implements I2 {

 public void methodI1() {

 System.out.println("I am in methodI1 of class B1");

 }

 public void methodI2() {

 System.out.println("I am in methodI2 of class B1");

 }

}

class C1 implements I2 {

 public void methodI1() {

 System.out.println("I am in methodI1 of class C1");

 }

 public void methodI2() {

 System.out.println("I am in methodI2 of class C1");

 }

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 29/31

// Note that the class is declared as abstract as it does not

// satisfy the interface contract

abstract class D1 implements I2 {

 public void methodI1() {

 }

 // This class does not implement methodI2() hence declared abstract.

}

public class InterFaceEx {

 public static void main(String[] args) {

 I1 i1 = new B1();

 i1.methodI1(); // OK as methodI1 is present in B1

 // i1.methodI2(); Compilation error as methodI2 not present in I1

 // Casting to convert the type of the reference from type I1 to type I2

 ((I2) i1).methodI2();

 I2 i2 = new B1();

 i2.methodI1(); // OK

 i2.methodI2(); // OK

 // Does not Compile as methodA1() not present in interface reference I1

 // String var = i1.methodA1();

 // Hence I1 requires a cast to invoke methodA1

 String var2 = ((A1) i1).methodA1();

 System.out.println("var2 : " + var2);

 String var3 = ((B1) i1).methodA1();

 System.out.println("var3 : " + var3);

 String var4 = i1.toString();

 System.out.println("var4 : " + var4);

 String var5 = i2.toString();

 System.out.println("var5 : " + var5);

 I1 i3 = new C1();

 String var6 = i3.toString();

 System.out.println("var6 : " + var6); // It prints the Object toString() method

 Object o1 = new B1();

 // o1.methodI1(); does not compile as Object class does not define

 // methodI1()

 // To solve the probelm we need to downcast o1 reference. We can do it

 // in the following 4 ways

 ((I1) o1).methodI1(); // 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 30/31

 ((I2) o1).methodI1(); // 2

 ((B1) o1).methodI1(); // 3

 /*

 *

 * B1 does not have any relationship with C1 except they are "siblings".

 *

 * Well, you can't cast siblings into one another.

 *

 */

 // ((C1)o1).methodI1(); Produces a ClassCastException

 }

}

Output

I am in methodI1 of class B1

I am in methodI2 of class B1

I am in methodI1 of class B1

I am in methodI2 of class B1

var2 : I am in methodC1 of class A1

var3 : I am in methodC1 of class A1

var4 : toString() method of class A1

var5 : toString() method of class A1

var6 : C1@190d11

I am in methodI1 of class B1

I am in methodI1 of class B1

I am in methodI1 of class B1

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: II (Classes and Objects) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 31/31

Possible Questions

Part - B (2 Marks)

1. Define Instance variable.

2. What is Instance method.

3. What is Class variable.

4. What is Class method

Part - C (6 Marks)

1. Define Constructor and explain it with an example.

2. Write a note on how to declare Object and accessing members of a Class.

3. Describe about Garbage collection and This Reference

4. Explain with an example program Method Overloading and Method Overriding.

5. Write note on Constructor Overloading.

6. Explain Inheritance and its types with a sample program.

7. Explain Abstract classes with an example.

8. What is meant by interface and Explain how to implement interface a class with a sample

program.

Questions opt1 opt2 opt3 opt4 answer

It takes no parameters Default

Constructors

Copy

Constructors

Parameter

Constructor

Function Default

Constructors

It is required when objects are required to

perform a similar task

Method

Overriding

Polymorphism Static Binding Method

Overloading

Method

Overloading

It is used to refer to the current object this reference that reference dot Arrow this reference

The data or variables,defined within a

class are called

Variables Class variables Data variables Instance

Variables

Instance

Variables

Class is a _______Construct Hierarchical Logical Physical Hybrid Logical

To access instance variables of an

object______operator is used

Dot Operator Logical operator Relational

Operator

Boolean

Operator

Dot Operator

Variables declared as static

are______variables

Member

variables

Instance Global Local Global

It is used to initialize the member

variables when we create an object

Constructors destructors Overloading Overriding Constructors

What is the printout of the following

code:

 x is 5 and y is 6 x is 6.0 and y is

6.0

 x is 6 and y is 6 x is 5.5 and y is

5

 x is 5.5 and y is

5

A___________ variable is known only in

the method that declares the variable.

 Local Global Static Auto Local

To declare a constant MAX_LENGTH

inside a method with value 99.98, you

write

 final

MAX_LENGTH

= 99.98;

 final float

MAX_LENGTH

= 99.98;

 double

MAX_LENGTH

= 99.98;

 final double

MAX_LENGTH

= 99.98;

 final double

MAX_LENGTH

= 99.98;Which of the following is a constant,

according to Java naming conventions?

 MAX_VALUE Test read ReadInt MAX_VALUE

The __________ method parses a string s

to a double value.

double.ParseDou

ble(s);

Double.parsedou

ble(s);

double.ParseDou

ble(s);

Double.parseDou

ble(s);

Double.parseDou

ble(s);The __________ method returns a raised

to the power of

 Math.power(a,b)

Math.exponent(a

,b)

 Math.pow(a,b) None of the

above

 Math.pow(a,b) ;

If a program compiles fine, but it

produces incorrect result, then the

program suffers __________.

 compilation

error

 runtime error logic error Syntax error logic error

Analyze the following code: boolean even

= false; if (even = true) {

System.out.println("It is even!"); }

 The program has

a syntax error.

 The program has

a runtime error.

 The program

runs fine, but

displays nothing.

 The program

runs fine and

displays It is

 The program

runs fine and

displays It is The number used to refer to a particular

element of an array is called the

element’s _________

 Pointer Index 0 1 Index

________ is an object that contains

elements of same data type.

 Array Structure Class Object Array

What is the representation of the third

element in an array called a?

 a[2] a(2) a[3] a(3) a[2]

Which of the following is correct? int[] a = new

int[2];

 int a[] = new

int[2];

 int[] a = new

int(2);

 int a() = new

int[2];

 int[] a = new

int[2];

 _________ is a keyword import loop export package import

It is used to refer to the current object this reference that reference dot Arrow this reference

Code Reusability is characterized by baseclass Subclass Derived class Inheritance Inheritance

 We can use the ____keyword from any

method or constructor to refer to the

current object.

 this try new throw this

_________ is used to extend a class by

creating a new class

constructors method

overloading

 inheritance overriding inheritance

When you extends a class, you can

change the behavior of a method in the

parent class. This is called __________

 method

overriding.

 object refernce method

overloading

 polymorphism method

overriding.

The ________ operator creates a single

instances of a named class and returns a

reference to that object

 dot new super this new

 __________ initializes an object overloading constructors overriding destructor constructors

To add a finalizer to a class, you simply

define the ______ method

finalize() stop() exit() break() finalize()

the new operator dynamically

________memory for an object.

free allocates delete new allocates

 Java supports a concept called _______

which is just opposite to initialization.

free finalization delete new finalization

 A class that cannot be subclassed is

called as _________ class.

abstract final static methods final

 __________ enables an object to

initialize itself when it is created

 Destructor constructor overloading overriding constructor

Subclass constructors can call superclass

constructors via the ________ keyword

 final protected inherit super super

 The __________ is special because its

name is the same as the class name.

 Destructor static constructor free constructor

A constructor that accepts no parameters

is called the __________ constructor

 Copy default multiple multilevel default

Constructors are invoked automatically

when the ________ are created

 Data classes objects methods objects

Constructors cannot be _________ Inherited destroyed both Inherited

and destroyed

constructor Inherited

The constructors that can take arguments

are called _________ constructors

 Copy multiple parameterized destructor parameterized

 static methods will not refer the

this dot new public this

a ______ statement causes control to be

transferred directly to the conditional

expression that controls the loop

continue return jump goto continue

a method in a subclass has the same name

and type signature as a method in its

superclass, then the method in the

 override overload function final override

________ dispatch is the mechanism by

which a call to an overridden method is

resolved at run time, rather than compile

Static method Dynamic method overload finalized Dynamic method

Once you have an object, you can call its

methods and access its fields, by using

the __________

 object reference class variables data types object reference

Which of these keywords is used to

define interfaces in Java?

 interface Interface intf Intf interface

Which of these can be used to fully

abstract a class from its implementation?

Objects Packages Interfaces class Interfaces

Which of these access specifiers can be

used for an interface?

Public Protected private All Public

Which of these keywords is used by a

class to use an interface defined

previously?

import Import implements Implements implements

Which of the following is correct way of

implementing an interface salary by class

manager?

class manager

extends salary {}

class manager

implements

salary {}

class manager

imports salary {}

manager extends

salary{}

class manager

implements

salary {}

In Java, declaring a class abstract is

useful

To prevent

developers from

further extending

When it doesn't

make sense to

have objects of

When default

implementations

of some methods

To force

developers to

extend the class

When it doesn't

make sense to

have objects of Runnable is a _____ . class abstract class interface vaiable interface

Command used to execute java program

is ________

javac java run execute javac

The java compiler _________ creates

executable

translates java

code into

bytecode

creates classes produces java

interpreter

translates java

code into

bytecodeJava uses ___________ to represent

characters

ASCII code unicode byte code bitcode unicode

Which is not supported in java? abstraction polymorphism encapsulation global variables global variables

Java programs are ________ platform-

dependent

interpreter-

dependent

platform-

independent

interpreter-

independent

platform-

independent

The order of the three top level elements

of the java source file are __________

import,package,c

lass

class,import,pack

age

package,import,c

lass

random order package,import,c

lass

What is byte code in the context of Java? The type of code

generated by a

Java compiler

It is the code

written within

the instance

The type of code

generated by a

Java Virtual

It is another

name for a Java

source file

The type of code

generated by a

Java compilerYou read the following statement in a

Java program that compiles and executes.

submarine.dive(depth);

depth must be an

int

dive must be a

method

dive must be the

name of an

instance field

submarine must

be the name of a

class

dive must be a

method

What is garbage collection in the context

of Java?

The operating

system

periodically

Any package

imported in a

program and not

When all

references to an

object are gone,

The JVM checks

the output of any

Java program

When all

references to an

object are gone,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 1/39

SYLLABUS

Fundamentals – Hierarchy of Classes – Types of Exceptions-Exception Class – Uncaught

Exceptions – Handling Exceptions – User Defined Exceptions. Multithreaded

Programming: The Java Thread Model – Runnable Interface - Thread Class – Thread

Creation – Thread’s Life Cycle – Thread Scheduling -Synchronization and Deadlock.

Packages and Access Modifiers: Package Declaration – The CLASSPATH variable -

import statement – The Java Language Packages - Access Protection.

Fundamentals

 An exception is an abnormal condition that arises in a code sequence at run time

 A Java exception is an object that describes an exceptional condition that has

occurred in a piece of code

 When an exceptional condition arises, an object representing that exception is

created and thrown in the method that caused the error

 An exception can be caught to handle it or pass it on

 Exceptions can be generated by the Java run-time system, or they can be manually

generated by your code

 Java exception handling is managed by via five keywords: try, catch, throw,

throws, and finally

 Program statements to monitor are contained within a try block

 If an exception occurs within the try block, it is thrown

 Code within catch block catch the exception and handle it

 System generated exceptions are automatically thrown by the Java run-time system

 To manually throw an exception, use the keyword throw

 Any exception that is thrown out of a method must be specified as such by a

throws clause

 Any code that absolutely must be executed before a method returns is put in a

finally block

 General form of an exception-handling block

try{

 // block of code to monitor for errors

}

catch (ExceptionType1 exOb){

 // exception handler for ExceptionType1

}

catch (ExceptionType2 exOb){

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 2/39

 // exception handler for ExceptionType2

}

//…

finally{

 // block of code to be executed before try block ends

}

Exception Types

 All exception types are subclasses of the built-in class Throwable

 Throwable has two subclasses, they are

 Exception (to handle exceptional conditions that user programs should

catch)

 An important subclass of Exception is RuntimeException, that

includes division by zero and invalid array indexing

 Error (to handle exceptional conditions that are not expected to be caught

under normal circumstances). i.e. stack overflow

Uncaught Exceptions

 If an exception is not caught by user program, then execution of the program

stops and it is caught by the default handler provided by the Java run-time system

 Default handler prints a stack trace from the point at which the exception

occurred, and terminates the program

Ex:

class Exc0 {

 public static void main(String args[]) {

 int d = 0;

 int a = 42 / d;

 }

}

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 3/39

java.lang.ArithmeticException: / by zero

 at Exc0.main(Exc0.java:4)

Exception in thread "main"

Using try and catch

 Handling an exception has two benefits,

 It allows you to fix the error

 It prevents the program from automatically terminating

 The catch clause should follow immediately the try block

 Once an exception is thrown, program control transfer out of the try block into

the catch block

 Once the catch statement has executed, program control continues with the next

line in the program following the entire try/catch mechanism

Example

Output:

Division by zero.

After catch statement.

Using try and catch

 A try and catch statement form a unit. The scope of the catch clause is restricted

to those statements specified by the immediately preceding try statement

 we cannot use try on a single statement

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 4/39

Multiple catch Clauses

 If more than one can occur, then we use multiple catch clauses

 When an exception is thrown, each catch statement is inspected in order, and the

first one whose type matches that of the exception is executed

 After one catch statement executes, the others are bypassed

EXAMPLE:

Example

If no command line argument is provided, then output will be:

a = 0

Divide by 0: java.lang.ArithmeticException: / by zero

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 5/39

After try/catch blocks

 If any command line argument is provided, then we will see the following output:

a = 1

Array index oob: java.lang.ArrayIndexOutOfBoundsException

After try/catch blocks.

Caution

 Remember that, exception subclass must come before any of of their superclasses

 Because, a catch statement that uses a superclass will catch exceptions of that type

plus any of its subclasses. So, the subclass would never be reached if it come after

its superclass

 For example, ArithmeticException is a subclass of Exception

 Moreover, unreachable code in Java generates error

Example

Nested try Statements

 A try statement can be inside the block of another try

 Each time a try statement is entered, the context of that exception is pushed on

the stack

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 6/39

 If an inner try statement does not have a catch, then the next try statement’s catch

handlers are inspected for a match

 If a method call within a try block has try block within it, then then it is still

nested try

Example

Output

 When no parameter is given:

Divide by 0: java.lang.ArithmeticException: / by zero

 When one parameter is given

 a = 1

 Divide by 0: java.lang.ArithmeticException: / by zero

 When two parameters are given

a = 2

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 7/39

Array index out-of-bounds: java.lang.ArrayIndexOutOfBoundsException

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 8/39

throw

 It is possible for your program to to throw an exception explicitly

 throw TrrowableInstance

 Here, TrrowableInstance must be an object of type Throwable or a subclass

Throwable

 There are two ways to obtain a Throwable objects:

 Using a parameter into a catch clause

 Creating one with the new operator

Example

Output:

Caught inside demoproc.

Recaught: java.lang.NullPointerException: demo

Throws

 If a method is capable of causing an exception that it does not handle, it must

specify this behavior so that callers of the method can guard themselves against

that exception

type method-name parameter-list) throws exception-list

{

 // body of method

}

 It is not applicable for Error or RuntimeException, or any of their subclasses

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 9/39

Example: incorrect program

Example: corrected version

Output:

Inside throwOne.

Caught java.lang.IllegalAccessException: demo

finally

 It is used to handle premature execution of a method (i.e. a method open a file

upon entry and closes it upon exit)

 finally creates a block of code that will be executed after try/catch block has

completed and before the code following the try/catch block

 finally clause will execute whether or not an exception is thrown

Example

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 10/39

Output

inside procA

procA's finally

Exception caught

inside procB

procB's finally

inside procC

procC's finally

Java’s Built-in Errors

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 11/39

Java’s Built-in Exceptions:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 12/39

MULTITHREADING

Introduction

Java environment has been built around the multithreading model. In fact all Java class

libraries have been designed keeping multithreading in mind. If a thread goes off to sleep

for some time, the rest of the program does not get affected by this. Similarly, an

animation loop can be fired that will not stop the working of rest of the system.

At a point of time a thread can be in any one of the following states – new, ready,

running, inactive and finished. A thread enters the new state as soon as it is created.

When it is started (by invoking start() method), it is ready to run. The start() method in

turn calls the run() method which makes the thread enter the running state. While

running, a thread might get blocked because some resource that it requires is not

available, or it could be suspended on purpose for some reason (like put off to sleep by

the programmer). In such a case the thread enters the state of being inactive. A thread can

also be stopped purposely because its time has expired, then it enters the state of ready to

run once again.

A thread that is in running state can be stopped once its job has finished. A thread that is

ready to run can also be stopped. A thread that is stopped enters the finished state. A

thread that is in inactive state can either be resumed, in which case it enters the ready

state again, or it can be stopped in which case it enters the finished state.

Thread Priorities

In multithreading environment, one thread might require the attention of the CPU more

quickly than other. In such a case that thread is said to be of high priority. Priority of a

thread determines the switching from one thread to another. In other words, priority

determines how a thread should behave with respect to the other threads.

The word priority should not be confused with the faster running of a thread. A high

priority thread does not run any faster than the low priority thread. A thread can

voluntarily leave the control by explicitly stopping, sleeping or blocking on pending I/O

or it can pre-empted by the system to do so. In the first case the processor examines all

threads and assigns the control to the thread having the highest priority. In the second

case, a low priority thread that is not ready to leave the control is simply pre-empted by

the higher priority thread no matter what it is doing. This is known as pre-emptive multi-

tasking. It is advisable that in case two threads have the same priority, they must

explicitly surrender the control to their peers.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 13/39

Synchronization

Multithreading produces asynchronous behavior among the programs. This means that all

threads run as independent units without affecting each other. But sometimes it becomes

necessary to synchronize these threads. For example, synchronization must be provided

when two threads share the same variable or data structure like an array. In such a case

there must be way by which they should not come in each other’s way.

Messaging

Since there are more than one thread in a multithreaded environment, inter-process

communication becomes imperative. A thread should be able to communicate with the

other threads. Threads can talk to each other by using method such as wait().

Java - Multithreading

Java provides built-in support for multithreaded programming. A multithreaded program

contains two or more parts that can run concurrently. Each part of such a program is

called a thread, and each thread defines a separate path of execution.

A multithreading is a specialized form of multitasking. Multitasking threads require less

overhead than multitasking processes.

I need to define another term related to threads: process: A process consists of the

memory space allocated by the operating system that can contain one or more threads. A

thread cannot exist on its own; it must be a part of a process. A process remains running

until all of the non-daemon threads are done executing.

Multithreading enables to write very efficient programs that make maximum use of the

CPU, because idle time can be kept to a minimum.

Life Cycle of a Thread

A thread goes through various stages in its life cycle. For example, a thread is born,

started, runs, and then dies. Following diagram shows complete life cycle of a thread.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 14/39

Above mentioned stages are explained here:

 New: A new thread begins its life cycle in the new state. It remains in this state

until the program starts the thread. It is also referred to as a born thread.

 Runnable: After a newly born thread is started, the thread becomes runnable. A

thread in this state is considered to be executing its task.

 Waiting: Sometimes a thread transitions to the waiting state while the thread waits

for another thread to perform a task.A thread transitions back to the runnable state

only when another thread signals the waiting thread to continue executing.

 Timed waiting: A runnable thread can enter the timed waiting state for a specified

interval of time. A thread in this state transitions back to the runnable state when

that time interval expires or when the event it is waiting for occurs.

 Terminated: A runnable thread enters the terminated state when it completes its

task or otherwise terminates.

Thread Priorities

Every Java thread has a priority that helps the operating system determine the order in

which threads are scheduled.

Java priorities are in the range between MIN_PRIORITY (a constant of 1) and

MAX_PRIORITY (a constant of 10). By default, every thread is given priority

NORM_PRIORITY (a constant of 5).

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 15/39

Threads with higher priority are more important to a program and should be allocated

processor time before lower-priority threads. However, thread priorities cannot guarantee

the order in which threads execute and very much platform dependentant.

Creating a Thread

Java defines two ways in which this can be accomplished:

 Implement the Runnable interface.

 Extend the Thread class, itself.

Create Thread by Implementing Runnable:

The easiest way to create a thread is to create a class that implements the Runnable

interface.

To implement Runnable, a class need only implement a single method called run(),

which is declared like this:

public void run()

we will define the code that constitutes the new thread inside run() method. It is

important to understand that run() can call other methods, use other classes, and declare

variables, just like the main thread can.

After we create a class that implements Runnable, we will instantiate an object of type

Thread from within that class. Thread defines several constructors. The one that we will

use is shown here:

Thread(Runnable threadOb, String threadName);

Here threadOb is an instance of a class that implements the Runnable interface and the

name of the new thread is specified by threadName.

After the new thread is created, it will not start running until we call its start() method,

which is declared within Thread. The start() method is shown here:

void start();

Example:

Here is an example that creates a new thread and starts it running:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 16/39

// Create a new thread.

class NewThread implements Runnable {

 Thread t;

 NewThread() {

 // Create a new, second thread

 t = new Thread(this, "Demo Thread");

 System.out.println("Child thread: " + t);

 t.start(); // Start the thread

 }

 // This is the entry point for the second thread.

 public void run() {

 try {

 for(int i = 5; i > 0; i--) {

 System.out.println("Child Thread: " + i);

 // Let the thread sleep for a while.

 Thread.sleep(500);

 }

 } catch (InterruptedException e) {

 System.out.println("Child interrupted.");

 }

 System.out.println("Exiting child thread.");

 }

}

class ThreadDemo {

 public static void main(String args[]) {

 new NewThread(); // create a new thread

 try {

 for(int i = 5; i > 0; i--) {

 System.out.println("Main Thread: " + i);

 Thread.sleep(1000);

 }

 } catch (InterruptedException e) {

 System.out.println("Main thread interrupted.");

 }

 System.out.println("Main thread exiting.");

 }

}

This would produce following result:

Child thread: Thread[Demo Thread,5,main]

Main Thread: 5

Child Thread: 5

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 17/39

Child Thread: 4

Main Thread: 4

Child Thread: 3

Child Thread: 2

Main Thread: 3

Child Thread: 1

Exiting child thread.

Main Thread: 2

Main Thread: 1

Main thread exiting.

Create Thread by Extending Thread

The second way to create a thread is to create a new class that extends Thread, and then

to create an instance of that class.

The extending class must override the run() method, which is the entry point for the new

thread. It must also call start() to begin execution of the new thread.

Example:

Here is the preceding program rewritten to extend Thread:

// Create a second thread by extending Thread

class NewThread extends Thread {

 NewThread() {

 // Create a new, second thread

 super("Demo Thread");

 System.out.println("Child thread: " + this);

 start(); // Start the thread

 }

 // This is the entry point for the second thread.

 public void run() {

 try {

 for(int i = 5; i > 0; i--) {

 System.out.println("Child Thread: " + i);

 // Let the thread sleep for a while.

 Thread.sleep(500);

 }

 } catch (InterruptedException e) {

 System.out.println("Child interrupted.");

 }

 System.out.println("Exiting child thread.");

 }

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 18/39

}

class ExtendThread {

 public static void main(String args[]) {

 new NewThread(); // create a new thread

 try {

 for(int i = 5; i > 0; i--) {

 System.out.println("Main Thread: " + i);

 Thread.sleep(1000);

 }

 } catch (InterruptedException e) {

 System.out.println("Main thread interrupted.");

 }

 System.out.println("Main thread exiting.");

 }

}

This would produce following result:

Child thread: Thread[Demo Thread,5,main]

Main Thread: 5

Child Thread: 5

Child Thread: 4

Main Thread: 4

Child Thread: 3

Child Thread: 2

Main Thread: 3

Child Thread: 1

Exiting child thread.

Main Thread: 2

Main Thread: 1

Main thread exiting.

Thread Methods

Following is the list of important medthods available in the Thread class.

SN Methods with Description

1 public void start()

Starts the thread in a separate path of execution, then invokes the run() method on

this Thread object.

2 public void run()

If this Thread object was instantiated using a separate Runnable target, the run()

method is invoked on that Runnable object.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 19/39

3 public final void setName(String name)

Changes the name of the Thread object. There is also a getName() method for

retrieving the name.

4 public final void setPriority(int priority)

Sets the priority of this Thread object. The possible values are between 1 and 10.

5 public final void setDaemon(boolean on)

A parameter of true denotes this Thread as a daemon thread.

6 public final void join(long millisec)

The current thread invokes this method on a second thread, causing the current

thread to block until the second thread terminates or the specified number of

milliseconds passes.

7 public void interrupt()

Interrupts this thread, causing it to continue execution if it was blocked for any

reason.

8 public final boolean isAlive()

Returns true if the thread is alive, which is any time after the thread has been started

but before it runs to completion.

The previous methods are invoked on a particular Thread object. The following methods

in the Thread class are static. Invoking one of the static methods performs the operation

on the currently running thread

SN Methods with Description

1 public static void yield()

Causes the currently running thread to yield to any other threads of the same priority

that are waiting to be scheduled

2 public static void sleep(long millisec)

Causes the currently running thread to block for at least the specified number of

milliseconds

3 public static boolean holdsLock(Object x)

Returns true if the current thread holds the lock on the given Object.

4 public static Thread currentThread()

Returns a reference to the currently running thread, which is the thread that invokes

this method.

5 public static void dumpStack()

Prints the stack trace for the currently running thread, which is useful when

debugging a multithreaded application.

Example:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 20/39

The following ThreadClassDemo program demonstrates some of these methods of the

Thread class:

// File Name : DisplayMessage.java

// Create a thread to implement Runnable

public class DisplayMessage implements Runnable

{

 private String message;

 public DisplayMessage(String message)

 {

 this.message = message;

 }

 public void run()

 {

 while(true)

 {

 System.out.println(message);

 }

 }

}

// File Name : GuessANumber.java

// Create a thread to extentd Thread

public class GuessANumber extends Thread

{

 private int number;

 public GuessANumber(int number)

 {

 this.number = number;

 }

 public void run()

 {

 int counter = 0;

 int guess = 0;

 do

 {

 guess = (int) (Math.random() * 100 + 1);

 System.out.println(this.getName()

 + " guesses " + guess);

 counter++;

 }while(guess != number);

 System.out.println("** Correct! " + this.getName()

 + " in " + counter + " guesses.**");

 }

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 21/39

// File Name : ThreadClassDemo.java

public class ThreadClassDemo

{

 public static void main(String [] args)

 {

 Runnable hello = new DisplayMessage("Hello");

 Thread thread1 = new Thread(hello);

 thread1.setDaemon(true);

 thread1.setName("hello");

 System.out.println("Starting hello thread...");

 thread1.start();

 Runnable bye = new DisplayMessage("Goodbye");

 Thread thread2 = new Thread(hello);

 thread2.setPriority(Thread.MIN_PRIORITY);

 thread2.setDaemon(true);

 System.out.println("Starting goodbye thread...");

 thread2.start();

 System.out.println("Starting thread3...");

 Thread thread3 = new GuessANumber(27);

 thread3.start();

 try

 {

 thread3.join();

 }catch(InterruptedException e)

 {

 System.out.println("Thread interrupted.");

 }

 System.out.println("Starting thread4...");

 Thread thread4 = new GuessANumber(75);

 thread4.start();

 System.out.println("main() is ending...");

 }

}

This would produce following result. we can try this example again and again and we

would get different result every time.

Starting hello thread...

Starting goodbye thread...

Hello

Hello

Hello

Hello

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 22/39

Hello

Hello

Hello

Hello

Hello

Thread-2 guesses 27

Hello

** Correct! Thread-2 in 102 guesses.**

Hello

Starting thread4...

Hello

Hello

..........remaining result produced

Java Thread Synchronization

When two or more threads need access to a shared resource, they need some way to

ensure that the resource will be used by only one thread at a time.

The process by which this synchronization is achieved is called thread synchronization.

The synchronized keyword in Java creates a block of code referred to as a critical section.

Every Java object with a critical section of code gets a lock associated with the object. To

enter a critical section, a thread needs to obtain the corresponding object's lock.

This is the general form of the synchronized statement:

synchronized(object) {

 // statements to be synchronized

}

Here, object is a reference to the object being synchronized. A synchronized block

ensures that a call to a method that is a member of object occurs only after the current

thread has successfully entered object's monitor.

Here is an example, using a synchronized block within the run() method:

// File Name : Callme.java

// This program uses a synchronized block.

class Callme {

 void call(String msg) {

 System.out.print("[" + msg);

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 System.out.println("Interrupted");

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 23/39

 }

 System.out.println("]");

 }

}

// File Name : Caller.java

class Caller implements Runnable {

 String msg;

 Callme target;

 Thread t;

 public Caller(Callme targ, String s) {

 target = targ;

 msg = s;

 t = new Thread(this);

 t.start();

 }

 // synchronize calls to call()

 public void run() {

 synchronized(target) { // synchronized block

 target.call(msg);

 }

 }

}

// File Name : Synch.java

class Synch {

 public static void main(String args[]) {

 Callme target = new Callme();

 Caller ob1 = new Caller(target, "Hello");

 Caller ob2 = new Caller(target, "Synchronized");

 Caller ob3 = new Caller(target, "World");

 // wait for threads to end

 try {

 ob1.t.join();

 ob2.t.join();

 ob3.t.join();

 } catch(InterruptedException e) {

 System.out.println("Interrupted");

 }

 }

}

This would produce following result:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 24/39

[Hello]

[World]

[Synchronized]

Java - Thread Deadlock

A special type of error that we need to avoid that relates specifically to multitasking is

deadlock, which occurs when two threads have a circular dependency on a pair of

synchronized objects.

For example, suppose one thread enters the monitor on object X and another thread enters

the monitor on object Y. If the thread in X tries to call any synchronized method on Y, it

will block as expected. However, if the thread in Y, in turn, tries to call any synchronized

method on X, the thread waits forever, because to access X, it would have to release its

own lock on Y so that the first thread could complete.

Example:

To understand deadlock fully, it is useful to see it in action. The next example creates two

classes, A and B, with methods foo() and bar(), respectively, which pause briefly before

trying to call a method in the other class.

The main class, named Deadlock, creates an A and a B instance, and then starts a second

thread to set up the deadlock condition. The foo() and bar() methods use sleep() as a

way to force the deadlock condition to occur.

class A {

 synchronized void foo(B b) {

 String name = Thread.currentThread().getName();

 System.out.println(name + " entered A.foo");

 try {

 Thread.sleep(1000);

 } catch(Exception e) {

 System.out.println("A Interrupted");

 }

 System.out.println(name + " trying to call B.last()");

 b.last();

 }

 synchronized void last() {

 System.out.println("Inside A.last");

 }

}

class B {

 synchronized void bar(A a) {

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 25/39

 String name = Thread.currentThread().getName();

 System.out.println(name + " entered B.bar");

 try {

 Thread.sleep(1000);

 } catch(Exception e) {

 System.out.println("B Interrupted");

 }

 System.out.println(name + " trying to call A.last()");

 a.last();

 }

 synchronized void last() {

 System.out.println("Inside A.last");

 }

}

class Deadlock implements Runnable {

 A a = new A();

 B b = new B();

 Deadlock() {

 Thread.currentThread().setName("MainThread");

 Thread t = new Thread(this, "RacingThread");

 t.start();

 a.foo(b); // get lock on a in this thread.

 System.out.println("Back in main thread");

 }

 public void run() {

 b.bar(a); // get lock on b in other thread.

 System.out.println("Back in other thread");

 }

 public static void main(String args[]) {

 new Deadlock();

 }

}

Here is some output from this program:

MainThread entered A.foo

RacingThread entered B.bar

MainThread trying to call B.last()

RacingThread trying to call A.last()

Deadlock Example:

Following is the depiction of a dead lock:

// File Name ThreadSafeBankAccount.java

public class ThreadSafeBankAccount

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 26/39

{

 private double balance;

 private int number;

 public ThreadSafeBankAccount(int num, double initialBalance)

 {

 balance = initialBalance;

 number = num;

 }

 public int getNumber()

 {

 return number;

 }

 public double getBalance()

 {

 return balance;

 }

 public void deposit(double amount)

 {

 synchronized(this)

 {

 double prevBalance = balance;

 try

 {

 Thread.sleep(4000);

 }catch(InterruptedException e)

 {}

 balance = prevBalance + amount;

 }

 }

 public void withdraw(double amount)

 {

 synchronized(this)

 {

 double prevBalance = balance;

 try

 {

 Thread.sleep(4000);

 }catch(InterruptedException e)

 {}

 balance = prevBalance - amount;

 }

 }

}

// File Name LazyTeller.java

public class LazyTeller extends Thread

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 27/39

{

 private ThreadSafeBankAccount source, dest;

 public LazyTeller(ThreadSafeBankAccount a,

 ThreadSafeBankAccount b)

 {

 source = a;

 dest = b;

 }

 public void run()

 {

 transfer(250.00);

 }

 public void transfer(double amount)

 {

 System.out.println("Transferring from "

 + source.getNumber() + " to " + dest.getNumber());

 synchronized(source)

 {

 Thread.yield();

 synchronized(dest)

 {

 System.out.println("Withdrawing from "

 + source.getNumber());

 source.withdraw(amount);

 System.out.println("Depositing into "

 + dest.getNumber());

 dest.deposit(amount);

 }

 }

 }

}

public class DeadlockDemo

{

 public static void main(String [] args)

 {

 System.out.println("Creating two bank accounts...");

 ThreadSafeBankAccount checking =

 new ThreadSafeBankAccount(101, 1000.00);

 ThreadSafeBankAccount savings =

 new ThreadSafeBankAccount(102, 5000.00);

 System.out.println("Creating two teller threads...");

 Thread teller1 = new LazyTeller(checking, savings);

 Thread teller2 = new LazyTeller(savings, checking);

 System.out.println("Starting both threads...");

 teller1.start();

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 28/39

 teller2.start();

 }

}

This would produce following result:

Creating two bank accounts...

Creating two teller threads...

Starting both threads...

Transferring from 101 to 102

Transferring from 102 to 101

The problem with the LazyTeller class is that it does not consider the possibility of a race

condition, a common occurrence in multithreaded programming.

After the two threads are started, teller1 grabs the checking lock and teller2 grabs the

savings lock. When teller1 tries to obtain the savings lock, it is not available. Therefore,

teller1 blocks until the savings lock becomes available. When the teller1 thread blocks,

teller1 still has the checking lock and does not let it go.

Similarly, teller2 is waiting for the checking lock, so teller2 blocks but does not let go of

the savings lock. This leads to one result: deadlock!

Deadlock Solution Example:

Here transfer() method, in a class named OrderedTeller, in stead of arbitrarily

synchronizing on locks, this transfer() method obtains locks in a specified order based on

the number of the bank account.

// File Name ThreadSafeBankAccount.java

public class ThreadSafeBankAccount

{

 private double balance;

 private int number;

 public ThreadSafeBankAccount(int num, double initialBalance)

 {

 balance = initialBalance;

 number = num;

 }

 public int getNumber()

 {

 return number;

 }

 public double getBalance()

 {

 return balance;

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 29/39

 }

 public void deposit(double amount)

 {

 synchronized(this)

 {

 double prevBalance = balance;

 try

 {

 Thread.sleep(4000);

 }catch(InterruptedException e)

 {}

 balance = prevBalance + amount;

 }

 }

 public void withdraw(double amount)

 {

 synchronized(this)

 {

 double prevBalance = balance;

 try

 {

 Thread.sleep(4000);

 }catch(InterruptedException e)

 {}

 balance = prevBalance - amount;

 }

 }

}

// File Name OrderedTeller.java

public class OrderedTeller extends Thread

{

 private ThreadSafeBankAccount source, dest;

 public OrderedTeller(ThreadSafeBankAccount a,

 ThreadSafeBankAccount b)

 {

 source = a;

 dest = b;

 }

 public void run()

 {

 transfer(250.00);

 }

 public void transfer(double amount)

 {

 System.out.println("Transferring from " + source.getNumber()

 + " to " + dest.getNumber());

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 30/39

 ThreadSafeBankAccount first, second;

 if(source.getNumber() < dest.getNumber())

 {

 first = source;

 second = dest;

 }

 else

 {

 first = dest;

 second = source;

 }

 synchronized(first)

 {

 Thread.yield();

 synchronized(second)

 {

 System.out.println("Withdrawing from "

 + source.getNumber());

 source.withdraw(amount);

 System.out.println("Depositing into "

 + dest.getNumber());

 dest.deposit(amount);

 }

 }

 }

}

// File Name DeadlockDemo.java

public class DeadlockDemo

{

 public static void main(String [] args)

 {

 System.out.println("Creating two bank accounts...");

 ThreadSafeBankAccount checking =

 new ThreadSafeBankAccount(101, 1000.00);

 ThreadSafeBankAccount savings =

 new ThreadSafeBankAccount(102, 5000.00);

 System.out.println("Creating two teller threads...");

 Thread teller1 = new OrderedTeller(checking, savings);

 Thread teller2 = new OrderedTeller(savings, checking);

 System.out.println("Starting both threads...");

 teller1.start();

 teller2.start();

 }

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 31/39

This would remove deadlock problem and would produce following result:

Creating two bank accounts...

Creating two teller threads...

Starting both threads...

Transferring from 101 to 102

Transferring from 102 to 101

Withdrawing from 101

Depositing into 102

Withdrawing from 102

Depositing into 101

Interface Runnable

public interface Runnable

The Runnable interface should be implemented by any class whose instances are intended

to be executed by a thread. The class must define a method of no arguments called run.

This interface is designed to provide a common protocol for objects that wish to execute

code while they are active. For example, Runnable is implemented by class Thread.

Being active simply means that a thread has been started and has not yet been stopped.

In addition, Runnable provides the means for a class to be active while not subclassing

Thread. A class that implements Runnable can run without subclassing Thread by

instantiating a Thread instance and passing itself in as the target. In most cases, the

Runnable interface should be used if we are only planning to override the run() method

and no other Thread methods. This is important because classes should not be subclassed

unless the programmer intends on modifying or enhancing the fundamental behavior of

the class

void run()

 When an object implementing interface Runnable is used to create a thread,

starting the thread causes the object's run method to be called in that separately

executing thread.

run

public void run()

When an object implementing interface Runnable is used to create a thread,

starting the thread causes the object's run method to be called in that separately

executing thread.

The general contract of the method run is that it may take any action whatsoever

Starting a Thread Using the Thread Class or the Runnable Interface

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 32/39

We can start a thread in Java by either implementing the java.lang.Runnable interface or

by extending the java.lang.Thread class

1. public MyClass implements MyInterface{

2. }

3. public MyThread extends Thread implements MyInterface {

4. MyClass myObject;

5.

6. // Provide delegation methods for myObject here

7. }

the class MyThread has to delegate to a local object myObject in order to reuse the

behavior for MyInterface. If MyInterface had 30 methods, we would have to provide

wrapper methods for 30 methods in MyThread.

On the other hand, implementing the Runnable interface only requires an implementation

for the run() method. Since Runnable is an interface, we can still extend from another

class:

1. public MyThread extends MyClass implements Runnable {

2. }

In general, implementing the Runnable interface presents a more flexible choice. Another

thing to keep in mind is that the Thread class provides implementation for several other

methods (besides run()) that we may never use. This overhead can also be avoided by

using the Runnable interface.

Java's Abstract Windowing Toolkit provides many of the user interface objects we find in

the Windows environment. These are called "Components" of the Java AWT. The applet

below contains most of the components we will use to create a graphical user interface

(GUI) for our applets. It simply initializes and creates the components but does not

handle any of the events they trigger.

PACKAGES

Programs are organized as sets of packages. Each package has its own set of

names for types, which helps to prevent name conflicts. A top level type is accessible

outside the package that declares it only if the type is declared public.

The naming structure for packages is hierarchical . The members of a package are class

and interface types, which are declared in compilation units of the package, and

subpackages, which may contain compilation units and subpackages of their own.

A package can be stored in a file system or in a database. Packages that are stored in a

file system have certain constraints on the organization of their compilation units to allow

a simple implementation to find classes easily.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 33/39

A package consists of a number of compilation units. A compilation unit automatically

has access to all types declared in its package and also automatically imports all of the

public types declared in the predefined package java.lang.

For small programs and casual development, a package can be unnamed or have a simple

name, but if code is to be widely distributed, unique package names should be chosen.

This can prevent the conflicts that would otherwise occur if two development groups

happened to pick the same package name and these packages were later to be used in a

single program.

Package Members

The members of a package are subpackages and all the top level class and top level

interface types declared in all the compilation units of the package.

For example, in the Java Application Programming Interface:

 The package java has sub-packages awt, applet, io, lang, net, and util, but no

compilation units.

 The package java.awt has a subpackage named image, as well as a number of

compilation units containing declarations of class and interface types.

If the fully qualified name of a package is P, and Q is a subpackage of P, then P.Q is the

fully qualified name of the subpackage.

A package may not contain two members of the same name, or a compile-time error

results.

Here are some examples:

 Because the package java.awt has a subpackage image, it cannot (and does not)

contain a declaration of a class or interface type named image.

 If there is a package named mouse and a member type Button in that package

(which then might be referred to as mouse.Button), then there cannot be any

package with the fully qualified name mouse.Button or mouse.Button.Click.

 If com.sun.java.jag is the fully qualified name of a type, then there cannot be any

package whose fully qualified name is either com.sun.java.jag or

com.sun.java.jag.scrabble.

The hierarchical naming structure for packages is intended to be convenient for

organizing related packages in a conventional manner, but has no significance in itself

other than the prohibition against a package having a subpackage with the same simple

name as a top level type declared in that package. There is no special access relationship

between a package named oliver and another package named oliver.twist, or between

packages named evelyn.wood and evelyn.waugh. For example, the code in a package

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 34/39

named oliver.twist has no better access to the types declared within package oliver than

code in any other package.

Package Declarations

A package declaration appears within a compilation unit to indicate the package to which

the compilation unit belongs.

 Named Packages

A package declaration in a compilation unit specifies the name of the package to which

the compilation unit belongs.

PackageDeclaration:

package PackageName ;

The package name mentioned in a package declaration must be the fully qualified name

of the package.

Unnamed Packages

A compilation unit that has no package declaration is part of an unnamed package.

Note that an unnamed package cannot have subpackages, since the syntax of a package

declaration always includes a reference to a named top level package.

As an example, the compilation unit:

class FirstCall {

 public static void main(String[] args) {

 System.out.println("Mr. Watson, come here. "

 + "I want you.");

 }

}

defines a very simple compilation unit as part of an unnamed package.

An implementation of the Java platform must support at least one unnamed package; it

may support more than one unnamed package but is not required to do so. Which

compilation units are in each unnamed package is determined by the host system.

In implementations of the Java platform that use a hierarchical file system for storing

packages, one typical strategy is to associate an unnamed package with each directory;

only one unnamed package is observable at a time, namely the one that is associated with

the "current working directory." The precise meaning of "current working directory"

depends on the host system.

Unnamed packages are provided by the Java platform principally for convenience when

developing small or temporary applications or when just beginning development.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 35/39

Observability of a Package

A package is observable if and only if either:

 A compilation unit containing a declaration of the package is observable.

 A subpackage of the package is observable.

One can conclude from the rule above and from the requirements on observable

compilation units, that the packages java, java.lang, and java.io are always observable.

Scope of a Package Declaration

The scope of the declaration of an observable top level package is all observable

compilation units. The declaration of a package that is not observable is never in scope.

Subpackage declarations are never in scope.

It follows that the package java is always in scope.

Package declarations never shadow other declarations.

Import Declarations

An import declaration allows a named type to be referred to by a simple name that

consists of a single identifier. Without the use of an appropriate import declaration, the

only way to refer to a type declared in another package is to use a fully qualified name.

ImportDeclaration:

 SingleTypeImportDeclaration

 TypeImportOnDemandDeclaration

A single-type-import declaration imports a single named type, by mentioning its

canonical name. A type-import-on-demand declaration imports all the accessible types of

a named type or package as needed.

The scope of a type imported by a single-type-import declaration or type-import-on-

demand declaration is all the class and interface type declarations in the compilation unit

in which the import declaration appears.

An import declaration makes types available by their simple names only within the

compilation unit that actually contains the import declaration. The scope of the entities(s)

it introduces specifically does not include the package statement, other import

declarations in the current compilation unit, or other compilation units in the same

package..

Automatic Imports

Each compilation unit automatically imports all of the public type names declared in the

predefined package java.lang, as if the declaration:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 36/39

import java.lang.*;

appeared at the beginning of each compilation unit, immediately following any package

statement.

Importing a Package Member

To import a specific member into the current file, put an import statement at the

beginning of the file before any type definitions but after the package statement, if there

is one.

import graphics.Rectangle;

Now you can refer to the Rectangle class by its simple name.

Rectangle myRectangle = new Rectangle();

This approach works well if you use just a few members from the graphics package. But

if you use many types from a package, you should import the entire package.

Importing an Entire Package

To import all the types contained in a particular package, use the import statement with

the asterisk (*) wildcard character.

import graphics.*;

Now you can refer to any class or interface in the graphics package by its simple name.

Circle myCircle = new Circle();

Rectangle myRectangle = new Rectangle();

The asterisk in the import statement can be used only to specify all the classes within a

package, as shown here. It cannot be used to match a subset of the classes in a package.

For example, the following does not match all the classes in the graphics package that

begin with A.

import graphics.A*; //does not work

Instead, it generates a compiler error. With the import statement, you generally import

only a single package member or an entire package.

Another, less common form of import allows you to import the public nested classes of

an enclosing class. For example, if the graphics.Rectangle class contained useful nested

classes, such as Rectangle.DoubleWide and Rectangle.Square, you could import

Rectangle and its nested classes by using the following two statements.

import graphics.Rectangle;

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 37/39

import graphics.Rectangle.*;

Be aware that the second import statement will not import Rectangle.

Another less common form of import, the static import statement, will be discussed at the

end of this section.

For convenience, the Java compiler automatically imports three entire packages for each

source file: (1) the package with no name, (2) the java.lang package, and (3) the current

package (the package for the current file).

The Static Import Statement

There are situations where you need frequent access to static final fields (constants) and

static methods from one or two classes. Prefixing the name of these classes over and over

can result in cluttered code. The static import statement gives you a way to import the

constants and static methods that you want to use so that you do not need to prefix the

name of their class.

The java.lang.Math class defines the PI constant and many static methods, including

methods for calculating sines, cosines, tangents, square roots, maxima, minima,

exponents, and many more. For example,

public static final double PI 3.141592653589793

public static double cos(double a)

Ordinarily, to use these objects from another class, you prefix the class name, as follows.

double r = Math.cos(Math.PI * theta);

You can use the static import statement to import the static members of java.lang.Math so

that you don't need to prefix the class name, Math. The static members of Math can be

imported either individually:

import static java.lang.Math.PI;

or as a group:

import static java.lang.Math.*;

Once they have been imported, the static members can be used without qualification. For

example, the previous code snippet would become:

double r = cos(PI * theta);

Obviously, you can write your own classes that contain constants and static methods that

you use frequently, and then use the static import statement. For example,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 38/39

import static mypackage.MyConstants.*;

Access Protection

Global variables are a classic cause of bugs in most programming languages. Some

unknown function can change the value of a variable when the programmer isn't

expecting it to change. This plays all sorts of havoc.

Java allows to protect variables from external modification. For example, in the Car class

we'd like to make sure that no block of code in some other class is allowed to make the

speed greater than the maximum speed. We want a way to make the following illegal:

 Car c = new Car("New York A234 567", 100.0);

 c.speed = 150.0;

This code violates the constraints we've placed on the class. We want to allow the

compiler to enforce these constraints.

A class presents a picture of itself to the world. (This picture is sometimes called an

interface, but the word interface has a more specific meaning in Java.) This picture says

that the class has certain methods and certain fields. Everything else about the class

including the detailed workings of the class's methods is hidden. As long as the picture

the class shows to the world doesn't change, the programmer can change how the class

implements that picture. Among other advantages this allows the programmer to change

and improve the algorithms a class uses without worrying that some piece of code

depends in unforeseen ways on the details of the algorithm used. This is called

encapsulation.

Another way to think about encapsulation is that a class signs a contract with all the other

classes in the program. This contract says that a class has methods with unambiguous

names which take particular types of arguments and return a particular type of value. The

contract may also say that a class has fields with given names and of a given type.

However the contract does not specify how the methods are implemented. Furthermore, it

does not say that there aren't other private fields and methods which the class may use. A

contract guarantees the presence of certain methods and fields. It does not exclude all

other methods and fields. This contract is implemented through access protection. Every

class, field and method in a Java program is defined as either public, private, protected or

unspecified.

Possible Questions

Part – B(2 Marks)

1. Define Exception

2. What is meant by uncaught exception?

3. Define runnable interface

4. List the steps involved in thread’s life cycle

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: III (Exception Handling) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 39/39

5. Define package

Part – C(6 Marks)

1. Define an exception. Sketch the hierarchy of Exception Class. List out the types of

exceptions and explain them.

2. Write the syntax to declare and create a package and explain the compilation and

running procedure of a package with example

3. What is synchronization? When do we use it?

4. What is the goal of package designing?

5. What is the function of StackTrace?

6. Explain the “try-catch” construct used to capture and handle exception with an

example program

7. Discuss the use of “finally” block in Java program with an example

8. Explain the creation of Thread using i)Thread Class ii) Runnable Interface. Give

example for each

9. Name the 5 states of a thread. Explain each of them.

10. Write short notes on a) Thread Life Cycle b) Thread Scheduling

11. Give the steps for creating a thread using “Runnable” interface.

Questions opt1 opt2 opt3 opt4 answer

___________ is an explicit specification

of a set of methods
 Interface package Statement None

Interface

___________ are containers for classes

that are used to keep the class namespace

compartmenterised.

 Interface package Statement None

Package

All of the Java “built-in” classes included

in the java distribution are stored in a

package called ___________.

 Header Java Package Files

Package

___________ are the means of

encapsulation and containing the

namespace and scope of variables and

 Class Package
 Classes and

Package
 None

Class and

Package

___________ act as containers for classes

and other packages.
 Container Classes Java Packages

Packages

___________ act as containers for data

and code
 Container Classes Java Packages

Classes

Java’s ___________ are designed to

support dynamic method resolution at

runtime.

 Interface Class Package None
Class

An _________ is a condition that is

caused by a runtime error in the program

throw exception handle catch exception

Exception can be generated by the

___________ or manually by the code

Throwable class Java runtime

system

object catch Java runtime

system

All exception types are subclasses of the

built_in class ____________

Throwable RuntimeException StackTree LocalizedMessage Throwable

All exception classes are divided into

________ groups

3 4 2 6 2

The _______ defines the exceptions

which are not expected to be caught

java.lang.Error java.lang.Math java.lang.Throwa

ble

java.lang.IOExcep

tion

java.lang.Error

When an exception occurs within a java

method, the method creates an exception

object and hands it over to the runtime

catching the

exception

throwing an

exception

handle the

exception

get the exception throwing an

exception

When java method throws an exception

the java runtime system searches all the

methods in the call stack to find one that

catching the

exception

throwing an

exception

handle the

exception

get the exception catching the

exception

Exception performs ______________

tasks

3 4 5 2 4

Unchecked exceptions are extensions of

throws catch RuntimeExceptio

n

Error RuntimeExceptio

n

Checked exceptions are extensions of

throws catch Exception Error Exception

Each of Exception's predefined class

provide ______________ constructors

3 4 5 2 2

The errors are printed by ____________ Stack Trace StackTree Message Error Stack Trace

AWT includes a very simple plain

text,multiline editor called ___________

Label TextField TextArea Option. TextArea

 __________ class is a button that is used

to toggle the state of a check mark.

 Label Option CheckBox Button CheckBox

 ______________ class is at the top of the

exception class hierarchy.

Exception Error Throws Throwable Throwable

 __________subclass of throwable defines

exceptions that are not expected to be

caught under normal circumstances.

Exception Error Throws Throwable Error

 The _________ class is used for

exceptional conditions that the user

programs should catch.

Exception Error Throws Throwable Exception

The two subclass of throwable class are

Exception and

Error

Exception and

handler

throw and

throwable

try and catch Exception and

Error

The ______________ Keyword is used to

specify a block of code that should be

guarded against all exceptions.

Catch try exception block of code try

 ______________ specifies the type of

exception to be caught.

Catch try exception block of code Catch

 _____________ keyword is used to

identify the list of possible exceptions that

a method might throw.

throw try catch Throwable throw

Certain block of code necessarily has to

be run no matter of what exceptions

occurs. Those codes are identified using

throw final finally try and catch finally

There are ___________ ways of creating

Throwable object

3 4 5 2 2

 ____________ is an important subclass

of exception

RuntimeExceptio

n

AarithmeticExcep

tion

NullException Subclasses of

Throwable

RuntimeExceptio

n

What is the mechanisam defind by java

for the Resources to be used by only one

Thread at a time?

priority parameters arguments

Synchronisation Synchronisation

Garbage collector thread belongs to which

priority?

high-priority

low-priority middle-priority

highest-priority

low-priority

When a Java program starts up, ____

thread begins running immediately

program main function input

main

The ____ method causes the thread from

which it is called to suspend execution for

the specified period of milliseconds
wait() notify() sleep() run() sleep()

To implement Runnable, a class need only

implement a single method called ____ wait() notify() sleep() run() run()

A ____ is an object that is used as a

mutually exclusive lock to achieve

synchronization

monitor thread process applet monitor

Which of these packages contain classes

and interfaces used for input & output

operations of a program?

java.util java.lang java.io java.util.date java.io

A package is a collection of ___________ classes interfaces editing tools classes and

interfaces

classes and

interfaces

For which purpose packages are used in

java?

categorizes data organizing java

classes into

namespaces

for faster

compilation

organize package organizing java

classes into

namespaces
In a java program,

package declaration __________ import

statements.

must precede must succeed may precede or

succeed

prdessor must precede

_______ package is used by compiler

itself. So it does not need to be imported

for use.

java.math java.awt java.applet java.lang java.lang

A class can be converted to a thread by

implementing the interface_______

Thread Runnable Start Yield Runnable

Which of the following classes are

not available in the java.lang package?

Stack Object Math String Stack

A thread can make a second thread

ineligible for execution by calling the

________ method on the second thread.

second() suspend() append() yield() append()

When we implement the Runnable

interface, we must define the method

run() start() init() main() run()

The methods wait() and notify() are

defined in?

java.lang.String java.lang.Object java.lang.Runna

ble

java.lang.Thread java.lang.Object

 How many ways are there to access

package from another package?

3 2 1 5 3

The life cycle of the thread is controlled

by ?

JDK JVM JRE J2SDK JVM

In how many states Threads can be

explained ?

4 5 3 2 5

In which state the thread is still alive, but

is currently not eligible to run?

Non-Runnable Terminated Runnable Running Non-Runnable

In Which state after invocation of start()

method, but the thread Scheduler has not

selected it to be the running thread?

Running Runnable Terminated Non-Runnable Runnable

These two ways are used to? (i) By

extending Thread class (ii) By

implementing Runnable interface.

Joining a thread Naming a thread Create a thread sleeping a thread Create a thread

Which method is used in thread class to

starts the execution of the thread.JVM

calls the run() method on the thread?

public void

start()

public void run() public void

stop()

 public coid

suspend()

public void

start()

Which method is used in thread class to

tests if the current thread has been

interrupted?

public static

boolean

interrupted()

public boolean

isInterrupted()

public void

interrupt()

public boolean

isAlive()

public static

boolean

interrupted()

Which method in thread class causes the

currently executing thread object to

temporarily pause and allow other threads

public boolean

isAlive()

public int getId() public void

yield()

public boolean

isDaemon()

public void

yield()

How many methods does a thread class

provides for sleeping a thread?

3 1 4 2 2

Which method waits for a thread to die? stop() start() terminate() join() join()

In Naming a thread which method is used

to change the name of a thread?

public String

getName()

 public void

setName(String

name).

public void

getName()

public String

setName(String

name)

 public void

setName(String

name).
Default priority value of a thread class for

NORM_PRIORITY is?

1 10 5 4 5

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 1/27

SYLLABUS

Strings: Creation – Operation on strings - Character Extraction Methods – Comparison –Searching

and Modifying –Data Conversion and valueOf() Methods – Changing case of characters - String

Buffer Class and its methods. Collection and Utilities: Collection of Objects – Core Interfaces and

Classes – Iterators – List, Set, Map Implementations.

Strings, which are widely used in Java programming, are a sequence of characters. In the Java

programming language, strings are objects.

The Java platform provides the String class to create and manipulate strings.

Creating Strings

The most direct way to create a string is to write:

String greeting = "Hello world!";

In this case, "Hello world!" is a string literal—a series of characters in the code that is enclosed in

double quotes. Whenever it encounters a string literal in the code, the compiler creates a String object

with its value—in this case, Hello world!.

char[] helloArray = { 'h', 'e', 'l', 'l', 'o', '.'};

String helloString = new String(helloArray);

System.out.println(helloString);

The last line of this code snippet displays hello.

Methods used to obtain information about an object are known as accessor methods. One accessor

method that you can use with strings is the length() method, which returns the number of characters

contained in the string object. After the following two lines of code have been executed, len equals

17:

String palindrome = "Dot saw I was Tod";

int len = palindrome.length();

A palindrome is a word or sentence that is symmetric—it is spelled the same forward and backward,

ignoring case and punctuation. Here is a short and inefficient program to reverse a palindrome string.

It invokes the String method charAt(i), which returns the i
th

 character in the string, counting from 0.

public class StringDemo {

 public static void main(String[] args) {

 String palindrome = "Dot saw I was Tod";

 int len = palindrome.length();

 char[] tempCharArray = new char[len];

 char[] charArray = new char[len];

 // put original string in an array of chars

 for (int i = 0; i < len; i++) {

 tempCharArray[i] = palindrome.charAt(i);

 }

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 2/27

 // reverse array of chars

 for (int j = 0; j < len; j++) {

 charArray[j] = tempCharArray[len - 1 - j];

 }

 String reversePalindrome = new String(charArray);

 System.out.println(reversePalindrome);

 }

}

Running the program produces this output:

doT saw I was toD

To accomplish the string reversal, the program had to convert the string to an array of characters (first

for loop), reverse the array into a second array (second for loop), and then convert back to a string.

The String class includes a method, getChars(), to convert a string, or a portion of a string, into an

array of characters so we could replace the first for loop in the program above with

palindrome.getChars(0, len, tempCharArray, 0);

Creating Format Strings

The String class has an equivalent class method, format(), that returns a String object rather than a

PrintStream object.

Using String's static format() method allows to create a formatted string that can reuse, as opposed to

a one-time print statement. For example, instead of

System.out.printf("The value of the float variable is %f, while the value of the " +

 "integer variable is %d, and the string is %s", floatVar, intVar, stringVar);

can write

String fs;

fs = String.format("The value of the float variable is %f, while the value of the " +

 "integer variable is %d, and the string is %s", floatVar, intVar, stringVar);

System.out.println(fs);

String Literals
The most basic form of pattern matching supported by this API is the match of a string literal. For

example, if the regular expression is foo and the input string is foo, the match will succeed because

the strings are identical. Try this out with the test harness:

Enter your regex: foo

Enter input string to search: foo

I found the text "foo" starting at index 0 and ending at index 3.

http://download.oracle.com/javase/7/docs/api/java/lang/String.html

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 3/27

This match was a success. Note that while the input string is 3 characters long, the start index is 0 and

the end index is 3. By convention, ranges are inclusive of the beginning index and exclusive of the

end index, as shown in the following figure:

The string literal "foo", with numbered cells and index values.

Each character in the string resides in its own cell, with the index positions pointing between each

cell. The string "foo" starts at index 0 and ends at index 3, even though the characters themselves

only occupy cells 0, 1, and 2.

Enter your regex: foo

Enter input string to search: foofoofoo

I found the text "foo" starting at index 0 and ending at index 3.

I found the text "foo" starting at index 3 and ending at index 6.

I found the text "foo" starting at index 6 and ending at index 9.

Concatenating Strings

The String class includes a method for concatenating two strings:

string1.concat(string2);

This returns a new string that is string1 with string2 added to it at the end.

concat() method with string literals, as in:

"My name is ".concat("Rumplestiltskin");

Strings are more commonly concatenated with the + operator, as in

"Hello," + " world" + "!"

which results in

"Hello, world!"

The + operator is widely used in print statements. For example:

String string1 = "saw I was ";

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 4/27

System.out.println("Dot " + string1 + "Tod");

which prints

Dot saw I was Tod

Such a concatenation can be a mixture of any objects. For each object that is not a String, its

toString() method is called to convert it to a String.

The Java programming language does not permit literal strings to span lines in source files, so

+ must used to concatenation operator at the end of each line in a multi-line string. For example,

String quote = "Now is the time for all good " +

 "men to come to the aid of their country.";

Breaking strings between lines using the + concatenation operator is, once again, very common in

print statements.

String Conversion and tostring()

When Java converts data into its string representation during concatenation, it does so by calling

one of the overloaded versions of the string conversion method valueOf() defined by String.

valueOf() is overloaded for all the simple types and for type Object. For the simple types,

valueOf() returns a string that contains the human-readable equivalent of the value with which it

is called. For objects, valueOf() calls the toString() method on the object. We will look more

closely at valueOf() later in this chapter. Here, let's examine the toString() method, because it is

the means by which you can determine the string representation for objects of classes that you

create.

The toString() method has this general form:

String toString()

To implement toString(), simply return a String object that contains the human-readable string

that appropriately describes an object of the class.

By overriding toString() for classes that allow the resulting strings to be fully integrated into

Java's programming environment. For example, they can be used in print() and println()

statements and in concatenation expressions. The following program demonstrates this by

overriding toString() for the Box class:

// Override toString() for Box class.

class Box {

double width;

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 5/27

double height;

double depth;

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

public String toString() {

return "Dimensions are " + width + " by " +

depth + " by " + height + ".";

}

}

class toStringDemo {

public static void main(String args[]) {

Box b = new Box(10, 12, 14);

String s = "Box b: " + b; // concatenate Box object

System.out.println(b); // convert Box to string

System.out.println(s);

}

}

The output of this program is shown here:

Dimensions are 10 by 14 by 12.

Box b: Dimensions are 10 by 14 by 12.

Character extraction methods

The String class provides a number of ways in which characters can be extracted from a String

object. Each is examined here. Although the characters that comprise a string within a String object

cannot be indexed as if they were a character array, many of the String methods employ an index (or

offset) into the string for their operation. Like arrays, the string indexes begin at zero.

charAt()

To extract a single character from a String, we can refer directly to an individual character via the

charAt() method. It has this general form:

char charAt(int where)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 6/27

Here, where is the index of the character that we want to obtain. The value of where must be

nonnegative and specify a location within the string. charAt() returns the character at the specified

location. For example,

char ch;

ch = "abc".charAt(1);

assigns the v0alue "b" to ch.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 7/27

getChars()

If we need to extract more than one character at a time, we can use the getChars() method. It

has this general form:

void getChars(int sourceStart, int sourceEnd, char target[], int targetStart)

Here, sourceStart specifies the index of the beginning of the substring, and sourceEnd specifies

an index that is one past the end of the desired substring. Thus, the substring contains the

characters from sourceStart through sourceEnd–1. The array that will receive the characters is

specified by target. The index within target at which the substring will be copied is passed in

targetStart. Care must be taken to assure that the target array is large enough to hold the number

of characters in the specified substring. The following program demonstrates getChars():

class getCharsDemo {

public static void main(String args[]) {

String s = "This is a demo of the getChars method.";

int start = 10;

int end = 14;

char buf[] = new char[end - start];

s.getChars(start, end, buf, 0);

System.out.println(buf);

}

}

Here is the output of this program:

demo

getBytes()

There is an alternative to getChars() that stores the characters in an array of bytes. This method

is called getBytes(), and it uses the default character-to-byte conversions provided by the

platform. Here is its simplest form:

byte[] getBytes()

Other forms of getBytes() are also available. getBytes() is most useful when we are exporting a

String value into an environment that does not support 16-bit Unicode characters. For example,

most Internet protocols and text file formats use 8-bit ASCII for all text interchange.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 8/27

toCharArray()

If we want to convert all the characters in a String object into a character array, the easiest way

is to call toCharArray(). It returns an array of characters for the entire string. It has this general

form:

char[] toCharArray()

This function is provided as a convenience, since it is possible to use getChars() to achieve the

same result.

Java String comparison

Java String comparison with the equals method

if (string1.equals(string2))

This Java String equals method looks at the two Java Strings, and if they contain the exact same

string of characters, they are considered equal.

Taking a look at a quick Java String comparison example with the equals method, if the following

test were run, the two strings would not be considered equal because the characters are not the

exactly the same (the case of the characters is different):

String string1 = "foo";

String string2 = "FOO";

if (string1.equals(string2))

{

 // this line will not print because the

 // java string equals method returns false:

 System.out.println("The two strings are the same.")

}

But, when the two strings contain the exact same string of characters, the String equals method will

return true, as in this example:

String string1 = "foo";

String string2 = "foo";

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 9/27

// test for equality with the java string equals method

if (string1.equals(string2))

{

 // this line WILL print

 System.out.println("The two strings are the same.")

}

Java String comparison with the equalsIgnoreCase method

In some Java String comparison tests user wants to ignore whether the strings are uppercase or

lowercase. When we want to test our strings for equality in this case-insensitive manner, use the

equalsIgnoreCase method of the Java String class, like this:

String string1 = "foo";

String string2 = "FOO";

// java string compare while ignoring case

if (string1.equalsIgnoreCase(string2))

{

 // this line WILL print

 System.out.println("Ignoring case, the two strings are the same.")

}

Java String comparison with the compareTo method

There is also a third, less common way to compare Java strings, and that's with the String class

compareTo method. If the two Java strings are exactly the same, the compareTo method will return a

value of 0 (zero). Here's a quick example of what this String comparison approach looks like:

String string1 = "foo bar";

String string2 = "foo bar";

// java string compare example

if (string1.compareTo(string2) == 0)

{

 // this line WILL print

 System.out.println("The two strings are the same.")

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 10/27

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 11/27

Operations on string

The String class provides two methods that allows to search a string for a specified character or

substring:

• indexOf() Searches for the first occurrence of a character or substring.

• lastIndexOf() Searches for the last occurrence of a character or substring.

These two methods are overloaded in several different ways. In all cases, the methods return the

index at which the character or substring was found, or –1 on failure.

To search for the first occurrence of a character, use int indexOf(int ch)

To search for the last occurrence of a character, use int lastIndexOf(int ch)

Here, ch is the character being sought. To search for the first or last occurrence of a substring,

use

int indexOf(String str)

int lastIndexOf(String str)

Here, str specifies the substring.

we can specify a starting point for the search using these forms:

int indexOf(int ch, int startIndex)

int lastIndexOf(int ch, int startIndex)

int indexOf(String str, int startIndex)

int lastIndexOf(String str, int startIndex)

Here, startIndex specifies the index at which point the search begins. For indexOf(), the search

runs from startIndex to the end of the string. For lastIndexOf(), the search runs from startIndex

to zero.

The following example shows how to use the various index methods to search inside of Strings:

// Demonstrate indexOf() and lastIndexOf().

class indexOfDemo {

public static void main(String args[]) {

String s = "Now is the time for all good men " +

"to come to the aid of their country.";

System.out.println(s);

System.out.println("indexOf(t) = " +

s.indexOf('t'));

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 12/27

System.out.println("lastIndexOf(t) = " +

s.lastIndexOf('t'));

System.out.println("indexOf(the) = " +

s.indexOf("the"));

System.out.println("lastIndexOf(the) = " +

s.lastIndexOf("the"));

System.out.println("indexOf(t, 10) = " +

s.indexOf('t', 10));

System.out.println("lastIndexOf(t, 60) = " +

s.lastIndexOf('t', 60));

System.out.println("indexOf(the, 10) = " +

s.indexOf("the", 10));

System.out.println("lastIndexOf(the, 60) = " +

s.lastIndexOf("the", 60));

}

}

Here is the output of this program:

Now is the time for all good men to come to the aid of their country.

indexOf(t) = 7

lastIndexOf(t) = 65

indexOf(the) = 7

lastIndexOf(the) = 55

indexOf(t, 10) = 11

lastIndexOf(t, 60) = 55

indexOf(the, 10) = 44

lastIndexOf(the, 60) = 55

substring()

In this example we are taking a sub string from a given string.

In this example we are creating an string object .We initialize this string object as "Rajesh Kumar".

We are taking sub string by use of substring() method.

The methods used:

substring(int i):

This method is used to find all sub string after index i.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 13/27

substring(int start,int end):

This is used to find the substring between start and end point.

The code of the program is given below:

public class SubstringExample1{

 public static void main(String[] args){

 String string = "Rajesh kumar";

 System.out.println("String : " + string);

 String substring = string.substring(3);

 System.out.println("String after 3rd index:

 " + substring);

 substring = string.substring(1, 2);

 System.out.println("Substring (1,2): " +

substring);

 }

}

Replace() method

This program describes how to replace all the words in a String. We are going to use replaceAll()

method of String class in Java.

public class ReplaceDemo {

 public static void main(String[] args) {

 String str = "Her name is Tamana and Tamana is a good girl.";

 String strreplace = "Sonia";

 String result = str.replaceAll("Tamana", strreplace);

 System.out.println(result);

 }

}

Output of the program:

C:\unique>javac ReplaceDemo.java

C:\unique>java ReplaceDemo

Her name is Sonia and Sonia is a good

girl.

C:\unique>

Trim String Example

In this section, you will learn how to remove the blank spaces. For removing the blank spaces use

trim() method that removes the blank spaces and shows only string.

Description of code:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 14/27

trim():

This method removes the blank spaces from both ends of the given string (Front and End).

Here is the code of program:

 import java.lang.*;

public class StringTrim{

 public static void main(String[] args) {

 System.out.println("String trim example!");

 String str = " RoseIndia";

 System.out.println("Given String :" + str);

 System.out.println("After trim :" +str.trim());

 }

}

 Output of program:

C:\vinod\Math_package>javac

StringTrim.java

C:\vinod\Math_package>java

StringTrim

String trim example!

Given String : RoseIndia

After trim :RoseIndia

String Buffer class

The StringBuffer Class

Once a String object is instantiated, it cannot change in size or content. Any change yields a new

String object and the old one is discarded. Strings created with the StringBuffer class, however, are

dynamic.

Once created, characters can change and new characters can be inserted or deleted. Although these

tasks are possible through the creative use of substringing and concatenation with String objects,

there are performance benefits in using StringBuffer objects when such manipulations are frequent.

The StringBuffer class is part of the java.lang package. The most common methods are,

Methods of the StringBuffer Class

Method Description

Constructors

StringBuffer() constructs a StringBuffer object with no characters

in it and an initial capacity of 16 characters; returns a

reference to the new object

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 15/27

StringBuffer(int length) constructs a StringBuffer object with no characters

in it and an initial capacity specified by length;

returns a reference to the new object

StringBuffer(String s) constructs a StringBuffer object so that it

represents the same sequence of characters as the string s; returns a reference to the new object.

StringBuffer is a peer class of String that provides much of the functionality of the strings. String

represents fixed-length, immutable character sequences. In contrast StringBuffer represents growable

and writable character sequences. The StringBuffer provides 3 constructors which create, initialize

and set the initial capacity of StringBuffer objects. This class provides many methods. For example

the length() method gives the current length i.e. how many characters are there in the string, while the

total allocated capacity can be found by the capacity() method.

public class StringBufferDemo {

 public static void main(String[] args) {

 StringBuffer sb =new StringBuffer("Hello");

 System.out.println("buffer= " +sb);

 System.out.println("length= " +sb.length());

 System.out.println("capacity= " +sb.capacity());

 //appending and inserting into StringBuffer.

 String s;

 int a = 42;

 StringBuffer sb1= new StringBuffer(40);

 s= sb1.append("a=").append(a).append("!").toString();

 System.out.println(s);

 StringBuffer sb2 = new StringBuffer("I JAVA!");

 sb2.insert(2, "LIKE");

 System.out.println(sb2);

 }

}

Output Screen

buffer= Hi Rohit

length= 8

capacity= 24

a=42!

I LIKEJAVA!

Interfaces

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 16/27

The core collection interfaces encapsulate different types of collections, which are shown in the

figure below. These interfaces allow collections to be manipulated independently of the details of

their representation. Core collection interfaces are the foundation of the Java Collections Framework.

As you can see in the following figure, the core collection interfaces form a hierarchy.

Set — a collection that cannot contain duplicate elements. This interface models the mathematical set

abstraction and is used to represent sets, such as the cards comprising a poker hand, the courses

making up a student's schedule, or the processes running on a machine. See also The Set Interface

section.

List — an ordered collection (sometimes called a sequence). Lists can contain duplicate elements.

The user of a List generally has precise control over where in the list each element is inserted and can

access elements by their integer index (position).

Queue — a collection used to hold multiple elements prior to processing. Besides basic Collection

operations, a Queue provides additional insertion, extraction, and inspection operations.

Queues typically, but do not necessarily, order elements in a FIFO (first-in, first-out) manner. Among

the exceptions are priority queues, which order elements according to a supplied comparator or the

elements' natural ordering. Whatever the ordering used, the head of the queue is the element that

would be removed by a call to remove or poll. In a FIFO queue, all new elements are inserted at the

tail of the queue. Other kinds of queues may use different placement rules. Every Queue

implementation must specify its ordering properties. Also see The Queue Interface section.

Map — an object that maps keys to values. A Map cannot contain duplicate keys; each key can map

to at most one value.

The last two core collection interfaces are merely sorted versions of Set and Map:

SortedSet — a Set that maintains its elements in ascending order. Several additional operations are

provided to take advantage of the ordering. Sorted sets are used for naturally ordered sets, such as

word lists and membership rolls. Also see The SortedSet Interface section.

SortedMap — a Map that maintains its mappings in ascending key order. This is the Map analog of

SortedSet. Sorted maps are used for naturally ordered collections of key/value pairs, such as

dictionaries and telephone directories. Also see The SortedMap Interface section.

Modifier and Type Method and Description

http://download.oracle.com/javase/tutorial/collections/interfaces/set.html

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 17/27

static <E> List<E>

asList(E first, E[] rest)

Returns an unmodifiable list containing the

specified first element and backed by the

specified array of additional elements.

static <E> List<E>

asList(E first, E second, E[] rest)

Returns an unmodifiable list containing the

specified first and second element, and

backed by the specified array of additional

elements.

static List<Character>

charactersOf(CharSequence sequence)

Returns a view of the specified

CharSequence as a List<Character>,

viewing sequence as a sequence of Unicode

code units.

static ImmutableList<Character>

charactersOf(String string)

Returns a view of the specified string as an

immutable list of Character values.

static <E> ArrayList<E>

newArrayList()

Creates a mutable, empty ArrayList

instance (for Java 6 and earlier).

static <E> ArrayList<E>

newArrayList(E... elements)

Creates a mutable ArrayList instance

containing the given elements.

static <E> ArrayList<E>

newArrayList(Iterable<? extends

E> elements)

Creates a mutable ArrayList instance

containing the given elements; a very thin

shortcut for creating an empty list then

calling

Iterables.addAll(java.util.Collection<T>,

java.lang.Iterable<? extends T>).

static <E> ArrayList<E>

newArrayList(Iterator<? extends

E> elements)

Creates a mutable ArrayList instance

containing the given elements; a very thin

shortcut for creating an empty list and then

calling

Iterators.addAll(java.util.Collection<T>,

java.util.Iterator<? extends T>).

static <E> ArrayList<E>

newArrayListWithCapacity(int initialArray

Size)

Creates an ArrayList instance backed by an

array with the specified initial size; simply

delegates to ArrayList.ArrayList(int).

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 18/27

Class Sets

@GwtCompati

ble(emulated=tr

ue)

public final

class Sets

extends Object

Nested

Classes

Modifier and

Type
Class and Description

static class

Sets.SetView<E>

An unmodifiable view of a set which may be backed by

other sets; this view will change as the backing sets do.

static <E> ArrayList<E>

newArrayListWithExpectedSize(int estimat

edSize)

Creates an ArrayList instance to hold

estimatedSize elements, plus an unspecified

amount of padding; you almost certainly

mean to call

newArrayListWithCapacity(int) (see that

method for further advice on usage).

static

<E> CopyOnWriteArrayList<E>

newCopyOnWriteArrayList()

Creates an empty CopyOnWriteArrayList

instance.

static

<E> CopyOnWriteArrayList<E>

newCopyOnWriteArrayList(Iterable<?

extends E> elements)

Creates a CopyOnWriteArrayList instance

containing the given elements.

static <E> LinkedList<E>

newLinkedList()

Creates a mutable, empty LinkedList

instance (for Java 6 and earlier).

static <E> LinkedList<E>

newLinkedList(Iterable<? extends

E> elements)

Creates a mutable LinkedList instance

containing the given elements; a very thin

shortcut for creating an empty list then

calling

Iterables.addAll(java.util.Collection<T>,

java.lang.Iterable<? extends T>).

static <T> List<List<T>>

partition(List<T> list, int size)

Returns consecutive sublists of a list, each

of the same size (the final list may be

smaller).

static <T> List<T>

reverse(List<T> list)

Returns a reversed view of the specified

list.

static <F,T> List<T>

transform(List<F> fromList, Function<?

super F,? extends T> function)

Returns a list that applies function to each

element of fromList.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 19/27

 Method Summary

Methods

Modifier and Type Method and Description

static Set<List>

cartesianProduct(List<? extends Set<? extends

B>> sets)

Returns every possible list that can be formed by

choosing one element from each of the given sets

in order; the "n-ary Cartesian product" of the sets.

static Set<List>

cartesianProduct(Set<? extends B>... sets)

Returns every possible list that can be formed by

choosing one element from each of the given sets

in order; the "n-ary Cartesian product" of the sets.

static <E extends Enum<E>>

EnumSet<E>

complementOf(Collection<E> collection)

Creates an EnumSet consisting of all enum values

that are not in the specified collection.

static <E extends Enum<E>>

EnumSet<E>

complementOf(Collection<E> collection,

Class<E> type)

Creates an EnumSet consisting of all enum values

that are not in the specified collection.

static <E> Sets.SetView<E>

difference(Set<E> set1, Set<?> set2)

Returns an unmodifiable view of the difference of

two sets.

static <E> NavigableSet<E>

filter(NavigableSet<E> unfiltered, Predicate<?

super E> predicate)

Returns the elements of a NavigableSet,

unfiltered, that satisfy a predicate.

static <E> Set<E>

filter(Set<E> unfiltered, Predicate<? super

E> predicate)

Returns the elements of unfiltered that satisfy a

predicate.

static <E> SortedSet<E>

filter(SortedSet<E> unfiltered, Predicate<? super

E> predicate)

Returns the elements of a SortedSet, unfiltered,

that satisfy a predicate.

static <E extends Enum<E>>

ImmutableSet<E>

immutableEnumSet(E anElement,

E... otherElements)

Returns an immutable set instance containing the

given enum elements.

static <E extends Enum<E>>

ImmutableSet<E>

immutableEnumSet(Iterable<E> elements)

Returns an immutable set instance containing the

given enum elements.

static <E> Sets.SetView<E>
intersection(Set<E> set1, Set<?> set2)

Returns an unmodifiable view of the intersection

http://docs.oracle.com/javase/7/docs/api/java/util/Set.html?is-external=true

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 20/27

of two sets.

static <E> Set<E>
newConcurrentHashSet()

Creates a thread-safe set backed by a hash map.

static <E> Set<E>

newConcurrentHashSet(Iterable<? extends

E> elements)

Creates a thread-safe set backed by a hash map

and containing the given elements.

static

<E> CopyOnWriteArraySet<E>

newCopyOnWriteArraySet()

Creates an empty CopyOnWriteArraySet

instance.

static

<E> CopyOnWriteArraySet<E>

newCopyOnWriteArraySet(Iterable<? extends

E> elements)

Creates a CopyOnWriteArraySet instance

containing the given elements.

static <E extends Enum<E>>

EnumSet<E>

newEnumSet(Iterable<E> iterable,

Class<E> elementType)

Returns a new EnumSet instance containing the

given elements.

static <E> HashSet<E>
newHashSet()

Creates a mutable, empty HashSet instance.

static <E> HashSet<E>

newHashSet(E... elements)

Creates a mutable HashSet instance containing

the given elements in unspecified order.

static <E> HashSet<E>

newHashSet(Iterable<? extends E> elements)

Creates a mutable HashSet instance containing

the given elements in unspecified order.

static <E> HashSet<E>

newHashSet(Iterator<? extends E> elements)

Creates a mutable HashSet instance containing

the given elements in unspecified order.

static <E> HashSet<E>

newHashSetWithExpectedSize(int expectedSize)

Creates a HashSet instance, with a high enough

"initial capacity" that it should hold expectedSize

elements without growth.

static <E> Set<E>

newIdentityHashSet()

Creates an empty Set that uses identity to

determine equality.

static <E> LinkedHashSet<E>

newLinkedHashSet()

Creates a mutable, empty LinkedHashSet

instance.

static <E> LinkedHashSet<E>

newLinkedHashSet(Iterable<? extends

E> elements)

Creates a mutable LinkedHashSet instance

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 21/27

containing the given elements in order.

static <E> LinkedHashSet<E>

newLinkedHashSetWithExpectedSize(int expecte

dSize)

Creates a LinkedHashSet instance, with a high

enough "initial capacity" that it should hold

expectedSize elements without growth.

static <E> Set<E>
newSetFromMap(Map<E,Boolean> map)

Returns a set backed by the specified map.

static <E extends Comparable>

TreeSet<E>

newTreeSet()

Creates a mutable, empty TreeSet instance sorted

by the natural sort ordering of its elements.

static <E> TreeSet<E>

newTreeSet(Comparator<? super E> comparator)

Creates a mutable, empty TreeSet instance with

the given comparator.

static <E extends Comparable>

TreeSet<E>

newTreeSet(Iterable<? extends E> elements)

Creates a mutable TreeSet instance containing the

given elements sorted by their natural ordering.

static <E> Set<Set<E>>
powerSet(Set<E> set)

Returns the set of all possible subsets of set.

static <E> Sets.SetView<E>

symmetricDifference(Set<? extends E> set1,

Set<? extends E> set2)

Returns an unmodifiable view of the symmetric

difference of two sets.

static <E> NavigableSet<E>

synchronizedNavigableSet(NavigableSet<E> nav

igableSet)

Returns a synchronized (thread-safe) navigable

set backed by the specified navigable set.

static <E> Sets.SetView<E>

union(Set<? extends E> set1, Set<? extends

E> set2)

Returns an unmodifiable view of the union of two

sets.

static <E> NavigableSet<E>

unmodifiableNavigableSet(NavigableSet<E> set)

Returns an unmodifiable view of the specified

navigable set.

Class Maps

Modifier and Type Method and Description

static <A,B> Converter<A,B>

asConverter(BiMap<A,B> bimap)

Returns a Converter that converts values

using bimap.get(), and whose inverse

view converts values using

bimap.inverse().get().

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 22/27

static

<K,V> NavigableMap<K,V>

asMap(NavigableSet<K> set,

Function<? super K,V> function)

Returns a view of the navigable set as a

map, mapping keys from the set

according to the specified function.

static <K,V> Map<K,V>

asMap(Set<K> set, Function<? super

K,V> function)

Returns a live Map view whose keys are

the contents of set and whose values are

computed on demand using function.

static <K,V> SortedMap<K,V>

asMap(SortedSet<K> set, Function<?

super K,V> function)

Returns a view of the sorted set as a

map, mapping keys from the set

according to the specified function.

static

<K,V> MapDifference<K,V>

difference(Map<? extends K,? extends

V> left, Map<? extends K,? extends

V> right)

Computes the difference between two

maps.

static

<K,V> MapDifference<K,V>

difference(Map<? extends K,? extends

V> left, Map<? extends K,? extends

V> right, Equivalence<? super

V> valueEquivalence)

Computes the difference between two

maps.

static

<K,V> SortedMapDifference<K,V

>

difference(SortedMap<K,? extends

V> left, Map<? extends K,? extends

V> right)

Computes the difference between two

sorted maps, using the comparator of the

left map, or Ordering.natural() if the left

map uses the natural ordering of its

elements.

static <K,V> BiMap<K,V>

filterEntries(BiMap<K,V> unfiltered,

Predicate<? super

Map.Entry<K,V>> entryPredicate)

Returns a bimap containing the

mappings in unfiltered that satisfy a

predicate.

static <K,V> Map<K,V>

filterEntries(Map<K,V> unfiltered,

Predicate<? super

Map.Entry<K,V>> entryPredicate)

Returns a map containing the mappings

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 23/27

in unfiltered that satisfy a predicate.

static

<K,V> NavigableMap<K,V>

filterEntries(NavigableMap<K,V> unfilt

ered, Predicate<? super

Map.Entry<K,V>> entryPredicate)

Returns a sorted map containing the

mappings in unfiltered that satisfy a

predicate.

static <K,V> SortedMap<K,V>

filterEntries(SortedMap<K,V> unfiltere

d, Predicate<? super

Map.Entry<K,V>> entryPredicate)

Returns a sorted map containing the

mappings in unfiltered that satisfy a

predicate.

static <K,V> BiMap<K,V>

filterKeys(BiMap<K,V> unfiltered,

Predicate<? super K> keyPredicate)

Returns a bimap containing the

mappings in unfiltered whose keys

satisfy a predicate.

static <K,V> Map<K,V>

filterKeys(Map<K,V> unfiltered,

Predicate<? super K> keyPredicate)

Returns a map containing the mappings

in unfiltered whose keys satisfy a

predicate.

static

<K,V> NavigableMap<K,V>

filterKeys(NavigableMap<K,V> unfilter

ed, Predicate<? super K> keyPredicate)

Returns a navigable map containing the

mappings in unfiltered whose keys

satisfy a predicate.

static <K,V> SortedMap<K,V>

filterKeys(SortedMap<K,V> unfiltered,

Predicate<? super K> keyPredicate)

Returns a sorted map containing the

mappings in unfiltered whose keys

satisfy a predicate.

static <K,V> BiMap<K,V>

filterValues(BiMap<K,V> unfiltered,

Predicate<? super V> valuePredicate)

Returns a bimap containing the

mappings in unfiltered whose values

satisfy a predicate.

static <K,V> Map<K,V>

filterValues(Map<K,V> unfiltered,

Predicate<? super V> valuePredicate)

Returns a map containing the mappings

in unfiltered whose values satisfy a

predicate.

static filterValues(NavigableMap<K,V> unfilt

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 24/27

<K,V> NavigableMap<K,V> ered, Predicate<? super

V> valuePredicate)

Returns a navigable map containing the

mappings in unfiltered whose values

satisfy a predicate.

static <K,V> SortedMap<K,V>

filterValues(SortedMap<K,V> unfiltere

d, Predicate<? super V> valuePredicate)

Returns a sorted map containing the

mappings in unfiltered whose values

satisfy a predicate.

static

ImmutableMap<String,String>

fromProperties(Properties properties)

Creates an ImmutableMap<String,

String> from a Properties instance.

static <K,V> Map.Entry<K,V>

immutableEntry(K key, V value)

Returns an immutable map entry with

the specified key and value.

static <K extends Enum<K>,V>

ImmutableMap<K,V>

immutableEnumMap(Map<K,? extends

V> map)

Returns an immutable map instance

containing the given entries.

static

<K,V> ConcurrentMap<K,V>

newConcurrentMap()

Returns a general-purpose instance of

ConcurrentMap, which supports all

optional operations of the

ConcurrentMap interface.

static <K extends Enum<K>,V>

EnumMap<K,V>

newEnumMap(Class<K> type)

Creates an EnumMap instance.

static <K extends Enum<K>,V>

EnumMap<K,V>

newEnumMap(Map<K,? extends

V> map)

Creates an EnumMap with the same

mappings as the specified map.

static <K,V> HashMap<K,V>

newHashMap()

Creates a mutable, empty HashMap

instance.

static <K,V> HashMap<K,V>

newHashMap(Map<? extends K,?

extends V> map)

Creates a mutable HashMap instance

with the same mappings as the specified

map.

static <K,V> HashMap<K,V>

newHashMapWithExpectedSize(int exp

ectedSize)

Creates a HashMap instance, with a high

enough "initial capacity" that it should

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 25/27

hold expectedSize elements without

growth.

static

<K,V> IdentityHashMap<K,V>

newIdentityHashMap()

Creates an IdentityHashMap instance.

static

<K,V> LinkedHashMap<K,V>

newLinkedHashMap()

Creates a mutable, empty, insertion-

ordered LinkedHashMap instance.

static

<K,V> LinkedHashMap<K,V>

newLinkedHashMap(Map<? extends

K,? extends V> map)

Creates a mutable, insertion-ordered

LinkedHashMap instance with the same

mappings as the specified map.

static <K extends Comparable,V>

TreeMap<K,V>

newTreeMap()

Creates a mutable, empty TreeMap

instance using the natural ordering of its

elements.

static <C,K extends C,V>

TreeMap<K,V>

newTreeMap(Comparator<C> comparat

or)

Creates a mutable, empty TreeMap

instance using the given comparator.

static <K,V> TreeMap<K,V>

newTreeMap(SortedMap<K,? extends

V> map)

Creates a mutable TreeMap instance

with the same mappings as the specified

map and using the same ordering as the

specified map.

static <K,V> BiMap<K,V>

synchronizedBiMap(BiMap<K,V> bima

p)

Returns a synchronized (thread-safe)

bimap backed by the specified bimap.

static

<K,V> NavigableMap<K,V>

synchronizedNavigableMap(Navigable

Map<K,V> navigableMap)

Returns a synchronized (thread-safe)

navigable map backed by the specified

navigable map.

static

<K,V> ImmutableMap<K,V>

toMap(Iterable<K> keys, Function<?

super K,V> valueFunction)

Returns an immutable map whose keys

are the distinct elements of keys and

whose value for each key was computed

by valueFunction.

static

<K,V> ImmutableMap<K,V>

toMap(Iterator<K> keys, Function<?

super K,V> valueFunction)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 26/27

Returns an immutable map whose keys

are the distinct elements of keys and

whose value for each key was computed

by valueFunction.

static <K,V1,V2> Map<K,V2>

transformEntries(Map<K,V1> fromMap

, Maps.EntryTransformer<? super K,?

super V1,V2> transformer)

Returns a view of a map whose values

are derived from the original map's

entries.

static

<K,V1,V2> NavigableMap<K,V2

>

transformEntries(NavigableMap<K,V1>

 fromMap, Maps.EntryTransformer<?

super K,? super V1,V2> transformer)

Returns a view of a navigable map

whose values are derived from the

original navigable map's entries.

static

<K,V1,V2> SortedMap<K,V2>

transformEntries(SortedMap<K,V1> fro

mMap, Maps.EntryTransformer<? super

K,? super V1,V2> transformer)

Returns a view of a sorted map whose

values are derived from the original

sorted map's entries.

static <K,V1,V2> Map<K,V2>

transformValues(Map<K,V1> fromMap

, Function<? super V1,V2> function)

Returns a view of a map where each

value is transformed by a function.

static

<K,V1,V2> NavigableMap<K,V2

>

transformValues(NavigableMap<K,V1>

 fromMap, Function<? super

V1,V2> function)

Returns a view of a navigable map

where each value is transformed by a

function.

static

<K,V1,V2> SortedMap<K,V2>

transformValues(SortedMap<K,V1> fro

mMap, Function<? super

V1,V2> function)

Returns a view of a sorted map where

each value is transformed by a function.

static

<K,V> ImmutableMap<K,V>

uniqueIndex(Iterable<V> values,

Function<? super V,K> keyFunction)

Returns an immutable map for which the

Map.values() are the given elements in

the given order, and each key is the

product of invoking a supplied function

on its corresponding value.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: IV (Strings, Collections, Utilities) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 27/27

static

<K,V> ImmutableMap<K,V>

uniqueIndex(Iterator<V> values,

Function<? super V,K> keyFunction)

Returns an immutable map for which the

Map.values() are the given elements in

the given order, and each key is the

product of invoking a supplied function

on its corresponding value.

static <K,V> BiMap<K,V>

unmodifiableBiMap(BiMap<? extends

K,? extends V> bimap)

Returns an unmodifiable view of the

specified bimap.

static

<K,V> NavigableMap<K,V>

unmodifiableNavigableMap(Navigable

Map<K,V> map)

Returns an unmodifiable view of the

specified navigable map.

Possible Questions

Part - B(2 Marks)

1. What is the purpose of using valueOf() methods

2. How will you create string in java?

3. Define StringBuffer class

Part - C(6 Marks)

1. How will you create a string in Java? List out the various constructors provided with String class

2. What is the method used to find the number of characters in a string. Give an example

3. How is the Map implementation useful in Java. Explain in detail with examples.

4. Define the constructors used in StringBuffer class. Describe in detail the methods of StringBuffer

class.

5. Write in detail about the SET implementations in Java with example for each

6. What is the function of substring() method? Give an example

7. What are lists? Describe in detail about the List implementations with example.

8. Spot out the methods used to compare strings. Explain in detail each method with example.

9. What are Iterators? Explain in detail about the constructors and methods for Iterator Interface.

10. Explain the methods used to extract characters from the given string. Discuss each of them with

example

Questions opt1 opt2 opt3 opt4 answer

A built_in class which encapsulates the

data structure of a string is ___________

 java io String Character StringBuffer String

The instances of the class String is

created using ___________

 new free object try new

To extract a single character from a

string , the ___________ method is used.

 charAt Stringto charone indexOf charAt

To get the substring from a string

___________ method is used.

 getchars substr extract substring getchars

 The ___________ method compares the

characters inside the string.

 = = equivalent equals lastIndexOf equals

The ___________ operator compares two

objects references to see if they refer to

the exact same instance.

 = = equivalent equals equalto = =

The String method ___________ can be

used to determine ordering.

 StringTo CompareTo Compare CompareOf CompareTo

If the integer result of CompareTo is

negative, then the string is ___________

than the parameter.

 Equal Less Greater compare Less

If the integer result of CompareTo is

positive, then the string is ___________

than the parameter.

 Equal Less Greater lesser Greater

The search for a certain character or

substring is done using ___________ &

___________.

 index &

indexof

 index &

lastindex

 indexof &

lastindexof

compareTo indexof &

lastindexof

The replace method takes ___________

characters as parameters.

1 2 3 4 2

___________ represents fixed length

immutable character sequences.

 String Characters Variable Identifier String

The length of a string by calling the ____

method

strlen() len() length() none length()

The character at a specified index within

a string by calling ____

charAt() chatat() char() character() charAt()

___________ is a sequence of characters Variable String Values stringbuffer
String

A built-in class which encapsulates the

data structure of a string is ___________
 jav io String Character int

String

The instances of the class String is

created using ___________
 new free object methods

new

To extract a single character from a

string , the ___________ method is used.
 charAt Stringto charone replace

charAt

To get the substring from a string

___________ method is used.
 getchars substr extract substring

getchars

 The ___________ method compares the

characters inside the string.
 = = equivalent equals equalto

equals

The ___________ operator compares two

objects references to see if they refer to

the exact same instance.

 = = equivalent equals compare = =

The String method ___________ can be

used to determine ordering.
 StringTo CompareTo Compare CompareOf CompareTo

If the integer result of CompareTo is

negative, then the string is ___________

than the parameter.

 Equal Less Greater leser Less

If the integer result of CompareTo is

positive, then the string is ___________

than the parameter.

 Equal Less Greater greaterthan Greater

The search for a certain character or

substring is done using ___________ &

___________.

 index &

indexof

 index &

lastindex

 indexof &

lastindexof
all

 indexof &

lastindexof

The replace method takes ___________

characters as parameters.
1 2 3 4 2

___________ represents fixed length

immutable character sequences.
 String Characters Variable Identifier String

The append method on StringBuffer is

most often called through the

___________ operator.

 - + add += +

A group of Character is Called

function arrays data types strings

Suppose that you would like to create an

instance of a new Map that has an

iteration order that is the same as the

TreeMap HashMap LinkedHashMap

The answer

depends on the

implementation

LinkedHashMap

Which class does not override

the equals() and hashCode() methods,

inheriting them directly from class

java.lang.String java.lang.Double
java.lang.StringB

uffer

java.lang.Charact

er

java.lang.StringB

uffer
Which collection class allows you to

grow or shrink its size and provides

indexed access to its elements, but whose

java.util.HashSet
java.util.LinkedH

ashSet
java.util.List

java.util.ArrayLi

st

java.util.ArrayLi

st
You need to store elements in a

collection that guarantees that no

duplicates are stored and all elements can

java.util.Map java.util.Set java.util.List
java.util.Collecti

on
java.util.Set

Which interface

does java.util.Hashtable implement?
Java.util.Map Java.util.List

Java.util.HashTa

ble

Java.util.Collecti

on
Java.util.Map

Which interface provides the capability

to store objects using a key-value pair?
Java.util.Map Java.util.Set Java.util.List

Java.util.Collecti

on
Java.util.Map

Which collection class allows you to

associate its elements with key values,

and allows you to retrieve objects in

java.util.ArrayLi

st

java.util.LinkedH

ashMap

java.util.HashMa

p

java.util.TreeMa

p

java.util.LinkedH

ashMap
Which collection class allows you to

access its elements by associating a key

with an element's value, and provides

java.util.SortedM

ap

java.util.TreeMa

p
java.util.TreeSet

java.util.Hashtab

le

java.util.Hashtab

le

Which of these packages contain all the

collection classes?
java.lang java.util java.net java.awt java.util

Which of these classes is not part of

Java’s collection framework?
 Maps Array Stack Queue Queue

Which of these interface is not a part of

Java’s collection framework?
List Set SortedMap SortedList SortedList

Which of these methods deletes all the

elements from invoking collection?
 clear() reset() delete() refresh() clear()

What is Collection in Java?
A group of

objects

A group of

classes

A group of

interfaces

A group of

interfaces

A group of

objects

Which of these interface declares core

method that all collections will have?
set EventListner Comparator Collection Collection

Which of these interface handle

sequences?
Set List Comparator Collection List

Which of these interface must contain a

unique element?
Set List Array Collection Set

Which of these is Basic interface that all

other interface inherits?
Set Array List Collection Collection

Which of these is an incorrect form of

using method max() to obtain maximum

element?

max(Collection

c)

max(Collection

c, Comparator

comp)

max(Comparator

comp)
max(List c)

max(Comparator

comp)

Which of these methods sets every

element of a List to a specified object?
set() fill() Complete() add() fill()

Which of these methods can randomize

all elements in a list?
rand() randomize() shuffle() ambigous() shuffle()

Which of these methods can convert an

object into a List?
SetList() ConvertList() singletonList() CopyList() singletonList()

Which of these is true about

unmodifiableCollection() method?

unmodifiableColl

ection() returns a

collection that

unmodifiableColl

ection() method

is available only

 unmodifiableCol

lection() is

defined in

unmodifiableColl

ection() method

is available only

unmodifiableColl

ection() method

is available only
Which of these is static variable defined

in Collections?
EMPTY_SET EMPTY_LIST EMPTY_MAP All All

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: V (Input Output Classes, Applets) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 1/38

SYLLABUS

I/O Operations –Hierarchy of Classes – File class – Input Stream, Output Stream,

FilterInputStream, FilterOutputStream, Reader and Writer classes – Random Access File class –

Stream Tokenizer. Applets: Basics – Life Cycle –Methods –Graphics Class- Color, Font, and

Font Metrics Class – Using the Status window – Passing parameters to Applets –

getDocumentBase() and getCodeBase(). AWT Components: AWT Classes – Basic Component

and Container Classes – Frame Window in an Applet.

Java I/O (Input and Output) is used to process the input and produce the output.

Java uses the concept of stream to make I/O operation fast. The java.io package contains all the

classes required for input and output operations.

We can perform file handling in java by Java I/O API.

In java, 3 streams are created for us automatically. All these streams are attached with

console.

1) System.out: standard output stream

2) System.in: standard input stream

3) System.err: standard error stream

Let's see the code to print output and error message to the console.

System.out.println

("simple

message");

System.err.println(

"error message");

Let's see the code to get input from console.

int i=System.in.read();//returns ASCII

code of 1st character

System.out.println((char)i);//will print

the character

OutputStream vs InputStream

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: V (Input Output Classes, Applets) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 2/38

The explanation of OutputStream and InputStream classes are given below:

OutputStream

Java application uses an output stream to write data to a destination, it may be a file, an

array, peripheral device or socket.

InputStream

Java application uses an input stream to read data from a source, it may be a file, an

array, peripheral device or socket.

OutputStream class

OutputStream class is an abstract class. It is the super class of all classes representing an

output stream of bytes. An output stream accepts output bytes and sends them to some

sink.

Useful methods of OutputStream

Method Description

1) public void write(int)throws IOException is used to write a byte to the current output stream.

2) public void write(byte[])throws IOException is used to write an array of byte to the current

output stream.

3) public void flush()throws IOException flushes the current output stream.

4) public void close()throws IOException is used to close the current output stream.

InputStream class

InputStream class is an abstract class. It is the super class of all classes representing an input

stream of bytes.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: V (Input Output Classes, Applets) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 3/38

Useful methods of InputStream

Method Description

1) public abstract int read()throws

IOException

reads the next byte of data from the input stream. It

returns -1 at the end of file.

2) public int available()throws

IOException

returns an estimate of the number of bytes that can be

read from the current input stream.

3) public void close()throws

IOException

is used to close the current input stream.

Character Stream Vs Byte

Stream in Java I/O Stream

A stream is a method to sequentially access a file. I/O Stream means an input source or

output destination representing different types of sources e.g. disk files.The java.io

package provides classes that allow you to convert between Unicode character streams

and byte streams of non-Unicode text.

Stream – A sequence of data.

Input Stream: reads data from source.

Output Stream: writes data to destination.

Character Stream

In Java, characters are stored using Unicode conventions (Refer this for details).

Character stream automatically allows us to read/write data character by character. For

example FileReader and FileWriter are character streams used to read from source and

write to destination.

Byte Stream

Byte streams process data byte by byte (8 bits). For example FileInputStream is used to read

from source and FileOutputStream to write to the destination.

// Java Program illustrating the Byte Stream to copy

// contents of one file to another file.

importjava.io.*; publicclassBStream{

publicstaticvoidmain(String[] args) throwsIOException { FileInputStream sourceStream =

https://docs.oracle.com/javase/tutorial/java/data/characters.html

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: V (Input Output Classes, Applets) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 4/38

null;

FileOutputStream targetStream = null; try {

sourceStream = newFileInputStream("sorcefile.txt"); targetStream = newFileOutputStream

("targetfile.txt");

// Reading source file and writing content to target

// file byte by byte inttemp;

while((temp = sourceStream.read()) != -1) targetStream.write((byte)temp); }

finally { if(sourceStream != null)

sourceStream.close(); if(targetStream != null)

targetStream.close(); } }}

When to use Character Stream over Byte Stream?

 In Java, characters are stored using Unicode conventions. Character stream is useful

when we want to process text files. These text files can be processed character by

character. A character size is typically 16 bits.

When to use Byte Stream over Character Stream?

 Byte oriented reads byte by byte. A byte stream is suitable for processing raw data like

binary files.

File I/O

In Java, we can read data from files and also write data in files.

We do these using streams. Java has many input and output streams that are used to read

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: V (Input Output Classes, Applets) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 5/38

Java provides many input and output stream classes which are used to read and write.

Streams are of two types.

 Byte Stream

 Character Stream

Let's look at the two streams one by one.

Byte Stream

It is used in the input and output of byte.

We do this with the help of different Byte stream classes. Two most commonly used Byte stream classes

are FileInputStream and FileOutputStream. Some of the Byte stream classes are listed below.

and write data. Same as a continuous flow of water is called water stream, in the same

way input and output flow of data is called stream.

Stream

Byte Stream class Description

BufferedInputStream handles buffered input stream

BufferedOutputStream handles buffered output stream

FileInputStream used to read from a file

FileOutputStream used to write to a file

InputStream Abstract class that describe input stream

Character Stream

It is used in the input and output of characters.

For input and output of characters, we have Character stream classes. Two most commonly used

Character stream classes are FileReader and FileWriter. Below is the list of some Character

Stream classes.

FileWriter used to write to a file

InputStreamReader translate input from byte to character

OutputStreamReader translate character to byte output

Reader Abstract class that describe input stream

Writer Abstract class that describe output stream

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: V (Input Output Classes, Applets) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 6/38

AWT Components

The applet is implemented as a button that brings up the window showing the components.

The window is necessary because the program includes a menu, and menus can be used only in

windows. Here, for the curious, is the source code for the window that displays the components.

The program has a main() method so it can run as an application. The Applet Button class

provides an applet framework for the window. AppletButton is a highly configurable applet that's

discussed on the following pages: Deciding Which Parameters to Support and Writing the Code

to Support Parameters.

The Basic Controls: Buttons, Checkboxes, Choices, Lists, Menus, and Text Fields

The Button, Checkbox, Choice, List, Menu Item, and Text Field classes provide basic controls.

These are the most common ways that users give instructions to Java programs. When a user

activates one of these controls -- by clicking a button or by pressing Return in a text field, for

example -- it posts an event (ACTION_EVENT). An object that contains the control can react to

the event by implementing the action() method.

Other Ways of Getting User Input: Sliders, Scrollbars, and Text Areas

When the basic controls aren't appropriate, we can use the Scrollbar and Text Area classes to get

user input. The Scrollbar class is used for both slider and scrollbar functionality.

The TextArea class simply provides an area to display or allow editing of several lines of text.

Creating Custom Components: Canvases

The Canvas class lets we write custom Components. With Canvas subclass, we can draw custom

graphics to the screen -- in a paint program, image processor, or game, for example -- and

implement any kind of event handling.

Labels

A Label simply displays an unselectable line of text.

Containers: Windows and Panels

The AWT provides two types of containers, both implemented as subclasses of the Container api

class (which is a Component subclass). The Window subclasses -- Dialog, File Dialog, and Frame

-- provide windows to contain components. Frames create normal, full-fledged windows, as

opposed to the windows that Dialogs create, which are dependent on Frames and can be modal.

Panels group components within an area of an existing window.

The AWT Classes

There are four main classes in AWT:

 the Component class - this class implements interface components such as menus, buttons,

lists etc.;

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: V (Input Output Classes, Applets) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 7/38

 the Container class - this extends components to include higher level objects such as

Dialog and Window;

 the Graphics class - this defines the methods for performing graphical operations on

components;

 the LayoutManager - this defines methods for positioning and sizing objects within a

container.

The java.awt.Component class is, therefore, fundamental to the AWT in Java. The structure of

this class can be illustrated as follows:

 Object

 |

 Component

 |

--

Canvas Scrollbar Container Button Checkbox TextComponent Label List Choice

 | |

 ----------- -----------

 Panel Window TextArea TextField

 |

 Dialog Frame

 |

 FileDialog

The only exception to the classes shown in this diagram are for Menus and Menu items. This

difference can be explained by again looking at Word running under WindowsNT and a

Macintosh. There are pronounced differences in the ways that different native platforms

implement menus. In some systems it is possible to set the background colour of a menu, in other

it is not. Menus, therfore, form part of java.awt.MenuComponent rather than

java.awt.Component:

 Object

 |

 MenuComponent

 |

 | |

 MenuItem MenuBar

 |

 | |

 Menu CheckboxMenuItem

Each component has a corresponding native peer so that it can be implemented on particular

platforms. They also have a number of attributes that can be summarised as follows:

 a graphical image;

http://www.dcs.gla.ac.uk/~johnson/teaching/hci-java/images/nt.gif
http://www.dcs.gla.ac.uk/~johnson/teaching/hci-java/images/mac.gif

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: V (Input Output Classes, Applets) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 8/38

 background colour;

 a location;

 actual size;

 minimum, maximum and prefered sizes.

 font metrics (discussed in the section on text);

 a parent container (see below);

As the names suggests, the container class provides a means of "grouping" multiple components.

For instance, an applet may contain a number of buttons. Components can be added to a

container. This can be thought of as a list. The order of the list determine the front to back order

in which the components are presented on the screen. This is important is one component is not to

obscure another. If no index is specified when adding a component to a container, it will be added

to the end of the list which represents the bottom of the stacking order. There are a number of

different subclasses to Container.

 Container

 |

 --

 Window Applet Panel Scrollpane

 |

Frame Dialog

 |

 FileDialog

Note that a Frame can have a menubar but that an Applet may not. A window can have no menu

or border and so Frames and Dialogs are used more frequently. For instance, the following code

creates a Frame with the title "Warning". The size of the frame is defined in terms of two

constants (width and height), these can be thought of as pixels.

/*

* A frame

*

* Author: Chris Johnson (johnson@dcs.gla.ac.uk)

* Last revision date: 11/10/98

*

* Produces a warning window on the screen

*

* Beware - there is no way of closing the frame!

* see later section on event handling...

*/

import java.awt.*;

public class SimpleWarningFrame extends Frame {

static private final int frame_height = 150;

static private final int frame_width = 250;

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: V (Input Output Classes, Applets) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 9/38

public SimpleWarningFrame () {

 setBackground(Color.red);

 setForeground(Color.black);

 setTitle("Warning");

 resize(frame_width, frame_height);

}

 public static void main (String[] args){

 Frame f= new SimpleWarning();

 f.show();

 }

}

Containers simply provide a grouping mechanism for interface objects. LayoutManagers provide

means of positioning and sizing these objects. This class will be discussed in later sections.

Frames

Java's Abstract Windowing Toolkit provides windows containers that allow we to create separate

windows for our applications. When used with a Web browser, they can run outside the main

window (unlike panels which are nested within the applet window.)

Frames have a title bar and if they are created by an applet, they should be destroyed BEFORE we

close the applet that created them so that we can reclaim the resources they were using. This is

how we create a frame with a title:

Frame window = new Frame("This is the Frames's Title Bar!");

There are several things we must be concerned with after a frame is created in order for it to be

visible on the screen:

 Choosing a layout manager.

 Resizing the frame: Unlike a panel, a frame must be given a size before we can see it.

 window.resize(300,200);

 Making the frame visible

 window.show();

If we want to hide the frame again, in order to show a different frame for example, use the hide

method.

window.hide();

http://www.krhs.net/computerscience/java/layout.htm

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: V (Input Output Classes, Applets) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 10/38

Once a frame has been created and the show method has been called, it can be resized,

maximized, and minimized just like any other window. When we are finished with the frame, we

should always use the dispose method to get rid of it.

window.dispose();

Notice that the frame can be minimized, resized or maximized but not closed by clicking on the X

button or control icon on the top left and right of the frame. The applet's event handling routines

cannot detect or deal with events that occur to the frame. This stems from the object oriented

nature of Java.

The new frame inherits handlers for the Maximize, Minimize and Resize events from the Frame

class but no others. Any other frame events or actions would need to be handled by a class that

extends the Frame class. We will write this type of class in the next section.

The code for the Applet is listed below

import java.applet.*;

import java.awt.*;

public class frames extends Applet

{

 Frame window = new Frame("This is the Frame's

 Title Bar!");

Import all the facilities of the AWT

and applet that Java has to offer.

Create an applet called frames.

Create an instance of the frame class,

initializing the title bar. Create an

instance of the button class with a

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: V (Input Output Classes, Applets) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 11/38

 Button btn = new Button("Create a new Frame"); label.

 public void init()

 {

 add(new Label("Hit this button to"));

 add(btn);

 add(new Label("."));

 add(new Label("The new Frame is independent

 of the applet."));

 add(new Label("You can maximize and minimize it by

 using"));

 add(new Label("the buttons on the top right or the

 control icon."));

 add(new Label("on the top left. You will not be able

 to close it."));

 add(new Label("You must use the applet's button to do

 that."));

 add(new Label("In order to handle Frame events you

 need to "));

 add(new Label("create a separate class for it."));

 window.setLayout(new FlowLayout());

 window.add(new Label("This is the Frame."));

 window.add(new Label("You can resize it, move it"));

 window.add(new Label("and perform other Windows

 operations."));

 }

The init method adds a label

The button created above is added to

the applet.

Labels are added to explain the

behavior of the frame.

The layout for the frame named

window is set for FlowLayout. The

default FlowLayout is center, top to

bottom. Using a layout manager for

frames is required.

Labels are added to the newly created

frame.

public boolean action(Event evt, Object whatAction)

{

if((evt.target instanceof Button))

{

String buttonLabel = (String) whatAction;

if (buttonLabel == "Destroy the Frame")

{

window.hide();

window.dispose();

btn.setLabel("Create a new Frame");

return true;

}

if (buttonLabel == "Create a new Frame")

{

window.resize(300,200);

window.show();

btn.setLabel("Destroy the Frame");

When an action takes place this

method tests for it.

If the action was an instance of

Button, the string on the button is

stored in buttonLabel

If the string on the button is "Destroy

the Frame", hide the frame named

window and dispose of it. Change the

label on btn to "Create a new Frame"

and return true.

If the string on the button is "Create a

new Frame", resize to 300x200 and

show the frame named window.

Change the label on btn to "Destroy

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: V (Input Output Classes, Applets) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 12/38

return true;

}

}

return false;

}

}

the Frame" and return true

otherwise return false.

Possible Questions

Part – B(2 Marks)

1. List the life cycle of applet

2. What is Color class

3. What is Font class

4. What is Font Metrics class

Part – C(6 Marks)

5. Give the constructor of Color class in an applet.

6. What is the use of layout manager in container class?

7. Describe in detail FileInputStream and FileOutputStream to define byte input and output

streams connected to files.

8. Write a program to read data from a text file using FileInputStream.

9. Write the execution procedure to run an Applet and implement it using a sample Java

program.

10. What is the use of Graphics class in an applet?

11. Why do we need random access files? Explain their operation in detail with their constructors

and methods

12. Write a Java program to append names to an already existing file.

13. Discuss in detail about the various Basic Component Classes in AWT with example

14. Sketch out the uses of Reader and Writer Classes. Describe their methods and give an

example Java program.

15. Explain the various methods in an applet life cycle and describe its operation in detail.

16. How will you create a frame window in an Applet. Explain with an example program

17. Which class is used to encapsulate Fonts in Java. Describe it in detail and write an applet

program to demonstrate the use of fonts.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc IT COURSE NAME: Programming in Java

COURSE CODE: 19ITU201 UNIT: V (Input Output Classes, Applets) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 13/38

18. What are the various Container Classes in Java. Explain each with their constructors and

methods

Questions opt1 opt2 opt3 opt4 answer

The concept of reading and writing data

as ______________ of either bytes or

characters

stream file java.io reader stream

Java also uses the ______ class to

manipulate files

stream File String Array File

To support input and output package

________is used

java.util java.awt java.lang java.io java.io

 ______________ support 8_bit input

and output operations

ByteStreams InputStream OutputStream Writer ByteStreams

 ______________ support 16_bit

Unicode character input and output

ByteStreams InputStream OutputStream Character

streams

Character

streams

Streams can be chained with

______________ to provide enhanced

functionality

DataInput DataOutput filters serializable filters

 ________ class in java does not specify

how information is retrieved from or

stored in files

stream File String Array File

The ________ class also defines

platform_dependent constants that can be

used to separate the diredtory and the file

stream File java.io reader File

The method to check for directory is

isFile() isDirectory() File String isDirectory()

 ___________ returns file size in bytes long float() long length() boolean delete() boolean mkdir() long length()

 _____________ class defines Java's

model of streaming byte input

ByteStreams InputStream OutputStream Character

streams

InputStream

InputStream suports certain methods, all

of which throw an IOException on error

conditions

ByteStreams InputStream OutputStream Character

streams

InputStream

The ________ class define byte input

streams that are connected to files

InputStream OutputStream FileInputStream FileOutputStrea

m

FileInputStream

The ________ class define byte output

streams that are connected to files

InputStream OutputStream FileInputStream FileOutputStrea

m

FileOutputStrea

m

The FileInputStream class provides an

implementation for the _________

methods defined in its superclass

read() write() update() replace() read()

The FileOutputStream class provides an

implementation for the _________

methods defined in its superclass

read() write() update() replace() write()

 ________ is an implementation of an

input stream that uses a byte array as the

source

InputStream OutputStream ByteArrayInputS

tream

ByteArrayOutput

Stream

ByteArrayInputS

tream

 ________ is an implementation of an

output stream that uses a byte array as the

destination

InputStream OutputStream ByteArrayInputS

tream

ByteArrayOutput

Stream

ByteArrayOutput

Stream

Methods of DataOutputStream for

writing are named ________________

readX() writeX() updateX() replaceX() writeX()

DataOutputStream classes implement

______ interfaces

InputStream DataOutput OutputStream DataInput DataOutput

DataInputStream classes implement

______ interfaces

InputStream DataOutput OutputStream DataInput DataInput

The method __________ is used to write

string value

readChars() writeChars() read() write() writeChars()

The ________ class provides a buffered

stream of input

DataInputStream DataOutputStrea

m

BufferedInputStr

eam

BufferedOutputS

tream

BufferedInputStr

eam

The ________ class maintains a buffer

that is written to when you write to the

stream

DataInputStream DataOutputStrea

m

BufferedInputStr

eam

BufferedOutputS

tream

BufferedOutputS

tream

The _____________ class is designed

primarily for printing output data as text

print primtln PrintStream write PrintStream

The method provided by the Reader class

is _______________

skip() write() flush() writeX() skip()

The method provided by the Writer class

is _______________

read() flush() reset() skip() flush()

 _________ some input implies reducing

it to a simpler stream of tokens

length tokenizing Stream Exception tokenizing

DataInput is __________________ an abstract class used to read

primitive data

types

an interface that

defines method

to open files

an interface that

defines method

to read primitive

an interface that

defines method

to read primitive Which of the following statements are

valid?

new

DataInputStream

();

new

DataInputStream

(new

new

DataInputStream

("in.dat");

new

DataInputStream

(new

new

DataInputStream

(); __________ are small applicationsthat

are accessed on an internet server

utilities networks applets bean applets

The compiled applet is tested using

word dos notepad applet viewer applet viewer

The __________ tag is used to start an

applet from both HTML and JDK applet

viewer

Html JDK applet title applet

 ____________ method gets called first paint start init update init

Applet basically is a Java class defined in

the _____ package of JDK

java.awt java.lang java.applet java.util java.applet

The Applet class which is in the

java.applet package inherits the

properties of the _______ class which is

Container Componenet Panel List Panel

The Panel class inherits the properties of

the _________ class in the java.awt

package

Container Componenet Panel List Container

The container class inherits the properties

of the ______________ class

Container Componenet Panel List Componenet

An _______ is a window based event

driven program

Html JDK applet title applet

The _______ and _______ method

executes only once

stop() and

destroy()

start() and stop() init() and paint() init() and

destroy()

init() and

destroy()

Immediately after calling init()

methodthe browser calls the

__________________ method

stop() start() init() destroy() start()

The ________ method also called when

the user returns to an HTML page that

contains the applet

paint() init() destroy() start() start()

The ________ methodis called each time

your applet's output is redrawn

stop() start() init() paint() paint()

The ________ method acalled when the

user moves from the HTML page that

contains an applet

paint() init() stop() destroy() stop()

The _______ method that is used to

release additional resource

paint() init() destroy() start() destroy()

There are ______ main methods defined

in java.awt.Component

2 4 5 3 3

The _____ method is defined by the

AWT and is usually called by the applet

for screen updating

paint() init() stop() repaint() repaint()

 ________ class cannot be created

directly by using constructors

Panel Container Componenet Graphics Grapahics

In java color is encapsulated by the

________ class

Container Componenet Graphics Color Color

Color class also defines _________

common colors as constants

10 13 12 14 13

Methods of ________ class can also be

used in the Graphiocs class methods to

set and get the background and

Container Componenet Panel List Componenet

There are ___________ common terms

that are used when describing fonts

2 4 5 3 5

The java.applet package defines _______

inetrfaces

2 4 5 3 3

The user cannot have their HTML

document,applet code,data and web

browser at _____________ different

2 4 5 3 4

The loop() method plays the audio clip

automatically while __________ plays it

only once

paint() play() init() start() play()

The audio clip can be stopped by calling

the ______ method

paint() init() stop() repaint() stop()

The _________ interface provides the

inter_communication between an applet

and the parent container

AppletContext AppletStub getApplet showDocument AppletStub

The _________ inetface gives the

information about the applet's execution

environment

AppletStub getApplet AppletContext showDocument AppletContext

The setBackground() is the part of the

class ______

Graphics AppletStub Component Container Component

If you want to assign a vlaue 99 to a

variable called number, which of the

following lines you will use within an

number=99 param = number

value=99

param name =

number value=99

param number

=99

param name =

number value=99

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

 COIMBATORE – 641 021

INFORMATION TECHNOLOGY

Second Semester

FIRST INTERNAL EXAMINATION - December 2019

PROGRAMMING IN JAVA

Class & Section: I B.Sc IT Duration: 2 hours

Date & Session: 18.12.19 (FN) Maximum marks: 50 marks

Sub.Code: I9ITU201

PART- A (20 * 1= 20 Marks)

Answer ALL the Questions
1. Java is a ___________ language

a. structured programming

b. object oriented

c. procedural oriented

d. machine

2. OOPS follows______________ approach in program design

a. bottom_up b. top_down c. middle d. top

3. Objects take up ______________in the memory

a. Space b. Address c. Memory d. bytes

4. _________________is a collection of objects of similar type

a. Objects b. methods c. classes d. messages

5. The wrapping up of data & function into a single unit is known as _______________

a. Polymorphism

b. encapsulation

c. functions

d. data members

6. __________________refers to the act of representing essential features without including the

background details or explanations

a. Encapsulation b. inheritance c. Dynamic binding d. Abstraction

7. Attributes are sometimes called______________

a. data members b. methods c. messages d. functions

8. The functions operate on the datas are called______________

a. Methods b. data members c. messages d. classes

9. ______________is the process by which objects of one class acquire the properties of objects of

another class

a. Polymorphism b. encapsulation c. data binding d. Inheritance

10. Class is a _______Construct

a. Hierarchical b. Logical c. Physical d. Hybrid

11. To access instance variables of an object______operator is used

a. Dot Operator

b. Logical operator

c. Relational Operator

d. Boolean Operator

12. Variables declared as static are______variables

a. Member variables b. Instance c. class d. Local

13. It takes no parameters

a. Default Constructors

b. Copy Constructors

c. Parameter Constructor

d. Function

14. It is required when objects are required to perform a similar task

a. Method Overriding

b. Polymorphism

c. Static Binding

d. Method Overloading

15. It is used to refer to the current object

a. this reference b. that reference c. dot d. Arrow

16. The data or variables, defined within a class are called

a. Variables

b. Class variables

c. Data variables

d. Instance Variable

17. The ________ operator creates a single instances of a named class and returns a reference to that object

a. dot b. new c. super d. this

18. __________ initializes an object

a. overloading b. constructors c. overriding d. destructor

19. A constructor that accepts no parameters is called the __________ constructor

a. Copy b. default c. multiple d. multilevel

20. Constructors are invoked automatically when ________ are created

a. Data b. classes c. objects d. methods

PART B (3 * 2 = 6 Marks)

Answer ALL the Questions

21. List the types of Java program

22. Define Type casting

23. Define constructor

PART C (3 * 8 = 24 Marks)

Answer ALL the Questions

24. a. Explain in detail about the features and architecture of JAVA

 (OR)

 b. Explain in detail about Object Oriented Programming concepts with example

25. a. Explain Java tokens

(OR)

 b. What is a class? Explain in detail how you will define a class with syntax and example

26. a. Write in detail about i) Instance variables ii) Instance methods

 iii) Class variables iv) Class Methods.

(OR)

 b. Explain the operators available in java with neat example for each.

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

 COIMBATORE – 641 021

INFORMATION TECHNOLOGY

Second Semester

FIRST INTERNAL EXAMINATION - December 2019

PROGRAMMING IN JAVA

Class & Section: I B.Sc IT Duration: 2 hours

Date & Session: 18.12.19 (FN) Maximum marks: 50 marks

Sub.Code: I9ITU201

PART- A (20 * 1= 20 Marks)

Answer ALL the Questions
1. Java is a ___________ language

a. object oriented

2. OOPS follows______________ approach in program design

a. bottom_up

3. Objects take up ______________in the memory

a. Space

4. _________________is a collection of objects of similar type

a. classes

5. The wrapping up of data & function into a single unit is known as _______________

a. encapsulation

6. __________________refers to the act of representing essential features without including the

background details or explanations

a. Abstraction

7. Attributes are sometimes called______________

a. data members

8. The functions operate on the datas are called______________

a. Methods

9. ______________is the process by which objects of one class acquire the properties of objects of

another class

a. Inheritance

10. Class is a _______Construct

a. Logical

11. To access instance variables of an object______operator is used

a. Dot Operator

12. Variables declared as static are______variables

a. Member variables b. Instance c. class d. Local

13. It takes no parameters

a. Default Constructors

14. It is required when objects are required to perform a similar task

a. Method Overloading

15. It is used to refer to the current object

a. this reference

16. The data or variables, defined within a class are called

a. Instance Variable

17. The ________ operator creates a single instances of a named class and returns a reference to that object

a. new

18. __________ initializes an object

a. b. constructors

19. A constructor that accepts no parameters is called the __________ constructor

a. default

20. Constructors are invoked automatically when ________ are created

a. objects

PART B (3 * 2 = 6 Marks)

Answer ALL the Questions

21. List the types of Java program

1. Application Program

2. Applet Program

22. Define Type casting

When you assign value of one data type to another, the two types might not be compatible with

each other. If the data types are compatible, then Java will perform the conversion automatically

known as Automatic Type Conversion and if not then they need to be casted or converted

explicitly. For example, assigning an int value to a long variable.

23. Define constructor

A java constructor has the same name as the name of the class to which it belongs. Constructor’s

syntax does not include a return type, since constructors never return a value. Constructors may

include parameters of various types. When the constructor is invoked using the new operator, the

types must match those that are specified in the constructor definition.

PART C (3 * 8 = 24 Marks)

Answer ALL the Questions

24. a. Explain in detail about the features and architecture of JAVA

Features of Java

 Java changes the passive nature of the Internet and World Wide Web by enabling architecturally

neutral code to be dynamically loaded and run on a heterogeneous network of machines. It is also a

leading programming language for wireless technology and real-time systems. ·

Sun Microsystems officially describes Java as a programming language with the following attributes:

• Compiled and Interpreted

• Platform independent and Portable

• Object oriented

• Robust and Secure

• Distributed

• Multithreaded

• Dynamic

Compiled and Interpreted

 Java is both a compiled and an interpreted language. Java translates source code into bytecode

instructions. Java interpreter generates machine code that can directly be executed by the particular

machine that is running the Java program.

Platform Independent and Portable

Java programs once written can be run anywhere anytime .Java's portability is one of the major reasons

for its popularity. A program written in Java can easily be moved from one computer system to another.

The Java programmer need not make any alterations in the code for using it on a computer having a

different operating system, processor and system resources.

This feature has made Java a popular language for the Internet.

Object Oriented

Java is clean, usable, pragmatic approach to object orientation. The object model in java is simple and

easy to extend, while simple types, such as integers are kept as high performance non objects.

Robust and Secure

The multiplatform environment of the Web places extraordinary demands on a program, because the

program must execute reliably on a variety of systems. Accordingly, the ability to create robust

programs was given a high priority in the design of Java. To gain reliability, java restricts you in a few

key areas, to force you to find your mistakes early in program development life cycle.

 Further, it also checks your code at runtime. ln fact, many hard-to-track-down bugs that often tum up

in hard-to-reproduce runtime situations arc simply impossible to occur in Java.

For a language that is widely used for programming on the Internet, security becomes a crucial issue.

Java systems safeguard the memory by ensuring that no viruses are communicated with an applet. As

there are no pointers in Java, the programs are not allowed to gain access to memory locations without

proper authorization.

Distributed

Java is a distributed language; it can be used for creating applications that can be run on

networks. It can share both data and programs and Java applications can easily access remote objects

on Internet.

Multithreaded

The word Multithreaded implies handling multiple tasks simultaneously. Java supports multithreaded

programs. i.e. the user need not wait for the application to execute one task

completely before starting the other. For example. one can Listen 10 sound clip while browsing a page

and at the same time download an applet from a remote computer.

A multithreaded application can have several threads of execution running independently and

simultaneously. These threads may communicate and cooperate and will appear to be a single stream to

the user.

Dynamic

Java was designed to adapt in a constantly evolving environment It is capable of incorporating new

functionality whether it comes from local system, local network or the Internet. Java dynamically links

new class libraries and methods at runtime. This gives Java programs a high level of flexibility during

execution.

 (OR)

 b. Explain in detail about Object Oriented Programming concepts with example

 Object Oriented Paradigm and Concepts

1) Object

In object oriented programming, the object is the basic unit; the focus is mainly on data

and behaviors. The purpose of object oriented programming is to combine data and

behavior into a package, just as objects in the real world do.

2) Class

Classes are the base-structures or blueprints or templates from which objects are created.

These structures define all the properties and behavior an object will possess.

3) Data and Behavior

In OOP, the properties used to describe an object are known as data. Data generally

defines how an object looks like.

The behaviors are implemented as functions called methods.

For example, Mobile Phone

Data defines size, color, screen size of the mobile phone whereas the behavior describes

making calls, sending messages and taking pictures etc.

 These data and methods combined together into single, self contained unit

 called object.

4) Abstraction

Abstraction enables us to focus only on essential and ignore the non-essential. I other

words exposing only the necessary details and ignore the unnecessary.

For example,

1) To drive a car it is not mandatory that one has to be aware of internal

workings of a car engine

2) Coimbatore to Salem, what’s the route map.

 Coimbatore Avinashi PerunduraiSalem. Only the major towns are

focused and the small villages, houses, trees in between them are ignored.

5) Encapsulation

Capsules may be used when more mixes of sensitive drugs needs to be taken, but those

drugs can’t be viewed from outside world.Similarly encapsulation or information hiding permits

objects to operate as complete independent, self contained package of data and methods. It hides the

data and method implementation from the outside world.

6) Inheritance

Inheritance allows the new class to automatically inherit the data and methods of another

class. It also allows adding new data and methods to the inherited ones. This

dynamically increases the proficiency.

7) Message Passing

Communication among the objects can be made through message passing, any object

can send message to any other object.

8) Polymorphism

Polymorphism is a feature that allows one interface to be used for a general class of

actions. For example, a single button of a mobile phone is used to call, take pictures,

send messages etc.

Polymorphism achieves extensibility.

25. a. Explain Java tokens

Java Tokens

A token is the smallest element in a program that is meaningful to the compiler. These tokens define

the structure of the language. The Java token set can be divided into five categories: Identifiers,

Keywords, Literals, Operators, and Separators.

1. Identifiers

Identifiers are names provided by you. These can be assigned to variables, methods, functions, classes

etc. to uniquely identify them to the compiler.

2. Keywords

Keywords are reserved words that have a specific meaning for the compiler. They cannot be used as

identifiers. Java has a rich set of keywords. Some examples are: boolean, char, if, protected, new, this,

try, catch, null, threadsafe etc.

3. Literals

Literals are variables whose values remain constant throughout the program. They are also called

Constants. Literals can be of four types. They are:

a. String Literals

String Literals are always enclosed in double quotes and are implemented using the java.lang.String

class. Enclosing a character string within double quotes will automatically create a new String object.

For example,String s = "this is a string";. String objects are immutable, which means that once created,

their values cannot be changed.

b. Character Literals

These are enclosed in single quotes and contain only one character.

c. Boolean Literals

They can only have the values true or false. These values do not correspond to 1 or 0 as in C or C++.

d. Numeric Literals

Numeric Literals can contain integer or floating point values.

4. Operators

An operator is a symbol that operates on one or more operands to produce a result.

5. Separators

Separators are symbols that indicate the division and arrangement of groups of code. The structure and

function of code is generally defined by the separators. The separators used in Java are as follows:

parentheses ()

Used to define precedence in expressions, to enclose parameters in method definitions, and

enclosing cast types.

braces { }

Used to define a block of code and to hold the values of arrays.

brackets []

Used to declare array types.

semicolon ;

Used to separate statements.

comma ,

Used to separate identifiers in a variable declaration and in the for statement.

period .

Used to separate package names from classes and subclasses and to separate a variable or a

method from a reference variable.

(OR)

 b. What is a class? Explain in detail how you will define a class with syntax and example

Introduction to classes

A class is a template or a prototype defines a type of object. A class is to an object what a blueprint

is to a house. A class is a collection of data variables and methods that define a particular entity. A

class can be either user-defined or provided by one of the built in java packages.

Defining a Class

The class is defined using a keyword class followed by a user defined class name. The body of the

class is contained in the block that is defined by curly braces{}

 class classname

 {

 [variable declarations;]

 [method declarations;]

 }

The data or variables defined within a classes are called instance variables. The code is contained

within methods, these are also called members of the class.

For example

 class exampleclass

 {

 char cc;

 int f1;

 double dd;

 void examplemethod1()

 {

 System.out.println(“Hello world”);

 }

 void examplemethod2()

 {

 System.out.println(“Hai World”);

 }

 }

A class is an encapsulated collection of data, and methods to operate on data. A class definition

typically includes the following

1. Access Modifier

2. The class keyword

3. Instance fields

4. Constructors

5. Instance methods

6. Class fields

7. Class method

26. a. Write in detail about i) Instance variables ii) Instance methods

 iii) Class variables iv) Class Methods.

Instance variables:

 Instance variables are declared in a class, but outside a method, constructor or any block.

 When a space is allocated for an object in the heap, a slot for each instance variable value is

created.

 Instance variables are created when an object is created with the use of the keyword 'new' and

destroyed when the object is destroyed.

 Instance variables hold values that must be referenced by more than one method, constructor or

block, or essential parts of an object's state that must be present throughout the class.

 Instance variables can be declared in class level before or after use.

 Access modifiers can be given for instance variables.

 The instance variables are visible for all methods, constructors and block in the class. Normally,

it is recommended to make these variables private (access level). However visibility for

subclasses can be given for these variables with the use of access modifiers.

 Instance variables have default values. For numbers the default value is 0, for Booleans it is

false and for object references it is null. Values can be assigned during the declaration or within

the constructor.

 Instance variables can be accessed directly by calling the variable name inside the class.

However within static methods and different class (when instance variables are given

accessibility) should be called using the fully qualified name . ObjectReference.VariableName.

import java.io.*;

public class Employee{

 // this instance variable is visible for any child class.

 public String name;

 // salary variable is visible in Employee class only.

 private double salary;

 // The name variable is assigned in the constructor.

 public Employee (String empName){

 name = empName;

 }

 // The salary variable is assigned a value.

 public void setSalary(double empSal){

 salary = empSal;

 }

 // This method prints the employee details.

 public void printEmp(){

 System.out.println("name : " + name);

 System.out.println("salary :" + salary);

 }

 public static void main(String args[]){

 Employee empOne = new Employee("Ransika");

 empOne.setSalary(1000);

 empOne.printEmp();

 }

}

Class/static variables:

 Class variables also known as static variables are declared with the static keyword in a class,

but outside a method, constructor or a block.

 There would only be one copy of each class variable per class, regardless of how many objects

are created from it.

 Static variables are rarely used other than being declared as constants. Constants are variables

that are declared as public/private, final and static. Constant variables never change from their

initial value.

 Static variables are stored in static memory. It is rare to use static variables other than declared

final and used as either public or private constants.

 Static variables are created when the program starts and destroyed when the program stops.

 Visibility is similar to instance variables. However, most static variables are declared public

since they must be available for users of the class.

 Default values are same as instance variables. For numbers, the default value is 0; for Booleans,

it is false; and for object references, it is null. Values can be assigned during the declaration or

within the constructor. Additionally values can be assigned in special static initializer blocks.

 Static variables can be accessed by calling with the class name . ClassName.VariableName.

 When declaring class variables as public static final, then variables names (constants) are all in

upper case. If the static variables are not public and final the naming syntax is the same as

instance and local variables.

import java.io.*;

public class Employee{

 // salary variable is a private static variable

 private static double salary;

 // DEPARTMENT is a constant

 public static final String DEPARTMENT = "Development ";

 public static void main(String args[]){

 salary = 1000;

 System.out.println(DEPARTMENT+"average salary:"+salary);

 }

}

Instance Methods

A java method is equivalent to a function, procedure, or subroutine in other languages except that it

must be defined inside a class definition. Instance methods are the foundation of encapsulation and

provide a consistent interface to the class.

Adding methods to the class

Methods are declared inside the body of the class but immediately after the declaration of the instance

and class variables. The general form of a method declaration is

returntype methodname(parameter_list)

{

 Method body;

}

A returntype can be a primitive type such as int, or a class type such as string or void.

A methodname begin with a lowercase letter and according to java convention, compund words in the

method name should begin with uppercase letters.

The method body must be enclosed in curly braces.

An optional parameter_list/argument_list must be inside parenthesis, seperated by commas.

For example

String gettitle()

 {

 return title;

 }

void printdetails()

 {

 System.out.println(“Title is:”+title);

 }

(OR)

 b. Explain the operators available in java with neat example for each.

Java Operators

Java provides a rich set of operators to manipulate variables. We can divide all the Java operators

into the following groups:

 Arithmetic Operators

 Relational Operators

 Bitwise Operators

 Logical Operators

 Assignment Operators

 Misc Operators

The Arithmetic Operators:
Arithmetic operators are used in mathematical expressions in the same way that they are used in

algebra. The following table lists the arithmetic operators:

Assume integer variable A holds 10 and variable B holds 20, then:

Operator Description Example

+ Addition - Adds values on either side of the operator A + B will give 30

-
Subtraction - Subtracts right hand operand from left

hand operand
A - B will give -10

*
Multiplication - Multiplies values on either side of

the operator
A * B will give 200

/
Division - Divides left hand operand by right hand

operand
B / A will give 2

%
Modulus - Divides left hand operand by right hand

operand and returns remainder
B % A will give 0

++ Increment - Increases the value of operand by 1 B++ gives 21

-- Decrement - Decreases the value of operand by 1 B-- gives 19

The Relational Operators:
There are following relational operators supported by Java language

Assume variable A holds 10 and variable B holds 20, then:

Operator Description Example

==
Checks if the values of two operands are equal or

not, if yes then condition becomes true.
(A == B) is not true.

!=

Checks if the values of two operands are equal or

not, if values are not equal then condition becomes

true.

(A != B) is true.

>

Checks if the value of left operand is greater than

the value of right operand, if yes then condition

becomes true.

(A > B) is not true.

<

Checks if the value of left operand is less than the

value of right operand, if yes then condition

becomes true.

(A < B) is true.

>=

Checks if the value of left operand is greater than or

equal to the value of right operand, if yes then

condition becomes true.

(A >= B) is not true.

<=

Checks if the value of left operand is less than or

equal to the value of right operand, if yes then

condition becomes true.

(A <= B) is true.

The Bitwise Operators:
Java defines several bitwise operators, which can be applied to the integer types, long, int, short,

char, and byte.

Bitwise operator works on bits and performs bit-by-bit operation. Assume if a = 60; and b = 13;

now in binary format they will be as follows:

a = 0011 1100

b = 0000 1101

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001

~a = 1100 0011

The following table lists the bitwise operators:

Assume integer variable A holds 60 and variable B holds 13 then:

Show Examples

http://www.tutorialspoint.com/java/java_bitwise_operators_examples.htm

Operator Description Example

&

Binary AND

Operator copies a bit

to the result if it

exists in both

operands.

(A & B) will give 12 which is 0000 1100

|

Binary OR Operator

copies a bit if it

exists in either

operand.

(A | B) will give 61 which is 0011 1101

^

Binary XOR

Operator copies the

bit if it is set in one

operand but not both.

(A ^ B) will give 49 which is 0011 0001

~

Binary Ones

Complement

Operator is unary and

has the effect of

'flipping' bits.

(~A) will give -61 which is 1100 0011 in 2's

complement form due to a signed binary number.

<<

Binary Left Shift

Operator. The left

operands value is

moved left by the

number of bits

specified by the right

operand.

A << 2 will give 240 which is 1111 0000

>>

Binary Right Shift

Operator. The left

operands value is

moved right by the

number of bits

specified by the right

operand.

A >> 2 will give 15 which is 1111

>>>

Shift right zero fill

operator. The left

operands value is

moved right by the

number of bits

specified by the right

operand and shifted

values are filled up

with zeros.

A >>>2 will give 15 which is 0000 1111

The Logical Operators:
The following table lists the logical operators:

Assume Boolean variables A holds true and variable B holds false, then:

Operator Description Example

&&
Called Logical AND operator. If both the operands

are non-zero, then the condition becomes true.
(A && B) is false.

||

Called Logical OR Operator. If any of the two

operands are non-zero, then the condition becomes

true.

(A || B) is true.

!

Called Logical NOT Operator. Use to reverses the

logical state of its operand. If a condition is true then

Logical NOT operator will make false.

!(A && B) is true.

The Assignment Operators:
There are following assignment operators supported by Java language:

Operator Description Example

=

Simple assignment operator,

Assigns values from right

side operands to left side

operand

C = A + B will assign value of A + B into C

+=

Add AND assignment

operator, It adds right

operand to the left operand

and assign the result to left

operand

C += A is equivalent to C = C + A

-=

Subtract AND assignment

operator, It subtracts right

operand from the left

operand and assign the

result to left operand

C -= A is equivalent to C = C - A

*=

Multiply AND assignment

operator, It multiplies right

operand with the left

operand and assign the

result to left operand

C *= A is equivalent to C = C * A

/=

Divide AND assignment

operator, It divides left

operand with the right

operand and assign the

C /= A is equivalent to C = C / A

result to left operand

%=

Modulus AND assignment

operator, It takes modulus

using two operands and

assign the result to left

operand

C %= A is equivalent to C = C % A

<<=
Left shift AND assignment

operator
C <<= 2 is same as C = C << 2

>>=
Right shift AND assignment

operator
C >>= 2 is same as C = C >> 2

&=
Bitwise AND assignment

operator
C &= 2 is same as C = C & 2

^=
bitwise exclusive OR and

assignment operator
C ^= 2 is same as C = C ^ 2

|=
bitwise inclusive OR and

assignment operator
C |= 2 is same as C = C | 2

Misc Operators
There are few other operators supported by Java Language.

Conditional Operator (? :):
Conditional operator is also known as the ternary operator. This operator consists of three operands

and is used to evaluate Boolean expressions. The goal of the operator is to decide which value

should be assigned to the variable. The operator is written as:

variable x = (expression) ? value if true : value if false

Following is the example:

public class Test {

 public static void main(String args[]){

 int a , b;

 a = 10;

 b = (a == 1) ? 20: 30;

 System.out.println("Value of b is : " + b);

 b = (a == 10) ? 20: 30;

 System.out.println("Value of b is : " + b);

 }

}

This would produce the following result:

Value of b is : 30

Value of b is : 20

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

 COIMBATORE – 641 021

INFORMATION TECHNOLOGY

Second Semester

SECOND INTERNAL EXAMINATION - February 2020

PROGRAMMING IN JAVA

Class & Section: I B.Sc IT Duration: 2 hours

Date & Session: 4.2.2020 (FN) Maximum marks: 50 marks

Sub.Code: I9ITU201

PART- A (20 * 1= 20 Marks)

Answer ALL the Questions

1. A method in a subclass has the same name and type signature as a method in its superclass, then the

method in the subclass is said to____ the method in the superclass

a. override b. overload c. function d. final

2. ________ dispatch is the mechanism by which a call to an overridden method is resolved at run time,

rather than compile time.

a. Static method

b. Dynamic method

c. overload

d. finalized

3. Once you have an object, you can call its methods and access its fields, by using the __________

a. object reference

b. class

c. variables

d. data types

4. Which of these keywords is used to define interfaces in Java?

a. interface b. Interface c. intf d. Intf

5. Which of these can be used to fully abstract a class from its implementation?

a. Objects b. Packages c. Interfaces d. class

6. Which of these keywords is used by a class to use an interface defined previously?

a. import b. Import c. implements d. Implements

7. Runnable is a _____ .

a. class b. abstract class c. interface d. variable

8. ___________ act as containers for classes and other packages.

a. Container b. Classes c. Java d. Packages

9. An _________ is a condition that is caused by a runtime error in the program

a. throw b. exception c. handle d. catch

10. Exception can be generated by the ___________ or manually by the code

a. Throwable class

b. Java runtime system

c. object

d. catch

11. When an exception occurs within a java method, the method creates an exception object and hands it

over to the runtime systewm is called ____

a. catching the exception

b. throwing an exception

c. handle the exception

d. get the exception

12. When java method throws an exception the java runtime system searches all the methods in the call

stack to find one that can handle this type of exception is known as __________

a. catching the exception

b. throwing an exception

c. handle the exception

d. get the exception

13. Unchecked exceptions are extensions of __________

a. throws

b. catch

c. RuntimeException

d. Error

14. Checked exceptions are extensions of ___________

a. throws b. catch c. Exception d. Error

15. Which method is used in thread class to tests if the current thread has been interrupted?

a. public static boolean interrupted()

b. public boolean isInterrupted()

c. public void interrupt()

d. public boolean isAlive()

16. Which method in thread class causes the currently executing thread object to temporarily pause and

allow other threads to execute?

a. public boolean isAlive()

b. public int getId()

c. public void yield()

d. public boolean isDaemon()

17. How many methods does a thread class provides for sleeping a thread?

a. 3 b. 1 c. 4 d. 2

18. Which method waits for a thread to die?

a. stop() b. start() c. terminate() d. join()

19. In Naming a thread which method is used to change the name of a thread?

a. public String getName()

b. public void setName(String name)

c. public void getName()

d. public String setName(String name)

20. Default priority value of a thread class for NORM_PRIORITY is?

a. 1 b. 10 c. 5 d. 4

PART B (3 * 2 = 6 Marks)

Answer ALL the Questions

21. What is Inheritance?

22. Define Multithreading

23. Define Package

PART C (3 * 8 = 24 Marks)

Answer ALL the Questions

24. a. What is Inheritance? Describe the various forms of inheritance in Java.

 (OR)

 b. Why is it necessary to implement an interface? Give its syntax and explain with example.

25. a. Write short note on Abstract class and methods with example.

(OR)

 b. Write short note super reference with example.

26. a. What is package? Discuss about the creation and importing package with example.

(OR)

 b. Explain the “try-catch” construct used to capture and handle exception with an example program

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)
COIMBATORE – 641 021

INFORMATION TECHNOLOGY
Second Semester

SECOND INTERNAL EXAMINATION - February 2020

PROGRAMMING IN JAVA

Class & Section: I B.Sc IT Duration: 2 hours
Date & Session: 4.2.2020 (FN) Maximum marks: 50 marks
Sub.Code: I9ITU201

PART- A (20 * 1= 20 Marks)
Answer ALL the Questions

1. A method in a subclass has the same name and type signature as a method in its superclass, then the
method in the subclass is said to____ the method in the superclass

override
2. ________ dispatch is the mechanism by which a call to an overridden method is resolved at run time,

rather than compile time.
Dynamic method

3. Once you have an object, you can call its methods and access its fields, by using the __________
object reference a.

4. Which of these keywords is used to define interfaces in Java?
interface

5. Which of these can be used to fully abstract a class from its implementation?
Interfaces

6. Which of these keywords is used by a class to use an interface defined previously?
implements

7. Runnable is a _____ .
interface

8. ___________ act as containers for classes and other packages.
Packages

9. An _________ is a condition that is caused by a runtime error in the program
exception

10. Exception can be generated by the ___________ or manually by the code
Java runtime system

11. When an exception occurs within a java method, the method creates an exception object and hands it
over to the runtime systewm is called ____

throwing an exception
12. When java method throws an exception the java runtime system searches all the methods in the call

stack to find one that can handle this type of exception is known as __________
catching the exception

13. Unchecked exceptions are extensions of __________

RuntimeException
14. Checked exceptions are extensions of ___________

Exception
15. Which method is used in thread class to tests if the current thread has been interrupted?

public static boolean interrupted()
16. Which method in thread class causes the currently executing thread object to temporarily pause and

allow other threads to execute?
public void yield()

17. How many methods does a thread class provides for sleeping a thread?
2

18. Which method waits for a thread to die?
join()

19. In Naming a thread which method is used to change the name of a thread?
public void setName(String name)

20. Default priority value of a thread class for NORM_PRIORITY is?
5

PART B (3 * 2 = 6 Marks)
Answer ALL the Questions

21. What is Inheritance?
Inheritance provided a mechanism that allowed a class to inherit property of another class. When a
class extends another class it inherits all non private members including fields and methods. Inheritance
in java can be best understood in terms of parent and child relationship, also known as super
class(parent) and sub class(child).

22. Define Multithreading
Java provides built-in support for multithreaded programming. A multithreaded program contains two
or more parts that can run concurrently. Each part of such a program is called a thread, and each thread
defines a separate path of execution.

23. Define Package
Programs are organized as sets of packages. Each package has its own set of names for types, which
helps to prevent name conflicts.

PART C (3 * 8 = 24 Marks)
Answer ALL the Questions

24. a. What is Inheritance? Describe the various forms of inheritance in Java.
Inheritance is one of the key features of object oriented programming. Inheritance provided a mechanism
that allowed a class to inherit property of another class. When a class extends another class it inherits all
non private members including fields and methods. Inheritance in java can be best understood in terms of
parent and child relationship, also known as super class(parent) and sub class(child).

extends and implements keywords are used in inheritance in java.

Purpose of Inheritance
1. To promote code reuse

2. To use polymorphism

For example
class Box {

double width;
double height;
double depth;
Box() {
}
Box(double w, double h, double d) {

width = w;
height = h;
depth = d;

}
void getVolume() {

System.out.println("Volume is : " + width * height * depth);
}

}

public class MatchBox extends Box {

double weight;
MatchBox() {
}
MatchBox(double w, double h, double d, double m) {

super(w, h, d);
weight = m;

}
public static void main(String args[]) {

MatchBox mb1 = new MatchBox(10, 10, 10, 10);
mb1.getVolume();
System.out.println("width of MatchBox 1 is " + mb1.width);
System.out.println("height of MatchBox 1 is " + mb1.height);
System.out.println("depth of MatchBox 1 is " + mb1.depth);
System.out.println("weight of MatchBox 1 is " + mb1.weight);

}
}

Types of Inheritance
1. Single Inheritance
2. Multilevel Inheritance
3. Hierarchical Inheritance

(OR)
b. Why is it necessary to implement an interface? Give its syntax and explain with example.

Interface can be used to define a generic template and then one or more abstract classes to define
partial implementations of the interface. Interfaces just specify the method declaration (implicitly public
and abstract) and can only contain fields (which are implicitly public static final). Interface definition
begins with a keyword interface. An interface like that of an abstract class cannot be instantiated.

Multiple Inheritance is allowed when extending interfaces i.e. one interface can extend none, one or more
interfaces. Java does not support multiple inheritance, but it allows you to extend one class and implement
many interfaces.

interface Shape {

public double area();
public double volume();

}

Below is a Point class that implements the Shape interface.

public class Point implements Shape {

static int x, y;
public Point() {

x = 0;
y = 0;

}
public double area() {

return 0;
}
public double volume() {

return 0;
}
public static void print() {

System.out.println("point: " + x + "," + y);
}
public static void main(String args[]) {

Point p = new Point();
p.print();

}

}

25. a. Write short note on Abstract class and methods with example.
Java Abstract classes are used to declare common characteristics of subclasses. An abstract class

cannot be instantiated. It can only be used as a superclass for other classes that extend the abstract class.
Abstract classes are declared with the abstract keyword.

Abstract classes cannot be instantiated; they must be subclassed, and actual implementations must
be provided for the abstract methods. Any implementation specified can, of course, be overridden by
additional subclasses. An object must have an implementation for all of its methods.

abstract class Shape {
public String color;
public Shape() {
}
public void setColor(String c) {

color = c;
}
public String getColor() {

return color;
}
abstract public double area();
}

(OR)
b. Write short note super reference with example.

In java, super keyword is used to refer to immediate parent class of a class. In other words, super
keyword is used by a subclass whenever it need to refer to its immediate super class

class Vehicle {

// Instance fields
int noOfTyres; // no of tyres
private boolean accessories; // check if accessorees present or not
protected String brand; // Brand of the car
// Static fields
private static int counter; // No of Vehicle objects created
// Constructor
Vehicle() {

System.out.println("Constructor of the Super class called");
noOfTyres = 5;

accessories = true;
brand = "X";
counter++;

}
// Instance methods
public void switchOn() {

accessories = true;
}
public void switchOff() {

accessories = false;
}
public boolean isPresent() {

return accessories;
}
private void getBrand() {

System.out.println("Vehicle Brand: " + brand);
}
// Static methods
public static void getNoOfVehicles() {

System.out.println("Number of Vehicles: " + counter);
}

}

class Car extends Vehicle {

private int carNo = 10;
public void printCarInfo() {

System.out.println("Car number: " + carNo);
System.out.println("No of Tyres: " + noOfTyres); // Inherited.
// System.out.println("accessories: " + accessories); // Not Inherited.
System.out.println("accessories: " + isPresent()); // Inherited.
// System.out.println("Brand: " + getBrand()); // Not Inherited.
System.out.println("Brand: " + brand); // Inherited.
// System.out.println("Counter: " + counter); // Not Inherited.
getNoOfVehicles(); // Inherited.

}
}

public class VehicleDetails { // (3)

public static void main(String[] args) {
new Car().printCarInfo();

}
}

26. a. What is package? Discuss about the creation and importing package with example.

Programs are organized as sets of packages. Each package has its own set of names for types, which
helps to prevent name conflicts.
The members of a package are subpackages and all the top level class and top level interface types
declared in all the compilation units of the package.

Package Declarations
A package declaration appears within a compilation unit to indicate the package to which the compilation
unit belongs.
Named Packages

A package declaration in a compilation unit specifies the name of the package to which the compilation
unit belongs.

PackageDeclaration:
package PackageName ;

The package name mentioned in a package declaration must be the fully qualified name of the package.

Importing a Package Member
To import a specific member into the current file, put an import statement at the beginning of the file
before any type definitions but after the package statement, if there is one.

import graphics.Rectangle;

Now you can refer to the Rectangle class by its simple name.

Rectangle myRectangle = new Rectangle();

This approach works well if you use just a few members from the graphics package. But if you use many
types from a package, you should import the entire package.

Importing an Entire Package
To import all the types contained in a particular package, use the import statement with the asterisk (*)

wildcard character.

import graphics.*;

(OR)
b. Explain the “try-catch” construct used to capture and handle exception with an example program

 An exception is an abnormal condition that arises in a code sequence at run time
 A Java exception is an object that describes an exceptional condition that has occurred in a piece of

code
 When an exceptional condition arises, an object representing that exception is created and thrown in

the method that caused the error
 An exception can be caught to handle it or pass it on
 Exceptions can be generated by the Java run-time system, or they can be manually generated by your

code
 Java exception handling is managed by via five keywords: try, catch, throw, throws, and finally
 Program statements to monitor are contained within a try block

 If an exception occurs within the try block, it is thrown
 Code within catch block catch the exception and handle it
 System generated exceptions are automatically thrown by the Java run-time system
 To manually throw an exception, use the keyword throw
 Any exception that is thrown out of a method must be specified as such by a throws clause
 Any code that absolutely must be executed before a method returns is put in a finally block
 General form of an exception-handling block

try{

// block of code to monitor for errors

}

catch (ExceptionType1 exOb){

// exception handler for ExceptionType1

}

catch (ExceptionType2 exOb){

// exception handler for ExceptionType2

}

//…

finally{

// block of code to be executed before try block ends

}

	1Java Syllabus.pdf (p.1-2)
	2Java-Lecture Plan.pdf (p.3-5)
	3UNIT I.pdf (p.6-31)
	4Unit 1.pdf (p.32-34)
	5UNIT II.pdf (p.35-65)
	6Unit 2.pdf (p.66-68)
	7UNIT III.pdf (p.69-107)
	8Unit 3.pdf (p.108-110)
	9UNIT IV.pdf (p.111-137)
	10Unit 4.pdf (p.138-140)
	11UNIT V.pdf (p.141-153)
	12Unit 5.pdf (p.154-156)
	13Internal 1 QP.pdf (p.157-158)
	14Internal 1 Answers.pdf (p.159-172)
	15Internal 2 QP.pdf (p.173-174)
	16Internal 2 Answers.pdf (p.175-182)

