CLASS: I BSC MATHEMATICS COURSE CODE: 17MMU211

COURSE NAME: DIFFERENTIAL EQUATIONS – PRACTICAL LAB MANUAL BATCH-2017-2020

Content

S.NO	TITLE
1	FAMILY OF DIFFERENTIAL
	EQUATIONS
2	GROWTH
	MODEL(EXPONENTIAL CASE)
3	DECAY MODEL
4	LAKE POLLUTION MODEL
5	LIMITED GROWTH OF
	POPULATION (WITH AND
	WITHOUT HARVESTING)
6	PLOTTING OF RECURSIVE
	SEQUENCES
7	CAUCHY'S ROOT TEST BY
	PLOTTING N TH ROOTS
8	PREDATORY-PREY MODEL

CLASS: I BSC MATHEMATICS COURSE CODE: 17MMU211

COURSE NAME: DIFFERENTIAL EQUATIONS – PRACTICAL LAB MANUAL BATCH-2017-2020

FAMILY OF DIFFERENTIAL EQUATIONS

QUESTION:

Solve the Lorentz equation $\frac{dx}{dt} = -\sigma x + \sigma y$; $\frac{dy}{dt} = \beta x - y - xz$; $\frac{dz}{dt} = -\theta z + xy$; $\sigma = 10, \theta = \frac{8}{3}, \beta = 28$. x(0) = -8, y(0) = 8, z(0) = 27

AIM:

To plot the 2end order solution of family of differential equation in MATLAB script file with an example

ALGORITHM:

STEP:1

Start the program

STEP:2

Computes the derivatives involving in solving the Lorenz equation

STEP:3

Use tspan commands to defined the t interval

STEP:4

Use ode45 building function for solving the differential equation

STEP:5

Use the commands plot, subplot to plot the Lorenz equation

STEP:6

Stop the process

KARPA	GAM ACADEMY OF HIGHER EDI	JCATION
CLASS: I BSC MATHEMATICS	COURSE NAME: DIFFEREN	TIAL EQUATIONS - PRACTICAI
COURSE CODE: 17MMU211	LAB MANUAL	BATCH-2017-2020
PROGRAM:		
<pre>function xprime=lorenz(t,x);</pre>		
%Computes the derivatives involved	l in solving the lorenz equations	

sig=10;

beta=8/3;

rho=28;

xprime=[-sig*x(1)+sig*x(2);rho*x(1)-x(2)-x(1)*x(3);-beta*x(3)+x(1)*x(2)];

x0=[-8 8 27];

tspan=[0,20];

[t,x]=ode45(@lorenz,tspan,x0);

plot(x(:,1),x(:,3))

subplot(3,1,1)

plot(t,x(:,1))

subplot(3,1,2)

plot(t,x(:,2))

subplot(3,1,3)

plot(t,x(:,3))

JE CODE: 17MMU211LAB MANUALBATCH-2017-2020

OUTPUT:

Prepared by R. Praveen Kumar, Asst Prof, Department of Mathematics, KAHE

Page 4/22

CLASS: I BSC MATHEMATICS COURSE CODE: 17MMU211

COURSE NAME: DIFFERENTIAL EQUATIONS – PRACTICAL LAB MANUAL BATCH-2017-2020

CLASS: I BSC MATHEMATICS COURSE CODE: 17MMU211

COURSE NAME: DIFFERENTIAL EQUATIONS – PRACTICAL LAB MANUAL BATCH-2017-2020

EX.NO:2	GROWTH MODEL(EXPONENTIAL CASE)

QUESTION:

Plot the population growth in the exponential case.

AIM:

To plot the growth model of the exponential cause in MATLAB using the script file

ALGORITHM:

STEP:1

Start the program

STEP:2

Define the time interval using the increment function in MATLAB

STEP:3

Define exponential the growth formula in MATLAB

STEP:4

Use plot command for plotting the reguring values

STEP:5

Stop the Process

PROGRAM:

tim=[0:0.1:20];

r=0.1;

N_0=100;

N=N_0*exp(r*tim);

plot(tim,N,'k')

Page 7/22

CLASS: I BSC MATHEMATICS COURSE CODE: 17MMU211

COURSE NAME: DIFFERENTIAL EQUATIONS - PRACTICAL LAB MANUAL BATCH-2017-2020

EX.NO:3

DECAY MODEL

QUESTION:

Suppose that salt decomposers in water into chloride and sodium ions according to the laws of exponential decay if the initial amount of the salt is 25kg and after 10 hours ,15kg of salt is left. How much salt is left after one day. How long does it take until 0.5kg of salt is left.

AIM:

To solve the given problem by using the decay model of exponential case in MATLAB.

ALGORITM:

STEP:1

Start the program.

STEP :2

Defining the beginning amount and the final amount and time in MATLAB.

STEP:3

Using half life of decay model to define the half life.

STEP :4

Defining the inamount and by using appropiate formula in MATLAB command window.

STEP :5

Run the program and verify the result.

STEP :6

Stop the process.

Prepared by R. Praveen Kumar, Asst Prof, Department of Mathematics, KAHE

Page 8/22

CLASS: I BSC MATHEMATICS	COURSE NAME: DIFFEREN	TIAL EQUATIONS - PRACTICAL BATCH-2017-2020
PROGRAM:	LAD MANUAL	BATCH-2017-2020
beg_amt=25;		
fin_amt=15;		
time=10;		
half_life=log10(2)*time/log10(beg_an	nt/fin_amt)	
time=24;		
n=time/half_life;		
end_amt=beg_amt/2^n		
fin_amt=0.5;		
t=half_life*log10(beg_amt/fin_amt)/lo	og10(2)	
OUTPUT		
half life = 135692		

end_amt =703367

t =76.5824

CLASS: I BSC MATHEMATICS COURSE CODE: 17MMU211

COURSE NAME: DIFFERENTIAL EQUATIONS – PRACTICAL LAB MANUAL BATCH-2017-2020

EX.NO:4	LAKE POLLUTION MODEL

QUESTION:

Plot a contour curves for a pollutant at different times.

AIM:

To plot a contour covers for a pollution at different times in 2D

ALGOROTHM:

STEP:1

Start the program

STEP:2

The MATLAB code simulate a large is spli of a pollutant along the south waste boundary of a lake

STEP:3

The sources of spill is controlled after 25 times steps

STEP:4

The pollution 'cloud' moves across a lake as debicted by contour plot for different times

STEP:5

The MATLAB code flow 2D generates the 3D array of the consfortion

STEP:6

Stop the process

CLASS: I BSC MATHEMATICS COURSE CODE: 17MMU211	COURSE NAME: DIFFEREN LAB MANUAL	TIAL EQUATIONS - PRACTICAL BATCH-2017-2020
PROGRAM:		
clear;		
L=1.0;		
W=4.0;		
T=10.;		
k=200;		
dt=T/k;		
n=10.;		
dx=L/n;		
m=20.;		
dy=W/m;		
velx=.1;		
vely=.4;		
decay=.0;		
for i=1:n+1		
x(i)=(i-1)*dx;		
for j=1:m+1		
y(j)=(j-1)*dy;		
u(i,j,1)=0.;		
end		
end		
for k=1:k+1		
time(k)=(k-1)*dt;		
for j=1:m+1		

KARPA	GAM ACADEMY OF HIGHER ED COURSE NAME: DIFFEREN	UCATION ITIAL EQUATIONS - PRACTICAL
COURSE CODE: 17MMU211	LAB MANUAL	BATCH-2017-2020
u(1,j,k)=.0;		
end		
for i=1:n+1		
u(i,1,k)=(i<=(n/2+1))*(k<26)*5.0*s	in(pi*x(i)*2)+(i>(n/2+1))*.1;	
end		
end		
for k=1:k		
for i=2:n+1;		
for j=2:m+1;		
u(i,j,k+1)=(1-velx*dt/dx-vely*dt/dy-	-decay*dt)*u(i,j,k)+velx*dt/dx*u(i-1	,j,k)+vely*dt/dy*u(i,j-1,k);
end		
end		
end		
mesh(x,y,u(:,:,k)')		

CLASS: I BSC MATHEMATICS COURSE CODE: 17MMU211

COURSE NAME: DIFFERENTIAL EQUATIONS – PRACTICAL LAB MANUAL BATCH-2017-2020

EX.NO:5 LIMITED GROWTH OF POPULATION (WITH AND WITHOUT HARVESTING)

QUESTION:

Use MATLAB to find the sides of the bacterium after 4 minutes.

AIM:

To find volume of bacterium using function call type in MATLAB

ALGORITHM:

STEP:1

Start the program

STEP:2

Volume of define the formula d=0.4+0.02*t

STEP:3

Use the elongation function for calling the function in MATLAB script file

STEP:4

Subsutting a time duration in the formula by using the elongation function

STEP:5

Run the program and verified the out put

STEP:6

Stop the process

CLASS: I BSC MATHEMATICS COURSE CODE: 17MMU211	COURSE NAME: DIFFERENT LAB MANUAL	IAL EQUATIONS - PRACTICA BATCH-2017-2020
PROGRAM:		
function V=elongation(t)		
%Function elongation has input varia	ble	
t and output variable V		
%It gives the bacterium volume after		
time t: V=0.4+0.02*t		
V=0.4+0.02*t;		
elongation(4)		
OUTPUT		
elongation(4)		
ans =		
0.4800		

CLASS: I BSC MATHEMATICS COURSE CODE: 17MMU211

COURSE NAME: DIFFERENTIAL EQUATIONS – PRACTICAL LAB MANUAL BATCH-2017-2020

PLOTTING OF RECURSIVE SEQUENCES EX.NO:6

QUESTION:

Compute the first 100 items in the sequence defined recursively.

AIM:

To compute the first 100 term in the sequence defined recursively by a(n)=0.75*(1-a(n-1)) with a1=1

ALGORITH:

STEP:1

Start the program

STEP:2

The recursive formula is define in MATLAB

STEP:3

Using for loop the formula is define and value for n is given using the increate operation in MATLAB

STEP:4

Use plot command to this sequence in MATLAB figure window

STEP:5

Use the title command to display the title of the sequence in MATLAB

STEP:6

Run the program and check the output

STEP:7

Stop the process

COURSE CODE: 17MMU211	COURSE NAME: DIFFERE LAB MANUAL	NTIAL EQUATIONS – PRACTICA BATCH-2017-2020
PROGRAM:		
a(1)=1;		
for n=2:100;		
a(n)=.75*(1-a(n-1));		
end		
plot(a,'r.')		
title('Plot of $a(n)=.75*(1-a(n-1))$) with	n a(1)=1')	
OUTPUT:		
Plot of a	n(n)=.75*(1-a(n-1))with a(1)=1	
0.9 -		-
0.8		-
0.7		
0.5		_
0.4	*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***	
0.3		-
0.2		-
0.1 -		-
0	, , , , , ,	r c
-	40 50 60 70 80 9	90 100

Page 17/22

CLASS: I BSC MATHEMATICS COURSE CODE: 17MMU211

COURSE NAME: DIFFERENTIAL EQUATIONS – PRACTICAL LAB MANUAL BATCH-2017-2020

EX.NO:7

CAUCHY'S ROOT TEST BY PLOTTING NTH ROOTS

QUESTION:

Test the convergency of cauchy sequence $\sum_{x=1}^{k} \frac{4(-1)^{x+1}}{(2x-1)}$, $1 \le k \le 30$.

AIM:

TO test the convergence of the given series by using cauchy's root test in MATLAB

ALGORITHM:

STEP:1

Start the program

STEP:2

The sequence term of define in MATLAB with a help of special operation of MATLAB

STEP:3

Define series term by using the MATLAB 'cunsum' for finding cumulative for sum

STEP:4

Using plot command to plot the series in MATLAB figure window

STEP:5

X-axis and y-axis are define using x-label y-label in MATLAB figure window.

STEP:6

Run the program and verified the output.

STEP:7

Stop the process.

Page 19/22

CLASS: I BSC MATHEMATICS COURSE CODE: 17MMU211

COURSE NAME: DIFFERENTIAL EQUATIONS – PRACTICAL LAB MANUAL BATCH-2017-2020

PREDATORY-PREY MODEL

EX.NO:8

QUESTION:

Solve the following equations with initial condition x(0)=100, y(0)=90 and z(0)=80.

x' = -0.5x + 0.01xy + 0.02xz; y' = 0.01(100 - y)y - 0.01xy; z' = 0.04(80 - z)z - 0.03xz

AIM:

To solve two prey one predator model by using an example.

ALGORITHM:

STEP :1

Start the program.

STEP :2

Creating two m files to represent in symbol y(1) fox, y(2) rabbits and y(3) turkeys.

STEP:3

In the second m file the initial conditions are assigned in the array form.

STEP :4

Using ode45 builtin function to solve the differential equation in MATLAB.

STEP :5

Run the program and verify the output.

STEP :6

Stop the process.

CLASS: I BSC MATHEMATICS COURSE CODE: 17MMU211	COURSE NAME: DIFFEREN LAB MANUAL	TIAL EQUATIONS – PRACTICA BATCH-2017-2020
ROGRAM:		
% yprft.m		
<pre>function yprft=yprft(t,y)</pre>		
yprft(1)=-5*y(1)+.01*y(2)+.02*y(1)*	^s y(3);	
yprft(2)=.01*(100-y(2))*y(2)01*y(2)	1)*y(2);	
yprft(3)=.04*(80-y(3))*y(3)03*y(1)	*y(3);	
<pre>yprft=[yprft(1) yprft(2) yprft(3)]';</pre>		
% rft.m		
clear;		
t0=0;		
tf=20;		
y0=[100 90 80];		
[t y]=ode45('yprft',[t0 tf],y0);		
plot(t,y(:,1),t,y(:,2),t,y(:,3))		
title('Two Prey, One Predator')		
xlabel('time')		
ylabel('rabbits,fox,turkeys')		

(Deemed to be University Established Under Section 3 of UGC Act 1956) Coimbatore – 641 021.

		Semester II		Π	
		L	Т	Р	С
17MMU211	DIFFERENTIAL EQUATIONS (PRACTICAL)	0	0	3	2

List of Practical (using any software) (Any 8 programs)

- 1. Plotting of second order solution family of differential equation.
- 2. Growth model (exponential case only).
- 3. Decay model (exponential case only).
- 4. Lake pollution model (with constant/seasonal flow and pollution concentration).
- 5. Case of single cold pill and a course of cold pills.
- 6. Limited growth of population (with and without harvesting).
- 7. Predatory-prey model (basic volterra model, with density dependence, effect of DDT, two prey one predator).
- 8. Plotting of recursive sequences.
- 9. Verify Bolzano-Weierstrass theorem through plotting of sequences and hence identify convergent subsequences from the plot.
- 10. Study the convergence/divergence of infinite series by plotting their sequences of partial sum.
- 11. Cauchy's root test by plotting nth roots.
- 12. Ratio test by plotting the ratio of n_{th} and $(n+1)_{th}$ term.