
 KARPAGAM

SUBJECT NAME : SOFTWARE ENGINEERING
SUBJECT CODE: 17CTU402

17CTU402 SOFTWARE ENGINEERING

Instruction Hours / week:L: 4 T: 0 P: 0 Marks:

SCOPE
The graduates of the software engineering program shall be able to apply proper theoretical,
technical, and practical knowledge of software requirements, analysis, design, implementation,
verification and validation, and documentation. This course enables the students to resolve
conflicting project objectives considering viable tradeoffs within limitations of co
knowledge, existing systems, and organizations.

OBJECTIVES

 Apply their knowledge of mathematics, sciences, and computer science to the modeling,
analysis, and measurement of software artifacts.

 Work effectively as leader/member of a development
artifacts.

 Analyze, specify and document software requirements for a software system.
 Implement a given software design using sound development practices.
 Verify, validate, assess and assure the quality of software artifact
 Design, select and apply the most appropriate software engineering process for a given

project, plan for a software project, identify its scope and risks, and estimate its cost and
time.

 Express and understand the importance of negotiation, effective wo
and good communication with stakeholders, in written and oral forms, in a typical
software development environment.

UNIT-I

Introduction: The Evolving Role of Software, Software Characteristics, Changing Nature of
Software, Software Engineering as a Layered Technology, Software Process Framework,
Framework and Umbrella Activities, Process Models, Capability Maturity Model Integration
(CMMI).

UNIT-II
Requirement Analysis; Initiating Requirement EngineeringProcess
Modeling Techniques- FlowOriented Modeling
Components of SRS- Software Project Management: Estimation in Project Planning Process,
Project Scheduling.

KARPAGAM ACADEMY OF HIGHER EDUCATION

SOFTWARE ENGINEERING CLASS
 SYLLABUS SEMESTER : IV

 BATCH (201

SOFTWARE ENGINEERING

Instruction Hours / week:L: 4 T: 0 P: 0 Marks:Int :40 Ext : 60 Total:

The graduates of the software engineering program shall be able to apply proper theoretical,
practical knowledge of software requirements, analysis, design, implementation,

verification and validation, and documentation. This course enables the students to resolve
conflicting project objectives considering viable tradeoffs within limitations of co
knowledge, existing systems, and organizations.

Apply their knowledge of mathematics, sciences, and computer science to the modeling,
analysis, and measurement of software artifacts.
Work effectively as leader/member of a development team to deliver quality software

Analyze, specify and document software requirements for a software system.
Implement a given software design using sound development practices.
Verify, validate, assess and assure the quality of software artifacts.
Design, select and apply the most appropriate software engineering process for a given
project, plan for a software project, identify its scope and risks, and estimate its cost and

Express and understand the importance of negotiation, effective work habits, leadership,
and good communication with stakeholders, in written and oral forms, in a typical
software development environment.

The Evolving Role of Software, Software Characteristics, Changing Nature of
Engineering as a Layered Technology, Software Process Framework,

Framework and Umbrella Activities, Process Models, Capability Maturity Model Integration

Initiating Requirement EngineeringProcess- Requirement Analysis and
FlowOriented Modeling- Need for SRS- Characteristics and

Software Project Management: Estimation in Project Planning Process,

CLASS : II B.Sc. (CT)
SYLLABUS SEMESTER : IV

BATCH (2017-2020)

Semester – IV
 4H – 4C

: 100

The graduates of the software engineering program shall be able to apply proper theoretical,
practical knowledge of software requirements, analysis, design, implementation,

verification and validation, and documentation. This course enables the students to resolve
conflicting project objectives considering viable tradeoffs within limitations of cost, time,

Apply their knowledge of mathematics, sciences, and computer science to the modeling,

team to deliver quality software

Analyze, specify and document software requirements for a software system.

Design, select and apply the most appropriate software engineering process for a given
project, plan for a software project, identify its scope and risks, and estimate its cost and

rk habits, leadership,
and good communication with stakeholders, in written and oral forms, in a typical

The Evolving Role of Software, Software Characteristics, Changing Nature of
Engineering as a Layered Technology, Software Process Framework,

Framework and Umbrella Activities, Process Models, Capability Maturity Model Integration

Requirement Analysis and
Characteristics and

Software Project Management: Estimation in Project Planning Process,

 KARPAGAM

SUBJECT NAME : SOFTWARE ENGINEERING
SUBJECT CODE: 17CTU402

UNIT-III
Risk Management: Software Risks, Risk Identification Risk Projection and Risk Refinement,
RMMM plan, QualityManagement
Reviews, Metrics for Process and Projects

UNIT-IV

Design Engineering-Design Concepts, Architectural Des
Architecture,Data Design at the Architectural Level and Component Level, Mapping of
Data Flow into Software Architecture, Modeling Component Level Design

UNIT-V
Testing Strategies & Tactics:
Software Testing, Test Strategies for Conventional Software, Validation Testing, System
testing Black-Box Testing, White

Suggested Readings

1. R.S. Pressman, (2009). Software Engineering: A Pra
McGraw-Hill.

2. P.Jalote (2008). An Integrated Approach to Software Engineering (2
International Publishers.

3. K.K. Aggarwal andY.
International Publishers.

4. Sommerville (2006). Softwar

5. D.Bell (2005). Software Engineering for Students (4
6. R.Mall (2004). Fundamentals of SoftwareEngineering(2

ofIndia.

WEB SITES
1. http://en.wikipedia.org/wiki/Software_engineering
2. http://www.onesmartclick.com/engineering/software
3. http://www.CC.gatech.edu/classes/AY2000/cs3802_fall/

KARPAGAM ACADEMY OF HIGHER EDUCATION

SOFTWARE ENGINEERING CLASS
 SYLLABUS SEMESTER : IV

 BATCH (201

8

Risks, Risk Identification Risk Projection and Risk Refinement,
QualityManagement- Quality Concepts, Software Quality Assurance, Software

Reviews, Metrics for Process and Projects

Design Concepts, Architectural Design Elements, Software
Architecture,Data Design at the Architectural Level and Component Level, Mapping of
Data Flow into Software Architecture, Modeling Component Level Design

Testing Strategies & Tactics: Software Testing Fundamentals, Strategic Approach to
Software Testing, Test Strategies for Conventional Software, Validation Testing, System

Box Testing, White-Box Testing and their type, Basis Path Testing

R.S. Pressman, (2009). Software Engineering: A Practitioner‘s Approach (7

An Integrated Approach to Software Engineering (2
International Publishers.

andY.Singh (2008). Software Engineering (2nd ed.). New Age
International Publishers.
Sommerville (2006). Software Engineering (8thed.). Addison Wesley.

D.Bell (2005). Software Engineering for Students (4thed.) Addison-Wesley.
R.Mall (2004). Fundamentals of SoftwareEngineering(2nd ed.). Prentice

http://en.wikipedia.org/wiki/Software_engineering
http://www.onesmartclick.com/engineering/software-engineering.html

.gatech.edu/classes/AY2000/cs3802_fall/

CLASS : II B.Sc. (CT)
SYLLABUS SEMESTER : IV

BATCH (2017-2020)

Risks, Risk Identification Risk Projection and Risk Refinement,
Quality Concepts, Software Quality Assurance, Software

ign Elements, Software
Architecture,Data Design at the Architectural Level and Component Level, Mapping of

gic Approach to
Software Testing, Test Strategies for Conventional Software, Validation Testing, System

Box Testing and their type, Basis Path Testing

ctitioner‘s Approach (7th ed.).

An Integrated Approach to Software Engineering (2nded.). New Age

ed.). New Age

Wesley.
ed.). Prentice-Hall

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 1

 Lesson Plan 2017-2020Batch

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari Post, Coimbatore - 641021

(For the candidates admitted from 2016 onwards)
 DEPARTMENT OF CS, CA & IT

STAFFNAME: Dr.J.RAJESWARI
SUBJECT NAME: SOFTWARE ENGINEERING
SEMESTER: IV

SUB.CODE: 17CTU402
 CLASS:II B.Sc.(CT)

S.No Lecture
Duration

Period

Topics to be Covered Support Material/
Page Nos

 UNIT-I

1 1 Introduction to Software
Engineering
TheEvolvingrole of Software

 SoftwareCharacteristics

S2:34-39

S2: 45-47

2

1

ChangingNatureof software
 WebApps

  Mobile Applications
 Cloud computing
 Product line software

A Generic View of Process
 SoftwareEngineering-

Layered Technology

S1:9-11

S2:52-54

3 1 Softwareprocess
Framework Umbrella
Activities

S1: 16-17
S1:18

4 1 Process Models
 Prescriptive Models
 Waterfall Model

Incremental Process Models
 Incremental Model
 The RADModel

S1:41, W1,W2
S3:9-11

S1:43, W1

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 2

5 1 EvolutionaryProcess Models
 Prototyping

  The Spiral Model

S1:45,W1
S2:85-88,138-153

6 1
1

Specialized Process Models
 Component Based

Development
 The Formal Methods

Model
 Aspect Oriented Software

Development

S1:52, W1

S2:59-61

7 1  CapabilityMaturity
ModelIntegration
(CMMI)

S2:62-63

8 1 Recapitulation and Discussion of
important questions

 Total No of Hours Planned For UnitI 8 Hours

 UNIT-II

1 1 RequirementAnalysis
Requirement EngineeringTasks
Initiatingrequiremente
ngineeringprocess

 Elicitingrequirements

S2: 176-181

S2:182:191

2 1 Requirement Analysis
Techniques
  Requirement Analysis

 Overall Objective and
Philosophy

 Analysis Rules of Thumb

S2:207-211
S5:241-244

3 1 Requirement
ModelingApproaches
Data ModelingConcepts

 Data Objects
 Data Attributes
 Relationships

S2:211-215

4 1 Flow Oriented Modeling
 CreatingData FlowModel
 Creating a Control FlowModel
 Need for SRS
 Characteristics and
components of SRS

S2:226-229

S5: 101-103

S2:229-230
W2,W5

5 1 SoftwareProject Management S1:684

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 3

6 1 Estimation in project planning
process

S1:729

7 1 Project Scheduling S1:759

8 1 Recapitulation and Discussion of
important questions

 Total No of Hours Planned For UnitII 8 Hours

 UNIT-III

1 1 Risk Management
 SoftwareRisk

S1:778
2 1  RiskIdentification

 Assessing Overall
Project Risk

 Risk Components and Drivers

S1:780-782

3 1  Risk Projection
 DevelopingaRisk

Table
 AssessingRisk

Impact
 Risk Refinement

S1:783-785

S1:787

4 1  RMMM Plan

QualityManagement
QualityConcepts

S1:790

S1:287-289
S1:412-418

5 1 SoftwareQualityAssurance S1:448

6 1 Software Reviews: A
Formality Spectrum

S1:438-439

7 1 Formal Technical Reviews

Metrics forprocessingproject

S1:441-444

S1:452-454

8 1 Recapitulation and Discussion of
important questions

 Total No of Hours Planned For Unit III 8 Hours

 UNIT-IV

1 1 Design Engineering
 Design within the Context

of SoftwareEngineering
 Design Process and

Design Quality

S1:225

S1:228-230

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 4

2 1 Design Concepts
 Abstraction
 Architecture
 Patterns
 Modularity

S1:231-234
S5:138-146

3 1  Information Hiding
 FunctionalIndependence
 Refinement
 Refactoring
 Design Classes

S1:235-239

4 1 Architectural Design
Elements

Creating an Architectural Design
 SoftwareArchitecture

S1:244-245

S1:252-256

5 1 Data Design
 Data Design at the

Architectural level
 Data Design at the

Component level
 Refiningthe Architecture

into Components
 Describing Instantiations

of theSystem

S2:289-291

S1:270-273

6 1 MappingData Flow into a
SoftwareArchitecture

 TransformFlow
TransactionFlow Tra
nsform Mapping
 Transaction Mapping
 Refiningthe Architectural

Design

S2:307-315

S2:316-320

7 1 ModelingComponentLevel
Design

 Component
 DesigningClass-Based

Components
 DesigningConventional

Components

S2: 324-327
S2:330-353

8 1 Recapitulation and Discussion of
important questions

 Total No of Hours Planned For Unit 1V 8 Hours 8 Hours

 UNIT-V

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 5

1 1 SoftwareTestingFundamentals
Strategic approach to software
testing

S2:394-397
S1:466-472

2 1 Testing strategies for
conventional software
 Validation Testing

S1:473-481
S1:483-485

3 1 System Testing

Black Box and White Box
Testing
White BoxTesting
 Basis Path Testing

S1:486-487

S2:421-426
S1:500-506

4 1 Control StructureTesting
BlackBoxTesting
 Graph Based Testing

Methods
 Equivalencepartitioning
 BoundaryValueAnalysis
 Orthogonal Arraytesting

S1:507-509

S1:509-512

S5:463-466
S1:512-516

5 1 Recapitulation and Discussion of
important questions

6 1 DiscussionofpreviousESEQ
uestionpapers

7 1 DiscussionofpreviousESEQ
uestionpapers

8 1 DiscussionofpreviousESEQ
uestionpapers

 Total No of Hours Planned For Unit V 8 Hours 8 Hours

 Total Planned Hours

40 Hours

SUGGESTEDREADINGS

S1: Roger S. Pressman, 2015, SoftwareEngineering– A Practitioner’s Approach, 8th

Edition,McGrawHillInternational Edition, New Delhi.

S2: R.S. Pressman, (2009).SoftwareEngineering: A Practitioner‘s Approach (7thed.).

McGraw-Hill.

S3:P.Jalote (2008). AnIntegratedApproach to SoftwareEngineering(2nded.). New Age

International Publishers.

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 6

8

S4: K.K. AggarwalandY.Singh (2008).Software Engineering(2nded.). New Age

International Publishers.

S5:Sommerville(2006). SoftwareEngineering(8thed.). Addison Wesley.

S6:D.Bell (2005). SoftwareEngineeringforStudents (4thed.)Addison-Wesley.

S7:R.Mall (2004).FundamentalsofSoftwareEngineering(2nded.). Prentice-HallofIndia.

WEBSITES

W1: https://medium.com/omarelgabrys-blog/software-engineering-software-process-and-

software-process-models-part-2-4a9d06213fdc

W2: en.wikipedia.org/wiki/

W3: http://www.slideshare.net/neelamani/software-engineering-note

W4: www.iso.org/iso/iso_9000

W5:https://www.technicalcommunicationcenter.com/2010/07/19/10-characteristics-of-

high-quality-srs-software-requirements-specifications/

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 1

UNIT-I
Introduction: The Evolving Role of Software, Software Characteristics, Changing
Nature of Software, Software Engineering as a Layered Technology, Software Process
Framework, Framework and Umbrella Activities, Process Models, Capability Maturity
Model Integration (CMMI).

Introduction to Software Engineering:

What is software engineering?

Software has become critical to advancement in almost all areas of human

Endeavour. The art of programming only is no longer sufficient to construct large

programs. There are serious problems in the cost, timeliness, maintenance and quality of

many software products. Software engineering has the objective of solving these

problems by producing good quality, maintainable software, on time, within budget. To

achieve this objective, we have to focus in a disciplined manner on both the quality of the

product and on the process used to develop the product.

Definition

At the first conference on software engineering in 1968, Fritz Bauer [FRIT68]

defined software engineering as “The establishment and use of sound engineering

principles in order to obtain economically developed software that is reliable and works

efficiently on real machines”. Stephen Schacht [SCHA90] defined the same as “A

discipline whose aim is the production of quality software, software that is delivered on

time, within budget, and that satisfies its requirements”. Both the definitions are popular

and acceptable to majority. However, due to increase in cost of maintaining software,

objective is now shifting to produce quality software that is maintainable, delivered on

time, within budget, and also satisfies its requirements.

The Evolving Role of Software

Software takes on a dual role. It is a product and, at the same time, the vehicle for

delivering a product. As a product, it delivers the computing potential embodied by

computer hardware or, more broadly, a network of computers that are accessible by local

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 2

hardware. Whether it resides within a cellular phone or operates inside a mainframe

computer, software is information transformer— producing, managing, acquiring,

modifying, displaying, or transmitting information that can be as simple as a single bit or

as complex as a multimedia presentation. As the vehicle used to deliver the product,

software acts as the basis for the control of the computer (operating systems), the

communication of information (networks), and the creation and control of other programs

(software tools and environments). Software delivers the most important product of our

time—information.

 Software transforms personal data (e.g., an individual’s financial transactions) so

that the data can be more useful in a local context; it manages business information to

enhance competitiveness; it provides a gateway to worldwide information networks (e.g.,

Internet) and provides the means for acquiring information in all of its forms.

 The role of computer software has undergone significant change over a time span

of little more than 50 years. Dramatic improvements in hardware performance,

profound changes in computing architectures, vast increases in memory and storage

capacity, and a wide variety of exotic input and output options have all precipitated more

sophisticated and complex computer-based systems.

The lone programmer of an earlier era has been replaced by a team of software

specialists, each focusing on one part of the technology required to deliver a complex

application.

Software

Computer software, or just software, is a collection of computer programs and

related data that provide the instructions for telling a computer what to do and how to do

it. In other words, software is a conceptual entity which is a set of computer programs,

procedures, and associated documentation concerned with the operation of a data

processing system. We can also say software refers to one or more computer programs

and data held in the storage of the computer for some purposes.

In other words software is a set of programs, procedures, algorithms and its

documentation. Program software performs the function of the program it implements,

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 3

either by directly providing instructions to the computer hardware or by serving as input

to another piece of software.

The term was coined to contrast to the old term hardware (meaning physical

devices). In contrast to hardware, software is intangible, meaning it "cannot be touched".

Software is also sometimes used in a more narrow sense, meaning application software

only. Sometimes the term includes data that has not traditionally been associated with

computers, such as film, tapes, and records.

Software Characteristics

1. Software is developed or engineered; it is not manufactured in the classical

sense.

 Although some similarities exist between software development and

hardware manufacture, the two activities are fundamentally different. In both activities,

high quality is achieved through good design, but the manufacturing phase for hardware

can introduce quality problems that are nonexistent (or easily corrected) for software.

Both activities are dependent on people, but the relationship between people applied

and work accomplished is entirely different . Both activities require the construction of a

"product" but the approaches are different. Software costs are concentrated in engineering.

This means that software projects cannot be managed as if they were manufacturing

projects

2. Software doesn't "wear out."

Fig 1.1 depicts failure rate as a function of time for hardware.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 4

Fig 1.1 Failure curve for hardware

 The relationship, often called the "bathtub curve," indicates that hardware

exhibits relatively high failure rates early in its life (these failures are often

attributable to design or manufacturing defects); defects are corrected and the failure

rate drops to a steady-state level (ideally, quite low) for some period of time. As time

passes, however, the failure rate rises again as hardware components suffer from the

cumulative affects of dust, vibration, abuse, temperature extremes, and many other

environmental maladies. Stated simply, the hardware begins to wear out.

Fig 1.2 Failure curves for software

 Software is not susceptible to the environmental maladies that cause

hardware to wear out. In theory, therefore, the failure rate curve for software should

take the form of the “idealized curve” shown in Fig 1.2. Undiscovered defects will

cause high failure rates early in the life of a program. However, these are corrected

(ideally, without introducing other errors) and the curve flattens as shown. The

idealized curve is a gross oversimplification of actual failure models for software.

However, the implication is clear—software doesn't wear out.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 5

 This seeming contradiction can best be explained by considering the

“actual curve” shown in Fig 1.2. During its life, software will undergo change

(maintenance). As changes are made, it is likely that some new defects will be

introduced, causing the failure rate curve to spike as shown in Fig 1.2. Before the

curve can return to the original steady-state failure rate, another change is requested,

causing the curve to spike again. Slowly, the minimum failure rate level begins to

rise—the software is deteriorating due to change.

 Another aspect of wear illustrates the difference between hardware and

software. When a hardware component wears out, it is replaced by a spare part. There

are no software spare parts. Every software failure indicates an error in design or in

the process through which design was translated into machine executable code.

Therefore, software maintenance involves considerably more complexity than

hardware maintenance.

3. Although the industry is moving toward component-based assembly, most

software continues to be custom built.

 Consider the manner in which the control hardware for a computer-based

product is designed and built. The design engineer draws a simple schematic of the

digital circuitry, does some fundamental analysis to assure that proper function will be

achieved, and then goes to the shelf where catalogs of digital components exist. Each

integrated circuit (called an IC or a chip) has a part number, a defined and validated

function, a well-defined interface, and a standard set of integration guidelines. After

each component is selected, it can be ordered off the shelf.

 A software component should be designed and implemented so that it can

be reused in many different programs. Modern reusable components encapsulate both

data and the processing applied to the data, enabling the software engineer to create

new applications from reusable parts. For example, today's graphical user interfaces

are built using reusable components that enable the creation of graphics windows,

pull-down menus, and a wide variety of interaction mechanisms. The data structure

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 6

and processing detail required to build the interface are contained with a library of

reusable components for interface construction.

Software Myths

 Belief about the software and the process used to build it- can be traced To

the earliest days of computing. Myths have a number of attributes that have made them

insidious. For instance, myths appear to be reasonable statements of fact, they have an

intuitive feel, and they are often promulgated by experienced practitioners

Management myths

 Managers with software responsibility, like managers in most

disciplines, are often under pressure to maintain budgets, keep schedules from slipping,

and improve quality. Like a drowning person who grasps at a straw, a software

manager often grasps at belief in a software myth, if that belief will lessen the pressure

(even temporarily).

Myth: We already have a book that's full of standards and procedures for building

software, won't that provide my people with everything they need to know?

Reality: The book of standards may very well exist, but is it used? Are software

practitioners aware of its existence? Does it reflect modern software engineering practice?

Is it complete? Is it streamlined to improve time to delivery while still maintaining a

focus on quality?

Myth: If we get behind schedule, we can add more programmers and catch up

Reality: Software development is not a mechanistic process like manufacturing.

In the words of Brooks [BRO75]: "adding people to a late software project makes it

later." At first, this statement may seem counterintuitive. However, as new people are

added, people who were working must spend time educating the newcomers,

thereby reducing the amount of time spent on productive development effort. People

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 7

can be added but only in a planned and well-coordinated manner

Myth: If I decide to outsource3 the software project to a third party, I can just relax and

let that firm build it.

Reality: If an organization does not understand how to manage and control software

projects internally, it will invariably struggle when it out sources software projects

Customer myths

 A customer who requests computer software may be a person at the next

desk, a technical group down the hall, the marketing/sales department, or an outside

company that has requested software under contract. In many cases, the customer believes

myths about software because software managers and practitioners do little to correct

misinformation. Myths lead to false expectations (by the customer) and ultimately,

dissatisfaction with the developer.

Myth: A general statement of objectives is sufficient to begin writing programs—

we can fill in the details later.

Reality: Although a comprehensive and stable statement of requirements is not always

possible an ambiguous statement of objectives is a recipe for disaster. Unambiguous

requirements are developed only through effective and continuous communication

between customer and developer

Myth: Project requirements continually change, but change can be easily accommodated

because software is flexible

Reality: It is true that software requirements change, but the impact of change

varies with the time at which it is introduced. When requirement changes are requested

early cost impact is relatively small. However, as time passes, cost impact grows rapidly-

resources have been committed, a design framework has been established and a change

can cause upheaval that requires additional resources and major design modification

Practitioner's myths

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 8

 Myths that are still believed by software practitioners have been fostered by 50

years of programming culture. During the early days of software, programming was

viewed as an art form.

Myth: Once we write the program and get it to work, our job is done

Reality: Someone once said that "the sooner you begin 'writing code', the longer

it'll take you to get done." Industry data indicate that between 60 and 80 percent of all

effort expended on software will be expended after it is delivered to the customer for the

first time.

Myth: Until I get the program "running" I have no way of assessing its quality

Reality: One of the most effective software quality assurance mechanisms can be

applied from the inception of a project—the formal technical review. Software reviews

are a "quality filter" that have been found to be more effective than testing for finding

certain classes of software defects.

Myth: The only deliverable work product for a successful project is the working

program.

Reality: A working program is only one part of a software configuration that includes

many elements. Documentation provides a foundation for successful engineering

and, more important, guidance for software support

Myth: Software engineering will make us create voluminous and unnecessary

documentation and will invariably slow us down.

Reality: Software engineering is not about creating documents. It is about creating quality.

Better quality leads to reduced rework. And reduced rework results in faster delivery

times.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 9

A Generic View of process

Software Engineering as a Layered Technology

Any engineering approach much rests on organizational approach to quality, e.g.

total quality management and such emphasize continuous process improvement (that is

increasingly more effective approaches to software engineering). The bedrock that

supports a software engineering is a quality focus.

 The foundation for software engineering is the process layer. Software

engineering process is the glue that holds the technology layers together and enables

rational and timely development of computer software. Process defines a framework for a

set of key process areas (KPAs) that must be established for effective delivery of

software engineering technology. The key process areas form the basis for management

control of software projects and establish the context in which technical methods are

applied, work products (models, documents, data, reports, forms, etc.) are produced,

milestones are established, quality is ensured, and change is properly managed.

 Fig 1.3 Software Engineering Layers

 Software engineering methods provide the technical how-to's for building

software. Methods encompass a broad array of tasks that include requirements analysis,

design, program construction, testing, and support. Software engineering methods

rely on a set of basic principles that govern each area of the technology and include

modeling activities and other descriptive techniques.

 Software engineering tools provide automated or semi-automated support for the

process and the methods. When tools are integrated so that information created by

one tool can be used by another, a system for the support of software development,

called computer-aided software engineering, is established.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 10

Process Framework

Identifies a small number of framework activities that are applicable to all

software projects. In addition the framework encompasses umbrella activities that are

applicable across the software process.

Generic Process Framework Activities

Each framework activity is populated by a set of software engineering actions. An

action, e.g. design, is a collection of related tasks that produce a major software

engineering work product.

Communication – lots of communication and collaboration with customer

and other stakeholders.. Encompasses requirements gathering.

Planning – establishes plan for software engineering work that follows. Describes

technical tasks, likely risks, required resources, works products and a work schedule

Modeling – encompasses creation of models that allow the developer and customer to

better understand software requirements and the design that will achieve those

requirements.

Modeling Activity – composed of two software engineering actions

• analysis – composed of work tasks (e.g. requirement gathering, elaboration,

specification and validation) that lead to creation of analysis model and/or requirements

specification.

• design – encompasses work tasks such as data design, architectural design, interface

design and component level design leads to creation of design model and/or a design

specification.

Construction – code generation and testing.

Deployment – software, partial or complete, is delivered to the customer

who evaluates it and provides feedback.

Different projects demand different task sets. Software team chooses task set based on

problem and project characteristics.

Process Models

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 11

Prescriptive Model

 Every software engineering organization should describe a unique set of

framework activities for the software process it adopts. It should populate each

framework activity with a set of software engineering actions, and define each action in

terms of a task set that identifies the work to be accomplished to meet the development

goals.

It should then adapt the resultant process model to accommodate the specific

nature of each project, the people who will do the work, and the environment in which the

work will be conducted. Regardless of the process model that is selected, software

engineers have traditionally chosen a generic process framework that encompasses the

following framework activities: communication, planning, modeling, construction, and

deployment.

We call them “prescriptive” because they prescribe a set of process elements

framework activities, software engineering actions, tasks, work products, quality

assurance, and change control mechanisms for each project. Each process model also

prescribes a workflow- that is, the manner in which the process elements are inter-related

to one another.

All software process models can accommodate the generic framework activities

that have been described, but each applies a different emphasis to these activities and

defines a workflow that invokes each framework activity in a different manner.

Waterfall Model

There are times when the requirements of a problem are reasonably well

understood when work flows from communication through deployment in a reasonably

linear fashion. This situation is sometimes encountered when well-defined adaptations or

enhancements to an existing system must be made. It may also occur in a limited number

of new development efforts, but only when requirements are well defined and reasonably

stable

The waterfall model, sometimes called the classic life cycle model, suggests a

systematic, sequential approach to software development that begins with customer

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 12

specification of requirements and progresses through planning, modeling, construction,

and deployment.

Fig 1.4 Waterfall Model

The waterfall model is the oldest paradigm for software engineering. However,

over the past two decades, criticism of this process model has caused even ardent

supporters to question its efficacy. Among the problems that are sometimes encountered

when the waterfall model is applied are:

1. Real projects rarely follow the sequential flow that the model proposes.

Although the linear model can accommodate iteration, it does so indirectly. As a result,

changes can cause confusion as the project team proceeds.

2. It is often difficult for the customer to state all requirements explicitly. The

waterfall model requires this and has difficulty accommodating the natural uncertainty

that exists at the beginning of many projects.

3. The customer must have patience. A working version of the program(s) will not

be available until late in the project time-span. A major blunder, if undetected until the

working program is reviewed, can be disastrous.

In an interesting analysis of actual projects found that the linear nature of the

classic life cycle leads to “blocking states” in which some project team members must

wait for other members of the team to complete dependent tasks. In fact, the time spent

waiting can exceed the time spent on productive work! The blocking state tends to be

more prevalent at the beginning and end of a linear sequential process.

Today, software work is fast-paced and subject to a never –ending stream of

changes. The waterfall model is often inappropriate for such work. However, it can serve

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 13

as a useful process model in situations where requirements are fixed and work is to

proceed to completion in a linear manner.

Incremental process Models.

There are many situations in which initial software requirements are reasonably

well-defined, but the overall scope of the development effort precludes a purely linear

process. In addition, there may be a compelling need to provide a limited set of software

functionality to users quickly and then refine and expand on that functionality in later

software releases. In such cases, a process model that is designed to produce the software

in increments is chosen.

1. The Incremental Model

 The incremental model combines elements of the waterfall model applied in an

iterative fashion. The incremental model applies linear sequences in a staggered fashion

as calendar time progresses. Each linear sequence produces a deliverable “increment” of

the software.

 For example, word-processing software developed using the incremental

paradigm might deliver basic file management, editing, and document production

functions in the first increment; more sophisticated editing and document production

capabilities in the second increment; spelling and grammar checking in the third

increment; and advanced page layout capability in the fourth increment. It should be

noted that the process flow for any increment can incorporate the prototyping paradigm

When an incremental model is used, the first increment is often a core product.

That is, basic requirements are addressed, but many supplementary features (some known,

others unknown) remain undelivered. The core product is used by the customer (or

undergoes detailed review). As a result of use and/or evaluation, a plan is developed for

the next increment. The plan addresses the modification of the core product to better meet

the needs of the customer and the delivery of additional features and functionality. This

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 14

process is repeated following the delivery of each increment, until the complete product is

produced

Fig:1.5 The Incremental Model

 The incremental process model, like prototyping and other evolutionary

approaches, is iterative in nature. But unlike prototyping, the incremental model focuses

on the delivery of an operational product with each increment. Early increments are

stripped down versions of the final product, but they do provide capability that serves the

user and also provide a platform for evaluation by the user.

Increment 1: Analysis-->Design-->Code-->Test (Delivery of 1st Increments. Normally

'''Core Product''')

Increment 2: Analysis-->Design-->Code-->Test (Delivery of 2nd Increments)

Increment n: Analysis-->Design-->Code-->Test (Delivery of nth Increments)

Advantages

 It is useful when staffing is unavailable for the complete implementation.
 Can be implemented with fewer staff people.
 If the core product is well received then the additional staff can be added.
 Customers can be involved at an early stage.
 Each iteration delivers a functionally operational product and thus customers can

get to see the working version of the product at each stage.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 15

2. The RAD Model

 Rapid application development (RAD) is an incremental software process

model that emphasizes a short development cycle. The RAD model is a “high-speed”

adaptation of the waterfall model in which rapid development is achieved by using

component-based construction. If requirements are well understood and project scope

is constrained, the RAD process enables a development team to create a “fully

functional system” within very short time periods (e.g., 60 to 90 days)

 Like other process models, the RAD approach maps into the generic

framework activities.

 Communication works to understand the business problem and the

information characteristics that the software must accommodate.

 Planning is essential because multiple software teams work in parallel on

different system functions.

 Modeling encompasses three major phases- business modeling, data modeling

and process modeling and establishes design representations that serve as the

basis for RAD’s construction activity.

 Construction emphasizes the use of preexisting software components and the

application of automatic code generation.

 Finally, deployment establishes a basis for subsequent iterations, if required.

 The RAD process model is illustrated in Fig 1.6. Obviously, the time constraints

imposed on a RAD project demand “scalable scope” . If a business application can be

modularized in a way that enables each major function to be completed in less than three

months (using the approach described previously), it is a candidate for RAD. Each major

function can be addressed by a separate RAD team and then integrated to form a whole.

Drawbacks

• For large but scalable projects, RAD requires sufficient human resources to create the

right number of RAD teams.

• If developers and customers are not committed to the rapid-fire activities necessary to

get a system complete in a much abbreviated time frame, RAD projects will fail.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 16

Fig:1.6 The RAD Model

•. If a system cannot be properly modularized, building the components necessary for

RAD will be problematic

 If high performance is an issue and performance is to be achieved through tuning

the interfaces to system components, the RAD approach may not work.

• RAD may not be appropriate when technical risks are high.

Evolutionary Process Model

 Software, like all complex systems, evolves over a period of time. Business and

product requirements often change as development proceeds, making a straight path to an

end product unrealistic; tight market deadlines make completion of a comprehensive

software product impossible, but a limited version must be introduced to meet

competitive or business pressure; a set of core product or system requirements is well

understood, but the details of product or system extensions have yet to be defined. In

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 17

these and similar situations, software engineers need a process model that has been

explicitly designed to accommodate a product that evolves over time.

 Evolutionary models are iterative. They are characterized in a manner that enables

software engineers to develop increasingly more complete versions of the software

1. Prototyping

Software prototyping, refers to the activity of creating prototypes of software

applications, i.e., incomplete versions of the software program being developed. It is an

activity that can occur in software development and is comparable to prototyping as

known from other fields, such as mechanical engineering or manufacturing.

 A prototype typically simulates only a few aspects of the final solution, and may

be completely different from the final product.

 Often, a customer defines a set of general objectives for software but does not

identify detailed input, processing, or output requirements. In other cases, the developer

may be unsure of the efficiency of an algorithm, the adaptability of an operating system,

or the form that human/machine interaction should take. In these, and many other

situations, a prototyping paradigm may offer the best approach.

 Although prototyping can be used as a standalone process model, it is more

commonly used as a technique that can be implemented within the context of any one of

the process models. Regardless of the manner in which it is applied, the prototyping

paradigm assists the software engineer and the customer to better understand what is to be

built when requirements are fuzzy.

 The prototyping paradigm begins with communication. The software engineer and

customer meet and define the overall objectives for the software, identify whatever

requirements are known, and outline areas where further definition is mandatory. A

prototyping iteration is planned quickly and modeling (“in the form of ”quick design”)

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 18

occurs. The quick design focuses on a representation of those aspects of the software that

will be visible to the customer/user (e.g., input approaches and output formats).

 The quick design leads to the construction of a prototype. The prototype is

deployed and then evaluated by the customer. Feedback is used to refine requirements for

the software.

 Iteration occurs as the prototype is tuned to satisfy the needs of the customer,

while at the same time enabling the developer to better understand what needs to be done

Advantages

 1.The software designer and implementer can obtain feedback from the users early in the

project

2.The client and the contractor can compare if the software made matches the software

specification, according to which the software program is built.

3.It also allows the software engineer some insight into the accuracy of initial project

estimates and whether the deadlines and milestones proposed can be successfully met.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 19

Disadvantages

1.Often clients expect that a few minor changes to the prototype will more than suffice

their needs. They fail to realise that no consideration was given to the overall quality of

the software in the rush to develop the prototype.

2.The developers may lose focus on the real purpose of the prototype and compromise the

quality of the product. For example, they may employ some of the inefficient algorithms

or inappropriate programming languages used in developing the prototype. This mainly

due to laziness and an over reliance on familiarity with seemingly easier methods.

3. A prototype will hardly be acceptable in court in the event that the client does not agree

that the developer has discharged his/her obligations. For this reason using the prototype

as the software specification is normally reserved for software development within an

organisation.

2. The Spiral Model

The Spiral model, originally proposed by Boehm, is an evolutionary software

process model that couples the iterative nature of prototyping with the controlled and

systematic aspects of the Waterfall model. It provides the potential for rapid development

of increasingly more complete versions of the software.

 Using the Spiral Model the software is developed in a series of evolutionary

releases. During early iterations, the release might be a prototype. During later iterations,

increasingly more complete versions of the engineered system are produced.

A Spiral Model is divided into a number of framework activities defined by the

software engineering team. As this evolutionary process begins, the software team

performs activities that are implied by a circuit around the spiral in a clockwise direction,

beginning at the center

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 20

Anchor point milestones – a combination of work products and conditions that

are attained along the path of the spiral are noted for each evolutionary pass.

The first circuit around the spiral might result in the development of a product

specification; subsequent passes around the spiral might be used to develop a prototype

and then progressively more sophisticated versions of the software.

Each pass through the planning region results in adjustments to the project plan.

Cost and schedule are adjusted based on feedback derived from the customer after

delivery.

Unlike other process models that end when software is delivered, the spiral model

can be adapted to apply throughout the life of the computer software. Therefore, the first

circuit around the spiral might represent a “concept development project” which starts at

the core of the spiral and continues for multiple iterations until concept development is

complete.

Fig:1.8 The Spiral Model

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 21

Advantages of the Spiral Model

 Realistic approach to the development because the software evolves as the process

progresses. In addition, the developer and the client better understand and react to

risks at each evolutionary level.

 The model uses prototyping as a risk reduction mechanism and allows for the

development of prototypes at any stage of the evolutionary development.

 It maintains a systematic stepwise approach, like the classic waterfall model, and also

incorporates into it an iterative framework that more reflect the real world.

Disadvantages of the Spiral Model

 One should possess considerable risk-assessment expertise

 It has not been employed as much proven models (e.g. the Waterfall Model) and

hence may prove difficult to ‘sell’ to the client.

3. The Concurrent Development Model

 The concurrent development model, sometimes called concurrent engineering can

be represented schematically as a series of framework activities, software engineering

actions and tasks, and their associated states. For example, the modeling activity defined

for the spiral model is accomplished by invoking the following actions: prototyping

and/or analysis modeling and

specification and design.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 22

Fig:1.9 One element of the Concurrent process Model

 The activity—analysis—may be in any one of the states noted at any given time.

Similarly, other activities (e.g., design or customer communication) can be represented in

an analogous manner. All activities exist concurrently but reside in different states. For

example, early in a project the customer communication activity (not shown in the figure)

has completed its first iteration and exists in the awaiting changes state. The analysis

activity (which existed in the none state while initial customer communication was

completed) now makes a transition into the under development state. If, however, the

customer indicates that changes in requirements must be made, the analysis activity

moves from the under development state into the awaiting changes state.

 The concurrent process model defines a series of events that will trigger

transitions from state to state for each of the software engineering activities. For example,

during early stages of design, an inconsistency in the analysis model is uncovered. This

generates the event analysis model correction which will trigger the analysis activity

from the done state into the awaiting changes state.

 The concurrent process model is applicable to all types of software development

and provides an accurate picture of the current state of a project. Rather than confining

software engineering activities to a sequence of events, it defines a network of activities.

Each activity on the network exists simultaneously with other activities. Events generated

within a given activity or at some other place in the activity network trigger transitions

among the states of an activity

4. A Final Comment on the Evolutionary Processes

 The first concern is that prototyping poses a problem to project planning because

of the uncertain number of cycles required to construct the product. Most project

management and estimation techniques are based on the linear layouts of activities, so

they do not fit completely

 Second, Evolutionary processes do not establish the maximum speed of the

evolution. On the other hand, if the speed is too slow then productivity could be affected.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 23

 Third, software processes should be focused on flexibility and extensibility rather

than on high quality

 The intent of Evolutionary process model is to develop high quality software in an

iterative or incremental manner. However, it is possible to use an evolutionary process to

emphasize flexibility, extensibility and speed of development. The challenge for software

teams and project managers is to establish a proper balance between these critical project

and product parameters and customer satisfaction

Specialized Process Models

 Specialized models tend to be applied when a narrowly defined software

engineering approach is chosen

1. Component Based Development

 Commercial off the shelf (COTS) software components, developed by vendors,

who offer them as products, can be used when software is to be built. These components

provide targeted functionality with well defined interfaces that enable the component to

be integrated into the software.

 The component-based development (CBD) model incorporates many of the

characteristics of the spiral model. It is evolutionary in nature, demanding an iterative

approach to the creation of software. However, the component-based development model

composes applications from prepackaged software components (called classes).

 Modeling and construction activities begin with the identification of candidate

components. These components can be designed as either conventional software modules

or object oriented classes

 The component based component model incorporates the following steps

 Available component based products are researched and evaluated for the

application domain

 Component integration issues are considered

 Software architecture is designed to accommodate the components

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 24

 Components are integrated into the architecture

 Comprehensive testing is conducted to ensure proper functionality

The component-based development model leads to software reuse, and reusability

provides software engineers with a number of measurable benefits. Based on studies of

reusability, QSM Associates, Inc., reports component assembly leads to a 70 percent

reduction in development cycle time; an 84 percent reduction in project cost.

2. The Formal Methods Model

 The formal methods model encompasses a set of activities that leads to formal

mathematical specification of computer software. Formal methods enable a software

engineer to specify, develop, and verify a computer-based system by applying a rigorous,

mathematical notation.

 When formal methods are used during development, they provide a mechanism

for eliminating many of the problems that are difficult to overcome using other software

engineering paradigms.

Ambiguity, incompleteness, and inconsistency can be discovered and corrected

more easily, not through ad hoc review but through the application of mathematical

analysis. When formal methods are used during design, they serve as a basis for program

verification and therefore enable the software engineer to discover and correct errors that

might go undetected.

 The development of formal models is currently quite time consuming and

expensive.

 Because few software developers have the necessary background to apply formal

methods, extensive training is required.

 It is difficult to use the models as a communication mechanism for technically

unsophisticated customers.

3. Aspect oriented Software Development

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 25

Regardless of the software process that is chosen, the builders of the complex software

invariably implement a set of lacalized features, functions and information content. These

localized software characteristics are modeled as components and then constructed within

the context of a system architecture

 When concerns cut across multiple system functions, features and information,

they are often referred to as crosscutting concerns.

 Aspect oriented software development(AOSD) often referred to as aspect oriented

programming(AOP) is a relatively new software engineering paradigm that provides a

process and methodological approach for defining, specifying, designing and constructing

aspects

 Aspect oriented component engineering(AOCE) uses a concept of horizontal

slices through vertically decomposed software components called aspects to characterize

cross cutting functional and non functional properties of components

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT I SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 26

Important Questions

1. What is Software Engineering?

2. Describe the Layered Approach of Software Engineering.

3. Explain about the Process Framework activities.

4. Illustrate about the Process model and its type.

5. Explain about the RAD model.

6. Define CMMI.

7. Define the nature of Software Engineering.

Software Enginering

(17CTU402)
UNIT I

S.No Question Option A Option B Option C Option D

1
Software takes on a

______________ role.
single dual triple tetra

2
Software is a

_______________.
virtual system modifier framework

3

Instructions that when

executed provide desired

function and performance

is called

software hardware firmware humanware

4

High quality of software is

achieved through

________________.

testing good design construction manufacture

5
Software doesn’t

________________.
tearout wearout degrade deteriorate

6

Software is not

susceptible to

______________.

hardware defects
environment

al melodies
deterioration

7
Software will undergo

__________.
database testing enhancement manufacture

8

 _________ refers to the

meaning and form of

incoming and outgoing

information.

content software hardware data

9

 _____________ refers to

the predictability of the

order and timing of

information.

system

software

network

software

information

determinacy
database

10
____________ is not a

system software.
MS Office compiler editor

file management

utility

11

Collection of programs

written to service other

programs are called

__________.

system

software

business

software

embedded

software
d. pc software

12
Which one is not coming

under software myths

Management

myths

customer

myths

product

myths

practitioners

myths

13
_________ is a PC

Software.
MS word LISP CAD C

14

Software that monitors,

analyses, controls real

world events is called

_________.

Business

software

real time

software

web based

software

d. embedded

software

15

The bedrock that supports

software engineering is

a______

tools methods
process

models
a quality focus

16

A complete software

process by identifying a

small number of _____

framework

activities

umbrella

activities

process

framework
software process

17

The process framework

encompassess a set of

framework

activities

umbrella

activities

process

framework
software process

18
software engineering

action

is________________

design chronic decision crisis

19
Which one is effect the

outcome of the project?

Risk

management

Measuremen

t

technical

reviews
Reusability

20
Continuing indefinitely is

called ___________.
crisis decision affliction chronic

21
Component based

development uses

____________.

functions subroutines procedures objects

22
UML stands for

____________.

Universal

Modelling

Language

User

Modified

Language

Unified

Modelling

Language

User Model

Language

23

A model which uses

formal mathematical

specification is called

________.

 4 GT model

Unified

method

model

formal

methods

model

component based

development

24

A variation of formal

methods model is called

_____________.

component

based

development

4 GT model

unified

method

model

cleanroom

software

engineering

25

The development of

formal methods is

___________.

less time

consuming

quite time

consuming

does not

consume

time

very less time

consuming

26
The first step to develop

software is

______________.

analysis design
requirements

gathering
coding

27
The waterfall model

sometimes called as

classic

model

classic life

cycle model

life cycle

model
cycle model

28
Software engineering

activities include

decision affliction hardware maintenance

29
all process model

prescribes a

______________.

circular elliptical spiral workflow

30

Component based

development incorporates

the characteristics of the

___________ model

circular elliptical spiral hierarchical

31
Prototype is a

______________.
software hardware computer model

32

For small applications it is

possible to move from

requirement gathering step

to____________.

analysis
implementati

on
design modeling

33
Software project

management begins with a

set of activities that are

project

planning

software

scope

software

estimation
decomposition

34

Breaking up of a complex

problem into small steps

is called ____________.

project

planning

software

scope

software

estimation
decomposition

35

The ease with which

software can be

transferred from one

computer to another. This

portability reliability efficiency accuracy

36

The ability of a program

to perform a required

function under stated

condition for a stated

portability reliability efficiency accuracy

37

The event to which

software performs its

intended function. This

quality attribute is called

portability reliability efficiency accuracy

38

A qualitative assessments

of freedom from errors.

This quality attribute is

called ____________.

portability reliability efficiency accuracy

39

The extent to which

software can continue to

operate correctly. This

quality attribute is called

robustness correctness efficiency reliability

40

The extent to which the

software is free from

design and coding defects

ie fault free. This quality

robustness correctness efficiency reliability

41
System shall reside in

50KB of memory is an

example of

quantified

requirement

qualified

requirement

functional

requirement

performance

requirement

42

Accuracy shall be

sufficient to support

mission is an example of

___________.

quantified

requirement

qualified

requirement

functional

requirement

performance

requirement

43
System shall make

efficient use of memory is

an example of

quantified

requirement

qualified

requirement

functional

requirement

performance

requirement

44
A software product often

has

Multiple

users

developers users developers and

maintainers.

45

Multiprogramming and

time sharing software

techniques were

developed during the

first

generation

computing

second

generation

computing

third

generation

computing

fifth generation

computing

46

According to Boehm

software engineering

involves the practical

application of scientific

Planning of

computer

programs

analysis of

computer

programs

 design &

construction

of computer

programs

 design &

maintainer of

computer

programs.

47

IEEE define software

engineering as the

systematic approach to the

development operation

implementati

on of the

software.

 retirement

of the slw

construction

of the

software

maintenance

48

Good, oral, written and----

skills are crucial for the

software engineer

interpersonal

communicati

on

communicati

on

managerial

skills

MIS

49
Software is ------- changeable modified updateable intangible

50
In software engineering

the unit of decomposition

are called

units modules relationships components

51

Control interfaces are

established by calling ------

among modules

global data

items

functions relationships local data items

52

programmers who

intentionally write

convoluted programs that

have obscure side effects

are known as ----

intruders analyzers testers hackers

53

------ is used to denote an

individual who is

concerned with the details

of implementing

packaging and modifying

algorithms and

system

analysis

programmer software

engineer

customer.

54
------- are additionally

concerned with issues of

analysis, design,

Developers analyst customers software

engineers.

55

On large projects ----- are

essential

analysis &

design

implementati

on & testing

modification standard

practices&

formal

procedures

56
The term “ computer

software” is often take

synonymous with

Project programs collection of

programs

source code.

57
Software products include System level

software

application

programs

System level

software &

application

OS

58
Documentation explains

the -------

contact of

the project

modules of

the project

characteristic

of an

Software usage

59
------ is a primary concern

of software engineers

Software

design

software

maintenance

software

product

software quality.

60

The quality attributes for

very software product

includes

design clarity accuracy visibility

Answer

dual

modifier

software

good

design

wearout

environm

ental

melodies

enhance

ment

content

informati

on

determin

acy

MS

Office

system

software

product

myths

MS word

real time

software

a quality

focus

framewor

k

activities

umbrella

activities

design

Risk

managem

ent

chronic

objects

Unified

Modellin

g

formal

methods

model

cleanroo

m

software

engineeri

quite

time

consumin

requirem

ents

gathering
classic

life cycle

model
maintena

nce

workflow

spiral

model

impleme

ntation

project

planning

decompo

sition

portabilit

y

reliability

efficiency

accuracy

robustnes

s

correctne

ss

quantifie

d

requirem

qualified

requirem

ent

qualified

requirem

ent
developer

s and

maintaine
third

generatio

n

computin

g

design &

constructi

on of

retiremen

t of the

slw
interpers

onal

communi

cation
intangibl

e

modules

relationsh

ips

hackers

program

mer

software

engineers

.
standard

practices

& formal

procedure
source

code.

System

level

software
characteri

stic of an

software

quality.

clarity

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 1

UNIT-II
Requirement Analysis; Initiating Requirement EngineeringProcess- Requirement
Analysis and Modeling Techniques- FlowOriented Modeling- Need for SRS-
Characteristics and Components of SRS- Software Project Management: Estimation in
Project Planning Process, Project Scheduling.

Requirements Engineering

Requirements analysis in systems engineering and software engineering, encompasses

those tasks that go into determining the needs or conditions to meet for a new or altered

product, taking account of the possibly conflicting requirements of the various

stakeholders, such as beneficiaries or users. It is an early stage in the more general

activity of requirements engineering which encompasses all activities concerned with

eliciting, analyzing, documenting, validating and managing software or system

requirements.

Requirements analysis is critical to the success of a systems or software project. The

Requirements should be documented, actionable, measurable, testable, traceable, related

to identified business needs or opportunities, and defined to a level of detail sufficient for

system design.

Requirements Engineering Tasks

Requirements engineering provides the appropriate mechanism for understanding what

the customer wants, analyzing need, assessing feasibility, negotiating a reasonable

solution, specifying the solution unambiguously, validating the specification, and

managing the requirements as they are transformed into an operational system

 The requirement engineering process is accomplished through the execution of

seven distinct functions. They are

 Inception
 Elicitation
 Elaboration
 Negotiation
 Specification

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 2

 Validation
 Management

Inception

 How does a software project get started? Is there a single event that becomes the

catalyst for a new computer based system or product, or does the need evolve over time?

 Stakeholders from the business community define a business case for the idea, try

to identify the breadth and depth of the market, do a rough feasibility analysis, and

identify a working description of the project’s scope.

 At project inception, software engineer’s ask a set of context free questions

discussed. The intent is to establish a basic understanding of the problem, the people who

want a solution, the nature of the solution that is desired, and the effectiveness of

preliminary communication and collaboration between the customer and developer

Elicitation

 It certainly seems simple enough-ask the customer, the users, and others what the

objectives for the system or product are, what is to be accomplished, how the system or

product are, what is to be accomplished, how the system or product fits into the needs of

the business, and finally, how the system or product is to be used on a day to day basis

i) Problem of scope

 The boundary of the system is ill-defined or the customers/users specify

unnecessary technical detail that may confuse rather than clarify, overall system

objectives

ii) Problem of understanding

 The customers/users are not completely sure of what is needed, have a poor

understanding of the capabilities and limitations of their computing environment, don’t

have a full understanding of the problem domain, have trouble communicating needs to

the system engineer or specify requirements that are ambiguous

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 3

iii) Problem of volatility

 The requirements change over time

Elaboration

 The information obtained from the customer during inception and elicitation is

expanded and refined during elaboration. This requirement engineering activity focuses

on developing a refined technical model of software functions, features, and constraints

 Elaboration is an analysis modeling action that is composed of a number of

modeling and refinement tasks. Elaboration is driven by the creation and refinement of

user scenarios that describe how the end-user interacts with the system. Each user

scenario is parsed to extract analysis classes-business domain entities that are visible to

the end user. The attributes of each analysis classes are defined and the services that are

required by each class are identified.

 The end result of elaboration is an analysis model that defines the informational,

functional, and behavioral domain of the problem

Negotiation

It is also relatively common for different customers or users to propose conflicting

requirements, arguing that their version is essential for our special needs.

The requirement engineer must reconcile these conflicts through a process of negotiation.

Customers, users, and other stakeholders are asked to rank requirements and then discuss

conflicts in priority. Risk associated with each requirement are identified and analyzed.

Using an iterative approach, requirements are eliminated, combined, and modified so that

each party achieves some measure of satisfaction

Specification

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 4

 A specification can be a written document, a set of graphical models, a formal

mathematical model, a collection of usage scenarios, a prototype or any combination of

these.

However, it is sometimes necessary to remain flexible when a specification is to

be developed. For large systems, a written document, combining natural language

descriptions and graphical models may be the best approach.

The specification is the final work product produced by requirement engineer. It

serve as the foundation for subsequent software engineering activities. It describes the

function and performance of a computer-based system and the constraints that will govern

its development

Validation

The work product produced as a consequence of requirements engineering are

assessed for quality during validation step. Requirements validation examines the

specification to ensure that all software requirements have been stated unambiguously;

inconsistencies, omissions and errors have been detected and corrected

The primary requirement validation mechanism is the formal technical review.

The review team that validates requirements includes software engineers, customers,

users and other stakeholders who examine the specification looking for errors in content

or interpretation, areas where clarification may be required, missing information,

inconsistencies, conflicting requirements or unrealistic requirements

Requirements Management

Requirements management is the set of activities that help the project team

identify, control, and track requirements and changes to requirements at any time as the

project proceeds. Many of these activities are identical to the software configuration

management techniques

Requirements management begins with identification. Each requirement is

assigned a unique identifier. Once requirements have been identified, traceability tables

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 5

are developed. Each traceability table relates requirements to one or more aspects of the

system or its environment

Traceability table

i) Features traceability table

It shows how requirements relate to important customer observable system

ii) Source traceability table

Identifies the source of each requirement

iii) Dependency traceability table

Indicates how requirements are related to one another

iv) Subsystem traceability table

Categorizes requirements by the subsystems that they govern

v) Interface traceability table

Shows how requirements relate to both internal and external system interfaces

Initiating the Requirement Engineering Process

The steps required to initiate requirements engineering-to get the project started in

a way that will keep it moving forward toward a successful solution

i) Identifying the stakeholders

Sommerville and Sawyer define a stakeholder as “anyone who benefits in a direct

or indirect way from the system which is being developed”. We have already identified

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 6

the usual suspects: business operations manager, product managers, marketing people,

internal and external customers, end users, consultants, product engineers, software

engineers, support and maintenance engineers, and others.

Every stakeholder has a different view of the system, achieves different benefits

when the system is successfully developed, and is open to different risks if the

development effort should fail

ii) Recognizing multiple viewpoints

Because many different stakeholders exist, the requirements of the system will be

explored from many different points of view. For example, business managers are

interested in a feature set that can be built within budget and that will be ready to meet

defined market windows. End-users may want features that are familiar to them and that

are easy to learn and use.

Each of these constituencies will contribute information to the requirements

engineering process. As information from multiple viewpoints is collected, emerging

requirements may be inconsistent or may conflict with one another. The job of the

requirements engineer is to categorize all stakeholder information in a way that will allow

decision makers to choose an internally consistent set of requirements for the system

iii) Working toward collaboration

The job of the requirements engineer is to identify areas of commonality and areas

of conflict or inconsistency

Collaboration does not necessarily mean that requirements are defines by

committee. In many cases, stakeholders collaborate by providing their view of

requirements, but a strong “project champion” may take the final decision about which

requirements make the cut

iv) Asking the first questions

The first set of context-free questions focuses on the customer and other

stakeholders, overall goals, and benefits.

For example, the requirements engineer might ask

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 7

 Who is behind the request for this work?

 Who will use the solution?

 What will be the economic benefit of a successful solution?

These questions help to identify all stakeholders who will have interest in the software

to be built. In addition, the questions identify the measurable benefit of a successful

implementation and possible alternatives to custom software development

The next set of questions enables the software team to gain a better understanding of

the problem

 How would you characterize “good” output that would be generated by a

successful solution?

 What problems will this solution address?

 Can you show me the business environment in which the solution will be used?

 Will special performance issues or constraints affect the way the solution is

approached?

The final set of questions focuses on the effectiveness of the communication activity

itself

 Are you the right person to answer these questions?

 Are my questions relevant to the problem that you have?

 Am I asking too many questions?

 Can anyone else provide additional information?

 Should I be asking you anything else?

Eliciting Requirements

The Q & A session should be used for the first encounter only and then replaced

by a requirements elicitation format that combines elements of problem solving,

elaboration, negotiation and specification.

i) Collaborative requirements gathering

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 8

In order to encourage a collaborative, team-oriented approach to requirements

gathering, a team of stakeholders and developers work together to identify the problem,

propose elements of the solution

Many different approaches to collaborative requirements gathering have been proposed

 Meetings are conducted and attended by both customers and software engineers

 Rules for preparation and participation are established

 An agenda is suggested that is formal enough to cover all important points but

informal enough to encourage the free flow of ideas

 A “facilitator” controls the meeting

 The goal is to identify the problem, propose elements of the solution, negotiate

different approaches, and specify a preliminary set of solution requirements in an

atmosphere that is conductive to the accomplishment of the goal

To better understand the flow of events as they occur, we present a brief scenario that

outlines the sequence of events that lead up to the requirements gathering meeting, occur

during the meeting, and follow the meeting

During inception basic questions and answers establish the scope of the problem and

the overall perception of a solution. Out of these initial meetings the stakeholders write a

one-or two-page “product request”. Members of the software team and other stakeholder

organizations are invited to attend. The product request is distributed to all attendees

before the meeting date

ii) Quality function deployment

Quality function deployment is a technique that translates the needs of the

customer into technical requirements for software. It concentrates on maximizing

customer satisfaction from the software engineering process. Quality function deployment

identifies three types of requirements

a) Normal requirements

These requirements reflect objectives and goals stated for a product or system

during meetings with the customer. If these requirements are present, the customer is

satisfied.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 9

Example: Requested type of graphical displays, specific system functions and defined

levels of performance

b) Expected requirements

These requirements are implicit to the product or system and may be so

fundamental that the customer does not explicitly state them.

Example: overall operational correctness and reliability

c) Exciting Requirements

These requirements reflect features that go beyond the customer’s expectations

and prove to be very satisfying when present

Example: Word processing software is requested with standard features

 Quality function deployment uses customer reviews and observation, surveys and

examination of historical data as raw data for the requirements gathering activity. These

data are then translated into a table of requirements- called the customer voice table-that

is reviewed with the customer

 A variety of diagrams, matrices, and evaluation methods are then used to extract

expected requirements and to attempt to derive exciting requirements

iii) User Scenarios

 As requirements are gathered, an overall vision of system functions and features

begins to materialize. However, it is difficult to move into more technical software

engineering activities until the software team understands how these functions and

features will be used by different classes of end-users. To accomplish this , developers

and users can create a set of scenarios that identify a thread of usage for the system to be

constructed. The scenarios, often called use-cases, provide a description of how the

system will be used.

iv) Elicitation Work Products

 The work products produced as a consequence of requirements elicitation will

vary depending on the size of the system or product to be built. For most systems,the

work products include:

 A statement of need and feasibility

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 10

 A bounded statement of scope for the system or product
 A list of customers, users and other stakeholders who participated in requirements

elicitation
 A description of the system’s technical environment
 A list of requirements and the domain constraints that apply to each
 A set of usage scenario that provide insight into the use of the system or product

under different operating conditions
 Any prototypes developed to better define requirements

Building the Analysis Model

Requirement Analysis

 Requirement Analysis results in the specification of software’s operational

characteristics indicates software interface with other system elements and establishes

constraints that software must meet

 Requirement analysis allow the software engineer to elaborate on basic

requirements established during earlier requirement engineering tasks and build models

that depict user scenario, functional activities, problem classes and their relationships,

system and class behavior, and the flow of data as it is transformed.

 Requirement analysis provides the software designer with a representation of

information, function and behavior that can be translated to architectural, interface and

component-level designs

 Finally, the analysis model and the requirement specification provide the

developer and customer with the means to assess quality once software is built.

Throughout analysis modeling, the software engineer’s primary focus is on what and not

how

1. Overall Objectives and Philosophy

 The analysis model must have three primary objectives

 To describe what the customer requires

 To establish a basis for the creation of software design

 To define a set of requirements that can be validated once the software is built

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 11

 The analysis model bridges the gap between a system level description that

describes overall system functionality as it is achieved by applying software, hardware,

data, human and other system elements and a software design that describes the

software’s application architecture, user interface and component level structure

2. Analysis rules of Thumb

 The model should focus on requirements that are visible within the problem or

business domain. The level of abstraction should be relatively high

 Each element of the analysis model should add to an overall understanding of

software requirements and provide insight into the information domain, function

and behavior of the system

 Delay consideration of infrastructure and non functional models until design

 Minimize coupling throughout the system

 Be certain that the analysis model provides value to all stakeholders

 Keep the model as simple as it can be

3. Domain Analysis

 The analysis patterns often reoccur across many applications within a specific

business domain. If these patterns are defined and categorized in a manner that allows a

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 12

software engineer or analyst to recognize and reuse them, the creation of the analysis

model is expedited.

Input and output of Domain Analysis

Software domain analysis is the identification, analysis, and specification of

common requirements from a specific application domain, typically for reuse on multiple

projects within the application domain.

Analysis modeling approaches

One view of analysis modeling, called structured analysis, considers Data and the

processes that transform the dada as separate entities. Data objects are modeled in a way

that defines their attributes and relationships. Processes that manipulate data objects are

modeled in a manner that shows how they transform data as a data flow through the

system.

 A second approach to analysis modeling, called objects oriented analysis,

focuses on the definition of classes and the manner in which they collaborate with one

another to effect customer requirements.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 13

Analysis Modeling Approaches

Data Modeling Concepts

 Analysis modeling often begins with data modeling. The software engineer or

analyst defines all data objects that are processed within the system, the relationships

between the data objects, and other information that is pertinent to the relationships.

1. Data object

A data object is a representation of almost any composite information that must

be understood by software. By composite information, we mean something that has a

number of different properties or attributes. Therefore, width (a single value) would not

be a valid data object, but dimensions (incorporating height, width, and depth) could be

defined as an object.

A data object can be an external entity (e.g., anything that produces or consumes

information), a thing (e.g., a report or a display), an occurrence (e.g., a telephone call)

or event (e.g., an alarm), a role (e.g., salesperson), an organizational unit (e.g., accounting

department), a place (e.g., a warehouse), or a structure (e.g., a file). For example,

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 14

a person or a car (Figure 12.2) can be viewed as a data object in the sense that either can

be defined in terms of a set of attributes. The data object description incorporates the data

object and all of its attributes.

2. Data Attributes

 Attributes define the properties of a data object and take on one of three

different characteristics. They can be used to

 (1) name an instance of the data object,

(2) describe the instance, or

(3) make reference to another instance in another table.

3. Relationships

 Data objects are connected to one another in different ways. Consider two data

objects, person and car. These objects can be represented using the simple notation

illustrated in below Figure. A connection is established between person and car because

the two objects are related.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 15

4. Cardinality and Modality

 The elements of data modeling—data objects, attributes, and relationships—

provide the basis for understanding the information domain of a problem. However,

additional information related to these basic elements must also be understood.

 We have defined a set of objects and represented the object/relationship pairs that

bind them. But a simple pair that states: object X relates to object Y does not provide

enough information for software engineering purposes. We must understand how many

occurrences of object X are related to how many occurrences of object Y. This leads to a

data modeling concept called cardinality.

 Cardinality is the specification of the number of occurrences of one [object] that

can be related to the number of occurrences of another [object].

Cardinality defines “the maximum number of objects that can participate in a

relationship”

Modality

 The modality of a relationship is 0 if there is no explicit need for the relationship

to occur or the relationship is optional. The modality is 1 if an occurrence of the

relationship is mandatory.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 16

Flow-Oriented Modeling

The DFD takes an input-process-output view of a system. That is, data objects

flow into the software, are transformed by processing elements, and resultant data objects

flow out of the software. Data objects are represented by labeled arrows and the

transformations are represented by circles (also called bubbles). The DFD is presented in

hierarchical fashion. That is, the first data flow model sometimes called a level 0 DFD or

context diagram represent the system as a whole.

1. Creating a data flow model

 The data flow diagram enables the software engineer to develop models of the

information domain and functional domain at the same time. As the DFD is refined into

greater levels of detail, the analyst performs an implicit functional decomposition of the

system.

Guidelines

1. The level 0 data flow diagram should depict the software/system as a single bubble

2. Primary input and output should be carefully noted

3. Refinement should begin by isolating candidate processes, data objects, and data stores

to be represented at the next level

4. All arrows and bubbles should be labeled with meaningful names

5. Information flow continuity must be maintained from level to level

6. One bubble at a time should be refined.

Context level DFD for the safe home security function

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 17

The safe home security function enables the homeowner to configure the security

system. When it is installed, monitors all sensors connected to the security system, and

interacts with the homeowner through the internet, a PC, or a control panel

During installation, the safe home PC is used to program and configure the

system. Each sensor is assigned a number and type, a master password is programmed for

arming and disarming the system, and telephone number(s) are input for dialing when a

sensor event occurs.

 When a sensor event is recognized, the software involves an audible alarm

attached to the system. After a delay time that is specified by the homeowner during

system configuration activities, the software dials a telephone number of a monitoring

service, provides information about the location, reporting the nature of the event that has

been detected. The telephone number will be redialed every 20 seconds until a telephone

connection is obtained

 The level 0 DFD is now expanded into a level 1 data flow model

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 18

Level 1 DFD for the safe home security function

The homeowner receives security information via a control panel, the PC, or a

browser, collectively called an interface. The interface displays prompting messages and

system status information on the control panel, the PC, or the browser window

 The process represented at DFD level 1 can be further refined into lower levels.

For example, the process monitor sensors can be refined into a level 2 DFD.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 19

Level 2 DFD that refines the monitor sensors process

The refinement of DFDs continues until each bubble performs a single function.

That is, until the process represented by the bubble performs a function that would be

easily implemented as a program component

2. Creating a control flow model

 For many types of applications, the data model and the data flow diagram are all

that is necessary to obtain meaningful insight into software requirements. As we have

already noted, however, a large class of applications are driven by events rather than data,

produce control information rather than reports or displays, and process information with

heavy concern for time and performance. Such applications require the use of control

flow modeling in addition to data flow modeling

To select potential candidate events, the following guidelines are suggested:

 List all sensors that are read by the software

 List all interrupt conditions

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 20

 List all switches that are actuated by an operator

 List all data conditions

 Describe the behavior of a system by identifying its states, identify how each state

is reached and define the transitions between states.

 Focus on possible omissions

3. The Control Specification

 The Control Specification (CSPEC) represents the behavior of the system in two

different ways. The CSPEC contains a state diagram that is a sequential specification of

behavior. It can also contain a program activation table-a combinatorial specification of

behavior

State diagram for safehome security function

The diagram indicates how the system responds to events as it travels the four

states defined at this level. By reviewing the state diagram, a software engineer can

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 21

determine the behavior of the system and, more importantly, can ascertain whether there

are “holes” in the specified behavior

 For example, the state diagram indicates the transitions from the idle state can

occur if the system is reset activated or powered off. If the system is activated, a transition

to the MonitoringSystemstatus state occurs, display messages are changed as shown, and

the process MonitorAndControlSystem is invoked. Two transition occurs out of the

MonitoringSystemStatus state- 1) when the system is deactivated a transition occurs back

to the idle state, 2) when a sensor is triggered a transition to the during the review

 The CSPEC describes the behavior of the system, but it gives us no information

about the inner working of the processes that are activated as a result of this behavior

4. The Process Specification

 The Process Specification (PSPEC) is used to describe allflow model processes

that appear at the final level of refinement. The content of the process specification can

include narrative text, a program design language(PDL) description of the process

algorithm, mathematical equations, tables, diagrams, or charts. By providing a PSPEC to

accompany each bubble in the flow model, the software engineer creates a “mini-spec”

that can serve as a guide for design of the software component that will implement the

process

Creating a Behavioral Model

The behavioral model indicates how software will respond to external events. To

create the model, the analyst must perform the following steps:

 Evaluate all use-cases to fully understand the sequence of interaction within the

system.

 Identify events that drive the interaction sequence and understand how these

events relate to specific classes

 Create a sequence for each use-case

 Build a state diagram for the system

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 22

 Review the behavioral model to verify accuracy and consistency

1. Identifying Events with the Use-Case

The use case represents a sequence of activities that involves actor and the system.

An event occurs whenever the system and an actor exchange information. An actor

should be identified for each event. The information that is exchanged should be noted

and any conditions or constraints should be listed

 In the context of the analysis model, the object, homeowner, transmits an event to

the object control panel. The event might be password entered. The information

transferred is the four digits that constitute the password, but this is not an essential part

of the behavioral model. It is important to note that some events have an explicit impact

on the flow of control of the use-case, while others have no impact on the flow of control.

 For example, the event password entered does not explicitly change the control of

the use-case, but the results of the event compare password will have an explicit impact

on the information and control flow of the safehome software

 Once all events have been identified, they are allocated to the objects involved.

Objects can be responsible for generating events

2 .State Representations

 In the context of behavioral modeling, two different characterizations of states

must be considered.

 The state of each class as the system performs its function

 The state of the system as observed from the outside as the system performs its

function

 The state of a class takes on both passive and active characteristics

Passive state

Passive state is simply the current status of all of an object’s attributes

Example: The passive state of the class player would include the current position and

orientation attributes of player as well as other features of player that are relevant to the

game

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 23

Active state

The active state of an object indicates the current status of the object as it

undergoes a continuing transformation or processing. The class player might have the

following active states: moving, at rest, injured, and being cured

An event must occur to force an object to make a transition from one active state

to another. Two different behavioral representations are discussed

 The first indicates how an individual class changes state based on external events

 The second shows the behavior of the software as a function of time

a) State diagrams for analysis classes

 One component of behavioral model is a UML state diagram that represents active

state for each class and the events that cause changes between these active states.

State diagram for the control panel class

 Each arrow represents a transition from one active state of a class to another. The

labels shown for each arrow represent the event that triggers the transition. Although the

active state model provides useful insight into the “life history” of a class, it is possible to

specify additional information to provide more depth in understanding the behavior of a

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 24

class. In addition to specifying the event that causes the transition to occur, the analyst

can specify guard and an action

 A guard is a Boolean condition that must be satisfied in order for the transition to

occur. For example, the guard for the transition from the “reading” state to the

“comparing state” can be determined by examining the use case

 An action occurs concurrently with the state transition or as a consequence of it

and generally involves one or more operations of an object. For example, the action

connected to password entered event is an operation named validatepassword() that

accesses a password object and performs a digit-by-digit comparison to validate the

entered password

b) Sequence diagrams

The second type of behavioral representation called a sequence diagram in UML,

indicates how events cause transitions from object to object once events have been

Identified by examining use-case, the modeler creates a sequence diagram –a

representation of how events cause flow from one object to another as a function of time.

 Sequence diagram is a shorthand version of the use-case. It represents key classes

and the events that cause behavior flow from class to class

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 25

Each of the arrow represent s an event and indicates how the event channels

behavior between safehome objects. Time is measured vertically downward, and the

narrow rectangles represent time spent in processing an activity. States may be shown

along a vertical timeline

Once a complete sequence diagram has been developed, all of the events that

cause transitions between system objects can be collated into a set of input events and

output events. This information is useful in the creation of an effective design for the

system to be built

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 26

Important Questions

1. Explain different types of Requirement Engineering Tasks.
2. How to initiate the Requirement Engineering Process.
3. Explain briefly about Eliciting Requirements.
4. Define Analysis Modeling approach.
5. Define Data Modeling concepts.
6. Explain about Flow- Oriented Modeling.
7. Explain about Active and Passive state of State Representation.

Software Enginering

(17CTU402)
UNIT III

S.No Question Option A Option B Option C

1
There are __________ major

phases to any design process
2 3 4

2
Diversification is the

____________ of a repertoire

of alternatives.

component solution acquisition

3

During ____________, the

designer chooses and

combines appropriate

elements from the repertoire

diversification convergence elimination

4

________ and __________

combine intuition and

judgement based on

experience in building

elimination,

convergence

creation,

convergence

acquisition,

creation

5
__________ can be traced to

a customer’s requirements

and at the same time assessed

design analysis principles

6

The __________ must

implement all of the explicit

requirements contained in the

analysis model

principles testing design

7

A ___________ should

exhibit an architectural

structure that has been

created using recognizable

principles testing component

8

A ___________ is composed

of components that exhibit

good design characteristics.

principles testing component

9

A ___________ can be

implemented in an

evolutionary fashion thereby
principles testing component

10

A ___________ should be

modular that is the software

should be logically

partitioned into elements that

perform specific functions

and sub functions.

design principles component

11

A ___________ should

contain distinct

representations of data,

architecture, interfaces, and

components.

design principles component

12

A ___________ should lead

to data structures that are

appropriate for the objects to

be implemented and are

drawn from recognizable data

patterns.

design principles component

13

. A _____________ should

lead to interfaces that reduce

the complexity of

connections between

design principles component

14

A ___________ should be

derived using a repeatable

method that is driven by

information obtained during

principles component design

15

The software __________

process encourages good

design through the

application of fundamental

design principles, systematic

methodology and thorough

review.

principles component design

16

The __________ must be a

readable, understandable

guide for those who generate

code and for those who test

and subsequently support the

software.

principles component design

17

The __________ should

provide a complete picture of

the software addressing the

data, functional and

behavioral domains from an

implementation perspective.

principles component design

18

The evolution of software

__________ is a continuing

process that has spanned the

past four decades.

principles component design

19

Procedural aspects of design

definition evolved into a

philosophy called

____________.

top down

programming

bottom up

programming

structured

programming

20

The design process should

not suffer from

___________.

analysis tunnel vision conceptual errors

21

The design should be

__________ to the analysis

model.

consistent related traceable

22
The design should not

___________ the wheel.
minimize maximize integrate

23
The design should

___________ the intellectual

distance

maximize minimize integrate

24

. The ___________ is

represented at a high level of

abstraction

specification analysis quality

25

The design should exhibit

___________ and

integration.

uniformity analysis quality

26

The design should be

____________ to

accommodate change.

reviewed analysed assessed

27

The design should be

___________ to degrade

gently, even when aberrant

data, events, or operating

conditions are encountered.

reviewed analysed assessed

28
Design is not ___________,

coding is not design
coding analysis review

29
Design is not coding,

__________ is not design.
coding analysis review

30

The design should be

__________ for quality as it

is being created not after the

fact.

reviewed assessed structured

31

The design should be

___________ to minimize

conceptual errors.

reviewed assessed structured

32
Software design is both a

_________ and a model.
model process data

33

__________ is the only way

that we can accurately

translate a customer’s

requirements into a finished

software product or system.

specification design data

34

The design ___________ is

the equivalent of an

architect’s plan for a house.

analysis process model

35

At the highest level of

_________, a solution is

stated in broad terms, using

the language of the problem

environment.

refinement modularity abstraction

36

. A __________ is a named

sequence of instructions that

has a specific and limited

function.

procedural

abstraction
data abstraction control abstraction

37

A __________ is a named

collection of data that

describes a data object.

procedural

abstraction
data abstraction control abstraction

38

_________ implies a

program control mechanism

without specifying internal

detail.

procedural

abstraction
data abstraction control abstraction

39

___________ is used to

coordinate activities in an

operating system.

synchronization

semaphore
control abstraction data abstraction

40

_________ is a top down

design strategy originally

proposed by Niklaus Wirth.

stepwise

refinement
control abstraction data abstraction

41

The designer’s goal is to

produce a model or

representation of a

__________ that will later be

built

component entity data

42

The second phase of any

design process is the gradual

___________ of all but one

particular configuration of

components, and thus the

creation of the final product.

acquisition addition elimination

43
Design begins with the

__________ model.
data requirements specification

44

Software design

methodologies lack the

__________ that are

normally associated with

more classical engineering

design disciplines.

depth flexibility quantitative nature

45

Software requirements,

manifested by the

___________ models, feed

the design task.

data functional behavioral

46

___________ is the place

where quality is fostered in

software engineering

model data design

47

________ provides us with

representations of software

that can be assessed for

quality.

design specification data

48

Procedural aspects of design

definition evolved into a

philosophy called

__________.

procedural

programming

object oriented

programming

structured

programming

49

Meyer defines __________

criteria that enable us to

evaluate a design method

with respect to its ability to

define an effective modular

system.

2 3 4

50

. If a design method provides

a systematic mechanism for

decomposing the problem

into sub problems, it will

reduce the complexity of the

overall problem, thereby

achieving an effective

modular solution. This is

called ____________.

modular

decomposability

modular

composability

modular

understandability

51

If a design method enables

existing (reusable) design

components to be assembled

into a new system, it will

yield a modular solution that

does not reinvent the wheel.

This is called __________.

modular

decomposability

modular

composability

modular

understandability

52

If a module can be

understood as a stand alone

unit (without reference to

other modules), it will be

easier to build and easier to

change. This is called

__________.

modular

decomposability

modular

composability

modular

understandability

53

If small changes to the

system requirements result in

changes to individual

modules, rather than system

wide changes, the impact of

change-induced side effects

will be minimized. This is

called __________.

modular

decomposability

modular

composability

modular

understandability

54

If an aberrant condition

occurs within a module and

its effects are constrained

within that module, the

impact of error-induced side

effects will be minimized.

This is called __________.

modular

protection

modular

composability

modular

understandability

55

The aspect of the

architectural design

representation defines the

components of a system and

the manner in which those

components are packaged

and interact with one another.

This property is called

_____________.

extra functional

property
structural property

families of related

systems

56

____________ represent

architecture as an organized

collection of program

components.

dynamic models functional models framework models

57

____________ increases the

level of design abstraction by

attempting to identity

repeatable architectural

design frameworks that are

encountered in similar types

of applications.

framework

models
dynamic models process models

58

_________ address the

behavioural aspects of the

program architecture,

indicating how the structure

or system configuration may

change as a function of

external events.

framework

models
dynamic models process models

59

___________ focus on the

design of the business or

technical process that the

system must accommodate.

framework

models
dynamic models process models

60

_____________ can be used

to represent the functional

hierarchy of a system.

framework

models
dynamic models process models

Option D Answer

5 2

knowledge acquisition

creation convergence

diversification

and convergence

diversification

and

convergence

testing design

component design

design design

design design

design design

testing design

testing design

testing design

testing design

testing design

testing design

testing design

testing design

testing design

object oriented

programming

structured

programming

 integrity tunnel vision

relevant traceable

reinvent reinvent

analyse minimize

design

specification

design

specification

review uniformity

structured structured

structured structured

event coding

event coding

integrated assessed

integrated reviewed

function process

prototype design

function model

continuity abstraction

Process

abstraction

procedural

abstraction

Process

abstraction
data abstraction

Process

abstraction

control

abstraction

procedural

abstraction

synchronization

semaphore

procedural

abstraction

stepwise

refinement

raw material component

creation elimination

code requirements

all of the above all of the above

all of the above all of the above

specification design

prototype design

all of the above
structured

programming

5 5

modular

continuity

modular

decomposabilit

y

modular

continuity

modular

composability

modular

continuity

modular

understandabili

ty

modular

continuity

modular

continuity

modular

continuity

modular

protection

operational

property

structural

property

structural models
structural

models

functional models
framework

models

functional models
dynamic

models

functional models process models

functional models
functional

models

Software Enginering

(17CTU402)
UNIT III

S.No Question Option A Option B Option C

1
There are __________ major

phases to any design process
2 3 4

2
Diversification is the

____________ of a repertoire

of alternatives.

component solution acquisition

3

During ____________, the

designer chooses and

combines appropriate

elements from the repertoire

diversification convergence elimination

4

________ and __________

combine intuition and

judgement based on

experience in building

elimination,

convergence

creation,

convergence

acquisition,

creation

5
__________ can be traced to

a customer’s requirements

and at the same time assessed

design analysis principles

6

The __________ must

implement all of the explicit

requirements contained in the

analysis model

principles testing design

7

A ___________ should

exhibit an architectural

structure that has been

created using recognizable

principles testing component

8

A ___________ is composed

of components that exhibit

good design characteristics.

principles testing component

9

A ___________ can be

implemented in an

evolutionary fashion thereby
principles testing component

10

A ___________ should be

modular that is the software

should be logically

partitioned into elements that

perform specific functions

and sub functions.

design principles component

11

A ___________ should

contain distinct

representations of data,

architecture, interfaces, and

components.

design principles component

12

A ___________ should lead

to data structures that are

appropriate for the objects to

be implemented and are

drawn from recognizable data

patterns.

design principles component

13

. A _____________ should

lead to interfaces that reduce

the complexity of

connections between

design principles component

14

A ___________ should be

derived using a repeatable

method that is driven by

information obtained during

principles component design

15

The software __________

process encourages good

design through the

application of fundamental

design principles, systematic

methodology and thorough

review.

principles component design

16

The __________ must be a

readable, understandable

guide for those who generate

code and for those who test

and subsequently support the

software.

principles component design

17

The __________ should

provide a complete picture of

the software addressing the

data, functional and

behavioral domains from an

implementation perspective.

principles component design

18

The evolution of software

__________ is a continuing

process that has spanned the

past four decades.

principles component design

19

Procedural aspects of design

definition evolved into a

philosophy called

____________.

top down

programming

bottom up

programming

structured

programming

20

The design process should

not suffer from

___________.

analysis tunnel vision conceptual errors

21

The design should be

__________ to the analysis

model.

consistent related traceable

22
The design should not

___________ the wheel.
minimize maximize integrate

23
The design should

___________ the intellectual

distance

maximize minimize integrate

24

. The ___________ is

represented at a high level of

abstraction

specification analysis quality

25

The design should exhibit

___________ and

integration.

uniformity analysis quality

26

The design should be

____________ to

accommodate change.

reviewed analysed assessed

27

The design should be

___________ to degrade

gently, even when aberrant

data, events, or operating

conditions are encountered.

reviewed analysed assessed

28
Design is not ___________,

coding is not design
coding analysis review

29
Design is not coding,

__________ is not design.
coding analysis review

30

The design should be

__________ for quality as it

is being created not after the

fact.

reviewed assessed structured

31

The design should be

___________ to minimize

conceptual errors.

reviewed assessed structured

32
Software design is both a

_________ and a model.
model process data

33

__________ is the only way

that we can accurately

translate a customer’s

requirements into a finished

software product or system.

specification design data

34

The design ___________ is

the equivalent of an

architect’s plan for a house.

analysis process model

35

At the highest level of

_________, a solution is

stated in broad terms, using

the language of the problem

environment.

refinement modularity abstraction

36

. A __________ is a named

sequence of instructions that

has a specific and limited

function.

procedural

abstraction
data abstraction control abstraction

37

A __________ is a named

collection of data that

describes a data object.

procedural

abstraction
data abstraction control abstraction

38

_________ implies a

program control mechanism

without specifying internal

detail.

procedural

abstraction
data abstraction control abstraction

39

___________ is used to

coordinate activities in an

operating system.

synchronization

semaphore
control abstraction data abstraction

40

_________ is a top down

design strategy originally

proposed by Niklaus Wirth.

stepwise

refinement
control abstraction data abstraction

41

The designer’s goal is to

produce a model or

representation of a

__________ that will later be

built

component entity data

42

The second phase of any

design process is the gradual

___________ of all but one

particular configuration of

components, and thus the

creation of the final product.

acquisition addition elimination

43
Design begins with the

__________ model.
data requirements specification

44

Software design

methodologies lack the

__________ that are

normally associated with

more classical engineering

design disciplines.

depth flexibility quantitative nature

45

Software requirements,

manifested by the

___________ models, feed

the design task.

data functional behavioral

46

___________ is the place

where quality is fostered in

software engineering

model data design

47

________ provides us with

representations of software

that can be assessed for

quality.

design specification data

48

Procedural aspects of design

definition evolved into a

philosophy called

__________.

procedural

programming

object oriented

programming

structured

programming

49

Meyer defines __________

criteria that enable us to

evaluate a design method

with respect to its ability to

define an effective modular

system.

2 3 4

50

. If a design method provides

a systematic mechanism for

decomposing the problem

into sub problems, it will

reduce the complexity of the

overall problem, thereby

achieving an effective

modular solution. This is

called ____________.

modular

decomposability

modular

composability

modular

understandability

51

If a design method enables

existing (reusable) design

components to be assembled

into a new system, it will

yield a modular solution that

does not reinvent the wheel.

This is called __________.

modular

decomposability

modular

composability

modular

understandability

52

If a module can be

understood as a stand alone

unit (without reference to

other modules), it will be

easier to build and easier to

change. This is called

__________.

modular

decomposability

modular

composability

modular

understandability

53

If small changes to the

system requirements result in

changes to individual

modules, rather than system

wide changes, the impact of

change-induced side effects

will be minimized. This is

called __________.

modular

decomposability

modular

composability

modular

understandability

54

If an aberrant condition

occurs within a module and

its effects are constrained

within that module, the

impact of error-induced side

effects will be minimized.

This is called __________.

modular

protection

modular

composability

modular

understandability

55

The aspect of the

architectural design

representation defines the

components of a system and

the manner in which those

components are packaged

and interact with one another.

This property is called

_____________.

extra functional

property
structural property

families of related

systems

56

____________ represent

architecture as an organized

collection of program

components.

dynamic models functional models framework models

57

____________ increases the

level of design abstraction by

attempting to identity

repeatable architectural

design frameworks that are

encountered in similar types

of applications.

framework

models
dynamic models process models

58

_________ address the

behavioural aspects of the

program architecture,

indicating how the structure

or system configuration may

change as a function of

external events.

framework

models
dynamic models process models

59

___________ focus on the

design of the business or

technical process that the

system must accommodate.

framework

models
dynamic models process models

60

_____________ can be used

to represent the functional

hierarchy of a system.

framework

models
dynamic models process models

Option D Answer

5 2

knowledge acquisition

creation convergence

diversification

and convergence

diversification

and

convergence

testing design

component design

design design

design design

design design

testing design

testing design

testing design

testing design

testing design

testing design

testing design

testing design

testing design

object oriented

programming

structured

programming

 integrity tunnel vision

relevant traceable

reinvent reinvent

analyse minimize

design

specification

design

specification

review uniformity

structured structured

structured structured

event coding

event coding

integrated assessed

integrated reviewed

function process

prototype design

function model

continuity abstraction

Process

abstraction

procedural

abstraction

Process

abstraction
data abstraction

Process

abstraction

control

abstraction

procedural

abstraction

synchronization

semaphore

procedural

abstraction

stepwise

refinement

raw material component

creation elimination

code requirements

all of the above all of the above

all of the above all of the above

specification design

prototype design

all of the above
structured

programming

5 5

modular

continuity

modular

decomposabilit

y

modular

continuity

modular

composability

modular

continuity

modular

understandabili

ty

modular

continuity

modular

continuity

modular

continuity

modular

protection

operational

property

structural

property

structural models
structural

models

functional models
framework

models

functional models
dynamic

models

functional models process models

functional models
functional

models

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENG

SUBJECT CODE : 17CTU402

Prepared by Dr.J.Rajeswari, Department of CS

Design Engineering-Design Concepts, Architectural Design Elements, Software Architecture,Data
Design at the Architectural Level and Component Level, Mapping of Data Flow into Software
Architecture, Modeling Component Level Design

Design Engineering

4.1 Design within the Context of So

Software design is the last software e
stage for construction (code generation

The flow of information during software
manifested by scenario-based, class-
task.

The architectural design defines the
the architectural styles and design pa
the system, and the constraints that affe
implemented.

The architectural design can be deriv
interaction of subsystems defined within the an

The interface design describes how the
with it, and with humans who use it.
control) and a specific type of behavi

KARPAGAM ACADEMY OF HIGHER EDUCATION

GINEERING CLASS : II B.Sc. (CT)

 UNIT IV

 BATCH (2017

ent of CS,CA& IT, KAHE.

 UNIT-IV

Design Concepts, Architectural Design Elements, Software Architecture,Data
Design at the Architectural Level and Component Level, Mapping of Data Flow into Software
Architecture, Modeling Component Level Design

oftware Engineering

engineering action within the modeling activity a
ation and testing).

software design is illustrated in Figure below. The a
based, flow-oriented and behavioral elements, fe

s the relationship between more structural elements of the softw
atterns that can be used to achieve the requirements de

ints that affect the way in which the architectural design c

erived from the System Specs, the analysis model, and
d within the analysis model.

s how the software communicates with systems that inte
 An interface implies a flow of information (data,

vior.

CLASS : II B.Sc. (CT)

 SEMESTER : IV

BATCH (2017-2020)

 1

Design Concepts, Architectural Design Elements, Software Architecture,Data
Design at the Architectural Level and Component Level, Mapping of Data Flow into Software

and sets the

analysis model,
ments, feed the design

ements of the software,
ments defined for
n can be

odel, and

hat interpolate
ta, and or

.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENG

SUBJECT CODE : 17CTU402

Prepared by Dr.J.Rajeswari, Department of CS

 sc e na r i o- ba se d

e l e me nt s

use-cases - text

use-case diagrams
activity diagrams

swim lane diagrams

 f l o

e

 data f low

control-flo

processin

Analysis Model

 c l a ss- ba se d

e l e me nt s

 class diagrams
analysis packages

CRC models
collaboration diagrams

 be ha v i or
e l e me nt

state diagrams

sequence diagrams

 A rc h it e c t u
D e sig n

D a t a / Cla
D e sig n

KARPAGAM ACADEMY OF HIGHER EDUCATION

GINEERING CLASS : II B.Sc. (CT)

 UNIT IV

 BATCH (2017

ent of CS,CA& IT, KAHE.

ow- or i e nt e d

e l e me nt s

w diagrams

ow diagrams

ing narratives

Co m p o n

L e v e l

In t e r f a c e D e sig n

r a l
t s

ms

u ra l

a ss

CLASS : II B.Sc. (CT)

 SEMESTER : IV

BATCH (2017-2020)

 2

o n e n t -

 D e sig n

n

M
o
d
e
l

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

The component-level design
into a procedural descriptio

The importance of software
the place where quality is fo
representations of software that
we can accurately translate a customer
system.

4.2 Design Process and Design

Software design is an iterative pro
into a ―blueprint‖ for constru

Initially, the blueprint depicts a holistic view of softwar
high-level of abstraction.

Throughout the design proc
series of formal technique revie

Three characteristics serve

 The design must implement
model, and it must accommodate
customer.

 The design must be a readable, und

those who test and subsequent
 The design should provide a

and behavioral domains from an imp

Quality Guidelines

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

ign transforms structural elements of the software ar
on of software components

are design can be stated with a single word – qual
is fostered in software engineering. Design provides us

e that can be assessed for quality. Design is the on
nslate a customer’s requirements into a finished softw

Design Quality

n is an iterative process through which requirements are tran
onstructing the software.

depicts a holistic view of software, i.e. the design is

ocess, the quality of the evolving design is assess
hnique reviews or design walkthroughs.

e as a guide for the evaluation of a good design:

ement all of the explicit requirements contained in t
ommodate all of the implicit requirements desire

eadable, understandable guide for those who generate
quently support the software.

complete picture of the software, addressing the d
rom an implementation perspective.

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 3

are architecture

quality. Design is
rovides us with

esign is the only way that
d software product or

nslated

n is represented at a

ssed with a

d in the analysis
ed by the

rate code and for

e data, functional,

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

In order to evaluate the quality of a
good design.

1. A design should exhibit an ar
(1) Has been created using re

(2) Is composed of components that e

(3) Can be implemented in an

a. For smaller systems, des

2. A design should be modular; that is, the softw
elements or subsystems

3. A design should contain distinct r
components.

4. A design should lead to data
and are drawn from recognizable d

5. A design should lead to components
6. A design should lead to interfac

components and with the extern
7. A design should be derived using a

during software requirements an
8. A design should be represented

Quality Attributes

Hewlett-Packard developed a set of so
FURPS. The FURPS quality attributes

 Functionality: is assessed by
generality of the functions that are

 Usability: is assessed by consideri
documentation.

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

of a design representation, we must establish technic

rchitecture that:
ecognizable architectural styles or patterns,

onents that exhibit good design characteristics, and

n an evolutionary fashion

stems, design can sometimes be developed linearly.
; that is, the software should be logically partitioned into

ain distinct representations of data, architecture, interface

 structures that are appropriate for the classes to be
able data patterns.

ad to components that exhibit independent functional char
faces that reduce the complexity of connections betw

ternal environment.
ed using a repeatable method that is driven by information obtained

ements analysis.
sented using a notation that effectively communicates its

set of software quality attributes that has been given the a
ttributes represent a target for all software design:

 evaluating the features set and capabilities of the p
s that are delivered, and the security of the overall s
onsidering human factors, overall aesthetics, consis

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 4

sentation, we must establish technical criteria for

artitioned into

ces, and

es to be implemented

ctional characteristics.
s between

rmation obtained

ommunicates its meaning.

iven the acronym
n:

ies of the program, the
system.
istency, and

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

 Reliability: is evaluated by m
output results, the mean-time
predictability of the program.

 Performance: is measured by
throughput, and efficiency.

 Supportability: combines the
serviceability  maintainabili

4.3 Design Concepts

This section discusses many signifi
architecture, patterns, refactoring
concepts).

4.3.1 Abstraction

At the highest level of abstraction, a solution is
problem environment. At lower l
is provided.

As we move through different lev
abstractions. A procedural abstraction
and limited function. An example of a
door.

A data abstraction is a named coll
the procedural abstraction open,
object, the data abstraction for door
(e.g. door type, swing direction,

4.3.2 Architecture

Software architecture alludes to the
structure provides conceptual int

In its simplest from, architecture
(modules), the manner in which th
by the components.

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

measuring the frequency and severity of failure, the
ime-to-failure, the ability to recover from failure, and the

f the program.
y processing speed, response time, resource consu

the ability to extend the program extensibility, adaptabili
maintainability. In addition, testability, compatibility, confi

nificant design concepts (abstraction, refinement, modulari
g, functional independence, information hiding, and OO des

tion, a solution is stated in broad terms using the la
ower levels of abstraction, a more detailed description of the solution

nt levels of abstraction, we work to create procedura
traction refers to a sequence of instructions that have

ample of a procedural abstraction would be the word

ollection of data that describes a data object. In the conte
 we can define a data abstraction called door. Li

door would encompass a set of attributes that des
tion, weight).

udes to the ―overall structure of the software and the wa
tegrity for a system.‖

 is the structure of organization of program components
r in which these components interact, and the structure of d

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 5

the accuracy of
and the

nsumption,

aptability,
nfigurability, etc.

ment, modularity,
, and OO design

anguage of the
ion of the solution

al and data
f instructions that have a specific

tion would be the word open for a

n the context of
ike any data

at describe the door

ays in which the

components
e of data that are used

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

Te goal of software design is to derive
serves as a framework from which d

A set of architectural patterns ena

The architectural design can be represented usi

Structural models represent architecture

Framework models increase the l
architectural design frameworks th

Dynamic models address the beh
structure or system configuration m

Process models focus on the desi
accommodate.

Functional models can be used to r

Architectural design will be discuss

4.3.3 Patterns

A design pattern ―conveys the essen
a certain context amidst computing

A design pattern describes a desi
specific context and amid ―forces
applied and used.

The intent of each design pattern is to provide

1. whether the pattern is appl
2. whether the pattern can b

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

to derive an architectural rendering of a system. Th
om which detailed design activities are constructed.

able a software engineer to reuse design-level con

epresented using one or more of a number of diff

hitecture as an organized collection of program compon

ase the level of design abstraction by attempting to identi
ks that are encountered in similar types of applications.

havioral aspects of the program architecture, indi
ation may change as a function of external events.

the design of business or technical process that the system must

e used to represent the functional hierarchy of a system.

n will be discussed in Chapter 10.

ssence of a proven design solution to a recurring
ng concerns.‖

sign structure that solves a particular design probl
es‖ that may have an impact on the manner in which the p

pattern is to provide a description that enables a designer to dete

plicable to the current work,
be reused, and

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 6

This rendering

vel concepts.

number of different models.

tion of program components.

o identify repeatable
tions.

icating how the

stem must

stem.

 problem within

problem within a
in which the pattern is

ner to determine:

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

3. whether the pattern can serve
structurally different pattern.

4.3.4 Modularity

Software architecture and design
separately named and addressable
satisfy problem requirements.

Monolithic software (large progr
software engineer. The number of
overall complexity would make underst

It is the compartmentalization of d
you break it into manageable pie

Don’t over-modularize. The simpl
complexity of integration ―Cost‖.

4.3.5 Information Hiding

It is about controlled interfaces.
(algorithm and data) contained w
need for such information.

Hiding implies that effective modulari
modules that communicate with one
function.

The use of Information Hiding as a
benefits when modifications are requir
Because most data and procedure
introduced during modifications are

4.3.6 Functional Independence

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

erve as a guide for developing a similar, but fun
ern.

n patterns embody modularity; that is, software is divided into
ssable components, sometimes called modules that a

ram composed of a single module) cannot be easi
umber of control paths, span of reference, number of va

d make understanding close to impossible.

ation of data and function. It is easier to solve a complex
ces. ―Divide-and-conquer‖

simplicity of each small module will be overshadow
―Cost‖.

 Modules should be specified and design so that information
within a module is inaccessible to other modules th

ve modularity can be achieved by defining by a set of ind
ith one another only that information necessary to a

as a design criterion for modular systems provides the gr
required during testing and later, during software
es are hidden from other parts of the software, inadvert

tions are less likely to propagate to other location with

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 7

r, but functionally or

is divided into
are integrated to

sily grasped by a
ariables, and

ex problem when

dowed by the

o that information
ules that have no

et of independent
achieve software

ovides the greatest
re maintenance.

, inadvertent errors
on within the software.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

The concept of functional Indepe
abstraction and information hidin

Design software so that each module
simple interface when viewed from other parts of

Functional independence is a key

Independence is assessed using two qu

Cohesion is an indication of the

Coupling is an indication of the

A cohesive module should do jus

Coupling is a qualitative indication of the de
modules and to the outside world

4.3.7 Refinement

It is the elaboration of detail for a

A program is developed by succe

A hierarchy is developed by decomposing a mac
abstraction) in a stepwise fashion until pro

We begin with a statement of fun

The statement describes function or info
the internal workings of the func

Refinement causes the designer to
detail as each successive refinement

Abstraction enables a designer to s

Refinement helps the designer to

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

endence is a direct outgrowth of modularity and the
ng.

h module addresses a specific sub-function of requirements
d from other parts of the program structure.

y to good design, and design is the key to softwa

two qualitative criteria: cohesion and coupling.

tion of the relative functional strength of a module.

tion of the relative interdependence among modules.

st one thing.

tion of the degree to which a module is connected to other
ld ―lowest possible‖.

all abstractions. It is a top down strategy.

essfully refining levels of procedural detail.

decomposing a macroscopic statement of function (a
shion until programming language statements are rea

nt of function or data that is defined at a high level of abstr

unction or information conceptually but provides no information about
tion or the internal structure of the data.

r to elaborate on the original statement, providing
ment (elaboration) occurs.

r to specify procedure and data and yet suppress lo

r to reveal low-level details as design progresses.

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 8

nd the concepts of

quirements and has a

are quality.

ted to other

ction (a procedural
reached.

bstraction.

no information about

 more and more

ow-level details.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

Refinement causes the designer to
finement

Procedural Abstraction

“The overall structure of the so
conceptual integrity for a syste

 Structural properties. This aspe
components of a system (e.g., modules, obj
components are packaged and int
to encapsulate both data and the p
invocation of methods

 Extra-functional properties.
design architecture achieves r
adaptability, and other system

 Families of related systems.
that are commonly encounter
design should have the ability

Patterns

Design Pattern Template

Pattern name—describes the essen

Intent—describes the pattern and wh

Also-known-as—lists any synon

Motivation—provides an example of the

Applicability—notes specific des

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

r to elaborate on the original statement, providing
ment ―elaboration occurs.

software and the ways in which that structure
system.”

is aspect of the architectural design representation defin
., modules, objects, filters) and the manner in which those

d and interact with one another. For example, objects a
and the processing that manipulates the data and inter

 The architectural design description should addr
ves requirements for performance, capacity, reliabil
stem characteristics.

 The architectural design should draw upon repe
ntered in the design of families of similar systems.

y to reuse architectural building blocks.

ribes the essence of the pattern in a short but expressive name

nd what it does

nyms for the pattern

ample of the problem

sign situations in which the pattern is applicable

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 9

 more and more

 provides

defines the
hich those
ts are packaged

ta and interact via the

d address how the
lity, security,

repeatable patterns
 In essence, the

me

ble

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

Structure—describes the classes that

Participants—describes the responsibili
pattern

Collaborations—describes how the p

Consequences—describes the ―d
that must be considered when the p

Related patterns—cross-referenc

Modular Design

easier to bu

Modularity: Trade-offs

What is the "right" number of modul

Information Hiding

Why Information Hiding?

 Reduces the likelihood of ―side
 Limits the global impact of lo
 Emphasizes communication throu
 Discourages the use of global data
 Leads to encapsulation—an a
 Results in higher quality softw

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

s that are required to implement the pattern

sponsibilities of the classes that are required to imp

s how the participants collaborate to carry out their responsibi

―design forces‖ that affect the pattern and the potential trade
n the pattern is implemented

ces related design patterns

build, easier to change, easier to fix ...

modules for a specific software design?

side effects‖
al impact of local design decisions

tion through controlled interfaces
obal data

attribute of high quality design
software

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 10

to implement the

sponsibilities

and the potential trade-offs

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

Stepwise Refinement

Functional Independence

C O H E S
m o d u l
f u n c t i o

C O U P
m o d u l
m o d u l

Refactoring

 Fowler [FOW99] defines refa
 "Refactoring is the proc

not alter the external be
structure.‖

 When software is re-factored, the
 redundancy
 unused design elements
 inefficient or unneces
 poorly constructed or
 or any other design fa

Design Concepts

 Entity classes
 Boundary classes
 Controller classes

 Inheritance—all responsibilit
 Messages—stimulate some b
 Polymorphism—a characteristic that

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

E S I O N - t h e d e g r e e t o w h i c h a
l e p e r f o r m s o n e a n d o n l y o n e

i o n .

P L I N G - t h e d e g r e e t o w h i c h a
l e i s " c o n n e c t e d " t o o t h e r
l e s i n t h e s y s t e m .

refactoring in the following manner:
is the process of changing a software system in such a w

l behavior of the code [design] yet improves its in

d, the existing design is examined for

nts
ssary algorithms
 inappropriate data structures,

ailure that can be corrected to yield a better desig

ties of a super-class is immediately inherited by
behavior to occur in the receiving object

acteristic that greatly reduces the effort required to ex

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 11

way that it does
t improves its internal

gn.

 all subclasses

xtend the design

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

4.3.9 Design classes

As the design model evolves, the so
the analysis classes and creates a n

Five different classes’ types are sh

1. User Interface classes: define
2. Business domain classes: are

The classes identify the a
element of the business d

3. Process classes: implement low

the business domain classes.
4. Persistent classes: repres

software.
5. System classes: implement software

system to operate and com
outside world.

Inheritance (Example)

 Design options:
 The class can be d
 The class hierarch

(a super-class) contains
class inherits from the s

 The class hierarch
operations can be inhe

 Characteristics of
attributes or operations

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

ves, the software team must define a set of design classes
a new set of design classes.

shown below:

efine all abstractions that are necessary for HCI.
: are often refinements of the analysis classes defi
attributes and services that are required to implem
domain.

ent lower-level business abstractions required to
ses.
sent data stores that will persist beyond the execution of

nt software management and control functions th
mmunicate within its computing environment and with

designed and built from scratch. That is, inherita
hy can be searched to determine if a class higher in the hi

contains most of the required attributes and operations. The n
its from the super-class and additions may then be added,

hy can be restructured so that the required attributes
e inherited by the new class.

cs of an existing class can be overridden and different versio
ations are implemented for the new class.

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 12

classes that refines

.
s defined earlier.

d to implement some

ed to fully manage

ution of the

tions that enable the
nvironment and with the

ance is not used.
her in the hierarchy

ations. The new
ed, as required.

attributes and

nt versions of

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

Messages

:SenderObject

Polymorphism

Conventional approach …

case of graphtype:

if grap

if grap

if graphtype

if grap

end case;

All of the graphs become subclass
overloading [TAY90], each subc

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

ct

message (<parameters>)

:ReceiverObject

graphtype = linegraph then DrawLineGraph (data

graphtype = piechart then DrawPieChart (data);

raphtype = histogram then DrawHisto (data);

graphtype = kiviat then DrawKiviat (data);

lasses of a general class called graph. Using a concept c
class defines an operation called draw. An object c

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 13

(data);

;

oncept called
t can send a

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

draw message to any one of the obje
receiving the message will invoke its own

Architectural design elements

 The architecture design elements provides us ov

 The architectural design elem

that are derived from analysis pa
model. The architecture model
sources:

 The information about the applic

 Requirement model elements like data

and collaboration between th

 The architectural style and patt
availability. 3. Interface design

 The interface design elements for softw

of the system.

 They communicate between the
architecture. Following are the
design:
1. The user interface
2. The external interface to the other
etc. 3. The internal interface betw
components.

4. Component level diagram

 The component level design for s

each room in a house.

 The component level design for

the each software component

 The processing of data structure

the component operations.

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

one of the objects instantiated from any one of the subclass
invoke its own draw operation to create the appropriate

nts

lements provides us overall view of the system.

element is generally represented as a set of interconne

sis packages in the requirement
odel is derived from following

pplication domain to built the software.

ents like data flow diagram or analysis classes, relationship

hem.

d pattern as per
design elements

elements for software represents the information flow with

n the components defined as part of
the important elements of the interface

to the other systems, networks
between various

m elements

n for software is similar to the set of detailed spec

n for the software completely describes the interna

t.

ture occurs in a component and an interface which

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 14

bclasses. The object
ropriate graph.

onnected subsystem

elationship

within it and out

cification of

al details of

hich allows all

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

 In a context of object-oriented so

diagram.  The UML diagram is used to r

5. Deployment level design ele

 The deployment level design

that allocated in the physical

 Following figure shows three

personal computer, the CPI s

 The concept of software archite

building.  The architecture is not an

 The software architecture foc

 Software components consist of a simple pro

an architectural design.

 The architecture design extend

allows the configuration of a n

Importance of software arc

Following are the reasons for

1. The representation of softw

stakeholder and the developer.

2. The architecture focuses on the

engineering work and it is the ulti

3. The software architecture c

4. This model helps the system for in

are work together.

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

ented software engineering, a component shown in a U

ram is used to represent the processing logic.

elements

l design element shows the software functionality and sub

 computing environment which support the softwar

three computing environment as shown. These are the

erver and the Control panel.

Software Architecture Introduction

hitecture is similar to the architecture of

is not an operational software.

cuses on the role of software components.

nsist of a simple program module or an object oriented

tended and it consists of the database and the middlew

a network of clients and servers.

chitecture

or the importance of software architecture.

oftware architecture allows the communication betw

er.

es on the early design decisions that impact on all softw

he ultimate success of the system.

composes a small and intellectually graspable model.

tem for integrating the components using which the components

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 15

n a UML

subsystem

tware.

e the

nted class in

dleware that

tion between all

t on all software

model.

the components

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

The architectural style

 The architectural style is a transfo

system.  The main aim of a

of the system.  An archite

style.

 An architectural pattern such

of an architecture.

 The software is constructed for

style from many of style.
The design categories of arc

1. A set of components such a
function required by the system.
2. A set of connectors that allows
omponents.
3. The constraints which define
4. Semantic model allows a d
using analysis of elements.

Architectural design

 The architectural design starts then the d

 The information is obtained f

the requirement engineering.
Representing the system in
context

All the following entities communic
small rectangles shown in abo

Superordinate system

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

a transformation and it is applied to the design of an

architectural style is to build a structure for all componen

ecture of the system is redefined by using the arc

uch as architectural style introduces a transformation on the desi

ed for computer based system and it shows one of the

chitectural styles includes:

as database, computational modules which perfo
stem.

t allows the communication, coordination and cooper

define the integration of components to form the sys
l allows a designer to understand the overall properties of a

starts then the developed software is put into the conte

from the requirement model and other information collect during

.

communicates with the target system through the in
wn in above figure.

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 16

an entire

for all components

chitectural

on on the design

the architectural

form the

peration between the

stem.
f a system by

he context.

ion collect during

interface that is

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

These system use the target sy

Subordinate system
This systems is used by the ta
target system functionality.

Peer-level system
These system interact on peer
system and the peers.

Actors
These are the entities like people, d
consuming information that is mandato

Defining Archetype

 An archetype is a class or pattern

or design for the target system.

 A small set of archetype is ne

 The target system consists of ar

architecture.  Archetype is instantiated

system.

 In many cases, the archetype is obtain

part of the requirement mode

An Architecture Trade-off An

ATAM was developed by the Soft

iterative evaluation process for

The design analysis activities

1. Collect framework

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

ystem like a part of some higher-level processing

arget system and provide the data mandatory to complete

r-to-peer basis means the information is consum

people, device which interact with the target system
t is mandatory for requisite processing.

ttern which represents a core abstraction i.e critic

em.

is needed to design even the systems are relatively c

s of archetype that represent the stable elements of the

is instantiated in many different forms based on the be

e is obtained by examining the analysis of classes d

ement model.

f Analysis Method (ATAM)

the Software Engineering Institute (SEI) which started

process for software architecture.

activities which are executed iteratively that are as fol

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 17

ing scheme.

to complete

tion is consumed by the target

stem by

tical to implement

complex.

the

ehavior of the

es defined as a

started an

ollows:

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

Collect framework developed a set of u

point of view.

2. Obtained requirement, Const

These types of information are

verify all the stakeholders are

3. Describe the architectural

The architectural patterns are

Module view: This view is for

the degree in which abstraction or info

Process view: This view is for the

Data flow view: This view an

met to the architecture.

4. Consider the quality attri

The quality attributes for archite

security, maintainability, flex

5. Identify the quality attrib

 The sensitivity of quality attributes

architecture and find the sensitiv

 The attributes affected by the vari

Data Design at the Architec

The data design action tra

data structures at the soft

database architecture at th

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

oped a set of use cases that represent the system accordi

Constraints, description of the environment.

rmation are found as a part of requirement engineering and is us

s are addressed properly.

tural pattern

 described using an architectural views which are

This view is for the analysis of assignment work with the components and

bstraction or information hiding is achieved

is for the analysis of the software or system performanc

nalyzes the level and check whether functional r

ibute in segregation

hitectural design consist of reliability, performanc

xibility, testability, portability, re-usability etc.

butes sensitivity

ttributes achieved by making the small changes in the

nsitivity of the quality attribute which affects the perfor

the variation in the architecture are known as sensi

rchitectural Level and Component Level

anslates data defined as part of the analysi

tware component level and. When necessa

the application level.

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 18

ording to user

g and is used to

re as follows:

mponents and

formance.

requirements are

, performance,

n the

ts the performance.

as sensitivity points.

vel

is model into

ary into a

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

a) Data Design at the Architectur

The challenge in data desi

data environment, particu

functional.

To solve this challenge, th

techniques, also called kno

through existing database

information. An alternative

additional layer to the data

A data warehouse is a sep

with day –to-day applicati

b) Data Design at the Compone

Data design at the component

structures that are directly ac

consider the following set of p

1. The systematic analysis pri

applied to data.

2. All data structure and the op

identified.

3. A mechanism for defining

and used to define both data

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

tectural Level

ign is to extract useful information from th

cularly when the information desired is cros

the business IT community has developed data

owledge discovery in database (KDD) , tha

es in an attempt to extract appropriate bus

ive solution, called a data warehouse, adds an

ta architecture.

parate data environment that is not directly

ion but encompasses all data used by a bus

ponent Level

nt level focuses on the representation of th

ccessed by one or more software compone

of principles (adapted from for data specificat

inciples applied to function and behavior s

operations to be performed on each shoul

the content of each data object should be

th data and the operation applied it.

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 19

this

oss-

d data mining

at navigate

siness-level

s an

ly integrated

siness.

the data

ents. We

cation):

should also be

ld be

e established

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

4. Low-level design decision s

direct use of the data contain

5. The representation of a da

that must make direct use of th

6. A library of useful data stru

should be developed.

7. A software design and pro

and realization of abstract da

Mapping Data Flow into Software

This section describes the general p

during the structured design proce

analysis of the data flow diagram

An Architectural Design Method

customer requirements

four bedrooms, three baths, lots

Deriving Program Architecture

Partitioning the Architecture

horizontal” and “vertical” partiti

Horizontal Partitioning

define separate branches

use control modules to co

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

should be known only to those modules that

ned within the structure.

ata structure should be known only to thos

of the data contained within the structure.

uctures and the operations that may be ap

ogramming language should support the sp

data types.

are Architecture

e general process of mapping requirements into software a

sign process. The technique described in this chapter is based

am discussed in Chapter 8.

thod

 of glass…

ture

titioning are required

 of the module hierarchy for each major function

oordinate communication between functions

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 20

s that must make

to those modules

pplied to them

pecification

oftware architectures

is based on

ion

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

Vertical Partitioning:

Factoring

design so that decision ma

decision making modules s

Why Partitioned Architecture?

results in software that is

leads to software that is easier to ma

results in propagation of

results in software that is

objective: to derive a prog

approach:

the DFD is mapped

the PSPEC and ST

notation: structure chart

Flow Characteristics

General Mapping Approach

Isolate incoming and outgoing flow boundari

center.

Working from the boundary outward,

Add control modules as required.

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

making and work are stratified

s should reside at the top of the architecture

nctio

rchitecture?

hat is easier to test

easier to maintain

 fewer side effects

hat is easier to extend

gram architecture that is partitioned

ped into a program architecture

TD are used to indicate the content of each modu

flow boundaries; for transaction flows, isolate the

tward, map DFD transforms into corresponding mo

ired.

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 21

ule

ate the transaction

ding modules.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

Refine the resultant program stru

a
b

d

c

data

x1

x2 x3

b c d

e

a

Factoring

direction of incr
decision making

First Level Factoring

Prepared by G.Manivasagam, Asst Prof

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

ructure using effective modularity concepts.

d e f
g h

 i
j

data flow model

 "Transform" mapping

 x4

e f

g

i

 h j

creasing
g

typical "decision
making" modules

typical "worker" modules

main

Prof, Department of CS, CA & IT, KAHE

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 22

 Page 24/31

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

Second Level Mapping

D

C

B

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

main

control

 A

A

C

B

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 23

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

mapping from the

flow boundary outward

Transaction Flow

outp

Refining the Analysis Model

1. Write an English language pr

2. Apply noun/verb parse to isolate p

3. Develop level 02 and 03 flow mo

4. Create corresponding data dicti

5. Refine flow models as appropr

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

the D

outward

output

Transa

T

c

processing narrative for the level 01 flow model

to isolate processes, data items, store and entities

low models

ta dictionary entries

priate

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 24

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

M

Overview

The purpose of component-level des

characteristics, and communication mech

architectural design. Component-

established. The component-leve

designer to review it for correctness

produced is a design for each soft

based notation. Design walkthrou

transformation or control transfo

Component Definitions

 Component is a modular, depl
implementation and exposes a

 Object-oriented view is that compon
o Each elaborated class in

implementation
o All interfaces communi

defined
o Analysis classes and in

elaboration
 Traditional view is that a component

three roles
o Control components coordinate invoc
o Problem domain compon
o Infrastructure componen

processing required in a do
o The analysis model da

starting point for the co

 Process-Related view emphasi

a catalog of reusable compon

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

Modeling Component Level Design

l design is to define data structures, algorithms, i

tion mechanisms for each software component identified in the

-level design occurs after the data and architectur

el design represents the software in a way that allows the

ectness and consistency, before it is built. The work pr

h software component, represented using graphical, tabula

alkthroughs are conducted to determine correctness of the d

nsformation allocated to each component during earli

ployable, replaceable part of a system that encapsulates
s a set of interfaces

is that component contains a set of collaborating classes
class includes all attributes and operations relevant to i

ommunication and collaboration with other design class

nd infrastructure classes serve as the basis for objec

component (or module) reside in the software and serv

ontrol components coordinate invocation of all other problem domain
roblem domain components implement a function required by the customer

cture components are responsible for functions needed to support the
red in a domain application

ata flow diagram is mapped into a module hiera
component derivation

phasizes building systems out of existing components
nents as a means of populating the architecture

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 25

interface

nent identified in the

tural designs are

allows the

k product

l, tabular, or text-

s of the data

arlier design steps.

psulates

asses
ant to its

classes are also

ct-oriented

d serves one of

lem domain components
customer

d to support the

archy as the

omponents chosen from

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

Class-based Component Design

 Focuses on the elaboration of domain sp
infrastructure classes

 Detailed description of class attribut
beginning construction activities

Class-based Component Design Principl

 Open-Closed Principle (OCP
modification

 Liskov Substitution Principle (
 Dependency Inversion Principle (D

concretions
 Interface Segregation Principle

general purpose interface
 Release Reuse Equivalency Prin
 Common Closure Principle (CCP)
 Common Reuse Principle (CRP)

together

Component-Level Design Guidelines

 Components
o Establish naming conv
o Architectural compon
o Infrastructure component
o Use of stereotypes ma

 Interfaces
o Use lollipop represent
o For consistency interf
o Show only the interfaces r

 Dependencies and Inheritanc
o For improved readabili

bottom (derived class

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

elaboration of domain specific analysis classes and the definit

ass attributes, operations, and interfaces is required prior to
ctivities

n Principles

P) – class should be open for extension but closed

iple (LSP) – subclasses should be substitutable for their
rinciple (DIP) – depend on abstractions, do not depend on

nciple (ISP) – many client specific interfaces are better th

Principle (REP) – the granule of reuse is the granule of
CCP) – classes that change together belong toge

(CRP) – Classes that can’t be used together should not be

gn Guidelines

onventions in during architectural modeling
al component names should have meaning to stakeholders

cture component names should reflect implementation specific
ay help identify the nature of components

tation rather than formal UML box and arrow notation
faces should flow from the left-hand side of the com
aces relevant to the component under construction
ce

ability model dependencies from left to right and inheritan
lasses) to top (base classes)

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 26

and the definition of

d prior to

tension but closed for

their base classes
pend on

etter than one

anule of release
ether

ld not be grouped

rs
ific meanings

w notation
of the component box

tion

ht and inheritance from

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

o Component interdepe
component to compon

Cohesion (lowest to highest)

 Utility cohesion – components
 Temporal cohesion – operations are
 Procedural cohesion – components

preceding one was invoked with or without p
 Communicational cohesion –
 Sequential cohesion – components

and so on
 Layer cohesion – exhibited b

services of a lower layer, but lower l

 Functional cohesion – modul

Coupling

 Content coupling – occurs when one
another component

 Common coupling – occurs wh
 Control coupling – occurs wh
 Stamp coupling – occurs whe
 Data coupling – occurs when long
 Routine call coupling – occurs
 Type use coupling – occurs when one component

 Inclusion or import coupling

content of another

 External coupling – occurs wh
infrastructure components (e.

Conducting Component-Level D

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

endencies should be represented by interfaces rather
component to component dependencies

nents grouped within the same category but are othe
rations are performed to reflect a specific behavior
mponents grouped to allow one be invoked immediate
ed with or without passing data

–operations required same data are grouped in same
mponents grouped to allow input to be passed from first

by package components when a higher level layer
but lower level layers do not access higher level lay

le performs one and only one function

s when one component surreptitiously modifies intern

urs when several components make use of a global vari
s when one component passes control flags as arguments

en parts of larger data structures are passed betw
curs when long strings of arguments are passed between components

urs when one operator invokes another
urs when one component uses a data type defined in another

oupling – occurs when one component imports a packag

rs when a components communications or collabora
.g. database)

el Design

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 27

s rather that

but are otherwise unrelated
 or state
iately after the

same class
rom first to second

er accesses the
yer services

ternal data in

variable
rguments to another

ween components
n components

in another

ge or uses the

ates with

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

1. Identify all design classes that cor
2. Identify all design classes that cor
3. Elaborate all design classes that are

a. Specify message details wh
b. Identify appropriate interf
c. Elaborate attributes and

them.
d. Describe processing flow

4. Identify persistent data sourc
manage them.

5. Develop and elaborate behavior
6. Elaborate deployment diagrams to provide
7. Refactor every component-lev

WebApp Component-Level Design

 Boundary between content and fun
 WebApp component is define

o well-defined cohesive function manipulat
processing for an end- user or

o cohesive package of cont
required capability

WebApp Component-Level Content Desi

 Focuses on content objects and the mann
to the end-user

 As the WebApp size increase
reference and manipulation

 For highly dynamic content a
should be established

WepApp Component-Level Func

 WebApps provide sophisticated p

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

lasses that correspond to the problem domain.
lasses that correspond to the infrastructure domain.

es that are not acquired as reusable components.
etails when classes or components collaborate.

riate interfaces for each component.
te attributes and define data types and data structures required to

flow within each operation in detail.
es (databases and files) and identify the classes r

e behavioral representations for each class or component.
ms to provide additional implementation detail.

level diagram representation and consider alternatives.

evel Design

nt and function often blurred
ed is either a:
nction manipulates content or provides computational or d
er or

tent and functionality that provides the end-user

Content Design

content objects and the manner in which they may be packaged for

es so does the need for formal representations and

ent a clear structural model incorporating content compon

ctional Design

ted processing functions

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 28

d to implement

es required to

nt.

atives.

omputational or data

er with some

for presentation

entations and easy content

ent components

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

o perform dynamic processing
o provide business domain app
o provide database query and a
o establish interfaces with e

 WebApp functionality is deliver
 During architectural design WebApp

functional architecture
 The functional architecture is a

describes how the components inter

Traditional Component-Level De

 Each block of code has a sing
 Each block of code has a sing
 Only three control structures

(looping)
 Reduces program complexity

Design Notation

 Graphical
o UML activity diagrams
o Flowcharts – arrows for flow of control, diamonds for

 Tabular
o Decision table – subsets of

to define the rules for pro
 Program Design Language (P

o Structured English or pseudocode
o Fixed syntax with keywords providing

declarations, and module
o Free syntax of natural lan
o Data declaration facilities for simple
o Subprogram definition and invoc

Component-Based Development

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

essing to create content and navigational capability
in appropriate computation or data processing

nd access
aces with external corporate systems

delivered as a series of components developed in par
n WebApp content and functionality are combined to c

is a representation of the functional domain of the WebApp
nents interact with each other

esign

gle entry at the top
gle exit at the bottom

s are required: sequence, condition (if-then-else),

y by enhancing readability, testability, and maintainabili

ws for flow of control, diamonds for decisions, rectangles

of system conditions and actions are associated with e
ocessing inputs and events
(PDL)

or pseudocode used to describe processing details
words providing for representation of all structured cons

 definitions
nguage for describing processing features

ilities for simple and complex data structures
nd invocation facilities

opment

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 29

y

parallel
ned to create a

he WebApp and

e), and repetition

ntainability

les for processes

with each other

d constructs, data

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

 CBSE is a process that emphasi
from a catalog of reusable softw

 CBSE is a time and cost effec
 Requires software engineers to
 Management can be convinced to incur the

components by amortizing the
 Libraries can be created to make r

them in new systems

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

ss that emphasizes the design and construction of computer-b
e software components

ctive
ers to reuse rather than reinvent

vinced to incur the additional expense required to cre
the cost over multiple projects

o make reusable components easy to locate and easy

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 30

based systems

eate reusable

y to incorporate

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE EN

SUBJECT CODE : 17CTU402

2020)

Prepared by Dr.J.Rajeswari, Depart

Possible Questions

Part – B (2 Mark)

1. Define abstraction.
2. Differentiate between refinement and
3. Write the difference betw
4. What is transform mappin
5. Define transaction mappi

Part – C (6 Mark)

1. Explain in detail the proce
a. Architectural leve

2. Write in detail the approach us
3. Discuss in detail about the
4. Write short notes on

a. Transform mappin
5. Write short notes on the following

a. Information hiding
6. Describe in detail the pro
7. Write short notes on the following

a. Abstraction ii) Ar
8. Write in detail the approach us
9. Explain in detail about de
10. Write short notes on

a. Transform flow ii)

KARPAGAM ACADEMY OF HIGHER EDUCATION

TWARE ENGINEERING

 UNIT IV

artment of CS,CA& IT, KAHE.

finement and refactoring
ween transform flow and transaction flow

m mapping?
ing.

cess of data design at
el ii) Component level

pproach used to design class based components
Discuss in detail about the Architectural components of software.

ng ii) Transaction mapping
following design concepts

formation hiding ii) Refinement iii) Refactoring
ocedure to refine an architecture into components.
following design concepts

) Architecture iii) Modularity
pproach used to design conventional components

design process and design quality

ii) Transaction flow

 CLASS : II B.Sc. (CT)

 SEMESTER : IV

 BATCH (2017-

 31

into components.

Software Enginering

(17CTU402)
UNIT IV

S.No Question Option A Option B Option C

1
Interface design focuses on

__________ areas of concern.
2 3 4

2

. Frustration and ___________

are part of daily life for many

users of computerized

information system

sadness happiness enjoyment

3

___________ creates effective

communication medium between

a human and a computer.

user interface

design
architectural design code design

4

__________ identifies interface

objects and actions and then

creates a screen layout that form

the basis for a user interface

prototype.

design coding testing

5

___________ begins with the

identification of user, task and

environmental requirements.

user interface

design
architectural design code design

6
There are _________ golden

rules.
2 3 4

7

We should define interaction

modes in a way that does not

force a user into unnecessary or

undesired actions.

interaction

modes

interface

constraints

design

principles

8
We should provide ___________

interaction.
rigid flexible encouraging

9

We should design for direct

interaction with ________ that

appear on the screen

code class objects

10

We should hide technical

___________ from the casual

user

reactions actions internals

11

We should streamline

___________ as skill levels

advance and allow the interaction

to be customized.

internals interaction actions

12

. We should allow user

interaction to be __________ and

undoable

interruptible flexible rigid

13
We should allow user interaction

to interruptible and __________.
undoable flexible rigid

14
We should define shortcuts that

are _____________.
encouraging intuitive default

15
We should define __________

that are intuitive.
shortcuts broad area

interruptible

actions

16
We should disclose information

in a ___________ fashion.
open progressive streamline

17

The visual layout of the

__________ should be based on a

real world metaphor.

interaction

modes
interface design

18

The interface should present and

acquire _____________ in a

consistent fashion.

information task knowledge

19

The interface should present and

acquire information in a

___________ fashion.

consistent inconsistent rigid

20

A ____________ of the entire

system incorporates data,

architectural interface, and

procedural representations of the

software

data model design model user model

21
The software engineer creates a

________________.
design model data model interface model

22

The end user develops a mental

image that is often called the

____________.

design model user model data model

23
The implementers of the system

create a _____________.
design model system image data model

24
Users are categorized into

__________ types.
2 3 4

25

Users with no syntactic

knowledge of the system and

little semantic knowledge of the

application or computer usage are

called ___________.

knowledgeab

le

intermittent

users

knowledgeable

frequent users
novices

26

Users with reasonable semantic

knowledge of the application but

relatively low recall of syntactic

information necessary to use the

interface are called ___________.

novices
knowledgeable,

intermittent users

knowledgeable,

frequent users

27

Users with good semantic and

syntactic knowledge that often

leads to the “power-user

syndrome” are called _________.

novices
knowledgeable,

intermittent users

knowledgeable,

frequent users

28

Individuals who look for

shortcuts and abbreviated modes

of interaction are called

___________.

novices
knowledgeable,

intermittent users

knowledgeable,

frequent users

29

The __________ is the image of

the system that end-users carry in

their heads.

user’s model data model design model

30
Stepwise elaboration is called

__________.

functional

decompositio

n

data abstraction modularity

31

___________ is the only way that

we can accurately translate a

customer’s requirements into a

finished software product or

system.

specification design data

32
Validation focuses on

___________ criteria.
2 3 4

33
Task analysis can be applied in

________ ways.
2 3 4

34
Task analysis for interface design

used ___________ approach.

object

oriented

approach

top down approach
bottom up

approach

35

The overall approach to task

analysis, a human engineer must

first ________ and classify tasks.

discuss define describe

36
There are ___________ steps in

interface design activities.
4 5 6

37
__________ refers to the

deviation from average time.

system

response time
variability

system mean

time

38

System response time has

_________ important

characteristics.

3 4

39
A ___________ is designed into

the software from the beginning.

integrated

help facility

system response

time
variability

40
Component level design also

called __________.

procedural

abstraction
procedural design

stepwise

refinement

41
___________ must be translated

into operational software
data architectural interface design

42
A _________ performs

component level design.
user

top level

management

software

engineer

43

The ___________ represents the

software in a way that allows one

to review the details of the design

for correctness and consistency

with earlier design

representations.

component

level design
procedural design data design

44

Design, representations of data,

architecture, and interfaces form

the foundation for

_____________.

procedural

design

component level

design
data design

45
__________ notation is used to

represent the design.
graphical tabular text-based

46

Any program, regardless of

application area or technical

complexity, can be designed and

implemented using only the

__________ structured

constructs.

2 3 4

47
A box in a flowchart is used to

indicate a ___________.

processing

step
logical condition flow of control

48
A diamond in a flowchart is used

to indicate a _________.

processing

step
logical condition flow of control

49
The arrows in a flowchart is used

to indicate a __________.

processing

step
logical condition flow of control

50
A picture is worth a __________

words.
100 1000 10000

51

The following construct is

fundamental to structured

programming.

sequence condition repetition

52

___________ implements

processing steps that are essential

in the specification of any

algorithm.

sequence condition repetition

53

__________ provides the facility

for selected processing steps that

are essential in the specification

of any algorithm

sequence condition repetition

54 _________ allows for looping. sequence condition repetition

55

Another graphical design tool,

the ________ evolved from a

desire to develop a procedural

design representation that would

not allow violation of the

structured constructs.

box diagram flowchart
transition

diagram

56
PDL is the abbreviation of

_____________.

Process

Design

Language

Program Design

Language

Program

Document

Language

57
A design language should have

the ___________ characters.
2 3 4

58

Design notation should support

the development of modular

software and provide a means for

interface specification. This

attribute of design notation is

called ___________.

modularity simplicity ease of editing

59

Design notation should be

relatively simple to learn,

relatively easy to use, and

generally easy to read. This

attribute of the design notation is

called __________.

modularity simplicity
) ease of

editing

60

The procedural design may

require modification as the

software process proceeds. The

ease with which a design

representation can be edited can

help facilitate each software

engineering task is called

___________.

modularity simplicity ease of editing

Option D Answer

5 3

anxiety anxiety

procedure design
user interface

design

analysis design

procedure design
user interface

design

5 3

design analysis interaction modes

enthusiastic flexible

user objects

interactions internals

reactions interaction

encouraging interruptible

encouraging undoable

past actions intuitive

interactions shortcuts

flexible progressive

structure interface

idea information

flexible consistent

system image design model

system image design model

system image user model

user model system image

5 3

all of the above novices

all of the above
knowledgeable,

intermittent users

all of the above
knowledgeable,

frequent users

Testers
knowledgeable,

frequent users

system image user’s model

modular

protection

functional

decomposition

prototype design

5 2

5 3

all of the above
object oriented

approach

list define

7 7

all of the above variability

5 2

all of the above
integrated help

facility

decomposition procedural design

all of the above all of the above

middle level

management
software engineer

data design
component level

design

code design
component level

design

all of the above graphical

5 3

start processing step

start logical condition

start flow of control

100000 1000

all of the above all of the above

selection sequence

selection condition

selection repetition

decision table box diagram

Program

Document

Language

Program Design

Language

5 4

maintainability modularity

maintainability simplicity

maintainability ease of editing

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 1

UNIT-V
Testing Strategies & Tactics: Software Testing Fundamentals, Strategic Approach to Software
Testing, Test Strategies for Conventional Software, Validation Testing, System testing Black-Box
Testing, White-Box Testing and their type, Basis Path Testing

SOFTWARE TESTING FUNDAMENTALS:

 Testing presents an interesting anomaly for the software engineer. During earlier
software engineering activities, the engineer attempts to build software from an abstract
concept to a tangible product.

 The engineer creates a series of test cases that are intended to "demolish" the software
that has been built.

 In fact, testing is the one step in the software process that could be viewed
(psychologically, at least) as destructive rather than constructive.

 Software engineers are by their nature constructive people.
 Testing requires that the developer discard preconceived notions of the "correctness"

of software just developed and overcome a conflict of interest that occurs when
errors are uncovered.

 Beizer describes this situation effectively when he states: There's a myth that if we
were really good at programming, there would be no bugs to catch. If only we
could really concentrate, if only everyone used structured programming, top down design,
decision tables, if programs were written in SQUISH, if we had the right silver bullets,
then there would be no bugs. So goes the myth. There are bugs, the myth says, because we
are bad at what we do; and if we are bad at it, we should feel guilty about it. Therefore,
testing and test case design is an admission of failure, which instills a goodly dose of guilt.

Testing Objectives

Glen Myers states a number of rules that can serve well as testing objectives:

1. Testing is a process of executing a program with the intent of finding an error.

2. A good test case is one that has a high probability of finding an as-yet undiscovered error.

3. A successful test is one that uncovers an as-yet-undiscovered error.

If testing is conducted successfully (according to the objectives stated previously), it will
uncover errors in the software.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 2

Also testing demonstrates that software functions appear to be working according to
specification, that behavioral and performance requirements appear to have been met.

In addition, data collected as testing is conducted provide a good indication of software
reliability and some indication of software quality as a whole.

But testing cannot show the absence of errors and defects, it can show only that software errors
and defects are present.

Testing Principles

Before applying methods to design effective test cases, a software engineer must understand the
basic principles that guide software testing. Davis [DAV95] suggests a set of testing principles.

All tests should be traceable to customer requirements.

The objective of software testing is to uncover errors. It follows that the most severe defects
(from the customer’s point of view) are those that cause the program to fail to meet its
requirements.

Tests should be planned long before testing begins.

Test planning can begin as soon as the requirements model is complete.

Detailed definition of test cases can begin as soon as the design model has been solidified.
Therefore, all tests can be planned and designed before any code has been generated.

The Pareto principle applies to software testing.

Pareto principle implies that 80 percent of all errors uncovered during testing will likely be
traceable to 20 percent of all program components. The problem, of course, is to isolate these
suspect components and to thoroughly test them.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 3

Testing should begin “in the small” and progress toward testing “in the large.”

The first tests planned and executed generally focus on individual components. As testing
progresses, focus shifts in an attempt to find errors in integrated clusters of components and
ultimately in the entire system.

Exhaustive testing is not possible

The number of path permutations for even a moderately sized program is exceptionally
large. For this reason, it is impossible to execute every combination of paths during
testing. It is possible, however, to adequately cover program logic and to ensure that all
conditions in the component-level design have been exercised.

To be most effective, testing should be conducted by an independent third party.

Testability

 Software testability is simply how easily a computer program can be tested.
 Since testing is so profoundly difficult, it pays to know what can be done to streamline it.
 Sometimes programmers are willing to do things that will help the testing process and a

checklist of possible design points, features, etc., can be useful in negotiating with them.
 “Testability” occurs as a result of good design. Data design, architecture, interfaces,

and component-level detail can either facilitate testing or make it difficult.
The checklist that follows provides a set of characteristics that lead to testable software.

Operability. "The better it works, the more efficiently it can be tested."

• The system has few bugs (bugs add analysis and reporting overhead to the test process).

• No bugs block the execution of tests.

• The product evolves in functional stages (allows simultaneous development and testing).

Observability. "What you see is what you test."

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 4

• Distinct output is generated for each input.

• System states and variables are visible or queriable during execution.

• Past system states and variables are visible or queriable (e.g., transaction logs).

• All factors affecting the output are visible.

• Incorrect output is easily identified.

• Internal errors are automatically detected through self-testing mechanisms.

• Internal errors are automatically reported.

• Source code is accessible.

Controllability. "The better we can control the software, the more the testing can be automated
and optimized."

• All possible outputs can be generated through some combination of input.

• All code is executable through some combination of input.

• Software and hardware states and variables can be controlled directly by the test engineer.

• Input and output formats are consistent and structured.

• Tests can be conveniently specified, automated, and reproduced.

Decomposability. "By controlling the scope of testing, we can more quickly isolate problems
and perform smarter retesting."

• The software system is built from independent modules.

• Software modules can be tested independently.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 5

Simplicity. "The less there is to test, the more quickly we can test it."

• Functional simplicity (e.g., the feature set is the minimum necessary to meet requirements).

• Structural simplicity (e.g., architecture is modularized to limit the propagation of faults).

• Code simplicity (e.g., a coding standard is adopted for ease of inspection and maintenance).

Stability. "The fewer the changes, the fewer the disruptions to testing."

• Changes to the software are infrequent.

• Changes to the software are controlled.

• Changes to the software do not invalidate existing tests.

• The software recovers well from failures.

Understandability. "The more information we have, the smarter we will test."

• The design is well understood.

• Dependencies between internal, external, and shared components are well understood.

• Changes to the design are communicated.

• Technical documentation is instantly accessible.

• Technical documentation is well organized.

• Technical documentation is specific and detailed.

• Technical documentation is accurate.

Kaner, Falk, and Nguyen suggest the following attributes of a “good” test:

1. A good test has a high probability of finding an error.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 6

 To achieve this goal, the tester must understand the software and attempt to develop a
mental picture of how the software might fail.

 Ideally, the classes of failure are probed. For example, one class of potential failure in a
GUI (graphical user interface) is a failure to recognize proper mouse position.

 A set of tests would be designed to exercise the mouse in an attempt to demonstrate an
error in mouse position recognition.

2. A good test is not redundant.

 Testing time and resources are limited. There is no point in conducting a test that has the
same purpose as another test. Every test should have a different purpose.

3. A good test should be “best of breed”.

 In a group of tests that have a similar intent, time and resource limitations may mitigate
toward the execution of only a subset of these tests.

 In such cases, the test that has the highest likelihood of uncovering a whole class of errors
should be used.

4. A good test should be neither too simple nor too complex.

 Although it is sometimes possible to combine a series of tests into one test case, the possible
side effects associated with this approach may mask errors.

 In general, each test should be executed separately.

A STRATEGIC APPROACH TO SOFTWARE TESTING

Testing is a set of activities that can be planned in advance and conducted systematically.
For this reason a template for software testing—a set of steps into which we can place
specific test-case design techniques and testing methods—should be defined for the
software process.

A strategy for software testing must accommodate low-level tests that are necessary to verify
that a small source code segment has been correctly implemented as well as high-level tests
that validate major system functions against customer requirements. A strategy should

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 7

provide guidance for the practitioner and a set of milestones for the manager. Because the
steps of the test strategy

occur at a time when deadline pressure begins to rise, progress must be measurable and
problems should surface as early as possible.

Characteristics:

 To perform effective testing, you should conduct effective technical reviews. By doing
this, many errors will be eliminated before testing commences.

 Testing begins at the component level and works “outward” toward the integration of the
entire computer-based system.

 Different testing techniques are appropriate for different software engineering approaches
and at different points in time.

 Testing is conducted by the developer of the software and (for large projects) an independent
test group.

 Testing and debugging are different activities, but debugging must be accommodated in
any testing strategy.

TEST STRATEGIES FOR CONVENTIONAL SOFTWARE

VALIDATION TESTING

Validation testing begins at the culmination of integration testing, when individual
components have been exercised, the software is completely assembled as a package, and
interfacing errors have been uncovered and corrected. At the validation or system level, the
distinction between different software categories disappears. Testing focuses on user-
visible actions and user-recognizable output from the system.

Validation can be defined in many ways, but a simple (albeit harsh) definition is that
validation succeeds when software functions in a manner that can be reasonably expected by

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 8

the customer. At this point a battle-hardened software developer might protest: “Who or what
is the arbiter of reasonable expectations?” If a Software Requirements Specification has been
developed, it describes all user-visible attributes of the software and contains a Validation
Criteria section that forms the basis for a validation-testing approach.

i) Validation-Test Criteria

Software validation is achieved through a series of tests that demonstrate conformity with
requirements. A test plan outlines the classes of tests to be conducted, and a test procedure
defines specific test cases that are designed to ensure that all functional requirements are
satisfied, all behavioral characteristics are achieved, all content is accurate and properly
presented, all performance requirements are attained, documentation is correct, and usability
and other requirements are met (e.g., transportability, compatibility, error recovery,
maintainability). If a deviation from specification is uncovered, a deficiency list is created. A
method for resolving deficiencies (acceptable to stakeholders) must be established.

ii) Configuration Review

An important element of the validation process is a configuration review. The intent of the
review is to ensure that all elements of the software configuration have been properly developed,
are cataloged, and have the necessary detail to bolster the support activities. The configuration
review, sometimes called an audit.

ii) Alpha and Beta Testing

It is virtually impossible for a software developer to foresee how the customer will really use a
program. Instructions for use may be misinterpreted; strange combinations of data may be used;
output that seemed clear to the tester may be unintelligible to a user in the field. When custom
software is built for one customer, a series of acceptance tests are conducted to enable the
customer to validate all requirements. Conducted by the end user rather than software engineers,
an acceptance test can range from an informal “test drive” to a planned and systematically
executed series of tests. In fact, acceptance testing can be conducted over a period of weeks or
months, thereby uncovering cumulative errors that might degrade the system over time. If
software is developed as a product to be used by many customers, it is impractical to perform
formal acceptance tests with each one. Most software Like all other testing steps, validation tries

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 9

to uncover errors, but the focus is at the requirements level—on things that will be immediately
apparent to the end user. product builders use a process called alpha and beta testing to uncover
errors that only the end user seems able to find.

The alpha test is conducted at the developer’s site by a representative group of end users. The
software is used in a natural setting with the developer “looking over the shoulder” of the users
and recording errors and usage problems. Alpha tests are conducted in a controlled environment.

The beta test is conducted at one or more end-user sites. Unlike alpha testing, the developer
generally is not present. Therefore, the beta test is a “live” application of the software in an
environment that cannot be controlled by the developer. The customer records all problems (real
or imagined) that are encountered during beta testing and reports these to the developer at regular
intervals. As a result of problems reported during beta tests, you make modifications and then
prepare for release of the software product to the entire customer base. A variation on beta
testing, called customer acceptance testing, is sometimes performed when custom software is
delivered to a customer under contract.

The customer performs a series of specific tests in an attempt to uncover errors before accepting
the software from the developer. In some cases (e.g., a major corporate or governmental system)
acceptance testing can be very formal and encompass many days or even weeks of testing.

SYSTEM TESTING

At the beginning of this book, we stressed the fact that software is only one element of a larger
computer-based system. Ultimately, software is incorporated with other system elements (e.g.,
hardware, people, information), and a series of system integration and validation tests are
conducted. These tests fall outside the scope of the software process and are not conducted solely
by software engineers. However, steps taken during software design and testing can greatly
improve the probability of successful software integration in the larger system.

A classic system-testing problem is “finger pointing.” This occurs when an error is uncovered,
and the developers of different system elements blame each other for the problem. Rather than
indulging in such nonsense, you should anticipate potential interfacing problems and (1) design
error-handling paths that test all information coming from other elements of the system, (2)
conduct a series of tests that simulate bad data or other potential errors at the software interface,
(3) record the results of tests to use as “evidence” if finger pointing does occur, and (4)
participate

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 10

in planning and design of system tests to ensure that software is adequately tested.

i) Recovery Testing

Many computer-based systems must recover from faults and resume processing with little or no
downtime. In some cases, a system must be fault tolerant; that is, processing faults must not
cause overall system function to cease. In other cases, a system failure must be corrected within a
specified period of time or severe economic damage will occur. Recovery testing is a system test
that forces the software to fail in a variety of ways and verifies that recovery is properly
performed. If recovery is automatic (performed by the system itself), reinitialization, check
pointing mechanisms, data recovery, and restart are evaluated for correctness. If recovery
requires human intervention, the mean-time-to-repair (MTTR) is evaluated to determine whether
it is within acceptable limits.

ii) Security Testing

Any computer-based system that manages sensitive information or causes actions that can
improperly harm (or benefit) individuals is a target for improper or illegal penetration.
Penetration spans a broad range of activities: hackers who attempt to penetrate systems for sport,
disgruntled employees who attempt to penetrate for revenge, dishonest individuals who attempt
to penetrate for illicit personal gain. Security testing attempts to verify that protection
mechanisms built into a system will, in fact, protect it from improper penetration. “The system’s
security must, of course, be tested for invulnerability from frontal attack—but must also be
tested for invulnerability from flank or rear attack.” Given enough time and resources, good
security testing will ultimately penetrate a system. The role of the system designer is to make
penetration cost more.

WHITE-BOX TESTING

White-box testing, called glass-box testing is a test case design method that uses the
control structure of the procedural design to derive test cases.

Using white-box testing methods, the software engineer can derive test cases that

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 11

1. guarantee that all independent paths within a module have been exercised at least
once, 2. exercise all logical decisions on their true and false sides,
3. execute all loops at their boundaries and within their operational bounds,
and 4. exercise internal data structures to ensure their validity.

"Why spend time and energy worrying about (and testing) logical minutiae when we might
better expend effort ensuring that program requirements have been met?" or “Why don't we
spend all of our energy on black-box tests?”

The answer is :

Logic errors and incorrect assumptions are inversely proportional to the probability
that a program path will be executed. Errors tend to creep into our work when we design
and implement function, conditions, or controls that are out of the mainstream. Everyday
processing tends to be well understood (and well scrutinized), while "special case"
processing tends to fall into the cracks.

We often believe that a logical path is not likely to be executed when, in fact, it may be
executed on a regular basis. The logical flow of a program is sometimes counterintuitive,
meaning that our unconscious assumptions about flow of control and data may lead us to
make design errors that are uncovered only once path testing commences.

Typographical errors are random. When a program is translated into programming
language source code, it is likely that some typing errors will occur. Many will be
uncovered by syntax and type checking mechanisms, but others may go undetected until
testing begins. It is as likely that a typo will exist on an obscure logical path as on a
mainstream path.

Each of these reasons provides an argument for conducting white-box tests. Black-box testing,
no matter how thorough, may miss the kinds of errors noted here. White-box testing is far more
likely to uncover them.

BASIS PATH TESTING

Basis path testing is a white-box testing technique first proposed by Tom McCabe in 1976.

The basis path method enables the test case designer to derive a logical complexity measure of a
procedural design and use this measure as a guide for defining a basis set of execution paths.

Test cases derived to exercise the basis set are guaranteed to execute every statement in the
program at least one time during testing.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 12

Flow Graph Notation

The flow graph depicts logical control flow using the notation illustrated in Fig 5.1.

Flow graph notation

Each structured construct has a corresponding flow graph symbol. To illustrate the use of a
flow graph, we consider the procedural design representation in Fig 5.2A. Here, a flowchart
is used to depict program control structure.

Flowchart, (A) and flow graph (B)

 Fig maps the flowchart into a corresponding flow graph (assuming that no compound
conditions are contained in the decision diamonds of the flowchart).

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 13

 Referring to Fig, each circle, called a flow graph node, represents one or more
procedural statements.

 A sequence of process boxes and a decision diamond can map into a single node.
 The arrows on the flow graph, called edges or links, represent flow of control and are

analogous to flowchart arrows.
 An edge must terminate at a node, even if the node does not represent any procedural

statements (e.g., see the symbol for the if-then-else construct).
 Areas bounded by edges and nodes are called regions. When counting regions, we include

the area outside the graph as a region.4
 When compound conditions are encountered in a procedural design, the generation of a

flow graph becomes slightly more complicated.
 A compound condition occurs when one or more Boolean operators (logical OR, AND,

NAND, NOR) is present in a conditional statement.
 Referring to Fig 5.3, the PDL segment translates into the flow graph shown.
 Note: A separate node is created for each of the conditions a and b in the statement IF a

OR b. Each node that contains a condition is called a predicate node and is characterized
by two or more edges emanating from it.

Fig 5.3 Compound logic

Cyclomatic Complexity

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 14

Cyclomatic complexity is software metric that provides a quantitative measure of
the logical complexity of a program.

Cyclomatic complexity has a foundation in graph theory and provides us with extremely
useful software metric.

Cyclomatic complexity is defined by the number of independent paths in the basis set of a
program and provides us with an upper bound for the number of tests that must be
conducted to ensure that all statements have been executed at least once.

An independent path is any path through the program that introduces at least one new set
of processing statements or a new condition. When stated in terms of a flow graph, an
independent path must move along at least one edge that has not been traversed before the
path is defined.

For example, a set of independent paths for the flow graph illustrated in Fig 5.2B is

path 1: 1-11

path 2: 1-2-3-4-5-10-1-11

path 3: 1-2-3-6-8-9-10-

1-11 path 4: 1-2-3-6-7-

9-10-1-11

Note: Each new path introduces a new edge.

The path 1-2-3-4-5-10-1-2-3-6-8-9-10-1-11 is not considered to be an independent path
because it is simply a combination of already specified paths and does not traverse any new
edges.

Paths 1, 2, 3, and 4 constitute a basis set for the flow graph in Fig 5.2B. That is, if tests can
be designed to force execution of these paths (a basis set), every statement in the program
will have been guaranteed to be executed at least one time and every condition will have
been executed on its true and false sides.

Note: The basis set is not unique. In fact, a number of different basis sets can be derived
for a given procedural design.

How do we know how many paths to look for? The computation of cyclomatic
complexity provides the answer.

Complexity is computed in one of three ways:

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 15

1. The number of regions of the flow graph corresponds to the cyclomatic complexity.
2. Cyclomatic complexity, V(G), for a flow graph, G, is defined as V(G) = E - N + 2 where

E is the number of flow graph edges, N is the number of flow graph nodes.
3. Cyclomatic complexity, V(G), for a flow graph, G, is also defined as V(G) = P +1 where P is

the number of predicate nodes contained in the flow graph G.
The Cyclomatic complexity of the flow graph in Fig 5.2B, can be computed using each of
the algorithms just noted:

1. The flow graph has four regions.

2. V(G) = 11 edges - 9 nodes + 2 = 4.

3. V(G) = 3 predicate nodes + 1 = 4.

Therefore, the cyclomatic complexity of the flow graph in Figure 17.2B is 4.

Important: the value for V(G) provides us with an upper bound for the number of
independent paths that form the basis set and, by implication, an upper bound on the number
of tests that must be designed and executed to guarantee coverage of all program statements.

CONTROL STRUCTURE TESTING

The basis path testing technique is one of a number of techniques for control structure testing.

Other variations on control structure testing are discussed. These broaden testing coverage
and improve quality of white-box testing.

Condition Testing

Condition testing is a test case design method that exercises the logical conditions
contained in a program module.

A simple condition is a Boolean variable or a relational expression, possibly preceded with
one NOT (¬) operator.

A relational expression takes the form E1 <relational-operator> E2 where E1 and E2 are
arithmetic expressions and <relational-operator> is one of the following: <, ≤, =, ≠
(nonequality), >, or ≥.

A compound condition is composed of two or more simple conditions, Boolean operators,
and parentheses. We assume that Boolean operators allowed in a compound condition include
OR (|), AND (&) and NOT (¬).

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 16

A condition without relational expressions is referred to as a Boolean expression. Therefore,
the possible types of elements in a condition include a Boolean operator, a Boolean variable,
a pair of Boolean parentheses (surrounding a simple or compound condition), a relational
operator, or an arithmetic expression.

If a condition is incorrect, then at least one component of the condition is incorrect.
Therefore, types of errors in a condition include the following:

o Boolean operator error (incorrect/missing/extra Boolean
operators). o Boolean variable error.
o Boolean parenthesis
error. o Relational
operator error.
o Arithmetic expression error.

The condition testing method focuses on testing each condition in the program.

Condition testing strategies have two advantages.

1. Measurement of test coverage of a condition is simple.
2. Test coverage of conditions in a program provides guidance for the generation of additional

tests for the program.
The purpose of condition testing is to detect not only errors in the conditions of a program
but also other errors in the program.

A number of condition testing strategies have been proposed.

Branch testing is probably the simplest condition testing strategy. For a compound condition C,
the true and false branches of C and every simple condition in C need to be executed at least
once.

Domain testing requires three or four tests to be derived for a relational expression. For a
relational expression of the form E1 <relational-operator> E2 three tests are required to make
the value of E1 greater than, equal to, or less than that of E2. If <relational-operator> is incorrect
and E1 and E2 are correct, then these three tests guarantee the detection of the relational operator
error. To detect errors in E1 and E2, a test that makes the value of E1 greater or less than that of
E2 should make the difference between these two values as small as possible.

Data Flow Testing

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 17

The data flow testing method selects test paths of a program according to the locations of
definitions and uses of variables in the program.

To illustrate the data flow testing approach, assume that each statement in a program is assigned
a unique statement number and that each function does not modify its parameters or global
variables.

For a statement with S as its statement number,

DEF(S) = {X | statement S contains a definition of X}

USE(S) = {X | statement S contains a use of X}

If statement S is an if or loop statement, its DEF set is empty and its USE set is based on the
condition of statement S. The definition of variable X at statement S is said to be live at
statement S' if there exists a path from statement S to statement S' that contains no other
definition of X.

A definition-use (DU) chain of variable X is of the form [X, S, S'], where S and S' are statement
numbers, X is in DEF(S) and USE(S'), and the definition of X in statement S is live at statement
S'.

Data flow testing strategies are useful for selecting test paths of a program containing nested if
and loop statements. To illustrate this, consider the application of DU testing to select test paths
for the PDL that follows:

proc x

B1;

do while C1

if C2

then

if C4

then B4;

else B5;

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 18

endif;

else

if C3

then B2;

else B3;

endif;

endif;

enddo;

B6;

end proc;

To apply the DU testing strategy to select test paths of the control flow diagram, we need to
know the definitions and uses of variables in each condition or block in the PDL.

Assume that variable X is defined in the last statement of blocks B1, B2, B3, B4, and B5 and is
used in the first statement of blocks B2, B3, B4, B5, and B6. The DU testing strategy requires an
execution of the shortest path from each of Bi, 0 < i ≤ 5, to each of Bj, 1 < j ≤ 6. Although there
are 25 DU chains of variable X, we need only five paths to cover these DU chains. The reason is
that five paths are needed to cover the DU chain of X from Bi, 0 < i ≤ 5, to B6 and other DU
chains can be covered by making these five paths contain iterations of the loop.

Since the statements in a program are related to each other according to the definitions and uses
of variables, the data flow testing approach is effective for error detection.

However, the problems of measuring test coverage and selecting test paths for data flow testing
are more difficult than the corresponding problems for condition testing.

Loop Testing

Loops are the cornerstone for the vast majority of all algorithms implemented in software.

Loop testing is a white-box testing technique that focuses exclusively on the validity of loop
constructs.

Four different classes of loops can be defined: simple loops, concatenated loops, nested loops,
and unstructured loops (Fig).

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 19

imple loops.

The following set of tests can be applied to simple loops, where n is the maximum number of
allowable passes through the loop.

1. Skip the loop entirely.

2. Only one pass through the loop.

3. Two passes through the loop.

4. m passes through the loop where m < n.

5. n -1, n, n + 1 passes through the loop.

Nested loops.

If we were to extend the test approach for simple loops to nested loops, the number of possible
tests would grow geometrically as the level of nesting increases.

Beizer suggests an approach that will help to reduce the number of tests:

1. Start at the innermost loop. Set all other loops to minimum values.

2. Conduct simple loop tests for the innermost loop while holding the outer loops at their
minimum iteration parameter (e.g., loop counter) values. Add other tests for out-of-range or
excluded values.

3. Work outward, conducting tests for the next loop, but keeping all other outer loops at
minimum values and other nested loops to "typical" values.

4. Continue until all loops have been tested.

Concatenated loops.

Concatenated loops can be tested using the approach defined for simple loops, if each of the
loops is independent of the other. However, if two loops are concatenated and the loop counter
for loop 1 is used as the initial value for loop 2, then the loops are not independent. When the
loops are not independent, the approach applied to nested loops is recommended.

Unstructured loops.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 20

Whenever possible, this class of loops should be redesigned to reflect the use of the structured
programming constructs.

Fig Classes of loops

BLACK-BOX TESTING

Black-box testing, also called behavioral testing, focuses on the functional requirements of
the software.

That is, black-box testing enables the software engineer to derive sets of input conditions
that will fully exercise all functional requirements for a program. Black-box testing is not
an alternative to white-box techniques.

Rather, it is a complementary approach that is likely to uncover a different class of errors
than white-box methods.

Black-box testing attempts to find errors in the following categories:

1. Incorrect or missing
functions 2. Interface errors
3. Errors in data structures or external data base
access, 4. Behavior or performance errors, and
5. Initialization and termination errors.

Unlike white-box testing, which is performed early in the testing process, black-box testing
tends to be applied during later stages of testing.

Black-box testing purposely disregards control structure, attention is focused on the
information domain.

Tests are designed to answer the following questions:

• How is functional validity tested?

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 21

• How is system behavior and performance tested?

• What classes of input will make good test cases?

• Is the system particularly sensitive to certain input values?

• How are the boundaries of a data class isolated?

• What data rates and data volume can the system tolerate?

• What effect will specific combinations of data have on system operation?

Black-box techniques, we derive a set of test cases that satisfy the following criteria:

1. test cases that reduce, by a count that is greater than one, the number of additional test cases
that must be designed to achieve reasonable testing and

2. test cases that tell us something about the presence or absence of classes of errors, rather
than an error associated only with the specific test at hand.

Graph-Based Testing Methods

The first step in black-box testing is to understand the objects that are modeled in software and
the relationships that connect these objects.

Next step is to define a series of tests that verify “all objects have the expected relationship to
one another”.

To accomplish these steps, the software engineer begins by creating a graph—a collection of
nodes that represent objects; links that represent the relationships between objects; node weights
that describe the properties of a node (e.g., a specific data value or state behavior); and link
weights that describe some characteristic of a link.

Fig (A) Graph notation (B) Simple example

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 22

The symbolic representation of a graph is shown in Fig A.

Nodes are represented as circles connected by links that take a number of different forms. A
directed link (represented by an arrow) indicates that a relationship moves in only one direction.

A bidirectional link, called a symmetric link, implies that the relationship applies in both
directions. Parallel links are used when a number of different relationships are established
between graph nodes.

Eg. consider a portion of a graph for a word-processing application (Fig B) where

Object #1 = new file menu select

Object #2 = document window

Object #3 = document text

Referring to the figure, a menu select on new file generates a document window.

The node weight of document window provides a list of the window attributes that are to be
expected when the window is generated.

The link weight indicates that the window must be generated in less than 1.0 second.

An undirected link establishes a symmetric relationship between the new file menu select and
document text, and parallel links indicate relationships between document window and document
text.

In reality, a far more detailed graph would have to be generated as a precursor to test case design.

The software engineer then derives test cases by traversing the graph and covering each of the
relationships shown. These test cases are designed in an attempt to find errors in any of the
relationships.

Beizer describes a number of behavioral testing methods that can make use of graphs:

Transaction flow modeling. The nodes represent steps in some transaction (e.g., the steps
required to make an airline reservation using an on-line service), and the links represent the
logical connection between steps (e.g., flight. information. input is followed by
validation/availability. processing).

Finite state modeling. The nodes represent different user observable states of the software (e.g.,
each of the “screens” that appear as an order entry clerk takes a phone order), and the links
represent the transitions that occur to move from state to state (e.g., order-information is verified
during inventory-availability look-up and is followed by customer-billing-information input).
The state transition diagram can be used to assist in creating graphs of this type.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 23

Data flow modeling. The nodes are data objects and the links are the transformations that occur
to translate one data object into another. For example, the node FICA.tax.withheld (FTW) is
computed from gross.wages (GW) using the relationship, FTW = 0.62 - GW.

Timing modeling. The nodes are program objects and the links are the sequential connections
between those objects. Link weights are used to specify the required execution times as the
program executes.

Graph-based testing begins with the definition of all nodes and node weights. That is, objects and
attributes are identified. The data model can be used as a starting point, but it is important to note
that many nodes may be program objects (not explicitly represented in the data model). To
provide an indication of the start and stop points for the graph, it is useful to define entry and exit
nodes.

Once nodes have been identified, links and link weights should be established.

In general, links should be named, although links that represent control flow between program
objects need not be named.

Each relationship is studied separately so that test cases can be derived.

The transitivity of sequential relationships is studied to determine how the impact of
relationships propagates across objects defined in a graph. Transitivity can be illustrated by
considering three objects, X, Y, and Z. Consider the following relationships:

X is required to compute Y

Y is required to compute Z

Therefore, a transitive relationship has been established between X and Z:

X is required to compute Z

Based on this transitive relationship, tests to find errors in the calculation of Z must consider a
variety of values for both X and Y.

The symmetry of a relationship (graph link) is also an important guide to the design of test cases.

As test case design begins, the first objective is to achieve node coverage. By this we mean that
tests should be designed to demonstrate that no nodes have been inadvertently omitted and that
node weights (object attributes) are correct.

Next, link coverage is addressed. Each relationship is tested based on its properties. For example,
a symmetric relationship is tested to demonstrate that it is, in fact, bidirectional. A transitive
relationship is tested to demonstrate that transitivity is present.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 24

A reflexive relationship is tested to ensure that a null loop is present. When link weights have
been specified, tests are devised to demonstrate that these weights are valid. Finally, loop testing
is invoked

Equivalence Partitioning

Equivalence partitioning is a black-box testing method that divides the input domain of a
program into classes of data from which test cases can be derived.

An ideal test case single-handedly uncovers a class of errors (e.g., incorrect processing of all
character data) that might otherwise require many cases to be executed before the general error is
observed.

Equivalence partitioning strives to define a test case that uncovers classes of errors, thereby
reducing the total number of test cases that must be developed.

Test case design for equivalence partitioning is based on an evaluation of equivalence classes for
an input condition.

An equivalence class represents a set of valid or invalid states for input conditions. Typically, an
input condition is either a specific numeric value, a range of values, a set of related values, or a
Boolean condition.

Equivalence classes may be defined according to the following guidelines:

1. If an input condition specifies a range, one valid and two invalid equivalence classes are
defined.

2. If an input condition requires a specific value, one valid and two invalid equivalence classes
are defined.

3. If an input condition specifies a member of a set, one valid and one invalid equivalence class
are defined.

4. If an input condition is Boolean, one valid and one invalid class are defined.

Example, consider data maintained as part of an automated banking application.

The user can access the bank using a personal computer, provide a six-digit password, and
follow with a series of typed commands that trigger various banking functions. During the log-on
sequence, the software supplied for the banking application accepts data in the form

area code—blank or three-digit number

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 25

prefix—three-digit number not beginning with 0 or 1

suffix—four-digit number

password—six digit alphanumeric string

commands—check, deposit, bill pay, and the like

The input conditions associated with each data element for the banking application can be
specified as

area code: Input condition, Boolean—the area code may or may not be present.

Input condition, range—values defined between 200 and 999, with specific exceptions.

prefix: Input condition, range—specified value >200

Input condition, value—four-digit length

password: Input condition, Boolean—a password may or may not be present.

Input condition, value—six-character string.

command: Input condition, set—containing commands noted previously.

Applying the guidelines for the derivation of equivalence classes, test cases for each
input domain data item can be developed and executed. Test cases are selected so that
the largest number of attributes of an equivalence class are exercised at once.

Boundary Value Analysis

Boundary value analysis leads to a selection of test cases that exercise bounding values.

Boundary value analysis is a test case design technique that complements
equivalence partitioning.

Rather than selecting any element of an equivalence class, BVA leads to the selection of
test cases at the "edges" of the class. Rather than focusing solely on input conditions, BVA
derives test cases from the output domain as well.

Guidelines for BVA are similar in many respects to those provided for equivalence partitioning:

1. If an input condition specifies a range bounded by values a and b, test cases should be
designed with values a and b and just above and just below a and b.

2. If an input condition specifies a number of values, test cases should be developed that
exercise the minimum and maximum numbers.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 26

3. Apply guidelines 1 and 2 to output conditions.
4. If internal program data structures have prescribed boundaries (e.g., an array has a defined

limit of 100 entries), be certain to design a test case to exercise the data structure at its
boundary.
By applying these guidelines, boundary testing will be more complete, thereby having a
higher likelihood for error detection.

Comparison Testing

There are some situations (e.g., aircraft avionics, automobile braking systems) in which
the reliability of software is absolutely critical.

In such applications redundant hardware and software are often used to minimize the
possibility of error.

When redundant software is developed, separate software engineering teams develop
independent versions of an application using the same specification.

In such situations, each version can be tested with the same test data to ensure that all provide
identical output. Then all versions are executed in parallel with real-time comparison of results to
ensure consistency.

Researchers have suggested that independent versions of software be developed for critical
applications, even when only a single version will be used in the delivered computer-based
system.

These independent versions form the basis of a black-box testing technique called comparison
testing or back-to-back testing.

When multiple implementations of the same specification have been produced, test cases
designed using other black-box techniques (e.g., equivalence partitioning) are provided as input
to each version of the software.

If the output from each version is the same, it is assumed that all implementations are correct. If
the output is different, each of the applications is investigated to determine if a defect in one or
more versions is responsible for the difference. In most cases, the comparison of outputs can be
performed by an automated tool.

Comparison testing is not foolproof. If the specification from which all versions have been
developed is in error, all versions will likely reflect the error. In addition, if each of the

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 27

independent versions produces identical but incorrect results, condition testing will fail to detect
the error.

A geometric view of test cases

Orthogonal Array Testing

There are many applications in which the input domain is relatively limited. That is, the number
of input parameters is small and the values that each of the parameters may take are clearly
bounded. When these numbers are very small, it is possible to consider every input permutation
and exhaustively test processing of the input domain.

However, as the number of input values grows and the number of discrete values for each data
item increases, exhaustive testing become impractical or impossible.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 28

Orthogonal array testing can be applied to problems in which the input domain is relatively small
but too large to accommodate exhaustive testing.

The orthogonal array testing method is particularly useful in finding errors associated with
region faults—an error category associated with faulty logic within a software component.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 29

PART A(Online)

PART B (2 Marks)
1. Define abstraction.

2. What do you mean by an error?

3. Differentiate between refinement and refactoring

4. Compare black box and white box testing

5. Write the difference between transform flow and transaction flow

6. List the different types of loops in testing

7. What is transform mapping?

8. What is validation testing?

9. Define transaction mapping.

10. What is the use of system testing?

PART C (6 Marks)
1. Explain Graph based testing methods in Black Box testing.

2. Demonstrate Flow graph notation and Independent program path in Basis path testing.

3. Demonstrate in detail about Validation testing

4. Explain in detail about Equivalence Partitioning

5. Discuss about Boundary value analysis.

6. Write in detail about Software Testing Fundamentals.

7. Illustrate in detail about System testing.

 8. Illustrate the use of dataflow testing in software engineering process.

 9. Discuss in detail about orthogonal array testing.

 10. Illustrate loop testing and its types.

Software Enginering

(17CTU402)
UNIT V

S.No Question Option A Option B Option C

1

__________ is a critical

element of software

quality assurance and

represents the ultimate

review of specification,

design, and code

generation.

software

specification

software

generation
software coding

2

Software is tested from

___________ different

perspectives.

2 3 4

3

Software engineers are

by their nature

___________ people.

pessimistic optimistic constructive

4

__________ is a process

of executing a program

with the intent of finding

an error.

coding testing debugging

5

All tests should be

_________ to customer

requirements.

traceable designed tested

6

Tests should be planned

long before

_____________ begins.

testing coding specification

7

Testing should begin in

the _________ and

progress toward testing

in the large.

design beginning small

8

The less there is to test,

the more _________ we

can test it.

quickly shortly automatically

9

________ is a process

of executing a program

with the intend of

finding an error.

testing coding planning

10

A good _________ is

one that has a high

probability of finding an

as-yet-undiscovered

error

planning test case objective

11

All _________ should

be traceable to customer-

requirements.

analysis designs tests

12

__________ is simple

how easily a computer

program can be tested.

software

operability

software

simplicity

software

decomposability

13

The better it works, the

more efficiently it can be

testing. This

characteristic is called

___________.

operability observability controllability

14

There are _________

characteristics in

testability

5 6 7

15

What you see is what

you test. This

characteristic is called

__________.

controllability observability decomposability

16

The better we can

control the software, the

more the testing can be

automated and

optimized. This

characteristic is called

__________.

operability stability
understandabilit

y

17

By controlling the scope

of testing, we can more

quickly isolate problems

and perform smarter

retesting. This

characteristic is called

_________.

decomposability simplicity stability

18

. The less there is to

test, the more quickly

we can test it. This

characteristic is called

_________.

controllability simplicity operability

19

The fewer the changes,

the fewer the disruptions

to testing. This

characteristic is called

__________.

controllability
decomposabilit

y
stability

20

. The more information

we have, the smarter we

will test. This

characteristic is called

_________.

controllability
decomposabilit

y
stability

21

A good test has a high

___________ of finding

an error.

probability simplicity
understandabilit

y

22
A good test is not

_________.
stable redundant simple

23

White-box testing

sometimes called

_________.

control structure

testing

condition

testing
glass-box testing

24

Logic errors and

incorrect assumptions

are inversely

proportional to the

___________ that a

program path will be

executed

simplicity probability
understandabilit

y

25
Typographical errors are

_________.
redundant simple random

26

One often believes that a

_________ path is not

likely to be executed

when, in fact, it may be

executed on a regular

basis.

control structural physical

27
Basic path testing is a

__________.

black-box

testing

white-box

testing

control structure

testing

28

__________ is a

software metric that

provides a quantitative

measure of the logical

complexity of a

program.

cyclomatic

complexity
flow graph

deriving test

cases

29

An __________ is any

path through the

program that introduces

atleast one new set of

processing statements or

a new condition.

dependent path
independent

path
basic path

30

There are _________

steps to be applied to

derive the basis set.

2 3 4

31

There are _________

test cases that satisfy the

basis set.

3 4 5

32

. A ________ is a

square matrix whose

size is equal to the

number of nodes on the

flow graph.

graph matrix matrix flow graph

33

To develop a software

tool that assists in basis

path testing, a data

structure called a

___________ is useful.

matrix flow graph graph matrix

34

____________ requires

three or four tests to be

derived for a relational

expression.

branch testing
data flow

testing

data control

testing

35

__________ is probably

the simplest condition

testing strategy.

branch testing
data flow

testing

condition

testing

36

The __________

method selects test paths

of a program according

to the locations of

definitions and uses of

variables in the program

data flow testing
condition

testing
loop testing

37

__________ is a white

box testing technique

that focuses exclusively

on the validity of loop

constructions

data flow testing loop testing condition testing

38

___________ is a test

case design method that

exercises the logical

conditions contained in a

program module

black box

testing
loop testing data flow testing

39
_____________ is

called behavioral testing.

black box

testing
loop testing data flow testing

40

The first step in

__________ is to

understand the objects

that are modeled in

software and the

relationships that

connect these objects

black box

testing
loop testing data flow testing

41

Equivalence partitioning

is a ___________

method that divides the

input domain of a

program into classes of

data.

black box

testing
loop testing data flow testing

42

Comparison testing is

also called

____________.

black box

testing
loop testing

behavioral

testing

43

__________ testing can

be applied to problems

in which the input

domain is relatively

small but too large to

accommodate

exhaustive testing.

orthogonal array loop behavioral

44

__________ focuses

verification effort on the

smallest unit of software

design – the software

component or module.

module testing unit testing structure testing

45
A driver is nothing more

than a __________.
subprogram main program stub

46

_____________ serve to

replace modules that are

subordinate called by the

component to be tested.

subprograms main programs stubs

47
Drivers and _________

represent overhead.
subprograms main programs stubs

48

___________ of

execution paths is an

essential task during the

unit test.

unit testing module testing selective testing

49

Good _________

dictates that error

conditions be anticipated

and error-handling paths

set up to reroute or

cleanly terminate

processing when an

error does occur

design testing code

50

_________ is

completely assembled as

a package, interfacing

errors have been

uncovered and

corrected.

software program code

51

The Process of

Configuration

identification involves

the specification of

components in the

software project are

known as ________.

Configuration

Items

Change

Control

Configuration

Control

52

Implementing a quality

system is spent on

writing documents

which specify how

certain tasks are to be

carried out is known as

_______.

 Procedures Policies Function

53

 ________ task involves

the programmer to

receive a specification of

a module.

 Integration

Programming

 System

Programming

 Unit Testing

54

Quality Assurance

follows _______

methodology

 Defect analysis Defect

Prevention

 Error detection

55

Quality Assurance is

based on _________

work

 Product

Oriented

 Function

Oriented

 Process

Oriented

56

SEI means Software

Engineering

Institute

Software

Engineering

International

Software

Engineering

Independent

57

ISO means Internal

Organizations

for standards

Intermediate

Organizations

for standards

International

Organizations

for standards

58

PCMM means Personal

Capability

Maturity Model

People

Capability

Maturity

Model

Professional

Capability

Maturity Model

59

Quality Control is based

on ______ methodology

 Defect

Prevention

 Process

Oriented

 Defect

Detection

60

 the document shows the

relationship between

requirement

specification and test

case is called ________

 Matrix Traceability

Matrix

 Defect Analysis

Option D Answer

software

testing
software testing

5 2

destructive constructive

designing testing

coded traceable

requirements testing

big small

hardly quickly

designing testing

goal test case

plans tests

software

testability
software testability

decomposabilit

y
operability

8 7

stability observability

controllability controllability

understandabil

ity
decomposability

observability simplicity

understandabil

ity
stability

understandabil

ity
understandability

stability probability

complex redundant

black-box

testing
glass-box testing

stability probability

complex random

logical logical

control path

testing
white-box testing

graph matrices
cyclomatic

complexity

control path independent path

5 4

6 6

cyclomatic

complexity
graph matrix

cyclomatic

omplexity
graph matrix

domain testing domain testing

domain testing branch testing

black box

testing
data flow testing

control path

testing
loop testing

condition

testing
condition testing

condition

testing
black box testing

condition

testing
black box testing

condition

testing
black box testing

back-to-back

testing
back-to-back testing

back-to-back orthogonal array

system testing unit testing

subroutine main program

subroutines stubs

subroutines stubs

white box

testing
selective testing

module design

all of the

above
software

 Project

control

Configuration Items

 Definitions Procedures

 Configuration

Control

 Unit Testing

 Error

correction

 Defect Prevention

 Design

Oriented

 Process Oriented

System

Engineering

Institute

Software

Engineering

Institute

Internal

optimization

standards

International

Organizations for

standards

Project

Capability

Maturity

Model

People Capability

Maturity Model

 debugging Defect Detection

 Matrix

Analysis

 Traceability Matrix

 Reg.No __________________
 [17CTU402]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

COMPUTER TECHNOLOGY

Fourth Semester
FIRST INTERNAL EXAMINATION – DECEMBER 2018

SOFTWARE ENGINEERING

 Class: III B.Sc. IT (A&B) Duration : 2 Hours
 Date & Session : .12.2018 Maximum : 50 Marks

PART-A (20 X 1 = 20 Marks)
Answer ALL the Questions

1.Software takes on a ______________ role.
 a) single b) dual c) triple d) tetra
2. Software is a _______________.
 a) virtual b) system c) modifier d) framework
3. Software doesn’t ________________.
 a) tearout b) wearout c) degrade d) deteriorate
4. Instructions that when executed provide desired function and performance is called____.
 a) software b) hardware c) firmware d) humanware
5. Software will undergo __________.
 a) database b) testing c) enhancement d) manufacture
6. The first step to develop software is ______________.

a) design b) requirements gathering c) coding d) analysis
7. Software engineering activities include _____________.

a) decision b) affliction c) hardware d) maintenance
8. All process model prescribes a ____________.

a) circular b) elliptical c) spiral d) workflow
9. Component based development incorporates the characteristics of the ________ model.

a) spiral b) hierarchical c) circular d) elliptical
10. Prototype is a ___________.

 a) software b) hardware c) computer d) model
11. Software project management begins with a set of activities that are called _______.
 a) project planning b) software scope c) software estimation d) decomposition
12. Breaking up of a complex problem into small steps is called ____________.

a) project planning b) software scope c) software estimation d) decomposition
13. The ease with which software can be transferred from one computer to another. This quality
 attribute is called ______________.

a) portability b) reliability c) efficiency d) accuracy

14. The ability of a program to perform a required function under stated condition for a stated

 period of time. This quality attribute is called ____________.
a) reliability b) accuracy c) portability d) efficiency

15. The extent software can continue to operate correctly. This quality attribute is called ______.
 a) robustness b) correctness c) efficiency d) reliability
16. The bedrock that supports software engineering is a____________.
 a) tools b) methods c) process models d) quality focus
17. Software requirements analysis work products must be reviewed for _________.
 a) modeling b) completeness c) information processing d) functional requirement
18. Software requirements analysis is divided into __________ areas of effort.
 a) 2 b) 3 c) 4 d) 5
19. Entity is a __________.
 a) data b) information c) model d) physical thing
20. Transformations are represented by ________.
 a) labeled arrows b) bubbles c) entity d) label

PART-B (3 X 2 = 6 Marks)
(Answer ALL the Questions)

21. Define software characteristics.

Software Characteristics

1. Software is developed or engineered; it is not manufactured in the classical sense.

2. Software doesn't "wear out."

3. Although the industry is moving toward component-based assembly, most

 software continues to be custom built.

22. Define Quality focus.

Any engineering approach much rests on organizational approach to quality, e.g. total

quality management and such emphasize continuous process improvement (that is increasingly

more effective approaches to software engineering). The bedrock that supports a software

engineering is a quality focus.

23. What is Data flow model.

The data flow diagram enables the software engineer to develop models of the information

domain and functional domain at the same time. As the DFD is refined into greater levels of

detail, the analyst performs an implicit functional decomposition of the system.

Guidelines

1. The level 0 data flow diagram should depict the software/system as a single bubble

2. Primary input and output should be carefully noted

3. Refinement should begin by isolating candidate processes, data objects, and data stores to be

represented at the next level

4. All arrows and bubbles should be labeled with meaningful names

5. Information flow continuity must be maintained from level to level

6. One bubble at a time should be refined.

PART-C (3 X 8 = 24 Marks)
 (Answer ALL the Questions)

24. a) Describe about evolving role of Software.

The Evolving Role of Software

Software takes on a dual role. It is a product and, at the same time, the vehicle for

delivering a product. As a product, it delivers the computing potential embodied by computer

hardware or, more broadly, a network of computers that are accessible by local hardware.

Whether it resides within a cellular phone or operates inside a mainframe computer, software is

information transformer— producing, managing, acquiring, modifying, displaying, or

transmitting information that can be as simple as a single bit or as complex as a multimedia

presentation. As the vehicle used to deliver the product, software acts as the basis for the control

of the computer (operating systems), the communication of information (networks), and the

creation and control of other programs (software tools and environments). Software delivers the

most important product of our time—information.

Software transforms personal data (e.g., an individual’s financial transactions) so that the

data can be more useful in a local context; it manages business information to enhance

competitiveness; it provides a gateway to worldwide information networks (e.g., Internet) and

provides the means for acquiring information in all of its forms.

 The role of computer software has undergone significant change over a time span of little

more than 50 years. Dramatic improvements in hardware performance, profound changes in

computing architectures, vast increases in memory and storage capacity, and a wide variety of

exotic input and output options have all precipitated more sophisticated and complex computer-

based systems.

The lone programmer of an earlier era has been replaced by a team of software

specialists, each focusing on one part of the technology required to deliver a complex

application.

Software

Computer software, or just software, is a collection of computer programs and related

data that provide the instructions for telling a computer what to do and how to do it. In other

words, software is a conceptual entity which is a set of computer programs, procedures, and

associated documentation concerned with the operation of a data processing system. We can also

say software refers to one or more computer programs and data held in the storage of the

computer for some purposes.

In other words software is a set of programs, procedures, algorithms and its

documentation. Program software performs the function of the program it implements, either by

directly providing instructions to the computer hardware or by serving as input to another piece

of software.

The term was coined to contrast to the old term hardware (meaning physical devices). In

contrast to hardware, software is intangible, meaning it "cannot be touched". Software is also

sometimes used in a more narrow sense, meaning application software only. Sometimes the term

includes data that has not traditionally been associated with computers, such as film, tapes, and

records.

(or)

b) Explain about Software Process Framework activities.

Process Framework

Identifies a small number of framework activities that are applicable to all software

projects. In addition the framework encompasses umbrella activities that are

applicable across the software process.

Generic Process Framework Activities

Each framework activity is populated by a set of software engineering actions. An action,

e.g. design, is a collection of related tasks that produce a major software engineering work

product.

Communication – lots of communication and collaboration with customer

and other stakeholders.. Encompasses requirements gathering.

Planning – establishes plan for software engineering work that follows. Describes technical

tasks, likely risks, required resources, works products and a work schedule

Modeling – encompasses creation of models that allow the developer and customer to better

understand software requirements and the design that will achieve those requirements.

Modeling Activity – composed of two software engineering actions

• analysis – composed of work tasks (e.g. requirement gathering, elaboration, specification and

validation) that lead to creation of analysis model and/or requirements specification.

• design – encompasses work tasks such as data design, architectural design, interface design and

component level design leads to creation of design model and/or a design specification.

Construction – code generation and testing.

Deployment – software, partial or complete, is delivered to the customer

who evaluates it and provides feedback.

Different projects demand different task sets. Software team chooses task set based on problem

and project characteristics.

25. a) Discuss about the Layered Technology of Software Engineering.

Software Engineering as a Layered Technology

Any engineering approach much rests on organizational approach to quality, e.g. total

quality management and such emphasize continuous process improvement (that is increasingly

more effective approaches to software engineering). The bedrock that supports a software

engineering is a quality focus.

 The foundation for software engineering is the process layer. Software engineering

process is the glue that holds the technology layers together and enables rational and timely

development of computer software. Process defines a framework for a set of key process areas

(KPAs) that must be established for effective delivery of

software engineering technology. The key process areas form the basis for management

control of software projects and establish the context in which technical methods are applied,

work products (models, documents, data, reports, forms, etc.) are produced, milestones are

established, quality is ensured, and change is properly managed.

 Fig 1.3 Software Engineering Layers

 Software engineering methods provide the technical how-to's for building software.

Methods encompass a broad array of tasks that include requirements analysis,

design, program construction, testing, and support. Software engineering methods

rely on a set of basic principles that govern each area of the technology and include

modeling activities and other descriptive techniques.

 Software engineering tools provide automated or semi-automated support for the

process and the methods. When tools are integrated so that information created by

one tool can be used by another, a system for the support of software development,

called computer-aided software engineering, is established.

(or)

b) Explain about RAD Process model.

1. The RAD Model

 Rapid application development (RAD) is an incremental software process model

that emphasizes a short development cycle. The RAD model is a “high-speed” adaptation of

the waterfall model in which rapid development is achieved by using component-based

construction. If requirements are well understood and project scope is constrained, the RAD

process enables a development team to create a “fully functional system” within very short

time periods (e.g., 60 to 90 days)

 Like other process models, the RAD approach maps into the generic framework

activities.

 Communication works to understand the business problem and the information

characteristics that the software must accommodate.

 Planning is essential because multiple software teams work in parallel on different

system functions.

 Modeling encompasses three major phases- business modeling, data modeling and

process modeling and establishes design representations that serve as the basis for

RAD’s construction activity.

 Construction emphasizes the use of preexisting software components and the

application of automatic code generation.

 Finally, deployment establishes a basis for subsequent iterations, if required.

 The RAD process model is illustrated in Fig 1.6. Obviously, the time constraints imposed

on a RAD project demand “scalable scope” . If a business application can be modularized in a

way that enables each major function to be completed in less than three months (using the

approach described previously), it is a candidate for RAD. Each major function can be addressed

by a separate RAD team and then integrated to form a whole.

Drawbacks

• For large but scalable projects, RAD requires sufficient human resources to create the right

number of RAD teams.

• If developers and customers are not committed to the rapid-fire activities necessary to get a

system complete in a much abbreviated time frame, RAD projects will fail.

Fig:1.6 The RAD Model

• If a system cannot be properly modularized, building the components necessary for

RAD will be problematic

• If high performance is an issue and performance is to be achieved through tuning the

interfaces to system components, the RAD approach may not work.

• RAD may not be appropriate when technical risks are high.

26. a) Illustrate about the techniques of Requirement Analysis.

Requirement Analysis

 Requirement Analysis results in the specification of software’s operational characteristics

indicates software interface with other system elements and establishes constraints that software

must meet

 Requirement analysis allow the software engineer to elaborate on basic requirements

established during earlier requirement engineering tasks and build models that depict user

scenario, functional activities, problem classes and their relationships, system and class behavior,

and the flow of data as it is transformed.

 Requirement analysis provides the software designer with a representation of

information, function and behavior that can be translated to architectural, interface and

component-level designs

 Finally, the analysis model and the requirement specification provide the developer and

customer with the means to assess quality once software is built. Throughout analysis modeling,

the software engineer’s primary focus is on what and not how

1. Overall Objectives and Philosophy

 The analysis model must have three primary objectives

 To describe what the customer requires

 To establish a basis for the creation of software design

 To define a set of requirements that can be validated once the software is built

 The analysis model bridges the gap between a system level description that describes

overall system functionality as it is achieved by applying software, hardware, data, human and

other system elements and a software design that describes the software’s application

architecture, user interface and component level structure

2. Analysis rules of Thumb

 The model should focus on requirements that are visible within the problem or business

domain. The level of abstraction should be relatively high

 Each element of the analysis model should add to an overall understanding of software

requirements and provide insight into the information domain, function and behavior of

the system

 Delay consideration of infrastructure and non functional models until design

 Minimize coupling throughout the system

 Be certain that the analysis model provides value to all stakeholders

 Keep the model as simple as it can be

3. Domain Analysis

 The analysis patterns often reoccur across many applications within a specific business

domain. If these patterns are defined and categorized in a manner that allows a software engineer

or analyst to recognize and reuse them, the creation of the analysis model is expedited.

Input and output of Domain Analysis

Software domain analysis is the identification, analysis, and specification of common

requirements from a specific application domain, typically for reuse on multiple projects within

the application domain.

(or)

b)Explain the concept of Data Modeling and Data Objects.

Data Modeling Concepts

 Analysis modeling often begins with data modeling. The software engineer or analyst

defines all data objects that are processed within the system, the relationships between the data

objects, and other information that is pertinent to the relationships.

1. Data object

A data object is a representation of almost any composite information that must be

understood by software. By composite information, we mean something that has a number of

different properties or attributes. Therefore, width (a single value) would not be a valid data

object, but dimensions (incorporating height, width, and depth) could be defined as an object.

A data object can be an external entity (e.g., anything that produces or consumes

information), a thing (e.g., a report or a display), an occurrence (e.g., a telephone call)

or event (e.g., an alarm), a role (e.g., salesperson), an organizational unit (e.g., accounting

department), a place (e.g., a warehouse), or a structure (e.g., a file). For example,

a person or a car (Figure 12.2) can be viewed as a data object in the sense that either can be

defined in terms of a set of attributes. The data object description incorporates the data object

and all of its attributes.

2. Data Attributes

 Attributes define the properties of a data object and take on one of three

different characteristics. They can be used to

 (1) name an instance of the data object,

(2) describe the instance, or

(3) make reference to another instance in another table.

3. Relationships

 Data objects are connected to one another in different ways. Consider two data objects,

person and car. These objects can be represented using the simple notation illustrated in below

Figure. A connection is established between person and car because the two objects are related.

4. Cardinality and Modality

 The elements of data modeling—data objects, attributes, and relationships— provide the

basis for understanding the information domain of a problem. However, additional information

related to these basic elements must also be understood.

 We have defined a set of objects and represented the object/relationship pairs that

bind them. But a simple pair that states: object X relates to object Y does not provide

enough information for software engineering purposes. We must understand how many

occurrences of object X are related to how many occurrences of object Y. This leads to a data

modeling concept called cardinality.

 Cardinality is the specification of the number of occurrences of one [object] that can be

related to the number of occurrences of another [object].

Cardinality defines “the maximum number of objects that can participate in a

relationship”

Modality

 The modality of a relationship is 0 if there is no explicit need for the relationship to occur

or the relationship is optional. The modality is 1 if an occurrence of the relationship is

mandatory.

 Reg.No _______________
 [17CTU402]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

COMPUTER TECHNOLOGY
Fourth Semester

SECOND INTERNAL EXAMINATION – FEBRUARY 2019

SOFTWARE ENGINEERING

 Class: II B.Sc. CT Duration : 2 Hours
 Date & Session : 04.02.2019 & AN Maximum : 50 Marks

PART-A (20 X 1 = 20 Marks)
Answer All the Questions

1. The ___________ becomes the foundation for design, providing the designer with an

essential representation of software that can be mapped in to an implementation context.
a) prototype b) model c) interface d) software

2. The __________ is one method for representing the behavior of a system by depicting its state
and events.
a) state diagram b) use case diagram c) ER diagram d) DFD

3. When an sensor event is recognized, the ___________ invokes an audible alarm attached to
the system.
a) model b) software c) delay d) prototype

4. A _________ is always a model – an abstraction of some real situation that is normally quite
complex.
a) software b) prototype d) specification d) function

5. Design is not ___________, coding is not design.
a) coding b) analysis c) review d) event

6. The design ___________ is the equivalent of an architect’s plan for a house.
a) analysis b) process c) model d) function

7. At the highest level of _________, a solution is stated in broad terms, using the language
 of the problem environment.

a) refinement b) modularity c) abstraction d) continuity
8. We should allow user interaction to be __________ and undoable.

a) interruptible b) flexible c) rigid d) encouraging
9. We should allow user interaction to interruptible and __________.
 a) undoable b) flexible c) rigid d) encouraging
10. Design begins with the __________ model.

a) data b) requirements c) specification d) code
11. Software design methodologies lack the __________ that are normally associated with more

classical engineering design disciplines.
a) depth b) flexibility c) quantitative nature d) all of the above

12. We should disclose information in a ___________ fashion.
a) open b) progressive c) streamline d) flexible

13. The visual layout of the __________ should be based on a real world metaphor.
a) interaction modes b) interface c) design d) structure

14. The interface should present and acquire _____________ in a consistent fashion.
a) information b) task c) knowledge d) idea

15. The ________ is a primary concern of software engineers.
a) software design b) software maintenance c) software product d) software quality

16. The quality attributes for very software product includes _______.
a) design b) clarity c) accuracy d) visibility

17. The software requirements specification is developed as a consequence of __________.
a) review b) analysis c) prototyping d) functional description

18. The designer’s goal is to produce a model or representation of_______ that will later be built.
 a) component b) entity c) data d) raw material

19. The information domain contains ___________ different views of the data and control as
each is processed by a computer program.
a) 2 b) 3 c) 4 d) 5

20. The content of ___________ is defined by the attributes that are needed to create it.
a) system status b) functional model c) paycheck d) behavioral model

PART-B (3 X 2 = 6 Marks)
(Answer All the Questions)

21. Define Data attributes.
22. What is Project Risk?
23. What is Quality Management?

PART-C (3 X 8 = 24 Marks)
 (Answer All the Questions)

24. a) Explain about the characteristics and components of SRS.

(or)
 b) Describe about Data Flow model.

25. a) Explain about the concept of Software Risk.

(or)
 b) Illustrate about the Metric of Process.

 26. a) Discuss about Risk Projection and Risk Refinement.

(or)
 b) Explain about RMMM plan.

 Reg.No _______________
 [17CTU402]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

COMPUTER TECHNOLOGY
Fourth Semester

SECOND INTERNAL EXAMINATION – FEBRUARY 2019

SOFTWARE ENGINEERING

 Class: II B.Sc. CT Duration : 2 Hours
 Date & Session : 04.02.2019 & AN Maximum : 50 Marks

PART-A (20 X 1 = 20 Marks)
Answer All the Questions

1. The ___________ becomes the foundation for design, providing the designer with an

essential representation of software that can be mapped in to an implementation context.
a) prototype b) model c) interface d) software

2. The __________ is one method for representing the behavior of a system by depicting its state
and events.
a) state diagram b) use case diagram c) ER diagram d) DFD

3. When an sensor event is recognized, the ___________ invokes an audible alarm attached to
the system.
a) model b) software c) delay d) prototype

4. A _________ is always a model – an abstraction of some real situation that is normally quite
complex.
a) software b) prototype d) specification d) function

5. Design is not ___________, coding is not design.
a) coding b) analysis c) review d) event

6. The design ___________ is the equivalent of an architect’s plan for a house.
a) analysis b) process c) model d) function

7. At the highest level of _________, a solution is stated in broad terms, using the language
 of the problem environment.

a) refinement b) modularity c) abstraction d) continuity
8. We should allow user interaction to be __________ and undoable.

a) interruptible b) flexible c) rigid d) encouraging
9. We should allow user interaction to interruptible and __________.
 a) undoable b) flexible c) rigid d) encouraging
10. Design begins with the __________ model.

a) data b) requirements c) specification d) code
11. Software design methodologies lack the __________ that are normally associated with more

classical engineering design disciplines.
a) depth b) flexibility c) quantitative nature d) all of the above

12. We should disclose information in a ___________ fashion.
a) open b) progressive c) streamline d) flexible

13. The visual layout of the __________ should be based on a real world metaphor.
a) interaction modes b) interface c) design d) structure

14. The interface should present and acquire _____________ in a consistent fashion.
a) information b) task c) knowledge d) idea

15. The ________ is a primary concern of software engineers.
a) software design b) software maintenance c) software product d) software quality

16. The quality attributes for very software product includes _______.
a) design b) clarity c) accuracy d) visibility

17. The software requirements specification is developed as a consequence of __________.
a) review b) analysis c) prototyping d) functional description

18. The designer’s goal is to produce a model or representation of_______ that will later be built.
 a) component b) entity c) data d) raw material

19. The information domain contains ___________ different views of the data and control as
each is processed by a computer program.
a) 2 b) 3 c) 4 d) 5

20. The content of ___________ is defined by the attributes that are needed to create it.
a) system status b) functional model c) paycheck d) behavioral model

PART-B (3 X 2 = 6 Marks)
(Answer All the Questions)

21. Define Data attributes.

Data Attributes

 Attributes define the properties of a data object and take on one of three

different characteristics. They can be used to

 (1) name an instance of the data object,

(2) describe the instance, or

(3) make reference to another instance in another table.

22. What is Project Risk?

 Project risks threaten the project plan. That is, if project risks become real, it is likely that

the project schedule will slip and that costs will increase. Project risks identify potential budgetary,

schedule, personnel (staffing and organization), resource, stakeholder, and requirements

problems and their impact on a software project. Project complexity, size, and the degree of

structural uncertainty were also defined as project (and estimation) risk factors.

23. What is Quality Management?

Quality Management

 The drumbeat for improved software quality began in earnest as software became

increasingly integrated in every facet of our lives. By the 1990s, major corporations

recognized that billions of dollars each year were being wasted on software that didn’t

deliver the features and functionality that were promised. Worse, both government and

industry became increasingly concerned that a major software fault might cripple important

infrastructure, costing tens of billions more. By the turn of the century, CIO Magazine

trumpeted the headline, “Let’s Stop Wasting $78 Billion a Year,” lamenting the fact that

“American businesses spend billions for software that doesn’t do what it’s supposed to do”.

InformationWeek echoed the same concern: Despite good intentions, defective code

remains the hobgoblin of the software industry, accounting for as much as 45% of

computer-system downtime and costing U.S. companies about $100 billion last year in lost

productivity and repairs, says the Standish Group, a market research firm. That doesn’t

include the cost of losing angry customers. In 2005, Computer World lamented that “bad

software plagues nearly every organization that uses computers, causing lost work

hours during computer downtime, lost or corrupted data, missed sales opportunities, high

IT support and maintenance costs, and low customer satisfaction. A year later, InfoWorld

wrote about the “the sorry state of software quality” reporting that the quality problem had not

gotten any better. developers, arguing that sloppy practices lead to low-quality software.

Developers blame customers (and other stakeholders), arguing that irrational delivery

dates and a continuing stream of changes force them to deliver software before it has

been fully validated.

PART-C (3 X 8 = 24 Marks)
 (Answer All the Questions)

24. a) Explain about the characteristics and components of SRS.

Characteristics of an SRS
Software requirements specification should be accurate, complete, efficient, and of high quality, so
that it does not affect the entire project plan. An SRS is said to be of high quality when the developer
and user easily understand the prepared document. Other characteristics of SRS are discussed below.
• Correct
• Complete
• Unambiguous
• Verifiable
• Consistent
• Ranked for importance and/or stability
• Modifiable
• Traceable

1. Correct: SRS is correct when all user requirements are stated in the requirements document.
The stated requirements should be according to the desired system. This implies that each
requirement is examined to ensure that it (SRS) represents user requirements. Note that there is no
specified tool or procedure to assure the correctness of SRS. Correctness ensures that all specified
requirements are performed correctly.

2. Unambiguous: SRS is unambiguous when every stated requirement has only one
interpretation. This implies that each requirement is uniquely interpreted. In case there is a term used
with multiple meanings, the requirements document should specify the meanings in the SRS so that
it is clear and easy to understand.

3. Complete: SRS is complete when the requirements clearly define what the software is
required to do. This includes all the requirements related to performance, design and functionality.

4. Ranked for importance/stability: All requirements are not equally important, hence each
requirement is identified to make differences among other requirements. For this, it is essential to
clearly identify each requirement. Stability implies the probability of changes in the requirement in
future.

5. Modifiable: The requirements of the user can change, hence requirements document should
be created in such a manner that those changes can be modified easily, consistently maintaining the
structure and style of the SRS.

6. Traceable: SRS is traceable when the source of each requirement is clear and facilitates the
reference of each requirement in future. For this, forward tracing and backward tracing are used.
Forward tracing implies that each requirement should be traceable to design and code elements.
Backward tracing implies defining each requirement explicitly referencing its source.

7. Verifiable: SRS is verifiable when the specified requirements can be verified with a cost-
effective process to check whether the final software meets those requirements. The requirements are
verified with the help of reviews. Note that unambiguity is essential for verifiability.

8. Consistent: SRS is consistent when the subsets of individual requirements defined do not
conflict with each other. For example, there can be a case when different requirements can use
different terms to refer to the same object. There can be logical or temporal conflicts between the
specified requirements and some requirements whose logical or temporal characteristics are not
satisfied. For instance, a requirement states that an event 'a' is to occur before another event 'b'. But
then another set of requirements states (directly or indirectly by transitivity) that event 'b' should
occur before event 'a'.

COMPONENTS OF THE SRS
Introduction to Components of the SRS

In previous section, we discussed various characteristics that will help in completely specification
the requirements. Here we describe some of system properties that an SRS should specify. The basic
issues, an SRS must address are:

Functional requirements

Performance requirements

Design constraints

External interface requirements

Conceptually, any SRS should have these components. Now we will discuss them one by one.

1. Functional Requirements

Functional requirements specify what output should be produced from the given inputs. So they
basically describe the connectivity between the input and output of the system. For each functional
requirement:

1. A detailed description of all the data inputs and their sources, the units of measure, and the
range of valid inputs be specified:

2. All the operations to be performed on the input data obtain the output should be specified, and

3. Care must be taken not to specify any algorithms that are not parts of the system but that may be
needed to implement the system.

4. It must clearly state what the system should do if system behaves abnormally when any invalid
input is given or due to some error during computation. Specifically, it should specify the
behaviour of the system for invalid inputs and invalid outputs.

2. Performance Requirements (Speed Requirements)

This part of an SRS specifies the performance constraints on the software system. All the
requirements related to the performance characteristics of the system must be clearly specified.
Performance requirements are typically expressed as processed transaction s per second or response
time from the system for a user event or screen refresh time or a combination of these. It is a good
idea to pin down performance requirements for the most used or critical transactions, user events and
screens.

2. Design Constraints

The client environment may restrict the designer to include some design constraints that must be
followed. The various design constraints are standard compliance, resource limits, operating
environment, reliability and security requirements and policies that may have an impact on the
design of the system. An SRS should identify and specify all such constraints.

Standard Compliance: It specifies the requirements for the standard the system must follow. The
standards may include the report format and according procedures.

Hardware Limitations: The software needs some existing or predetermined hardware to operate, thus
imposing restrictions on the design. Hardware limitations can includes the types of machines to be
used operating system availability memory space etc.

Fault Tolerance: Fault tolerance requirements can place a major constraint on how the system is to
be designed. Fault tolerance requirements often make the system more complex and expensive, so
they should be minimized.

Security: Currently security requirements have become essential and major for all types of systems.
Security requirements place restriction s on the use of certain commands control access to database,
provide different kinds of access, requirements for different people, require the use of passwords and
cryptography techniques, and maintain a log of activities in the system.

4. External Interface Requirements

For each external interface requirements:

1. All the possible interactions of the software with people hardware and other software should be
clearly specified,

2. The characteristics of each user interface of the software product should be specified and

3. The SRS should specify the logical characteristics of each interface between the software product
and the hardware components for hardware interfacing.

(or)
 b) Describe about Data Flow model.

 The DFD takes an input-process-output view of a system. That is, data objects flow

into the software, are transformed by processing elements, and resultant data objects flow out of the

software. Data objects are represented by labeled arrows and the transformations are represented by

circles (also called bubbles). The DFD is presented in hierarchical fashion. That is, the first data flow

model sometimes called a level 0 DFD or context diagram represent the system as a whole.

1. Creating a data flow model

 The data flow diagram enables the software engineer to develop models of the information

domain and functional domain at the same time. As the DFD is refined into greater levels of detail,

the analyst performs an implicit functional decomposition of the system.

Guidelines

1. The level 0 data flow diagram should depict the software/system as a single bubble

2. Primary input and output should be carefully noted

3. Refinement should begin by isolating candidate processes, data objects, and data stores to be

represented at the next level

4. All arrows and bubbles should be labeled with meaningful names

5. Information flow continuity must be maintained from level to level

6. One bubble at a time should be refined.

Context level DFD for the safe home security function

The safe home security function enables the homeowner to configure the security system.

When it is installed, monitors all sensors connected to the security system, and interacts with the

homeowner through the internet, a PC, or a control panel

During installation, the safe home PC is used to program and configure the system. Each

sensor is assigned a number and type, a master password is programmed for arming and disarming

the system, and telephone number(s) are input for dialing when a sensor event occurs.

 When a sensor event is recognized, the software involves an audible alarm attached to the

system. After a delay time that is specified by the homeowner during system configuration activities,

the software dials a telephone number of a monitoring service, provides information about the

location, reporting the nature of the event that has been detected. The telephone number will be

redialed every 20 seconds until a telephone connection is obtained

 The level 0 DFD is now expanded into a level 1 data flow model

Level 1 DFD for the safe home security function

The homeowner receives security information via a control panel, the PC, or a browser,

collectively called an interface. The interface displays prompting messages and system status

information on the control panel, the PC, or the browser window

 The process represented at DFD level 1 can be further refined into lower levels. For example,

the process monitor sensors can be refined into a level 2 DFD.

Level 2 DFD that refines the monitor sensors process

The refinement of DFDs continues until each bubble performs a single function. That is, until

the process represented by the bubble performs a function that would be easily implemented as a

program component

25. a) Explain about the concept of Software Risk.

Software Risks

Although there has been considerable debate about the proper definition for software

risk, there is general agreement that risk always involves two characteristics: uncertainty—

the risk may or may not happen; that is, there are no 100 percent probable risks1—and loss—

if the risk becomes a reality, unwanted consequences or losses will occur. When risks are

analyzed, it is important to quantify the level of uncertainty and the degree of loss associated

with each risk. To accomplish this, different categories of risks are considered.

Project risks threaten the project plan. That is, if project risks become real, it is likely that the

project schedule will slip and that costs will increase. Project risks identify potential

budgetary, schedule, personnel (staffing and organization), resource, stakeholder, and

requirements problems and their impact on a software project. Project complexity, size, and

the degree of structural uncertainty were also defined as project (and estimation) risk factors.

Technical risks threaten the quality and timeliness of the software to be produced. If a technical

risk becomes a reality, implementation may become difficult or impossible. Technical

risks identify potential design, implementation, interface, verification, and maintenance

problems. In addition, specification ambiguity, technical uncertainty, technical obsolescence,

and “leading-edge” technology are also risk factors. Technical risks occur because the

problem is harder to solve than you thought it would be.

Business risks threaten the viability of the software to be built and often jeopardize the

project or the product. Candidates for the top five business risks are (1) building an excellent

product or system that no one really wants (market risk), (2) building a product that no

longer fits into the overall business strategy for the company (strategic risk), (3) building a

product that the sales force doesn’t understand how to sell (sales risk), (4) losing the

support of senior management due to a change in focus or a change in people (management

risk), and (5) losing budgetary or personnel commitment (budget risks).

Known risks are those that can be uncovered after careful evaluation of the project plan,

the business and technical environment in which the project is being developed, and other

reliable information sources (e.g., unrealistic delivery date, lack of documented

requirements or software scope, poor development environment).

Predictable risks are extrapolated from past project experience (e.g., staff turnover, poor

communication with the customer, dilution of staff effort as ongoing maintenance requests
are serviced). Unpredictable risks are the joker in the deck. They can and do occur, but
they are extremely difficult to identify in advance

(or)

b) Illustrate about the Metric of Process.

Process metrics are collected across all projects and over long periods of

time. Their intent is to provide a set of process indicators that lead to long-term software

process improvement. Project metrics enable a software project manager to (1) assess the

status of an ongoing project, (2) track potential risks, (3) uncover problem areas before they

go “critical,” (4) adjust work flow or tasks, and (5) evaluate the project team’s ability to

control quality of software work products.

Measures that are collected by a project team and converted into metrics for use during

a project can also be transmitted to those with responsibility for software process

improvement. For this reason, many of the same metrics are used in both the process and

project domains.

Process Metrics and Software Process Improvement

The only rational way to improve any process is to measure specific attributes of the

process, develop a set of meaningful metrics based on these attributes, and then use the

metrics to provide indicators that will lead to a strategy for improvement (Chapter 37).

But before we discuss software metrics and their impact on software process improvement,

it is important to

note that process is only one of a number of “controllable factors in improving software

quality and organizational performance”.

Process sits at the center of a triangle connecting three factors that have a profound

influence on software quality and organizational performance. The skill and motivation of

people have been shown to be the most influential factors in quality and performance. The

complexity of the product can have a substantial impact on quality and team performance.

The technology (i.e., the software engineering methods and tools) that populates the process

also has an impact. In addition, the process triangle exists within a circle of environmental

conditions that include the development environment (e.g., integrated software tools),

business conditions (e.g., deadlines, business rules), and customer characteristics (e.g.,

ease of communication and collaboration). You can only measure the efficacy of a software

process indirectly. That is, you derive a set of metrics based on the outcomes that can be

derived from the process. Outcomes include measures of errors uncovered before release of

the software, defects delivered to and reported by end users, work products delivered

(productivity), human effort expended, calendar time used, schedule conformance, and

other measures. You can also derive process metrics by measuring the characteristics of

specific software engineering tasks. For example, you might measure the effort and time

spent performing the umbrella activities and the generic software engineering activities

described in

The skill and motivation of the software people doing the work are the most important

factors that influence software quality.

“Software metrics let you know when to laugh and when to cry.”

Process Product People

Technology Development

environment

Customer

characteristics

Business conditions

26. a) Discuss about Risk Projection and Risk Refinement.

Risk Projection

Risk projection, also called risk estimation, attempts to rate each risks in two ways—(1)

the likelihood or probability that the risk is real and will occur and (2) the consequences

of the problems associated with the risk, should it occur. You work along with other

managers and technical staff to perform four risk

 projection steps: 1. Establish a scale that reflects the perceived likelihood of a

risk.

2. Delineate the consequences of the risk.

3. Estimate the impact of the risk on the project and the product.

4. Assess the overall accuracy of the risk projection so that there will be no misunderstandings.

The intent of these steps is to consider risks in a manner that leads to prioritization.

No software team has the resources to address every possible risk with the same degree of

rigor. By prioritizing risks, you can allocate resources where they will have the most impact.

Developing a Risk Table

A risk table provides you with a simple technique for risk projection.

• Begin by listing all risks (no matter how remote) in the first column of the table.

• Each risk is categorized in the second column (e.g., PS implies a project size risk,

BU implies a business risk).

• The probability of occurrence of each risk is entered in the next column of the table.

 • The probability value for each risk can be estimated by team members individually.

• Each risk component is assessed and an impact category is determined.

• The categories for each of the four risk components—performance, support, cost,

and schedule—are averaged to determine an overall impact value.

• Once the first four columns of the risk table have been completed, the table is sorted

by probability and by impact.

• High-probability, high-impact risks percolate to the top of the table, and

low-probability risks drop to the bottom.

• This accomplishes first-order risk prioritization. Assessing Risk Impact

Three factors affect the consequences that are likely if a risk does occur: its nature, its

scope, and its timing.

• The nature of the risk indicates the problems that are likely if it occurs.

• The scope of a risk combines the severity with its overall distribution

Finally, the timing of a risk considers when and for how long the impact will be felt.

Risk Refinement

During early stages of project planning, a risk may be stated quite generally. As time

passes and more is learned about the project and the risk, it may be possible to refine the risk

into a set of more detailed risks, each somewhat easier to mitigate, monitor, and manage.

This general condition can be refined in the following manner:

Sub condition 1. Certain reusable components were developed by a third party with

no knowledge of internal design standards.

Sub condition 2. The design standard for component interfaces has not been solidified

and may

not conform to certain existing reusable components.

Sub condition 3. Certain reusable components have been implemented in a language that

is not

supported on the target environment.

The consequences associated with these refined sub conditions remain the same (i.e.,

30 percent of software components must be custom engineered), but the refinement

helps to isolate the underlying risks and might lead to easier analysis and response.

(or)

 b) Explain about RMMM plan.

 The RMMM Plan

A risk management strategy can be included in the software project plan, or the

risk management steps can be organized into a separate risk mitigation, monitoring

and management plan.

 The RMMM plan documents all work performed as part of risk analysis and are

 used by the project manager as part of the overall project

 plan. Some software teams do not develop a formal RMMM document. Rather, each

risk is documented individually using a risk information sheet (RIS). In most cases, the

RIS is maintained using a database system so that creation and information entry, priority

ordering, searches, and other analysis may be accomplished easily. Once RMMM has been

documented and the project has begun, risk mitigation and monitoring steps commence. As

we have already discussed, risk mitigation is a problem avoidance activity. Risk monitoring is

a project tracking activity with three primary objectives: (1) to assess whether predicted risks

do, in fact, occur; (2) to ensure that risk aversion steps defined for the risk are being properly

applied; and (3) to

collect information that can be used for future risk analysis. In many cases, the problems

that occur during a project can be traced to more than one risk. Another job of risk monitoring

is to attempt to allocate origin

 Reg.No _______________

 [17CTU402]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

COMPUTER TECHNOLOGY

Fourth Semester

THIRD INTERNAL EXAMINATION – MARCH 2019

SOFTWARE ENGINEERING

 Class: II B.Sc. CT Duration : 2 Hours

 Date & Session : 11.03.2019 & AN Maximum : 50 Marks

PART-A (20 X 1 = 20 Marks)

Answer All the Questions

1. We should design for direct interaction with ________ that appear on the screen.

a) code b) class c) objects d) user

2. We should hide technical ___________ from the casual user.

a) reactions b) actions c) internals d) interactions

3. We should streamline ___________ as skill levels advance and allow the interaction

 to be customized.

a) internals b)interaction c) actions d) reactions

4. Testing should begin in the __________ and progress toward testing in the large.

a) design b) beginning c)small d) big

5. The less there is to test, the more __________ we can test it.

a) quickly b) shortly c) automatic d) hardly

6. A good _________ is one that has a high probability of finding an undiscovered error.

a) planning b)test case c) objective d) goal

7. The design should be __________ for quality as it is being created not after the fact.

 a) reviewed b)assessed c) structured d) integrated

8. The design should be ___________ to minimize conceptual errors.

 a) reviewed b) assessed c) structured d) integrated

9. Software design is both a _________ and a model.

 a) model b)process c) data d) function

10. The __________ is the only way that we can accurately translate a customer’s requirements

 into a finished software product or system.

 a) specification b)design c) data d) prototype

11. We should provide ___________ interaction.

 a) rigid b)flexible c) encouraging d) enthusiastic

 12. The __________ is a process of executing a program with the intent of finding an error.

 a) coding b)testing c) debugging d) designing

 13. The interface should present and acquire _____________ in a consistent fashion.

 a) information b) task c) knowledge d) idea

 14. The interface should present and acquire information in a ___________ fashion.

 a) consistent b) inconsistent c) rigid d) flexible

 15. A ____________ of the entire system incorporates data, architectural interface, and procedural

 representations of the software.

 a) data model b)design model c) user model d)system image

 16. By controlling the scope of testing, we can more quickly isolate problems and perform smarter

 retesting. This characteristic is called _________.

 a) decomposability b) simplicity c) stability d) understandability

 17. The less there is to test, the more quickly we can test it. This characteristic is called _________.

 a) controllability b)simplicity c) operability d) observability

 18. The fewer the changes, the fewer the disruptions to testing. This characteristic is called ______.

 a) controllability b) decomposability c)stability d)understandability

 19. The ___________ focus on the design of the business or technical process that the system must

 accommodate.

 a) framework models b) dynamic models c)process models d) functional models

20. The ________ task involves the programmer to receive a specification of a module.

 a) Integration Programming b) System Programming

 c) Unit Testing d) Configuration Control

PART-B (3 X 2 = 6 Marks)

(Answer All the Questions)

21. Define architectural design.

22. What is Inheritance?

23. What do you mean by an error?

PART-C (3 X 8 = 24 Marks)

 (Answer All the Questions)

24. a) Write in detail about the approach used in class based components.

 (or)

 b) Discuss in detail about the Architectural components of software.

25. a) Explain Graph based testing methods in Black Box testing.

(or)

 b) Write in detail about Software Testing Fundamentals.

 26. a) Discuss in detail about Validation testing.

(or)

 b) Illustrate about loop testing and its types.

Reg.No _______________
 [17CTU402]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

COMPUTER TECHNOLOGY

Fourth Semester

THIRD INTERNAL EXAMINATION – MARCH 2019

SOFTWARE ENGINEERING

 Class: II B.Sc. CT Duration : 2 Hours

 Date & Session : 11.03.2019 & AN Maximum : 50 Marks

PART-A (20 X 1 = 20 Marks)

Answer All the Questions

1. We should design for direct interaction with ________ that appear on the screen.

a) code b) class c) objects d) user

2. We should hide technical ___________ from the casual user.

a) reactions b) actions c) internals d) interactions

3. We should streamline ___________ as skill levels advance and allow the interaction

 to be customized.

a) internals b) interaction c) actions d) reactions

4. Testing should begin in the __________ and progress toward testing in the large.

a) design b) beginning c)small d) big

5. The less there is to test, the more __________ we can test it.

a) quickly b) shortly c) automatic d) hardly

6. A good _________ is one that has a high probability of finding an undiscovered error.

a) planning b)test case c) objective d) goal

7. The design should be __________ for quality as it is being created not after the fact.

 a) reviewed b)assessed c) structured d) integrated

8. The design should be ___________ to minimize conceptual errors.

 a) reviewed b) assessed c) structured d) integrated

9. Software design is both a _________ and a model.

 a) model b)process c) data d) function

10. The __________ is the only way that we can accurately translate a customer’s requirements

 into a finished software product or system.

 a) specification b)design c) data d) prototype

11. We should provide ___________ interaction.

 a) rigid b)flexible c) encouraging d) enthusiastic

 12. The __________ is a process of executing a program with the intent of finding an error.

 a) coding b)testing c) debugging d) designing

 13. The interface should present and acquire _____________ in a consistent fashion.

 a) information b) task c) knowledge d) idea

 14. The interface should present and acquire information in a ___________ fashion.

 a) consistent b) inconsistent c) rigid d) flexible

 15. A ____________ of the entire system incorporates data, architectural interface, and procedural

 representations of the software.

 a) data model b)design model c) user model d)system image

 16. By controlling the scope of testing, we can more quickly isolate problems and perform smarter

 retesting. This characteristic is called _________.

 a) decomposability b) simplicity c) stability d) understandability

 17. The less there is to test, the more quickly we can test it. This characteristic is called _________.

 a) controllability b)simplicity c) operability d) observability

 18. The fewer the changes, the fewer the disruptions to testing. This characteristic is called ______.

 a) controllability b) decomposability c)stability d)understandability

 19. The ___________ focus on the design of the business or technical process that the system must

 accommodate.

 a) framework models b) dynamic models c)process models d) functional models

20. The ________ task involves the programmer to receive a specification of a module.

 a) Integration Programming b) System Programming

 c) Unit Testing d) Configuration Control

PART-B (3 X 2 = 6 Marks)

(Answer All the Questions)

21. Define architectural design.

The architectural design defines the relationship between more structural elements of

the software, the architectural styles and design patterns that can be used to achieve the

requirements defined for the system, and the constraints that affect the way in which

the architectural design can be implemented.

The architectural design can be derived from the System Specs, the analysis

model, and interaction of subsystems defined within the analysis model.

22. What is Inheritance?

 Inheritance

Design options:

 The class can be designed and built from scratch. That is, inheritance is not used.

 The class hierarchy can be searched to determine if a class higher in the

hierarchy (a super-class) contains most of the required attributes and operations.

 The new class inherits from the super-class and additions may then be added, as

required.

 The class hierarchy can be restructured so that the required attributes and

operations can be inherited by the new class.

 Characteristics of an existing class can be overridden and different versions of

attributes or operations are implemented for the new class.

23. What do you mean by an error?

Testing requires that the developer discard preconceived notions of the

"correctness" of software just developed and overcome a conflict of interest that

occurs when errors are uncovered.

1. Testing is a process of executing a program with the intent of finding an error.

2. A good test case is one that has a high probability of finding an as-yet undiscovered error.

3. A successful test is one that uncovers an as-yet-undiscovered error.

PART-C (3 X 8 = 24 Marks)

 (Answer All the Questions)

24. a) Write in detail about the approach used in class based components.

Class-based Component Design

 Focuses on the elaboration of domain specific analysis classes and the definition

of infrastructure classes

 Detailed description of class attributes, operations, and interfaces is required prior

to beginning construction activities

Class-based Component Design Principles

 Open-Closed Principle (OCP) – class should be open for extension but closed

for modification

 Liskov Substitution Principle (LSP) – subclasses should be substitutable for their base

classes  Dependency Inversion Principle (DIP) – depend on abstractions, do not depend

on

concretions

 Interface Segregation Principle (ISP) – many client specific interfaces are better than

one general purpose interface

 Release Reuse Equivalency Principle (REP) – the granule of reuse is the granule of

release  Common Closure Principle (CCP) – classes that change together belong

together

 Common Reuse Principle (CRP) – Classes that can’t be used together should not be

grouped together

Component-Level Design Guidelines

 Components

o Establish naming conventions in during architectural modeling

o Architectural component names should have meaning to stakeholders

o Infrastructure component names should reflect implementation specific

meanings o Use of stereotypes may help identify the nature of components

 Interfaces

o Use lollipop representation rather than formal UML box and arrow notation

o For consistency interfaces should flow from the left-hand side of the component

box o Show only the interfaces relevant to the component under construction

 Dependencies and Inheritance

o For improved readability model dependencies from left to right and inheritance

from bottom (derived classes) to top (base classes)

o Component interdependencies should be represented by interfaces rather

that component to component dependencies

Cohesion (lowest to highest)

 Utility cohesion – components grouped within the same category but are otherwise

unrelated  Temporal cohesion – operations are performed to reflect a specific behavior or

state

 Procedural cohesion – components grouped to allow one be invoked immediately after

the preceding one was invoked with or without passing data

 Communicational cohesion –operations required same data are grouped in same class

 Sequential cohesion – components grouped to allow input to be passed from first to

second and so on

 Layer cohesion – exhibited by package components when a higher level layer accesses

the services of a lower layer, but lower level layers do not access higher level layer

services

 Functional cohesion – module performs one and only one function

Coupling

 Content coupling – occurs when one component surreptitiously modifies internal data

in another component

 Common coupling – occurs when several components make use of a global variable

 Control coupling – occurs when one component passes control flags as arguments to

another  Stamp coupling – occurs when parts of larger data structures are passed

between components  Data coupling – occurs when long strings of arguments are

passed between components

 Routine call coupling – occurs when one operator invokes another

 Type use coupling – occurs when one component uses a data type defined in another

 Inclusion or import coupling – occurs when one component imports a package or uses

the content of another

 External coupling – occurs when a components communications or collaborates

with infrastructure components (e.g. database)

Conducting Component-Level Design

1. Identify all design classes that correspond to the problem domain.

2. Identify all design classes that correspond to the infrastructure domain.

3. Elaborate all design classes that are not acquired as reusable

components. a. Specify message details when classes or

components collaborate. b. Identify appropriate interfaces for each

component.

c. Elaborate attributes and define data types and data structures required to

implement them.

d. Describe processing flow within each operation in detail.

4. Identify persistent data sources (databases and files) and identify the classes required

to manage them.

5. Develop and elaborate behavioral representations for each class or component.

6. Elaborate deployment diagrams to provide additional implementation detail.

7. Refactor every component-level diagram representation and consider alternatives.

 (or)

b) Discuss in detail about the Architectural components of software.

Architectural design

 The architectural design starts then the developed software is put into the context.

 The information is obtained from the requirement model and other information collect during

the requirement engineering.

Representing the system in

context

All the following entities communicates with the target system through the interface that is

small rectangles shown in above figure.

Superordinate system

These system use the target system like a part of some higher-level processing scheme.

Subordinate system

This systems is used by the target system and provide the data mandatory to complete

target system functionality.

Peer-level system

These system interact on peer-to-peer basis means the information is consumed by the target

system and the peers.

Actors

These are the entities like people, device which interact with the target system by

consuming information that is mandatory for requisite processing.

Defining Archetype

 An archetype is a class or pattern which represents a core abstraction i.e critical to

implement or design for the target system.

 A small set of archetype is needed to design even the systems are relatively complex.

 The target system consists of archetype that represent the stable elements of the

architecture.  Archetype is instantiated in many different forms based on the behavior of

the system.

 In many cases, the archetype is obtained by examining the analysis of classes defined as

a part of the requirement model.

An Architecture Trade-off Analysis Method (ATAM)

ATAM was developed by the Software Engineering Institute (SEI) which started an

iterative evaluation process for software architecture.

The design analysis activities which are executed iteratively that are as follows:

1. Collect framework

Collect framework developed a set of use cases that represent the system according to user

point of view.

2. Obtained requirement, Constraints, description of the environment.

These types of information are found as a part of requirement engineering and is used to

verify all the stakeholders are addressed properly.

3. Describe the architectural pattern

The architectural patterns are described using an architectural views which are as follows:

Module view: This view is for the analysis of assignment work with the components

and the degree in which abstraction or information hiding is achieved

Process view: This view is for the analysis of the software or system performance.

Data flow view: This view analyzes the level and check whether functional requirements

are met to the architecture.

4. Consider the quality attribute in segregation

The quality attributes for architectural design consist of reliability, performance,

security, maintainability, flexibility, testability, portability, re-usability etc.

5. Identify the quality attributes sensitivity

 The sensitivity of quality attributes achieved by making the small changes in the

architecture and find the sensitivity of the quality attribute which affects the

performance.

 The attributes affected by the variation in the architecture are known as sensitivity points.

25. a) Explain Graph based testing methods in Black Box testing.

Graph-Based Testing Methods

The first step in black-box testing is to understand the objects that are modeled in software

and the relationships that connect these objects.

Next step is to define a series of tests that verify ―all objects have the expected relationship

to one another‖.

To accomplish these steps, the software engineer begins by creating a graph—a collection of

nodes that represent objects; links that represent the relationships between objects; node

weights that describe the properties of a node (e.g., a specific data value or state behavior);

and link weights that describe some characteristic of a link.

Fig (A) Graph notation (B) Simple example

The symbolic representation of a graph is shown in Fig A.

Nodes are represented as circles connected by links that take a number of different forms. A

directed link (represented by an arrow) indicates that a relationship moves in only one

direction.

A bidirectional link, called a symmetric link, implies that the relationship applies in

both directions. Parallel links are used when a number of different relationships are

established between graph nodes.

Eg. consider a portion of a graph for a word-processing application (Fig B) where

Object #1 = new file menu select

Object #2 = document window

Object #3 = document text

Referring to the figure, a menu select on new file generates a document window.

The node weight of document window provides a list of the window attributes that are to

be expected when the window is generated.

The link weight indicates that the window must be generated in less than 1.0 second.

An undirected link establishes a symmetric relationship between the new file menu select and

document text, and parallel links indicate relationships between document window and

document text.

In reality, a far more detailed graph would have to be generated as a precursor to test case design.

The software engineer then derives test cases by traversing the graph and covering each of

the relationships shown. These test cases are designed in an attempt to find errors in any of

the relationships.

Beizer describes a number of behavioral testing methods that can make use of graphs:

Transaction flow modeling. The nodes represent steps in some transaction (e.g., the

steps required to make an airline reservation using an on-line service), and the links

represent the logical connection between steps (e.g., flight. information. input is followed

by validation/availability. processing).

Finite state modeling. The nodes represent different user observable states of the software

(e.g., each of the ―screens‖ that appear as an order entry clerk takes a phone order), and the

links represent the transitions that occur to move from state to state (e.g., order-information is

verified during inventory-availability look-up and is followed by customer-billing-information

input). The state transition diagram can be used to assist in creating graphs of this type.

Data flow modeling. The nodes are data objects and the links are the transformations that

occur to translate one data object into another. For example, the node FICA.tax.withheld

(FTW) is computed from gross.wages (GW) using the relationship, FTW = 0.62 - GW.

Timing modeling. The nodes are program objects and the links are the sequential

connections between those objects. Link weights are used to specify the required execution

times as the program executes.

Graph-based testing begins with the definition of all nodes and node weights. That is, objects

and attributes are identified. The data model can be used as a starting point, but it is important

to note that many nodes may be program objects (not explicitly represented in the data model).

To provide an indication of the start and stop points for the graph, it is useful to define entry

and exit nodes.

Once nodes have been identified, links and link weights should be established.

In general, links should be named, although links that represent control flow between

program objects need not be named.

Each relationship is studied separately so that test cases can be derived.

The transitivity of sequential relationships is studied to determine how the impact of

relationships propagates across objects defined in a graph. Transitivity can be illustrated

by considering three objects, X, Y, and Z. Consider the following relationships:

X is required to compute Y

Y is required to compute Z

Therefore, a transitive relationship has been established between X and Z:

X is required to compute Z

Based on this transitive relationship, tests to find errors in the calculation of Z must

consider a variety of values for both X and Y.

The symmetry of a relationship (graph link) is also an important guide to the design of test cases.

As test case design begins, the first objective is to achieve node coverage. By this we mean

that tests should be designed to demonstrate that no nodes have been inadvertently omitted

and that node weights (object attributes) are correct.

Next, link coverage is addressed. Each relationship is tested based on its properties. For

example, a symmetric relationship is tested to demonstrate that it is, in fact, bidirectional. A

transitive relationship is tested to demonstrate that transitivity is present.

A reflexive relationship is tested to ensure that a null loop is present. When link weights have

been specified, tests are devised to demonstrate that these weights are valid. Finally, loop

testing is invoked

(or)

b) Write in detail about Software Testing Fundamentals.

SOFTWARE TESTING FUNDAMENTALS:

 Testing presents an interesting anomaly for the software engineer. During earlier

software engineering activities, the engineer attempts to build software from an

abstract concept to a tangible product.

 The engineer creates a series of test cases that are intended to "demolish" the software

that has been built.

 In fact, testing is the one step in the software process that could be viewed

(psychologically, at least) as destructive rather than constructive.

 Software engineers are by their nature constructive people.

 Testing requires that the developer discard preconceived notions of the

"correctness" of software just developed and overcome a conflict of interest that

occurs when errors are uncovered.

 Beizer describes this situation effectively when he states: There's a myth that if we

were really good at programming, there would be no bugs to catch. If only we

could really concentrate, if only everyone used structured programming, top down

design, decision tables, if programs were written in SQUISH, if we had the right silver

bullets, then there would be no bugs. So goes the myth. There are bugs, the myth says,

because we are bad at what we do; and if we are bad at it, we should feel guilty about it.

Therefore, testing and test case design is an admission of failure, which instills a goodly

dose of guilt.

Testing Objectives

Glen Myers states a number of rules that can serve well as testing objectives:

1. Testing is a process of executing a program with the intent of finding an error.

2. A good test case is one that has a high probability of finding an as-yet undiscovered error.

3. A successful test is one that uncovers an as-yet-undiscovered error.

If testing is conducted successfully (according to the objectives stated previously), it

will uncover errors in the software.

Also testing demonstrates that software functions appear to be working according

to specification, that behavioral and performance requirements appear to have been

met.

In addition, data collected as testing is conducted provide a good indication of

software reliability and some indication of software quality as a whole.

But testing cannot show the absence of errors and defects, it can show only that software

errors and defects are present.

Testing Principles

Before applying methods to design effective test cases, a software engineer must understand

the basic principles that guide software testing. Davis [DAV95] suggests a set of testing

principles.

All tests should be traceable to customer requirements.

The objective of software testing is to uncover errors. It follows that the most severe

defects (from the customer’s point of view) are those that cause the program to fail to

meet its requirements.

Tests should be planned long before testing begins.

Test planning can begin as soon as the requirements model is complete.

Detailed definition of test cases can begin as soon as the design model has been

solidified. Therefore, all tests can be planned and designed before any code has been

generated.

The Pareto principle applies to software testing.

Pareto principle implies that 80 percent of all errors uncovered during testing will likely be

traceable to 20 percent of all program components. The problem, of course, is to isolate

these suspect components and to thoroughly test them.

Testing should begin “in the small” and progress toward testing “in the large.”

The first tests planned and executed generally focus on individual components. As testing

progresses, focus shifts in an attempt to find errors in integrated clusters of components

and ultimately in the entire system.

Exhaustive testing is not possible

The number of path permutations for even a moderately sized program is exceptionally

large. For this reason, it is impossible to execute every combination of paths during

testing. It is possible, however, to adequately cover program logic and to ensure that all

conditions in the component-level design have been exercised.

To be most effective, testing should be conducted by an independent third party.

Testability

 Software testability is simply how easily a computer program can be tested.

 Since testing is so profoundly difficult, it pays to know what can be done to streamline it.

 Sometimes programmers are willing to do things that will help the testing process and a

checklist of possible design points, features, etc., can be useful in negotiating with them.

 ―Testability‖ occurs as a result of good design. Data design, architecture,

interfaces, and component-level detail can either facilitate testing or make it difficult.

The checklist that follows provides a set of characteristics that lead to testable software.

Operability. "The better it works, the more efficiently it can be tested."

• The system has few bugs (bugs add analysis and reporting overhead to the test process).

• No bugs block the execution of tests.

• The product evolves in functional stages (allows simultaneous development and testing).

Observability. "What you see is what you test."

• Distinct output is generated for each input.

• System states and variables are visible or queriable during execution.

• Past system states and variables are visible or queriable (e.g., transaction logs).

• All factors affecting the output are visible.

• Incorrect output is easily identified.

• Internal errors are automatically detected through self-testing mechanisms.

• Internal errors are automatically reported.

• Source code is accessible.

Controllability. "The better we can control the software, the more the testing can be

automated and optimized."

• All possible outputs can be generated through some combination of input.

• All code is executable through some combination of input.

• Software and hardware states and variables can be controlled directly by the test engineer.

• Input and output formats are consistent and structured.

• Tests can be conveniently specified, automated, and reproduced.

Decomposability. "By controlling the scope of testing, we can more quickly isolate

problems and perform smarter retesting."

• The software system is built from independent modules.

• Software modules can be tested independently.

Simplicity. "The less there is to test, the more quickly we can test it."

• Functional simplicity (e.g., the feature set is the minimum necessary to meet requirements).

• Structural simplicity (e.g., architecture is modularized to limit the propagation of faults).

• Code simplicity (e.g., a coding standard is adopted for ease of inspection and maintenance).

Stability. "The fewer the changes, the fewer the disruptions to testing."

• Changes to the software are infrequent.

• Changes to the software are controlled.

• Changes to the software do not invalidate existing tests.

• The software recovers well from failures.

Understandability. "The more information we have, the smarter we will test."

• The design is well understood.

• Dependencies between internal, external, and shared components are well understood.

• Changes to the design are communicated.

• Technical documentation is instantly accessible.

• Technical documentation is well organized.

• Technical documentation is specific and detailed.

• Technical documentation is accurate.

 26. a) Discuss in detail about Validation testing.

 VALIDATION TESTING

Validation testing begins at the culmination of integration testing, when individual

components have been exercised, the software is completely assembled as a package, and

interfacing errors have been uncovered and corrected. At the validation or system level,

the distinction between different software categories disappears. Testing focuses on user-

visible actions and user-recognizable output from the system.

Validation can be defined in many ways, but a simple (albeit harsh) definition is that

validation succeeds when software functions in a manner that can be reasonably expected

by the customer. At this point a battle-hardened software developer might protest: ―Who

or what is the arbiter of reasonable expectations?‖ If a Software Requirements

Specification has been developed, it describes all user-visible attributes of the software and

contains a Validation Criteria section that forms the basis for a validation-testing approach.

i) Validation-Test Criteria

Software validation is achieved through a series of tests that demonstrate conformity with

requirements. A test plan outlines the classes of tests to be conducted, and a test procedure

defines specific test cases that are designed to ensure that all functional requirements are

satisfied, all behavioral characteristics are achieved, all content is accurate and properly

presented, all performance requirements are attained, documentation is correct, and

usability and other requirements are met (e.g., transportability, compatibility, error

recovery, maintainability). If a deviation from specification is uncovered, a deficiency list

is created. A method for resolving deficiencies (acceptable to stakeholders) must be

established.

ii) Configuration Review

An important element of the validation process is a configuration review. The intent of the

review is to ensure that all elements of the software configuration have been properly

developed, are cataloged, and have the necessary detail to bolster the support activities. The

configuration review, sometimes called an audit.

ii) Alpha and Beta Testing

It is virtually impossible for a software developer to foresee how the customer will really use a

program. Instructions for use may be misinterpreted; strange combinations of data may be

used; output that seemed clear to the tester may be unintelligible to a user in the field. When

custom software is built for one customer, a series of acceptance tests are conducted to enable

the customer to validate all requirements. Conducted by the end user rather than software

engineers, an acceptance test can range from an informal ―test drive‖ to a planned and

systematically executed series of tests. In fact, acceptance testing can be conducted over a

period of weeks or months, thereby uncovering cumulative errors that might degrade the

system over time. If software is developed as a product to be used by many customers, it is

impractical to perform formal acceptance tests with each one. Most software Like all other

testing steps, validation tries to uncover errors, but the focus is at the requirements level—on

things that will be immediately apparent to the end user. product builders use a process called

alpha and beta testing to uncover errors that only the end user seems able to find.

The alpha test is conducted at the developer’s site by a representative group of end users.

The software is used in a natural setting with the developer ―looking over the shoulder‖ of the

users and recording errors and usage problems. Alpha tests are conducted in a controlled

environment.

The beta test is conducted at one or more end-user sites. Unlike alpha testing, the developer

generally is not present. Therefore, the beta test is a ―live‖ application of the software in an

environment that cannot be controlled by the developer. The customer records all problems

(real or imagined) that are encountered during beta testing and reports these to the developer at

regular intervals. As a result of problems reported during beta tests, you make modifications

and then prepare for release of the software product to the entire customer base. A variation on

beta testing, called customer acceptance testing, is sometimes performed when custom

software is delivered to a customer under contract.

The customer performs a series of specific tests in an attempt to uncover errors before

accepting the software from the developer. In some cases (e.g., a major corporate or

governmental system) acceptance testing can be very formal and encompass many days or

even weeks of testing.

(or)

 b) Illustrate about loop testing and its types.

 Loop Testing

Loops are the cornerstone for the vast majority of all algorithms implemented in software.

Loop testing is a white-box testing technique that focuses exclusively on the validity of

loop constructs.

Four different classes of loops can be defined: simple loops, concatenated loops, nested

loops, and unstructured loops (Fig).

imple loops.

The following set of tests can be applied to simple loops, where n is the maximum number

of allowable passes through the loop.

1. Skip the loop entirely.

2. Only one pass through the loop.

3. Two passes through the loop.

4. m passes through the loop where m < n.

5. n -1, n, n + 1 passes through the loop.

Nested loops.

If we were to extend the test approach for simple loops to nested loops, the number of

possible tests would grow geometrically as the level of nesting increases.

Beizer suggests an approach that will help to reduce the number of tests:

1. Start at the innermost loop. Set all other loops to minimum values.

2. Conduct simple loop tests for the innermost loop while holding the outer loops at their

minimum iteration parameter (e.g., loop counter) values. Add other tests for out-of-range

or excluded values.

3. Work outward, conducting tests for the next loop, but keeping all other outer loops

at minimum values and other nested loops to "typical" values.

4. Continue until all loops have been tested.

Concatenated loops.

Concatenated loops can be tested using the approach defined for simple loops, if each of the

loops is independent of the other. However, if two loops are concatenated and the loop

counter for loop 1 is used as the initial value for loop 2, then the loops are not independent.

When the loops are not independent, the approach applied to nested loops is recommended.

Unstructured loops.

Whenever possible, this class of loops should be redesigned to reflect the use of the

structured programming constructs.

	1SE syllabus.pdf (p.1-2)
	2Lesson Plan SE.pdf (p.3-8)
	3unit I.pdf (p.9-34)
	4Unit I MCQ.pdf (p.35-44)
	5UNIT II.pdf (p.45-70)
	6Unit III MCQ.pdf (p.71-84)
	7Unit III MCQ.pdf (p.85-98)
	8Unit_4.pdf (p.99-129)
	9Unit IV MCQ.pdf (p.130-141)
	10UNIT_5.pdf (p.142-170)
	11Unit V MCQ.pdf (p.171-184)
	12 CIA SE Answer key.pdf (p.185-196)
	13II CIA SE.pdf (p.197-198)
	14II CIA SE with ans.pdf (p.199-213)
	Characteristics of an SRS
	Software requirements specification should be accurate, complete, efficient, and of high quality, so that it does not affect the entire project plan. An SRS is said to be of high quality when the developer and user easily understand the prepared docum...

	15III CIA SE.pdf (p.214-215)
	16III CIA SE - Answer key.pdf (p.216-231)

