
KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

Eachanari (po), Coimbatore-21

Semester – III

18ITU304B PROGRAMMING IN PHYTHON 3H – 3C

Instruction Hours / week: L: 3 T: 0 P: 0 Marks: Internal : 40 External : 60 Total: 100

 End Semester Exam : 3 Hours

Course Objectives

 To Learn Syntax and Semantics and create Functions in Python.

 To Handle Strings and Files in Python.

 To Understand Lists, Dictionaries in Python.

 To Implement Object Oriented Programming concepts in Python

 To Build GUI applications

Course Outcomes (COs)

Upon completion of the course, students will be able to

1. Develop algorithmic solutions to simple computational problems

2. Read, write, execute by hand simple Python programs.

3. Structure simple Python programs for solving problems.

4. Decompose a Python program into functions.

5. Represent compound data using Python lists, tuples, dictionaries.

6. Read and write data from/to files in Python Programs.

Unit I

Algorithmic Problem Solving: Algorithms, building blocks of algorithms (statements, state,

control flow, functions), notation (pseudocode, flow chart, programming language),

algorithmic problem solving, simple strategies for developing algorithms (iteration,

recursion). Illustrative problems: find minimum in a list, insert a card in a list of sorted cards,

guess an integer number in a range, Towers of Hanoi.

Unit II

Data, Expressions, Statements : Python interpreter and interactive mode; values and types:

int, float, boolean, string, and list; variables, expressions, statements, tuple assignment,

precedence of operators, comments; modules and functions, function definition and use, flow

of execution, parameters and arguments; Illustrative programs: exchange the values of two

variables, circulate the values of n variables, distance between two points.

Unit III

Control Flow, Functions: Conditionals: Boolean values and operators, conditional (if),

alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break,

continue, pass; Fruitful functions: return values, parameters, local and global scope, function

composition, recursion; Strings: string slices, immutability, string functions and methods,

string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an

array of numbers, linear search, binary search.

Unit IV

Lists, Tuples, Dictionaries : Lists: list operations, list slices, list methods, list loop,

mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return

value; Dictionaries: operations and methods; advanced list processing - list comprehension;

Illustrative programs: selection sort, insertion sort, merge sort, histogram.

Unit V

Files, Modules, Packages: Files and exception: text files, reading and writing files, format

operator; command line arguments, errors and exceptions, handling exceptions, modules,

packages; Illustrative programs: word count, copy file.

Suggested Readings

1. Allen B. Downey, ``Think Python: How to Think Like a Computer Scientist‘‘, 2nd

edition, Updated for Python 3, Shroff/O‘Reilly Publishers, 2016

(http://greenteapress.com/wp/thinkpython/)

2. Guido van Rossum and Fred L. Drake Jr, ―An Introduction to Python – Revised and

updated for Python 3.2, Network Theory Ltd., 2011.

3. John V Guttag, ―Introduction to Computation and Programming Using Python‘‘,

Revised and expanded Edition, MIT Press , 2013

4. Robert Sedgewick, Kevin Wayne, Robert Dondero, ―Introduction to Programming in

Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd.,

2016.

5. Timothy A. Budd, ―Exploring Python‖, Mc-Graw Hill Education (India) Private

Ltd.,, 2015.

6. Kenneth A. Lambert, ―Fundamentals of Python: First Programs‖, CENGAGE

Learning, 2012.

7. Charles Dierbach, ―Introduction to Computer Science using Python: A

Computational ProblemSolving Focus, Wiley India Edition, 2013.

8. Paul Gries, Jennifer Campbell and Jason Montojo, ―Practical Programming: An

Introduction to Computer Science using Python 3‖, Second edition, Pragmatic

Programmers, LLC, 2013.

ESE Pattern

Part – A (Online) 20 * 1 = 20

Part – B 5 * 2 = 10

Part – C (Either or) 5 * 6 = 30

Total 60 marks

Faculty HOD

 KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

 Eachanari (po), Coimbatore-21

DEPARTMENT OF CS, CA & IT

 LECTURE PLAN

SUBJECT NAME: PYTHON PROGRAMMING

SUBJECT CODE: 18ITU303 SEMESTER: III

BATCH: 2018-2021 CLASS: II B.Sc.IT

STAFF: Dr.D.SHANMUGA PRIYAA

S.No Lecture

Duration

(Hr)

Topics Support

Materials

UNIT -I

1. 1 Algorithms, building blocks of

algorithms

S1: 65

2. 1 Notation (Pseudo code), Notation (flow chart,

programming language)

S3: 66-70

3. 1 Algorithmic problem solving S3: 71-72

4. 1 Simple strategies for developing algorithms (iteration,

recursion)

S3: 44

5. 1 Illustrative programs: find minimum in a list, insert a

card in a list of sorted cards

W1

6. 1 Guess an integer number in a range, Towers of

Hanoi

W2

7. 1 Recapitulation and Discussion of important questions

 1 Total No. of Periods allotted for Unit – I 7

UNIT-II

1. 1 DATA, EXPRESSIONS, STATEMENTS Python

interpreter and interactive mode, Values and types:

int, float, boolean, string and list

S1: 13-14,

20-22

2. 1 Variables, expressions, statements, tuple assignment

Precedence of operators, comments

S1: 8-9, 15-19

3. 1 Modules and functions S1: 177-181

4. 1 Function definition and use, flow of execution S1: 77-81

5. 1 Parameters and arguments S1: 82

6. 1 Illustrative programs: exchange the values of two

variables, circulate the values of n variables, distance

W3

between two points.

7. 1 Recapitulation and Discussion of important questions
 Total No. of Hours allotted for Unit – II 7

UNIT-III

1. 1 Conditionals: Boolean values and operators

Conditional (if), alternative (if-else), chained

conditional (if-elif-else)

S1: 39-48

2. 1 Iteration: state, while, for, break, continue, pass S1: 49-62

3. 1 Fruitful functions: return values S1: 83, 90-91

4. 1 Parameters, local and global scope, Function

composition, recursion

S1: 85,105, 95

5. 1 Strings: string slices, immutability S1: 106, 109-

115

6. 1 String functions and methods, String module; Lists

as arrays

S1: 114, 120-

122

7. 1 Recapitulation and Discussion of important

questions

 Total No. of Hours allotted for Unit – III 7

 UNIT-IV

1. 1 Lists: list operations, list slices, List methods S1: 133-136,

142-143

2. 1 List loop, list mutability S1: 68, 137

3. 1 List aliasing, cloning lists, list parameters S1 139-141

4. 1 Tuples: tuple assignment, tuple as return value S1: 129-131

5. 1 Dictionaries: operations and methods, Advanced list

processing - list comprehension

S1: 143,151-

154

6. 1 Illustrative programs: Insertion sort, Mergesort,

histogram

 W4

7. 1 Recapitulation and Discussion of important

questions

 W4

 Total No. of Hours allotted for Unit – IV 7

UNIT-V

1. 1 Text files, reading and writing files, Format operator;

command line arguments

S1: 167-170

2. 1 Errors and exceptions, Handling exceptions S1: 255-258

3. 1 Modules, Packages S1:171-18,183

4. 1 Illustrative programs: word count, copy file W5

5. 1 Recapitulation and Discussion of important

questions

6. 1 Discussion of previous ESE Question papers

7. 1 1 Discussion of previous ESE Question papers

8. 1 Discussion of previous ESE Question papers

 Total No. of Hours allotted for Unit – V 8

Total No. of Hours: 36

Suggested Readings

S1. Allen B. Downey, ``Think Python: How to Think Like a Computer Scientist„„, 2nd

edition, Updated for Python 3, Shroff/O„Reilly Publishers, 2016

(http://greenteapress.com/wp/think-python/)

S2. Guido van Rossum and Fred L. Drake Jr ,― An Introduction to Python - Revised

and updated for Python 3.2, Network Theory Ltd., 2011.

S3. John V Guttag, “Introduction to Computation and Programming Using Python”,

Revised and expanded Edition, MIT Press , 2013

S4. Robert Sedgewick, Kevin Wayne, Robert Dondero ―Introduction to Programming in

Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.

S5. Timothy A. Budd, ―Exploring Python, Mc-Graw Hill Education (India) Private Ltd., 2015.

S6. Kenneth A. Lambert, ―Fundamentals of Python: First Programs, CENGAGE Learning,

2012.

S7. Charles Dierbach, ―Introduction to Computer Science using Python: A Computational

Problem- Solving Focus, Wiley India Edition, 2013.

S8. Paul Gries, Jennifer Campbell and Jason Montojo, ―Practical Programming: An

Introduction to Computer Science using Python 3, Second edition, Pragmatic

Programmers, LLC, 2013.

Websites

W1. https://www.w3schools.com/python/

W2. https://www.tutorialspoint.com/python/

W3. https://docs.python.org/3/tutorial/

W4. https://www.javatpoint.com/python-tutorial

W5. https://www.programiz.com/python-programming/tutorial

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 1/37

Algorithms, building blocks of algorithms (statements, state, control flow, functions),

notation (pseudo code, flow chart, programming language), algorithmic problem

solving, simple strategies for developing algorithms (iteration, recursion). Illustrative

problems: find minimum in a list, insert a card in a list of sorted cards, Guess an

integer number in a range, Towers of Hanoi.

SYLLABUS

1. PROBLEM SOLVING
Problem solving is the systematic approach to define the problem and creating

number of solutions.
The problem solving process starts with the problem specifications and ends with a
Correct program.

1.1 PROBLEM SOLVING TECHNIQUES
Problem solving technique is a set of techniques that helps in providing logic for solving
a problem.
Problem Solving Techniques:

Problem solving can be expressed in the form of
1. Algorithms.
2. Flowcharts.
3. Pseudo codes.
4. programs

1.2. ALGORITHM
It is defined as a sequence of instructions that describe a method for solving a

problem. In other words it is a step by step procedure for solving a problem.
Properties of Algorithms

 Should be written in simple English
 Each and every instruction should be precise and unambiguous.
 Instructions in an algorithm should not be repeated infinitely.
 Algorithm should conclude after a finite number of steps.
 Should have an end point
 Derived results should be obtained only after the algorithm terminates.

Qualities of a good algorithm
The following are the primary factors that are often used to judge the quality of the
algorithms.
Time – To execute a program, the computer system takes some amount of time. The
lesser is the time required, the better is the algorithm.
Memory – To execute a program, computer system takes some amount of memory
space. The lesser is the memory required, the better is the algorithm.
Accuracy – Multiple algorithms may provide suitable or correct solutions to a given
problem, some of these may provide more accurate results than others, and such
algorithms may be suitable.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 2/37

Example:
Example
Write an algorithm to print „Good Morning”
Step 1: Start
Step 2: Print “Good Morning”
Step 3: Stop

2. BUILDING BLOCKS OF ALGORITHMS (statements, state, control flow, functions)

Algorithms can be constructed from basic building blocks namely, sequence,
selection and iteration.
2.1. Statements:
Statement is a single action in a computer.

In a computer statements might include some of the following actions
 input data-information given to the program
 process data-perform operation on a given input
 output data-processed result

2.2. State:
Transition from one process to another process under specified condition with in a
time is called state.

2.3. Control flow:
The process of executing the individual statements in a given order is called control
flow.
The control can be executed in three ways

1. sequence
2. selection
3. iteration

Sequence:
All the instructions are executed one after another is called sequence execution.

Example:
Add two numbers:
Step 1: Start
Step 2: get a,b
Step 3: calculate c=a+b
Step 4: Display c
Step 5: Stop

Selection:

A selection statement causes the program control to be transferred to a specific
part of the program based upon the condition.

If the conditional test is true, one part of the program will be executed, otherwise
it will execute the other part of the program.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 3/37

Example
Write an algorithm to check whether he is eligible to vote?
Step 1: Start
Step 2: Get age
Step 3: if age >= 18 print “Eligible to vote”
Step 4: else print “Not eligible to vote”
Step 6: Stop

Iteration:

In some programs, certain set of statements are executed again and again based
upon conditional test. i.e. executed more than one time. This type of execution is called
looping or iteration.

Example

Write an algorithm to print all natural numbers up to n

Step 1: Start
Step 2: get n value.
Step 3: initialize i=1
Step 4: if (i<=n) go to step 5 else go to step 7
Step 5: Print i value and increment i value by 1
Step 6: go to step 4
Step 7: Stop

2.4. Functions:

 Function is a sub program which consists of block of code(set of instructions)
that performs a particular task.

 For complex problems, the problem is been divided into smaller and simpler
tasks during algorithm design.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 4/37

Benefits of Using Functions

 Reduction in line of code

 code reuse

 Better readability

 Information hiding

 Easy to debug and test

 Improved maintainability

Example:
Algorithm for addition of two numbers using function
Main function()
Step 1: Start
Step 2: Call the function add()
Step 3: Stop

sub function add()
Step 1: Function start
Step 2: Get a, b Values
Step 3: add c=a+b
Step 4: Print c
Step 5: Return

3. NOTATIONS

Flow chart is defined as graphical representation of the logic for problem solving.
The purpose of flowchart is making the logic of the program clear in a visual
representation.

3.1.FLOW CHART

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 5/37

Rules for drawing a flowchart
1. The flowchart should be clear, neat and easy to follow.
2. The flowchart must have a logical start and finish.
3. Only one flow line should come out from a process symbol.

4. Only one flow line should enter a decision symbol. However, two or three flow
lines may leave the decision symbol.

5. Only one flow line is used with a terminal symbol.

6. Within standard symbols, write briefly and precisely.
7. Intersection of flow lines should be avoided.

Advantages of flowchart:

1. Communication: - Flowcharts are better way of communicating the logic of a
system to all concerned.

2. Effective analysis: - With the help of flowchart, problem can be analyzed in more
effective way.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 6/37

3. Proper documentation: - Program flowcharts serve as a good program
documentation, which is needed for various purposes.

4. Efficient Coding: - The flowcharts act as a guide or blueprint during the systems
analysis and program development phase.

5. Proper Debugging: - The flowchart helps in debugging process.
6. Efficient Program Maintenance: - The maintenance of operating program

becomes easy with the help of flowchart. It helps the programmer to put efforts
more efficiently on that part.

Disadvantages of flow chart:
1. Complex logic: - Sometimes, the program logic is quite complicated. In that case,

flowchart becomes complex and clumsy.
2. Alterations and Modifications: - If alterations are required the flowchart may

require re-drawing completely.
3. Reproduction: - As the flowchart symbols cannot be typed, reproduction of

flowchart becomes a problem.
4. Cost: For large application the time and cost of flowchart drawing becomes

costly.

 Pseudo code consists of short, readable and formally styled English languages
used for explain an algorithm.

 It does not include details like variable declaration, subroutines.
 It is easier to understand for the programmer or non programmer to understand

the general working of the program, because it is not based on any programming
language.

 It gives us the sketch of the program before actual coding.
 It is not a machine readable
 Pseudo code can’t be compiled and executed.
 There is no standard syntax for pseudo code.

Guidelines for writing pseudo code:
 Write one statement per line
 Capitalize initial keyword
 Indent to hierarchy
 End multiline structure
 Keep statements language independent

Common keywords used in pseudocode
The following gives common keywords used in pseudocodes.

1. //: This keyword used to represent a comment.
2. BEGIN,END: Begin is the first statement and end is the last statement.
3. INPUT, GET, READ: The keyword is used to inputting data.
4. COMPUTE, CALCULATE: used for calculation of the result of the given expression.
5. ADD, SUBTRACT, INITIALIZE used for addition, subtraction and initialization.
6. OUTPUT, PRINT, DISPLAY: It is used to display the output of the program.
7. IF, ELSE, ENDIF: used to make decision.
8. WHILE, ENDWHILE: used for iterative statements.
9. FOR, ENDFOR: Another iterative incremented/decremented tested automatically.

3.2.PSEUDO CODE:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 7/37

Syntax for if else: Example: Greates of two numbers

IF (condition)THEN
statement
...

ELSE
statement
...

ENDIF

BEGIN
READ a,b
IF (a>b) THEN
DISPLAY a is greater
ELSE
DISPLAY b is greater
END IF
END

Syntax for For: Example: Print n natural numbers

FOR(start-value to end-value) DO
statement

...
ENDFOR

BEGIN
GET n
INITIALIZE i=1
FOR (i<=n) DO

PRINT i
i=i+1

ENDFOR
END

Syntax for While: Example: Print n natural numbers

WHILE (condition) DO
statement
...

ENDWHILE

BEGIN
GET n
INITIALIZE i=1
WHILE(i<=n) DO

PRINT i
i=i+1

ENDWHILE
END

Advantages:
 Pseudo is independent of any language; it can be used by most programmers.
 It is easy to translate pseudo code into a programming language.
 It can be easily modified as compared to flowchart.
 Converting a pseudo code to programming language is very easy as compared

with converting a flowchart to programming language.
Disadvantages:

 It does not provide visual representation of the program’s logic.
 There are no accepted standards for writing pseudo codes.
 It cannot be compiled nor executed.
 For a beginner, It is more difficult to follow the logic or write pseudo code as

compared to flowchart.
Example:
Addition of two numbers:
BEGIN
GET a,b
ADD c=a+b
PRINT c
END

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 8/37

3.3.PROGRAMMING LANGUAGE

Algorithm Flowchart Pseudo code

An algorithm is a sequence

of instructions used to

solve a problem

It is a graphical

representation of algorithm

It is a language

representation of

algorithm.

User needs knowledge to

write algorithm.

not need knowledge of

program to draw or

understand flowchart

Not need knowledge of

program language to

understand or write a

pseudo code.

A programming language is a set of symbols and rules for instructing a computer

to perform specific tasks. The programmers have to follow all the specified rules before

writing program using programming language. The user has to communicate with the

computer using language which it can understand.

Types of programming language

1. Machine language

2. Assembly language

3. High level language

Machine language:

The computer can understand only machine language which uses 0’s and 1’s. In

machine language the different instructions are formed by taking different

combinations of 0’s and 1’s.

Advantages:

Translation free:

Machine language is the only language which the computer understands. For

executing any program written in any programming language, the conversion to

machine language is necessary. The program written in machine language can be

executed directly on computer. In this case any conversion process is not required.

High speed

The machine language program is translation free. Since the conversion time is

saved, the execution of machine language program is extremely fast.

Disadvantage:

 It is hard to find errors in a program written in the machine language.

 Writhing program in machine language is a time consuming process.

Machine dependent: According to architecture used, the computer differs from each

other. So machine language differs from computer to computer. So a program

developed for a particular type of computer may not run on other type of computer.

Assembly language:

 To overcome the issues in programming language and make the programming

process easier, an assembly language is developed which is logically equivalent to

machine language but it is easier for people to read, write and understand.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 9/37

 Assembly language is symbolic representation of machine language. Assembly

languages are symbolic programming language that uses symbolic notation to

represent machine language instructions. They are called low level language

because they are so closely related to the machines.

Ex: ADD a, b

Assembler:

Assembler is the program which translates assembly language instruction in to a

machine language.

Advantage:

 Easy to understand and use.

 It is easy to locate and correct errors.

Disadvantage

Machine dependent

The assembly language program which can be executed on the machine depends

on the architecture of that computer.

Hard to learn

It is machine dependent, so the programmer should have the hardware

knowledge to create applications using assembly language.

Less efficient

 Execution time of assembly language program is more than machine language

program.

 Because assembler is needed to convert from assembly language to machine

language.

High level language

High level language contains English words and symbols. The specified rules are

to be followed while writing program in high level language. The interpreter or

compilers are used for converting these programs in to machine readable form.

Translating high level language to machine language

The programs that translate high level language in to machine language are called

interpreter or compiler.

Compiler:

A compiler is a program which translates the source code written in a high level

language in to object code which is in machine language program. Compiler reads the

whole program written in high level language and translates it to machine language. If

any error is found it display error message on the screen.

Interpreter

Interpreter translates the high level language program in line by line manner. The

interpreter translates a high level language statement in a source program to a machine

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 10/37

code and executes it immediately before translating the next statement. When an error

is found the execution of the program is halted and error message is displayed on the

screen.

Advantages

Readability

High level language is closer to natural language so they are easier to learn and

understand

Machine independent

High level language program have the advantage of being portable between

machines.

Easy debugging

Easy to find and correct error in high level language

Disadvantages

Less efficient

The translation process increases the execution time of the program. Programs in

high level language require more memory and take more execution time to execute.

They are divided into following categories:
1. Interpreted programming languages
2. Functional programming languages
3. Compiled programming languages
4. Procedural programming languages
5. Scripting programming language
6. Markup programming language
7. Concurrent programming language
8. Object oriented programming language

Interpreted programming languages:

An interpreted language is a programming language for which most of its
implementation executes instructions directly, without previously compiling a program
into machine language instructions. The interpreter executes the program directly
translating each statement into a sequence of one or more subroutines already
compiled into machine code.
Examples:
Pascal
Python

Functional programming language:

Functional programming language defines every computation as a mathematical
evaluation. They focus on the programming languages are bound to mathematical
calculations
Examples:
Clean
Haskell

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 11/37

Compiled Programming language:
A compiled programming is a programming language whose implementation are

typically compilers and not interpreters.
It will produce a machine code from source code.
Examples:
C
C++
C#
JAVA

Procedural programming language:

Procedural (imperative) programming implies specifying the steps that the
programs should take to reach to an intended state.
A procedure is a group of statements that can be referred through a procedure call.
Procedures help in the reuse of code. Procedural programming makes the programs
structured and easily traceable for program flow.
Examples:
Hyper talk
MATLAB

Scripting language:

Scripting language are programming languages that control an application.
Scripts can execute independent of any other application. They are mostly embedded in
the application that they control and are used to automate frequently executed tasks
like communicating with external program.

Examples:
Apple script
VB script

Markup languages:

A markup language is an artificial language that uses annotations to text that
define hoe the text is to be displayed.
Examples:
HTML
XML
Concurrent programming language:

Concurrent programming is a computer programming technique that provides
for the execution of operation concurrently, either with in a single computer or across a
number of systems.
Examples:
Joule
Limbo
Object oriented programming language:

Object oriented programming is a programming paradigm based on the concept
of objects which may contain data in the form of procedures often known as methods.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 12/37

Examples:
Lava
Moto

4. ALGORITHMIC PROBLEM SOLVING:

Algorithmic problem solving is solving problem that require the formulation of an
algorithm for the solution.

Understanding the Problem
 It is the process of finding the input of the problem that the algorithm solves.
 It is very important to specify exactly the set of inputs the algorithm needs to

handle.
 A correct algorithm is not one that works most of the time, but one that works

correctly for all legitimate inputs.
Ascertaining the Capabilities of the Computational Device

 If the instructions are executed one after another, it is called sequential

algorithm.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 13/37

 If the instructions are executed concurrently, it is called parallel algorithm.

Choosing between Exact and Approximate Problem Solving
 The next principal decision is to choose between solving the problem exactly or

solving it approximately.
 Based on this, the algorithms are classified as exact algorithm and approximation

algorithm.
Deciding a data structure:
 Data structure plays a vital role in designing and analysis the algorithms.
 Some of the algorithm design techniques also depend on the structuring data

specifying a problem’s instance
 Algorithm+ Data structure=programs.

Algorithm Design Techniques
 An algorithm design technique (or “strategy” or “paradigm”) is a general

approach to solving problems algorithmically that is applicable to a variety of
problems from different areas of computing.

 Learning these techniques is of utmost importance for the following reasons.
 First, they provide guidance for designing algorithms for new problems,
 Second, algorithms are the cornerstone of computer science

Methods of Specifying an Algorithm
 Pseudocode is a mixture of a natural language and programming language-like

constructs. Pseudocode is usually more precise than natural language, and its
usage often yields more succinct algorithm descriptions.

 In the earlier days of computing, the dominant vehicle for specifying algorithms

was a flowchart, a method of expressing an algorithm by a collection of
connected geometric shapes containing descriptions of the algorithm’s steps.

 Programming language can be fed into an electronic computer directly. Instead,

it needs to be converted into a computer program written in a particular
computer language. We can look at such a program as yet another way of
specifying the algorithm, although it is preferable to consider it as the algorithm’s
implementation.

Proving an Algorithm’s Correctness
 Once an algorithm has been specified, you have to prove its correctness. That is,

you have to prove that the algorithm yields a required result for every legitimate
input in a finite amount of time.

 A common technique for proving correctness is to use mathematical induction
because an algorithm’s iterations provide a natural sequence of steps needed for
such proofs.

 It might be worth mentioning that although tracing the algorithm’s performance
for a few specific inputs can be a very worthwhile activity, it cannot prove the
algorithm’s correctness conclusively. But in order to show that an algorithm is
incorrect, you need just one instance of its input for which the algorithm fails.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 14/37

Analysing an Algorithm
1. Efficiency.

Time efficiency, indicating how fast the algorithm runs,
Space efficiency, indicating how much extra memory it uses.

2. simplicity.
 An algorithm should be precisely defined and investigated with mathematical

expressions.
 Simpler algorithms are easier to understand and easier to program.
 Simple algorithms usually contain fewer bugs.

Coding an Algorithm
 Most algorithms are destined to be ultimately implemented as computer

programs. Programming an algorithm presents both a peril and an opportunity.
 A working program provides an additional opportunity in allowing an empirical

analysis of the underlying algorithm. Such an analysis is based on timing the
program on several inputs and then analysing the results obtained.

5. SIMPLE STRATEGIES FOR DEVELOPING ALGORITHMS:

1. iterations
2. Recursions

5.1. Iterations:
A sequence of statements is executed until a specified condition is true is called
iterations.

1. for loop

2. While loop
Syntax for For: Example: Print n natural numbers

FOR(start-value to end-value) DO

statement
...
ENDFOR

BEGIN
GET n
INITIALIZE i=1
FOR (i<=n) DO

PRINT i
i=i+1

ENDFOR
END

Syntax for While: Example: Print n natural numbers

WHILE (condition) DO

statement
...

ENDWHILE

BEGIN
GET n
INITIALIZE i=1
WHILE(i<=n) DO

PRINT i
i=i+1

ENDWHILE
END

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 15/37

5.2. Recursions:
 A function that calls itself is known as recursion.
 Recursion is a process by which a function calls itself repeatedly until some

specified condition has been satisfied.

Algorithm for factorial of n numbers using recursion:

Main function:
Step1: Start
Step2: Get n
Step3: call factorial(n)
Step4: print fact
Step5: Stop

Sub function factorial(n):
Step1: if(n==1) then fact=1 return fact
Step2: else fact=n*factorial(n-1) and return fact

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 16/37

Pseudo code for factorial using recursion:

Main function:

BEGIN
GET n
CALL factorial(n)
PRINT fact
BIN

Sub function factorial(n):

IF(n==1) THEN

fact=1
RETURN fact

ELSE
RETURN fact=n*factorial(n-1)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 17/37

More examples:
Write an algorithm to find area of a rectangle

Step 1: Start

Step 2: get l,b values

Step 3: Calculate A=l*b

Step 4: Display A

Step 5: Stop

BEGIN

READ l,b

CALCULATE A=l*b

DISPLAY A

END

Write an algorithm for Calculating area and circumference of circle

Step 1: Start

BEGIN

Step 2: get r value READ r

Step 3: Calculate A=3.14*r*r CALCULATE A and C

Step 4: Calculate C=2.3.14*r A=3.14*r*r

Step 5: Display A,C C=2*3.14*r

Step 6: Stop DISPLAY A
 END

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 18/37

Write an algorithm for Calculating simple interest

Step 1: Start

Step 2: get P, n, r value

Step3:Calculate

SI=(p*n*r)/100

Step 4: Display S

Step 5: Stop

BEGIN

READ P, n, r

CALCULATE S

SI=(p*n*r)/100

DISPLAY SI

END

Write an algorithm for Calculating engineering cutoff

Step 1: Start

Step2: get P,C,M value

Step3:calculate

Cutoff= (P/4+C/4+M/2)

Step 4: Display Cutoff

Step 5: Stop

BEGIN

READ P,C,M

CALCULATE

Cutoff= (P/4+C/4+M/2)

DISPLAY Cutoff

END

To check greatest of two numbers

Step 1: Start

Step 2: get a,b value

Step 3: check if(a>b) print a is greater

Step 4: else b is greater

Step 5: Stop

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 19/37

BEGIN

READ a,b

IF (a>b) THEN

DISPLAY a is greater

ELSE

DISPLAY b is greater

END IF

END

To check leap year or not

Step 1: Start

Step 2: get y

Step 3: if(y%4==0) print leap year

Step 4: else print not leap year

Step 5: Stop

BEGIN

READ y

IF (y%4==0) THEN

DISPLAY leap year

ELSE

DISPLAY not leap year

END IF

END

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 20/37

To check positive or negative number

Step 1: Start

Step 2: get num

Step 3: check if(num>0) print a is positive

Step 4: else num is negative

Step 5: Stop

BEGIN

READ num

IF (num>0) THEN

DISPLAY num is positive

ELSE

DISPLAY num is negative

END IF

END

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 21/37

To check odd or even number

Step 1: Start

Step 2: get num

Step 3: check if(num%2==0) print num is even

Step 4: else num is odd

Step 5: Stop

BEGIN

READ num

IF (num%2==0) THEN

DISPLAY num is even

ELSE

DISPLAY num is odd

END IF

END

To check greatest of three numbers

Step1: Start

Step2: Get A, B, C

Step3: if(A>B) goto Step4 else goto step5

Step4: If(A>C) print A else print C

Step5: If(B>C) print B else print C

Step6: Stop

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 22/37

BEGIN

READ a, b, c

IF (a>b) THEN

IF(a>c) THEN

DISPLAY a is greater

ELSE

DISPLAY c is greater

END IF

ELSE

IF(b>c) THEN

DISPLAY b is greater

ELSE

DISPLAY c is greater

END IF

END IF

END

Write an algorithm to check whether given number is +ve, -ve or zero.

Step 1: Start

Step 2: Get n value.

Step 3: if (n ==0) print “Given number is Zero” Else goto step4

Step 4: if (n > 0) then Print “Given number is +ve”

Step 5: else Print “Given number is -ve”

Step 6: Stop

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 23/37

BEGIN

GET n

IF(n==0) THEN

DISPLAY “ n is zero”

ELSE

IF(n>0) THEN

DISPLAY “n is positive”

ELSE

DISPLAY “n is positive”

END IF

END IF

END

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 24/37

Write an algorithm to print all natural numbers up to n

Step 1: Start
Step 2: get n value.
Step 3: initialize i=1
Step 4: if (i<=n) go to step 5 else go to step 8
Step 5: Print i value
step 6 : increment i value by 1
Step 7: go to step 4
Step 8: Stop

BEGIN

GET n

INITIALIZE i=1

WHILE(i<=n) DO

PRINT i

i=i+1

ENDWHILE

END

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 25/37

Write an algorithm to print n odd numbers

Step 1: start

step 2: get n value

step 3: set initial value i=1

step 4: check if(i<=n) goto step 5 else goto step 8

step 5: print i value

step 6: increment i value by 2

step 7: goto step 4

step 8: stop

BEGIN

GET n

INITIALIZE i=1

WHILE(i<=n) DO

PRINT i

i=i+2

ENDWHILE

END

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 26/37

Write an algorithm to print n even numbers

Step 1: start

step 2: get n value

step 3: set initial value i=2

step 4: check if(i<=n) goto step 5 else goto step8

step 5: print i value

step 6: increment i value by 2

step 7: goto step 4

step 8: stop

BEGIN

GET n

INITIALIZE i=2

WHILE(i<=n) DO

PRINT i

i=i+2

ENDWHILE

END

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 27/37

Write an algorithm to print squares of a number

Step 1: start

step 2: get n value

step 3: set initial value i=1

step 4: check i value if(i<=n) goto step 5 else goto step8

step 5: print i*i value

step 6: increment i value by 1

step 7: goto step 4

step 8: stop

BEGIN

GET n

INITIALIZE i=1

WHILE(i<=n) DO

PRINT i*i

i=i+2

ENDWHILE

END

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 28/37

Write an algorithm to print to print cubes of a number

Step 1: start

step 2: get n value

step 3: set initial value i=1

step 4: check i value if(i<=n) goto step 5 else goto step8

step 5: print i*i *i value

step 6: increment i value by 1

step 7: goto step 4

step 8: stop

BEGIN

GET n

INITIALIZE i=1

WHILE(i<=n) DO

PRINT i*i*i

i=i+2

ENDWHILE

END

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 29/37

Write an algorithm to find sum of a given number

Step 1: start

step 2: get n value

step 3: set initial value i=1, sum=0

Step 4: check i value if(i<=n) goto step 5 else goto step8

step 5: calculate sum=sum+i

step 6: increment i value by 1

step 7: goto step 4

step 8: print sum value

step 9: stop

BEGIN

GET n

INITIALIZE i=1,sum=0

WHILE(i<=n) DO

sum=sum+i

i=i+1

ENDWHILE

PRINT sum

END

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 30/37

Write an algorithm to find factorial of a given number

Step 1: start

step 2: get n value

step 3: set initial value i=1, fact=1

Step 4: check i value if(i<=n) goto step 5 else goto step8

step 5: calculate fact=fact*i

step 6: increment i value by 1

step 7: goto step 4

step 8: print fact value

step 9: stop

BEGIN

GET n

INITIALIZE i=1,fact=1

WHILE(i<=n) DO

fact=fact*i

i=i+1

ENDWHILE

PRINT fact

END

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 31/37

Basic python programs:

Addition of two numbers Output

a=eval(input(“enter first no”))

b=eval(input(“enter second no”))

c=a+b

print(“the sum is “,c)

enter first no

5

enter second no

6

the sum is 11

Area of rectangle Output

l=eval(input(“enter the length of rectangle”))

b=eval(input(“enter the breath of rectangle”))

a=l*b

print(a)

enter the length of rectangle 5

enter the breath of rectangle 6

30

Area & circumference of circle output

r=eval(input(“enter the radius of circle”))

a=3.14*r*r

c=2*3.14*r

print(“the area of circle”,a)

print(“the circumference of circle”,c)

enter the radius of circle4

the area of circle 50.24

the circumference of circle

25.12

Calculate simple interest Output

p=eval(input(“enter principle amount”))

n=eval(input(“enter no of years”))

r=eval(input(“enter rate of interest”))

si=p*n*r/100

print(“simple interest is”,si)

enter principle amount 5000

enter no of years 4

enter rate of interest6

simple interest is 1200.0

Calculate engineering cutoff Output

p=eval(input(“enter physics marks”))

c=eval(input(“enter chemistry marks”))

m=eval(input(“enter maths marks”))

cutoff=(p/4+c/4+m/2)

print(“cutoff =”,cutoff)

enter physics marks 100

enter chemistry marks 99

enter maths marks 96

cutoff = 97.75

Check voting eligibility output

age=eval(input(“enter ur age”))

If(age>=18):

print(“eligible for voting”)

else:

print(“not eligible for voting”)

Enter ur age

19

Eligible for voting

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 32/37

Find greatest of three numbers output

a=eval(input(“enter the value of a”))

b=eval(input(“enter the value of b”))

c=eval(input(“enter the value of c”))

if(a>b):

if(a>c):

print(“the greatest no is”,a)

else:

print(“the greatest no is”,c)

else:

if(b>c):

print(“the greatest no is”,b)

else:

print(“the greatest no is”,c)

enter the value of a 9

enter the value of a 1

enter the value of a 8

the greatest no is 9

Programs on for loop

Print n natural numbers Output

for i in range(1,5,1):

print(i)

1 2 3 4

Print n odd numbers Output

for i in range(1,10,2):

print(i)

1 3 5 7 9

Print n even numbers Output

for i in range(2,10,2):

print(i)

2 4 6 8

Print squares of numbers Output

for i in range(1,5,1):

print(i*i)

1 4 9 16

Print squares of numbers Output

for i in range(1,5,1):

print(i*i*i)

1 8 27 64

Programs on while loop

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 33/37

Print n natural numbers Output

i=1

while(i<=5):

print(i)

i=i+1

1

2

3

4

5

Print n odd numbers Output

i=2

while(i<=10):

print(i)

i=i+2

2

4

6

8

10

Print n even numbers Output

i=1

while(i<=10):

print(i)

i=i+2

1

3

5

7

9

Print n squares of numbers Output

i=1

while(i<=5):

print(i*i)

i=i+1

1

4

9

16

25

Print n cubes numbers Output

i=1

while(i<=3):

print(i*i*i)

i=i+1

1

8

27

find sum of n numbers Output

i=1

sum=0

while(i<=10):

sum=sum+i

i=i+1

print(sum)

55

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 34/37

factorial of n numbers/product of n numbers Output

i=1

product=1

while(i<=10):

product=product*i

i=i+1

print(product)

3628800

sum of n numbers Output

def add():

a=eval(input(“enter a value”))

b=eval(input(“enter b value”))

c=a+b

print(“the sum is”,c)

add()

enter a value

6

enter b value

4

the sum is 10

area of rectangle using function Output

def area():

l=eval(input(“enter the length of rectangle”))

b=eval(input(“enter the breath of rectangle”))

a=l*b

print(“the area of rectangle is”,a)

area()

enter the length of

rectangle 20

enter the breath of

rectangle 5

the area of rectangle is

100

swap two values of variables Output

def swap():

a=eval(input("enter a value"))

b=eval(input("enter b value"))

c=a

a=b

b=c

print("a=",a,"b=",b)

swap()

enter a value3

enter b value5

a= 5 b= 3

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 35/37

check the no divisible by 5 or not Output

def div():

n=eval(input("enter n value"))

if(n%5==0):

print("the number is divisible by 5")

else:

print("the number not divisible by 5")

div()

enter n value10

the number is divisible by

5

find reminder and quotient of given no Output

def reminder(): enter a 6

a=eval(input("enter a")) enter b 3

b=eval(input("enter b")) the reminder is 0

R=a%b enter a 8

print("the reminder is",R) enter b 4

def quotient(): the reminder is 2.0

a=eval(input("enter a"))

b=eval(input("enter b"))

Q=a/b

print("the reminder is",Q)

reminder()

quotient()

convert the temperature Output
 enter temperature in

def ctof(): centigrade 37

c=eval(input("enter temperature in centigrade")) the temperature in

f=(1.8*c)+32 Fahrenheit is 98.6

print("the temperature in Fahrenheit is",f) enter temp in Fahrenheit

def ftoc(): 100

f=eval(input("enter temp in Fahrenheit")) the temperature in

c=(f-32)/1.8 centigrade is 37.77

print("the temperature in centigrade is",c)

ctof()

ftoc()

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 36/37

program for basic calculator Output

def add(): enter a value 10

a=eval(input("enter a value")) enter b value 10

b=eval(input("enter b value")) the sum is 20

c=a+b enter a value 10

print("the sum is",c) enter b value 10

def sub(): the diff is 0

a=eval(input("enter a value")) enter a value 10

b=eval(input("enter b value")) enter b value 10

c=a-b the mul is 100

print("the diff is",c) enter a value 10

def mul(): enter b value 10

a=eval(input("enter a value")) the div is 1

b=eval(input("enter b value"))

c=a*b

print("the mul is",c)

def div():

a=eval(input("enter a value"))

b=eval(input("enter b value"))

c=a/b

print("the div is",c)

add()

sub()

mul()

div()

Possible Questions

Part B (2 Marks)

1. What is mean by problem solving?

2. List down the problem solving techniques?

3. Define algorithm?

4. What are the properties of algorithm?

5. List down the equalities of good algorithm?

6. Define statements?

7. Define state?

8. What is called control flow?

9. What is called sequence execution?

10. Define iteration?

11. What is mean by flow chart?

12. List down the basic symbols for drawing flowchart?

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 37/37

13. List down the rules for drawing the flowchart?

14. What are the advantages of flowchart?

15. What are the disadvantages of flowchart?

16. Define pseudo code?

17. List down the keywords used in writing pseudo code?

18. Mention the advantages of using pseudo code?

19. Mention the disadvantages of using pseudo code?

20. What are the ways available to represent algorithm?

21. Differentiate flowchart and pseudo code?

22. Differentiate algorithm and pseudo code?

23. What is programming language?

24. Mention the types of programming language?

25. What is mean by machine level language?

26. What are the advantages and disadvantages of machine level language?

27. What is high level programming language and mention its advantages?

28. What are the steps in algorithmic problem solving?

29. Write the algorithm for any example?

30. Draw the flow chart for any example?

31. Write pseudo code for any example?

Part C (6 Marks)

1. Explain in detail about problem solving techniques?

2. Explain in detail about building blocks of algorithm?

3. Discuss the symbols and rules for drawing flowchart with the example?

4. Explain in detail about programming language?

5. Discuss briefly about algorithmic problem solving?

6. Write algorithm, pseudo code and flow chart for any example?

7. Explain in detail about simple strategies for developing algorithms?

Questions Opt1 opt2 opt3 opt4 KEY

Last step in process of problem solving is to design a solution define a problem practicing the solutionorganizing the data practicing the solution

Second step in problem solving process is to design a solution define a problem practicing the solutionorganizing the data design a solution

Thing to keep in mind while solving a problem is input data output data stored data all of above all of above

First step in process of problem solving is to design a solution define a problem practicing the solutionorganizing the data define a problem

Error in a program is called bug debug virus noise bug

Error which occurs when program tried to read from file without opening it is classified asexecution error messages built in messages user-defined messageshalf messages execution error messages

__________ is the process of formulating a problem, finding a solution, and expressing the solutionproblem solving: Recover Format Retrieve problem solving

___________ is a set of instructions that specifies a computationProcess Program Syntax Error Program

_______ is an error in a program that makes it do something other than what the programmer intended.Syntax error Semantic error Run time error Logical Error Semantic error

____________ is an error in a program that makes it impossible to parse (and therefore impossible to interpret).Syntax error Semantic error Run time error Logical Error Syntax error

____________ is an error that does not occur until the program has started to execute but that prevents the program from continuing.Syntax error Semantic error Run time error Logical Error Run time error

________ is an another name for Run time error Syntax error Semantic error Exception Semantics Exception

Which translate a program written in a high-level language into a lowlevel language all at once, in preparation for later execution?Compile Interpret Script bug Compile

Which execute a program in a high-level language by translating it one line at a time.Compile Interpret Script bug Interpret

________ is a program in a high-level language before being compiled.executable source code object code program source code

________ is the output of the compiler after it translates the program.Coding source code object code program object code

_________ is the structure of a program Syntax Source Semantics Algorithm Syntax

What is a property of a program that can run on more than one kind of computer.executable source code Coding Portability Portability

_________ is another name for object code that is ready to be executed.executable source code Coding program executable

___________ is the meaning of a program Syntax Source Semantics Algorithm Semantics

_________ is to examine a program and analyze the syntactic structure.Syntax Source Semantics parse parse

________ is the process of finding and removing any of the three kinds of programming errors.bug debugging virus noise debugging

PART - A (Online Examination)

DEPARTMENT OF CS, CA & IT

UNIT - I : (Objective Type Multiple choice Questions each Question carries one Mark)

 PROGRAMMING IN PYTHON (18ITU304B)

execution error messages

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 1/31

SYLLABUS
Python interpreter and interactive mode; values and types: int, float, boolean, string, and list; variables,

expressions, statements, tuple assignment, precedence of operators, comments; Modules and functions,

function definition and use, flow of execution, parameters and arguments; Illustrative programs: exchange the

values of two variables, circulate the values of n variables, distance between two points.

1.

Python is a general-purpose interpreted, interactive, object-oriented, and high- level programming

language.

It was created by Guido van Rossum during 1985- 1990.

Python got its name from “Monty Python‟s flying circus”. Python was released in the year 2000.

 Python is interpreted: Python is processed at runtime by the interpreter. You do not need to
compile your program before executing it.

 Python is Interactive: You can actually sit at a Python prompt and interact with the interpreter

directly to write your programs.

 Python is Object-Oriented: Python supports Object-Oriented style or technique of programming

that encapsulates code within objects.

 Python is a Beginner's Language: Python is a great language for the beginner-

level programmers and supports the development of a wide range of

applications.

1.1. Python Features:

 Easy-to-learn: Python is clearly defined and easily readable. The structure of

the program is very simple. It uses few keywords.

 Easy-to-maintain: Python's source code is fairly easy-to-maintain.

 Portable: Python can run on a wide variety of hardware platforms and has the same interface on all

platforms.

 Interpreted: Python is processed at runtime by the interpreter. So, there is no need to compile a

program before executing it. You can simply run the program.

 Extensible: Programmers can embed python within their C,C++,Java script

,ActiveX, etc.

 Free and Open Source: Anyone can freely distribute it, read the source code, and edit it.

 High Level Language: When writing programs, programmers concentrate on solutions of the

current problem, no need to worry about the low level details.

 Scalable: Python provides a better structure and support for large programs than shell scripting.

1.2. Applications:

 Bit Torrent file sharing

 Google search engine, Youtube

 Intel, Cisco, HP, IBM

 i–Robot

 NASA

 Facebook, Drop box

1.3. Python interpreter:

Interpreter: To execute a program in a high-level language by translating it one line at a time.

Compiler: To translate a program written in a high-level language into a low-level language all at once, in
preparation for later execution.

INTRODUCTION TO PYTHON:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 2/31

Compiler Interpreter

Compiler Takes Entire program as input
Interpreter Takes Single instruction as input

Intermediate Object Code is Generated
No Intermediate Object Code

is Generated

Conditional Control Statements are

Executes faster

Conditional Control Statements are

Executes slower

Memory Requirement is More(Since Object

Code is Generated)
Memory Requirement is Less

Program need not be compiled every time
Every time higher level program is

converted into lower level program

Errors are displayed after entire

program is checked

Errors are displayed for every

instruction interpreted (if any)

Example : C Compiler Example : PYTHON

 1.4 MODES OF PYTHON INTERPRETER:

Python Interpreter is a program that reads and executes Python code. It uses 2 modes of Execution.

1. Interactive mode

2. Script mode

Interactive mode:

 Interactive Mode, as the name suggests, allows us to interact with OS.

 When we type Python statement, interpreter displays the result(s)

immediately.

Advantages:

 Python, in interactive mode, is good enough to learn, experiment or explore.

 Working in interactive mode is convenient for beginners and for testing small pieces of code.

Drawback:

 We cannot save the statements and have to retype all the statements once again to re-run them.

In interactive mode, you type Python programs and the interpreter displays the result:

>>> 1 + 1

2

The chevron, >>>, is the prompt the interpreter uses to indicate that it is ready for you to enter code. If you

type 1 + 1, the interpreter replies 2.

>>> print ('Hello, World!')

Hello, World!

This is an example of a print statement. It displays a result on the screen. In this case, the result is the words.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 3/31

Script mode:

 In script mode, we type python program in a file and then use interpreter to execute the content of the

file.

 Scripts can be saved to disk for future use. Python scripts have the

extension .py, meaning that the filename ends with .py

 Save the code with filename.py and run the interpreter in script mode to execute the script.

Interactive mode Script mode

A way of using the Python interpreter by

typing commands and expressions at the prompt.

A way of using the Python interpreter to read and

execute statements in a script.

Cant save and edit the code Can save and edit the code

If we want to experiment with the code,

we can use interactive mode.

If we are very clear about the code, we can

use script mode.

we cannot save the statements for further use and we

have to retype

all the statements to re-run them.

we can save the statements for further use and we no

need to retype

all the statements to re-run them.

We can see the results immediately. We cant see the code immediately.

 Integrated Development Learning Environment (IDLE):

 Is a graphical user interface which is completely written in Python.

 It is bundled with the default implementation of the python language and also comes with optional

part of the Python packaging.

Features of IDLE:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 4/31

 Multi-window text editor with syntax highlighting.

 Auto completion with smart indentation.

 Python shell to display output with syntax highlighting.

 2.VALUES AND DATA TYPES

Value:

Value can be any letter ,number or string.

Eg, Values are 2, 42.0, and 'Hello, World!'. (These values belong to different datatypes.)

Data type:

Every value in Python has a data type.

It is a set of values, and the allowable operations on those values.

Python has four standard data types:

2.1 Numbers:

 Number data type stores Numerical Values.

 This data type is immutable [i.e. values/items cannot be changed].

 Python supports integers, floating point numbers and complex numbers. They are defined as,

https://en.wikipedia.org/wiki/Syntax_highlighting

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 5/31

2.2 Sequence:

 A sequence is an ordered collection of items, indexed by positive integers.

 It is a combination of mutable (value can be changed) and immutable (values cannot be changed)

data types.

 There are three types of sequence data type available in Python, they are

1. Strings

2. Lists

3. Tuples

2.2.1 Strings:

 A String in Python consists of a series or sequence of characters - letters, numbers, and special
characters.

 Strings are marked by quotes:

 single quotes (' ') Eg, 'This a string in single quotes'

 double quotes (" ") Eg, "'This a string in double quotes'"

 triple quotes(""" """) Eg, This is a paragraph. It is made up of

multiple lines and sentences."""

 Individual character in a string is accessed using a subscript (index).

 Characters can be accessed using indexing and slicing operations

Strings are immutable i.e. the contents of the string cannot be changed after it is created.

Indexing:

 Positive indexing helps in accessing the string from the beginning

 Negative subscript helps in accessing the string from the end.

 Subscript 0 or –ve n(where n is length of the string) displays the first element.

Example: A[0] or A[-5] will display “H”

 Subscript 1 or –ve (n-1) displays the second element.

Example: A[1] or A[-4] will display “E”

Operations on string:

i. Indexing

ii. Slicing

iii. Concatenation

iv. Repetitions

v. Member ship

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 6/31

Creating a string >>> s="good morning" Creating the list with elements of different

data types.

Indexing >>> print(s[2])

o

>>> print(s[6])

O

 Accessing the item in the

position 0

 Accessing the item in the

position 2

Slicing(ending

position -1)

Slice operator is used

to extract part of a

data

type

>>> print(s[2:])

od morning

>>> print(s[:4])

Good

- Displaying items from 2nd till

last.

- Displaying items from 1st

position till 3rd .

Concatenation >>>print(s+"friends") good

morningfriends

-Adding and printing the

characters of two strings.

Repetition >>>print(s*2)

good morninggood

morning

Creates new strings,

concatenating multiple copies of

the same string

in, not in (membership

operator)
>>> s="good morning"

>>>"m" in s True

>>> "a" not in s

True

Using membership operators to check a

particular character is in string or not.

Returns true if present.

2.2.2 Lists

 List is an ordered sequence of items. Values in the list are called elements / items.

 It can be written as a list of comma-separated items (values) between square brackets[].

 Items in the lists can be of different data types.

Operations on list:

Indexing Slicing

Concatenation

Repetitions

Updation, Insertion, Deletion

Creating a list >>>list1=["python", 7.79, 101,

"hello”]

>>>list2=["god",6.78,9]

Creating the list with

elements of different data

types.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 7/31

Indexing >>>print(list1[0]) python

>>> list1[2]

101

 Accessing the item in the

position 0

 Accessing the item in the

position 2

Slicing(ending

position -1)

Slice operator is used

to extract part of a

string, or some part of a

list

Python

>>> print(list1[1:3])

[7.79, 101]

>>>print(list1[1:]) [7.79, 101,

'hello']

- Displaying items from 1st till
2nd.

- Displaying items from 1st

position till last.

Concatenation >>>print(list1+list2)

['python', 7.79, 101, 'hello', 'god',

6.78, 9]

-Adding and printing the

items of two lists.

Repetition >>> list2*3

['god', 6.78, 9, 'god', 6.78, 9, 'god',

6.78, 9]

Creates new strings, concatenating

 multiple

copies of the same string

Updating the list >>> list1[2]=45

>>>print(list1)

[„python‟, 7.79, 45, „hello‟]

Updating the list using index value

Inserting an

element
>>> list1.insert(2,"program")

>>> print(list1)

['python', 7.79, 'program', 45,

'hello']

Inserting an element in 2nd

position

Removing an

element
>>> list1.remove(45)

>>> print(list1)

['python', 7.79, 'program', 'hello']

Removing an element by

giving the element directly

2.2.4 Tuple:

 A tuple is same as list, except that the set of elements is enclosed in parentheses

instead of square brackets.

 A tuple is an immutable list. i.e. once a tuple has been created, you can't add elements to a tuple or

remove elements from the tuple.

 Benefit of Tuple:

 Tuples are faster than lists.

 If the user wants to protect the data from accidental changes, tuple can be used.

 Tuples can be used as keys in dictionaries, while lists can't.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 8/31

Basic Operations:

Creating a tuple >>>t=("python", 7.79, 101,

"hello”)

Creating the tuple with elements

of different data types.

Indexing >>>print(t[0]) python

>>> t[2]

101

 Accessing the item in the

position 0

 Accessing the item in the

position 2

Slicing(ending

position -1)
>>>print(t[1:3])

(7.79, 101)

 Displaying items from 1st till

2nd.

Concatenation >>> t+("ram", 67)

('python', 7.79, 101, 'hello', 'ram',

67)

 Adding tuple elements at

the end of another tuple elements

Repetition >>>print(t*2)

('python', 7.79, 101, 'hello',

'python', 7.79, 101, 'hello')

 Creates new strings,

concatenating multiple copies of the

same string

Altering the tuple data type leads to error. Following error occurs when user tries to do.

2.3 Mapping

-This data type is unordered and mutable.

-Dictionaries fall under Mappings.

2.3.1 Dictionaries:

 Lists are ordered sets of objects, whereas dictionaries are unordered sets.

 Dictionary is created by using curly brackets. i,e. {}

 Dictionaries are accessed via keys and not via their position.

 A dictionary is an associative array (also known as hashes). Any key of the dictionary is associated

(or mapped) to a value.

 The values of a dictionary can be any Python data type. So dictionaries are unordered key-value-

pairs(The association of a key and a value is called a key- value pair)

Dictionaries don't support the sequence operation of the sequence data types like strings, tuples and lists.

>>> t[0]="a"
Trace back (most recent call last):

File "<stdin>", line 1, in <module>
Type Error: 'tuple' object does not support item assignment

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 9/31

3.1VARIABLES:

Creating a

dictionary
>>> food = {"ham":"yes", "egg" :

"yes", "rate":450 }

>>>print(food)

{'rate': 450, 'egg': 'yes', 'ham':

'yes'}

Creating the dictionary with elements

of different data types.

Indexing >>>> print(food["rate"])

450

Accessing the item with keys.

Slicing(ending

position -1)
>>>print(t[1:3])

(7.79, 101)

Displaying items from 1st till 2nd.

If you try to access a key which doesn't exist, you will get an error message:

>>> words = {"house" : "Haus", "cat":"Katze"}

>>> words["car"]

Traceback (most recent call last): File

"<stdin>", line 1, in <module> KeyError:

'car'

 Data type Compile time Run time

int a=10 a=int(input(“enter a”))

float a=10.5 a=float(input(“enter a”))

string a=”panimalar” a=input(“enter a string”)

list a=[20,30,40,50] a=list(input(“enter a list”))

tuple a=(20,30,40,50) a=tuple(input(“enter a tuple”))

 A variable allows us to store a value by assigning it to a name, which can be used

later.

 Named memory locations to store values.

 Programmers generally choose names for their variables that are meaningful.

 It can be of any length. No space is allowed.

 We don't need to declare a variable before using it. In Python, we simply assign a value to a variable

and it will exist.

Assigning value to variable:

Value should be given on the right side of assignment operator(=) and variable on left side.

Assigning a single value to several variables simultaneously:

>>>counter =45
print(counter)

3.Variables,Keywords Expressions, Statements, Comments, Docstring ,Lines And Indentation,

Quotation In Python, Tuple Assignment:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 10/31

>>> a,b,c=2,4,"ram"

3.2KEYWORDS:

>>> a=b=c=100

Assigning multiple values to multiple variables:

 Keywords are the reserved words in Python.

 We cannot use a keyword as variable name, function name or any other

identifier.

 They are used to define the syntax and structure of the Python language.

 Keywords are case sensitive.

3.3 IDENTIFIERS:

Identifier is the name given to entities like class, functions, variables etc. in Python.

 Identifiers can be a combination of letters in lowercase (a to z) or uppercase (A to

Z) or digits (0 to 9) or an underscore (_).

 all are valid example.

 An identifier cannot start with a digit.

 Keywords cannot be used as identifiers.

 Cannot use special symbols like !, @, #, $, % etc. in our identifier.

 Identifier can be of any length.

Example:

Names like myClass, var_1, and this_is_a_long_variable

Valid declarations Invalid declarations

Num

Num
Num1

_NUM

NUM_temp2 IF

Else

Number 1

num 1

addition of program 1Num

Num.no if

else

https://www.programiz.com/python-programming/variables-datatypes
https://www.programiz.com/python-programming/variables-datatypes

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 11/31

3.5 INPUT AND OUTPUT

3.4 STATEMENTS AND EXPRESSIONS:

3.4.1 Statements:

-Instructions that a Python interpreter can executes are called statements.

-A statement is a unit of code like creating a variable or displaying a value.

>>> n = 17

>>> print(n)

Here, The first line is an assignment statement that gives a value to n. The second line is

a print statement that displays the value of n.

3.4.2 Expressions:

-An expression is a combination of values, variables, and operators.

- A value all by itself is considered an expression, and also a variable.

- So the following are all legal expressions:

>>> 42

42

>>> a=2

>>> a+3+2 7

>>> z=("hi"+"friend")

>>> print(z) hifriend

INPUT: Input is data entered by user (end user) in the program. In python, input

() function is available for input.

Example:

#python accepts string as default data type. conversion is required for type.

OUTPUT: Output can be displayed to the user using Print statement .

Example:

>>> print ("Hello")
Hello

Syntax:
print (expression/constant/variable)

>>>y=int(input("enter the number"))
enter the number 3

>>> x=input("enter the name:")
enter the name: george

Syntax for input() is:
variable = input (“data”)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 12/31

3.6 COMMENTS:

3.8 LINES AND INDENTATION:

3.9 QUOTATION IN PYTHON:

 A hash sign (#) is the beginning of a comment.

 Anything written after # in a line is ignored by interpreter.

Eg:percentage = (minute * 100) / 60 # calculating percentage of an hour

 Python does not have multiple-line commenting feature. You have to comment each line

individually as follows :

Example:

This is a comment.

This is a comment, too. # I

said that already.

 3.7 DOCSTRING:

 Docstring is short for documentation string.

 It is a string that occurs as the first statement in a module, function, class, or method definition. We

must write what a function/class does in the docstring.

 Triple quotes are used while writing docstrings.

Syntax:

functionname__doc.__ Example:

 Most of the programming languages like C, C++, Java use braces { } to define a

block of code. But, python uses indentation.

 Blocks of code are denoted by line indentation.

 It is a space given to the block of codes for class and function definitions or flow control.

Example:

Python accepts single ('), double (") and triple (''' or """) quotes to denote string literals.

Anything that is represented using quotations are considered as string.

a=3
b=1
if a>b:

print("a is greater")
else:

print("b is greater")

def double(num):
"""Function to double the value"""
return 2*num

>>> print(double.__doc__)
Function to double the value

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 13/31

3.10 TUPLE ASSIGNMENT

(a, b) = (b, a)

>>> b = ("George", 25, "20000") # tuple packing

 single quotes (' ') Eg, 'This a string in single quotes'

 double quotes (" ") Eg, "'This a string in double quotes'"

 triple quotes(""" """) Eg, This is a paragraph. It is made up of multiple lines and

sentences."""

 An assignment to all of the elements in a tuple using a single assignment statement.

 Python has a very powerful tuple assignment feature that allows a tuple of variables on the left of an

assignment to be assigned values from a tuple on the right of the assignment.

 The left side is a tuple of variables; the right side is a tuple of values.

 Each value is assigned to its respective variable.

 All the expressions on the right side are evaluated before any of the assignments. This feature makes

tuple assignment quite versatile.

 Naturally, the number of variables on the left and the number of values on the right have to be the

same.

Example:

-It is useful to swap the values of two variables. With conventional assignment statements, we have to use a

temporary variable. For example, to swap a and b:

Swap two numbers Output:

a=2;b=3

print(a,b)

temp = a a

= b

b = temp

print(a,b)

(2, 3)

(3, 2)

>>>

-Tuple assignment solves this problem neatly:

-One way to think of tuple assignment is as tuple packing/unpacking.

In tuple packing, the values on the left are „packed‟ together in a tuple:

-In tuple unpacking, the values in a tuple on the right are „unpacked‟ into the variables/names on the

right:

>>> (a, b, c, d) = (1, 2, 3)
ValueError: need more than 3 values to unpack

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 14/31

>>> (name, age, salary) = b # tuple unpacking
>>> name
'George'
>>> age
25
>>> salary
'20000'

tuple packing >>> b = ("George", 25, "20000")

4.OPERATORS:

-The right side can be any kind of sequence (string,list,tuple)

Example:

-To split an email address in to user name and a domain

>>> mailid='god@abc.org'

>>> name,domain=mailid.split('@')

>>> print name

god

>>> print (domain) abc.org

 Operators are the constructs which can manipulate the value of operands.

 Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is called operator

 Types of Operators:

-Python language supports the following types of operators

 Arithmetic Operators

 Comparison (Relational) Operators

 Assignment Operators

 Logical Operators

 Bitwise Operators

 Membership Operators

 Identity Operators

4.1 Arithmetic operators:

They are used to perform mathematical operations like addition, subtraction, multiplication etc.

Assume, a=10 and b=5

 Operator Description Example

+ Addition Adds values on either side of the operator. a + b = 30

- Subtraction Subtracts right hand operand from left hand

operand.

a – b = -10

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 15/31

* Multiplication Multiplies values on either side of the operator a * b = 200

/ Division Divides left hand operand by right hand operand b / a = 2

% Modulus Divides left hand operand by right hand operand and returns

remainder

b % a = 0

** Exponent Performs exponential (power) calculation on

operators

a**b =10 to the

power 20

// Floor Division - The division of operands where the result is the

quotient in which the digits after the decimal point are removed

5//2=2

Examples

a=10

b=5 print("a+b=",a+b)

print("a-b=",a-b)

print("a*b=",a*b)

print("a/b=",a/b)

print("a%b=",a%b)

print("a//b=",a//b)

print("a**b=",a**b)

Output:

a+b= 15

a-b= 5

a*b= 50

a/b= 2.0

a%b= 0

a//b= 2

a**b= 100000

4.2 Comparison (Relational) Operators:

 Comparison operators are used to compare values.

 It either returns True or False according to the condition. Assume, a=10 and b=5

 Operator Description Example

== If the values of two operands are equal, then the condition (a == b) is

becomes true. not true.

!= If values of two operands are not equal, then condition becomes true. (a!=b) is

true

> If the value of left operand is greater than the value of right operand, then

condition becomes true.

(a > b) is not

true.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 16/31

< If the value of left operand is less than the value of right operand, then

condition becomes true.

(a < b) is true.

>= If the value of left operand is greater than or equal to the value of right

operand, then condition becomes true.

(a >= b) is not

true.

<= If the value of left operand is less than or equal to the value of right

operand, then condition becomes true.

(a <= b) is

true.

Example

a=10

b=5 print("a>b=>",a>b)

print("a>b=>",a<b)

print("a==b=>",a==b)

print("a!=b=>",a!=b)

print("a>=b=>",a<=b)

print("a>=b=>",a>=b)

Output: a>b=>

True a>b=>

False a==b=>

False a!=b=>

True a>=b=>

False a>=b=>

True

4.3 Assignment Operators:

-Assignment operators are used in Python to assign values to variables.

 Operator Description Example

= Assigns values from right side operands to left side operand c = a + b

assigns value

of a + b into c

+= Add AND It adds right operand to the left operand and assign the result to left

operand

c += a is

equivalent to c

= c + a

-= Subtract

AND

It subtracts right operand from the left operand and assign the result

to left operand

c -= a is

equivalent to c

= c - a

*= Multiply

AND

It multiplies right operand with the left operand and assign the

result to left operand

c *= a is

equivalent to c

= c * a

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 17/31

/= Divide

AND

It divides left operand with the right operand and assign the result

to left operand

c /= a is

equivalent to c

= c / ac

/= a is

equivalent to c

= c / a

%= Modulus

AND

It takes modulus using two operands and assign the result to left

operand

c %= a is

equivalent to c

= c % a

**= Exponent

AND

Performs exponential (power) calculation on

operators and assign value to the left operand

c **= a is

equivalent to c

= c ** a

//= Floor

Division

It performs floor division on operators and assign value to the left

operand

c //= a is

equivalent to c

= c // a

Example

a = 21

b = 10

c = 0

c = a + b

print("Line 1 - Value of c is ", c) c +=

a

print("Line 2 - Value of c is ", c) c *=

a

print("Line 3 - Value of c is ", c) c /=

a

print("Line 4 - Value of c is ", c) c = 2

c %= a

print("Line 5 - Value of c is ", c) c

**= a

print("Line 6 - Value of c is ", c) c //=

a

print("Line 7 - Value of c is ", c)

Output

Line 1 - Value of c is 31 Line 2 -

Value of c is 52 Line 3 - Value of

c is 1092 Line 4 - Value of c is

52.0 Line 5 - Value of c is 2

Line 6 - Value of c is 2097152 Line 7 -

Value of c is 99864

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 18/31

4.4 Logical Operators:

-Logical operators are the and, or, not operators.

Example a

= True b =

False

print('a and b is',a and b)

print('a or b is',a or b) print('not a

is',not a)

Output

x and y is False x

or y is True not x is

False

4.5 Bitwise Operators:

 A bitwise operation operates on one or more bit patterns at the level of individual bits

Example: Let x = 10 (0000 1010 in binary) and

y = 4 (0000 0100 in binary)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 19/31

Example

a = 60 # 60 = 0011 1100

b = 13 # 13 = 0000 1101

c = 0

c = a & b; # 12 = 0000 1100

print "Line 1 - Value of c is ", c c = a

| b; # 61 = 0011 1101

print "Line 2 - Value of c is ", c c = a

^ b; # 49 = 0011 0001

print "Line 3 - Value of c is ", c

c = ~a; # -61 = 1100 0011

Output

Line 1 - Value of c is 12 Line 2

- Value of c is 61 Line 3 -

Value of c is 49 Line 4 - Value

of c is -61 Line 5 - Value of c is

240 Line 6 - Value of c is 15

print "Line 4 - Value of c is ", c

c = a << 2; # 240 = 1111 0000

print "Line 5 - Value of c is ", c

c = a >> 2; # 15 = 0000 1111

print "Line 6 - Value of c is ", c

4.6 Membership Operators:

 Evaluates to find a value or a variable is in the specified sequence of string, list, tuple, dictionary or

not.

 Let, x=[5,3,6,4,1]. To check particular item in list or not, in and not in operators are used.

Example:

x=[5,3,6,4,1]

>>> 5 in x

True

>>> 5 not in x

False

4.7 Identity Operators:

 They are used to check if two values (or variables) are located on the same part of the

memory.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 20/31

Example

x = 5

y = 5

x2 = 'Hello' y2

= 'Hello'

print(x1 is not y1)

print(x2 is y2)

Output

False True

5. OPERATOR PRECEDENCE:

When an expression contains more than one operator, the order of evaluation

depends on the order of operations.

Operator Description

** Exponentiation (raise to the power)

~ + - Complement, unary plus and minus (method names for the

last two are +@ and -@)

* / % // Multiply, divide, modulo and floor division

+ - Addition and subtraction

>> << Right and left bitwise shift

& Bitwise 'AND'

^ | Bitwise exclusive `OR' and regular `OR'

<= < > >= Comparison operators

<> == != Equality operators

= %= /= //= -= += *= **= Assignment operators

is is not Identity operators

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 21/31

6.Functions, Function Definition And Use, Function call, Flow Of Execution, Function
Prototypes, Parameters And Arguments, Return statement, Argumentstypes,Modules

in not in Membership operators

not or and Logical operators

-For mathematical operators, Python follows mathematical convention.

-The acronym PEMDAS (Parentheses, Exponentiation, Multiplication, Division, Addition, Subtraction) is a

useful way to remember the rules:

 Parentheses have the highest precedence and can be used to force an expression to evaluate in the

order you want. Since expressions in parentheses are evaluated first, 2 * (3-1)is 4, and (1+1)**(5-2)

is 8.

 You can also use parentheses to make an expression easier to read, as in (minute

* 100) / 60, even if it doesn‟t change the result.

 Exponentiation has the next highest precedence, so 1 + 2**3 is 9, not 27, and 2

*3**2 is 18, not 36.

 Multiplication and Division have higher precedence than Addition and Subtraction. So 2*3-1 is 5,

not 4, and 6+4/2 is 8, not 5.

 Operators with the same precedence are evaluated from left to right (except exponentiation).

Example:

a=9-12/3+3*2-1

a=?

a=9-4+3*2-1

a=9-4+6-1

a=5+6-1 a=11-

1 a=10

A=2*3+4%5-3/2+6

A=6+4%5-3/2+6

A=6+4-3/2+6 A=6+4-

1+6

A=10-1+6

A=9+6 A=15

find m=?

m=-43||8&&0||-2 m=-

43||0||-2 m=1||-2

m=1

a=2,b=12,c=1

d=ac

d=2<12>1

d=1>1

d=0

a=2,b=12,c=1

d=ac-1

d=2<12>1-1

d=2<12>0

d=1>0

d=1

a=2*3+4%5-3//2+6

a=6+4-1+6

a=10-1+6 a=15

6.1 FUNCTIONS:

 Function is a sub program which consists of set of instructions used to perform a specific task.

A large program is divided into basic building blocks called function.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 22/31

Need For Function:

 When the program is too complex and large they are divided into parts. Each part is separately coded

and combined into single program. Each subprogram is called as function.

 Debugging, Testing and maintenance becomes easy when the program is divided into subprograms.

 Functions are used to avoid rewriting same code again and again in a program.

 Function provides code re-usability

 The length of the program is reduced.

Types of function:

Functions can be classified into two categories:

i) user defined function

ii) Built in function

i) Built in functions

 Built in functions are the functions that are already created and stored in python.

 These built in functions are always available for usage and accessed by a programmer. It cannot be

modified.

Built in function Description

>>>max(3,4) 4 # returns largest element

>>>min(3,4) 3 # returns smallest element

>>>len("hello") 5 #returns length of an object

>>>range(2,8,1) [2,

3, 4, 5, 6, 7]

#returns range of given values

>>>round(7.8) 8.0 #returns rounded integer of the given number

>>>chr(5)

\x05'

#returns a character (a string) from an integer

>>>float(5)

5.0

#returns float number from string or integer

>>>int(5.0) 5 # returns integer from string or float

>>>pow(3,5) 243 #returns power of given number

>>>type(5.6)

<type 'float'>

#returns data type of object to which it belongs

>>>t=tuple([4,6.0,7])

(4, 6.0, 7)

to create tuple of items from list

>>>print("good morning")

Good morning

displays the given object

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 23/31

6.3Function Calling: (Main Function)

6.4 Flow of Execution:

>>>input("enter name: ")

enter name : George

reads and returns the given string

ii) User Defined Functions:

 User defined functions are the functions that programmers create for their requirement and use.

 These functions can then be combined to form module which can be used in other programs by

importing them.

 Advantages of user defined functions:

 Programmers working on large project can divide the workload by making different functions.

 If repeated code occurs in a program, function can be used to include those codes and execute

when needed by calling that function.

 def keyword is used to define a function.

 Give the function name after def keyword followed by parentheses in which arguments are given.

 End with colon (:)

 Inside the function add the program statements to be executed

 End with or without return statement

Syntax:

def fun_name(Parameter1,Parameter2…Parameter n): statement1

statement2…

statement n return[expression]

Example:

def my_add(a,b):

c=a+b

return c

 Once we have defined a function, we can call it from another function, program or even the Python

prompt.

 To call a function we simply type the function name with appropriate arguments.

Example:

x=5

y=4

my_add(x,y)

 The order in which statements are executed is called the flow of execution

 Execution always begins at the first statement of the program.

6.2 Function definition: (Sub program)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 24/31

6.5 Function Prototypes:

 Statements are executed one at a time, in order, from top to bottom.

 Function definitions do not alter the flow of execution of the program, but remember that statements

inside the function are not executed until the function is called.

 Function calls are like a bypass in the flow of execution. Instead of going to the next statement, the

flow jumps to the first line of the called function, executes all the statements there, and then comes

back to pick up where it left off.

Note: When you read a program, don‟t read from top to bottom. Instead, follow the flow of execution. This

means that you will read the def statements as you are scanning from top to bottom, but you should skip the

statements of the function definition until you reach a point where that function is called.

i. Function without arguments and without return type

ii. Function with arguments and without return type

iii. Function without arguments and with return type

iv. Function with arguments and with return type

i) Function without arguments and without return type

o In this type no argument is passed through the function call and no output is return to main
function

o The sub function will read the input values perform the operation and print the result in the
same block

ii) Function with arguments and without return type

o Arguments are passed through the function call but output is not return to the main function

iii) Function without arguments and with return type

o In this type no argument is passed through the function call but output is return to the main
function.

iv) Function with arguments and with return type

o In this type arguments are passed through the function call and output is return to the main
function

Without Return Type

Without argument With argument

def add():

a=int(input("enter a"))

b=int(input("enter b"))

c=a+b

print(c)

add()

def add(a,b):

c=a+b

print(c)

a=int(input("enter a"))

b=int(input("enter b")) add(a,b)

OUTPUT:

enter a 5

enter b 10

15

OUTPUT:

enter a 5

enter b 10

15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 25/31

Example:
def my_add(a,b): c=a+b

return c x=5
y=4 print(my_add(x,y))
Output:

9

With return type

Without argument With argument

def add(): def add(a,b):

c=a+b return c

a=int(input("enter a")) b=int(input("enter

b")) c=add(a,b)

print(c)

a=int(input("enter a"))

b=int(input("enter b"))

c=a+b

return c

c=add()

print(c)

OUTPUT: OUTPUT:

enter a 5 enter a 5

enter b 10 enter b 10

15 15

6.6 Parameters and Arguments:

Parameters:

 Parameters are the value(s) provided in the parenthesis when we write function header.

 These are the values required by function to work.

 If there is more than one value required, all of them will be listed in parameter list separated by

comma.

 Example: def my_add(a,b):

Arguments :

 Arguments are the value(s) provided in function call/invoke statement.

 List of arguments should be supplied in same way as parameters are listed.

 Bounding of parameters to arguments is done 1:1, and so there should be same number and type of

arguments as mentioned in parameter list.

 Example: my_add(x,y)

6.7 RETURN STATEMENT:

 The return statement is used to exit a function and go back to the place from where it was called.

 If the return statement has no arguments, then it will not return any values. But exits from function.

Syntax:

return[expression]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 26/31

def my_details(name, age):
print("Name: ", name)
print("Age ", age)
return

my_details(age=56,name="george")

 6.8 ARGUMENTS TYPES:

1. Required Arguments

2. Keyword Arguments

3. Default Arguments

4. Variable length Arguments

 Required Arguments: The number of arguments in the function call should match

exactly with the function definition.

def my_details(name, age): print("Name: ",

name)

print("Age ", age)

return

my_details("george",56)

Output:

 Keyword Arguments:

Python interpreter is able to use the keywords provided to match the values with parameters even though if they

are arranged in out of order.

Output:

 Default Arguments:

Assumes a default value if a value is not provided in the function call for that argument. def my_details(

name, age=40):

print("Name: ", name)

print("Age ", age) return

my_details(name="george")

Output:

 Variable length Arguments

If we want to specify more arguments than specified while defining the function, variable length arguments

Name: george
Age 40

Name: george
Age 56

Name: george
Age 56

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 27/31

are used. It is denoted by * symbol before parameter.

def my_details(*name):

print(*name)

my_details("rajan","rahul","micheal", ärjun")

Output:

 6.9 MODULES:

 A module is a file containing Python definitions ,functions, statements and instructions.

 Standard library of Python is extended as modules.

 To use these modules in a program, programmer needs to import the module.

 Once we import a module, we can reference or use to any of its functions or variables in our code.

oThere is large number of standard modules also available in python. oStandard modules can
be imported the same way as we import our user- defined modules.

oEvery module contains many function.

oTo access one of the function , you have to specify the name of the module and the name of the
function separated by dot . This format is called dot notation.

Syntax:

import module_name

module_name.function_name(variable)

Importing Builtin Module: Importing User Defined Module:

import math x=math.sqrt(25)

print(x)

import cal x=cal.add(5,4)

print(x)

rajan rahul micheal ärjun

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 28/31

Built-in python modules are,

1.math – mathematical functions:

some of the functions in math module is,

math.ceil(x) - Return the ceiling of x, the smallest integer greater

han or equal to x

math.floor(x) - Return the floor of x, the largest integer less than or equal to x.

math.factorial(x) -Return x factorial. math.gcd(x,y)- Return the

greatest common divisor of the integers a and b

math.sqrt(x)- Return the square root of x math.log(x)-

return the natural logarithm of x math.log10(x) – returns

the base-10 logarithms math.log2(x) - Return the base-2

logarithm of x. math.sin(x) – returns sin of x radians

math.cos(x)- returns cosine of x radians math.tan(x)-

returns tangent of x radians

math.pi - The mathematical constant π = 3.141592

math.e – returns The mathematical constant e = 2.718281

2 .random-Generate pseudo-random numbers

random.randrange(stop) random.randrange(start, stop[,

step]) random.uniform(a, b)

-Return a random floating point number

https://docs.python.org/3/library/random.html#module-random

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 29/31

ILLUSTRATIVE PROGRAMS

Program for SWAPPING(Exchanging)of

values

Output

a = int(input("Enter a value ")) b =

int(input("Enter b value ")) c = a

a = b

b = c

print("a=",a,"b=",b,)

Enter a value 5

Enter b value 8 a=8

b=5

Program to find distance between two points Output

import math x1=int(input("enter

x1")) y1=int(input("enter y1"))

x2=int(input("enter x2"))

y2=int(input("enter y2"))

distance =math.sqrt((x2-x1)**2)+((y2- y1)**2)

print(distance)

enter x1 7

enter y1 6

enter x2 5

enter y2 7

2.5

Program to circulate n numbers Output:

a=list(input("enter the list"))

print(a)

for i in range(1,len(a),1):

print(a[i:]+a[:i])

enter the list '1234'

['1', '2', '3', '4']

['2', '3', '4', '1']

['3', '4', '1', '2']

['4', '1', '2', '3']

Possible Questions

Part A: (2 marks)

1. What is interpreter?

2. What are the two modes of python?

3. List the features of python.

4. List the applications of python

5. List the difference between interactive and script mode

6. What is value in python?

7. What is identifier? and list the rules to name identifier.

8. What is keyword?

9. How to get data types in compile time and runtime?

10. What is indexing and types of indexing?

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 30/31

11. List out the operations on strings.

12. Explain slicing?

13. Explain below operations with the example

(i)Concatenation (ii)Repetition

14. Give the difference between list and tuple

15. Differentiate Membership and Identity operators.

16. Compose the importance of indentation in python.

17. Evaluate the expression and find the result (a+b)*c/d

a+b*c/d

18. Write a python program to print „n‟ numbers.

19. Define function and its uses

20. Give the various data types in Python

21. Assess a program to assign and access variables.

22. Select and assign how an input operation was done in python.

23. Discover the difference between logical and bitwise operator.

24. Give the reserved words in Python.

25. Give the operator precedence in python.

26. Define the scope and lifetime of a variable in python.

27. Point out the uses of default arguments in python

28. Generalize the uses of python module.

29. Demonstrate how a function calls another function. Justify your answer.

30. List the syntax for function call with and without arguments.

31. Define recursive function.

32. What are the two parts of function definition? give the syntax.

33. Point out the difference between recursive and iterative technique.

34. Give the syntax for variable length arguments.

Part B (6 marks)

1. Explain in detail about various data types in Python with an example?

2. Explain the different types of operators in python with an example.

3. Discuss the need and importance of function in python.

4. Explain in details about function prototypes in python.

5. Discuss about the various type of arguments in python.

6. Explain the flow of execution in user defined function with example.

7. Illustrate a program to display different data types using variables and literal constants.

8. Show how an input and output function is performed in python with an example.

9. Explain in detail about the various operators in python with suitable examples.

10. Discuss the difference between tuples and list

11. Discuss the various operation that can be performed on a tuple and Lists (minimum 5)with an

example program

12. What is membership and identity operators.

13. Write a program to perform addition, subtraction, multiplication, integer division, floor division

and modulo division on two integer and float.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 31/31

14. Write a program to convert degree Fahrenheit to Celsius

15. Discuss the need and importance of function in python.

16. Illustrate a program to exchange the value of two variables with temporary variables

17. Briefly discuss in detail about function prototyping in python. With suitable example program

18. Analyze the difference between local and global variables.

19. Explain with an example program to circulate the values of n variables

20. Analyze with a program to find out the distance between two points using python.

21. Do the Case study and perform the following operation in tuples i) Maxima minima iii)sum of two

tuples iv) duplicate a tuple v)slicing operator vi) obtaining a list from a tuple vii) Compare two

tuples viii)printing two tuples of different data types

22. Write a program to find out the square root of two numbers.

Questions Option1 Option2 Option3 Option4 Answer

What is

answer of this 7 1 0 5 1
What is the

output of this 27 9 3 1 3What dataype

is the object

below ? list dictionary array tuple listWhat is the

output of the

following?

print("Hello

{name1} and

Hello foo and

bin

Hello

{name1} and

{name2} Error Hello

Hello foo and

bin

What is the

output of the

following?

print("Hello

{name1} and

The sum of 2

and 10 is 12

The sum of

10 and a is 14

The sum of

10 and a is c Error

The sum of 2

and 10 is 12

What is the

result of

round(0.5) –

round(-0.5)? 1 2 0 3 2

What is the

maximum

possible

length of an

identifier? 31 characters 63 characters 79 characters None None

All keywords

in Python are

in lower case

UPPER

CASE Capitalized

Both lower

case and

UPPER

CASE

Both lower

case and

UPPER

CASE

Which of the

following is

an invalid

statement?

abc =

1,000,000

a b c = 1000

2000 3000

a,b,c = 1000,

2000, 3000

a_b_c =

1,000,000

a b c = 1000

2000 3000

Which of

these in not a

core

datatype? Lists Dictionary Tuples Class Class

Select the

reserved

keyword in

python else import raise

All the

options

All the

options

Which of the

following

symbols are

used for

comments in

Python? // '' /**/ # #

Which

keyword is

used to define

methods in

Python? function def method All of these def

Which of the

following is

correct way

to declare

string

variable in

Python?

fruit =

'banana'

fruit =

"banana"

 fruit =

banana

fruit =

(banana)

fruit =

'banana'

Which

predefined

Python

function is

used to find

length of

string? length() len() strlen() stringlength() len()

Python

allows string

slicing. What

is the output

of below

code:

s='cppbuzz

chicago'

print(s[3:5]) pbuzz buzzc bu buz bu

How do you

insert

COMMENT

S in Python

code? /*…*/ // # ! #

What is a

correct syntax

to output

"Hello

World" in

Python?

echo("Hello

World")

echo "Hello

World"

p("Hello

World")

print("Hello

World")

print("Hello

World")

Which one is

NOT a legal

variable

name? _myvar Myvar my_var my-var my_var

How do you

create a

variable with

the numeric

value 5? x=5 x=int(5)

Both x=5 and

x=int(5) are

correct x=val(5)

Both x=5 and

x=int(5) are

correct

What is the

correct file

extension for

Python files? .pt .py .pyth .pyt .py

How do you

create a

variable with

the floating

number 2.8? x=2.8 x=foat(2.8)

Both x=2.8

and

x=float(2.8)

are correct x=val(2.8)

Both x=2.8

and

x=float(2.8)

are correct

What is the

correct syntax

to output the

type of a

variable or

object in

Python?

print(typeOf(

x))

print(typeof(x

)) print(type(x))

print(typeof

x)) print(type(x))

What is the

correct way

to create a

function in

Python?

def

myFunction()

:

create

myFunction()

:

function

myFunction()

:

func

myFunction()

:

def

myFunction()

:

What is a

correct syntax

to return the

first character

in a string?

x=sub("Hello

",0,1) x="Hello"[0]

x="Hello".su

b(0,1)

Select the

reserved

keyword in

python else import raise all all

Which of the

following is

correct way

to declare

string

variable in

Python?

fruit =

'banana'

fruit =

"banana" fruit =banana

fruit

=(banana)

fruit =

'banana'

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 1/32

SYLABUS

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional

(if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values,

parameters, local and global scope, function composition, recursion; Strings: string slices,

immutability, string functions and methods, string module; Lists as arrays. Illustrative programs:

square root, gcd, exponentiation, sum an array of numbers, Linear search, binary search.

Control flow

 Control flow is the order in which individual statements are executed.

 Control means controlling

 Flow means way or sequence of program execution

Types of control flow

 Decision structures evaluate multiple expressions, which produce TRUE or

FALSE as the outcome

 Python programming language provides the following types of decision-making

statements.

1. If-statement

2. If-else statement

3. If-elif-else

CONTROL FLOW

DECISION MAKING (Conditional or Selection or Branching)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 2/32

4. Nested if-elif-else

1. Conditional if Statement

 If condition (expression) is TRUE, then the block of statement(s) inside the

„if‟ statement is executed.

 If condition is FALSE, the statement is not executed.

 Syntax

 Flow chart

if condition:

 Statement(s)

 Example

a = 200

b = 100

if a > b:

 print("a is greater")

Output:
 a is greater

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 3/32

2. Alternative if-else Statement

 If condition is TRUE, then the block of statement(s) inside the „if‟ statement

is executed.

 If condition is FALSE, the statement(s) inside else block is executed.

Syntax

 Flow chart

3. Chained conditional if-elif-else Statement

 An elif(else if) statement can be used to check multiple expressions

 An if-elif-else structure first checks 'if condition'

 If condition is TRUE, execute the statements in the 'if ' block

 If condition is FALSE, it tests the condition in the elif block

 If elif statement is true, execute the statements in the elif block

 otherwise control passes to the else block

Syntax

if condition:

 Statement(s)

else:

 Statement(s)

 Example

a = 200

b = 100

if a > b:

 print("a is greater")

else:

 print("b is greater")

Output:
 a is greater

if condition:

Statement(s)

elif condition:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 4/32

 Flow chart

4. Nested if-elif-else Statement

 Used to check another condition after the first condition has been evaluated as

true.

 Syntax

 Looping executes sequence of statement again and again until specific

condition satisfies.

 Python programming language provides the following types of loops

 Example

n = 50

if n > 50:

 print("Passed")

elif n == 50:

 print("Passed")

else:

 print("Failed")

Output:
 Passed

if condition:

 if condition:

 Statement(s)

 elif condition:

 Statement(s)

else:

 Statement(s)

 Example
n = 5

if n > =0:

 if n ==0:

 print("zero")

 else:

 print("Positive number")

else:

 print("Negative Number")

Output:
 Positive number

LOOPING (Iteration)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 5/32

1. for loop

2. While loop

1. For Loops

 The 'for loop' repeats a given block of codes by specified number of times

 Syntax

 Flow chart

 range() function

 Generate a sequence of numbers using range() function.

 range(10) will generate numbers from 0 to 9 (10 numbers).

 Syntax

 range(start, end, step)

for iterating_var in sequence:

statements(s)

Example
fruits = *‘Apple’, ’Orange’, ’Mango’, ’Cherry’+
for i in fruits:
 print(i)
Output:
 Apple
 Orange
 Mango
 Cherry

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 6/32

 The function list() is used to force this function to output all the items

 for loop with else

 For loop can have an optional else block.

 The else part is executed if the items in the sequence used in for loop exhausts.

2. While Loop

 It is also called as Entry-Controlled Loop.

 The while loop in Python is used to iterate over a block of code as long as

the test expression (condition) is true.

 Syntax

Example

>>>range(5)
Output:

 [0, 1, 2, 3, 4]

>>>range(3, 10)

>>>list(range(3,10))
Output:

 [3, 4, 5, 6, 7, 8, 9]

>>>range(4, 10, 2)

>>>list(range(4, 10, 2))
Output:

 [4, 6, 8]

Example
numbers = [10, 99, 3]
for i in numbers:
 if i % 2 == 0:
 print(i, “is an even number”)
 else:
 print(i, “is an odd numbers”)
Output:
 10 is an even number
 99 is an odd number
 3 is an odd number

while test_expression:

 Body of while

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 7/32

 Flow chart

While loop with else

 While loop can have an optional else block.

 The else part is executed when the condition becomes false.

NESTED LOOPS

 Placing of one loop inside the body of another loop is called nested loop.

Example
Count = 1
While (count < =3):
 print(“Python Programming”)
 Count = count + 1
Output:
 Python Programming
 Python Programming
 Python Programming

Example
Count = 1
While (count < =3):
 print(“Python Programming”)
 Count = count + 1
else:
 print(“Exit”)
Output:
 Python Programming
 Python Programming
 Python Programming
 Exit

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 8/32

Control Statements

 It controls the flow of program execution to get desire result.

 Python supports the following three control statements, they are

1. break

2. continue

3. pass

1. break statement

 It terminates the loop statement and transfers execution to the statement

immediately following the loop.

Syntax:

2. Continue statement

 It is used to skip the rest of the code inside a loop for the current iteration only.

 Loop does not terminate but continues on with the next iteration.

Syntax:

Nested for loop

Syntax:

for iterating_var in sequence:

 for iterating_var in sequence:

 statements(s)

 statements(s)

Nested while loop

Syntax:

while test_expression:

 while test_expression:

 statements(s)

 statements(s)

CONTROL STATEMENTS (8 marks)

 break

continue

Example
for val in “computer”:
 if val == “t”:
 break
 print(val)
Output:
>>> c o m p u

Example
for val in “computer”:
 if val == “t”:
 continue
 print(val)
Output:
>>> c o m p u e r

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 9/32

3. Pass statement

 It is a null statement.

 It does nothing when pass is executed

 It is used when a statement is required syntactically but do not want any

command or code to execute.

Syntax:

Fruitful function:
A function that returns a value is called fruitful function.
Example:
Root=sqrt(25)
Example:
def add():
a=10
b=20
c=a+b
return c
c=add()
print(c)
Void Function
A function that perform action but don’t return any value.
Example:
print(“Hello”)
Example:

FRUITFUL FUNCTION (16 or 8 marks)

 RETURN VALUES (Refer UNIT-2 Notes, page No.30)

 PARAMETERS (Refer UNIT-2 Notes, page No.31-35)

 LOCAL AND GLOBAL SCOPE (Refer UNIT-2 Notes, page No.35-36)

 FUNCTION COMPOSITION (Refer UNIT-2 Notes, page No.36)

 RECURSION (Refer UNIT-2 Notes, page No.37-38)

 pass

Example
for val in “computer”:
 if val == “t”:
 pass
 print(val)
Output:
>>> c o m p u e r

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 10/32

def add():
a=10
b=20
c=a+b
print(c)
add()
Return values:
return keywords are used to return the values from the function.
example:
return a – return 1 variable
return a,b– return 2 variables
return a,b,c– return 3 variables
return a+b– return expression
return 8– return value
PARAMETERS / ARGUMENTS:
Parameters are the variables which used in the function definition.
Parameters
are inputs to functions. Parameter receives the input from the function call.
It is possible to define more than one parameter in the function definition.
Types of parameters/Arguments:
1. Required/Positional parameters
2. Keyword parameters
3. Default parameters
4. Variable length parameters
Required/ Positional Parameter:
The number of parameter in the function definition should match exactly with
number of arguments in the function call.
Example Output:
def student(name, roll):
print(name,roll)
student(“George”,98)
George 98
Keyword parameter:
When we call a function with some values, these values get assigned to the
parameter
according to their position. When we call functions in keyword parameter, the
order of the
arguments can be changed.
Example Output:
def student(name,roll,mark):
print(name,roll,mark)
student(90,102,"bala")

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 11/32

Default parameter:
Python allows function parameter to have default values; if the function is called
without the argument, the argument gets its default value in function definition.
Example Output:
def student(name, age=17):
print (name, age)
student(“kumar”):
student(“ajay”):
Kumar 17
Ajay 17
Variable length parameter
Sometimes, we do not know in advance the number of arguments that will
be passed into a function.
Python allows us to handle this kind of situation through function calls
with number of arguments.
In the function definition we use an asterisk (*) before the parameter name
to denote this is variable length of parameter.
Example
def student(name,*mark):
print(name,mark)
student (“bala”,102,90)
 Output: bala (102 ,90)
Local and Global Scope
Global Scope
The scope of a variable refers to the places that you can see or access a variable.
A variable with global scope can be used anywhere in the program.
It can be created by defining a variable outside the function.

Local Scope A variable with local scope can be used only within the function .

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 12/32

Function Composition:

Function Composition is the ability to call one function from within another

function

It is a way of combining functions such that the result of each function is passed

as the argument of the next function.

In other words the output of one function is given as the input of another

function is known as function composition.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 13/32

Recursion

A function calling itself till it reaches the base value - stop point of function call.

Example: factorial of a given number using recursion

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 14/32

STRINGS (16 or 8 marks)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 15/32

STRING

 “String is the collection of characters, numbers, special characters or a combination

of these types represented within the quotation marks”

- Strings can be enclosed within single(„), double (“) and triple quotes (“ “ “)

Example:

 „C‟- string with single character

 „@gmail.com‟ - string with special character

 “ “ - Empty string

INITIALIZING THE STRING VARIABLE

- Strings can be initialized by using an assignment statement(=)

Syntax

ACCESSING THE STRING VARIABLE

 String can be accessed by using the square brackets or index operator [].

 Forward indexing: Index starts from 0

 Negative(Backward) indexing: Index starts from -1,-2,-3 and so on, from left

side.

Syntax

 Example

>>>str=”PHYTHON”

>>>str[0]

P #output

>>>str[5]

N #output

>>>str[-2]

O #output

Variable_name = „initial_string

Example:

Name= “Ravi”

Year= “2017”

string_variable [index_number]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 16/32

SLICING STRING

 A segment of a string is called a slice

 The slicing operator [:] is used to access a range of characters in a string

 The colon inside the square brackets is used to separate two indices from each

other.

 Syntax

 Example

>>>a= “Python Programming”

>>>a[0 : 5]

 „Pytho‟ #output

>>>a[:5]

 „Pytho‟ #output

>>> a[5:]

 „n Programming‟ #output

>>> a[5:10]

 „n Pro‟ #output

>>> a[:]

 „Python Programming‟ #output

 STRING ARE IMMUTABLE

 Strings are immutable

 Which means that cannot change or modify any elements of a string.

 Solution to this problem is to generate a new string rather than change the old

string.

 STRING TRAVERSAL

 Traversal is a process in which can access all the elements of the string one

by one using some conditional statements such as „for‟ loop, ‟while‟ loop

string_variable [start : end-1]

Example

 >>>a = „hello python‟

 >>>a[0] = „p‟

 Output:

 TypeError: „str‟ object does not support item assignment

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 17/32

STRING OPERATION

- There are many operations that can be performed with string which makes it one of

the most used datatypes in Python.

- The various string operations are,

1. String concatenation

2. Repeating a string (replication operator)

3. In operator (string Membership test)

4. String Comparison

1. String concatenation

 A number of strings can be combined to form a single string is called string

concatenation.

 The (+) operator is to join the strings.

Syntax

2. Repeating a string(Replication Operator)

 Group of strings can be repeated by using the (*) operator.

Traversal using „for‟ loop

Example

>>>bird = „parrot‟

>>>for letter in bird:

 Print(letter)

Output:

 P a r r o t

Traversal using „while‟ loop

Example

>>>bird = „parrot‟

>>>i=0

>>>while i<len(bird):

 letter = bird[i]

 print(letter)

i= i + 1

Output:

 P a r r o t

“string_variable 1” + “string_variable 2”+…..+ “string_variable n”

Example

>>>a = „Hello‟

>>>b = „World‟

>>>c = a + b

>>>print(c)

Output

Hello world

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 18/32

 The (*) operator is the string replication operator.

Syntax

Where, string_variable is the variable name

 * is the string replication operator

 n is the number of times the string to be repeated.

3. The „ in‟ operator

 Can test if a sub string exists within a string or not, using the keyword „in‟.

4. String Comparison

 The relational operators are used to compare two strings.

ESCAPE CHARACTERS (SEQUENCE)

 The backslash character (\) is used to escape characters.

 It converts difficult –to-type characters into a string.

(“string_variable” * n)

Example

print(“Python” * 3)

Output

PythonPythonPython

Example

>>> 'a' in 'program'

True

>>> 'at' not in 'battle'

 False

Example

>>> if „python‟ == „python‟

 Print(“Both strings are equal”)

Output

Both strings are equal

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 19/32

List of Escape characters

PYTHON STRING FORMATTING

 The format() method is an extremely convenient way to format text.

 Other supported symbols and functionality are listed in the following table

Option Meaning

„<‟ The field will be left-aligned within the available space

„>‟ The field will be right-aligned within the available space

„0‟ If the width field is preceded by a zero („0‟) character, sign-aware zero-

padding for numeric types will be enabled.

„,‟ This option signals the use of a comma for a thousand separators

„=‟ Forces the padding to be placed after the sign but before the digits.

„^‟ Forces the field to be centered within the available space

Example

>>> print “I am 6‟2\” tall.”

Output

I am 6‟2\” tall

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 20/32

„+‟ Indicates that the sign should be used for both positive as well as negative

numbers.

„-„ Indicates that the sign should be only for negative numbers.

space Indicates that a leading space should be used on positive numbers and a

minus sign on negative numbers.

Syntax

 Where, value is the string to be displayed

 format_specifier is the combination of formatting options.

 String provides methods to perform a variety of useful operations.

 A method is similar to a function.

 It takes arguments and returns a value.

String function in python

s.capitalize() Capitalizes first character of s

s.capwords() Capitalizes first letter of each word in s

s.count(sub) Count number of occurrences of sub in s

s.find(sub) Find first index of sub in s

s.index(sub) Find first index of sub in s

s.rfind(sub) Same as find, but last index

s.rindex(sub) Same as index, but last index

s.lower() Convert s to lowercase

s.split() Return a list of words in s

s.joint(1
st
) Join a list of words into a single string with s as separator

s.strip() Strip trailing white space from s

s.upper() Convert s to upper string

Example

>>> print(format(„Python Programming‟,‟<20‟)) # Left Justified

>>> print(format(„Python Programming‟,‟<60‟)) # Right Justified

>>> print(format(„Python Programming‟,‟^50‟)) # Center

Output

Python Programming

Python Programming

Python Programming

format (value, format_specifier)

STRING FUNCTIONS & METHODS (16 or 8 marks)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 21/32

s.replace(old,new) Replace all instances of old with new in string

String Length()

- The length function returns the number of characters in a string

String upper()

- The upper function converts the letters in the string into uppercase letters.

String lower()

- The lower function converts the letters in the string into lowercase letters.

Capitalize()

- The „capitalize‟ function capitalizes the first character of the string.

Example

>>>a = „Hello‟

>>> len(a)

 5

Example

>>>a = „python programming‟

>>> a.upper()

Output

PYTHON PROGRAMMING

Example

>>>a = „PYTHON PROGRAMMING‟

>>> a.lower()

Output

python programming

Example

>>>a = „python‟

>>> a.captialize()

Output

Python

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 22/32

Split()

- The „split‟ function trailing white space from a string.

Find()

- The „find‟ method can find substrings in a string.

Count()

- The „count‟ method returns the total number of overlapping of given substrings.

Isalnum()

- This method returns the Boolean value true if there is one character atleast and if

all the characters in the given string are alphanumeric.

- It return false otherwise

Example

>>>a = „Python Programming‟

>>> a.split()

Output

[„python‟,‟programming‟]

Example

>>>a = „python programming‟

>>> a.find(pro)

Output

7

Example

>>>a = „python programming python programs‟

>>> a.count(python)

Output

2

Example

>>>a = „apple grapes orange3‟

>>>b = „orange3‟

>>>print(a.isalnum())

>>>print(b.isalnum())

Output

False

True

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 23/32

Isalpha()

- This method returns the Boolean value true if there is one character atleast and if

all the characters in the given string are alphabetic.

- It return false otherwise

Isdigit()

- This method returns the Boolean value true if there is one character atleast and if

all the characters in the given string are numeric.

- It return false otherwise

Islower()

- This method returns the Boolean value true if all the cased characters present in the

string are lowercase.

- It return false otherwise

Example

>>>a = „orange3‟

>>>b = „orange‟

>>>print(a.isalpha())

>>>print(b.isalpha())

Output

False

True

Example

>>>a = „orange3‟

>>>b = „123456‟

>>>print(a.isdigit())

>>>print(b.isdigit())

Output

False

True

Example

>>>a = „orange‟

>>>b = „APPLE‟

>>>print(a.islower())

>>>print(b.islower())

Output

True

False

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 24/32

Isupper()

- This method returns the Boolean value true if all the characters present in the string

are uppercase.

- It return false otherwise

 The string module provides additional tools to manipulate strings.

Examples

import string

string . brackets = “ [] { } () < > “

print(string .brackets)

print(string .digits)

print(string .hexdigits)

print(string .octdigits)

print(string .punctuation)

print(string .whitespace)

Output

Example

>>>a = „orange‟

>>>b = „APPLE‟

>>>print(a.isupper())

>>>print(b.isupper())

Output

False

True

STRING MODULES (8 & 2marks)

[] { } () < >

0123456789

0123456789abcdefABCDEF

01234567

!”#$%‟()*+,-./:;<=>?@[\]^_‟{|}~

„\011\012\013\014\015‟

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 25/32

 Arrays and lists are both used in Python to store data, but they don't serve exactly

the same purposes.

 Array is the collection of same data types.

 List is the collection of element of any data types enclosed in [] bracket

 They both can be used to store any data type (real numbers, strings, etc)

 They both can be indexed and iterated.

 The main difference between a list and an array is the functions that perform to

them.

1. Square root of a number

 Description

Program

A=int(input(“Enter a Number:”))

x=a

for i in range(3):

IIUSTRATIVE PROGRAMS (16 or 8 marks)

Output:

Enter a Number: 5

The square root of a Number: 2.24

List

 Example:
>>>y = [3, 6, 9, 12]

>>>y/3.0

>>>print(y)

Output:

Error

Array

Example:

>>>x = array([3, 6, 9, 12])

>>>x/3.0

>>>print(x)

Output:

array([1, 2, 3, 4])

LISTS AS ARRAYS (2 marks)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 26/32

 x- =(x*x-a)/(2.0 * x)

print(“The square root of a Number:”, x)

2. Greatest Common Divisor (GCD)

 Description

Program

n1=int(input(“Enter a number:”))

n2=int(input(“Enter another number:”))

rem = n1 % n2

while rem!=0:

 n1=n2

 n2=rem

 rem= n1 % n2

print(“GCD of given numbers is:”,n2)

3. Exponentiation of a number

 Description

Output:

Enter a Number: 36

Enter another number: 54

GCD of given numbers is: 18

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 27/32

Program

n=int(input(“Enter a number:”))

e=int(input(“Enter exponent:”))

r= n

for i in range(1,e):

 r= n * r

print(“Exponentiation is:”, r)

4. Sum an array of numbers

Description

Sum=A[0] + A[1] + A[2] + A[3] + A [4]

 = 1 + 2 + 3 + 4 + 5

 = 15

Program

A=[0,0,0,0,0,0,0,0,0,0]

Sum=0

n=int(input("enter a number:"))

print('Enter n numbers')

for i in range(0,n):

 A[i]=int(input())

 for i in range(0,n):

 sum=sum + A[i]

 print(„sum=‟,sum)

5. Linear Search

Description

 Linear search, also called as sequential search

 Very simple method used for searching an array for a particular value.

Output:

Enter a Number: 2

Enter exponent: 5

Exponentiation is: 32

Output:

 Enter a number: 5

 Enter n numbers

 1 2 3 4 5

 Sum = 15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 28/32

 It works by comparing the value to be searched with every element of the

array one by one in a sequence until a match is found.

 Linear search is mostly used to search an unordered list of elements (array in

which data elements are not sorted).

Example

Program

A=[0,0,0,0,0,0,0,0,0,0]

found=0

n=int(input("enter a number:"))

print('enter n numbers')

for i in range(0,n):

 A[i]=int(input())

 key=int(input("enter a key to be searched:"))

 for i in range(0,n):

 if key==A[i]:

 print('key found')

Output:

 Enter a number: 8

 Enter n numbers

 8 4 7 5 6 3 9 2

 Enter a key to be searched: 9

 Key found

 >>>

 Enter a number: 8

 Enter n numbers

 8 4 7 5 6 3 9 2

 Enter a key to be searched: 11

 Key not found

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 29/32

 found+=1

 else:

 continue

 if found==0:

 print('key not found')

6. Binary Search

 Description

 Binary search is a searching algorithm that works efficiently with a sorted list

 It divides the list into two halves, by taking the middle element

Program

def binarySearch(alist,item):

 first=0

 last=len(alist)-1

 found=False

 while first<=last and not found:
Output:

 >>>

 False

 True

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 30/32

 midpoint=(first + last)//2

 if alist[midpoint] == item:

 found = True

 else:

 first = midpoint + 1

 return found

testlist= [0,1,2,8,13,17,19,32,42]

print(binarySearch(testlist,3))

print(binarySearch(testlist,13))

Possible Questions

Part-B (2 Marks)

1. Define flow control (decision making) Pg no:1

2. List the types of python's decision making statements Pg no:1

3. List the types of conditional(selection or branching) statement** Pg no:2

4. Write syntax for if (conditional)statement in python ** Pg no:2

5. Draw the flowchart for if statement Pg no:2

6. Write syntax for if-else(alternative) statement in python ** Pg no:3

7. Write syntax for if-elif-else(chained conditional) statement in python Pg no:3

8. Name the types of Boolean operators Ans: True,False

9. Define loops in python ** Pg no:4

10. Define the types of looping constructs ** Pg no:4

11. Define 'for' loop with else case ** Pg no:6

12. Write syntax for 'for' loop in python ** Pg no:5

13. Write syntax for 'while' loop in python ** Pg no:6

14. Define nested loops with example. Pg no:7

15. What is the purpose of break statement in python** Pg no:8

16. What is the purpose of continue statement in python** Pg no:8

17. Difference between continue and pass statement. Pg no:8-9

18. Define pass statement in python** Pg no:9

19. Define string with example ** Pg no:9

20. Write syntax to initialize string variable in python with example** Pg no:10

21. How to access string variable in python (or) How to access characters of string Pg

no:10

22. What is the output of print str if str='Hello World!' Ans: Hello World!

23. What is the output of print str[0] if str='Hello World!' Ans: H

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 31/32

24. Define string indexing in python Pg no:10

25. What is the use of slicing operators** Pg no:10

26. What is meant by string immutability** Pg no:11

27. Define string concatenation** Pg no:12

28. What is replication operator Pg no:12

29. Define escape sequence. List any three. Pg no:13-14

30. What is meant by string formatting? Pg no:14

31. List any four string build-in function** Pg no:15

32. Define string module with example Pg no:19

33. List any four string module Pg no:19

34. Define array with example Pg no:20

35. Write program to check the number is positive or negative or zero Pg no:153(book)

36. Write program to find sum of first N natural numbers using while loop Pg

no:153(book)

37. Write program to find factorial of a number Pg no:173(book)

38. Write program to count the number of vowels Pg no:180(book)

39. Write program to remove duplicates from a list Pg no:279(book)

40. Write program that accept a word from the user and reverse it Pg no:178(book)

Part-C (6 marka\s)

1. Explain build-in string(pre-defined) function with example in detail

(or)

Explain string methods with example in detail ******* (16m)

2. Define methods in a string with an example program using atleast five methods.

3. Explain in detail conditional (selection) statement with example **** (16m)

4. Explain in detail iterative (looping) statement with example ******* (16m)

5. Explain the types of looping construct in detail

6. explain break and continue statement with the help of for loop in an example

7. Explain various string modules with example in detail ******* (16m)

8. Write python program to find Binary search with example***** (8m)

9. Write python program to find linear search with example***** (8m)

10. Write python program to find GCD of two numbers with example***** (8m)

11. Write python program to find square root of a number using newton's method

with example***** (8m)

12. Write python program to find sum an array of numbers with example** (8m)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: III (Control Flow, Functions) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 32/32

Program to find

1. Fibonacci series (Refer book Pg.no:174)

2. odd or even (Refer book Pg.no:153)

3. Sum of 'n' natural numbers (Refer book Pg.no:163)

4. Count no.of vowels in a string (Refer book Pg.no:180)

5. Largest of three number (Refer book Pg.no:156)

6. Leap year or not (Refer book Pg.no:154)

7. Factorial of a number(Refer book Pg.no:173)

8. Reverse a string (Refer book Pg.no:178)

9. Simple interest (Refer book Pg.no:94)

10. Roots of Quadratic equation (Refer book Pg.no:155)

11. Prime or not (Refer book Pg.no:171)

12. Palindrome number or not (Refer book Pg.no:167)

IMPORTANT PROGRAMS

Questions Option1 Option2 Option3 Option4 Answers

Which predefined Python function is
used to find length of string?

length() len() strlen() stringlengt
h()

len()

Syntax of constructor in Python? def
__init__()

def _init_() _init_() All of these def
__init__()

How to find the last element of list in
Python? Assume `bikes` is the name
of list.

bikes[0] bikes[-1] bikes[lpos] bikes[:-1] bikes[-1]

If a='cpp', b='buzz' then which of the
following operation would show
'cppbuzz' as output?

a+b a+''+b a+""+b All the
options

All the
options

If a='cpp', b='buzz' then what is the
output of: c = a-b print(c)

cpp-buzz cppbuzz TypeError:
unsupporte
d operand

None TypeError
:
unsupporta = 8.6 b = 2 print a//b 4.3 4.0 4 compilatio

n error
4.0

The format function, when applied
on a string returns :

list bool int str str

print(chr(ord('b')+1)) b syntax
error

c b+1 c

Find out output of following code

snippet >>>str="cppbuzz"
>>>str[:3]

uzz cpp buzz cppb cpp

What is the data type of X in X =
[12.12, 13, 'cppbuzz']

Tuple Array List Dictionary List

What is the output of the expression?
round(4.5676,2)?

4.5 4.6 4.57 4.56 4.57

 What is the output of the function
shown below?

f oxF oXf oxf oxf

What is the output of the following

piece of code?
a={1:"A",2:"B",3:"C"}

1 4 A Invalid

syntax for
get method

A

What is the output of the code shown
below? t=32.00

[round((x-32)*5/9) for x in t]

[0] 0 [0.00] Error Error

What is the output of the following?

print([i.lower() for i in "HELLO"])

 [‘h’, ‘e’,

‘l’, ‘l’, ‘o’]

 ‘hello’ [‘hello’] hello [‘h’, ‘e’,

‘l’, ‘l’,
‘o’]The format function, when applied

on a string returns :
list bool int str str

print(chr(ord('b')+1)) b syntax
error

c b+1 c

Which of the following operators is

used to get accurate result (i.e
fraction part also) in case of division

// % / \ //

What is the associativity of

Operators with the same precedence?

Depends on

operators

Left to

Right

Right to

Left

Depends

on Python
Compiler

Left to

Right

Which of the following has more

precedance?

+ / - () ()

Which of the following variable is
invalid?

_str _ _str _str_ None None

Select the command to Find and print
Data types using the Type command.
name="Hello World"

 type(name) print(type(
name))

print(name
)

type() print(type
(name))

what is the output for: name="Hello
World" print(type(name))

 Hello
World

 hello
World

<class
'str'>

str <class
'str'>

What data type is the object below ?
L = [1, 23, ‘hello’, 1]

List Dictionary Tuple Array List

Which of the following function
convert a string to a float in python?

int(x
[,base])

long(x
[,base])

float(x) str(x) float(x)

What is called when a function is
defined inside a class?

Module Class Another
Function

Method Method

What will be the output of the
following code : print type(type(int))

 type ‘int’ type ‘type’ Error 0 type
‘type’

Which of the following is the use of
id() function in python?

 Id returns
the identity

of the

Every
object

doesn’t

returns the
object

All of the
mentioned

 Id returns
the

identity of time.time() returns ________ the current
time

the current
time in
millisecond

the current
time in
millisecon

the current
time in
millisecond

the current
time in
milliseconSuppose list1 is [3, 4, 5, 20, 5, 25, 1,

3], what is list1 after list1.pop(1)?

[3, 4, 5, 20,

5, 25, 1, 3]

[1, 3, 3, 4,

5, 5, 20,
25]

[3, 5, 20,

5, 25, 1, 3]

[1, 3, 4, 5,

20, 5, 25]

[3, 5, 20,

5, 25, 1, 3]

Which of the following keyword is a
valid placeholder for body of the

function ?

break continue body pass pass

Let a = [1,2,3,4,5] then which of the
following is correct ?

 print(a[:])
=> [1,2,3,4]

print(a[0:])
=>

[2,3,4,5]

print(a[:10
0]) =>

[1,2,3,4,5]

print(a[-
1:]) =>

[1,2]

print(a[:10
0]) =>

[1,2,3,4,5]What is the need of if __name__ ==
"__main__": somemethod()

Create new
module

Define
generators

Run
python

module as

Create new
objects

Run
python

module as In python which is the correct

method to load a module ?

include

math

import

math

#include<

math.h>

using math import

math

Which of The Following Statements
Is True?

By default,
the

__new__()

The
__init__()

method is

The
__str__()

method is

The
__new__()

method is

All
options

are correctWhich of The Following Statements

Can Be Used To Check, Whether An
Object “Obj” Is An Instance Of Class

obj.isinstan

ce(A)

A.isinstanc

e(obj)

isinstance(

obj, A)

isinstance(

A, obj)

isinstance(

obj, A)

Which of the following data types is
not supported in python ?

String Numbers Slice List Slice

Which of the following commands
will create a list?

list1 = list() list1 = [] list1 =
list([1, 2,
3])

all of the
mentioned

all of the
mentioned

What is the output when we execute

list(“hello”)?

[‘h’, ‘e’, ‘l’,

‘l’, ‘o’]

[‘hello’] [‘llo’] [‘olleh’] [‘h’, ‘e’,

‘l’, ‘l’,
‘o’]Suppose listExample is

[‘h’,’e’,’l’,’l’,’o’], what is
len(listExample)?

5 4 3 6 5

Suppose list1 is [2, 33, 222, 14, 25],

What is list1[:-1] ?

[2, 33, 222,

14]

Error 25 [25, 14,

222, 33, 2]

[2, 33,

222, 14]

Which of the following is a Python
tuple?

[1, 2, 3] (1, 2, 3) {1, 2, 3} {} (1, 2, 3)

Suppose t = (1, 2, 4, 3), which of the
following is incorrect?

print(t[3]) t[3] = 45 print(max(
t))

print(len(t)
)

t[3] = 45

How many elements are in m? m =
[[x, y] for x in range(0, 4) for y in
range(0, 4)]

8 12 16 32 16

What is the data type of (1)? Tuple Integer List Both tuple
and integer

Integer

If a=(1,2,3,4), a[1:-1] is Error, tuple
slicing
doesn’t

[2,3] (2,3,4) (2,3) (2,3)

What is the type of each element in
sys.argv?

set list1 = [] tuple string string

What is the length of sys.argv? number of
arguments

number of
arguments
+ 1

number of
arguments
– 1

number of
arguments
+2

number of
arguments
+ 1

How many keyword arguments can

be passed to a function in a single
function call?

zero one zero or

more

one or

more

zero or

more

Suppose list1 = [0.5 * x for x in
range(0, 4)], list1 is :

[0, 1, 2, 3] [0, 1, 2, 3,
4]

[0.0, 0.5,
1.0, 1.5]

[0.0, 0.5,
1.0, 1.5,

2.0]

[0.0, 0.5,
1.0, 1.5]

The if...elif...else executes only one

block of code among several blocks.

TRUE FALSE It depends

on

expression

used

There is no

elif

statement

in python

In Python, for and while loop can have

optional else statement?

only for loop

can have

optional else

statements

only while

loop can

have

optional else

statements

Both for

and while

can have

optional

else

statements

Loops

cannot have

optional

else

statement

in python

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 1/35

SYLLABUS

Lists :list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list

parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods;

advanced list processing- list comprehension; Illustrative programs: selection sort, insertion sort,

merge sort, histogram.

LIST

“A list is an ordered sequence of values of any data types (string, float, integer, etc.)”

 Values in the list are called elements or items.

 The elements in the list are mutable and indexed / ordered.

 The elements in the list are enclosed in square bracket []separated by comma.

CREATING A LIST

Syntax

Example

Empty list: A list that contains no elements is called an empty list

my_list = []

list of integers

my_list = [1, 2, 3]

list with mixed datatypes

my_list = [1, “Hello”, 3.4]

Nested List

- A list is an element of another list is called nested list.

Example

LISTS

List_name = [item1, item2, item3, item4……., item n]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 2/35

[“Dell, 2.0 ,[50, 100]]

ACCESSING LIST ELEMENTS

 List elements can be accessed by using the square brackets or index operator [].

 Syntax

Indexing

1. Forward indexing: Index starts from 0 to n-1.

List_variable [index_number]

Example

>>>subject= [“English”, “Tamil”, “Maths”, “Physics”, “Botany”, “Zoology”]

>>>subject [0]

„English‟#output

>>>subject [2]

 „Maths‟ #output

>>>subject [5]

 „Zoology‟ #output

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 3/35

2. Negative (backward) indexing: The index of -1 refers to the last item, -2 to the

second last item and so on.

SLICING LISTS

 A segment of a list is called a slice

 The slicing operator [:] is used to access a range of elements in a list.

 The colon inside the square brackets is used to separate two indices from each

other.

 Syntax

Example

>>>a= [„parrot‟,‟Dove‟,‟duck‟,‟cuckoo‟]

>>>a[2 :4]

 [„duck‟, ‟cuckoo‟]#output

>>>a[:3]

 [„parrot‟, ‟Dove‟, ‟duck‟] #output

>>>a[2:]

 [„duck‟, ‟cuckoo‟]#output

>>>a[:]

 [„parrot‟, ‟Dove‟, ‟duck‟,‟cuckoo‟] #output

List_variable [start : end-1]

Example

>>>subject= [“English”, “Tamil”, “Maths”, “Physics”, “Botany”, “Zoology”]

>>>subject [-1]

„Zoology‟#output

>>>subject [-3]

„Physics‟ #output

>>>subject [-6]

„English‟ #output

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 4/35

LISTS ARE MUTABLE

 Lists are mutable

 Which means can change or modify any elements of a list.

ALIASING

 Aliasing is a circumstance where two or more variables refer to the same object.

 Here, the same list has two different names, „a‟ and „b‟, so it is aliased.

 Changes made with one alias affect the other.

CLONING LISTS

 Cloning list is to make a copy of the list itself.

 The easiest way to clone a list is to use the slice operator

Example

>>>a = [„parrot‟, ‟Dove‟, ‟duck‟, ‟cuckoo‟]

>>>a [3] = “crow”

Output:

 [„parrot‟, ‟Dove‟, ‟duck‟, ‟crow‟, ‟cuckoo‟]

Example

>>>a = [1, 2, 3]

>>>b = a

>>>b is a

Output:

 True

Example

>>>a = [1, 2, 3]

>>>b = a [:]

>>>print(b)

 [1, 2, 3]

>>>print(a)

 [1, 2, 3]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 5/35

LIST LOOP (TRAVERSING A LIST)

 The most common way to traverse the elements of a list is using a „for loop‟.

LIST PARAMETERS

 List can be passed as an argument in function

 If function modifies the list, the caller can see the changes

 There are many operations that can be performed with list.

 The various list operations are,

Traversal using „for‟ loop

Example

>>>bird = [„p‟, ‟a‟, ‟r‟,‟ r‟, ‟o‟, ‟t‟]

>>>for letter in bird:

 print(letter)

Output:

 P a r r o t

Example

defdelete_head(t): #function definition

del t[0]

>>>list=[„a‟, ‟b‟ ,‟c‟]

>>>delete_head(list) #function call

>>>list

[„b‟, „c‟]

LIST OPERATION(8 marks)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 6/35

1. List concatenation

2. Repeating a list (replication operator)

3. „in‟ operator (List Membership test)

1. List concatenation

 A number of lists can be combined to form a single list is called list

concatenation.

 The (+) operator is to join the list.

Syntax

2. Repeating a list(Replication Operator)

 Group of list can be repeated by using the (*) operator.

 The (*) operator is the list replication operator.

Syntax

Where, list_variable is the variable name

 * is the list replication operator

 n is the number of times the list to be repeated.

“list_variable 1” + “list_variable 2”+…..+“list_variable n”

(“list_variable” * n)

Example

>>>a = [„x‟, ‟y‟, ‟z‟]

>>>b = [5, 10, 15]

>>>c = a + b

>>>print(c)

Output

[„x‟, ‟y‟, ‟z‟, 5, 10, 15]

Example

>>>a = [1, 2, 3]

>>>print (a* 3)

Output

[1, 2, 3, 1, 2, 3, 1, 2, 3]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 7/35

3. The „in‟operator (List Membership test)

 Can test if an element is exists within a list or not, using the keyword „in‟.

 A list provides methods to perform a variety of useful operations.

List Method in python

append() Add an element to the end of the list

extend() Add all elements of a list to the another list

insert() Insert an item at the defined index

remove() Removes an item from the list

pop() Removes and returns an element at the given index

clear() Removes all item in the list

index() Returns the index of the first matched item.

count() Returns the count number of items passed as an argument

sort() Sort items in a list in ascending order

reverse() Reverse the order of items in the list

copy() Returns a shallow copy of the list

Adding elements to the end of the list

Append()

 The append method adds a new element to the end of a list.

Syntax

 list_name.append(object)

Example

>>>a = [1, 2, 3, 4, 5]

>>>5 in a

True

>>>10 in a

False

BUILD-IN LIST METHODS(16 or 8 marks)

Example

>>>t = [„a‟, „b‟, „c‟]

>>>t.append(„d‟)

>>>t [„a‟, „b‟, „c‟, „d‟]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 8/35

Extend()

 The extend method takes a list as an argument and appends all of the

elements.

Syntax

 list_name.extend(seq)

Inserting items to a list

insert ()

 The insert method can be used to insert an item on a desired position.

Syntax

 list_name.insert (index, object)

Changing items of a list

 The assignment (=) and indexing [] operators are used to change an item or

range of items on the list.

Sort()

 The sort method arranges the elements of the list in ascending order.

Syntax

 list_name.sort()

Example

>>>t1 = [„a‟, „b‟, „c‟]

>>>t2 = [„d‟, „e‟]

>>>t1.extend(t2)

>>>t1

 [„a‟, „b‟, „c‟, „d‟, ‟e‟]

>>>t2

 [„d‟, ‟e‟]

Example

>>>t = [„d‟, „c‟, „e‟, „b‟, „a‟]

>>>t.sort()

>>>t [„a‟, „b‟, „c‟, „d‟, ‟e‟]

Example

>>>t = [„a‟, „b‟, „c‟]

>>>t.insert(2,„d‟)

>>>t

[„a‟, „b‟, ‟d‟, „c‟]

Example

>>>t = [1, 2, 3, 4]

>>>t[0] = 5

>>>t [5, 2, 3, 4]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 9/35

reverse ()

 The reverse method reverses the elements of the list, in place

Syntax

 list_name.reverse()

Count (x)

 The count method returns the number of times x appears in the list.

Syntax

 list_name.count(object)

Removing or deleting items from a list

remove()

 The remove method removes the specified item from the list.

Syntax

 list_name.remove(object)

pop()

 The pop method removes the item associated with the given index.

Example

>>>t = [9, 8, 7, 6, 5]

>>>t.reverse()

>>>t [5, 6, 7, 8, 9]

Example

>>>t = [„a‟, „p‟, „p‟, „l‟, „e‟]

>>>print(a.count(„p‟)

 2

Example

>>>t = [„a‟, „p‟, „p‟, „l‟, „e‟]

>>>t.remove(„l‟)

>>>t

[„a‟, „p‟, „p‟, „e‟]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 10/35

Syntax

 list_name.pop(index)

clear()

 The clear method is used to empty a list

Syntax

 list_name.clear()

Deleting items using the keyword „del‟

 The keyword delcan be used to delete one or more items on a list or the entire

list itself.

Syntax

 del list_name[]

 Python‟s built-in functions can be used with list to obtain needed value and

execute various tasks.

len()

 The length function returns the number of items on a list.

Example

>>>a = [0, 5, 10, 15, 20, 25]

>>>len(a)

6

Example

>>>t = [„a‟, „p‟, „p‟, „l‟, „e‟]

>>>t.pop(2)

>>>t

[„a‟, „p‟, „l‟, „e‟]

Example

>>>t = [„a‟, „p‟, „p‟, „l‟, „e‟]

>>>t.clear()

>>>t

 []

Example

>>>t = [„a‟, „p‟, „p‟, „l‟, „e‟]

>>>del t[0]

>>>t

[„p‟, „p‟, „l‟, „e‟]

BUILD-IN FUNCTIONS WITH LIST(16 or 8 marks)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 11/35

Max()

 The Max() function returns item with maximum value from the list

Min()

 The Min() function returns item with minimum value from the list

sum()

 The sum() function returns the sum of all items on a list

sorted()

 The sorted function returns a sorted list in ascending order.

list()

 Convert othersequence like tuple, string ordictionary into a list.

Example

>>>a = [0, 5, 10, 15, 20, 25]

>>>max(a)

25

Example

>>>a = [0, 5, 10, 15, 20, 25]

>>>min(a)

0

Example

>>>a = [0, 5, 10, 15, 20, 25]

>>>sum(a)

75

Example

>>>a = [1, 9, 15, 11, 3, 7]

>>>sorted(a)

[1, 3, 7, 9, 11, 15]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 12/35

TUPLES

“A tuple is an immutable, ordered sequence of values of any data types (string, float,

integer, etc.)”

 Values in the tuples are called elements or items.

 The elements in the tuples are immutable and indexed / ordered.

 The elements in the list are enclosed in parentheses()separated by comma.

CREATING A LIST

Syntax

Example

Empty list: A list that contains no elements is called an empty list

my_tuple = ()

list of integers

my_tuple = (1, 2, 3)

list with mixed datatypes

my_tuple = (1, “Hello”, 3.4)

ACCESSING TUPLE ELEMENTS

 Tuple elements can be accessed by using the square brackets or index operator [].

 Syntax

Example

>>>atuple = (123, „java‟, „python‟)

>>>alist = list(atuple)

[123, „java‟, „python‟]

TUPLES (16 & 8 marks)

Tuple_name = (item1, item2, item3, item4……., item n)

Tuple_variable [index_number]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 13/35

Indexing

1. Forward indexing: Index starts from 0 to n-1.

2. Negative (backward) indexing: The index of -1 refers to the last item, -2 to the

second last item and so on.

SLICING TUPLES

 A segment of a tuple is called a slice

Example

>>>subject= (“English”, “Tamil”, “Maths”, “Physics”, “Botany”, “Zoology”)

>>>subject [-1]

„Zoology‟#output

>>>subject [-3]

„Physics‟ #output

>>>subject [-6]

„English‟ #output

Example

>>>subject= (“English”, “Tamil”, “Maths”, “Physics”, “Botany”, “Zoology”)

>>>subject [0]

„English‟#output

>>>subject [2]

 „Maths‟ #output

>>>subject [5]

 „Zoology‟ #output

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 14/35

 The slicing operator [:] is used to access a range of elements in a tuple

 The colon inside the square brackets is used to separate two indices from each

other.

 Syntax

Example

>>>a= („parrot‟, ‟Dove‟, ‟duck‟, ‟cuckoo‟)

>>>a [2 : 4]

 („duck‟, ‟cuckoo‟)#output

>>>a [:3]

 („parrot‟, ‟Dove‟, ‟duck‟)#output

>>>a [2:]

 („duck‟, ‟cuckoo‟)#output

>>>a [:]

 („parrot‟, ‟Dove‟, ‟duck‟, ‟cuckoo‟)#output

TUPLES ARE IMMUTABLE

 Tuples are immutable

 Which means cannot change or modify any elements of a tuple.

TUPLE ASSIGNMENT(2 or 6 marks)

Tuple_variable [start : end-1]

Example

>>>a = („parrot‟, ‟Dove‟, ‟duck‟, ‟cuckoo‟)

>>>a [3] = “crow”

Output:

TypeError: object doesn‟t support item assignment

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 15/35

 A programmer can assign multiple variables in one statement by using tuple

assignment.

 Tuple assignment is an assignment with a sequence on the right side and a

tuple of variables on the left.

 The right side is evaluated and then its elements are assigned to the variables on

the left

- Where a, b is tuple of expressions

 1, 2 is tuple of variables

 Each value is assigned to its respective variables.

 The number of variables on the left and the number of values on the right have

to be same.

TUPLE AS RETURN VALUES

 Tuples can also be returned by the function as return values.

 A function can return more than one value using tuple.

 Example

Example

>>>a, b = 1, 2

>>>a

1

>>>b

2

Example

>>>a, b = 1, 2, 3

Value Error: too many values to unpack

#function definition
>>>def div_mod(a,b):

quotient = a / b

remainder = a % b

 return quotient, remainder

#function call
>>>x, y = 10, 3

>>>t = div_mod (x, y)

>>>print(t)

 (3, 1)#output

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 16/35

 In this example both the quotient and remainder can be computed at the same time.

 Two values will be returned, i.e., quotient and remainder by using the tuple as the

return value of the function.

VARIABLE-LENGTH ARGUMENTS TUPLES

• Variable number of arguments can also be passed to a function.

• A variable name that is preceded by an asterisk (*) collects the arguments into a

tuple

Example

UPDATING TUPLES

 Tuples are immutable, which means cannot update or change the values of tuple

elements.

 Can generate a new tuple rather than change the old tuples.

#function definition
>>>def greeting (*t):

 i=0

 while i <len(t):

 print (“Hai”,t[i])

 i = i + 1

#function call
>>>greeting ("Anu","Kavin","Ram","Krish")

Output
HaiAnu

HaiKavin

Hai Ram

HaiKrish

Example

>>>a = („parrot‟, ‟Dove‟, ‟duck‟, ‟cuckoo‟)

>>>a [3] = “crow”

Output:

TypeError: object doesn‟t support item assignment

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 17/35

DELETEING TUPLE ELEMENTS

 Removing individual tuple elementsis not possible.

 To remove an entire tuple, use the keyword del.

Syntax

 del tuple_name

 There are many operations that can be performed with tuple.

 The various tuple operations are,

1. Tuple concatenation

2. Repeating a tuple (replication operator)

 3. „in‟ operator (Tuple Membership test)

 4. Iteration through a tuple

1. Tuple concatenation

 A number of tuple can be combined to form a single tuple is called tuple

concatenation.

 The (+) operator is to join the tuple.

 Syntax

 “tuple_variable 1” + “tuple _variable 2”+…..+“tuple _variable n”

TUPLE OPERATION(8 marks)

Example

>>>tup= („parrot‟, ‟Dove‟, ‟duck‟, ‟cuckoo‟)

>>>tup

 („parrot‟, ‟Dove‟, ‟duck‟, ‟cuckoo‟)

>>>deltup

>>>tup

Output:

 NameError: name 'tup' is not defined (meanstup is deleted)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 18/35

2. Repeating a list(Replication Operator)

 Group of tuple can be repeated by using the (*) operator.

 The (*) operator is the tuple replication operator.

Syntax

Where, tuple_variable is the variable name

 * is the list replication operator

n is the number of times the list to be repeated.

3. The „in‟ operator (Tuple Membership test)

 Can test if an element is exists within a tuple or not, using the keyword „in‟.

4. Iterating through a Tuple

 The most common way to traverse the elements of a tuple is using a „for loop‟.

(“tuple_variable” * n)

Example

>>>a = („x‟, ‟y‟, ‟z‟)

>>>b = (5, 10, 15)

>>>c = a + b

>>>print(c)

Output

(„x‟, ‟y‟, ‟z‟, 5, 10, 15)

Example

>>>a = (1, 2, 3)

>>>print (a* 3)

Output

(1, 2, 3, 1, 2, 3, 1, 2, 3)

Example

>>>a = (1, 2, 3, 4, 5)

>>>5 in a

True

>>>10 in a

False

Traversal using „for‟ loop

Example

>>>bird = („p‟, ‟a‟, ‟r‟,‟ r‟, ‟o‟, ‟t‟)

>>>for letter in bird:

 print(letter)

Output:

 P a r r o t

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 19/35

 In python count() and index() are the two methods that works with tuples.

Tuple Method in python

count() Returns the count number of items passed as an argument

index() Returns the index of the first matched item.

Count (x)

 The count method returns the number of times xappears in the tuple.

Syntax

 tuple_name.count(object)

index (x)

 The index method returns the index of the first matched item.in the tuple.

Syntax

 tuple_name.index(object)

BUILD-IN TUPLE METHODS(8 marks)

Example

>>>t = („a‟, „p‟, „p‟, „l‟, „e‟)

>>>print(a.count(„p‟)

 2

BUILD-IN FUNCTIONS WITH TUPLES(16 or 8 marks)

Example

>>>t = („a‟, „p‟, „p‟, „l‟, „e‟)

>>>print(a.index(„l‟)

3

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 20/35

 Python‟s built-in functions can be used with tuple to obtain needed value and

execute various tasks.

len()

 The length function returns the number of items on a tuple.

Max()

 The Max() function returns item with maximum value from thetuple.

Min()

 The Min() function returns item with minimum value from the tuple.

sum()

 The sum() function returns the sum of all items on a tuple

sorted()

 The sorted function returns a sorted list in ascending order.

Example

>>>a=(0, 5, 10, 15, 20, 25)

>>>len(a)

6

Example

>>>a = (0, 5, 10, 15, 20, 25)

>>>max(a)

25

Example

>>>a = (0, 5, 10, 15, 20, 25)

>>>min(a)

0

Example

>>>a = (0, 5, 10, 15, 20, 25)

>>>sum(a)

75

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 21/35

tuple()

 Convert othersequence like list, string, or dictionary into a tuples

i) Converting string to tuple

ii) Converting list to tuple

iii) Converting dictionary to tuple

Example

>>>a = (1, 9, 15, 11, 3, 7)

>>>sorted(a)

(1, 3, 7, 9, 11, 15)

Example

>>>str= “python”

>>>tuple(str)

Output:

 („p‟, „y‟, „t‟, „h‟, ‟o‟, „n‟)

Example

>>>list= [„red‟, „green‟, „blue‟, „yellow‟]

>>>tuple(list)

Output:

 („red‟, „green‟, „blue‟, „yellow‟)

Example

>>>dict= {„Name‟ : „Raju‟ , „age‟ : 20, „color‟ : „white‟}

>>>tuple(dict)

Output:

 („Name‟, „age‟, „color‟)

DICTIONARY(16 & 8 marks)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 22/35

DICTIONARY

“A dictionary is an unordered collection of key-value pairs which are separated by a

colon and enclosed within curly braces { }”

 The mapping of a key and value is called as a key – value pair

 They together called as one item or element

 The keys are immutable but the values are mutable in dictionary

 The keys can be any data types like integer, float or a string.

CREATING A DICTIONARY

Syntax

Example

Empty Dictionary

dict1 = { }

Dictionarywithinteger keys

dict1= {1: „red‟, 2: „green‟, 3: „blue‟}

Dictionarywithmixed keys

dict1 = {„Name‟: „John‟, 2: „Hello‟, 5.6: „Height‟}

ACCESSINGVALUES IN A DICTIONARY

 Dictionary elements can be accessed by using key enclosed in square brackets [].

 An error will occur when the key not exists in the dictionary is accessed.

 Syntax

Key : value

dictionary_name = {key1:value1, key2: value2,……,key n : value n}

dictionary_variable [key]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 23/35

 Accessing elements in dictionary using get() method

UPDATING DICTIONARY

 The values in the dictionary can be changed, added or deleted.

Example

>>>dict1 = {„Name‟: „John‟, „age‟: „25‟}

>>>dict1 [„Name‟]

„John‟ #output

>>>dict1 [„age‟]

 25 #output

Example

>>>dict1 = {„Name‟: „John‟, „age‟: „25‟}

>>>dict1.get(„Name‟)

„John‟ #output

>>>dict1.get(„age‟)

 25 #output

Example

>>>dict1 = {„Name‟: „John‟, „age‟: „25‟}

updating a value

>>>dict1 [„Name‟] = 30

>>> dict1

{„Name‟: „John‟, „age‟: „30‟}

Adding key: value pair

>>>dict1 [„address‟] = „Alaska‟

>>> dict1

{„Name‟: „John‟, „age‟: „30‟, „address‟: „Alaska‟}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 24/35

REMOVING OR DELETING ELEMENTS FROM DICTIONARY (6& 2 marks)

 The items in the dictionary can be removed or deleted.

1. pop () method

 The pop () method is used to remove a specified key-value pair from a

dictionary and return the value of the deleted key.

2. popitem() method

 The popitem() method is used to remove a random key-value pair from a

dictionary.

3. clear() method

 The popitem() method is used to remove all key-value pair from a dictionary.

Example

>>>dict1 = {„Name‟: „John‟, „age‟: „30‟, „address‟: „Alaska‟}

>>>dict1 .pop(„age‟)

>>> dict1

{„Name‟: „John‟, „address‟: „Alaska‟}

Example

>>>dict1 = {„Name‟: „John‟, „age‟: „30‟, „address‟: „Alaska‟}

>>>dict1 .popitem()

>>> dict1

{„Name‟: „John‟, „age‟: 30}

>>>dict1 .popitem()

>>> dict1

{„Name‟: „John‟}

Example

>>> dict1 = {„Name‟: „John‟, „age‟: „30‟, „address‟: „Alaska‟}

>>>dict1 .clear()

>>> dict1

{} #Empty dictionary

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 25/35

4. Using „del‟ Keyword

 The del keyword is used to delete a dictionary.

PROPERTIES OF DICTIONARY KEYS(6 or 2 marks)

 There are two important points to be followed about keys in dictionary they

are,

1. One key in a dictionary cannot have two values.

 This means no duplicate key is allowed.

 When duplicate keys are encountered in a dictionary, the latest value is

stored whereas the previous one is lost.

2. Keys are immutable

 This means can use strings, numbers or tuples as dictionary keys but

something like ['key'] is not allowed.

Example

>>> dict1 = {„Name‟: „John‟, „age‟: „30‟, „address‟: „Alaska‟}

>>>del dict1

>>> dict1

Output:

NameError: name 'dict1 is not defined

Example

>>> dict1 = {„Name‟: „John‟, „age‟: „25‟, „Name‟: „Jim‟}

>>>dict1 [„Name‟]

„Jim‟ #output

Example

>>> dict1 = {[„Name‟]: „John‟, „age‟: „25‟}

>>>print(dict1[„Name‟])

Output

Traceback (most recent call last):

File "test.py", line 2, in <module>

dict1 = {[„Name‟]: „John‟, „age‟: „25‟}

TypeError: list objects are unhashable

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 26/35

DICTIONARY MEMBERSHIP TEST

 Can test if a key is in a dictionary or not using the keyword „in‟.

 Membership tests only for keys, not for values.

ITERATING THROUGH A DICTIONARY

 Using a „for‟ loop we can iterate though each key in a dictionary.

keys() Method

 The keys() method returns a list of a dictionary keys.

Syntax

 dict.keys()

DICTIONARY OPERATIONS(8 marks)

Example

>>>squares = {1: 1, 3: 9, 5: 25, 7: 49, 9: 81}

>>>print(1 in squares)

True #output

>>>print(2 in squares)

False #output

Example

squares = {1: 1, 3: 9, 5: 25, 7: 49, 9: 81}

for i in squares:

 print(squares[i])

Output

{1: 1, 3: 9, 5: 25, 7: 49, 9: 81}

BUILD-IN DICTIONARY METHODS(16 &8 marks)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 27/35

values() Method

 The values() method returns a list of a dictionary values.

Syntax

 dict.values()

Copy()

 The copy method returns a shallow copy of the dictionary

Syntax

 dictionary_name.copy()

update() Method

 The update() method updates a dictionary with a set of key-value pairs from

another dictionary.

Syntax

 dict.update(dict)

Example

>>> dict1 = {„Name‟: „John‟, „age‟: „30‟, „address‟: „Alaska‟}

>>>dict1.keys()

Output
[„Name‟, „age‟, „address‟]

Example

>>> dict1 = {„Name‟: „John‟, „age‟: „30‟, „address‟: „Alaska‟}

>>>dict1.values()

Output
[„John‟, 30, „Alaska‟]

Example

>>>dict1 = {'Name': 'Manni', 'Age': 7, 'Class': 'First'}

>>>dict2 = dict1.copy()

>>> dict2

{'Name': 'Manni', 'Age': 7, 'Class': 'First'}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 28/35

item() method

 The item() method returns a list of a dictionary‟s key-value pairs.

Syntax

 dict.items()

Clear ()

 The clear method removes all items from the dictionary

Syntax

 dictionary_name.clear()

get()

 The get() method returns a value for the given key.

 If the key is not available then returns default value None.

Example

>>> dict1 = {„Name‟: „John‟, „age‟: „30‟, „address‟: „Alaska‟}

>>>dict1 .clear()

>>> dict1

{} #Empty dictionary

Example

>>> dict1 = {„Name‟: „John‟, „age‟: „30‟, „address‟: „Alaska‟}

>>>dict2 = {„dept‟ : „production‟ , „position‟: „Manager‟}

Output
{„Name‟: „John‟, „age‟: „30‟, „address‟: „Alaska‟, „dept : „production‟ ,

„position‟: „Manager‟}

Example

>>> dict1 = {„Name‟: „John‟, „age‟: „25‟}

>>>dict1.items()

Output
[(„Name‟,‟John‟), („age‟, „25‟)]

Example

>>> dict1 = {„Name‟: „John‟, „age‟: „25‟}

>>>dict1.get(„Name‟)

„John‟ #output

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 29/35

fromkeys()

 The fromkeys()method takes items on a sequence and uses them as keys to build a

new dictionary.

setdefault() Method

 The setdefault() method searches for a given key in a dictionary and returns

the value if found. If not, it returns the given default value.

Syntax

 dict.setdefault(key, default = None)

len()

 The length function returns the number of items in a dictionary.

Example

>>>squares = {1: 1, 3: 9, 5: 25, 7: 49, 9: 81}

>>>len(squares)

5

BUILD-IN FUNCTIONS WITH DICTIONARY(16 or 8 marks)

Example

>>>keys = [„monitor‟, „CPU‟, „mouse‟]

>>>new_dict = dict.fromkeys(keys, 10)

>>>print(new_dict)

{'monitor': 10, 'CPU': 10, 'mouse': 10}

Example

>>> dict1 = {„Name‟: „John‟, „age‟: „30‟, „address‟: „Alaska‟}

>>>dict1.setdefault(„age‟,None)

Output

30

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 30/35

sorted()

 The sorted function returns a new sorted list of keys in the dictionary.

dict()

 dict() function create dictionary out of a list of tuple pairs.

 Each pair will have two elements that can be used as a key and a value.

 List comprehension is an elegant and concise way to create new list from an existing

list in Python.

 List comprehension consists of an expression followed by for statement inside square

brackets.

 This code is equivalent to

Example

>>> squares = {1: 1, 3: 9, 5: 25, 7: 49, 9: 81}

>>>sorted(squares)

[1, 3, 5, 7, 9]

Example

>>>pairs = [(„cat‟,‟kitten‟),(„dog‟,‟puppy‟),(„lion‟,‟cub‟)]

>>>dict(pairs)

Output:

 („p‟, „y‟, „t‟, „h‟, ‟o‟, „n‟)

LIST COMPREHENSION (8 marks)

Example: 1

>>>pow2 = [2 ** x for x in range(10)]

>>>print(pow2)

Output:

[1, 2, 4, 8, 16, 32, 64, 128, 256, 512]

pow2 = []

for x in range(10):

pow2.append(2 ** x)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 31/35

 A list comprehension can optionally contain more for or if statements.

 An optional if statement can filter out items for the new list.

1. Selection sort(8 marks)

Description

IIUSTRATIVE PROGRAMS(16 or 8 marks)

Example: 2

>>>pow2 = [2 ** x for x in range(10) if x > 5]

>>>print(pow2)

Output:

[64, 128, 256, 512]

Example: 3

>>>odd = [x for x in range(20) if x % 2 == 1]

>>>print(odd)

Output:

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 32/35

Program

defselectionSort(A):

 for i in range(len(A)-1,0,-1:

 max=0

for j in range(1,i+1):

 if A[j]>A[max]:

 max=j

 temp=A[i]

 A[i]=A[max

 A[max]=temp

 A=[54,26,93,17,77,31,44,55,20]

selectionSort(A)

print(A)

2. Insertion Sort(8 marks)

Description

Program

Output:

[17,20,26,31,44,54,55,77,93]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 33/35

definsertionSort(A):

for i in range(1,len(A)):

currentvalue=A[i]

position=i

while position>0 and A[position-1]>current value:

 A[position]=A[position-1]

position=position-1

 A[position]=currentvalue

A=[54,26,93,17,77,31,44,55,20]

insertionSort(A)

3. Merge Sort(8 marks)

Description

Program

Output:

[17,20,26,31,44,54,55,77,93]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 34/35

defmergeSort(alist):

iflen(alist)>1:

mid=len(alist)//2

lefthalf=alist[:mid]

righthalf=alist[mid:]k

mergeSort(lefthalf)

mergeSort(righthalf)

 i=0

 j=0

 k=0

while i<len(lefthalf) and j<len(righthalf):

iflefthalf[i]<righthalf[j]:

alist[k]=lefthalf[i]

 i=i+1

 else:

alist[k]=righthalf[j]

 j=j+1

 k=k+1

while i<len(lefthalf):

alist[k]=lefthalf[i]

 i=i+1

 k=k+1

while j<len(righthalf):

alist[k]=righthalf[j]

 j=j+1

 k=k+1

alist=[54,26,93,17,77,31,44,55,20]

mergeSort(alist)

print(alist)

4. Histogram(8 marks)

Program

importplotly.plotlyaspy

importplotly.graph_objsasgo

importnumpyasnp

Output:

[17,20,26,31,44,54,55,77,93]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 35/35

x=np.random.randn(500)

data=[go.Histogram(x=x)]

py.iplot(data,filename='basic histogram')

Output

IMPORTANT QUESTIONS

PART-B (2 Marks)

1. Define list with example ** Pg no:1

2. How to access elements in a list Pg no:1

3. How to create elements in a list Pg no:1

4. Define nested list Pg no:1

5. Define indexing Pg no:2

6. Define forward and backward(negative) indexing **Pg no:2-3

7. How to get index of an object in a list Pg no:2

8. How to slice a list with example Pg no:3

9. How to change elements of list Pg no:4

10. Define aliasing in list ** Pg no:4

11. What is meant by cloning in list? ** Pg no:4

12. What is meant by list loop (traversing a list)? Pg no:5

13. Define list concatenation with example ** Pg no:5

14. Define list replication(repetition)with example ** Pg no:6

15. List some list methods Pg no:7

16. List any four build in function in list Pg no:10

17. Difference between del() & remove() methods of list. Pg no:9 & 10

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 36/35

18. Define append() & extend()Pg no:7

19. How to insert & reverse an object in a list Pg no:8

20. How to remove last object from a list Pg no:9

21. Define tuple with example **Pg no:11

22. How to access elements in a tuple Pg no:12

23. How to create elements in a tuple Pg no:11

24. How to slice a tuples with example Pg no:12

25. Define tuple assignment with example Pg no:14

26. Why tuple is immutable. Justify the answer? Pg no:14

27. Define variable length argument in tuple Pg no:15

28. How tuple is used as an return value in function Pg no:15

29. List some tuple methods Pg no:18

30. List any four build in function in tuple Pg no:19

31. Difference between tuple & List **Pg no:36

32. Define dictionary with example ** Pg no:21

33. How to create dictionary in python Pg no:21

34. How to access elements in a dictionary Pg no:21

35. How to create dictionary using tuples in python Pg no:29

36. How elements in dictionary are removed or deleted Pg no:23

37. How will you get all keys from the dictionary? Pg no:25

38. How will you get all values from the dictionary? Pg no:26

39. List some build in function in dictionary Pg no:25

40. List some methods used in dictionary. Pg no:25

41. List out the properties of Dictionary Keys. Pg no:24

42. Define list comprehension Pg no:29

43. What is the output of print list[0] if list=[„abcd‟,786,2.23,„john‟,70.2]

Ans: „abcd‟

44. What is the output of print list[1:3] if list=[„abcd‟,786,2.23,„john‟,70.2]

 Ans: [786,2.23]

45. What is the output of print list[2:] if list=[„abcd‟,786,2.23,„john‟,70.2]

 Ans: [2.23,„john‟,70.2]

46. What is the output of printtiny_list *2 if tiny_list= [123, „john‟]

Ans: [123, „john‟, 123, „john‟]

47. What is the output of print list + tiny_list *2 iflist=[„abcd‟,786,2.23,„john‟,70.2] and

tiny_list= [123, „john‟]

Ans: [„abcd‟,786,2.23,„john‟,70.2,123, „john‟, 123, „john‟]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: IV (List, Tuples and Dictionaries) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 37/35

PART-C (6 Marks)
1. Explain in details about list methods
2. Discuss about operations in list
3. What is cloning? Explain it with example
4. What is aliasing? Explain with example
5. How can you pass list into function? Explain with example.
6. Explain tuples as return values with examples
7. Write a program for matrix multiplication
8. Write a program for matrix addition
9. Write a program for matrix subtraction
10. Write a program for matrix transpose
11. Write procedure for selection sort
12. Explain merge sort with an example
13. Explain insertion with example
14. Explain in detail about dictionaries and its methods.
15. Explain in detail about advanced list processing.

Questions Option1 Option2 Option3
What is the output of the following code?

for i in [1, 0]: print(i+1)

2,1 [2, 1] 2,0

What is the output of the following? x =

['ab', 'cd'] for i in x:

 i.upper()

print(x)

['ab','cd']. ['AB','CD']. [None, None].

What is correct syntax to copy one list

into another?

listA = listB[] listA = listB[:] listA = listB[]()

Which statement is correct....? List is mutable

and Tuple is

immutable

List is immutable

and Tuple is

mutable

Both are Immutable

Suppose list1 is [2, 33, 222, 14, 25],

What is list1[-1] ?

Error 25 2

Which of the following date format

should be used in place of ??? import

time str = '02/06/1987' datetime_value =

time.strptime(str, ???)

“%d/%m/%Y” “%d/%M/%y” “%D/%M/%Y”

Which of the following data type is used

to store values in Key & Value format?

Class List Dictionary

What will be the output of 7^10 in

python?

13 2 15

Which of the following is the use of

function in python?

Functions are

reusable pieces

of programs

Functions don’t

provide better

modularity for

your application

you can’t also

create your own

functions

What is the output of the following? i = 0

while i < 5:

print(i) i += 1

if i == 3: break

0 1 2 0 0 1 2 error

A single object can be appended to the

end of a list using the

insert() read() append()

 A pair of ______ creates an empty

dictionary

[] {} ()

_______ on a dictionary returns a list of

all the keys used in the dictionary

insert(d) list(d) append(d)

The ____ constructor builds dictionaries

directly from sequences of key-value

pairs

list() tuple() dict()

When looping through dictionaries, the

key and corresponding value can be

retrieved at the same time using the

_____ method

list() items() dict()

When looping through a sequence, the

position index and corresponding value

can be retrieved at the same time using

the _____ function

enumerate() items() dict()

To loop over two or more sequences at

the same time, the entries can be paired

with the _____ function

enumerate() items() dict()

To loop over a sequence in reverse, first

specify the sequence in a forward

direction and then call the _____

function.

dict() reversed() enumerate()

To loop over a sequence in sorted order,

use the ____ function which returns a

new sorted list while leaving the source

unaltered

sorted() zip() reversed()

_______ add an item to the end of the

list

list.extend(iterab

le)

list.append(x) list.insert(i, x)

_____ extend the list by appending all

the items from the iterable

list.extend(iterab

le)

list.append(x) list.insert(i, x)

_____ insert an item at a given position list.extend(iterab

le)

list.append(x) list.insert(i, x)

____ raises a ValueError if there is no

such items

list.append(x) list.insert(i, x) list.remove(x)

______ remove the first item from the

list whose value is equal to x

list.pop([i]) list.remove(x) list.append(x)

_____ remove the item at the given

position in the list, and return it

list.pop([i]) list.remove(x) list.append(x)

_____ remove all items from the list list.pop([i]) list.remove(x) list.append(x)

_____ return the number of times x

appears in the list

list.append(x) list.count(x) list.clear()

____ reverse the elements of the list in

place

list.clear() list.copy() list.append(x)

____ is a computationally fast way to

methodically access parts of given data

Tuple Dictionary List slicing

A ____ is a visual representation of the

Distribution of a Quantitative variable

hologram histogram graph

A visual representation that gives a

_____ display of value counts

binary decimal discretized

An object with more than one reference

has more than one name, so we say that

the object is ______

aliased discretized quantisized

______ is a list of programming codes,

including abstract data structure, used to

calculate specified variables in a

certain order

Tuple Dictionary List slicing

_____ removes and returns an element at

the last element

a.pop(index) a.pop() a.remove(element)

 Which of the following functions

accepts only integers as arguments?

 ord() min() chr()

 Suppose there is a list such that:

l=[2,3,4]. If we want to print this list in

reverse order, which of the following

methods should be used?

reverse(l) list(reverse[(l)]) reversed(l)

What is the output of the functions

shown below?

A & 65 Error & 65 A & Error

Which are the advantages of functions in

python?

Reducing

duplication of

code

Decomposing

complex problems

into simpler

pieces

 Improving clarity

of the code

What are the two main types of

functions?

Custom function Built-in function

& User defined

function

User function

Where is function defined? Module Class Another function

Option4 Answers
[2, 0] 2,1

["ab","cd"]. ['ab','cd'].

listA = listB listA =

listB[:]

Both are

Mutable

List is

mutable

and Tuple

is None 25

“%d/%m/%y” “%d/%m/%Y”

Tuple Dictionary

21 13

All of the

mentioned

Functions

are

reusable

pieces of

programs
0 1 2 1 0 1 2

write() append()

All {}

extend(d) list(d)

extend() dict()

tuple() items()

tuple() enumerate()

zip() zip()

zip() reversed()

enumerate() sorted()

list.index(x[,

start[, end]])

list.append(x)

list.remove(x) list.extend

(iterable)

list.remove(x) list.insert(i, x)

list.pop([i]) list.remove(x)

list.append(x) list.remove(x)

list.append(x) list.pop([i])

list.clear() list.clear()

list.pop([i]) list.count(x)

list.reverse() list.reverse()

List List slicing

flowchart histogram

quantisized discretized

histogram aliased

List processing List processing

a.append(x) a.pop()

any() chr()

list(reversed(l)) list(revers

ed(l))

Eror & Error Error &

65

All of the

mentioned

All of the

mentioned

System function Built-in

function

& User

defined All of the

mentioned

All of the

mentioned

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

 COURSE CODE: 18ITU304B UNIT: V (Files, Modules and Packages) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 1/17

Files: text files, reading and writing files, format operator, command line arguments,

Errors and Exceptions: handling exceptions, Modules, Packages; Illustrative programs:

word count, copy file.

SYLLABUS

File:

 File is a named location on disk to store related information. It is used to

permanently store data in a memory (e.g. hard disk).

File Types:

1. Text file

2. Binary file

Text File Binary file

Text file is a sequence of characters that

can be sequentially processed by a

computer in forward direction.

A binary files store the data in the binary

format (i.e. 0’s and 1’s)

Each line is terminated with a special

character, called the EOL or End of

Line character

It contains any type of data (PDF ,

images , Word doc ,Spreadsheet, Zip

files,etc)

Operations on Files:

In Python, a file operation takes place in the following order,

1. Opening a file

2. Reading / Writing file

3. Closing the file

How to open a file:

Syntax: Example:

file_object=open(“file_name.txt”,”mode”) f=open(“sample.txt”,”w”)

How to create a file:

Syntax: Example:

file_object=open(“file_name.txt”,”mode”)

file_object.write(string)

file_object.close()

f=open(“sample.txt”,”w”)

f.write(“hello”)

f.close()

Modes in file:

modes description

r read only mode

w write only

a appending mode

r+ read and write mode

w+ write and read mode

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

 COURSE CODE: 18ITU304B UNIT: V (Files, Modules and Packages) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 2/17

Differentiate write and append mode:

write mode append mode

It is use to write a string into a file. It is used to append (add) a string into a file.

If file is not exist it creates a new file. If file is not exist it creates a new file.

If file is exist in the specified name, the

existing content will overwrite in a file

by the given string.

It will add the string at the end of the old file.

File operations and methods:
S.No Syntax Example Description

1 f.write(string) f.write("hello") Writing a string into a file.

2 f.writelines(sequence)
f.writelines(“1st line \n

second line”)

Writes a sequence of

strings to the file.

3

f.read(size)

f.read() #read entire file

f.read(4) #read the first 4

charecter

To read the content of a

file.

4 f.readline() f.readline() Reads one line at a time.

5 f.readlines() f.readlines()
Reads the entire file and

returns a list of lines.

6

f.seek(offset,whence)

whence value is

optional.

f.seek(0)

Move the file pointer to

the appropriate position.

It sets the file pointer to

the starting of the file.

whence =0 from

begining f.seek(3,0)
Move three character

from the beginning.

whence =1 from

current position

f.seek(3,1)

Move three character

ahead from the current

position.

whence =2 from last

position
f.seek(-1,2)

Move to the first character

from end of the file

7 f.tell() f.tell()
Get the current file

pointer position.

8 f.flush() f.flush()
To flush the data before

closing any file.

9 f.close() f.close() Close an open file.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

 COURSE CODE: 18ITU304B UNIT: V (Files, Modules and Packages) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 3/17

10 f.name
f.name

o/p: 1.txt

Return the name of the

file.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

 COURSE CODE: 18ITU304B UNIT: V (Files, Modules and Packages) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 4/17

11 f.mode
f.mode

o/p: w
Return the Mode of file.

12
os.rename(old

name,new name)

import os

os.rename(“1.txt”,”2.txt”)

Renames the file or

directory.

13

os.remove(file name)

import os

os.remove("2.txt")

Remove the file.

Format operator

The argument of write() has to be a string, so if we want to put other values

along with the string in a file, we have to convert them to strings.

Convert no into string: output

>>> x = 52

>>> f.write(str(x))

“52”

Convert to strings using format operator, % Example:

print (“format string”%(tuple of values))

file.write(“format string”%(tuple of values)

>>>age=13

>>>print(“The age is %d”%age)

The age is 13

Program to write even number in a file using

format operator

OutPut

f=open("t.txt","w")
n=eval(input("enter n:"))
for i in range(n):

a=int(input("enter number:"))
if(a%2==0):

f.write(a)
f.close()

enter n:4

enter number:3

enter number:4

enter number:6

enter number:8

result in file t.txt

4

6

8

 The first operand is the format string, which specifies how the second operand is

formatted.

 The result is a string. For example, the format sequence '%d' means that the

second operand should be formatted as an integer (d stands for “decimal”):

Format character Description
%c Character
%s String formatting
%d Decimal integer
%f Floating point real number

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

 COURSE CODE: 18ITU304B UNIT: V (Files, Modules and Packages) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 5/17

Command line argument:

 The command line argument is used to pass input from the command line to your

program when they are started to execute.

 Handling command line arguments with Python need sys module.

 sys module provides information about constants, functions and methods of the

pyhton interpretor.

argv[] is used to access the command line argument. The argument list starts from 0.

sys.argv[0]= gives file name

sys.argv[1]=provides access to the first input

Example 1 output

import sys

print(“the file name is %s” %(sys.argv[0]))

python demo.py

the file name is demo.py

addition of two num output

import sys

a= sys.argv[1]

b= sys.argv[2]

sum=int(a)+int(b)

print("sum is",sum)

sam@sam~$ python sum.py 2 3

sum is 5

Word count using comment line arg: Output

from sys import argv
a = argv[1].split()
dict = {}
for i in a:

if i in dict:
dict[i]=dict[i]+1

else:
dict[i] = 1

print(dict)
print(len(a))

C:\Python34>python word.py
"python is awesome lets program in
python"
{'lets': 1, 'awesome': 1, 'in': 1, 'python': 2,
'program': 1, 'is': 1}
7

Errors and exception:
Errors

Errors are the mistakes in the program also referred as bugs. They are almost
always the fault of the programmer. The process of finding and eliminating errors is
called debugging. Errors can be classified into three major groups:

1. Syntax errors
2. Runtime errors
3. Logical errors

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

 COURSE CODE: 18ITU304B UNIT: V (Files, Modules and Packages) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 6/17

Syntax errors
 Syntax errors are the errors which are displayed when the programmer do

mistakes when writing a program.
 When a program has syntax errors it will not get executed.
 Common Python syntax errors include:

1. leaving out a keyword
2. putting a keyword in the wrong place
3. leaving out a symbol, such as a colon, comma or brackets
4. misspelling a keyword
5. incorrect indentation
6. empty block

Runtime errors:
 If a program is syntactically correct – that is, free of syntax errors – it will be run

by the Python interpreter.
 However, the program may exit unexpectedly during execution if it encounters a

runtime error.
 When a program has runtime error I will get executed but it will not produce

output.
 Common Python runtime errors include:

1. division by zero

2. performing an operation on incompatible types

3. using an identifier which has not been defined

4. accessing a list element, dictionary value or object attribute which

doesn’t exist

5. trying to access a file which doesn’t exist

Logical errors:

 Logical errors are the most difficult to fix.

 They occur when the program runs without crashing, but produces an incorrect

result.
 Common Python logical errors include:

1. using the wrong variable name

2. indenting a block to the wrong level

3. using integer division instead of floating-point division

4. getting operator precedence wrong

5. making a mistake in a boolean expression

Exceptions:

 An exception(runtime time error)is an error, which occurs during the execution of

a program that disrupts the normal flow of the program's instructions.

 When a Python script raises an exception, it must either handle the exception

immediately otherwise it terminates or quit.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

 COURSE CODE: 18ITU304B UNIT: V (Files, Modules and Packages) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 7/17

S.No. Exception Name Description

1 FloatingPointError Raised when a floating point calculation fails.

2
ZeroDivisionError Raised when division or modulo by zero takes place for

all numeric types.

3
AttributeError Raised in case of failure of attribute reference or

assignment.

4 ImportError Raised when an import statement fails.

5
KeyboardInterrupt Raised when the user interrupts program execution,

usually by pressing Ctrl+c.

6 IndexError Raised when an index is not found in a sequence

7
KeyError Raised when the specified key is not found in the

dictionary.

8
NameError Raised when an identifier is not found in the local or

global name space

9

IOError
Raised when an input/ output operation fails, such as the

print statement or the open() function when trying to

open a file that does not exist.

10 SyntaxError Raised when there is an error in Python syntax.

11 IndentationError Raised when indentation is not specified properly.

12

SystemError
Raised when the interpreter finds an internal problem,

but when this error is encountered the Python

interpreter does not exit.

13

SystemExit
Raised when Python interpreter is quit by using the

sys.exit() function. If not handled in the code, causes the

interpreter to exit.

14
TypeError Raised when an operation or function is attempted that

is invalid for the specified data type.

15

ValueError
Raised when the built-in function for a data type has the

valid type of arguments, but the arguments have invalid

values specified.

16
RuntimeError Raised when a generated error does not fall into any

category.

Exception Handling:

 Exception handling is done by try and catch block.

 Suspicious code that may raise an exception, this kind of code will be placed in try

block.

 A block of code which handles the problem is placed in except block.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

 COURSE CODE: 18ITU304B UNIT: V (Files, Modules and Packages) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 8/17

Catching Exceptions:

try ... except

 In Python, exceptions can be handled using a try statement.
 A critical operation which can raise exception is placed inside the try clause and

the code that handles exception is written in except clause.
 It is up to us, what operations we perform once we have caught the exception.

Here is a simple example.

Syntax
try:

code that create exception
except:

exception handling statement

Example: Output
try: enter age:8

age=int(input("enter age:")) ur age is: 8
print("ur age is:",age) enter age:f

except: enter a valid age
print("enter a valid age")

 try…except…inbuilt exception

Syntax
try:

code that create exception
except inbuilt exception:

exception handling statement

1. try…except

2. try…except…inbuilt exception

3. try… except…else

4. try…except…else….finally

5. try.. except..except..

6. try…raise..except..

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

 COURSE CODE: 18ITU304B UNIT: V (Files, Modules and Packages) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 9/17

Example: Output
try:

age=int(input("enter age:"))
print("ur age is:",age)

except ValueError:
print("enter a valid age")

enter age:d
enter a valid age

try ... except ... else clause
 Else part will be executed only if the try block doesn’t raise an exception.
 Python will try to process all the statements inside try block. If value error occurs,

the flow of control will immediately pass to the except block and remaining
statement in try block will be skipped.

Syntax

try:
code that create exception

except:
exception handling statement

else:
statements

Example program Output
try:

age=int(input("enter your age:"))
except ValueError:

print("entered value is not a number")
else:

print("your age :”,age)

enter your age: six
entered value is not a number
enter your age:6
your age is 6

 try ... except…finally

A finally clause is always executed before leaving the try statement, whether an
exception has occurred or not.

Syntax
try:

code that create exception
except:

exception handling statement
else:

statements
finally:

statements

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

 COURSE CODE: 18ITU304B UNIT: V (Files, Modules and Packages) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 10/17

Example program Output
try:

age=int(input("enter your age:"))
except ValueError:

print("entered value is not a
number")
else:

print("your age :”,age)
finally:

print("Thank you")

enter your age: six
entered value is not a number
Thank you
enter your age:5
your age is 5
Thank you

 try…multiple exception:

Syntax

try:

code that create exception

except:

exception handling statement

except:

statements

Example Output:

a=eval(input("enter a:"))

b=eval(input("enter b:"))

try:

c=a/b

print(c)

except ZeroDivisionError:

print("cant divide by zero")

except ValueError:

print("its not a number")

enter a:2

enter b:0

cant divide by zero

enter a:2

enter b: h

its not a number

Raising Exceptions

In Python programming, exceptions are raised when corresponding errors occur
at run time, but we can forcefully raise it using the keyword raise.

Syntax:
>>> raise error name

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

 COURSE CODE: 18ITU304B UNIT: V (Files, Modules and Packages) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 11/17

Example: Output:
try:

age=int(input("enter your age:"))
if (age<0):

raise ValueError("Age can’t be negative")
except ValueError:

print("you have entered incorrect age")
else:

print("your age is:”,age)

enter your age:-7
Age can’t be negative

MODULES:

 A module is a file containing Python definitions ,functions, statements and

instructions.

 Standard library of Python is extended as modules.

 To use modules in a program, programmer needs to import the module.

 To get information about the functions and variables supported module you can

use the built-in function help(Module name), Eg: help(“math”).

 The dir() function is used to list the variables and functions defined inside a

module. If an argument, i.e. a module name is passed to the dir, it returns that

modules variables and function names else it returns the details of the current

module. Eg: dir(math)

OS module

 The OS module in python provides functions for interacting with the operating

system

 To access the OS module have to import the OS module in our program

import os

method example description

name os.name

‘nt’

This function gives the name of the

operating system.

getcwd() os.getcwd()

'C:\\Python34'

returns the Current Working

Directory(CWD) of the file used to

execute the code.

mkdir(folder) os.mkdir("python") Create a directory(folder) with the

given name.

rename(oldname,

new name)

os.rename(“python”,”pspp”) Rename the directory or folder

remove(“folder”) os.remove(“pspp”) Remove (delete) the directory or

folder.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

 COURSE CODE: 18ITU304B UNIT: V (Files, Modules and Packages) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 12/17

getuid() os.getuid() Return the current process’s user id.

environ os.environ Get the users environment

Sys module

 Sys module provides information about constants, functions and methods.

 It provides access to some variables used or maintained by the interpreter.

import sys

method example description

sys.argv

sys.argv Provides The list of command line

arguments passed to a Python script

sys.argv[0] Provides to access the file name

sys.argv[1] Provides to access the first input

sys.path sys.path It provides the search path for

modules

sys.path.append() sys.path.append() Provide the access to specific path to

our program

sys.platform sys.platform

'win32'

Provides information about the

operating system platform

sys.exit sys.exit

<built-in function exit>

Exit from python

Steps to create the own module

Here we are going to create calc module: our modules contains four functions

(i.e) add(),sub(),mul(),div()

Program for calculator module output

Module Name: calc.py
def add(a,b):

print(a+b)
def sub(a,b):

print(a-b)
def mul(a,b):

print(a*b)
def div(a,b):

print(a/b)

import calculator

calculator.add(2,3)

Output

>>> 5

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

 COURSE CODE: 18ITU304B UNIT: V (Files, Modules and Packages) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 13/17

Package:

 A package is a collection of Python modules. Module is a single Python file

containing function definitions; a package is a directory (folder) of Python

modules containing an additional

package from a directory.

_ _init_ _.py file, to differentiate a

 Packages can be nested to any depth, provided that the corresponding directories

contain their own _ _init_ _.py file.

 _ _init_ _.py file is a directory indicates to the python interpreter that the directory

should be treated like a python package._ _init_ _.py is used to initialize the python

package.

Steps to create a package

Step 1: Create the Package Directory

Create a directory(folder) and give it your package's name. Here

the package name is calculator.

Step 2: write Modules for calculator directory add save the modules in calculator

directory.

Here four modules have created for calculator directory.

add.py sub.py mul.py div.py

def add(a,b):

print(a+b)

def sub(a,b):

print(a-b)

def mul(a,b):

print(a*b)

def div(a,b):

print(a/b)

Step 3: Add the _ _init_ _.py File in the calculator directory
A directory must contain a file named _ _init_ _.py in order for Python to consider

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

 COURSE CODE: 18ITU304B UNIT: V (Files, Modules and Packages) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 14/17

it as a package.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

 COURSE CODE: 18ITU304B UNIT: V (Files, Modules and Packages) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 15/17

Add the following code in the __init__.py file

Step 4:To test your package.

Import calculator package in your program and add the path of your

package in your program by using sys.path.append().

Here the path is “C:\python34”

OUTPUT:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

 COURSE CODE: 18ITU304B UNIT: V (Files, Modules and Packages) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 16/17

Illustrative Programs in unit 5:

Word count Output

from sys import argv

a = argv[1].split()

dict = {}

for i in a:

if i in dict:

dict[i]=dict[i]+1

else:

dict[i] = 1

print(dict)

print(len(a))

C:\Python34>python word.py

"python is awesome lets program in

python"

{'lets': 1, 'awesome': 1, 'in': 1, 'python': 2,

'program': 1, 'is': 1}

7

Copy a file Output

f1=open("1.txt","r")

f2=open("2.txt","w")

for i in f1:

f2.write(i)

f1.close()

f2.close()

no output

internally the content in f1 will be copied

to f2

copy and display contents Output

f1=open("1.txt","r")

f2=open("2.txt","w+")

for i in f1:

f2.write(i)

f2.seek(0)

print(f2.read())

f1.close()

f2.close()

hello

welcome to python programming

(content in f1 and f2)

Possible Questions

 PART – B (2 marks)

1. Point out different modes of file opening

2. Differentiate text file and binary file.

3. Distinguish between files and modules

4. List down the operations on file.

5. list down some inbuilt exception.

6. Define read and write file.

7. Differentiate write and append mode.

8. Describe renaming and remove

9. Discover the format operator available in files.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

 COURSE CODE: 18ITU304B UNIT: V (Files, Modules and Packages) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 17/17

10. Explain with example the need for exceptions

11. Explain built in exceptions

12. Difference between built in exceptions and handling exception

13. Write a program to write a data in a file for both write and append modes.

14. How to import statements?

15. Express about namespace and scoping.

16. Difference between global and local.

17. Identify what are the packages in python

18. Examine buffering.

19. Discover except Clause with Multiple Exceptions

20. Differentiate mutable.

Part-C (6 marks)

1. Write a Python program to demonstrate the file I/O operations

2. Discuss with suitable examples

i) Close a File.

ii) Writing to a File.

3. Write a program to catch a Divide by zero exception. Add a finally block too.

4. Explain format operator in detail.

5. Describe in detail about Exception with Arguments

6. Describe in detail about user – defined Exceptions

7. Explain with example of closing a file

8. Discover syntax for reading from a file

9. Structure Renaming a file

10. Explain about the Files Related Methods

11. Describe the import Statements

12. Describe the from…import statements

13. Describe in detail locating modules

14. Identify the various methods used to delete the elements from the

dictionary

15. Describe in detail exception handling with program

16. Write a program to find the one’s complement of binary number using file

Questions Option1 Option2 Option3 Option4 Answers
The default type of reading file in

python is _____

text mode binary mode character mode string mode text mode

____ is a sequence of characters that

can be sequentially processed by a

computer in forward direction

Text file binary file random file sequential file Text file

A _____ store the data in the binary

format

random file binary files sequential file Text file binary files

____ is use to write a string into a

file

append mode read and write mode write mode read mode write mode

____ is used to append (add) a

string into a file

append mode read and write mode write mode read mode append mode

_____ reads one line at a time f.write(string) f.readline() f.read(size) f.seek(0) f.readline()

_____ reads the entire file and

returns a list of lines

f.seek(0) f.readline() f.readlines() f.write(string) f.readlines()

____ move the file pointer to

the appropriate position and it sets

the file pointer to

the starting of the file

f.seek(0) f.readline() f.readlines() f.write(string) f.seek(0)

_____ get the current file

pointer position

f.seek(0) f.tell() f.flush() f.close() f.tell()

____ to flush the data before

closing any file

f.seek(0) f.tell() f.flush() f.close() f.flush()

_____ move to the first character

from end of the file

f.seek(0) f.seek(-1,2) f.flush() f.close() f.seek(-1,2)

____ move three character

ahead from the current

position

f.seek(-1,2) f.close() f.seek(3,1) f.seek(0) f.seek(3,1)

_____ is used to pass input from

the command line to your

program when they are started to

execute

string format command line

argument

parameter command line

argument

____ gives file name sys.argv[1] sys.argv[2] sys.argv[0] sys.argv[3] sys.argv[0]

____ provides access to the first

input

sys.argv[1] sys.argv[2] sys.argv[0] sys.argv[3] sys.argv[1]

The process of finding and

eliminating errors is called _____

error exception debugging bug debugging

_____ are the errors which are

displayed when the programmer do

mistakes when writing a program

logical error semantical error runtime error Syntax errors Syntax errors

_____ are the most difficult to fix Logical error semantical error runtime error Syntax errors Logical error

_____ which occurs during the

execution of a program that disrupts

the normal flow of the program's

instructions

Syntax errors Exception Logical error runtime error Exception

The _____ in python provides

functions for interacting with the

operating system

math OS module random Sys OS module

Standard library of Python is

extended as _____

functions modules exceptions try modules

____ module provides information

about constants, functions and

methods

OS module math random Sys Sys

_____ provides the search path for

modules

sys.argv sys.path.append() sys.path sys.platform sys.path

_____ provide the access to specific

path to our program

sys.argv sys.path.append() sys.path sys.platform sys.path.append()

_____ provides information about

the operating system platform

sys.path sys.platform sys.argv sys.path.append() sys.platform

A ______ is a collection of Python

modules

sys.path math OS module package package

To open a file c:\scores.txt for

reading, we use

infile =

open(“c:\scores.txt”,

“r”)

infile =

open(“c:\\scores.txt”,

“r”)

infile = open(file =

“c:\scores.txt”, “r”)

 infile = open(file =

“c:\\scores.txt”,

“r”)

infile =

open(“c:\\scores.txt”,

“r”)

To open a file c:\scores.txt for

writing, we use

outfile =

open(“c:\scores.txt”,

“w”)

outfile =

open(“c:\\scores.txt”,

“w”)

outfile = open(file

= “c:\scores.txt”,

“w”)

outfile = open(file

= “c:\\scores.txt”,

“w”)

outfile =

open(“c:\\scores.txt”,

“w”)

To open a file c:\scores.txt for

appending data, we use

outfile =

open(“c:\\scores.txt”,

“a”)

outfile =

open(“c:\\scores.txt”,

“rw”)

outfile = open(file

= “c:\scores.txt”,

“w”)

outfile = open(file

= “c:\\scores.txt”,

“w”)

outfile =

open(“c:\\scores.txt”,

“a”)

Which of the following statements

are true?

When you open a

file for reading, if the

file does not exist, an

error occurs

When you open a

file for writing, if the

file does not exist, a

new file is created

When you open a

file for writing, if

the file exists, the

existing file is

overwritten with

the new file

All of the

mentioned

All of the mentioned

To read two characters from a file

object infile, we use

infile.read(2) infile.read() infile.readline() infile.readlines() infile.read()

 To read the next line of the file from

a file object infile, we use

infile.read(2) infile.read() infile.readline() infile.readlines() infile.readline()

To read the remaining lines of the

file from a file object infile, we use

infile.read(2) infile.read() infile.readline() infile.readlines() infile.readlines()

The readlines() method returns str a list of lines a list of single

characters

a list of integers a list of lines

Which are the two built-in functions

to read a line of text from standard

input, which by default comes from

the keyboard?

Raw_input & Input Input & Scan Scan & Scanner Scanner Raw_input & Input

Which one of the following is not

attributes of file

closed softspace rename mode rename

What is the use of tell() method in

python?

tells you the current

position within the

file

tells you the end

position within the

file

tells you the file is

opened or not

tells you the file is

closed

tells you the current

position within the

file

What is the syntax of rename() a

file?

rename(current_file_

name,

new_file_name)

rename(new_file_na

me,

current_file_name,)

rename(()(current_f

ile_name,

new_file_name))

none rename(current_file_

name,

new_file_name)

What is the syntax of remove() a

file?

remove(file_name) remove(new_file_na

me,

current_file_name,)

 remove(() ,

file_name))

none remove(file_name)

What is the use of seek() method in

files?

sets the file’s current

position at the offset

sets the file’s

previous position at

the offset

sets the file’s

current position

within the file

none sets the file’s current

position at the offset

What is the use of truncate() method

in file?

 truncates the file

size

deletes the content

of the file

deletes the file size none truncates the file

size

Which is/are the basic I/O

connections in file?

Standard Input Standard Output Standard Errors All of the

mentioned

All of the mentioned

Which of the following mode will

refer to binary data?

r w + b b

What is the pickling? It is used for object

serialization

It is used for object

deserialization

Standard Errors All It is used for object

serialization

What is the correct syntax of open()

function?

file =

open(file_name [,

access_mode][,

buffering])

file object =

open(file_name [,

access_mode][,

buffering])

file object =

open(file_name)

file =

open(file_name)

file object =

open(file_name [,

access_mode][,

buffering])

Correct syntax of file.writelines() is? file.writelines(seque

nce)

fileObject.writelines

()

fileObject.writeline

s(sequence)

none fileObject.writelines

(sequence)

Correct syntax of file.readlines() is? fileObject.readlines(

sizehint)

fileObject.readlines(

)

fileObject.readline

s(sequence)

none fileObject.readlines(

sizehint)

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

 COIMBATORE – 641 021

INFORMATION TECHNOLOGY

Third Semester

FIRST INTERNAL EXAMINATION - July 2019

PROGRAMMING IN PYTHON

Class & Section: II B.Sc IT Duration: 2 hours

Date & Session: 23.7.19 (FN) Maximum marks: 50 marks

Sub.Code: I8ITU304B

PART- A (20 * 1= 20 Marks)

Answer ALL the Questions
1. Last step in process of problem solving is to

a. design a solution

b. define a problem

c. practicing the solution

d. organizing the data

2. Error in a program is called

a. bug b. debug c. virus d. noise

3. Error which occurs when program tried to read from file without opening it is classified as

a. execution error messages

b. built in messages

c. user-defined messages

d. half messages

4. __________ is the process of formulating a problem, finding a solution, and expressing the solution

a. problem solving b. Recover c. Format d. Retrieve

5. ________ is the output of the compiler after it translates the program.

a. Coding b. source code c. object code d. program

6. _________ is the structure of a program

a. Syntax b. Source c. Semantics d. Algorithm

7. What is a property of a program that can run on more than one kind of computer?

a. executable b. source code c. Coding d. Portability

8. _________ is another name for object code that is ready to be executed.

a. executable b. source code c. Coding d. program

9. ___________ is the meaning of a program

a. Syntax b. Source c. Semantics d. Algorithm

10. _________ is to examine a program and analyze the syntactic structure.

a. Syntax b. Source c. Semantics d. parse

11. What is answer of this expression, 22 % 3 is?

a. 7 b. 1 c. 0 d. 5

12. What is the output of this expression, 3*1**3?

a. 27 b. 9 c. 3 d. 1

13. What dataype is the object below?

a. list b. dictionary c. array d. tuple

14. What is the output of the following? print("Hello {name1} and {name2}".format(name1='foo',

name2='bin'))?

a. Hello foo and bin

b. Hello {name1} and {name2}

c. Error

d. Hello

15. What is the output of the following? print("Hello {name1} and {name2}".format(name1='foo',

name2='bin'))?

a. The sum of 2 and 10 is 12

b. The sum of 10 and a is 14

c. The sum of 10 and a is c

d. Error

16. What is the result of round(0.5) – round(-0.5)?

a. 1 b. 2 c. 0 d. 3

17. What is the maximum possible length of an identifier?

a. 31 characters

b. 63 characters

c. 79 characters

d. None

18. All keywords in Python are in

a. lower case

b. UPPER CASE

c. Capitalized

d. Both lower case and UPPER CASE

19. Which of the following is an invalid statement?

a. abc = 1,000,000

b. a b c = 1000 2000 3000

c. a,b,c = 1000, 2000, 3000

d. a_b_c = 1,000,000

20. Which of these in not a core data type?

a. Lists b. Dictionary c. Tuples d. Class

PART B (3 * 2 = 6 Marks)

Answer ALL the Questions

21. What is mean by problem solving?

22. Define iteration

23. Differentiate algorithm and pseudo code?

PART C (3 * 8 = 24 Marks)

Answer ALL the Questions

24. a. Write algorithm, pseudo code and flow chart for any example?

 (OR)

b. Explain in detail about problem solving techniques

25. a. Discuss the symbols and rules for drawing flowchart with the example?

(OR)

b. Discuss the various operation that can be performed on a tuple and Lists (minimum 5) with an

 example program

26. a. Explain in detail about various data types in Python with an example?

(OR)

b. Explain the different types of operators in python with an example.

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

 COIMBATORE – 641 021

INFORMATION TECHNOLOGY

Third Semester

FIRST INTERNAL EXAMINATION - July 2019

PROGRAMMING IN PYTHON

Class & Section: II B.Sc IT Duration: 2 hours

Date & Session: 23.7.19 (FN) Maximum marks: 50 marks

Sub.Code: I8ITU304B

PART- A (20 * 1= 20 Marks)

Answer ALL the Questions
1. Last step in process of problem solving is to

practicing the solution

2. Error in a program is called

bug

3. Error which occurs when program tried to read from file without opening it is classified as

execution error messages

4. __________ is the process of formulating a problem, finding a solution, and expressing the solution

problem solving

5. ________ is the output of the compiler after it translates the program.

object code

6. _________ is the structure of a program

Syntax

7. What is a property of a program that can run on more than one kind of computer?

Portability

8. _________ is another name for object code that is ready to be executed.

executable

9. ___________ is the meaning of a program

Syntax

10. _________ is to examine a program and analyze the syntactic structure.

parse

11. What is answer of this expression, 22 % 3 is?

1

12. What is the output of this expression, 3*1**3?

3

13. What dataype is the object below?

list

14. What is the output of the following? print("Hello {name1} and {name2}".format(name1='foo',

name2='bin'))?

Hello foo and bin

15. What is the output of the following? print("Hello {name1} and {name2}".format(name1='foo',

name2='bin'))?

The sum of 2 and 10 is 12

16. What is the result of round(0.5) – round(-0.5)?

2

17. What is the maximum possible length of an identifier?

None

18. All keywords in Python are in

Both lower case and UPPER CASE

19. Which of the following is an invalid statement?

a b c = 1000 2000 3000

20. Which of these in not a core data type?

Class

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 1/37

PART B (3 * 2 = 6 Marks)

Answer ALL the Questions

21. What is mean by problem solving?

Problem solving is the systematic approach to define the problem and creating number of solutions. The

problem solving process starts with the problem specifications and ends with a correct program.

22. Define iteration

In some programs, certain set of statements are executed again and again based upon conditional test. i.e.

executed more than one time. This type of execution is called looping or iteration.

23. Differentiate algorithm and pseudo code?

Flowchart Pseudo code

It is a graphical

representation of algorithm

It is a language

representation of

algorithm.

not need knowledge of

program to draw or

understand flowchart

Not need knowledge of

program language to

understand or write a

pseudo code.

PART C (3 * 8 = 24 Marks)

Answer ALL the Questions

24. a. Write algorithm, pseudo code and flow chart for any example?

Step 1: start

step 2: get n value

step 3: set initial value i=1, fact=1

Step 4: check i value if(i<=n) goto step 5 else goto step8 step 5:

calculate fact=fact*i

step 6: increment i value by 1 step 7:

goto step 4

step 8: print fact value

step 9: stop

BEGIN GET n

INITIALIZE i=1,fact=1

WHILE(i<=n) DO

fact=fact*i

i=i+1

ENDWHILE

PRINT fact

END

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 2/37

 (OR)

b. Explain in detail about problem solving techniques

Problem solving technique is a set of techniques that helps in providing logic for solving a problem.

Problem Solving Techniques:

Problem solving can be expressed in the form of

1. Algorithms.

2. Flowcharts.

3. Pseudo codes.

4. programs

ALGORITHM

It is defined as a sequence of instructions that describe a method for solving a problem. In

other words it is a step by step procedure for solving a problem.

Properties of Algorithms

 Should be written in simple English

 Each and every instruction should be precise and unambiguous.

 Instructions in an algorithm should not be repeated infinitely.

 Algorithm should conclude after a finite number of steps.

 Should have an end point

 Derived results should be obtained only after the algorithm terminates.

Qualities of a good algorithm

The following are the primary factors that are often used to judge the quality of the algorithms.

Time – To execute a program, the computer system takes some amount of time. The lesser is the

time required, the better is the algorithm.

Memory – To execute a program, computer system takes some amount of memory space. The lesser

is the memory required, the better is the algorithm.

Accuracy – Multiple algorithms may provide suitable or correct solutions to a given problem, some

of these may provide more accurate results than others, and such algorithms may be suitable.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: I (Algorithmic Problem Solving) BATCH-2019-2022

Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 3/37

Example:

Example

Write an algorithm to print „Good Morning”

Step 1: Start

Step 2: Print “Good Morning”

Step 3: Stop

2. BUILDING BLOCKS OF ALGORITHMS (statements, state, control flow, functions)

Algorithms can be constructed from basic building blocks namely, sequence, selection and

iteration.

2.1. Statements:

Statement is a single action in a computer.

In a computer statements might include some of the following actions

 input data-information given to the program

 process data-perform operation on a given input

 output data-processed result

2.2. State:

Transition from one process to another process under specified condition with in a time is

called state.

2.3. Control flow:

The process of executing the individual statements in a given order is called control flow.

The control can be executed in three ways

1. sequence

2. selection

3. iteration

Sequence:

All the instructions are executed one after another is called sequence execution.

Example:

Add two numbers:

Step 1:

Start

Step 2:

get a,b

Step 3: calculate

c=a+b Step 4:

Display c

Step 5: Stop

Selection:

A selection statement causes the program control to be transferred to a specific part of the

program based upon the condition.

If the conditional test is true, one part of the program will be executed, otherwise it will

execute the other part of the program.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 4/31

Example

Write an algorithm to check whether he is eligible to vote?

Step 1: Start

Step 2: Get age

Step 3: if age >= 18 print “Eligible to

vote” Step 4: else print “Not eligible

to vote” Step 6: Stop

Iteration:

In some programs, certain set of statements are executed again and again based upon

conditional test. i.e. executed more than one time. This type of execution is called looping or

iteration.

Example

Write an algorithm to print all natural numbers up to n

Step 1: Start

Step 2: get n value.

Step 3: initialize i=1

Step 4: if (i<=n) go to step 5 else go to step

7 Step 5: Print i value and increment i value

by 1 Step 6: go to step 4

Step 7: Stop

PSEUDO CODE

 Pseudo code consists of short, readable and formally styled English languages used for explain

an algorithm.

 It does not include details like variable declaration, subroutines.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 5/31

 It is easier to understand for the programmer or non programmer to understand the general

working of the program, because it is not based on any programming language.

 It gives us the sketch of the program before actual coding.

 It is not a machine readable

 Pseudo code can‟t be compiled and executed.

 There is no standard syntax for pseudo code.

Example: Greates of two numbers

BEGIN READ a,b

IF (a>b) THEN

DISPLAY a is greater ELSE

DISPLAY b is greater END IF

END

FLOWCHART

Flow chart is defined as graphical representation of the logic for problem solving. The purpose of

flowchart is making the logic of the program clear in a visual representation.

 Advantages of flowchart:

• Communication: - Flowcharts are better way of communicating the logic of a system to all

concerned.

• Effective analysis: - With the help of flowchart, problem can be analyzed in more effective way.

• Proper documentation: - Program flowcharts serve as a good program

documentation, which is needed for various purposes.

• Efficient Coding: - The flowcharts act as a guide or blueprint during the systems analysis and

program development phase.

• Proper Debugging: - The flowchart helps in debugging process.

• Efficient Program Maintenance: - The maintenance of operating program becomes easy with the

help of flowchart. It helps the programmer to put efforts more efficiently on that part.

Disadvantages of flow chart:

• Complex logic: - Sometimes, the program logic is quite complicated. In that case, flowchart

becomes complex and clumsy.

• Alterations and Modifications: - If alterations are required the flowchart may require re-drawing

completely.

• Reproduction: - As the flowchart symbols cannot be typed, reproduction of flowchart becomes a

problem.

• Cost: For large application the time and cost of flowchart drawing becomes costly.

25. a. Discuss the symbols and rules for drawing flowchart with the example?

Symbols for drawing flowchart

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 6/31

Rules for drawing a flowchart

• The flowchart should be clear, neat and easy to follow.

• The flowchart must have a logical start and finish.

• Only one flow line should come out from a process symbol.

• Only one flow line should enter a decision symbol. However, two or three flow lines may leave the

decision symbol.

• Only one flow line is used with a terminal symbol.

• Within standard symbols, write briefly and precisely.

• Intersection of flow lines should be avoided.

(OR)

b. Discuss the various operation that can be performed on a tuple and Lists (minimum 5) with an

 example program

Lists

 List is an ordered sequence of items. Values in the list are called elements / items.

 It can be written as a list of comma-separated items (values) between square brackets[].

 Items in the lists can be of different data types.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 7/31

Creating a list >>>list1=["python", 7.79, 101,

"hello”]

>>>list2=["god",6.78,9]

Creating the list with

elements of different data

types.

Indexing >>>print(list1[0]) python

>>> list1[2]

101

 Accessing the item in the

position 0

 Accessing the item in the

position 2

Slicing(ending

position -1)

Slice operator is used to

extract part of a string,

or some part of a list

Python

>>> print(list1[1:3])

[7.79, 101]

>>>print(list1[1:]) [7.79, 101,

'hello']

- Displaying items from 1st till
2nd.

- Displaying items from 1st

position till last.

Concatenation >>>print(list1+list2)

['python', 7.79, 101, 'hello', 'god',

6.78, 9]

-Adding and printing the

items of two lists.

Repetition >>> list2*3

['god', 6.78, 9, 'god', 6.78, 9, 'god',

6.78, 9]

Creates new strings, concatenating

 multiple

copies of the same string

Updating the list >>> list1[2]=45

>>>print(list1)

[„python‟, 7.79, 45, „hello‟]

Updating the list using index value

Inserting an

element
>>> list1.insert(2,"program")

>>> print(list1)

['python', 7.79, 'program', 45,

'hello']

Inserting an element in 2nd

position

Removing an

element
>>> list1.remove(45)

>>> print(list1)

['python', 7.79, 'program', 'hello']

Removing an element by

giving the element directly

26. a. Explain in detail about various data types in Python with an example?

Data type:

Every value in Python has a data type.

It is a set of values, and the allowable operations on those values.

Python has four standard data types:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 8/31

Numbers:

 Number data type stores Numerical Values.

 This data type is immutable [i.e. values/items cannot be changed].

 Python supports integers, floating point numbers and complex numbers. They are defined as,

Sequence:

 A sequence is an ordered collection of items, indexed by positive integers.

 It is a combination of mutable (value can be changed) and immutable (values cannot be

changed) data types.

 There are three types of sequence data type available in Python, they are

1. Strings

2. Lists

3. Tuples

Strings:

 A String in Python consists of a series or sequence of characters - letters, numbers, and
special characters.

 Strings are marked by quotes:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 9/31

 single quotes (' ') Eg, 'This a string in single quotes'

 double quotes (" ") Eg, "'This a string in double quotes'"

 triple quotes(""" """) Eg, This is a paragraph. It is made

up of multiple lines and sentences."""

 Individual character in a string is accessed using a subscript (index).

 Characters can be accessed using indexing and slicing operations

Strings are immutable i.e. the contents of the string cannot be changed after it is

created.

Indexing:

 Positive indexing helps in accessing the string from the beginning

 Negative subscript helps in accessing the string from the end.

 Subscript 0 or –ve n(where n is length of the string) displays the first element.

Example: A[0] or A[-5] will display “H”

 Subscript 1 or –ve (n-1) displays the second element.

Example: A[1] or A[-4] will display “E”

Operations on string:

i. Indexing

ii. Slicing

iii. Concatenation

iv. Repetitions

v. Member ship

Creating a string >>> s="good morning" Creating the list with elements of different

data types.

Indexing >>> print(s[2])

o

>>> print(s[6])

O

 Accessing the item in the

position 0

 Accessing the item in the

position 2

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 10/31

Slicing(ending

position -1)

Slice operator is used

to extract part of a

data

type

>>> print(s[2:])

od morning

>>> print(s[:4])

Good

- Displaying items from 2nd till

last.

- Displaying items from 1st

position till 3rd .

Concatenation >>>print(s+"friends") good

morningfriends

-Adding and printing the

characters of two strings.

Repetition >>>print(s*2)

good morninggood

morning

Creates new strings,

concatenating multiple copies of

the same string

in, not in (membership

operator)
>>> s="good morning"

>>>"m" in s True

>>> "a" not in s

True

Using membership operators to check a

particular character is in string or not.

Returns true if present.

Lists

 List is an ordered sequence of items. Values in the list are called elements / items.

 It can be written as a list of comma-separated items (values) between square brackets[].

 Items in the lists can be of different data types.

Operations on

list:

Indexing

Slicing

Concatenati

on

Repetitions

Updation, Insertion, Deletion

Creating a list >>>list1=["python", 7.79, 101,

"hello”]

>>>list2=["god",6.78,9]

Creating the list with

elements of different data

types.

Indexing >>>print(list1[0]) python

>>> list1[2]

101

 Accessing the item in the

position 0

 Accessing the item in the

position 2

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 11/31

Slicing(ending

position -1)

Slice operator is used to

extract part of a string,

or some part of a list

Python

>>> print(list1[1:3])

[7.79, 101]

>>>print(list1[1:]) [7.79, 101,

'hello']

- Displaying items from 1st till
2nd.

- Displaying items from 1st

position till last.

Concatenation >>>print(list1+list2)

['python', 7.79, 101, 'hello', 'god',

6.78, 9]

-Adding and printing the

items of two lists.

Repetition >>> list2*3

['god', 6.78, 9, 'god', 6.78, 9, 'god',

6.78, 9]

Creates new strings, concatenating

 multiple

copies of the same string

Updating the list >>> list1[2]=45

>>>print(list1)

[„python‟, 7.79, 45, „hello‟]

Updating the list using index value

Inserting an

element
>>> list1.insert(2,"program")

>>> print(list1)

['python', 7.79, 'program', 45,

'hello']

Inserting an element in 2nd

position

Removing an

element
>>> list1.remove(45)

>>> print(list1)

['python', 7.79, 'program', 'hello']

Removing an element by

giving the element directly

Tuple:

 A tuple is same as list, except that the set of elements is enclosed in parentheses

instead of square brackets.

 A tuple is an immutable list. i.e. once a tuple has been created, you can't add elements to a

tuple or remove elements from the tuple.

 Benefit of Tuple:

 Tuples are faster than lists.

 If the user wants to protect the data from accidental changes, tuple can be used.

 Tuples can be used as keys in dictionaries, while lists can't.

Basic Operations:

Creating a tuple >>>t=("python", 7.79, 101,

"hello”)

Creating the tuple with elements

of different data types.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 12/31

Indexing >>>print(t[0]) python

>>> t[2]

101

 Accessing the item in the

position 0

 Accessing the item in the

position 2

Slicing(ending

position -1)
>>>print(t[1:3])

(7.79, 101)

 Displaying items from 1st till

2nd.

Concatenation >>> t+("ram", 67)

('python', 7.79, 101, 'hello', 'ram',

67)

 Adding tuple elements at

the end of another tuple elements

Repetition >>>print(t*2)

('python', 7.79, 101, 'hello',

'python', 7.79, 101, 'hello')

 Creates new strings,

concatenating multiple copies of the

same string

(OR)

b. Explain the different types of operators in python with an example.

OPERATORS

 Operators are the constructs which can manipulate the value of operands.

 Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is called

operator

 Types of Operators:

-Python language supports the following types of operators

 Arithmetic Operators

 Comparison (Relational) Operators

 Assignment Operators

 Logical Operators

 Bitwise Operators

 Membership Operators

 Identity Operators

Arithmetic operators:

They are used to perform mathematical operations like addition, subtraction, multiplication

etc. Assume, a=10 and b=5

 Operator Description Example

+ Addition Adds values on either side of the operator. a + b = 30

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 13/31

- Subtraction Subtracts right hand operand from left hand

operand.

a – b = -10

* Multiplication Multiplies values on either side of the operator a * b = 200

/ Division Divides left hand operand by right hand operand b / a = 2

% Modulus Divides left hand operand by right hand operand and returns

remainder

b % a = 0

** Exponent Performs exponential (power) calculation on

operators

a**b =10 to the

power 20

// Floor Division - The division of operands where the result is the

quotient in which the digits after the decimal point are removed

5//2=2

Examples

a=10

b=5 print("a+b=",a+b)

print("a-b=",a-b)

print("a*b=",a*b)

print("a/b=",a/b)

print("a%b=",a%b)

print("a//b=",a//b)

print("a**b=",a**b)

Output:

a+b= 15

a-b= 5

a*b= 50

a/b= 2.0

a%b= 0

a//b= 2

a**b= 100000

 Comparison (Relational) Operators:

 Comparison operators are used to compare values.

 It either returns True or False according to the condition. Assume, a=10 and b=5

 Operator Description Example

== If the values of two operands are equal, then the condition (a == b) is

becomes true. not true.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 14/31

!= If values of two operands are not equal, then condition becomes true. (a!=b) is

true

> If the value of left operand is greater than the value of right operand, then

condition becomes true.

(a > b) is not

true.

< If the value of left operand is less than the value of right operand, then

condition becomes true.

(a < b) is true.

>= If the value of left operand is greater than or equal to the value of right

operand, then condition becomes true.

(a >= b) is not

true.

<= If the value of left operand is less than or equal to the value of right

operand, then condition becomes true.

(a <= b) is

true.

Example

a=10

b=5 print("a>b=>",a>b)

print("a>b=>",a<b)

print("a==b=>",a==b)

print("a!=b=>",a!=b)

print("a>=b=>",a<=b)

print("a>=b=>",a>=b)

Output: a>b=>

True a>b=>

False a==b=>

False a!=b=>

True a>=b=>

False a>=b=>

True

Assignment Operators:

-Assignment operators are used in Python to assign values to variables.

 Operator Description Example

= Assigns values from right side operands to left side operand c = a + b

assigns value

of a + b into c

+= Add AND It adds right operand to the left operand and assign the result to left

operand

c += a is

equivalent to c

= c + a

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 15/31

-= Subtract

AND

It subtracts right operand from the left operand and assign the result

to left operand

c -= a is

equivalent to c

= c - a

*= Multiply

AND

It multiplies right operand with the left operand and assign the

result to left operand

c *= a is

equivalent to c

= c * a

/= Divide

AND

It divides left operand with the right operand and assign the result

to left operand

c /= a is

equivalent to c

= c / ac

/= a is

equivalent to c

= c / a

%= Modulus

AND

It takes modulus using two operands and assign the result to left

operand

c %= a is

equivalent to c

= c % a

**= Exponent

AND

Performs exponential (power) calculation on

operators and assign value to the left operand

c **= a is

equivalent to c

= c ** a

//= Floor

Division

It performs floor division on operators and assign value to the left

operand

c //= a is

equivalent to c

= c // a

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 16/31

Example

a = 21

b = 10

c = 0

c = a + b

print("Line 1 - Value of c is ", c) c +=

a

print("Line 2 - Value of c is ", c) c *=

a

print("Line 3 - Value of c is ", c) c /=

a

print("Line 4 - Value of c is ", c) c = 2

c %= a

print("Line 5 - Value of c is ", c) c

**= a

print("Line 6 - Value of c is ", c) c //=

a

print("Line 7 - Value of c is ", c)

Output

Line 1 - Value of c is 31 Line 2 -

Value of c is 52 Line 3 - Value of

c is 1092 Line 4 - Value of c is

52.0 Line 5 - Value of c is 2

Line 6 - Value of c is 2097152 Line 7 -

Value of c is 99864

Logical Operators:

-Logical operators are the and, or, not operators.

Example a

= True b =

False

print('a and b is',a and b)

print('a or b is',a or b) print('not a

is',not a)

Output

x and y is False x

or y is True not x is

False

Bitwise Operators:

 A bitwise operation operates on one or more bit patterns at the level of individual bits

Example: Let x = 10 (0000 1010 in binary) and

y = 4 (0000 0100 in binary)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 17/31

Example

a = 60 # 60 = 0011 1100

b = 13 # 13 = 0000 1101

c = 0

c = a & b; # 12 = 0000 1100

print "Line 1 - Value of c is ", c c = a

| b; # 61 = 0011 1101

print "Line 2 - Value of c is ", c c = a

^ b; # 49 = 0011 0001

print "Line 3 - Value of c is ", c

c = ~a; # -61 = 1100 0011

Output

Line 1 - Value of c is 12 Line 2

- Value of c is 61 Line 3 -

Value of c is 49 Line 4 - Value

of c is -61 Line 5 - Value of c is

240 Line 6 - Value of c is 15

print "Line 4 - Value of c is ", c

c = a << 2; # 240 = 1111 0000

print "Line 5 - Value of c is ", c

c = a >> 2; # 15 = 0000 1111

print "Line 6 - Value of c is ", c

Membership Operators:

 Evaluates to find a value or a variable is in the specified sequence of string, list, tuple,

dictionary or not.

 Let, x=[5,3,6,4,1]. To check particular item in list or not, in and not in operators are used.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II B.Sc IT COURSE NAME: Programming in Python

COURSE CODE: 18ITU304B UNIT: II (Data, Expressions and Statements) BATCH-2019-2022

 Prepared By Dr.D.Shanmuga Priyaa, Dept of CS, CA & IT, KAHE 18/31

Example:

x=[5,3,6,4,1]

>>> 5 in x

True

>>> 5 not in x

False

Identity Operators:

 They are used to check if two values (or variables) are located on the same part of the

memory.

Example

x = 5

y = 5

x2 = 'Hello' y2

= 'Hello'

print(x1 is not y1)

print(x2 is y2)

Output

False True

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

 COIMBATORE – 641 021

INFORMATION TECHNOLOGY

Third Semester

SECOND INTERNAL EXAMINATION - August 2019

PROGRAMMING IN PYTHON

Class & Section: II B.Sc IT Duration: 2 hours

Date & Session: 29.8.19 (AN) Maximum marks: 50 marks

Sub.Code: I8ITU304B

PART- A (20 * 1= 20 Marks)

Answer ALL the Questions
1. Which predefined Python function is used to find length of string?

a. length() b. len() c. strlen() d. stringlength()

2. Syntax of constructor in Python?

a. def __init__() b. def _init_() c. _init_() d. All options

3. How to find the last element of list in Python? Assume `bikes` is the name of list.

a. bikes[0] b. bikes[-1] c. bikes[lpos] d. bikes[:-1]

4. If a='cpp', b='buzz' then which of the following operation would show 'cppbuzz' as output?

a. a+b b. a+''+b c. a+""+b d. All the options

5. What dataype is the object below ?

a. list b. dictionary c. array d. tuple

6. What is the data type of X in X = [12.12, 13, 'cppbuzz']

a. Tuple b. Array c. List d. Dictionary

7. What is the output of the expression? round(4.5676,2)?

a. 4.5 b. 4.6 c. 4.57 d. 4.56

8. What is the output of the function shown below?

a. f b. oxF c. oXf d. oxf

9. What is the output of the following piece of code? a={1:"A",2:"B",3:"C"} print(a.get(1,4))

a. 1 b. 4 c. A d. Invalid syntax

10. What is the data type of X in X = [12.12, 13, 'cppbuzz']

a. Tuple b. Array c. List d. Dictionary

11. What is the output of the expression? round(4.5676,2)?

a. 4.5 b. 4.6 c. 4.57 d. 4.56

12. What is the output of the function shown below?

a. f b. oxF c. oXf d. oxf

13. What is the output of the following? print([i.lower() for i in "HELLO"])

a. [‘h’, ‘e’, ‘l’, ‘l’, ‘o’]

b. ‘hello’

c. [‘hello’]

d. hello

14. The format function, when applied on a string returns :

a. list b. bool c. int d. str
15. Select the command to Find and print Data types using the Type command. name="Hello

World"

a. type(name)

b. print(type(name))

c. print(name)

d. type()

16. what is the output for: name="Hello World" print(type(name))

a. Hello World b. hello World c. <class 'str'> d. str

17. What data type is the object below? L = [1, 23, ‘hello’, 1]

a. List b. Dictionary c. Tuple d. Array

18. Which of the following function convert a string to a float in python?

a. int(x [,base]) b. long(x [,base]) c. float(x) d. str(x)

19. How many keyword arguments can be passed to a function in a single function call?

a. zero b. one c. zero or more d. one or more

20. Suppose list1 = [0.5 * x for x in range(0, 4)], list1 is :

a. [0, 1, 2, 3]

b. [0, 1, 2, 3, 4]

c. [0.0, 0.5, 1.0, 1.5]

d. [0.0, 0.5, 1.0, 1.5, 2.0]

PART B (3 * 2 = 6 Marks)

Answer ALL the Questions

21. Write the syntax for while loop with flowchart.

22. List the operations on strings.

23. What is meant by parameter and list down its type?

PART C (3 * 8 = 24 Marks)

Answer ALL the Questions

24. a. Discuss about the various type of arguments in python.

(OR)
b. Briefly discuss in detail about function prototyping in python with suitable example program

25. a. Write a program to search an element using linear search.

(OR)

b. Discuss with an example about function composition

26. a. Explain conditional statements in detail with example (if, if..else, if..elif..else)

 (OR)

 b. Explain in detail about iterations with example (for, while)

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)

 COIMBATORE – 641 021

INFORMATION TECHNOLOGY

Third Semester

SECOND INTERNAL EXAMINATION - August 2019

PROGRAMMING IN PYTHON

Class & Section: II B.Sc IT Duration: 2 hours

Date & Session: 29.8.19 (AN) Maximum marks: 50 marks

Sub.Code: I8ITU304B

PART- A (20 * 1= 20 Marks)

Answer ALL the Questions
1. len()

2. def __init__()

3. bikes[-1]

4. All the options

5. list

6. List

7. 4.57

8. oXf

9. A

10. List

11. 4.57

12. oXf

13. [„h‟, „e‟, „l‟, „l‟, „o‟]

14. Str

15. print(type(name))

16. <class 'str'>

17. List

18. float(x)

19. zero or more

20. [0.0, 0.5, 1.0, 1.5]

PART B (3 * 2 = 6 Marks)

Answer ALL the Questions

21. Write the syntax for while loop with flowchart.

 Syntax

while test_expression:

 Body of while

22. List the operations on strings.

Operations on string:

1. Indexing

2. Slicing

3. Concatenation

4. Repetitions

5. Member ship

23. What is meant by parameter and list down its type?

Parameters are the variables which used in the function definition. Parameters

are inputs to functions. Parameter receives the input from the function call. It is possible to

define more than one parameter in the function definition.

Types of parameters/Arguments:
1. Required/Positional parameters

2. Keyword parameters

3. Default parameters

4. Variable length parameters

PART C (3 * 8 = 24 Marks)

Answer ALL the Questions

24. a. Discuss about the various type of arguments in python.

Parameters are the variables which used in the function definition. Parameters

are inputs to functions. Parameter receives the input from the function call. It is possible to define

more than one parameter in the function definition.

Types of parameters/Arguments:
1. Required/Positional parameters

2. Keyword parameters

3. Default parameters

4. Variable length parameters

Required/ Positional Parameter:

The number of parameter in the function definition should match exactly with

number of arguments in the function call.

Example Output:
def student(name, roll):

print(name,roll)

student(“George”,98)

o/p: George 98

Keyword parameter:
When we call a function with some values, these values get assigned to the parameter

according to their position. When we call functions in keyword parameter, the order of the

arguments can be changed.

Example Output:
def student(name,roll,mark):

print(name,roll,mark)

student(90,102,"bala")

o/p: 90 102 bala

Default parameter:
Python allows function parameter to have default values; if the function is called

without the argument, the argument gets its default value in function definition.

Example Output:
def student(name, age=17):

print (name, age)

student(“kumar”):

student(“ajay”):

o/p: Kumar 17

 Ajay 17

Variable length parameter
 Sometimes, we do not know in advance the number of arguments that will

be passed into a function.

 Python allows us to handle this kind of situation through function calls

with number of arguments.

 In the function definition we use an asterisk (*) before the parameter name

to denote this is variable length of parameter.

Example Output:
def student(name,*mark):

print(name,mark)

student (“bala”,102,90)

o/p: bala (102 ,90)

(OR)
b. Briefly discuss in detail about function prototyping in python with suitable example program

i. Function without arguments and without return type

ii. Function with arguments and without return type

iii. Function without arguments and with return type

iv. Function with arguments and with return type

i) Function without arguments and without return type
o In this type no argument is passed through the function call and no output is return to

main function
o The sub function will read the input values perform the operation and print the result

in the same block

ii) Function with arguments and without return type
o Arguments are passed through the function call but output is not return to the main

function

iii) Function without arguments and with return type
o In this type no argument is passed through the function call but output is return to the

main function.

iv) Function with arguments and with return type

In this type arguments are passed through the function call and output is return to the main function

Without Return Type

Without argument With argument

def add():

a=int(input("enter a"))

b=int(input("enter b"))

c=a+b

print(c)

add()

def add(a,b):

c=a+b

print(c)

a=int(input("enter a"))

b=int(input("enter b")) add(a,b)

OUTPUT:

enter a 5

enter b 10

15

OUTPUT:

enter a 5

enter b 10

15

With return type

Without argument With argument

def add(): def add(a,b):

c=a+b return c

a=int(input("enter a")) b=int(input("enter

b")) c=add(a,b)

print(c)

a=int(input("enter a"))

b=int(input("enter b"))

c=a+b

return c

c=add()

print(c)

OUTPUT: OUTPUT:

enter a 5 enter a 5

enter b 10 enter b 10

15 15

25. a. Write a program to search an element using linear search.

Program
A=[0,0,0,0,0,0,0,0,0,0]

found=0

n=int(input("enter a number:"))

print('enter n numbers')

for i in range(0,n):

 A[i]=int(input())

 key=int(input("enter a key to be searched:"))

 for i in range(0,n):

 if key==A[i]:

 print('key found')

 found+=1

 else:

 continue

 if found==0:

 print('key not found')
(OR)

b. Discuss with an example about function composition

 Function Composition:
Function Composition is the ability to call one function from within another

function

 It is a way of combining functions such that the result of each function is passed

as the argument of the next function.

 In other words the output of one function is given as the input of another function is known

as function composition.

Output:

 Enter a number: 8

 Enter n numbers

 8 4 7 5 6 3 9 2

 Enter a key to be searched: 9

 Key found

 >>>

 Enter a number: 8

 Enter n numbers

 8 4 7 5 6 3 9 2

 Enter a key to be searched: 11

 Key not found

26. a. Explain conditional statements in detail with example (if, if..else, if..elif..else)

 Decision structures evaluate multiple expressions, which produce TRUE or FALSE as the

outcome

 Python programming language provides the following types of decision-making statements.

1. If-statement

2. If-else statement

3. If-elif-else

4. Nested if-elif-else

1. Conditional if Statement

 If condition (expression) is TRUE, then the block of statement(s) inside the „if‟

statement is executed.

 If condition is FALSE, the statement is not executed.

 Syntax

 Flow chart

2. Alternative if-else Statement

 If condition is TRUE, then the block of statement(s) inside the „if‟ statement is

executed.

if condition:

 Statement(s)

 Example

a = 200

b = 100

if a > b:

 print("a is greater")

Output:
 a is greater

 If condition is FALSE, the statement(s) inside else block is executed.

Syntax

 Flow chart

3. Chained conditional if-elif-else Statement

 An elif(else if) statement can be used to check multiple expressions

 An if-elif-else structure first checks 'if condition'

 If condition is TRUE, execute the statements in the 'if ' block

 If condition is FALSE, it tests the condition in the elif block

 If elif statement is true, execute the statements in the elif block

 otherwise control passes to the else block

Syntax

 Flow chart

if condition:

 Statement(s)

else:

 Statement(s)

 Example

a = 200

b = 100

if a > b:

 print("a is greater")

else:

 print("b is greater")

Output:
 a is greater

if condition:

Statement(s)

elif condition:

Statement(s)

else:

Statement(s)

4. Nested if-elif-else Statement

 Used to check another condition after the first condition has been evaluated as true.

 Syntax

 (OR)

 b. Explain in detail about iterations with example (for, while)

 Looping executes sequence of statement again and again until specific

condition satisfies.

 Python programming language provides the following types of loops

1. for loop

2. While loop

 Example

n = 50

if n > 50:

 print("Passed")

elif n == 50:

 print("Passed")

else:

 print("Failed")

Output:
 Passed

if condition:

 if condition:

 Statement(s)

 elif condition:

 Statement(s)

else:

 Statement(s)

 Example
n = 5

if n > =0:

 if n ==0:

 print("zero")

 else:

 print("Positive number")

else:

 print("Negative Number")

Output:
 Positive number

1. For Loops

 The 'for loop' repeats a given block of codes by specified number of times

 Syntax

 Flow chart

 range() function

 Generate a sequence of numbers using range() function.

 range(10) will generate numbers from 0 to 9 (10 numbers).

 Syntax

 range(start, end, step)

 The function list() is used to force this function to output all the items

for iterating_var in sequence:

statements(s)

Example

fruits = [„Apple‟, ‟Orange‟, ‟Mango‟,

‟Cherry‟]

for i in fruits:

 print(i)

Output:

 Apple

 Orange

 Mango

 Cherry

 for loop with else

 For loop can have an optional else block.

 The else part is executed if the items in the sequence used in for loop exhausts.

2. While Loop

 It is also called as Entry-Controlled Loop.

 The while loop in Python is used to iterate over a block of code as long as the test

expression (condition) is true.

 Syntax

Example

>>>range(5)
Output:

 [0, 1, 2, 3, 4]

>>>range(3, 10)

>>>list(range(3,10))
Output:

 [3, 4, 5, 6, 7, 8, 9]

>>>range(4, 10, 2)

>>>list(range(4, 10, 2))
Output:

 [4, 6, 8]

Example

numbers = [10, 99, 3]

for i in numbers:

 if i % 2 == 0:

 print(i, “is an even number”)

 else:

 print(i, “is an odd numbers”)

Output:

 10 is an even number

 99 is an odd number

 3 is an odd number

while test_expression:

 Body of while

 Flow chart

While loop with else

 While loop can have an optional else block.

 The else part is executed when the condition becomes false.

NESTED LOOPS

 Placing of one loop inside the body of another loop is called nested loop.

Example

Count = 1

While (count < =3):

 print(“Python

Programming”)

 Count = count + 1

Output:
 Python Programming

 Python Programming

 Python Programming

Example

Count = 1

While (count < =3):

 print(“Python Programming”)

 Count = count + 1

else:

 print(“Exit”)

Output:
 Python Programming

 Python Programming

 Python Programming

 Exit

Nested for loop

Syntax:

for iterating_var in sequence:

 for iterating_var in sequence:

 statements(s)

 statements(s)

Nested while loop

Syntax:

while test_expression:

 while test_expression:

 statements(s)

 statements(s)

	1Python Syllabus.pdf (p.1-2)
	2Lecture Plan-Python.pdf (p.3-6)
	3Unit 1 Python.pdf (p.7-43)
	4Unit 1.pdf (p.44-45)
	5Unit 2 Python.pdf (p.46-76)
	6Unit II MCQ.pdf (p.77-80)
	7Unit 3 Python.pdf (p.81-112)
	8Unit 3.pdf (p.113-115)
	9Unit 4 Python New.pdf (p.116-152)
	10Unit 4.pdf (p.153-158)
	11Unit 5 Python.pdf (p.159-175)
	12Unit 5.pdf (p.176-177)
	13Internal 1 QP.pdf (p.178-179)
	14Internal 1 Ans.pdf (p.180-199)
	15Internal 2 QP.pdf (p.200-201)
	16.pdf (p.202-213)

