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PART - A (20 x 1 = 20 Marks)

Answer all the questions:

1.

A nonempty set of element G is said to form a --------- ,ifin G
there is a binary operation satisfying closure, associative, identity
and inverse property.

a) subgroup b) group

c) kernel d) commutator Subgroup

The set of positive rationals is a group under ordinary
multiplication , then the inverse of any a is ----------- .

a) 1/a b) -a

c)a d)o

A group G is said to be -------------- if foreverya, b € G,a.b=b.a.
a) infinite b) subgroup

c) abelian d) finite

Every element of the group G is its own ------- then G is abelian.

a) commutative b) identity

C) associative d) inverse

A nonempty subset H of a group G is said to be a ----------- of G if,

under the product in G, H itself forms a group.
a) subgroup b) group
c) kernel d) commutator Subgroup

10.

11.

12.

13.

14.

15.

A subgroup N of G is said to be a normal subgroup of G if ---------

a)ygng' € G b) gng € G
c)gng' €N d)gng €N
A homomorphism ¢ of G into G with Kernel K ¢ is an ---------- of

Ginto GiffK ¢ = (e).
a) automorphism
¢) inner automorphism

b) endomorphism
d) isomorphism

A group is said to be --------- if it has no non-trivial normal
subgroup.

a) normal subgroup b) commutator Subgroup

C) group d) kernel

If ¢ is a homomorphism of G into G,then ----------- is defined by
K={x€ G| ¢p(x) = €}.

a) subgroup b) group

c) kernel d) commutator Subgroup

A homomorphism of a group to itself is called an

a) monomorphism b) canonical homomorphism

¢) homomorphism d) endomorphism

If two groups G and G~ are isomorphic then it is denoted by ------

aG=Gg" b) G = G*
c)G=G" d) G ~G*

The mapping f: G—G/N is called a ------- mapping.
a) natural b) one-to-one

C) onto d) into

Every subgroup of a ---------- group is normal.

a) abelian b) cyclic

c) ring d) field

For two groups G and G, a mapping ¢: G — G is said to be ---------
if ¢ is homomorphism, one-to-one and onto.

a) isomorphic b) mesomorphic

¢) homomorphic d) group

Every homomorphic image of a group G is ----------- to some
quotient group of G.
a) automorphism

c) inner automorphism

b) endomorphism
d) isomorphism



16. If ¢ is a homomorphism of G into G then ¢ (x™*) = -------

a) (¢ ()™ b) ¢ (x)
c) x* d) x
17. The ----------m-m--- of a group G is an isomorphism of G onto itself.

a) automorphism
c) inner automorphism

b) endomorphism
d) isomorphism

18. The ------ of a group G is defined by Z = {zeG: zx = xz, all xeG}.

a) normal subgroup b) center
c) ideal d) ring
19. If G is a group, then the identity element of G is ----------
a) zero b) two
C) unique d) one
20. If a€G, then N(a)={x€G: ax = xa} is called the ---------- ofainG.
a) kernal b) group
c) subgroup d) normalizer

PART -B (3 x 2 = 6 Marks)

Answer all the questions:
21. Define Homomorphism.
22. Write the statement of Third Isomorphism Theorem.
23. Define Inner Automorphism.

PART - C (3 x 8 =24 Marks)

Answer all the questions:

24. a) If ¢ is a homomorphism of G into G, then Prove that
(i) (e) = e, the unit element of G
(i) p(x™H) =) Lforallxe G

(OR)

b) If ¢ is a homomorphism of G into G with kernel K, then prove
that K is a normal subgroup of G

25. a) State and prove Cayley’s theorem.
(OR)

b) Let ¢ is a homomorphism of G onto G with kernel K, then
prove that G/K = G.

26. a) If G is a group then prove that A (G) is also a group.
(OR)

b) Prove that 7(G) =~ G/z and is the center of G.
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Duration Material/Page Nos
Period
UNIT-I

1 1 Introduction to Group T1:139-141
Homomorphism

2 1 Theorem on Kernels R2:56-58

3 1 Continuation of the theorem on | R2:58-60
Kernels

4 1 Tutorial — |

5 1 Equivalence relations and R4:53-55
partitions

6 1 Cosets R4:57-59

7 1 Restriction of homomorphism | R4:59-61
to a subgroups

8 1 Tutorial — 11

9 1 Properties of homomorphism | T1:142-144

10 1 Continuation of properties of | T1:144-146
homomorphism

11 1 Properties of elements under R3:194
homomorphism

12 1 Tutorial — 111

13 1 Properties of subgroup under R3:195-196
homomorphism

14 1 Introduction to Isomorphism R3:115-117
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15 1 Cayley’s theorem R3:119-120

16 1 Tutorial — IV

17 1 Properties of isomorphism R3:121

18 1 First isomorphism theorem T1:321-322

19 1 Examples for First R3:199-200
isomorphism theorem

20 1 Tutorial — V

21 1 Second isomorphism theorem | T1:322-323

22 1 Third isomorphism theorem T1:323-324

23 1 Tutorial — VI

24 1 Recapitulation and discussion
of possible questions

Total No of Hours Planned For Unit 1=24
UNIT-II

1 1 Introduction to Automorphism | T1:154-155

2 1 Theorems on Automorphism R1:135-137

3 1 Continuation of theoremson | R1:137-139
Automorphism

4 1 Tutorial — |

5 1 Inner Automorphism R2:68-69

6 1 Theorem on inner R3:124-125
automorphism

7 1 Continuation of theorem on R3:125-126
inner automorphism

8 1 Tutorial — 11

9 1 Theorems on automorphism R2:66-67
groups of finite and infinite
cyclic groups

10 1 Continuation of theorems on R2:67-68
automorphism groups of finite
and infinite cyclic groups

11 1 Factor groups T1:151-153

12 1 Tutorial — 111
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13 1 Theorem on factor groups R3:173-175

14 1 Continuation on theorem on R3:176-178
factor groups

15 1 Application of factor groups R3:178-179

16 1 Tutorial — IV

17 1 Continuation of application of | R3:179-180
factor groups

18 1 Characteristics subgroup R2:70-71

19 1 Theorem on characteristics R2:71-72
subgroup

20 1 Tutorial — V

21 1 Commutator subgroup T1:164-165

22 1 Properties of commutator T1:165-166
subgroup

23 1 Tutorial — VI

24 1 Recapitulation and discussion
of possible questions

Total No of Hours Planned For Unit 11=24
UNIT-I11

1 1 Introduction to direct product | R1:154

2 1 Theorems on direct problem R2:104-106

3 1 Continuation of theorem on R2:149-151
direct product

4 1 Tutorial — |

5 1 External direct product R3:149-151

6 1 Properties of external direct R3:151-152
product

7 1 Continuation of external direct | R3:152-154
product

8 1 Tutorial — 11

9 1 The group of units modulo n as | R3:154-155
an external direct product

10 1 Continuation of the group of R3:155-156
units modulo n as an external
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direct product

11 1 Internal direct product R2:109

12 1 Tutorial — 1

13 1 Examples of internal direct R2:110-111
product

14 1 Theorem on U(n) as an R3:157
external direct product

15 1 Application of indirect product | R2:111-112

16 1 Tutorial — IV

17 1 Application of direct product | R3:158-159

18 1 Continuation of application of | R3:161-161
direct product

19 1 Finite abelian group R2:113

20 1 Tutorial -V

21 1 Fundamental theorem of finite | T1:122-123
abelian group

22 1 Continuation of fundamental T1:124-125
theorem of finite abelian group

23 1 Tutorial — VI

24 1 Recapitulation and discussion
of possible questions

Total No of Hours Planned For Unit 111=24
UNIT-IV

1 1 Notion of a group action T1:168-170

2 1 Isotropy subgroups T1:170-171

3 1 Orbits T1:172-173

4 1 Tutorial — |

5 1 Stabilizer R1:52-53

6 1 Kernels R1:53-54

7 1 Permutation R3:90-91

8 1 Tutorial — 11
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9 1 Cycle notation R3:93-95
10 1 Products of disjoint cycle R3:95-96
11 1 Disjoint cycle commute R3:96-97
12 1 Tutorial — 11
13 1 Order of permutation R3:97
14 1 Product of 2 cycle R3:98-99
15 1 Odd permutation of a group R3:99-100
16 1 Tutorial — IV
17 1 Even Permutation of a group R3:100-101
18 1 Simple group R3:416-417
19 1 Generalized Cayley’s theorem | R3:419-420
20 1 Tutorial — V
21 1 Index theorem R3:420-421
22 1 Continuation of Index theorem | R3:421-422
23 1 Tutorial — VI
24 1 Recapitulation and discussion
of possible questions
Total No of Hours Planned For Unit 1IV=24
UNIT-V
1 1 Groups acting on themselves R1:124-126
by conjugacy
2 1 Class equation R1:126-127
3 1 Tutorial — 1
4 1 Conjugacy in Sn R1:127-129
5 1 p-groups R1:190-192
6 1 Probability that two elements | R3:397-398
commute
7 1 Tutorial — 11
8 1 Sylow’s first theorem R3:399
9 1 Cauchy’s theorem R3:400
Prepared by A.Henna Shenofer ,Department of Mathematics ,KAHE Page5/7




2016 -2019

Lesson Plan | 5. 0

10 1 Sylow’s second theorem R3:400-401

11 1 Tutorial — 111

12 1 Sylow’s third theorem R3:401-403

13 1 Applications of Sylow theorem | R3:403-405

14 1 Tutorial — IV

15 1 Continuation of applications of | R3:406
Sylow theorem

16 1 Non Simplicity test R3:417-418

17 1 Continuation of Non R3:418-419
Simplicity test

18 1 Tutorial — V

19 1 Simplicity of As R3:423

20 1 Tutorial — VI

21 1 Recapitulation and discussion
of possible questions

22 1 Discussion of previous ESE
question papers.

23 1 Discussion of previous ESE
question papers.

24 1 Discussion of previous ESE
guestion papers.

Total No of Hours Planned for unit V=24
Total 120
Planned
Hours
TEXT BOOK

1. Fraleigh.J.B., (2004). A First Course in Abstract Algebra , Seventh edition,
Pearson Education Ltd, Singapore.

REFERENCES

1. David S. Dummit and Richard M. Foote, (2004)., Abstract Algebra,. Third
Edition., John Wiley and Sons (Asia) Pvt. Ltd., Singapore.

2. Herstein.l.N.,(2010). Topics in Algebra ,Second Edition, Willey and sons Pvt
Ltd, Singapore.
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3. Joseph A. Gallian., (2001). Contemporary Abstract Algebra, Fourth Edition.,
Narosa Publishing House, New Delhi.
4. Artin.M., (2008). Algebra, Prentice - Hall of India, New Delhi.
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(Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),

Coimbatore —641 021

Subject: Group Theory Il

Subject Code: 16MMU401

Class : 1l - B.Sc. Mathematics Semester 1V
Unit |
Group Homomorphisms
Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
If a finite non abelian simple group G has a subgroup of |subgroup group kernel commutator Subgroup |group
index n, then show that G is isomorphic to a subgroup
of A,
The set of positive rationals is a group under ordinary  |1/a -a a 0|1/a
multiplication , then the inverse of any a is ----------- .
A group G is said to be -------------- if foreverya, b € |infinite subgroup abelian finite abelian
G,ab=ba
Every element of the group G is its own ------- then G is |commutative identity associative inverse inverse
abelian.
A nonempty subset H of a group G is said to be a -------- subgroup group kernel commutator Subgroup |subgroup
--- of G if, under the product in G, H itself forms a
group.
A subgroup N of G is said to be a normal subgroup of  |gng™ € G gng € G gngteN gng € N gngleN
G if -
A homomorphism ¢ of G into G with Kernel K ¢ isan |automorphism  |endomorphism  |inner isomorphism isomorphism
---------- of G into G iffK ¢ = (e). automorphism
A group is said to be --------- if it has no non-trivial normal subgroup |commutator group kernel normal subgroup
normal subgroup. Subgroup
If ¢ is a homomorphism of G into G, then ----------- is |subgroup group kernel commutator Subgroup |kernel

defined by K={x G |o(X)= ¢}
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A homomorphism of a group to itself is called an monomorphism |canonical homomorphism  |endomorphism endomorphism
homomorphism

If two groups G and G* are isomorphic then it is G=G G~ G” G=0G" G ~GT G~ G”
denoted by ------

The mapping f: G—G/N is called a ------- mapping. natural one-to-one onto into natural

Every subgroup of a ---------- group is normal. abelian cyclic ring field cyclic

For two groups G and G, a mapping ¢:G—(G ) is said |isomorphic mesomorphic homomorphic group isomorphic
to be --------- if ¢ is homomorphism, one-to-one and

onto.

15. Every homomorphic image of a group G is ----------- automorphism  |endomorphism  |inner isomorphism isomorphism
to some quotient group of G. automorphism

If @ is a homomorphism of G into G then ¢ (x™*) = - (o (x)™ ¢ (x) x! X (¢ (x)™

17. The ------------—--- of a group G is an isomorphism of |automorphism  |endomorphism |inner isomorphism automorphism
G onto itself. automorphism

The ------ of a group G is defined by Z = {z€G: zx = normal subgroup |center ideal ring center
xz, all XxeG}.

19. If G is a group, then the identity element of G is ----- Zero two unique one unique

If a€G, then N(a)={x€G: ax = xa} is called the ---------- kernal group subgroup normalizer normalizer

ofainG.
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Subject: Group Theory Il Subject Code: 16MMU401
Class : Il - B.Sc. Mathematics Semester 1V
Unit 111
Direct Products
Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
The --------mmmmmmmeeeee- of groups G and H is given by {(g, |internal direct finite subgroup |external direct infinite subgroup  |external direct
h)lg € G, h e H}. product product product
The external direct product is denoted by -------- . G®H GeH GEH GOH GoH
When G and H are any two groups, then GH and HG |endomorphic mesomorphic homomorphic isomorphic isomorphic
are ------------m--- groups.
The external direct product of n groups is -------------------- endomorphic mesomorphic homomaorphic isomorphic isomorphic

to the external direct product of any permutation of the
same n groups.

If G and H are finite groups with order m and n infinite finite cyclic ring finite
respectively, then G@H is a ------------- group with order

mn.

The Z,DZ=Zy, When ---------------- . gcd(m,n)=0 gcd(m,n)=2 gcd(m,n)=1 gcd(m,n)=3 gcd(m,n)=1
If G and H are infinite groups, then -------- is an infinite GQ®H GoHH GGeH GOH GoHH
group.

If Z, and Z; are abelian, then --------------—---- is also 7,7, 7,87, 2,027 2,627, 2,87,
abelian.

Let G, H be finite groups and let (g, h) eG@H, then O(g, h) |gcd{O(g)+ O(h)} |gcd{O(g), O(h)} |lcm{O(g)+ O(h)} |lcm{O(g), O(h)} Icm{O(g), O(h)}

Let G, H be finite cyc.lic groups, then G@H is cyclic iff ------ lem{O(G), Icm{O(G)+ gcd{O(G), gcd{O(G)+ gcd{O(G), O(H)}=1
______________ , O(H)}=1 O(H)}=1 O(H)}=1 O(H)}=1
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Let s and t be natural numbers such that --------------------- ,(lem(s, t)=1 ged(s, t)=1 lem(s, t)=0 ged(s, t)=0 ged(s, t)=1
then U(st) =U(s).

| for i#j, then U(ny.N,....ny) =U(n;) ®U(n,) |ged(n;, nj)=1 ged(n;, n)=0 ged(n;, ny)=2 ged(n;, ny)=3 ged(n;, n)=1
®.....eU(ny.

Which of the following is the application of external direct |number theory  |RSA public key |data security all the above all the above
product? encryption

If G is an internal direct product of H and K, then it is G=Hx K G=H+K G=H-K G=H /K G=Hx K

denoted by ----------- _

If H and K are normal subgroups of a group G and if G=HK

external direct

finite subgroup

internal direct

infinite subgroup

internal direct

and HNK={e}, then G is --------------- of H and K. product product product

A finite abelian group of prime power order is an internal  |finite cyclic infinite normal cyclic

direct product of ----------------- groups.

If G is a finite abelian group and ---------------- , then G has a |n|O(G) ntO(G) m{O(G) m|O(G) m|O(G)
subgroup of order m.

Every group of order 4 is ---------------- . cyclic normal abelian finite abelian

U(2) is to {0}. isomorphic mesomorphic homomorphic group isomorphic
The is also called as Cartesian external direct finite subgroup |internal direct infinite subgroup  |internal direct
product. product product product
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Subject: Group Theory Il Subject Code: 16MMU401
Class : Il - B.Sc. Mathematics Semester IV

Unit IV
Group Actions

Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)

Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
The group with the set of all permutations of a finite set  |symmetric group |asymmetric group |normal group cyclic group symmetric group
with respect to the operation composition of permutations
is known as -------- .
The set of all permutations of a finite set S is denoted by --{s(S) Sym(S) sy(S) sym(sym) Sym(S)
Let G be a group, S be a set and suppose that G acts on S. |truthful cyclic faithful normal faithful

Then the action of G on S is said to be ---if every element
of group G induce the distinct permutation of S.

For the trivial action, it is faithful if --------------- . 0(G)>0 0(G)>-1 0(G)>2 0O(G)>1 0O(G)>1
The action of G onto itself by ----------------- is faithful iff |conjugation normal trivial non trivial conjugation
G has a trivial center.

If the action of group G onto the set S is faithful then the |bijective injective unique inverse injective

permutation represented associated to the action is always -

The -----—----mmeemmeo- of a action is a subgroup of G. unique inverse kernel normal kernel
The -----—mmmmmmee- of a action of G on S is defined as {g |unique inverse kernel normal kernel
€G:g.s=5, Vs€eES}

For the -------=-emnun- action, the kernel of action is whole  |non trivial trivial kernel normal trivial
of G.

Prepared by: A.Henna Shenofer, Department of Mathematics,KAHE



Group Actions/2016-2019 Batch

The --------m-mmm- of stabilizers corresponding to every  |addition subtraction union intersection intersection

element of group G is always equal to the kernel of action.

The left cosets and right cosets of --------------- of action  |kernel inverse unique normal kernel

are same.

The number of distinct --------------- of kernel of action in |group subgroup cosets normal cosets

G is equal to number of distinct permutations induced by

elements of G under this action.

Let group G acts on a non-empty set S then the action of  |symmetric reflexive asymmetric transitive transitive

group G on S is said to be ----------- if G has exactly one

orbit.

If group G acts on the set S, then every s € S, the number |orbit stabilizer normal transitive stabilizer

of elements in equivalence class of ‘s’ is equal to the

index of the -----------——--- of ‘s’ in G.

If group G acts on the set S, the S can be partitioned into  |normal stabilizer orbit transitive orbit

unique set of disjoint ------------- of G.

If the action of group G on S is ------------ then for every s, |transitive reflexive symmetric asymmetric transitive

t € S, there exist g € G such that s=g.t.

The -----—--m-mmem- is drawn as a corollary to the Sylow’s theorem |Lagrange’s Embedded Index theorem Index theorem

Generalized Cayley theorem. theorem theorem

The -----mmmmmemmeee- of kernel of action are same. left cosets right cosets both left cosets |either left cosets or |both left cosets and
and right cosets  |right cosets right cosets

For the trivial action, the ------------ of action is whole of  |kernel inverse unique normal kernel

G.

The Index theorem is drawn as a corollary to the ------------- Sylow’s theorem |Generalized Embedded Lagrange’s Generalized Cayley

Cayley theorem  |theorem theorem theorem
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Subject: Group Theory Il Subject Code: 16MMU401
Class : Il - B.Sc. Mathematics Semester IV
Unit vV
Group Action and Simplicity
Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

A non-trivial group G is called ------------ if its only normal |simple unique inverse identity simple
subgroups are {e} and G itself.
A infinite ----------------- group cannot be simple. non abelian abelian non trivial trivial abelian
A finite abelian group is simple iff its ------------ isaprime. |ring value abelian order order
The alternating group A, is simple for ----------- . n>3 n>2 n>5 n>1 n>5
The G must have a subgroup of order equal to the highest  |sylow p-subgroup |normal subgroup |trivial subgroup |non trivial sylow p-subgroup
power of p that divides |G|. One such subgroup is called a ---- subgroup
————————————————————— of G.
Using ----------- test , it is possible to sort out numbers which |odd Sylow even unique Sylow
cannot be order of any simple group.
If G is a group of order ------ , where n is an odd integer 2+n 2-n 2n 2/n 2n
greater than 1 then G cannot be simple.
The -----—-m-mmeen helps to use the known properties of Sylow’s theorem  |Lagrange’s theorem |[Embedded Index theorem Embedded theorem
alternating groups to determine non-simplicity of a group. theorem
Which is the test of non-simplicity? Sylow’s theorem  |odd test both Sylow’s neither Sylow’s  |both Sylow’s

theorem and odd |theorem nor odd  |theorem and odd

test theorem test
If the normal subgroups are {e} and G itself then the non-  |simple unique inverse identity simple
trivial group G is called ---------- .
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When does a finite abelian group is simple? iff order is 2 iff order is not iff order is odd iff order is prime  |iff order is prime
prime

The elements a and b of a group G are conjugate in G, if ----- xax =1 xax =h xax =0 xax *=a xax =b

ThE =--mmmmmmemmmeeeeee of a is the set cl(a)={xax™ [x € G}. normal subgroup conjugacy class  |prime conjugacy class

A group of order p", where p is prime is called @ ---------------| p-group n-group p’-group n’-group p-group

If |G| = ------mmmmmm- , then G is abelian. p p? p® -p p’

If G is a group of order m and n divides m, G need not have |m m? n n? n

a subgroup of order ------ .

Which is the most important results in finite group theory?

Sylow’s theorem

Lagrange’s theorem

Index theorem

both Sylow’s and
Lagrange theorem

both Sylow’s and
Lagrange theorem

The ==-mmmmmeemeemmeeeee theorem gives a sufficient condition  |Sylow’s Lagrange Index Embedded Sylow’s
for the existence of subgroups.
If p* divides |G|, then G has atleast one subgroup of order ----|P p~ p - p~

Any subgroup of order pk is called a -------------------- of G.

normal subgroup

cyclic subgroup

Sylow p-subgroup

abelian subgroup

Sylow p-subgroup
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KARPAGAM ACADEMY OF HIGHER EDUCATION
= .7~ (Deemed to be University Established Under Section 3 of UGC Act 1956)

KARPAGAM Coimbatore — 641 021.
o S SYLLABUS
Semester - 1V
LTPC
16MMU401 GROUP THEORY I 6 2 6

Scope:On successful completion of course the learners gain about the groups, Fundamental
Theorem and its properties.

Objectives: To enable the students to learn and gain knowledge about group homomorphism,
isomorphism, automorphism and its related properties.

UNIT I

Group homomorphisms, properties of homomorphisms, Cayley’s theorem, properties of
isomorphisms, First, Second and Third isomorphism theorems.

UNIT 11

Automorphism, inner automorphism, automorphism groups, automorphism groups of finite and
infinite cyclic groups, applications of factor groups to automorphism groups, Characteristic
subgroups, Commutator subgroup and its properties.

UNIT 111
Properties of external direct products, the group of units modulo n as an external direct product,
internal direct products, Fundamental Theorem of finite abelian groups.

UNIT IV
Group actions, stabilizers and kernels, permutation representation associated with a given group
action, Applications of group actions: Generalized Cayley’s theorem, Index theorem.

UNIT V

Groups acting on themselves by conjugation, class equation and consequences, conjugacy in Sn,
p-groups, Sylow’s theorems and consequences, Cauchy’s theorem, Simplicity of An for n > 5,
non-simplicity tests.

SUGGESTED READINGS

TEXT BOOK
1. Fraleigh.J.B., (2004). A First Course in Abstract Algebra , Seventh edition , Pearson
Education Ltd, Singapore.

REFERENCES

1. David S. Dummit and Richard M. Foote, (2004).,Abstract Algebra,. Third Edition., John
Wiley and Sons (Asia) Pvt. Ltd., Singapore.
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UNIT-I
SYLLABUS

Group homomorphisms, properties of homomorphism, Cayley’s theorem, properties of
isomorphisms, First, Second and Third isomorphism theorems

In this chapter., we consider one of the most fundamental ideas of
algebra—homomorphisms. The term homomorphism comes from the
Greek words homo, “like.” and morphe, ““form.”” We will see that a ho-
momorphism is a natural generalization of an isomorphism and that
there is an intimate connection between factor groups of a group and
homomorphisms of a group. The concept of group homomorphisms
was introduced by Camille Jordan in 1870, in his influential book Traité
des substitutions.

Group Homomorphism

A homomorphism ¢ from a group G to a|group G is a mapping
from G into G that preserves the group operation; that is, &(ab) =
d(a)h(b) for all a, b in G.

Kernel of a Homomorphism

The kernel of a homomorphism ¢ from a group & to a group with
identity e is the set {x & & | db(x) = e}. The kernel of ¢» is denoted by
Ker .

Properties of Homomorphisms

Properties of Elements under Homomorphism

Let ¢» be a homomorphism from a group G to a group & and let g be
an element of . Then
1. ¢ carries the identity of G to the identity of G.
2. plg™) = (b{g))" for all n in Z.
If |g| is finite, then |p(g)| divides |g|.
Ker ¢ is a subgroup of G.
Ppla) = Pp(b) if and only if aKer ¢» = bKer .
If p(g) — g', then o~ (g') = {x E G | h(x) — g'} = gKer o

2
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Properties of Subgroups under Homomorphisms

Let ¢» be a homomorphism from a group G to a group G and let H be
a subgroup of G. Then

1. &(H) = {db(h) | h € H} is a subgroup ofﬁ.

2. If H is cyclic, then ¢»(H) is cyclic.

If H is Abelian, then (H) is Abelian.

If H is normal in G, then ((H) is normal in {(G).

If |IKer ¢b| = n, then ¢ is an n-to-1 mapping from G onto {(G).

If |[H| = n, then |b(H)| divides n.

Iff is a subgroup of G, then q’fj(f] = ke G| dlk) E E}

is a subgroup of G.

8. If K is a normal subgroup of G, then & (K) = [k € G
b(k) € K} is a normal subgroup of G.

9. If ¢ is onto and Ker ¢» = {e}, then  is an isomorphism
from G to G.

Nk

Lemma

If ¢ is a homomorphism of G into G, then

1. ¢le) = & the unit element of G.
9. ¢p(x~ 1) = @(x)" ! forall x € G.

Proof. To prove (1) we merely calculate ¢(x)é = ¢(x) = P(xe) =
¢(x)q§{g), so by the cancellation property in G we have that ¢(e) = .

To establish (2) one notes that é = ¢(e) = P(ex™ ') = P(x)Pp(x~ 1), so
by the very definition of ¢(x) "' in G we obtain the result that ¢(x~ 1) =
px) -

Lemma
If ¢ is a homomorphism of G into G with kerel K, then K is a
normal subgroup of G.
Proof. First we must check whether K is a subgroup of G. To see this

one must show that K is closed under multiplication and has inverses in it
for every element belonging to K.
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If x, y € K, then ¢(x) = ¢, ¢(y) = & where ¢ is the identity element of
G, and so ¢(xy) = ¢(x)d(y) = é = é, whence xy e K. Also, if x € K,
¢(x) =¢, so, by Lemma 2.7.2, ¢(x~') = ¢(x)"! =¢"! =¢; thus
x~1 e K. K is, accordingly, a subgroup of G.

To prove the normality of K one must establish that for any g € G,
ke K, gke™' € K; in other words, one must prove that ¢(gkg™') = ¢

whenever ¢(k) = & But $(gkg™!) = d(g)p(Kp(g™") = dlg)ép(g) ! =
b(9)p(e)" = -
Group Isomorphism

An isomorphism ¢ from a group G to a group G is a one-to-one map-
ping (or function) from & onto  that preserves the group operation.
That is,

dfab) = da)d(b) for all a. b in G.

If there is an isomorphism from & onto G, we say that G and G are
isomorphic and write G = G.
Cayley’s Theorem

Every group is isomorphic to a group of permutations.

PROOF To prove this, let G be any group. We must find a group G of
permutations that we believe is isomorphic to . Since & is all we have
to work with, we will have to use it to construct G. For any g in G,
define a function Tg from G to G by

}“:?(,x) = gx for all x in G.

(In words, 7, is just multiplication by g on the left.) We leave it as an
exercise (Exercise 33) to prove that Tg is a permutation on the set of
elements of G. Now, let G = ['i";3 g & G}. Then, G is a group under
the operation of function composition. To verify this, we first observe
that for any g and A& in & we have ?;{?]r{x) = Tg{?;r{x}} = ?;[f:r.x} = glhx) =
(ghx = ?;,h[.x)._ so that ]'1?}? = ?th, From this it follows that T is the
identity and {Tg)_] = T, (see Exercise 9). Since function composition
is associative, we have verified all the conditions for &G to be a group.

The isomorphism < between G and G is now ready-made. For every
g in G, define ¢$(g) = 7,. If ’1; = T,. then ?L[fﬂ = T,(e) or ge = he.
Thus, g = h and ¢ is one-to-one. By the way & was constructed, we
see that ¢ is onto. The only condition that remains to be checked is that
b is operation-preserving. To this end, let g and b belong to . Then

Blab)y = T, = T, T, = d(a)d(b). m
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Properties of Isomorphisms Acting on Elements

Suppose that & is an isomorphism from a group G onto a group G.
Then

1. ¢ carries the identity of G to the identity of G.
2. For every integer n and for every group element a in G, ¢d(a™) =
(@]

3. For any elements a and b in (G, a and b commute if and only if

d(a) and (b)) commute.

G = {a) ifand only if G = (d(a)).

al = |p(a)| for all a in G (isomorphisms preserve orders).

For a fixed integer k and a fixed group element b in G, the

equation x* = b has the same number of solutions in G as does

the equation x* = ¢(b) in G.

7. If G is finite, then G and G have exactly the same number of

elements of every order.

Properties of Isomorphisms Acting on Groups

o

-

Suppose that ¢ is an isomorphism from a group G onto a group G.
Then

¢~ is an isomorphism from G onto G.

G is Abelian if and only if G is Abelian.,
G is cyclic if and only if G is cyclic.
If K is a subgroup of G, then H(K) = {d(k) | k E K} isa
subgroup of G.

5. IfK is a subgroup of G, then ¢V (K) = {g € G | d(g) E K} is

a subgroup of G.

6. HZ(G)) = Z(G).
Theorem
(First Isomorphism Theorem) Let¢ : G — G’ be a homomorphism with kernel K,
andlet yx : G — G/K be the canonical homomorphism. There is a unique isomorphism
i G/K — ¢[G] such that ¢(x) = u(yg(x)) foreachx € G.

o=

The lemma that follows will be of great aid in our proof and intuitive understanding
of the other two isomorphism theorems.
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Lemma

Let N be a normal subgroup of a group G and let ¥ : G — G/N be the canonical
homomorphism. Then the map ¢ from the set of normal subgroups of G containing N

to the set of normal subgroups of G/N given by ¢(L) = y[L] is one to onc and onto.
Proof

Theorem 15.16 shows that if L is a normal subgroup of G containing N, then ¢p(L) =
y[L] is a normal subgroup of G/N. Because N = L, for each x € L the entire coset
x N in G is contained in L. Thus by Theorem 13.15, y ~![¢(L)] = L. Consequently, if L
and M are normal subgroups of G, both containing N, and if ¢(L) = ¢(M) = H, then
L =y~ [H] = M. Therefore ¢ is one to one.

If H is a normal subgroup of G/N, then y~'[H] is a normal subgroup of G by
Theorem 15.16. Because N € H and ¥ "'[{N}] = N, we see that N C y~![H]. Then
¢(y " H] = y[y ' [H]] = H. This shows that ¢ is onto the set of normal subgroups
of G/N. *

If H and N are subgroups of a group G, then we let
HN = {hn|h € H,n € N}.

We define the join H v N of H and N as the intersection of all subgroups of G that
contain HN; thus H v N is the smallest subgroup of G containing HN. Of course
H v N is also the smallest subgroup of G containing both H and N, since any such

subgroup must contain H N. In general, H N need not be a subgroup of G. However, we
have the following lemma.
Theorem

(Second Isomorphism Theorem) Let H be a subgroup of G and let N be a normal
subgroup of G. Then (HN)/N ~ H/(H N N).

Proof

Let ¥ : G — G/N be the canonical homomorphism and let i/ < G. Then y[H] is a
subgroup of G/N by Theorem 13.12. Now the action of y on just the elements of H
(called y restricted to H) provides us with a homomorphism mapping H onto y[H],
and the kernel of this restriction is clearly the set of elements of N that are also in H,
that is, the intersection H N N. Theorem 34.2 then shows that there is an isomorphism
wyc HI(HNN) — y[H].

On the other hand, y restricted to HN also provides a homomorphism mapping
HN onto y[H], because y(n) is the identity N of G/N for all n € N. The kernel
of y restricted to HN is N. Theorem 34.2 then provides us with an isomorphism
iy (HN)/N — y[H]
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Because (HN)/N and H/(H N N) are both isomorphic to y[H], they are isomor-
phic to each other. Indeed, ¢ : (HN)/N — H/(H N N) where ¢ = ;.J,]'l,ug will be an
isomorphism. More explicitly,

S((hmIN) = i~ (2 ((hm)N)) = ;"' (h) = h(H N N). *
Theorem
(Third Isomorphism Theorem) Let H and K be normal subgroups of a group G with
K <H.ThenG/H =(G/K)/(H/K).
Proof
Let¢: G — (G/K)/(H/K) be given by ¢(a) = (aK)(H/K) for a € G. Clearly ¢ is
onto (G/K)/(H/K), and fora, b € G,

¢(ab) = [(ab)KI(H/K) = [(aK)bK))(H/K)
= [(aK)(H/EK)(bK)(H/K)]

= ¢(a)p(b),
s0 ¢ is a homomorphism. The kemel consists of those x € G such that ¢(x) = H/K.
These x are just the elements of H. Then Theorem 34.2 shows that G/H =

(G/K)/(H/K). *

A nice way of viewing Theorem 34.7 is to regard the canonical mapyy : G — G/H
as being factored via a normal subgroup K of G, K < H < G, to give

YH = VH/KVEK.

up to a natural isomorphism, as illustrated in Fig. 34.8. Another way of visualizing this
theorem is to use the subgroup diagram in Fig. 34.9, where each group is a normal
subgroup of G and is contained in the one above it. The larger the normal subgroup, the
smaller the factor group. Thus we can think of G collapsed by H, thatis, G/H, as being
smaller than G collapsed by K. Theorem 34.7 states that we can collapse G all the way
down to G/H in two steps. First, collapse to G/K, and then, using H /K, collapse this
to (G/K)/(H/K). The overall result is the same (up to isomorphism) as collapsing G
by H.

G

Y

G ul > G/H
y Natural isomorphism H
K
G/K———— (G/E)/(H/K)
Yuir K
34.8 Figure 34.9 Figure
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POSSIBLE QUESTIONS

PART-B (5 x 2 =10 Marks)
Answer all the questions
1. Define Homomorphism.
Define Isomorphism.
Define Normalizer.
Define centre of a group.
Write about Kernel of a group.

ok~ own

PART-C (5 x 6 =30 Marks)
Answer all the questions
1. Let G be a group of all non zero real number under multiplication and G={1, -1}be group
under multiplication. Prove that ¢ is a homomorphism.
2. If gis a homomorphism of G into G, then prove that
(i) ¢(e) = &, the unit element in G.

(i) oxH=ex® VxeEG.

3. Let ¢ be ahomomorphism of G into G with kernel K, then prove that K is a normal
subgroup of G.

4. If ¢ is a homomorphism of G onto G with kernel K, then show that the set of all inverse
images g € G under ¢ in G is given by kx where x is any particular inverse image of g in
G.

5. State and prove fundamental theorem of homomorphism.

6. State and prove first isomorphism theorem.

7. Let @ be the homomorphism of G onto Gwith kernel K. For H is a subgroup of G, let H
be defined by H = {x € G : ¢(x) € H}. Then prove that H is a subgroup of G and H o K.
If H is normal in G, then H is normal in G.

8. State and prove third isomorphism theorem.

9. State and prove second isomorphism theorem.

10. State and prove Cayley’s theorem.
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UNIT-II
SYLLABUS

Automorphism, inner automorphism, automorphism groups, automorphism groups of finite and

infinite cyclic groups, applications of factor groups to automorphism groups, Characteristic
subgroups, Commutator subgroup and its properties.

Automorphisms
Automorphism is nothing but a special kind of isomorphism.
Definition
"An isomorphism from a group G onto itself is called an automorphism of
G. The set of all automorphisms of a group G is usually denoted by Aut(G)". Let us now
consider a few examples of automorphisms.
Example

Consider the Identity map from a group G onto itself, i.e.1: G = G, such

that, I{x)=x ¥ x G. I is trivially an automorphism of G. In fact, it is sometimes referred
as trivial automorphism of G.
Example

Consider C ,the group of complex numbers w.r.t. addition. We define

f:C>C as

fla+bi)=a-bi Va+bieC
« Well defined and one-one:

fla+bi=FfFlc+di) for a+bi, c+di el

= a—bi=c—di
= a=c and b=d
= a+bi=c+di

=« QOnto: Fora + biinC, a —biis its pre-image under f.
= Operation preserving:

Let x=a+bi and vy =c+di bein C

fx+y)=Fflla+c)+(b+di)

—(@+c)—(b+d)i
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={a—bi) +(c —di)
= f(x) + f(y)

Hence, fis an automorphism of C.
Inner Automorphisms

Definition

Inner Automorphism induced by a

“Let G be agroupand a € G. ¢, : G — G defined as ¢, (x)=axa™ vxe G

is called inner automorphism of G induced by a".

Consequently, corresponding to every element a of G, we have an automorphism of G
induced by it. Set of all inner automorphisms of G is denoted by Inn(G).
Theorem

"Aut(G) and Inn(G) both form groups under the operation of composition
of mappings”.

Proof: Aut(G) is a group:
Non-empty: As identity map is in Aut{G), Aut(G) is non-empty.

Closure: Let f and g be in Aut(G). Since f and g are bijective, so is their
composition f-g. Also for x and y in G,

(F - g)(xy) = Fla(xy))
= f(g(x)aly)), as g is operation preserving.
= f(g(x))f(g(y)), as fis operation preserving.

=(f = @)(x)(F = g)(y)

Thus, f - g e Aut(G).-

Associativity: As composition of mappings is associative, so associativity holds
in Aut(G) as well.

Identity: Clearly, the identity map serves as the identity element of Aut(G).

Inverse: Let f € Aut(G). As f is bijective, so f™ exists and is bijective as well.

Also for x and y in G, let f!(x)=a, f'(y)=b. As f is operation preserving,

f(ab) = f(a)f(b) . Consequently F2(x)f(y)=Ff2(xy). Hence f* e Aut(G). .
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Inn(G) is a group:
Clearly Inn(G) = Aut{G)

» Non-empty: Inner automorphism induced by the identity of G, i.e. ¢, is in Inn(G)

and thus Inn{G) is non-empty.
» Closure: Let ¢, and ¢, be in Inn(G). Forx G,

#,6,(x)

= ;#a{@b{‘x]]

= ¢,(bxb™)

= a(bxb™)a™
= (ab)x(b?a™)
= (ab)x(ab)™
= ¢,,(x)

Thus closure holds in Inn{G).
« Inverse: Let ¢, = Inn(G) . Then

bb, =0 . =¢ = Identity automaorphism = ¢_.9,
Thus, ¢_,is inverse of ¢ -

Hence Inn(G) is a subgroup of Aut(G) and therefore a group in itself.

Problem: Let g be an element of a group G. Show that the inner automorphism induced
by g is same as the inner automorphism induced by zg, where z is in Z(G), the center of G.

Solution: Inner automorphism induced by zg is ¢., » which is defined as
by (x) = (2g)x(2g)? ¥xeG
=(gz)x(g'z1), as z  Z(G)
=(gz)x(z'g™), as z € Z(G) implies z! € Z(G).
1,1

=gxzz''g

=gxg™
= ¢, (x)

Hence ¢, =40,
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Problem: Find Inn(D.).

Solution: D4 = {Rﬂr R‘Bur RIE[II RZ?I}: H.r V: Dr D'}
So, Inn(Ds) can possibly be {4y , de_, tr_ f s dys Gor I}

Le us now figure out repetitions in this list.

(i) Consider ¢, . Forany xinDa,
Fr,py (X) = RigoXRizo = X, a@s Rygo = Z(Ds)
= g, ()
Thus, ¢, =dy .
(ii) MNext consider Pr,,, -
B, (X) = RypgXRi70 = RogRigo XRigoRag = RygXRsg
= (%)

Thus, ‘iﬁ%n = .;ﬂngc.
(iii) Again for ¢,,

¢, (x) = HxH™" = R VxV'R,, as H =RV
=VxVT = d,(x)

Thus, ¢, =4, .
(iv)  Similarly, using the fact that D" = R;;;D, we get ¢, =4, . Therefore, the previous list
for Inn{Dy) reduces to {d,, ¢y, 4., ¢, . We are now left to check whether these four
inner automorphisms are distinct or not.

If we consider the action of these automorphisms on the element H of D,, we get
b, = e, and ¢, = ¢,. Similarly, considering their action on other elements of D,, one

can easily deduce that all of them are distinct. Consequently,

I”n{D‘;}:{?ﬁpﬂ: Pr, Byt -
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Automorphism groups of Finite and Infinite Cyclic Groups
In this section, we shall see that the automorphism groups of finite as well as infinite cyclic
groups can be characterized completely.

Theorem
Aut(G), when G is an infinite cyclic group

"If G is an infinite cyclic group, then Aut{G) is a cyclic group of order 2”.

Proof: Let G = {a} and ¢ € Aut(G). We prove the theorem in following steps:

Step 1: We claim that G = (¢#(a)), i.e. ¢(a) also generates G.
For that, take x e G. Since ¢ is onto, there exists y in G such that x=g(y) . As G = (a) and

yisinG,so y=a" forsome meH.
Now x =g¢(y)

= ¢(a”)

=(#(a))™, as ¢ is a homomorphism.
Hence the claim.

Step 2: G, being an infinite cyclic group, can have at the most two generators, namely a
and a. Thus ¢(a) and hence ¢ has got only two choices:

dla)=a or #la) =a™
Therefore, | Aut{(G)| = 2.

Step 3: Define f:G >G as f(x)=x" ¥ xeG. G, being cyclic, is Abelian and thus f
defines an automorphism of G

It is important to see that fis different from the identity automorphism, for if
flx)=x ¥ xel
= f(a)=a

= al-3

= a =e

= | a| is finite, a contradiction.
Therefore, | Aut (G) | = 2.
From steps 2 and 3, it follows that | Aut(G)| = 2. Aut(G), being a group of order 2
(prime), is cyclic.

Theorem
Aut(Z,)=U(n)
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“For every natural number n, Aut{Z,) is isomorphic to U(n)".
Proof: Define ¢: Aut(Z,) — U(n) as

#le) = a(l) YV o e Aut(Z,)

« well defined: 1 being generator of Z, and « an automorphism of Z,, we have
a(l) also generates Z,. But generators of Z, are of the form

(1+1+.....+1)=k , where g.c.d. (k, n) = 1.
k times

So, a(l)eU(n).

e One-one: Let ¢(ey) = d(a,); @, a, are in Aut(Z,).
= () =a(1)

= ka (1) = ka,(1) for all k in Z,.

= oy(k)=a(k) forall kinZ,.

= oy =05,
e Onto: Let meU(n). This means m < n and gcd(m, n) = 1. We need to find

f € Aut(Z,), such that F)=m pefine F1Zn > Za a5

f(x) = mx(modn) for all x in Z,.
First we prove thatf  Aut(Z,). Clearly f is well defined.

Also, f(x,)=f(x,), for some x; and x; in Z,..
= mx,(modn) = mx,(modn)
= mx; = mx,(modn)

= ndivides m(x; —x,).
As m and n are co-prime, so n has to divide(x; - x,). Hence x, = x,in Z, This shows
that f is one-one. Being a one-one map from a finite set to itself it is onto as well. Lastly
to see that f is operation preserving we take x; and x, in Z,.

Consider
f(x, +x,) = m(x, +x,)(modn)
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= (mx; + mx,)(modn)
= mx;(modn) + mx;(modn)

=f(x;) + f(x;)
Hence we have f e Aut(Z,).

Also ¢(f) =f(1) = m{modn) = m.

Thus, ¢ is onto.
+« Operating Preserving: Let a, g  Aut(Z,).

Consider o B)=(a- B)1)
= a(p(1))

=a(l+1+....+1)

5(1) times

=a(l)+ea(l)+....+a(l), as aisan automorphism.

,S{lj;ims

= a(1)B(1) = ¢(a) #(B) -

Hence Aut(Z,)= U(n).

Example
Find Aut(Z;).

Solution: Aut(Z;)=~ U(6)={1,5} mod 6.
Thus, Aut(Z.) being a group of order 2 (prime) is cyclic and hence isomorphic to Z,.

Applications of factor groups to Automorphism groups

In this section we study a theorem which connects the group of inner automorphisms to
factor groups.

Theorem

wG/ Z{G} = ﬁEH{G} r

For any group G, G/Z(G) is isomorphic to Inn(G) where Z(G}is the center of G.
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Proof: Define a map [:GIZ(G) = Inn(G)

f(gZ(G))=¢, forall gZ(G)=G/Z(G), where
¢ . G—>G is-;zﬁg(.r}=glg_1 for all x in G.
» Well defined and one-one:
aZ(G)=bZ(G)
=a'beZ(G)
< (a7 x=x(a”h)¥xeG
= bxb =axaVxeG
= ¢,=4,
< f(BZ(G)) = f(aZ(G))
» Onto: Clearly for ¢, € Inn(G), gZ(G) is its pre-image under f.
« Operation-preserving: Let aZ(G).bZ(G)e G/ Z(G) .
Consider f((aZ(G))NBZ(G))) = f((ab)Z(G)) =¢,
faZ(G)) f(BZ(G))=¢,¢, -
Since we know ¢, =@ ¢ for all a and b in G, we have f is an isomorphism.i
Characteristic Subgroups
Definition
“A subgroup N of a group G is called a characteristic subgroup if

@(N) = N for all automorphisms ¢ of G".
Example

Every subgroup of the group of integers (Z,+) is a characteristic
subgroup.

Let H be any subgroup of (Z,+). Then H = mZ for some m=0.
Also, from Theorem 5.1 we know that Aut(Z) = {I, ¢} where
Iln)=nvneZl
and
pn)= —n¥ne L
Clearly I(H) = H. Also,
@(H) = ¢(mI)= —mZ =mEI =H.
Hence H is a characteristic subgroup of Z.
Example.
Center of a group is a characteristic subgroup.
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Let G be a group and Z(G) be its center.

Let @ € Aut(G)

In order to prove that Z(G) is a characteristic subgroup of G, we need to show that
¢(2(6)) < z(6).

For this, let ¥ € ¢(2(6)). Then y = ¢(z) for some z € Z(G).

let g €G. As ¢ is onto, g = ¢(g’) for some g €6.

Also as z € Z(G), zg =g z.

~(z9') = o(gz).

or p(2)e(g) = o(g )e(2).

or yg = gy.

Hence v € Z(G).

Thus, Z(G) is a characteristic subgroup of G.

Theorem

Characteristic subgroups are normal

"Every characteristic subgroup N of a group G is normal in G ”.

Proof: Let N be a characteristic subgroup of G. Then ¢(N) = N for all ¢ € Aut(G).
In particular, for g € Gand n € N we have

@,(N) = N, where g, denotes the inner automorphism of G induced by g.

Thus, gng™

Theorem.

Characteristic property is transitive

"If N is a characteristic subgroup of K and K is a characteristic subgroup of G then N
is a characteristic subgroup of G”.

Proof: Let ¢ € Aut(G). As K is a characteristic subgroup of G, @(K) = K and hence
T = @|g i5 an automorphism of K. Since N is a characteristic subgroup of K, t(N) = N.

= @,(n) € N and hence N is a normal subgroup of G.

But t(N) = @(N). Hence N is invariant under all automorphisms of G. This concludes
the proof. ]

Commutator Subgroup
Definition
“Let G be a group and x,v € 6. The element x 'y !xy is called

the commutator of x and y".
If S denotes the set of all commutators of G then the subgroup of G generated by
S is called the commutator subgroup of G and is denoted by G'.

Theorem:
Commutator subgroup is a characteristic subgroup

"G"is a characteristic subgroup of G".
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Proof: Let ¢ € Aut(G). We show that @(G')c G.
Observe that if c is a commutator in G then c= x 'y 1xy for some x and y in G.

As ¢ is an automorphism, ¢(c) = e(x 2y txy ) = @(x) te(y) telx)e(y). Thus, ¢(c)
is also a commutator in G.

Now let z € 6. Then z = ¢y¢5 ...c;,, where each ¢; is a commutator in G.

~elz) = eley)wlcs)...plc,), where each @(c;) is a commutator as seen above.
~o(z) EGT.

Hence G’ is a characteristic subgroup of G.

Corollary

(Commutator subgroup is a normal subgroup) As characteristic

subgroups are normal, G’ is a normal subgroup of G. [It is easy to prove that

commutator subgroup is normal using the definition of normal subgroups as well.

We leave it as an exercise for the reader].

Theorem

The factor group G/G’

a) G/G'is Abelian.

b) G’ is the smallest subgroup of G such that G/G" is Abelian, i.e. if N is any
subgroup of G such that G/N is Abelian then N=G'.

Proof:
a) Let x,y €G.
Now G xG 'y =G vG x
iff 6 xy = G'yx
iff (y)(yx)™* €6’
iff xyx~ty~! € ¢, which is true by definition of G".
Hence, G/G’ is Abelian.

b) Let N be a subgroup of G such that G/N is Abelian.
Then for any x,y € G, NxNy = NyNx.
i.e. Nxy = Nyx
i.e. xyx" 'y L EN.
Thus N contains the set of all commutators of G. As G’ is the smallest subgroup

of G containing the set of commutators, it follows that G’ — N. [ ]
Corollary

G is Abelian iff G'= {e}.
Proof: Let G be Abelian and N= {e}.
Then G/N= G/{e} is Abelian. So, by above theorem G' — N = {e}. Also,

fe} — G'. Hence G'={e}. Conversely, if G'={e} then G/G'= G/f{e} is
Abelian by above theorem. But, G/{e} = G, so G is Abelian.
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POSSIBLE QUESTIONS

PART-B (5 x 2 =10 Marks)
Answer all the questions

1. Define Automorphism.

Define Inner Automorphism.
Define factor group.

Write about generator of a group.
Define Characteristic subgroup.

ok~ own

PART-C (5 x 6 =30 Marks)

Answer all the questions

1. Prove that if G is a group, the Aut(G) is also a group.
Let G be a group and g € G. Prove that Tg is an automorphism.
Prove that Inn(G) = G/Z.
Determine Aut(Z1o).
Prove that Aut(Z,) = U(n).
Let G be a group and let Z(G) be the centre of G. If G/Z(G) is cyclic , then prove that
G is abelian.
7. For any group G, show that G/Z(G) is isomorphic to Inn(G).
8. Prove that every characteristic subgroup N of a group G is normal in G.
9. Show that characteristic property is transitive.
10. Prove that commutator subgroup is a characteristic subgroup.

o0k wn
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UNIT-II
SYLLABUS

Automorphism, inner automorphism, automorphism groups, automorphism groups of finite and

infinite cyclic groups, applications of factor groups to automorphism groups, Characteristic
subgroups, Commutator subgroup and its properties.

Automorphisms
Automorphism is nothing but a special kind of isomorphism.
Definition
"An isomorphism from a group G onto itself is called an automorphism of
G. The set of all automorphisms of a group G is usually denoted by Aut(G)". Let us now
consider a few examples of automorphisms.
Example

Consider the Identity map from a group G onto itself, i.e.1: G = G, such

that, I{x)=x ¥ x G. I is trivially an automorphism of G. In fact, it is sometimes referred
as trivial automorphism of G.
Example

Consider C ,the group of complex numbers w.r.t. addition. We define

f:C>C as

fla+bi)=a-bi Va+bieC
« Well defined and one-one:

fla+bi=FfFlc+di) for a+bi, c+di el

= a—bi=c—di
= a=c and b=d
= a+bi=c+di

=« QOnto: Fora + biinC, a —biis its pre-image under f.
= Operation preserving:

Let x=a+bi and vy =c+di bein C

fx+y)=Fflla+c)+(b+di)

—(@+c)—(b+d)i
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={a—bi) +(c —di)
= f(x) + f(y)

Hence, fis an automorphism of C.
Inner Automorphisms

Definition

Inner Automorphism induced by a

“Let G be agroupand a € G. ¢, : G — G defined as ¢, (x)=axa™ vxe G

is called inner automorphism of G induced by a".

Consequently, corresponding to every element a of G, we have an automorphism of G
induced by it. Set of all inner automorphisms of G is denoted by Inn(G).
Theorem

"Aut(G) and Inn(G) both form groups under the operation of composition
of mappings”.

Proof: Aut(G) is a group:
Non-empty: As identity map is in Aut{G), Aut(G) is non-empty.

Closure: Let f and g be in Aut(G). Since f and g are bijective, so is their
composition f-g. Also for x and y in G,

(F - g)(xy) = Fla(xy))
= f(g(x)aly)), as g is operation preserving.
= f(g(x))f(g(y)), as fis operation preserving.

=(f = @)(x)(F = g)(y)

Thus, f - g e Aut(G).-

Associativity: As composition of mappings is associative, so associativity holds
in Aut(G) as well.

Identity: Clearly, the identity map serves as the identity element of Aut(G).

Inverse: Let f € Aut(G). As f is bijective, so f™ exists and is bijective as well.

Also for x and y in G, let f!(x)=a, f'(y)=b. As f is operation preserving,

f(ab) = f(a)f(b) . Consequently F2(x)f(y)=Ff2(xy). Hence f* e Aut(G). .
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Inn(G) is a group:
Clearly Inn(G) = Aut{G)

» Non-empty: Inner automorphism induced by the identity of G, i.e. ¢, is in Inn(G)

and thus Inn{G) is non-empty.
» Closure: Let ¢, and ¢, be in Inn(G). Forx G,

#,6,(x)

= ;#a{@b{‘x]]

= ¢,(bxb™)

= a(bxb™)a™
= (ab)x(b?a™)
= (ab)x(ab)™
= ¢,,(x)

Thus closure holds in Inn{G).
« Inverse: Let ¢, = Inn(G) . Then

bb, =0 . =¢ = Identity automaorphism = ¢_.9,
Thus, ¢_,is inverse of ¢ -

Hence Inn(G) is a subgroup of Aut(G) and therefore a group in itself.

Problem: Let g be an element of a group G. Show that the inner automorphism induced
by g is same as the inner automorphism induced by zg, where z is in Z(G), the center of G.

Solution: Inner automorphism induced by zg is ¢., » which is defined as
by (x) = (2g)x(2g)? ¥xeG
=(gz)x(g'z1), as z  Z(G)
=(gz)x(z'g™), as z € Z(G) implies z! € Z(G).
1,1

=gxzz''g

=gxg™
= ¢, (x)

Hence ¢, =40,
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Problem: Find Inn(D.).

Solution: D4 = {Rﬂr R‘Bur RIE[II RZ?I}: H.r V: Dr D'}
So, Inn(Ds) can possibly be {4y , de_, tr_ f s dys Gor I}

Le us now figure out repetitions in this list.

(i) Consider ¢, . Forany xinDa,
Fr,py (X) = RigoXRizo = X, a@s Rygo = Z(Ds)
= g, ()
Thus, ¢, =dy .
(ii) MNext consider Pr,,, -
B, (X) = RypgXRi70 = RogRigo XRigoRag = RygXRsg
= (%)

Thus, ‘iﬁ%n = .;ﬂngc.
(iii) Again for ¢,,

¢, (x) = HxH™" = R VxV'R,, as H =RV
=VxVT = d,(x)

Thus, ¢, =4, .
(iv)  Similarly, using the fact that D" = R;;;D, we get ¢, =4, . Therefore, the previous list
for Inn{Dy) reduces to {d,, ¢y, 4., ¢, . We are now left to check whether these four
inner automorphisms are distinct or not.

If we consider the action of these automorphisms on the element H of D,, we get
b, = e, and ¢, = ¢,. Similarly, considering their action on other elements of D,, one

can easily deduce that all of them are distinct. Consequently,

I”n{D‘;}:{?ﬁpﬂ: Pr, Byt -
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Automorphism groups of Finite and Infinite Cyclic Groups
In this section, we shall see that the automorphism groups of finite as well as infinite cyclic
groups can be characterized completely.

Theorem
Aut(G), when G is an infinite cyclic group

"If G is an infinite cyclic group, then Aut{G) is a cyclic group of order 2”.

Proof: Let G = {a} and ¢ € Aut(G). We prove the theorem in following steps:

Step 1: We claim that G = (¢#(a)), i.e. ¢(a) also generates G.
For that, take x e G. Since ¢ is onto, there exists y in G such that x=g(y) . As G = (a) and

yisinG,so y=a" forsome meH.
Now x =g¢(y)

= ¢(a”)

=(#(a))™, as ¢ is a homomorphism.
Hence the claim.

Step 2: G, being an infinite cyclic group, can have at the most two generators, namely a
and a. Thus ¢(a) and hence ¢ has got only two choices:

dla)=a or #la) =a™
Therefore, | Aut{(G)| = 2.

Step 3: Define f:G >G as f(x)=x" ¥ xeG. G, being cyclic, is Abelian and thus f
defines an automorphism of G

It is important to see that fis different from the identity automorphism, for if
flx)=x ¥ xel
= f(a)=a

= al-3

= a =e

= | a| is finite, a contradiction.
Therefore, | Aut (G) | = 2.
From steps 2 and 3, it follows that | Aut(G)| = 2. Aut(G), being a group of order 2
(prime), is cyclic.

Theorem
Aut(Z,)=U(n)
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“For every natural number n, Aut{Z,) is isomorphic to U(n)".
Proof: Define ¢: Aut(Z,) — U(n) as

#le) = a(l) YV o e Aut(Z,)

« well defined: 1 being generator of Z, and « an automorphism of Z,, we have
a(l) also generates Z,. But generators of Z, are of the form

(1+1+.....+1)=k , where g.c.d. (k, n) = 1.
k times

So, a(l)eU(n).

e One-one: Let ¢(ey) = d(a,); @, a, are in Aut(Z,).
= () =a(1)

= ka (1) = ka,(1) for all k in Z,.

= oy(k)=a(k) forall kinZ,.

= oy =05,
e Onto: Let meU(n). This means m < n and gcd(m, n) = 1. We need to find

f € Aut(Z,), such that F)=m pefine F1Zn > Za a5

f(x) = mx(modn) for all x in Z,.
First we prove thatf  Aut(Z,). Clearly f is well defined.

Also, f(x,)=f(x,), for some x; and x; in Z,..
= mx,(modn) = mx,(modn)
= mx; = mx,(modn)

= ndivides m(x; —x,).
As m and n are co-prime, so n has to divide(x; - x,). Hence x, = x,in Z, This shows
that f is one-one. Being a one-one map from a finite set to itself it is onto as well. Lastly
to see that f is operation preserving we take x; and x, in Z,.

Consider
f(x, +x,) = m(x, +x,)(modn)
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= (mx; + mx,)(modn)
= mx;(modn) + mx;(modn)

=f(x;) + f(x;)
Hence we have f e Aut(Z,).

Also ¢(f) =f(1) = m{modn) = m.

Thus, ¢ is onto.
+« Operating Preserving: Let a, g  Aut(Z,).

Consider o B)=(a- B)1)
= a(p(1))

=a(l+1+....+1)

5(1) times

=a(l)+ea(l)+....+a(l), as aisan automorphism.

,S{lj;ims

= a(1)B(1) = ¢(a) #(B) -

Hence Aut(Z,)= U(n).

Example
Find Aut(Z;).

Solution: Aut(Z;)=~ U(6)={1,5} mod 6.
Thus, Aut(Z.) being a group of order 2 (prime) is cyclic and hence isomorphic to Z,.

Applications of factor groups to Automorphism groups

In this section we study a theorem which connects the group of inner automorphisms to
factor groups.

Theorem

wG/ Z{G} = ﬁEH{G} r

For any group G, G/Z(G) is isomorphic to Inn(G) where Z(G}is the center of G.
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Proof: Define a map [:GIZ(G) = Inn(G)

f(gZ(G))=¢, forall gZ(G)=G/Z(G), where
¢ . G—>G is-;zﬁg(.r}=glg_1 for all x in G.
» Well defined and one-one:
aZ(G)=bZ(G)
=a'beZ(G)
< (a7 x=x(a”h)¥xeG
= bxb =axaVxeG
= ¢,=4,
< f(BZ(G)) = f(aZ(G))
» Onto: Clearly for ¢, € Inn(G), gZ(G) is its pre-image under f.
« Operation-preserving: Let aZ(G).bZ(G)e G/ Z(G) .
Consider f((aZ(G))NBZ(G))) = f((ab)Z(G)) =¢,
faZ(G)) f(BZ(G))=¢,¢, -
Since we know ¢, =@ ¢ for all a and b in G, we have f is an isomorphism.i
Characteristic Subgroups
Definition
“A subgroup N of a group G is called a characteristic subgroup if

@(N) = N for all automorphisms ¢ of G".
Example

Every subgroup of the group of integers (Z,+) is a characteristic
subgroup.

Let H be any subgroup of (Z,+). Then H = mZ for some m=0.
Also, from Theorem 5.1 we know that Aut(Z) = {I, ¢} where
Iln)=nvneZl
and
pn)= —n¥ne L
Clearly I(H) = H. Also,
@(H) = ¢(mI)= —mZ =mEI =H.
Hence H is a characteristic subgroup of Z.
Example.
Center of a group is a characteristic subgroup.
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Let G be a group and Z(G) be its center.

Let @ € Aut(G)

In order to prove that Z(G) is a characteristic subgroup of G, we need to show that
¢(2(6)) < z(6).

For this, let ¥ € ¢(2(6)). Then y = ¢(z) for some z € Z(G).

let g €G. As ¢ is onto, g = ¢(g’) for some g €6.

Also as z € Z(G), zg =g z.

~(z9') = o(gz).

or p(2)e(g) = o(g )e(2).

or yg = gy.

Hence v € Z(G).

Thus, Z(G) is a characteristic subgroup of G.

Theorem

Characteristic subgroups are normal

"Every characteristic subgroup N of a group G is normal in G ”.

Proof: Let N be a characteristic subgroup of G. Then ¢(N) = N for all ¢ € Aut(G).
In particular, for g € Gand n € N we have

@,(N) = N, where g, denotes the inner automorphism of G induced by g.

Thus, gng™

Theorem.

Characteristic property is transitive

"If N is a characteristic subgroup of K and K is a characteristic subgroup of G then N
is a characteristic subgroup of G”.

Proof: Let ¢ € Aut(G). As K is a characteristic subgroup of G, @(K) = K and hence
T = @|g i5 an automorphism of K. Since N is a characteristic subgroup of K, t(N) = N.

= @,(n) € N and hence N is a normal subgroup of G.

But t(N) = @(N). Hence N is invariant under all automorphisms of G. This concludes
the proof. ]

Commutator Subgroup
Definition
“Let G be a group and x,v € 6. The element x 'y !xy is called

the commutator of x and y".
If S denotes the set of all commutators of G then the subgroup of G generated by
S is called the commutator subgroup of G and is denoted by G'.

Theorem:
Commutator subgroup is a characteristic subgroup

"G"is a characteristic subgroup of G".
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Proof: Let ¢ € Aut(G). We show that @(G')c G.
Observe that if c is a commutator in G then c= x 'y 1xy for some x and y in G.

As ¢ is an automorphism, ¢(c) = e(x 2y txy ) = @(x) te(y) telx)e(y). Thus, ¢(c)
is also a commutator in G.

Now let z € 6. Then z = ¢y¢5 ...c;,, where each ¢; is a commutator in G.

~elz) = eley)wlcs)...plc,), where each @(c;) is a commutator as seen above.
~o(z) EGT.

Hence G’ is a characteristic subgroup of G.

Corollary

(Commutator subgroup is a normal subgroup) As characteristic

subgroups are normal, G’ is a normal subgroup of G. [It is easy to prove that

commutator subgroup is normal using the definition of normal subgroups as well.

We leave it as an exercise for the reader].

Theorem

The factor group G/G’

a) G/G'is Abelian.

b) G’ is the smallest subgroup of G such that G/G" is Abelian, i.e. if N is any
subgroup of G such that G/N is Abelian then N=G'.

Proof:
a) Let x,y €G.
Now G xG 'y =G vG x
iff 6 xy = G'yx
iff (y)(yx)™* €6’
iff xyx~ty~! € ¢, which is true by definition of G".
Hence, G/G’ is Abelian.

b) Let N be a subgroup of G such that G/N is Abelian.
Then for any x,y € G, NxNy = NyNx.
i.e. Nxy = Nyx
i.e. xyx" 'y L EN.
Thus N contains the set of all commutators of G. As G’ is the smallest subgroup

of G containing the set of commutators, it follows that G’ — N. [ ]
Corollary

G is Abelian iff G'= {e}.
Proof: Let G be Abelian and N= {e}.
Then G/N= G/{e} is Abelian. So, by above theorem G' — N = {e}. Also,

fe} — G'. Hence G'={e}. Conversely, if G'={e} then G/G'= G/f{e} is
Abelian by above theorem. But, G/{e} = G, so G is Abelian.
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POSSIBLE QUESTIONS

PART-B (5 x 2 =10 Marks)
Answer all the questions

1. Define Automorphism.

Define Inner Automorphism.
Define factor group.

Write about generator of a group.
Define Characteristic subgroup.

ok~ own

PART-C (5 x 6 =30 Marks)

Answer all the questions

1. Prove that if G is a group, the Aut(G) is also a group.
Let G be a group and g € G. Prove that Tg is an automorphism.
Prove that Inn(G) = G/Z.
Determine Aut(Z1o).
Prove that Aut(Z,) = U(n).
Let G be a group and let Z(G) be the centre of G. If G/Z(G) is cyclic , then prove that
G is abelian.
7. For any group G, show that G/Z(G) is isomorphic to Inn(G).
8. Prove that every characteristic subgroup N of a group G is normal in G.
9. Show that characteristic property is transitive.
10. Prove that commutator subgroup is a characteristic subgroup.

o0k wn
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UNIT-111
SYLLABUS

Properties of external direct products, the group of units modulo n as an external direct product,
internal direct products, Fundamental Theorem of finite abelian groups.

EXTERNAL DIRECT PRODUCT

Definition

Let &G and H be two groups. The External Direct Product of
groups G and H, is given by {(g.n)|geG.he H and is denoted by G®H.

The operation on this set is the component-wise operation as given below:
(g1-M)(g,-1) = (g,8,-Mh,) , where g,.g, G, h.hyeH,

g,g, is product of g,and g, asin G

and /yh, is product of hand h, as in H.

Result

G®H is a group where G and H are groups under the binary operation
(g, g, 1) =(g,g,. 1) where (g.h). (g,.h,)e GE&H.

Proof: As both G and H are groups, therefore both are non-empty. Let e;.ey
denote the identity of G and H, respectively. Then e=(e;.ey) e G® H and thus, G®
H is non-empty.

Let x=(g. /). y=(g,.1). z=(g;.l5) e GBH .

Closure: xv=(g,g,.h,)eGE& Has the group operations of G and H are well
defined.

Associativity: x(3z) =(g,(8,8;)-h (h,hy)) = ((£,2,)8;5)-(Mhy)hy) = (xp)z .

This is so as associativity holds in G and H.

Existence of Identity: Zde=(e..e)eG@H, such that xe=ex=x for every

xEG®H. This happens as ¢é;.e5 are the identity of G and H respectively.
Existence of Inverse: For every x=(g.h)eG®H, such that xa=ax=e where

e=(eg.eg)eG@®Hand g” eGand h™? « H denotes the inverse ofgeG and heH

respectively.
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Thus, GE&H is a group.
Result
let G, H be finite groups and let (g.h)eG®H. Then
o(g.h)=lem{o(g).o(/)}
Proof: Let o(g, h) = t and LCM{o(g), o(h)} = s.
We show r|sand s|7, as it gives t = s.

It is known that the order of an element 'a’ of a group is defined as the least
positive integer n such that a" =e . Further, a™ =e for some melN iff n | m.

Since, o(g, h) = t . Therefore, (g.h)’ =(e,.ez), thatis (g". h') =(e;.ey).

Thus, g'=e. and h' =ey,. Thereby, we get olg)|t, o(h)|t which gives
LCM{o(g).o(h)}|t . So, s|t.

Now, (g.h)" =(g°.h’) =(e;.ey) since LCM {o(g), o(h)} = s and o(g)|s, o(h)|s.
Thus, 7|5 (as o(g, h) = t)

Example:

Find out the number of elements of order 5 in Z,; ® 7.

Let (a.b)eZ,, ®Z such that o(a, b) = 5 i.e. LCM{o(a), o(b)} = 5. The
following cases arise:

Possible | Possible No. of Mo. of choices Mo. of elements of
o(a) o(b) choices for a for b form (a,b) with order 5
1 5 1 4 4
5 1 4 1 4
5 5 4 4 16

In total, there are 4 + 4 +16 = 24 elements with order 5.

We use the result that in a cyclic group of order k, if a natural number
d is such that d | k, then the number of elements in the cyclic group with
order d is ¢(d).
As 5| 25and 5 | 10, and groups £Z,; and Z,, are both cyclic groups, so the
number of elements of order 5 in both the groups is @(5) = 4.
Result
Let G, H be finite cyclic groups. Then G® His cyclic if and only if
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ged{o(G).o(H)} =1.
Proof: Let G= <a > H= <b> such that
o(G)=ola)=m. o(H)=o0(b)=n. o(GEH)=mn.
Let G@® H be cyclic group of order mn. Let ged{o(G).o(H)} =t and r=1.

Then, o(aw}= oa) =" _¢ and similarly, ﬂ(f’?{}Zf-
gcd{’%.m} n%

™,
r

Thus, o(< (a” .e,,) >)=o[(a” .e,)]= LCM {o(a” ).0(e,)} =1, and

o(< (eg.b") ) = ol(eg.b" )] = LCM {o(eg).0(B” )} =1.

It is known that if a natural number d is such that d | k , where k is the order of
a cyclic group, then there exists a unique cyclic group of order d.
But here, G® His cyclic and t | mn and there are two distinct cyclic groups of

order t, which is a contradiction.

Thus, t = 1 (as with t = 1, these subgroups coincide).

Conversely, let ged{o(G).o(H)}=1.
Consider element (a, b) of G H.
Then, ola.b)=LCM {m.n} =mm (- ged{m.n=1).
Since 3(a.b)e G® H such that o(a.b)=mn, so G® His cyclic.

Result
The groups G and H are abelian if and only if their external direct

product G&H is abelian.
Proof: Let group G and H be abelian. Let x = (m, n), y = (g.h) e GBH H.

Then xy = (mg, nh) = (gm, hn) = yx (as G and H are abelian).
Thus, GE&H is abelian.
Conversely, let G&2H be abelian.

Let a.beGic.d e H.
S0, x = (a.c).y=(b.d)eGD H.
Since xy = yx which gives ab = ba and cd = dc, that is, G and H are abelian.

GROUP U(n) AND EXTERNAL DIRECT PRODUCT
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We know that group U(n) consists of natural numbers less than n which are co-
prime to n under group operation of multiplication modulo n, that is,
Un)y={xe{l.2...n} | ged(x.m) =1}.

Let us take n = 18, then (18) = {1, 5, 7, 11, 13, 17}. But one can notice that
{1, 7, 13} is a subgroup of U(18) and all the elements of this subgroup are
congruent to 1(mod 3). This can be generalized as follows:

Consider group U(n). Let k be a natural number such that k | n.
Then define the set U, (n) = {xeU(n)| x =1(modk)} = {x eU(n)| k| x—1;

In terms of terminoclogy introduced below, the group {1, 7, 13} mentioned
above is U,;(18).

Clearly, U,(n) is non-empty as 1eU,(n).

Further, it can be observed that U,(n)_is a subgroup of U(n).

As U(n) is a finite group and U,(n)is its subset, thus we only check closure with

respect to multiplication modulo n in U,(n)as done below:

Let a.beU,(n). This gives a, beU(n)and a=1(modk). b =1(mod k).

Claim: ab(modn)eU,(n) (since the operation is multiplication modulo n)

Using Division Algorithm, ab = ng + r for some integer g and 0 < r < n.
So, n|(ab —r) and k|n which gives k|(ab — 1) (*)
and » =ab(modn)

We show relU(n)and r=1(modk)

As U(n) is a group, thus, r=eUl(n).

Also since a. beU,(n), we get a=1+kp and b=1+kg for some integers p and g
and thus, ab=1+k(p+q+kpq).

S0, ab=1(modk).

Therefore, k|(ab —1).

Using (*) and above relation, k|(r — 1) i.e. r=1{modk).

Hence, U,(n) is a subgroup of U(n).

Now, we attempt to write the U(n) group as an external direct product of some
U-groups. In this direction, we have the following result.

Result

Let s and £ be natural numbers such that gcd(s, £) = 1, then
Ust)y=U(s)®U(t) .
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Proof: Define ¢ :U(st) = U(s)@U(r)
as ¢(x)=(x(mods).x(mod?))

Map is well-defined:
It may be observed that x(mods)e{0.1.....s—1}. But x(mods)can’t be 0 as in that

case, x will be a multiple of s which implies gcd(x, st) = 1 i.e. xgU(st). So,
x(mods) € {L.....s —1}. Similarly, x(mod#)e{l.....z—1}.
let x = y. Since mod operation is well-defined, x(mods)= y(mods)and

x(mod?) = y(modr).

Map preserves operation:

Let x.yeUl(st).

Claim: ¢(x* y)=p(x)p(y)

i.e., ((x*y)(mods), (x* y)(mod?))=((x(mods)y(mods))mods. (x(mods)y(modr))modr)
i.e., (x*y)(mods)=[x(mods)y(mods)]mods.and (x* y)(mods)=[x(mod#)y(mods)|modz
where * is multiplication mod st operation.

We first show: (x* y)(mods) =[x(mods)y(mods)]mod s

Let x(mods)=5b.y(mods)=c.

Thus, x=sg, +b. y = sq, + ¢ for some integers g,and g, .

So, xy=be+s(q+ ¢, +50:9,)

Using Division Algorithm, xy =st.q +r for some integers g and r where 0 < r < st.
So, (x*y) =r.

Equating the two expressions of xy, we get st.g+7r=bc+s5(q, + g, +59,9,)
Thus, (x* y)mods =r(mods) = be(mods) =[x(mods)y(mods)|mod s

Similarly, it can be shown that
(x* y)(modt) =[x(mod ) y(mods)]modz .

Map is one-one:
Let x € Ker(¢). Then ¢(x)=(L1)

i.e., (x(mods).x(mod?))=(1.1)

Thus, x—-1=sq, =tg, for some integers ¢,and g, .

As, s|sq,, so using above relation, we get s|1g, .

Since ged(s.t) =1, therefore, s|g,and g, =sz for some integer z.
Thus, x—1=s7z which implies x =1(modst) i.e. ¢ is one-one.
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Map is onto:
It is known that order of group U(n) is @(rn)and ¢(st) = @(s)e(t) if gcd(s,t) = 1.

Thus, |U(st)| = @(st) = @(s)e(t) = | U(s) || U ) | =| U(s) @ T (1) |
As ¢ is a one-one map such that its domain and co-domain have same orders, thus
the map ¢ is onto as well.

Lemma:
If a =b(modce), then ged(a.c)=ged(b.c).
Result
Let s and t be natural numbers such that gcd(s, t) = 1, then
U, (st)=Ul(s)
Proof: Define ¢:U,(st) = Uls)
as ¢(x) = x(mods)
Map is well-defined:
It may be observed that if xeU,(sf), then x eU(sr)
and r|x—-1 and x(mods) e {0.1.....s—1} .
As done in proof of previous result, x(mods) e {l.....s—1}.

Let x = y. Since mod operation is well-defined, x(mods)= y(mods).

Map preserves operation:

Let x, y eU,(s1) .

Claim: ¢(x* y) = ¢(x)¢(y)

i.e., (x*y)(mods) =[x(mods)y(mods)]mods where * is multiplication mod st operation.
Let x(mods) =b. y(mods)=c.

Thus, x=3s¢q, +b. y=sg, +¢ for some integers gq,and g, .

So, xy =bc+s(q + 4> +5G19)

Using Division Algorithm, xy =st.g +r for some integers g and r where 0 <r < st.
So, (x=y)=r.

Equating the two expressions of xy, we get st.g+r=bc+s(q + g, +5g:9,) -

Thus, (x*y)mods =r(mods) =bec(mods) =[x(mods)y(mods)|mods .

Map is one-one:

Let x € Ker(¢). Then ¢(x)=1 i.e. x(mods)=1 and since xeU, (st), then r|x-1.
Thus, x—1=usg, =tg, for some integers g,and g, .

As, 5|sq,, so using above relation, we get s|1q, .

Since ged(s.r) =1, therefore, s|g,and g, =sz for some integer =z.

Thus, x—1=siz which gives x =1(modsr)i.e. ¢ is one-one.
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Map is onto:
Let yeUl(s).

Claim: 3 xeU,(st)such that x(mods)=y.

i.e. 3 xeU(st)such that x=1(mods)and x = y(mods).
As ged(s.f)=1, using Chinese Remainder Theorem, 3 x(modst) such that
x=1(mods)and x = y(mods)
It only remains to show that ged(x.st) =1 which will give x eU(st).
Since yeU(s), thus ged(y.s)=1 and also x = y(mods), therefore, ged(x.s)=1. (using
Lemma)
Also, since ged(l.7) =1 and x=1(mod¢), by using above Lemma, gcd(x.7)=1.
If ged(x.st) =1, then 3 prime p such that p | gcd(x, st). Thenp | xand p | st
i.e. plxand (p|sorp|t)
i.e. (p|xand p|s)or(p|xandp|t)
i.e. gcd(x, s) # 1 or gcd(x, t) £ 1 which is a contradiction.

Thus, ged(x,st) =1. (
INTERNAL DIRECT PRODUCT
Definition

Let G be a group and let H, K be normal subgroups of G. Then G is
Internal Direct Product of H and K (denoted by G = HxK) if G = HK and HnK =
{e}
Example:
R* denotes the abelian group of non-zero real numbers under multiplication.
Let H be the subgroup containing all positive real numbers
and K=4{-1, 1}.
Then H and K are normal subgroups of R*.
Clearly, HnK = {e}.
Then for each 0 # r € R, we have
1.r cr =0

= [ (=1).(-r) ;r<0
Then R+= HxK.
Definition
Internal direct product of n normal subgroups of group
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Llet H,.H,.....H, be a finite collection of normal subgroups of group G. Then G is
Internal Direct Product of H,.H,.....H, (dencted by G=H, xH, x..xH,) if

(i) G=HH,. H,

(iy HH,.HnH_  ={ Vi=L2l..n-1
Lemma
If G is Internal Direct Product of its normal subgroups H,.H,.....H,,

then for 1<i j<ni#j. H,nH, ={e}.
Proof: let xe H, nH for 1=i j=n i#j.
Without Loss Of Generality, let i < j.

Then xeH, and xeH H, ... H,, as Xx=e..exe.e.

So, xeHH, .. H, nH,=1{e.Thus, x=e.
As xe H, nH for 1<i.j<n.i=# j is arbitrary, therefore H,nH, = {e} .
Lemma

If G is Internal Direct Product of its normal subgroups H,.H,.....H ,
and if h, e H, for 1<i<n, then hh, =hh for 1<i j<mizj.
Proof: Let 1<i j<ni= j. Consider x=hh, h'lh'

R e |

Then using the fact that H; « G, we get x=hhh’ lh - {h h.h, llh'l €EH,
Similarly, since H, 4G, we get x="hh.h'h;' —h.{hjhl.'lhvr."l)EH

H,nH;={e},s0 x=e,i.e. hh; =h;h,
Fundamental Theorem Of Finite Abelian Groups

Fundamental theorem of finite abelian groups states the following:

"If G is a finite abelian group, then G can be expressed as a direct
product of cyclic groups of prime-power order. Further, the

factorization is unique except for the rearrangement of factors.”
Lemma

Let G be a finite abelian group of prime-power order. Let a =G be an
element of maximal order. Then G = <=g>x K forsome K <&
Proof: Let |G| = p" where p is a prime and n is a natural number. We prove the

result by induction on n.
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Forn =1, G|= p (prime). As every group of prime order is cyclic and g G is an

element of maximal order, therefore, G=<a> and G=<a>x{e}.
Induction hypothesis: Assume that the result is true for abelian groups of order p*

where F<n.
Now we prove for n:

Let @ € G be an element of maximal order p"™ (as a G, G(a)|c}({'}))

Let xeG. Then 0(1‘}‘0(6} (by corollary to Lagrange’s Theorem) and thus, o(x) = p

for some natural number t. But the maximal order is p™, so r<mand p’

p".
Thus, x¥ =e.

As x € G was arbitrary, thus VxeG. o =e.

If G=<a>, then G=<a>x{e} and we are done.

Assume G=# <a>. Choose be=G of smallest possible order such that beg<a>.
Clearly, b=e.

Claim 1: o(b)=p
Since beGand b=e. Thus, o(b) = p”where 0<a <m and, therefore, ged(p.p®)=p
o(b)
gcd(p.o(b))
_o®)
o

Consider, o(b*) =

Thus, o(b%) < o(b).

But b is element of smallest order such that bg<a >, thus b e<a>.
Let b7 =a' for some integer i.

Then, e=b*" (because VxeG.x¥ =e)

Note, e=5%" =527 =(p?F" =(a'f"

So, o(a') < p™

Thus, a' is not a generator of <a> (as o(a)=p") and therefore, ged(i. p™) #1
It gives us that i= pt for some t and 5% =a’ =a*.

Define e=a™'b
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If ce<a>, then ¢=¢°, and therefore, b=a"™ =< a >, which is a contradiction.
Thus, cg<a =.

Observe that using that G is an abelian group, ¢f =a™bf =b577hF =e
Thus, a{'_c}| p (p prime), and therefore, o(c)=10r p

If o(c)=1, then ¢=e which gives ¢ €< a >, a contradiction.

Therefore, o(e)=p.

Thus, 3 element, viz., ¢ of smallest possible order 'p’ such that eg<a =.
Also, b is element of smallest possible order such that be<a>.

Thus, o(b)=p.

Claim 2: <a>mn<b>={e}.

Clearly, <a>n<b>c <b>

Therefore, o(<a>m<b>) |a{-:::£:r =) (using Lagrange’s Theorem)
ie. o(<a>n<b>)|p [~ o(B) =o(<b >) = p]

If o(<xa>m<b>=)=p, then it together with <a>m~<b> < <b> gives us that
<axm<b>=<bh>ie. <b>c <a>andthus, he<a>, which is a contradiction.
So, o(<a>m<b=)=1and <a=mn<b=>={e}.

We show existence of K:

G
<b>

Define G =

let YeG. Then ¥Y=x<b>for some xeG.

Consider g=qg <b >.
‘F‘F—L

o

If o(@) <o(a)=p™, then o(@) < p™ " i.e. @¥ =e=<b>.
which gives (a <b >}Pm_: =<b> and therefore, a¥" <b>=<b>ie. a’ e<b>
Clearly, a’ " e<a>.

So, " e<a>n<b> but <a>n<b>={e}.

Thus, a®" =e, which is a contradiction as o(a) = p".

Hence, o(a)=o(a)=p"™ [ c:n(ﬁj| ol(a)]
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Claim 3: @ is element of maximal order of G .
Let, if possible, 37 G :o(f) > p™ that is o(f) = p*where m+1<a<n
As 7 G, therefore, 7 =t <b > for some feG.
Since, o(f) = p®, therefore, ¥ =2 i.e. (r-::b::-jf"“ —<b>.
So, ¥ <b>=<b> which gives t¥ e<bh>
As <b> is a group of order p (because o(b)=p) , therefore all the non-identity
elements of <5 >will have order p.
If ¥ =e , then p® =o(7) <o(t) < p*, so o(t) = p°*.
This is a contradiction as the maximal order of an element of G is p" and
m+l<a<n.

Thus, ¥ #e and o(t? )=p
olt)

But o(t") = ged(e(t). p”) )

Therefore, o(t) = p x ged(o(t). p%)
Let o(t) = p? for some g (as f G and |G| =p")

Since, c:r(f)| o(t)and o(f) = p® therefore, ¢ <gq.

Using o(t) = px ged(o(f). p®) and a <q, we get o(f) = pxp” = p“* > p”
This is a contradiction as the maximal order of an element of G is p™
Thus, the maximal possible order of an element in G is p", @ is element of

maximal order of G and claim 3 holds.
As @ is element of maximal order of G, thus, by induction hypothesis,

G =<a >x K for some subgroup Kof Gi.e. G=<a>K,and <a>nK={e}.
let K={reG|F=x<b>ck|
Claim 4: <a>nK ={e}

Let xe<a>"K.
Then xe< a> and x € K which gives, ¥ e K and x =a’ for some integer j.
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ie. x<b>=a’ <b>
ie. x<b>=(a<b>)
ie. x=x<b>=ag' e<a>
Hence, e Kn<a>={e}={<bh>]}
i.e. x<b==<b> which gives xe<b>

But xe<a>.Thus, xe<ca>n<b>={e}

Hence, <a> K ={e}.

K

Claim 5: K<G:<b>c Kand K=
<b=>

Clearly, K is non-empty as ec kK.

Further, if x,ye Kk, then x<b>y<b>ek .

As K<G, (x<b>)y<b>"eK ie. @ )<b>ekK.

So, x»~ € K which gives K<G.

Also, for all integers t, ' <b>=<b>cK . (as <b> is identity of K)

Thus, <b>c K

K
<b=
Then ¥=x<b> for some xeG and using the definition of K, we get v e K.

.SD,E-:; K
<bh> <bh>

In order to show that K =

, consider ek

This gives x=x<b>¢e

. Thus, xeKandso, x=x<b>ck.

Now, let x<b=e
<h=

— K . Combining, we get K = K i
<b > <b>

Claim 6: G=<a=K

Hence,

let veG. Then, y<b>eG=<a>kK

i.e. v<b>=a’k for some integer jand kK.
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ie. v<b>=a'k<bh>

i.e. vi@a'k)le<b>cK

i.,e. yv=a’kk’ for some k'eK
Hence, ye<a>kK

Thus, G=<a>K and using claim 4, we get G=<a>x K.

Theorem

(Fundamental theorem of finite abelian groups) If G is a finite
abelian group, then G can be expressed as a direct product of cyclic groups of
prime-power order. Further, the factorization is unique except for the
rearrangement of factors.

Proof: Let G be an abelian group such that |G|:p1""p;’.....p§* where p, s are

distinct primes.

Define foralli=1, 2, ..., k, G(p,)={xeG|x" =e}.

Using induction on k and applying Lemma 6.1, we get that G(p,) is an abelian

subgroup of G with ‘G{'_p,-)|=p;" and G=G(p,)xG(p,)x....xG(p,). These G(p,)are
uniquely determined.

Since each G(p,) is an abelian group with |G(p!.)‘ :p,-"-' i.e. G(p,) is of prime power
order and thus, applying Lemma 6.3 on G(p,), we get that G(p,) is expressible as
an Internal Direct Product of cyclic subgroups which will be again of prime power
order being subgroups of G{p,;) which is of prime power order (using Lagrange’s
Theorem). Further since G=G(p,) < G(p,)%.....xG(p,), and G(p,) is expressible as

an Internal Direct Product of cyclic subgroups, then G is expressible as an Internal
Direct Product of its cyclic subgroups.
In order to prove Fundamental Theorem, it is sufficient to show that uniqueness

(upto isomorphism and rearrangement) of factors of G(p,).
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POSSIBLE QUESTIONS

PART-B (5 x 2 =10 Marks)

Answer all the questions

1.

ok~ own

Define external direct product.

Define internal direct product.

Write the statement of fundamental theorem of finite abelian groups.
Write an example for external direct product.

Write an example for internal direct product.

PART-C (5 x 6 =30 Marks)

Answer all the questions

1.

Prove that the order of an element of a direct product of a finite number of finite
group is the least common multiple of the orders of the components of the element.
Let G and H be the finite cyclic groups. Then prove that G@H is cyclic iff |Gland|H]|
are relatively prime.

Find out the number of elements of order 5 in Zos@®Z .

Let s and t be natural numbers such that cd(s, t)= 1, then prove that U(t)~ U(s)@®U(t).
If G is the internal direct product of its normal subgroups Hi,Ho, .....,H, then prove
that G =H;®H.®.....HH,

If G is an internal direct product of its normal subgroups Hj,Ho, .....,Hy, then prove
that every element of G can be uniquely expressed as hih,....h, where h;e H; for
1<i<n.

Let G be a finite abelian group of order p"m where p is a prime that does not divide
m. Then prove that G=H x K. Moreover |H| = p".

Let G be an abelian group of prime —power order and let a be an element of maximal
order in G. Prove that = < a > x K for some K<G.

Show that a finite abelian group of prime —power order is an internal direct product of
cyclic groups.

10. State and prove the fundamental theorem of finite abelian groups.
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UNIT-1V
SYLLABUS

Group actions, stabilizers and kernels, permutation representation associated with a given group
action, Applications of group actions: Generalized Cayley’s theorem, Index theorem.

group action

Definition
Let ¢ be a group with identity element e and 5 be any set. Then a action of

G on § is amap
G x5+~ 5 defined by
(g,s)—~g.s€S5 seSand geG
satisfying following conditions:
1. g,.(g>.5s)=(g192).5, g1, g2 €6 and s€ES.
2. e.s=s5 S5ES.

Example

Let ¢ be a group with identity element e and 5§ be any non-empty set. Define
amap Gx5+—5 as
g.s=s5 geE€G and se€S&.

Then, we have
1. g1.(g2-5) = (9192)-5

=5 g g-€6 and s€S.
2. e.s=5, s5ES.
Thus & is acting on S.

The action defined in Example 1.2 of any group on a non-empty set is refer to as trivial
action.

Example

Let ¢ be a group with identity element e and § = G. Define a map
Gx5—5 as

g.s=gs, g€G and seS5=0¢G.

Then we have
1. g,.(92-5) = g1-(g25)
= (9192)-5, g1 g2, SEG.
2. e.s=es
=5 5EI@.
Thus G acts on itself by left multiplication.
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The action defined in Example
of any group on to itself is refer to as left regular action.

Example

Let ¢ a group with identity element e and 5 = &. Define a map
GxS5+5 as
g.s=gsg~ ' g, sEG.
Then we have
1. g5.(g2.5) = g5.(g25g5")

= (g192)s(g5"g1")

= (91321}5(9132}'1

= (9:192)-5, 91 920 SEG.
2. e.s=ese!

=5 SE&5,

Thus group & acts on itself.
The action defined in Example

of any group on to itself is refer to as conjugation.

Proposition

Let G be a group with identity element e, 5 be a set and suppose that G
acts on 5. Then for each g € G, the map o¢,:5 = 5 defined by
o,(s)=g.5, g€EG and s€S
is @ permutation on 5.
Proof. In order to show that ¢,:5 = § is a permutation it suffices to show that ¢, is a
bijection. Suppose that ¢,(s;) = g,(s,), where s,, s, €S
= g.51 = g.52
=g '(g-51) = g7 (g-52)
= (g7'g).51 = (g7 9)-52
= E.SI = E..S'z
=1 S]_ = 5'2.

So g, is injective. Also for each s € 5, there exist g7'.5s € § such that
o,(g7 .s) =g.(g7".5)
=£e.5
= 5.

Thus o, is onto. Hence g, is a permutation.

Let 5§ be a finite set and Sym(5) be the set of all permutations (bijections) of 5. Then,
we know that Sym(S5) is a group with respect to the operation composition of permutations

(maps) and it is known as symmetric group of 5.
If we take 5=1{1,2,--,n}, then sym(S) is called symmetric group of order n and in this

case we write Sym(5) = §,.
Proposition

let G be a group, § be 3 set and suppose that ¢ acts on 5. Then, the map
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¢: G — Sym(S5) defined by
®(g) =0, gEG
is @ homomorphism.
Proof. Let g,, 9, € G. Then for each s€5
@(919:2)(s) = g9, 4,(5)
= (g192).5
= g1-(g2-5)
= g, (04,(s))
= (gg, @ 05, (s)
= (¢(g1) e $(g2))(s).
Thus
$(9:192) = p(g1) e ¢(g:), forall gy, g, EG.
Hence, ¢ is a homomorphism.
Definition
let ¢ be a group, 5§ be a set and suppose that ¢ acts on 5. Then the
homomorphism ¢ : G — Sym(S) defined by ¢(g)=0,, g€G is known as permutation
representation associated to the given action.
Proposition
Let G be a group with the identity element e, S be a set and suppose that
G acts on 5. If ¢ : G = Sym(S) is a homomorphism, then the map
G xS+~ 5 defined by
g.s=¢(g)(s), geEG ands €S
is & action of G on 5.
Proof. As ¢ : G = Sym(S) is a homomorphism, therefore

¢(g19:) = ¢(gy) o p(g2), 91,92 €G.
Then, for g, g € G and s €5, we h_ave
91-(g2.5) = ¢(g,)(g2.5)

= @(g1)(@(g2)(s))
= (¢(g1) = ¢(g2))(s)
= ¢(g19:)(s)
= (g192)-5 .
Also, for each s €5, we have
e.s = ¢(e)(s)
= I(s)

= 5.
Thus, & acts on 5.

Faithful action

Definition

Let ¢ be a group, § be a set and suppose that ¢ acts on 5. Then the action of

G on § is said to be faithful if every distinct element of group G induces the distinct
permutation of 5.
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Example

Let ¢ a group and S = G. Suppose G acts on to itself by left regular action.

Then, for g,,g9-.,5 € 6 such that g, = g., we have
415 F ga5
=2 §1.5 F 2.5
= ag,,(s) # g,,(s), s€ 5
= J.-;‘i * Jyg'
Thus left regular action is faithful.
Kernel of the action
Definition
Let G be a group, S be a set and suppose that ¢ acts on S. Then, the kernel
of the action of G on S is defined as
{gEG: g.s =5, for all s € s}.

Next, we show that the kernel of action forms a subgroup of G.

Proposition
Let G beagroup, S be asetandsuppose G acts on S. Then kernel of action
is & subgroup of G.

Proof. Let K be the kernel of action. As
e.s=gs, forall ses
=ecc K.

Therefore K is non-empty. Let k,k, e K and s € §, then
(kikz).s = ky.(k2.5)
=k,.5
= 5.
=k k- EK.
Also, let ke K and s € S, then
k~ls=k"t.(k.5)
= (k™ 'k).s
= 5.
= k™! K.
Thus K is a subgroup of G.
We know that, if ¢: G = G' is a homomorphism then kernel of ¢ denoted as ker ¢ is

defined as _

kerp ={g €G: ¢p(g) =€ }.

It is easy to verify that kernel of a homomorphism is always a normal subgroup of G.
In view of above definitions we have following observation:
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Proposition
Let ¢ be a group, § be a set and suppose that ¢ acts on § and let

¢ : G — Sym(S) be the permutation representation associated to the action then
kernel of action = ker ¢.

Proof. ker ¢ = {g € G: Pp(g) =1}
={g€G: g, =1}
={g € G: g,(s) =I(s), s€ES}
={gEG: gs=s5, s€ES}
= kernel of action.

Stabilizer of group action
Definition
Let G be a group, S be a set and suppose that ¢ acts on S. Then, for each
s € §, define the stabilizer of s in G denoted as G, as
G;={g€EG:g.5s =s}
In the next result, we prove that if group G acts on the set S. Then, for each s€§,
stabilizer G, of s is a subgroup of G.

Proposition
Let G be a group and S be a set. Suppose that G acts on S. Then, for each
s € S, the stabilizer G, of s in G is & subgroup of G.

Proof. As e.s=5s, forall ses, so e € G.. Therefore
G, # 0.
Let x,y €G,, then x.s =5 and y.s =s. So, we have
(xy).s = x.(¥.9)
=X.5
= 5.
= Xy € S.

Also for each x € G,,
xts=x"1(x9)
=(x"1x).s
= e.5
= 5.
=x!EeS.
Hence G. is a subgroup of G.
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Theorem

Let G be a group and S be a set. Suppose that G acts on S. Then, any two
elements of G induce same permutation if and only if they are in the same coset of kernel of
action.
Proof. Let Kk be the kernel of action and g,, = g,, for some g,, g, € G. Then we have
0,,(s) = a,,(s), forall ses

= g,.s=g,.5, forall se§

=g5;'g..s=s5, forall ses

=0, 0. €K

= Kg: =Kg..

Conversely, let g,, g, € Kg. Then, we have
g 'lg, €K and g lg, €K

= 9799 '9. €K

=g:'0. €K

= (g;'9,).5=s forall se8§

= g,.5s=g,.5 forall se8§

= a,,(5) = 04,(s), forall ses.
Thus, g, and g, induces same permutation.

Normalizer as a Special Case of Stabilizer

Let G be a group and § be a subset of G. Then normalizer of § in G denoted as
N.(S) is defined by
{g €G:gS5S=S5g}

It is easy to verify that normalizer is a subgroup of G. In this section we show that
normalizer is a special case of stabilizer,

Proposition
Let G be a group with identity element e and P(G) be the set of all

subsets of G. Then the map

G x P(G) — P(G) defined by

g.B=gBg™, geG and B € P(G)
is & action of G on P(G). Further, for every B € P(G), G; = N;(B), where G is the stabilizer of
B in G.
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Proof. For each g,, g, € G and B € P(G), we have
91-(92-B) = 9:-(9:Bgz")
= 0:(9.Bg: ") gr*
= (9:92)B(9:192)7"
_ =(9192)-B .
Also
e.B =eBe!
=B, for all B € P(G).
Thus G acts on P(G). Further
Gs ={g €EG:g.B =B}
={g € G:gBg™' = B}
={g € G:gB = Bg}
= N;(B).
stabilizer is a subgroup of G therefore, N;(B) is also a subgroup of

G.
Centralizer as a Special Case of Stabilizer
Let G be a group and S be a subset of G. Then centralizer of § in G denoted as

C;(5) is defined as
{g €EG:gs =sg, forall ses).

It is easy to verify that centralizer is a subgroup of . In this section, we show that

centralizer is a special case of stabilizer.
Proposition
Let G be a group with identity element e and N.(S) be the normaliser of

S in G. Then, a map
N;(S) xS~ S8 defined as

g.s =gsg~t, ge N;(§) and se€S.
is a action of N,(S) on . Further, kernel of action of N;(S) on § is same as the centralizer of

Sin G.

Proof. For each g € N.(5), gS = Sg
= gsg tes, forall ses.

Therefore the map N;(S) xS~ S defined by
g.s=gsg™*, g€ N;(S) andseS.
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is well-defined. Also, for each g,, g, € N;(§) and s € §, we have
91-(g2-8) = g1.(g2597")
= 01(9.59:1)9: "
= (9:9:)s(8:9.) ™"
= (9.9:)-5 -

Also,

e.5 =ese !

=g, forall ses.

Thus N;(S) acts on §. Further, if K be the kernel of action
K={geG: gs=s forall ses}

={geG: gsgt=s forall ses}
={geG: gs=sg forall seS5}
= E‘G_(‘?):

Furthermore, as kernel of action is a subgroup of G therefore
C(S) < N&(S)

Also we know that N;(S§) is a subgroup of G. Hence we have
Ca(S) < G.

Orbits

We begin this section by showing that if group G acts on a non-empty set S, then the
action of G on § defines a equivalence relation on §.

Theorem

Let group G acts on a non-empty set S. Define a relation on S as
s~t < s=g.t forsome ge@G.
Then, '~ is an equivalence relation on S.

Further, for every s € §, the number of elements in equivalence class of 's"is equal to
the index of the stabilizer of 's"in G.
Proof. (Reflexivity) As G acts on S. Therefore

e.s=g5 forall ses
= s~5 forall ses.
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(Symmetry) Let s~t. Then we have
s=g.t forsome gedG
=g ls=g"1(g.t)
=g hs=(g""g)t
=g tls=et=t where gtea
= [~&.
(Transitivity) Let s~t and t~u. Then we have
s=g,.t and t=g,.u forsome g,, g, €G

=$ = g1-(g2-0)
=5 = (g192).u, where g,g, €G
= 5~

Thus, '~" is an equivalence relation on S.

Further, for every s € §, let ¢. be equivalence class of s in §, i.e,
cs={gs: geEG }.
Let G, be the stabilizer of s in G, i;(G,) be the index of G, in G and (Gi) be the set of all
£ left

left cosets of G, in G. Then, in order to show that 0(c,) =i;(G,) it suffices to show that there

&

exists a bijection between ¢, and (G—) ,
8 left

Define a map : ¢, = (5) as
Gs /left

Y(g-s) = gG;, gEG.

Let g.. g- € G such that
0i.5 = g2.8

< Qz_i-l(gi- s) = g:(g2-5)

< (92 g1)-5=5s

=979, €G;

@QIGS =gEG.5 _

= YP(g,.5) = YP(g,-9).

Therefore, ¥ is well-defined and injective. Also, for each gG. € (3

- ) , there exist g.sec,
27 left

such that
l}.rJ(_gS] = gG.s

Thus, y is surjective. Hence

oer=0((z),,)

= i (G).
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Definition

Let group ¢ acts on a non-empty set §. Define a relation on § as
s~t o s=g.t forsome geaG.

Then, '~"is an equivalence relation on S. The equivalence class of s in S
c. ={g.5s:g€G}

is called the orbit of G containing s.

Definition

Let group G acts on a non-empty set S. Then the action of group ¢ on § is

said to be transitive if ¢ has exactly one orbit.

Problem

Let G be a group, S be a non-empty set and suppose that G acts on S. Let

a,b €S such that b=g.a for some geG, then G, =gG,g™", where G, and G, are stabilizers
of a and b respectively.

Solution. Let a,b €S8 such that b=g.a forsome ge ¢ and x e G,. Then
(g7'xg).a = (g7'x).(g.a)
=g ' (x.b)
=g b
= .
Therefore
g 'xg € G, forall x G,
= x € gG,g~* for all x € G
= GEJ = gGag_l'
Conversely, let x € gG,g™*
= (g~ *xg).a=a
= (g 'x).b=a
= g.((g7*x).b) =g.a
=x.b=g.a

=x.b=>b
Therefore
= x€G, forall xe gG,g™*
= gG,g"! € G,.
Thus
9G.g7* € G,
Hence
Gy, = 9G, 97"
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Theorem

(Cycle Decomposition) Every element of the symmetric group S, has a
um’qué &yde decomposition.

Proof. Let 0 € S5,, G = (o) and suppose that ¢ actson §=1{1,2,---,n}.
§ can be partitioned into unique set of disjoint orbits. Let 0 be any orbit and s € 0. Let

)

be the set of left cosets of G, in G. Then define a map Y: 0 — (GE) as
left = left

Y(o'.s) =0'G,, o' €G=(g), s€ES.
Then, for og*.s, d/.s € 0, we have
D' 5) = (7 .5)
= 0'G, = 0/ G,
=g 7 € G,
=0 J.s=5
=g'.s=d.5 .
So, ¥ is an injective map. Also for each "G, € (=) , there exist ¢”.s €0 such that

6/ loft
b(e".s) =0"G..
Therefore 1 is surjective and so it is a bijection. Thus

o-d())
G

Now, as G is cyclictherefore G, < G and soin view of Lemma 6.1, (—) is also cyclic group of

55/ lofi
order 'd’, where d is the smallest positive integer for which ¢¢ € G.. Further
. ... 0(G)
Ig [G.s.} = O(GS:}
G
=0
((Gﬁ')iﬂeft )
=d
= 0(0).
Thus the distinct cosets of G, in G are
eG., oG, o0°G, -, oG,
Therefore, in view of above defined bijection ¢ distinct elements of 0 are
s, a(s), ds), -, a4 b

Fixing the elements of 0 in above order shows o cycles the elements of 0 i.e. on orbit of
order d, ¢ acts as a d-cycle.
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Further, the orbits of G = (o) are uniquely determined by a. As within each orbit, we

can start with any element. Suppose we choose to start with ¢'(x) instead of x, then we have
i), @), ), x o), -, 07 ()

which is a cyclic permutation. This shows cycle decomposition is unique up to a rearrangement

of the cycles and up to a cyclic permutation of the integers with in each cycle.

Generalized Cayley Theorem
Let G be a group, H be a subgroup of G and let A be the set of left cosets of
H in G. Then G acts o