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S.No Lecture Topics to be Covered Support Material/Page
Duration Nos
Period
UNIT-I
1 1 Introduction, Sets , finite and S2:chapter-2,Pg.No:104-
infinite sets 114
2 1 Uncountably infinite sets S2:chapter-2,Pg.N0:104-
114
3 1 Functions S2:chapter-2,Pg.N0:148-
150
4 1 Relations S2:chapter-2,Pg.No:151-
153
5 properties of S2:chapter-2,Pg.No:154-
binary relations 155
6 1 closure, partial ordering | S2:chapter-2,Pg.No:183-
relations, counting. 186
7 1 continuation on closure,partial S2:chapter-2,Pg.No:186-
ordering relations, counting. 191
8 1 Recapitulation and Discussion
of possible questions
Total No of Hours Planned For Unit 1=8
UNIT-1I
1 1 Pigeonhole principle S2:chapter-2,Pg.N0:192-
197
2 1 Permutation and Combination S1: chapter -4
Pg.N0:313-315
3 1 continuation on Permutation and | S1: chapter -4
Combination Pg.N0:316-318
4 1 Mathematical Induction S1: chapter -4
Pg.N0:320-323




continuation on Mathematical
Induction

S1: chapter -4
Pg.No0:323-326

Principle of inclusion and | S6: chapter -5 Pg.No:-

Exclusion. 172-176

continuation on Principle  of S6: chapter -5 Pg.No:-
inclusion and | 176-181

Exclusion.

Recapitulation and Discussion
of possible questions

Total No of Hours Planned For Unit 11=8

UNIT-I11

Recurrence relations-Definition
and basic concepts

S1: chapter -7
Pg.N0:449-452

continuation on basic concepts of
Recurrence Relation

S1: chapter -7
Pg.N0:452-455

Problems on Generating
functions

S1: chapter -7
Pg.No0:484 - 487

continuation on
Problems on Generating
functions

S1: chapter -7
Pg.No0:487 - 490

Linear recurrence relation with
constant coefficient

S1: chapter -7
Pg.N0:460-465

continuation on Linear recurrence
relation with
constant coefficient

S1: chapter -7
Pg.N0:465-470

Recapitulation and Discussion of
possible questions

Total No of Hours Planned For Unit I11=7

UNIT-1V

Introduction to Graph theory
Basic terminology, models and
types, multigraphs and weighted
graphs,

S1: chapter -9
Pg.N0:589-595

Graph Representation and
isomorphism of graphs

S1: chapter -8
Pg.N0:611-620

Connectivity- Definition and
theorems

S1: chapter -8
Pg.N0:621-630

Euler’s and Hamiltonian paths

S1: chapter -8
Pg.N0:633-645

Planner graph-theorem

S1: chapter -8
Pg.N0:657-665

Graph coloring-Definition and
theorems

S1: chapter -8
Pg.N0:666-674




7 1 Tree and its Properties, S1: chapter -9
Spanning trees Pg.N0:724-735
8 1 Recapitulation and Discussion
of possible questions
Total No of Hours Planned For Unit 1V=8
UNIT-V
1 1 Introduction to Statement and S6: chapter -1 Pg.No:2-6
Notation Logical Connectives S4: chapter-1 Pg. No: 11
-12
2 1 Well formed formulae S5: chapter -7
Pg.No0:356-358
3 1 Tautologies-Problems S2: chapter -1 Pg.No:24-
25
4 1 Equivalence of formulae- S5: chapter -7
Problems Pg.N0:368-373
5 1 Theory of Inference S2: chapter -1 Pg.No0:65-
67
6 1 Recapitulation and Discussion
of possible questions
7 1 Discuss on Previous ESE
Question Papers
8 1 Discuss on Previous ESE
Question Papers
9 1 Discuss on Previous ESE
Question Papers
Total No of Hours Planned for unit V=9
Total 40
Planned
Hours
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COURSE OBJECTIVES
e To provides a deep knowledge to the learners to develop and analyze algorithms as well as enable them
to think about and solve problems in new ways.
e To express ideas using mathematical notation and solve problems using the tools of mathematical
analysis.

COURSE OUTCOME

On successful completion of the course,students will be able to

1.Familiar with elementary algebraic set theory

2.Acquire a fundamental understanding of the core concepts in growth of functions.

3.Describe the method of recurrence relations

4.get wide knowledge about graphs and trees

5.initiate to knowledge from inference theory
UNIT I
Sets: Introduction, Sets , finite and infinite sets, uncountably infinite sets, functions, relations, properties of
binary relations, closure, partial ordering relations.
UNIT 1l
Pigeonhole principle, Permutation and Combination, Mathematical Induction, Principle of inclusion and
Exclusion.
UNIT 111
Recurrences: Recurrence relations, generating functions, linear recurrence relations with constant coefficients
and their solution, Substitution Method, recurrence trees, Master theorem.
UNIT IV
Graph Theory : Basic terminology, models and types, multigraphs and weighted graphs, graph
representation, graph isomorphism, connectivity, Euler and Hamiltonian Paths and circuits, Planar graphs,
graph coloring, trees, basic terminology and properties of trees, introduction to Spanning trees
UNIT V
Prepositional Logic: Logical Connectives, Well-formed Formulas, Tautologies, Equivalences, Inference
Theory.
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UNIT -1

Sets: Introduction, Sets , finite and infinite sets, uncountably infinite sets, functions, relations, properties of
binary relations, closure, partial ordering relations.
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1. Introduction
Set: any collection of objects (individuals)
Naming sets: A, B. C.....
Members of a set: the objects 1 the set
Naming objects: a. b, ¢, ....
Notation: Let A be a set of 3 letters a, b. c.
We write A = {a, b. ¢}

aisamemberof A,aisin A.wewritea€ A
d is not a member of A, we write d ¢ A

Important: 1. {a}#a
{a} - a set consisting of one element a.

a - the element itself

2. A set can be a member of another set:
B={12. {1}, {2}. {1.2}}

Finite sets: finite number of elements
Infinite sets: infinite number of elements
Cardinality of a finite set A: the number of elements in A: #A. or |A|

Describing sets:
a. by enumerating the elements of A:

for finite sets: {red. blue. yellow}. {1.2,3.4.5.6,7.8.9.0}
for infinite sets we write: {1.2.3.4,5,....}

b. by property. using predicate logic notation
Let P(x) 1s a property. D - universe of discourse
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The set of all objects in D. for which P(x) 1s true. 1s :

we read: A consists of all objects x m D such that P(x) 1s true

¢. by recursive definition. e.2. sequences
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Examples:

1. The set of the days of the week:
{Sunday. Monday, Tuesday, Wednesday. Thursday, Friday, Saturday)
2. The set of all even numbers :

{ x| even(x) }
{2.4.68.....}

3. The set of all even numbers, greater than 100:

{ x| even(x) A x > 100}
{ 102, 104. 106, 108.....}

4. The set of integers defined as follows:
a;=1. aps) =ay +2 (the odd natural numbers)
Universal set: U - the set of all objects under consideration

Empty set: O set without elements.

2. Relations between sets

2.1, Equality

Let A and B be two sets.
We say that A 1s equal to B, A = B if and only if they have the same members.

Example:
A={246}.B={246} A=B

A={a.b,c},B={c,a,b} A=B
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Written 1n predicate notation:

A=Bifandonlyif Vx,x€ A<~ x€ B

2.2, Subsets

The set of all numbers contains the set of all positive numbers. We say that the set of all
positive numbers is a subset of the set of all numbers.

Definition: A is a subset of B if all elements of A are in B. However B may contain
elements that are not in A

Notation: A< B
Formal definition:

Ac Bifandonlyif Vx,x€A2>x€ B

Example: A ={24,6},B={1,23456},A cB
Definition: if A is a subset of B, B 1s called a superset of A,

Other definitions and properties:

a.IfA cBandBc AthenA=B

If A 1s a subset of B. and B 1s a subset of A. A and B are equal.

b. Proper subsets: A is a proper subset of B, A ¢ B, if and only if A is a subset of B and
there is at least one element in B that 1s not in A.

AcBiff Yx,x€ A2x€ B A3dx, x€ BA x¢A
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2.3. Disjoint sets
Definition: Two scts A and B are disjoint if and only if they have no common elements

A and B are disjoint if and onlyif ~Ix, (x€ A)A(x€ B)
ieeVx, xegAVxeB

If two sets are not disjoint they have common elements.

Picturing sets: Venn diagrams - used to represent relations between sets

B
@ A 15 a (proper) subset of B

All elements in the set A are
also elements in the set B

Disjoint sets

c.’ Not disjoint sets
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3. Operations on sets

3.1. Intersections

The set of all students at Simpson and the set of all majors in CS have some clements in
common - the set of all students in Simpson that are majoring in CS. This set 1s formed as

the intersection of all students in CS and all students at Simpson.

Definition: Let A and B are two sets. The set of all elements comumon to A and B 1s
called the intersection of A and B

Notation;: A~ B
Formal definition:

AnB={x|(x€ A)A(x€ B)}

Venn diagram:

Example: A = {2,4,6}, B={1,25,6}, An B={2,6}
Other properties:

AnBc A An Bc B
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The intersection of two sets A and B 1s a subset of A. and a subset of B

A N0 =0 The intersection of any set A with the empty set is the empty set
A n U =A The intersection of any set A with the universal set is the set A itself.

Intersection corresponds to conjunction in logic.

Let A= {x|P(x)}, B={x| Q(x)}
An B={x| P(x) A Q(x)}

3, 2. Unions

The set of all rational numbers and the set of all irrational numbers taken together form
the set of all real numbers - as a union of the rational and irrational numbers.

All classes at Simpson consist of students. If we take the elements of all classes, we will
get all students - as the union of all classes.

Definition: The union of two sets A and B consists of all elements that are in A
combined with all elements that are in B.
(note that an element may belong both to A and B)

Notation: A UB
Formal definition:

AuB={x|(x€ A)V(x€ B)}

Venn diagram:
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Example: A = {2,4,6,8,10}, B = {1,2,3,4,5,6},A U B = { 1,2,3,4,5,6.8,10}

A U B contains all elements in A and B without repetitions.
Other properties of unions:

Ac AuB Bc AuB

A is a subset of the union of A and B.
B 1s a subset of the union of A and B

A U O = A The union of any set A with the empty setis A
A U U =U The union of any set A with the universal set E 1s the universal set.

Union corresponds to disjunction in logic.
Let A= {x|P(x)}.B={x|Q(x)}
A u B ={x|P(x)VQ(Xx)

3.3. Differences

Definition: Let A and B be two sets, The set A - B, called the difference between A and
B. 1s the set of all elements that are in A and are not in B.

Notation: A— B or A\B
Formal definition:

A-B={x|(x€ A)A(xe B)}

Venn diagram:
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Example: A={24,6},B={1,56}, A-B={2,4}

A-0O =A The difference between A and the empty set 1s A
A-U =0 The difference between A and the universal set 1s the empty set.

3.4, Complements

Definition: Let A be a set. The set of all objects within the universal set that are not i A,
is called the complement of A.

Notation: ~A
Formal definition:

~A ={x|x¢ A}

Venn diagram:

O

SETS IDENTITIES

Using the operation unions, intersection and complement we can build expressions o
sets.

Example:
A - set of all black objects

B - set of all cats
A N B -set of all black cats

The set identities are used to manipulate set expressions
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A vu~A=1U Complementation Law
A Nn~A=0 Exclusion Law
A nU=A Identity Laws
A Uu=A
A uU=U Domination Laws
A nNnO=9
A uUuA=A Idempotent Laws
A nA=A
~(~A)=A Double Complementation Law

AuB=BUA
A nB=BmA

(A uB)uC=A U (B u(
(ANnBnC=An(B nnQO

A u BnmnO=AuBn(Au(
An BulO=(AnBulAnO

~(A n B) =~Au-~B
(A v By =~An-~B

Commutative Laws

Associative Laws

Distributive Laws

De Morgan's Laws

A-B=A~n-B Alternate representation for set difference

Proof problems for sets
A. Element Proofs

Definitions used in the proofs

Defl: AuB={x|xeA V x € B}
Def2:. AnB={x|xe€A A x € B}
Def3:A- B={x|xe A A x B}

Def4:~A ={x|xeA }
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Inference rules often used:

PAQ =P CQ
PQ [P AQ
P =P VQ

How to prove that two sets are equal:

A=B

1) show that A < B. 1.c. choose an arbitrary element in A and show that it1s in B
2) show that B ¢ A. i.e. choose an arbitrary element in B and show that itis in A

The element was chosen arbitrary, hence any element that is a member of the left ce
also a member of the right set, and vice versa.

Example:
Prove that A-B=A n~B

1. Show that A-Bc An~B

let xeA-B
By Def 3:

xeAAxeB (1)
By(l) xeA (2)
By(1) x ¢ B 3)
By (3)and Def4: x € ~B 4)
By (2). (4)

xeA Axe~B (5)
By (5) and Def 2:

xe An~B

X was an arbitrary element in A — B, therefore A-Bc A~~B (6)
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2.Showthat An~B < A-B
[etxeAn~B
By Def 2:
xeA Axe~B (7)
By(7) xe A (8)
Byv(7) x e ~B (9)

By(9)andDef4: x¢ B (10)
By (8). (10)

xeAAxeB (11)
By (11) and Def 3:

xeA-B

x was an arbitrary element in A n ~B, therefore An~B cA-B (12)
by (6) and (12):
A-BcAn~B
Q.E.D.
B. Using set identities
Provethat An(~AUB)=AnNB

Method: Apply the set identities to the expression on the left, until the expression on th
right is obtained.

By Distribution Laws: An(~AuB)=(An~A) U(ANB)
By the Exclusion Law A N~A=0

Hence An(AuvuB)=0 v (AnB)

By the Identity Law: Ou(AnB)=AnB

Hence An(~AuB)=AnB
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1. Set partitions

Two sets are disjoint if they have no elements in common, 1.¢. their intersection is the
empty set.

A and B are disjoint sets iff AnNB =0
Definition: Consider a set A. and sets Aj. Aj. ... Ap. such that;
a. AfjUuA v ..uw A=A

b. Ay Aj. ... Ap are mutually disjoint, 1.¢. foralliandj, Aj nA; =0

The set {A1. Ay. ... Ay} is called a partition of A
Example:

l.LA={a.b.c.d.c.f. g}
A; ={a.c.d}
Ay = {b. £}
Az = {¢c. g}

The set {{a. c. d}. {b. f}. {e. g} } 1s a partition of A.
2. Cartesian product

Consider the identification numbers on license plates: xixox3 Yi1Y2Ys
where x1x7x3 15 a 3-digit number and Y1Y2Y3 1s a combination of 3 letters

How do we make sure that each license plate would have a different identification
number?

The program that assigns numbers uses Cartesian product of sets.

Definition: Let A and B be two sets. The Cartesian product of A and B 1s defined as
set

AxB={(xy)|x€A A yeB}
Example 1:
A={0.1.2 3}
B = {a. b}

A x B = {(0.a). (0.b), (1.a). (L.b). (2.a). (2.b). (3.a). (3.b)}
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Example 2:

A=1{0,1,2,3,4,5,6,78,9)
A x A = {(0.0).(0.1), (0.2). .... (0.9).
(1,0).(L.1), (1.2). ....... (1,9).

(9.0).(9.1). (9.2). ... (9.9)}

We can consider the result to be the set of all 2-digit numbers.

3. Power sets
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Definition: The set of all subsets of a given set A is called power set of A.
Notation 2* . or Q)(A)

Example:

A-{ab.cd}

P(A) = {@, {a}.{b}.{c}.{d)
{ab}.{a.c}.{a.d}.{b.c}.{b.d}.{c.d)
{a,b.c}.{a.b.d}.{a.c.d}, {b.c. d}
{a.b.c.d}}

Number of elements in {P(A) is 2N where N = number of elements in A
Why 2%2

Bit notation: For a set A with n elements, each subset of A can be represented by a string
of length n over {0.1}. 1.c. a string consisting of 0s and 1s.

For example:
fab}=1100
fac}=1010
{bed}=0111

The i-th element in the string is 1 if the element a; is in the subset, otherwise it is 0.
Thus the subset {a.b.d} of the set {a.b.c.d} can be represented by the string '1101

There are 2" different strings with length n over {0.1}(why?), hence the number of the
subsets is 2" .

Set Relations

2. Definition

Let A and B be two sets. A relation R from A to B is any set of pairs (x.y).
x € A.veB. ie. any subset of A x B.
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If x and y are in relation R. we write xRy. or (x,y) € R..
R is a set defined as

R={(xy)|x€ A,y € B.xRb.}

3. Relations and Cartesian products

Relations between two sets A and B are sets of pairs of elements of A and B.
The Cartesian product A x B consists of all pairs of elements of A and B.

Thus relations between two sets are subsets of the Cartesian product of the sets.

Example:

- gt

. 5)

)

Let A .
B i

.4
. 8

| S
~1 W

The relation R1 :"less than" from set A to set B 1s defined by the following set:
Rl = {(1 2).(1,7).(1,8),.(3.7),(3.8). (4. 7), (4, 8). (5. 7). (5. 8)}
This set is a subset of the Cartesian product of A and B:
A x B = {(1,2),(1,7),(1,8),
(3.2). (3,7), (3:8),
(4.2). (4,7), (4.8).

(5.2),(5,7),(5,8)}
(the members of R1 are in boldface)

The relation R2: "greater than" from set A to set B 1s defined by the set:
R2 = {(3,2). (4.2). (5. 2)}
It 1s also a subset of A x B.

The relation R3 "equal to" from A to B is the empty set, since no element in A is equal to
an element 1n B.
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7. Domains and ranges

Let R be a relation from X to Y,

the domain of R is the set of all elements in X that occur in at least one pair of the
relation.,

the range of R is the set of all elements in Y that occur 1n at least one pair of the relation.

In the above example. the domain of R: choose(x,y) 1s the set of students {Ann, Tom .
Paul}. and the range is the set of food 1tems: {spaghetti, fish. pie. cake}.

The domain and the range are casily found using the matrix or the graph representations
of the relation.

1. Definition
Let A and B be two sets. A relation R from A to B 1s any set of pairs (x.y).
x € A, y e B, 1.e. any subset of A x B.
The empty set is a subset of the Cartesian product — the empty relation

2. How to write relations

a. as sct of pairs
A= {123}, {B=456)
R = {{1.4). (1.5).(1.6). (2.4).(2.6). (3.6)}

b. using predicates
A={123}. {B=4,5,6}
R={(x,y)| x € A y € B. yis a multiple of x}

3. Graph and matrix representation
A={123} {B=4556])
R = {{1.4). (1.5). (1.6), (2.4). (2.6). (3.6)}
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1. Set operations and relations

Relations are sets. All set operations are applicable to relations

Examples:

Let A= {3,5.6, 7}
B={4, 5.9}

Consider two relations R and S from A to B:
R={Xxy)|xeA yvyeB x<yj}
If (x.y) € R we write XRy
R is a finite set and we can write down explicitly its elements:
= {(3.4).(3.5).(3.9).(5.9). (6,9).(7.9)}
S={xy)x €A, yeB, xy|=2}
If (x.y) € S we write xSy

S is a finite set and we can write down explicitly its elements:
S ={(3.5), (6.4), (7.5). (7.9)}

For R and S the universal set 1s A X B:
{(3.4),(3,5).(3.9),
(5.4).(5.5).(5.9).
(6,4).(6.5),(6.9).
(7,4, (7, 5), (7, 9)}
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a) infersection of R and S:

RN S={(xy) | xRy A xSy} RN S={(3.5).,7.9)}

b) union of R and S:
RuUS={(xy)| xRy V xSy}
RUS = {(3.4).3.5).(3.9).(5.9). (6.9).(7.9). (64). (.5) }

¢) complementation:
~R = {(x.y) | ~(xRy)}

~R=U-R
The universal set for R is the Cartesian product A x B
A={35,6,7}
B = {4.5.9}

U=AXB={(3.4). (3.5). (3.9). (5.4). (5.5). (5.9).
(6.4), (6.5). (6.9), (7.4). (7.5). (7.9)}

R = {(3.4). (3.5). (3.9). (5.9). (6.9). (7.9)}
U-R={(5.4). (5.5). (6.4). (7.4). (7.5)}

Note that forany twosets Aand B.A-B=A n~B

d) difference R-S,S -R:
R-S={(x.y) | xRy A~(xSy)}

R -S={(3.4).(3.9).(5.9). (6.9)}
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2. Inverse relation

Let R: A—B be arelation from A to B. The inverse relation R’ : B—A
is defined as in the following way:

R':B-A {(y.X)| (x.y) € R}

Thus xRy = yR'l X

Examples:
a. LetA={123}.B= {149}

Let R: B—A be the set {(1,1); (1.4). (2:2), (2.4). (3.3)}
R : B—A is the relation {(1.1). (4.1). (2.2). (4.2). (

b. Let A= {1.2.3}. R: A—>A be the relation {(1.2). (1.3). (2,3)}
T R! isthe relation: {(2.1). (3:1). (3.2)}
3. Composition of relations
Let X, Y and Z be three sets, R be a relation from X to Y, S be a relation from Y to Z.
A composition of R and S is a relation from X to Z :

S°R={(x.z)) x € X,z € Z. I ye Y, such that xRy, and ySz}

Note that the operation is right-associative, i.e. we first apply R and then S

Example 1:

LetX.Y.and Z be the sets:
xX41.3
e 4
Z {2

I\)
W B W
N o0 in
e ARG SR

IQ
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LetR: X —>Y.and S : Y — Z. be the relation "less than":

R
S

{(2.3).(2.6).(4.6)}

SR :{(1.3). (1.6). (3.6)}

The element (1.3) is formed by combining (1.2) from R and (2.3) from S
The element (1.6) is formed by combining (1.2) from R and (2.6) from S

Note. that (1.6) can also be obtained by combining (1.4) from R and (4.6) from S.
The element (3.6) is formed by combining (3.4) from R and (4.6) from S

4. Identity relation
Identity relation on a set A is defined in the following way:
I={(xXx)|x €A}
Example:

Let A= {a. b, c}. = {(a.a). (b.b). (c.c)}

5. Problems:

LetA={1.2.3}.B={a.b}.C={x.v, z}
a. Let R = {(l.a). (2.b). (3.a)} and S = {(a.y).(a.z).(b.x).(b.2)}

Find S°R
b. Let R= {(1.a). (2.b). (3.a)} and S = {(a.y).(a.2)}

Find S°R
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a. LetR= {(l.a), (2.b)} and S = {(a.y). (b. y). (b.2)}
Find S°R

b. LetR = {(1.a). gl.b). (3.a)} and S = {(a.y).(a.z).(b.x).(b.2)}
FindR”,$" andR™"° &

Solutions
LetA={1.2.3}.B={ab}.C={xy. 2]
a. Let R = {(1,3), (2,b), (3.2)} and S~ {(a).(2.2)b.x),(b.2)}
FindS°R
Solution: {(1.y). (1. ). (2x).2.2). 3. (3. 2))
b. Let R = {(1.a).(2.b). (3.a)} and S = {(a.y).(a,2)}
Find S °R Solution: {(1.¥):(1, z). B.¥). (3, 2)}

c. LetR = {(1.a). (2.b)} and S = {(a.y). (b. ¥). (b.2)}
FindS°R

Solution: {(1,y). (2:¥). (2, 2)}

d. LetR= {(1.a), (2.b). (3.a)} and S = {(a.y).(a.z).(b.x).(b.2)}
FindR?,S" andR"° S

Solution:
R = {(a.1). (b.2). (a.3)}
S = {(v.2).(z.a).(x.b).(z.b)}

Rlest= {(.1), (¥.3). (x.2), (z.1), (z.3). (z.2)}
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Definitions:

Let R be a bmary relation on a set A.

1. R is reflexive, iff for all x € A. (x.x) € R, 1.e. xRx 1s true.

o

R is symmetric, iff forall x, y € A, if (x,y) € R. then (y.x) e R

1. xRy — yRx s true
3. Ristramsitive iff forallx. y.z e A.if (x.y) e Rand (v.z) e R .then(x.z) e R

i.e. (xXRy A yRz) - xRz is true

A. Reflexive relations

Let R be a binary relation on a set A.

R is reflexive, iff for all x € A. (x.x) € R. i.e. xRx 15 true.

1. Examples:

1. Equality is a reflexive relation
for any object x: X = x 1s true.

2. "less then" (defined on the set of real numbers) 1s not a reflexive relation.
for any number ;' % <X is not true

3. "less then or equal to” (defined on the set of real numbers) is a reflexive relation
for any number x X <X IS true

4. Reflexive and irreflexive relations

Compare the three examples below:
1. A={123.4}. Rl ={(1,1),(1.2). (2.2), (2.3). 3.3), (3.4). (4.4)}

. A={1234}.R2={(1,2), (2.3). (3.4). (4.1)}
3. A={123.4}.R3={(1.1). (1.2). (3.4), (4.9)}

[ S

R1 1s a reflexive relation. R2?7R3 ?
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Definition: Let R be a binary relation on a set A.
R is irreflexive iff forall x € A, (x.x) € R

Definition: Let R be a binary relation on a set A.

R is neither reflexive, nor irreflexive iff
there 1s x € A, such that (x. x) € R. and there 1s y € A such that (y.y) € R

Thus R2 1s ureflexive,. R3 1s neither reflexive nor urreflexive.
reflexive: for all x: xRx

ureflexive: for no x: xRx

neither: for some x: xRx 1s true, for some y: yRy 1s false
B. Symmetric relations

R 1s symmetric. iff forallx. y e A if (x.y) e R.then (v. x) e R

1.c xRy — yRx is true

This means: if two elements x and ¥ are 1 relation R. then y and x are also m R. 1.e. if
xRy 1s true, yRx 15 also true.

1. Examples:

1. equality 1s a symmetne relation; ifa=bthenb=a2a

2. "less than" is not a symmetric relation : if a <b is true then b <a s false
3. "sister" on the set of females 1s symmetric

4. "“sister" on the set of all human beings is not symmetric
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4. Symmetric and anti-symmetric relations

Compare the relations:

1. A= {l 2.3.4}. R1={(1.1). (1.2). (2.1).(2.3). (3.2). (4.9)}
2,34}, R2={(1,1), (1.2), (2.3). (44)}

3. A={1.234}.R3={(1.1).(1.2).(2.1).(2.3).(4.4)}

(3
>
I
r-’-\

Definition: Let R be a binary relation on a set A.
R 1s anti-symmetric if forall x, ye A. x#y.if(x,¥) € R, then (yv,x) ¢ R.

Definition: R is neither symmetric nor anti-symmetric iff it is not symmetric and not
anti-symmetric.

Symmetric: xRy 2 yRx forallx and y
anti-symmetric: XxRyand yRx 2 x=y
neither: for some x and y: xRy. and yRx

for others xRy is true. yRx 1s not true

C. Transitive relations

Let R be a binary relation on a set A.
R 1s transitive iff forall x. y.z e Aiif (x,y) e Rand (y.z) e R.then(x.z) e R

1.e. (xXRy A yRz) — xRz 1s true

1. Examples:

1. Equality is a transitive relationa=b.b=c. hence a=c¢

2. '"less than" 1s a transitive relationa <b. b <c¢, hencea<c

3. mother of(x.y) is not a transitive relation

4. sister(x.y) 1s a transitive relation

5. brother (x.y) 1s a transitive relation.

6. A={1.2.3.4} R={(1.1), (1.2). (1.3). (2.3). (4.3)} - transitive

7. A= {1.2.3.4} R= {(1.1). (1.2). (1.3). (2.3). (3.4)} - not transitive
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Equivalence Relations. Partial Orders

Compvare the relations:
1. Equivalence relations

Definition: A relation R is an equivalence relation if and only if it 1s reflexive,
symmetric. and transitive.

Examples:

Let m and n be integers and let d be a positive integer. The notation
m=n (mod d)
is read "m is congruent to n modulo d".

The meaning is: the integer division of d into m gives the same remainder as the integer
division of d into n.

Consider the relation

R={(x.y)| x mod 3 = ymod 3}

4mod 3=1.7mod 3=1, hence (4.7) eR

The relation is reflexive: x mod 3 = x mod 3
symmetric: 1fx mod 3 =y mod 3. theny mod 3 = x mod 3
transitive: ifx mod 3 =y mod 3, and y mod 3 = zmod 3.

then x mod 3 =z mod 3

Consider the sets [x] = {y | yRx}

[0]= {0.3.69.12.....}
[1]={1.4.7.10.13.....}
[2]= {2.5.8.11,14,...}

From the definition of [x] it follows that
[0] =[3]=I[6] ...
[1]=[4]=...
[2]1=[5]=...
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Thus the relation R produces three different sets [0]. [1] and [2].
Each number 1s exactly in one of these sets. Thus {[0]. [1]. [2]} 1s a partition of the set
of non-negative integers.

2. Partial Orders

Definition: Let R be a binary relation defined on a set A, R 1s a partial order relation iff R
1s transitive and anti-symumetric

Examples:

1. Let A be a set, and P(A) be the power set of A. The relation 'subset of on P (A) is a
partial order relation
It 1s reflexive, anti-symmetric, and transitive

2. Let N be the set of positive integers. and R be a relation defined as follows:
(x.y) € Riff yis a multiple of x
e.g (3.12) eR while (3.4) € R
R 1s a partial order relation. It 1s reflexive, anti-symmetric, and transitive

Functions

1. Definition: A function f from a set X to a set Y is a subset of the Cartesian p1
XxY, fc XN, stch that
V x € X dye Y.such that (%,y) € f. and

Eyef A®R) el Syl=y2
i.e. if (x.yl) € fand (x.y2) € f, then yl = y2

Thus all elements in X can be found in exactly one pair of f.
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Notation: Let f be a function from A to B. We write

1. A—H
a€ A flay=b. beB

Examples:
A={1,23}, B={ab}

R = {(1.a),(2.a).(3.b)} 1s a function

Other definitions:
Let f be a function from A to B.

1. Domain of f: the set A
2. Rangeoff: {b:beBandthereisana € A, f(a) =D}
3

Image of a under f: f(a)

A= {123}, B= {ab)

£= {(1.2).(2.0).(3.b)}
domain: {1.2.3}.
range: {a,b}
aisimageof l under f: f(1)=a, f(2)=..... f3)=......
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2. Functions with more arguments

Let A=Al X A2, and f be a function from A to B

We write: f(al.a2) =1

[fA=AlXA2X ... X An, we write f(al.a2.....an)=Db

al, a2, ..an: arguments of f
b: value of f

3. Functions of special interest

a. one-to-one
distinct elements have distinct unages
if al # a2, then f(al) # f(a2)

Example:
A={123},B={ab.cd}

one-to-one function f= {(1.a). (2.c). (3.b)}
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b. onto

Every element in B is an image of some element in A
Example:
A={1.23},B={ab}
onto function f= {(1.a). (2.b). (3.b)}
c. bijection
f is bijection iff f is a one-to-one function and f is a onto function
Example:
A={123}, B={ab,c}

bijection f= {(1.,a), (2.c), (3.b)}

4. Inverse function

If fis a bijection, I is a function, also a bijection.

' ={(y.x)| (x.y) e f}

Example:
A={123},B={ab,c}

(1.a), (2.¢), (3.b)}
(a.1). (b.3).(c.2)}
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5. Composition of functions

Letf: A— B, g:B— C be two functions.
The composition h =g ° f is a function from A to C such that h(a) = g(f(a)

Example: Let f (x) =x +1. g(x) =x".
The composition h(x) = (x) ° g(x) = flg(x)) = (x> )+1
The composition p(x) = g(X) ° f(x) = g(f(x))= (x+1)

When f is a bijection and f* exists. we have:
f'(fla))=a, f(f' (b))=b.a€ A . beB.

Counting Principles

The Multiplication Principle

The Multiplication Principle

Let m € M. For a procedure of m successive distinct and independent steps with n|
outcomes possible for the first step, n2 outcomes possible for the second step, ..., and
n, outcomes possible for the mth step, the total number of possible outcomes 1s

L0 IR O R ()

Addition Principle
The Addition Principle

For a collection of m disjoint sets with n; elements in the first, n2 elements in the
second, . .., and n,; elements in the mth, the number of ways to choose one element
from the collection is

nyp4ny 44 ny
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POSSIBLE QUESTIONS

TWO MARKS
1. Define finite set .
2. Define partial order Relations.
3. Define Equivalence Relations
4. Define Equal function.
5. Define constant function.
SIX MARKS

1. Explain about types of relation with examples.
2. Explain types of sets .
3.Explain types of functions .
4. If A,B,C,D of four sets and f,g and h are 3 functions defined as
f:A—- B g: B — C &h: C — A then prove that( hog)of=ho(gof).
5. If f:X— Y and A,B are two sunsets of Y , then prove that (a) f*(AUB) =f*(A) u f(B)
b) f1(ANB) =f1(A) n f1(B)
6. If R is the set of real numbers, then show that the function ,f:R—R defined by f(x) 5x3 -1 is one-one onto function.
7. Let A={1,2,3,4} ,B={a,b,c,d} and C={x,y,z}.Consider the function f:A—B and g:B—C
defined by f={ (1,a),(2,¢),(3,b),(4,a)} and g={ (a,x),(b,x),(c,y).(d,y) }.Find the Composition
function (gof).
8.) Let A={1,2,3} and f,g,h and s be functions from A to A given by

f={(1,2),(23),E81}; 9={(12),(21),(33)};
h={(11), (2,2), (3,1) }ands={(1,1), (2,2), (3,3) }. Find f.,g, g.f, foh.g, g.s,
SoS, fos.
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If R={(1,2),(3,4),(2,2)}
and S =
(4.2).2.5).3.1).(1.3)} é§4(12)4§_;> ){((1255))}(32 ;(1,2),(2,2) }g;l,S),(3,3),(1, ;(1,5),(3,2),(2,5)
are relations then RoS={""""’ T
Ifz f(x) = x+2 and g(x) x> +Hax+4 x> +4x-3  [x* -4x+4 x> +4x+3 x> +4x+3
x~ —1 then(gof)(x) = -----1
A relation R in a set X is
—————————— if for every transitive [symmetric |irreflexive |reflexive irreflexive
xeX,(x,x)¢R
Suppose in RxR, the
ordered pairs (x-2,
2y+1) and (y-1,x+2) |2,3 32 2,-3 3,-2 32
are equal. The values of
x and y are
A relation R on a set is Reflexive,Sy Reflexive,Symmet
said to be an Reflexive [Symmetric|{mmetric, Transitive ric,
equivalence relation if it Transitive Transitive
Let f: R—>R where R is

One-to- . — e
a set of real one Onto into bijection bijection
numbers.Then f(x) = -2x
A mapping f: x>y is

cpge s one-to- .

called ------ if distinct one Onto into many to one one-to-one
elements of x are
If the relation R and S .
are both reflexive then R zymmetrl reflexive |transitive |notreflexive |reflexive
VAL ——
A One — to —one
function is also known |injective [surjective [bijective objective injective
as ---------
A Onto functionisalso|. . . . o . L

injective |surjective |bijective objective surjective
known as ---------
A One — to —one and
onto function is also injective |surjective |bijective objective bijective
known as ---------
Letf: x>y, g:y—>xbe
the functions then g is fog=Ty |gof=1, |gof, fog=I, gof =1,

equal to f - only if -------




In N, define aRb if atb

=7. This is symmetric |bta=7 |ata=7 b+c =7 atc=7 b+a =7
when --------
If the relation is ---------- symmetri Antisymmet
relation if aRb,bRa —a . reflexive ric not reflexive | Antisymmetric
f:R->R,g:R->R
defined by f(x) =4x-1 |4cosx —1 [4cosx 4cosx +1 1/4cosx 4cosx —1
and g(x) = cos x..The
Letf: N>Nbea
function such that f(x) = [identity [inverse equal constant constant
5 xeN then the f(x) is
A binary relation R in a
set X is said to be aRa aRb=bRa ;}Zb,bRc:a aRb,bRa=a=b |aRb=bRa
symmetric if ------
A binary relation R in a
set X is said to be aRa aRb=bRa ;}Zb,bRc:a aRb,bRa=—a=b |aRa
reflexive if ------
A binary relation R in a
set X is said to be aRa aRb=bRa ;}zb,bRc:a aRb,bRa=a=b |aRb,bRa=a=b
antisymmetric if ------
A binary relation R in a
set X is said to be aRa aRb=bRa ;}zb,bRc:a aRb,bRa=a=b |aRb,bRc=aRc¢
transitive if ----
I IDEDC o) 6, [109).6.2]102.22) [145.63.0. 149630
(A2)2.5).03.1(1.3)} 2,145 P25 |} D} H
Letx={1,2,3,4},R=
{(2,3),(4,1)} then the {1,3} {2,3} {2,4} {1,4} {2,4}
domain of R = ----—----
Letx={1,2,3,4},R=
{(2,3),(4,1)} then the {1,3} {3,1} {2,4} {1,4} {3,1}
range of R = -
In a relation matrix all
the diagonal elements  [symmetri |antisymme . . .
.. . transitive  |reflexive reflexive
are one then it satisfies --|c tric
In a relation matrix .
A=(aij) a; =a;; then it symmetri reflexive |[transitive |antisymmetric |symmetric
satisfies ------- relation
An ordered arrangement |r r- n L .
of r - element of aset  |permutati [combinati [permutation n combination |r permutation of
o .. of r elements |n elements
containning n - distinct |onofn  Jon ofn of r
The r - permutation of n
elements is denoted by --|P (r,n)  [P(n,r) c(r, n) c(n, r) P(n,r)




The r - permutation of n

elements is denoted by P|r<n r=n rn r>n r<n
(n, r) where -------
An unordered pair of r |r r- n o .
. N . |n combination |r - combination
elements of a set permutati [combinati [permutation
.. A of relements |of n elements
containing n distinct onofn |onofn of r
The number of different
permutations of the 720 60 120 360 60
word BANANA is ------—-
The number of way a
person roundtrip by
bus from A to C by way 12 48 144 264 144
of B will be ------
How many 10 digits
numbers can be written |C (10, 9) |
by using the digits 1 and [+ C (9, 2) 1024 (10,2 10¢ 1024
27
The number of ways to
arrange th a letters of
the word CHEESE are -1 120 240 720 6 120
r - combination of n
elements is denoted by --[P (r, n)  [P(n,r) C(r, n) C(n, r) C(n, r)
The value of C(n,n) is --- 0 | N 1 |
C (n, n-r) = --—--- C(n, r) C(n-1,r) |C(n-1,r-1) |C(n,r-1) C(n, r)
+ - = e —+ -
Clon+CinrD=—rn f)(n L lcmiln |con i) C (n+1, 1)
The number of
arranging different ol (n+1)! (n-1)! o1 (n-1)!
crcular arrangement of n| ' ' ' '
objects = ------—-—-
The number of ways of
arranging n beads in the | T | | T
form of a necklace = - (n-1)! (n-1)!/2  |n! n!/2 (n-1)!/2
The value of C(10, 6) +
C(9,5)+C(8,4)+C( |C(0,7) [CO,7 C(8,5) C(11,5) C(1,5)




The value of C(10, 8) +

C(10.7) i8 wommmemmmemev 990 165 45 120 165
The number of different
words can be formed out|64 120 40320 720 720
of the letters of the word
The number of ways can
a party of 7 persons 6! 7! 5! 7 6!
arrange themselves
The sum of entries in the
fourth row of Pascal's 8 4 10 16 8
triangle is ----------
The number of wors can
be formed out of the 100 120 720 150 720
letters of the word
The value of P(n,n) = ---- | 0 N el N
The value of P(10, 3) is - 120 720 60 45 720
IfP (10, 1) is 720, then ) 3 4 5 3
the value of r 1§ --------
In how many ways 5
children out of a class of [P (20, 4) [P(20,5) [P (5,20) [P(5,5) P(20, 5)
20 line for a picture?
The value of C(n, r) is - . . an integer a rational .
an integer |a fraction . [number less an integer
——————— or a fraction
than 1
!
The value of P(n, r) / r! Cln, 1) /e ar o(nr)

IS ~=----——-




Questions optl opt2 opt3 opt4 Answer

If R={(1,2),(3,4),(2,2)}
and S =
(4.2).2.5).3.1).(1.3)} é§4(12)4§_;> ){((1255))}(32 ;(1,2),(2,2) }g;l,S),(3,3),(1, ;(1,5),(3,2),(2,5)
are relations then RoS={""""’ T
Ifz f(x) = x+2 and g(x) x> +Hax+4 x> +4x-3  [x* -4x+4 x> +4x+3 x> +4x+3
x~ —1 then(gof)(x) = -----1
A relation R in a set X is
—————————— if for every transitive [symmetric |irreflexive |reflexive irreflexive
xeX,(x,x)¢R
Suppose in RxR, the
ordered pairs (x-2,
2y+1) and (y-1,x+2) |2,3 32 2,-3 3,-2 32
are equal. The values of
x and y are
A relation R on a set is Reflexive,Sy Reflexive,Symmet
said to be an Reflexive [Symmetric|{mmetric, Transitive ric,
equivalence relation if it Transitive Transitive
Let f: R—>R where R is

One-to- . — e
a set of real one Onto into bijection bijection
numbers.Then f(x) = -2x
A mapping f: x>y is

cpge s one-to- .

called ------ if distinct one Onto into many to one one-to-one
elements of x are
If the relation R and S .
are both reflexive then R zymmetrl reflexive |transitive |notreflexive |reflexive
VAL ——
A One — to —one
function is also known |injective [surjective [bijective objective injective
as ---------
A Onto functionisalso|. . . . o . L

injective |surjective |bijective objective surjective
known as ---------
A One — to —one and
onto function is also injective |surjective |bijective objective bijective
known as ---------
Letf: x>y, g:y—>xbe
the functions then g is fog=Ty |gof=1, |gof, fog=I, gof =1,

equal to f - only if -------




In N, define aRb if atb

=7. This is symmetric |bta=7 |ata=7 b+c =7 atc=7 b+a =7
when --------
If the relation is ---------- symmetri Antisymmet
relation if aRb,bRa —a . reflexive ric not reflexive | Antisymmetric
f:R->R,g:R->R
defined by f(x) =4x-1 |4cosx —1 [4cosx 4cosx +1 1/4cosx 4cosx —1
and g(x) = cos x..The
Letf: N>Nbea
function such that f(x) = [identity [inverse equal constant constant
5 xeN then the f(x) is
A binary relation R in a
set X is said to be aRa aRb=bRa ;}Zb,bRc:a aRb,bRa=a=b |aRb=bRa
symmetric if ------
A binary relation R in a
set X is said to be aRa aRb=bRa ;}Zb,bRc:a aRb,bRa=—a=b |aRa
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A binary relation R in a
set X is said to be aRa aRb=bRa ;}zb,bRc:a aRb,bRa=a=b |aRb,bRa=a=b
antisymmetric if ------
A binary relation R in a
set X is said to be aRa aRb=bRa ;}zb,bRc:a aRb,bRa=a=b |aRb,bRc=aRc¢
transitive if ----
I IDEDC o) 6, [109).6.2]102.22) [145.63.0. 149630
(A2)2.5).03.1(1.3)} 2,145 P25 |} D} H
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UNIT-1I

Pigeonhole principle,permutation and combination,Mathematical Induction,Principle of Inclusion and
Exclusion.
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n, outcomes possible for the mth step, the total number of possible outcomes is
Using the Pigeon-Hole Principle

Adwiuun romcipre

The Pigeon-Hole Principle (see Section 4.6 ) states that if m objects are to be put in n
locations, where i > n > (), then at least one location must receive at least two objects.
Thus, to prove that a set of objects has at least two elements with the same property, first
count the number of distinct properties of objects in the set, and then count the number of
distinct elements. If the total number of elements is larger than the number of distinct prop-
ertics of objects, then the Pigeon-Hole Principle implies that at least two of the elements
have the same property. The next example is an illustration of this type of argument.

The Multiplication Princip

The Addition Principle

For a collection of m disjoint sets with n; elements in the first, n> elements in the
second, . .., and n,, elements in the mth, the number of ways to choose one element
from the collection is

nypny 44 ny
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Permutations and Combinations

(c) The answer is the product of the number of ways to put four books on one shelf and
the number of ways 1o put the remaining books on the second shelf. The number of
ways to arrange four books on the first shelf is P(8, 4), and the four remaining books

(¢) The answer is the product of the number of ways to put four books on one shelf and
the number of ways to put the remaining books on the second shell. The number of
ways to arrange four books on the first shelf is P(8, 4), and the four remaining books

(c) The answer is the product of the number of ways to put four books on one shelf and
the number of ways to put the remaining books on the second shelf. The number of
ways to arrange four books on the first shelf is P(8, 4), and the four remaining books

Defination 1. Let n, r € M. A permutation of an r-element set 15 a linear ordering «
the n elements of the set. For n > ¥ > 0 an r-permutation of an x-element set is a line:
ordering of r elements of the set.

Example 1. List all permutation of the elemenis a, b, and ¢.
Solution. The permutations are abc, ach, bac, bea, cab, and cha. I

Let P(n, r) denote the number of r-permutations of an s-element set. 'We defir
Pin,0) = 1forall n € [,

Example 2.

(a) How many ways can eight different books be arranged on a shelf?

(b) How miany ways can four of eight different books be arranged on a shelf?

(¢) How many ways can eight different books be arranged on two shelves so that each
shelf contains four books?

Solution.

(a) The answer is the number of ordered ways of arranging the books on the shelf.
That is,

P(8,8) =& = 40,320
(b) The number of ways to arrange four of the eight books i3

P(8,4) = 1680
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(¢) The answer is the product of the number of ways to put four books on one shelf and
the number of ways to put the remaining books on the second shelf. The number of
ways to arrange four books on the first shelf is P(8, 4), and the four remaining books

can be arranged in FP(4.4) ways on the second shelf. Therefore, the total number of
arrangements will be
(# Arrangements of books on two shelves) = (# Arrangements on first shelf)
« (# Arrangements on second shelf)
= P(8,4)- P4, 4)
= (8!/41) - (4!/0!)
=38!
= 40,320

Combinations

Definition 2. Let n,r € ™ such that n = r = (. An unordered selection of r elements
from an n element set 1s called a combination.

Example 4. List all the combinations of the set {a, b, ¢}.

Solution. The combinations will be of sizes 0, 1, 2, and 3. All combinations are ¥,
{al, (b}, [c}, {a, B}, {a. ¢}, {b. ¢}, and {a, b, c}. |

Example 5. How many ditferent poker hands are there?

Solution. This answer is just the number of ways of choosing five cards from the 52-card
deck:

52
s 52. 5) = =k .
C(52,5) a71s! 2,598,960 [ ]

Example 8. An examination consists of 20 questions, of which the student must answer
any 2.

(a) How many different ways can a student choose questions to answer?

(b) The 20-question exam is split into three parts, There are 6 questions in the first part,
10 in the second part, and 4 in the third part. A student must choose three from the first
part, eight from the second part, and one from the third part. How many ways can a
student choose questions to answer?
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Selution.

(a) The answer is just the number of different 12-element subsets of a 20-element set, or
C(20, 12y = 125,970.

(b) By the Multiplication Principle, the answer will be the product of the number of ways
to make choices in each category:

(# Possible choices) = (# Choices for part 1) « (# Choices for part 2)
« (# Choices for part 3)
=C6,3)-C(10,8)-C4, 1
= 3604 [

Method of Proof by Mathematical Induction

Consider a statement of the form, “For all integers n > a, a property P(n) is true.”
To prove such a statement, perform the following two steps:

Step | (basis step): Show that P (a) is true.
Step 2 (inductive step): Show that for all integers kK > a, if P (k) is true then
P(k + 1) is true. To perform this step,

suppose that P (k) is true, where £ is any
particular but arbitrarily chosen integer with k = a.
[ This supposition is called the inductive hypothesis. ]
Then

show that Pk + 1) is true.
Sum of the First # Integers
Use mathematical induction to prove that

an+1) _
{42 dnp = >— forall integersn > 1.

Solution  To construct a proof by induction, you must first identify the property P(n). In
this case, P(n) is the equation

nin+1)

l+2++ﬂ: > . « the property (P(n)
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[To see that P(n) is a sentence, note that its subject is “the sum of the integers from 1
ton” and its verb is “equals.”]

In the basis step of the proof, you must show that the property is true forn = 1, or,
in other words that P(1) is true. Now P(1) is oblained by substituting | in place of # in
P(n). The left-hand side of P (1) is the sum of all the successive integers starting at | and
ending at 1. This is just 1. Thus P(1) is

Of course, this equation is true because the right-hand side is

1I(a+1) 1.2

2 Y

which equals the left-hand side.

In the inductive step, you assume that P (k) is true, for a particular but arbitrarily cho-
sen integer k with k = 1. [This assumption is the inductive hypothesis. ] You must then show
that P(k + 1) is truc. What are P(k) and Pk + 1)? P(k) is oblained by substituting k
forevery n in P(n). Thus P(k) is

kk +1)
=T.

14+2+.-- 4%

« inductive hypothesis (P(k))

Similarly, P(k + 1) is obtained by substituting the quantity (k + 1) for every a that
appears in P(n). Thus P(k + 1) 1s

B k+Dk+D+1)

9

-

14+ 2 Qe Lk +1)

or, equivalently,
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k4 Dk +2)

1424---4+&k+1D = = « to show (P(k + 1))

Theorem 5.2.2 Sum of the First 7 Integers

For all integers n > 1,

l+2+---+n:L"2ﬂ.

Proof (by mathematical induction):

Let the property P(n) be the equation
l+2+3-+—---+n=ﬂu. P (n)

5

Show that P(1) is true:

To establish £(1). we must show that

l(l"") P ”'ll
- >

But the left-hand side of this equation is 1 and the right-hand side is

(1 41) 2
N 3

<

=1

also. Hence FP(1) is true.

Show that for all integers k = 1, if P(k) is true then P(k + 1) is also true:
[Suppose that P(k) is true for a particular but arbitrarily chosen integer k = 1.
That is:] Suppose that k is any integer with £ > 1 such that
kk+ 1) oo
1 ol S ) =
& inauctuve "x’.r HNCSIS

| We must show that P(k + 1) is true. That is: ] We must show that

k+DIEk+1)+1]

1 +24+34---4+&k+1)= » 4
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or, equivalently, that

k+1)k+2)
’ =

[ We will show that the left-hand side and the right-hand side of P(k + 1) are equal to
the same quantity and thus are equal ro each other. |

The left-hand side of P(k + 1) is

142434+ K+ =

14+24+3+---4+(k+1)

-

=14+2+4+34 Fk+k+1) ‘r =
kik + 1) . AP WS 1)

- *('k-f- l) W SU .I.Jl‘t. Ix the
kik+1) 2k + 1)

Sy
K+k 2%k+2

<~ -

k2 + 3k + 1

And the right-hand side of P(k + 1) is

Gk+1D)k+42 KkK+4+3k+1
2 B 2

Thus the two sides of P(k + 1) are equal to the same quantity and so they are equal
to each other. Therefore the equation P(k + 1) is true [as was to be shown].
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POSSIBLE QUESTIONS

TWO MARKS

1.State Principle of Mathematical Induction.

2. Find the value of n if nps=5np;

3. State Pigeonhole Principle.

4. Define Permutation.

5. In how many words can letters of the word “INDIA” be arranged?

SIX MARKS

Li+lv — =

1.2 23 n(n+1) n+1
2. Using Mathematical Induction prove that Y., i2 =w

n+1_

3. Use mathematical Induction ,prove that .7, _, 3= & > :
4. State and prove Pigeonhole Principle.
5. Show that n<2".
6. How many positive integers n can be formed using the digits 3,4,4,5,5,6,7 if n has exceed 5000000?
7. Find the number of integers between 1 to 250 that are not divisible by any of the integers 2,3,5 and 7.
8. From a committee consisting of 6 men and 7 women ,in how many ways can be select a committee of

a)3 men and 4 women.
b)4 members which has atleast one women.
)4 persons that has atmost one man.
d)4 persons of both sexes.
9. How many bit strings of length 10 contain

1.Exactly 4 1’s
2.Atmost 4 1°s
3. Atleast 4 1’s
4. An equal number of 0’s and 1’s
10. From the 7 men and 4 women a committee of 6 to be formed can this be done when the
committee contains i) Exactly 2 women ii) At least 2 women
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antisymmetric if ------
A binary relation R in a
set X is said to be aRa aRb=bRa ;}zb,bRc:a aRb,bRa=a=b |aRb,bRc=aRc¢
transitive if ----
I IDEDC o) 6, [109).6.2]102.22) [145.63.0. 149630
(A2)2.5).03.1(1.3)} 2,145 P25 |} D} H
Letx={1,2,3,4},R=
{(2,3),(4,1)} then the {1,3} {2,3} {2,4} {1,4} {2,4}
domain of R = ----—----
Letx={1,2,3,4},R=
{(2,3),(4,1)} then the {1,3} {3,1} {2,4} {1,4} {3,1}
range of R = -
In a relation matrix all
the diagonal elements  [symmetri |antisymme . . .
.. . transitive  |reflexive reflexive
are one then it satisfies --|c tric
In a relation matrix .
A=(aij) a; =a;; then it symmetri reflexive |[transitive |antisymmetric |symmetric
satisfies ------- relation
An ordered arrangement |r r- n L .
of r - element of aset  |permutati [combinati [permutation n combination |r permutation of
o .. of r elements |n elements
containning n - distinct |onofn  Jon ofn of r
The r - permutation of n
elements is denoted by --|P (r,n)  [P(n,r) c(r, n) c(n, r) P(n,r)




The r - permutation of n

elements is denoted by P|r<n r=n rn r>n r<n
(n, r) where -------
An unordered pair of r |r r- n o .
. N . |n combination |r - combination
elements of a set permutati [combinati [permutation
.. A of relements |of n elements
containing n distinct onofn |onofn of r
The number of different
permutations of the 720 60 120 360 60
word BANANA is ------—-
The number of way a
person roundtrip by
bus from A to C by way 12 48 144 264 144
of B will be ------
How many 10 digits
numbers can be written |C (10, 9) |
by using the digits 1 and [+ C (9, 2) 1024 (10,2 10¢ 1024
27
The number of ways to
arrange th a letters of
the word CHEESE are -1 120 240 720 6 120
r - combination of n
elements is denoted by --[P (r, n)  [P(n,r) C(r, n) C(n, r) C(n, r)
The value of C(n,n) is --- 0 | N 1 |
C (n, n-r) = --—--- C(n, r) C(n-1,r) |C(n-1,r-1) |C(n,r-1) C(n, r)
+ - = e —+ -
Clon+CinrD=—rn f)(n L lcmiln |con i) C (n+1, 1)
The number of
arranging different ol (n+1)! (n-1)! o1 (n-1)!
crcular arrangement of n| ' ' ' '
objects = ------—-—-
The number of ways of
arranging n beads in the | T | | T
form of a necklace = - (n-1)! (n-1)!/2  |n! n!/2 (n-1)!/2
The value of C(10, 6) +
C(9,5)+C(8,4)+C( |C(0,7) [CO,7 C(8,5) C(11,5) C(1,5)




The value of C(10, 8) +

C(10.7) i8 wommmemmmemev 990 165 45 120 165
The number of different
words can be formed out|64 120 40320 720 720
of the letters of the word
The number of ways can
a party of 7 persons 6! 7! 5! 7 6!
arrange themselves
The sum of entries in the
fourth row of Pascal's 8 4 10 16 8
triangle is ----------
The number of wors can
be formed out of the 100 120 720 150 720
letters of the word
The value of P(n,n) = ---- | 0 N el N
The value of P(10, 3) is - 120 720 60 45 720
IfP (10, 1) is 720, then ) 3 4 5 3
the value of r 1§ --------
In how many ways 5
children out of a class of [P (20, 4) [P(20,5) [P (5,20) [P(5,5) P(20, 5)
20 line for a picture?
The value of C(n, r) is - . . an integer a rational .
an integer |a fraction . [number less an integer
——————— or a fraction
than 1
!
The value of P(n, r) / r! Cln, 1) /e ar o(nr)

IS ~=----——-
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Solving the Recurrence

Claim 10.1.1. T,, = 2" — | satisfies the recurrence:

T
Th =2Th— +1 (forn = 2).

Proof. The proof is by induction on n. The induction hypothesis is that 7,, =
2" — 1. Thisis true forn = 1 because 73 = 1 = 2! — 1. Now assume that
Tn—1 = 2"~ — 1 in order to prove that 7,, = 2" — 1, where n > 2:

Tn = 2Tn_| + ]

=22 =1 +1
i 1

Linear Recurrences

In general, a homogeneous linear recurrence has the form

fm=arfh-D+afa-2)+...+aqf(n—d)

where a;,az,.... a4 and d are constants. The order of the recurrence is d. Com-
monly, the value of the function / is also specified at a few points; these are called
boundary conditions. For example, the Fibonacci recurrence has order d = 2 with
coefficients a; = a2 = 1 and g(n) = 0. The boundary conditions are f(0) = 1
and f(1) = 1. The word “homogeneous” sounds scary, but effectively means “the
simpler kind”. We’ll consider linear recurrences with a more complicated form
later.

Theorem 10.3.1. If f(n) and g(n) are both solutions to a homogeneous linear
recurrence, then h(n) = sf(n) + tg(n) is also a solution for all 5, t € R.

Proof.

h(n) =sf(n) +tg(n)
=s(a i fn—1)+...+agf(n—=d))+t(aglh—=1)+...+ayg(n—d))
=a(sfn—D+rgmn—-1)+...+ayg(sf(n—d)+1gn—d))
=arhn—1)+...+agh(n—-d)
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Solving First-Order Recurrences Using Back Substitution

Theorem 2. (Solution of First-Order Recurrence Relations) The solution of

cTn—1)+ f(n) forn=k

T =1 r k) S —"

where ¢ is a constant and f is a nonzero function of n forn > k is
n
T(n) = Zc""'f(!)
=k

Motivation for the Proof. First, use back substitution 1o decide what the general form
of the solution might be, and then prove by induction that this is the solution:

T'n)=cTn—1)+ f(n)
=c¢(eT(n—=2)+ fin—=1)) + f(n)
=T —2)+cfin— 1+ f(n)
= cz(cT(n =D+ fr—=2)+cfn—1)+ f(n)
=T =3+ fin—2+cfln—1+ fin)

Using back substitution one more time gives

T =T —4+fn—3]+ ) " fD)
=n-2

=e'Ta-H+lf-3+ ) " f0)
I=pn=2

n

=c'Tn—4)+ Z " F()

l=n—3

If back substitution is continued until the argument of T is k—that is, forn — k steps—then
the expression for T (n) becomes

n

T)=c"*Tn—(m—k)+ Y  fQ)

{=n=k+]

="FTR+ Y MU

{:l[-kv—l
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Since T (k) = f(k), replace the reference to T on the right-hand side of the equation,
getting

R

Tm=c*fy+ Y 7o)
[=n—k+1
R

= Z Cn_“f(.[)

{=n=k

Proof. By induction, show that

T(n) = Zc"“'f(l)

1=k
letng =4k LetT ={neMN:n>kand T(n)is asolution}.
(Base step) First, show that

"

DI

==k
is a solution forn = ksothatk € 7.
k

Y FFD =R = R =Tk

I=k
(Inductive step) Now, assume that T'(n) is given by this expression for n > ny, that is,
Tn)= ZL,‘ <" £{1). Now prove that T'(n + 1) is also given by this expression: In this
case, prove that T(n + 1) = Z;’;kl i 114 1

Tn=4+1)=cT(n)+ f(n+1) (Defimtion of recurrence relation)

n
= CZ L f(+ f(n+1) (Inductive hypothesis)
1=k

=Y O+ fa+ 1)
I=k
n+l

e Zcﬂ"f-'—lf(")
1=k

This provesn + 1 € T.
By the Principle of Mathematical Induction, 7 = [n € N : n > k}. |
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Example 1, Solve

Tin—1D+n? forn>1

Eiwl= [0 for n = 0

Solution. In the general formula, f(n) =n” forn > 0,¢ = 1, and k = (. Since T(0) =
f(0), by Corollary 1 the solution is

n
|
T(n)=;12 = @t Don-tt )
See Theorem 9(b) in Section 7.10 for a derivation of this formula. &

Example 2. Solve

3Tn—-14+4 forn=1

Tin)= {4 forn =10

Solution. In the general formula, f(n) =4 forn = O, ¢ = 3, and kK = (). By Corollary 2,
the solution is

3n+l_l
3—-1

T(n) =4. =2- (-3’”—' 1) =]

Rules for Solving Second-Order Recurrence Relations

Solving Second-Order Homogeneous Recurrence Relations
with Constant Coefficients Using the Complementary Equation
with Distinct Real Roots
Him + AHin—1) + BH(n—-2) =0,

Hi{ny) = D, and H(ny) = E.

STEP 1: Assume f(n) = ¢” is a solution, and substitute for H (n), yielding the char-
acteristic equation
C+Ac+8B=0

STEP 2: Find the roots of the characteristic equation: ¢; and ¢7. Use the quadratic
formula if the equation does not factor. If ¢ s ¢2, then the general solution is

S(n) = A.a:"lz + Bcg
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STEP 3: Use the initial conditions to form the system of equations
H(n)) = D = Ac]' + Bcy®
H(na) = E = Ac|? + B’

STEP 4: Solve the system of equations found in step 3, getting Ay and By as the two
solutions. Form the particular solution

H(n) = Agc1" + Byea"

Example 1. Solve the recurrence relation a; — 6a,_; — 7a,_2 = 0 for n > 5 where
a3 = 344 and ag = 2400.

Selution. Form the characteristic equation and then factor it:
e —6c—7=0
c=17, -1

Form the general solution of the recurrence relation a, = A7" 4+ B(—1)", and solve
the system of equations determined by the boundary values a3 = 344 and a4 = 2400 to get

the particular solution:
a3 = AT + B(-1)?
ag = AT + B(—1)*
Now, substituting 344 and 2400 for a3 and as gives
344 = 343A — B
2400 = 2401A+ B

Prepared by:M.SANGEETHA,Asst Prof,Department of Mathematics Page 6/14




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: TB.SC(IT) COURSE NAME:DISCRETE STRUCTURES
COURSE CODE: 191TU202 UNIT: 111 BATCH-2019-2022

Adding the two equations gives

2744 = 2744 A
1=A
It follows that B = —1. Therefore, a, = 7"+ (—1)"*! for m > 3 is the particular
solution. |

Substitution Method

e Guess the form of solution and use induction to find constants

e Determine upper bound on the recurrence
T,, = QTL*J +n

Guess the solution as: T,, = O(nlgn)

Now, prove that T}, < enlgn for some ¢ > 0
Assume that the bound holds for | % |
Substituting into the recurrence

T, < 2c B’J e EJ ) + n

n
cenlg (T) +n
enlgn —enlg2 4+ n

' A

enlgn —en +n

IA

enlgn Ye> 1
Boundary condition: Let the only bound be T, =1
Ac | T £cllgl =0
Problem overcome by the fact that asymptotic notation requires us to prove
T, <cnlgn forn > ng
Include T3 and T3 as boundary conditions for the proof
Is=4 T3=5

Choose ¢ such that T; < 2lg2 and T35 < 31g 3
True for any ¢ > 2
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- If a recurrence is similar to a known recurrence, it is reasonable to guess a similar solution
=T
T .T%] +1

If n i large, difference between T 2 and Tl% |17 5 relatively smal

~ Prove upper and lower bounds on a recurrence and reduce the range of uncertainty.
Start with a lower bound of T,, = {)(n) and an initial upper bound of T, = O(n?). Gradually lower the up;
bound and raise the lower bound to get asymptotically tight solution of T, = 6(nlgn)

e Recursion trees

— Recurrence

Assume n to be an exact power of 2.

Tn = n®4+2Tg

= 112+%2+n_'1—2+8((§)2+21"%)

2 2 2
n= n< n=

= n?+?+—+—+-~

4 8
” S W
= n“(l+3+1+§—+---~)

= ©(n?
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The values above decrease geometrically by a constant factor.

Recurrence

Tn=Tg + T +n

Longest path from root to a leaf
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(%)" n=1when k= log,g n, k being the height of the tree
Upper bound to the solution to the recurrence — nlogg n, or O(nlogn)

The Master Method

e Suitable for recurrences of the form
In = QT% + f(")

where @ > 1 and b > 1 are constants, and
f(n) is an asymptotically positive function

o For mergesort, a=2,b=2, and f(n) =0O(n)

¢ Master Theorem

Theorem 2 Leta > 1 and b > 1 be constants, let f(n) be a function, and let T;, be defined on the nonnegative
integers by the recurrence

= aT,E + f(n)
where we interpret § to mean either || or f%'l Then Ty, can be bounded asymptotically as follows

1. If f(n) = O(n'*5 ) for some constant € >0, then T, = O(n'Es*)
2. If f(n) = ©(n'8s9), then T, = O(nlo8s%1gn)

3. If f(n) = Q(n'%2+¢) for some constant ¢ > 0, and if af (%) < ¢f(n) for some constant ¢ < 1 and all
sufficiently large n, then T,, = ©(f(n))

~ In all three cases, compare f(n) with n'&s°

— Solution determined by the larger of the two
+ Case 1: n'8% > f(n)
Solution T,, = ©(nlo&: 9)
+ Case 2: n'%+% = f(n)
Multiply by a logarithmic factor
Solution T}, = O(n'&* lgn) = O(f(n)lgn)

+ Case 3: f(n) > nloms®
Solution T;, = O(f(n))

— In case 1, f(n) must be asymptotically smaller than n'°% ¢ by a factor of n® for some constant ¢ > 0

~ In case 3, f, must be polynomially larger than 1'% ® and satisfy the “regularity" condition that af (%) <cf(n)
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e Using the master method

— Recurrence
e == ‘JT,} +n

=9 0=3, fin)=n

nlogb a — nl()p,.:j 9 _ 6(112')

f(n) = O(n'*%29-¢) where € = 1

Apply case 1 of master theorem and conclude T}, = ©(n*)

— Recurrence

a=l,b=%,f(n)=1

loga 1
ntoge® — %8 — 0 —

f(n) = 6(11]“""’ *)=96(1)
Apply case 2 of master theorem and conclude 75, = ©O(lgn)

— Recurrence
T, =3T3 +nlgn

a=3 b=4, f(n)=nlgn

nlogsa — plog,3 (_—)(11"‘7(’“)

f(n) = Q(n'*823+¢) where € ~ 0.2

Apply case 3, if regularity condition holds for f(n)

For large n, af(%) = 3% 1g(3) < %n lgn=cf(n) forc= —:
Therefore, T,, = O(nlgn)
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POSSIBLE QUESTIONS
TWO MARKS

1. Define characteristics equation.

2.Solvea, — 4a,_1 =0forn > 2withay=1,a, = 1.

3. State Fibonacci sequence.

4.Write the methods for solving recurrence.

5. If the sequence a,, = 3.2™,n > 1 then find the corresponding recurrence relation.

SIX MARKS

1.Solve the recurrence relation a, = an1+2an-2 with a;=2 and a1=7.

2. Solve the Fibonacci recurrence a,, = a,_; + a,_, with the initial condition a; = a; = 1.

3. Solve the recurrence relation an+2-6an+1+9a,=0 with ap;=1 & a; = 4.

4. Solve the Recurrence Relation a, =6an.1 -9an> With a;=1 and a;=6.

5. Find the recurrence relation which satisfies y,=A 3"+B(-4)"

6. ldentify the sequence having the expression fj—gz as a generating function.

7. Solve the recurrence relation a,, — 7a,—1 + 10a,_, = 0for n > 2 given that a, = 10,
a, = 41 using generating function.

8. Solve the recurrence relation an+>-an+1-6a,=0 given ag=2 and a;=1 using generating functions.
9. Using the generating function, solve the recurrence relation a, =3an1 for n>1 with ag=2.
10. Using generating function, solve the recurrence relation a, =3an-1 +1 for n> 1 with ag=1.
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Questions optl opt2 opt3 opt4 Answer
The procedure for finding the ..
. . transitiv |..
terms of a sequence in a reflexive |recurrence . linear recurrence
recursive manner is relation  [relation . relation relation
relation
called ........ooviiiiiii
An equation or inequality that
. _ . . symmetr
describes a function in terms  [non linear |linear o recurrence frecurrence
of its value on smaller inputs  [relation |relation . relation |relation
relation
knownas ...........coceeiiiiiann
Recurrence can be solved to enerating lrunnin startin terminatin unnin
derivethe ................. time |° & & & &
In recurrence tree, T, = 2Tn/2 + |3Tn/2 +
" 2Tn/2 - n2|2Tn/2 * n2 2Tn/2 +n2
.............................. n2 n2
A, non
recurrence has the form f (n)= . . homogene |homogeneous
homogene [non linear | linear . .
alf(n—1)+a2f(n— . ous linear | linear
ous linear
2)t....... +adf(n —d)
If f (n) and g(n) are both
solutions to a homoge [non
. . homogeneous
........................ recurrence, |non linear| linear neous |homogene | ..
. . . linear
then h(n)= sf(n) + tg(n) is also linear |ous linear
a solution for all s, t € R.
. . non .
Generating functions can be homogene linear |non .
. homogeneou ) linear
used to find a solution to any  [ous . recurren |linearrecur
s linear recurrence
............................. . recurrence ce rence
recurrence
The generating function for
choosing elements from a
union of disjoint sets is the .
J product [difference |equal sum product
........................ of the
generating functions for
choosing from each set.
Recurrence relation is a
formula that relates two or . .
values series sequenc |variables [ sequence

more successive terms in a

€




Al’ly TCCUITCIICC ICIALUIOIN IS pounddr
accompanied by Zero initial y final initial
.................................... condition [condition conditio |condition [condition
swhionh cnmaocifiac tha firot toarna n
The purpose of solving a
recurrence relation is to find a
. .. recurren .
formula for the general term of [symmetric |transitive co reflexive [recurrence
the sequence given by that relation |relation ) relation relation
relation
SOV
is used in computer science to |transitive |recurrence |reflexive|symmetric |recurrence
assess the running time of relation  |[relations relation | relation relations
rocurciva alaarithmc
Linear homogeneous
recurrence relations .
. . non zero |[constant varied ZEro constant
with.............. coefficients
and their sequences.
A recurrence relation is
homogeneous if h(n)=1 [h(n)=0 h(n) =x |h(n) =x+y}h(n) =0
both
Substituti both
Methods for solving on ) ... ISubstitution
) direct . Substitutio
recurrences is/are method Iteration method and
method n method .
......................... and method Iteration
Iteration method
method
Recursion-tree method and
Master method are L . ) .
constant [Substitution |Iteration |direct Iteration
method
Sometimes recurrences can be
reduced to simpler ones b . . .
. P Y variables |values series constants [variables
changing
p o
.............. can be used to fibonacci |Generating |power recurrence
. . } . . . . recurrence
visualize the iteration series functions series free tree
nrocadi
The classical Tower of Hanoi
problem gives us the
recurrence T(n) =2T(n— 1)+ |T(1)=0 |T(0)=1 TO)=0|T(1)=1 JT0)=0

1 with base case




A common class ot
recurrences arises in the

non

non

. . ) homogene |..
context of recursive homogene [linear linear ous linear
. . u
backtracking algorithms and  |ous recurrences |recurren recurrences
. . recurrence
counting problems is called recurrence ces
A recurrence T(n) = f(n)T(n —
1) + g(n) is called a higher . first second
)+ g g third order first order
.............................. linear |order order order
recurrence.
A recurrence in which T(n) is
expressed in terms of a sum of
constant multiples of T(k) for |varied constant different |zero constant
certain values k <n is called a
The idea of a Recursion Tree
is to expand T ( n) to a tree
with the Zero same unit different [same
.................................... to
tal cost.
Recurrences can be used to Generatin homoge
represent the runtime of recursive neous [linear recursive
.................................... g functions function |functions |functions.
functions g
a
The pattern in recurrence tree . arithmeti a arithmetic
. . constant |fibonacci taylor .
method is typically . . cor . or geometric
series series . |series ;
................................... geometri series
C series.
In linear recurrence each term recursiv .
. . . Generatin | ..
of a sequence is linear non linear |e linear
Bttt function |functions function 5 function
) . functions
of earlier terms in the sequence. ]
Generating
Functions represents
sequences where each term of |fibonacci . |taylor  |constant .
. . power series . . power series
a sequence is expressed as a series series  |series
coefficient of a variable x in a
formal
.......................... can be  |Generatin . linear |homogene .
: . non linear . Generating
used for solving a variety of g . function |ous .
. . functions . functions
counting problems. functions functions




11011

Generating functions can be homogene . .
. recurrence |linear  |linear recurrence
used for solving ous . . . .
. relations function |functions |[relations
......................... functions
JUIIclatl
................................ can |,. . .
. linear homogeneou |ng non linear |Generating
be used for proving some of . . . . .
. . .. functions |s functions |function [functions [functions
the combinatorial identities
Generating functions can be
used for finding asymptotic .
£ asymp . function | .
formulae for terms of relations [sequences < seires sequences
If the recurrence equations is Padovan
Fn =Fn-1 + Fn-2 with initial  |Pell Fibonacci Lucas Fibonacci
values al =a2 =1 then it is number  [number sequenc |number [number
...................... e
If the recurrence equations is
Fn = Fn-1 + Fn-2 with initial ~ [Fibonacci |Padovan Lucas [Pell Lucas
valuesal =1,a2 =3 thenitis [number |sequence number [number |number
If the recurrence equations is .
e Fibonac
Fn =Fn-2 + Fn-3 with initial |Padovan . Lucas Padovan
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INTRODUCTION : GRAPH THEORY

Graph theory is used to analyses problems of combinatorial nature that
arise in computer science, operations research , physical science and economics .
The term graph is familiar to you because it has been used in the context of
straight lines and linear in equalities .In this chapter, first we will combine the
concepts of graph theory with digraph of a relation to define a more general type
of graph that has more than one edge between a pair of vertices. Second , we will
identify basic components of a graph ,its features any many applications of
graphs.

Definitions and Examples

Definition: A graph G = (V.E) is a mathematical structure consisting of two
finite sets V and E. The elements of V are called Vertices (or nodes) and the
elements of E are called Edges. Each edge

is associated with a set consisting of either one or two vertices called its
endpoints.

The correspondence from edges to endpoints is called edge-endpoint
function. This function is generally denoted by y. Due to this function, some
author denote graph by G = (V. E.y).

Definition: A graph consisting of one vertex and no edges is called a trivial
graph.

Definition: A graph whose vertex and edge sets are empty is called a null
graph.

Definition: An edge with just one end point is called a loop or a self loop.
Thus, a loop is an edge that joins a single endpoint to itself.

Definition: An edge that is not a self-loop is called a proper edge.
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Definition: If two or more edges of a graph G have the same vertices, then
these edges are said to be
parallel or multi-edges.

Definition: Two vertices that are connected by an edge are called adjacent.
Definition: An endpoint of a loop is said to be adjacent to itself.

Definition: An edge is said to be incident on each of its endpoints.

Definition: Two edges incident on the same endpoint are called adjacent
edges.

Definition: The number of edges in a graph G which are incident on a vertex is
called the degree of

that vertex.

Definition: A vertex of degree zero is called an isolated vertex.

Thus. a vertex on which no edges are incident is called isolated.

Definition: A graph without multiple edges (parallel edges) and loops is
called Simple graph.

Notation: In pictorial representations of a graph, the vertices will be denoted
by dots and edges by line segments.

€5
| 2
€1
or e3 €4
3 4
€2
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The edges e, and ez are adjacent edges because they are incident on the same
vertex B.

2. Consider the graph with the vertices A, B , C. D and E pictured in the figure
below.

D oL
In this graph, we note that
No. of edges =5
Degree of vertex A =4
Degree of vertex B = 2
Degree of vertex C =3

Degree of vertex D = 1
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Degree of vertex E =0

Sum of the degree of vertices=4+2+3+1+0=10
Thus, we observe that

5
Y. deg(vi)=2e ,
i=1

where deg(v;) denotes the degree of vertex v; and e denotes the number of
edges.

Euler’s Theorem: (The First Theorem of Graph Theory): The sum of the
degrees of the vertices of a graph G is equal to twice the number of edges
in G.

(Thus, total degree of a graph is even)
Proof: Each edge in a graph contributes a count of | to the degree of two
vertices (end points of
the edge), That is, each edge contributes 2 to the degree sum. Therefore the
sum of degrees of the
vertices is equal to twice the number of edges.

Corollary: There must be an even number of vertices of odd degree in a given
graph G.
Proof: We know, by the Fundamental Theorem, that

n

Y deg(vi) =2 x no. of edges

i=1

Thus the right hand side is an even number. Hence to make the left-hand side
an even number there
can be only even number of vertices of odd degree.

Theorem: A non-trivial simple graph G must have at least one pair of vertices
whose degrees are
equal.

Proof: Let the graph G has n vertices. Then there appear to be n possible
degree values, namely O, 1. .....n — 1. But there cannot be both a vertex of
degree O and a vertex of degree n — | because if there is a vertex of degree 0
then each of the remaining n — 1 vertices is adjacent to atmost n—2 other
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vertices. Hence the n vertices of G can realize atmost n—1 possible values for
their degrees. Hence the pigeonhole principle implies that at least two of the
vertices have equal degree.

Definition: A graph G is said to simple if it has no parallel edges or loops. In a
simple graph, an edge with endpoints v and w is denoted by {v, w}.
Definition: For each integer n > 1, let D, denote the graph with n vertices and
no edges. Then D, is called the discrete graph on n vertices.

For example, we have
3 [} ® and ® @ ® 3 @

Ds Ds

Definition: Let n > 1 be an integer. Then a simple graph with n vertices in
which there is an edge between each pair of distinct vertices is called the
complete Graph on n vertices. It is denoted by K.

For example. the complete graphs K,, K3 and K4 are shown in the
figures below:

Definition: If each vertex of a graph G has the same degree as every other
vertex, then G is called a regular graph.
A Kk-regular graph is a regular graph whose common degree is k.

But this graph is not complete because v, and v4 have not been connected
through an edge. Similarly, v; and v3 are not connected by any edge.

Thus
A Complete graph is always regular but a regular graph need not

be complete.
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Definition: If G is a simple graph, the complement of G. (Edge
complement), denoted by G” or G° is a graph such that

(i) The vertex set of G’ is identical to the vertex set of G, thatis Vg = Vg

(ii) Two distinct vertices v and w of G” are connected by an edge if and only if
v and w are not connected by an edge in G.
For example. consider the graph G

Va2

Vi V3

V4
G

Then complement G” of G is the graph

oy,

2 V3

V4
G 4

Definition: The property of mapping endpoints to endpoints is called
preserving incidence or the

continuity rule for graph mappings.

As a consequence of this property, a self-loop must map to a self-loop.

Thus, two isomorphic graphs are same except for the labeling of their vertices
and edges.
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Walks, Paths and Circuits

Definition: In a graph G. a walk from vertex v, to vertex v, is a finite alternating
sequence:
{Vo, €1, V1, €2,. ..., V-1, €ny Vn}
of vertices and edges such that vi_; and v; are the endpoints of e;.
The trivial walk from a vertex v to v consists of the single vertex v.
Definition: In a graph G, a path from the vertex vy to the vertex v, is a walk
from vy to v, that does not contain a repeated edge.
Thus a path from vy to v, is a walk of the form
N0 81, V1589, Voo Vit €as Vieks
where all the edges ej are distinct.
Definition: In a graph. a simple path from vg to v, is a path that does not contain a
repeated vertex.
Thus a simple path is a walk of the form
{ Vs VT 80 Vs wsnwns Vi s s Vi s

where all the e; are distinct and all the v; are distinct.

Definition: A walk in a graph G that starts and ends at the same vertex is
called a closed walk.
Definition: A closed walk that does not contain a repeated edge is called a
circuit.
Thus, closed a closed path is called a circuit (or a cycle) and so a circuit is a
walk of the form

Y0y S Vils 885 Vayusmeans Vinls G Vil »

where vo = v, and all the e; are distinct.
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Definition: In a graph the number of edges in the path {vg, ey, Vi, €2........ €p.

vn} from v to v, is called the length of the path.

Theorem: If there is a path from vertex v to v, in a graph with n vertices, then
there does not exist a path of more than n-1 edges from vertex v; to va.

Proof: Suppose there is a path from v; to v,. Let

Vilvonaarnnsss Vs anaess Va2

be the sequence of vertices which the path meets between the vertices v; and
va. Let there be m edges in the path. Then there will be m + 1 vertices in the
sequence. Therefore if m > n—1, then there will be more than n vertices in the
sequence. But the graph is with n vertices. Therefore some vertex, say v,
appears more than once in the sequence. So the sequence of vertices shall be

NV Tamsisrvesmos Vismasiamsss Niksoccwsos¥ leys o sssiey VDs

&

Deleting the edges in the path that lead vk back to v we have a path from v; to
v, that has less edges than the original one. This argument is repeated untill we
get a path that has n-1 or less edges.

CONNECTED AND DISCONNECTED GRAPHS :

Definition: Two vertices v; and v, of a graph G are said to be connected if and
only if there is a walk from v; to va.

Definition: A graph G is said to be connected if and only if given any two
vertices v, and v, in G, there is a walk from v, to v,.

Thus, a graph G is connected if there exists a walk between every two
vertices in the graph.
Definition: A graph which is not connected is called Disconnected Graph.

Example: Which of the graph below are connected?
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Definition: If a graph G is disconnected, then the various connected pieces of
G are called the connected components of the graph.

Example: Consider the graph given below:

€4

This graph is disconnected and have two connected components:

€]
H;: vV, e LA'%)
with vertex set {vy, va, v3} and edge set {e, ez, €3}
€2 €3
.\,"3
H» €4 ®¥5
vy e es with vertex set {vy. Vs, Vg} and edge set {e4. es. e¢}.
(&3 LAY

Solution: The connected components are :

and
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Example: Find the number of connected components in the graph

XVX

Eulerian Paths And Circuits

Definition: A path in a graph G is called an Euler Path if it includes every
edge exactly once.

Definition: A graph is called Eulerian graph if there exists a Euler circuit for

that graph.

Definition: A circuit in a graph G is called an Euler Circuit if it includes
every edge exactly once. Thus, an Euler circuit (Eulerian trail) for a graph G is
a sequence of adjacent vertices and edges in G that starts and ends at the same

vertex, uses every vertex of G at least once, and uses every edge of G exactly
once.
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Theorem 1. If a graph has an Euler circuit, then every vertex of the graph has
even degree.

Proof: Let G be a graph which has an Euler circuit. Let v be a vertex of G. We
shall show that degree of v is even. By definition, Euler circuit contains every
edge of graph G. Therefore the Euler circuit contains all edges incident on v.
We start a journey beginning in the middle of one of the edges adjacent to the
start of Euler circuit and continue around the Euler circuit to end in the middle
of the starting edge. Since Euler circuit uses every edge exactly once, the edges
incident on v occur

Starting point

in entry / exist pair and hence the degree of v is a multiple of 2. Therefore the
degree of v is even. This completes the proof of the theorem.

We know that contrapositive of a conditional statement is logically equivalent
to statement. Thus the above theorem is equivalent to:

Theorem:2. If a vertex of a graph is not of even degree. then it does not have
an Euler circuit.

or
“If some vertex of a graph has odd degree, then that graph does not have an
Euler circuit™.
Example: Show that the graphs below do not have Euler circuits.
(a)

Vi Vs

V3 Vi
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Solution: In graph (a), degree of each vertex is 3. Hence this does not have a
Euler circuit.
In graph (b), we have
deg(vy)=3
deg(vy) =3
Since there are vertices of odd degree in the given graph. therefore it does not

have an Euler circuit.

are graphs in which each vertex has degree 2 but these graphs do not have
Euler circuits since there is no path which uses each vertex at least once.
Theorem 3. If G is a connected graph and every vertex of G has even degree,
then G has an Euler circuit.

Proof: Let every vertex of a connected graph G has even degree. If G consists
of a single vertex, the trivial walk from v to v is an Euler circuit. So suppose G
consists of more than one vertices. We start from any verted v of G. Since the
degree of each vertex of G is even. if we reach each vertex other than v by
travelling on one edge, the same vertex can be reached by travelling on another
previously unused edge. Thus a sequence of distinct adjacent edges can be
produced indefinitely as long as v is not reached. Since number of edges of the
graph is finite (by definition of graph), the sequence of distinct edges will
terminate. Thus the sequence must return to the starting vertex. We thus obtain
a sequence of adjacent vertices and edges starting and ending at v without
repeating any edge. Thus we get a circuit C.
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If C contains every edge and vertex of G, then C is an Eular circuit.

If C does not contain every edge and vertex of G, remove all edges of C from
G and also any vertices that become isolated when the edges of C are removed.
Let the resulting subgraph be G’. We note that when we removed edges of C,
an even number of edges from each vertex have been removed. Thus degree of
each remaining vertex remains even.

Further since G is connected, there must be at least one vertex common to both
C and G’. Let it be w(in fact there are two such vertices). Pick any sequence of
adjacent vertices and edges of G” starting and ending at w without repeating an
edge. Let the resulting circuit be C’.

Join C and C’ together to create a new circuit C”. Now, we observe that if we
start from v and follow C all the way to reach w and then follow C” all the way
to reach back to w. Then continuing travelling along the untravelled edges of
C, we reach v.
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Theorem 5. If a graph G has more than two vertices of odd degree. then there
can be no Euler path in G.

Proof : Let vy. v» and v3 be vertices of odd degree. Since each of these vertices
had odd degree, any possible Euler path must leave (arrive at) each of vy, va, v3
with no way to return (or leave). One vertex of these three vertices may be the

beginning of Euler path and another the end but this leaves the third vertex at
one end of an untravelled edge. Thus there is no Euler path.

(Graphs having more than two vertices of odd degree).

Theorem 6. If G is a connected graph and has exactly two vertices of odd
degree, then there is an Euler path in G. Further, any Euler path in G must
begin at one vertex of odd degree and end at the other.

Proof: Let u and v be two vertices of odd degree in the given connected graph
G.

u

A%
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If we add the edge e to G, we get a connected graph G” all of whose vertices
have even degree. Hence there will be an Euler circuit in G”. If we omit e from
Euler circuit, we get an Euler path beginning at u(or v) and edning at v(or u).

Examples. Has the graph given below an Eulerian path?

NN S——
éD

Solution: In the given graph.

deg(A) =1
deg(B) =2

deg(C)=2
deg(D) =3

Thus the given connected graph has exactly two vertices of odd degree. Hence,
it has an Eulerian path.

If it starts from A(vertex of odd degree), then it ends at D(vertex of odd
degree). If it starts from D(vertex of odd degree), then it ends at A(vertex of
odd degree).

But on the other hand if we have the graph as given below :

€1 B €4

Ae o(C
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then deg(A) = 1, deg(B) = 3 deg(C) = 1, degree of D = 3 and so we have four
vertices of odd degree. Hence it does not have Euler path.

Example: Does the graph given below possess an Euler circuit?

\/'lv

o

Cl

Solution: The given graph is connected. Further
deg(vy) =3
deg(vy) =4
deg(v3) =3
deg(vq) =4
Since this connected graph has vertices with odd degree, it cannot have Euler

circuit. But this graph has Euler path, since it has exactly two vertices of odd
degree. For example, v3es Va7 V4€e V2 € Vi €4 V4€3 V3€5 V]

Example:  Consider the graph

V4
Here, deg(vy) = 4. deg(va) = 4, deg(v3) = 2, deg(v4) = 2. Thus degree of each
vertex is even. But the graph is not Eulerian since it is not connected.
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Example 4:. The bridges of Konigsberg: The graph Theory began in 1736
when Leonhard Euler solved the problem of seven bridges on Pregel river in
the town of Konigsberg in Prussia (now Kaliningrad in Russia). The two
islands and seven bridges are shown below:

&2
Bridge
D

Bridge

Bridge——

\
- Bridge

S Bridge
C

Bridge

Bridge

\ -
~ River
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A(island)

(side of the river) C(side of the river)

sland)
(Euler’s graphical representqtion of seven bridge problem)

The problem then reduces to
“Is there any Euler’s path in the above diagram?”.

To find the answer, we note that there are more than two verti
degree. Hence there exist no Euler path for this graph.

s having odd

Definition: An edge in a connected graph is called a Bridge or a Cut E
deleting that edge creates a disconnected graph.

In this graph, if we remove the edge es, then the graph breaks into two
Connected Component given below:

€1

e 3
Vs

Hence the edge e; is a bridge in the given graph.
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METHOD FOR FINDING EULER CIRCUIT

We know that if every vertex of a non empty connected graph has even degree,
then the graph has an Euler circuit. We shall make use of this result to find an
Euler path in a given graph.

Consider the graph

We note that
deg(vy) = deg(vy) = deg(vg) = deg(vg) = 2
deg(vi) = deg(vi) = deg(vs) = deg(vy7) =4

Hence all vertices have even degree. Also the given graph is connected. Hence
the given has an Euler circuit. We start from the vertex vy and let C be

C:vivaviv;

Then C is not an Euler circuit for the given graph but C intersect the rest of the
graph at vy and vs. Let C” be
C’ : ViV4 V3 V5 V7 Vg V5 Vg V7 Vi

(In case we start from vs, then C” will be v3 v4 V| V7 Vg V5 V7 Vg Vs)
Path C” into C and obtain

C” : V1V2 V3 V1 V4 V3 V5 V7 Vg V5 Vg V7 V]

Or we can write

C”:ejepe3eqes5€6 €763 €9 €10€11 €12
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(If we had started from v, then C” : v{Vy V3 V4 V| V7 Vg V5 V7 Vg V5 V3 V| OF

ejer2e5€4€12€3€9€7¢€11 €10€6€3 )
then G hasal -
In C” all edges are covered exactly once. Also every vertex has been covered at
Matrix I jeast once. Hence C” is a Euler circuit.

Hamiltonian Circuits

Definition: A Hamiltonian Path for a graph G is a sequence of adjacent
vertices and distinct edges in which every vertex of G appears exactly once.

Definition: A Hamiltonian Circuit for a graph G is a sequence of adjacent
vertices and distinct edges in which every vertex of G appears exactly once,
except for the first and the last which are the same.

Definition: A graph is called Hamiltonian if it admits a Hamiltonian circuit.

Example 1: A complete graph K, has a Hamiltonian Circuit. In particular the

graphs

< and
K;

are Hamiltonian.

Ky
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A graph can be represented inside a computer by using the adjacency matrix or
the incidence matrix of the graph.

Definition: Let G be a graph with n ordered vertices vy, va,......., vy Then the
adjacency matrix of G is the n x n matrix A(G) = (a;;) over the set of non-
negative integers such that

a;; = the number of edges connecting v; and v; forall i, j= 1, 2,....n.

We note that if G has no loop, then there is no edge joining v; to v; ,
1= 1, 2,...,n. Therefore, in this case, all the entries on the main diagonal will be
0.

Further, if G has no parallel edge, then the entries of A(G) are either 0 or 1.
It may be noted that adjacent matrix of a graph is symmetric.

Conversely, given a n x n symmetric matrix A(G) = (a;j) over the set of non-
negative integers, we can associate with it a graph G, whose adjacency matrix
is A(G). by letting G have n vertices and joining v; to vertex v; by a;; edges.

Example 1: Find the adjacency matrix of the graph shown below:

Vi Vo

Vi3 Vi Vs

Solution: The adjacency matrix A(G) = (a;) is the matrix such that

aj = No. of edges connecting v; and v;.
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So we have for the given graph

0 1 1 1 1]
1 0 1 1 1
A(G)=|1 1 0 0 0
1 | 0 0 0
1 1 0 0 0

Example 2 : Find the graph that have the following adjacency matrix

1 2 1 81
2 0 2 1
1 2 1 0

2 1 0 0

Solution: We note that there is a loop at v and a loop at v3. There are parallel
edges between vy, va; Vi, V4i Va, Vi3 Va, Vi, V3, Va3 vy, Vy. Thus the graph is

V3 V4

Trees

Definition: A graph is said to be a Tree if it is a connected acyclic graph.

THEOREM:
A graph G with e = v — 1, that has no circuit is a tree.
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Proof: It is sufficient to show that G is connected. Suppose G is not connected
and let G, G”..... be connected component of G. Since each of G, G”,.... is
connected and has no cycle, they all are tree. Therefore, by Lemma 3,

e'=v -1
el - v’/_ ]
where e’, e”, ... are the number of edges and

v'. v”.... are the number of

vertices in G', G”, ...respectively. We have, on adding

e'+e” +...... =(v-D+W -1+
Since

e=e " +e" +.....

v=Vv +v +...
we have

e<v-1

which contradicts our hypotheses. Hence G is connected. So G is connected

and acyclic and is therefore a tree.

Definition: A directed tree is called a rooted tree if there is exactly one vertex
whose incoming degree is 0 and the incoming degrees of all other vertices are

1.

Definition: In a rooted tree, a vertex, whose outgoing degree is () is called a
leaf or terminal node, whereas a vertex whose outgoing degree is non - zero is

called a branch node or an internal node.

Definition: Let u be a branch node in a rooted tree. Then a vertex v is said to
be child (son or offspring) of u if there is an edge from u to v, In this case u is

called parent (father) of v.

Definition: Two vertices in a rooted tree are said to be siblings (brothers) if

they are both children of same parent.

Definition: A vertex v is said to be a descendent of a vertex u if there is a

unique directed path fromutov.
In this case u is called the ancestor of v.
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Definition: The level (or path length) of a vertex u in a rooted tree is the
number of edges along the unique path between u and the root.

Definition: The height of a rooted tree is the maximum level to any vertex of
the tree.
As an example of these terms consider the rooted tree shown below:

® FOOt.esrernneeeeasesadevel
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POSSIBLE QUESTIONS

PART-B (TWO MARKS)

1. Define directed graph.

2.How many vertices does a regular graph of degree 4 with 10 edges have
3.Define Hamiltonian path

4.Define isomorphic graph.

5.Define chromatic number

PART — C(SIX MARKS)

1. State and prove handshaking lemma
2.Define (i) Proper coloring graph (ii) Chromatic Number (iii) Independent set.
3.Give an example of a graph whichis
(i).Eulerian but not Hamiltonian
(ii).Hamiltonian but not Eulerian
(iii).Both eulerian and Hamiltonian
(iv).Non Eulerian and non Hamiltonian
4.Show that if a fully binary tree has i internal vertices then it has (i+1) terminal vertices and
(2i+1) total vertices.
5.Describe about konigsberg bridge problem.
6.Find the eccentricity of all vertices, center, radius and diameter of the followinggraph.

=
-

7! vy
7.Prove that the number of vertices of odd degree in a graph is always even.

n+1
8.Prove that the number of pendent vertices of a tree is equalto -

9. Define graph. Explain the various types of graph with an example.
10.In a undirected graph,the number of odd degree vertices are even.
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Prepositional Logic: Logical Connectives, Well-formed Formulas, Tautologies, Equivalences, Inference
Theory.
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Propositions. Compound Statements. Truth Tables

Statements (Propositions ): Sentences that claim certain things, either true or false
Notation: A, B, ...P,Q,R. ....,p. q, 1, etc.

Examples of statements: Today is Monday. This book is expensive
If a number 1s smaller than 0 then it is positive.

Examples of sentences that are not statements: Close the door! What 1s the time?

Propositional variables: A, B, C, ..., P., Q, R, ... Stand for statements. May have true or
false value.
Propositional constants:
T —true
F - false
Basic logical connectives: NOT, AND, OR
Other logical connectives can be represented by means of the basic connectives

Logical connectives | pronounced Symbol in Logic
Negation NOT =, ~, ¢
Conjunction AND A

Disjunction OR V

Conditional if then —

Biconditional if and only if o

Exclusive or Exclusive or ®

Truth tables - Define formally the meaning of the logical operators.
The abbreviation iff means if and only if

a. Negation (NOT,~ —,°¢

o ~P is true if and only if P is false
T F
F T
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b. Conjunction (AND, A, &&)

P Q PAQ

T T T
T & F
13 T F
E ] F

P A Q is true iff both P and Q are true. In all other
cases P A Q 1s false

¢. Disjunction / Inclusive OR (OR, V., |)

P Q PVQ P V Q istrue iff P is true or Q is true or both are
S — true.
T T T
T F T P WV Q is false iff both P and Q are false
F T T
g E E
d. Conditional , known also as implication (—)
P Q P—Q The implication P— Q 1s false 1ff P is true however
e Q is false.
T T T
T IE F In all other cases the implication 1s true
F T T
F F T
€. Biconditional (=)
P Q P&Q P« Q 1s true iff P and Q have same values - both are
—— e T true or both are false.
T T T
- . . If P and Q have different values, the biconditional 1s
= T =
false.
F F T
f. Exclusive OR (@)
P Q PEQ P@® Q 1s true iff P and Q have different values
4 4 £ We say: “P or Q but not both™
T F T
F T T
17 Ig I
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Precedence of the logical connectives:

Connectives within parentheses, innermost parentheses first

= negation

A conjunction

f disjunction

- conditional

©, D biconditional, exclusive OR

Compound Statements: Logical expressions that consist of propositional variables and logical
connectives. They may contain also propositional constants.

Evaluating compound statements : by building their truth tables

Example: ~PV Q

P Q -P -PVQ
T T F T
T F F F
F T il T
F F (i T

PVQA-(PAQ

P Q PVQ PAQ ~-(PAQ EBVQA—-(PAQ
A B -B A A-B (the letters A and B
are used as shortcuts)

I S
o
e I R
R B
e B L e
o -
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1. Tautologies and Contradictions

A propositional expression is a tautology if and only if for all possible assignments of truth
values to its variables its truth value is T

Example: P V — P is a tautology

P =p. BV=P

T B ]
F T i

A propositional expression is a contradiction if and only if for all possible assignments of
truth values to its variables its truth value is F

Example: P A — P is a contradiction

P =P BASE

T F E
F T E

Usage of tautologies and contradictions - in proving the validity of arguments; for rewriting
expressions using only the basic connectives.

Definition: Two propositional expressions P and Q are logically equivalent.
if and only if P <> Q 1s a tautology. We write P=Qor P & Q.

Note that the symbols = and < are not logical connectives
Exercise:
a) Show that P — Q <> —~P V Q is a tautology.1.e. P—Q =—PVQ

P Q -P -PVQ P—Q P—Q&-PVQ

I
i
— =
=
=
EEE RS
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2. Logical equivalences

Similarly to standard algebra, there are laws to manipulate logical expressions, given as
logical equivalences.

1. Commutative laws PVQ=QV P
PAQ=QAP

[ 3]

. Associative laws PVQVR=PV(QVR)
PAQAR=PA(QAR)

3. Distributive laws: PVQA P VR=PV (Q A R
PAQV®PAR=EPA(Q V R

4. Identity PV F=P
PA T=P

5. Complement properties PV-P=T (excluded middle)
P A-P=F (contradiction)

6. Double negation —(—P)=P

7. Idempotency (consumption) PV P=P
PA P=P

8. De Morgan's Laws “PVQ=—"P A Q

~(PAQ=-P V Q

9. Universal bound laws (Domination) P V T=T

P AF=F

10. Absorption Laws PVPAQ=P
PAPYV Q=P

11. Negation of T and F: —T =F
—-F =T
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1. Truth table of the conditional statement

P—Q

o
e

-
o
H -

P is called antecedent
Q is called consequent
Meaning of the conditional statement: The truth of P implies (leads to) the truth of Q

Note that when P is false the conditional statement is true no matter what the value of Q is. We say that in this
case the conditional statement is true by default or vacuously true.

2. Representing the implication by means of disjunction

P—Q=-PVQ
P Q ~-P P—Q -PVQ
T B B F 3
T F F F F
F 4 T 7 )
F £ T T F

Same truth tables

Usage:
1. To rewrite "OR" statements as conditional statements and vice versa (for better

understanding)
2. To find the negation of a conditional statement using De Morgan's Laws

3. Rephrasing "or" sentences as "if-then" sentences and vice versa

Consider the sentence:
(1) "The book can be found in the library or in the bookstore".

Let
A = The book can be found in the library

B = The book can be found in the bookstore

Logical form of (1): AV B

Prepared by :M.Sangeetha,Department of Mathematics,KAHE. Page 7/18



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:1 B.SC(IT) COURSE NAME:DISCRETE STRUCTURES
COURSE CODE:191TU202 UNIT: V BATCH-2019-2022

Rewrite AV B as a conditional statement

In order to do this we need to use the commutative laws, the equivalence — (— P) =P, and the
equivalence P— Q = -PVQ

Thus we have:
AVB=—-(—A)VB=—-A—B
The last expression — A — B is translated into English as

"If the book cannot be found in the library,
it can be found in the bookstore".

Here the statement "The book cannot be found in the library" is represented by — A

There is still one more conditional statement to consider.
AV B =B V A (commutative laws)

Then, following the same pattern we have:
BVA=—-(—"B)VA=—-B—A

The English sentence is: "'If the book cannot be found in the bookstore, it can be found in the
library.

We have shown that:

AVB= ~(~A)VB=—A—B
AVB=BVA =—-(—-B)VA=—-B—A

Thus the sentence "The book can be found in the library or in the bookstore"

can be rephrased as:
"If the book cannot be found in the library, it can be found in the bookstore".
""If the book cannot be found in the bookstore, it can be found in the library.

4. Negation of conditional statements

Positive: The sun shines
Negative: The sun does not shine

Positive: " If the temperature is 250°F then the compound is boiling "
Negative: ?

In order to find the negation, we use De Morgan's Laws.

Let

P = the temperature is 250°F
Q = the compound is boiling

1
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Positive: P Q = —PVQ
Negative: ~(P— Q) = ~("PVQ)=—(—P)A—Q= PAQ

Negative: The temperature is 250°F however the compound is not boiling
IMPORTANT TO KNOW:

The negation of a disjunction is a conjunction.
The negation of a conjunction is a disjunction

The negation of a conditional statement is a conjunction. not another if-then statement

Question: Which logical connective when negated will result in a conditional statement?

5. Necessary and sufficient conditions

Definition:
"P is a sufficient condition for Q" means : if Pthen Q, P — Q
"P is a necessary condition for Q" means: if not P then not Q, ~P — ~Q
The statement ~P — ~Q is equivalent to Q — P

Hence given the statement P — Q,
P is a sufficient condition for Q, and Q is a necessary condition for P.

Examples:

If » 1s divisible by 6 then 7 is divisible by 2.
The sufficient condition to be divisible by 2 is to be divisible by 6.
The necessary condition to be divisible by 6 is to be divisible by 2

If n 1s odd then n is an integer.
The sufficient condition to be an integer to be odd.

The necessary condition to be odd is to be an integer.

If and only if - the biconditional

P Q PsQ
X N i
T T B
F T F
F F T

P < Q 1s true whenever P and Q have same values. Otherwise it is false.
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This means that both P — Q and Q — P have to be true

P Q P—-Q Q—P PsQ

T T T T T

T F F T F

F T T F F

F F T T T
Contrapositive

Definition: The expression ~Q — ~P is called contrapositive of P — Q

The conditional statement P — Q and its contrapositive ~Q — ~P are equivalent.
The proof is done by comparing the truth tables

The truth table for P— Qand ~Q — —Pis:

P Q = =0 P—=A{) =P
43 f b F F T ]
T F F i F F
F T i) F T T
F B 0 ) T i )

We can also prove the equivalence by using the disjunctive representation:
P—Q=—-PVO=QV-P==Q) YV P=—0Q—7P

Converse and inverse

Definition: The converse of P — Q 1s the expression Q — P

Definition: The inverse of P — Q is the expression ~P — ~Q
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Neither the converse nor the inverse are equivalent to the original implication.
Compare the truth tables and vou will see the difference.

P Q -P =Q P—Q Q—P ~P—7Q
T T F F T T T
T F F T F T T
F T T F T F F
F F T T T T T

Valid and Invalid Arguments.

Definition: An argument is a sequence of statements. ending in a conclusion. All the statements
but the final one (the conclusion) are called premises(or assumptions. hypotheses)

Verbal form of an argument:
(1) If Socrates 1s a human being then Socrates is mortal.
(2) Socrates 1s a human being

Therefore (3) Socrates 1s mortal

Another way to write the above argument:
P—Q
P
S Q
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2. Testing an argument for its validity

Three ways to test an argument for validity:

A. Critical rows

1. Identify the assumptions and the conclusion and assign variables to them.

2. Construct a truth table showing all possible truth values of the assumptions and the
conclusion.
3. Find the critical rows - rows in which all assumptions are true

4. For each critical row determine whether the conclusion is also true.
a. If'the conclusion is true in all critical rows. then the argument is valid
b. If'there 1s at least one row where the assumptions are true, but the conclusion is
false. then the argument 1s invalid
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B. Using tautologies
The argument is true if the conclusion is true whenever the assumptions are true.
This means: If all assumptions are true. then the conclusion is true.
"All assumptions" means the conjunction of all the assumptions.
Thus, let Al. A2. ... An be the assumptions, and B - the conclusion.
For the argument to be valid. the statement
If (A1 A A2 A... A An) then B must be a tautology - true for all assignments of values to
its variables. 1.e. its column in the truth table must contain only T
Le.
(AIAA2A...AAn)—B=T
C. Using contradictions
If the argument is valid. then we have (A1 AA2 A... AAn)—B=T
This means that the negation of (A1 A A2 A... A An) — B should be a contradiction -

containing only F 1n its truth table

In order to find the negation we have first to represent the conditional statement as a
disjunction and then to apply the laws of De Morgan

(AlAA2A...AAn)—B=~(A1AA2A...AAn)VB=

~Al1V~A2V ... V~AnVB.

The negation is:

~((A1AA2A...AAn)—B)=~(~A1V~A2V ... V~An VB)
=AlAA2A...AAnA-~B

The argument is valid if AIAA2A ... AAnA~-B=F

There are two ways to show that a logical form 1s a tautology or a contradiction:

a. by constructing the truth table
b. by logical transformations applying the logical equivalences (logical identities)
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Examples:

1. Consider the argument:

P—Q
P
S Q

Testing 1ts validity:

a. by examining the truth table:

P Q P—Q
T T T
T F F
F T T
F F T
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b. By showing that the statement 'If all premises then the conclusion" is a tautology:
The premises are P and P— Q. The statement to be considered is:

PAP—Q)—Q

We shall show that it is a tautology by using the following identity laws:
(HP—-Q=~PVQ
2)(PVQ VR =PV(QVR) commutative laws
(PAQ)AR=PAQAR)
BPAQVR=(PVR)A(QVR) distributive law
4 PA~P=F
G)PV~P=T
GPVE =P
(7HPVT =T
(8)PAT=P
Q@ PAF=F
(10) (PAQ)=~PV ~Q De Morgan's Laws

PAP=Q)—Q
by() | = | (PAP=Q)VQ
by(10) | = | (-PV~(P=Q)VQ
by(H) | = |[(-PV~(-PVQ)VQ
by(10) | = |[PVEPA-Q)VQ
by (3) = [((PVPA(CEPV-Q)VQ
by(5) | = |[(TAGCPV-Q)VQ
by@® | = | -PV-QVQ
by(2) | = |-PV(QVQ
by(5) | = |-PVT
by(7) = T
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2. Consider the argument

P—Q

Q
P

We shall show that this argument is invalid by examining the truth tables of the assumptions and
the conclusion. The critical rows are in boldface.

P Q P

i | T g

T F F

F T § 5 here the assumptions are true, however the
conclusion is false

F F 4 )
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Exercise:

Show the validity of the argument:

1. PVQ (premise)
2. ~Q (premise)
Therefore P (conclusion)

a. by using critical rows
b. by contradiction using logical identities

Solution:

a. by critical rows

conclusion Premises

P Q PVQ ~Q

T T T F

T F T T Critical row
F T T F

F F F T

b. By contradiction using identities

(PVQA-Q)A ~P=
(PA~Q)V(QA~Q)A ~P=
(PA~-Q)V F)A ~P=
(PA-Q)A ~P=

PA-P A ~-Q=FA ~Q=F
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:1 B.SC(IT) COURSE NAME:DISCRETE STRUCTURES

COURSE CODE:191TU202 UNIT: V BATCH-2019-2022
POSSIBLE QUESTIONS

2 MARKS

1. Construct the truth table for 1(PAQ).

2. Define tautology .

3. Prove that without using truth table ( 1Q A (P -Q))-> TP is atautology.
4. Prove that P=>(QVR) & (P-Q) vV (P->R).

5. Construct the truth table for 1(P) V 1(Q).

6 MARKS

1.construct the truth table | (P v(QA R)
2.show that (x)(H(x) =>M(x)) AH(S) =>M(S)
3.Define disjunctive normal form and conjunctive normal form. Also obtain disjunctive

normal form of (PAQ) v(1PAR) v(QAR)
4.Provethat (PvQ) Al PA(lavIR)V(IPAIQ)V(TPAIR))isa tautology.

5.Verify that a proposition P v (PAQ)is atautology.

6.0btain the PDNF of (PAQ) v(IPAR) v(QAR).

7.Lions are dangerous animals. There are lions. There are dangerous animals.
8.Construct the truth table for (P<>R) A (1Q—S)

9.0btain PDNF of (| ((P vQ) AR)) A (PVR))

10.Demonstrate that R is a valid inference from the premises P— Q, Q — R, and P.
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Answe

Questions optl opt2 opt3 | opt4 .
Let p be “He is tall” and
let q “He is handsome™.
Then the statement “It is |p”q ~(~pvq) [~pvq [pvq ~(pv
false that he is short or D
handsome” is:
Logical Logical
The proposition p” (~p (A a ly an ly
vq) tautulo |contradict|equival |[assum |equival
1St gy ion ent to |ption |entto
P"q P"q
Which of the following  |avb |anb— [2VD [#VD[27D
) —((b |—>b |[—>bv
is/are tautology? —b”clbvece
—cCc) |ve C
Identify the valid QA
conclusion from the PR |[P*"(P~" [RN(P P v Q" (P
premises PvQ, Q — R, |vR) R) v Q) R) v R)
P—->M, ™M
Leta, b, c,dbe
propositions. Assume Same |Same
that the equivalence a < as the |as the
(bv1Ib)and b «» chold. |TRUE |FALSE |truth [truth |TRUE
Then truth value of the value |value
formula (a”b) — ((a” ofa ofb
c) vd) is always
TWO
Which of the following  |It's may (I love
. . . He says He says
is a declarative statement?|right not be [you

an




: Pv |(Pv |(P"
P—->(Q—R)is P~ Pv
equiv(a(lgent to-) ------------ (—> RQ) (—> RQ) Q= Q=19 —
1R P R
If F1, F2 and F3 are
propositional formulae ~ |Both  |The . Both
such that F1 * F2 — F3 [F1 and |conjuctio I\iIelther E;Vi F1 and
and F1 * F2—F3 are F2 are |nF1"F2 tas tolo lta tsl F2 are
both tautologies, then tautolo |is not iu 010 11RO Lautolo
which of the following is |gies satisfiable |5 |8 gies
TRUE?
Consider two well- Flis Flis Fl & Flis
formed formulas in satisfiab|F1 is . JF2 .
.. . . unsatisf] unsatisf
propositional logic le, F2 |unsatisfia able. 12 Liable
F1:P —>1PF2: (P —1P) [is ble, F2 is . |both L
) . F2 is . . |F21s
v ( 1P —), then unsatisf [satisfiable | . satisfi .
. valid valid
iable able
TTpIS [IIP TIPS
What can we correctly . true —|as true
.. Plis ) and q |[true [and q
say about proposition P1 Plis ) .
(v 1) A (qo1) v (r v tautolo satisfiable |'S false |and q |is false
) )p gy andr |[is and r
P is true |is
folon and e folon
N A
PvQTP=RTQ \sip ISR [SvR [SUR[SY R
—S) is equivalent to
In propositional logic ,
which of the following is [~p — q|~p Vv q PV p—q|~pVvq
equivalent to p — q? q
1(P — Q) is equivalent to [P~ 1Q [P Q TPPvQ |[TPMQ|P1Q
A A\ —
PvQ P=R Q[ |, X [Tre
— R) is equivalent to T




How many rows would
be in the truth table for
the following compound

. 32 34 27 25 32
proposition:
PVaQA
QA V(r—5s)
. . Z Z
Which of the following z S |2isodd e‘V Sl e
statement is the negation az 4.3 and -3 is or 3 lor—3 |3is
of the statement, 2 is s not not s not lis not Inot
evenand 3 is negative”? nspoafi\ negative. neoativ {neoati |necatix
p—q is logically camnl o A ~P |y
equivalent to =P ~p™d P4 vq PVa
; . TOr _[TOT all [TV __[TOT aml
r\i’)l;l;h Z{lﬂffrrfilgwmg s all x x1,x2,x3 _)(I;_) P(a, |x1,x2,x
) VIV() Px)— [{x1=x2 | V7 |b)]>z|3 {x1
ormuia cean aen — a4 fa Y2 P, N
[~q” (p—q)]—~pis, Elaet isfia Unsatisfia | Tautol |Invali |Tautolo
ble ogy d gy
70T and STateIment 15 1rue TICTNe
if, and only if, both TRUE |FALSE not r true TRUE
components are true nor
‘F’)]CI)
It is It is gol‘[s It is
IfP:Itishot & Q:Itis |nothot |Itis hot [hot hot hot
humid,then what does P [andit [anditis |and it and it and it
" (~ Q):mean? isnot |humid isnot |. is not
. ., |18 not .
humid humid ., |humid
humid
An or statement is false neithe
if, and only if, both TRUE |FALSE not r true FALSE
components are true nor

false




Two statement forms are the
) : ) not the . the the
logically equivalent if, differe
and only if they always Same | same nt SAME | Sahe
truth truth false |truth
have............oooil. truth
values |values values values [values
A tautology is a ¢ ni:une
statement that is always |[TRUE |FALSE ho rtrue TRUE
true nor
...................... el
A contradiction 1s a ¢ ninthe
statement that is always [FALSE |TRUE ho rtrue FALSE
true nor
...................... false
A )
;l;hae statement (p"q) P p Elaet isfia Unsatisfia | Tautol |Invali |Tautolo
..................... ble ogy d oy
TIT ProposITionar I0gIc
which one of the - .
following is equivalent to p=q (P4 Pvq [pva |PVd
o VAV | ()
Which of the following
L (pv |pv pv( |(pv [pW(
proposition 1s a
tautology? Q—p |(@—=p) [pP—D |99 [p—9)
Which one is the ~p — P>~ ~p— |p— |~p—
contrapositive ofq = p ? [~ q q q q ~q
The statement form Satisfia
pv(~p) is ble 1 |Unsatisfia | Tautol |Invali |Tautolo
VR ble ogy d gy
Let p and q be .
statements given by “p h.yp othe|conclusio TRUE |#### Fonclus
sis n ion

—q". Then q is called




The statement form

p(~p) is ?optrad Unsatisfia | Tautol [Invali ?optrad
iction iction

T ble ogy d

If p and q are statement

variables, the conditional |~p — ~p— |p—

o p—~q P— 4

of q by p is given by ~q q q

Let p and q be

stat?ments given by “p hypothe conclusio TRUE |#ssss hy'poth

—q". Then p is sis n esis

called..................

The statement (p — 1) A v v v v

(q — r) is equivalent pYa pvgq—or Y I PYVq
—~T —T q—or|—r

1£0 TR

The Negation of a

Conditional Statement p Amd lp A ~ v A A

_.q is given by p q(~P q |p qpAq [p q

GIvVen Statement

variables p and q, the - N ok « «

biconditional of p and q pe=q (P4 ped p@ Peq

I'C‘ (TI.‘ faSal ]‘\‘7

T’I’m? inverse of “if p then if~p |if~p if~p |if~p |if~p

q”1s then |then |then
then ~q|then ~q

.............................. ~q ~q |~q




B s valid  linevitable |sufficie "% | sufficie

condition for S” means ary

“ifR then S .” nt nt

A conditional statement |A a {Joglcal an {Joglcal

and its contrapositive are [tautulo |contradict Y lassum|” .

..................... gy ion equival ption equival
ent ent

A rule of inference is a a an A

form of argument that is [valid |contradict|assump [tautul |valid

................ ion tion |ogy




(191TU202/19CAU202)
KARPAGAM ACADEMY OF HIGHER EDUCATION
Coimbatore-21
DEPARTMENT OF MATHEMATICS
Second Semester
I Internal Test — Dec '2019
Discrete Structure
Date: Time:2 Hrs
Class: 1-B.Sc IT,BCA Maximum Marks:50

PART-A(20X1=20 Marks)
Answer all the Questions:
1.A mapping f: x—vy is called
mapped into distinct elements

if distinct elements of x are

(a) one-one (b) onto (c) into (d) many-one
2.The r - permutation of n elements is denoted by
@P(rn) (PN (©crn) (dchr)
3.If R={(1,2),(3,4),(2,2)} and S = {(4,2),(2,5),(3,1),(1,3)} are relations
then RoS =
(@) {(4,2),(3,2),(1.4)} (b) {(1,5).(3,.2).(2,5)}
(©) {(1,2).(2.2)} (d) {(4,5),3,3).(1,1)}

4.1f the relation R and S are both reflexive then R U S is
(a) transitive (b) not reflexive
(c) reflexive (d) symmetric

5.1f f(x) = x+2 and g(x) = x* —1 then (go)(x) = ------

(@) X2 +4x+4  (D)x® +4x-3  (C) X*-4x+4  (d) x* +4x+3

6. In a relation matrix A=(aj) such that ajj =ajj then it satisfies...... relation
(a) reflexive (b)symmetric (c) not reflexive (d) transitive

7.Let f: N — N be a function such that f(x) = 5 ,x e N then the f(x) is
called--------- function.
(@) identity

8.The number of different permutations of the word BANANA is ----
(@) 720 (b)360 (c)120  (d) 60

(b) constant  (c) inverse (d) equal

9.Let f: x—Yy, g: y— x be the functions then g is equal to
fLonly if
(@) fog = Iy (b)gof =1y (c)fog=1Ix (d)gof=Ix
10.The number of ways can a party of 7 persons arrange
themselves around a circular table

(@) 6! (b) 7! (0 (d) 3!

11.The value of C(n,n) is
(@0 (b) -1 (c) 2 ()1

12.In N, define aRb if a+b = 7. This is symmetric when
(@) b+a=7 (b) a=b (c) ab=7 (d) a+a=7

13.An Onto function is also known as...........

(@) injective (b) surjective  (c) bijective  (d) into
14.The value of C(10, 8) + C( 10,7) is
(@) 990 (b) 165 (c) 45 (d) 120
15.The sum of entries in the fourth row of Pascal's triangle is
(@) 10 (b) 4 (c)10 (d) 16
16.The growth of is directly related to the complexity of
algorithms.

(@) Functions  (b) relations (c) parameters (d) polynomials
17.How many 10 digits numbers can be written by using the

digits 1 and 2 ?

@ C(10,9)+C(9,2) (b)1024 (c)C(10,2) (d)10!
18.A binary relation R in a set X is said to be antisymmetric if

(@) aRa (b) aRb—>bRa
(c) aRb,bRc>aRc (d) aRb,bRa—>a=b

19. Arelation R in a set X is ---------- if for every x in X,
(xx)R.

(@) reflexive  (b) symmetric (c) irreflexive (d) transitive
20. A One —to —one and onto function is also known as ---------
(@) injective  (b) surjective (c) bijective  (d) into



PART-B (3X2=6 Marks)
Answer all the Questions:

21.Find the value of n if nps=5np>

22.Show that ,among 100 people,atleast 9 of them were born in the
same month.

23.In how many words can letters of the word “INDIA” be
arranged?

PART-C (3X8=24 Marks)
Answer all the Questions:

24.(a) Explain the types of sets.
(OR)
(b)Explain the types of Relation

25.(a) State and prove pigeon hole principle.
(OR)
(b) Using Mathematical Induction prove that

n .2 _nm+1)(2n+1)
=1l =
6

26.(a) Show that n<2"
(OR)
(b) From a committee consisting of 6 men and 7 women ,in how
many ways can be select a committee of
a)3 men and 4 women.
b)4 members which has atleast one women.
c)4 persons that has atmost one man.
d)4 persons of both sexes.
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