
18CTU402 SOFTWARE ENGINEERING 4H – 4C

Instruction Hours / week: L: 4 T: 0 P: 0 Marks: Int : 40 Ext : 60 Total: 100

SCOPE

The graduates of the software engineering program shall be able to apply proper theoretical,

technical, and practical knowledge of software requirements, analysis, design,

implementation, verification and validation, and documentation. This course enables the

students to resolve conflicting project objectives considering viable tradeoffs within

limitations of cost, time, knowledge, existing systems, and organizations.

COURSE OBJECTIVES

 To gain knowledge on various process models to the model, analyse and measure

software artifacts.

 To work effectively as leader/member of a development team to deliver quality

software products.

 To analyze, specify and document software requirements for a software system.

 To implement a given software design using sound development practices.

 To verify, validate, assess and assure the quality of software artifacts.

 To design, select and apply the most appropriate software engineering process for a

given project, plan for a software project, identify its scope and risks, and estimate its

cost and time.

 To understand software testing fundamentals and various types of testing.

COURSE OUTCOMES

1. Apply the software engineering lifecycle by demonstrating competence in

communication, planning, analysis, design, construction, and deployment

2. An ability to work in one or more significant application domains

3. Work as an individual and as part of a multidisciplinary team to develop and deliver

quality software

4. Demonstrate an understanding of and apply current theories, models, and techniques

that provide a basis for the software lifecycle

5. Demonstrate an ability to use the techniques and tools necessary for engineering

practice

UNIT-I

Introduction: The Evolving Role of Software, Software Characteristics, Changing Nature of

Software, Software Engineering as a Layered Technology, Software Process Framework,

Framework and Umbrella Activities, Process Models, Capability Maturity Model Integration

(CMMI).

UNIT-II

Requirement Analysis; Initiating Requirement EngineeringProcess- Requirement Analysis

and Modeling Techniques- FlowOriented Modeling- Need for SRS- Characteristics and

Components of SRS- Software Project Management: Estimation in Project Planning Process,

Project Scheduling.

8

UNIT-III
Risk Management: Software Risks, Risk Identification Risk Projection and Risk Refinement,

RMMM plan, Quality Management- Quality Concepts, Software Quality Assurance,

Software Reviews, Metrics for Process and Projects

UNIT-IV

Design Engineering-Design Concepts, Architectural Design Elements, Software

Architecture,Data Design at the Architectural Level and Component Level, Mapping of

Data Flow into Software Architecture, Modeling Component Level Design

UNIT-V

Testing Strategies & Tactics: Software Testing Fundamentals, Strategic Approach to

Software Testing, Test Strategies for Conventional Software, Validation Testing, System

testing Black-Box Testing, White-Box Testing and their type, Basis Path Testing

Reference(s)

1. R.S. Pressman, (2009). Software Engineering: A Practitioner‘s Approach (7
th

 ed.).

McGraw-Hill.

2. P.Jalote (2008). An Integrated Approach to Software Engineering (2
nd

 ed.). New

Age International Publishers.

3. K.K. Aggarwal and Y.Singh (2008). Software Engineering (2
nd

 ed.). New Age

International Publishers.

4. Sommerville (2006). Software Engineering (8
th

 ed.). Addison Wesley.

5. D.Bell (2005). Software Engineering for Students (4
th

 ed.) Addison-Wesley.

6. R.Mall (2004). Fundamentals of Software Engineering (2
nd

 ed.). Prentice-Hall

of India.

WEB SITES

1. http://en.wikipedia.org/wiki/Software_engineering

2. http://www.onesmartclick.com/engineering/software-engineering.html

3. http://www.CC.gatech.edu/classes/AY2000/cs3802_fall/

ESE Patterns

 Part – A(Online) 20x1=20

 Part – B 5x2=10

Part – C(Either or) 5x6=30

Total 60 Marks

Faculty HOD

CIA Patterns

Part – A 20x1=20

 Part – B 3x2=06

Part – C(Either or) 3x8=24

Total 50 Marks

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.
(For the candidates admitted from 2018 onwards)

DEPARTMENT OF COMPUTER SCIENCE, COMPUTER APPLICATION

& INFORMATION TECHNOLOGY

SUBJECT: SOFTWARE ENGINEERING SUB. CODE: 18CTU402

CLASS: II B.Sc. CT SEMESTER: IV

STAFF NAME: Dr.K.DEVASENAPATHY

S.No

Lecture

Duratio

n

(Period)

Topics to be Covered

Support Materials

Unit – I

1 1 Introduction: The Evolving Role of Software S2:34-39

S2: 45-47

2 1 Software Characteristics S2:34-39

S2: 45-47

3 1 Changing Nature of Software S1: 09-11

4 1 Software Engineering as a Layered Technology W1,S2:52-54

5 1 Software Process Framework, Framework and Umbrella

Activities

S1:16-17,S1:18

S1:18

W1

6 1 Process Models S1:45, S2:85-88,W1

7 1 Capability Maturity Model Integration (CMMI) S2:62-63

8 1 Recapitulation and Discussion of important questions

Total No. of Hours Planned for Unit-I 08

Unit – II

1 1 Requirement Analysis; Initiating Requirement

Engineering Process-
S2: 176-181

S2:182:191

2 1 Requirement Analysis and Modeling Techniques S2:207-211 S5:241-244

3 1 Flow Oriented Modeling, Need for SRS S2:211-215, S5: 101-103

4 1 Characteristics and Components of SRS- S2:229-230 , W2

5 1 Software Project Management: Estimation in Project

Planning Process
S1:684

6 1 Project Scheduling S1:759

7 1 Recapitulation and Discussion of important questions

Total No. of Hours Planned for Unit-II 07

Unit – III

1 1 Risk Management: Software Risks S1:778

2 1 Risk Identification Risk Projection and Risk Refinement S1:780-782

3 1 RMMM plan S1:783-785

S1:787

4 1 Quality Management: Quality Concepts S1:287-289 S1:412-418 S1:287-

289 ,S1:414-418

5 1 Software Quality Assurance S1:438-439

6 1 Metrics for Process and Projects S1:441-444, S1:452-454

7 1 Recapitulation and Discussion of important questions

Total No. of Hours Planned for Unit-III 07

Unit – IV

1 1 Design Engineering S1:225 ,S1:228-230

2 1 Design Concepts S1:228-230

3 1 Architectural Design Elements S1:486-487,S2:421-426

S1:500-506

4 1 Software Architecture S1:224-245

5 1 Data Design at the Architectural Level, Data Design

and Component Level

S2:289-291, S1:224-245

6 1 Mapping of Data Flow into Software Architecture S2:307-315,S2:324-327

7 1 Modelling Component Level Design S2: 330-353

8 1 Recapitulation and Discussion of important questions

Total No. of Hours Planned for Unit-IV 08

Unit – V

1 1 Testing Strategies & Tactics: Software Testing

Fundamentals
S2:394-397

2 1 Strategic Approach to Software Testing S1:466-472,

3 1 Test Strategies for Conventional Software S1:473-481, S1:483-485

4 1 Validation Testing , System testing

5 1 Black-Box Testing , White-Box Testing and their type S5:421-426 , S1:500-506,

6 1 Basis Path Testing S1:512-516

7 1 Recapitulation and Discussion of important questions

8 1 Pervious ESE Question Paper Discussion

9 1 Pervious ESE Question Paper Discussion

10 1 Pervious ESE Question Paper Discussion

Total No. of Hours Planned for Unit-I 10

8

Reference(s)

1. R.S. Pressman, (2009). Software Engineering: A Practitioner‘s Approach (7
th
 ed.). McGraw-

Hill.

2. P.Jalote (2008). An Integrated Approach to Software Engineering (2
nd

 ed.). New Age

International Publishers.

3. K.K. Aggarwal and Y.Singh (2008). Software Engineering (2
nd

 ed.). New Age

International Publishers.

4. Sommerville (2006). Software Engineering (8
th
 ed.). Addison Wesley.

5. D.Bell (2005). Software Engineering for Students (4
th
 ed.) Addison-Wesley.

6. R.Mall (2004). Fundamentals of Software Engineering (2
nd

 ed.). Prentice-Hall of India.

WEB SITES

1. http://en.wikipedia.org/wiki/Software_engineering

2. http://www.onesmartclick.com/engineering/software-engineering.html

3. http://www.CC.gatech.edu/classes/AY2000/cs3802_fall/

 FACULTY HOD

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 1

UNIT-I

Introduction: The Evolving Role of Software, Software Characteristics, Changing

Nature of Software, Software Engineering as a Layered Technology, Software Process

Framework, Framework and Umbrella Activities, Process Models, Capability Maturity

Model Integration (CMMI).

Introduction to Software Engineering:

What is software engineering?

Definition

At the first conference on software engineering in 1968, Fritz Bauer [FRIT68]

defined software engineering as “The establishment and use of sound engineering

principles in order to obtain economically developed software that is reliable and works

efficiently on real machines”. Stephen Schacht [SCHA90] defined the same as “A

discipline whose aim is the production of quality software, software that is delivered on

time, within budget, and that satisfies its requirements”. Both the definitions are popular

and acceptable to majority..

The Evolving Role of Software

Software takes on a dual role. It is a product and, at the same time, the vehicle for

delivering a product. As a product, it delivers the computing potential embodied by

computer hardware or, more broadly, a network of computers that are accessible by local

hardware. Whether it resides within a cellular phone or operates inside a mainframe

computer, software is information transformer— producing, managing, acquiring,

modifying, displaying, or transmitting information that can be as simple as a single bit or

as complex as a multimedia presentation. As the vehicle used to deliver the product,

software acts as the basis for the control of the computer (operating systems), the

communication of information (networks), and the creation and control of other programs

(software tools and environments). Software delivers the most important product of our

time—information.

 Software transforms personal data (e.g., an individual‘s financial transactions) so

that the data can be more useful in a local context; it manages business information to

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 2

enhance competitiveness; it provides a gateway to worldwide information networks (e.g.,

Internet) and provides the means for acquiring information in all of its forms.

 The role of computer software has undergone significant change over a time span

of little more than 50 years. Dramatic improvements in hardware performance,

profound changes in computing architectures, vast increases in memory and storage

capacity, and a wide variety of exotic input and output options have all precipitated more

sophisticated and complex computer-based systems.

The lone programmer of an earlier era has been replaced by a team of software

specialists, each focusing on one part of the technology required to deliver a complex

application.

Software

Computer software, or just software, is a collection of computer programs and

related data that provide the instructions for telling a computer what to do and how to do

it. In other words, software is a conceptual entity which is a set of computer programs,

procedures, and associated documentation concerned with the operation of a data

processing system. We can also say software refers to one or more computer programs

and data held in the storage of the computer for some purposes.

In other words software is a set of programs, procedures, algorithms and its

documentation. Program software performs the function of the program it implements,

either by directly providing instructions to the computer hardware or by serving as input

to another piece of software.

The term was coined to contrast to the old term hardware (meaning physical

devices). In contrast to hardware, software is intangible, meaning it "cannot be touched".

Software is also sometimes used in a more narrow sense, meaning application software

only. Sometimes the term includes data that has not traditionally been associated with

computers, such as film, tapes, and records.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 3

Software Characteristics

1. Software is developed or engineered; it is not manufactured in the classical

sense.

 Although some similarities exist between software development and

hardware manufacture, the two activities are fundamentally different. In both activities,

high quality is achieved through good design, but the manufacturing phase for hardware

can introduce quality problems that are nonexistent (or easily corrected) for software.

Both activities are dependent on people, but the relationship between people applied

and work accomplished is entirely different . Both activities require the construction of a

"product" but the approaches are different. Software costs are concentrated in engineering.

This means that software projects cannot be managed as if they were manufacturing

projects

2. Software doesn't "wear out."

Fig 1.1 depicts failure rate as a function of time for hardware.

Fig 1.1 Failure curve for hardware

 The relationship, often called the "bathtub curve," indicates that hardware

exhibits relatively high failure rates early in its life (these failures are often

attributable to design or manufacturing defects); defects are corrected and the failure

rate drops to a steady-state level (ideally, quite low) for some period of time. As time

passes, however, the failure rate rises again as hardware components suffer from the

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 4

cumulative affects of dust, vibration, abuse, temperature extremes, and many other

environmental maladies. Stated simply, the hardware begins to wear out.

Fig 1.2 Failure curves for software

 Software is not susceptible to the environmental maladies that cause

hardware to wear out. In theory, therefore, the failure rate curve for software should

take the form of the ―idealized curve‖ shown in Fig 1.2. Undiscovered defects will

cause high failure rates early in the life of a program. However, these are corrected

(ideally, without introducing other errors) and the curve flattens as shown. The

idealized curve is a gross oversimplification of actual failure models for software.

However, the implication is clear—software doesn't wear out.

 This seeming contradiction can best be explained by considering the

―actual curve‖ shown in Fig 1.2. During its life, software will undergo change

(maintenance). As changes are made, it is likely that some new defects will be

introduced, causing the failure rate curve to spike as shown in Fig 1.2. Before the

curve can return to the original steady-state failure rate, another change is requested,

causing the curve to spike again. Slowly, the minimum failure rate level begins to

rise—the software is deteriorating due to change.

 Another aspect of wear illustrates the difference between hardware and

software. When a hardware component wears out, it is replaced by a spare part. There

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 5

are no software spare parts. Every software failure indicates an error in design or in

the process through which design was translated into machine executable code.

Therefore, software maintenance involves considerably more complexity than

hardware maintenance.

3. Although the industry is moving toward component-based assembly, most

software continues to be custom built.

 Consider the manner in which the control hardware for a computer-based

product is designed and built. The design engineer draws a simple schematic of the

digital circuitry, does some fundamental analysis to assure that proper function will be

achieved, and then goes to the shelf where catalogs of digital components exist. Each

integrated circuit (called an IC or a chip) has a part number, a defined and validated

function, a well-defined interface, and a standard set of integration guidelines. After

each component is selected, it can be ordered off the shelf.

 A software component should be designed and implemented so that it can

be reused in many different programs. Modern reusable components encapsulate both

data and the processing applied to the data, enabling the software engineer to create

new applications from reusable parts. For example, today's graphical user interfaces

are built using reusable components that enable the creation of graphics windows,

pull-down menus, and a wide variety of interaction mechanisms. The data structure

and processing detail required to build the interface are contained with a library of

reusable components for interface construction.

Software Myths

 Belief about the software and the process used to build it- can be traced To

the earliest days of computing. Myths have a number of attributes that have made them

insidious. For instance, myths appear to be reasonable statements of fact, they have an

intuitive feel, and they are often promulgated by experienced practitioners

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 6

Management myths

 Managers with software responsibility, like managers in most

disciplines, are often under pressure to maintain budgets, keep schedules from slipping,

and improve quality. Like a drowning person who grasps at a straw, a software

manager often grasps at belief in a software myth, if that belief will lessen the pressure

(even temporarily).

Myth: We already have a book that's full of standards and procedures for building

software, won't that provide my people with everything they need to know?

Reality: The book of standards may very well exist, but is it used? Are software

practitioners aware of its existence? Does it reflect modern software engineering practice?

Is it complete? Is it streamlined to improve time to delivery while still maintaining a

focus on quality?

Myth: If we get behind schedule, we can add more programmers and catch up

Reality: Software development is not a mechanistic process like manufacturing.

In the words of Brooks [BRO75]: "adding people to a late software project makes it

later." At first, this statement may seem counterintuitive. However, as new people are

added, people who were working must spend time educating the newcomers,

thereby reducing the amount of time spent on productive development effort. People

can be added but only in a planned and well-coordinated manner

Myth: If I decide to outsource3 the software project to a third party, I can just relax and

let that firm build it.

Reality: If an organization does not understand how to manage and control software

projects internally, it will invariably struggle when it out sources software projects

Customer myths

 A customer who requests computer software may be a person at the next

desk, a technical group down the hall, the marketing/sales department, or an outside

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 7

company that has requested software under contract. In many cases, the customer believes

myths about software because software managers and practitioners do little to correct

misinformation. Myths lead to false expectations (by the customer) and ultimately,

dissatisfaction with the developer.

Myth: A general statement of objectives is sufficient to begin writing programs—

we can fill in the details later.

Reality: Although a comprehensive and stable statement of requirements is not always

possible an ambiguous statement of objectives is a recipe for disaster. Unambiguous

requirements are developed only through effective and continuous communication

between customer and developer

Myth: Project requirements continually change, but change can be easily accommodated

because software is flexible

Reality: It is true that software requirements change, but the impact of change

varies with the time at which it is introduced. When requirement changes are requested

early cost impact is relatively small. However, as time passes, cost impact grows rapidly-

resources have been committed, a design framework has been established and a change

can cause upheaval that requires additional resources and major design modification

Practitioner's myths

 Myths that are still believed by software practitioners have been fostered by 50

years of programming culture. During the early days of software, programming was

viewed as an art form.

Myth: Once we write the program and get it to work, our job is done

Reality: Someone once said that "the sooner you begin 'writing code', the longer

it'll take you to get done." Industry data indicate that between 60 and 80 percent of all

effort expended on software will be expended after it is delivered to the customer for the

first time.

Myth: Until I get the program "running" I have no way of assessing its quality

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 8

Reality: One of the most effective software quality assurance mechanisms can be

applied from the inception of a project—the formal technical review. Software reviews

are a "quality filter" that have been found to be more effective than testing for finding

certain classes of software defects.

Myth: The only deliverable work product for a successful project is the working

program.

Reality: A working program is only one part of a software configuration that includes

many elements. Documentation provides a foundation for successful engineering

and, more important, guidance for software support

Myth: Software engineering will make us create voluminous and unnecessary

documentation and will invariably slow us down.

Reality: Software engineering is not about creating documents. It is about creating quality.

Better quality leads to reduced rework. And reduced rework results in faster delivery

times.

A Generic View of process

Software Engineering as a Layered Technology

Any engineering approach much rests on organizational approach to quality, e.g.

total quality management and such emphasize continuous process improvement (that is

increasingly more effective approaches to software engineering). The bedrock that

supports a software engineering is a quality focus.

 The foundation for software engineering is the process layer. Software

engineering process is the glue that holds the technology layers together and enables

rational and timely development of computer software. Process defines a framework for a

set of key process areas (KPAs) that must be established for effective delivery of

software engineering technology. The key process areas form the basis for management

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 9

control of software projects and establish the context in which technical methods are

applied, work products (models, documents, data, reports, forms, etc.) are produced,

milestones are established, quality is ensured, and change is properly managed.

 Fig 1.3 Software Engineering Layers

 Software engineering methods provide the technical how-to's for building

software. Methods encompass a broad array of tasks that include requirements analysis,

design, program construction, testing, and support. Software engineering methods

rely on a set of basic principles that govern each area of the technology and include

modeling activities and other descriptive techniques.

 Software engineering tools provide automated or semi-automated support for the

process and the methods. When tools are integrated so that information created by

one tool can be used by another, a system for the support of software development,

called computer-aided software engineering, is established.

Process Framework

Identifies a small number of framework activities that are applicable to all

software projects. In addition the framework encompasses umbrella activities that are

applicable across the software process.

Generic Process Framework Activities

Each framework activity is populated by a set of software engineering actions. An

action, e.g. design, is a collection of related tasks that produce a major software

engineering work product.

Communication – lots of communication and collaboration with customer

and other stakeholders.. Encompasses requirements gathering.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 10

Planning – establishes plan for software engineering work that follows. Describes

technical tasks, likely risks, required resources, works products and a work schedule

Modeling – encompasses creation of models that allow the developer and customer to

better understand software requirements and the design that will achieve those

requirements.

Modeling Activity – composed of two software engineering actions

• analysis – composed of work tasks (e.g. requirement gathering, elaboration,

specification and validation) that lead to creation of analysis model and/or requirements

specification.

• design – encompasses work tasks such as data design, architectural design, interface

design and component level design leads to creation of design model and/or a design

specification.

Construction – code generation and testing.

Deployment – software, partial or complete, is delivered to the customer

who evaluates it and provides feedback.

Different projects demand different task sets. Software team chooses task set based on

problem and project characteristics.

Process Models

Prescriptive Model

 Every software engineering organization should describe a unique set of

framework activities for the software process it adopts. It should populate each

framework activity with a set of software engineering actions, and define each action in

terms of a task set that identifies the work to be accomplished to meet the development

goals.

It should then adapt the resultant process model to accommodate the specific

nature of each project, the people who will do the work, and the environment in which the

work will be conducted. Regardless of the process model that is selected, software

engineers have traditionally chosen a generic process framework that encompasses the

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 11

following framework activities: communication, planning, modeling, construction, and

deployment.

We call them ―prescriptive‖ because they prescribe a set of process elements

framework activities, software engineering actions, tasks, work products, quality

assurance, and change control mechanisms for each project. Each process model also

prescribes a workflow- that is, the manner in which the process elements are inter-related

to one another.

All software process models can accommodate the generic framework activities

that have been described, but each applies a different emphasis to these activities and

defines a workflow that invokes each framework activity in a different manner.

Waterfall Model

There are times when the requirements of a problem are reasonably well

understood when work flows from communication through deployment in a reasonably

linear fashion. This situation is sometimes encountered when well-defined adaptations or

enhancements to an existing system must be made. It may also occur in a limited number

of new development efforts, but only when requirements are well defined and reasonably

stable

The waterfall model, sometimes called the classic life cycle model, suggests a

systematic, sequential approach to software development that begins with customer

specification of requirements and progresses through planning, modeling, construction,

and deployment.

Fig 1.4 Waterfall Model

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 12

The waterfall model is the oldest paradigm for software engineering. However,

over the past two decades, criticism of this process model has caused even ardent

supporters to question its efficacy. Among the problems that are sometimes encountered

when the waterfall model is applied are:

1. Real projects rarely follow the sequential flow that the model proposes.

Although the linear model can accommodate iteration, it does so indirectly. As a result,

changes can cause confusion as the project team proceeds.

2. It is often difficult for the customer to state all requirements explicitly. The

waterfall model requires this and has difficulty accommodating the natural uncertainty

that exists at the beginning of many projects.

3. The customer must have patience. A working version of the program(s) will not

be available until late in the project time-span. A major blunder, if undetected until the

working program is reviewed, can be disastrous.

In an interesting analysis of actual projects found that the linear nature of the

classic life cycle leads to ―blocking states‖ in which some project team members must

wait for other members of the team to complete dependent tasks. In fact, the time spent

waiting can exceed the time spent on productive work! The blocking state tends to be

more prevalent at the beginning and end of a linear sequential process.

Today, software work is fast-paced and subject to a never –ending stream of

changes. The waterfall model is often inappropriate for such work. However, it can serve

as a useful process model in situations where requirements are fixed and work is to

proceed to completion in a linear manner.

Incremental process Models.

There are many situations in which initial software requirements are reasonably

well-defined, but the overall scope of the development effort precludes a purely linear

process. In addition, there may be a compelling need to provide a limited set of software

functionality to users quickly and then refine and expand on that functionality in later

software releases. In such cases, a process model that is designed to produce the software

in increments is chosen

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 13

1. The Incremental Model

 The incremental model combines elements of the waterfall model applied in an

iterative fashion. The incremental model applies linear sequences in a staggered fashion

as calendar time progresses. Each linear sequence produces a deliverable ―increment‖ of

the software.

 For example, word-processing software developed using the incremental

paradigm might deliver basic file management, editing, and document production

functions in the first increment; more sophisticated editing and document production

capabilities in the second increment; spelling and grammar checking in the third

increment; and advanced page layout capability in the fourth increment. It should be

noted that the process flow for any increment can incorporate the prototyping paradigm

When an incremental model is used, the first increment is often a core product.

That is, basic requirements are addressed, but many supplementary features (some known,

others unknown) remain undelivered. The core product is used by the customer (or

undergoes detailed review). As a result of use and/or evaluation, a plan is developed for

the next increment. The plan addresses the modification of the core product to better meet

the needs of the customer and the delivery of additional features and functionality. This

process is repeated following the delivery of each increment, until the complete product is

produced

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 14

Fig:1.5 The Incremental Model

 The incremental process model, like prototyping and other evolutionary

approaches, is iterative in nature. But unlike prototyping, the incremental model focuses

on the delivery of an operational product with each increment. Early increments are

stripped down versions of the final product, but they do provide capability that serves the

user and also provide a platform for evaluation by the user.

Increment 1: Analysis-->Design-->Code-->Test (Delivery of 1st Increments. Normally

'''Core Product''')

Increment 2: Analysis-->Design-->Code-->Test (Delivery of 2nd Increments)

Increment n: Analysis-->Design-->Code-->Test (Delivery of nth Increments)

Advantages

 It is useful when staffing is unavailable for the complete implementation.

 Can be implemented with fewer staff people.

 If the core product is well received then the additional staff can be added.

 Customers can be involved at an early stage.

 Each iteration delivers a functionally operational product and thus customers can

get to see the working version of the product at each stage.

2. The RAD Model

 Rapid application development (RAD) is an incremental software process

model that emphasizes a short development cycle. The RAD model is a ―high-speed‖

adaptation of the waterfall model in which rapid development is achieved by using

component-based construction. If requirements are well understood and project scope

is constrained, the RAD process enables a development team to create a ―fully

functional system‖ within very short time periods (e.g., 60 to 90 days)

 Like other process models, the RAD approach maps into the generic

framework activities.

 Communication works to understand the business problem and the

information characteristics that the software must accommodate.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 15

 Planning is essential because multiple software teams work in parallel on

different system functions.

 Modeling encompasses three major phases- business modeling, data modeling

and process modeling and establishes design representations that serve as the

basis for RAD‘s construction activity.

 Construction emphasizes the use of preexisting software components and the

application of automatic code generation.

 Finally, deployment establishes a basis for subsequent iterations, if required.

 The RAD process model is illustrated in Fig 1.6. Obviously, the time constraints

imposed on a RAD project demand ―scalable scope‖ . If a business application can be

modularized in a way that enables each major function to be completed in less than three

months (using the approach described previously), it is a candidate for RAD. Each major

function can be addressed by a separate RAD team and then integrated to form a whole.

Drawbacks

• For large but scalable projects, RAD requires sufficient human resources to create the

right number of RAD teams.

• If developers and customers are not committed to the rapid-fire activities necessary to

get a system complete in a much abbreviated time frame, RAD projects will fail.

Fig:1.6 The RAD Model

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 16

•. If a system cannot be properly modularized, building the components necessary for

RAD will be problematic

 If high performance is an issue and performance is to be achieved through tuning

the interfaces to system components, the RAD approach may not work.

• RAD may not be appropriate when technical risks are high.

Evolutionary Process Model

 Software, like all complex systems, evolves over a period of time. Business and

product requirements often change as development proceeds, making a straight path to an

end product unrealistic; tight market deadlines make completion of a comprehensive

software product impossible, but a limited version must be introduced to meet

competitive or business pressure; a set of core product or system requirements is well

understood, but the details of product or system extensions have yet to be defined. In

these and similar situations, software engineers need a process model that has been

explicitly designed to accommodate a product that evolves over time.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 17

 Evolutionary models are iterative. They are characterized in a manner that enables

software engineers to develop increasingly more complete versions of the software

1. Prototyping

Software prototyping, refers to the activity of creating prototypes of software

applications, i.e., incomplete versions of the software program being developed. It is an

activity that can occur in software development and is comparable to prototyping as

known from other fields, such as mechanical engineering or manufacturing.

 A prototype typically simulates only a few aspects of the final solution, and may

be completely different from the final product.

 Often, a customer defines a set of general objectives for software but does not

identify detailed input, processing, or output requirements. In other cases, the developer

may be unsure of the efficiency of an algorithm, the adaptability of an operating system,

or the form that human/machine interaction should take. In these, and many other

situations, a prototyping paradigm may offer the best approach.

 Although prototyping can be used as a standalone process model, it is more

commonly used as a technique that can be implemented within the context of any one of

the process models. Regardless of the manner in which it is applied, the prototyping

paradigm assists the software engineer and the customer to better understand what is to be

built when requirements are fuzzy.

 The prototyping paradigm begins with communication. The software engineer and

customer meet and define the overall objectives for the software, identify whatever

requirements are known, and outline areas where further definition is mandatory. A

prototyping iteration is planned quickly and modeling (―in the form of ‖quick design‖)

occurs. The quick design focuses on a representation of those aspects of the software that

will be visible to the customer/user (e.g., input approaches and output formats).

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 18

 The quick design leads to the construction of a prototype. The prototype is

deployed and then evaluated by the customer. Feedback is used to refine requirements for

the software.

 Iteration occurs as the prototype is tuned to satisfy the needs of the customer,

while at the same time enabling the developer to better understand what needs to be done

Advantages

 1.The software designer and implementer can obtain feedback from the users early in the

project

2.The client and the contractor can compare if the software made matches the software

specification, according to which the software program is built.

3.It also allows the software engineer some insight into the accuracy of initial project

estimates and whether the deadlines and milestones proposed can be successfully met.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 19

Disadvantages

1.Often clients expect that a few minor changes to the prototype will more than suffice

their needs. They fail to realise that no consideration was given to the overall quality of

the software in the rush to develop the prototype.

2.The developers may lose focus on the real purpose of the prototype and compromise the

quality of the product. For example, they may employ some of the inefficient algorithms

or inappropriate programming languages used in developing the prototype. This mainly

due to laziness and an over reliance on familiarity with seemingly easier methods.

3. A prototype will hardly be acceptable in court in the event that the client does not agree

that the developer has discharged his/her obligations. For this reason using the prototype

as the software specification is normally reserved for software development within an

organisation.

2. The Spiral Model

The Spiral model, originally proposed by Boehm, is an evolutionary software

process model that couples the iterative nature of prototyping with the controlled and

systematic aspects of the Waterfall model. It provides the potential for rapid development

of increasingly more complete versions of the software.

 Using the Spiral Model the software is developed in a series of evolutionary

releases. During early iterations, the release might be a prototype. During later iterations,

increasingly more complete versions of the engineered system are produced.

A Spiral Model is divided into a number of framework activities defined by the

software engineering team. As this evolutionary process begins, the software team

performs activities that are implied by a circuit around the spiral in a clockwise direction,

beginning at the center

http://it.toolbox.com/wiki/index.php?title=Spiral_Model&action=edit
http://it.toolbox.com/wiki/index.php?title=Spiral_Model&action=edit

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 20

Anchor point milestones – a combination of work products and conditions that

are attained along the path of the spiral are noted for each evolutionary pass.

The first circuit around the spiral might result in the development of a product

specification; subsequent passes around the spiral might be used to develop a prototype

and then progressively more sophisticated versions of the software.

Each pass through the planning region results in adjustments to the project plan.

Cost and schedule are adjusted based on feedback derived from the customer after

delivery.

Unlike other process models that end when software is delivered, the spiral model

can be adapted to apply throughout the life of the computer software. Therefore, the first

circuit around the spiral might represent a ―concept development project‖ which starts at

the core of the spiral and continues for multiple iterations until concept development is

complete.

Fig:1.8 The Spiral Model

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 21

Advantages of the Spiral Model

 Realistic approach to the development because the software evolves as the process

progresses. In addition, the developer and the client better understand and react to

risks at each evolutionary level.

 The model uses prototyping as a risk reduction mechanism and allows for the

development of prototypes at any stage of the evolutionary development.

 It maintains a systematic stepwise approach, like the classic waterfall model, and also

incorporates into it an iterative framework that more reflect the real world.

Disadvantages of the Spiral Model

 One should possess considerable risk-assessment expertise

 It has not been employed as much proven models (e.g. the Waterfall Model) and

hence may prove difficult to ‗sell‘ to the client.

3. The Concurrent Development Model

 The concurrent development model, sometimes called concurrent engineering can

be represented schematically as a series of framework activities, software engineering

actions and tasks, and their associated states. For example, the modeling activity defined

for the spiral model is accomplished by invoking the following actions: prototyping

and/or analysis modeling and specification and design.

http://it.toolbox.com/wiki/index.php?title=Waterfall_Model&action=edit

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 22

Fig:1.9 One element of the Concurrent process Model

The activity—analysis—may be in any one of the states noted at any given time.

Similarly, other activities (e.g., design or customer communication) can be represented in

an analogous manner. All activities exist concurrently but reside in different states. For

example, early in a project the customer communication activity (not shown in the figure)

has completed its first iteration and exists in the awaiting changes state. The analysis

activity (which existed in the none state while initial customer communication was

completed) now makes a transition into the under development state. If, however, the

customer indicates that changes in requirements must be made, the analysis activity

moves from the under development state into the awaiting changes state.

 The concurrent process model defines a series of events that will trigger

transitions from state to state for each of the software engineering activities. For example,

during early stages of design, an inconsistency in the analysis model is uncovered. This

generates the event analysis model correction which will trigger the analysis activity

from the done state into the awaiting changes state.

 The concurrent process model is applicable to all types of software development

and provides an accurate picture of the current state of a project. Rather than confining

software engineering activities to a sequence of events, it defines a network of activities.

Each activity on the network exists simultaneously with other activities. Events generated

within a given activity or at some other place in the activity network trigger transitions

among the states of an activity

4. A Final Comment on the Evolutionary Processes

 The first concern is that prototyping poses a problem to project planning because

of the uncertain number of cycles required to construct the product. Most project

management and estimation techniques are based on the linear layouts of activities, so

they do not fit completely

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 23

 Second, Evolutionary processes do not establish the maximum speed of the

evolution. On the other hand, if the speed is too slow then productivity could be affected.

 Third, software processes should be focused on flexibility and extensibility rather

than on high quality

 The intent of Evolutionary process model is to develop high quality software in an

iterative or incremental manner. However, it is possible to use an evolutionary process to

emphasize flexibility, extensibility and speed of development. The challenge for software

teams and project managers is to establish a proper balance between these critical project

and product parameters and customer satisfaction

Specialized Process Models

 Specialized models tend to be applied when a narrowly defined software

engineering approach is chosen

1. Component Based Development

 Commercial off the shelf (COTS) software components, developed by vendors,

who offer them as products, can be used when software is to be built. These components

provide targeted functionality with well defined interfaces that enable the component to

be integrated into the software.

 The component-based development (CBD) model incorporates many of the

characteristics of the spiral model. It is evolutionary in nature, demanding an iterative

approach to the creation of software. However, the component-based development model

composes applications from prepackaged software components (called classes).

 Modeling and construction activities begin with the identification of candidate

components. These components can be designed as either conventional software modules

or object oriented classes

 The component based component model incorporates the following steps

 Available component based products are researched and evaluated for the

application domain

 Component integration issues are considered

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 24

 Software architecture is designed to accommodate the components

 Components are integrated into the architecture

 Comprehensive testing is conducted to ensure proper functionality

The component-based development model leads to software reuse, and reusability

provides software engineers with a number of measurable benefits. Based on studies of

reusability, QSM Associates, Inc., reports component assembly leads to a 70 percent

reduction in development cycle time; an 84 percent reduction in project cost.

2. The Formal Methods Model

 The formal methods model encompasses a set of activities that leads to formal

mathematical specification of computer software. Formal methods enable a software

engineer to specify, develop, and verify a computer-based system by applying a rigorous,

mathematical notation.

 When formal methods are used during development, they provide a mechanism

for eliminating many of the problems that are difficult to overcome using other software

engineering paradigms.

Ambiguity, incompleteness, and inconsistency can be discovered and corrected

more easily, not through ad hoc review but through the application of mathematical

analysis. When formal methods are used during design, they serve as a basis for program

verification and therefore enable the software engineer to discover and correct errors that

might go undetected.

 The development of formal models is currently quite time consuming and

expensive.

 Because few software developers have the necessary background to apply formal

methods, extensive training is required.

 It is difficult to use the models as a communication mechanism for technically

unsophisticated customers.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 25

3. Aspect oriented Software Development

Regardless of the software process that is chosen, the builders of the complex software

invariably implement a set of lacalized features, functions and information content. These

localized software characteristics are modeled as components and then constructed within

the context of a system architecture

 When concerns cut across multiple system functions, features and information,

they are often referred to as crosscutting concerns.

 Aspect oriented software development(AOSD) often referred to as aspect oriented

programming(AOP) is a relatively new software engineering paradigm that provides a

process and methodological approach for defining, specifying, designing and constructing

aspects

 Aspect oriented component engineering(AOCE) uses a concept of horizontal

slices through vertically decomposed software components called aspects to characterize

cross cutting functional and non functional properties of components

CAPABILITY MATURITY MODEL INTEGRATION(CMMI)

 Developed by SEI(Software Engineering institute)

 Assess the process model followed by an organization and rate the organization

with different levels

 A set of software engineering capabilities should be present as organizations reach

different levels of process capability and maturity.

 CMMI process meta model can be represented in different ways

1.A continuous model

2.A staged model

Continuous model:

-Lets organization select specific improvement that best meet its business objectives and

minimize risk

-Levels are called capability levels.

-Describes a process in 2 dimensions

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 26

-Each process area is assessed against specific goals and practices and is rated according

to the following capability

 levels.

 INCOMPLETE

 -Process is adhoc.Objective and goal of process areas are not known

 Performed

 -Goal,objective,work tasks,work products and other activities of software process are

carried out

 Managed

 -Activities are monitored, reviewed, evaluated and controlled

 Defined

 -Activities are standardized, integrated and documented

 Quantitatively Managed

 -Metrics and indicators are available to measure the process and quality

 Optimized

 - Continuous process improvement based on quantitative feed back from the user

 -Use of innovative ideas and techniques, statistical quality control and other methods

for process improvement.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 27

Staged model

- This model is used if you have no clue of how to improve the process for quality

software.

- It gives a suggestion of what things other organizations have found helpful to work

first

- Levels are called maturity levels

Important Questions

1. What is Software Engineering?

2. Describe the Layered Approach of Software Engineering.

3. Explain about the Process Framework activities.

4. Illustrate about the Process model and its type.

5. Explain about the RAD model.

6. Define CMMI.

7. Define the nature of Software Engineering.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS: II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT I SEMESTER: IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 28

S.No Question Option A Option B Option C Option D Answer

1
Software takes on a

______________ role.
single dual triple tetra dual

2
Software is a

_______________.
virtual system modifier framework modifier

3

Instructions that when

executed provide desired

function and performance is

called

software hardware firmware humanware software

4

High quality of software is

achieved through

________________.

testing
good

design

constructio

n
manufacture good design

5
Software doesn’t

________________.
tearout wearout degrade deteriorate wearout

6
Software is not susceptible

to ______________.
hardware defects

environme

ntal

melodies

deterioration
environmental

melodies

7
Software will undergo

__________.
database testing

enhanceme

nt
manufacture enhancement

8

 _________ refers to the

meaning and form of

incoming and outgoing

information.

content software hardware data content

9

 _____________ refers to

the predictability of the

order and timing of

information.

system

software

network

software

informatio

n

determinac

y

database
information

determinacy

UNIT 1 MCQ

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

(For the candidates admitted in 2016 onwards)

18CTU402- Software Enginering

 CLASS:II Bsc CT

10
____________ is not a

system software.
MS Office compiler editor

file

management

utility

MS Office

11

Collection of programs

written to service other

programs are called

__________.

system

software

business

software

embedded

software

d. pc

software
system software

12
Which one is not coming

under software myths

Managem

ent myths

customer

myths

product

myths

practitioners

myths
product myths

13
_________ is a PC

Software.
MS word LISP CAD C MS word

14

Software that monitors,

analyses, controls real world

events is called _________.

Business

software

real time

software

web based

software

d. embedded

software
real time software

15

The bedrock that supports

software engineering is

a______

tools methods
process

models

a quality

focus
a quality focus

16

A complete software process

by identifying a small

number of _____

framewor

k activities

umbrella

activities

process

framework

software

process

framework

activities

17

The process framework

encompassess a set of

framewor

k activities

umbrella

activities

process

framework

software

process
umbrella activities

18
software engineering action

is________________
design chronic decision crisis design

19
Which one is effect the

outcome of the project?

Risk

manageme

nt

Measure

ment

technical

reviews
Reusability Risk management

20
Continuing indefinitely is

called ___________.
crisis decision affliction chronic chronic

21

Component based

development uses

____________.

functions
subroutin

es
procedures objects objects

22
UML stands for

____________.

Universal

Modelling

Language

User

Modified

Language

Unified

Modelling

Language

User Model

Language

Unified Modelling

Language

23

A model which uses formal

mathematical specification is

called ________.

 4 GT

model

Unified

method

model

formal

methods

model

component

based

developmen

t

formal methods

model

24

A variation of formal

methods model is called

_____________.

componen

t based

developme

nt

4 GT

model

unified

method

model

cleanroom

software

engineering

cleanroom software

engineering

25
The development of formal

methods is ___________.

less time

consuming

quite time

consumin

g

does not

consume

time

very less

time

consuming

quite time

consuming

26

The first step to develop

software is

______________.

analysis design

requireme

nts

gathering

coding
requirements

gathering

27
The waterfall model

sometimes called as

classic

model

classic

life cycle

model

life cycle

model
cycle model

classic life cycle

model

28

Software engineering

activities include

decision affliction hardware maintenance maintenance

29
all process model prescribes

a ______________.
circular elliptical spiral workflow workflow

30

Component based

development incorporates

the characteristics of the

___________ model

circular elliptical spiral hierarchical spiral

31
Prototype is a

______________.
software hardware computer model model

32

For small applications it is

possible to move from

requirement gathering step

to____________.

analysis
implemen

tation
design modeling implementation

33

Software project

management begins with a

set of activities that are

collectively called

project

planning

software

scope

software

estimation

decompositi

on
project planning

34

Breaking up of a complex

problem into small steps is

called ____________.

project

planning

software

scope

software

estimation

decompositi

on
decomposition

35

The ease with which

software can be transferred

from one computer to

another. This quality

attribute is called

portability reliability efficiency accuracy portability

36

The ability of a program to

perform a required function

under stated condition for a

stated period of time. This

quality attribute is called

____________.

portability reliability efficiency accuracy reliability

37

The event to which software

performs its intended

function. This quality

attribute is called

_________________.

portability reliability efficiency accuracy efficiency

38

A qualitative assessments of

freedom from errors. This

quality attribute is called

____________.

portability reliability efficiency accuracy accuracy

39

The extent to which

software can continue to

operate correctly. This

quality attribute is called

______________.

robustness
correctnes

s
efficiency reliability robustness

40

The extent to which the

software is free from design

and coding defects ie fault

free. This quality attribute is

called _____________.

robustness
correctnes

s
efficiency reliability correctness

41

System shall reside in 50KB

of memory is an example of

_____________.

quantified

requireme

nt

qualified

requireme

nt

functional

requireme

nt

performance

requirement

quantified

requirement

42

Accuracy shall be sufficient

to support mission is an

example of ___________.

quantified

requireme

nt

qualified

requireme

nt

functional

requireme

nt

performance

requirement

qualified

requirement

43

System shall make efficient

use of memory is an

example of

______________.

quantified

requireme

nt

qualified

requireme

nt

functional

requireme

nt

performance

requirement

qualified

requirement

44

A software product often

has

Multiple

users

developer

s

users developers

and

maintainers.

developers and

maintainers.

45

Multiprogramming and time

sharing software techniques

were developed during the

first

generation

computing

second

generatio

n

computin

g

third

generation

computing

fifth

generation

computing

third generation

computing

46

According to Boehm

software engineering

involves the practical

application of scientific

knowledge to the

Planning

of

computer

programs

analysis

of

computer

programs

 design

&

constructio

n of

computer

 design

&

maintainer

of computer

programs.

 design &

construction of

computer programs

47

IEEE define software

engineering as the

systematic approach to the

development operation

maintainers and

implement

ation of

the

software.

retirement

of the slw

constructio

n of the

software

maintenance retirement of the

slw

48

Good, oral, written and----

skills are crucial for the

software engineer

interperso

nal

communic

ation

communi

cation

managerial

skills

MIS interpersonal

communication

49

Software is -------

changeabl

e

modified updateable intangible intangible

50

In software engineering the

unit of decomposition are

called

units modules relationshi

ps

components modules

51

Control interfaces are

established by calling ------

among modules

global

data items

functions relationshi

ps

local data

items

relationships

52

programmers who

intentionally write

convoluted programs that

have obscure side effects are

known as ----

intruders analyzers testers hackers hackers

53

------ is used to denote an

individual who is concerned

with the details of

implementing packaging and

modifying algorithms and

system

analysis

programm

er

software

engineer

customer. programmer

54

------- are additionally

concerned with issues of

analysis, design, verification

and testing, documentation,

software maintenance and

project management

Developer

s

analyst customers software

engineers.

software engineers.

55

On large projects ----- are

essential

analysis &

design

implemen

tation &

testing

modificati

on

standard

practices&

formal

procedures

standard practices&

formal procedures

56

The term “ computer

software” is often take

synonymous with

Project programs collection

of

programs

source code. source code.

57

Software products include System

level

software

applicatio

n

programs

System

level

software &

application

programs

OS System level

software &

application

programs

58

Documentation explains the -

contact of

the project

modules

of the

project

characteris

tic of an

document

Software

usage

characteristic of an

document

59

------ is a primary concern of

software engineers

Software

design

software

maintenan

ce

software

product

software

quality.

software quality.

60

The quality attributes for

very software product

includes

design clarity accuracy visibility clarity

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 1

UNIT-II

Requirement Analysis; Initiating Requirement EngineeringProcess- Requirement

Analysis and Modeling Techniques- FlowOriented Modeling- Need for SRS-

Characteristics and Components of SRS- Software Project Management: Estimation in

Project Planning Process, Project Scheduling.

Requirements Engineering

Requirements analysis in systems engineering and software engineering, encompasses

those tasks that go into determining the needs or conditions to meet for a new or altered

product, taking account of the possibly conflicting requirements of the various

stakeholders, such as beneficiaries or users. It is an early stage in the more general

activity of requirements engineering which encompasses all activities concerned with

eliciting, analyzing, documenting, validating and managing software or system

requirements.

Requirements analysis is critical to the success of a systems or software project. The

Requirements should be documented, actionable, measurable, testable, traceable, related

to identified business needs or opportunities, and defined to a level of detail sufficient for

system design.

Requirements Engineering Tasks

Requirements engineering provides the appropriate mechanism for understanding what

the customer wants, analyzing need, assessing feasibility, negotiating a reasonable

solution, specifying the solution unambiguously, validating the specification, and

managing the requirements as they are transformed into an operational system

 The requirement engineering process is accomplished through the execution of

seven distinct functions. They are

 Inception

 Elicitation

 Elaboration

 Negotiation

 Specification

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 2

 Validation

 Management

Inception

 How does a software project get started? Is there a single event that becomes the

catalyst for a new computer based system or product, or does the need evolve over time?

 Stakeholders from the business community define a business case for the idea, try

to identify the breadth and depth of the market, do a rough feasibility analysis, and

identify a working description of the project’s scope.

 At project inception, software engineer’s ask a set of context free questions

discussed. The intent is to establish a basic understanding of the problem, the people who

want a solution, the nature of the solution that is desired, and the effectiveness of

preliminary communication and collaboration between the customer and developer

Elicitation

 It certainly seems simple enough-ask the customer, the users, and others what the

objectives for the system or product are, what is to be accomplished, how the system or

product are, what is to be accomplished, how the system or product fits into the needs of

the business, and finally, how the system or product is to be used on a day to day basis

i) Problem of scope

 The boundary of the system is ill-defined or the customers/users specify

unnecessary technical detail that may confuse rather than clarify, overall system

objectives

ii) Problem of understanding

 The customers/users are not completely sure of what is needed, have a poor

understanding of the capabilities and limitations of their computing environment, don’t

have a full understanding of the problem domain, have trouble communicating needs to

the system engineer or specify requirements that are ambiguous

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 3

iii) Problem of volatility

 The requirements change over time

Elaboration

 The information obtained from the customer during inception and elicitation is

expanded and refined during elaboration. This requirement engineering activity focuses

on developing a refined technical model of software functions, features, and constraints

 Elaboration is an analysis modeling action that is composed of a number of

modeling and refinement tasks. Elaboration is driven by the creation and refinement of

user scenarios that describe how the end-user interacts with the system. Each user

scenario is parsed to extract analysis classes-business domain entities that are visible to

the end user. The attributes of each analysis classes are defined and the services that are

required by each class are identified.

 The end result of elaboration is an analysis model that defines the informational,

functional, and behavioral domain of the problem

Negotiation

It is also relatively common for different customers or users to propose conflicting

requirements, arguing that their version is essential for our special needs.

The requirement engineer must reconcile these conflicts through a process of negotiation.

Customers, users, and other stakeholders are asked to rank requirements and then discuss

conflicts in priority. Risk associated with each requirement are identified and analyzed.

Using an iterative approach, requirements are eliminated, combined, and modified so that

each party achieves some measure of satisfaction

Specification

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 4

 A specification can be a written document, a set of graphical models, a formal

mathematical model, a collection of usage scenarios, a prototype or any combination of

these.

However, it is sometimes necessary to remain flexible when a specification is to

be developed. For large systems, a written document, combining natural language

descriptions and graphical models may be the best approach.

The specification is the final work product produced by requirement engineer. It

serve as the foundation for subsequent software engineering activities. It describes the

function and performance of a computer-based system and the constraints that will govern

its development

Validation

The work product produced as a consequence of requirements engineering are

assessed for quality during validation step. Requirements validation examines the

specification to ensure that all software requirements have been stated unambiguously;

inconsistencies, omissions and errors have been detected and corrected

The primary requirement validation mechanism is the formal technical review.

The review team that validates requirements includes software engineers, customers,

users and other stakeholders who examine the specification looking for errors in content

or interpretation, areas where clarification may be required, missing information,

inconsistencies, conflicting requirements or unrealistic requirements

Requirements Management

Requirements management is the set of activities that help the project team

identify, control, and track requirements and changes to requirements at any time as the

project proceeds. Many of these activities are identical to the software configuration

management techniques

Requirements management begins with identification. Each requirement is

assigned a unique identifier. Once requirements have been identified, traceability tables

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 5

are developed. Each traceability table relates requirements to one or more aspects of the

system or its environment

Traceability table

i) Features traceability table

It shows how requirements relate to important customer observable system

ii) Source traceability table

Identifies the source of each requirement

iii) Dependency traceability table

Indicates how requirements are related to one another

iv) Subsystem traceability table

Categorizes requirements by the subsystems that they govern

v) Interface traceability table

Shows how requirements relate to both internal and external system interfaces

Initiating the Requirement Engineering Process

The steps required to initiate requirements engineering-to get the project started in

a way that will keep it moving forward toward a successful solution

i) Identifying the stakeholders

Sommerville and Sawyer define a stakeholder as ―anyone who benefits in a direct

or indirect way from the system which is being developed‖. We have already identified

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 6

the usual suspects: business operations manager, product managers, marketing people,

internal and external customers, end users, consultants, product engineers, software

engineers, support and maintenance engineers, and others.

Every stakeholder has a different view of the system, achieves different benefits

when the system is successfully developed, and is open to different risks if the

development effort should fail

ii) Recognizing multiple viewpoints

Because many different stakeholders exist, the requirements of the system will be

explored from many different points of view. For example, business managers are

interested in a feature set that can be built within budget and that will be ready to meet

defined market windows. End-users may want features that are familiar to them and that

are easy to learn and use.

Each of these constituencies will contribute information to the requirements

engineering process. As information from multiple viewpoints is collected, emerging

requirements may be inconsistent or may conflict with one another. The job of the

requirements engineer is to categorize all stakeholder information in a way that will allow

decision makers to choose an internally consistent set of requirements for the system

iii) Working toward collaboration

The job of the requirements engineer is to identify areas of commonality and areas

of conflict or inconsistency

Collaboration does not necessarily mean that requirements are defines by

committee. In many cases, stakeholders collaborate by providing their view of

requirements, but a strong ―project champion‖ may take the final decision about which

requirements make the cut

iv) Asking the first questions

The first set of context-free questions focuses on the customer and other

stakeholders, overall goals, and benefits.

For example, the requirements engineer might ask

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 7

 Who is behind the request for this work?

 Who will use the solution?

 What will be the economic benefit of a successful solution?

These questions help to identify all stakeholders who will have interest in the software

to be built. In addition, the questions identify the measurable benefit of a successful

implementation and possible alternatives to custom software development

The next set of questions enables the software team to gain a better understanding of

the problem

 How would you characterize ―good‖ output that would be generated by a

successful solution?

 What problems will this solution address?

 Can you show me the business environment in which the solution will be used?

 Will special performance issues or constraints affect the way the solution is

approached?

The final set of questions focuses on the effectiveness of the communication activity

itself

 Are you the right person to answer these questions?

 Are my questions relevant to the problem that you have?

 Am I asking too many questions?

 Can anyone else provide additional information?

 Should I be asking you anything else?

Eliciting Requirements

The Q & A session should be used for the first encounter only and then replaced

by a requirements elicitation format that combines elements of problem solving,

elaboration, negotiation and specification.

i) Collaborative requirements gathering

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 8

In order to encourage a collaborative, team-oriented approach to requirements

gathering, a team of stakeholders and developers work together to identify the problem,

propose elements of the solution

Many different approaches to collaborative requirements gathering have been proposed

 Meetings are conducted and attended by both customers and software engineers

 Rules for preparation and participation are established

 An agenda is suggested that is formal enough to cover all important points but

informal enough to encourage the free flow of ideas

 A ―facilitator‖ controls the meeting

 The goal is to identify the problem, propose elements of the solution, negotiate

different approaches, and specify a preliminary set of solution requirements in an

atmosphere that is conductive to the accomplishment of the goal

To better understand the flow of events as they occur, we present a brief scenario that

outlines the sequence of events that lead up to the requirements gathering meeting, occur

during the meeting, and follow the meeting

During inception basic questions and answers establish the scope of the problem and

the overall perception of a solution. Out of these initial meetings the stakeholders write a

one-or two-page ―product request‖. Members of the software team and other stakeholder

organizations are invited to attend. The product request is distributed to all attendees

before the meeting date

ii) Quality function deployment

Quality function deployment is a technique that translates the needs of the

customer into technical requirements for software. It concentrates on maximizing

customer satisfaction from the software engineering process. Quality function deployment

identifies three types of requirements

a) Normal requirements

These requirements reflect objectives and goals stated for a product or system

during meetings with the customer. If these requirements are present, the customer is

satisfied.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 9

Example: Requested type of graphical displays, specific system functions and defined

levels of performance

b) Expected requirements

These requirements are implicit to the product or system and may be so

fundamental that the customer does not explicitly state them.

Example: overall operational correctness and reliability

c) Exciting Requirements

These requirements reflect features that go beyond the customer’s expectations

and prove to be very satisfying when present

Example: Word processing software is requested with standard features

 Quality function deployment uses customer reviews and observation, surveys and

examination of historical data as raw data for the requirements gathering activity. These

data are then translated into a table of requirements- called the customer voice table-that

is reviewed with the customer

 A variety of diagrams, matrices, and evaluation methods are then used to extract

expected requirements and to attempt to derive exciting requirements

iii) User Scenarios

 As requirements are gathered, an overall vision of system functions and features

begins to materialize. However, it is difficult to move into more technical software

engineering activities until the software team understands how these functions and

features will be used by different classes of end-users. To accomplish this , developers

and users can create a set of scenarios that identify a thread of usage for the system to be

constructed. The scenarios, often called use-cases, provide a description of how the

system will be used.

iv) Elicitation Work Products

 The work products produced as a consequence of requirements elicitation will

vary depending on the size of the system or product to be built. For most systems,the

work products include:

 A statement of need and feasibility

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 10

 A bounded statement of scope for the system or product

 A list of customers, users and other stakeholders who participated in requirements

elicitation

 A description of the system’s technical environment

 A list of requirements and the domain constraints that apply to each

 A set of usage scenario that provide insight into the use of the system or product

under different operating conditions

 Any prototypes developed to better define requirements

Building the Analysis Model

Requirement Analysis

 Requirement Analysis results in the specification of software’s operational

characteristics indicates software interface with other system elements and establishes

constraints that software must meet

 Requirement analysis allow the software engineer to elaborate on basic

requirements established during earlier requirement engineering tasks and build models

that depict user scenario, functional activities, problem classes and their relationships,

system and class behavior, and the flow of data as it is transformed.

 Requirement analysis provides the software designer with a representation of

information, function and behavior that can be translated to architectural, interface and

component-level designs

 Finally, the analysis model and the requirement specification provide the

developer and customer with the means to assess quality once software is built.

Throughout analysis modeling, the software engineer’s primary focus is on what and not

how

1. Overall Objectives and Philosophy

 The analysis model must have three primary objectives

 To describe what the customer requires

 To establish a basis for the creation of software design

 To define a set of requirements that can be validated once the software is built

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 11

 The analysis model bridges the gap between a system level description that

describes overall system functionality as it is achieved by applying software, hardware,

data, human and other system elements and a software design that describes the

software’s application architecture, user interface and component level structure

2. Analysis rules of Thumb

 The model should focus on requirements that are visible within the problem or

business domain. The level of abstraction should be relatively high

 Each element of the analysis model should add to an overall understanding of

software requirements and provide insight into the information domain, function

and behavior of the system

 Delay consideration of infrastructure and non functional models until design

 Minimize coupling throughout the system

 Be certain that the analysis model provides value to all stakeholders

 Keep the model as simple as it can be

3. Domain Analysis

 The analysis patterns often reoccur across many applications within a specific

business domain. If these patterns are defined and categorized in a manner that allows a

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 12

software engineer or analyst to recognize and reuse them, the creation of the analysis

model is expedited.

Input and output of Domain Analysis

Software domain analysis is the identification, analysis, and specification of

common requirements from a specific application domain, typically for reuse on multiple

projects within the application domain.

Analysis modeling approaches

One view of analysis modeling, called structured analysis, considers Data and the

processes that transform the dada as separate entities. Data objects are modeled in a way

that defines their attributes and relationships. Processes that manipulate data objects are

modeled in a manner that shows how they transform data as a data flow through the

system.

 A second approach to analysis modeling, called objects oriented analysis,

focuses on the definition of classes and the manner in which they collaborate with one

another to effect customer requirements.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 13

Analysis Modeling Approaches

Data Modeling Concepts

 Analysis modeling often begins with data modeling. The software engineer or

analyst defines all data objects that are processed within the system, the relationships

between the data objects, and other information that is pertinent to the relationships.

1. Data object

A data object is a representation of almost any composite information that must

be understood by software. By composite information, we mean something that has a

number of different properties or attributes. Therefore, width (a single value) would not

be a valid data object, but dimensions (incorporating height, width, and depth) could be

defined as an object.

A data object can be an external entity (e.g., anything that produces or consumes

information), a thing (e.g., a report or a display), an occurrence (e.g., a telephone call)

or event (e.g., an alarm), a role (e.g., salesperson), an organizational unit (e.g., accounting

department), a place (e.g., a warehouse), or a structure (e.g., a file). For example,

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 14

a person or a car (Figure 12.2) can be viewed as a data object in the sense that either can

be defined in terms of a set of attributes. The data object description incorporates the data

object and all of its attributes.

2. Data Attributes

 Attributes define the properties of a data object and take on one of three

different characteristics. They can be used to

 (1) name an instance of the data object,

(2) describe the instance, or

(3) make reference to another instance in another table.

3. Relationships

 Data objects are connected to one another in different ways. Consider two data

objects, person and car. These objects can be represented using the simple notation

illustrated in below Figure. A connection is established between person and car because

the two objects are related.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 15

4. Cardinality and Modality

 The elements of data modeling—data objects, attributes, and relationships—

provide the basis for understanding the information domain of a problem. However,

additional information related to these basic elements must also be understood.

 We have defined a set of objects and represented the object/relationship pairs that

bind them. But a simple pair that states: object X relates to object Y does not provide

enough information for software engineering purposes. We must understand how many

occurrences of object X are related to how many occurrences of object Y. This leads to a

data modeling concept called cardinality.

 Cardinality is the specification of the number of occurrences of one [object] that

can be related to the number of occurrences of another [object].

Cardinality defines ―the maximum number of objects that can participate in a

relationship‖

Modality

 The modality of a relationship is 0 if there is no explicit need for the relationship

to occur or the relationship is optional. The modality is 1 if an occurrence of the

relationship is mandatory.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 16

Flow-Oriented Modeling

The DFD takes an input-process-output view of a system. That is, data objects

flow into the software, are transformed by processing elements, and resultant data objects

flow out of the software. Data objects are represented by labeled arrows and the

transformations are represented by circles (also called bubbles). The DFD is presented in

hierarchical fashion. That is, the first data flow model sometimes called a level 0 DFD or

context diagram represent the system as a whole.

1. Creating a data flow model

 The data flow diagram enables the software engineer to develop models of the

information domain and functional domain at the same time. As the DFD is refined into

greater levels of detail, the analyst performs an implicit functional decomposition of the

system.

Guidelines

1. The level 0 data flow diagram should depict the software/system as a single bubble

2. Primary input and output should be carefully noted

3. Refinement should begin by isolating candidate processes, data objects, and data stores

to be represented at the next level

4. All arrows and bubbles should be labeled with meaningful names

5. Information flow continuity must be maintained from level to level

6. One bubble at a time should be refined.

Context level DFD for the safe home security function

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 17

The safe home security function enables the homeowner to configure the security

system. When it is installed, monitors all sensors connected to the security system, and

interacts with the homeowner through the internet, a PC, or a control panel

During installation, the safe home PC is used to program and configure the

system. Each sensor is assigned a number and type, a master password is programmed for

arming and disarming the system, and telephone number(s) are input for dialing when a

sensor event occurs.

 When a sensor event is recognized, the software involves an audible alarm

attached to the system. After a delay time that is specified by the homeowner during

system configuration activities, the software dials a telephone number of a monitoring

service, provides information about the location, reporting the nature of the event that has

been detected. The telephone number will be redialed every 20 seconds until a telephone

connection is obtained

 The level 0 DFD is now expanded into a level 1 data flow model

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 18

Level 1 DFD for the safe home security function

The homeowner receives security information via a control panel, the PC, or a

browser, collectively called an interface. The interface displays prompting messages and

system status information on the control panel, the PC, or the browser window

 The process represented at DFD level 1 can be further refined into lower levels.

For example, the process monitor sensors can be refined into a level 2 DFD.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 19

Level 2 DFD that refines the monitor sensors process

The refinement of DFDs continues until each bubble performs a single function.

That is, until the process represented by the bubble performs a function that would be

easily implemented as a program component

2. Creating a control flow model

 For many types of applications, the data model and the data flow diagram are all

that is necessary to obtain meaningful insight into software requirements. As we have

already noted, however, a large class of applications are driven by events rather than data,

produce control information rather than reports or displays, and process information with

heavy concern for time and performance. Such applications require the use of control

flow modeling in addition to data flow modeling

To select potential candidate events, the following guidelines are suggested:

 List all sensors that are read by the software

 List all interrupt conditions

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 20

 List all switches that are actuated by an operator

 List all data conditions

 Describe the behavior of a system by identifying its states, identify how each state

is reached and define the transitions between states.

 Focus on possible omissions

3. The Control Specification

 The Control Specification (CSPEC) represents the behavior of the system in two

different ways. The CSPEC contains a state diagram that is a sequential specification of

behavior. It can also contain a program activation table-a combinatorial specification of

behavior

State diagram for safehome security function

The diagram indicates how the system responds to events as it travels the four

states defined at this level. By reviewing the state diagram, a software engineer can

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 21

determine the behavior of the system and, more importantly, can ascertain whether there

are ―holes‖ in the specified behavior

 For example, the state diagram indicates the transitions from the idle state can

occur if the system is reset activated or powered off. If the system is activated, a transition

to the MonitoringSystemstatus state occurs, display messages are changed as shown, and

the process MonitorAndControlSystem is invoked. Two transition occurs out of the

MonitoringSystemStatus state- 1) when the system is deactivated a transition occurs back

to the idle state, 2) when a sensor is triggered a transition to the during the review

 The CSPEC describes the behavior of the system, but it gives us no information

about the inner working of the processes that are activated as a result of this behavior

4. The Process Specification

 The Process Specification (PSPEC) is used to describe allflow model processes

that appear at the final level of refinement. The content of the process specification can

include narrative text, a program design language(PDL) description of the process

algorithm, mathematical equations, tables, diagrams, or charts. By providing a PSPEC to

accompany each bubble in the flow model, the software engineer creates a ―mini-spec‖

that can serve as a guide for design of the software component that will implement the

process

Creating a Behavioral Model

The behavioral model indicates how software will respond to external events. To

create the model, the analyst must perform the following steps:

 Evaluate all use-cases to fully understand the sequence of interaction within the

system.

 Identify events that drive the interaction sequence and understand how these

events relate to specific classes

 Create a sequence for each use-case

 Build a state diagram for the system

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 22

 Review the behavioral model to verify accuracy and consistency

1. Identifying Events with the Use-Case

The use case represents a sequence of activities that involves actor and the system.

An event occurs whenever the system and an actor exchange information. An actor

should be identified for each event. The information that is exchanged should be noted

and any conditions or constraints should be listed

 In the context of the analysis model, the object, homeowner, transmits an event to

the object control panel. The event might be password entered. The information

transferred is the four digits that constitute the password, but this is not an essential part

of the behavioral model. It is important to note that some events have an explicit impact

on the flow of control of the use-case, while others have no impact on the flow of control.

 For example, the event password entered does not explicitly change the control of

the use-case, but the results of the event compare password will have an explicit impact

on the information and control flow of the safehome software

 Once all events have been identified, they are allocated to the objects involved.

Objects can be responsible for generating events

2 .State Representations

 In the context of behavioral modeling, two different characterizations of states

must be considered.

 The state of each class as the system performs its function

 The state of the system as observed from the outside as the system performs its

function

 The state of a class takes on both passive and active characteristics

Passive state

Passive state is simply the current status of all of an object’s attributes

Example: The passive state of the class player would include the current position and

orientation attributes of player as well as other features of player that are relevant to the

game

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 23

Active state

The active state of an object indicates the current status of the object as it

undergoes a continuing transformation or processing. The class player might have the

following active states: moving, at rest, injured, and being cured

An event must occur to force an object to make a transition from one active state

to another. Two different behavioral representations are discussed

 The first indicates how an individual class changes state based on external events

 The second shows the behavior of the software as a function of time

a) State diagrams for analysis classes

 One component of behavioral model is a UML state diagram that represents active

state for each class and the events that cause changes between these active states.

State diagram for the control panel class

 Each arrow represents a transition from one active state of a class to another. The

labels shown for each arrow represent the event that triggers the transition. Although the

active state model provides useful insight into the ―life history‖ of a class, it is possible to

specify additional information to provide more depth in understanding the behavior of a

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 24

class. In addition to specifying the event that causes the transition to occur, the analyst

can specify guard and an action

 A guard is a Boolean condition that must be satisfied in order for the transition to

occur. For example, the guard for the transition from the ―reading‖ state to the

―comparing state‖ can be determined by examining the use case

 An action occurs concurrently with the state transition or as a consequence of it

and generally involves one or more operations of an object. For example, the action

connected to password entered event is an operation named validatepassword() that

accesses a password object and performs a digit-by-digit comparison to validate the

entered password

b) Sequence diagrams

The second type of behavioral representation called a sequence diagram in UML,

indicates how events cause transitions from object to object once events have been

Identified by examining use-case, the modeler creates a sequence diagram –a

representation of how events cause flow from one object to another as a function of time.

 Sequence diagram is a shorthand version of the use-case. It represents key classes

and the events that cause behavior flow from class to class

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 25

Each of the arrow represent s an event and indicates how the event channels

behavior between safehome objects. Time is measured vertically downward, and the

narrow rectangles represent time spent in processing an activity. States may be shown

along a vertical timeline

Once a complete sequence diagram has been developed, all of the events that

cause transitions between system objects can be collated into a set of input events and

output events. This information is useful in the creation of an effective design for the

system to be built

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 17CTU402 UNIT II SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.J.Rajeswari, Department of CS,CA& IT, KAHE. 26

Important Questions

1. Explain different types of Requirement Engineering Tasks.

2. How to initiate the Requirement Engineering Process.

3. Explain briefly about Eliciting Requirements.

4. Define Analysis Modeling approach.

5. Define Data Modeling concepts.

6. Explain about Flow- Oriented Modeling.

7. Explain about Active and Passive state of State Representation.

S.N

o
Question Option A Option B Option C Option D Answer

1

 _____________ is a

process of discovery,

refinement, modeling,

and specification

software

engineering

software

requirement

engineering

software

analysis

software

design

software

engineering

2

____________ is the

systematic use of

proven principles,

techniques,

languages, and tools.

software

engineering

software

analysis

software

design

requirements

engineering

requirements

engineering

3

Requirement

engineering is

conducted in a

_______________.

sporadic way random way
haphazard

way

systematic use

of proven

approaches

systematic use

of proven

approaches

4

Software

requirements analysis

work products must

be reviewed for

_________.

modeling completeness
information

processing

functional

requirement
completeness

5

. __________

bridges the gap

between system level

requirement

engineering and

system

engineering
modeling

requirements

analysis

software

engineering

software

engineering

6

Software

requirements analysis

is divided into

__________ areas of

effort.

2 3 4 5 4

7

Throughout

evaluation and

solution synthesis, the

analyst’s primary

focus is on

when where what how what

18CTU402- Software Enginering

UNIT 2 MCQ

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

(For the candidates admitted in 2016 onwards)

 CLASS:II Bsc CT

8

Software applications

can be collectively

called as

______________.

data

gathering

information

gathering

data

processing

 information

processing

data

processing

9

represents the

individual data and

control objects that

constitute some larger

information

content
data content data model

 information

model

information

content

10

represents the manner

in which data and

control change as

each moves through a

information

content

information

flow

information

structure
data structure

information

flow

11

represents the internal

organization of

various data and

control items.

information

content

information

flow

information

structure
data structure

information

structure

12
Entity is a

__________.
data information model physical thing physical thing

13

The first operational

analysis principle

requires an

examination of the

information domain

data model
information

model
data structure

information

structure
data model

14

To transform

software into

information, the

system performs

_____________.

input processing output

input,

processing and

output

input,

processing and

output

15

. To transform

software into

information, the

system must perform

_________ generic

2 3 4 5 3

16

There are

___________ types

of models.

5 4 3 2 2

17

The horizontal

partitioning of

SafeHome function

has _____________

major functions on

2 3 4 5 3

18

The vertical

partitioning of

SafeHome function

has _____________

major functions on

2 3 4 5 3

19

A model of the

software to be built is

called

______________.

data model prototype
information

model

software

model
prototype

20

The ___________ of

software

requirements presents

the real world

manifestation of

implementati

on view
essential view

 partitioning

view

evolutionary

view

implementatio

n view

21

. The essential view

of the SafeHome

function

does not concern

identify event
read sensor

status

activate

sensor

deactivate

sensor

read sensor

status

22
A prototype is the

____________.
data model

information

model

software

model

evolution

model

software

model

23

Data objects are

represented by

labeled

arrows
bubbles entity label labeled arrows

24
Transformations are

represented by ____

labeled

arrows
bubbles entity label bubbles

25

__________ enables

the software engineer

to generate

executable code

quickly, they are ideal

2 GT 3 GT 4 GT 5 GT 4 GT

26

The ___________

provides a detailed

description of the

problem that the

software must solve.

information

description

software

scope

function

description

software

description

information

description

27

______________ is

probably the most

important and,

ironically, the most

often neglected

behavioural

description

processing

narrative

overall

structure

validation

criteria

validation

criteria

28

The software

requirements

specification includes

_____________.

bibliography appendix
Bibliography

and appendix
review

Bibliography

and appendix

29

The __________

section of the

specification

examines the

operation of the

behavioural

description

representation

format

specification

principles

prototyping

environment

behavioural

description

30

The software

requirements

specification is

developed as a

consequence of

review analysis prototyping
functional

description
analysis

31

The preliminary

user’s manual

presents the software

as a _____________.

white box black box
machine

interface
 prototype black box

32

_____________ is

the first technical step

in the software

process.

requirements

analysis

requirements

specification

information

description

information

domain

requirements

analysis

33

The close ended

approach of the

prototyping paradigm

is called ________.

evolutionary

prototyping

simply

prototyping

open ended

prototyping

throwaway

prototyping

throwaway

prototyping

34

The information

domain contains

different views of the

data and control as

2 3 4 5 3

35

The content of

___________ is

defined by the

attributes that are

needed to create it.

system status
functional

model
paycheck

behavioural

model
paycheck

36

Building data,

functional and

behavioural models

provide the software

engineer with

5 4 3 2 3

37

The description of

each function

required to solve the

problem is presented

in the

functional

description

behavioural

description

data

description

program

description

functional

description

38

 Software

requirements analysis

work products must

be reviewed for

___________.

clarity completeness consistency
all of the

above

all of the

above

39

 The overall role of

software in a larger

system is identified

during the

_________.

system

engineering

software

planning

software

estimation
documentation

system

engineering

40

The analyst finds that

problems with the

current manual

system include

_________.

inability to

obtain the

status of a

component

rapidly

two-or-three

day turn

around to

update a card

file

multiple

reorders to

the same

vendor

all of the

above

all of the

above

41

The expansion of

FAST is

_______________.

Facilitated

Application

Specification

Techniques

Fast

Application

Specification

Techniques

Facilitated

Application

Software

Techniques

Facilitated

Application

System

Techniques

Facilitated

Application

Specification

Techniques

42

The following come

under the lists of

constraints.

cost size
business

rules

all of the

above

all of the

above

43

All analysis methods

are related by a set of

operational

_____________.

system software principles analysis principles

44

The functions that the

software is to perform

must be

______________.

defined described discussed listed defined

45

The first step in

establishing

traceability back to

the customer is

__________.

use multiple

views of

requirement

rank

requirement

record the

origin of and

the reason

for every

requirement

work to

eliminate

ambiguity

record the

origin of and

the reason for

every

requirement

46

___________ are

used so that the

characteristics of

function and

behaviour can be

softwares models programs
none of the

above
models

47

The perception of the

quality software is

often based on the

perception of the

“friendliness” of the

system software interface prototype interface

48

All software

applications

collectively called

__________.

packages programs software
data

processing

data

processing

49

The information

domain contains

__________ different

views of data and

control as each is

2 3 4 5 3

50

The fourth

operational analysis

principle suggests

that the

informational,

decomposed partitioned listed described partitioned

51

The _____________

aids the analyst in

understanding the

information, function

and behaviour of a

prototype software model interface model

52

The __________

becomes the focal

point for review and,

therefore the key to a

determination of

prototype interface software model model

53

The __________

becomes the

foundation for

design, providing the

designer with an

prototype model interface software model

54

the __________ is

one method for

representing the

behavior of a system

by depicting its state

state diagram
use case

diagram
ER diagram DFD state diagram

55

When an sensor event

is recognized, the

invokes an audible

alarm attached to the

model software delay prototype software

56

A _________ is

always a model – an

abstraction of some

real situation that is

normally quite

software prototype specification function specification

57

The _____________

presents the software

as a black box.

preliminary

user’s manual
prototype system software

preliminary

user’s manual

58

___________ may be

accompanied by an

executable prototype,

a paper prototype or a

preliminary user’s

system

software

requirements

specification

software user manual

software

requirements

specification

59

The system to be

developed is a

process control

system similar to the

one that was

5 months 10 months 2 months 12 months. 10 months

60

The cost method

which neutralizes

personal biases is

expert

judgment

Delphi cost

estimation

work break

down

structures

COCOMO

model

expert

judgment

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT III SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA & IT, KAHE. 1

UNIT-III

Risk Management: Software Risks, Risk Identification Risk Projection and Risk Refinement, RMMM plan,

QualityManagement- Quality Concepts, Software Quality Assurance, Software Reviews, Metrics for Process

and Projects

Software Risks

Although there has been considerable debate about the proper definition for software

risk, there is general agreement that risk always involves two characteristics: uncertainty—

the risk may or may not happen; that is, there are no 100 percent probable risks1—and loss—

if the risk becomes a reality, unwanted consequences or losses will occur. When risks are

analyzed, it is important to quantify the level of uncertainty and the degree of loss associated

with each risk. To accomplish this, different categories of risks are considered.

Project risks threaten the project plan. That is, if project risks become real, it is likely that the

project schedule will slip and that costs will increase. Project risks identify potential

budgetary, schedule, personnel (staffing and organization), resource, stakeholder, and

requirements problems and their impact on a software project. Project complexity, size, and

the degree of structural uncertainty were also defined as project (and estimation) risk factors.

Technical risks threaten the quality and timeliness of the software to be produced. If a technical

risk becomes a reality, implementation may become difficult or impossible. Technical

risks identify potential design, implementation, interface, verification, and maintenance

problems. In addition, specification ambiguity, technical uncertainty, technical obsolescence,

and “leading-edge” technology are also risk factors. Technical risks occur because the

problem is harder to solve than you thought it would be.

Business risks threaten the viability of the software to be built and often jeopardize the project

or the product. Candidates for the top five business risks are (1) building an excellent

product or system that no one really wants (market risk), (2) building a product that no longer

fits into the overall business strategy for the company (strategic risk), (3) building a product

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT III SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA & IT, KAHE. 2

that the sales force doesn’t understand how to sell (sales risk), (4) losing the support

of senior management due to a change in focus or a change in people (management risk), and

(5) losing budgetary or personnel commitment (budget risks).

Known risks are those that can be uncovered after careful evaluation of the project plan, the

business and technical environment in which the project is being developed, and other reliable

information sources (e.g., unrealistic delivery date, lack of documented requirements or

software scope, poor development environment).

Predictable risks are extrapolated from past project experience (e.g., staff turnover, poor

communication with the customer, dilution of staff effort as ongoing maintenance requests are

serviced). Unpredictable risks are the joker in the deck. They can and do occur, but they are

extremely difficult to identify in advance.

Risk Identification

Risk identification is a systematic attempt to specify threats to the project plan (estimates,

schedule, resource loading, etc.). By identifying known and predictable risks, the project

manager takes a first step toward avoiding them when possible and controlling them when

necessary.

There are two distinct types of risks for each of the categories

Generic risks are a potential threat to every software project.

Product-specific risks can be identified only by those with a clear understanding of the

technology, the people, and the environment that is specific to the software that is to be built.

One method for identifying risks is to create a risk item checklist. The checklist can be used for

risk identification and focuses on some subset of known and predictable risks in the following

generic subcategories:

Product size—Risks associated with the overall size of the software to be built or modified.

Business impact—Risks associated with constraints imposed by management or the

marketplace.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT III SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA & IT, KAHE. 3

Stakeholder characteristics—Risks associated with the sophistication of the stakeholders and

the developer’s ability to communicate with stakeholders in a timely manner.

Process definition—Risks associated with the degree to which the software process has been

defined and is followed by the development organization.

Development environment—Risks associated with the availability and

quality of the tools to be used to build the product.

Technology to be built—Risks associated with the complexity of the system to

be built and the “newness” of the technology that is packaged by the system.

Staff size and experience—Risks associated with the overall technical and

project experience of the software engineers who will do the work.

Assessing Overall Project Risk

The following questions have been derived from risk data obtained by surveying experienced

Software project managers in different parts of the world

The questions are ordered by their relative importance to the success of a project.

1. Have top software and customer managers formally committed to support the project?

2. Are end users enthusiastically committed to the project and the system/product to be built?

3. Are requirements fully understood by the software engineering team and its customers?

4. Have customers been involved fully in the definition of requirements?

5. Do end users have realistic expectations?

6. Is the project scope stable?

7. Does the software engineering team have the right mix of skills?

8. Are project requirements stable?

9. Does the project team have experience with the technology to be implemented?

10. Is the number of people on the project team adequate to do the job?

11. Do all customer/user constituencies agree on the importance of the project and on the

requirements for the system/product to be built?

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT III SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA & IT, KAHE. 4

Risk Components and Drivers

The risk components are defined in the following manner:

• Performance risk—The degree of uncertainty that the product will meet its requirements and

be fit for its intended use.

• Cost risk—The degree of uncertainty that the project budget will be maintained.

• Support risk—The degree of uncertainty that the resultant software will be easy to correct,

adapt, and enhance.

• Schedule risk—The degree of uncertainty that the project schedule will be maintained and

that the product will be delivered on time.

Risk Projection

Risk projection, also called risk estimation, attempts to rate each risks in two ways—(1) the

likelihood or probability that the risk is real and will occur and (2) the consequences of the

problems associated with the risk, should it occur. You work along with other managers and

technical staff to perform four risk projection steps:

1. Establish a scale that reflects the perceived likelihood of a risk.

2. Delineate the consequences of the risk.

3. Estimate the impact of the risk on the project and the product.

4. Assess the overall accuracy of the risk projection so that there will be no misunderstandings.

The intent of these steps is to consider risks in a manner that leads to prioritization. No

software team has the resources to address every possible risk with the same degree of rigor.

By prioritizing risks, you can allocate resources where they will have the most impact.

Developing a Risk Table

A risk table provides you with a simple technique for risk projection. A sample risk table is

illustrated in below figure.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT III SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA & IT, KAHE. 5

 Begin by listing all risks (no matter how remote) in the first column of the table.

 Each risk is categorized in the second column (e.g., PS implies a project size risk, BU

implies a business risk).

 The probability of occurrence of each risk is entered in the next column of the table.

 The probability value for each risk can be estimated by team members individually.

 Each risk component is assessed and an impact category is determined.

 The categories for each of the four risk components—performance, support, cost, and

schedule—are averaged to determine an overall impact value.

 Once the first four columns of the risk table have been completed, the table is sorted by

probability and by impact.

 High-probability, high-impact risks percolate to the top of the table, and low-

probability risks drop to the bottom.

 This accomplishes first-order risk prioritization.

Assessing Risk Impact

Three factors affect the consequences that are likely if a risk does occur: its nature, its scope,

and its timing.

 The nature of the risk indicates the problems that are likely if it occurs.

 The scope of a risk combines the severity with its overall distribution

Finally, the timing of a risk considers when and for how long the impact will be felt.

Risk Refinement

During early stages of project planning, a risk may be stated quite generally. As time passes

and more is learned about the project and the risk, it may be possible to refine the risk into a set

of more detailed risks, each somewhat easier to mitigate, monitor, and manage.

This general condition can be refined in the following manner:

Sub condition 1. Certain reusable components were developed by a third party with no

knowledge of internal design standards.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT III SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA & IT, KAHE. 6

Sub condition 2. The design standard for component interfaces has not been solidified and

may

not conform to certain existing reusable components.

Sub condition 3. Certain reusable components have been implemented in a language that is

not

supported on the target environment.

The consequences associated with these refined sub conditions remain the same (i.e., 30

percent of software components must be custom engineered), but the refinement helps to

isolate the underlying risks and might lead to easier analysis and response.

The RMMM Plan

A risk management strategy can be included in the software project plan, or the risk

management steps can be organized into a separate risk mitigation, monitoring and

management plan. The RMMM plan documents all work performed as part of risk analysis and

are used by the project manager as part of the overall project plan.

Some software teams do not develop a formal RMMM document. Rather, each risk is

documented individually using a risk information sheet (RIS). In most cases, the RIS is

maintained using a database system so that creation and information entry, priority ordering,

searches, and other analysis may be accomplished easily. Once RMMM has been documented

and the project has begun, risk mitigation and monitoring steps commence. As we have already

discussed, risk mitigation is a problem avoidance activity. Risk monitoring is a project tracking

activity with three primary objectives: (1) to assess whether predicted risks do, in fact, occur;

(2) to ensure that risk aversion steps defined for the risk are being properly applied; and (3) to

collect information that can be used for future risk analysis. In many cases, the problems that

occur during a project can be traced to more than one risk. Another job of risk monitoring is to

attempt to allocate origin

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT III SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA & IT, KAHE. 7

Quality Management

Quality Concepts

The drumbeat for improved software quality began in earnest as software became increasingly

integrated in every facet of our lives. By the 1990s, major corporations recognized that billions

of dollars each year were being wasted on software that didn’t deliver the features and

functionality that were promised. Worse, both government and industry became increasingly

concerned that a major software fault might cripple important infrastructure, costing tens of

billions more. By the turn of the century, CIO Magazine trumpeted the headline, “Let’s Stop

Wasting $78 Billion a Year,” lamenting the fact that “American businesses spend billions for

software that doesn’t do what it’s supposed to do”. InformationWeek echoed the same concern:

Despite good intentions, defective code remains the hobgoblin of the software industry,

accounting for as much as 45% of computer-system downtime and costing U.S. companies

about $100 billion last year in lost productivity and repairs, says the Standish Group, a market

research firm. That doesn’t include the cost of losing angry customers. Because IT shops write

applications that rely on packaged infrastructure software, bad code can wreak havoc on

custom apps as well . . . Just how bad is bad software? Definitions vary, but experts say it takes

only three or four defects per 1,000 lines of code to make a program perform poorly. Factor in

that most programmers inject about one error for every 10 lines of code they write, multiply

that by the millions of lines of code in many commercial products,

then figure it costs software vendors at least half their development budgets to fix

errors while testing. Get the picture? In 2005, Computer World lamented that “bad software

plagues nearly every organization that uses computers, causing lost work hours during

computer downtime, lost or corrupted data, missed sales opportunities, high IT support and

maintenance costs, and low customer satisfaction. A year later, InfoWorld wrote about the “the

sorry state of software quality” reporting that the quality problem had not gotten any better. As

the emphasis on software quality grew, a survey of 100,000 white-collar professionals

indicated that software quality engineers were “the happiest workers in America”! Today,

software quality remains an issue, but who is to blame? Customers blame

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT III SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA & IT, KAHE. 8

developers, arguing that sloppy practices lead to low-quality software. Developers blame

customers (and other stakeholders), arguing that irrational delivery dates and a continuing

stream of changes force them to deliver software before it has been fully validated. Who’s

right? Both—and that’s the problem.

Software Quality Assurance

The software engineering approach works toward a single goal: to produce on-time, high-

quality software. Yet many readers will be challenged by the question: “What is software

quality?”

The problem of quality management is not what people don't know about it. The problem is

what they think they do know

Everybody is for it. (Under certain conditions, of course.) Everyone feels they understand it.

(Even though they wouldn’t want to explain it.) Everyone thinks execution is only a matter of

following natural inclinations. (After all, we do get along somehow.) And, of course, most

people feel that problems in these areas are caused by other people. (If only they would take

the time to do things right.) Indeed, quality is a challenging concept. Some software developers

continue to believe that software quality is something you begin to worry about after code has

been generated. Nothing could be further from the truth! Software quality assurance (often

called quality management) is an umbrella activity that is applied throughout the software

process.

Software quality assurance (SQA) encompasses: (1) an SQA process, (2) specific quality

assurance and quality control tasks (including technical reviews and a multi-tiered testing

strategy), (3) effective software engineering practice (methods and tools), (4) control of all

software work products and the changes made to them, (5) a procedure to ensure compliance

with software development standards (when applicable), and (6) measurement and reporting

mechanisms.

Elements of Software Quality Assurance

Software quality assurance encompasses a broad range of concerns and activities that focus on

the management of software quality. These can be summarized in the following manner:

Standards. The IEEE, ISO, and other standards organizations have produced a broad array of

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT III SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA & IT, KAHE. 9

software engineering standards and related documents. Standards may be adopted voluntarily

by a software engineering organization or imposed by the customer or other stakeholders. The

job of SQA is to ensure that standards that have been adopted are followed and that all work

products conform to them.

Reviews and audits. Technical reviews are a quality control activity performed by software

engineers for software engineers. Their intent is to uncover errors. Audits are a type of review

performed by SQA personnel with the intent of ensuring that quality guidelines are being

followed for software engineering work. For example, an audit of the review process might be

conducted to ensure that reviews are being performed in a manner that will lead to the highest

likelihood of uncovering errors.

Testing. Software testing is a quality control function that has one primary goal—to find

errors. The job of SQA is to ensure that testing is properly planned and efficiently conducted so

that it has the highest likelihood of achieving its primary goal.

Error/defect collection and analysis. The only way to improve is to measure how you’re

doing. SQA collects and analyzes error and defect data to WebRef.

Software Quality Assurance

Better understand how errors are introduced and what software engineering activities are best

suited to eliminating them.

Change management. Change is one of the most disruptive aspects of any software project. If

it is not properly managed, change can lead to confusion, and confusion almost always leads to

poor quality. SQA ensures that adequate change management practices have been

instituted.

Education. Every software organization wants to improve its software engineering practices.

A key contributor to improvement is education of software engineers, their managers, and

other stakeholders. The SQA organization takes the lead in software process improvement and

is a key proponent and sponsor of educational programs.

Vendor management. Three categories of software are acquired from external software

vendors—shrink-wrapped packages (e.g., Microsoft Office), a tailored shell that provides a

basic skeletal structure that is custom tailored to the needs of a purchaser, and contracted

software that is custom designed and constructed from specifications provided by the customer

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT III SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA & IT, KAHE. 10

organization. The job of the SQA organization is to ensure that high-quality software results by

suggesting specific quality practices that the vendor should follow (when possible), and

incorporating quality mandates as part of any contract with an external vendor.

Security management. With the increase in cyber crime and new government regulations

regarding privacy, every software organization should institute policies that protect data at all

levels, establish firewall protection for WebApps, and ensure that software has not been

tampered with internally. SQA ensures that appropriate process and technology are used

to achieve software security.

Safety. Because software is almost always a pivotal component of human-rated systems (e.g.,

automotive or aircraft applications), the impact of hidden defects can be catastrophic. SQA

may be responsible for assessing the impact of software failure and for initiating those steps

required to reduce risk.

Risk management. Although the analysis and mitigation of risk is the concern of software

engineers, the SQA organization ensures that risk management activities are properly

conducted and that risk-related contingency plans have been established. In addition to each of

these concerns and activities, SQA works to ensure that software support activities (e.g.,

maintenance, help lines, documentation, and manuals) are conducted or produced with quality

as a dominant concern.

Software Reviews

Metrics for Process and Projects

Measurement enables us to gain insight into the process and the project by providing a

mechanism for objective evaluation. Lord Kelvin once said: When you can measure what you

are speaking about and express it in numbers, you know something about it; but when you

cannot measure, when you cannot express it in numbers, your knowledge is of a meager and

unsatisfactory kind: it may be the beginning of knowledge, but you have scarcely, in your

thoughts, advanced to the stage of a science. The software engineering community has taken

Lord Kelvin’s words to heart. But not without frustration and more than a little controversy!

Measurement can be applied to the software process with the intent of improving it on a

continuous basis. Measurement can be used throughout a software project to assist in

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT III SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA & IT, KAHE. 11

estimation, quality control, productivity assessment, and project control. Finally, measurement

can be used by software engineers to help assess the quality of work products and to assist in

tactical decision making as a project proceeds. Within the context of the software process and

the projects that are conducted using the process, a software team is concerned primarily with

productivity and quality metrics—measures of software development “output” as a function of

effort and time applied and measures of the “fitness for use” of the work products that are

produced. For planning and estimating purposes, our interest is historical. What was software

development productivity on past projects? What was the quality of the software that was

produced? How can past productivity and quality data are extrapolated to the present? How can

it help us plan and estimate more accurately?

The reasons that we measure: (1) to characterize in an effort to gain an understanding “of

processes, products, resources, and environments, and to establish baselines for comparisons

with future assessments”; (2) to evaluate “to determine status with respect to plans”; (3) to

predict by “gaining understandings of relationships among processes and products and building

models of these relationships”; and (4) to improve by “identifying roadblocks, root causes,

inefficiencies, and other opportunities for improving product quality and process

performance.”

Measurement is a management tool. If conducted properly, it provides a project manager with

insight. And as a result, it assists the project manager and the

software team in making decisions that will lead to a successful project.

Metrics in the Process and Project Domains

Process metrics are collected across all projects and over long periods of time.

Their intent is to provide a set of process indicators that lead to long-term software process

improvement. Project metrics enable a software project manager to (1) assess the status of an

ongoing project, (2) track potential risks, (3) uncover problem areas before they go “critical,”

(4) adjust work flow or tasks, and (5) evaluate the project team’s ability to control quality of

software work products.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT III SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA & IT, KAHE. 12

Measures that are collected by a project team and converted into metrics for use during a

project can also be transmitted to those with responsibility for software process improvement.

For this reason, many of the same metrics are used in both the process and project domains.

Process Metrics and Software Process Improvement

The only rational way to improve any process is to measure specific attributes of the process,

develop a set of meaningful metrics based on these attributes, and then use the metrics to

provide indicators that will lead to a strategy for improvement (Chapter 37). But before we

discuss software metrics and their impact on software process improvement, it is important to

note that process is only one of a number of “controllable factors in improving software quality

and organizational performance”.

Process sits at the center of a triangle connecting three factors that have a profound influence

on software quality and organizational performance. The skill and motivation of people have

been shown to be the most influential factors in quality and performance. The complexity of

the product can have a substantial impact on quality and team performance. The technology

(i.e., the software engineering methods and tools) that populates the process also has an impact.

In addition, the process triangle exists within a circle of environmental conditions that include

the development environment (e.g., integrated software tools), business conditions (e.g.,

deadlines, business rules), and customer characteristics (e.g., ease of communication and

collaboration). You can only measure the efficacy of a software process indirectly. That is, you

derive a set of metrics based on the outcomes that can be derived from the process. Outcomes

include measures of errors uncovered before release of the software, defects delivered to and

reported by end users, work products delivered (productivity), human effort expended,

calendar time used, schedule conformance, and other measures. You can also derive process

metrics by measuring the characteristics of specific software engineering tasks. For example,

you might measure the effort and time spent performing the umbrella activities and the generic

software engineering activities described in

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT III SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA & IT, KAHE. 13

The skill and motivation of the software people doing the work are the most important factors

that influence software quality.

“Software metrics let you know when to laugh and when to cry.”

Process Product People Technology

Development

environment

Customer

characteristics

Business

conditions

Managing Software Projects

Grady argues that there are “private and public” uses for different types of process data.

Because it is natural that individual software engineers might be sensitive to the use of metrics

collected on an individual basis, these data should be private to the individual and serve as an

indicator for the individual only. Examples of private metrics include defect rates (by

individual), defect rates (by component), and errors found during development. The “private

process data” philosophy conforms well with the Personal Software Process approach proposed

by Humphrey. Humphrey recognized that software process improvement can and should begin

at the individual level. Private process data can serve as an important driver as you work to

improve your software engineering approach. Some process metrics are private to the software

project team but public to all team members. Examples include defects reported for major

software functions (that have been developed by a number of practitioners), errors found

during technical reviews and lines of code or function points per component or function.1 The

team reviews these data to uncover indicators that can improve team performance.

Public metrics generally assimilate information that originally was private to individuals and

teams. Project-level defect rates (absolutely not attributed to an individual), effort, calendar

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT III SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA & IT, KAHE. 14

times, and related data are collected and evaluated in an attempt to uncover indicators that can

improve organizational process performance.

Software process metrics can provide significant benefits as an organization works to improve

its overall level of process maturity. However, like all metrics, these can be misused, creating

more problems than they solve. Grady suggests a “software metrics etiquette” that is

appropriate for both managers and practitioners as they institute a process metrics program:

• Use common sense and organizational sensitivity when interpreting metrics data.

• Provide regular feedback to the individuals and teams who collect measures and metrics.

• Don’t use metrics to appraise individuals.

• Work with practitioners and teams to set clear goals and metrics that will

be used to achieve them.

• Never use metrics to threaten individuals or teams.

• Metrics data that indicate a problem area should not be considered “negative.” These data are

merely an indicator for process improvement.

What is the difference between private and public uses for software metrics?

What guidelines should be applied when we collect software metrics?

Process and Project Metrics

• Don’t obsess on a single metric to the exclusion of other important metrics.

As an organization becomes more comfortable with the collection and use of process metrics,

the derivation of simple indicators gives way to a more rigorous approach called statistical

software process improvement (SSPI). In essence, SSPI uses software failure analysis to

collect information about all errors and defects2 encountered as an application, system, or

product is developed and used.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT III SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA & IT, KAHE. 15

Project Metrics

Unlike software process metrics that are used for strategic purposes, software project measures

are tactical. That is, project metrics and the indicators derived from them are used by a project

manager and a software team to adapt project work flow and technical activities. The first

application of project metrics on most software projects occurs during estimation. Metrics

collected from past projects are used as a basis from which effort and time estimates are made

for current software work. As a project proceeds, measures of effort and calendar time

expended are compared to original estimates (and the project schedule). The project manager

uses these data to monitor and control progress.

As technical work commences, other project metrics begin to have significance. Production

rates represented in terms of models created, review hours, function points, and delivered

source lines are measured. In addition, errors uncovered during each software engineering task

are tracked. As the software evolves from requirements into design, technical metrics (Chapter

30) are collected to assess design quality and to provide indicators that will influence the

approach taken to code generation and testing. The intent of project metrics is twofold. First,

these metrics are used to minimize the development schedule by making the adjustments

necessary to avoid delays and mitigate potential problems and risks. Second, project metrics

are used to assess product quality on an ongoing basis and, when necessary, modify the

technical approach to improve quality. As quality improves, defects are minimized, and as the

defect count goes down, the amount of rework required during the project is also reduced. This

leads to a reduction in overall project cost.

An error is defined as some flaw in a software engineering work product that is uncovered

before the software is delivered to the end user. A defect is a flaw that is uncovered after

delivery to the end user. It should be noted that others do not make this distinction.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME: SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE: 18CTU402 UNIT III SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA & IT, KAHE. 16

Possible Questions

Part – B (2 Mark)

1. Write about generic risk and product risk.

2. What is risk projection?

3. Define RMMM plan and its use.

4. What are the elements of software quality assurance

5. What are project metrics?

Part – C (6 Mark)

1. Explain in detail about Software risks that are faced by developers.

2. What is the use of software reviews? Explain in detail.

3. Describe in detail how are risks identified.

4. What is risk refinement? Explain in detail the steps to refine a risk if it occurs.

5. Illustrate risk projection mechanism in software engineering

6. What are Formal technical reviews? How are they conducted in software engineering?

7. Describe in detail about RMMM plan

8. Explain in detail about project matrices

9. Enumerate in detail the quality concepts that must be considered in developing a

software

10. Explain the software quality assurance standards in detail.

S.No Question Option A Option B Option C Option D Answer

1

There are

__________ major

phases to any design

process

2 3 4 5 2

2

Diversification is the

____________ of a

repertoire of

alternatives.

component solution acquisition knowledge acquisition

3

During

____________, the

designer chooses and

combines

appropriate elements

from the repertoire

diversificati

on
convergence elimination creation convergence

4

________ and

combine intuition

and judgement based

on experience in

elimination,

convergence

creation,

convergence

acquisition,

creation

diversificati

on and

convergence

diversification

and

convergence

5

__________ can be

traced to a

customer’s

requirements and at

the same time

design analysis principles testing design

6

The __________

must implement all

of the explicit

requirements

contained in the

principles testing design component design

7

A ___________

should exhibit an

architectural

structure that has

been created using

principles testing component design design

8

A ___________ is

composed of

components that

exhibit good design

characteristics.

principles testing component design design

18CTU402- Software Enginering

UNIT 3 MCQ

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

(For the candidates admitted in 2016 onwards)

 CLASS:II Bsc CT

9

A ___________ can

be implemented in

an evolutionary

fashion thereby

facilitating

principles testing component design design

10

A ___________

should be modular

that is the software

should be logically

partitioned into

design principles component testing design

11

A ___________

should contain

distinct

representations of

data, architecture,

design principles component testing design

12

A ___________

should lead to data

structures that are

appropriate for the

objects to be

design principles component testing design

13

. A _____________

should lead to

interfaces that

reduce the

complexity of

design principles component testing design

14

A ___________

should be derived

using a repeatable

method that is driven

by information

obtained during

principles component design testing design

15

The software

__________ process

encourages good

design through the

application of

principles component design testing design

16

The __________

must be a readable,

understandable

guide for those who

generate code and

principles component design testing design

17

The __________

should provide a

complete picture of

the software

addressing the data,

functional and

principles component design testing design

18

The evolution of

software

__________ is a

continuing process

that has spanned the

past four decades.

principles component design testing design

19

Procedural aspects

of design definition

evolved into a

philosophy called

____________.

top down

programmin

g

bottom up

programmin

g

structured

programmin

g

object

oriented

programmin

g

structured

programming

20

The design process

should not suffer

from ___________.

analysis tunnel vision
conceptual

errors
 integrity tunnel vision

21

The design should

be __________ to

the analysis model.

consistent related traceable relevant traceable

22

The design should

not ___________

the wheel.

minimize maximize integrate reinvent reinvent

23

The design should

___________ the

intellectual distance

maximize minimize integrate analyse minimize

24

. The ___________

is represented at a

high level of

abstraction

specification analysis quality

design

specificatio

n

design

specification

25

The design should

exhibit

___________ and

integration.

uniformity analysis quality review uniformity

26

The design should

be ____________ to

accommodate

change.

reviewed analysed assessed structured structured

27

The design should

be ___________ to

degrade gently, even

when aberrant data,

events, or operating

reviewed analysed assessed structured structured

28

Design is not

___________,

coding is not design

coding analysis review event coding

29

Design is not coding,

__________ is not

design.

coding analysis review event coding

30

The design should

be __________ for

quality as it is being

created not after the

fact.

reviewed assessed structured integrated assessed

31

The design should

be ___________ to

minimize conceptual

errors.

reviewed assessed structured integrated reviewed

32

Software design is

both a _________

and a model.

model process data function process

33

__________ is the

only way that we can

accurately translate a

customer’s

requirements into a

specification design data prototype design

34

The design

___________ is the

equivalent of an

architect’s plan for a

house.

analysis process model function model

35

At the highest level

of _________, a

solution is stated in

broad terms, using

the language of the

refinement modularity abstraction continuity abstraction

36

. A __________ is a

named sequence of

instructions that has

a specific and

limited function.

procedural

abstraction

data

abstraction

control

abstraction

Process

abstraction

procedural

abstraction

37

A __________ is a

named collection of

data that describes a

data object.

procedural

abstraction

data

abstraction

control

abstraction

Process

abstraction
data abstraction

38

_________ implies a

program control

mechanism without

specifying internal

detail.

procedural

abstraction

data

abstraction

control

abstraction

Process

abstraction

control

abstraction

39

___________ is

used to coordinate

activities in an

operating system.

synchronizat

ion

semaphore

control

abstraction

data

abstraction

procedural

abstraction

synchronization

semaphore

40

_________ is a top

down design strategy

originally proposed

by Niklaus Wirth.

stepwise

refinement

control

abstraction

data

abstraction

procedural

abstraction

stepwise

refinement

41

The designer’s goal

is to produce a

model or

representation of a

__________ that

component entity data raw material component

42

The second phase of

any design process is

the gradual

___________ of all

but one particular

acquisition addition elimination creation elimination

43

Design begins with

the __________

model.

data requirements specification code requirements

44

Software design

methodologies lack

the __________ that

are normally

associated with more

depth flexibility
quantitative

nature

all of the

above
all of the above

45

Software

requirements,

manifested by the

models, feed the

data functional behavioral
all of the

above
all of the above

46

___________ is the

place where quality

is fostered in

software engineering

model data design
specificatio

n
design

47

________ provides

us with

representations of

software that can be

assessed for quality.

design specification data prototype design

48

Procedural aspects

of design definition

evolved into a

philosophy called

__________.

procedural

programmin

g

object

oriented

programmin

g

structured

programmin

g

all of the

above

structured

programming

49

Meyer defines

__________ criteria

that enable us to

evaluate a design

method with respect

to its ability to

define an effective

modular system.

2 3 4 5 5

50

. If a design method

provides a

systematic

mechanism for

decomposing the

problem into sub

problems, it will

reduce the

complexity of the

overall problem,

thereby achieving an

effective modular

solution. This is

called

____________.

modular

decomposab

ility

modular

composabilit

y

modular

understandab

ility

modular

continuity

modular

decomposabilit

y

51

If a design method

enables existing

(reusable) design

components to be

assembled into a

new system, it will

yield a modular

solution that does

not reinvent the

wheel. This is called

__________.

modular

decomposab

ility

modular

composabilit

y

modular

understandab

ility

modular

continuity

modular

composability

52

If a module can be

understood as a

stand alone unit

(without reference to

other modules), it

will be easier to

build and easier to

change. This is

called __________.

modular

decomposab

ility

modular

composabilit

y

modular

understandab

ility

modular

continuity

modular

understandabili

ty

53

If small changes to

the system

requirements result

in changes to

individual modules,

rather than system

wide changes, the

impact of change-

induced side effects

will be minimized.

This is called

__________.

modular

decomposab

ility

modular

composabilit

y

modular

understandab

ility

modular

continuity

modular

continuity

54

If an aberrant

condition occurs

within a module and

its effects are

constrained within

that module, the

impact of error-

induced side effects

will be minimized.

This is called

__________.

modular

protection

modular

composabilit

y

modular

understandab

ility

modular

continuity

modular

protection

55

The aspect of the

architectural design

representation

defines the

components of a

system and the

manner in which

those components

are packaged and

interact with one

another. This

property is called

_____________.

extra

functional

property

structural

property

families of

related

systems

operational

property

structural

property

56

represent

architecture as an

organized collection

of program

components.

dynamic

models

functional

models

framework

models

structural

models

structural

models

57

increases the level of

design abstraction by

attempting to

identity repeatable

architectural design

frameworks that are

encountered in

similar types of

applications.

framework

models

dynamic

models

process

models

functional

models

framework

models

58

_________ address

the behavioural

aspects of the

program

architecture,

indicating how the

structure or system

configuration may

change as a function

of external events.

framework

models

dynamic

models

process

models

functional

models

dynamic

models

59

___________ focus

on the design of the

business or technical

process that the

system must

accommodate.

framework

models

dynamic

models

process

models

functional

models
process models

60

_____________ can

be used to represent

the functional

hierarchy of a

system.

framework

models

dynamic

models

process

models

functional

models

functional

models

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 1

 UNIT-IV

Design Engineering-Design Concepts, Architectural Design Elements, Software Architecture,Data

Design at the Architectural Level and Component Level, Mapping of Data Flow into Software

Architecture, Modeling Component Level Design

Design Engineering

4.1 Design within the Context of Software Engineering

Software design is the last software engineering action within the modeling activity and sets the

stage for construction (code generation and testing).

The flow of information during software design is illustrated in Figure below. The analysis model,

manifested by scenario-based, class-based, flow-oriented and behavioral elements, feed the design

task.

The architectural design defines the relationship between more structural elements of the software,

the architectural styles and design patterns that can be used to achieve the requirements defined for

the system, and the constraints that affect the way in which the architectural design can be

implemented.

The architectural design can be derived from the System Specs, the analysis model, and

interaction of subsystems defined within the analysis model.

The interface design describes how the software communicates with systems that interpolate

with it, and with humans who use it. An interface implies a flow of information (data, and or

control) and a specific type of behavior.

.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 2

 sc e na r i o- ba se d

e l e me nt s

use-cases - text

use-case diagrams

activity diagrams

swim lane diagrams

 f l ow- or i e nt e d

e l e me nt s

 data f low diagrams

control-flow diagrams

processing narratives

Analysis Model

Co m p o n e n t -

L e v e l D e sig n

In t e r f a c e D e sig n

 c l a ss- ba se d

e l e me nt s

 class diagrams

analysis packages

CRC models

collaboration diagrams

 be ha v i or a l

e l e me nt s

state diagrams

sequence diagrams

 A rc h it e c t u ra l
D e sig n

D a t a / Cla ss
D e sig n

n

M
o
d
e
l

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 3

The component-level design transforms structural elements of the software architecture

into a procedural description of software components

The importance of software design can be stated with a single word – quality. Design is

the place where quality is fostered in software engineering. Design provides us with

representations of software that can be assessed for quality. Design is the only way that

we can accurately translate a customer’s requirements into a finished software product or

system.

4.2 Design Process and Design Quality

Software design is an iterative process through which requirements are translated

into a ―blueprint‖ for constructing the software.

Initially, the blueprint depicts a holistic view of software, i.e. the design is represented at a

high-level of abstraction.

Throughout the design process, the quality of the evolving design is assessed with a

series of formal technique reviews or design walkthroughs.

Three characteristics serve as a guide for the evaluation of a good design:

 The design must implement all of the explicit requirements contained in the analysis

model, and it must accommodate all of the implicit requirements desired by the

customer.

 The design must be a readable, understandable guide for those who generate code and for

those who test and subsequently support the software.

 The design should provide a complete picture of the software, addressing the data, functional,

and behavioral domains from an implementation perspective.

Quality Guidelines

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 4

In order to evaluate the quality of a design representation, we must establish technical criteria for

good design.

1. A design should exhibit an architecture that:

(1) Has been created using recognizable architectural styles or patterns,

(2) Is composed of components that exhibit good design characteristics, and

(3) Can be implemented in an evolutionary fashion

a. For smaller systems, design can sometimes be developed linearly.

2. A design should be modular; that is, the software should be logically partitioned into

elements or subsystems

3. A design should contain distinct representations of data, architecture, interfaces, and

components.

4. A design should lead to data structures that are appropriate for the classes to be implemented

and are drawn from recognizable data patterns.

5. A design should lead to components that exhibit independent functional characteristics.

6. A design should lead to interfaces that reduce the complexity of connections between

components and with the external environment.

7. A design should be derived using a repeatable method that is driven by information obtained

during software requirements analysis.

8. A design should be represented using a notation that effectively communicates its meaning.

Quality Attributes

Hewlett-Packard developed a set of software quality attributes that has been given the acronym

FURPS. The FURPS quality attributes represent a target for all software design:

 Functionality: is assessed by evaluating the features set and capabilities of the program, the

generality of the functions that are delivered, and the security of the overall system.

 Usability: is assessed by considering human factors, overall aesthetics, consistency, and

documentation.

 Reliability: is evaluated by measuring the frequency and severity of failure, the accuracy of

output results, the mean-time-to-failure, the ability to recover from failure, and the

predictability of the program.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 5

 Performance: is measured by processing speed, response time, resource consumption,

throughput, and efficiency.

 Supportability: combines the ability to extend the program extensibility, adaptability,

serviceability maintainability. In addition, testability, compatibility, configurability, etc.

4.3 Design Concepts

This section discusses many significant design concepts (abstraction, refinement, modularity,

architecture, patterns, refactoring, functional independence, information hiding, and OO design

concepts).

4.3.1 Abstraction

At the highest level of abstraction, a solution is stated in broad terms using the language of the

problem environment. At lower levels of abstraction, a more detailed description of the solution

is provided.

As we move through different levels of abstraction, we work to create procedural and data

abstractions. A procedural abstraction refers to a sequence of instructions that have a specific

and limited function. An example of a procedural abstraction would be the word open for a

door.

A data abstraction is a named collection of data that describes a data object. In the context of

the procedural abstraction open, we can define a data abstraction called door. Like any data

object, the data abstraction for door would encompass a set of attributes that describe the door

(e.g. door type, swing direction, weight).

4.3.2 Architecture

Software architecture alludes to the ―overall structure of the software and the ways in which the

structure provides conceptual integrity for a system.‖

In its simplest from, architecture is the structure of organization of program components

(modules), the manner in which these components interact, and the structure of data that are used

by the components.

Te goal of software design is to derive an architectural rendering of a system. This rendering

serves as a framework from which detailed design activities are constructed.

A set of architectural patterns enable a software engineer to reuse design-level concepts.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 6

The architectural design can be represented using one or more of a number of different models.

Structural models represent architecture as an organized collection of program components.

Framework models increase the level of design abstraction by attempting to identify repeatable

architectural design frameworks that are encountered in similar types of applications.

Dynamic models address the behavioral aspects of the program architecture, indicating how the

structure or system configuration may change as a function of external events.

Process models focus on the design of business or technical process that the system must

accommodate.

Functional models can be used to represent the functional hierarchy of a system.

Architectural design will be discussed in Chapter 10.

4.3.3 Patterns

A design pattern ―conveys the essence of a proven design solution to a recurring problem within

a certain context amidst computing concerns.‖

A design pattern describes a design structure that solves a particular design problem within a

specific context and amid ―forces‖ that may have an impact on the manner in which the pattern is

applied and used.

The intent of each design pattern is to provide a description that enables a designer to determine:

1. whether the pattern is applicable to the current work,

2. whether the pattern can be reused, and

3. whether the pattern can serve as a guide for developing a similar, but functionally or

structurally different pattern.

4.3.4 Modularity

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 7

Software architecture and design patterns embody modularity; that is, software is divided into

separately named and addressable components, sometimes called modules that are integrated to

satisfy problem requirements.

Monolithic software (large program composed of a single module) cannot be easily grasped by a

software engineer. The number of control paths, span of reference, number of variables, and

overall complexity would make understanding close to impossible.

It is the compartmentalization of data and function. It is easier to solve a complex problem when

you break it into manageable pieces. ―Divide-and-conquer‖

Don’t over-modularize. The simplicity of each small module will be overshadowed by the

complexity of integration ―Cost‖.

4.3.5 Information Hiding

It is about controlled interfaces. Modules should be specified and design so that information

(algorithm and data) contained within a module is inaccessible to other modules that have no

need for such information.

Hiding implies that effective modularity can be achieved by defining by a set of independent

modules that communicate with one another only that information necessary to achieve software

function.

The use of Information Hiding as a design criterion for modular systems provides the greatest

benefits when modifications are required during testing and later, during software maintenance.

Because most data and procedures are hidden from other parts of the software, inadvertent errors

introduced during modifications are less likely to propagate to other location within the software.

4.3.6 Functional Independence

The concept of functional Independence is a direct outgrowth of modularity and the concepts of

abstraction and information hiding.

Design software so that each module addresses a specific sub-function of requirements and has a

simple interface when viewed from other parts of the program structure.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 8

Functional independence is a key to good design, and design is the key to software quality.

Independence is assessed using two qualitative criteria: cohesion and coupling.

Cohesion is an indication of the relative functional strength of a module.

Coupling is an indication of the relative interdependence among modules.

A cohesive module should do just one thing.

Coupling is a qualitative indication of the degree to which a module is connected to other

modules and to the outside world ―lowest possible‖.

4.3.7 Refinement

It is the elaboration of detail for all abstractions. It is a top down strategy.

A program is developed by successfully refining levels of procedural detail.

A hierarchy is developed by decomposing a macroscopic statement of function (a procedural

abstraction) in a stepwise fashion until programming language statements are reached.

We begin with a statement of function or data that is defined at a high level of abstraction.

The statement describes function or information conceptually but provides no information about

the internal workings of the function or the internal structure of the data.

Refinement causes the designer to elaborate on the original statement, providing more and more

detail as each successive refinement (elaboration) occurs.

Abstraction enables a designer to specify procedure and data and yet suppress low-level details.

Refinement helps the designer to reveal low-level details as design progresses.

Refinement causes the designer to elaborate on the original statement, providing more and more

finement ―elaboration occurs.

Procedural Abstraction

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 9

“The overall structure of the software and the ways in which that structure provides

conceptual integrity for a system.”

 Structural properties. This aspect of the architectural design representation defines the

components of a system (e.g., modules, objects, filters) and the manner in which those

components are packaged and interact with one another. For example, objects are packaged

to encapsulate both data and the processing that manipulates the data and interact via the

invocation of methods

 Extra-functional properties. The architectural design description should address how the

design architecture achieves requirements for performance, capacity, reliability, security,

adaptability, and other system characteristics.

 Families of related systems. The architectural design should draw upon repeatable patterns

that are commonly encountered in the design of families of similar systems. In essence, the

design should have the ability to reuse architectural building blocks.

Patterns

Design Pattern Template

Pattern name—describes the essence of the pattern in a short but expressive name

Intent—describes the pattern and what it does

Also-known-as—lists any synonyms for the pattern

Motivation—provides an example of the problem

Applicability—notes specific design situations in which the pattern is applicable

Structure—describes the classes that are required to implement the pattern

Participants—describes the responsibilities of the classes that are required to implement the

pattern

Collaborations—describes how the participants collaborate to carry out their responsibilities

Consequences—describes the ―design forces‖ that affect the pattern and the potential trade-offs

that must be considered when the pattern is implemented

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 10

Related patterns—cross-references related design patterns

Modular Design

easier to build, easier to change, easier to fix ...

Modularity: Trade-offs

What is the "right" number of modules for a specific software design?

Information Hiding

Why Information Hiding?

 Reduces the likelihood of ―side effects‖

 Limits the global impact of local design decisions

 Emphasizes communication through controlled interfaces

 Discourages the use of global data

 Leads to encapsulation—an attribute of high quality design

 Results in higher quality software

Stepwise Refinement

Functional Independence

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 11

C O H E S I O N - t h e d e g r e e t o w h i c h a
m o d u l e p e r f o r m s o n e a n d o n l y o n e
f u n c t i o n .

C O U P L I N G - t h e d e g r e e t o w h i c h a
m o d u l e i s " c o n n e c t e d " t o o t h e r
m o d u l e s i n t h e s y s t e m .

Refactoring

 Fowler [FOW99] defines refactoring in the following manner:

 "Refactoring is the process of changing a software system in such a way that it does

not alter the external behavior of the code [design] yet improves its internal

structure.‖

 When software is re-factored, the existing design is examined for

 redundancy

 unused design elements

 inefficient or unnecessary algorithms

 poorly constructed or inappropriate data structures,

 or any other design failure that can be corrected to yield a better design.

Design Concepts

 Entity classes

 Boundary classes

 Controller classes

 Inheritance—all responsibilities of a super-class is immediately inherited by all subclasses

 Messages—stimulate some behavior to occur in the receiving object

 Polymorphism—a characteristic that greatly reduces the effort required to extend the design

4.3.9 Design classes

As the design model evolves, the software team must define a set of design classes that refines

the analysis classes and creates a new set of design classes.

Five different classes’ types are shown below:

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 12

1. User Interface classes: define all abstractions that are necessary for HCI.

2. Business domain classes: are often refinements of the analysis classes defined earlier.

The classes identify the attributes and services that are required to implement some

element of the business domain.

3. Process classes: implement lower-level business abstractions required to fully manage

the business domain classes.

4. Persistent classes: represent data stores that will persist beyond the execution of the

software.

5. System classes: implement software management and control functions that enable the

system to operate and communicate within its computing environment and with the

outside world.

Inheritance (Example)

 Design options:

 The class can be designed and built from scratch. That is, inheritance is not used.

 The class hierarchy can be searched to determine if a class higher in the hierarchy

(a super-class) contains most of the required attributes and operations. The new

class inherits from the super-class and additions may then be added, as required.

 The class hierarchy can be restructured so that the required attributes and

operations can be inherited by the new class.

 Characteristics of an existing class can be overridden and different versions of

attributes or operations are implemented for the new class.

Messages

:SenderObject

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 13

message (<parameters>)

:ReceiverObject

Polymorphism

Conventional approach …

case of graphtype:

if graphtype = linegraph then DrawLineGraph (data);

if graphtype = piechart then DrawPieChart (data);

if graphtype = histogram then DrawHisto (data);

if graphtype = kiviat then DrawKiviat (data);

end case;

All of the graphs become subclasses of a general class called graph. Using a concept called

overloading [TAY90], each subclass defines an operation called draw. An object can send a

draw message to any one of the objects instantiated from any one of the subclasses. The object

receiving the message will invoke its own draw operation to create the appropriate graph.

Architectural design elements

 The architecture design elements provides us overall view of the system.

 The architectural design element is generally represented as a set of interconnected subsystem

that are derived from analysis packages in the requirement

model. The architecture model is derived from following

sources:

 The information about the application domain to built the software.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 14

 Requirement model elements like data flow diagram or analysis classes, relationship

and collaboration between them.

 The architectural style and pattern as per

availability. 3. Interface design elements

 The interface design elements for software represents the information flow within it and out

of the system.

 They communicate between the components defined as part of

architecture. Following are the important elements of the interface

design:

1. The user interface

2. The external interface to the other systems, networks

etc. 3. The internal interface between various

components.

4. Component level diagram elements

 The component level design for software is similar to the set of detailed specification of

each room in a house.

 The component level design for the software completely describes the internal details of

the each software component.

 The processing of data structure occurs in a component and an interface which allows all

the component operations.

 In a context of object-oriented software engineering, a component shown in a UML

diagram. The UML diagram is used to represent the processing logic.

5. Deployment level design elements

 The deployment level design element shows the software functionality and subsystem

that allocated in the physical computing environment which support the software.

 Following figure shows three computing environment as shown. These are the

personal computer, the CPI server and the Control panel.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 15

Software Architecture Introduction

 The concept of software architecture is similar to the architecture of

building. The architecture is not an operational software.

 The software architecture focuses on the role of software components.

 Software components consist of a simple program module or an object oriented class in

an architectural design.

 The architecture design extended and it consists of the database and the middleware that

allows the configuration of a network of clients and servers.

Importance of software architecture

Following are the reasons for the importance of software architecture.

1. The representation of software architecture allows the communication between all

stakeholder and the developer.

2. The architecture focuses on the early design decisions that impact on all software

engineering work and it is the ultimate success of the system.

3. The software architecture composes a small and intellectually graspable model.

4. This model helps the system for integrating the components using which the components

are work together.

The architectural style

 The architectural style is a transformation and it is applied to the design of an entire

system. The main aim of architectural style is to build a structure for all components

of the system. An architecture of the system is redefined by using the architectural

style.

 An architectural pattern such as architectural style introduces a transformation on the design

of an architecture.

 The software is constructed for computer based system and it shows one of the architectural

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 16

style from many of style.

The design categories of architectural styles includes:

1. A set of components such as database, computational modules which perform the

function required by the system.

2. A set of connectors that allows the communication, coordination and cooperation between the

omponents.

3. The constraints which define the integration of components to form the system.

4. Semantic model allows a designer to understand the overall properties of a system by

using analysis of elements.

Architectural design

 The architectural design starts then the developed software is put into the context.

 The information is obtained from the requirement model and other information collect during

the requirement engineering.

Representing the system in

context

All the following entities communicates with the target system through the interface that is

small rectangles shown in above figure.

Superordinate system
These system use the target system like a part of some higher-level processing scheme.

Subordinate system

This systems is used by the target system and provide the data mandatory to complete

target system functionality.

Peer-level system
These system interact on peer-to-peer basis means the information is consumed by the target

system and the peers.

Actors

These are the entities like people, device which interact with the target system by

consuming information that is mandatory for requisite processing.

Defining Archetype

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 17

 An archetype is a class or pattern which represents a core abstraction i.e critical to implement

or design for the target system.

 A small set of archetype is needed to design even the systems are relatively complex.

 The target system consists of archetype that represent the stable elements of the

architecture. Archetype is instantiated in many different forms based on the behavior of the

system.

 In many cases, the archetype is obtained by examining the analysis of classes defined as a

part of the requirement model.

An Architecture Trade-off Analysis Method (ATAM)

ATAM was developed by the Software Engineering Institute (SEI) which started an

iterative evaluation process for software architecture.

The design analysis activities which are executed iteratively that are as follows:

1. Collect framework

Collect framework developed a set of use cases that represent the system according to user

point of view.

2. Obtained requirement, Constraints, description of the environment.

These types of information are found as a part of requirement engineering and is used to

verify all the stakeholders are addressed properly.

3. Describe the architectural pattern

The architectural patterns are described using an architectural views which are as follows:

Module view: This view is for the analysis of assignment work with the components and

the degree in which abstraction or information hiding is achieved

Process view: This view is for the analysis of the software or system performance.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 18

Data flow view: This view analyzes the level and check whether functional requirements are

met to the architecture.

4. Consider the quality attribute in segregation

The quality attributes for architectural design consist of reliability, performance,

security, maintainability, flexibility, testability, portability, re-usability etc.

5. Identify the quality attributes sensitivity

 The sensitivity of quality attributes achieved by making the small changes in the

architecture and find the sensitivity of the quality attribute which affects the performance.

 The attributes affected by the variation in the architecture are known as sensitivity points.

Data Design at the Architectural Level and Component Level

The data design action translates data defined as part of the analysis model into

data structures at the software component level and. When necessary into a

database architecture at the application level.

a) Data Design at the Architectural Level

The challenge in data design is to extract useful information from this

data environment, particularly when the information desired is cross-

functional.

To solve this challenge, the business IT community has developed data mining

techniques, also called knowledge discovery in database (KDD) , that navigate

through existing databases in an attempt to extract appropriate business-level

information. An alternative solution, called a data warehouse, adds an

additional layer to the data architecture.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 19

A data warehouse is a separate data environment that is not directly integrated

with day –to-day application but encompasses all data used by a business.

b) Data Design at the Component Level

Data design at the component level focuses on the representation of the data

structures that are directly accessed by one or more software components. We

consider the following set of principles (adapted from for data specification):

1. The systematic analysis principles applied to function and behavior should also be

applied to data.

2. All data structure and the operations to be performed on each should be

identified.

3. A mechanism for defining the content of each data object should be established

and used to define both data and the operation applied it.

4. Low-level design decision should be known only to those modules that must make

direct use of the data contained within the structure.

5. The representation of a data structure should be known only to those modules

that must make direct use of the data contained within the structure.

6. A library of useful data structures and the operations that may be applied to them

should be developed.

7. A software design and programming language should support the specification

and realization of abstract data types.

Mapping Data Flow into Software Architecture

This section describes the general process of mapping requirements into software architectures

during the structured design process. The technique described in this chapter is based on

analysis of the data flow diagram discussed in Chapter 8.

An Architectural Design Method

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 20

customer requirements

four bedrooms, three baths, lots of glass…

Deriving Program Architecture

Partitioning the Architecture

horizontal” and “vertical” partitioning are required

Horizontal Partitioning

define separate branches of the module hierarchy for each major function

use control modules to coordinate communication between functions

Vertical Partitioning:

Factoring

design so that decision making and work are stratified
decision making modules should reside at the top of the architecture

nctio

Why Partitioned Architecture?

results in software that is easier to test

leads to software that is easier to maintain

results in propagation of fewer side effects

results in software that is easier to extend

objective: to derive a program architecture that is partitioned

approach:

the DFD is mapped into a program architecture

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 21

the PSPEC and STD are used to indicate the content of each module
notation: structure chart

Flow Characteristics

General Mapping Approach

Isolate incoming and outgoing flow boundaries; for transaction flows, isolate the transaction

center.

Working from the boundary outward, map DFD transforms into corresponding modules.

Add control modules as required.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 22

Refine the resultant program structure using effective modularity concepts.

a
b

d e f
g h

c i
j

data flow model

x1 "Transform" mapping

x2 x3 x4

b c d

e f

g

i

a h j

Factoring

direction of increasing
decision making

typical "decision
making" modules

typical "worker" modules

First Level Factoring

main

Prepared by G.Manivasagam, Asst Prof, Department of CS, CA & IT, KAHE Page 24/31

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 23

Second Level Mapping

D
main

C

control

B
A

A

C

B

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 24

mapping from the D

flow boundary outward

Transaction Flow

output

Transa

T

c

Refining the Analysis Model

1. Write an English language processing narrative for the level 01 flow model

2. Apply noun/verb parse to isolate processes, data items, store and entities
3. Develop level 02 and 03 flow models
4. Create corresponding data dictionary entries
5. Refine flow models as appropriate

Modeling Component Level Design

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 25

Overview

The purpose of component-level design is to define data structures, algorithms, interface

characteristics, and communication mechanisms for each software component identified in the

architectural design. Component-level design occurs after the data and architectural designs are

established. The component-level design represents the software in a way that allows the

designer to review it for correctness and consistency, before it is built. The work product

produced is a design for each software component, represented using graphical, tabular, or text-

based notation. Design walkthroughs are conducted to determine correctness of the data

transformation or control transformation allocated to each component during earlier design steps.

Component Definitions

 Component is a modular, deployable, replaceable part of a system that encapsulates

implementation and exposes a set of interfaces

 Object-oriented view is that component contains a set of collaborating classes

o Each elaborated class includes all attributes and operations relevant to its

implementation

o All interfaces communication and collaboration with other design classes are also

defined

o Analysis classes and infrastructure classes serve as the basis for object-oriented

elaboration

 Traditional view is that a component (or module) reside in the software and serves one of

three roles

o Control components coordinate invocation of all other problem domain components

o Problem domain components implement a function required by the customer

o Infrastructure components are responsible for functions needed to support the

processing required in a domain application

o The analysis model data flow diagram is mapped into a module hierarchy as the

starting point for the component derivation

 Process-Related view emphasizes building systems out of existing components chosen from

a catalog of reusable components as a means of populating the architecture

Class-based Component Design

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 26

 Focuses on the elaboration of domain specific analysis classes and the definition of

infrastructure classes

 Detailed description of class attributes, operations, and interfaces is required prior to

beginning construction activities

Class-based Component Design Principles

 Open-Closed Principle (OCP) – class should be open for extension but closed for

modification

 Liskov Substitution Principle (LSP) – subclasses should be substitutable for their base classes

 Dependency Inversion Principle (DIP) – depend on abstractions, do not depend on
concretions

 Interface Segregation Principle (ISP) – many client specific interfaces are better than one

general purpose interface

 Release Reuse Equivalency Principle (REP) – the granule of reuse is the granule of release

 Common Closure Principle (CCP) – classes that change together belong together

 Common Reuse Principle (CRP) – Classes that can’t be used together should not be grouped

together

Component-Level Design Guidelines

 Components

o Establish naming conventions in during architectural modeling

o Architectural component names should have meaning to stakeholders

o Infrastructure component names should reflect implementation specific meanings

o Use of stereotypes may help identify the nature of components

 Interfaces

o Use lollipop representation rather than formal UML box and arrow notation

o For consistency interfaces should flow from the left-hand side of the component box

o Show only the interfaces relevant to the component under construction

 Dependencies and Inheritance

o For improved readability model dependencies from left to right and inheritance from

bottom (derived classes) to top (base classes)

o Component interdependencies should be represented by interfaces rather that

component to component dependencies

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 27

Cohesion (lowest to highest)

 Utility cohesion – components grouped within the same category but are otherwise unrelated

 Temporal cohesion – operations are performed to reflect a specific behavior or state

 Procedural cohesion – components grouped to allow one be invoked immediately after the

preceding one was invoked with or without passing data

 Communicational cohesion –operations required same data are grouped in same class

 Sequential cohesion – components grouped to allow input to be passed from first to second

and so on

 Layer cohesion – exhibited by package components when a higher level layer accesses the

services of a lower layer, but lower level layers do not access higher level layer services

 Functional cohesion – module performs one and only one function

Coupling

 Content coupling – occurs when one component surreptitiously modifies internal data in

another component

 Common coupling – occurs when several components make use of a global variable

 Control coupling – occurs when one component passes control flags as arguments to another

 Stamp coupling – occurs when parts of larger data structures are passed between components

 Data coupling – occurs when long strings of arguments are passed between components

 Routine call coupling – occurs when one operator invokes another

 Type use coupling – occurs when one component uses a data type defined in another

 Inclusion or import coupling – occurs when one component imports a package or uses the

content of another

 External coupling – occurs when a components communications or collaborates with

infrastructure components (e.g. database)

Conducting Component-Level Design

1. Identify all design classes that correspond to the problem domain.

2. Identify all design classes that correspond to the infrastructure domain.

3. Elaborate all design classes that are not acquired as reusable components.

a. Specify message details when classes or components collaborate.

b. Identify appropriate interfaces for each component.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 28

c. Elaborate attributes and define data types and data structures required to implement

them.

d. Describe processing flow within each operation in detail.

4. Identify persistent data sources (databases and files) and identify the classes required to

manage them.

5. Develop and elaborate behavioral representations for each class or component.

6. Elaborate deployment diagrams to provide additional implementation detail.

7. Refactor every component-level diagram representation and consider alternatives.

WebApp Component-Level Design

 Boundary between content and function often blurred

 WebApp component is defined is either a:

o well-defined cohesive function manipulates content or provides computational or data

processing for an end- user or

o cohesive package of content and functionality that provides the end-user with some

required capability

WebApp Component-Level Content Design

 Focuses on content objects and the manner in which they may be packaged for presentation

to the end-user

 As the WebApp size increases so does the need for formal representations and easy content

reference and manipulation

 For highly dynamic content a clear structural model incorporating content components

should be established

WepApp Component-Level Functional Design

 WebApps provide sophisticated processing functions

o perform dynamic processing to create content and navigational capability

o provide business domain appropriate computation or data processing

o provide database query and access

o establish interfaces with external corporate systems

 WebApp functionality is delivered as a series of components developed in parallel

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 29

 During architectural design WebApp content and functionality are combined to create a

functional architecture

 The functional architecture is a representation of the functional domain of the WebApp and

describes how the components interact with each other

Traditional Component-Level Design

 Each block of code has a single entry at the top

 Each block of code has a single exit at the bottom

 Only three control structures are required: sequence, condition (if-then-else), and repetition

(looping)

 Reduces program complexity by enhancing readability, testability, and maintainability

Design Notation

 Graphical

o UML activity diagrams

o Flowcharts – arrows for flow of control, diamonds for decisions, rectangles for processes

 Tabular

o Decision table – subsets of system conditions and actions are associated with each other

to define the rules for processing inputs and events

 Program Design Language (PDL)

o Structured English or pseudocode used to describe processing details

o Fixed syntax with keywords providing for representation of all structured constructs, data

declarations, and module definitions

o Free syntax of natural language for describing processing features

o Data declaration facilities for simple and complex data structures

o Subprogram definition and invocation facilities

Component-Based Development

 CBSE is a process that emphasizes the design and construction of computer-based systems

from a catalog of reusable software components

 CBSE is a time and cost effective

 Requires software engineers to reuse rather than reinvent

 Management can be convinced to incur the additional expense required to create reusable

components by amortizing the cost over multiple projects

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 30

 Libraries can be created to make reusable components easy to locate and easy to incorporate

them in new systems

Possible Questions

Part – B (2 Mark)

1. Define abstraction.

2. Differentiate between refinement and refactoring

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT IV SEMESTER : IV

 BATCH (2018-2021)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 31

3. Write the difference between transform flow and transaction flow

4. What is transform mapping?

5. Define transaction mapping.

Part – C (6 Mark)

1. Explain in detail the process of data design at

a. Architectural level ii) Component level

2. Write in detail the approach used to design class based components

3. Discuss in detail about the Architectural components of software.

4. Write short notes on

a. Transform mapping ii) Transaction mapping

5. Write short notes on the following design concepts

a. Information hiding ii) Refinement iii) Refactoring

6. Describe in detail the procedure to refine an architecture into components.

7. Write short notes on the following design concepts

a. Abstraction ii) Architecture iii) Modularity

8. Write in detail the approach used to design conventional components

9. Explain in detail about design process and design quality

10. Write short notes on

a. Transform flow ii) Transaction flow

S.No Question Option A Option B Option C Option D Answer

1

Interface design

focuses on

__________ areas of

concern.

2 3 4 5 3

2

. Frustration and

___________ are part

of daily life for many

users of computerized

information system

sadness happiness enjoyment anxiety anxiety

3

___________ creates

effective

communication

medium between a

human and a

computer.

user

interface

design

architectura

l design
code design

procedure

design

user interface

design

4

__________ identifies

interface objects and

actions and then

creates a screen layout

that form the basis for

a user interface

prototype.

design coding testing analysis design

5

___________ begins

with the identification

of user, task and

environmental

requirements.

user

interface

design

architectura

l design
code design

procedure

design

user interface

design

6
There are _________

golden rules.
2 3 4 5 3

7

We should define

interaction modes in a

way that does not

force a user into

unnecessary or

undesired actions.

interactio

n modes

interface

constraints

design

principles

design

analysis
interaction modes

18CTU402- Software Enginering

UNIT 4 MCQ

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

(For the candidates admitted in 2018 onwards)

 CLASS:II Bsc CT

8

We should provide

interaction.

rigid flexible encouraging enthusiastic flexible

9

We should design for

direct interaction with

________ that appear

on the screen

code class objects user objects

10

We should hide

technical

___________ from

the casual user

reactions actions internals interactions internals

11

We should streamline

___________ as skill

levels advance and

allow the interaction

to be customized.

internals interaction actions reactions interaction

12

. We should allow

user interaction to be

__________ and

undoable

interrupti

ble
flexible rigid encouraging interruptible

13

We should allow user

interaction to

interruptible and

__________.

undoable flexible rigid encouraging undoable

14

We should define

shortcuts that are

_____________.

encouragi

ng
intuitive default past actions intuitive

15

We should define

__________ that are

intuitive.

shortcuts broad area
interruptible

actions
interactions shortcuts

16

We should disclose

information in a

___________ fashion.

open progressive streamline flexible progressive

17

The visual layout of

the __________

should be based on a

real world metaphor.

interactio

n modes
interface design structure interface

18

The interface should

present and acquire

_____________ in a

consistent fashion.

informati

on
task knowledge idea information

19

The interface should

present and acquire

information in a

___________ fashion.

consistent inconsistent rigid flexible consistent

20

A ____________ of

the entire system

incorporates data,

architectural interface,

and procedural

representations of the

software

data

model

design

model
user model system image design model

21

The software engineer

creates a

________________.

design

model
data model

interface

model
system image design model

22

The end user develops

a mental image that is

often called the

____________.

design

model
user model data model system image user model

23

The implementers of

the system create a

_____________.

design

model

system

image
data model user model system image

24

Users are categorized

into __________

types.

2 3 4 5 3

25

Users with no

syntactic knowledge

of the system and little

semantic knowledge

of the application or

computer usage are

called ___________.

knowledg

eable

intermitte

nt users

knowledgea

ble frequent

users

novices
all of the

above
novices

26

Users with reasonable

semantic knowledge

of the application but

relatively low recall of

syntactic information

necessary to use the

interface are called

___________.

novices

knowledgea

ble,

intermittent

users

knowledgea

ble, frequent

users

all of the

above

knowledgeable,

intermittent users

27

Users with good

semantic and syntactic

knowledge that often

leads to the “power-

user syndrome” are

called _________.

novices

knowledgea

ble,

intermittent

users

knowledgea

ble, frequent

users

all of the

above

knowledgeable,

frequent users

28

Individuals who look

for shortcuts and

abbreviated modes of

interaction are called

___________.

novices

knowledgea

ble,

intermittent

users

knowledgea

ble, frequent

users

Testers
knowledgeable,

frequent users

29

The __________ is

the image of the

system that end-users

carry in their heads.

user’s

model
data model

design

model
system image user’s model

30
Stepwise elaboration

is called __________.

functiona

l

decompo

sition

data

abstraction
modularity

modular

protection

functional

decomposition

31

___________ is the

only way that we can

accurately translate a

customer’s

requirements into a

finished software

product or system.

specificat

ion
design data prototype design

32
Validation focuses on

___________ criteria.
2 3 4 5 2

33

Task analysis can be

applied in ________

ways.

2 3 4 5 3

34

Task analysis for

interface design used

approach.

object

oriented

approach

top down

approach

bottom up

approach

all of the

above

object oriented

approach

35

The overall approach

to task analysis, a

human engineer must

first ________ and

classify tasks.

discuss define describe list define

36

There are

___________ steps in

interface design

activities.

4 5 6 7 7

37

__________ refers to

the deviation from

average time.

system

response

time

variability
system

mean time

all of the

above
variability

38

System response time

has _________

important

characteristics.

3 4 5 2

39

A ___________ is

designed into the

software from the

beginning.

integrated

help

facility

system

response

time

variability
all of the

above

integrated help

facility

40

Component level

design also called

__________.

procedura

l

abstractio

n

procedural

design

stepwise

refinement

decompositio

n
procedural design

41

___________ must be

translated into

operational software

data
architectura

l

interface

design

all of the

above
all of the above

42

A _________

performs component

level design.

user

top level

managemen

t

software

engineer

middle level

management
software engineer

43

The ___________

represents the

software in a way that

allows one to review

the details of the

design for correctness

and consistency with

earlier design

representations.

compone

nt level

design

procedural

design
data design data design

component level

design

44

Design,

representations of

data, architecture, and

interfaces form the

foundation for

_____________.

procedura

l design

component

level design
data design code design

component level

design

45

__________ notation

is used to represent

the design.

graphical tabular text-based
all of the

above
graphical

46

Any program,

regardless of

application area or

technical complexity,

can be designed and

implemented using

only the __________

structured constructs.

2 3 4 5 3

47

A box in a flowchart

is used to indicate a

___________.

processin

g step

logical

condition

flow of

control
start processing step

48

A diamond in a

flowchart is used to

indicate a _________.

processin

g step

logical

condition

flow of

control
start logical condition

49

The arrows in a

flowchart is used to

indicate a

__________.

processin

g step

logical

condition

flow of

control
start flow of control

50
A picture is worth a

__________ words.
100 1000 10000 100000 1000

51

The following

construct is

fundamental to

structured

programming.

sequence condition repetition
all of the

above
all of the above

52

implements

processing steps that

are essential in the

specification of any

algorithm.

sequence condition repetition selection sequence

53

__________ provides

the facility for

selected processing

steps that are essential

in the specification of

any algorithm

sequence condition repetition selection condition

54
_________ allows for

looping.
sequence condition repetition selection repetition

55

Another graphical

design tool, the

________ evolved

from a desire to

develop a procedural

design representation

that would not allow

violation of the

structured constructs.

box

diagram
flowchart

transition

diagram
decision table box diagram

56

PDL is the

abbreviation of

_____________.

Process

Design

Language

Program

Design

Language

Program

Document

Language

Program

Document

Language

Program Design

Language

57

A design language

should have the

characters.

2 3 4 5 4

58

Design notation

should support the

development of

modular software and

provide a means for

interface specification.

This attribute of

design notation is

called ___________.

modularit

y
simplicity

ease of

editing

maintainabilit

y
modularity

59

Design notation

should be relatively

simple to learn,

relatively easy to use,

and generally easy to

read. This attribute of

the design notation is

called __________.

modularit

y
simplicity

ease of

editing

maintainabilit

y
simplicity

60

The procedural design

may require

modification as the

software process

proceeds. The ease

with which a design

representation can be

edited can help

facilitate each

software engineering

task is called

___________.

modularit

y
simplicity

ease of

editing

maintainabilit

y
ease of editing

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 1

UNIT-V

Testing Strategies & Tactics: Software Testing Fundamentals, Strategic Approach to Software

Testing, Test Strategies for Conventional Software, Validation Testing, System testing Black-Box

Testing, White-Box Testing and their type, Basis Path Testing

SOFTWARE TESTING FUNDAMENTALS:

 Testing presents an interesting anomaly for the software engineer. During earlier

software engineering activities, the engineer attempts to build software from an abstract

concept to a tangible product.

 The engineer creates a series of test cases that are intended to "demolish" the software

that has been built.

 In fact, testing is the one step in the software process that could be viewed

(psychologically, at least) as destructive rather than constructive.

 Software engineers are by their nature constructive people.

 Testing requires that the developer discard preconceived notions of the "correctness"

of software just developed and overcome a conflict of interest that occurs when

errors are uncovered.

 Beizer describes this situation effectively when he states: There's a myth that if we

were really good at programming, there would be no bugs to catch. If only we

could really concentrate, if only everyone used structured programming, top down design,

decision tables, if programs were written in SQUISH, if we had the right silver bullets,

then there would be no bugs. So goes the myth. There are bugs, the myth says, because we

are bad at what we do; and if we are bad at it, we should feel guilty about it. Therefore,

testing and test case design is an admission of failure, which instills a goodly dose of guilt.

Testing Objectives

Glen Myers states a number of rules that can serve well as testing objectives:

1. Testing is a process of executing a program with the intent of finding an error.

2. A good test case is one that has a high probability of finding an as-yet undiscovered error.

3. A successful test is one that uncovers an as-yet-undiscovered error.

If testing is conducted successfully (according to the objectives stated previously), it will

uncover errors in the software.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 2

Also testing demonstrates that software functions appear to be working according to

specification, that behavioral and performance requirements appear to have been met.

In addition, data collected as testing is conducted provide a good indication of software

reliability and some indication of software quality as a whole.

But testing cannot show the absence of errors and defects, it can show only that software errors

and defects are present.

Testing Principles

Before applying methods to design effective test cases, a software engineer must understand the

basic principles that guide software testing. Davis [DAV95] suggests a set of testing principles.

All tests should be traceable to customer requirements.

The objective of software testing is to uncover errors. It follows that the most severe defects

(from the customer’s point of view) are those that cause the program to fail to meet its

requirements.

Tests should be planned long before testing begins.

Test planning can begin as soon as the requirements model is complete.

Detailed definition of test cases can begin as soon as the design model has been solidified.

Therefore, all tests can be planned and designed before any code has been generated.

The Pareto principle applies to software testing.

Pareto principle implies that 80 percent of all errors uncovered during testing will likely be

traceable to 20 percent of all program components. The problem, of course, is to isolate these

suspect components and to thoroughly test them.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 3

Testing should begin “in the small” and progress toward testing “in the large.”

The first tests planned and executed generally focus on individual components. As testing

progresses, focus shifts in an attempt to find errors in integrated clusters of components and

ultimately in the entire system.

Exhaustive testing is not possible

The number of path permutations for even a moderately sized program is exceptionally

large. For this reason, it is impossible to execute every combination of paths during

testing. It is possible, however, to adequately cover program logic and to ensure that all

conditions in the component-level design have been exercised.

To be most effective, testing should be conducted by an independent third party.

Testability

 Software testability is simply how easily a computer program can be tested.

 Since testing is so profoundly difficult, it pays to know what can be done to streamline it.

 Sometimes programmers are willing to do things that will help the testing process and a

checklist of possible design points, features, etc., can be useful in negotiating with them.

 “Testability” occurs as a result of good design. Data design, architecture, interfaces,

and component-level detail can either facilitate testing or make it difficult.

The checklist that follows provides a set of characteristics that lead to testable software.

Operability. "The better it works, the more efficiently it can be tested."

• The system has few bugs (bugs add analysis and reporting overhead to the test process).

• No bugs block the execution of tests.

• The product evolves in functional stages (allows simultaneous development and testing).

Observability. "What you see is what you test."

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 4

• Distinct output is generated for each input.

• System states and variables are visible or queriable during execution.

• Past system states and variables are visible or queriable (e.g., transaction logs).

• All factors affecting the output are visible.

• Incorrect output is easily identified.

• Internal errors are automatically detected through self-testing mechanisms.

• Internal errors are automatically reported.

• Source code is accessible.

Controllability. "The better we can control the software, the more the testing can be automated

and optimized."

• All possible outputs can be generated through some combination of input.

• All code is executable through some combination of input.

• Software and hardware states and variables can be controlled directly by the test engineer.

• Input and output formats are consistent and structured.

• Tests can be conveniently specified, automated, and reproduced.

Decomposability. "By controlling the scope of testing, we can more quickly isolate problems

and perform smarter retesting."

• The software system is built from independent modules.

• Software modules can be tested independently.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 5

Simplicity. "The less there is to test, the more quickly we can test it."

• Functional simplicity (e.g., the feature set is the minimum necessary to meet requirements).

• Structural simplicity (e.g., architecture is modularized to limit the propagation of faults).

• Code simplicity (e.g., a coding standard is adopted for ease of inspection and maintenance).

Stability. "The fewer the changes, the fewer the disruptions to testing."

• Changes to the software are infrequent.

• Changes to the software are controlled.

• Changes to the software do not invalidate existing tests.

• The software recovers well from failures.

Understandability. "The more information we have, the smarter we will test."

• The design is well understood.

• Dependencies between internal, external, and shared components are well understood.

• Changes to the design are communicated.

• Technical documentation is instantly accessible.

• Technical documentation is well organized.

• Technical documentation is specific and detailed.

• Technical documentation is accurate.

Kaner, Falk, and Nguyen suggest the following attributes of a “good” test:

1. A good test has a high probability of finding an error.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 6

 To achieve this goal, the tester must understand the software and attempt to develop a

mental picture of how the software might fail.

 Ideally, the classes of failure are probed. For example, one class of potential failure in a

GUI (graphical user interface) is a failure to recognize proper mouse position.

 A set of tests would be designed to exercise the mouse in an attempt to demonstrate an

error in mouse position recognition.

2. A good test is not redundant.

 Testing time and resources are limited. There is no point in conducting a test that has the

same purpose as another test. Every test should have a different purpose.

3. A good test should be “best of breed”.

 In a group of tests that have a similar intent, time and resource limitations may mitigate

toward the execution of only a subset of these tests.

 In such cases, the test that has the highest likelihood of uncovering a whole class of errors

should be used.

4. A good test should be neither too simple nor too complex.

 Although it is sometimes possible to combine a series of tests into one test case, the possible

side effects associated with this approach may mask errors.

 In general, each test should be executed separately.

A STRATEGIC APPROACH TO SOFTWARE TESTING

Testing is a set of activities that can be planned in advance and conducted systematically.

For this reason a template for software testing—a set of steps into which we can place

specific test-case design techniques and testing methods—should be defined for the

software process.

A strategy for software testing must accommodate low-level tests that are necessary to verify

that a small source code segment has been correctly implemented as well as high-level tests

that validate major system functions against customer requirements. A strategy should

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 7

provide guidance for the practitioner and a set of milestones for the manager. Because the

steps of the test strategy

occur at a time when deadline pressure begins to rise, progress must be measurable and

problems should surface as early as possible.

Characteristics:

 To perform effective testing, you should conduct effective technical reviews. By doing

this, many errors will be eliminated before testing commences.

 Testing begins at the component level and works “outward” toward the integration of the

entire computer-based system.

 Different testing techniques are appropriate for different software engineering approaches

and at different points in time.

 Testing is conducted by the developer of the software and (for large projects) an independent

test group.

 Testing and debugging are different activities, but debugging must be accommodated in

any testing strategy.

TEST STRATEGIES FOR CONVENTIONAL SOFTWARE

VALIDATION TESTING

Validation testing begins at the culmination of integration testing, when individual

components have been exercised, the software is completely assembled as a package, and

interfacing errors have been uncovered and corrected. At the validation or system level, the

distinction between different software categories disappears. Testing focuses on user-

visible actions and user-recognizable output from the system.

Validation can be defined in many ways, but a simple (albeit harsh) definition is that

validation succeeds when software functions in a manner that can be reasonably expected by

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 8

the customer. At this point a battle-hardened software developer might protest: “Who or what

is the arbiter of reasonable expectations?” If a Software Requirements Specification has been

developed, it describes all user-visible attributes of the software and contains a Validation

Criteria section that forms the basis for a validation-testing approach.

i) Validation-Test Criteria

Software validation is achieved through a series of tests that demonstrate conformity with

requirements. A test plan outlines the classes of tests to be conducted, and a test procedure

defines specific test cases that are designed to ensure that all functional requirements are

satisfied, all behavioral characteristics are achieved, all content is accurate and properly

presented, all performance requirements are attained, documentation is correct, and usability

and other requirements are met (e.g., transportability, compatibility, error recovery,

maintainability). If a deviation from specification is uncovered, a deficiency list is created. A

method for resolving deficiencies (acceptable to stakeholders) must be established.

ii) Configuration Review

An important element of the validation process is a configuration review. The intent of the

review is to ensure that all elements of the software configuration have been properly developed,

are cataloged, and have the necessary detail to bolster the support activities. The configuration

review, sometimes called an audit.

ii) Alpha and Beta Testing

It is virtually impossible for a software developer to foresee how the customer will really use a

program. Instructions for use may be misinterpreted; strange combinations of data may be used;

output that seemed clear to the tester may be unintelligible to a user in the field. When custom

software is built for one customer, a series of acceptance tests are conducted to enable the

customer to validate all requirements. Conducted by the end user rather than software engineers,

an acceptance test can range from an informal “test drive” to a planned and systematically

executed series of tests. In fact, acceptance testing can be conducted over a period of weeks or

months, thereby uncovering cumulative errors that might degrade the system over time. If

software is developed as a product to be used by many customers, it is impractical to perform

formal acceptance tests with each one. Most software Like all other testing steps, validation tries

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 9

to uncover errors, but the focus is at the requirements level—on things that will be immediately

apparent to the end user. product builders use a process called alpha and beta testing to uncover

errors that only the end user seems able to find.

The alpha test is conducted at the developer’s site by a representative group of end users. The

software is used in a natural setting with the developer “looking over the shoulder” of the users

and recording errors and usage problems. Alpha tests are conducted in a controlled environment.

The beta test is conducted at one or more end-user sites. Unlike alpha testing, the developer

generally is not present. Therefore, the beta test is a “live” application of the software in an

environment that cannot be controlled by the developer. The customer records all problems (real

or imagined) that are encountered during beta testing and reports these to the developer at regular

intervals. As a result of problems reported during beta tests, you make modifications and then

prepare for release of the software product to the entire customer base. A variation on beta

testing, called customer acceptance testing, is sometimes performed when custom software is

delivered to a customer under contract.

The customer performs a series of specific tests in an attempt to uncover errors before accepting

the software from the developer. In some cases (e.g., a major corporate or governmental system)

acceptance testing can be very formal and encompass many days or even weeks of testing.

SYSTEM TESTING

At the beginning of this book, we stressed the fact that software is only one element of a larger

computer-based system. Ultimately, software is incorporated with other system elements (e.g.,

hardware, people, information), and a series of system integration and validation tests are

conducted. These tests fall outside the scope of the software process and are not conducted solely

by software engineers. However, steps taken during software design and testing can greatly

improve the probability of successful software integration in the larger system.

A classic system-testing problem is “finger pointing.” This occurs when an error is uncovered,

and the developers of different system elements blame each other for the problem. Rather than

indulging in such nonsense, you should anticipate potential interfacing problems and (1) design

error-handling paths that test all information coming from other elements of the system, (2)

conduct a series of tests that simulate bad data or other potential errors at the software interface,

(3) record the results of tests to use as “evidence” if finger pointing does occur, and (4)

participate

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 10

in planning and design of system tests to ensure that software is adequately tested.

i) Recovery Testing

Many computer-based systems must recover from faults and resume processing with little or no

downtime. In some cases, a system must be fault tolerant; that is, processing faults must not

cause overall system function to cease. In other cases, a system failure must be corrected within a

specified period of time or severe economic damage will occur. Recovery testing is a system test

that forces the software to fail in a variety of ways and verifies that recovery is properly

performed. If recovery is automatic (performed by the system itself), reinitialization, check

pointing mechanisms, data recovery, and restart are evaluated for correctness. If recovery

requires human intervention, the mean-time-to-repair (MTTR) is evaluated to determine whether

it is within acceptable limits.

ii) Security Testing

Any computer-based system that manages sensitive information or causes actions that can

improperly harm (or benefit) individuals is a target for improper or illegal penetration.

Penetration spans a broad range of activities: hackers who attempt to penetrate systems for sport,

disgruntled employees who attempt to penetrate for revenge, dishonest individuals who attempt

to penetrate for illicit personal gain. Security testing attempts to verify that protection

mechanisms built into a system will, in fact, protect it from improper penetration. “The system’s

security must, of course, be tested for invulnerability from frontal attack—but must also be

tested for invulnerability from flank or rear attack.” Given enough time and resources, good

security testing will ultimately penetrate a system. The role of the system designer is to make

penetration cost more.

WHITE-BOX TESTING

White-box testing, called glass-box testing is a test case design method that uses the

control structure of the procedural design to derive test cases.

Using white-box testing methods, the software engineer can derive test cases that

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 11

1. guarantee that all independent paths within a module have been exercised at least

once, 2. exercise all logical decisions on their true and false sides,

3. execute all loops at their boundaries and within their operational bounds,

and 4. exercise internal data structures to ensure their validity.

"Why spend time and energy worrying about (and testing) logical minutiae when we might

better expend effort ensuring that program requirements have been met?" or “Why don't we

spend all of our energy on black-box tests?”

The answer is :

Logic errors and incorrect assumptions are inversely proportional to the probability
that a program path will be executed. Errors tend to creep into our work when we design

and implement function, conditions, or controls that are out of the mainstream. Everyday

processing tends to be well understood (and well scrutinized), while "special case"

processing tends to fall into the cracks.

We often believe that a logical path is not likely to be executed when, in fact, it may be
executed on a regular basis. The logical flow of a program is sometimes counterintuitive,

meaning that our unconscious assumptions about flow of control and data may lead us to

make design errors that are uncovered only once path testing commences.

Typographical errors are random. When a program is translated into programming

language source code, it is likely that some typing errors will occur. Many will be

uncovered by syntax and type checking mechanisms, but others may go undetected until

testing begins. It is as likely that a typo will exist on an obscure logical path as on a

mainstream path.

Each of these reasons provides an argument for conducting white-box tests. Black-box testing,

no matter how thorough, may miss the kinds of errors noted here. White-box testing is far more

likely to uncover them.

BASIS PATH TESTING

Basis path testing is a white-box testing technique first proposed by Tom McCabe in 1976.

The basis path method enables the test case designer to derive a logical complexity measure of a

procedural design and use this measure as a guide for defining a basis set of execution paths.

Test cases derived to exercise the basis set are guaranteed to execute every statement in the

program at least one time during testing.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 12

Flow Graph Notation

The flow graph depicts logical control flow using the notation illustrated in Fig 5.1.

Flow graph notation

Each structured construct has a corresponding flow graph symbol. To illustrate the use of a

flow graph, we consider the procedural design representation in Fig 5.2A. Here, a flowchart

is used to depict program control structure.

Flowchart, (A) and flow graph (B)

 Fig maps the flowchart into a corresponding flow graph (assuming that no compound

conditions are contained in the decision diamonds of the flowchart).

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 13

 Referring to Fig, each circle, called a flow graph node, represents one or more

procedural statements.

 A sequence of process boxes and a decision diamond can map into a single node.

 The arrows on the flow graph, called edges or links, represent flow of control and are

analogous to flowchart arrows.

 An edge must terminate at a node, even if the node does not represent any procedural

statements (e.g., see the symbol for the if-then-else construct).

 Areas bounded by edges and nodes are called regions. When counting regions, we include

the area outside the graph as a region.4

 When compound conditions are encountered in a procedural design, the generation of a

flow graph becomes slightly more complicated.

 A compound condition occurs when one or more Boolean operators (logical OR, AND,

NAND, NOR) is present in a conditional statement.

 Referring to Fig 5.3, the PDL segment translates into the flow graph shown.

 Note: A separate node is created for each of the conditions a and b in the statement IF a

OR b. Each node that contains a condition is called a predicate node and is characterized

by two or more edges emanating from it.

Fig 5.3 Compound logic

Cyclomatic Complexity

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 14

Cyclomatic complexity is software metric that provides a quantitative measure of

the logical complexity of a program.

Cyclomatic complexity has a foundation in graph theory and provides us with extremely

useful software metric.

Cyclomatic complexity is defined by the number of independent paths in the basis set of a

program and provides us with an upper bound for the number of tests that must be

conducted to ensure that all statements have been executed at least once.

An independent path is any path through the program that introduces at least one new set

of processing statements or a new condition. When stated in terms of a flow graph, an

independent path must move along at least one edge that has not been traversed before the

path is defined.

For example, a set of independent paths for the flow graph illustrated in Fig 5.2B is

path 1: 1-11

path 2: 1-2-3-4-5-10-1-11

path 3: 1-2-3-6-8-9-10-

1-11 path 4: 1-2-3-6-7-

9-10-1-11

Note: Each new path introduces a new edge.

The path 1-2-3-4-5-10-1-2-3-6-8-9-10-1-11 is not considered to be an independent path

because it is simply a combination of already specified paths and does not traverse any new

edges.

Paths 1, 2, 3, and 4 constitute a basis set for the flow graph in Fig 5.2B. That is, if tests can

be designed to force execution of these paths (a basis set), every statement in the program

will have been guaranteed to be executed at least one time and every condition will have

been executed on its true and false sides.

Note: The basis set is not unique. In fact, a number of different basis sets can be derived

for a given procedural design.

How do we know how many paths to look for? The computation of cyclomatic

complexity provides the answer.

Complexity is computed in one of three ways:

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 15

1. The number of regions of the flow graph corresponds to the cyclomatic complexity.

2. Cyclomatic complexity, V(G), for a flow graph, G, is defined as V(G) = E - N + 2 where

E is the number of flow graph edges, N is the number of flow graph nodes.

3. Cyclomatic complexity, V(G), for a flow graph, G, is also defined as V(G) = P +1 where P is

the number of predicate nodes contained in the flow graph G.

The Cyclomatic complexity of the flow graph in Fig 5.2B, can be computed using each of

the algorithms just noted:

1. The flow graph has four regions.

2. V(G) = 11 edges - 9 nodes + 2 = 4.

3. V(G) = 3 predicate nodes + 1 = 4.

Therefore, the cyclomatic complexity of the flow graph in Figure 17.2B is 4.

Important: the value for V(G) provides us with an upper bound for the number of

independent paths that form the basis set and, by implication, an upper bound on the number

of tests that must be designed and executed to guarantee coverage of all program statements.

CONTROL STRUCTURE TESTING

The basis path testing technique is one of a number of techniques for control structure testing.

Other variations on control structure testing are discussed. These broaden testing coverage

and improve quality of white-box testing.

Condition Testing

Condition testing is a test case design method that exercises the logical conditions

contained in a program module.

A simple condition is a Boolean variable or a relational expression, possibly preceded with

one NOT (¬) operator.

A relational expression takes the form E1 <relational-operator> E2 where E1 and E2 are

arithmetic expressions and <relational-operator> is one of the following: <, ≤, =, ≠

(nonequality), >, or ≥.

A compound condition is composed of two or more simple conditions, Boolean operators,

and parentheses. We assume that Boolean operators allowed in a compound condition include

OR (|), AND (&) and NOT (¬).

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 16

A condition without relational expressions is referred to as a Boolean expression. Therefore,

the possible types of elements in a condition include a Boolean operator, a Boolean variable,

a pair of Boolean parentheses (surrounding a simple or compound condition), a relational

operator, or an arithmetic expression.

If a condition is incorrect, then at least one component of the condition is incorrect.

Therefore, types of errors in a condition include the following:

o Boolean operator error (incorrect/missing/extra Boolean

operators). o Boolean variable error.

o Boolean parenthesis

error. o Relational
operator error.

o Arithmetic expression error.

The condition testing method focuses on testing each condition in the program.

Condition testing strategies have two advantages.

1. Measurement of test coverage of a condition is simple.

2. Test coverage of conditions in a program provides guidance for the generation of additional

tests for the program.

The purpose of condition testing is to detect not only errors in the conditions of a program

but also other errors in the program.

A number of condition testing strategies have been proposed.

Branch testing is probably the simplest condition testing strategy. For a compound condition C,

the true and false branches of C and every simple condition in C need to be executed at least

once.

Domain testing requires three or four tests to be derived for a relational expression. For a

relational expression of the form E1 <relational-operator> E2 three tests are required to make

the value of E1 greater than, equal to, or less than that of E2. If <relational-operator> is incorrect

and E1 and E2 are correct, then these three tests guarantee the detection of the relational operator

error. To detect errors in E1 and E2, a test that makes the value of E1 greater or less than that of

E2 should make the difference between these two values as small as possible.

Data Flow Testing

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 17

The data flow testing method selects test paths of a program according to the locations of

definitions and uses of variables in the program.

To illustrate the data flow testing approach, assume that each statement in a program is assigned

a unique statement number and that each function does not modify its parameters or global

variables.

For a statement with S as its statement number,

DEF(S) = {X | statement S contains a definition of X}

USE(S) = {X | statement S contains a use of X}

If statement S is an if or loop statement, its DEF set is empty and its USE set is based on the

condition of statement S. The definition of variable X at statement S is said to be live at

statement S' if there exists a path from statement S to statement S' that contains no other

definition of X.

A definition-use (DU) chain of variable X is of the form [X, S, S'], where S and S' are statement

numbers, X is in DEF(S) and USE(S'), and the definition of X in statement S is live at statement

S'.

Data flow testing strategies are useful for selecting test paths of a program containing nested if

and loop statements. To illustrate this, consider the application of DU testing to select test paths

for the PDL that follows:

proc x

B1;

do while C1

if C2

then

if C4

then B4;

else B5;

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 18

endif;

else

if C3

then B2;

else B3;

endif;

endif;

enddo;

B6;

end proc;

To apply the DU testing strategy to select test paths of the control flow diagram, we need to

know the definitions and uses of variables in each condition or block in the PDL.

Assume that variable X is defined in the last statement of blocks B1, B2, B3, B4, and B5 and is

used in the first statement of blocks B2, B3, B4, B5, and B6. The DU testing strategy requires an

execution of the shortest path from each of Bi, 0 < i ≤ 5, to each of Bj, 1 < j ≤ 6. Although there

are 25 DU chains of variable X, we need only five paths to cover these DU chains. The reason is

that five paths are needed to cover the DU chain of X from Bi, 0 < i ≤ 5, to B6 and other DU

chains can be covered by making these five paths contain iterations of the loop.

Since the statements in a program are related to each other according to the definitions and uses

of variables, the data flow testing approach is effective for error detection.

However, the problems of measuring test coverage and selecting test paths for data flow testing

are more difficult than the corresponding problems for condition testing.

Loop Testing

Loops are the cornerstone for the vast majority of all algorithms implemented in software.

Loop testing is a white-box testing technique that focuses exclusively on the validity of loop

constructs.

Four different classes of loops can be defined: simple loops, concatenated loops, nested loops,

and unstructured loops (Fig).

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 19

imple loops.

The following set of tests can be applied to simple loops, where n is the maximum number of

allowable passes through the loop.

1. Skip the loop entirely.

2. Only one pass through the loop.

3. Two passes through the loop.

4. m passes through the loop where m < n.

5. n -1, n, n + 1 passes through the loop.

Nested loops.

If we were to extend the test approach for simple loops to nested loops, the number of possible

tests would grow geometrically as the level of nesting increases.

Beizer suggests an approach that will help to reduce the number of tests:

1. Start at the innermost loop. Set all other loops to minimum values.

2. Conduct simple loop tests for the innermost loop while holding the outer loops at their

minimum iteration parameter (e.g., loop counter) values. Add other tests for out-of-range or

excluded values.

3. Work outward, conducting tests for the next loop, but keeping all other outer loops at

minimum values and other nested loops to "typical" values.

4. Continue until all loops have been tested.

Concatenated loops.

Concatenated loops can be tested using the approach defined for simple loops, if each of the

loops is independent of the other. However, if two loops are concatenated and the loop counter

for loop 1 is used as the initial value for loop 2, then the loops are not independent. When the

loops are not independent, the approach applied to nested loops is recommended.

Unstructured loops.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 20

Whenever possible, this class of loops should be redesigned to reflect the use of the structured

programming constructs.

Fig Classes of loops

BLACK-BOX TESTING

Black-box testing, also called behavioral testing, focuses on the functional requirements of

the software.

That is, black-box testing enables the software engineer to derive sets of input conditions

that will fully exercise all functional requirements for a program. Black-box testing is not

an alternative to white-box techniques.

Rather, it is a complementary approach that is likely to uncover a different class of errors

than white-box methods.

Black-box testing attempts to find errors in the following categories:

1. Incorrect or missing

functions 2. Interface errors

3. Errors in data structures or external data base

access, 4. Behavior or performance errors, and

5. Initialization and termination errors.

Unlike white-box testing, which is performed early in the testing process, black-box testing

tends to be applied during later stages of testing.

Black-box testing purposely disregards control structure, attention is focused on the

information domain.

Tests are designed to answer the following questions:

• How is functional validity tested?

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 21

• How is system behavior and performance tested?

• What classes of input will make good test cases?

• Is the system particularly sensitive to certain input values?

• How are the boundaries of a data class isolated?

• What data rates and data volume can the system tolerate?

• What effect will specific combinations of data have on system operation?

Black-box techniques, we derive a set of test cases that satisfy the following criteria:

1. test cases that reduce, by a count that is greater than one, the number of additional test cases

that must be designed to achieve reasonable testing and

2. test cases that tell us something about the presence or absence of classes of errors, rather

than an error associated only with the specific test at hand.

Graph-Based Testing Methods

The first step in black-box testing is to understand the objects that are modeled in software and

the relationships that connect these objects.

Next step is to define a series of tests that verify “all objects have the expected relationship to

one another”.

To accomplish these steps, the software engineer begins by creating a graph—a collection of

nodes that represent objects; links that represent the relationships between objects; node weights

that describe the properties of a node (e.g., a specific data value or state behavior); and link

weights that describe some characteristic of a link.

Fig (A) Graph notation (B) Simple example

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 22

The symbolic representation of a graph is shown in Fig A.

Nodes are represented as circles connected by links that take a number of different forms. A

directed link (represented by an arrow) indicates that a relationship moves in only one direction.

A bidirectional link, called a symmetric link, implies that the relationship applies in both

directions. Parallel links are used when a number of different relationships are established

between graph nodes.

Eg. consider a portion of a graph for a word-processing application (Fig B) where

Object #1 = new file menu select

Object #2 = document window

Object #3 = document text

Referring to the figure, a menu select on new file generates a document window.

The node weight of document window provides a list of the window attributes that are to be

expected when the window is generated.

The link weight indicates that the window must be generated in less than 1.0 second.

An undirected link establishes a symmetric relationship between the new file menu select and

document text, and parallel links indicate relationships between document window and document

text.

In reality, a far more detailed graph would have to be generated as a precursor to test case design.

The software engineer then derives test cases by traversing the graph and covering each of the

relationships shown. These test cases are designed in an attempt to find errors in any of the

relationships.

Beizer describes a number of behavioral testing methods that can make use of graphs:

Transaction flow modeling. The nodes represent steps in some transaction (e.g., the steps

required to make an airline reservation using an on-line service), and the links represent the

logical connection between steps (e.g., flight. information. input is followed by

validation/availability. processing).

Finite state modeling. The nodes represent different user observable states of the software (e.g.,

each of the “screens” that appear as an order entry clerk takes a phone order), and the links

represent the transitions that occur to move from state to state (e.g., order-information is verified

during inventory-availability look-up and is followed by customer-billing-information input).

The state transition diagram can be used to assist in creating graphs of this type.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 23

Data flow modeling. The nodes are data objects and the links are the transformations that occur

to translate one data object into another. For example, the node FICA.tax.withheld (FTW) is

computed from gross.wages (GW) using the relationship, FTW = 0.62 - GW.

Timing modeling. The nodes are program objects and the links are the sequential connections

between those objects. Link weights are used to specify the required execution times as the

program executes.

Graph-based testing begins with the definition of all nodes and node weights. That is, objects and

attributes are identified. The data model can be used as a starting point, but it is important to note

that many nodes may be program objects (not explicitly represented in the data model). To

provide an indication of the start and stop points for the graph, it is useful to define entry and exit

nodes.

Once nodes have been identified, links and link weights should be established.

In general, links should be named, although links that represent control flow between program

objects need not be named.

Each relationship is studied separately so that test cases can be derived.

The transitivity of sequential relationships is studied to determine how the impact of

relationships propagates across objects defined in a graph. Transitivity can be illustrated by

considering three objects, X, Y, and Z. Consider the following relationships:

X is required to compute Y

Y is required to compute Z

Therefore, a transitive relationship has been established between X and Z:

X is required to compute Z

Based on this transitive relationship, tests to find errors in the calculation of Z must consider a

variety of values for both X and Y.

The symmetry of a relationship (graph link) is also an important guide to the design of test cases.

As test case design begins, the first objective is to achieve node coverage. By this we mean that

tests should be designed to demonstrate that no nodes have been inadvertently omitted and that

node weights (object attributes) are correct.

Next, link coverage is addressed. Each relationship is tested based on its properties. For example,

a symmetric relationship is tested to demonstrate that it is, in fact, bidirectional. A transitive

relationship is tested to demonstrate that transitivity is present.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 24

A reflexive relationship is tested to ensure that a null loop is present. When link weights have

been specified, tests are devised to demonstrate that these weights are valid. Finally, loop testing

is invoked

Equivalence Partitioning

Equivalence partitioning is a black-box testing method that divides the input domain of a

program into classes of data from which test cases can be derived.

An ideal test case single-handedly uncovers a class of errors (e.g., incorrect processing of all

character data) that might otherwise require many cases to be executed before the general error is

observed.

Equivalence partitioning strives to define a test case that uncovers classes of errors, thereby

reducing the total number of test cases that must be developed.

Test case design for equivalence partitioning is based on an evaluation of equivalence classes for

an input condition.

An equivalence class represents a set of valid or invalid states for input conditions. Typically, an

input condition is either a specific numeric value, a range of values, a set of related values, or a

Boolean condition.

Equivalence classes may be defined according to the following guidelines:

1. If an input condition specifies a range, one valid and two invalid equivalence classes are

defined.

2. If an input condition requires a specific value, one valid and two invalid equivalence classes

are defined.

3. If an input condition specifies a member of a set, one valid and one invalid equivalence class

are defined.

4. If an input condition is Boolean, one valid and one invalid class are defined.

Example, consider data maintained as part of an automated banking application.

The user can access the bank using a personal computer, provide a six-digit password, and

follow with a series of typed commands that trigger various banking functions. During the log-on

sequence, the software supplied for the banking application accepts data in the form

area code—blank or three-digit number

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 25

prefix—three-digit number not beginning with 0 or 1

suffix—four-digit number

password—six digit alphanumeric string

commands—check, deposit, bill pay, and the like

The input conditions associated with each data element for the banking application can be

specified as

area code: Input condition, Boolean—the area code may or may not be present.

Input condition, range—values defined between 200 and 999, with specific exceptions.

prefix: Input condition, range—specified value >200

Input condition, value—four-digit length

password: Input condition, Boolean—a password may or may not be present.

Input condition, value—six-character string.

command: Input condition, set—containing commands noted previously.

Applying the guidelines for the derivation of equivalence classes, test cases for each

input domain data item can be developed and executed. Test cases are selected so that

the largest number of attributes of an equivalence class are exercised at once.

Boundary Value Analysis

Boundary value analysis leads to a selection of test cases that exercise bounding values.

Boundary value analysis is a test case design technique that complements

equivalence partitioning.

Rather than selecting any element of an equivalence class, BVA leads to the selection of

test cases at the "edges" of the class. Rather than focusing solely on input conditions, BVA

derives test cases from the output domain as well.

Guidelines for BVA are similar in many respects to those provided for equivalence partitioning:

1. If an input condition specifies a range bounded by values a and b, test cases should be

designed with values a and b and just above and just below a and b.

2. If an input condition specifies a number of values, test cases should be developed that

exercise the minimum and maximum numbers.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 26

3. Apply guidelines 1 and 2 to output conditions.

4. If internal program data structures have prescribed boundaries (e.g., an array has a defined

limit of 100 entries), be certain to design a test case to exercise the data structure at its

boundary.

By applying these guidelines, boundary testing will be more complete, thereby having a

higher likelihood for error detection.

Comparison Testing

There are some situations (e.g., aircraft avionics, automobile braking systems) in which

the reliability of software is absolutely critical.

In such applications redundant hardware and software are often used to minimize the

possibility of error.

When redundant software is developed, separate software engineering teams develop

independent versions of an application using the same specification.

In such situations, each version can be tested with the same test data to ensure that all provide

identical output. Then all versions are executed in parallel with real-time comparison of results to

ensure consistency.

Researchers have suggested that independent versions of software be developed for critical

applications, even when only a single version will be used in the delivered computer-based

system.

These independent versions form the basis of a black-box testing technique called comparison

testing or back-to-back testing.

When multiple implementations of the same specification have been produced, test cases

designed using other black-box techniques (e.g., equivalence partitioning) are provided as input

to each version of the software.

If the output from each version is the same, it is assumed that all implementations are correct. If

the output is different, each of the applications is investigated to determine if a defect in one or

more versions is responsible for the difference. In most cases, the comparison of outputs can be

performed by an automated tool.

Comparison testing is not foolproof. If the specification from which all versions have been

developed is in error, all versions will likely reflect the error. In addition, if each of the

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 27

independent versions produces identical but incorrect results, condition testing will fail to detect

the error.

A geometric view of test cases

Orthogonal Array Testing

There are many applications in which the input domain is relatively limited. That is, the number

of input parameters is small and the values that each of the parameters may take are clearly

bounded. When these numbers are very small, it is possible to consider every input permutation

and exhaustively test processing of the input domain.

However, as the number of input values grows and the number of discrete values for each data

item increases, exhaustive testing become impractical or impossible.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 28

Orthogonal array testing can be applied to problems in which the input domain is relatively small

but too large to accommodate exhaustive testing.

The orthogonal array testing method is particularly useful in finding errors associated with

region faults—an error category associated with faulty logic within a software component.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

SUBJECT NAME : SOFTWARE ENGINEERING CLASS : II B.Sc. (CT)

SUBJECT CODE : 18CTU402 UNIT V SEMESTER : IV

 BATCH (2017-2020)

Prepared by Dr.K.Devasenapathy, Department of CS,CA& IT, KAHE. 29

PART A(Online)

PART B (2 Marks)

1. Define abstraction.

2. What do you mean by an error?

3. Differentiate between refinement and refactoring

4. Compare black box and white box testing

5. Write the difference between transform flow and transaction flow

6. List the different types of loops in testing

7. What is transform mapping?

8. What is validation testing?

9. Define transaction mapping.

10. What is the use of system testing?

PART C (6 Marks)

1. Explain Graph based testing methods in Black Box testing.

2. Demonstrate Flow graph notation and Independent program path in Basis path testing.

3. Demonstrate in detail about Validation testing

4. Explain in detail about Equivalence Partitioning

5. Discuss about Boundary value analysis.

6. Write in detail about Software Testing Fundamentals.

7. Illustrate in detail about System testing.

 8. Illustrate the use of dataflow testing in software engineering process.

 9. Discuss in detail about orthogonal array testing.

 10. Illustrate loop testing and its types.

S.No Question Option A Option B Option C Option D Answer

1

__________ is a

critical element of

software quality

assurance and

represents the

ultimate review of

specification,

design, and code

generation.

software

specificatio

n

software

generation

software

coding

software

testing
software testing

2

Software is tested

from

different

perspectives.

2 3 4 5 2

3

Software

engineers are by

their nature

people.

pessimistic optimistic
constructiv

e
destructive constructive

4

__________ is a

process of

executing a

program with the

intent of finding

an error.

coding testing debugging designing testing

5

All tests should

be _________ to

customer

requirements.

traceable designed tested coded traceable

6

Tests should be

planned long

before

begins.

testing coding
specificatio

n

requirement

s
testing

7

Testing should

begin in the

_________ and

progress toward

testing in the

large.

design beginning small big small

18CTU402- Software Enginering

UNIT 5 MCQ

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

(For the candidates admitted in 2016 onwards)

 CLASS:II Bsc CT

8

The less there is

to test, the more

_________ we

can test it.

quickly shortly
automatical

ly
hardly quickly

9

________ is a

process of

executing a

program with the

intend of finding

an error.

testing coding planning designing testing

10

A good

_________ is one

that has a high

probability of

finding an as-yet-

undiscovered

error

planning test case objective goal test case

11

All _________

should be

traceable to

customer-

requirements.

analysis designs tests plans tests

12

__________ is

simple how easily

a computer

program can be

tested.

software

operability

software

simplicity

software

decomposa

bility

software

testability
software testability

13

The better it

works, the more

efficiently it can

be testing. This

characteristic is

called

___________.

operability observability
controllabil

ity

decomposa

bility
operability

14

There are

characteristics in

testability

5 6 7 8 7

15

What you see is

what you test.

This characteristic

is called

__________.

controllabili

ty
observability

decomposa

bility
stability observability

16

The better we can

control the

software, the

more the testing

can be automated

and optimized.

This characteristic

is called

__________.

operability stability
understand

ability

controllabili

ty
controllability

17

By controlling the

scope of testing,

we can more

quickly isolate

problems and

perform smarter

retesting. This

characteristic is

called _________.

decomposa

bility
simplicity stability

understanda

bility
decomposability

18

. The less there is

to test, the more

quickly we can

test it. This

characteristic is

called _________.

controllabili

ty
simplicity operability

observabilit

y
simplicity

19

The fewer the

changes, the

fewer the

disruptions to

testing. This

characteristic is

called

__________.

controllabili

ty

decomposab

ility
stability

understanda

bility
stability

20

. The more

information we

have, the smarter

we will test. This

characteristic is

called _________.

controllabili

ty

decomposab

ility
stability

understanda

bility
understandability

21

A good test has a

high

___________ of

finding an error.

probability simplicity
understand

ability
stability probability

22
A good test is not

_________.
stable redundant simple complex redundant

23

White-box testing

sometimes called

_________.

control

structure

testing

condition

testing

glass-box

testing

black-box

testing
glass-box testing

24

Logic errors and

incorrect

assumptions are

inversely

proportional to

the ___________

that a program

path will be

executed

simplicity probability
understand

ability
stability probability

25

Typographical

errors are

_________.

redundant simple random complex random

26

One often

believes that a

_________ path is

not likely to be

executed when, in

fact, it may be

executed on a

regular basis.

control structural physical logical logical

27
Basic path testing

is a __________.

black-box

testing

white-box

testing

control

structure

testing

control path

testing
white-box testing

28

__________ is a

software metric

that provides a

quantitative

measure of the

logical

complexity of a

program.

cyclomatic

complexity
flow graph

deriving

test cases

graph

matrices

cyclomatic

complexity

29

An __________

is any path

through the

program that

introduces atleast

one new set of

processing

statements or a

new condition.

dependent

path

independent

path
basic path control path independent path

30

There are

_________ steps

to be applied to

derive the basis

set.

2 3 4 5 4

31

There are

_________ test

cases that satisfy

the basis set.

3 4 5 6 6

32

. A ________ is a

square matrix

whose size is

equal to the

number of nodes

on the flow graph.

graph

matrix
matrix flow graph

cyclomatic

complexity
graph matrix

33

To develop a

software tool that

assists in basis

path testing, a

data structure

called a

___________ is

useful.

matrix flow graph
graph

matrix

cyclomatic

omplexity
graph matrix

34

requires three or

four tests to be

derived for a

relational

expression.

branch

testing

data flow

testing

data control

testing

domain

testing
domain testing

35

__________ is

probably the

simplest condition

testing strategy.

branch

testing

data flow

testing

condition

testing

domain

testing
branch testing

36

The __________

method selects

test paths of a

program

according to the

locations of

definitions and

uses of variables

in the program

data flow

testing

condition

testing
loop testing

black box

testing
data flow testing

37

__________ is a

white box testing

technique that

focuses

exclusively on the

validity of loop

constructions

data flow

testing
loop testing

condition

testing

control path

testing
loop testing

38

___________ is a

test case design

method that

exercises the

logical conditions

contained in a

program module

black box

testing
loop testing

data flow

testing

condition

testing
condition testing

39

is called

behavioral testing.

black box

testing
loop testing

data flow

testing

condition

testing
black box testing

40

The first step in

__________ is to

understand the

objects that are

modeled in

software and the

relationships that

connect these

objects

black box

testing
loop testing

data flow

testing

condition

testing
black box testing

41

Equivalence

partitioning is a

method that

divides the input

domain of a

program into

classes of data.

black box

testing
loop testing

data flow

testing

condition

testing
black box testing

42

Comparison

testing is also

called

____________.

black box

testing
loop testing

behavioral

testing

back-to-

back testing
back-to-back testing

43

testing can be

applied to

problems in

which the input

domain is

relatively small

but too large to

accommodate

exhaustive

testing.

orthogonal

array
loop behavioral

back-to-

back
orthogonal array

44

focuses

verification effort

on the smallest

unit of software

design – the

software

component or

module.

module

testing
unit testing

structure

testing

system

testing
unit testing

45

A driver is

nothing more than

a __________.

subprogram
main

program
stub subroutine main program

46

serve to replace

modules that are

subordinate called

by the component

to be tested.

subprogram

s

main

programs
stubs subroutines stubs

47

Drivers and

represent

overhead.

subprogram

s

main

programs
stubs subroutines stubs

48

___________ of

execution paths is

an essential task

during the unit

test.

unit testing
module

testing

selective

testing

white box

testing
selective testing

49

Good _________

dictates that error

conditions be

anticipated and

error-handling

paths set up to

reroute or cleanly

terminate

processing when

an error does

occur

design testing code module design

50

_________ is

completely

assembled as a

package,

interfacing errors

have been

uncovered and

corrected.

software program code
all of the

above
software

51

The Process of

Configuration

identification

involves the

specification of

components in the

software project

are known as

________.

Configurati

on Items

Change

Control

Configurati

on Control

 Project

control

Configuration Items

52

Implementing a

quality system is

spent on writing

documents which

specify how

certain tasks are

to be carried out

is known as

_______.

 Procedures Policies Function Definitions Procedures

53

 ________ task

involves the

programmer to

receive a

specification of a

module.

 Integration

Programmi

ng

 System

Programmin

g

 Unit

Testing

Configurati

on Control

 Unit Testing

54

Quality Assurance

follows _______

methodology

 Defect

analysis

 Defect

Prevention

 Error

detection

 Error

correction

 Defect Prevention

55

Quality Assurance

is based on

_________ work

 Product

Oriented

 Function

Oriented

 Process

Oriented

 Design

Oriented

 Process Oriented

56

SEI means Software

Engineering

Institute

Software

Engineering

International

Software

Engineerin

g

Independen

t

System

Engineering

Institute

Software

Engineering

Institute

57

ISO means Internal

Organizatio

ns for

standards

Intermediate

Organization

s for

standards

Internation

al

Organizatio

ns for

standards

Internal

optimizatio

n standards

International

Organizations for

standards

58

PCMM means Personal

Capability

Maturity

Model

People

Capability

Maturity

Model

Professiona

l Capability

Maturity

Model

Project

Capability

Maturity

Model

People Capability

Maturity Model

59

Quality Control is

based on ______

methodology

 Defect

Prevention

 Process

Oriented

 Defect

Detection

 debugging Defect Detection

60

 the document

shows the

relationship

between

requirement

specification and

test case is called

 Matrix Traceability

Matrix

 Defect

Analysis

 Matrix

Analysis

 Traceability Matrix

 Reg.No ----------------------

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed University Established Under Section 3 of UGC Act 1956)

Fourth Semester

DEPARTMENT OF COMPUTER TECHNOLOGY

FIRST INTERNAL EXAMINATION - DEC 2019

SOFTWARE ENGINEERING

Subject Code: 18CTU402

Class: II B.Sc. CT Maximum Marks: 50

Date:Time: 2 Hours
PART-A [20 * 1 = 20 Marks]

Answer all of the following

1. The waterfall model is sometimes called as

a. classic model b. classic life cycle model c. life cycle model d. cycle model

2. Software engineering activities include

a. decision b. affliction c. hardware d. maintenance

3. All process models prescribe a _.

a. circular b. elliptical c. Spiral d. workflow

4. Component based development incorporates the characteristics of the model

a. circular b. elliptical c. Spiral d. hierarchical

5. is the systematic use of proven principles, techniques, languages, and tools.

a. software engineering b. software analysis

c. software design d. requirements engineering

6. Requirement engineering is conducted in a .

a. sporadic way b. random way c. haphazard way d. systematic way

7. Software requirements analysis work products must be reviewed for .

a. modeling b. completeness

c. information processing d. functional requirement

8. bridges the gap between system level requirement engineering and software design.

a. system engineering b. modeling

c. requirements analysis d. software engineering

9. For small applications it is possible to move from requirement gathering step to .

a. analysis b. Implementation c. Design d. modeling

10. Software project management begins with a set of activities that are collectively called

a. project planning b. software scope c. software estimation d. decomposition
11. A qualitative assessments of freedom from errors. This quality attribute is called _.

a. portability b. reliability c. efficiency d. accuracy

12. The bedrock that supports software engineering is a

a. tools b. methods c. process models d. a quality focus

13. The process framework encompasses a set of

a. framework activities b. umbrella activities c. model d. software process

14. Software takes on a _ role.

a. single b. dual c. triple d. tetra

15. Instructions that when executed provide desired function and performance is called

a. software b. hardware c. firmware d. humanware

16. Software doesn’t .

a. tearout b. wearout c. degrade d. deteriorate

17. is a process of discovery, refinement, modeling, and specification

a. software engineering b. software requirement engineering

c. software analysis d. software design

18. Software requirements analysis is divided into areas of effort.

a. 2 b. 3 c. 4 d. 5

19. A model of the software to be built is called _ .

a. data model b. Prototype c. information model d. software model

20. Software applications can be collectively called as .

a. data gathering b. information gathering c. data processing d. information processing

PART-B [3 * 2 = 6 Marks]

Answer all of the following

21. Define software engineering

Software has become critical to advancement in almost all areas of human Endeavour. The art of

programming only is no longer sufficient to construct large programs. There are serious problems in the

cost, timeliness, maintenance and quality of many software products. Software engineering has the

objective of solving these problems by producing good quality, maintainable software, on time, within

budget. To achieve this objective, we have to focus in a disciplined manner on both the quality of the

product and on the process used to develop the product.

22. Write short note on CMMI.

The Capability Maturity Model Integration (CMMI) is a capability maturity model developed by the

Software Engineering Institute, part of Carnegie Mellon University in Pittsburgh

23. What is a SRS?

A software requirements specification (SRS) is a document that captures complete description about how

the system is expected to perform. It is usually signed off at the end of requirements engineering phase.

PART-C [3 * 8 = 24 Marks]

Answer all of the following

24. a) Discuss in detail about the Layered perspective of software engineering.

Any engineering approach much rests on organizational approach to quality, e.g. total quality

management and such emphasize continuous process improvement (that is increasingly more effective

approaches to software engineering). The bedrock that supports a software engineering is a quality

focus.

The foundation for software engineering is the process layer. Software engineering process is the

glue that holds the technology layers together and enables rational and timely development of computer

software. Process defines a framework for a set of key process areas (KPAs) that must be established for

effective delivery of software engineering technology. The key process areas form the basis for

management control of software projects and establish the context in which technical methods are

applied, work products (models, documents, data, reports, forms, etc.) are produced, milestones are

established, quality is ensured, and change is properly managed.

Figure 1 Software Engineering Layers

Software engineering methods provide the technical how-to's for building software. Methods

encompass a broad array of tasks that include requirements analysis, design, program construction,

testing, and support. Software engineering methods rely on a set of basic principles that govern each

area of the technology and include modeling activities and other descriptive techniques.

Software engineering tools provide automated or semi-automated support for the process and the

methods. When tools are integrated so that information created by one tool can be used by another, a

system for the support of software development, called computer-aided software engineering, is

established.

OR

b) Describe in detail the changes acquired in the nature of software.

Four broad categories of software are evolving to dominate the industry.

WebApps

Web-based systems and applications5 (we refer to these collectively as WebApps) were born. WebApps

have evolved into sophisticated computing tools that not only provide stand-alone function to the end

user, but also have been integrated with corporate databases and business application.

WebApps “involved a mixture between print publishing and software development, between marketing

and computing, between internal communications and external relations, and between art and

technology.”

Semantic Web technologies (often referred to as Web 3.0) have evolved into sophisticated corporate and

consumer applications that encompass “semantic databases provide new functionality that requires Web

linking, flexible data representation, and external access APIs.”

Mobile Applications

The term app has evolved to software that has been specifically designed to reside on a mobile

platform (e.g., iOS, Android, or Windows Mobile).Mobile applications encompass a user interface

that takes advantage of the unique interaction mechanisms provided by the mobile platform,

interoperability with Web-based resources that provide access to a wide array of information that is

relevant to the app, and local processing capabilities that collect, analyze, and format information in a

manner that is best suited to the mobile platform. In addition, a mobile app provides persistent

storage capabilities within the platform.

Cloud Computing

Cloud computing encompasses an infrastructure or “ecosystem” that enables any user, anywhere, to

use a computing device to share computing resources on a broad scale. The overall logical

architecture of cloud computing is represented in Figure

Figure 2 Logical Architecture of Cloud Computing

Computing devices reside outside the cloud and have access to a variety of resources within the cloud.

These resources encompass applications, platforms, and infrastructure. In its simplest form, an external

computing device accesses the cloud via a Web browser or analogous software. The cloud provides

access to data that resides with databases and other data structures. The implementation of cloud

computing requires the development of an architecture that encompasses front-end and back-end

services. The front-end includes the client (user) device and the application software (e.g., a browser)

that allows the back-end to be accessed. The back-end includes servers and related computing resources,

data storage systems (e.g., databases).

Product Line Software

The Software Engineering Institute defines a software product line as “a set of software-intensive

systems that share a common, managed set of features satisfying the specific needs of a particular

market segment or mission. A software product line shares a set of assets that include requirements,

architecture, design patterns, reusable components, test cases, and other software engineering work

products. A software product line results in the development of many products that are engineered by

capitalizing on the commonality among all the products within the product line.

25. a) Explain in detail about Waterfall Model with a neat sketch.

The Waterfall Model

The waterfall model is also called as 'Linear sequential model' or 'Classic life cycle model'.

In this model, each phase is fully completed before the beginning of the next phase.

This model is used for the small projects.

In this model, feedback is taken after each phase to ensure that the project is on the right path.

Testing part starts only after the development is complete.

Figure 3 Water Fall Model

The description of the phases of the waterfall model is same as that of the process model.

Figure 4 Linear Sequential Model

Advantages of waterfall model

The waterfall model is simple and easy to understand, implement, and use.
All the requirements are known at the beginning of the project, hence it is easy to manage.

It avoids overlapping of phases because each phase is completed at once.

This model works for small projects because the requirements are understood very well.

This model is preferred for those projects where the quality is more important as compared to the cost

of the project.

Disadvantages of the waterfall model

This model is not good for complex and object oriented projects.

It is a poor model for long projects.

The problems with this model are uncovered, until the software testing.

The amount of risk is high.

OR

b) Illustrate Prototyping model with its phases.

The Prototyping model

Prototype is defined as first or preliminary form using which other forms are copied or derived.

Prototype model is a set of general objectives for software.

It does not identify the requirements like detailed input, output.

It is software working model of limited functionality.

In this model, working programs are quickly produced.

Figure 5 The Prototyping Model

The different phases of Prototyping model are:

1. Communication

In this phase, developer and customer meet and discuss the overall objectives of the software.

2. Quick design

Quick design is implemented when requirements are known.
It includes only the important aspects like input and output format of the software.

It focuses on those aspects which are visible to the user rather than the detailed plan.

It helps to construct a prototype.

3. Modeling quick design

This phase gives the clear idea about the development of software because the software is now built.

It allows the developer to better understand the exact requirements.

4. Construction of prototype

The prototype is evaluated by the customer itself.

5. Deployment, delivery, feedback

If the user is not satisfied with current prototype then it refines according to the requirements of the

user.

The process of refining the prototype is repeated until all the requirements of users are met.

When the users are satisfied with the developed prototype then the system is developed on the basis of

final prototype.

Advantages of Prototyping Model

Prototype model need not know the detailed input, output, processes, adaptability of operating system

and full machine interaction.

In the development process of this model users are actively involved.

The development process is the best platform to understand the system by the user.

Errors are detected much earlier.

Gives quick user feedback for better solutions.

It identifies the missing functionality easily. It also identifies the confusing or difficult functions.

Disadvantages of Prototyping Model:

The client involvement is more and it is not always considered by the developer.

It is a slow process because it takes more time for development.

Many changes can disturb the rhythm of the development team.

It is a thrown away prototype when the users are confused with it.

26. a) Explain in detail about requirement engineering tasks.

Introduction to requirement engineering

The process of collecting the software requirement from the client then understand, evaluate and

document it is called as requirement engineering.

Requirement engineering constructs a bridge for design and construction.

Requirement engineering consists of seven different tasks as follow:

1. Inception

Inception is a task where the requirement engineering asks a set of questions to establish a software

process.

In this task, it understands the problem and evaluates with the proper solution.

It collaborates with the relationship between the customer and the developer.

The developer and customer decide the overall scope and the nature of the question.

2. Elicitation

Elicitation means to find the requirements from anybody.

The requirements are difficult because the following problems occur in elicitation.

Problem of scope: The customer give the unnecessary technical detail rather than clarity of the overall

system objective.

Problem of understanding: Poor understanding between the customer and the developer regarding

various aspect of the project like capability, limitation of the computing environment.

Problem of volatility: In this problem, the requirements change from time to time and it is difficult

while developing the project.

3. Elaboration

In this task, the information taken from user during inception and elaboration and are expanded and

refined in elaboration. Its main task is developing pure model of software using functions, feature and

constraints of a software.

4. Negotiation

In negotiation task, a software engineer decides the how will the project be achieved with limited

business resources. To create rough guesses of development and access the impact of the requirement on

the project cost and delivery time.

5. Specification

In this task, the requirement engineer constructs a final work product.

The work product is in the form of software requirement specification.

In this task, formalize the requirement of the proposed software such as informative, functional and

behavioral.

The requirement are formalize in both graphical and textual formats.

6. Validation

The work product is built as an output of the requirement engineering and that is accessed for the

quality through a validation step.

The formal technical reviews from the software engineer, customer and other stakeholders helps for the

primary requirements validation mechanism.

7. Requirement management

It is a set of activities that help the project team to identify, control and track the requirements and

changes can be made to the requirements at any time of the ongoing project.

These tasks start with the identification and assign a unique identifier to each of the requirement.

After finalizing the requirement traceability table is developed.

The examples of traceability table are the features, sources, dependencies, subsystems and interface of

the requirement

OR

b) Describe the Date modeling concepts in detail.

Data Modeling Concepts

Analysis modeling often begins with data modeling. The software engineer or analyst defines all

data objects that are processed within the system, the relationships between the data objects, and other

information that is pertinent to the relationships.

1. Data object

A data object is a representation of almost any composite information that must be understood by

software. By composite information, we mean something that has a number of different properties or

attributes. Therefore, width (a single value) would not be a valid data object, but dimensions

(incorporating height, width, and depth) could be defined as an object.

A data object can be an external entity (e.g., anything that produces or consumes information), a

thing (e.g., a report or a display), an occurrence (e.g., a telephone call)

or event (e.g., an alarm), a role (e.g., salesperson), an organizational unit (e.g., accounting department), a

place (e.g., a warehouse), or a structure (e.g., a file). For example,

a person or a car can be viewed as a data object in the sense that either can be defined in terms of a set of

attributes. The data object description incorporates the data object and all of its attributes.

2. Data Attributes

Attributes define the properties of a data object and take on one of three

different characteristics. They can be used to

(1) name an instance of the data object,

(2) describe the instance, or

(3) make reference to another instance in another table.

3. Relationships

Data objects are connected to one another in different ways. Consider two data objects, person

and car. These objects can be represented using the simple notation illustrated in below Figure. A

connection is established between person and car because the two objects are related.

4. Cardinality and Modality

The elements of data modeling—data objects, attributes, and relationships— provide the basis

for understanding the information domain of a problem. However, additional information related to

these basic elements must also be understood.

We have defined a set of objects and represented the object/relationship pairs that

bind them. But a simple pair that states: object X relates to object Y does not provide

enough information for software engineering purposes. We must understand how many occurrences of

object X are related to how many occurrences of object Y. This leads to a data modeling concept called

cardinality.

Cardinality is the specification of the number of occurrences of one [object] that can be related to

the number of occurrences of another [object].

Cardinality defines “the maximum number of objects that can participate in a relationship”

Modality

The modality of a relationship is 0 if there is no explicit need for the relationship to occur or the

relationship is optional. The modality is 1 if an occurrence of the relationship is mandatory.

 Reg.No ----------------

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act 1956)

Department Computer Technology/Information Technology

SOFTWARE ENGINEERING

Second Internal Exam – February 2020

Class: II B.Sc. (CT)/B.Sc. (IT) Time: 2 Hours

Date: 03.02.20 & A N Max. Marks: 50

Sub Code: 18CTU/402/18ITU402

PART-A [20 * 1 = 20 Marks]

Answer ALL the Questions

1. RIS stands for

a. Risk information sheet b. Risk individual sheet

c. Risk information record d. Risk Management sheet

2. All software applications collectively called .

a. packages b. programs c. software d. data processing

3. The software requirements specification includes .

a. bibliography b. appendix c. Bibliography and appendix d. review

4. The functions that the software is to perform must be .

a. defined b. Described c. discussed d. listed

5. When a sensor event is recognized, the invokes an audible alarm attached to the

system.

a. model b. software c. delay d. prototype

6. The overall role of software in a larger system is identified during the .

a. system engineering b. software planning c. software estimation d. documentation

7. The risk always involves the characteristics of

a. staffing b. Organization c. Loss d. Schedule

8. Risk identification is a systematic attempt to specify to the project plan

a. threats b. control c. product d. process

9. SQA stands for

a. software quality assurance b. system quality assurance

c. software assurance d. software quality information

10. Risk management is one of the of a successful software project

a. key b. attributes c. key attributes d. part

11. Data objects are represented by

a. labeled arrows b. bubbles c. entity d. label

12. Technical reviews are a quality control activity performed by_

a. Team leaders b. users c. Project managers d. software engineer

13. Software testing is a quality control function that has one primary goal-to find

a. information b. errors c. quality d. conditions

14. RMMM contains a pointer into

a. Risk mitigation, monitoring and management plan b. Risk mitigation and management plan

c. mitigation, monitoring and management plan d. Risk mitigation, monitoring plan

15. Infrastructure supports effort for building a quality software product

a. low b. middle c. equal d. high

16. is the risks associated with constraints imposed by management or the marketplace

a. business impact b. process definition c. product size d. technology to be built

17. is the risk associated with the overall size of the software to be built

a. business impact b. process definition c. product size d. technology to be built

18. Management and practice are applied within the context of key features to achieve high

software quality

a. three b. four c. five d. six

19. Externally imposed standards are

a. ISO 9001 b. ISO 9002 c. ISO 9003 d. ISO 9004

20. must ensure that the software team has properly reviewed the requirements model to

achieve a high level of quality

a. SAQ b. RIS c. CTC d. SQA

PART-B [3 * 2 = 6 Marks]

Answer ALL the Questions

21. What is requirement engineering process?

The process of collecting the software requirement from the client then understand, evaluate and

document it is called as requirement engineering

22. Write about generic risk and product risk.

Generic risks are a potential threat to every software project. Product-specific risks can be identified

only by those with a clear understanding of the technology, the people, and the environment that is

specific to the software that is to be built.

23. Define RMMM plan and its use.

The RMMM plan documents all work performed as part of risk analysis and is used by the project

manager as part of the overall project plan.

PART-C [3 * 8 = 24 Marks]

Answer ALL the Questions

24. a) Discuss SRS characteristics and components

Introduction to Components of the SRS

In previous section, we discussed various characteristics that will help in completely specification the requirements. Here we

describe some of system properties that an SRS should specify. The basic issues, an SRS must address are:

Functional requirements

Performance requirements

Design constraints

External interface requirements

Conceptually, any SRS should have these components. Now we will discuss them one by one.

1. Functional Requirements

Functional requirements specify what output should be produced from the given inputs. So they basically describe the

connectivity between the input and output of the system. For each functional requirement:

1. A detailed description of all the data inputs and their sources, the units of measure, and the range of valid inputs be

specified:

2. All the operations to be performed on the input data obtain the output should be specified, and

3. Care must be taken not to specify any algorithms that are not parts of the system but that may be needed to implement the

system.

4. It must clearly state what the system should do if system behaves abnormally when any invalid input is given or due to

some error during computation. Specifically, it should specify the behaviour of the system for invalid inputs and invalid

outputs.

2. Performance Requirements (Speed Requirements)

This part of an SRS specifies the performance constraints on the software system. All the requirements related to the

performance characteristics of the system must be clearly specified. Performance requirements are typically expressed as

processed transaction s per second or response time from the system for a user event or screen refresh time or a combination of

these. It is a good idea to pin down performance requirements for the most used or critical transactions, user events and screens.

2. Design Constraints

The client environment may restrict the designer to include some design constraints that must be followed. The various design

constraints are standard compliance, resource limits, operating environment, reliability and security requirements and policies

that may have an impact on the design of the system. An SRS should identify and specify all such constraints.

Standard Compliance: It specifies the requirements for the standard the system must follow. The standards may include the

report format and according procedures.

Hardware Limitations: The software needs some existing or predetermined hardware to operate, thus imposing restrictions on

the design. Hardware limitations can includes the types of machines to be used operating system availability memory space etc.

Fault Tolerance: Fault tolerance requirements can place a major constraint on how the system is to be designed. Fault

tolerance requirements often make the system more complex and expensive, so they should be minimized.

Security: Currently security requirements have become essential and major for all types of systems. Security requirements

place restriction s on the use of certain commands control access to database, provide different kinds of access, requirements for

different people, require the use of passwords and cryptography techniques, and maintain a log of activities in the system.

4. External Interface Requirements

For each external interface requirements:

1. All the possible interactions of the software with people hardware and other software should be clearly specified,

2. The characteristics of each user interface of the software product should be specified and

3. The SRS should specify the logical characteristics of each interface between the software product and the hardware

components for hardware interfacing.

OR

b) Elucidate Creation of Flow Oriented Modeling in software engineering.

The DFD takes an input-process-output view of a system. That is, data objects flow into the

software, are transformed by processing elements, and resultant data objects flow out of the software. Data

objects are represented by labeled arrows and the transformations are represented by circles (also called

bubbles). The DFD is presented in hierarchical fashion. That is, the first data flow model sometimes called

a level 0 DFD or context diagram represent the system as a whole.

1. Creating a data flow model

The data flow diagram enables the software engineer to develop models of the information domain

and functional domain at the same time. As the DFD is refined into greater levels of detail, the analyst

performs an implicit functional decomposition of the system.

Context level DFD for the safe home security function

The safe home security function enables the homeowner to configure the security system. When

it is installed, monitors all sensors connected to the security system, and interacts with the homeowner

through the internet, a PC, or a control panel

During installation, the safe home PC is used to program and configure the system. Each sensor is

assigned a number and type, a master password is programmed for arming and disarming the system, and

telephone number(s) are input for dialing when a sensor event occurs.

When a sensor event is recognized, the software involves an audible alarm attached to the system.

After a delay time that is specified by the homeowner during system configuration activities, the software

dials a telephone number of a monitoring service, provides information about the location, reporting the

nature of the event that has been detected. The telephone number will be redialed every 20 seconds until

a telephone connection is obtained

The level 0 DFD is now expanded into a level 1 data flow model

Level 1 DFD for the safe home security function

The homeowner receives security information via a control panel, the PC, or a browser,

collectively called an interface. The interface displays prompting messages and system status information

on the control panel, the PC, or the browser window

The process represented at DFD level 1 can be further refined into lower levels. For example, the

process monitor sensors can be refined into a level 2 DFD.

Level 2 DFD that refines the monitor sensors process

The refinement of DFDs continues until each bubble performs a single function. That is, until the

process represented by the bubble performs a function that would be easily implemented as a program

component

25. a) Illustrate risk projection mechanism in software engineering

Risk projection, also called risk estimation, attempts to rate each risks in two ways—(1) the likelihood or

probability that the risk is real and will occur and (2) the consequences of the problems associated with

the risk, should it occur. You work along with other managers and technical staff to perform four risk

projection steps:

1. Establish a scale that reflects the perceived likelihood of a risk.

2. Delineate the consequences of the risk.

3. Estimate the impact of the risk on the project and the product.

4. Assess the overall accuracy of the risk projection so that there will be no misunderstandings.

The intent of these steps is to consider risks in a manner that leads to prioritization. No software team has

the resources to address every possible risk with the same degree of rigor. By prioritizing risks, you can

allocate resources where they will have the most impact.

Developing a Risk Table

A risk table provides you with a simple technique for risk projection. A sample risk table is illustrated in

below figure.

• Begin by listing all risks (no matter how remote) in the first column of the table.

• Each risk is categorized in the second column (e.g., PS implies a project size risk, BU implies a

business risk).

• The probability of occurrence of each risk is entered in the next column of the table.

• The probability value for each risk can be estimated by team members individually.

• Each risk component is assessed and an impact category is determined.

• The categories for each of the four risk components—performance, support, cost, and

schedule—are averaged to determine an overall impact value.

• Once the first four columns of the risk table have been completed, the table is sorted by

probability and by impact.

• High-probability, high-impact risks percolate to the top of the table, and low-probability risks

drop to the bottom.

• This accomplishes first-order risk prioritization.

Assessing Risk Impact

Three factors affect the consequences that are likely if a risk does occur: its nature, its scope, and its

timing.

• The nature of the risk indicates the problems that are likely if it occurs.

• The scope of a risk combines the severity with its overall distribution
Finally, the timing of a risk considers when and for how long the impact will be felt.

OR

b) Describe in detail how are risks identified.

Risk identification is a systematic attempt to specify threats to the project plan (estimates, schedule,

resource loading, etc.). By identifying known and predictable risks, the project manager takes a first step

toward avoiding them when possible and controlling them when necessary.

There are two distinct types of risks for each of the categories

Generic risks are a potential threat to every software project.

Product-specific risks can be identified only by those with a clear understanding of the technology, the

people, and the environment that is specific to the software that is to be built.

One method for identifying risks is to create a risk item checklist. The checklist can be used for risk

identification and focuses on some subset of known and predictable risks in the following generic

subcategories:

Product size—Risks associated with the overall size of the software to be built or modified. Business

impact—Risks associated with constraints imposed by management or the marketplace. Stakeholder

characteristics—Risks associated with the sophistication of the stakeholders and the developer’s ability to

communicate with stakeholders in a timely manner.

Process definition—Risks associated with the degree to which the software process has been defined and

is followed by the development organization.

Development environment—Risks associated with the availability and quality

of the tools to be used to build the product. Technology to be

built—Risks associated with the complexity of the system to be built and the

“newness” of the technology that is packaged by the system. Staff size and

experience—Risks associated with the overall technical and project experience of the

software engineers who will do the work.

Assessing Overall Project Risk

The following questions have been derived from risk data obtained by surveying experienced

Software project managers in different parts of the world

The questions are ordered by their relative importance to the success of a project.

1. Have top software and customer managers formally committed to support the project?

2. Are end users enthusiastically committed to the project and the system/product to be built?

3. Are requirements fully understood by the software engineering team and its customers?

4. Have customers been involved fully in the definition of requirements?

5. Do end users have realistic expectations?

6. Is the project scope stable?

7. Does the software engineering team have the right mix of skills?

8. Are project requirements stable?

9. Does the project team have experience with the technology to be implemented?

10. Is the number of people on the project team adequate to do the job?

11. Do all customer/user constituencies agree on the importance of the project and on the requirements

for the system/product to be built?

Risk Components and Drivers

The risk components are defined in the following manner:

• Performance risk—The degree of uncertainty that the product will meet its requirements and be fit for

its intended use.

• Cost risk—The degree of uncertainty that the project budget will be maintained.

• Support risk—The degree of uncertainty that the resultant software will be easy to correct,

adapt, and enhance.

• Schedule risk—The degree of uncertainty that the project schedule will be maintained and that the

product will be delivered on time.

26. a) Explain in detail about Software risks that are faced by developers.

Although there has been considerable debate about the proper definition for software risk, there is general

agreement that risk always involves two characteristics: uncertainty—the risk may or may not happen;

that is, there are no 100 percent probable risks1—and loss—if the risk becomes a reality, unwanted

consequences or losses will occur. When risks are analyzed, it is important to quantify the level of

uncertainty and the degree of loss associated with each risk. To accomplish this, different categories of

risks are considered.

Project risks threaten the project plan. That is, if project risks become real, it is likely that the project

schedule will slip and that costs will increase. Project risks identify potential budgetary, schedule,

personnel (staffing and organization), resource, stakeholder, and requirements problems and their impact

on a software project. Project complexity, size, and the degree of structural uncertainty were also defined

as project (and estimation) risk factors.

Technical risks threaten the quality and timeliness of the software to be produced. If a technical risk

becomes a reality, implementation may become difficult or impossible. Technical risks identify potential

design, implementation, interface, verification, and maintenance problems. In addition, specification

ambiguity, technical uncertainty, technical obsolescence, and “leading-edge” technology are also risk

factors. Technical risks occur because the problem is harder to solve than you thought it would be.

Business risks threaten the viability of the software to be built and often jeopardize the project or the

product. Candidates for the top five business risks are (1) building an excellent product or system that no

one really wants (market risk), (2) building a product that no longer fits into the overall business strategy

for the company (strategic risk), (3) building a product that the sales force doesn’t understand how to sell

(sales risk), (4) losing the support of senior management due to a change in focus or a change in people

(management risk), and (5) losing budgetary or personnel commitment (budget risks).

Known risks are those that can be uncovered after careful evaluation of the project plan, the business and

technical environment in which the project is being developed, and other reliable information sources

(e.g., unrealistic delivery date, lack of documented requirements or software scope, poor development

environment).

Predictable risks are extrapolated from past project experience (e.g., staff turnover, poor communication

with the customer, dilution of staff effort as ongoing maintenance requests are serviced). Unpredictable

risks are the joker in the deck. They can and do occur, but they are extremely difficult to identify in

advance.

OR

b) Explain in detail about Software Quality Assurance.

The software engineering approach works toward a single goal: to produce on-time, high-quality

software. Yet many readers will be challenged by the question: “What is software quality?”

The problem of quality management is not what people don't know about it. The problem is what they

think they do know

Everybody is for it. (Under certain conditions, of course.) Everyone feels they understand it. (Even though

they wouldn’t want to explain it.) Everyone thinks execution is only a matter of following natural

inclinations. (After all, we do get along somehow.) And, of course, most people feel that problems in these

areas are caused by other people. (If only they would take the time to do things right.) Indeed, quality is a

challenging concept. Some software developers continue to believe that software quality is something you

begin to worry about after code has been generated. Nothing could be further from the truth! Software

quality assurance (often called quality management) is an umbrella activity that is applied throughout the

software process.

Software quality assurance (SQA) encompasses: (1) an SQA process, (2) specific quality assurance and

quality control tasks (including technical reviews and a multi-tiered testing strategy), (3) effective software

engineering practice (methods and tools), (4) control of all software work products and the changes made

to them, (5) a procedure to ensure compliance with software development standards (when applicable),

and (6) measurement and reporting mechanisms.

Elements of Software Quality Assurance

Software quality assurance encompasses a broad range of concerns and activities that focus on the

management of software quality. These can be summarized in the following manner:

Standards. The IEEE, ISO, and other standards organizations have produced a broad array of software

engineering standards and related documents. Standards may be adopted voluntarily by a software

engineering organization or imposed by the customer or other stakeholders. The job of SQA is to ensure

that standards that have been adopted are followed and that all work products conform to them.

Reviews and audits. Technical reviews are a quality control activity performed by software engineers for

software engineers. Their intent is to uncover errors. Audits are a type of review performed by SQA

personnel with the intent of ensuring that quality guidelines are being followed for software engineering

work. For example, an audit of the review process might be conducted to ensure that reviews are being

performed in a manner that will lead to the highest likelihood of uncovering errors.

Testing. Software testing is a quality control function that has one primary goal—to find errors. The job

of SQA is to ensure that testing is properly planned and efficiently conducted so that it has the highest

likelihood of achieving its primary goal.

Error/defect collection and analysis. The only way to improve is to measure how you’re doing. SQA

collects and analyzes error and defect data to WebRef.

Software Quality Assurance

Better understand how errors are introduced and what software engineering activities are best suited to

eliminating them.

Change management. Change is one of the most disruptive aspects of any software project. If it is not

properly managed, change can lead to confusion, and confusion almost always leads to poor quality. SQA

ensures that adequate change management practices have been instituted.

Education. Every software organization wants to improve its software engineering practices. A key

contributor to improvement is education of software engineers, their managers, and other stakeholders.

The SQA organization takes the lead in software process improvement and is a key proponent and sponsor

of educational programs.

Vendor management. Three categories of software are acquired from external software vendors—

shrink-wrapped packages (e.g., Microsoft Office), a tailored shell that provides a basic skeletal structure

that is custom tailored to the needs of a purchaser, and contracted software that is custom designed and

constructed from specifications provided by the customer organization. The job of the SQA organization

is to ensure that high-quality software results by suggesting specific quality practices that the vendor

should follow (when possible), and incorporating quality mandates as part of any contract with an external

 vendor.

Security management. With the increase in cyber crime and new government regulations regarding

privacy, every software organization should institute policies that protect data at all levels, establish

firewall protection for WebApps, and ensure that software has not been tampered with internally. SQA

ensures that appropriate process and technology are used

to achieve software security.

Safety. Because software is almost always a pivotal component of human-rated systems (e.g., automotive

or aircraft applications), the impact of hidden defects can be catastrophic. SQA may be responsible for

assessing the impact of software failure and for initiating those steps required to reduce risk.

Risk management. Although the analysis and mitigation of risk is the concern of software engineers, the

SQA organization ensures that risk management activities are properly conducted and that risk- related

contingency plans have been established. In addition to each of these concerns and activities, SQA works

to ensure that software support activities (e.g., maintenance, help lines, documentation, and manuals) are

conducted or produced with quality as a dominant concern.

	1.pdf (p.1-2)
	2.pdf (p.3-5)
	3.pdf (p.6-33)
	4.pdf (p.34-12767)
	5.pdf (p.12768-12793)
	6.pdf (p.12794-12800)
	7.pdf (p.12801-12816)
	8.pdf (p.12817-12824)
	9.pdf (p.12825-12855)
	10.pdf (p.12856-12862)
	11.pdf (p.12863-12891)
	12.pdf (p.12892-12900)
	13.pdf (p.12901-12909)
	14.pdf (p.12910-12920)

