

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 1/45

UNIT I

Introduction: Logic Gates -Boolean Algebra-Circuit Simplification-Combinational Circuits-

Adders and Subtractor-Multiplexers and De-multiplexers-Encoders and Decoders-Sequential

Circuits-Flip-Flops, registers-Counters and memory units.

Basic Gates

Boolean functions may be practically implemented by using electronic gates. The

following points are important to understand.

 Electronic gates require a power supply.

 Gate INPUTS are driven by voltages having two nominal values, e.g. 0V and 5V

representing logic 0 and logic 1 respectively.

 The OUTPUT of a gate provides two nominal values of voltage only, e.g. 0V and 5V

representing logic 0 and logic 1 respectively. In general, there is only one output to a

logic gate except in some special cases.

 There is always a time delay between an input being applied and the output responding.

Truth Tables

Truth tables are used to help show the function of a logic gate. If you are unsure about

truth tables and need guidance on how go about drawing them for individual gates or logic

circuits then use the truth table section link.

Logic gates

Digital systems are said to be constructed by using logic gates. These gates are the AND,

OR, NOT, NAND, NOR, EXOR and EXNOR gates. The basic operations are described below

with the aid of truth tables.

AND gate

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 2/45

The AND gate is an electronic circuit that gives a high output (1) only if all its inputs are

high. A dot (.) is used to show the AND operation i.e. A.B. Bear in mind that this dot is

sometimes omitted i.e. AB

 OR gate

The OR gate is an electronic circuit that gives a high output (1) if one or more of its

inputs are high. A plus (+) is used to show the OR operation.

 NOT gate

The NOT gate is an electronic circuit that produces an inverted version of the input at its

output. It is also known as an inverter. If the input variable is A, the inverted output is known as

NOT A. This is also shown as A', or A with a bar over the top, as shown at the outputs

NAND gate

This is a NOT-AND gate which is equal to an AND gate followed by a NOT gate. The

outputs of all NAND gates are high if any of the inputs are low. The symbol is an AND gate

with a small circle on the output. The small circle represents inversion.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 3/45

NOR gate

This is a NOT-OR gate which is equal to an OR gate followed by a NOT gate. The

outputs of all NOR gates are low if any of the inputs are high. The symbol is an OR gate with a

small circle on the output. The small circle represents inversion.

EXOR gate

The 'Exclusive-OR' gate is a circuit which will give a high output if either, but not both, of its

two inputs are high. An encircled plus sign () is used to show the EOR operation.

EXNOR gate

The 'Exclusive-NOR' gate circuit does the opposite to the EOR gate. It will give a low

output if either, but not both, of its two inputs are high. The symbol is an EXOR gate with a

small circle on the output. The small circle represents inversion.

The NAND and NOR gates are called universal functions since with either one the AND

and OR functions and NOT can be generated.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 4/45

Note:

A function in sum of products form can be implemented using NAND gates by replacing all

AND and OR gates by NAND gates. A function in product of sums form can be implemented

using NOR gates by replacing all AND and OR gates by NOR gates.

Table 1: Logic gate symbols

Table 2 is a summary truth table of the input/output combinations for the NOT gate together with

all possible input/output combinations for the other gate functions. Also note that a truth table

with 'n' inputs has 2n rows. You can compare the outputs of different gates.

Table 2: Logic gates representation using the Truth table

The "Universal" NAND Gate

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 5/45

The Logic NAND Gate is generally classed as a "Universal" gate because it is one of the

most commonly used logic gate types. NAND gates can also be used to produce any other type

of logic gate function, and in practice the NAND gate forms the basis of most practical logic

circuits. By connecting them together in various combinations the three basic gate types of AND,

OR and NOT function can be formed using only NAND's, for example.

Various Logic Gates using only NAND Gates

As well as the three common types above, Ex-Or, Ex-Nor and standard NOR gates can be

formed using just individual NAND gates.

The "Universal" NOR Gate

Like the NAND gate seen in the last section, the NOR gate can also be classed as a

"Universal" type gate. NOR gates can be used to produce any other type of logic gate function

just like the NAND gate and by connecting them together in various combinations the three basic

gate types of AND, OR and NOT function can be formed using only NOR's, for example.

Various Logic Gates using only NOR Gates

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 6/45

As well as the three common types above, Ex-Or, Ex-Nor and standard NOR gates can also be

formed using just individual NOR gates.

Boolean arithmetic

Let us begin our exploration of Boolean algebra by adding numbers together:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

The first three sums make perfect sense to anyone familiar with elementary addition. The

last sum, though, is quite possibly responsible for more confusion than any other single statement

in digital electronics, because it seems to run contrary to the basic principles of mathematics.

Well, it does contradict principles of addition for real numbers, but not for Boolean numbers.

Remember that in the world of Boolean algebra, there are only two possible values for any

quantity and for any arithmetic operation: 1 or 0. There is no such thing as”2” within the scope

of Boolean values. Since the sum”1 + 1” certainly isn’t 0, it must be 1 by process of elimination.

It does not matter how many or few terms we add together, either. Consider the following

sums:

0 + 1 + 1 = 1

0 + 1 + 1 + 1 = 1

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 7/45

1 + 0 + 1 + 1 + 1 = 1

1 + 1 + 1 = 1

Take a close look at the two-term sums in the first set of equations. Does that pattern look

familiar to you? It should! It is the same pattern of 1’s and 0’s as seen in the truth table for an

OR gate. In other words, Boolean addition corresponds to the logical function of an”OR”

gate, as well as to parallel switch contacts:

 There is no such thing as subtraction in the realm of Boolean mathematics. Subtraction

implies the existence of negative numbers: 5 - 3 is the same thing as 5 + (-3), and in Boolean

algebra negative quantities are forbidden. There is no such thing as division in Boolean

mathematics, either, since division is really nothing more than compounded subtraction, in the

same way that multiplication is compounded addition.

Multiplication is valid in Boolean algebra, and thankfully it is the same as in real-number

algebra: anything multiplied by 0 is 0, and anything multiplied by 1 remains unchanged:

0 × 0 = 0

0 × 1 = 0

1 × 0 = 0

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 8/45

1 × 1 = 1

This set of equations should also look familiar to you: t is the same pattern found in the

truth table for an AND gate. In other words, Boolean multiplication corresponds to the logical

function of an”AND” gate, as well as to series switch contacts:

Like”normal” algebra, Boolean algebra uses alphabetical letters to denote variables. Unlike

”normal” algebra, though, Boolean variables are always CAPITAL letters, never lowercase.

Because they are allowed to possess only one of two possible values, either 1 or 0, each and

every variable has a complement: the opposite of its value. For example, if variable”A” has a

value of 0, and then the complement of A has a value of 1. Boolean notation uses a bar above the

variable character to denote complementation, like this:

If: A=0, Then: A=1

If: A=1 Then: A=0

In written form, the complement of”A” denoted as”A-not” or”A-bar”. Sometimes a”

prime” symbol is used to represent complementation. For example, A’ would be the complement

of A, much the same as using a prime symbol to denote differentiation in calculus rather than the

fractional notation d/dt. Usually, though, the”bar” symbol finds more widespread use than the

“prime” symbol, for reasons that will become more apparent later in this chapter.

Boolean complementation finds equivalency in the form of the NOT gate, or a normally closed

switch or relay contact:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 9/45

The basic definition of Boolean quantities has led to the simple rules of addition and

multiplication, and has excluded both subtraction and division as valid arithmetic operations. We

have a symbology for denoting Boolean variables, and their complements.

• REVIEW:

• Boolean addition is equivalent to the OR logic function, as well as parallel switch contacts.

• Boolean multiplication is equivalent to the AND logic function, as well as series switch

contacts.

• Boolean complementation is equivalent to the NOT logic function, as well as normally closed

relay contacts.

Basic Laws

In mathematics, an identity is a statement true for all possible values of its variable or

variables. The algebraic identity of x + 0 = x tells us that anything (x) added to zero equals the

original ”anything,” no matter what value that ”anything” (x) may be. Like ordinary algebra,

Boolean algebra has its own unique identities based on the bivalent states of Boolean variables.

The first Boolean identity is that the sum of anything and zero is the same as the

original”anything.” This identity is no different from its real-number algebraic equivalent:

No matter what the value of A, the output will always be the same: when A=1, the output

will also be 1; when A=0, the output will also be 0.

The next identity is most definitely different from any seen in normal algebra. Here we

discover that the sum of anything and one is one:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 10/45

No matter what the value of A, the sum of A and 1 will always be 1. In a sense, the”1”

signal overrides the effect of A on the logic circuit, leaving the output fixed at a logic level of 1.

Next, we examine the effect of adding A and A together, which is the same as connecting both

inputs of an OR gate to each other and activating them with the same signal:

In real-number algebra, the sum of two identical variables is twice the original variable’s

value (x + x = 2x), but remember that there is no concept of”2” in the world of Boolean math,

only 1 and 0, so we cannot say that A + A = 2A. Thus, when we add a Boolean quantity to itself,

the sum is equal to the original quantity: 0 + 0 = 0, and 1 + 1 = 1.

Introducing the uniquely Boolean concept of complementation into an additive identity,

we find an interesting effect. Since there must be one”1” value between any variable and its

complement, and since the sum of any Boolean quantity and 1 is 1, the sum of a variable and

Its complement must be 1:

Just as there are four Boolean additive identities (A+0, A+1, A+A, and A+A’), so there

are also four multiplicative identities: Ax0, Ax1, AxA, and AxA’. Of these, the first two are no

different from their equivalent expressions in regular algebra:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 11/45

The third multiplicative identity expresses the result of a Boolean quantity multiplied by

itself. In normal algebra, the product of a variable and itself is the square of that variable (3 x 3 =

32 = 9). However, the concept of”square” implies a quantity of 2, which has no meaning in

Boolean algebra, so we cannot say that A x A = A2. Instead, we find that the product of a

Boolean quantity and itself is the original quantity, since 0 x 0 = 0 and 1 x 1 = 1:

The fourth multiplicative identity has no equivalent in regular algebra because it uses the

complement of a variable, a concept unique to Boolean mathematics. Since there must be one

”0” value between any variable and its complement, and since the product of any Boolean

quantity and 0 is 0, the product of a variable and its complement must be 0:

To summarize, then, we have four basic Boolean identities for addition and four for

multiplication:

Additive

A + 0 = A

A + 1 = 1

A + A = A

A + A = 1

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 12/45

Multiplicative

0A = 0

1A = A

AA = A

AA = 0

Basic Boolean algebraic identities

Another identity having to do with complementation is that of the double complement: a

variable inverted twice. Complementing a variable twice (or any even number of times) results in

the original Boolean value. This is analogous to negating (multiplying by -1) in real-number

algebra: an even number of negations cancel to leave the original value:

Boolean algebraic properties

Another type of mathematical identity, called a ”property” or a ”law,” describes how

differing variables relate to each other in a system of numbers. One of these properties is known

as the commutative property, and it applies equally to addition and multiplication. In essence, the

commutative property tells us we can reverse the order of variables that are either added together

or multiplied together without changing the truth of the expression:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 13/45

Along with the commutative properties of addition and multiplication, we have the

associative property, again applying equally well to addition and multiplication. This property

tells us we can associate groups of added or multiplied variables together with parentheses

without altering the truth of the equations.

Lastly, we have the distributive property, illustrating how to expand a Boolean

expression formed by the product of a sum, and in reverse shows us how terms may be factored

out of Boolean sums-of-products:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 14/45

To summarize, here are the three basic properties: commutative, associative, and distributive.

Basic Boolean algebraic properties

A(B + C) = AB + AC

Additive

A + (B + C) = (A + B) + C

A + B = B + A

Multiplicative

A(BC) = (AB)C

AB = BA

DeMorgan’s Theorems

A mathematician named DeMorgan developed a pair of important rules regarding group

complementation in Boolean algebra. By group complementation, I’m referring to the

complement of a group of terms, represented by a long bar over more than one variable. You

should recall from the chapter on logic gates that inverting all inputs to a gate reverses

that gate’s essential function from AND to OR, or vice versa, and also inverts the output. So,

an OR gate with all inputs inverted (a Negative-OR gate) behaves the same as a NAND gate,

and an AND gate with all inputs inverted (a Negative-AND gate) behaves the same as a NOR

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 15/45

gate. DeMorgan’s theorems state the same equivalence in ”backward” form: that inverting the

output of any gate results in the same function as the opposite type of gate (AND vs. OR) with

inverted inputs:

A long bar extending over the term AB acts as a grouping symbol, and as such is entirely

different from the product of A and B independently inverted. In other words, (AB)’ is not equal

to A’B’. Because the ”prime” symbol (’) cannot be stretched over two variables like a bar can,

we are forced to use parentheses to make it apply to the whole term AB in the previous sentence.

A bar, however, acts as its own grouping symbol when stretched over more than one variable.

This has profound impact on how Boolean expressions are evaluated and reduced, as we shall

see.

DeMorgan’s theorem may be thought of in terms of breaking a long bar symbol. When a long

bar is broken, the operation directly underneath the break changes from addition to

multiplication, or vice versa, and the broken bar pieces remain over the individual variables.

To illustrate:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 16/45

Boolean algebra finds its most practical use in the simplification of logic circuits. If we

translate a logic circuit's function into symbolic (Boolean) form, and apply certain algebraic rules

to the resulting equation to reduce the number of terms and/or arithmetic operations, the

simplified equation may be translated back into circuit form for a logic circuit performing the

same function with fewer components. If equivalent function may be achieved with fewer

components, the result will be increased reliability and decreased cost of manufacture.

To this end, there are several rules of Boolean algebra presented in this section for use in

reducing expressions to their simplest forms. The identities and properties already reviewed in

this chapter are very useful in Boolean simplification, and for the most part bear similarity to

many identities and properties of "normal" algebra. However, the rules shown in this section are

all unique to Boolean mathematics.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 17/45

This rule may be proven symbolically by factoring an "A" out of the two terms, then

applying the rules of A + 1 = 1 and 1A = A to achieve the final result:

Please note how the rule A + 1 = 1 was used to reduce the (B + 1) term to 1. When a rule

like "A + 1 = 1" is expressed using the letter "A", it doesn't mean it only applies to expressions

containing "A". What the "A" stands for in a rule like A + 1 = 1 is any Boolean variable or

collection of variables. This is perhaps the most difficult concept for new students to master in

Boolean simplification: applying standardized identities, properties, and rules to expressions not

in standard form.

For instance, the Boolean expression ABC + 1 also reduces to 1 by means of the "A + 1 = 1"

identity. In this case, we recognize that the "A" term in the identity's standard form can represent

the entire "ABC" term in the original expression.

The next rule looks similar to the first one shown in this section, but is actually quite

different and requires a more clever proof:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 18/45

Note how the last rule (A + AB = A) is used to "un-simplify" the first "A" term in the

expression, changing the "A" into an "A + AB". While this may seem like a backward step, it

certainly helped to reduce the expression to something simpler! Sometimes in mathematics we

must take "backward" steps to achieve the most elegant solution. Knowing when to take such a

step and when not to is part of the art-form of algebra, just as a victory in a game of chess almost

always requires calculated sacrifices.

Another rule involves the simplification of a product-of-sums expression:

And, the corresponding proof:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 19/45

To summarize, here are the three new rules of Boolean simplification expounded in this section:

Karnaugh map

The Karnaugh map, like Boolean algebra, is a simplification tool applicable to digital

logic. The Karnaugh Map will simplify logic faster and more easily in most cases.

Boolean simplification is actually faster than the Karnaugh map for a task involving two

or fewer Boolean variables. It is still quite usable at three variables, but a bit slower. At four

input variables, Boolean algebra becomes tedious. Karnaugh maps are both faster and easier.

Karnaugh maps work well for up to six input variables, are usable for up to eight variables. For

more than six to eight variables, simplification should be by CAD (computer automated design).

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 20/45

Relationship between a Karnaugh Map and a Truth Table

Each row in the table (or minterm) is equivalent to a a cell on the Karnaugh Map.

Example #1:

Here is a two-input truth table for a digital circuit:

Row Inputs Output

The corresponding K-map is:

Example #2:

Here is a three-input truth table for a digital circuit:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 21/45

The corresponding K-map is:

Example #3:

Here is a four-input truth table for a digital circuit:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 22/45

The corresponding K-map is:

Simplifying Boolean Expressions using Karnaugh map

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 23/45

To simplify the resulting Boolean expression using a Karnaugh map adjacent cells

containing one are looped together. This step eliminated any terms of the form AA .

Adjacent cells means:

1. Cells that are side by side in the horizontal and vertical directions (but not diagonal).

2. For a map row: the leftmost cell and the rightmost cell.

3. For a map column: the topmost cell and the bottom most cell.

4. For a 4 variable map: cells occupying the four corners of the map.

Cells may only be looped together in twos, fours, or eights. As few groups as possible

must

be formed. Groups may overlap one another and may contain only one cell.

The larger the number of 1s looped together in a group the simpler is the product term

that the group represents.

Example #1:

Simplifying the corresponding K-map of a two-input truth table for a digital circuit:

In Loop 1 the variable A has both logic 0 and logic 1 values in the same loop. B has a value of

1. Hence minterm equation is: F = B.

In Loop 2 Variable B have both logic 0 and 1 values in the same loop. A = 1, hence minterm

equation is: F = A.

The overall Boolean expression for F is therefore: F = A + B

Example #2:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 24/45

Simplifying the corresponding K-map of a three-input truth table for a digital circuit, In

Loop 1 the variable C has both logic 0 and logic 1 values in the same loop. A has a value of 0

and B has a logic value of 1. Hence minterm equation is: F = AB

In Loop 2 the variable C has both logic 0 and 1 values in the same loop. A = 1 and B = 0, hence

minterm equation is: F = AB .

In Loop 3 the two variables A and B both have logic 0 and logic 1 values in the same loop. C has

a value of 1. Hence minterm equation is: F = C.

The overall Boolean expression for F is therefore: F = AB + AB + C

Example #3:

Simplifying the corresponding K-map of a four-input truth table for a digital circuit, In

Loop 1 the two variables A and D both have logic 0 and logic 1 values in the same loop. C has a

value of 0 and B has a value of 1. Hence minterm equation is: F = BC.

In Loop 2 the two variables B and C both have logic 0 and logic 1 values in the same

loop. A has a value of 1 and D has a value of 0. Hence minterm equation is: F = AD.

In Loop 3 the variable D has logic 0 and logic 1 values in the same loop. A and B both

have a value of 0 and C has a value of 1. Hence minterm equation is: F = ABC.

In Loop 4 the two variables B and C both have logic 0 and logic 1 values in the same

loop. A has a value of 0 and D has a value of 1. Hence minterm equation is: F = AD.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 25/45

In Loop 5 the variable C has logic 0 and logic 1 values in the same loop. A and D both have a

value of 1 and B has a value of 0. Hence minterm equation is: F = ABD.

The overall Boolean expression for F is therefore: F = BC + AD + ABC + AD + ABD

COMBINATIONAL CIRCUITS

HALF ADDER

A key requirement of digital computers is the ability to use logical functions to
perform arithmetic operations. The basis of this is addition; if it is possible to add two
binary numbers, it is just as easily subtract them, or get a little fancier and perform
multiplication and division. Then how to add two binary numbers?

Let's start by adding two binary bits. Since each bit has only two possible values, 0 or
1, there are only four possible combinations of inputs. These four possibilities, and the
resulting sums, are:

 0 + 0 = 0
 0 + 1 = 1
 1 + 0 = 1
 1 + 1 = 10

The above fourth line indicates that we have to account for two output bits when we
add two input bits: the sum and a possible carry. Let's set this up as a truth table with two
inputs and two outputs,

INPUTS
OUTP

UTS

A B CARRY SUM

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 26/45

From the above table it is clear that, the Carry output is a simple AND function, and
the Sum is an Exclusive-OR. Thus, two gates can be used to add these two bits together.
The resulting circuit is shown below.

In a computer, it is very much necessary to add multi-bit numbers together. If each
pair of bits can produce an output carry, it must also be able to recognize and include a
carry from the next lower order of magnitude. This is the same requirement as adding
decimal numbers -- if you have a carry from one column to the next; the next column has to
include that carry. We have to do the same thing with binary numbers, for the same reason.
As a result, the circuit to the left is known as a "half adder," because it only does half of the
job. There is need a circuit that will do the entire job.

To construct a full adder circuit, we'll need three inputs and two outputs. Since we'll
have both an input carry and an output carry, we'll designate them as CIN and COUT. At the
same time, we'll use S to designate the final Sum output. The resulting truth table is shown
below.

INPUTS OUTPUTS

A B CIN COUT S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 27/45

1 1 1 1 1

This is looking a bit messy. It looks as if COUT may be either an AND or an OR
function, depending on the value of A, and S is either an XOR or an XNOR, again
depending on the value of A. Looking a little more closely, however, we can note that the S
output is actually an XOR between the A input and the half-adder SUM output with B and
CIN inputs. Also, the output carry will be true if any two or all three inputs are logic 1.

What this suggests is also intuitively logical: we can use two half-adder circuits. The
first will add A and B to produce a partial Sum, while the second will add CIN to that Sum
to produce the final S output. If either half-adder produces a carry, there will be an output
carry. Thus, COUT will be an OR function of the half-adder Carry outputs. The resulting full
adder circuit is shown below.

The circuit above is really too complicated to be used in larger logic diagrams, so a
separate symbol, shown below, is used to represent a one-bit full adder. In fact, it is
common practice in logic diagrams to represent any complex function as a "black box" with
input and output signals designated. It is, after all, the logical function that is important, not
the exact method of performing that function.

HALF SUBTRACTOR

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 28/45

 We have seen how simple logic gates can perform the process of binary addition. It
is only logical to assume that a similar circuit could perform binary subtraction.

If we look at the possibilities involved in subtracting one 1-bit number from another,
we can quickly see that three of the four possible combinations are easy and straight-
forward. The fourth one involves a bit more:

 0 - 0 = 0
 1 - 0 = 1
 1 - 1 = 0
 0 - 1 = 1, with a borrow bit.

That borrow bit is just like a borrow in decimal subtraction: it subtracts from the
next higher order of magnitude in the overall number. Let's see what the truth table looks
like.

INPUTS OUTPUTS

A B BORROW A - B

0 0 0 0

0 1 1 1

1 0 0 1

1 1 0 0

This is an interesting result. The difference, A-B, is still an Exclusive-OR function, just
as the sum was for addition. The borrow is still an AND function, but is A'B instead of AB.

What we'd like to do, now, is find an easy way to use the binary adder to perform
subtraction as well. We already have half of it working: the difference output. Can we simply
invert the A input so the AND gate will have the right signals? No, we can't, because that
would invert the sense of the Exclusive-OR function.

What would be really nice is to convert B to the negative equivalent of its value, and
then use the basic adder just as it stands. To see if we can do that, let's consider negative
binary numbers below.

The half adder circuit can be designed as designed as follows,

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 29/45

 As like as the normal subtraction it is possible to perform the subtraction between
three binary numbers. It is necessary since when multi-bit subtraction is going to be
performed the borrow will be transferred to the next bit subtraction on some occasions. The
full subtractor circuit is show in the below figure.

 The input and output of the full subtractor is given below as a truth table,

INPUTS OUTPUTS

A B BorrIN BorrOUT Diff

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 30/45

1 1 1 1 1

MULTIPLEXER

 One circuit I've received a number of requests for is the multiplexer circuit. This is a
digital circuit with multiple signal inputs, one of which is selected by separate address
inputs to be sent to the single output. It's not easy to describe without the logic diagram, but
is easy to understand when the diagram is available.

 The 4x1 multiplexer circuit is shown in the below figure,

The multiplexer circuit is typically used to combine two or more digital signals onto a
single line, by placing them there at different times. Technically, this is known as time-division
multiplexing.

Input A is the addressing input, which controls which of the two data inputs, X0 or X1,
will be transmitted to the output. If the A input switches back and forth at a frequency more
than double the frequency of either digital signal, both signals will be accurately reproduced,
and can be separated again by a Demultiplexer circuit synchronized to the multiplexer.

This is not as difficult as it may seem at first glance; the telephone network combines
multiple audio signals onto a single pair of wires using exactly this technique, and is readily
able to separate many telephone conversations so that everyone's voice goes only to the

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 31/45

intended recipient. With the growth of the Internet and the World Wide Web, most people
have heard about T1 telephone lines. A T1 line can transmit up to 24 individual telephone
conversations by multiplexing them in this manner.

Very common application for this type of circuit is found in computers, where dynamic
memory uses the same address lines for both row and column addressing. A set of multiplexers
is used to first select the row address to the memory, then switch to the column address. This
scheme allows large amounts of memory to be incorporated into the computer while limiting the
number of copper traces required to connect that memory to the rest of the computer circuitry. In
such an application, this circuit is commonly called a data selector.

Multiplexers are not limited to two data inputs. If we use two addressing inputs, we can
multiplex up to four data signals. With three addressing inputs, we can multiplex eight signals. If
you would like to see a demonstration of a four-input multiplexer.

DEMULTIPLEXER/DECODER

 The opposite of the multiplexer circuit, logically enough, is the demultiplexer. This
circuit takes a single data input and one or more address inputs, and selects which of multiple
outputs will receive the input signal. The same circuit can also be used as a decoder, by using the
address inputs as a binary number and producing an output signal on the single output that
matches the binary address input. In this application, the data input line functions as a circuit
enabler — if the circuit is disabled, no output will show activity regardless of the binary input
number.

 This circuit uses the same AND gates and the same addressing scheme as the two-input
multiplexer circuit shown in these pages. The basic difference is that it is the inputs that are
combined and the outputs that are separate. By making this change, we get a circuit that is the
inverse of the two-input multiplexer. If you were to construct both circuits on a single
breadboard, connect the multiplexer output to the data IN of the Demultiplexer, and drive the
Address inputs of both circuits with the same signal, you would find that the initial X0 input
would be transmitted to OUT0 and the X1 input would reach only OUT1.

The one problem with this arrangement is that one of the two outputs will be inactive
while the other is active. To retain the output signal, we need to add a latch circuit that can
follow the data signal while it's active, but will hold the last signal state while the other data
signal is active. An excellent circuit for this is the D (or Data) Latch. By placing a latch after
each output and using the Addressing input (or its inverse) to control them, we can maintain both
output signals at all times. If the Address input changes much more rapidly than the data inputs,
the output signals will match the inputs faithfully.

 A 2-to-4 line decoder/Demultiplexer is shown below.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 32/45

 Like the multiplexer circuit, the decoder/Demultiplexer is not limited to a single address
line, and therefore can have more than two outputs. With two, three, or four addressing lines, this
circuit can decode a two, three, or four-bit binary number, or can Demultiplexer up to four, eight,
or sixteen time-multiplexed signals.

 As a decoder, this circuit takes an n-bit binary number and produces an output on one of
2n output lines. It is therefore commonly defined by the number of addressing input lines and the
number of data output lines. Typical decoder/Demultiplexer ICs might contain two 2-to-4 line
circuits, a 3-to-8 line circuit, or a 4-to-16 line circuit. One exception to the binary nature of this
circuit is the 4-to-10 line decoder/Demultiplexer, which is intended to convert a BCD (Binary
Coded Decimal) input to an output in the 0-9 range.

If you use this circuit as a Demultiplexer, you may want to add data latches at the outputs
to retain each signal while the others are being transmitted. However, this does not apply when
you are using this circuit as a decoder — then you will want only a single active output to match
the input code.

Sequential Logic Basics

Unlike Combinational Logic circuits that change state depending upon the actual signals being
applied to their inputs at that time, Sequential Logic circuits have some form of inherent
"Memory" built in to them and they are able to take into account their previous input state as
well as those actually present, a sort of "before" and "after" is involved. They are generally

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 33/45

termed as Two State or Bistable devices which can have their output set in either of two basic
states, a logic level "1" or a logic level "0" and will remain "latched" indefinitely in this current
state or condition until some other input trigger pulse or signal is applied which will cause it to
change its state once again.

Sequential Logic Circuit

The word "Sequential" means that things happen in a "sequence", one after another and in
Sequential Logic circuits, the actual clock signal determines when things will happen next.
Simple sequential logic circuits can be constructed from standard Bistable circuits such as Flip-
flops, Latches or Counters and which themselves can be made by simply connecting together
NAND Gates and/or NOR Gates in a particular combinational way to produce the required
sequential circuit.

Classification of Sequential Logic

As well as the two logic states mentioned above logic level "1" and logic level "0", a third
element is introduced that separates Sequential Logic circuits from their Combinational Logic

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 34/45

counterparts, namely TIME. Sequential logic circuits that return back to their original state once
reset, i.e. circuits with loops or feedback paths are said to be "Cyclic" in nature.

Flip-Flops

Flip-flops are synchronous bistable devices. The term synchronous means the output changes
state only when the clock input is triggered. That is, changes in the output occur in
synchronization with the clock.
Flip-flop is a kind of multivibrator. There are three types of multivibrators:

1. Monostable multivibrator (also called one-shot) has only one stable state. It produces a
single pulse in response to a triggering input.

2. Bistable multivibrator exhibits two stable states. It is able to retain the two SET and
RESET states indefinitely. It is commonly used as a basic building block for counters,
registers and memories.

3. Astable multivibrator has no stable state at all. It is used primarily as an oscillator to
generate periodic pulse waveforms for timing purposes.

Edge-Triggered Flip-flops

An edge-triggered flip-flop changes states either at the positive edge (rising edge) or at the
negative edge (falling edge) of the clock pulse on the control input. The three basic types are
introduced here: S-R, J-K and D.

The S-R, J-K and D inputs are called synchronous inputs because data on these inputs are
transferred to the flip-flop's output only on the triggering edge of the clock pulse. On the other
hand, the direct set (SET) and clear (CLR) inputs are called asynchronous inputs, as they are
inputs that affect the state of the flip-flop independent of the clock. For the synchronous
operations to work properly, these asynchronous inputs must both be kept LOW.

Edge-triggered J-K flip-flop

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 35/45

The J-K flip-flop works very similar to S-R flip-flop. The only difference is that this flip-flop
has NO invalid state. The outputs toggle (change to the opposite state) when both J and K inputs
are HIGH. The truth table is shown below.

Edge-triggered D flip-flop

The operations of a D flip-flop is much more simpler. It has only one input addition to the clock.
 It is very useful when a single data bit (0 or 1) is to be stored. If there is a HIGH on the D input
when a clock pulse is applied, the flip-flop SETs and stores a 1. If there is a LOW on the D input
when a clock pulse is applied, the flip-flop RESETs and stores a 0. The truth table below
summarize the operations of the positive edge-triggered D flip-flop. As before, the negative
edge-triggered flip-flop works the same except that the falling edge of the clock pulse is the
triggering edge.

Pulse-Triggered (Master-Slave) Flip-flops

The term pulse-triggered means that data are entered into the flip-flop on the rising edge of the
clock pulse, but the output does not reflect the input state until the falling edge of the clock pulse.
 As this kind of flip-flops are sensitive to any change of the input levels during the clock pulse is
still HIGH, the inputs must be set up prior to the clock pulse's rising edge and must not be
changed before the falling edge. Otherwise, ambiguous results will happen.

The three basic types of pulse-triggered flip-flops are S-R, J-K and D. Their logic symbols are
shown below. Notice that they do not have the dynamic input indicator at the clock input but
have postponed output symbols at the outputs.

The truth tables for the above pulse-triggered flip-flops are all the same as that for the
edge-triggered flip-flops, except for the way they are clocked. These flip-flops are also called
Master-Slave flip-flops simply because their internal construction are divided into two sections.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 36/45

 The slave section is basically the same as the master section except that it is clocked on the
inverted clock pulse and is controlled by the outputs of the master section rather than by the
external inputs. The logic diagram for a basic master-slave S-R flip-flop is shown below.

The master/slave flip-flop overcomes the following problems.

 RIPPLE THROUGH. An input changes level during the clock period, and the change
appears at the output.

 PROPAGATION DELAY. The time between applying a signal to an input, and the
resulting change in the output.

These can give problems in logic circuits. The maste/slave flipflop consists of two rising edge
triggered D type flip-flops. The clock of the slave is fed via an inverter so that the falling edge of
the origonal clock pulse becomes a rising edge. The slave clock pulse is an inverted version of
the clock pulse shown in the lower diagram. The flip-flops are triggered at different levels of the
clock pulse edge. When data is to be entered, the slave is isolated from the master, so that
changes at the input do not appear at the output.Data on D is passed to Q of the master. The
master is then isolated from the D input. Data, from the Q of the master, is passed to Q of the
slave.

t1. Slave isolated from Master.
t2. Master connected to D input.
t3. Master isolated from D input.
t4. Master Q connected Slave D.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 37/45

Toggle Flip-Flop (T)

This flip-flop toggles (Q changes state) on the negative going edge of the clock pulse. T acts as
an ENABLE / INHIBIT control. Q will only toggle on the negative edge of the clock pulse,
when T is high. Below is shown a D type flip-flop connected as a toggle type. On each clock
pulse positive going edge, Q will go to the state bar Q was before the clock pulse arrived.
Remember that bar Q is the opposite level to Q. Therefore Q will toggle. This type of flip-flop is
a simplified version of the JK flip-flop. It is not usually found as an IC chip by itself, but is used
in many kinds of circuits, especially counter and dividers. Its only function is that it toggles itself
with every clock pulse (on either the leading edge, on the trailing edge) it can be constructed
from the RS flip-flop as shown in Figure (a).

This flip flop is normally set, or ``loaded'' with the preset and clear inputs. It can be used to
obtain an output pulse train with a frequency of half that of the clock pulse train, as seen from the
timing diagram, Figure (b). In this example, the T flip flop is triggered on the falling edge of the
clock pulse. Several T flip-flops are often connected together in a simple IC to form a ``divide by
N'' counter, where N is usually 5, 10, 12 or a power of 2.

Overall Behavior

Each flip-flop stores a single bit of data, which is emitted through the Q output on the east side.
Normally, the value can be controlled via the inputs to the west side. In particular, the value

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 38/45

changes when the clock input, marked by a triangle on each flip-flop, rises from 0 to 1; on this
rising edge, the value changes according to the corresponding table below.

D Flip-Flop T Flip-Flop J-K Flip-Flop S-R Flip-Flop

D Q

0 0

1 1

T Q

0 Q

1 Q'

J K Q

0 0 Q

0 1 0

1 0 1

1 1 Q'

S R Q

0 0 Q

0 1 0

1 0 1

1 1 ??

Another way of describing the different behavior of the flip-flops is as follows:

 D Flip-Flop: When the clock rises from 0 to 1, the value remembered by the flip-flop
becomes the value of the D input (Data) at that instant.

 T Flip-Flop: When the clock rises from 0 to 1, the value remembered by the flip-flop
either toggles or remains the same depending on whether the T input (Toggle) is 1 or 0.

 J-K Flip-Flop: When the clock rises from 0 to 1, the value remembered by the flip-flop
toggles if the J and K inputs are both 1, remains the same if they are both 0, and changes
to the K input value if J and K are not equal. (The names J and K do not stand for
anything.)

 R-S Flip-Flop: When the clock rises from 0 to 1, the value remembered by the flip-flop
remains unchanged if R and S are both 0, becomes 0 if the R input (Reset) is 1, and
becomes 1 if the S input (Set) is 1. The behavior in unspecified if both inputs are 1. (In
Logisim, the value in the flip-flop remains unchanged.)

Shift Registers

Shift Registers consists of a number of single bit "D-Type Data Latches" connected together in a
chain arrangement so that the output from one data latch becomes the input of the next latch and
so on, thereby moving the stored data serially from either the left or the right direction. The
number of individual Data Latches used to make up Shift Registers are determined by the
number of bits to be stored. The most common used is 8-bits wide. Shift Registers are mainly
used to store data and to convert data from either a serial to parallel or parallel to serial format
with all the latches being driven by a common clock (Clk) signal making them Synchronous
devices. They are generally provided with a Clear or Reset connection so that they can be "SET"
or "RESET" as required.

Generally, Shift Registers operate in one of four different modes:

 Serial-in to Parallel-out (SIPO)

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 39/45

 Serial-in to Serial-out (SISO)
 Parallel-in to Parallel-out (PIPO)
 Parallel-in to Serial-out (PISO)

Serial-in to Parallel-out.

Fig: 4-bit Serial-in to Parallel-out (SIPO) Shift Register

Lets assume that all the flip-flops (FFA to FFD) have just been RESET (CLEAR input) and that
all the outputs QA to QD are at logic level "0" ie, no parallel data output. If a logic "1" is
connected to the DATA input pin of FFA then on the first clock pulse the output of FFA and the
resulting QA will be set HIGH to logic "1" with all the other outputs remaining LOW at logic
"0". Assume now that the DATA input pin of FFA has returned LOW to logic "0". The next
clock pulse will change the output of FFA to logic "0" and the output of FFB and QB HIGH to
logic "1". The logic "1" has now moved or been "Shifted" one place along the register to the
right. When the third clock pulse arrives this logic "1" value moves to the output of FFC (QC)
and so on until the arrival of the fifth clock pulse which sets all the outputs QA to QD back again
to logic level "0" because the input has remained at a constant logic level "0".

The effect of each clock pulse is to shift the DATA contents of each stage one place to the right,
and this is shown in the following table until the complete DATA is stored, which can now be
read directly from the outputs of QA to QD. Then the DATA has been converted from a Serial
Data signal to a Parallel Data word.

Clock Pulse No QA QB QC QD

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 40/45

3 0 0 1 0

4 0 0 0 1

5 0 0 0 0

Serial-in to Serial-out

This Shift Register is very similar to the one above except where as the data was read directly in
a parallel form from the outputs QA to QD, this time the DATA is allowed to flow straight
through the register. Since there is only one output the DATA leaves the shift register one bit at a
time in a serial pattern and hence the name Serial-in to Serial-Out Shift Register.

Fig: 4-bit Serial-in to Serial-out (SISO) Shift Register

This type of Shift Register also acts as a temporary storage device or as a time delay device, with
the amount of time delay being controlled by the number of stages in the register, 4, 8, 16 etc or
by varying the application of the clock pulses. Commonly available IC's include the 74HC595 8-
bit Serial-in/Serial-out Shift Register with 3-state outputs.

Parallel-in to Serial-out

Parallel-in to Serial-out Shift Registers act in the opposite way to the Serial-in to Parallel-out one
above. The DATA is applied in parallel form to the parallel input pins PA to PD of the register
and is then read out sequentially from the register one bit at a time from PA to PD on each clock
cycle in a serial format.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 41/45

Fig: 4-bit Parallel-in to Serial-out (PISO) Shift Register

As this type of Shift Register converts parallel data, such as an 8-bit data word into serial data it
can be used to multiplex many different input lines into a single serial DATA stream which can
be sent directly to a computer or transmitted over a communications line. Commonly available
IC's include the 74HC165 8-bit Parallel-in/Serial-out Shift Registers.

Parallel-in to Parallel-out

Parallel-in to Parallel-out Shift Registers also act as a temporary storage device or as a time delay
device. The DATA is presented in a parallel format to the parallel input pins PA to PD and then
shifts it to the corresponding output pins QA to QD when the registers are clocked.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 42/45

Fig : 4-bit Parallel-in/Parallel-out (PIPO) Shift Register

As with the Serial-in to Serial-out shift register, this type of register also acts as a temporary
storage device or as a time delay device, with the amount of time delay being varied by the
frequency of the clock pulses.

Today, high speed bi-directional universal type Shift Registers such as the TTL 74LS194,
74LS195 or the CMOS 4035 are available as a 4-bit multi-function devices that can be used in
serial-serial, shift left, shift right, serial-parallel, parallel-serial, and as a parallel-parallel Data
Registers, hence the name "Universal".

COUNTERS

Ring counters

If the output of a shift register is fed back to the input. a ring counter results. The data pattern
contained within the shift register will recirculate as long as clock pulses are applied. For
example, the data pattern will repeat every four clock pulses in the figure below. However, we
must load a data pattern. All 0's or all 1's doesn't count. Is a continuous logic level from such a
condition useful?

We make provisions for loading data into the parallel-in/ serial-out shift register configured as a
ring counter below. Any random pattern may be loaded. The most generally useful pattern is a
single 1.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 43/45

Loading binary 1000 into the ring counter, above, prior to shifting yields a viewable pattern. The
data pattern for a single stage repeats every four clock pulses in our 4-stage example. The
waveforms for all four stages look the same, except for the one clock time delay from one stage
to the next. See figure below.

The circuit above is a divide by 4 counter. Comparing the clock input to any one of the outputs,
shows a frequency ratio of 4:1. How may stages would we need for a divide by 10 ring counter?
Ten stages would recirculate the 1 every 10 clock pulses.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 44/45

Up-Down Counters

A circuit of a 3-bit synchronous up-down counter and a table of its sequence are shown below.
 Similar to an asynchronous up-down counter, a synchronous up-down counter also has an up-
down control input. It is used to control the direction of the counter through a certain sequence.

An examination of the sequence table shows:

 for both the UP and DOWN sequences, Q0 toggles on
each clock pulse.

 for the UP sequence, Q1 changes state on the next clock
pulse when Q0=1.

 for the DOWN sequence, Q1 changes state on the next
clock pulse when Q0=0.

 for the UP sequence, Q2 changes state on the next clock
pulse when Q0=Q1=1.

 for the DOWN sequence, Q2 changes state on the next
clock pulse when Q0=Q1=0.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:I (Logic Gates) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 45/45

Possible Question

PART – A

1. Flip-Flop is a ____ bit register.
 a. 1 b.3 c.2 d.4
2. Combinational circuits output depends the ____
 a. present input b. present and past input c. past output d.future input
3. Boolean Algebra A’+ A=____
 a. 0 b. 1 c. A d. A’
4. Sequential circuits output depends only the
 a. present input b. present and past input c. past output d.future input
5. What is the base number of hexadecimal number
 a. 2 b. 4 c. 8 d.16
6. What is the one’s complement of (1011110)2
 a. 0100001 b. 0111101 c. 1010000 d. 0001110
7. Convert (255)10 to binary number () 2
 a. 111111110 b.100101010 c. 101010101 d. 010101010
8. Signed number is used to indicate ____ numbers
 a. negative b. positive c. negative and positive d. zero
9. When the CPU detects an interrupt, it then saves its
 a. previous state b. next state c. current state d. future state
10. A microprogram is sequencer perform the operation____
 a. read b. write c. read and write d. read and execute

PART – B

1. Define Flip-Flop.
2. Convert the binary number (1011101)2 into decimal number.
3. Define combinational circuits.
4. Convert the binary number (101110101000010101)2 into octel number.

PART –C
1. Discuss in detail Boolean properties with an example.
2. Explain in detail 4:1 multiplexer with neat diagram.
3. Discuss in detail shift registers with an example.
4. Explain in detail 8:1 multiplexer with neat diagram.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:II (Data Representation and Basic Computer
Architecture) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 1/22

UNIT – II

Numbers Systems –Complements-Fixed and Floating point Representation-Character representation-
Addition, Subtraction-Magnitude Comparison-Multiplication algorithms for integers- Division
algorithms for integers.

Numbering System

 Many number systems are in use in digital technology. The most common are the
decimal, binary, octal, and hexadecimal systems. The decimal system is clearly the most familiar
to us because it is a tool that we use every day. Examining some of its characteristics will help us
to better understand the other systems. The four numerical representation systems that are used
most commonly in the digital system are,

 Decimal
 Binary
 Octal
 Hexadecimal

Decimal System

 The decimal system is composed of 10 numerals or symbols. These 10 symbols are 0, 1,
2, 3, 4, 5, 6, 7, 8, 9. Using these symbols as digits of a number, we can express any quantity. The
decimal system is also called the base-10 system because it has 10 digits.

103 102 101 100

=1000 =100 =10 =1

Most Significant Digit

 Even though the decimal system has only 10 symbols, any number of any magnitude can
be expressed by using our system of positional weighting.

Decimal Examples

 5210
 102410
 6400010

Binary System

 In the binary system, there are only two symbols or possible digit values, 0 and 1. This
base-2 system can be used to represent any quantity that can be represented in decimal or other

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:II (Data Representation and Basic Computer
Architecture) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 2/22

base system. This system has been developed since the machines can understand only two logics,
1 or 0.

23 22 21 20

=8 =4 =2 =1

Most Significant Digit

Binary Examples

 112
 10102
 110002

Binary Counting

The Binary counting sequence is shown in the table:

23 22 21 20 Decimal

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1 0 0 1 9

1 0 1 0 10

1 0 1 1 11

1 1 0 0 12

1 1 0 1 13

1 1 1 0 14

1 1 1 1 15

Representing Binary Quantities

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:II (Data Representation and Basic Computer
Architecture) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 3/22

 In digital systems the information that is being processed is usually presented in binary
form. Binary quantities can be represented by any device that has only two operating states or
possible conditions. E.g. a switch is only open or closed. We arbitrarily (as we define them) let
an open switch represent binary 0 and a closed switch represent binary 1. Thus we can represent
any binary number by using series of switches.

Typical Voltage Assignment

 Binary 1: Any voltage between 2V to 5V
 Binary 0: Any voltage between 0V to 0.8V
 Not used: Voltage between 0.8V to 2V in 5 Volt CMOS and TTL Logic, this may cause
error in a digital circuit. Today's digital circuits works at 1.8 volts, so this statement may not hold
true for all logic circuits.
 We can see another significant difference between digital and analog systems. In digital
systems, the exact voltage value is not important; eg, a voltage of 3.6V means the same as a
voltage of 4.3V. In analog systems, the exact voltage value is important.
 The binary number system is the most important one in digital systems, but several others
are also important. The decimal system is important because it is universally used to represent
quantities outside a digital system. This means that there will be situations where decimal values
have to be converted to binary values before they are entered into the digital system.

 In additional to binary and decimal, two other number systems find wide-spread
applications in digital systems. The octal (base-8) and hexadecimal (base-16) number systems
are both used for the same purpose- to provide an efficient means for representing large binary
system.

Octal System

The octal number system has a base of eight, meaning that it has eight possible digits: 0,
1, 2, 3, 4, 5, 6, and 7.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:II (Data Representation and Basic Computer
Architecture) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 4/22

83 82 81 80

=512 =64 =8 =1

Most Significant Digit

Octal Examples

 2378
 248
 118

Hexadecimal System

 The hexadecimal system uses base 16. Thus, it has 16 possible digit symbols. It uses the
digits 0 through 9 plus the letters A, B, C, D, E, and F as the 16 digit symbols.

163 162 161 160

=4096 =256 =16 =1

Most Significant Digit

Hexadecimal Examples

 2416
 1116

Conversion:

 Converting from one code form to another code form is called code conversion, like
converting from binary to decimal or converting from hexadecimal to decimal.

Binary-To-Decimal Conversion

 Any binary number can be converted to its decimal equivalent simply by summing
together the weights of the various positions in the binary number which contain a 1.

Binary Decimal

110112

24(1)+23(1)+22(0)+21(1)+20(1) =16+8+0+2+1

Result 2710

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:II (Data Representation and Basic Computer
Architecture) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 5/22

 You should have noticed that the method is to find the weights (i.e., powers of 2) for each
bit position that contains a 1, and then to add them up.

Decimal-To-Binary Conversion

 The method of converting the decimal number to binary is called as Double dabble
(Repeated division by 2) method. Convert 2510 to binary

Division Remainder Binary

25/2 = 12+ remainder of 1 1 (Least Significant Bit)

12/2 = 6 + remainder of 0 0

6/2 = 3 + remainder of 0 0

3/2 = 1 + remainder of 1 1

1/2 = 0 + remainder of 1 1 (Most Significant Bit)

Result 2510 = 110012

The Flow chart for Double dabble method is as follows:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:II (Data Representation and Basic Computer
Architecture) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 6/22

Octal-To-Decimal Conversion

Any octal number can be converted to its decimal equivalent simply by summing
together the product of weights (power of 8) of the various positions and the number present in
that position in the octal number.

Example:

 23616 = 2 x (82) + 3 x (81) + 6 x (80) = 15810

Decimal-To-Octal Conversion

 The method of converting the decimal number to octal is called as Octal dabble
(Repeated division by 8) method.

Example: Convert 17710 to octal and binary

Division Result Binary

177/8 = 22+ remainder of 1 1 (Least Significant Bit)

22/ 8 = 2 + remainder of 6 6

2 / 8 = 0 + remainder of 2 2 (Most Significant Bit)

Result 17710 = 2618

Binary = 0101100012

Hexadecimal-To-Decimal Conversion

Any hexadecimal number can be converted to its decimal equivalent simply by summing
together the product of weights (power of 16) of the various positions and the number present in
that position in the hexadecimal number number.

Example:

 2AF16 = 2 x (162) + 10 x (161) + 15 x (160) = 68710

Decimal-To-Hexadecimal Conversion

 The method of converting the decimal number to hexadecimal is called as Hex dabble
(Repeated division by 16) method

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:II (Data Representation and Basic Computer
Architecture) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 7/22

Example: convert 37810 to hexadecimal and binary:

Division Result Hexadecimal

378/16 = 23+ remainder of 10 A (Least Significant Bit)23

23/16 = 1 + remainder of 7 7

1/16 = 0 + remainder of 1 1 (Most Significant Bit)

Result 37810 = 17A16

Binary = 0001 0111 10102

Binary-To-Octal / Octal-To-Binary Conversion

Octal Digit 0 1 2 3 4 5 6 7

Binary Equivalent 000 001 010 011 100 101 110 111

Each Octal digit is represented by three binary digits.

Example:

100 111 0102 = (100) (111) (010)2 = 4 7 28

Binary-To-Hexadecimal /Hexadecimal-To-Binary Conversion

Hexadecimal Digit 0 1 2 3 4 5 6 7

Binary Equivalent 0000 0001 0010 0011 0100 0101 0110 0111

Hexadecimal Digit 8 9 A B C D E F

Binary Equivalent 1000 1001 1010 1011 1100 1101 1110 1111

 Each Hexadecimal digit is represented by four bits of binary digit.

Example:

 1011 0010 11112 = (1011) (0010) (1111)2 = B 2 F16

Floating Point Numbers

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:II (Data Representation and Basic Computer
Architecture) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 8/22

 A real number or floating point number is a number which has both an integer and a
fractional part.
Examples for real decimal numbers are 123.4510, 0.123410, etc.

103 102 101 100 10-1 10-2 10-3

=1000 =100 =10 =1 . =0.1 =0.01 =0.001

Most Significant Digit Decimal point Least Significant Digit

Examples for real binary numbers are 1100.11002, 0.10012, etc.

23 22 21 20 2-1 2-2 2-3

=8 =4 =2 =1 . =0.5 =0.25 =0.125

Most Significant Digit Binary point Least Significant Digit

Examples for real octal numbers are 12.38, 11.18, etc.

83 82 81 80 8-1 8-2 8-3

=512 =64 =8 =1 . =1/8 =1/64 =1/512

Most Significant Digit Octal point Least Significant Digit

Examples for real hexadecimal numbers are 24.616, 11.116, etc.

163 162 161 160 16-1 16-2 16-3

=4096 =256 =16 =1 . =1/16 =1/256 =1/4096

Most Significant Digit Hexa Decimal point Least Significant Digit

Binary Addition

 The binary addition is very much similar to decimal addition and the addition of two bits
is given as,

0 + 0 = 00 ; Sum 0 and Carry 0
0 +1 = 01 ; Sum 1 and Carry 0
1 + 0 = 01 ; Sum 1 and Carry 0
1 + 1 = 10 ; Sum 0 and Carry 1

 In the above addition the result is separated into two parts such as Sum and Carry.

When the addition of multiple bits is performed the carry of previous bit will be added
with current bit addition. When the carry is zero the above addition result is followed. When the
carry is one the result will be as follows,

1 + 0 + 0 = 00 ; Sum 1 and Carry 0
1 + 0 +1 = 01 ; Sum 0 and Carry 1

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:II (Data Representation and Basic Computer
Architecture) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 9/22

1 + 1 + 0 = 01 ; Sum 0 and Carry 1
1 + 1 + 1 = 10 ; Sum 1 and Carry 1

Example:

 011 3
 +100 +4
 111 7

Binary Subtraction

 The binary subtraction very much similar to decimal subtraction the subtraction two bits
is given as,

0 - 0 = 00 ; Difference 0 and Borrow 0
0 - 1 = 11 ; Difference 1 and Borrow 1
1 - 0 = 10 ; Difference 1 and Borrow 0
1 - 1 = 00 ; Difference 0 and Borrow 0

 In the above addition the result is separated into two parts such as Difference and
Borrow.

When the Subtraction of multiple bits is performed, the borrow of previous bit will be
subtracted with current bit subtraction. When, the borrow is zero the above subtraction result is
followed. When the borrow is one the result will be as follows,

1 + 0 + 0 = 11 ; Difference 1 and Borrow 1
1 + 0 +1 = 01 ; Difference 0 and Borrow 1
1 + 1 + 0 = 00 ; Difference 0 and Borrow 0
1 + 1 + 1 = 11 ; Difference 1 and Borrow 1

Example:

 110 6
 - 101 -5
 001 1

Note: If the subtrahend is grater than the minuend, then the result will be represented indirectly
(2’s complement of the difference).

Binary Multiplication

 The multiplication of two bits is given as,

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:II (Data Representation and Basic Computer
Architecture) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 10/22

0 x 0 = 0
0 x 1 = 0
1 x 0 = 0
1 x 1 = 1

 The multiplication can be done by two different methods, one is by using the above rules
as like normal multiplication, another by repeated addition method. In repeated addition method
the multiplicand will be added with the same value and the count (multiplier) value is
decremented by one and this process will be continued until the count (multiplier) value reaches
zero.

Example:

Normal method:
 111 x multiplicand 7 x
 101 multiplier 5
 111 35
 000
 111
 100011

Repeated addition method:

111 (multiplicand) count = 101 (multiplier) – 1
 if, count > 0 +111 count = count -1

 1110
if, count > 0 +111 count = count -1
 ...
 it continues until the count reaches zero.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:II (Data Representation and Basic Computer
Architecture) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 11/22

Binary Division

 The division of two bits is given as,

0 / 0 = 0
1 / 1 = 1

 The division can be done by two different methods, one is by using the above rules as
like normal division, another by repeated subtraction method. In repeated subtraction method the
divisor value will be subtracted from the dividend and the count (quotient) value is incremented
by one and this process will be continued until the dividend value is greater than divisor value.
the final value of the dividend that is less than the divisor value is remainder.

Example:

Normal method:
 _10__ _3_
 11 | 110 dividend 3 | 6
 11_ multiplier 3
 00 0

Repeated subtraction method:

110 (dividend) count = 0 (quotient)
 if, dividend > divisor -011 count = count +1 (i.e., 01)

 011
if, dividend > divisor -011 count = count +1 (i.e., 10)
 00

Stop the subtraction process since the dividend value (00) is less than the divisor value (11). The
final dividend value “00” is remainder and the final count value “10” is the quotient.

1’s and 2’s Complement

 There are two types of complement for binary number system, namely, 1’s complement
and 2’s complement. 1’s complement and 2’s complement can be used to perform subtraction
using adder. Also they are used to represent negative numbers.

1’s complement

 The 1’s complement of the binary digit (bit) is defined as 1 minus that bit,

 i.e., 1’s complement of 1 is 1 - 1 = 0
 1’s complement of 0 is 1 - 0 = 1

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:II (Data Representation and Basic Computer
Architecture) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 12/22

Example:

Binary number 1’s cimplement
1011 0100
11010 00101

2’s complement

 The 2’s complement of the binary digit (bit) is adding 1 with the 1’s complement
value of that number.

Example:

Binary number 2’s complement
1001 0111
10010 01110

Subtraction using complement method

1’s complement subtraction

 In this method the following three steps are followed,

 Take the minuend in binary format as it is.
 Take the 1’s complement for subtrahend and add with the minuend.
 If carry is produced, add the carry to the sum.

 The carry produced is called end-around carry. If carry is not produced it indicates that
the result is negative and the result is in 1’s complement method.

Example:

 110 (minuend) 6
 010 (subtrahend) -5
 1 000 1
If the carry is ‘1’, then add the carry with the result and the result is positive. The final answer is
001.

101 (minuend) 5
 001 (subtrahend) -6
 0 110 -1

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:II (Data Representation and Basic Computer
Architecture) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 13/22

If the carry is ‘0’, the result is negative and the 1’s complement of the result will give the
difference. The final answer is 001.

2’s complement subtraction

 In this method the following steps are followed,

 Take the minuend in binary format as it is.
 Take the 2’s complement for subtrahend and add it with the minuend.
 If carry is produced, ignore the carry.

Example:

 110 (minuend) 6
 011 (subtrahend) -5
 1 001 1
If the carry is ‘1’, then the result is positive and the direct answer will be produced. The final
answer is 001.

101 (minuend) 5
 010 (subtrahend) -6
 0 111 -1
If the carry is ‘0’, the result is negative and the 2’s complement of the result will give the
difference. The final answer is 001.

Binary Codes

 Binary codes are codes which are represented in binary system with modification from
the original ones. The different types of codes are:

 Weighted codes
 Non Weighted Codes

Weighted Codes

 Weighted binary codes are those which obey the positional weighting principles, each
position of the number represents a specific weight. The binary counting sequence is an example.

Decimal 8421 2421 5211 Excess-3

0 0000 0000 0000 0011

1 0001 0001 0001 0100

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:II (Data Representation and Basic Computer
Architecture) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 14/22

2 0010 0010 0011 0101

3 0011 0011 0101 0110

4 0100 0100 0111 0111

5 0101 1011 1000 1000

6 0110 1100 1010 1001

7 0111 1101 1100 1010

8 1000 1110 1110 1011

9 1001 1111 1111 1100

8421 Code/BCD Code

 The BCD (Binary Coded Decimal) is a straight assignment of the binary equivalent. It is
possible to assign weights to the binary bits according to their positions. The weights in the BCD
code are 8,4,2,1.

Example: The bit assignment 1001 can be seen by its weights to represent the decimal 9
because:

1x8+0x4+0x2+1x1 = 9

2421 Code

 This is a weighted code, its weights are 2, 4, 2 and 1. A decimal number is represented in
4-bit form and the total four bits weight is 2 + 4 + 2 + 1 = 9. Hence the 2421 code represents the
decimal numbers from 0 to 9.

5211 Code

 This is a weighted code, its weights are 5, 2, 1 and 1. A decimal number is represented in
4-bit form and the total four bits weight is 5 + 2 + 1 + 1 = 9. Hence the 5211 code represents the
decimal numbers from 0 to 9

Non Weighted Codes

 Non weighted codes are codes that are not positionally weighted. That is, each position
within the binary number is not assigned a fixed value.

Excess-3 Code

 Excess-3 is a non weighted code used to express decimal numbers. The code derives its
name from the fact that each binary code is the corresponding 8421 code plus 0011(3).

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:II (Data Representation and Basic Computer
Architecture) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 15/22

Example: 1000 of 8421 = 1011 in Excess-3

Gray Code

 The gray code belongs to a class of codes called minimum change codes, in which only
one bit in the code changes when moving from one code to the next. The Gray code is non-
weighted code, as the position of bit does not contain any weight. The gray code is a reflective
digital code which has the special property that any two subsequent numbers codes differ by only
one bit. This is also called a unit-distance code. In digital Gray code has got a special place.

Decimal Number Binary Code Gray Code

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

Binary to Gray Conversion

 Gray Code MSB is binary code MSB.
 Gray Code MSB-1 is the XOR of binary code MSB and MSB-1.
 MSB-2 bit of gray code is XOR of MSB-1 and MSB-2 bit of binary code.

MSB-N bit of gray code is XOR of MSB-N-1 and MSB-N bit of binary code.

Error Detecting and Correction Codes

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:II (Data Representation and Basic Computer
Architecture) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 16/22

 For reliable transmission and storage of digital data, error detection and correction is
required. Below are a few examples of codes which permit error detection and error correction
after detection.

Error Detecting Codes

 When data is transmitted from one point to another, like in wireless transmission, or it is
just stored, like in hard disks and memories, there are chances that data may get corrupted. To
detect these data errors, we use special codes, which are error detection codes.

Parity

 In parity codes, every data byte, or nibble (according to how user wants to use it) is
checked if they have even number of ones or even number of zeros. Based on this information an
additional bit is appended to the original data. Thus if we consider 8-bit data, adding the parity
bit will make it 9 bit long.

At the receiver side, once again parity is calculated and matched with the received parity
(bit 9), and if they match, data is ok, otherwise data is corrupt.

There are two types of parity:

 Even parity: Checks if there is an even number of ones; if so, parity bit is zero. When
the number of ones is odd then parity bit is set to 1.

 Odd Parity: Checks if there is an odd number of ones; if so, parity bit is zero. When
number of ones is even then parity bit is set to 1.

Other than the parity various types of check sum techniques are used to detect the error in the
transmitted data such as, Adding all bytes, CRC, Fletcher's checksum, Adler-32, etc.,

Error-Correcting Codes

 Error-correcting codes not only detect errors, but also correct them. This is used normally
in Satellite communication, where turn-around delay is very high as is the probability of data
getting corrupt.

Hamming Code

 Hamming code adds a minimum number of bits to the data transmitted in a noisy
channel, to be able to correct every possible one-bit error. It can detect (not correct) two-bit
errors and cannot distinguish between 1-bit and 2-bits inconsistencies. In general it can't detect
3(or more)-bits errors. The hamming detection code is formed based on the parity.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:II (Data Representation and Basic Computer
Architecture) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 17/22

 The number of parity bits (p) has to be used in hamming code for the given number of
data bits (m) can be found with the help of the following relation,

2p > p + m + 1

General algorithm

The following general algorithm generates a single-error correcting (SEC) code for any
number of bits.

1. Number the bits starting from 1: bit 1, 2, 3, 4, 5, etc.
2. Write the bit numbers in binary. 1, 10, 11, 100, 101, etc.
3. All bit positions that are powers of two (have only one 1 bit in the binary form of their

position) are parity bits.
4. All other bit positions, with two or more 1 bits in the binary form of their position, are

data bits.
5. Each data bit is included in a unique set of 2 or more parity bits, as determined by the

binary form of its bit position.
1. Parity bit 1 covers all bit positions which have the least significant bit set: bit 1

(the parity bit itself), 3, 5, 7, 9, etc.
2. Parity bit 2 covers all bit positions which have the second least significant bit set:

bit 2 (the parity bit itself), 3, 6, 7, 10, 11, etc.
3. Parity bit 4 covers all bit positions which have the third least significant bit set:

bits 4–7, 12–15, 20–23, etc.
4. Parity bit 8 covers all bit positions which have the fourth least significant bit set:

bits 8–15, 24–31, 40–47, etc.
5. In general each parity bit covers all bits where the binary AND of the parity

position and the bit position is non-zero.

The form of the parity is irrelevant. Even parity is simpler from the perspective of
theoretical mathematics, but there is no difference in practice.

Parity Advantages

 The advantages of Parity are,

 Single bit error can be detected.
 It very much easier to form.
 It requires only one bit to detect the error.
 It act as is the base for other types of error detection and correction codes like Hamming

code.

Magnitude Comparator

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:II (Data Representation and Basic Computer
Architecture) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 18/22

Another common and very useful combinational logic circuit is that of the Magnitude
Comparator circuit. Digital or Binary Comparators are made up from
standard AND, NOR and NOT gates that compare the digital signals present at their input
terminals and produce an output depending upon the condition of those inputs.
For example, along with being able to add and subtract binary numbers we need to be able to
compare them and determine whether the value of input A is greater than, smaller than or equal
to the value at input B etc. The digital comparator accomplishes this using several logic gates
that operate on the principles of Boolean Algebra. There are two main types of Magnitude
Comparator available and these are.

 Identity Comparator – an Identity Comparator is a digital comparator that has only
one output terminal for when A = B either “HIGH” A = B = 1 or “LOW” A = B = 0

 Magnitude Comparator – a Magnitude Comparator is a digital comparator which has
three output terminals, one each for equality, A = B greater than,A > B and less
than A < B

The purpose of a Magnitude Comparator is to compare a set of variables or unknown numbers,
for example A (A1, A2, A3, …. An, etc) against that of a constant or unknown value such
as B (B1, B2, B3, …. Bn, etc) and produce an output condition or flag depending upon the result
of the comparison. For example, a magnitude comparator of two 1-bits, (A and B) inputs would
produce the following three output conditions when compared to each other.

Which means: A is greater than B, A is equal to B, and A is less than B
This is useful if we want to compare two variables and want to produce an output when any of
the above three conditions are achieved. For example, produce an output from a counter when a
certain count number is reached. Consider the simple 1-bit comparator below.
1-bit Magnitude Comparator Circuit

Then the operation of a 1-bit digital comparator is given in the following Truth Table.
Magnitude Comparator Truth Table

Inputs Outputs

B A A > B A = B A < B

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:II (Data Representation and Basic Computer
Architecture) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 19/22

0 0 0 1 0

0 1 1 0 0

1 0 0 0 1

1 1 0 1 0

You may notice two distinct features about the comparator from the above truth table. Firstly, the
circuit does not distinguish between either two “0” or two “1”‘s as an output A = B is produced
when they are both equal, either A = B = “0” or A = B = “1”. Secondly, the output condition
for A = B resembles that of a commonly available logic gate, the Exclusive-NOR or Ex-
NOR function (equivalence) on each of the n-bits giving:Q = A ⊕ B
Digital comparators actually use Exclusive-NOR gates within their design for comparing their
respective pairs of bits. When we are comparing two binary or BCD values or variables against
each other, we are comparing the “magnitude” of these values, a logic “0” against a logic “1”
which is where the term Magnitude Comparator comes from.
As well as comparing individual bits, we can design larger bit comparators by cascading
together n of these and produce a n-bit comparator just as we did for the n-bit adder in the
previous tutorial. Multi-bit comparators can be constructed to compare whole binary or BCD
words to produce an output if one word is larger, equal to or less than the other.
A very good example of this is the 4-bit Magnitude Comparator. Here, two 4-bit words
(“nibbles”) are compared to each other to produce the relevant output with one word connected
to inputs A and the other to be compared against connected to input B as shown below.
4-bit Magnitude Comparator

Some commercially available digital comparators such as the TTL 74LS85 or CMOS 4063 4-bit
magnitude comparator have additional input terminals that allow more individual comparators to
be “cascaded” together to compare words larger than 4-bits with magnitude comparators of “n”-
bits being produced. These cascading inputs are connected directly to the corresponding outputs
of the previous comparator as shown to compare 8, 16 or even 32-bit words.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:II (Data Representation and Basic Computer
Architecture) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 20/22

8-bit Word Comparator

When comparing large binary or BCD numbers like the example above, to save time the
comparator starts by comparing the highest-order bit (MSB) first. If equality exists, A = B then it
compares the next lowest bit and so on until it reaches the lowest-order bit, (LSB). If equality
still exists then the two numbers are defined as being equal.
If inequality is found, either A > B or A < B the relationship between the two numbers is
determined and the comparison between any additional lower order bits stops. Digital
Comparator are used widely in Analogue-to-Digital converters, (ADC) and Arithmetic Logic
Units, (ALU) to perform a variety of arithmetic operations.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:II (Data Representation and Basic Computer
Architecture) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 21/22

Part-A

1. A pipeline is like

 a. an automobile assembly line b. house pipeline c. both a and b d. a gas line

2. Data hazards occur when

 a.Greater performance loss

 b. Pipeline changes the order of read/write access to operands

 c. Some functional unit is not fully pipelined

 d. Machine size is limited

3. In a vectored interrupt.

 a. The branch address is assigned to a fixed location in memory.

 b. The interrupting source supplies the branch information to the processor through

 an interrupt vector.

 c. The branch address is obtained from a register in the processor

 d. The branch address is obtained from a memory in the processor

4. The circuit used to store one bit of data is known as

 a. Encoder b. OR gate c. Flip Flop d. Decoder

5. Cache memory acts between

 a. CPU and RAM b. RAM and ROM c. CPU and Hard Disk d. ROM

6. Write Through technique is used in which memory for updating the data

 a. Virtual memory b. Main memory c. Auxiliary memory d. Cache memory

7. Generally Dynamic RAM is used as main memory in a computer system as it

 a. Consumes less power b. has higher speed

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture
COURSECODE: 18CSU102 UNIT:II (Data Representation and Basic Computer
Architecture) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 22/22

 c. has lower cell density d. needs refreshing circuitry

8. In a program using subroutine call instruction, it is necessary

 a. initialize program counter b. Clear the accumulator

 c. Reset the microprocessor d. Clear the instruction register

9. A Stack-organised Computer uses instruction of

 a. Indirect addressing b. Two-addressing c. Zero addressing d. Index addressing

10. If the main memory is of 8K bytes and the cache memory is of 2K words. It uses

 associative mapping. Then each word of cache memory shall be

a.11 bits b. 21 bits c. 16 bits d. 20 bits

Part-B

1. Write short notes on interrupt.
2. What is an assembly language?
3. What is ROM and RAM?

Part-C

1. Explain 1’s complement and 2’s complement number with examples.
2. Convert the following numbers, i. (1246)8=()2 ii. (AB67)16 = ()2
3.Discuss in detail about the various instruction set.
4.Explain the functions of input-output and interrupt with neat diagram.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 1/25

UNIT-III

Computer registers, bus systems -Instruction set-timing and control-Instruction cycle-memory
reference-input-output and interrupt-interconnection structures-bus interconnection design of
computers

Computer Registers

A register is a very small amount of very fast memory that is built into the CPU (central
processing unit) in order to speed up its operations by providing quick access to commonly used
values. Registers refers to semiconductor devices whose contents can be accessed (i.e., read and
written to) at extremely high speeds but which are held there only temporarily (i.e., while in use
or only as long as the power supply remains on).
Registers are the top of the memory hierarchy and are the fastest way for the system to
manipulate data.Registers are normally measured by the number of bits they can hold, for
example, an 8-bit register means it can store 8 bits of data or a 32-bit register means it can store
32 bit of data.
Registers are used to store data temporarily during the execution of a program. Some of the
registers are accessible to the user through instructions. Data and instructions must be put into
the system. So we need registers for this.
The basic computer registers with their names, size and functions are listed below

Register
Symbol

Register Name
Number of
Bits

Description

AC Accumulator 16 Processor Register

DR Data Register 16 Hold memory data

TR Temporary
Register

16 Holds temporary Data

IR Instruction
Register

16 Holds Instruction Code

AR Address Register 12 Holds memory address

PC Program Counter 12 Holds address of next
instruction

INPR Input Register 8 Holds Input data

OUTR Output Register 8 Holds Output data

System Bus

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 2/25

 A system bus is a single computer bus that connects the major components of a computer
system, combining the functions of adata bus to carry information, an address bus to determine
where it should be sent, and a control bus to determine its operation. The technique was
developed to reduce costs and improve modularity, and although popular in the 1970s and 1980s,
more modern computers use a variety of separate buses adapted to more specific needs.

Computer Instructions

Computer instructions are the basic components of a machine language program. They are also
known as macrooperations, since each one is comprised of a sequences of microoperations.

Each instruction initiates a sequence of microoperations that fetch operands from registers or
memory, possibly perform arithmetic, logic, or shift operations, and store results in registers or
memory.

Instructions are encoded as binary instruction codes. Each instruction code contains of
a operation code, or opcode, which designates the overall purpose of the instruction (e.g. add,
subtract, move, input, etc.). The number of bits allocated for the opcode determined how many
different instructions the architecture supports.

In addition to the opcode, many instructions also contain one or more operands, which indicate
where in registers or memory the data required for the operation is located. For example,
and add instruction requires two operands, and a not instruction requires one.

 15 12 11 6 5 0
 +-----------------------------------+
 | Opcode | Operand | Operand |

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 3/25

The opcode and operands are most often encoded as unsigned binary numbers in order to
minimize the number of bits used to store them. For example, a 4-bit opcode encoded as a binary
number could represent up to 16 different operations.

The control unit is responsible for decoding the opcode and operand bits in the instruction
register, and then generating the control signals necessary to drive all other hardware in the CPU
to perform the sequence of microoperations that comprise the instruction.

CPU Block Diagram

. Effective Address by Addressing Mode

Mode Effective Address

Immediate Address of the instruction itself

Direct Address contained in the instruction code

Indirect Address at the address in the instruction code

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 4/25

Basic Computer Instruction Format

The Basic Computer has a 16-bit instruction code similar to the examples described above. It
supports direct and indirect addressing modes.

How many bits are required to specify the addressing mode?

 15 14 12 11 0
 +------------------+
 | I | OP | ADDRESS |
 +------------------+

 I = 0: direct
 I = 1: indirect

Computer Instructions

All Basic Computer instruction codes are 16 bits wide. There are 3 instruction code formats:

 Memory-reference instructions take a single memory address as an operand, and have the
format:

 15 14 12 11 0
 +-------------------+
 | I | OP | Address |
 +-------------------+

If I = 0, the instruction uses direct addressing. If I = 1, addressing in indirect.

How many memory-reference instructions can exist?

 Register-reference instructions operate solely on the AC register, and have the following
format:

 15 14 12 11 0
 +------------------+
 | 0 | 111 | OP |
 +------------------+

How many register-reference instructions can exist? How many memory-reference
instructions can coexist with register-reference instructions?

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 5/25

 Input/output instructions have the following format:
 15 14 12 11 0
 +------------------+
 | 1 | 111 | OP |

 +------------------+

Timing and Control

All sequential circuits in the Basic Computer CPU are driven by a master clock, with the
exception of the INPR register.

At each clock pulse, the control unit sends control signals to control inputs of the bus, the
registers, and the ALU.

Control unit design and implementation can be done by two general methods:

 A hardwired control unit is designed from scratch using traditional digital logic design
techniques to produce a minimal, optimized circuit. In other words, the control unit is like
an ASIC (application-specific integrated circuit).

 A microprogrammed control unit is built from some sort of ROM. The desired control
signals are simply stored in the ROM, and retrieved in sequence to drive the
microoperations needed by a particular instruction.

Instruction Cycle

In this chapter, we examine the sequences of microoperations that the Basic Computer goes
through for each instruction. Here, you should begin to understand how the required control
signals for each state of the CPU are determined, and how they are generated by the control unit.

The CPU performs a sequence of microoperations for each instruction. The sequence for each
instruction of the Basic Computer can be refined into 4 abstract phases:

1. Fetch instruction
2. Decode
3. Fetch operand
4. Execute

Program execution can be represented as a top-down design:

1. Program execution
a. Instruction 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 6/25

i. Fetch instruction
ii. Decode

iii. Fetch operand
iv. Execute

b. Instruction 2
i. Fetch instruction

ii. Decode
iii. Fetch operand
iv. Execute

c. Instruction 3 ...

Program execution begins with:

PC ← address of first instruction, SC ← 0

After this, the SC is incremented at each clock cycle until an instruction is completed, and then it
is cleared to begin the next instruction. This process repeats until a HLT instruction is executed,
or until the power is shut off.

Instruction Fetch and Decode

The instruction fetch and decode phases are the same for all instructions, so the control functions
and microoperations will be independent of the instruction code.

Everything that happens in this phase is driven entirely by timing variables T0, T1 and T2. Hence,
all control inputs in the CPU during fetch and decode are functions of these three variables alone.

T0: AR ← PC

T1: IR ← M[AR], PC ← PC + 1

T2: D0-7 ← decoded IR(12-14), AR ← IR(0-11), I ← IR(15)

For every timing cycle, we assume SC ← SC + 1 unless it is stated that SC ← 0.

The operation D0-7 ← decoded IR(12-14) is not a register transfer like most of our
microoperations, but is actually an inevitable consequence of loading a value into the IR register.
Since the IR outputs 12-14 are directly connected to a decoder, the outputs of that decoder will
change as soon as the new values of IR(12-14) propagate through the decoder.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 7/25

Note that incrementing the PC at time T1 assumes that the next instruction is at the next address.
This may not be the case if the current instruction is a branch instruction. However, performing
the increment here will save time if the next instruction immediately follows, and will do no
harm if it doesn't. The incremented PC value is simply overwritten by branch instructions.

In hardware development, unlike serial software development, it is often advantageous to
perform work that may not be necessary. Since we can perform multiple microoperations at the
same time, we might was well do everything that might be useful at the earliest possible time.

Likewise, loading AR with the address field from IR at T2 is only useful if the instruction is a
memory-reference instruction. We won't know this until T3, but there is no reason to wait since
there is no harm in loading AR immediately.

Memory-Reference

AC ← AC + M[AR]

For the memory-reference execute phase, all control inputs in the CPU are functions of timing
signals T4 or later, I, and one of the variables D0 through D6.

The execute phase for memory-reference instructions begins at time T4. The effective address
was loaded into AR at time T2 or T3.

Several memory-reference instructions operate on AC and an operand from memory. Since we
cannot feed data directly from memory into the ALU, we need to refine the register transfer
statements from table 5-4 into microoperations.

AND

The AND instruction is indicated by signal D0.

D0T4: DR ← M[AR]

D0T5: AC ← AC ^ DR, SC ← 0

Show the Boolean functions and circuits for all control inputs required to carry out these
microoperations.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 8/25

BSA

Symbolic notation:

M[AR] ← PC, PC ← AR + 1

Control functions and microoperations:

D5T4: M[AR] ← PC, AR ← AR + 1

D5T5: PC ← AR, SC ← 0

ISZ

ISZ is useful for implementing loops:

 LOOP_COUNT, DEC -10
 X, DEC 0

 LDA LOOP_COUNT / Initialize loop counter
 STA X
 LOOP,

 ISZ X / Check loop condition
 BUN LOOP

D6T4: DR ← M[AR]

D6T5: DR ← DR + 1

D6T6: M[AR] ← DR, SC ← 0

D6T6DR(0-15)': PC ← PC + 1

Note

DR(0-15) = (DR(0) ^ DR(1) ^ DR(2) ^ ... ^ DR(15))

Show the Boolean functions and circuits necessary to implement this instruction.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 9/25

Input-Output and Interrupt

 Hardware Summary

The Basic Computer I/O consists of a simple terminal with a keyboard and a printer/monitor.

The keyboard is connected serially (1 data wire) to the INPR register. INPR is a shift register
capable of shifting in external data from the keyboard one bit at a time. INPR outputs are
connected in parallel to the ALU.

 Shift enable
 |
 v
 +-----------+ 1 +-------+
 | Keyboard |---/-->| INPR <|--- serial I/O clock
 +-----------+ +-------+
 |
 / 8
 | | |
 v v v
 +---------------+
 | ALU |
 +---------------+
 |
 / 16
 |
 v
 +---------------+
 | AC <|--- CPU master clock
 +---------------+
 RS232, USB, Firewire are serial interfaces with their own clock independent of the
CPU. (USB speed is independent of processor speed.)

 RS232: 115,200 kbps (some faster)
 USB: 11 mbps
 USB2: 480 mbps
 FW400: 400 mbps
 FW800: 800 mbps
 USB3: 4.8 gbps

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 10/25

OUTR inputs are connected to the bus in parallel, and the output is connected serially to the
terminal. OUTR is another shift register, and the printer/monitor receives an end-bit during each
clock pulse.

I/O Operations

 The input and output devices are not under the full control of the CPU (I/O events are
asynchronous), the CPU must somehow be told when an input device has new input ready to
send, and an output device is ready to receive more output.

The FGI flip-flop is set to 1 after a new character is shifted into INPR. This is done by the I/O
interface, not by the control unit. This is an example of an asynchronous input event (not
synchronized with or controlled by the CPU).

The FGI flip-flop must be cleared after transferring the INPR to AC. This must be done as a
microoperation controlled by the CU, so we must include it in the CU design.

The FGO flip-flop is set to 1 by the I/O interface after the terminal has finished displaying the
last character sent. It must be cleared by the CPU after transferring a character into OUTR.

Since the keyboard controller only sets FGI and the CPU only clears it, a JK flip-flop is
convenient:

 +-------+
 Keyboard controller --->| J Q |----->
 | | |
 +--------\-----\ | |
) or >----->|> FGI |
 +--------/-----/ | |
 | | |
 CPU-------------------->| K |
 +-------+
 There are two common methods for detecting when I/O devices are ready,
namely software polling and interrupts. These two methods are discussed in the following
sections.

Software Polling

In software polling, the software is responsible for checking the status of I/O devices and
initiating transactions when the device is ready. The simplest form of software polling is

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 11/25

called spin waiting. A spin waiting loop does nothing but watch the status of a device until it
becomes ready. When it is ready, the loop exits and the I/O transaction is performed.

 key_wait, ski
 bun key_wait
 inp
 / Do something with the input
 Interrupts

Introduction About program interrupt:-

When a Process is executed by the CPU and when a user Request for another Process then this
will create disturbance for the Running Process. This is also called as the Interrupt.

Interrupts can be generated by User, Some Error Conditions and also by Software’s and the
hardware’s. But CPU will handle all the Interrupts very carefully because when Interrupts are
generated then the CPU must handle all the Interrupts Very carefully means the CPU will also
Provides Response to the Various Interrupts those are generated. So that When an interrupt has
Occurred then the CPU will handle by using the Fetch, decode and Execute Operations.

Interrupts allow the operating system to take notice of an external event, such as a mouse click.
Software interrupts, better known as exceptions, allow the OS to handle unusual events like
divide-by-zero errors coming from code execution.

The sequence of events is usually like this:

1. Hardware signals an interrupt to the processor
2. The processor notices the interrupt and suspends the currently running software
3. The processor jumps to the matching interrupt handler function in the OS
4. The interrupt handler runs its course and returns from the interrupt
5. The processor resumes where it left off in the previously running software

The most important interrupt for the operating system is the timer tick interrupt. The timer tic
interrupt allows the OS to periodically regain control from the currently running user process.
The OS can then decide to schedule another process, return back to the same process, do
housekeeping, etc. The timer tick interrupt provides the foundation for the concept of preemptive
multitasking.

Types of Interrupts

Generally there are three types of Interrupts those are Occurred For Example

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 12/25

 1) Internal Interrupt

2) External Interrupt.

3) Software Interrupt.

1.Internal Interrupt:-

• When the hardware detects that the
program is doing something wrong, it will
usually generate an interrupt usually generate an interrupt.
– Arithmetic error - Invalid Instruction
– Addressing error - Hardware malfunction
– Page fault - Debugging
• A Page Fault interrupt is not the result of a program
error, but it does require the operating system to get
control.
• Internal interrupts are sometimes called
exceptions

The Internal Interrupts are those which are occurred due to Some Problem in the Execution For
Example When a user performing any Operation which contains any Error and which contains
any type of Error. So that Internal Interrupts are those which are occurred by the Some
Operations or by Some Instructions and the Operations those are not Possible but a user is trying
for that Operation. And The Software Interrupts are those which are made some call to the
System for Example while we are Processing Some Instructions and when we wants to Execute
one more Application Programs.

2.External Interrupt:-

• I/O devices tell the CPU that an I/O
request has completed by sending an
interrupt signal to the processor.
• I/O errors may also generate an interrupt.
• Most computers have a timer which
interrupts the CPU every so many interrupts the CPU every so many
milliseconds.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 13/25

The External Interrupt occurs when any Input and Output Device request for any Operation and
the CPU will Execute that instructions first For Example When a Program is executed and when
we move the Mouse on the Screen then the CPU will handle this External interrupt first and after
that he will resume with his Operation.

3.Software interrupts:-

These types if interrupts can occur only during the execution of an instruction. They can be used
by a programmer to cause interrupts if need be. The primary purpose of such interrupts is to
switch from user mode to supervisor mode.

A software interrupt occurs when the processor executes an INT instruction. Written in the
program, typically used to invoke a system service.

A processor interrupt is caused by an electrical signal on a processor pin. Typically used by
devices to tell a driver that they require attention. The clock tick interrupt is very common, it
wakes up the processor from a halt state and allows the scheduler to pick other work to perform.

A processor fault like access violation is triggered by the processor itself when it encounters a
condition that prevents it from executing code. Typically when it tries to read or write from
unmapped memory or encounters an invalid instruction.

With interrupts, the running program is not responsible for checking the status of I/O devices.

When a device becomes ready, the CPU hardware initiates a branch to an I/O subprogram called
an interrupt service routine (ISR), which handles the I/O transaction with the device.

An interrupt can occur during any instruction cycle as long as interrupts are enabled. When the
current instruction completes, the CPU interrupts the flow of the program, executes the ISR, and
then resumes the program. The program itself is not involved and is in fact unaware that it has
been interrupted.

Interrupts can be globally enabled or disabled via the IEN flag (flip-flop).

Some architectures have a separate ISR for each device. The Basic Computer has a single ISR
that services both the input and output devices.

If interrupts are enabled, then when either FGI or FGO gets set, the R flag also gets set. (R = FGI
v FGO) This allows the system to easily check whether any I/O device needs service.
Determining which one needs service can be done by the ISR.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 14/25

If R = 0, the CPU goes through a normal instruction cycle. If R = 1, the CPU branches to the ISR
to process an I/O transaction.

nterrupts are usually disabled while the ISR is running, since it is difficult to make an

ISR reentrant. (Callable while it is already in progress, such as a recursive function.) Hence, IEN

and R are cleared as part of the interrupt cycle. IEN should be re-enabled by the ISR when it is

finished.

Design of Basic Computer

To develop the entire control unit, we must determine the Boolean function for every control
input on the bus, every register, the ALU, and the various flip-flops such as the I bit, the IEN
flag, etc.

The independent variables for each of these functions include the timing signals T0 through T16,
the decoded opcode, the I bit, and so on.

Interconnection Structures

Introduction

Different types of exchanges are required for communication in a computer. Figure 5.1 shows
the Memory Module, I/O Module and CPU Module and also indicates the major forms of inputs
and outputs of these modules.

Types of exchange of information

A computer consists of three basic types of modules (processor, memory, I/O) that communicate
with each other. Thus, there must be paths for connecting the modules. The collection of paths is
called the "interconnection structure". The design of this structure will depend on the
exchanges that must be made between modules.

Modules of a system

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 15/25

Figure 5.1: a) Memory module

Memory module consists of N words of equal length. Each word is assigned a unique numerical
value (0, 1, . . ., N-1). Figure 5.1(a) shows the possible inputs and output of a memory module. A
word of data can be read from or written into the memory depending on whether the control
signal is Memory Read (MR) or Memory Write (MW). The location of the memory is provided
by the input called as Address.

Example: List the inputs and outputs that are necessary to write the data to the memory.

Solution:

The inputs that are required are

1. Control signal which is memory write,

2. Address that gives the location of the memory where the data is to be written and the data
itself.

There is no output required for this particular task.

The sequence of operations that take place:

1. The position of the memory is located using the input address.

2. Then it sees the input control signal is MW and then the input which is data is placed in the
location of the memory.

I/O Module

I/O is functionally similar to memory. The possible inputs and outputs for a typical I/O module is
as shown in figure 5.1(b).

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 16/25

Figure 5.1: b) I/O Module

There are two operations read and write. I/O module may control more than one external
device. We usually refer to each of the interface of the external device as a port. Each port is
given a unique address as 0, 1, ………, M-1. Also there are external data paths for the input and
output of data with an external device. Also an I/O module may be able to send interrupt signals
to the CPU.

CPU Module

The possible inputs and outputs for a typical CPU module is as shown in figure 5.1(c). The CPU
reads in the instructions and data and writes out the data after processing. It uses control signals
to control the overall operation of the system. It also receives the interrupt signals and
appropriate actions to be taken in outputs data as well as control signals.

Figure 5.1: c) CPU Module

Different types of transfers

There are two types of transfers that are classified; one depending on the devices that are to be
interconnected and the other depending on whether it carries information one bit or several bits.

Types of transfers between different modules

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 17/25

Following are the possible ways of transfer of information between the three modules of the
system:

· Memory to Processor (CPU): The processor reads an instruction or a unit of data from
memory.

· CPU to Memory: The processor writes a unit of data to memory.

· I/O to CPU: The processor reads data from an I/O device via an I/O module.

· CPU to I/O: The processor sends data to the I/O device.

· I/O to or from memory: For these two cases, an I/O module is allowed to exchange data
directly with memory, without going through the processor, using Direct Memory Access
(DMA).

Serial & Parallel transfer

A bus consists of multiple communication lines (or pathways). Each line is capable of
transmitting signals representing binary 1 or binary 0. Bits are transmitted in Serial & Parallel.
When only one bit is carried at a time it requires only a single wire as shown in figure 5.2. When
we consider many bits to be transmitted at a time it requires many wires as shown in figure 5.3.
These many wires together constitute a bus and the mode of transmission is termed as parallel
transmission.

Figure 5.2: Serial transmission - one bit at a time

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 18/25

Figure 5.3: Parallel transmission - several (8 bits here) bits at a time

Table gives the Comparison of serial & parallel transmission

Factor Serial mode Parallel mode

Cost Less costly (only one wire) More costly (many wires)

Speed Low (only 1 bit at a time) High (more bits at a time)

Throughput Low High

5.3 Types of Buses

As discussed earlier in unit 1, a system bus consists of a data bus, a memory address bus and
a control bus. The interconnection between the modules of a system is as shown in figure 5.4

Figure 5.4: Bus Interconnection scheme

Data Bus: A bus, which carries a word to or from memory, is called data bus. Its width is equal
to the word length of the memory. Also, it provides a means for moving data between the
different modules of a system. The data bus usually consists of 8, 16 or 32 separate lines. The
number of lines implies the data bus

Address bus: A bus that is used to carry the address of the data in the memory and its width is
equal to the number of bits in the Memory Address Register (MAR) of the memory.

Example: If a computer memory has 64K, 32-bit words, then the data bus will be 32-bits wide
and the address bus will be 16-bits wide.

Control bus: A bus that is used to control the access carries the control signals between the
various units of the computer. The processor has to send commands READ and WRITE to the
memory which requires single wire. A START command is necessary for the I/O units. All these
signals are carried by the control bus.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 19/25

Types of Control Lines

· Memory Write: Causes data on the bus (data bus) to be written into the addressed location.

· Memory Read: Causes data from the addressed location to be placed on the bus (data bus).

· I/O Write: Causes data on the data bus to be output to the addressed I/O port.

· I/O Read: Causes data from the addressed I/O port to be placed on the bus (data bus).

· Transfer ACK: Indicates that data has been accepted from or placed on the bus.

· Bus Request: Indicates that a module needs to gain control of the bus.

· Bus Grant: Indicates that a requesting module has been granted control of the bus.

· Interrupt Request: Indicates that an interrupt is pending.

· Interrupt ACK: Acknowledges that the pending interrupt has been recognized.

· Clock: Used to synchronize operations.

· Reset: Initializes all modules.

5.4 Elements of Bus Design

Bus Types: Bus lines can be separated into two types.

· Dedicated: Permanently assigned to either one function or to a physical subset of components.

 -Functional dedication: Bus has a specific function.

Example: Three busses identified for carrying address, data, and control signals as seen earlier.
They are Address Bus, Data Bus, and Control Bus.

 -Physical dedication: Refers to the use of multiple buses, each of which connects only a
subset of components using the bus.

Example: I/O buses are used only to interconnect all I/O modules. And this bus is then connected
to the main bus through some type of an I/O adapter module.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 20/25

Advantage of Physical dedication:

It offers high throughput because there is less bus contention.

Disadvantage of Physical dedication:

Increased size and cost of the system

· Multiplexed: These are also referred to as non-dedicated. Same bus may be used for various
functions. The method of using the same bus for multiple purposes is known as Time
Multiplexing.

Example: Discuss the steps of actions that are to be performed so that address and data
information may be transmitted over the same set of lines.

Solution: Assume an additional control signal called address line activation line or Address Line
Enable (ALE) line is used.

List of operations are as follows:

1. At the beginning of the data transfer the address is placed on the bus with the ALE line
activated.

2. Each module is given sufficient period of time to copy the address and determine if it is the
addressed module.

3. The address is then removed from the bus, and then same bus connections are used for
subsequent read and write data transfer with the ALE signal deactivated.

Advantages: Multiplexing uses fewer lines, which saves space and cost.

Disadvantages of multiplexing:

1. More complex circuitry required in each module.

2. There is potential reduction in the performance as certain events that share the same bus
cannot take place in parallel.

Bus Timing

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 21/25

· Synchronous: The occurrence of events on the bus is determined by a clock. The bus includes
a clock line. A single 1-0 transmission on clock signal is referred to as 1 clock cycle" or "bus
cycle", and defines a time slot. Most events occupy a single clock cycle, but some requires more
cycles.

· Asynchronous: The occurrence of one event on a bus follows and depends on the occurrence
of a previous event.

Synchronous timing is simpler to implement and test; however it is less flexible.

With asynchronous timing, a mixture of slow and fast devices can share a bus.

Bus Width:

· Bus Width of Address Lines: Number of memory units that can be addressed.

· Bus Width of Data Lines: Size of memory units that can be addressed. (8, 12, 16, 32, 64 bits)

Ask and give examples: How many memory addresses with 24 bits,
32 bits, etc.

Bus Speed:

One of the important attribute of busses is its speed. The speed of the bus refers to how fast you
can change the data on the bus, and still have devices to be able to read the values correctly. Bus
speed can limit how fast a CPU can communicate with memory. The size of a bus can also limit
the speed too.

Example: The speed can be measured in say, MHz that is up to 106 changes per second.

Data Transfer Type:

· Read: (Slave to Master)

· Write: (Master to Slave)

· Read-Modify-Write: A read followed immediately by a write to the same address. Usually
indivisible operation to prevent any access to data by other potential bus masters.

· Read-After-Write: Indivisible operation consisting of a write followed immediately by a read
of the same address. Generally for checking purposes.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 22/25

· Block: In this case, one address cycle is followed by n data cycles. The first data item is
transferred to/from the specified address, the remaining data items are transferred to/from
subsequent addresses.

5.5 Bus Structure

If a large number of devices are connected to the bus, the performance will suffer. There are two
main causes:

1. In general, the more devices attached to the bus, the greater is the bus length, and hence the
greater is the propagation delay.

2. The bus may become a bottleneck as the aggregate data transfer demand approaches the
capacity of the bus.

To overcome these problems, in most of the modern computers there are multiple buses.

Single Bus System

In this type of inter-connection, the three units share a single bus. Hence the information can be
transferred only between two units at a time. Here the I/O units use the same memory address
space. This simplifies programming of I/O units as no special I/O instructions are needed. This is
one of advantages of single bus organization.

Figure 5.5: Single-Bus Organization

The transfer of information over a bus cannot be done at a speed comparable to the operating
speed of all the devices connected to the bus. Some electromechanical devices such as keyboards
and printers are very slow whereas disks and tapes are considerably faster. Main memory and
processors operate at electronic speeds. Since all the devices must communicate over the bus, it
is necessary to smooth out the differences in timings among all the devices.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 23/25

A common approach is to include buffer register with the devices to hold the information during
transfers. To illustrate this let us take one example. Consider the transfer of an encoded character
from the processor to a character printer where it is to be printed. The processor sends the
character to the printer output register over the bus. Since buffer is an electronic register this
transfer requires relatively little time. Now the printer starts printing. At this time bus and the
processor are no longer needed and can be released for other activities. Buffer register is not
available for other transfers until the process is completed. Thus buffer register smoothes out the
timing differences between the processor, memory and I/O devices. This allows the processor to
switch rapidly from one device to another interweaving its processing activity with data transfer
involving several I/O devices.

Two Bus Organization

Figure 5.6 shows inter-connection of various computer units through two independent system
buses. Here the I/O units are connected to the processor through an I/O bus and the processor is
connected to the memory through the memory bus.

Figure 5.6: Two Bus Organization

The I/O bus consists of device address bus, data bus and a control bus. Device address bus
carries the address of the I/O units to be accessed by the processor. The data bus carries a word
from the addressed input unit to the processor and from the processor to the addressed output
unit. The control bus carries control commands such as START, STOP etc., from the processor
to I/O units and it also carries status information of I/O units to the processor. Memory bus also
consists of a Memory Address Bus (MAB), data bus and a control bus.

In this type of inter-connection the processor completely supervises the transfer of information to
and from the I/O units. All the information is first taken to the processor and from there to the
memory. Such a data transfer is called as program controlled transfer.

An alternative two bus structure:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 24/25

There is one more method to connect processor to the I/O units. Figure 5.7 shows an alternative
two bus structure. Here the I/O units are directly connected to the memory.

Figure 5.7: Alternative Two-Bus Organization

Here the I/O devices are connected to special interface logic known as Direct Memory
Access (DMA) logic or an I/O channel. This is also called as Peripheral Processor Unit
(PPU). The processor issues a READ or WRITE command giving the device address, the
address of the memory location where the data read from the input unit is to be stored or from
where the data is to be taken to output units, and the number of data words to be transferred. This
command is accepted by the PPU, which now takes the responsibility of data transfer.

Possible Questions

Part-A

1.The decimal value of a hexadecimal number "B" is_____

 a.10 b.11 c.12 d.13

2. The binary value of a decimal number "3"is___

 a.11 b.101 c.1101 d.111

3. Which of the following is Boolean eq. of EX-OR gate?

 a. A+B b. A+B ' c. AB d. A' B + A B'

4. Which of the following gates has the exact inverse output of the OR gate for all possible

 Input combinations?

 a. AND b. NAND c. NOR d. NOT

5. The output of an exclusive-OR gate is HIGH if ________.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:III (Basic Computer Organization and

Design) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 25/25

 a. all inputs are LOW b. all inputs are HIGH

 c. the inputs are unequal d. any input is LOW

6. What is the base number of decimal number

 a. 2 b. 4 c. 8 d.10

7. What is the one’s complement of (1000110)2

 a. 0111001 b. 0111101 c. 1010000 d. 0001110

8. Convert (127)10 to binary number () 2

 a. 1111111 b.100101010 c. 101010101 d. 010101010

9. Unsigned number is used to indicate ____ numbers

 a. negative b. positive c. negative and positive d. zero

10. An address in main memory is called

 a.Physical address b. Logical address c. Memory address d. Word address

Part-B

1. Draw the half adder circuit diagram
2. Define multiplexer?
3. List out the applications of encoder
4. Draw a half Subtractor circuit and give its truth table.
5. Define Flip flop.
6. What is the fastest method of A/D conversion?
7. Define the term accuracy of DAC’s.

Part-C

1. what is a half-adder? Explain a half-adder with the help of truth-table and logic diagram.
2. What is a decoder? Draw the logic circuit of a 3 line to 8 line decoder and explain its
working.
3. Draw the circuit diagram of a Master-slave J-K flip-flop using NAND gates and explain it.
4.What is race around condition? How is it eliminated in a Master-slave J-K flip-flop?
5. Explain synchronous counters? Design a Mod-5 synchronous counter using J-K Flip-Flops.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 1/24

UNIT-IV

Register Organization-arithmetic and logical micro-operations stack organization-micro
programmed control-instructions format, addressing modes- instruction codes, machine language,
assembly language- input, output programming-RISC,CISC Architectures-Pipelining and
architecture

Register Organization:—

The number of registers in a processor unit may vary from just one processor register
to as many as 64 registers or more.

1. One of the CPU registers is called as an accumulator AC or 'A' register. It is the
main operand register of the ALU.

2. The data register (DR) acts as a buffer between the CPU and main memory. It
is used as an input operand register with the accumulator.

3. The instruction register (IR) holds the opcode of the current instruction.
4. The address register (AR) holds the address of the memory in which the

operand resides.
5. The program counter (PC) holds the address of the next instruction to be

fetched for execution.

 Additional addressable registers can be provided for storing operands and address.
This can be viewed as replacing the single accumulator by a set of registers. If the
registers are used for many purpose, the resulting computer is said to have general
register organization. In the case of processor registers, a registers is selected by the
multiplexers that form the buses.

When a large number of registers are included in the CPU, it is most efficient to
connect them through a common bus system. The registers communicate with each
other not only for direct data transfers, but also while performing various micro-
operations. Hence it is necessary to provide a common unit that can perform all the
arithmetic, logic and shift micro-operation in the processor.

A Bus organization for seven CPU registers:—

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 2/24

The output of each register is connected to true multiplexer (mux) to form the two
buses A & B. The selection lines in each multiplexer select one register or the input
data for the particular bus. The A and B buses forms the input to a common ALU. The
operation selected in the ALU determines the arithmetic or logic micro-operation that
is to be performed. The result of the micro-operation is available for output and also
goes into the inputs of the registers. The register that receives the information from
the output bus is selected by a decoder. The decoder activates one of the register load
inputs, thus providing a transfer both between the data in the output bus and the inputs
of the selected destination register.

The control unit that operates the CPU bus system directs the information flow
through the registers and ALU by selecting the various components in the systems.

R1 ® R2 + R3

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 3/24

(1) MUX A selection (SEC A): to place the content of R2 into bus A
(2) MUX B selection (sec B): to place the content of R3 into bus B
(3) ALU operation selection (OPR): to provide the arithmetic addition (A + B)
(4) Decoder destination selection (SEC D): to transfer the content of the output bus
into R1

These form the control selection variables are generated in the control unit and must
be available at the beginning of a clock cycle. The data from the two source registers
propagate through the gates in the multiplexer and the ALU, to the output bus, and the
destination registers, all during the clock cycle intervals.

Control Word:-

There are 14 binary selection inputs in the units, and their combined value specified a
control word. It consists of four fields three fields contain three bits each, and one
field has five bits. The three bits of SEL A select a source register for the A input of
the ALU. The three bits of SEL B select a source register for the B input of the ALU.
The three bit of SEC D select a destination register using the decoder and its seven
load outputs. The five bits of OPR select one of the operations in the ALU. The 14-bit
control word when applied to the selection inputs specify a particular micro-operation.

Table: Encoding of Register selection fields.

Binary Code SEL A SEL B SEL D

000 Input Input None

001 R1

010 R2

011 R3 S S

100 R4 A A

101 R5 M M

110 R6 E E

111 R7

Table: Encoding of ALU operation

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 4/24

OPR & select Operation Symbol
00000 Transfer A TSFA

00001 Increment A INCA

00010 Add A + B ADD

00101 Subtract A-B SUB

00110 Decrement A DEC A

01000 AND A and B AND

01010 OR A and B OR

01100 XOR A and B XOR

01110 Complement A COMA

10000 Shift right A SHRA

11000 Shift left A SHLA

Examples of Micro-operation for the CPU

Symbolic Designation

Micro Operation SECA SEC B SEL D OPR Control Word

R1 ® R2 – R3 R2 R3 R1 SUB 010 011 001 00101

R4 ® R5 V R5 R4 R R4 OR 100 101 100 0101

R6 ® R6 + 1 R6 - R6 MCA 110 000 110 00001

R7 ® R1 R1 - R7 TSFA 001 000 111 00000

Output ® R2 R2 - None TSFA 010 000 000 00000

Output ® Input Input - None TSFA 000 000 000 00000

R4 ® SHL R4 R4 - R4 SHLA 100 000 100 11000

R5 ® 0 R5 R5 R5 XOR 101 101 101 01100

Stack Organization

What is the stack? It's a special region of your computer's memory that stores
temporary variables created by each function (including the main() function). The
stack is a "FILO" (first in, last out) data structure, that is managed and optimized by
the CPU quite closely. Every time a function declares a new variable, it is "pushed"
onto the stack. Then every time a function exits, all of the variables pushed onto the
stack by that function, are freed (that is to say, they are deleted). Once a stack variable
is freed, that region of memory becomes available for other stack variables.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 5/24

The advantage of using the stack to store variables, is that memory is managed for
you. You don't have to allocate memory by hand, or free it once you don't need it any
more. What's more, because the CPU organizes stack memory so efficiently, reading
from and writing to stack variables is very fast.

A key to understanding the stack is the notion that when a function exits, all of its
variables are popped off of the stack (and hence lost forever). Thus stack variables
are local in nature. This is related to a concept we saw earlier known as variable
scope, or local vs global variables. A common bug in C programming is attempting to
access a variable that was created on the stack inside some function, from a place in
your program outside of that function (i.e. after that function has exited).

Another feature of the stack to keep in mind, is that there is a limit (varies with OS)
on the size of variables that can be store on the stack. This is not the case for variables
allocated on the heap.

.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 6/24

An example of stack operation.

The "Last In" tray is number 9. Thus, the "First Out" tray is also number 9. As
customers remove trays from the top of the stack, the first tray removed is tray
number 9, and the second is tray number 2. Let us say that at this point more
trays were added. These trays would then have to come off the stack before the
very first tray we loaded. After any sequence of pushes and pops of the stack of
trays, tray 42 would still be on the bottom. The stack would be empty once
again only after tray 42 had been popped from the top of the stack.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 7/24

A useful feature that is included in the CPU of most computers is a stack or
last-in first out (LIFO) list. A stack is a storage device that stores information in
such a manner that the item stored last is the first item retrieved. The operation
a stack can be companied to a stack of trays.

Register Stack:-

A stack can be placed in a portion of a large memory as it can be organized as
a collection of a finite number of memory words as register.

In a 64- word stack, the stack pointer contains 6 bits because 26 = 64.

The one bit register FULL is set to 1 when the stack is full, and the one-bit
register EMTY is set to 1 when the stack is empty. DR is the data register that
holes the binary data to be written into on read out of the stack.

Initially, SP is decide to O, EMTY is set to 1, FULL = 0, so that SP points to
the word at address O and the stack is masked empty and not full.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 8/24

PUSH SP ® SP + 1 increment stack pointer
M [SP] ® DR unit item on top of the Stack
It (SP = 0) then (FULL ® 1) check it stack is full
EMTY ® 0 mask the stack not empty.

POP DR ® [SP] read item trans the top of stack
SP ® SP –1 decrement SP
It (SP = 0) then (EMTY ® 1) check it stack is empty

 FULL ® 0
 mark the stack not full. A stack can be placed in a portion of a large memory
or it can be organized as a collection of a finite number of memory words or
registers. Figure X shows the organization of a 64-word register stack. The
stack pointer register SP contains a binary number whose value is equal to the
address of the word that is currently on top of the stack. Three items are placed
in the stack: A, B, and C in the order. item C is on the top of the stack so that
the content of sp is now 3. To remove the top item, the stack is popped by
reading the memory word at address 3 and decrementing the content of SP.
Item B is now on top of the stack since SP holds address 2. To insert a new
item, the stack is pushed by incrementing SP and writing a word in the
next higher location in the stack. Note that item C has read out but not
physically removed. This does not matter because when the stack is pushed, a
new item is written in its place. In a 64-word stack, the stack pointer contains 6
bits because 26=64.

since SP has only six bits, it cannot exceed a number grater than 63(111111 in
binary). When 63 is incremented by 1,
the result is 0 since 111111 + 1 =1000000 in binary,
but SP can accommodate only the six least significant bits. Similarly,
 when 000000 is
decremented by 1, the result is 111111. The one bit register Full is set to 1
when the stack is full, and the one-bit register EMTY is set to 1 when the stack
is empty of items. DR is the data register that holds the binary data to be
written in to or read out of the stack.

Initially, SP is cleared to 0, Emty is set to 1, and Full is cleared to 0, so that SP
points to the word at address o and the stack is marked empty and not full. if

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 9/24

the stack is not full , a new item is inserted with a push operation. the push
operation is implemented with the following sequence of micro-operation.

SP ←SP + 1 (Increment stack pointer)
M(SP) ← DR (Write item on top of the stack)
if (sp=0) then (Full ← 1) (Check if stack is full)
Emty ← 0 (Marked the stack not empty)

The stack pointer is incremented so that it points to the address of the
next-higher word. A memory write operation inserts the word from DR into the
top of the stack. Note that SP holds the address of the top of the stack and that
M(SP) denotes the memory word specified by the address presently available in
SP, the first item stored in the stack is at address 1. The last item is stored at
address 0, if SP reaches 0, the stack is full of item, so FULLL is set to 1. This
condition is reached if the top item prior to the last push was in location 63 and
after increment SP, the last item stored in location 0. Once an item is stored in
location 0, there are no more empty register in the stack. If an item is written in
the stack, Obviously the stack can not be empty, so EMTY is cleared to 0.

DR← M[SP] Read item from the top of stack
SP ← SP-1 Decrement stack Pointer
if(SP=0) then (Emty ← 1) Check if stack is empty
FULL ← 0 Mark the stack not full

The top item is read from the stack into DR. The stack pointer is then
decremented. if its value reaches zero, the stack is empty, so Emty is set to 1.
This condition is reached if the item read was in location 1. once this item is
read out , SP is decremented and reaches the value 0, which is the initial value
of SP. Note that if a pop operation reads the item from location 0 and then SP is
decremented, SP changes to 111111, which is equal to decimal 63. In this
configuration, the word in address 0 receives the last item in the stack. Note
also that an erroneous operation will result if the stack is pushed when FULL=1
or popped when EMTY =1.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 10/24

COMPUTER ARITHMETIC

A basic operation in all digital computers is the addition or subtraction of two

numbers. Arithmetic operations occur at the machine instruction level. They are

implemented, along with basic logic functions such as AND,OR, NOT, and exclusive

–OR (XOR), in the arithmetic logic unit(ALU) subsystem of the processor. We use

logic Circuits to implement arithmetic operations, The time needed to perform and

addition operation affects the processor’s performance. Multiply and divide

operations, which require more complex circuitry than either addition or subtraction

operations, also affect performance. We present some of the techniques used in

modern computers to perform arithmetic operations at high speed.

Compared with arithmetic operations, logic operations are simple to implement using

combinational circuitry. They require only independent Boolean operations on

individual bit positions of the operands, whereas carry/borrow lateral signals are

required in arithmetic operations.

ADDITION AND SUBTRACTION OF SIGNED NUMBERS

There will arise instances when we need to express numbers that are less than zero.

These numbers are called signed numbers and consist of positive(+) and negative(-)

numbers. Positive numbers are greater than zero and negative numbers are less than

zero.Positive and negative whole numbers are called integers while signed fractions

and decimals are called rational numbers. It is not necessary to write the + for a

positive number unless you want to draw attention to the fact that it is positive. The

negative sign must always in used for a negative number.

A number line for integers continues indefinitely in both the negative and positive

directions. Numbers get smaller as we proceed to the left and larger to the right. The

opposite of a number is the number the same distance from zero but in the opposite

direction.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 11/24

In order to perform operations with signed numbers, we need to define the absolute

value of a number. The absolute value of a number, symbolized by placing the

number between 2 vertical bars (l l) is defined to be the distance that number is

located from zero on a number line without regard to the direction.

• |3| = 3

• |-5| = 5

When you add two numbers with the same signs add the absolute values, and write the

sum (the answer) with the sign of the numbers. If the sign is positive, it is commonly

omitted.

5 + 16 = 21

-12 + -15 = -27

Binary Addition Basic Rules for Binary Addition

0+0 = 0 0 plus 0 equals 0

0+1 = 1 0 plus 1 equals 1

1+0 = 1 1 plus 0 equals 1

1+1 = 10 1 plus 1 equals 0

with a carry of 1 (binary 2)

The technique of addition for binary numbers is similar to that for decimal numbers,

except that a 1 is carried to the next column after two 1s are added.

Example: Add the numbers 310 and 110 in binary form.

Solution

The numbers, in binary form, are 11 and 01.

11

01

100

In the right-hand column, 1 + 1 = 0 with a carry of 1 to the next column.

In the next column, 1+0+1 = 0 with a carry of 1 to the next column.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 12/24

In the left-hand column, 1 + 0 + 0 = 1. Thus, in binary, 11 + 01 = 100 = 410.

Binary Subtraction Basic Rules for Binary Subtraction

0 0 = 0 0 minus 0 equals 0

1 1 = 0 1 minus 1 equals 0

1 0 = 1 1 minus 0 equals 1

10 1 = 1 10 minus 1 equals 1

Example: Subtract 310 = 11 from 510 = 101 in binary form.

Solution:-

The subtraction procedure is shown below.

1 0 1 0 1 10

1 0 1 0 1 10

1 0 1 0 1 11 0

1 0 1 0 1 10 1 0

Starting from the left, the first array is the subtraction in the right hand column. In the

second array, a 1 is borrowed from the third column for the middle column at the top

and paid back at the bottom of the third column. The third array is the subtraction 10

1 = 1 in the middle column. The final array is the subtraction 1 1 = 0 and the final

answer is thus 10 = 210.

Introduction About Instruction formats:-

The most common fields found in instruction format are:-

(1) An operation code field that specified the operation to be performed
(2) An address field that designates a memory address or a processor registers.
(3) A mode field that specifies the way the operand or the effective address is
determined.

Computers may have instructions of several different lengths containing varying
number of addresses. The number of address field in the instruction format of a
computer depends on the internal organization of its registers. Most computers fall
into one of three types of CPU organization.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 13/24

(1) Single Accumulator organization ADD X AC ® AC + M [×]
(2) General Register Organization ADD R1, R2, R3 R ® R2 + R3
(3) Stack Organization PUSH X

Three address Instruction

Computer with three addresses instruction format can use each address field to specify
either processor register are memory operand.

ADD R1, A, B A1 ® M [A] + M [B]
ADD R2, C, D R2 ® M [C] + M [B] X = (A + B) * (C + A)
MUL X, R1, R2 M [X] R1 * R2

The advantage of the three address formats is that it results in short program when
evaluating arithmetic expression. The disadvantage is that the binary-coded
instructions require too many bits to specify three addresses.

 Two Address Instruction

Most common in commercial computers. Each address field can specify either a
processes register on a memory word.

MOV R1, A R1 ® M [A]
ADD R1, B R1 ® R1 + M [B]
MOV R2, C R2 ® M [C] X = (A + B) * (C + D)
ADD R2, D R2 ® R2 + M [D]
MUL R1, R2 R1 ® R1 * R2
MOV X1 R1 M [X] ® R1

 One Address instruction

It used an implied accumulator (AC) register for all data manipulation. For
multiplication/division, there is a need for a second register.

LOAD A AC ® M [A]
ADD B AC ® AC + M [B]
STORE T M [T] ® AC X = (A +B) × (C + A)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 14/24

All operations are done between the AC register and a memory operand. It’s the
address of a temporary memory location required for storing the intermediate result.

 LOAD C AC ® M (C)

ADD D AC ® AC + M (D)

ML T AC ® AC + M (T)

STORE X M [×]® AC

 Zero – Address Instruction

A stack organized computer does not use an address field for the instruction ADD and
MUL. The PUSH & POP instruction, however, need an address field to specify the
operand that communicates with the stack (TOS ® top of the stack)

PUSH A TOS ® A
PUSH B TOS ® B
ADD TOS ® (A + B)
PUSH C TOS ® C
PUSH D TOS ® D
ADD TOS ® (C + D)
MUL TOS ® (C + D) * (A + B)
POP X M [X] TOS

CISC Characteristics

 A computer with large number of instructions is called complex instruction set
computer or CISC. Complex instruction set computer is mostly used in scientific
computing applications requiring lots of floating point arithmetic.

1. A large number of instructions - typically from 100 to 250 instructions.
2. Some instructions that perform specialized tasks and are used infrequently.
3. A large variety of addressing modes - typically 5 to 20 different modes.
4. Variable-length instruction formats
5. Instructions that manipulate operands in memory.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 15/24

RISC Characteristics

 A computer with few instructions and simple construction is called reduced
instruction set computer or RISC. RISC architecture is simple and efficient. The major
characteristics of RISC architecture are,

1. Relatively few instructions
2. Relatively few addressing modes
3. Memory access limited to load and store instructions
4. All operations are done within the registers of the CPU
5. Fixed-length and easily-decoded instruction format.
6. Single cycle instruction execution
7. Hardwired and micro programmed control

Instruction Formats

Opcode, address, addressing mode

Mano uses "address", I use "operand".

 3-operand (memory-to-memory, register-memory, or load-store)

 2-operand (memory-to-memory or register-memory)

 1-address (accumulator-based)

 0-operand (stack-organized)

Evaluate x = (a + b) * (c + d) in several assembly languages.

VAX (3-operand, memory-to-memory)

x86 (2-operand, register-memory)

MIPS (3-operand, load-store)

Mano (1-operand, accumulator-based)

Introduction About Addressing mode:-

Addressing Modes

The operation field of an instruction specifies the operation to be performed. This
operation must be executed on some data stored in computer register as memory
words. The way the operands are chosen during program execution is dependent on

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 16/24

the addressing mode of the instruction. The addressing mode specifies a rule for
interpreting or modifying the address field of the instruction between the operand is
activity referenced. Computer use addressing mode technique for the purpose of
accommodating one or both of the following provisions.

(1) To give programming versatility to the uses by providing such facilities as
pointer to memory, counters for top control, indexing of data, and program relocation.
(2) To reduce the number of bits in the addressing fields of the instruction.

The basic operation cycle of the computer

(1) Fetch the instruction from memory
(2) Decode the instruction
(3) Execute the instruction

Program Counter (PC) keeps track of the instruction in the program stored in
memory. PC holds the address of the instruction to be executed next and in
incremented each time an instruction is fetched from memory.

 Addressing Modes: The most common addressing techniques are
• Immediate
• Direct
• Indirect
• Register
• Register Indirect
• Displacement
• Stack
All computer architectures provide more than one of these addressing modes.
The question arises as to how the control unit can determine which addressing mode
is being used in a particular instruction. Several approaches are used. Often, different
opcodes will use different addressing modes. Also, one or more bits in the instruction
format can be used as a mode field. The value of the mode field determines which
addressing mode is to be used.
What is the interpretation of effective address. In a system without virtual
memory, the effective address will be either a main memory address or a register. In a

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 17/24

virtual memory system, the effective address is a virtual address or a register. The
actual mapping to a physical address is a function of the paging mechanism and is
invisible to the programmer.

 Opcode Mode Address

Immediate Addressing:

The simplest form of addressing is immediate addressing, in which the
operand is actually present in the instruction:

OPERAND = A

This mode can be used to define and use constants or set initial values of
variables. The advantage of immediate addressing is that no memory reference other
than the instruction fetch is required to obtain the operand. The disadvantage is that
the size of the number is restricted to the size of the address field, which, in most
instruction sets, is small compared with the world length.

Direct Addressing:

A very simple form of addressing is direct addressing, in which the address
field contains the effective address of the operand:
EA = A
It requires only one memory reference and no special calculation.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 18/24

Indirect Addressing:

With direct addressing, the length of the address field is usually less than the
word length, thus limiting the address range. One solution is to have the address field
refer to the address of a word in memory, which in turn contains a full-length address
of the operand. This is know as indirect addressing:
EA = (A)

Register Addressing:

Register addressing is similar to direct addressing. The only difference is that
the address field refers to a register rather than a main memory address:
EA = R

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 19/24

The advantages of register addressing are that only a small address field is
needed in the instruction and no memory reference is required. The disadvantage of
register addressing is that the address space is very limited.

The exact register location of the operand in case of Register Addressing
Mode is shown in the Figure 34.4. Here, 'R' indicates a register where the operand is
present.

Register Indirect Addressing:

Register indirect addressing is similar to indirect addressing, except that the
address field refers to a register instead of a memory location. It requires only one
memory reference and no special calculation.
EA = (R)
Register indirect addressing uses one less memory reference than indirect
addressing. Because, the first information is available in a register which is nothing
but a memory address. From that memory location, we use to get the data or
information. In general, register access is much more faster than the memory access.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 20/24

Displacement Addressing:

A very powerful mode of addressing combines the capabilities of direct
addressing and register indirect addressing, which is broadly categorized as
displacement addressing:
EA = A + (R)
Displacement addressing requires that the instruction have two address fields,
at least one of which is explicit. The value contained in one address field (value = A)
is used directly. The other address field, or an implicit reference based on opcode,
refers to a register whose contents are added to A to produce the effective address.
The general format of Displacement Addressing is shown in the Figure 4.6.
Three of the most common use of displacement addressing are:
• Relative addressing
• Base-register addressing
• Indexing

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 21/24

Relative Addressing:

For relative addressing, the implicitly referenced register is the program
counter (PC). That is, the current instruction address is added to the address field to
produce the EA. Thus, the effective address is a displacement relative to the address
of the instruction.

Base-Register Addressing:
The reference register contains a memory address, and the address field
contains a displacement from that address. The register reference may be explicit or
implicit. In some implementation, a single segment/base register is employed and is
used implicitly. In others, the programmer may choose a register to hold the base
address of a segment, and the instruction must reference it explicitly.

Indexing:

The address field references a main memory address, and the reference
register contains a positive displacement from that address. In this case also the
register reference is sometimes explicit and sometimes implicit.
Generally index register are used for iterative tasks, it is typical that there is a
need to increment or decrement the index register after each reference to it. Because
this is such a common operation, some system will automatically do this as part of the
same instruction cycle.

This is known as auto-indexing. We may get two types of auto-indexing: -one is
auto-incrementing and the other one is -auto-decrementing.
If certain registers are devoted exclusively to indexing, then auto-indexing can
be invoked implicitly and automatically. If general purpose register are used, the auto
index operation may need to be signaled by a bit in the instruction.

Auto-indexing using increment can be depicted as follows:
EA = A + (R)
R = (R) + 1
Auto-indexing using decrement can be depicted as follows:
EA = A + (R)
R = (R) – 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 22/24

In some machines, both indirect addressing and indexing are provided, and it
is possible to employ both in the same instruction. There are two possibilities: The
indexing is performed either before or after the indirection.
If indexing is performed after the indirection, it is termed post indexing

EA = (A) + (R)
First, the contents of the address field are used to access a memory location
containing an address. This address is then indexed by the register value.

With pre indexing, the indexing is performed before the indirection:
EA = (A + (R)
An address is calculated, the calculated address contains not the operand, but
the address of the operand.

Stack Addressing:

A stack is a linear array or list of locations. It is sometimes referred to as a
pushdown list or last-in-first-out queue. A stack is a reserved block of locations. Items
are appended to the top of the stack so that, at any given time, the block is partially
filled. Associated with the stack is a pointer whose value is the address of the top of
the stack. The stack pointer is maintained in a register. Thus, references to stack
locations in memory are in fact register indirect addresses.
The stack mode of addressing is a form of implied addressing. The machine
instructions need not include a memory reference but implicitly operate on the top of

Possible Question

Part-A

1. Status bit is also called

 a. Binary bit b.Flag bit c. Signed bit d. unsigned bit

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 23/24

2. The maximum number of Flip-Flops required constructing a Mod-64 ripple counter are

 a. Flip-flops b.6 Flip-flops c.16 Flip-flops d.64 Flip-flops

3. The Maximum modulo number that can be obtained by a ripple counter using five flip-

 flops

 a.16 b.32 c.5 d.31

4. The type of register, in which data is entered into it only one ,but has all data bits at

 output, is

 a. Parallel in / Parallel out Register b. Serial in / Serial out Register

 c. Parallel in / Serial out Register d. Serial in / Parallel out Register

5. The circuit used to store one bit of data is known as

 a. Encoder b. OR gate c. Flip Flop d. Decoder

6. Cache memory acts between

 a. CPU and RAM b. RAM and ROM c. CPU and Hard Disk d. ROM

7. Write Through technique is used in which memory for updating the data

 a. Virtual memory b. Main memory c. Auxiliary memory d. Cache memory

8. Generally Dynamic RAM is used as main memory in a computer system as it

 a. Consumes less power b. has higher speed

 c. has lower cell density d. needs refreshing circuitry

9. A Stack-organised Computer uses instruction of

 a. Indirect addressing b. Two-addressing c. Zero addressing d. Index addressing

10. If the main memory is of 8K bytes and the cache memory is of 2K words. It uses

 associative mapping. Then each word of cache memory shall be

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc., CS, IT, CA& CT COURSE NAME: Computer Systems Architecture

COURSECODE: 18CSU102 UNIT:IV (Central Processing Unit) BATCH-2018-2019

Department of ECS Prepared by Dr. A.SanjayGandhi, Assitant Prof, , KAHE Page 24/24

a. 11 bits b. 21 bits c. 16 bits d. 20 bits

Part-B

1. Mention the differences between registers and counters.
2. What is the 1’s and 2’s complement value of a binary number 110011110?
3. What is an instruction cycle?
4. Differentiate between RISC and CISC architecture.
5. What is meant by DMA?

Part-C

1. Describe in detail about arithmetic micro-operations.

2. Describe in detail about the computer registers.

3. Draw and explain the operation of RISC Architecture.

4. Discuss in detail about the instruction format with appropriate example.

5. Enumerate the functions of cache memory and associative memory.

6.. Explain the working characteristics of I/O channels with neat sketch.

Name of the Faculty
Department
Subject & Subject Code
Class
Year and Semester

QUESTION OPT 1 OPT 2 OPT 3

UNIT I

The radix of a decimal number is____ 2 8 10

The radix of an octal number is____ 2 8 10

The base of a binary number is_____ 2 8 10

The base of a hexa decimal number is_____ 2 8 10

Thr single digit value in digital system is
known as_____ Bit Byte Nibble

A 4-bit value is known as ____ in a digital
systems Bit Byte Nibble

A 8-bit value is known as ____ in a digital
systems Bit Byte Nibble

A 16-bit value is known as ____ in a digital
systems Bit Byte Nibble

The binary value of hexadecimal number
"A"is___ 1010 1111 1110

The decimal value of a binary number 0101
is___ 8 7 9

The octal value of a binary number 0111
is____ 4 5 6

The hexadecimal value of a decimal number
15 is____ 1010 1110 1011

The decimal value of a hexadecimal number
"B" is_____ 10 11 12

: I B.Sc. (CT, CS-B)
: 2017 – 2018 and I semester

: K. Subramanian
: Electronics and Communication Systems
: Computer Systems Architecture & 17CSU102/17CTU102

Karpagam Academy of Higher Education
COIMBATORE - 641021

The binary value of a decimal number
"3"is___ 11 101 1101

The octal value of a decimal number 444
is____ 534 356 636

The hexadecimal value of a binary number
1110 is___ A D E

The decimal value of a hexadecimal number
"D" is___ 11 12 13

The decimal value of a binary numbe 1001
is____ 9 10 8

The decimal value of an octal number 237
is____ 160 159 158

The hexadecimal value of a decimal
nymber115 is___ AF 4B 84

The octal value of a hexadecimal number 47
is_____ 66 215 107

The hexadecimal value of an octal number
32 is_____ 5A 3A 4A

The decimal value of a binary number
101111 is _____ 47 74 64

The octal value of a binary number 1001010
is _____ 111 112 113

The decimal value of a binary number 10110
is_____ 22 24 23

The binary value of an octal number 27
is____ 100110 110101 10111

The decimal value of a hexadecimal number
E9 is_____ 233 234 255

The hexadecimal value of binary number
1101110 is____ 4E 3D 6E

The 1's complement value of 11011 is____ 1101 11011 oo100

The 1's complement value of 101101 is____ o10010 oo1110 111010

The 2's complement value of 11011 is_____ 11010 11101 10101

The 2's complement value of ooo1o is____ 11101 11110 10101

The 1's complement value of 1010 is____ 1010 1100 101

Expansion of BCD is ______
Binary Coder
Decoder

Binary
Complement
Decimal

Binary Coded
Decimal

8421 code is a type of___ code Excess 3 BCD Gray

What is the weight of binary digit 1001 using
8421 code____ 6 9 13

Convert the decimal number 170 to BCD___ 1101 0111 0000 1010 0101 0000
0001 0111
0000

The expansion of ASCII is ________

American Standard
Cod for
information

Alphabet
standard code
for information

Arithimetic
symbol code
for Information

The sum of two binary numbers (100)2 and
(10)2is____ 111 101 110

The sum of two binary numbers (11)2 and
(10)2is____ 101 111 110

The binary multiplication of 2 binary
numbers 11 and 11 is____ 1001 1000 1110

The quatent of a binary number 110,when
divided by 10 is____ 10 1 10

The gray code for binary number oo10 is___ 1001 1101 11

The binary code for the gray code 1110
is____ 1001 1101 1011

The gray code for binary number o100 is___ 110 1100 1010

The ASCII code is ___ bit binary code 4 7 8

The ASCII code consists if ___ characters
and symbols 130 150 128

The excess 3 code for a BCD code ooo1
is_____ 100 1010 1

The BCD value of a decimal number 9
is____ 1110 1010 1001

The excess 3 code for a decimal number 3
is_____ 110 101 1100

The parity bit is used to detct ____bit errors Double Single Four

The ____method is used to detect double bit
errors Parity bit Hamming code Hollerith codeIf total number of 1's is even is a binary
number ,then it is called_____ error
detection Odd parity Even parity Hollerith code

Which of these sets of logic gates are
designated as universal gates? NOR, NAND.

XOR, NOR,
NAND.

OR, NOT,
AND.

The output of an AND gate is LOW
________.

when any input is
LOW

when all inputs
are HIGH

when any input
is HIGH

The output of an OR gate is LOW when
________. all inputs are LOW

any input is
LOW

any input is
HIGH

When used with an IC, what does the term
"QUAD" indicate? 4 circuits 2 circuits 8 circuits

The output of an AND gate with three inputs,
A, B, and C, is HIGH when ________. A = 1, B = 1, C = 0

A = 0, B = 0, C
= 0

A = 1, B = 1, C
= 1

OPT 4 ANSWER

16 10

16 8

16 2

16 16

Word Bit

Word Nibble

Word Byte

Word Word

1001 1010

5 5

7 7

1111 1111

13 11

: Computer Systems Architecture & 17CSU102/17CTU102

111 11

674 674

F E

14 13

7 9

157 159

73 73

532 107

1A 1A

2F 47

114 112

25 22

111101 10111

258 233

5D 6E

11100 100

101101 10010

101 101

11011 11110

1011 101Binary
Comparator
Decoder

Binary Coded
Decimal

ASCII BCD

15 9

1110 1000 111 0001 0111 0000Arthimetic
symbol code for
instruments

American Standard
Cod for information
Interchange

10 110

10 101

1111 1001

11 11

110 11

1111 1011

1101 110

16 7

144 128

1001 100

1011 1001

1101 110

Eight Single

Check Sum Check Sum

Hamming code Even parity

NOR, NAND,
XNOR. NOR, NAND.

all the time
when any input is
LOW

all inputs are
HIGH all inputs are LOW

6 circuits 4 circuits

A = 1, B = 0, C
= 1 A = 1, B = 1, C = 1

Name of the Faculty
Department
Subject & Subject Code
Class
Year and Semester

QUESTION OPT 1 OPT 2 OPT 3

UNIT I

The radix of a decimal number is____ 2 8 10

The radix of an octal number is____ 2 8 10

The base of a binary number is_____ 2 8 10

The base of a hexa decimal number is_____ 2 8 10

Thr single digit value in digital system is
known as_____ Bit Byte Nibble

A 4-bit value is known as ____ in a digital
systems Bit Byte Nibble

A 8-bit value is known as ____ in a digital
systems Bit Byte Nibble

A 16-bit value is known as ____ in a digital
systems Bit Byte Nibble

The binary value of hexadecimal number
"A"is___ 1010 1111 1110

The decimal value of a binary number 0101
is___ 8 7 9

The octal value of a binary number 0111
is____ 4 5 6

The hexadecimal value of a decimal number
15 is____ 1010 1110 1011

The decimal value of a hexadecimal number
"B" is_____ 10 11 12

: I B.Sc. (CT, CS-B)
: 2017 – 2018 and I semester

: K. Subramanian
: Electronics and Communication Systems
: Computer Systems Architecture & 17CSU102/17CTU102

Karpagam Academy of Higher Education
COIMBATORE - 641021

The binary value of a decimal number
"3"is___ 11 101 1101

The octal value of a decimal number 444
is____ 534 356 636

The hexadecimal value of a binary number
1110 is___ A D E

The decimal value of a hexadecimal number
"D" is___ 11 12 13

The decimal value of a binary numbe 1001
is____ 9 10 8

The decimal value of an octal number 237
is____ 160 159 158

The hexadecimal value of a decimal
nymber115 is___ AF 4B 84

The octal value of a hexadecimal number 47
is_____ 66 215 107

The hexadecimal value of an octal number
32 is_____ 5A 3A 4A

The decimal value of a binary number
101111 is _____ 47 74 64

The octal value of a binary number 1001010
is _____ 111 112 113

The decimal value of a binary number 10110
is_____ 22 24 23

The binary value of an octal number 27
is____ 100110 110101 10111

The decimal value of a hexadecimal number
E9 is_____ 233 234 255

The hexadecimal value of binary number
1101110 is____ 4E 3D 6E

The 1's complement value of 11011 is____ 1101 11011 oo100

The 1's complement value of 101101 is____ o10010 oo1110 111010

The 2's complement value of 11011 is_____ 11010 11101 10101

The 2's complement value of ooo1o is____ 11101 11110 10101

The 1's complement value of 1010 is____ 1010 1100 101

Expansion of BCD is ______
Binary Coder
Decoder

Binary
Complement
Decimal

Binary Coded
Decimal

8421 code is a type of___ code Excess 3 BCD Gray

What is the weight of binary digit 1001 using
8421 code____ 6 9 13

Convert the decimal number 170 to BCD___ 1101 0111 0000 1010 0101 0000
0001 0111
0000

The expansion of ASCII is ________

American Standard
Cod for
information

Alphabet
standard code
for information

Arithimetic
symbol code
for Information

The sum of two binary numbers (100)2 and
(10)2is____ 111 101 110

The sum of two binary numbers (11)2 and
(10)2is____ 101 111 110

The binary multiplication of 2 binary
numbers 11 and 11 is____ 1001 1000 1110

The quatent of a binary number 110,when
divided by 10 is____ 10 1 10

The gray code for binary number oo10 is___ 1001 1101 11

The binary code for the gray code 1110
is____ 1001 1101 1011

The gray code for binary number o100 is___ 110 1100 1010

The ASCII code is ___ bit binary code 4 7 8

The ASCII code consists if ___ characters
and symbols 130 150 128

The excess 3 code for a BCD code ooo1
is_____ 100 1010 1

The BCD value of a decimal number 9
is____ 1110 1010 1001

The excess 3 code for a decimal number 3
is_____ 110 101 1100

The parity bit is used to detct ____bit errors Double Single Four

The ____method is used to detect double bit
errors Parity bit Hamming code Hollerith codeIf total number of 1's is even is a binary
number ,then it is called_____ error
detection Odd parity Even parity Hollerith code

Which of these sets of logic gates are
designated as universal gates? NOR, NAND.

XOR, NOR,
NAND.

OR, NOT,
AND.

The output of an AND gate is LOW
________.

when any input is
LOW

when all inputs
are HIGH

when any input
is HIGH

The output of an OR gate is LOW when
________. all inputs are LOW

any input is
LOW

any input is
HIGH

When used with an IC, what does the term
"QUAD" indicate? 4 circuits 2 circuits 8 circuits

The output of an AND gate with three inputs,
A, B, and C, is HIGH when ________. A = 1, B = 1, C = 0

A = 0, B = 0, C
= 0

A = 1, B = 1, C
= 1

OPT 4 ANSWER

16 10

16 8

16 2

16 16

Word Bit

Word Nibble

Word Byte

Word Word

1001 1010

5 5

7 7

1111 1111

13 11

: Computer Systems Architecture & 17CSU102/17CTU102

111 11

674 674

F E

14 13

7 9

157 159

73 73

532 107

1A 1A

2F 47

114 112

25 22

111101 10111

258 233

5D 6E

11100 100

101101 10010

101 101

11011 11110

1011 101Binary
Comparator
Decoder

Binary Coded
Decimal

ASCII BCD

15 9

1110 1000 111 0001 0111 0000Arthimetic
symbol code for
instruments

American Standard
Cod for information
Interchange

10 110

10 101

1111 1001

11 11

110 11

1111 1011

1101 110

16 7

144 128

1001 100

1011 1001

1101 110

Eight Single

Check Sum Check Sum

Hamming code Even parity

NOR, NAND,
XNOR. NOR, NAND.

all the time
when any input is
LOW

all inputs are
HIGH all inputs are LOW

6 circuits 4 circuits

A = 1, B = 0, C
= 1 A = 1, B = 1, C = 1

Name of the Faculty
Department
Subject & Subject Code
Class
Year and Semester

Questions OPT 1 OPT 2 OPT 3

UNIT II
 A NAND Gate is Inversion followed

by an AND Gate
 AND Gate
followed by an
Inverter

 AND Gate
followed by an
OR Gate

 The MIN Term designator of the term A 4 15 11
 Two Input Exclusive NOR Gate gives high
output

 When one Input is
High & the other is

 Only When
both the Inputs

 When Both
the Input are

. The Output of a two Input OR Gate is high Only if both the
Inputs are High

 Only if both the
Inputs are Low

 If atleast one
of the Inputs is
high

 The Output of a two Input AND Gate is high Only if both the
Inputs are High

 Only if both the
Inputs are Low

 If atleast one
of the Inputs is
high The Output of a two Input NAND Gate is

high
 Only if both the
Inputs are High

. Only if both
the Inputs are
Low

. If at least one
of the Inputs is
Low

 The Output of a two Input NOR Gate is high Only if both the
Inputs are High

 Only if both the
Inputs are Low

 If at least one
of the Inputs is
High

 If an Input A is given one inverter, the
output will be

 1/A 1 A’

If a 3-input NOR gate has eight input
possibilities, how many of those possibilities
will result in a HIGH output? 1 2 7
If a signal passing through a gate is inhibited
by sending a LOW into one of the inputs, and
the output is HIGH, the gate is a(n): AND NAND NOR

Karpagam Academy of Higher Education
COIMBATORE - 641021

: K. Subramanian
: Electronics and Communication Systems
: Computer Systems Architecture & 17CSU102/17CTU102
: I B.Sc. (CT, CS-B)
: 2017 – 2018 and I semester

Which of the following logical operations is
represented by the + sign in Boolean
algebra? inversion AND OR
Output will be a LOW for any case when one
or more inputs are zero for a(n): OR gate NOT gate AND gate
The output of a NOR gate is HIGH if
________. all inputs are HIGH

any input is
HIGH

any input is
LOW

A NAND circuit with positive logic will
operate as :

NOR with negative
logic

AND with
negative logic

OR with
negative logic
input

Which of the following ICs has only one
NAND gate: 7400 7420 7430
OR operation is: X + XY XY X+Y
What are the pin numbers of the outputs of
the gates in a 7432 IC? 3, 6, 10, and 13 1, 4, 10, and 13 3, 6, 8, and 11

The output of a NOT gate is HIGH when
________. the input is LOW

the input is
HIGH

power is
applied to the
gate's IC

If the input to a NOT gate is A and the output
is X, then ________. X = A X=A' X = 0
How many inputs of a four-input AND gate
must be HIGH in order for the output of the
logic gate to go HIGH?

any one of the
inputs

any two of the
inputs

any three of the
inputs

What is the no. of OR IC. : 7402 7486 7432
What is the no. of AND IC. 7408 7486 7432
What is the no. of NOR IC. : 7402 7486 7447
What is the no. of NAND IC. : 7402 7404 7400
What is the no. of NOT IC. : 7402 7486 7404
What is the no. of EX-OR IC. : 7402 7486 7447
Which of the following is Boolean eq. of EX-
OR gate: A+B A+B ' AB
Which of the following gates has the exact
inverse output of the OR gate for all possible
input combinations? AND NAND NOR
The output of an exclusive-OR gate is HIGH
if ________. all inputs are LOW

all inputs are
HIGH

the inputs are
unequal

Determine the values of A, B, C, and D that
make the sum term A'+B+C'+D equal to
zero.

A = 1, B = 0, C =
0, D = 0

A = 1, B = 0, C
= 1, D = 0

A = 0, B = 1, C
= 0, D = 0

Which statement below best describes a
Karnaugh map?

Variable
complements can
be eliminated by

It is simply a
rearranged truth
table.

The Karnaugh
map eliminates
the need for

Which of the examples below expresses the
commutative law of multiplication?

A • (B • C) = (A •
B) • C A + B = B + A A • B = B • A

The observation that a bubbled input OR
gate is interchangeable with a bubbled output a Karnaugh map

the
commutative

DeMorgan's
second theorem

The commutative law of addition and
multiplication indicates that:

the way we OR or
AND two variables

we can group
variables in an

the factoring of
Boolean

Which of the examples below expresses the
distributive law of Boolean algebra?

A • (B + C) = (A •
B) + (A • C)

A • (B • C) = (A
• B) + C

(A • B) + (A •
C)

A single transistor can be used to build
which of the following digital logic gates? AND NAND NOR

Exclusive-OR (XOR) logic gates can be
constructed from what other logic gates?

AND gates, OR
gates, and NOT
gates OR gates only

AND gates and
NOT gates

The logic gate that will have HIGH or “1” at
its output when any one of its inputs is HIGH
is a(n): AND NAND OR
How many NAND circuits are contained in a
7400 NAND IC? 3 2 1
How many truth table entries are necessary
for a four-input circuit? 12 4 8

A NAND gate has:
LOW inputs and a
HIGH output

HIGH inputs
and a HIGH

Any One LOW
inputs and a

The basic logic gate whose output is the
complement of the input is the: INVERTER gate comparator OR gate
A Karnaugh map with 4 variables has : 2 cells 4 cells 8 cells
An AND gate with schematic "bubbles" on
its inputs performs the same function as
a(n)________ gate. AND NAND OR
NOT gate can also Called as INVERTER gate comparator OR gate
A data selector is also called a De-Multiplexer Priority

Encoder
Multiplexer

An arithmetic logical building block that has
one data input, more than one data outputs

Data selector Multiplexer Decoder

A Decoder is nothing but a Demutilplexer
without

Control inputs Data input Enable input

In a 1-to- 16 demultiplexer the number of
control inputs will be

4 1 2

A Multiplexer has n data inputs, m control
inputs and one input, then

2m = n 2n = m mn = 2

A demultiplexer has one data input, m
control inputs and n outputs, then

2n = m 2m = n nm = 2

In a 1-to- 8 Demultiplexer the number of
control inputs will be

1 3 4

In a 8-to-1 Multiplexer the number of control
inputs will be

5 2 3

 In a 16-to-1 Multiplexer the number of
control inputs will be

6 2 4

A Binary to Octal Decoder has 3 Inputs and 8
Outputs

3 Inputs and 7
Outputs

8 Inputs and 3
Outputs

A MUX is a MSI device LSI device VLSI device
A DEMUX is a VLSI device MSI device SSI device
A Decoder is a VLSI device SSI device LSI device
A Decimal to BCD Encoder has 10 Inputs and 4

Outputs
10 Inputs and
10 Outputs

4 Inputs and 10
Outputs

An Octal to Binary Encoder has 3 Inputs and 8
Outputs

10 Inputs and 3
Outputs

8 Inputs and 3
Outputs

OPT 4 ANSWER

 None of These AND Gate
followed by an
Inverter

 None of These 11
 Only when both
the Inputs are

 When Both the
Input are same

 If atleast one of
the Inputs is
Low

 If atleast one of the
Inputs is high

. If atleast one of
the Inputs is
Low

Only if both the
Inputs are High

. None of these . If at least one of
the Inputs is Low

 None of these If at least one of
the Inputs is High

 A A’

8 1

OR NAND

: Computer Systems Architecture & 17CSU102/17CTU102

complementatio
n OR

NOR gate AND gate
all inputs are
LOW all inputs are LOW
AND with
positive logic
output

AND with negative
logic

7447 7400
(X+Y) (X+Y') X+Y

1, 4, 8, and 11 3, 6, 8, and 11
power is
removed from
the gate's IC the input is LOW

X=1 X=A'

all four inputs all four inputs
7404 7432
7404 7408
7492 7402
7492 7400
7492 7404
7492 7486

A' B + A B' A' B + A B'

NOT NOR
any input is
LOW

the inputs are
unequal

A = 1, B = 0, C
= 1, D = 1

A = 1, B = 0, C = 1,
D = 0A Karnaugh

map can be used
to replace

A Karnaugh map
can be used to
replace Boolean

A • B = B + A A • B = B • A

the associative
law of

DeMorgan's second
theorem

an expression
can be expanded

the way we OR or
AND two variables

(A + B) + C = A
+ (B + C)

A • (B + C) = (A •
B) + (A • C)

NOT NOT

OR gates and
NOT gates

gates, and NOT
gates

NOT OR

4 4

16 16

all the time
Any One LOW
inputs and a LOW

AND gate INVERTER gate
16 cells 16 cells

NOT NAND
AND gate INVERTER gate
Decoder Multiplexer

De-Multiplexer De-Multiplexer

All of the above Data input

16 4

n2 = m 2m = n

mn = 2 2m = n

5 3

1 3

3 4

3 Inputs and 3
Outputs

3 Inputs and 8
Outputs

SSI device MSI device
LSI device MSI device
MSI device MSI device
4 Inputs and 4
Outputs

10 Inputs and 4
Outputs

8 Inputs and 4
Outputs

8 Inputs and 3
Outputs

Name of the Faculty
Department
Subject & Subject Code
Class
Year and Semester

QUESTION OPT 1 OPT 2 OPT 3
UNIT III

The decoded instruction is stored in ______ . IR PC Registers

 The instruction -> Add LOCA,R0 does,

 Adds the value of
LOCA to R0 and
stores in the temp
register

 Adds the value
of R0 to the
address of
LOCA

Adds the values
of both LOCA
and R0 and
stores it in R0

 Which registers can interact with the
secondary storage ? MAR PC IR
 During the execution of a program which
gets initialized first ? MDR IR PC
 Which of the register/s of the processor
is/are connected to Memory Bus ? PC MAR IR

 ISP stands for,
Instruction Set
Processor

 Information
Standard
Processing

 Interchange
Standard
Protocol

 The internal Components of the processor
are connected by _______ .

 Processor intra-
connectivity
circuitry Processor bus Memory bus

 ______ is used to choose between
incrementing the PC or performing ALU
operations . Conditional codes Multiplexer Control unit
 The registers,ALU and the interconnection
between them are collectively called as
_____ . Process route

 Information
trail

 information
path

 _______ is used to store data in registers . D flip flop JK flip flop RS flip flop

: Electronics and Communication Systems
: Computer Systems Architecture & 17CSU102/17CTU102
: I B.Sc. (CT, CS-B)
: 2017 – 2018 and I semester

Karpagam Academy of Higher Education
COIMBATORE - 641021

: K. Subramanian

 The main virtue for using single Bus
structure is , Fast data transfers

 Cost effective
connectivity
and speed

 Cost effective
connectivity
and ease of
attaching
peripheral
devices

 ______ are used to over come the difference
in data transfer speeds of various devices .

 Speed enhancing
circuitory Bridge circuits Multiple Buses

 To extend the connectivity of the processor
bus we use ______ . PCI bus SCSI bus Controllers
 IBM developed a bus standard for their line
of computers ‘PC AT’ called _____ . IB bus M-bus ISA
 The bus used to connect the monitor to the
CPU is ______ . PCI bus SCSI bus Memory bus

 ANSI stands for,
 American National
Standards Institute

 American
National
Standard
Interface

 American
Network
Standard
Interfacing

 _____ register Connected to the Processor
bus is a single-way transfer capable . PC IR Temp
 In multiple Bus organisation, the registers
are collectively placed and referred as
______ . Set registers Register file Register Block

 The main advantage of multiple bus
organisation over single bus is,

 Reduction in the
number of cycles
for execution

 Increase in size
of the registers

 Better
Connectivity

 The ISA standard Buses are used to connect,
 RAM and
processor

 GPU and
processor

 Harddisk and
Processor

 During the execution of the instructions, a
copy of the instructions is placed in the
______ . Register RAM System heap
 Two processors A and B have clock
frequencies of 700 Mhz and 900 Mhz
respectively. Suppose A can execute an
instruction with an average of 3 steps and B
can execute with an average of 5 steps. For
the execution of the same instruction which
processor is faster ? A B

 Both take the
same time

 A processor performing fetch or decoding of
different instruction during the execution of
another instruction is called ______ . Super-scaling Pipe-lining

 Parallel
Computation

 For a given FINITE number of instructions
to be executed, which architecture of the
processor provides for a faster execution ? ISA ANSA Super-scalar

The clock rate of the processor can be
improved by,

 Improving the IC
technology of the
logic circuits

 Reducing the
amount of
processing done
in one step

 By using
overclocking
method

 An optimizing Compiler does,

 Better compilation
of the given piece
of code.

 Takes
advantage of the
type of
processor and
reduces its
process time.

 Does better
memory
managament.

 The ultimate goal of a compiler is to,

 Reduce the clock
cycles for a
programming task.

 Reduce the size
of the object
code. Be versatile.

 SPEC stands for,

 Standard
Performance
Evaluation Code.

 System
Processing
Enhancing
Code.

 System
Performance
Evaluation
Corporation.

 As of 2000, the reference system to find the
performance of a system is _____ . Ultra SPARC 10 SUN SPARC SUN II
 When Performing a looping operation, the
instruction gets stored in the ______ . Registers Cache System Heap
 The average number of steps taken to
execute the set of instructions can be made to
be less than one by following _______ . ISA Pipe-lining Super-scaling
 If a processor clock is rated as 1250 million
cycles per second, then its clock period is
________ . 1.9 * 10 ^ -10 sec

 1.6 * 10 ^ -9
sec

 1.25 * 10 ^ -10
sec

 If the instruction, Add R1,R2,R3 is executed
in a system which is pipe-lined, then the
value of S is (Where S is term of the Basic
performance equation) 3 ~2 ~1

 CISC stands for,

 Complete
Instruction
Sequential
Compilation

 Computer
Integrated
Sequential
Compiler

 Complex
Instruction Set
Computer

 As of 2000, the reference system to find the
SPEC rating are built with _____ Processor .

 Intel Atom SParc
300Mhz

 Ultra SPARC -
IIi 300MHZ

 Amd Neutrino
series

 The instruction, Add #45,R1 does,

 Adds the value of
45 to the address of
R1 and stores 45 in
that address

 Adds 45 to the
value of R1 and
stores it in R1

 Finds the
memory
location 45 and
adds that
content to that
of R1

 In case of, Zero-address instruction method
the operands are stored in _____ . Registers Accumulators

 Push down
stack

 Add #45, when this instruction is executed
the following happen/s,

 The processor
raises an error and
requests for one
more operand

 The value
stored in
memory
location 45 is
retrieved and
one more
operand is
requested

 The value 45
gets added to
the value on the
stack and is
pushed onto the
stack

 The addressing mode which makes use of in-
direction pointers is ______ .

 Indirect addressing
mode

 Index
addressing
mode

Relative
addressing
mode

 In the following indexed addressing mode
instruction, MOV 5(R1),LOC the effective
address is ______ . EA = 5+R1 EA = R1 EA = [R1]
The addressing mode/s, which uses the PC
instead of a general purpose register is
______ .

 Indexed with
offset Relative direct

The addressing mode, where you directly
specify the operand value is _______ . Immediate Direct Definite
 The effective address of the following
instruction is , MUL 5(R1,R2) 5+R1+R2 5+(R1*R2) 5+[R1]+[R2]
_____ addressing mode is most suitable to
change the normal sequence of execution of
instructions . Relative Indirect

 Index with
Offset

 Which method/s of representation of
numbers occupies large amount of memory
than others ? Sign-magnitude 1’s compliment

 2’s
compliment

 Which representation is most efficient to
perform arithmetic operations on the
numbers ? Sign-magnitude 1’s compliment

 2’S
compliment

 Which method of representation has two
representations for ‘0’ ? Sign-magnitude 1’s compliment

 2’s
compliment

 When we perform subtraction on -7 and 1
the answer in 2’s compliment form is _____ . 1010 1110 110

 When we perform subtraction on -7 and -5
the answer in 2’s compliment form is _____ . 11110 1110 1010
 When we subtract -3 from 2 , the answer in
2’s compliment form is _______ . 1 1101 101
 The processor keeps track of the results of
its operations using a flags called _____ .

 Conditional code
flags

 Test output
flags Type flags

The register used to store the flags is called
as ______ . Flag register Status register Test register

 The Flag ‘V’ is set to 1 indicates that,
 The operation is
valid

 The operation
is validated

 The operation
as resulted in
an overflow

In some pipelined systems, a different
instruction is used to add to numbers which
can affect the flags upon execution. That
instruction is _______ . AddSetCC AddCC Add++
 The most efficient method followed by
computers to multiply two unsigned numbers
is _______ . Booth algorithm

 Bit pair
recording of
multipliers

 Restoring
algorithm

 For the addition of large integers most of the
systems make use of ______ . Fast adders Full adders

 Carry look-
ahead adders

 In a normal n-bit adder , to find out if an
overflow as occured we make use of _____ . And gate Nand gate Nor gate
In the implementation of a Multiplier circuit
in the system we make use of _______ . Counter Flip flop Shift register
 The smallest entity of memory is called as
_______ . Cell Block Instance

OPT 4 ANSWER

 MDR IR
 Adds the value
of LOCA with a
value in
accumulator and
stores it in R0

Adds the values of
both LOCA and R0
and stores it in R0

 R0 MAR

 MAR PC

MDR MAR
 Interrupt
Service
Procedure

Instruction Set
Processor

 Rambus Processor bus

Encoder Multiplexer

 data path
T flip flop D flip flop

: Computer Systems Architecture & 17CSU102/17CTU102

slow data
transfer

 Cost effective
connectivity and
ease of attaching
peripheral devices

 Buffer registers Buffer registers

 Multiple bus PCI bus

USB bus ISA

 Rambus SCSI bus
 American
Network
Security
Interrupt

 American National
Standards Institute

 Z Temp

 Map registers Register file

better
performance

 Reduction in the
number of cycles
for execution

 CD/DVD drives
and Processor

 Harddisk and
Processor

 Cache Cache

 Insuffient
information A

serial Pipe-lining

 ASCII Super-scalar

overlocking
system overlocking system

memory size

 Takes advantage
of the type of
processor and
reduces its process
time.

 Be able to
detect even the
smallest of
errors. Be versatile.
 Standard
Processing
Enhancement
Corporation.

 System
Performance
Evaluation
Corporation.

Register SUN II

 System stack Cache

 Sequential Super-scaling

8 * 10 ^ -10 sec 8 * 10 ^ -10 sec

6 3

 Complex
Instruction
Sequential
Compilation

 Complex
Instruction Set
Computer

 ASUS A series
450 Mhz

 Amd Neutrino
series

store the
memory data

 Adds 45 to the
value of R1 and
stores it in R1

 Cache Push down stack

The value erased

 The value stored in
memory location 45
is retrieved and one
more operand is
requested

 Offset
addressing mode

 Indirect
addressing mode

 EA = 5+[R1] . EA = 5+[R1] .

immediate Relative

 Relative Immediate

 5*([R1]+[R2]) 5+[R1]+[R2]

 Immediate Relative

complement Sign-magnitude

complements 2’S compliment

complements 1’s compliment

1000 1110

10 1110

1001 101

zero flag
 Conditional code
flags

 Log register Status register

 occurrence in
the operation.

 The operation is
valid

 SumSetCC AddSetCC

 Non restoring
algorithm

 Bit pair recording
of multipliers

Half adder
 Carry look-ahead
adders

 Xor gate Xor gate
 Push down
stack Shift register

 Unit Cell

Name of the Faculty
Department
Subject & Subject Code
Class
Year and Semester

QUESTION OPT 1 OPT 2 OPT 3
UNIT V

A collection of lines that connects several
devices is called bus

peripheral
connection
wires Both a and b

A complete microcomputer system consist of
........... microprocessor memory

 peripheral
equipment

PC Program Counter is also called
................... instruction pointer

 memory
pointer data counter

In a single byte how many bits will be there? 8 16 4
CPU does not perform the operation
.................. data transfer logic operation

 arithmetic
operation

The access time of memory is the
time required for performing any single CPU
operation. Longer than Shorter than

 Negligible
than

Memory address refers to the successive
memory words and the machine is called as
............ word addressable

 byte
addressable

 bit
addressable

A microprogram written as string of 0's and
1's is a

Symbolic
microinstruction

 binary
microinstructio
n

 symbolic
microinstructio
n

A pipeline is like
 an automobile
assembly line house pipeline both a and b

Data hazards occur when
 Greater
performance loss

 Pipeline
changes the
order of
read/write
access to
operands

 Some
functional unit
is not fully
pipelined

: Electronics and Communication Systems
: Computer Systems Architecture & 17CSU102/17CTU102
: I B.Sc. (CT, CS-B)
: 2017 – 2018 and I semester

Karpagam Academy of Higher Education
COIMBATORE - 641021

: K. Subramanian

 In a vectored interrupt. the branch address
is assigned to a
fixed location in
memory.

 the interrupting
source supplies
the branch
information to
the processor
through an
interrupt vector.

 the branch
address is
obtained from a
register in the
processor

 The circuit used to store one bit of data is
known as

 Encoder
 OR gate Flip Flop

 Cache memory acts between
 CPU and RAM

 RAM and
ROM

 CPU and
Hard Disk

 Write Through technique is used in which
memory for updating the data

 Virtual memory Main
memory

 Auxiliary
memory

 Generally Dynamic RAM is used as main
memory in a computer system as it

 Consumes less
power has higher

speed

 has lower cell
density

 Virtual memory consists of Static RAM Dynamic
RAM

 Magnetic
memory

 In a program using subroutine call
instruction, it is necessary

 initialise program
counter Clear the

accumulator

 Reset the
microprocessor

 A Stack-organised Computer uses
instruction of

 Indirect addressing Two-
addressing

 Zero
addressing

 If the main memory is of 8K bytes and the
cache memory is of 2K words. It uses
associative mapping. Then each word of
cache memory shall be

 11 bits

 21 bits 16 bits
 Cache memory works on the principle of Locality of data

 Locality of
memory

 Locality of
reference

 When CPU is executing a Program that is
part of the Operating System, it is said to be
in Interrupt mode System mode Half mode
 An n-bit microprocessor has n-bit program

counter n-bit
address register

 n-bit ALU

 The main memory in a Personal Computer
(PC) is made of

 cache memory.
 static RAM

 Dynamic Ram

 In computers, subtraction is carried out
generally by

 1's complement
method

 2's
complement
method

 signed
magnitude
method

 Memory unit accessed by content is called Read only memory
Programmable
Memory

 Virtual
Memory

 A floating point number that has a O in the
MSB of mantissa is said to have

 Overflow
 Underflow

 Important
number

 The BSA instruction is Branch and store
accumulator

 Branch and
save return
address

 Branch and
shift address

 MIMD stands for Multiple
instruction multiple
data

 Multiple
instruction
memory data

 Memory
instruction
multiple data

 A k-bit field can specify any one of 3k registers 2k registers K2 registers
 The time interval between adjacent bits is
called the

 Word-time
 Bit-time

 Turn around
time

 A group of bits that tell the computer to
perform a specific operation is known as

 Instruction code Micro-
operation Accumulator

 The load instruction is mostly used to
designate a transfer from memory to a
processor register known as

 Accumulator
 Instruction
Register

 Program
counter

 The communication between the
components in a microcomputer takes place
via the address and

 I/O bus

 Data bus Address bus
 An instruction pipeline can be implemented
by means of

 LIFO buffer
 FIFO buffer Stack

 Data input command is just the opposite of a Test command Control
command Data output

 A microprogram sequencer generates the
address of next
micro instruction to
be executed.

 generates the
control signals
to execute a
microinstructio
n.

 sequentially
averages all
microinstructio
ns in the
control
memory.

 A binary digit is called a Bit Byte Number
 A flip-flop is a binary cell capable of storing
information of

 One bit
 Byte Zero bit

 The operation executed on data stored in
registers is called

 Macro-operation Micro-
operation

 Bit-operation

 MRI indicates Memory
Reference
Information.

 Memory
Reference
Instruction.

 Memory
Registers
Instruction.

 Self-contained sequence of instructions that
performs a given computational task is called

 Function

 Procedure Subroutine
 Microinstructions are stored in control
memory groups, with each group specifying
a

 Routine

 Subroutine Vector
 An interface that provides a method for
transferring binary information between
internal storage and external devices is called

 I/O interface

 Input interface
 Output
interface

 Status bit is also called Binary bit Flag bit Signed bit
 An address in main memory is called Physical address Logical

address
 Memory
address

 A device/circuit that goes through a
predefined sequence of states upon the
application of input pulses is called

 register

 flip-flop transistor.
 The performance of cache memory is
frequently measured in terms of a quantity
called

 Miss ratio.

 Hit ratio. Latency ratio.
 The information available in a state table
may be represented graphically in a

 simple diagram.
 state diagram.

 complex
diagram.

 Content of the program counter is added to
the address part of the instruction in order to
obtain the effective address is called.

 relative address
mode.

 index
addressing
mode.

 register mode.

 Which of the following is a main memory Secondary
memory.

 Auxiliary
memory.

 Cache
memory.

 The memory unit that communicates directly
with the CPU is called the

 main memory Secondary
memory

 shared
memory

 The average time required to reach a storage
location in memory and obtain its contents is
called

 Latency time.

 Access time.

 Turnaround
time.

………..... Memory unit accessed by content
is called _.

Read only memory Virtual Memory Programmable
Memory

…………….The main memory in a Personal
Computer (PC) is made of _.

cache memory. Dynamic Ram static

………..Cache memory works on the
principle of _.

Locality of data

Locality of
memory

 Locality of
reference

An n-bit microprocessor has _. n-bit program
counter

n-bit ALU n-bit
instruction

When CPU is executing a Program that is
part of the Operating System, it is said to be
in _.

 Interrupt mode

System mode

Simplex mode

Generally Dynamic RAM is used as main
memory in a computer system as it .

 Consumes less
power

has higher
speed

 has lower cell
density

Write Through technique is used in which
memory for updating the data

 Virtual memory Main memory Auxiliary
memory

 Cache memory acts between . CPU and RAM CPU and Hard
Disk

RAM and
ROM

OPT 4 ANSWER

internal wires bus

 all of the above all of the above

 file pointer instruction pointer
32 8

 all of the above data transfer

 Same as Longer than

 Terra byte
addressable word addressable

 binary micro-
program

 binary
microprogram

 a gas line
 an automobile
assembly line

 Machine size is
limited

 Pipeline changes
the order of
read/write access to
operands

: Computer Systems Architecture & 17CSU102/17CTU102

 none of the
above the interrupting

source supplies the
branch information
to the processor
through an
interrupt vector.

 Decoder OR gate

 None of these CPU and RAM
 Cache
memory

 Cache
memory

 needs
refreshing
circuitary has higher speed

 None of these Static RAM
 Clear the
instruction
register

 Clear the
instruction register

 Index
addressing Zero addressing

 20 bits 16 bits
 Locality of
reference &
memory

 Locality of
reference

 Simplex mode System mode
 n-bit
instruction
register

 n-bit instruction
register

 both and . both and .
 BCD
subtraction
method

 2's complement
method

 Associative
Memory

 Associative
Memory

 Undefined Underflow
 Branch and
show
accumulator

 Branch and save
return address

 Multiple
information
memory data

 Multiple
instruction multiple
data

 K3 registers 2k registers

 Slice time Bit-time

 Register
 Instruction code

 Memory
address Register

 Accumulator

 Control lines Data bus
 None of the
above FIFO buffer

 Data channel Data output
 enables the
efficient
handling of a
micro program
subroutine.

 generates the
address of next
micro instruction to
be executed.

 Character Bit

 Eight bit
 One bit

 Byte-operation Micro-operation
 Memory
Register
information

 Memory
Reference
Instruction.

 Routine

 Function

 Address

 Routine

 I/O bus

 I/O interface

unsigned bit Flag bit

 Word address
 Physical address

 counter. counter.

 Read ratio. Latency ratio.
 data flow
diagram. state diagram.

 implied mode.

 relative address
mode.

 Virtual
memory.

 Cache memory.

 auxiliary
memory.

 main memory

 Response time. Access time.
Associative
Memory

Associative
Memory

cache and
Dynamic

cache and Dynamic

 Locality of
reference &
memory

 Locality of
reference

n-bit address
register

n-bit instruction
register

Half mode System mode

needs refreshing
circuitry

has higher speed

 Cache memory Cache memory

 ROM CPU and RAM

	1.PDF (p.1)
	2.pdf (p.2-46)
	3.pdf (p.47-68)
	4.pdf (p.69-93)
	5.pdf (p.94-117)
	6.pdf (p.118-125)
	7.pdf (p.126-133)
	8.pdf (p.134-141)
	9.pdf (p.142-151)
	10.pdf (p.152-161)
	11.PDF (p.162-171)

