
KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University Established under Section 3 of UGC Act 1956)

Pollachi Main Road, Eacharani Post, Coimbatore-641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Semester – I

18CAU101 PROGRAMMING FUNDAMENTALS USING C / C++ 4H – 4C

Instruction Hours / week: L: 4 T: 0 P: 0 Marks: Int.: 40 Ext.: 60 Total: 100

Course Objective: This course provides student with a comprehensive study of the C and C++

programming language. Classroom lectures stress the strength of C and C++, which provide programmers

with the means of writing efficient, maintainable and portable code.

Learning Outcomes: By the end of this course, students should understand the concept of a program (i.e.,

a computer following a series of instructions). Understand the concept of a loop – that is, a series of

statements which is written once but executed repeatedly- and how to use it in a programming language.

Be able to break a large problem into smaller parts, writing each part as a module or function. Understand

the concept of a program in a high-level language being translated by a compiler into machine language

program and then executed.

Unit-I

Introduction to C and C++: History of C and C++, Overview of Procedural Programming and Object-Orientation
Programming, Using main() function, Compiling and Executing Simple Programs in C++.

Data Types, Variables, Constants, Operators and Basic I/O: Declaring, Defining and Initializing Variables,
Scope of Variables, Using Named Constants, Keywords, Data Types, Casting of Data Types, Operators
(Arithmetic, Logical and Bitwise), Using Comments in programs, Character I/O (getc, getchar, putc, putchar
etc), Formatted and Console I/O (printf(), scanf(), cin, cout), Using Basic Header Files (stdio.h, iostream.h,
conio.h etc).
Expressions, Conditional Statements and Iterative Statements: Simple Expressions in C++ (including Unary
Operator Expressions, Binary Operator Expressions), Understanding Operators Precedence in
Expressions, Conditional Statements (if construct, switch-case construct), Understanding syntax and utility
of Iterative Statements (while, do-while, and for loops), Use of break and continue in Loops, Using Nested
Statements (Conditional as well as Iterative)

Unit-II

Functions and Arrays: Utility of functions, Call by Value, Call by Reference, Functions returning value, Void
functions, Inline Functions, Return data type of functions, Functions parameters, Differentiating between Declaration
and Definition of Functions, Command Line Arguments/Parameters in Functions, Functions with variable number of
Arguments.

Creating and Using One Dimensional Arrays (Declaring and Defining an Array, Ini tializing an Array,
accessing individual elements in an Array, Manipulating array elements using loops), Use Various types of
arrays (integer, float and character arrays / Strings) Two-dimensional Arrays (Declaring, Defining and
Initializing Two Dimensional Array, Working with Rows and Columns), Introduction to Multi-dimensional
arrays.

Unit-III

Derived Data Types (Structures and Unions): Understanding utility of structures and unions, Declaring, initializing
and using simple structures and unions, Manipulating individual members of structures and unions, Array of

Structures, Individual data members as structures, Passing and returning structures from functions, Structure with
union as members, Union with structures as members.
Pointers and References in C++: Understanding a Pointer Variable, Simple use of Pointers (Declaring and
Dereferencing Pointers to simple variables), Pointers to Pointers, Pointers to structures, Problems with Pointers,
Passing pointers as function arguments, Returning a pointer from a function, using arrays as pointers, Passing arrays
to functions. Pointers vs. References, Declaring and initializing references, using references as function arguments
and function return values

Unit-IV

Memory Allocation in C++: Differentiating between static and dynamic memory allocation, use of malloc, calloc and
free functions, use of new and delete operators, storage of variables in static and dynamic memory allocation.
File I/O, Preprocessor Directives: Opening and closing a file (use of fstream header file, ifstream, ofstream and
fstream classes), Reading and writing Text Files, Using put(), get(), read() and write() functions, Random access in
files, Understanding the Preprocessor Directives (#include, #define, #error, #if, #else, #elif, #endif, #ifdef, #ifndef and
#undef), Macros.

Unit-V

Using Classes in C++: Principles of Object-Oriented Programming, Defining & Using Classes, Class
Constructors, Constructor Overloading, Function overloading in classes, Class Variables &Functions,
Objects as parameters, Specifying the Protected and Private access, Copy Constructors, Overview of
Template classes and their use.
Overview of Function Overloading and Operator Overloading: Need of Overloading functions and operators,
Overloading functions by number and type of arguments, Looking at an operator as a function call,
Overloading Operators (including assignment operators, unary operators)
Inheritance, Polymorphism and Exception Handling: Introduction to Inheritance (Multi-Level Inheritance,
Multiple Inheritance), Polymorphism (Virtual Functions, Pure Virtual Functions), Basics Exceptional
Handling (using catch and throw, multiple catch statements), Catching all exceptions, Restricting
exceptions, Rethrowing exceptions.

Suggested Readings

1. Balaguruswamy,E.,(2012). Object Oriented Programming with C++. Tata McGraw-Hill Education.
2. Bjarne Stroustroup, (2014). Programming -- Principles and Practice using C++. (2nd ed.). Addison-

Wesley.
3. Bjarne Stroustrup, (2013). The C++ Programming Language, (4th ed.). Addison-Wesley.
4. Harry, H. Chaudhary,(2014). Head First C++ Programming: The Definitive Beginner's Guide.

CreateSpace Independent Publishing Platform.
5. Herbtz Schildt, (2012). C++: The Complete Reference. (5th ed.). McGraw-Hill Osborne Media
6. Paul Deitel, Harvey Deitel, (2011).C++ How to Program. (8th ed.). Prentice Hall.
7. Stanley B. Lippman, JoseeLajoie, Barbara E. Moo,(2012). C++ Primer. (5th ed.) Addison-Wesley.

Websites
1. http://www.cs.cf.ac.uk/Dave/C/CE.html
2. http://www2.its.strath.ac.uk/courses/c/

3. http://www.iu.hio.no/~mark/CTutorial/CTutorial.html
4. http://www.cplusplus.com/doc/tutorial/
5. www.cplusplus.com/
6. www.cppreference.com/

LESSONPLAN 2018-
2021

Prepared by R.NITHYA, DEPT OF CS,CA & IT ,KAHE Page 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established under Section 3 of UGC Act 1956)

Pollachi Main Road, Eacharani Post, Coimbatore-641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Semester – I

PROGRAMMING FUNDAMENTALS USING C/C++(18CAU101)

LESSON PLAN

UNIT-1

S.NO DURATION TOPICS SUPPORTED

MATERIALS

1. 1 INTRODUCTION TO C/C++:HISTORY OF

C/C++,OVERVIEW OF PROCEDURE ORIENTED

PROGRAMMING & OBJECT ORIENTED

PROGRAMMING

W1, T1:5-13

2. 1 USING MAIN ()FUNCTION,COMPILING,AND

EXECUTING SIMPLE PROGRAM IN C++.

W1,

T1:54-60

3. 1 DECLARING,DEFINING AND INITIALIZAING

VARIABLE,SCOPE OF VARIABLE

T1:33-45

4. 1 USING NAMED CONSTANT,KEYWORDS,DATA

TYPE,CASTING OF DATA TYPES,OPERATOR.

T1:25-30

5. 1 COMMENTS IN PROGRAM,CHARACTER P/O,USING

HEAD FILE.

T1:30-40

R1:45-60

6. 1 SIMPLE EXPRESSION IN C++ T1:45-46,101

7. 1 OPERATOR PRECEDENCE IN

EXPRESSION,CONDITION STATEMENT.

T1:50-70,101

8. 1 UNDERSTANDING THE SYNTAX,UTILITY OF

INERATION STATEMENTS,USE OF

BREAK,CONTINUE IN LOOP,NESTED STATEMENTS

T1:80-95,101.

R1:75,80

9. 1 RECAPITULATION OF IMPORTANT QUESTIONS

 TOTAL HOURS:9 HOURS

TEXTBOOK :E:BALAGURUSAMY(2008).OBJECT ORIENTED PROGRAMMING WITH C++,TATA MC GRAW HILL

EDUCATION.

REFERENCE BOOKS:BJARNEE STROUSTRUP,(2013).THE C++ PROGRAMMING LANGUAGE ,(2ND
ED.).ADDITION – WELSEY.

WEBSITE:WWW.geeksforgreeks.org/

http://www.cplusplus.com/

LESSONPLAN 2018-
2021

Prepared by R.NITHYA, DEPT OF CS,CA & IT ,KAHE Page 2

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established under Section 3 of UGC Act 1956)

Pollachi Main Road, Eacharani Post, Coimbatore-641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Semester – I

PROGRAMMING FUNDAMENTALS USING C/C++(18CAU101)

LESSON PLAN

UNIT-II

S.NO DURATION TOPICS SUPPORTED

MATERIALS

1. 1 FUNCTIONS &ARRAY:UTILITY OF

FUNCTION,CALL BY VALUE,CALL BY

REFERENCE,FUNCTION RETURNING VALUE,VOID

FUNCTION,INLINE FUNCTION,RETURN DATA

TYPE OF FUNCTION

T1:77-84

2. 1 FUNCTION PARAMETER,DIFFERENTIATING

DECLARATION & FUNCTION DEFINITION

T1:84-95,

3. 1 COMMAND LINE ARGUMENT,PARAMETER IN

FUNCTION WITH VARIABLE NUMBER OF

ARGUMENT

W1,T1:95-100

4. 1 CREATING & USING 1DIMENSIONAL

ARRAY,DECLARING & DEFINING AN

ARRAY,INITIALIZING AN ARRAY

T1:119-125

5. 1 ACCESSING INDIVIDUAL ELEMENTS IN AN

ARRAY,MANIPULATING ARRAY,ELEMENTS

USING LOOP

T1:125-130

6. 1 USE OF VARIOUS TYPES OF ARRAY T1:130,131

7. 1 2 DIMENSIONAL ARRAY T1:131,132

8. 1 INTRODUCTION TO MULTI DIMENSIONAL ARRAY T1:132,133

9. 1 RECAPITULATION OF IMPORTANT QUESTIONS

 TOTAL HOURS:9HOURS

TEXTBOOK :E:BALAGURUSAMY(2008).OBJECT ORIENTED PROGRAMMING WITH C++,TATA MC GRAW HILL

EDUCATION.

REFERENCE BOOKS:BJARNEE STROUSTRUP,(2013).THE C++ PROGRAMMING LANGUAGE ,(4TH
ED.).ADDITION – WELSEY.

WEBSITE:WWW.cplusplus.com/

http://www.cplusplus.com/

LESSONPLAN 2018-
2021

Prepared by R.NITHYA, DEPT OF CS,CA & IT ,KAHE Page 3

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established under Section 3 of UGC Act 1956)

Pollachi Main Road, Eacharani Post, Coimbatore-641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Semester – I

PROGRAMMING FUNDAMENTALS USINGC/C++(18CAU101)

LESSON PLAN

UNIT-III

S.NO DURATION TOPICS SUPPORTED

MATERIALS

1. 1
Understanding utility of structures and unions

,Declaring,initializing and using simple structures and unions

T1:140-145

2. 1
Manipulating individual members of structures and unions

T1:145,146

3. 1
Array of Structures, Individual data members as structures

T1:146,W1

4. 1
Passing and returning structures from functions, Structure

with union as members, Union with structures as members 

T1:148-150,W1

5. 1
Understanding a Pointer Variable, Simple use of Pointers

T1:251-254,W1

6. 1
Pointers to Pointers, Pointers to structures, Problems with

Pointers

T1:273-275,W1

7. 1
Passing pointers as function arguments, Returning a pointer

from a function, using arrays as pointers, Passing arrays to

functions

T1:275-280,W1

8. 1
Pointers vs. References, Declaring and initializing references,

using references as function arguments and function return

values

T1:280-
286,R1:315,325

9. 1 RECAPITULATION OF IMPORTANT QUESTIONS

 TOTAL HOURS: 9 HOURS

TEXTBOOK :E:BALAGURUSAMY(2008).OBJECT ORIENTED PROGRAMMING WITH C++,TATA MC GRAW HILL

EDUCATION.

REFERENCE BOOKS:BJARNEE STROUSTRUP,(2013).THE C++ PROGRAMMING LANGUAGE ,(4TH

ED.).ADDITION – WELSEY.

WEBSITE:WWW.cplusplus.com/

http://www.cplusplus.com/

LESSONPLAN 2018-
2021

Prepared by R.NITHYA, DEPT OF CS,CA & IT ,KAHE Page 4

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established under Section 3 of UGC Act 1956)

Pollachi Main Road, Eacharani Post, Coimbatore-641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Semester – I

PROGRAMMING FUNDAMENTALS USING C/C++(18CAU101)

LESSON PLAN

UNIT-IV

S.NO DURATION TOPICS SUPPORTED

MATERIALS

1. 1
Differentiating between static and dynamic memory

allocation

T1:291-293,

R1:330-333

2. 1 use of malloc, calloc and free functions  ,Use of new

operator,delete operator

T1:295-298,

R1:334

3. 1
storage of variables in static and dynamic memory

allocation

T1:300-310,

W1

4. 1
Opening and closing a file ,reading and writing text

files

T1:325-330

5. 1
Using put(), get(), read() and write() functions ,random

access in file

T1:333-345

6. 1
Understanding the Preprocessor Directives,Macros

T1:400-410

7. 1 RECAPITULATION OF IMPORTANT QUESTIONS

 TOTAL HOURS: 7HOURS

TEXTBOOK :E:BALAGURUSAMY(2008).OBJECT ORIENTED PROGRAMMING WITH C++,TATA MC GRAW HILL

EDUCATION.

REFERENCE BOOKS:BJARNEE STROUSTRUP,(2013).THE C++ PROGRAMMING LANGUAGE ,(4TH

ED.).ADDITION – WELSEY.

WEBSITE:WWW.cplusplus.com/

http://www.cplusplus.com/

LESSONPLAN 2018-
2021

Prepared by R.NITHYA, DEPT OF CS,CA & IT ,KAHE Page 5

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established under Section 3 of UGC Act 1956)

Pollachi Main Road, Eacharani Post, Coimbatore-641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Semester – I

PROGRAMMING FUNDAMENTALS USING C/C++(18CAU101)

LESSON PLAN

UNIT-V

S.NO

DURATION

TOPICS SUPPORTED

MATERIALS

1. 1
Principles of Object-Oriented Programming, Defining &

Using Classes, Class Constructors, Constructor Overloading

T1:359-362

2. 1
Function overloading in classes, Class Variables

&Functions, Objects as parameters

T1:362-365,

W1

3. 1
Specifying the Protected and Private access, Copy

Constructors ,overview of template classes and their uses

T1:366-370,W1

4. 1
Need of Overloading functions and operators

T1:371-373,W1

5. 1
Overloading functions by number and type of arguments,

T1:373-375,W1

6. 1
Looking at an operator as a function call, Overloading

Operators

T1:378-380,W1

7. 1
Introduction to Inheritance

R1:202,W1

8. 1
Polymorphism

R1:210,W1

9. 1
Basics Exceptional Handling

T1:381,W1

10. 1
Catching all exceptions, Restricting exceptions, Rethrowing

exceptions

T1:386-398,W1

11. 1 RECAPITULATION OF IMPORTANT QUESTIONS

12. 1 DISCUSSION OF ESE QUESTION PAPER

13. 1 DISCUSSION OF ESE QUESTION PAPER

14. 1 DISCUSSION OF ESE QUESTION PAPER

 TOTAL HOURS:14 HOURS

TEXT BOOK :E:BALAGURUSAMY(2008).OBJECT ORIENTED PROGRAMMING WITH C++,TATA MC GRAW

HILL EDUCATION.

REFERENCE BOOKS:BJARNEE STROUSTRUP,(2013).THE C++ PROGRAMMING LANGUAGE ,(4TH

ED.).ADDITION – WELSEY.

WEBSITE:WWW.cplusplus.com/

http://www.cplusplus.com/

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 1/51

UNIT I

Introduction to C and C++:

History of C and C++

C is a general-purpose, high-level language that was originally developed by Dennis M.

Ritchie to develop the UNIX operating system at Bell Labs. C was originally first

implemented on the DEC PDP-11 computer in 1972.

In 1978, Brian Kernighan and Dennis Ritchie produced the first publicly available description

of C, now known as the K&R standard.

The UNIX operating system, the C compiler, and essentially all UNIX application programs

have been written in C. C has now become a widely used professional language for various

reasons:

 Easy to learn

 Structured language

 It produces efficient programs

 It can handle low-level activities

 It can be compiled on a variety of computer platformsC was invented to write an

operating system called UNIX.

 C is a successor of B language which was introduced around the early 1970s.

 The language was formalized in 1988 by the American National Standard Institute

(ANSI).

 The UNIX OS was totally written in C.

 Today C is the most widely used and popular System Programming Language.

 Most of the state-of-the-art software have been implemented using C.

 Today's most popular Linux OS and RDBMS MySQL have been written in C.

 The C++ programming language has a history going back to 1979, by Bjarne

Stroustrup

 Language included classes, basic inheritance, inlining, default function arguments,

and strong type checking in addition to all the features of the C language.

 In 1983, the name of the language was changed from C with Classes to C++. The ++

operator in the C language is an operator for incrementing a variable, which gives

some insight into how Stroustrup regarded the language.

http://www2.research.att.com/~bs/
http://www2.research.att.com/~bs/
http://www.cplusplus.com/doc/tutorial/classes/
http://www.cplusplus.com/doc/tutorial/inheritance/#inheritance
http://www.cplusplus.com/doc/tutorial/functions2/#inline
http://www.cplusplus.com/doc/tutorial/functions2/#default_values

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 2/51

 Many new features were added around this time, the most notable of which are virtual

functions, function overloading, references with the & symbol, the const keyword,

and single-line comments using two forward slashes (which is a feature taken from

the language BCPL).

 In 1985, Stroustrup's reference to the language entitled The C++ Programming

Language was published

Overview of Procedural Programming and Object-Orientation Programming

Procedural Programming

Procedural programming uses a list of instructions to tell the computer what to do step-by-

step. Procedural programming relies on - you guessed it - procedures, also known as routines

or subroutines. A procedure contains a series of computational steps to be carried out.

Procedural programming is also referred to as imperative programming. Procedural

programming languages are also known as top-down languages.

Procedural programming is intuitive in the sense that it is very similar to how you would

expect a program to work. If you want a computer to do something, you should provide step-

by-step instructions on how to do it. It is, therefore, no surprise that most of the early

programming languages are all procedural. Examples of procedural languages include

Fortran, COBOL and C, which have been around since the 1960s and 70s.

Object-Oriented Programming

Object-oriented programming, or OOP, is an approach to problem-solving where all

computations are carried out using objects. An object is a component of a program that

knows how to perform certain actions and how to interact with other elements of the

program. Objects are the basic units of object-oriented programming. A simple example of an

object would be a person. Logically, you would expect a person to have a name. This would

be considered a property of the person. You would also expect a person to be able to do

something, such as walking. This would be considered a method of the person.

A method in object-oriented programming is like a procedure in procedural programming.

The key difference here is that the method is part of an object. In object-oriented

programming, you organize your code by creating objects, and then you can give those

objects properties and you can make them do certain things.

A key aspect of object-oriented programming is the use of classes. A class is a blueprint of an

object. You can think of a class as a concept and the object as the embodiment of that

concept. So, let's say you want to use a person in your program. You want to be able to

http://www.cplusplus.com/doc/tutorial/polymorphism/#virtual
http://www.cplusplus.com/doc/tutorial/polymorphism/#virtual
http://www.cplusplus.com/doc/tutorial/functions2/#function_overload

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 3/51

describe the person and have the person do something. A class called 'person' would provide

a blueprint for what a person looks like and what a person can do. Examples of object-

oriented languages include C#, Java, Perl and Python.

Using main() function

#include <stdio.h>

int main()

{

/* my first program in C */

printf("Hello, World! \n");

return 0;

}

Let us take a look at the various parts of the above program:

1. The first line of the program #include <stdio.h> is a preprocessor command, which

tells a C compiler to include stdio.h file before going to actual compilation.

2. The next line int main() is the main function where the program execution begins.

3. The next line /*...*/ will be ignored by the compiler and it has been put to add

additional comments in the program. So such lines are called comments in the

program.

4. The next line printf(...) is another function available in C which causes the message

"Hello, World!" to be displayed on the screen.

5. The next line return 0; terminates the main() function and returns the value 0.

Compiling and Executing Simple Programs in C++

1. Open a text editor and add the above-mentioned code.

2. Save the file as hello.c

3. Open a command prompt and go to the directory where you have saved the file.

4. Type gcc hello.c and press enter to compile your code.

5. If there are no errors in your code, the command prompt will take you to the next line

and would generate a.out executable file.

6. Now, type a.out to execute your program.

7. You will see the output "Hello World" printed on the screen.

$ gcc hello.c

$./a.out

Hello, World!

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 4/51

Make sure the gcc compiler is in your path and that you are running it in the directory

containing the source file hello.c.

Data Types, Variables, Constants, Operators and Basic I/O:

Declaring, Defining and Initializing Variables

 The data name which is used to store the data value is called ‘Variable’

 Variables are symbolic references to the addresses, where data values are

 stored

 Variables assume data values at the time of execution

 Variables may take different values at the different times of execution

 Variables are formed using the following rules:

 They must begin with a letter or underscore

 They must contain alphabets, digits or underscore

 First 31 characters are significant

 Cannot use keywords

 Cannot contain white spaces

 Variables are handled by the compiler at the time of compilation

 Variable name conveys to the compiler, the type of data it holds

Example:

Valid Variable Name

_name

Reg_No

MARK_1

mark_1

country

Quantity

results_UG

Rate_per

Scope of Variables

A storage class defines the scope (visibility) and life-time of variables and/or functions within

a C Program. They precede the type that they modify. We have four different storage classes

in a C program:

 auto

 register

 static

 extern

The auto Storage Class

The auto storage class is the default storage class for all local variables.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 5/51

{

int mount;

auto int month;

}

The example above defines two variables within the same storage class. ‘auto’ can only be

used within functions, i.e., local variables.

The register Storage Class

The register storage class is used to define local variables that should be stored in a register

instead of RAM. This means that the variable has a maximum size equal to the register size

(usually one word) and can't have the unary '&' operator applied to it (as it does not have a

memory location).

{

register int miles;

}

The register should only be used for variables that require quick access such as counters. It

should also be noted that defining 'register' does not mean that the variable will be stored in a

register. It means that it MIGHT be stored in a register depending on hardware and

implementation restrictions.

The static Storage Class

The static storage class instructs the compiler to keep a local variable in existence during the

life-time of the program instead of creating and destroying it each time it comes into and goes

out of scope. Therefore, making local variables static allows them to maintain their values

between function calls.

The static modifier may also be applied to global variables. When this is done, it causes that

variable's scope to be restricted to the file in which it is declared.

In C programming, when static is used on a class data member, it causes only one copy of

that member to be shared by all the objects of its class.

#include <stdio.h>

/* function declaration */

void func(void);

static int count = 5; /* global variable */

main()

{

while(count--)

{

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 6/51

func();

}

return 0;

}

/* function definition */

void func(void)

{

static int i = 5; /* local static variable */ i++;

printf("i is %d and count is %d\n", i, count);

}

When the above code is compiled and executed, it produces the following result:

i is 6 and count is 4

i is 7 and count is 3
 i is 8 and count is 2

i is 9 and count is 1

i is 10 and count is 0

The extern Storage Class

The extern storage class is used to give a reference of a global variable that is visible to ALL

the program files. When you use 'extern', the variable cannot be initialized, however, it points

the variable name at a storage location that has been previously defined.

First File: main.c

#include <stdio.h>

int count;

extern void write_extern();

main()

{

count = 5;

write_extern();

}

Second File: support.c

#include <stdio.h>

extern int count;

void write_extern(void)

{
printf("count is %d\n", count);

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 7/51

}

Here, extern is being used to declare count in the second file, whereas it has its definition in

the first file, main.c.

Using Named Constants

Constants refer to fixed values that the program may not alter during its execution. These

fixed values are also called literals.

Constants can be of any of the basic data types like an integer constant, a floating constant,

a character constant, or a string literal. There are enumeration constants as well.

Constants are treated just like regular variables except that their values cannot be modified

after their definition.

Integer Literals

An integer literal can be a decimal, octal, or hexadecimal constant. A prefix specifies the

base or radix: 0x or 0X for hexadecimal, 0 for octal, and nothing for decimal.

An integer literal can also have a suffix that is a combination of U and L, for unsigned and

long, respectively. The suffix can be uppercase or lowercase and can be in any order.

Here are some examples of integer literals:

212 /* Legal */

215u /* Legal */

0xFeeL /* Legal */

078 /* Illegal: 8 is not an octal digit */

032UU /* Illegal: cannot repeat a suffix */

Following are other examples of various types of integer literals:

85 /* decimal */

0213 /* octal */

0x4b /* hexadecimal */

30 /* int */

30u /* unsigned int */

30l /* long */

30ul /* unsigned long */

Floating-point Literals

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 8/51

A floating-point literal has an integer part, a decimal point, a fractional part, and an

exponent part. You can represent floating point literals either in decimal form or

exponential form.

While representing decimal form, you must include the decimal point, the exponent, or

both; and while representing exponential form, you must include the integer part, the

fractional part, or both. The signed exponent is introduced by e or E.

Here are some examples of floating-point literals:

3.14159 /* Legal */

314159E-5L /* Legal */

510E /* Illegal: incomplete exponent */

210f /* Illegal: no decimal or exponent */

.e55 /* Illegal: missing integer or fraction */

Character Constants

Character literals are enclosed in single quotes, e.g., 'x' can be stored in a simple variable of

char type.

A character literal can be a plain character (e.g., 'x'), an escape sequence (e.g., '\t'), or a

universal character (e.g., '\u02C0').

There are certain characters in C that represent special meaning when preceded by a

backslash, for example, newline (\n) or tab (\t). Here, you have a list of such escape

sequence codes:

Escape Meaning

sequence

\\ \ character

\' ' character

\" " character

\? ? character

\a Alert or bell

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 9/51

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\ooo Octal number of one to three digits

\xhh . . . Hexadecimal number of one or more digits

Following is the example to show a few escape sequence characters:

#include <stdio.h>

int main()

{

printf("Hello\tWorld\n\n");

return 0;

}

When the above code is compiled and executed, it produces the following result:

Hello World

String Literals

String literals or constants are enclosed in double quotes "". A string contains characters that

are similar to character literals: plain characters, escape sequences, and universal characters.

"hello, dear"

"hello, \

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 10/51

dear"

"hello, " "d" "ear"

Defining Constants

There are two simple ways in C to define constants:

 Using #define preprocessor

 Using const keyword

The #define Preprocessor

Given below is the form to use #define preprocessor to define a constant:

#define identifier value

The following example explains it in detail:

#include <stdio.h>

#define LENGTH 10

#define WIDTH 5

#define NEWLINE '\n'

int main()

{

int area;

area = LENGTH * WIDTH;

printf("value of area : %d", area);

printf("%c", NEWLINE);

return 0;

}

When the above code is compiled and executed, it produces the following result:

value of area : 50

The const Keyword

You can use const prefix to declare constants with a specific type as follows:

const type variable = value;

The following example explains it in detail:

#include <stdio.h>

int main()

{

const int LENGTH = 10;

const int WIDTH = 5;

const char NEWLINE = '\n';

int area;

area = LENGTH * WIDTH;

printf("value of area : %d", area);

printf("%c", NEWLINE);

return 0;

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 11/51

}

When the above code is compiled and executed, it produces the following result:

value of area : 50

Note that it is a good programming practice to define constants in CAPITALS.

Keywords

The following list shows the reserved words in C. These reserved words may not be used as

constants or variables or any other identifier names.

Auto else long switch

break enum register typedef

Case extern return union

char float short unsigned

const for signed void

continue goto sizeof volatile

default if static while

do int struct _Packed

double

Data Types

Data types in C refer to an extensive system used for declaring variables or functions of

different types. The type of a variable determines how much space it occupies in storage and

how the bit pattern stored is interpreted.

The types in C can be classified as follows:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 12/51

S.N. Types and Description

1 Basic Types:

 They are arithmetic types and are further classified into: (a) integer

 types and (b) floating-point types.

2 Enumerated types:

 They are again arithmetic types and they are used to define variables

 that can only assign certain discrete integer values throughout the

 program.

3 The type void:

 The type specifier void indicates that no value is available.

4 Derived types:

 They include (a) Pointer types, (b) Array types, (c) Structure types, (d)

 Union types, and (e) Function types.

The array types and structure types are referred collectively as the aggregate types. The type

of a function specifies the type of the function's return value. We will see the basic types in

the following section, whereas other types will be covered in the upcoming chapters.

Integer Types

The following table provides the details of standard integer types with their storage sizes and

value ranges:

Type Storage Value range

 Size

char 1 byte -128 to 127 or 0 to 255

unsigned 1 byte 0 to 255

char

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 13/51

signed char 1 byte -128 to 127

int 2 or 4 bytes -32,768 to 32,767 or -2,147,483,648 to

 2,147,483,647

unsigned int 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295

short 2 bytes -32,768 to 32,767

unsigned 2 bytes 0 to 65,535

short

long 4 bytes -2,147,483,648 to 2,147,483,647

unsigned 4 bytes 0 to 4,294,967,295

long

To get the exact size of a type or a variable on a particular platform, you can use the sizeof

operator. The expressions sizeof(type) yields the storage size of the object or type in bytes.

Given below is an example to get the size of int type on any machine:

#include <stdio.h>

#include <limits.h>

int main()

{

printf("Storage size for int : %d \n", sizeof(int));

return 0;

}

When you compile and execute the above program, it produces the following result on

Linux:

Storage size for int : 4

Floating-Point Types

The following table provides the details of standard floating-point types with storage sizes

and value ranges and their precision:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 14/51

Type Storage size Value range Precision

float 4 byte 1.2E-38 to 3.4E+38 6 decimal places

double 8 byte 2.3E-308 to 1.7E+308 15 decimal places

long double 10 byte 3.4E-4932 to 1.1E+4932 19 decimal places

The header file float.h defines macros that allow you to use these values and other details

about the binary representation of real numbers in your programs. The following example

prints the storage space taken by a float type and its range values:

#include <stdio.h>

#include <float.h>

int main()

{

printf("Storage size for float : %d \n", sizeof(float));

printf("Minimum float positive value: %E\n", FLT_MIN);

printf("Maximum float positive value: %E\n", FLT_MAX);

printf("Precision value: %d\n", FLT_DIG);

return 0;

}

When you compile and execute the above program, it produces the following result on Linux:

Storage size for float : 4

Minimum float positive value: 1.175494E-38

Maximum float positive value: 3.402823E+38

Precision value: 6

The void Type

The void type specifies that no value is available. It is used in three kinds of situations:

S.N. Types and Description

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 15/51

1 Function returns as void

There are various functions in C which do not return any value or you can say they

return void. A function with no return value has the return type as void. For

example, void exit (int status);

2 Function arguments as void

There are various functions in C which do not accept any parameter. A function

with no parameter can accept a void. For example, int rand(void);

3 Pointers to void

A pointer of type void * represents the address of an object, but not its type. For

example, a memory allocation function void *malloc(size_t size); returns a pointer

to void which can be casted to any data type.

Casting of Data Types

Type casting is a way to convert a variable from one data type to another data type. For

example, if you want to store a ‘long’ value into a simple integer, then you can type cast

‘long’ to ‘int’. You can convert the values from one type to another explicitly using the cast

operator as follows:

(type_name) expression

Consider the following example where the cast operator causes the division of one integer

variable by another to be performed as a floating-point operation:

#include <stdio.h>

main()

{

int sum = 17, count = 5;

double mean;

mean = (double) sum / count; printf("Value of

mean : %f\n", mean);

}

When the above code is compiled and executed, it produces the following result:

Value of mean : 3.400000

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 16/51

It should be noted here that the cast operator has precedence over division, so the value of

sum is first converted to type double and finally it gets divided by count yielding a double

value.

Type conversions can be implicit which is performed by the compiler automatically, or it can

be specified explicitly through the use of the cast operator. It is considered good

programming practice to use the cast operator whenever type conversions are necessary.

Integer Promotion

Integer promotion is the process by which values of integer type "smaller" than int or

unsigned int are converted either to int or unsigned int. Consider an example of adding a

character with an integer:

#include <stdio.h>

main()

{

int i = 17;

char c = 'c'; /* ascii value is 99 */

int sum;

sum = i + c;

printf("Value of sum : %d\n", sum);

}

When the above code is compiled and executed, it produces the following result:

Value of sum : 116

Here, the value of sum is 116 because the compiler is doing integer promotion and converting

the value of 'c' to ASCII before performing the actual addition operation.

Usual Arithmetic Conversion

The usual arithmetic conversions are implicitly performed to cast their values to a common

type. The compiler first performs integer promotion; if the operands still have different types,

then they are converted to the type that appears highest in the following hierarchy:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 17/51

The usual arithmetic conversions are not performed for the assignment operators, nor for the

logical operators && and ||. Let us take the following example to understand the concept:
#include <stdio.h>

main()

{

int i = 17;

char c = 'c'; /* ascii value is 99 */

float sum;

sum = i + c;

printf("Value of sum : %f\n", sum);

}

When the above code is compiled and executed, it produces the following result:

Value of sum : 116.000000

Here, it is simple to understand that first c gets converted to integer, but as the final value is

double, usual arithmetic conversion applies and the compiler converts i and c into ‘float’ and

adds them yielding a ‘float’ result.

Operators
An operator is a symbol that tells the compiler to perform specific mathematical or logical

functions. C language is rich in built-in operators and provides the following types of

operators:

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Misc Operators

We will, in this chapter, look into the way each operator works.

Arithmetic Operators

The following table shows all the arithmetic operators supported by the C language. Assume

variable A holds 10 and variable B holds 20, then:

Operator Description Example

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 18/51

+ Adds two operands. A + B = 30

- Subtracts second operand from the first. A - B = -10

* Multiplies both operands. A * B = 200

/ Divides numerator by de-numerator. B / A = 2

% Modulus Operator and remainder of after an B % A = 0

 integer division.

++ Increment operator increases the integer value A++ = 11

 by one.

-- Decrement operator decreases the integer A-- = 9 value by one.

Example

Try the following example to understand all the arithmetic operators available in
C:

#include <stdio.h>

main()

{

int a = 21;

int b = 10;

int c ;

c = a + b;

printf("Line 1 - Value of c is %d\n", c); c = a - b;

printf("Line 2 - Value of c is %d\n", c); c = a * b;

printf("Line 3 - Value of c is %d\n", c); c = a / b;

printf("Line 4 - Value of c is %d\n", c); c = a % b;

printf("Line 5 - Value of c is %d\n", c); c = a++;

printf("Line 6 - Value of c is %d\n", c); c = a--;

printf("Line 7 - Value of c is %d\n", c);

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 19/51

}

When you compile and execute the above program, it produces the following result:

Line 1 - Value of c is 31

Line 2 - Value of c is 11

Line 3 - Value of c is 210

Line 4 - Value of c is 2

Line 5 - Value of c is 1

Line 6 - Value of c is 21

Line 7 - Value of c is 22

Relational Operators

The following table shows all the relational operators supported by C. Assume variable A

holds 10 and variable B holds 20, then:

Operator Description Example

== Checks if the values of two operands are equal (A == B) is not

 or not. If yes, then the condition becomes true.

 true.

!= Checks if the values of two operands are equal (A != B) is true.

 or not. If the values are not equal, then the

 condition becomes true.

> Checks if the value of left operand is greater (A > B) is not

 than the value of right operand. If yes, then true.

 the condition becomes true.

< Checks if the value of left operand is less than (A < B) is true.

 the value of right operand. If yes, then the

 condition becomes true.

>= Checks if the value of left operand is greater (A >= B) is not

 than or equal to the value of right operand. If true.

 yes, then the condition becomes true.

<= Checks if the value of left operand is less than (A <= B) is true.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 20/51

 or equal to the value of right operand. If yes,

 then the condition becomes true.

Example

Try the following example to understand all the relational operators available in
C:

#include <stdio.h>

main()

{

int a = 21;

int b = 10;

int c ;

if(a == b)

{

printf("Line 1 - a is equal to b\n");

}

else

{

printf("Line 1 - a is not equal to b\n");

}

if (a < b)

{

printf("Line 2 - a is less than b\n");

}

else

{

printf("Line 2 - a is not less than b\n");

}

if (a > b)

{

printf("Line 3 - a is greater than b\n");

}

else

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 21/51

{

printf("Line 3 - a is not greater than b\n");

}

/* Lets change value of a and b */

a = 5;

b = 20;

if (a <= b)

{

printf("Line 4 - a is either less than or equal to b\n");

}

if (b >= a)

{

printf("Line 5 - b is either greater than or equal to b\n");

}

}

When you compile and execute the above program, it produces the following result:

Line 1 - a is not equal to b

Line 2 - a is not less than b

Line 3 - a is greater than b

Line 4 - a is either less than or equal to b

Line 5 - b is either greater than or equal to b

Logical Operators

Following table shows all the logical operators supported by C language. Assume variable A

holds 1 and variable B holds 0, then:

Operator Description Example

&& Called Logical AND operator. If both the (A && B) is

 operands are non-zero, then the condition false.

 becomes true.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/51

|| Called Logical OR Operator. If any of the two (A || B) is true.

 operands is non-zero, then the condition

 becomes true.

! Called Logical NOT Operator. It is used to !(A && B) is

 reverse the logical state of its operand. If a true.

 condition is true, then Logical NOT operator will

 make it false.

Example

Try the following example to understand all the logical operators available in C:

#include <stdio.h>

main()

{

int a = 5;

int b = 20;

int c ;

if (a && b)

{

printf("Line 1 - Condition is true\n");

}

if (a || b)

{

printf("Line 2 - Condition is true\n");

}

/* lets change the value of a and b */

a = 0;

b = 10;

if (a && b)

{

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 23/51

printf("Line 3 - Condition is true\n");

}

else

{

printf("Line 3 - Condition is not true\n");

}

if (!(a && b))

{

printf("Line 4 - Condition is true\n");

}

}

When you compile and execute the above program, it produces the following result:

Line 1 - Condition is true

Line 2 - Condition is true

Line 3 - Condition is not true

Line 4 - Condition is true

Bitwise Operators

Bitwise operators work on bits and perform bit-by-bit operation. The truth table for &, |, and

^ is as follows:

P

q

p & q

p | q

p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 24/51

Assume A = 60 and B = 13; in binary format, they will be as follows:

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

The following table lists the bitwise operators supported by C. Assume variable ‘A’ holds 60

and variable ‘B’ holds 13, then:

Operator Description Example

& Binary AND Operator copies a bit to the result (A & B) = 12, i.e.,

 if it exists in both operands. 0000 1100

| Binary OR Operator copies a bit if it exists in (A | B) = 61, i.e.,

 either operand. 0011 1101

^ Binary XOR Operator copies the bit if it is set (A ^ B) = 49, i.e.,

 in one operand but not both. 0011 0001

~ Binary Ones Complement Operator is unary (~A) = -61, i.e.,

 and has the effect of 'flipping' bits. 1100 0011 in 2's

 complement form.

<< Binary Left Shift Operator. The left operands A << 2 = 240,

 value is moved left by the number of bits i.e., 1111 0000

 specified by the right operand.

>> Binary Right Shift Operator. The left operands A >> 2 = 15, i.e.,

 value is moved right by the number of bits 0000 1111

 specified by the right operand.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 25/51

Example

Try the following example to understand all the bitwise operators available in C:

#include <stdio.h>

main()

{

unsigned int a = 60; /* 60 = 0011 1100 */

unsigned int b = 13; /* 13 = 0000 1101 */

int c = 0;

c = a & b; /* 12 = 0000 1100 */

printf("Line 1 - Value of c is %d\n", c);

c = a | b; /* 61 = 0011 1101 */

printf("Line 2 - Value of c is %d\n", c);

c = a ^ b; /* 49 = 0011 0001 */

printf("Line 3 - Value of c is %d\n", c);

c = ~a; /*-61 = 1100 0011 */

printf("Line 4 - Value of c is %d\n", c);

c = a << 2; /* 240 = 1111 0000 */

printf("Line 5 - Value of c is %d\n", c);

c = a >> 2; /* 15 = 0000 1111 */

printf("Line 6 - Value of c is %d\n", c);

}

When you compile and execute the above program, it produces the following result:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 26/51

Line 1 - Value of c is 12

Line 2 - Value of c is 61

Line 3 - Value of c is 49

Line 4 - Value of c is -61

Line 5 - Value of c is 240

Line 6 - Value of c is 15

Assignment Operators

The following tables lists the assignment operators supported by the C language:

Operator Description Example

= Simple assignment operator. Assigns C = A + B will assign

 values from right side operands to left the value of A + B to

 side operand. C

+= Add AND assignment operator. It adds the C += A is equivalent

 right operand to the left operand and to C = C + A

 assigns the result to the left operand.

-= Subtract AND assignment operator. It C -= A is equivalent

 subtracts the right operand from the left to C = C - A

 operand and assigns the result to the left

 operand.

*= Multiply AND assignment operator. It C *= A is equivalent

 multiplies the right operand with the left to C = C * A

 operand and assigns the result to the left

 operand.

/= Divide AND assignment operator. It C /= A is equivalent

 divides the left operand with the right to C = C / A

 operand and assigns the result to the left

 operand.

%= Modulus AND assignment operator. It C %= A is equivalent

 takes modulus using two operands and to C = C % A

 assigns the result to the left operand.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 27/51

<<= Left shift AND assignment operator. C <<= 2 is same as C

 = C << 2

>>= Right shift AND assignment operator. C >>= 2 is same as C

 = C >> 2

&= Bitwise AND assignment operator. C &= 2 is same as C

 = C & 2

^= Bitwise exclusive OR and assignment C ^= 2 is same as C

 operator. = C ^ 2

|= Bitwise inclusive OR and assignment C |= 2 is same as C =

 operator. C | 2

Example

Try the following example to understand all the assignment operators available in C:

#include <stdio.h>

main()

{

int a = 21;

int c ;

c = a;

printf("Line 1 - = Operator Example, Value of c = %d\n", c);

c += a;

printf("Line 2 - += Operator Example, Value of c = %d\n", c);

c -= a;

printf("Line 3 - -= Operator Example, Value of c = %d\n", c);

c *= a;

printf("Line 4 - *= Operator Example, Value of c = %d\n", c);

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 28/51

c /= a;

printf("Line 5 - /= Operator Example, Value of c = %d\n", c);

c = 200;

c %= a;

printf("Line 6 - %= Operator Example, Value of c = %d\n", c);

c <<= 2;

printf("Line 7 - <<= Operator Example, Value of c = %d\n", c);

c >>= 2;

printf("Line 8 - >>= Operator Example, Value of c = %d\n", c);

c &= 2;

printf("Line 9 - &= Operator Example, Value of c = %d\n", c);

c ^= 2;

printf("Line 10 - ^= Operator Example, Value of c = %d\n", c);

c |= 2;

printf("Line 11 - |= Operator Example, Value of c = %d\n", c);

}

When you compile and execute the above program, it produces the following result:

Line 1 - = Operator Example, Value of c = 21 Line 2 - +=

Operator Example, Value of c = 42 Line 3 - -= Operator

Example, Value of c = 21 Line 4 - *= Operator Example,

Value of c = 441 Line 5 - /= Operator Example, Value of

c = 21 Line 6 - %= Operator Example, Value of c = 11

Line 7 - <<= Operator Example, Value of c = 44 Line 8 -

>>= Operator Example, Value of c = 11

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 29/51

Line 9 - &= Operator Example, Value of c = 2

Line 10 - ^= Operator Example, Value of c = 0

Line 11 - |= Operator Example, Value of c = 2
Misc Operators ↦ sizeof & ternary
Besides the operators discussed above, there are a few other important operators including

sizeof and ? : supported by the C Language.

Operator Description Example

sizeof() Returns the size of a variable. sizeof(a), where a is

 integer, will return 4.

& Returns the address of a variable. &a; returns the actual

 address of the

 variable.

* Pointer to a variable. *a;

? : Conditional Expression. If Condition is true ?

 then value X :

 otherwise value Y

Example

Try following example to understand all the miscellaneous operators available in
C:

#include <stdio.h>

main()

{

int a = 4;

short b;

double c;

int* ptr;

/* example of sizeof operator */

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/51

printf("Line 1 - Size of variable a = %d\n", sizeof(a)); printf("Line 2 -

Size of variable b = %d\n", sizeof(b)); printf("Line 3 - Size of variable

c= %d\n", sizeof(c));

/* example of & and * operators */

ptr = &a; /* 'ptr' now contains the address of 'a'*/

printf("value of a is %d\n", a);

printf("*ptr is %d.\n", *ptr);

/* example of ternary operator */

a = 10;

b = (a == 1) ? 20: 30;

printf("Value of b is %d\n", b);

b = (a == 10) ? 20: 30;

printf("Value of b is %d\n", b);

}

When you compile and execute the above program, it produces the following result:

value of a is 4

*ptr is 4.

Value of b is 30

Value of b is 20

Using Comments in programs

Comments are like helping text in your C program and they are ignored by the compiler.

They start with /* and terminate with the characters */ as shown below:

/* my first program in C */

You cannot have comments within comments and they do not occur within a string or

character literals.

Character I/O

The getchar() and putchar() Functions

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 31/51

The int getchar(void) function reads the next available character from the screen and returns

it as an integer. This function reads only single character at a time. You can use this method

in the loop in case you want to read more than one character from the screen.

The int putchar(int c) function puts the passed character on the screen and returns the same

character. This function puts only single character at a time. You can use this method in the

loop in case you want to display more than one character on the screen. Check the following

example:

#include <stdio.h>

int main()

{

int c;

printf("Enter a value :");

c = getchar();

printf("\nYou entered: ");

putchar(c);

return 0;

}

When the above code is compiled and executed, it waits for you to input some text. When

you enter a text and press enter, then the program proceeds and reads only a single character

and displays it as follows:

$./a.out

Enter a value : this is test

You entered: t

The gets() and puts() Functions

The char *gets(char *s) function reads a line from stdin into the buffer pointed to by s until

either a terminating newline or EOF (End of File).

The int puts(const char *s) function writes the string ‘s’ and ‘a’ trailing newline to stdout.

#include <stdio.h>

int main()

{

char str[100];

printf("Enter a value :");

gets(str);

printf("\nYou entered: ");

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 32/51

puts(str);

return 0;

}

When the above code is compiled and executed, it waits for you to input some text. When

you enter a text and press enter, then the program proceeds and reads the complete line till

end, and displays it as follows:
$./a.out

Enter a value : this is test

You entered: This is test

Formatted and Console I/O

The scanf() and printf() Functions

The int scanf(const char *format, ...) function reads the input from the standard input

stream stdin and scans that input according to the format provided.

The int printf(const char *format, ...) function writes the output to the standard output

stream stdout and produces the output according to the format provided.

The format can be a simple constant string, but you can specify %s, %d, %c, %f, etc., to

print or read strings, integer, character, or float, respectively. There are many other formatting

options available which can be used based on requirements. Let us now proceed with a

simple example to understand the concepts better:

#include <stdio.h>

int main()

{

char str[100];

int i;

printf("Enter a value :");

scanf("%s %d", str, &i);

printf("\nYou entered: %s %d ", str, i);

return 0;

}

When the above code is compiled and executed, it waits for you to input some text. When

you enter a text and press enter, then program proceeds and reads the input and displays it as

follows:

$./a.out

Enter a value : seven 7

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 33/51

You entered: seven 7

Here, it should be noted that scanf() expects input in the same format as you provided %s and

%d, which means you have to provide valid inputs like "string integer". If you provide "string

string" or "integer integer", then it will be assumed as wrong input. Secondly, while reading a

string, scanf() stops reading as soon as it encounters a space, so "this is test" are three strings

for scanf().

Using Basic Header Files

<assert.h> Conditionally compiled macro that compares its argument to zero

<complex.h> (since

C99)
Complex number arithmetic

<ctype.h> Functions to determine the type contained in character data

<errno.h> Macros reporting error conditions

<fenv.h> (since C99) Floating-point environment

<float.h> Limits of float types

<inttypes.h> (since C99) Format conversion of integer types

<iso646.h> (since C95) Alternative operator spellings

<limits.h> Sizes of basic types

<locale.h> Localization utilities

<math.h> Common mathematics functions

<setjmp.h> Nonlocal jumps

<signal.h> Signal handling

<stdalign.h> (since C11) alignas and alignof convenience macros

<stdarg.h> Variable arguments

<stdatomic.h> (since

C11)
Atomic types

<stdbool.h> (since C99) Boolean type

<stddef.h> Common macro definitions

<stdint.h> (since C99) Fixed-width integer types

<stdio.h> Input/output

<stdlib.h>
General utilities: memory management, program utilities, string

conversions, random numbers

<stdnoreturn.h> (since

C11)
noreturn convenience macros

<string.h> String handling

<tgmath.h> (since C99) Type-generic math (macros wrapping math.h and complex.h)

<threads.h> (since C11) Thread library

<time.h> Time/date utilities

<uchar.h> (since C11) UTF-16 and UTF-32 character utilities

http://en.cppreference.com/w/c/error
http://en.cppreference.com/w/c/numeric/complex
http://en.cppreference.com/w/c/string/byte
http://en.cppreference.com/w/c/error
http://en.cppreference.com/w/c/numeric/fenv
http://en.cppreference.com/w/c/types/limits#Limits_of_floating_point_types
http://en.cppreference.com/w/c/types/integer
http://en.cppreference.com/w/c/language/operator_alternative
http://en.cppreference.com/w/c/types/limits
http://en.cppreference.com/w/c/locale
http://en.cppreference.com/w/c/numeric/math
http://en.cppreference.com/w/c/program
http://en.cppreference.com/w/c/program
http://en.cppreference.com/w/c/types
http://en.cppreference.com/w/c/variadic
http://en.cppreference.com/w/c/atomic
http://en.cppreference.com/w/c/types/boolean
http://en.cppreference.com/w/c/types
http://en.cppreference.com/w/c/types/integer
http://en.cppreference.com/w/c/io
http://en.cppreference.com/w/c/memory
http://en.cppreference.com/w/c/program
http://en.cppreference.com/w/c/string
http://en.cppreference.com/w/c/string
http://en.cppreference.com/w/c/numeric/random
http://en.cppreference.com/w/c/types
http://en.cppreference.com/w/c/string/byte
http://en.cppreference.com/w/c/numeric/tgmath
http://en.cppreference.com/w/c/thread
http://en.cppreference.com/w/c/chrono
http://en.cppreference.com/w/c/string/multibyte

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 34/51

<wchar.h> (since C95) Extended multibyte and wide character utilities

<wctype.h> (since C95) Functions to determine the type contained in wide character data

Expressions, Conditional Statements and Iterative Statements

In programming, an expression is any legal combination of symbols that represents a value.

Each programming language and application has its own rules for what is legal and illegal.

For example, in the C language x+5 is an expression, as is the character string "MONKEYS."

Every expression consists of at least one operand and can have one or more operators.

Operands are values, whereas operators are symbols that represent particular actions. In the

expression

x + 5

x and 5 are operands, and + is an operator.

Expressions are used in programming languages, database systems, and spreadsheet

applications. For example, in database systems, you use expressions to specify which

information you want to see. These types of expressions are called queries.

Expressions are often classified by the type of value that they represent. For example:

 Boolean expressions : Evaluate to either TRUE or FALSE

 integer expressions: Evaluate to whole numbers, like 3 or 100

 Floating-point expressions: Evaluate to real numbers, like 3.141 or -0.005

 String expressions: Evaluate to character strings

Operators Precedence

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

http://en.cppreference.com/w/c/string/wide
http://en.cppreference.com/w/c/string/wide
https://www.webopedia.com/TERM/P/program.html
https://www.webopedia.com/TERM/P/programming_language.html
https://www.webopedia.com/TERM/A/application.html
https://www.webopedia.com/TERM/C/C.html
https://www.webopedia.com/TERM/C/character_string.html
https://www.webopedia.com/TERM/O/operand.html
https://www.webopedia.com/TERM/O/operator.html
https://www.webopedia.com/TERM/D/database_management_system_DBMS.html
https://www.webopedia.com/TERM/S/spreadsheet.html
https://www.webopedia.com/TERM/S/spreadsheet.html
https://www.webopedia.com/TERM/Q/query.html
https://www.webopedia.com/TERM/B/Boolean_expression.html
https://www.webopedia.com/TERM/I/integer.html
https://www.webopedia.com/TERM/F/floating_point_number.html

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 35/51

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

DECISION MAKING AND BRANCHING STATEMENTS

Need for Decision Making/Control Statements

 C program is a set of statements which are

normally executed sequentially in the order in which they appear.This happens when

no options or no repetitions of certain calculations are necessary.

 Due to certain conditions, order of execution of statements may be changed based on

certain conditions, or repeat a group of statements. Such a condition, the decision

making statements is used for branching and/or looping of the statements.

 As these statements control the flow of execution of the program, they are known as

“Control Statements”

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 36/51

Decision Making and Branching Statements

C language possesses decision making capabilities and supports the following statements

known as control or decision making statements.

 if statement

 switch statement

 Conditional operator

 goto statement

Decision Making with if Statement

 The if Statement is a powerful decision making statement and is used to control the

flow of execution. It is basically two way branching statement.

 Syntax

if (test expression)

 The test expression may be the relational expression or the logical expression or the

condition. The result of the expression always may be true (non-zero value) or false

(zero).

 It allows the compiler to evaluate the expression first and then depending upon the

result of the expression, it transfers the control to a particular statement.

 At the time of control transfer, the control chooses the two paths namely true block (if

part) and false block (else part).

The if statement is implemented in different forms depending on the complexity of

conditions to be tested:

 Simple if statement

 if…..else statement

 Nested if…..else statement

 Else if ladder

Simple if Statement

 The general form of a simple if statement is:

if(test-expression)

{

 statement-block;

}

Statement-x;

 The statement block may be the single statement or compound statements.

 If the test expression is true, the statement block is executed and then statement x

also executed. Otherwise thestatement block will be skipped and will jump to

statement x.

 Flowchart

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 37/51

 Sample Program:

void main()

{

int a=1;

if (a==1)

 {

printf(“Hi..”);

 }

printf(“Hello”);

}

Output: Hi.. Hello

if else statement

 The if….else statement is an extension of the simple if statement.

 The general form is:

if(test-expression)

{

True-block statement(s);

}

else

{

 False-block statement(s);

}

Statement-x;

 if the test expression/condition is true, then true block (immediately following the if

statements) is executed, otherwise the false block is executed.

 In this category, either true block or false block will be executed, not both.

 Flowchart

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 38/51

 Sample Program

 void main()

 {

 int a;

 printf(“Enter the Number\n”);

 scanf(“%d”,&a);

 if((a%2)==0)

printf(“%d is Even”,a);

 else

 printf(“%d is Odd”,a);

 getch();

 }

Output:

 Enter the Number: 7

 7 is Odd

 Enter the Number: 14

 14 is Even

Nested if Statement

 C facilitates to write the if statement within either the body of another or outer if

block or the body of the else block. This if structure is called nested if. Nested if

means if statements within if statements.

 The logical execution of nested if is

if(test condition 1)

{

 if(test condition 2)

 {

 statement-1;

 }

 else

 {

 statement-2;

 }

}

else

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 39/51

{

 statement-3;

}

 Statement-x;

 In the above code segment, if the condition-1 is true, then the condition-2 is checked

otherwise the statement-3 is executed. If the condition-2 is true, the statement-1 is run

otherwise the statement-2 is executed.

 Flowchart

 Sample Program

void main()

{

int a=0,b=1,c=2;

 if (a>b)

 {

if(a>c)

printf(“\n a is Big”);

 }

else

 {

if(c>b)

printf(“\n c is Big”);

else

 printf(“\n b is Big);

 }

 }

Output: c is Big

Dangling else problem:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 40/51

 The occurrence of unpaired or unmatched else in the program is called dangling else

problem. This problem mostly occurs in nested if statements.

 Solution of Dangling else problem:

o Dangled else is paired with recent if.

o Dangled else may be omitted if it is unnecessary.

Else if Ladder

 C provides the way of putting ifs together for multiple decision makings. A multiple

decision is a chain of ifs in which the statement associated with each else is an if.

 The structure of multiple else if statements is known as else if ladder.

 The general form is

if (test condition 1)

 {

statement –1 ;

 }

else if (test condition 2)

 {

statement –2 ;

}

 else if (test condition 3)

 {

statement – 3 ;

 }

 …..

 else if (test condition n)

 {

statement – n ;

 }

 else

 {

default-statement;

 }

 Statement – x ;

 If the condition-1 is false, the control transfers to next if condition i.e. condition-2 to

be checked. If all the conditions are failed, then default statement is executed.

 Flowchart

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 41/51

 Sample Program

void main()

 {

int age;

printf(“Enter the Age:”);

scanf(“%d”,&age);

if (age <15)

printf(“ Childhood \n”);

else if(age>=15 && age<35)

printf(“Youth \n”);

else if(age> 35 && age<50)

printf(“Middle Age \n”);

else

printf(“ Oldage \n”);

 }

Output:

 Enter the Age:25

 Youth

SWITCH STATEMENT

 C provides the powerful multiway decision statement known as ‘switch’

 The switch statement checks the value of given variable or expression against a list of

case values and when a match is found, a block of statements associated with that case

is executed.

 The general form of switch statement is

switch (expression)

{

 case Label/value-1 :

 block-1;

 break;

 case Label/value-2 :

 block-2;

 break;

 default :

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 42/51

 default-block;

 break;

}

Statement-x;

 The expression is an integer expression or characters.

 value-1, value-2 …are constants or constant expression and they are otherwise called

as case labels.

 block-1, block-2 …..are statement list and may contain zero or more statements.

 The break statement at the end of the each block signals end of the particular case and

causes an exit from the switch statement, transferring the control to the statement x.

 The default is an optional case. When present it will be executed if the value of the

expression does not match with any one of the cases values.

 If the default case does not present, the control automatically transfers to statement x

when none of the cases match.

 The flowchart of the switch statement

Example program for switch:

void main()

 {

 int a;

 printf (“Enter the choice:”);

 scanf(“%d”,&a);

 switch(a)

 {

 case 1:

 printf(“ \n Post Graduate”);

 break;

 case 2:

 printf(“ \n Under Graduate”);

 break;

 default:

 printf(“\n Diploma”);

 break;

 }

 printf(“\n Gandhigram Rural Institute – Deemed University”);

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 43/51

 }

Output: Enter the choice 1

 Post Graduate

 Gandhigram Rural Institute – Deemed University

//Program to check whether given character is vowel or not

 void main()

 {

 char ch;

 printf (“Enter the character”);

 scanf(“%c”,&ch);

 switch(ch)

 {

 case ‘a’:

 case ‘e’:

 case ‘i':

 case ‘o’:

 case ‘u’:

 printf(“ \n The given character is Vowel”);

 break;

 default:

 printf(“\n The given character is consonent”);

 break;

 }

 getch(); }

Output: Enter the character a

 The given character is Vowel

CONDITIONAL OPERATOR

 The ternary operators are ? and :

 These operators are called as ternary operators as they operate on three operands

 General Format: exp1 ? exp2 : exp3

 where exp1 exp2 and exp3 are expressions

 The nested conditional operators are also allowed in C.

Sample program:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 44/51

 void main()

 {

 int a=9,b=4,c=8,big;

 clrscr();

 big=((a>b)&&(a>c))?a:((b>c)?b:c);

 printf(“%d”,big);

 }

Output: 9

GOTO STATEMENT

 The statement in C which facilitates to branch/ transfer the control

unconditionally from one point to another point in the program is called

‘goto’ statement.

 The syntax of goto statement:

 The goto requires a label in order to identify the place where the branch is to

be made.

 A label is any valid variable name and must be followed by a colon. The label

is placed immediately before the statement where the control is to be

transferred.

Sample program

 void main()

 {

 double a,b;

 read:

 printf(“\n Enter the Number:”);

 scanf(“%lf”,&a);

 if(a<0)

 goto read;

 b=sqrt(a);

 printf(“\n Square Root of %lf is:%lf”,a,b);

 getch();

 }

Output:

 Enter the Number:-1

 Enter the Number:4

 Square Root of 4 is 2.000000

Forward Jump
statements;
goto lable1;
 Statements;
lable1 :
 statements;

Backward Jump
statements;
lable1 :
 statements;
goto lable1;
 Statements;

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 45/51

Infinite loop

 Unconditional branching statement leads to repeat the some actions

indefinitely and it puts in the permanent loop. Such a loop is called ‘infinite

loop’.

void main()

 {

 double a,b;

 read:

 printf(“\n Enter the Number:”);

 scanf(“%lf”,&a);

 if(a<0)

 goto read;

 b=sqrt(a);

 printf(“\n Square Root of %lf is:%lf”,a,b);

 goto read;

 getch();

 }

 Due to the unconditional goto statement at the end, the control always

transferred back to the input statement. This program is never executed and

puts in permanent loop.

DECISION MAKING AND LOOPING STATEMENTS

 During looping a set of statements are executed until some conditions for termination of

the loop is encountered.

 A program loop therefore consists of two segments one known as body of the loop and

other is the control statement.

 The control statement tests certain conditions and then directs the repeated execution of

the statements contained in the body of the loop.

 In looping process in general would include the following four steps

 1. Setting and initialization of a counter

 2. Application of the statements in the loop

 3. Test for a specified conditions for the execution of the loop

 4. Incrementing the counter

 The test may be either to determine whether the loop has repeated the specified number of

times or to determine whether the particular condition has been met.

 Type of Looping Statements are

o while statement

o do while statement

o for statement

while Statement:

 The simplest of all looping structure in C is the while statement.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 46/51

 The general format of the while statement is:

while (test condition)

{

body of the loop;

}

 the given test condition is evaluated and if the condition is true then the body of the

loop is executed.

 After the execution of the body, the test condition is once again evaluated and if it is

true, the body is executed once again.

 This process continues until the test condition fails.

 The flowchart of while statement

Sample Program:

#include<stdio.h>

void main()

{

 int num=0, rev_num=0;

 printf(“Enter the number to be reversed:”);

 scanf(“%d”, &num);

 while(num != 0) // While statement with condition

 {

 rev_num = num % 10; // get the last digit

 printf(“%d”, rev_num); // print the digit

 num = num / 10;

 }

 getch();

}

 Output:

 Enter the number to be reversed: 123

 321

do… while statement

 The do while loop tests at the bottom of the loop after executing the body of the loop.

 Since the body of the loop is executed first and then the loop condition is checked,

this statement can be assured that the body of the loop is executed at least once.

 The general format of the do..while statement is:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 47/51

do

{

body of the loop;

}

while (test condition);

 The flowchart of do….while statement

Sample Program:

#include<stdio.h>

void main()

{

 int num=0, rev_num=0;

 printf(“Enter the number to be reversed:”);

 scanf(“%d”, &num);

 do

 {

 rev_num = num % 10; // get the last digit

 printf(“%d”, rev_num); // print the digit

 num = num / 10;

 } while(num != 0); // do…while statement with condition

 getch();

}

 Output:

 Enter the number to be reversed: 123

 321

for loop statement

 The for loop is most commonly and popularly used loop in C. the for loop allows us

to specify three things about the loop in a single line. They are,

o Initializing the value for the loop

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 48/51

o Condition in the loop counter to determine whether the loop should continue

or not

o Incrementing or decrementing the value of loop counter each time the program

segment has been executed.

o

 The general form of the for loop is:

for(initialization; test condition; increment)

{

body of the loop;

}

 The flowchart of for statement is

Sample Program:

#include<stdio.h>

void main()

{

 int n, i,f=1;;

 printf(“Enter the number:”);

 scanf(“%d”, &n);

 for(i=1;i<=n;i++)

 {

 f=f*i;

 }

printf(“Factorial :%d”, f);

 getch();

}

 Output:

 Enter the number: 5

 Factorial: 120

Additional Features of for loops:

 More than one variable can be initialized at a time in for loop.

o for(n=1,p=1;i<=n;i++)

 More than one decrement/ increment can given in increment section in for loop

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 49/51

o for(n=1,m=50;n<=m;n=n+1,m=m-1)

 Test condition may have any compound relation and testing need not be limited only

to the loop control variable.

o for(i=1;i<20 && sum<100;i++)

 The expressions can be permitted in the assignment statements of initialization and

increment section.

o for(x=(m+n)/2;x>0;x=x/2)

 One or more sections in for loop can be omitted.

o for(;i<100;i++)

o for(;;i++)

o for(;i<100;)

o for(i=1;;)

o for(;;)

 null statements can be given in the for loop by using ;. This type of loop is used for

time delay. So, they are otherwise called “time delay loops”

o for(j=1000;j>0;j--)

;

Nesting of for loops

 for loop within for loop is called nested for loop statements.

 Nest for loops statements are used for comparison of variables in one array and

operations on tables, matrix and tables of table.

 The general form of nested for loop is

for(i=0; i<10; i++) → outer for loop

 {

 for(j=0; j<10; j++) → inner for loop

 {

 }

 }

Sample code:

 for(row=1;row<=3;row++)

 {

 for(col=1;col<=3;col++)

 {

 y=row*col;

 printf(“%d”,y);

 }

 printf(“\n”

 }

Jumps in Loops

 Jumps are used for skipping the loop iteration or exit/leave from the loops

 C provides two statements for jumping in loops. They are namely

o Break – Exit/leave from the loop/branching statement.

o Continue – Skip the current iteration in the loop

Break Statement:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 50/51

 C language permits a jump from one statement to another within a loop as well as to

jump out of the loop.

 Sometimes while executing a loop it becomes desirable to skip a part of the loop or

quit the loop as soon as certain condition occurs.

 For example consider searching a particular number in a set of 100 numbers. As soon

as the search number is found it is desirable to terminate the loop.

 The break statement allows us to accomplish this task. A break statement provides an

early exit from for, while, do and switch constructs. A break causes the innermost

enclosing loop or switch to be exited immediately

Sample Program:

 void main()

{

 int num=0, loop=0; float sum=0;

 printf(“Enter the marks, -1 to end\n”);

 while(1)

 {

 scanf(“%d”, &num0);

 if(num == -1)

 break;

 sum+=num; loop++;

 }

 printf(“The average marks is: %d”, sum/loop);

}

Continue Statement

 During loop operations it may be necessary to skip a part of the body of the loop

under certain conditions.

 Like the break statement C supports similar statement called continue statement.

 The continue statement causes the loop to be continued with the next iteration after

skipping any statement in between.

Sample Program:

#include < stdio.h >

void main()

{

 int loop, num, sum=0;

 for (loop = 0; loop < 5; loop++) // for loop

 {

 printf(“Enter the integer”); //Message to the user

 scanf(“%d”, &num); //read and store the number

 if(num < 0) //check whether the number is less than zero

 {

 printf(“You have entered a negative number”);

 continue; // starts with the beginning of the loop

 } // end of for loop

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: I BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 51/51

 sum+=num; // add and store sum to num

 }

 printf(“The sum of positive numbers entered = %d”,sum);

}

POSSIBLE QUESTIONS

PART B

(Each Question Carries 2 marks)

1. Write difference between algorithm and flowchart.

2. Explain the importance of C language.

3. What is format specifier?

4. What are local and global variable?

5. Define keyword, constant and variable.

6. Why do we use header files?

7. Define relational operator.

8. What is an interpreter?

9. What is the purpose of adding comments in a program?

10. What is the syntax of switch statement?

PART C

(Each Question Carries 8 marks)

1. Discuss the structure of a C program. Explain with example.

2. What are the various I/O functions in C?

3. What do you mean by data types? Give examples of data types available in C

language.

4. Explain the various control statements used in c language.

5. Write a program to find whether a number is Armstrong or not.

6. What is the difference between pre and post increment operator? Explain with the

help of an example.

7. What is the difference between break and continue statements? Explain with the help

of an example.

8. Write the advantage and disadvantage of for loop over while.

9. Write difference between while and do while with example.

10. What do you mean by ternary operator? Explain with example.

S.No Question Choice1
1 The decomposition of a problem into a number of entities called___________ objects

2 OOPS follows______________ approach in program design bottom-up
3 Objects take up ______________in the memory space
4 _________________is a collection of objects of similar type Objects

5 We can create ____________of objects belonging to that class 1
6 The wrapping up of data & function into a single unit is known as

 Polymorphism

7 __________________refers to the act of representing essential
features without including the background details or explanations

 encapsulation

8 Attributes are sometimes called______________ data members
9 The functions operate on the datas are called______________ methods
10 ______________is the process by which objects of one class acquire the

 properties of objects of another class
 polymorphism

11 __________________means the ability to take more than one form polymorphism

12 The process of making an operator to exhibit different behaviors
 in different instances is known as ________________

 function
overloading

13 Single function name can be used to handle different types of tasks is known
as ___________

 function
overloading

14 _______________means that the code associated with a given
 procedure call is not known until the time of the call at run-time.

 late binding

15 Objects can be___________ created

16 ______________helps the programmer to build secure programs Dynamic
binding

17 _________________techniques for communication between
objects makes the interface descriptions with external systems much simpler

 message passing

Karpagam Academy of Higher Education
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021
DEPARTMENT OF COMPUTER APPLICATIONS

PROGRAMMING FUNDAMENTALS USING C/C++(18CAU101)

UNIT --1

18 Variables are declared in_________________ only in main()

19 How many sections in C++? 2
20 ____________________refers to permit initialization of the variables at run

time
 Dynamic
initialization

21 _____________________provides an alias for a previously defined variable static variable

22 Reference variable must be initialized at the time of _____________ declaration

23 The ___________________is an exit-controlled loop while

24 The ________________is an entry-entrolled loop while

25 ____________________is an entry-controlled one while

26 Error checking does not occur during compilation if we are
using_______________

 functions

27 ____________________is a function that is expanded in line when it is
invoked

 macros

28 ________________refers to the use of same thing for different purposes overloading

29 _________________are extensively used for handling class objects overloaded
functions

30 ____________________is used to reduce the number of functions to be
defined

 default
arguments

31 Control structures are said to be_______________ programs

32 ________________________is a decision making statement for

33 The bool type data occupies ___________byte in memory two
34 if-else-if ladder sometimes called________________ if-else-if nested

35 How many statements are used to perform an unconditional transfer? 2
36 The label must start with___________ character
37 ________________statement is frequently used to

terminate the loop in the switch case()
 jump

38 ______________statement does not require any condition for

39 ____________statement is used to transfer the control t pass on
 t the beginning of the block/loop

 break

40 ________________statement is a multiway branch statement for
41 Every case statement in switch case statement terminates with ;

42 How many types of loop control structure exist in c++? 1
43 The expression are separated by ____________in the for loop :
44 Test is performed at the ____________of the for loop. top

45 Condition is checked at the ____________of the loop in the do-while
statement.

 beginning

46 Every expression always return____________ 0 or 1
47 Which of the following loop statement uses 2 keyword? do-while loop
48 The meaning of if(1) is________________ always false
49 The for loop comprises of ______________actions 2
50 _____________statement present at the bottom of the switch case statements default

51 __________________is an assignment statement that is used
 to set the loop control variables

 Increment

52 Which of the following control expressions are valid for an of statement ? an integer
expression

53 Which of the following cannot be passed to a function? reference
variables

54 Function should return a _________. value

55 _______________function is useful when calling function is small Built-in
56 Inline function needs more_____________ variables

57 Multiple function with the same name is known as ________________ function
overloading

58 The ____________ function creates a new set of variables and
 copies the values of arguments into them.

calling function

59 Function contained within a class is called a _____________ built-in

60 In c++,Declarations can appear________________in the body of the function Only at the top

Choice2 Choice3 Choice4 Ans
 classes methods messages objects

 top-down middle top bottom-up
 address memory bytes space
 methods classes messages classes

2 10 any number any number
 encapsulation functions data members encapsulation

 inheritance Dynamic
binding

 Abstraction Abstraction

 methods messages functions data members
 data members messages classes methods
 encapsulation data binding Inheritance Inheritance

 encapsulation data binding information
hiding

 polymorphism

 operator
overloading

 method
overloading

 message
overloading

 operator
overloading

 operator
overloading

 polymorphism encapsulation operator
overloading

 Dynamic
binding

 Static binding Quick binding Dynamic
binding

 created &
destroyed

 permanent temporary created &
destroyed

 Data hiding Data building message
passing

 Data hiding

 Data binding Encapsulation Data passing message
passing

Karpagam Academy of Higher Education
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021
DEPARTMENT OF COMPUTER APPLICATIONS

PROGRAMMING FUNDAMENTALS USING C/C++(18CAU101)

UNIT --1

 anywhere in
the scope

 before the
main() only

 only at the
beginning

 anywhere in
the scope

4 1 5 4
 Dynamic
binding

 Data binding Dynamic
message

 Dynamic
initialization

 Dynamic
variable

 reference
variable

 address of an
variable

 reference
variable

 assigning initialization running declaration

 do-while for switch do-while

 do-while for switch for

 do-while for switch while

 macros pre-defined
functions

 operators macros

 inline function predefined
function

 preprocessor
macros

 inline function

 Dynamic
binding

 message
loading

overriding overloading

 methods objects messages overloaded
functions

 methods objects classes default
arguments

 structured
programs

 statements case
statements

 structured
programs

 jump break if if

 one three four one
 nested-if-else-
if

 if-else-if-
staircase

 if-else-if if-else-if-
staircase

3 4 5 4
symbols number alphanumeric character
 goto continue break break

 if goto while goto

 jump goto continue continue

 switch if while switch
 : , >> :

3 2 4 3
 ; , ++ ;
 middle end program

terminates
 top

 end middle program
terminates

 end

 1 or 2 -1 or 0 3 or 4 0 or 1
 for loop if loop while loop do-while loop
 always true true or false negative always true

3 1 4 3
 case label caption default

 declaring Initialization decrement Initialization

 a Boolean
expression

 either A or B Neither A nor
B

 a Boolean
expression

 arrays class objects header files header files

character value and
character

symbols value

Inline user-defined undefined Inline
functions memoryspace control

structures
memoryspace

function
polymorphism

overloading
and
polymorphism

operator
overloading

overloading
and
polymorphism

called function built in function
declaration

called function

member
function

user-defined
function

calling function member
function

middle bottom anywhere anywhere

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: II BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/1

USER-DEFINED FUNCTIONS

Why Functions in C?

• Functions are used when certain type of calculations are repeated at many points in a

program.

 Ex.: nCr = n! /r! (n-r)!

• As functions are reusable, saves time and space.

• Reduces the complexity of

• writing

• debugging

• testing

• maintaining

• User-Defined functions help in dividing the large programs into meaningful and independent

modules (i.e) subprograms

• These subprograms are called functions

ADVANTAGES OF FUNCTIONS

• Facilitates top-down approach

• High level logic of overall problem is defined first

• Functions are defined at the lower-level

• Easy to debug

• One function may be used many a times by the same program or by other programs

(Reusability)

TYPES OF C FUNCTIONS

 i. Library Functions (Built-in) eg. scanf(), printf(), sqrt() etc.,

 (These functions are not written by users)

 ii. User-Defined Functions eg. main()

 (Written by users)

COMPONENTS OF THE USER-DEFINED FUNCTIONS

i. Function Declaration (or) Function Prototype: The declaration of a function

ii. Function Definition: Independent Module written

iii. Function Call: Invoking the defined function. The program that calls the function is calling

function

FUNCTION DEFINITION (or) FUNCTION IMPLEMENTATTION

 Independent Module written for solving/ performing the problems/ operations

General Format:

function_type function_name (parameter_list) // semicolon is not used here

{

 local variable declaration;

 executable statements;

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: II BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/2

 …

 return statement;

}

The Elements of Function Definition:

• Function name |

• Function type | Function Header

• List of parameters |

• Local variables declaration |

• Function statements and | Function Body

• A return statement |

Function header contains Function Type, Function Name and Arguments

 Function type: It specifies the type of value returned by the function. If return type is not

specified, C assumes default data type int.

 Function name: It specifies the name of the module written. While naming the function, the

rules of identifiers are to be followed.

 Parameter list/ Arguments: It serves as the input to the function. Parameters are also

known as arguments. Parameters are to be separated by comma. It represents the actual

values which is passed by calling function and known as formal parameters. They are used

to send values to the calling program

Example:

float quadratic_root (int a, int b, int c) // VALID FUNCTION DEFINITION

 float quadratic_root (int a, b, c) // INVALID FUNCTION DEFINITION

Function Body Contains the local declaration and statements necessary for performing the required

task.

• Local Declaration of variables needed by the function

• Function statements that perform the task of the function

• A return statement that returns the value computed by the function

RETURN VALUES AND THEIR TYPES

 return(expression);

 or

 return;

 or

 if (error)

 return;

• If the data type of return value does not match with the function type, it is suitably modified

using C implicit typecasting

FUNCTION DECLARATION (or) FUNCTION PROTOTYPE

 User Defined Functions are declared in global or local.

 Parts of function declaration are

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: II BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/3

o Function Type

o Function Name

o Parameter List

o Termination Semicolon

 GENERAL FORMAT

 function_type function_name (parameter_list);

 eg. int mul (int m, int n); // Function Prototype

 int mul (int, int); // Other Valid Declarations

 mul (int m, int n);

 mul (int, int);

TYPES OF FUNCTION PROTOTYPE

• Global Prototype

• Prototype declared above all functions in the program

• Available for all the functions in the program

• Local Prototype

• Prototype declared within a function

• Used by the function containing it.

CATEGORIES OF FUNCTIONS

Based on the presence and absence of variables and the return value, they are categorized into

FIVE as:

1. Function with no arguments and no return value

2. Function with arguments and no return value

3. Function with no arguments and one return value

4. Function with arguments and return values

5. Function that return multiple values

FUNCTIONS WITH NO ARGUEMNTS AND NO RETURN VALUE

• Control of execution is transferred between these two functions

• Calling function does not pass any data to the called function

• Called function does not return any value to the calling function

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: II BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/4

• No data transfer between the calling function and the called function

• No input from function1() to function2()

• No return value from function2() to function1()

Example

 void sum() /* Function Declaration*/

 void main()

 {

 Sum() /* Function Call*/

 }

 /*Function Definition*/

 void sum()

 {

 int a=7,b=1;

 printf(“Sum=%d”, (a+b));

 }

Output: Sum = 8

FUNCTIONS WITH ARGUEMNTS AND NO RETURN VALUE

• Control of execution is transferred between these two functions

• Calling function passes argument(s) to called function

• Data is transferred from calling function to called function

• No return value from called function to calling function

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: II BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/5

• If actual arguments are more than formal arguments, the extra arguments are discarded (m >

n)

• If actual arguments are less than formal arguments, the corresponding arguments are

initialized with garbage values (m < n)

• When a function call is made, only a copy of the values of actual arguments is passed to the

called function

Example

 void sum(int, int) /* Function Declaration*/

 void main()

 {

 int a=7,b=1;

 Sum(a,b) /* Function Call*/

 }

 /*Function Definition*/

 void sum(int m, int n)

 {

 printf(“Sum=%d”, (m+n));

 }

Output: Sum = 8

FUNCTIONS WITH NO ARGUEMNTS AND RETURN A VALUE

• Control of execution is transferred between these two functions

• Called function does not receive argument(s) from calling function

• Called function returns a value to the calling function

• No data transfer from calling function to called function

• A value is returned from called function to calling function

Example

 int sum() /* Function Declaration*/

 void main()

 {

 int c;

 c = Sum() /* Function Call*/

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: II BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/6

 printf(“Sum=%d”, c);

 }

 /*Function Definition*/

 int sum()

 {

 int a=7,b=1;

 return(a+b);

 }

Output: Sum = 8

FUNCTIONS WITH NO ARGUEMNTS AND RETURN A VALUE

• Control of execution is transferred between these two functions

• Called function receives argument(s) from calling function

• Called function returns a value to the calling function

• Data transfer are between from calling function to called function

• A value is returned from called function to calling function

Example

 int sum(int,int) /* Function Declaration*/

 void main()

 {

 int a,b,c;

 c = Sum(a,b) /* Function Call*/

 printf(“Sum=%d”, c);

 }

 /*Function Definition*/

 int sum(int m, int n)

 {

 return(m+n);

 }

Output: Sum = 8

FUNCTIONS THAT RETURNS MULTIPLE VALUES

• If we want to get more than one return value from a function, then additional arguments

should be declared through which data can be received from the called function

• The list of arguments used to send out data from the called function is called output

parameters.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: II BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/7

• The output parameters perform the task of returning data to called function using

• address operator (&)

• indirection operator (*)

Example:

void add_sub(int x, int y, int *s, int *d); // Function Prototype with arguments

main()

{

 int x = 20, y = 10, s, d;

 add_sub(x, y, &s, &d); // Function call with actual arguments and output parameters

 printf(“/n Sum = %d\n Difference =%d\n”, sum, diff);

}

void add_sub (int a, int b, int *sum, int *diff) // Function with arguments & output parameters

{

 *sum = a + b;

 *diff = a – b;

}

RULES FOR PASS BY POINTERS

• The data type of actual and formal arguments are to be the same

• The actual parameters (given in the function call) must be the addresses of variables that

are local to the calling function

• The formal arguments in the function header (in function definition), must be prefixed with

indirection operator *

• In the function declaration (ie. function prototype) the arguments must be prefixed by *

• To access the value of actual arguments in the calling function, the corresponding formal

arguments are prefixed with *

NESTING OF FUNCTIONS

 C permits the functions within the function.

 C provides main() function calling function1(), function1() calling function2(), function2()

calling function3() and so on.

Example:

 int sum(int,int) /* Function Declaration*/

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: II BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/8

 void arith() /* Function Declaration*/

 void main()

 {

 arith();

 }

 /*Function Definition*/

 void arith()

 {

 int a=7,b=1;

 printf(“Sum=%d”,sum(a,b));

 }

 int sum(int m, int n)

 {

 return(m+n);

 }

Output: Sum = 8

RECURSION

 Recursion is a special type of chained function call, in which a function calls itself

Example:

 int factorial(int);

 void main()

 {

 int a;

 scanf(“%d”,&a);

 printf(“Factorial =%d”,factorial(a));

 getch();

 }

 int factorial(int n) // Definition of factorial() function

 {

 int fact;

 if (n == 1)

 return(1);

 else

 fact = n * factorial(n-1); // Function factorial() calls itself

 return(fact);

 }

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: II BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/9

PASSING ARRAYS TO FUNCTIONS – RULES

1. In function call statement, array name alone should be passed

 e.g. printf(“%f\n”, largest(value,4);

2. In function definition, the formal parameters must be an array type; The array size need

not be specified

 e.g. float largest(float a[], int n)

3. The function prototype must show that the argument is an array

 e.g. float largest(float a[], int n);

Example:

main() // Using One-Dimensional Array

{

 float largest(float a[], int n); // Function Declaration - Local Prototype

 float value[4] = {2.5, 1.6, 7.5, 5.9};

 printf(“%f\n”, largest(value,4); // Function call

 // In actual argument array name alone is given

 // Array dimension is not given

 }

float largest(float a[], int n) // Function definition with formal arguments

 // Pair of brackets describe array

{

 int i;

 float max;

 for(i=0; i <= n; i++)

 if (max < a[i])

 max = a[i];

 return(max);

}

PASS BY VALUE Vs. PASS BY REFERENCE (Call by Value Vs. Call by Reference)

 The technique of passing data to a function is called Parameter passing.

 The types are: Pass by Value & Pass by Reference

PASS BY VALUE PASS BY REFERENCE

Known as Call by Value Known as Call by Pointer or

Pass by Address

The values of actual parameters are copied

to formal parameters

Memory address of the variables are

passed to the calling function

Called function works on copied values of

calling function

Called function directly works on the data

of the calling function

Original data of the calling function can

not be changed accidentally

Original data of the calling function is

changed by the called function

Example Program:

 int sum(int,int)

Example Program:

void swap(int *,int *);

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: II BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/10

 void main()

 {

 int a,b,c;

 c = Sum(a,b)

 printf(“Sum=%d”, c);

 }

 int sum(int m, int n)

 {

 return(m+n);

 }

Output: Sum = 8

 void main()

 {

int x=200,y=100;

printf(“Before swapping: x=%d, y=%d”,x,y);

 swap(&x,&y)

 printf(“After swapping: x=%d y=%d”,x,y);

 }

 swap(int *a,int *b)

 {

 int t;

 t=*a; *a=*b;*b=t;

 }

OUTPUT

Before Swapping: x=200 , y=100

After Swapping : x=100 , y=200

STORAGE CLASSES :

• The SCOPE, VISIBILITY and the LONGEVITY of the variables in C differ with respect to

the storage class of the variable

• Scope: Determines the region of the program within which the variable is actually available

for use

• Visibility: The accessibility of the variable from the memory

• Longevity: The period during which, the variable can retain its value during the

execution of the program

• The types of storage classes are:

• Automatic (auto)

• External (extern)

• Static (static)

• Register (register)

Storage

Class

Declaration Point Visibility Lifetime

None Before all functions in the file Entire file and other files

where variable is declared as

extern

Entire Program

extern Before all functions in the file

extern and the file where originally

declared as global. (can not be

initialized within a function)

Entire file and Other files

where variable is declared

Global

none or

auto

 Inside a function (or a block) Only in that function or block Until end of the

function or block

register Inside a function or block Only in that function or block Until end of the

function or block

static

(external)

 Before all functions in a file Only in that file Global

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: II BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/11

static

(internal)

Inside a function Only in that function

Arrays

Introduction:

• Need for the Arrays:

– A variable can store a only one value at a time.

– A variable handles limited amounts of data.

• Advantages of Arrays

– Used to handle the large Volumes of data in terms of reading, processing and

printing.

– Facilitate efficient storing, accessing and manipulation of data items.

– Use a single name to represent a collection of items

Definition & Facts

• Array is a fixed-size sequenced collection of elements of the same data type and shares the

common data name.

• Array is a derived data type. Because it builds on primary data type.

• Array is a one of the Data Structure in C, because it provides a convenient structure to

represent data.

• Array is allocated by continuous memory locations.

Examples

• List of Temperature recorded every hour in a day or a month or a year.

• List of employees

• List of Products and their costs

• Marks of a class of students

• List of Customers and their telephone numbers

• Table of daily rainfall data

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: II BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/12

Types of Arrays:

• One Dimensional Arrays

• Two Dimensional Arrays

• Multi Dimensional Arrays

ONE DIMENSIONAL ARRAY

• A list of items can be given one variable name using only one subscript and such a variable

is called a ‘Single subscripted variable or a one-dimensional array’

• The subscripts of an array can be integer constants, integer variables.

• C performs no bounds checking and ensure that the array indices are within the declared

limit.

• Like other variables, arrays must be declared before they are used so that the compiler can

allocate space for them in memory.

• The general form of array declaration is

 type variable_name[Size];

– The type specifies that type of element that will be contained in the array such as int,

float or char

– The size indicates the maximum number of elements that can be stored inside the

array.

One Dimensional Array Declaration

• Valid Declarations:

• float a[10] – a contains 10 real elements.

• Any subscript 0 to 10 are valid.

• int b[10] - it contains maximum 10 elements.

• char s[10] - array of characters.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: II BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/13

 - size of character array represents the maximum number of characters to be stored

in array.

• Any reference to the arrays outside the declared limits would not cause error. It might result

in unpredictable results.

• The size should be numeric or symbolic constants.

One Dimensional Array – Initialization

• Arrays can be initialized in two ways

• At Compile Time

• At Run Time

Compile Time Initialization

General Form

 type array_name[size] = { list of Values};

The values in the list are separated by commas.

• Valid Initialization

• int number[3] ={0,0,0};

• float mark[5] ={0.0,1.5,2.5};

• int Counter[] = { 1,2,3,4};

• char name[]={ ‘J’,’u’,’s’,’t’,’\0’};

• char name[] = “Just”;

• If the numbers of assigned elements are less than the size of the array, the

remaining(uninitialized values) takes zero or NULL values

• int a[5] = { 10,20} – a[0] =10, a[1]=20

Remaining elements a[2],a[3] & a[4] assign as 0.

• char city[5]={‘B’} - city[0] takes ‘B’

city[1] takes ‘\o’ or NULL and remaining elements take garbage values

• If the more elements are initialized than declared size, then the compiler returns an error.

• int number[3] ={1,2,3,4,5}; // illegal initialization

Runtime Initialization

• An array can be explicitly initialized at runtime.

• The values of the elements in arrays is assigned/read by scanf() and it also use the

for loop/ any loop structure.

//initialization – I
 for(i=0;i<100;i++)
 {
 if i<50
 sum[i] = 0.0;
 else
 sum[i] = 1.0;
 }

//initialization – II
 int a[3];
 scanf(“%d%d%d”, &a[0], &a[1], &a[2]);

//initialization – III
 int a[3],i;
 for(i=0; i<3;i++)
 scanf(“%d”, &a[i]);

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: II BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/14

Example Program

TWO DIMENSIONAL ARRAY

• A table of items can be given one variable name using two subscript and such a variable is

called as “Two Dimensional Array”.

• Declaration

type array_name [row_size] [column_size];

• The type represents the data type of the array

• Row Size & Column Size represents the total numbers of elements to be

stored in an array.

• In two dimensional array, the first index selects the row and the second selects the column

within that row.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: II BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/15

• Storage of Two Dimensional array in memory:

Two Dimensional Array – Initialization

• Two dimensional arrays may be initialized at compile time and runtime.

• At compile time, list or table of values assign to elements of two dimensional array.

• int table[2][3]= {0,0,0,1,1,1};
 The first three elements initialize to first row, the rest of the variable assign to

second row.

• int table[2][3]={{0,0,0},{1,1,1}};
 The first inner brace’s values initialize to first row, the second inner brace’s values

variable assign to second row.

• int table[][3]={{0,0,0},{1,1,1}};
 The array is completely initialized with all values, explicitly, the first dimension of

the array need not to specify .

• int table[2][3]={{0,0},{1,1,1}};
 Uninitialized elements takes Zero or Null Values.

• At runtime, the elements assign by values dynamically using scanf().

int a[2][3],r,c;

 for(r=0; r<2;r++) // for Row

 for(c=0;c<3;c++) //for Column

 scanf(“%d”, &a[r][c]);

Example Program

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: II BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/16

MULTIDIMENSIONAL ARRAYS

• C allows arrays of three or more dimensions. These arrays are called “Multidimensional

Arrays”

• The general Form:

 type array_name [s1] [s2] [s3] [s4] …. [sm] ;

• ANSI C does not specify any limit of an array dimension.

Example

int survey [3] [5] [12];

 survey is a three dimensional array declared to contain 180 integer values.

 The first subscript represents cities.

 The second and third subscript represents the rainfall and month respectively.

Example Program

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: II BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/17

STATIC ARRAYS

• The process of allocating memory at compile time is known as static memory allocation.

• The arrays that receive static memory allocation are called static arrays.

DYNAMIC ARRAYS

• In C, it is possible to allocate memory to arrays at runtime. This feature is known as

Dynamic Memory Allocation.

• The arrays created at run time are called “Dynamic Arrays”.

• Dynamic arrays are created using pointer variables and memory management functions

malloc, calloc and realloc. These functions are included in the header file <stdlib.h>.

• The dynamic arrays are used in creating and manipulating data structure like linked list,

stack, queue.

Applications of Arrays

They include:

– Using printers for accessing arrays

– Passing arrays as function parameters

– Arrays as members of structures

– Using structure type data as array elements

– Arrays as dynamic data structures

– Manipulating character arrays and strings

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: II BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/18

CHARACTER ARRAYS

 String is a sequence of characters treated as a single data type.

 C does not have a data type as string. Hence, string is declared as a character array

 The size of the character array determines the number of characters in a string.

 String is a variable-length structure stored in a fixed-length array

 The size of the string is to be smaller than the size of the array. So, the last element of the

sting should be shown explicitly.

 When compiler assigns characters to a string, it automatically assigns ‘\0’ (null character) at

the end of the string, to terminate it.

 The size of the character array should be : the maximum size of string + 1

Syntax :

char string_name[size];

 e.g. char name[30];

 String variables can be initialized during

 Compile-time (Static) or

 Run-time (Dynamic)

Initializing String Variables during Compile Time

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: II BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/19

 While initializing during declaration, the string length should not exceed the maximum

elements size

 Initialization cannot be separated from declaration, as

 char name[6];

 name[6] = “BENNY”;

 Array name cannot be used, as used as the left operand of an assignment operator

 char name[6] = “BENNY”;

o name1[6] = name[6];

 Null character serves as the ‘end-of-string’ marker

READING STRINGS FROM TERMINALS

Using scanf() Function:

 scanf() function with %s format specification is used to read the string of characters

 Ampersand(&) is not required before character array variable name. Because the character

array is also a pointer.

 scanf() function terminates when it encounters a white spaces (blank, tab, carriage return,

form feed and new line)

 Example:

char name[10];

scanf(“%s”, name);

G R I \0 ? ? ? ? ? ?

 If the input is GRI DU then GRI is assigned to name

 Using scanf(), variable cannot read a string with white space.

 To achieve this, two character arrays may be used one to store GRI and the other to store

DU

 The field width w can be specified in scanf() using %ws

o The entire input string is stored in the character array, if the width w is equal or

greater than the number of characters typed in

o If the width is less than the number of characters in the input string, the excess

characters get truncated and are not read in

 To read more than one word, edit set conversion code %[..] is used.

Example:

char line [80];

 scanf(“%[^\n]”, line);

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: II BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/20

 printf(“%s”, line);

scanf(“%[^\n]”, line); reads sequence of strings including whitespace until the new

line character entered.

Using getchar() function

 getchar() is used for reading the single character from the terminal.

 Reading input character is terminated when a new line character is read.

 The null character is appended at the end of the read input string

 Syntax

Variable_name=getchar();

 Example: char a;

 a=getchar();

 Program:

Using gets() function

 gets() reads string of characters including whitespace into a character array

 It reads string until new line character is read and then null character is appended at the end

of the read input string

 Syntax: gets(variable_name);

 Example Program

#include<stdio.h>

void main()

{

char str[80], str1[80];

gets(str);

printf("%s", str);

printf("\n%s", gets(str1));

puts(str1);

}

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: II BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/21

 WRITING STRINGS ON TERMINALS (using %s)

 %s is used to display the elements in the character array up to null terminator. (Without

Formatting)

 Example: name[10] = {‘G’,’R’,’I’,’ ’,,’D’,’U’};

 printf(“%s”, name);

 Formatted Output : %w.p

 w is the field width and p is the precision

 Example 1: printf(“%10.4s”, name);

 (Out of field width10, first four characters are displayed)

Example 2: printf(“%-10.4s”, name);

 /* string to be printed is left-justified */

 Variable Field Format : printf(“%*.*s”, w,p,name);

 where w is the field width and p is the precision.

WRITING STRINGS ON TERMINALS: putchar() and puts()

 putchar() displays the value of the character constant stored in character variable.

 Ex: char ch =‘a’;

 putchar(ch);

 // displays a String data can also be displayed using putchar()

 Ex: char name[6]= “gandhi”;

 for (i=0; i<5; i++)

 putchar(name[i]);

 puts() directly displays a string stored in a character array

 Ex: char name[6];

 gets(name);

 puts(name);

STRING MANIPULATION FUNCTIONS

strcat() strcat(string1, string2); To concatenate two strings

Appends string2 to string1

strcmp() strcmp(string1, string2); To compare two strings

strcpy() strcpy(string1, string2); Copies string2 to string1

strlen() strlen(string); Finds the length of string

strncpy() strncpy(string1, string2, n); Copies first n characters of string2 to string1

strncmp() strncmp(s1, s2, n); Compares leftmost n characters of s1 and s2

0 if s1 == s2 ; Negative , s1 < s2;

Positive, s1 > s2

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: II BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 22/22

strncat() strncat(s1, s2, n); Concatenates leftmost n characters of s2 to

the end of s1 (i.e. appends)

strstr() strstr(s1, s2); Searches s1 to check if s2 is in s1

strchr() strchr(s1, ‘a’); To locate the first occurrence of ‘a’ in s1.

strrchr() strrchr(s1, ‘a’); To locate the last occurrence of ‘a’ in s1.

POSSIBLE QUESTIONS

PART B

(Each Question Carries 2 marks)

1. Write a program in C language to convert the given string in uppercase

2. What do you mean by formal arguments and the actual arguments?

3. What do you mean by functions?

4. What are parameter passing?

5. Define array and how we can access elements of an array?

6. What is the difference between character and string?

7. Write difference between character and string?

8. What is the purpose of the return statement?

9. What is array overflow?

10. Explain function prototyping.

PART C

(Each Question Carries 8 marks)

1. What are user define function its advantages and write its different types.

2. What are String functions and write some string function?

3. Write a program to find sum of two matrices.

4. Write a program in c to reverse a given string.

5. Explain with example the concept of passing array to function.

6. What is recursion? Write a program to find Fibonacci series till a given number using

recursion.

7. Write a program to find factorial of a number using recursion.

8. Write a program to find the sum of the rows, column, and diagonal elements of a matrix.

9. Write a program to multiply any two matrixes.

10. Explain with example the relationship of one dimensional array and pointers.

S.No Question Choice1
1 C++ supports all the features of ___________ as defined in C structures
2 A structure can have both variable and functions as ________ objects
3 The class _________ describes the type and scope of its members Functions

4 The class __________ describes how the class function are
implemented

 Function
definition

5 The keywords private and public are known as _________ labels Static
6 The class members that have been declared as ________ can be

 accessed only from within the class
 Private

7 The class members that have been declared as ________ can be
accessed from outside the class also

 Private

8 The variables declared inside the class are called as _________ Function
variables

9 The functions which are declared inside the class are known as

 Member
function

10 The class variables are known as ________ Functions
11 The symbol ______ is called the scope resolution operator >>
12 A member function can call another member function directly

 without using the _________ operator
 Assignment

13 A ______ member variable is initialized to zero when the first
object of its class is created

 Dynamic

14 _________ Variables are normally used to maintain values
common to the entire class.

 Private

15 When a copy of the entire object is passed to the function it is
called as _________

 Pass by
reference

16 When the address of the object is transferred to the function it is
called as _________

 pass by
reference

17 A ________ function can be invoked like a normal function
without the help of any object

 Void

18 The ________ member variables must be defined outside the class. Static

19 A friend function, although not a member function, has full
access right to the ______ members of the class

 Static

20 __________ enables an object to initialize itself when it is created Destructor
21 ________ destroys the objects when they are no longer required Destructor
22 The __________ is special because its name is the same as the class

name.
 Destructor

Karpagam Academy of Higher Education
(Deemed University Established Under Section 3 of UGC Act 1956)

PROGRAMMING FUNDAMENTALS USING C/C++(18CAU101)

23 A constructor that accepts no parameters is called the __________
constructor

 Copy

24 Constructors are invoked automatically when the ________ are
created

 Data

25 Constructors cannot be _________ Inherited
26 Constructors cannot be _________ Destroyed
27 Constructors make _________ calls to the operators new and

delete when memory allocation is required
 Explicit

28 The constructors that can take arguments are called _________
constructors

 Copy

29 The constructor function can also be defined as ________ function Friend

30 When a constructor can accept a reference to its own
 class as a parameter, in such cases it is called as _________
constructors

 Multiple

31 When more than one constructor function is defined in a class,
 then the constructor is said to be _________

 Multiple

32 C++ complier has a _________ constructor, which creates objects,
even though it was not defined in the class.

 Explicit

33 A _________ constructor is used to declare and initialize an object
from another object

 Default

34 The process of initializing through a copy constructor is known as
________ initialization

 Overloaded

35 A ______ constructor takes a reference to an object of the same
class as itself as an argument

 Delete

36 Allocation of memory to objects at the time of their construction is
known as ________ construction

 Static

37 We can create and use constant objects using ______ keyword
before object declaration.

 Static

38 A destructor is preceded by ______ symbol Dot
39 _________ is used to allocate memory in the constructor Delete
40 _________ is used to free the memory new
41 Which is a valid method for accessing the first element of the array

item?
 item(1)

42 Which of the following statements is valid array declaration? int number
(5);

43 An object is an _________ unit group
44 Public keyword is terminated by a ________ Semicolon
45 Private keyword is terminated by a _________ semicolon

46 The memory for static data is allocated only ________ twice

47 Static member functions can be invoked using ________ name class
48 When a class is declared inside a function they are called as

________ classes.
 global

49 __________ can be virtual destructors
50 The _________ doesn’t have any argument constructor

51 The _________ also allocates required memory . constructor
52 Any constructor or destructor created by the complier will be

 private

53 The class can have only ______ destructor two
54 _________ cannot be overloaded destructor
55 _________ releases memory space occupied by the objects constructor
56 Constructors and destructors are automatically inkoved by

 operating
system

57 Constructors is executed when ________ object is
destroyed

58 The destructor is executed when __________ object goes
out of scope

59 The members of a class are by default ________ protected
60 The ________ is executed at the end of the function when objects

are of no used or goes out of scope
 destructor

Choice2 Choice3 Choice4 Ans
 union objects classes structures
 classes members arguments members
 declaration objects variables declaration

 declaration arguments paramenter Function
definition

 dynamic visibility const visibility
 public static protected Private

 Public static protected Public

 data members member
function

declarations data
members

 member
variables

 data
variables

constants Member
function

 members objects structures objects
 :: << ::* ::
 equal dot greater than dot

 constant static protected static

 protected Public static static

 pass by
function

 pass by
pointer

 pass by value pass by value

 pass by
function

 pass by
pointer

 pass by
value

 pass by
reference

 friend inline built in friend

 private public protected Static

 private public protected private

 constructor overloading overriding constructor
 constructor overloading overriding Destructor
 static constructor dynamic constructor

Karpagam Academy of Higher Education
(Deemed University Established Under Section 3 of UGC Act 1956)

PROGRAMMING FUNDAMENTALS USING C/C++(18CAU101)
UNIT--2

 default multiple single default

 classes objects union objects

 destroyed encaptulated abstraction Inherited
 virtual static dynamic virtual
 implicit function header implicit

 multiple
parameterized

levels
parameterized

 inline default numeric inline

 copy default implicit copy

 copy default overloaded overloaded

 default implicit user defined implicit

 copy multiple
parameterized

 copy

 multiple copy single copy

 new copy update copy

 copy dynamic user defined dynamic

 new const sample const

 asterisk colon tilde tilde
 binding free new new
 delete clrscr() update delete
 item[1] item[0] item(0) item[0]

 float avg[5]; double [5]
marks;

 counter
int[5];

 float avg[5];

 individual three multiple individual
 comma dot colon colon
 comma dot colon colon

 thrice once sigma once

 object data function class
 invalid local private local

 constructors static dynamic destructors
 copy
constructor

 destructor level of
degrees

 destructor

 destructor dynamic functions constructor
 public protected global public

 many one four one
 constructor friend private destructor
 destructor malloc calloc destructor
 main() complier object complier

 object is
declared

new keyword
is invoked

derefernced
memory

 object is
declared

 when object is
not used

 when object
contains
nothing

null value
detected

 object goes
out of scope

 private public new private
 constructor inheritance class destructor

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/1

Structure and Union

Arrays allow to define type of variables that can hold several data items of the same kind.

Similarly, structure is another user-defined data type available in C that allows to combine

data items of different kinds.

Structures are used to represent a record. Suppose you want to keep track of your books in a

library. You might want to track the following attributes about each book:

 Title

 Author

 Subject

 Book ID

Defining a Structure

To define a structure, you must use the struct statement. The struct statement defines a new

data type, with more than one member. The format of the struct statement is as follows:

struct [structure tag]

{

member definition;

member definition;

...

member definition;

} [one or more structure variables];

The structure tag is optional and each member definition is a normal variable definition,

such as int i; or float f; or any other valid variable definition. At the end of the structure's

definition, before the final semicolon, you can specify one or more structure variables but it is

optional. Here is the way you would declare the Book structure:

struct Books

{

char title[50];

char author[50];

char subject[100];

int book_id;

} book;

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/2

Accessing Structure Members

To access any member of a structure, we use the member access operator (.). The member

access operator is coded as a period between the structure variable name and the structure

member that we wish to access. You would use the keyword struct to define variables of

structure type. The following example shows how to use a structure in a program:

#include <stdio.h>

#include <string.h>

struct Books

{

char

char

char

int

title[50];

author[50];

subject[100];

book_id;

};

int main()

{

struct Books Book1;

struct Books Book2;

/* Declare

Book1 of type

Book */ /*

Declare Book2

of type Book */

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/3

/* book 1 specification */

strcpy(Book1.title, "C Programming"); strcpy(

Book1.author, "Nuha Ali");

strcpy(Book1.subject, "C Programming Tutorial");

Book1.book_id = 6495407;

/* book 2 specification */

strcpy(Book2.title, "Telecom Billing"); strcpy(

Book2.author, "Zara Ali");

strcpy(Book2.subject, "Telecom Billing Tutorial");

Book2.book_id = 6495700;

/* print Book1 info */

printf("Book 1 title : %s\n", Book1.title);

printf("Book 1 author : %s\n", Book1.author);

printf("Book 1 subject : %s\n", Book1.subject);

printf("Book 1 book_id : %d\n", Book1.book_id);

/* print Book2 info */

printf("Book 2 title : %s\n", Book2.title);

printf("Book 2 author : %s\n", Book2.author);

printf("Book 2 subject : %s\n", Book2.subject);

printf("Book 2 book_id : %d\n", Book2.book_id);

return 0;

}

When the above code is compiled and executed, it produces the following result:

Book1 title : C Programming

Book 1 author : Nuha Ali

Book 1 subject : C Programming Tutorial

Book 1 book_id : 6495407

Book 2 title : Telecom Billing

Book 2 author : Zara Ali

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/4

Book 2 subject : Telecom Billing Tutorial

Book 2 book_id : 6495700

Structures as Function Arguments

You can pass a structure as a function argument in the same way as you pass any other

variable or pointer.

#include <stdio.h>

#include <string.h>

struct Books

{

char title[50];

char author[50];

char subject[100];

int book_id;

};

/* function declaration */

void printBook(struct Books book);

int main()

{

struct Books Book1;

struct Books Book2;

/* Declare

Book1 of type

Book */ /*

Declare Book2

of type Book */

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/5

/* book 1 specification */

strcpy(Book1.title, "C Programming"); strcpy(

Book1.author, "Nuha Ali");

strcpy(Book1.subject, "C Programming Tutorial");

Book1.book_id = 6495407;

/* book 2 specification */

strcpy(Book2.title, "Telecom Billing"); strcpy(

Book2.author, "Zara Ali");

strcpy(Book2.subject, "Telecom Billing Tutorial");

Book2.book_id = 6495700;

/* print Book1 info */

printBook(Book1);

/* Print Book2 info */

printBook(Book2);

return 0;

}

void printBook(struct Books book)

{

printf("Book title : %s\n", book.title);

printf("Book author : %s\n", book.author);

printf("Book subject : %s\n", book.subject);

printf("Book book_id : %d\n", book.book_id);

}

When the above code is compiled and executed, it produces the following result:

Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/6

Book book_id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial

Book book_id : 6495700

Pointers to Structures

You can define pointers to structures in the same way as you define pointer to any other

variable:

struct Books *struct_pointer;

Now, you can store the address of a structure variable in the above-defined pointer variable.

To find the address of a structure variable, place the ‘&’ operator before the structure's name

as follows:

struct_pointer = &Book1;

To access the members of a structure using a pointer to that structure, you must use the ->

operator as follows:

struct_pointer->title;

Let us rewrite the above example using structure pointer.

#include <stdio.h>

#include <string.h>

struct Books

{

char title[50];

char author[50];

char subject[100];

int book_id;

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/7

};

/* function declaration */

void printBook(struct Books *book);

int main()

{

struct Books Book1;

struct Books Book2;

/* Declare Book1 of type Book */ /*

Declare Book2 of type Book */

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/8

/* book 1 specification */

strcpy(Book1.title, "C Programming"); strcpy(

Book1.author, "Nuha Ali");

strcpy(Book1.subject, "C Programming Tutorial"); Book1.book_id

= 6495407;

/* book 2 specification */

strcpy(Book2.title, "Telecom Billing"); strcpy(

Book2.author, "Zara Ali");

strcpy(Book2.subject, "Telecom Billing Tutorial"); Book2.book_id =

6495700;

/* print Book1 info by passing address of Book1 */ printBook(

&Book1);

/* print Book2 info by passing address of Book2 */ printBook(

&Book2);

return 0;

}

void printBook(struct Books *book)

{

printf("Book title : %s\n", book->title);

printf("Book author : %s\n", book->author);

printf("Book subject : %s\n", book->subject);

printf("Book book_id : %d\n", book->book_id);

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/9

}

When the above code is compiled and executed, it produces the following result:

Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial

Book book_id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial

Book book_id : 6495700

Bit Fields

Bit Fields allow the packing of data in a structure. This is especially useful when memory or data

storage is at a premium. Typical examples include:

 Packing several objects into a machine word, e.g. 1 bit flags can be compacted.

 Reading external file formats -- non-standard file formats could be read in, e.g., 9-bit

integers.

C allows us to do this in a structure definition by putting :bit length after the variable. For example:

struct packed_struct {

unsigned int f1:1;

unsigned int f2:1;

unsigned int f3:1;

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/10

unsigned int f4:1;

unsigned int type:4;

unsigned int my_int:9;

} pack;

Here, the packed_struct contains 6 members: Four 1 bit flags f1..f3, a 4-bit type, and a 9-bit my_int.

C automatically packs the above bit fields as compactly as possible, provided that the maximum

length of the field is less than or equal to the integer word length of the computer. If this is not the

case, then some compilers may allow memory overlap for the fields, while others would store the

next field in the next word.

A union is a special data type available in C that allows to store different data types in the same

memory location. You can define a union with many members, but only one member can contain a

value at any given time. Unions provide an efficient way of using the same memory location for

multiple-purpose.

Defining a Union

To define a union, you must use the union statement in the same way as you did while defining a

structure. The union statement defines a new data type with more than one member for your

program. The format of the union statement is as follows −

union [union tag] {

 member definition;

 member definition;

 ...

 member definition;

} [one or more union variables];

The union tag is optional and each member definition is a normal variable definition, such as int i;

or float f; or any other valid variable definition. At the end of the union's definition, before the final

semicolon, you can specify one or more union variables but it is optional. Here is the way you

would define a union type named Data having three members i, f, and str −

union Data {

 int i;

 float f;

 char str[20];

} data;

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/11

Now, a variable of Data type can store an integer, a floating-point number, or a string of characters.

It means a single variable, i.e., same memory location, can be used to store multiple types of data.

You can use any built-in or user defined data types inside a union based on your requirement.

The memory occupied by a union will be large enough to hold the largest member of the union. For

example, in the above example, Data type will occupy 20 bytes of memory space because this is the

maximum space which can be occupied by a character string. The following example displays the

total memory size occupied by the above union −

Live Demo

#include <stdio.h>

#include <string.h>

union Data {

 int i;

 float f;

 char str[20];

};

int main() {

 union Data data;

 printf("Memory size occupied by data : %d\n", sizeof(data));

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Memory size occupied by data : 20

Accessing Union Members

To access any member of a union, we use the member access operator (.). The member access

operator is coded as a period between the union variable name and the union member that we wish

to access. You would use the keyword union to define variables of union type. The following

example shows how to use unions in a program −

Live Demo

#include <stdio.h>

#include <string.h>

http://tpcg.io/5ndKkD
http://tpcg.io/KteThe

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/12

union Data {

 int i;

 float f;

 char str[20];

};

int main() {

 union Data data;

 data.i = 10;

 data.f = 220.5;

 strcpy(data.str, "C Programming");

 printf("data.i : %d\n", data.i);

 printf("data.f : %f\n", data.f);

 printf("data.str : %s\n", data.str);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

data.i : 1917853763

data.f : 4122360580327794860452759994368.000000

data.str : C Programming

Here, we can see that the values of i and f members of union got corrupted because the final value

assigned to the variable has occupied the memory location and this is the reason that the value of str

member is getting printed very well.

Now let's look into the same example once again where we will use one variable at a time which is

the main purpose of having unions −

Live Demo

#include <stdio.h>

#include <string.h>

union Data {

 int i;

 float f;

http://tpcg.io/1T4bqA

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/13

 char str[20];

};

int main() {

 union Data data;

 data.i = 10;

 printf("data.i : %d\n", data.i);

 data.f = 220.5;

 printf("data.f : %f\n", data.f);

 strcpy(data.str, "C Programming");

 printf("data.str : %s\n", data.str);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

data.i : 10

data.f : 220.500000

data.str : C Programming

Here, all the members are getting printed very well because one member is being used at a time.

POINTERS

Pointer variable: The variable that points/holds the address of the another variable is called the

pointer variable.

Representation of Variable:

 When a variable is declared, the system allocates an appropriate memory location to hold the

value of the variable.

 The number of bytes allocated to each variable is decided by its data type.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/14

Representation of a Pointer Variable:

 Memory address of the variable is assigned to some other variable that can be stored in

memory.

 A pointer variable holds the address, which is a location of another variable.

Components of Pointers:

 Pointer Constants: Memory address allotted to a variable (Address of i)

(It is machine-dependent; It cannot be changed)

 Pointer Value: The memory address of the variable, stored in the pointer variable, is known

as Pointer Value. It is done using Address Operator (&). [eg. p = &a;]

 Pointer Variable: The variable that contains a pointer value is called a Pointer Variable.

(p is the pointer variable)

Accessing the Address of the variable

 The address of the variable is assigned to a pointer variable, using the address operator (&).

 While reading the inputs through scanf(), the address operator is used.

 The operator & that immediately precedes a variable, returns the address of the variable

associated with it.

 It can be used with a simple variable or an array element.

Example :

void main()

{

 int a=75;

 char b=‘J’;

printf(“%d is stored at address %u”,a,&a);

printf(“%c is stored at address %u”,b,&b);

}

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/15

Declaration of Pointer Variable:

 Pointer variable should be declared with a data_type

 The data_type of the pointer variable and the data_type of variable (pointed by the pointer

variable) must be the same.

 Syntax of pointer variable declaration is:

data_type *pt_name;

 The asterisk(*) indicates that the variable is a pointer variable

Illustration

int *ip ; // Pointer to an integer Variable

float *fp;

char *cp;

Pointer Declaration Style
 Style 1: int* p;

 Style 2: int *p;

 Style 3: int * p;

Initialization of Pointer Variables:

 The process of assigning the address of a variable to a pointer variable is known as

initialization.

 All uninitialized pointers will have some unknown values (garbage) that will be an invalid

memory addresses. So, uninitialized pointers will point to some values that are wrong.

 Hence, uninitialized pointers will produce erroneous results in the programs.

Example:

int a;

int *p; /*Declaration*/

p= &a; /*Initialization*/

 float a;

 int *p; /*Declaration of integer pointer */

 p= &a; /*Wrong Initialization; data_type mismatch*/
 The above pointer variable initialization is wrong , because the address of float variable is

assigned to an integer pointer

int x, *p=&x; /*Valid */

int *p=NULL; /*Valid; Initialized with null Value*/

int *p=0; /*Valid; initialized with zero */

int *p=&x, x; /* Invalid; Pointer variable is assigned with the address of the variable x

which is declared later */

Pointer Flexibility

• Same pointer can point to different data variables,

 (one after the other, simultaneously ; not at the same time)

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/16

 int x,y,z,*p;

 p=&x; // p contains the address of x

 p=&y; // p contains the address of x

 p=&z; // p contains the address of x

• Different pointers can point to the same data variable.
 int x,*p1,*p2,*p3;

 p1=&x; // p1 contains the address of x

 p2=&x; // p2 contains the address of x

 p3=&x; // p3 contains the address of x

Accessing a variable through its pointer

 A pointer variable is assigned with the address of a variable using the operator *

 The asterisk operator is also called as indirection operator or dereferencing operator

Example:

void main()

{

 int x,y.*p; // Declaration of variables & Pointer Variable p

 x=10; // Initialization of x

 p=&x; // Assigns address of x to p

 y=*p; // Assigns the value stored in value of p

 printf(“\n 1. x Value :%d”,x);

 printf(“\n 2. x Value :%d, Address: %u",x, &x);

 printf(“\n 3. x Value :%d, Address: %u”,*&x, &x);

 printf(“\n 4. x Value :%d, Address: %u”,*p, p);

 printf(“\n 5. x Value :%d, Address: %d",x, &p);

 printf(“\n 6. y value :%d, Address: %d",y, &y);

 *p=15;

 printf(“\n 7. X value :%d”,x);

}

Chain of Pointers

 The mechanism of a pointer to point another pointer makes the chain of pointers.

OUTPUT
1. X value : 10

2. X value : 10
Address:777
3. Value : 10 Address:

777
4. Value : 10 Address:
777

5. Value : 777 Address:
770

6. Y value : 10
Address:779

7. X value : 15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/17

Example:

main()

{

 int x,*p1,**p2;

 x=7;

 p1=&x;

 p2=&p1;

 printf(“\n 1. *p1=%d”,*p1);

 printf(“\n 2. **p2=%d”,**p2);

 printf(“\n 3. p1=%u,&p1=%u”,p1,&p1);

 printf(“\n 4. p2=%u”,p2);

}

Pointer Expressions

 Pointer variables p1 and p2 can be used in expressions.

 They can be employed in arithmetic and relational expressions like other variables.

 y = *p1 - *p2;

 sum=sum+ *p1;

 z = 5+ *p2/ *p1; // 5+(*p2/*p1)

 Pointer variables can be used with shorthand operator.

 *p1++;

 -*p2;

 sum+= *p1;

 Pointer variables can be compared using relational operators

 *p1>*p2

 *p1==*p2

 *p1!=*p2

Pointer increments and Scale Factor

 Pointer variable can incremented.

 p1=p1+1;

 p1=p2+2;

 p1++;

 If p1 is an integer pointer with an initial value,777 then after the operation p1=p1+1, the value of

p1 is 779, not 778.

 When a pointer variable increments, its value is increased by the length of the data type that

it points to. This length called the Scale Factor.

OUTPUT
1. *p1= 7
2. **p2=7
3. p1= 777, &p1=779
4. p2= 779

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/18

 The number of bytes used to store various data types depends on the system and can be

found by making use of the sizeof operator.

Rules of Pointer Operations

 A pointer variable can be assigned with the address of the another variable.

 A pointer variable can be assigned with the values of another pointer variable.

 A pointer variable can be initialized with NULL or Zero value.

 A pointer variable can be pre-fixed or post-fixed with increment or decrement.

 An integer value may be added or subtracted from a pointer variable.

 When two pointers point to the same array, they can be compared using relational operator.

 A pointer variable cannot be multiplied by a constant.

 Two pointer variables cannot be added.

 An arbitrary value cannot be assigned as an address to a variable

 (i.e &x=10; is illegal)

Pointers and Arrays

 When an array is declared, the compiler allocates the base address and sufficient amount of

storage to contain all the elements of the array in contiguous memory locations.

 The base address is the location of the first element of array. The compiler also defines the

array name as a constant pointer to the first element.

 int x[5] = {11,22,33,44,55}

 Let p is an integer pointer and let p points to the array x

 p = x; implies that p = &x[0];

 Every value (item) of x can be accessed by incrementing the pointer variable.

 p = &x[0] (ie 777)

 p+1 = &x[1] (ie 779 = 777+(1 × 2), where 1 is the index & 2 is the

Scale Factor

 p+2 = &x[2] (ie 781 = 777+ (2 × 2)

p+3 = &x[3] (ie 783 = 777+ (3 × 2)

 p+4 = &x[4] (ie 785 = 777+ (4 × 2)

• The address of an element is calculated using its index and the scale factor of the data type

 Address of an element = base address + (index × scale factor of data type)

 The pointer accesses the values of an array faster than array indexing.

 * (p+2) = x[2]

 *(p+2) gives the value of x[2]

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/19

Example:

main()

{

 int sum,i,*p;

 int x[5]={5,9,6,3,7};

 i=0;

 p=x;

 printf(“ELEMENT VALUE ADDRESS\n”);

 while(i<5)

 {

 printf(“x[%d] \t %d \t %u\n”,i,*p, p);

 sum=sum+p;

 i++;

 p++;

 }

 printf(“\n Sum = %d\n”,sum);

 printf(“\n &x[0] = %u\n”,&x[0]);

 printf(“\n p = %u\n”,p);

 }

Pointers and Character Strings

 C supports the method to create strings using pointer variables of type char

 char str[5]=“good”;

 char *str=“good”;

 The compiler automatically inserts the null character’\0’ at the end of the string. The string

pointer stores its address in the pointer variable str.

Example Program: Palindrome Checking

Pointers and Functions

Pointers as Function Arguments

 When we pass addresses to a function, the parameters receiving the addresses should be

pointers. The process of calling a function using a pointer to pass the address of a variable

is known as ’call by reference’.

OUTPUT
ELEMENT VALUE ADDRESS
 x[0] 5 770
 x[1] 9 772
 x[2] 6 774
 x[3] 3 776
 x[4] 7 778
 Sum = 55
 &x[0] = 770
 p = 780

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/20

 The function which is called by ‘reference’ can change the value of the variable used in the

call. Call by reference provides a mechanism by which the function can change the values

stored by the calling function.

Example

main()

{

 int x=20;

 change(&x); // Call by reference or address

 printf(“%d\n”,x);

}

change(int *p)

{

 *p=*p+10

}

Output : 30

Functions Returning Pointers

 The function can return a single value by its name, whereas using pointers, the function can

return multiple values.

 The address returned must be the address of a variable in the calling function

 Without parentheses, fptr is declared as a function returning a pointer to type

type *fptr();

Example:

int *big(int *, int *); // Prototype

main()

{

 int a=10,b=20,*p;

 p=big(&a,&b); // Function call

 printf(“The Larger value is %d”,*p);

}

int *big(int *x,int *y)

{

 if(*x > *y)

 return(x); // Address of a

 else

 return(y); //Address of b

}

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/21

Pointers To Functions

 A function has a type and address location in the memory. So, the pointers can be declared

to a function which can be used as an argument in another function.

type (*fptr)();

 This tells the compiler that fptr is a pointer to a function which returns type value. The

parentheses around *fptr are necessary.

Example:

double mul(int,int);

double (*p1)();

 If p1 is declared as a pointer to the function mul, then the address of mul is assigned to p1,

which is equivalent to p1 = mul

 We can make a function pointer to point to a specific function by simply assigning the name

of the function to the pointer.

 p1 is a pointer to a function and mul is a function. p1 is made to point to the function mul

 p1 is used for instead of mul as

 (*p1)(x,y) is equivalent to mul(x,y)

Program:

#include <stdio.h>

#include <conio.h>

 double mul(int,int);

 double (*p1)();

void main()

 {

 int a,b;

 double c;

 p1=mul;

 printf("Enter a & b Values:\n\n");

 scanf("%d%d",&a,&b);

 c=(*p1)(a,b);

 printf("C value= %lf",c);

 getch();

 }

 double mul(int a, int b)

 {

 return(a*b);

 }

OUTPUT
Enter a & b Values: 6

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/22

 7

C value = 42.0000

Pointers: Compatibility and Casting

 All pointer variables store memory address.

 A pointer always has a type associated with it. A pointer of one type can not be assigned to a

pointer of another type, although both of them have memory addresses as their values. This

is known as incompatibility of pointers.

 But, if the data types of values pointer by pointers differ, then those pointers are known as

incompatible pointers.

 The assignment operator can not be used with pointers of different types.

 The cast operator can be used for explicit type casting, between incompatible pointer types.

 int x;

 char *p;

 p=(char *) &x;

Generic Pointer
 The void pointer is a generic pointer that can represent any pointer type. All pointer types can

be assigned to a void pointer and void pointer can be assigned to any pointer without casting.

 void *vp;

Troubles with Pointers

 Pointers give us more flexibility and power. It could become a nightmare when they are not

used correctly.

 Major Problem:

1. The wrong use of pointers is that the complier may not detect the error in

most cases. So, the program is produced unexpected results.

2. The output may not give us any clue regarding the use of bad pointers

 Assigning values to uninitialized pointers

 int *p,m=100;

 *p=m; /*Error*/
 Assigning value to a pointer variable

 int *p,m=100;

 p=m; /*Error*/
 Not dereferencing a pointer when required

 int *p,m=100;

 p=&m;

 printf(“%d”,p); /*Error*/
 Assigning the address of an uninitialized variables

 int *p,m;

 p=&m; /*Error*/
 Comparing pointers that point to different objects

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/23

 char name1[20],name2[30];

 char *p1=name1;

 char *p2=name2;

 if(p1>p2) …… /*Error*/

POSSIBLE QUESTIONS

PART B

(Each Question Carries 2 marks)

1. What is pointer?

2. What are advantages of pointers?

3. Define structure with syntax.

4. Write a C program using pointers to multiply two integers.

5. What are self-referential structures?

6. Differentiate between structure and union.

7. Define text & binary files.

8. What do you mean by data file?

9. What is purpose of library function feof()?

10. What do you mean by enumerated data types?

PART C

(Each Question Carries 8 marks)

1. Differentiate between pass by Value and pass by reference with the help of example.

2. What is a pointer to an array and an array of pointers?

3. Write a program to swap two variables by using call by reference.

4. What is the difference between static and dynamic memory allocation?

5. What do you mean by structure? How does a structure differ from an array?

6. Write a program in C language to create a data file.

7. Explain with examples the various file handling functions.

8. Write a program to copy contents of input,txt file to output.txt file.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: III BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA& IT KAHE 24/24

9. What different function to handle errors in files?

10. What are command line arguments?

S.No Question Choice1 Choice2
1 The ________ function takes no operator. Operator +() Operator –()
2 In overloading of binary operators, the ________ operand

is used to invoke the operator function.
 Right-hand Arithmetic

3 ________ functions may be used in place of member
functions for overloading a binary operator

 Inline Member

4 The operator that cannot be overloaded is ________ Single of +
5 The friend functions cannot be used to overload the

________ operator.
 :: ?:

6 ________ is called compile time polymorphism. Operator
overloading

 Function
overloading

7 ________ feature can be used to add two user-defined
operator data types.

 Function Overloading

8 ________ operator cannot be overloaded. = +
9 Operator overloading is done with the help of a special

function called ________ function.
 Conversion Operator

10 ________ functions must either be member functions or
friend functions.

 Operator User-defined

11 The overloading operator must have atleast ________
operand that is of user-defined data type.

 Two Three

12 ________ operator function should be a class member. Arithmetic Relational
13 The casting operator must not have any ________ Arguments Member
14 The casting operator function must not specify a ________

type.
 User-defined
type

 Return

15 The operator that cannot be overloaded is ________. Casting Binary

16 The friend function cannot be used to overload ________
operator.

 + -

17 ________ operator cannot be overloaded by friend function. [] *

18 The operator that cannot be overloaded by friend function
is ________

 . ::

19 Operator overloading is called ________ Function
Overloading

 Compile time
polymorphism

20 Overloading feature can add two ________ data types. In-built Enumerated

Karpagam Academy of Higher Education
(Deemed University Established Under Section 3 of UGC Act 1956)
PROGRAMMING FUNDAMENTALS USING C/C++(18CAU101)

UNIT--3

21 The mechanism of deriving a new class from an old one is
called ________

 Operator
overloading

 Inheritance

22 ________ provides the concept of reusability. Overloading Message
passing

23 C++ can be reused using ________ Inheritance Encapsulation
24 Inheritance provides the concept of ________. Derived class Subclass

25 The ________ class inherits some or all of the properties of
base class.

 Abstract class Father class

26 A derived class with only one base class is called ________
inheritance.

 Single Multi-level

27 The derived class inherits some or all of the properties of
________ class.

 Member Base

28 A derived class can have only one ________ class. Derived Base
29 ________ class inherits some or all of the properties of

base class.
 Base Virtual base

30 A class that inherits properties from more than one class is
known as ________ inheritance.

 Multiple Multilevel

31 The class that can be derived from another derived class is
known as ________ inheritance.

 Hierarchical Single

32 When the properties of one class are inherited by more than
one class, it is called ________ inheritance.

 Single Hybrid

33 A ________ can inherit properties from more than one
class.

 Class Member class

34 A class can be derived from another ________ class. Member Common base

35 ________ of one class can be inherited by more than class. Functions Properties

36 A private member of a class cannot be inherited either in
public mode or in ________ mode.

 Private Protected

37 A protected member inherited in public mode becomes

 Highly
protected

 Private

38 A protected member inherited in private mode becomes

 Visibility Private

39 A ________ member of a class cannot be inherited in
public mode.

 Public Protected

40 A member inherited in public mode becomes ________ in
the derived class.

 Private Class

41 A protected member inherited in ________ mode becomes
private in the derived class.

 Protected Visibility

42 A public member inherited in ________ mode becomes
public.

 Private Public

43 A public member inherited in private mode becomes
________.

 Private Public

44 The ________ functions of a friend class can directly
access the private and protected data.

 Inline Friend

45 A ________ member inherited in public mode becomes
public in the derived class.

 Protected Private

46 A public member inherited in ________ mode become
private in the derived class.

 Visibility Private

47 The private and protected class can directly access the
________ functions of a friend class.

 Virtual Inline

48 The member functions of a ________ class can directly
access only the protected and public data.

 Indirect Base Ancestor

49 The member functions of a ________ class can access the
private data.

 Base Derived

50 ________ inheritance may lead to duplication of inherited
members from a ‘grand parent’ base class.

 Multiple Multipath

51 Duplication of inherited members of ________ inheritance
can be avoided by making the common base class, a virtual
base class.

 Single Multi-level

52 In ________ inheritance, the base classes are constructed
in the order in which they appear in the declaration of the
derived class.

 Hybrid Multipath

53 In multi-level inheritance, the ________ are executed in
the order of inheritance.

 Derivations Constructors

54 A class that contains objects of other classes is known as
________.

 Indirect base
class

 Nesting

55 The ________ section of constructor function is used to
assign initial values to its data members.

 Initialization Declaration

56 The grand parent class is sometimes referred to as
________ class.

 Ancestor Virtual base

57 ________ may arise in single inheritance application Ambiguity Visibility
58 A ________ that contains objects of other classes is known

as containership
 Function Friend

59 A member declared as ________ cannot be accessed by the function
outside the class.

 Private Protected

60 The public member of a class can be accessed by its own
objects using the ________ operator.

 Scope
resolution

 Relational

Choice3 Choice4 Choice5 choice6 Ans
 Friend Conversion Operator –()
 Left-hand Multiplication Left-hand

 Conversion Friend Friend

 - = Single of
 . = ::

 Overloading
unary operator

 Overloading
binary operator

 Operator
overloading

 Arrays Pointers Overloading

 ?: – ?:
 User-defined In-built. Operator

 Static Member Overloading Operator

 One Four One

 Casting Overloading Casting
 Return type Operator Arguments
 Member In-built Return

 Unary Scope resolution Scope
resolution

 () :: ()

 . ?: []

 -> Single of ::

 Casting
operator function

 Temporary
object

 Compile
time
polymorphism

 User-defined Static User-defined

Karpagam Academy of Higher Education
(Deemed University Established Under Section 3 of UGC Act 1956)
PROGRAMMING FUNDAMENTALS USING C/C++(18CAU101)

UNIT--3

 Polymorphism Access
mechanism

 Inheritance

 Data
abstraction

 Inheritance Inheritance

 Polymorphism Overloading Inheritance
 Virtual base
class

 Reusability Reusability

 Derived class Child class Derived class

 Multiple Hierarchical Single

 Father Ancestor Base

 Child Member Base
 Subclass Derived Derived

 Single Hybrid Multiple

 Multi-level Hybrid Multi-level

 Multiple Hierarchical Hierarchical

 Inheritance Base class Class

 Derived Indirect base
class

 Derived

 Friend Subclass Properties

 Visibility Nesting Private

 Public Protected Protected

 Protected Public Private

 Private Access Private

 Public Protected Protected

 Private Public Private

 Visibility Protected Public

 Protected Visibility Private

 Virtual Static members Friend

 Static Public Public

 Protected Public Private

 Member Static member Member

 Base Derived Derived

 Ancestor Indirect base Base

 Hybrid Single Multipath

 Multipath Hierarchical Multipath

 Hierarchical Multiple Multiple

 Destructors Containership Constructors

 Subclass Inheritance Nesting

 Argument Assignment Assignment

 Indirect base Direct base Indirect base

 Nesting Derivation Ambiguity
 Class Subclass Class

 Public Visibility Protected

 Arithmetic Dot Dot

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: IV BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 12/1

Memory Allocation in C++:

The C programming language provides several functions for memory allocation and management.

These functions can be found in the <stdlib.h> header file.

Sr.No. Function & Description

1
void *calloc(int num, int size);

This function allocates an array of num elements each of which size in bytes will be size.

2
void free(void *address);

This function releases a block of memory block specified by address.

3
void *malloc(int num);

This function allocates an array of num bytes and leave them uninitialized.

4
void *realloc(void *address, int newsize);

This function re-allocates memory extending it upto newsize.

Allocating Memory Dynamically

While programming, if you are aware of the size of an array, then it is easy and you can define it as

an array. For example, to store a name of any person, it can go up to a maximum of 100 characters,

so you can define something as follows −

char name[100];

But now let us consider a situation where you have no idea about the length of the text you need to

store, for example, you want to store a detailed description about a topic. Here we need to define a

pointer to character without defining how much memory is required and later, based on requirement,

we can allocate memory as shown in the below example −

Live Demo

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main() {

 char name[100];

 char *description;

 strcpy(name, "Zara Ali");

http://tpcg.io/osfk0O

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: IV BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 12/2

 /* allocate memory dynamically */

 description = malloc(200 * sizeof(char));

 if(description == NULL) {

 fprintf(stderr, "Error - unable to allocate required memory\n");

 } else {

 strcpy(description, "Zara ali a DPS student in class 10th");

 }

 printf("Name = %s\n", name);

 printf("Description: %s\n", description);

}

When the above code is compiled and executed, it produces the following result.

Name = Zara Ali

Description: Zara ali a DPS student in class 10th

Same program can be written using calloc(); only thing is you need to replace malloc with calloc as

follows −

calloc(200, sizeof(char));

So you have complete control and you can pass any size value while allocating memory, unlike

arrays where once the size defined, you cannot change it.

Resizing and Releasing Memory

When your program comes out, operating system automatically release all the memory allocated by

your program but as a good practice when you are not in need of memory anymore then you should

release that memory by calling the function free().

Alternatively, you can increase or decrease the size of an allocated memory block by calling the

function realloc(). Let us check the above program once again and make use of realloc() and free()

functions −

Live Demo

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main() {

http://tpcg.io/mQPTlp

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: IV BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 12/3

 char name[100];

 char *description;

 strcpy(name, "Zara Ali");

 /* allocate memory dynamically */

 description = malloc(30 * sizeof(char));

 if(description == NULL) {

 fprintf(stderr, "Error - unable to allocate required memory\n");

 } else {

 strcpy(description, "Zara ali a DPS student.");

 }

 /* suppose you want to store bigger description */

 description = realloc(description, 100 * sizeof(char));

 if(description == NULL) {

 fprintf(stderr, "Error - unable to allocate required memory\n");

 } else {

 strcat(description, "She is in class 10th");

 }

 printf("Name = %s\n", name);

 printf("Description: %s\n", description);

 /* release memory using free() function */

 free(description);

}

When the above code is compiled and executed, it produces the following result.

Name = Zara Ali

Description: Zara ali a DPS student.She is in class 10th

FILE MANAGEMENT

Introduction

 Many real problems involve large volumes of data and in such situations, the console-

oriented I/O operations pose two major problems

o It becomes cumbersome and time consuming to handle large volumes of data

through terminals.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: IV BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 12/4

o The entire data is lost when either the program is terminated or the computer is

turned off.

 Therefore, another method is needed to store data on the disk and read it whenever necessary

without destroying the data. Such a method is employed in the concept of files to store data.

 The file is placed on the disk where a group of related data is stored.

Basic File Operations

 C supports a number of functions that have the ability to perform basic file operations:

 Naming a file

 Opening a file

 Reading data from a file

 Writing data from a file

 Closing a file

 C performs file operations in two ways:

 Low Level I/O : Uses UNIX System calls

 High Level I/O : Uses functions in C’s Standard Library

High level I/O Functions

FUNCTION NAME OPERATIONS

 fopen() Creates a new file for use (or) Opens an existing file for use

 fclose() Closes a file which is already opened for use

 getc() Reads a character from a file

 putc() Writes a character to a file

 fprintf() Writes a set of data values to a file

 fscanf() Reads a set of values from a file

 getw() Reads an integer from a file

 putw() Writes an integer to a file

 fseek() Sets the position to a desired point in the file

 ftell() Gives the current position in the file

(in terms of bytes from the start)

 rewind() Sets the position to the beginning of the file

DEFINING AND OPENING A FILE

 If data is stored in a file in the secondary memory, certain details / information about the file

are specified to the operating system

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: IV BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 12/5

 They are:

 File Name – a string of characters that make- up a valid file name for the OS.

 Pointer to Data structure (ie to the file)(eg.: fp1, fp2, etc.,)

 Mode of file operation (eg. “r”, “w”, “a”, “r+”, “w+”, “a+”)

 The general format for declaring and opening a file

FILE *fp;

fp=fopen(“filename”,”mode”);

 where fp is a pointer to the FILE data type,

 filename denotes the file which will be opened,

 mode represents the purpose of the opening file.

 The second statement opens the file, named as filename and assigns a pointer to the FILE

type pointer fp. This pointer which contains all the information about the file is

subsequently used as a communication link between the system and program

 The modes of the file

r Opens the file for reading only

w Opens the file for writing only

a Opens the file for appending (or adding) data to it

 When trying to open a file, one of the following things may happen

1. When mode is ‘writing’, a file is created if the file does not exist. The

contents of the file are deleted, of the file already exists.

2. When the purpose is ‘appending’, the file is opened with current contents

safe. A file with the specified name is created if the file does no t exist.

3. If the purpose is ‘reading’ and if it exists, then the file is opened with current

contents safe otherwise an error occurs.

FILE *p1,*p2;

p1=fopen(“data”,”r”);

P2=fopen(“results”,”w”);

 The additional modes are included in recent compliers

r+ The existing file is opened to the beginning for both reading and writing

w+ Same as w except both for reading and writing

a+ Same as a except both for reading and writing

Closing a file

 A file must be closed after completion of all operations.

 This ensures that all information associated with the file is flushed out from the buffer and a

links to the file are removed.

 In case, there is a limit to the number of files that can be kept open simultaneously, closing

of unwanted files might help open the required files.

 The general format to close a file

fclose(file_pointer)

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: IV BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 12/6

Example:

FILE *p1,*p2;

p1=fopen(“INPUT”,”w”);

p2=fopen(“OUTPUT”,”r”);

………

….

fclose(p1);

fclose(p2);

………..

getc and putc functions

 The simplest I/O functions are getc() and putc(). These functiosn handle one character at a

time.

 Assume that the file is opened with mode w and file pointer fp1. the below statement writes

the character contained in the character variable c to the file associated with FILE pointer

fp1.

putc(c,fp1);

 getc is used to read a character from a file.

c=getc(fp1);

Example:

#include<stdio.h>

void main()

{

 FILE *f1;

 char c;

 printf(“Data Input \n\n”);

 f1=fopen(“INPUT”,”w”);

 while((c=getchar()) != EOF)

 putc(c,f1);

 fclose(f1);

 printf(“Data Output \n\n”);

 f1=fopen(“INPUT”,”r”);

 while((c=getc(f1)) != EOF)

 printf(“%c”,c);

 fclose(f1);

}

getw() and putw() functions

 The getw() and putw() are integer-oriented functions.

 They are used to read and write integer values.

 The general format is:

putw(integer,fp);

getw(fp);

 The illustrations of getw() and putw()

OUTPUT:

 Data Input
 Hi world^Z
 Data Output

 Hi world

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: IV BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 12/7

putw(number,f1);

(number=getw(f1)) != EOF)

Example Program

#include <stdio.h>

#include <conio.h>

void main()

 {

 FILE *f1, *f2, *f3;

 int number, i;

 printf("Contents of DATA file\n\n");

 f1 = fopen("DATA", "w"); /*Create DATA file*/

 for(i = 1; i <= 30; i++)

 {

 scanf("%d", &number);

 if (number == -1) break;

 putw(number,f1);

 }

 fclose(f1);

 f1 = fopen("DATA", "r");

 f2 = fopen("ODD", "w");

 f3 = fopen("EVEN", "w");

/* Read from DATA file */

 while((number = getw(f1)) != EOF)

 {

 if(number %2 == 0)

 putw(number, f3); /*Write to EVEN file */

 else

 putw(number, f2); /*Write to ODD file */

 }

fclose(f1);

 fclose(f2);

 fclose(f3);

 f2 = fopen("ODD","r");

 f3 = fopen("EVEN", "r");

 printf("\n\nContents of ODD file\n\n");

 while((number = getw(f2)) != EOF)

 printf("%4d", number);

 printf("\n\nContents of EVEN file\n\n");

 while((number = getw(f3)) != EOF)

 printf("%4d", number);

 fclose(f2);

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: IV BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 12/8

 fclose(f3);

 getch();

 }

OUTPUT:

Contents of DATA File:

23 42 77 7 28 88 98 ^Z

Contents of ODD File :

 23 77 7

Contents of Even File:

 42 28 88 98

fprintf and fscanf functions

 The functions fprintf() and fscanf() perform the I/O operations that are identical to the printf

and scanf, that they work on files

 The general format

fprintf(fp,”Control String”, list);

fscanf(fp,”Control String”,list);

 The illustrations of fprintf() and fscanf():

fprintf(f1,”%d %s %d”, rno, name, mark1);

fscanf(f1,”%d %s %d”, &rno, name, &mark1);

Example:

#include <stdio.h>

#include <conio.h>

void main()

 {

 FILE *fp;

 int number, quantity, i;

 float price, value;

 char item[10], filename[10];

 printf("Input file name\n");

 scanf("%s", filename);

 fp = fopen(filename, "w");

 printf("Input inventory data\n\n");

 printf("Item name Number Price Quantity\n");

 for(i = 1; i <= 3; i++)

 {

 fscanf(stdin,"%s %d %f %d",item, &number, &price, &quantity);

 fprintf(fp,"%s %d %f %d",item, number, price, quantity);

 }

 fclose(fp);

 fprintf(stdout,"\n\n");

 fp = fopen(filename,"r");

printf("Item name Number Price Quantity Value\n");

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: IV BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 12/9

 for(i = 1; i <= 3; i++)

 {

 fscanf(fp,"%s %d %f %d",item,&number,&price,&quantity);

 value = price * quantity;

 fprintf(stdout,"%-8s %7d %8.2f %8d %11.2f\n",item, number, price, quantity, value);

 }

 fclose(fp);

 getch();

 }

OUTPUT:

Input File Name : Inventory

Input inventory data

Item Name Number Price Quantity

A 111 17.50 115

B 125 36.00 75

 Item Name Number Price Quantity Value

 A 111 17.50 115 2012.50

 B 125 36.00 75 2700.00

ERROR HANDLING DURING I/O OPERATIONS

 It is possible that an error may occur during I/O operations on a file. Typical error situations

include:

 Trying to read beyond the EOF

 Device overflow

 Trying to use a file that has not been opened

 Trying to perform an operation on a file, when the file is opened for another

type of operation

 Opening a file with an invalid filename

 Attempting to write to write protected file

 The feof(f) function can be used to test for an end of file condition.

 feof(f)

o determines if end-of-file is reached;

o Returns an integer value.

o If end of file is reached, it returns a non-zero; else returns 0

 The ferror() function reports the status of the file indicated.

 It also takes a FILE pointer as its argument and returns a nonzero integer if an error has been

detected up to that point during processing.

Error Handling : Sample Program

#include <stdio.h>

#include <conio.h>

void main()

 {

 char *filename;

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: IV BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 12/10

 FILE *fp1;

 int i, number;

 fp1 = fopen("TEST", "w");

 for(i = 10; i <= 50; i += 10)

 putw(i, fp1);

 fclose(fp1);

 printf("\nInput filename\n");

 open_file: scanf("%s", filename);

 if((fp1== fopen(filename,"r")) == NULL)

 { printf("Cannot open the file.\n");

 printf("Type another file name\n\n");

 goto open_file;

 }

else

 for(i = 1; i <= 20; i++)

 { number = getw(fp1);

 if(feof(fp1))

 { printf("\nOut of data.\n");

 break;

 }

 else { printf("%d\n", number);

 }

 fclose(fp1);

 getch();

 }

RANDOM ACCESS TO FILES

 A part of a file can be accessed directly, (unlike sequential access) using fseek(), ftell() and

rewind() functions.

ftell()

 ftell() takes a file pointer and returns a number of type long, that corresponds to the current

position. This function is useful in saving the current position of a file which can be used

later in the program.

 n=ftell(fp);
 n gives the relative offset (in bytes) of the current position

rewind()
 Rewind takes a file pointer and resets the position to the start of the file.

 rewind(fp);

 n = ftell(fp);

 The above statements would assign 0 to n because the file position has been set to the start

of the file by rewind().

 It helps us in reading a file more than once, without having to close and open the file.

 When a file is opened for reading or writing, rewind() is done implicitly.

fseek()

Output
Input file name
 Tes
Cannot open the file
Type another file name
 TEST
 10
 20
 30
 40
 50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: IV BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 12/11

 fseek function is used to move the file position to a desired location within the file.

 fseek(fp,offest,position);

 fp is a pointer to the file concerned

 offset is number or variable of type long

 position is an integer

 The offset specifies the number of positions to be moved from the location specified by

position.

 The position can take one of the following three values

 Value Meaning

 0 Beginning of file

 1 Current Position

 2 End of file

 When the operations is successful, fseek returns a zero.

 If file pointer is moved beyond the file boundaries, an error occurs and fseek returns -1. It is

to check whether an error has occurred or not, before proceeding further.

STATEMENT MEANING

fseek(fp,0L,0) Go to the beginning

fseek(fp,0L,1) Stay at the current position

fseek(fp,0L,2) Go to the end of the file, past the last character of the file

fseek(fp,m,0) Move to (m+1)th byte in the file

fseek(fp,m,1) Go forward by m bytes

fseek(fp,-m,1) Go backward by m bytes from the current position

fseek(fp,-m,2) Go backward by m bytes from the end

POSSIBLE QUESTIONS

PART B

(Each Question Carries 2 marks)

1. What is memory allocation?

2. What is the purpose of new operators?

3. What is the purpose of delete operator?

4. Define: Preprocessor directives

5. How do you read a file?

6. How do you write a file?

7. Define: Macros

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: IV BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 12/12

8. What is the purpose of #define statement?

9. Differentiate static and dynamic memory allocation?

10. What is the purpose of malloc function?

PART C

(Each Question Carries 8 marks)

1. Differentiate between static and dynamic memory allocation.

2. Explain about the use of Fstream header file with example.

3. Explain about the use of malloc and calloc function with example.

4. Explain the hierarchy of File stream classes.

5. Explain about the use of New and Delete operators in memory.

6. Write a C++ program to Read and Write Text files with fstream header.

7. Discuss about storage of variables in static memory allocation.

8. Explain about Random Access in Files.

9. Discuss about storage of variables in dynamic memory allocation.

10. Explain any five preprocessor directives with example.

S.No Question Choice1 Choice2
1 The stream is an _________ between I/O devices and the

user.
 Translater Destination

2 If the data is received from the input devices in
sequence then it is called________.

 Source stream Object stream

3 When the data is passed to the output devices it is
called_____

 Source stream Object stream

4 The C++ have a number of stream classes that are used
to work with _________ operations.

 Console I/O Console and file

5 The data accepted with default setting by I/O function of
the language is known as

 Formatted Unformatted

6 _________ is used as the input stream to read data. Cout Printf
7 cin and cout are ________ for input and output of data. user defined

stream
 system defined
stream

8 The data obtained or represented with some manipulators
are called ______.

 formatted data unformatted data

9 The output formats can be controlled with manipulators
having the header file as

 iostream.h conio.h

10 The _____ and ______ are derived classes from ios
based class.

 istream and
ostream

 source and
destination stream

11 The manipulator << endl is equivalent to____ ‘\t’ ’\r’
12 A virtual function must be defined in _____ Friend enemy
13 The virtual function must be defined in _______ Public Private
14 The function in base class is declared as virtual using the

keyword _______
 Virtual Class

15 Precision() is an __________ format function Manipulator Istream
16 Width of the output field is set using the ______ width() iomanip.h
17 ______ is used to achieve run time polymorphism operator

overloading
 function
overloading

18 Pointers are used to access ________ Object Virtual function

19 The member functions can be refered by using the
________ and _______

 dot operator
and object

 address operator
and virtual
functions

20 The paranthesis are necessary because the dot operator
has higher precedence than the __________

 dot operator this

21 ______ is used to represent an object that involves a
member function.

 friend this

Karpagam Academy of Higher Education
(Deemed University Established Under Section 3 of UGC Act 1956)
PROGRAMMING FUNDAMENTALS USING C/C++(18CAU101)

UNIT --4

22 The this pointer acts as an _____ argument to all the
member function

 implicit explicit

23 When two or more objects are compare inside a member
function the result in return is an _________

 virtual function derived class

24 Pointers are used as the objects of _______ user defined derived class
25 Virtual functions are from the concept of ______ objects polymorphism

26 The virtual functions are accessed with the help of a
pointer declared as ____ to the base class

 Class object

27 _____ is achieved when a virtual function is accessed
through a pointer to the base class.

 run time
polymorphism

 inheritance

28 we cannot have virtual constructors but _____ are
allowed

 translators virtual function

29 The virtual functions cannot be _________ class object

30 Virtual functions must be _____ of some class. class pointer
31 A ____ is a function declared in a base class that has no

definition relative to the base class
 Virtual
function

 pure virtual
function

32 A ____ equated to zero is called a pure virtual function. virtual function pure virtual
function

33 Stream and stream classes are used to implement its I/O
operations with the ______

 the console and
disk files

 cin and cout

34 The interface supplied by an I/O system which is
independent of actual device is called _____

 stream class

35 A _____ is a sequence of bytes. Stream class
36 The _____ streams automatically open when the

program begins its execution
 user defined predefined

37 The class that is defined to various streams to deal with
both the console and disk files is called ________

 stream class derived class

38 ____ provide an interface to physical devices through
buffers.

 stream buffer iostream

39 The _____ are called as overloaded operators >> and << + and –
40 The >> operator is overloaded in the _______ istream ostream
41 The ____ functions are used to handle the single

character I/O operation.
 get() and put() clrscr() and

getch()
42 ____ functions are used to display text more efficiently

by using the line oriented i/o functions.
 getline() and
write()

 cin and cout

43 The getline() reads character input to the ______ line datatype function
44 _____ is used to clear the flags specified. width() precision()
45 _____ is used to specify the required field size for

displaying an output value
 width() self

46 By default the floating numbers are printed with ______
after the decimal point.

 5 digits 6

47 ____ returns the setting in effect until it is reset width precision()
48 In fill() the unused positions of the field are filled with

_____ by default.
 null character white spaces

49 set(f) is the member function of _____ istream ioclass
50 setf() can be with the falg _____ as a single argument to

achieve a formatted output
 ios ::
showpoint

 ios :: left

51 In flags there ______ it fields 3 4
52 The flag formatted for the octal base is ________ ios::doc ios::hex
53 The flag is formatted with ______ arguments. 1 2
54 The bit field is formatted with ______ arguments. 1 2
55 _____ flush all streams after insertion ios::stdio ios::shoebase
56 _____ is used as base indicator on output. ios::stdio ios::shoebase
57 _____ manipulator is equalent to fill() setw() setprecision()
58 ______ returns the previous format state. ios member

function
 manipulator

59 The bitfield used for fixed point notation is ______ ios::floatfield ios::adjustfield
60 The flag used to format the decimal base is _____ ios::oct ios::fixes

Choice3 Choice4 choice5 choice6 Ans
 Intermediator source Intermediator

 Destination
stream

 Input stream Source stream

 Destination
stream

 Input stream Destination
stream

 formatted
console

unformatted Console and
file

 Argumented paramerized Unformatted

 Cin Scanf Cin
 Pre defined
stream

macro system defined
stream

 extracted data derived data formatted
data

 stdlib.h iomanip.h iomanip.h

 iostream and
source stream

stdio istream and
ostream

 ’\n’ ’\b’ ’\n’
 member class Friend
 Protected global Public
 Pointer Structure Virtual

 ios user defined ios
 Manipulator hight width()
 inline function virtual

function
 virtual
function

 Class members defintion Class
members

 class and object scope resolution dot operator
and object

 class indirection
operator

 indirection
operator

 class virtual this

Karpagam Academy of Higher Education
(Deemed University Established Under Section 3 of UGC Act 1956)
PROGRAMMING FUNDAMENTALS USING C/C++(18CAU101)

UNIT --4

 formal actual. implicit

 invoking objects inline function invoking
objects

 virtual function object. derived class
 inheritance encaptulation polymorphism

 pointer stream pointer

 class static class run time
polymorphism

 virtual
destructor

 static members virtual
destructor

 constructors static members static
members

 stream member member
 stream class pure virtual

function
 stream class. virtual

function
 manipulators getch() the console

and disk files
 object structure stream

 object union Stream
 input output predefined

 object retrived class stream class

 ostream istream stream buffer

 * and && – and . >> and <<
 iostream fstream istream
 cin and cout getc() get() and put()

 get() and put() getchar() getline() and
write()

 variable constants variable
 setf() unsetf() unsetf()
 fill() free() width()

7 8 6

 setf() fill() precision()
 zeros both a and b white spaces

 ios class both b and c ios class
 ios::floatfield ios::basefield ios ::

showpoint
5 8 3

 ios::fixwd ios::oct ios::oct
3 4 1
3 4 2

 ios::showpoint ios:: unitbuf ios:: unitbuf
 ios::showpoint d ios:: unitbuf ios::shoebase
 setfill() endif setfill()
 class a and b ios member

function
 ios::basefield ios::field ios::floatfield
 ios::left ios::dec. ios::dec.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/1

Using Classes in C++:

Principles of Object-Oriented Programming

Procedure/ structure oriented Programming

• Conventional programming, using high level languages such as COBOL, FORTRAN and
C, is commonly known as procedure-oriented programming (POP).

• In the procedure-oriented approach, the problem is viewed as a sequence of things to be

done such as reading, calculating and printing. A number of functions are written to

accomplish these tasks.
• The primary focus is on functions.

Global Data Global Data

Function-1 Function-2 Function-3

Local Data Local Data Local Data

Object Oriented Programming

• Emphasis is on data rather than procedure.
• Programs are divided into what are known as objects.
• Data is hidden and cannot be accessed by external functions.
• Objects may communicate with each other through functions.
• New data and functions can be easily added whenever necessary.

Object A Object B

Data Data

Functions Functions

Object C

Data
Functions

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/2

Basic Concepts of Object-Oriented Programming

Objects
Objects are the basic runtime entities in an object oriented system. They may represent a person,
a place, a bank account, a table of data or any item that the program has to handle.

Class
Object contains data, and code to manipulate that data. The entire set of data and code of an
object can be made a user-defined data type with the help of a class.

Data Encapsulation

The wrapping up of data and functions into a single unit is known as encapsulation.

The data is not accessible to the outside world, only those function which are wrapped in
the can access it.

These functions provide the interface between the object’s data and the program.

This insulation of the data from direct access by the program is called data hiding or
information hiding.

Data Abstraction

Abstraction refers to the act of representing essential features without including the
background details or explanations.

Since classes use the concept of data abstraction, they are known as Abstract Data
Types (ADT).

Inheritance

Inheritance is the process by which objects of one class acquire the properties of objects
of another class.

In OOP, the concept of inheritance provides the idea of reusability. This means we can
add additional features to an existing class without modifying it.

Polymorphism

Polymorphism, a Greek term means to ability to take more than one form.

An operation may exhibits different behaviors in different instances. The behavior
depends upon the type of data used in the operation.

For example consider the operation of addition for two numbers; the operation will

generate a sum. If the operands are string then the operation would produce a third string

by concatenation.

The process of making an operator to exhibit different behavior in different instances is
known operator overloading.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/3

Shape

Draw ()

Circle Object Box Object Triangle Object

Draw (circle) Draw (Box) Draw (Triangle)

Output and Input Statement in C++

An Output statement is used to print the output on computer screen. cout is an output

statement. cout<<”Srinix College of Engineering”; prints Srinix College of Engineering on

computer screen. cout<<”x”; print x on computer screen.

cout<<x; prints value of x on computer
screen. cout<<”\n”; takes the cursor to a
newline.

cout<< endl; takes the cursor to a newline. We can use endl (a manipulator)
instead of \n. << (two "less than" signs) is called insertion operator.

An Input statement is used to take input from the keyboard. cin is an input
statement. cin>>x; takes the value of x from keyboard.
cin>>x>>y; takes value of x and y from the keyboard.

Program 1.1 WAP to accept an integer from the keyboard and print the number when it is
multiplied by 2.

Solution:

#include
<iostream.h> void
main ()
{
int x;

cout << "Please enter an integer
value: "; cin >>x;

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/4

cout <<endl<< "Value you entered is "
<<x; cout << " and its double is "
<<x*2 << ".\n";

}
Output:
Please enter an integer value:

Class Constructors

Constructor

In C++, constructor is a special method which is invoked automatically at the time of object

creation. It is used to initialize the data members of new object generally. The constructor in C++

has the same name as class or structure.

There can be two types of constructors in C++.

 Default constructor

 Parameterized constructor

C++ Default Constructor

A constructor which has no argument is known as default constructor. It is invoked at the time of

creating object.

Let's see the simple example of C++ default Constructor.

 #include <iostream>

 using namespace std;

 class Employee

 {

 public:

 Employee()

 {

 cout<<"Default Constructor Invoked"<<endl;

 }

 };

 int main(void)

 {

 Employee e1; //creating an object of Employee

 Employee e2;

 return 0;

 }

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/5

Output:

Default Constructor Invoked

Default Constructor Invoked

C++ Parameterized Constructor

A constructor which has parameters is called parameterized constructor. It is used to provide

different values to distinct objects.

Let's see the simple example of C++ Parameterized Constructor.

#include <iostream>

using namespace std;

class Employee {

 public:

 int id;//data member (also instance variable)

 string name;//data member(also instance variable)

 float salary;

 Employee(int i, string n, float s)

 {

 id = i;

 name = n;

 salary = s;

 }

 void display()

 {

 cout<<id<<" "<<name<<" "<<salary<<endl;

 }

};

int main(void) {

 Employee e1 =Employee(101, "Sonoo", 890000); //creating an object of Employee

 Employee e2=Employee(102, "Nakul", 59000);

 e1.display();

 e2.display();

 return 0;

}

Output:

101 Sonoo 890000

102 Nakul 59000

C++ Destructor

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/6

A destructor works opposite to constructor; it destructs the objects of classes. It can be defined

only once in a class. Like constructors, it is invoked automatically.

A destructor is defined like constructor. It must have same name as class. But it is prefixed with

a tilde sign (~).

Note: C++ destructor cannot have parameters. Moreover, modifiers can't be applied on

destructors.

C++ Constructor and Destructor Example

Let's see an example of constructor and destructor in C++ which is called automatically.

1. #include <iostream>

2. using namespace std;

3. class Employee

4. {

5. public:

6. Employee()

7. {

8. cout<<"Constructor Invoked"<<endl;

9. }

10. ~Employee()

11. {

12. cout<<"Destructor Invoked"<<endl;

13. }

14. };

15. int main(void)

16. {

17. Employee e1; //creating an object of Employee

18. Employee e2; //creating an object of Employee

19. return 0;

20. }

Output:

Constructor Invoked

Constructor Invoked

Destructor Invoked

Destructor Invoked

Constructor Overloading

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/7

Constructor can be overloaded in a similar way as function overloading

.

Overloaded constructors have the same name (name of the class) but different number of

arguments.

Depending upon the number and type of arguments passed, specific constructor is called.

Since, there are multiple constructors present, argument to the constructor should also be passed

while creating an object.

#include <iostream>

using namespace std;

class Area

{

 private:

 int length;

 int breadth;

 public:

 // Constructor with no arguments

 Area(): length(5), breadth(2) { }

 // Constructor with two arguments

 Area(int l, int b): length(l), breadth(b){ }

 void GetLength()

 {

 cout << "Enter length and breadth respectively: ";

 cin >> length >> breadth;

 }

 int AreaCalculation() { return length * breadth; }

 void DisplayArea(int temp)

 {

 cout << "Area: " << temp << endl;

 }

};

int main()

{

https://www.programiz.com/cpp-programming/function-overloading

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/8

 Area A1, A2(2, 1);

 int temp;

 cout << "Default Area when no argument is passed." << endl;

 temp = A1.AreaCalculation();

 A1.DisplayArea(temp);

 cout << "Area when (2,1) is passed as argument." << endl;

 temp = A2.AreaCalculation();

 A2.DisplayArea(temp);

 return 0;

}

For object A1, no argument is passed while creating the object.

Thus, the constructor with no argument is invoked which initialises length to 5 and breadth to 2.

Hence, area of the object A1 will be 10.

For object A2, 2 and 1 are passed as arguments while creating the object.

Thus, the constructor with two arguments is invoked which initialises length to l (2 in this case)

and breadth to b (1 in this case). Hence, area of the object A2 will be 2.

Output

Default Area when no argument is passed.

Area: 10

Area when (2,1) is passed as argument.

Area: 2

Default Copy Constructor

An object can be initialized with another object of same type. This is same as copying the

contents of a class to another class.

In the above program, if you want to initialise an object A3 so that it contains same values as A2,

this can be performed as:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/9

....

int main()

{

 Area A1, A2(2, 1);

 // Copies the content of A2 to A3

 Area A3(A2);

 OR,

 Area A3 = A2;

}

You might think, you need to create a new constructor to perform this task. But, no additional

constructor is needed. This is because the copy constructor is already built into all classes by

default.

Function refers to a segment that groups code to perform a specific task.

In C++ programming, two functions can have same name if number and/or type of arguments

passed are different.

These functions having different number or type (or both) of parameters are known as

overloaded functions. For example:

int test() { }

int test(int a) { }

float test(double a) { }

int test(int a, double b) { }

Here, all 4 functions are overloaded functions because argument(s) passed to these functions are

different.

Notice that, the return type of all these 4 functions are not same. Overloaded functions may or

may not have different return type but it should have different argument(s).

// Error code

int test(int a) { }

double test(int b){ }

The number and type of arguments passed to these two functions are same even though the

return type is different. Hence, the compiler will throw error.

include <iostream>

https://www.programiz.com/cpp-programming/function

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/10

using namespace std;

void display(int);

void display(float);

void display(int, float);

int main() {

 int a = 5;

 float b = 5.5;

 display(a);

 display(b);

 display(a, b);

 return 0;

}

void display(int var) {

 cout << "Integer number: " << var << endl;

}

void display(float var) {

 cout << "Float number: " << var << endl;

}

void display(int var1, float var2) {

 cout << "Integer number: " << var1;

 cout << " and float number:" << var2;

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/11

}

Output

Integer number: 5

Float number: 5.5

Integer number: 5 and float number: 5.5

Here, the display() function is called three times with different type or number of arguments.

The return type of all these functions are same but it's not necessary.

Templates Classes

Function templates are special functions that can operate with generic types. This allows us to

create a function template whose functionality can be adapted to more than one type or class

without repeating the entire code for each type.

In C++ this can be achieved using template parameters. A template parameter is a special kind

of parameter that can be used to pass a type as argument: just like regular function parameters

can be used to pass values to a function, template parameters allow to pass also types to a

function. These function templates can use these parameters as if they were any other regular

type.

The format for declaring function templates with type parameters is:

template <class identifier> function_declaration;

template <typename identifier> function_declaration;

The only difference between both prototypes is the use of either the keyword class or the

keyword typename. Its use is indistinct, since both expressions have exactly the same meaning

and behave exactly the same way.

For example, to create a template function that returns the greater one of two objects we could

use:

1

2

3

4

template <class myType>

myType GetMax (myType a, myType b) {

 return (a>b?a:b);

}

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/12

Here we have created a template function with myType as its template parameter. This template

parameter represents a type that has not yet been specified, but that can be used in the template

function as if it were a regular type. As you can see, the function template GetMax returns the

greater of two parameters of this still-undefined type.

To use this function template we use the following format for the function call:

function_name <type> (parameters);

For example, to call GetMax to compare two integer values of type int we can write:

1

2

int x,y;

GetMax <int> (x,y);

When the compiler encounters this call to a template function, it uses the template to

automatically generate a function replacing each appearance of myType by the type passed as the

actual template parameter (int in this case) and then calls it. This process is automatically

performed by the compiler and is invisible to the programmer.

Here is the entire example:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

// function template

#include <iostream>

using namespace std;

template <class T>

T GetMax (T a, T b) {

 T result;

 result = (a>b)? a : b;

 return (result);

}

int main () {

 int i=5, j=6, k;

 long l=10, m=5, n;

 k=GetMax<int>(i,j);

 n=GetMax<long>(l,m);

6

10
Edit & Run

http://www.cplusplus.com/doc/oldtutorial/templates/

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/13

17

18

19

20

 cout << k << endl;

 cout << n << endl;

 return 0;

}

In this case, we have used T as the template parameter name instead of myType because it is

shorter and in fact is a very common template parameter name. But you can use any identifier

you like.

In the example above we used the function template GetMax() twice. The first time with

arguments of type int and the second one with arguments of type long. The compiler has

instantiated and then called each time the appropriate version of the function.

As you can see, the type T is used within the GetMax() template function even to declare new

objects of that type:

 T result;

Therefore, result will be an object of the same type as the parameters a and b when the function

template is instantiated with a specific type.

In this specific case where the generic type T is used as a parameter for GetMax the compiler can

find out automatically which data type has to instantiate without having to explicitly specify it

within angle brackets (like we have done before specifying <int> and <long>). So we could have

written instead:

1

2

int i,j;

GetMax (i,j);

Since both i and j are of type int, and the compiler can automatically find out that the template

parameter can only be int. This implicit method produces exactly the same result:

1

2

3

4

// function template II

#include <iostream>

using namespace std;

6

10
Edit & Run

http://www.cplusplus.com/doc/oldtutorial/templates/

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/14

5

6

7

8

9

10

11

12

13

14

15

16

17

18

template <class T>

T GetMax (T a, T b) {

 return (a>b?a:b);

}

int main () {

 int i=5, j=6, k;

 long l=10, m=5, n;

 k=GetMax(i,j);

 n=GetMax(l,m);

 cout << k << endl;

 cout << n << endl;

 return 0;

}

Notice how in this case, we called our function template GetMax() without explicitly specifying

the type between angle-brackets <>. The compiler automatically determines what type is needed

on each call.

Because our template function includes only one template parameter (class T) and the function

template itself accepts two parameters, both of this T type, we cannot call our function template

with two objects of different types as arguments:

1

2

3

int i;

long l;

k = GetMax (i,l);

This would not be correct, since our GetMax function template expects two arguments of the

same type, and in this call to it we use objects of two different types.

We can also define function templates that accept more than one type parameter, simply by

specifying more template parameters between the angle brackets. For example:

1

2

3

4

template <class T, class U>

T GetMin (T a, U b) {

 return (a<b?a:b);

}

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/15

In this case, our function template GetMin() accepts two parameters of different types and

returns an object of the same type as the first parameter (T) that is passed. For example, after that

declaration we could call GetMin() with:

1

2

3

int i,j;

long l;

i = GetMin<int,long> (j,l);

or simply:

 i = GetMin (j,l);

even though j and l have different types, since the compiler can determine the appropriate

instantiation anyway.

Class templates

We also have the possibility to write class templates, so that a class can have members that use

template parameters as types. For example:

1

2

3

4

5

6

7

8

9

template <class T>

class mypair {

 T values [2];

 public:

 mypair (T first, T second)

 {

 values[0]=first; values[1]=second;

 }

};

The class that we have just defined serves to store two elements of any valid type. For example,

if we wanted to declare an object of this class to store two integer values of type int with the

values 115 and 36 we would write:

 mypair<int> myobject (115, 36);

this same class would also be used to create an object to store any other type:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/16

 mypair<double> myfloats (3.0, 2.18);

The only member function in the previous class template has been defined inline within the class

declaration itself. In case that we define a function member outside the declaration of the class

template, we must always precede that definition with the template <...> prefix:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

// class templates

#include <iostream>

using namespace std;

template <class T>

class mypair {

 T a, b;

 public:

 mypair (T first, T second)

 {a=first; b=second;}

 T getmax ();

};

template <class T>

T mypair<T>::getmax ()

{

 T retval;

 retval = a>b? a : b;

 return retval;

}

int main () {

 mypair <int> myobject (100, 75);

 cout << myobject.getmax();

 return 0;

}

100
Edit & Run

Notice the syntax of the definition of member function getmax:

1

2

template <class T>

T mypair<T>::getmax ()

Confused by so many T's? There are three T's in this declaration: The first one is the template

http://www.cplusplus.com/doc/oldtutorial/templates/

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/17

parameter. The second T refers to the type returned by the function. And the third T (the one

between angle brackets) is also a requirement: It specifies that this function's template parameter

is also the class template parameter.

Template specialization

If we want to define a different implementation for a template when a specific type is passed as

template parameter, we can declare a specialization of that template.

For example, let's suppose that we have a very simple class called mycontainer that can store one

element of any type and that it has just one member function called increase, which increases its

value. But we find that when it stores an element of type char it would be more convenient to

have a completely different implementation with a function member uppercase, so we decide to

declare a class template specialization for that type:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

// template specialization

#include <iostream>

using namespace std;

// class template:

template <class T>

class mycontainer {

 T element;

 public:

 mycontainer (T arg) {element=arg;}

 T increase () {return ++element;}

};

// class template specialization:

template <>

class mycontainer <char> {

 char element;

 public:

 mycontainer (char arg) {element=arg;}

 char uppercase ()

 {

 if ((element>='a')&&(element<='z'))

 element+='A'-'a';

 return element;

 }

};

int main () {

8

J
Edit & Run

http://www.cplusplus.com/doc/oldtutorial/templates/

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/18

29

30

31

32

33

34

 mycontainer<int> myint (7);

 mycontainer<char> mychar ('j');

 cout << myint.increase() << endl;

 cout << mychar.uppercase() << endl;

 return 0;

}

This is the syntax used in the class template specialization:

 template <> class mycontainer <char> { ... };

First of all, notice that we precede the class template name with an empty template<> parameter

list. This is to explicitly declare it as a template specialization.

But more important than this prefix, is the <char> specialization parameter after the class

template name. This specialization parameter itself identifies the type for which we are going to

declare a template class specialization (char). Notice the differences between the generic class

template and the specialization:

1

2

template <class T> class mycontainer { ... };

template <> class mycontainer <char> { ... };

The first line is the generic template, and the second one is the specialization.

When we declare specializations for a template class, we must also define all its members, even

those exactly equal to the generic template class, because there is no "inheritance" of members

from the generic template to the specialization.

Non-type parameters for templates

Besides the template arguments that are preceded by the class or typename keywords , which

represent types, templates can also have regular typed parameters, similar to those found in

functions. As an example, have a look at this class template that is used to contain sequences of

elements:

1

2

// sequence template

#include <iostream>

100

3.1416
Edit & Run

http://www.cplusplus.com/doc/oldtutorial/templates/

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/19

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

using namespace std;

template <class T, int N>

class mysequence {

 T memblock [N];

 public:

 void setmember (int x, T value);

 T getmember (int x);

};

template <class T, int N>

void mysequence<T,N>::setmember (int x, T value) {

 memblock[x]=value;

}

template <class T, int N>

T mysequence<T,N>::getmember (int x) {

 return memblock[x];

}

int main () {

 mysequence <int,5> myints;

 mysequence <double,5> myfloats;

 myints.setmember (0,100);

 myfloats.setmember (3,3.1416);

 cout << myints.getmember(0) << '\n';

 cout << myfloats.getmember(3) << '\n';

 return 0;

}

It is also possible to set default values or types for class template parameters. For example, if the

previous class template definition had been:

 template <class T=char, int N=10> class mysequence {..};

We could create objects using the default template parameters by declaring:

 mysequence<> myseq;

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/20

Which would be equivalent to:

 mysequence<char,10> myseq;

Templates and multiple-file projects

From the point of view of the compiler, templates are not normal functions or classes. They are

compiled on demand, meaning that the code of a template function is not compiled until an

instantiation with specific template arguments is required. At that moment, when an instantiation

is required, the compiler generates a function specifically for those arguments from the template.

When projects grow it is usual to split the code of a program in different source code files. In

these cases, the interface and implementation are generally separated. Taking a library of

functions as example, the interface generally consists of declarations of the prototypes of all the

functions that can be called. These are generally declared in a "header file" with a .h extension,

and the implementation (the definition of these functions) is in an independent file with c++

code.

Because templates are compiled when required, this forces a restriction for multi-file projects:

the implementation (definition) of a template class or function must be in the same file as its

declaration. That means that we cannot separate the interface in a separate header file, and that

we must include both interface and implementation in any file that uses the templates.

Since no code is generated until a template is instantiated when required, compilers are prepared

to allow the inclusion more than once of the same template file with both declarations and

definitions in a project without generating linkage errors.

Overview of Function Overloading and Operator Overloading

C++ Overloading (Function and Operator)

If we create two or more members having same name but different in number or type of

parameter, it is known as C++ overloading. In C++, we can overload:

 methods,

 constructors, and

 indexed properties

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/21

It is because these members have parameters only.

Types of overloading in C++ are:

 Function overloading

 Operators overloading

C++ Function Overloading

Having two or more function with same name but different in parameters, is known as function

overloading in C++.

The advantage of Function overloading is that it increases the readability of the program

because you don't need to use different names for same action.

C++ Function Overloading Example

Let's see the simple example of function overloading where we are changing number of

arguments of add() method.

1. #include <iostream>

2. using namespace std;

3. class Cal {

4. public:

5. static int add(int a,int b){

6. return a + b;

7. }

8. static int add(int a, int b, int c)

9. {

10. return a + b + c;

11. }

12. };

13. int main(void) {

14. Cal C;

15. cout<<C.add(10, 20)<<endl;

16. cout<<C.add(12, 20, 23);

17. return 0;

18. }

Output:

30

55

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/22

C++ Operators Overloading

Operator overloading is used to overload or redefine most of the operators available in C++. It is

used to perform operation on user define data type.

The advantage of Operators overloading is to perform different operations on the same operand.

C++ Operators Overloading Example

Let's see the simple example of operator overloading in C++. In this example, void operator ++

() operator function is defined (inside Test class).

1. #include <iostream>

2. using namespace std;

3. class Test

4. {

5. private:

6. int num;

7. public:

8. Test(): num(8){}

9. void operator ++()

10. {

11. num = num+2;

12. }

13. void Print() {

14. cout<<"The Count is: "<<num;

15. }

16. };

17. int main()

18. {

19. Test tt;

20. ++tt; // calling of a function "void operator ++()"

21. tt.Print();

22. return 0;

23. }

Output:

The Count is: 10

C++ Inheritance

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/23

In C++, inheritance is a process in which one object acquires all the properties and behaviors of

its parent object automatically. In such way, you can reuse, extend or modify the attributes and

behaviors which are defined in other class.

In C++, the class which inherits the members of another class is called derived class and the

class whose members are inherited is called base class. The derived class is the specialized class

for the base class.

Advantage of C++ Inheritance

Code reusability: Now you can reuse the members of your parent class. So, there is no need to

define the member again. So less code is required in the class.

C++ Single Level Inheritance Example: Inheriting Fields

When one class inherits another class, it is known as single level inheritance. Let's see the

example of single level inheritance which inherits the fields only.

 #include <iostream>

 using namespace std;

 class Account {

 public:

 float salary = 60000;

 };

 class Programmer: public Account {

 public:

 float bonus = 5000;

 };

 int main(void) {

 Programmer p1;

 cout<<"Salary: "<<p1.salary<<endl;

 cout<<"Bonus: "<<p1.bonus<<endl;

 return 0;

 }

Output:

Salary: 60000

Bonus: 5000

In the above example, Employee is the base class and Programmer is the derived class.

C++ Single Level Inheritance Example: Inheriting Methods

Let's see another example of inheritance in C++ which inherits methods only.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/24

 #include <iostream>

 using namespace std;

 class Animal {

 public:

 void eat() {

 cout<<"Eating..."<<endl;

 }

 };

 class Dog: public Animal

 {

 public:

 void bark(){

 cout<<"Barking...";

 }

 };

 int main(void) {

 Dog d1;

 d1.eat();

 d1.bark();

 return 0;

 }

Output:

Eating...

Barking...

C++ Multi Level Inheritance Example

When one class inherits another class which is further inherited by another class, it is known as

multi level inheritance in C++. Inheritance is transitive so the last derived class acquires all the

members of all its base classes.

Let's see the example of multi level inheritance in C++.

 #include <iostream>

 using namespace std;

 class Animal {

 public:

 void eat() {

 cout<<"Eating..."<<endl;

 }

 };

 class Dog: public Animal

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/25

 {

 public:

 void bark(){

 cout<<"Barking..."<<endl;

 }

 };

 class BabyDog: public Dog

 {

 public:

 void weep() {

 cout<<"Weeping...";

 }

 };

 int main(void) {

 BabyDog d1;

 d1.eat();

 d1.bark();

 d1.weep();

 return 0;

 }

Output:

Eating...

Barking?

Weeping?

C++ Polymorphism

The term "Polymorphism" is the combination of "poly" + "morphs" which means many forms. It

is a greek word. In object-oriented programming, we use 3 main concepts: inheritance,

encapsulation and polymorphism.

There are two types of polymorphism in C++:

 Compile time polymorphism: It is achieved by function overloading and operator

overloading which is also known as static binding or early binding.

 Runtime polymorphism: It is achieved by method overriding which is also known as

dynamic binding or late binding.

C++ Runtime Polymorphism Example

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/26

Let's see a simple example of runtime polymorphism in C++.

1. #include <iostream>

2. using namespace std;

3. class Animal {

4. public:

5. void eat(){

6. cout<<"Eating...";

7. }

8. };

9. class Dog: public Animal

10. {

11. public:

12. void eat()

13. {

14. cout<<"Eating bread...";

15. }

16. };

17. int main(void) {

18. Dog d = Dog();

19. d.eat();

20. return 0;

21. }

Output:

Eating bread...

C++ virtual function

C++ virtual function is a member function in base class that you redefine in a derived class. It is

declare using the virtual keyword.

It is used to tell the compiler to perform dynamic linkage or late binding on the function.

Late binding or Dynamic linkage

In late binding function call is resolved during runtime. Therefore compiler determines the type

of object at runtime, and then binds the function call.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/27

C++ virtual function Example

Let's see the simple example of C++ virtual function used to invoked the derived class in a

program.

1. #include <iostream>

2. using namespace std;

3. class A

4. {

5. public:

6. virtual void display()

7. {

8. cout << "Base class is invoked"<<endl;

9. }

10. };

11. class B:public A

12. {

13. public:

14. void display()

15. {

16. cout << "Derived Class is invoked"<<endl;

17. }

18. };

19. int main()

20. {

21. A* a; //pointer of base class

22. B b; //object of derived class

23. a = &b;

24. a->display(); //Late Binding occurs

25. }

Output:

Derived Class is invoked

C++ Exception Handling

Exception Handling in C++ is a process to handle runtime errors. We perform exception

handling so the normal flow of the application can be maintained even after runtime errors.

In C++, exception is an event or object which is thrown at runtime. All exceptions are derived

from std::exception class. It is a runtime error which can be handled. If we don't handle the

exception, it prints exception message and terminates the program.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/28

Advantage

It maintains the normal flow of the application. In such case, rest of the code is executed even

after exception.

C++ Exception Classes

In C++ standard exceptions are defined in <exception> class that we can use inside our

programs. The arrangement of parent-child class hierarchy is shown below:

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/29

All the exception classes in C++ are derived from std::exception class. Let's see the list of C++

common exception classes.

Exception Description

std::exception It is an exception and parent class of all standard C++ exceptions.

std::logic_failure It is an exception that can be detected by reading a code.

std::runtime_error It is an exception that cannot be detected by reading a code.

std::bad_exception It is used to handle the unexpected exceptions in a c++ program.

std::bad_cast This exception is generally be thrown by dynamic_cast.

std::bad_typeid This exception is generally be thrown by typeid.

C++ try/catch

In C++ programming, exception handling is performed using try/catch statement. The C++ try

block is used to place the code that may occur exception. The catch block is used to handle the

exception.

C++ example without try/catch

1. #include <iostream>

2. using namespace std;

3. float division(int x, int y) {

4. return (x/y);

5. }

6. int main () {

7. int i = 50;

8. int j = 0;

9. float k = 0;

10. k = division(i, j);

11. cout << k << endl;

12. return 0;

13. }

Output:

Floating point exception (core dumped)

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I BCA

COURSE NAME:Programming fundamentals using c&c++(18CAU101)
UNIT: V BATCH-2018-2021

R.NITHYA DEPT.OF.CS, CA & IT KAHE 30/30

POSSIBLE QUESTIONS

PART B

(Each Question Carries 2 marks)

1. Define : Class

2. What is function overloading?

3. What is an object give example?

4. Define : Constructor

5. What is the purpose of this keyword?

6. Define : Virtual function

7. What is exception handling?

8. Define : Polymorphism

9. What is an inheritance?

10. Define : Operator overloading

PART C

(Each Question Carries 8 marks)

1. Discuss about object oriented concepts with real time examples.

2. Describe about Single and Multilevel inheritance with example.

3. Describe class constructor in detail.

4. Explain about overloading functions by number and type of arguments.

5. Discuss about Constructor OverLoading in detail with suitable example.

6. Describe virtual function .Explain with examples.

7. Describe the usage copy constructor with example.

8. Explain about the importance of operator overloading.

9. Discuss about overview of Template classes and explain their usage.

10. Write a C++ program to throw multiple exceptions and define multiple catches.

S.No Question Choice1
1 A _______ is a collection of related data stored in a particular

area on a disk.
 Field

2 File streams act as an ________ between programs and files. interface
3 Ifstram, Ofstream, Fstream are derived form __________. iostream
4 Classes designed to manage the ________ files are declared in

fstream.
 random

5 _________ is to set the file buffer to read and write. filebuf
6 ________ inherits get(), getline(), read(), seekg(), and tellg()

from istream.
 conio

7 Put(), seekp(), tellp(), and write() functions are inherited by
ofstream from _______

 ostream

8 ______ inherits all functions from istream and ostream through
iostream

 file stream

9 The file mode parameter for opening a binary file is ________. ios::ate
10 _______ is the file mode parameter for go to end of file on

opening.
 ios::ate

11 The file mode paramenter for writing only onto the file is
________.

 ios::in

12 Opening a file in ios::out mode also opens it in the ________
mode by default

 ios::trunc

13 Both _______ and _______ take us to the end of the file ios::ate,
ios::create

14 The parameter _______ can be used only with the files capable of
output.

 ios::ate

15 The parameter ios::app can be used only with the files capable of
______.

 input

16 The eof () stands for _____. end of file

17 Command line arguments are used with ________ function main()

18 The close() function _________. closes the file

19 The write() function writes ___________. single
character

20 The __________ function shifts the associated files input (get)
file pointer

 seekg()

21 The __________ function shifts the associated files output (put)
file pointer.

 seekg()

22 The object of fstream class provides ________operation both read
and rite

Karpagam Academy of Higher Education
(Deemed University Established Under Section 3 of UGC Act 1956)

PROGRAMMING FUNDAMENTALS USING C/C++(18CAU101)

23 To add data at the end of file, the file must be opened in _______
mode.

 read()

24 When a file is opened read or write mode a file pointer is set at
_____of the file.

 beginning

25 Whie performing file operations this file must be included in

 fstream

26 The constructor of this class requires ________file name and
mode for opening

 ofstream

27 Templates are suitable for _______ data type. any
28 Templates can be declared using the keyword _______ class
29 Templates is also called as _______ class. generic
30 Function Templates can accept only _______ parameters. one
31 Select the correct Template definition _______ . template

<class T>
32 Function Templates are normally defined _______ . in main

function
33 The statement catches the exception _______ . catch
34 In a multiple catch statement the number of throw statements are . same as catch

statement

35 The exception is generated in _________block. try
36 The exception handling one of the function is implicitly invoked. abort
37 The exception handling mechanism is basically built upon

______ keyword
try

38 The point at which the throw is executed is called _________. try
39 A template function may be overloaded by _______ function template

40 ________function returns true when an input or output operation
has failed

eof()

41 .In ________ inheritance, the base classes are constructed in the
order in which they appear in the declaration of the derived class.

 Hybrid

42 .In multi-level inheritance, the ________ are executed in the
order of inheritance.

 Derivations

43 .A class that contains objects of other classes is known as
________.

 Indirect base
class

44 .The ________ section of constructor function is used to assign
initial values to its data members.

 Initialization

45 .The grand parent class is sometimes referred to as ________
class.

 Ancestor

46 .________ may arise in single inheritance application. Ambiguity
47 .A ________ that contains objects of other classes is known as

containership.
 Function

48 .A member declared as ________ cannot be accessed by the
function outside the class.

 Private

49 .The public member of a class can be accessed by its own objects
using the ________ operator.

 Scope
resolution

50 .The stream is an _________ between I/O devices and the user. Trans later
51 . If the data is received from the input devices in sequence then it

is called________.
 Source stream

52 . When the data is passed to the output devices it is called_____ Source stream

53 . The C++ have a number of stream classes that are used to work
with _________ operations.

 Console I/O

54 . The data accepted with default setting by I/O function of the
language is known as-----

Formatted

55 _________ is used as the input stream to read data. Cout
56 . cin and cout are ________ for input and output of data. user defined

stream

57 .The data obtained or represented with some manipulators are
called ______.

 formatted
data

58 . The output formats can be controlled with manipulators having
the header file as

 iostream.h

59 . The _____ and ______ are derived classes from ios based class. istream and
ostream

60 The manipulator << endl is equivalent to____ ‘\t’

Choice2 Choice3 Choice4 choice5 choice6 Ans
 File Row Vector File

 converter translator operator interface
 ostream streambuff fstreambase fstreambase
 sequential disk tape disk

 filestream thread package filebuf
 ifstream fstream iostream ifstream

 fstream ifstream istream ostream

 ofstream fstream ifstream fstream

 ios::hex ios::dec ios::binary ios::binary
 ios::app ios::del ios::end ios::ate

 ios::app ios::ate ios::out ios::out

 ios::create ios::create ios::ate ios::trunc

 ios::trunk,
ios::ate

 ios::app,
ios::ate

 ios::app,
ios::out

 ios::app,
ios::ate

 ios::app ios::in ios::create ios::in

 input and
output

 append output output

 error opening
file

 error of file destination end of file

 member
function

 with all
function

void main()

 closes all files
opened

 closes only
read mode file

termination closes the file

 object string multicharacter single
character

 seekp() tellg() tellp(). seekg()

 seekp() tellg() tellp(). tellg()

 read only write only manipulate both read
and rite

Karpagam Academy of Higher Education
(Deemed University Established Under Section 3 of UGC Act 1956)

PROGRAMMING FUNDAMENTALS USING C/C++(18CAU101)
UNIT--5

 write() append() both write
and update .

 append()

 end middle last beginning

 iostream constream all the above fstream

 ifstream fstream all the above fstream

 basic derived all the above basic
 template try object template
 container virtual base generic
 any two many any
 class
<template T>

 template <T> template
class <T>.

 template
<class T>

 globally in a class anywhere in a class

 try template throw. catch
 twice than
catch

 only one final value only one

 catch finally throw. try
exit assert terminate abort
catch throw all the above all the above

catch throw point throw throw point
ordinary both

(template)and
(ordinary).

special both (a)and
(b).

fail() bad() good() fail()

 Multipath Hierarchical Multiple Multiple

 Constructors Destructors Containership Constructors

 Nesting Subclass Inheritance Nesting

 Declaration Argument Assignment Assignment

 Virtual base Indirect base Direct base Indirect base

 Visibility Nesting Derivation Ambiguity
 Friend Class Subclass Class

 Protected Public Visibility Protected

 Relational Arithmetic Dot Dot

 Destination Intermediator source Intermediator
 Object stream Destination

stream
 Input stream. Source stream

 Object stream Destination
stream

 Input stream. Destination
stream

 Console and
file

 formatted
console

unformatted Console and
file

 Unformatted Argumented paramerized Unformatted

 Printf Cin Scanf. Cin
 system
defined stream

 Pre defined
stream

macro system
defined stream

 unformatted
data

 extracted data source formatted
data

 conio.h stdlib.h iomanip.h iomanip.h

 source and
destination
stream

 iostream and
source stream

fstream istream and
ostream

’\r’ ’\n’ ’\b’ ’\n’

 Reg.No.

[18CAU101]

Karpagam Academy of Higher Education

(Established Under Section 3 of UGC Act 1956)

Coimbatore -641021

BCA Degree Examination

(For the candidates admitted from 2018 onwards)

First Semester

First Internal Exam

PROGRAMMING FUNDAMENTALS USING C/C++

Duration: 2 hrs Maximum Marks: 50

Date & Session: Class : I BCA

Part – A (20x1=20 Marks)

(Answer all the questions)

1. Which of the following is not a valid variable name declaration?

a) int __a3; b) int __3a; c) int __A3; d) None of the mentioned

2. Which of the following is not a valid C variable name?

a) int number; b) float rate; c) int variable_count; d) int $main;

3. Which of the following is a User-defined data type?

a) typedef int Boolean; b) typedef enum {Mon, Tue, Wed, Thu, Fri} Workdays; c) struct {char
name[10], int age}; d) all of the mentioned

4. The format identifier ‘%d’ is also used for _____ data type?

a) char b) int c) float d) double

5. Which of the following is not an arithmetic operation?

a) a *= 10; b) a /= 10; c) a != 10; d) a %= 10;

6. The precedence of arithmetic operators is (from highest to lowest)

a) %, *, /, +, – b) %, +, /, *, – c) +, -, %, *, / d) %, +, -, *, /

7. The concept of object is belongs to which category?

a) POP b)OOP c)ALGOL d) POPS

8. Which of the following is an invalid assignment operator?

a) a %= 10; b) a /= 10; c) a |= 10; d) None of the mentioned

9. ___is a fixed meaning and these meaning cannot be changed

a) identifier b) function c) keywords d) arrays

10. Which one is the correct trigraph character

a) ??+ b)??/ c)??~ d)??-

Object 1Object 2

11. The range of char datatype is

a) 127 to -127 b)128 to -128 c)-128 to 127 d) none of the above

12. which storage class is used to mention global variable declaration

a) auto b) static c) register d) extern

13. One of the operand is real and another one is integer, the expression is called____

a) mixed mode arithmetic b)mixed data type c)mixed mode logic d) mixed mode testing

14. which operator has lowest priority in operator precedence

a) + b)< c), d){

15. which one is the correct rule for switch statement?

a) it must be an integer b) case labels end with semicolon c) at most one default label d) all of the
above

16. printf and scanf are belongs to which function ?

a) user defined b) library c) none d) both a and b

17. Which one is correct regarding the rules of identifier?

a) Cannot be a keyword b) must not contain white spaces c) must consist of letters, digits and
underscore d) all the above

18. String constant enclosed by_______________

a) single quote b) double quote c) parenthesis d) brackets

19. Which one is logical operator?

a) NAND b) XOR c) NOT d)XNOR

20. Which one is the compile time operator?

a) Sizeof b) Comma c) Plus d) Minus

Part – B (3x2=6 Marks)

(Answer all the questions)

21. What is variable? How do you declare a variable?

C variable is a named location in a memory where a program can manipulate the data. This location is used to hold the
value of the variable.

The value of the C variable may get change in the program.

C variable might be belonging to any of the data type like int, float, char etc.

Type Syntax

Variable declaration
data_type variable_name;
Example: int x, y, z; char flat, ch;

Variable initialization

data_type variable_name = value;

Example: int x = 50, y = 30; char flag = ‘x’, ch=’l’;

22. Define Object.

In the class-based object-oriented programmingparadigm, object refers to a particular
instance of a class, where the object can be a combination of variables, functions, and data structures.

23. List types of operators in c.

Types of C operators:

Arithmetic operators.

Assignment operators.

Relational operators.

Logical operators.

Bit wise operators.

Conditional operators (ternary operators)

Increment/decrement operators.

Special operators.

Part – C (3x8=24 Marks)

(Answer all the questions)

24. (a). Differentiate Procedural Oriented Programming (POP) and Object Oriented Programming
(OOP) in detail.

Difference Between OOP and POP

Both are programming processes whereas OOP stands for “Object Oriented
Programming” and POP stands for “Procedure Oriented Programming”. Both are
programming languages that use high-level programming to solve a problem but
using different approaches. These approaches in technical terms are known as
programming paradigms. A programmer can take different approaches to write a
program because there’s no direct approach to solve a particular problem. This is
where programming languages come to the picture. A program makes it easy to
resolve the problem using just the right approach or you can say ‘paradigm’. Object-
oriented programming and procedure-oriented programming are two such paradigms.

What is Object Oriented Programming (OOP)?

OOP is a high-level programming language where a program is divided into small
chunks called objects using the object-oriented model, hence the name. This paradigm
is based on objects and classes.

Object – An object is basically a self-contained entity that accumulates both data and
procedures to manipulate the data. Objects are merely instances of classes.

Class – A class, in simple terms, is a blueprint of an object which defines all the
common properties of one or more objects that are associated with it. A class can be
used to define multiple objects within a program.

The OOP paradigm mainly eyes on the data rather than the algorithm to create
modules by dividing a program into data and functions that are bundled within the
objects. The modules cannot be modified when a new object is added restricting any
non-member function access to the data. Methods are the only way to assess the data.

Objects can communicate with each other through same member functions. This
process is known as message passing. This anonymity among the objects is what
makes the program secure. A programmer can create a new object from the already
existing objects by taking most of its features thus making the program easy to
implement and modify.

http://www.differencebetween.net/technology/difference-between-abstraction-and-encapsulation/
http://www.differencebetween.net/technology/difference-between-dispose-and-finalize/
http://www.differencebetween.net/technology/difference-between-dispose-and-finalize/

What is Procedure Oriented Programming (POP)?

POP follows a step-by-step approach to break down a task into a collection of variables
and routines (or subroutines) through a sequence of instructions. Each step is carried
out in order in a systematic manner so that a computer can understand what to do.
The program is divided into small parts called functions and then it follows a series of
computational steps to be carried out in order.

It follows a top-down approach to actually solve a problem, hence the name.
Procedures correspond to functions and each function has its own purpose. Dividing
the program into functions is the key to procedural programming. So a number of
different functions are written in order to accomplish the tasks.

Initially, all the computer programs are procedural or let’s say, in the initial stage. So
you need to feed the computer with a set of instructions on how to move from one
code to another thereby accomplishing the task. As most of the functions share global
data, they move independently around the system from function to function, thus
making the program vulnerable. These basic flaws gave rise to the concept of object-
oriented programming which is more secure.

Difference between OOP and POP

Definition

OOP stands for Object-oriented programming and is a programming approach that
focuses on data rather than the algorithm, whereas POP, short for Procedure-oriented
programming, focuses on procedural abstractions.

Programs

In OOP, the program is divided into small chunks called objects which are instances of
classes, whereas in POP, the main program is divided into small parts based on the
functions.

Accessing Mode

Three accessing modes are used in OOP to access attributes or functions – ‘Private’,
‘Public’, and ‘Protected’. In POP, on the other hand, no such accessing mode is
required to access attributes or functions of a particular program.

Focus

The main focus is on the data associated with the program in case of OOP while POP
relies on functions or algorithms of the program.

Execution

In OOP, various functions can work simultaneously while POP follows a systematic
step-by-step approach to execute methods and functions.

Data Control

In OOP, the data and functions of an object act like a single entity so accessibility is
limited to the member functions of the same class. In POP, on the other hand, data
can move freely because each function contains different data.

Security

OOP is more secure than POP, thanks to the data hiding feature which limits the
access of data to the member function of the same class, while there is no such way of
data hiding in POP, thus making it less secure.

Ease of Modification

New data objects can be created easily from existing objects making object-oriented
programs easy to modify, while there’s no simple process to add data in POP, at least
not without revising the whole program.

Process

OOP follows a bottom-up approach for designing a program, while POP takes a top-
down approach to design a program.

Examples

Commonly used OOP languages are C++, Java, VB.NET, etc. Pascal and Fortran are
used by POP.

OOP

OOP takes a bottom-up approach in designing a program.

Program is divided into objects depending on the problem.

Each object controls its own data.

Focuses on security of the data irrespective of the algorithm.

The main priority is data rather than functions in a program.

The functions of the objects are linked via message passing.

Data hiding is possible in OOP.

Inheritance is allowed in OOP.

Operator overloading is allowed.

C++, Java.

A program is nothing but a set of step-by-step instructions that only a computer can
understand so that it can come up with a solution. There are different approaches to
do that, which in technical term, are referred to as programming paradigms.

OOP and POP are such high-level programming paradigms that use different
approaches to create a program to solve a particular problem in the less time possible.

The idea is to solve complicated tasks using programming with less code. While an
object-oriented program depends mainly upon data rather than the algorithm, a
procedure-oriented program follows a step-by-step approach to solve a problem.

OOP, of course, has a little edge over POP on many fronts such as data security, ease
of use, accessibility, operator overloading, and more.

 (b). what is an operator? List and explain various types of Operators in C.

Operators in C / C++

Operators are the foundation of any programming language. Thus the functionality of C/C++ programming language is incomplete
without the use of operators. We can define operators as symbols that helps us to perform specific mathematical and logical
computations on operands. In other words we can say that an operator operates the operands.
For example, consider the below statement:

c = a + b;

Here, ‘+’ is the operator known as addition operator and ‘a’ and ‘b’ are operands. The addition operator tells the compiler to add
both of the operands ‘a’ and ‘b’. C/C++ has many built-in operator types and they can be classified as:

Arithmetic Operators: These are the operators used to perform arithmetic/mathematical operations on operands. Examples:
(+, -, *, /, %,++,–).
Arithmetic operator are of two types:

Unary Operators: Operators that operates or works with a single operand are unary operators.
For example: (++ , –)

Binary Operators: Operators that operates or works with two operands are binary operators.For example: (+ ,
– , * , /)

To learn Arithmetic Operators in details visit this link.

Relational Operators: Relational operators are used for comparison of the values of two operands. For example: checking if
one operand is equal to the other operand or not, an operand is greater than the other operand or not etc. Some of the relational
operators are (==, > , = , <=). To learn about each of these operators in details go to thislink.

Logical Operators: Logical Operators are used to combine two or more conditions/constraints or to complement the evaluation
of the original condition in consideration. The result of the operation of a logical operator is a boolean value either true or false. To
learn about different logical operators in details please visit this link.

Bitwise Operators: The Bitwise operators is used to perform bit-level operations on the operands. The operators are first
converted to bit-level and then calculation is performed on the operands. The mathematical operations such as addition ,
subtraction , multiplication etc. can be performed at bit-level for faster processing. To learn bitwise operators in details,
visit this link.

Assignment Operators: Assignment operators are used to assign value to a variable. The left side operand of the assignment
operator is a variable and right side operand of the assignment operator is a value. The value on the right side must be of the same
data-type of variable on the left side otherwise the compiler will raise an error.
Different types of assignment operators are shown below:

“=”: This is the simplest assignment operator. This operator is used to assign the value on the right to the
variable on the left.
For example:

a = 10;

b = 20;

ch = 'y';

“+=”:This operator is combination of ‘+’ and ‘=’ operators. This operator first adds the current value of the
variable on left to the value on right and then assigns the result to the variable on the left.
Example:

(a += b) can be written as (a = a + b)

https://www.geeksforgeeks.org/operators-in-c-set-1-arithmetic-operators/
https://www.geeksforgeeks.org/operators-in-c-set-1-arithmetic-operators/
https://www.geeksforgeeks.org/operators-in-c-set-2-relational-and-logical-operators/
https://www.geeksforgeeks.org/operators-in-c-set-2-relational-and-logical-operators/
https://www.geeksforgeeks.org/operators-in-c-set-2-relational-and-logical-operators/
https://www.geeksforgeeks.org/operators-in-c-set-2-relational-and-logical-operators/
https://www.geeksforgeeks.org/interesting-facts-bitwise-operators-c/
https://www.geeksforgeeks.org/interesting-facts-bitwise-operators-c/

If initially value stored in a is 5. Then (a += 6) = 11.

“-=”:This operator is combination of ‘-‘ and ‘=’ operators. This operator first subtracts the current value of the
variable on left from the value on right and then assigns the result to the variable on the left.
Example:

(a -= b) can be written as (a = a - b)

If initially value stored in a is 8. Then (a -= 6) = 2.

“*=”:This operator is combination of ‘*’ and ‘=’ operators. This operator first multiplies the current value of the
variable on left to the value on right and then assigns the result to the variable on the left.
Example:

(a *= b) can be written as (a = a * b)

If initially value stored in a is 5. Then (a *= 6) = 30.

“/=”:This operator is combination of ‘/’ and ‘=’ operators. This operator first divides the current value of the
variable on left by the value on right and then assigns the result to the variable on the left.
Example:

(a /= b) can be written as (a = a / b)

If initially value stored in a is 6. Then (a /= 2) = 3.

Other Operators: Apart from the above operators there are some other operators available in C or C++ used to perform some
specific task. Some of them are discussed here:

sizeof operator: sizeof is a much used in the C/C++ programming language. It is a compile time unary operator
which can be used to compute the size of its operand. The result of sizeof is of unsigned integral type which is
usually denoted by size_t. Basically, sizeof operator is used to compute the size of the variable. To learn about
sizeof operator in details you may visit this link.

Comma Operator: The comma operator (represented by the token ,) is a binary operator that evaluates its first
operand and discards the result, it then evaluates the second operand and returns this value (and type). The
comma operator has the lowest precedence of any C operator. Comma acts as both operator and separator. To
learn about comma in details visit this link.

Conditional Operator: Conditional operator is of the form Expression1 ? Expression2 : Expression3 . Here,
Expression1 is the condition to be evaluated. If the condition(Expression1) is True then we will execute and
return the result of Expression2 otherwise if the condition(Expression1) is false then we will execute and return
the result of Expression3. We may replace the use of if..else statements by conditional operators. To learn
about conditional operators in details, visit this link.

Operator precedence chart

The below table describes the precedence order and associativity of operators in C / C++ . Precedence of operator decreases from
top to bottom.

OPERATOR DESCRIPTION ASSOCIATIVITY

() Parentheses (function call) left-to-right

[] Brackets (array subscript)

. Member selection via object name

-> Member selection via pointer

++/– Postfix increment/decrement

++/– Prefix increment/decrement right-to-left

+/- Unary plus/minus

!~ Logical negation/bitwise complement

(type) Cast (convert value to temporary value of type)

* Dereference

& Address (of operand)

sizeof Determine size in bytes on this implementation

*,/,% Multiplication/division/modulus left-to-right

https://www.geeksforgeeks.org/sizeof-operator-c/
https://www.geeksforgeeks.org/sizeof-operator-c/
https://www.geeksforgeeks.org/comna-in-c-and-c/
https://www.geeksforgeeks.org/comna-in-c-and-c/
https://www.geeksforgeeks.org/cc-ternary-operator-some-interesting-observations/
https://www.geeksforgeeks.org/cc-ternary-operator-some-interesting-observations/

+/- Addition/subtraction left-to-right

<> Bitwise shift left, Bitwise shift right left-to-right

< , <= Relational less than/less than or equal to left-to-right

> , >= Relational greater than/greater than or equal to left-to-right

== , != Relational is equal to/is not equal to left-to-right

& Bitwise AND left-to-right

^ Bitwise exclusive OR left-to-right

| Bitwise inclusive OR left-to-right

&& Logical AND left-to-right

|| Logical OR left-to-right

?: Ternary conditional right-to-left

= Assignment right-to-left

+= , -= Addition/subtraction assignment

*= , /= Multiplication/division assignment

%= , &= Modulus/bitwise AND assignment

^= , |= Bitwise exclusive/inclusive OR assignment

<>= Bitwise shift left/right assignment

, expression separator left-to-right

25. (a). Explain the Conditional statements with examples.

 Conditional statements are used to execute statement or group of statements based on
some conditon.

C supports following conditional statements.

if statement

if else statement

if else if ladder

nested if

go to statement

a.) if statement :

Syntax :

If(Conditon) {

C statements;

}

If the condition is true then C statements are executed other wise next statement will be executed.

Example :

File1.c

#include<stdio.h>

int main(){

int a=10;

if(a%2==0){

printf(“ a is even no :”);

}

printf(“ statement after if “);

return 0;}

Output :

a is even no:

statement after if

File2.c

#include<stdio.h>

int main(){

int a=10;

if(a%2==0){

printf(“a is even no :”);

}

Printf(“statement after if”);

Output:

statement after if

b.) if else statement

Syntax :-

if(condition){

Statements to be executed when condition is true;

}

else {

Statements to be executed when condition is false;

}

#include<stdio.h>

int main(){

int a=10;

if(a%2==0) {

printf(“ a is even “);

}

else {

printf(“a is odd “);

}

Return 0;

}

Output :

 a is even.

c.) if else if ladder

Syntax :

If(condition1){

Statements to be executed when condition1 is true;

}

else if(condition2){

Statements to be executed when condition2 is true;

}

else if(condition3){

Statements to be executed when condition3 is true;

}

else if(….){

… .. .

…

}

else {

Statements to be executed when no condition is true;

}

Example :

#include<stdio.h>

int main(){

int a;

printf(“n Enter the no of day :”);

scanf(“%d”,&a);

if(a==1){

printf(“ Monday”);

}

else if(a==2){

printf(“Tuesday”);

}

else if(a==3){

printf(“Wednesdat”);

}

else if(a==4){

printf(“Thursday”);

}

else if(a==5){

printf(“Friday”);

}

else if(a==6){

printf(“Saturday”);

}

else if(a==7){

printf(“Sunday !! ”);

}

else {

printf(“ Enter the valid day between 1-7”);

}

return 0;

}

d.) Nested if statements

if statement within if statements.

Example:

To find max of three no (a,b,c)

Input:

5 10 20

Output:

 20 is max

e.) go to statement

Syntax:

So far we have seen conditional statements which are executed when certain condition is true or false.

go to statement is used to branch unconditinally from one point to another point. go to requires a label to
identify where the control to be transferred.

Example:

 (b). Explain the decision making statements with examples.

 Decision making in C

Decision making is about deciding the order of execution of statements based on certain
conditions or repeat a group of statements until certain specified conditions are met. C
language handles decision-making by supporting the following statements,

•if statement

•switch statement

•conditional operator statement (? : operator)

•goto statement

Decision making with if statement
The if statement may be implemented in different forms depending on the complexity of conditions to be tested. The different forms
are,

1.Simple if statement

2.if....else statement

3.Nested if....else statement

4.Using else if statement

Simple if statement

The general form of a simple if statement is,

if(expression)

{

 statement inside;

}

 statement outside;

If the expression returns true, then the statement-inside will be executed,
otherwise statement-inside is skipped and only the statement-outside is executed.

Example:
#include <stdio.h>

void main()

{

 int x, y;

 x = 15;

 y = 13;

 if (x > y)

 {

 printf("x is greater than y");

 }

}

x is greater than y

if...else statement

The general form of a simple if...else statement is,

if(expression)

{

 statement block1;

}

else

{

 statement block2;

}

If the expression is true, the statement-block1 is executed, else statement-block1 is
skipped and statement-block2 is executed.

Example:
#include <stdio.h>

void main()

{

 int x, y;

 x = 15;

 y = 18;

 if (x > y)

 {

 printf("x is greater than y");

 }

 else

 {

 printf("y is greater than x");

 }

}

y is greater than x

Nested if....else statement

The general form of a nested if...else statement is,

if(expression)

{

 if(expression1)

 {

 statement block1;

 }

 else

 {

 statement block2;

 }

}

else

{

 statement block3;

}

if expression is false then statement-block3 will be executed, otherwise the execution continues and enters inside the first if to
perform the check for the next if block, where if expression 1 is true the statement-block1 is executed otherwise statement-
block2 is executed.

Example:
#include <stdio.h>

void main()

{

 int a, b, c;

 printf("Enter 3 numbers...");

 scanf("%d%d%d",&a, &b, &c);

 if(a > b)

 {

 if(a > c)

 {

 printf("a is the greatest");

 }

 else

 {

 printf("c is the greatest");

 }

 }

 else

 {

 if(b > c)

 {

 printf("b is the greatest");

 }

 else

 {

 printf("c is the greatest");

 }

 }

}

else if ladder

The general form of else-if ladder is,
if(expression1)

{

 statement block1;

}

else if(expression2)

{

 statement block2;

}

else if(expression3)

{

 statement block3;

}

else

 default statement;

The expression is tested from the top(of the ladder) downwards. As soon as a true condition
is found, the statement associated with it is executed.

Example :

#include <stdio.h>

void main()

{

 int a;

 printf("Enter a number...");

 scanf("%d", &a);

 if(a%5 == 0 && a%8 == 0)

 {

 printf("Divisible by both 5 and 8");

 }

 else if(a%8 == 0)

 {

 printf("Divisible by 8");

 }

 else if(a%5 == 0)

 {

 printf("Divisible by 5");

 }

 else

 {

 printf("Divisible by none");

 }

}

(a). Explain the concepts of functions in detail.

A function is a group of statements that together perform a task. Every C program has
at least one function, which is main(), and all the most trivial programs can define
additional functions.

You can divide up your code into separate functions. How you divide up your code among
different functions is up to you, but logically the division is such that each function performs a
specific task.

A function declaration tells the compiler about a function's name, return type, and
parameters. A function definition provides the actual body of the function.

The C standard library provides numerous built-in functions that your program can call. For
example, strcat() to concatenate two strings, memcpy() to copy one memory location to
another location, and many more functions.

A function can also be referred as a method or a sub-routine or a procedure, etc.

Defining a Function

The general form of a function definition in C programming language is as follows −

return_type function_name(parameter list) {

 body of the function

}

A function definition in C programming consists of a function header and a function body.
Here are all the parts of a function −

•Return Type − A function may return a value. The return_type is the data type of the
value the function returns. Some functions perform the desired operations without
returning a value. In this case, the return_type is the keyword void.

•Function Name − This is the actual name of the function. The function name and the
parameter list together constitute the function signature.

•Parameters − A parameter is like a placeholder. When a function is invoked, you
pass a value to the parameter. This value is referred to as actual parameter or
argument. The parameter list refers to the type, order, and number of the parameters
of a function. Parameters are optional; that is, a function may contain no parameters.

•Function Body − The function body contains a collection of statements that define
what the function does.

Example

Given below is the source code for a function called max(). This function takes two
parameters num1 and num2 and returns the maximum value between the two −

/* function returning the max between two numbers */

int max(int num1, int num2) {

 /* local variable declaration */

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

}

Function Declarations

A function declaration tells the compiler about a function name and how to call the function.
The actual body of the function can be defined separately.

A function declaration has the following parts −

return_type function_name(parameter list);

For the above defined function max(), the function declaration is as follows −

int max(int num1, int num2);

Parameter names are not important in function declaration only their type is required, so the
following is also a valid declaration −

int max(int, int);

Function declaration is required when you define a function in one source file and you call
that function in another file. In such case, you should declare the function at the top of the file
calling the function.

Calling a Function

While creating a C function, you give a definition of what the function has to do. To use a
function, you will have to call that function to perform the defined task.

When a program calls a function, the program control is transferred to the called function. A
called function performs a defined task and when its return statement is executed or when its
function-ending closing brace is reached, it returns the program control back to the main
program.

To call a function, you simply need to pass the required parameters along with the function
name, and if the function returns a value, then you can store the returned value. For example
−

 Live Demo

#include <stdio.h>

/* function declaration */

int max(int num1, int num2);

int main () {

 /* local variable definition */

 int a = 100;

 int b = 200;

 int ret;

 /* calling a function to get max value */

 ret = max(a, b);

 printf("Max value is : %d\n", ret);

http://tpcg.io/T4MSFr

 return 0;

}

/* function returning the max between two numbers */

int max(int num1, int num2) {

 /* local variable declaration */

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

}

We have kept max() along with main() and compiled the source code. While running the final
executable, it would produce the following result −

Max value is : 200

Function Arguments

If a function is to use arguments, it must declare variables that accept the values of the
arguments. These variables are called the formal parametersof the function.

Formal parameters behave like other local variables inside the function and are created upon
entry into the function and destroyed upon exit.

While calling a function, there are two ways in which arguments can be passed to a function
−

Sr.No. Call Type & Description

1

Call by value

This method copies the actual value of an argument into the formal parameter of the
function. In this case, changes made to the parameter inside the function have no
effect on the argument.

2

Call by reference

This method copies the address of an argument into the formal parameter. Inside the
function, the address is used to access the actual argument used in the call. This
means that changes made to the parameter affect the argument.

https://www.tutorialspoint.com/cprogramming/c_function_call_by_value.htm
https://www.tutorialspoint.com/cprogramming/c_function_call_by_reference.htm

(b). Differentiate while and do-while statements in detail with example

BASIS FOR
COMPARISON

WHILE DO-WHILE

General Form
while (condition) {
statements; //body of loop
}

do{
.
statements; // body of loop.
.
} while(Condition);

Controlling
Condition

In 'while' loop the controlling
condition appears at the start of
the loop.

In 'do-while' loop the controlling
condition appears at the end of the
loop.

Iterations
The iterations do not occur if, the
condition at the first iteration,
appears false.

The iteration occurs at least once
even if the condition is false at the
first iteration.

Iteration statements allow the set of instructions to execute repeatedly till the condition doesn’t turn out false. The
Iteration statements in C++ and Java are, for loop, while loop and do while loop. These statements are commonly
called loops. Here, the main difference between a while loop and do while loop is that while loop check condition
before iteration of the loop, whereas do-while loop, checks the condition after the execution of the statements
inside the loop.

In this article, we are going to discuss the differences between “while” loop and “do-while”
loop.

Content: while Vs do-while Loop

1. Comparison Chart

2. Definition

3. Key Differences

4. Conclusion

Comparison Chart

BASIS FOR
COMPARISON

WHILE DO-WHILE

General Form
while (condition) {
statements; //body of loop
}

do{
.
statements; // body of loop.
.
} while(Condition);

Controlling
Condition

In 'while' loop the controlling
condition appears at the start of
the loop.

In 'do-while' loop the controlling
condition appears at the end of the
loop.

https://techdifferences.com/difference-between-while-and-do-while-loop.html#Conclusion
https://techdifferences.com/difference-between-while-and-do-while-loop.html#ComparisonChart
https://techdifferences.com/difference-between-while-and-do-while-loop.html#Definition
https://techdifferences.com/difference-between-while-and-do-while-loop.html#KeyDifferences

BASIS FOR
COMPARISON

WHILE DO-WHILE

Iterations
The iterations do not occur if, the
condition at the first iteration,
appears false.

The iteration occurs at least once
even if the condition is false at the
first iteration.

Definition of while Loop

The while loop is the most fundamental loop available in C++ and Java. The working of a
while loop is similar in both C++ and Java.The general form of while loop is:

1.while (condition) {

2.statements; //body of loop

3.}

The while loop first verifies the condition, and if the condition is true then, it iterates the loop
till the condition turns out false. The condition in while loop can be any boolean expression.
When expression returns any non-zero value, then the condition is “true”, and if an
expression returns a zero value, the condition becomes “false”. If the condition becomes true,
then loop iterates itself, and if the condition becomes false, then the control passes to the
next line of the code immediately followed by the loop.

The statements or the body of the loop can either be an empty statement or a single
statement or a block of statements.

Definition of do-while Loop

As in while loop, if the controlling condition becomes false in the first iteration only, then the
body of the while loop is not executed at all. But the do-while loop is somewhat different from
while loop. The do-while loop executes the body of the loop at least once even if the
condition is false at the first attempt.

The general form of do-while is as follows.

1.do{

2..

3.statements // body of loop.

4..

5.} while(Condition);

In a do-while loop, the body of loop occurs before the controlling condition, and the
conditional statement is at the bottom of the loop. As in while loop, here also, the body of the
loop can be empty as both C++ and Java allow null statements or, there can be only a single
statement or, a block of statements. The condition here is also a boolean expression, which
is true for all non-zero value.

In a do-while loop, the control first reaches to the statement in the body of a do-while loop.
The statements in the body get executed first and then the control reaches to the condition
part of the loop. The condition is verified and, if it is true, the loop is iterated again, and if the
condition is false, then the control resumes to the next line immediate after the loop.

Reg.No.
[18CAU101]

Karpagam Academy of Higher Education

(Established Under Section 3 of UGC Act 1956)

Coimbatore -641021

BCA Degree Examination

(For the candidates admitted from 2018 onwards)

First Semester

Third Internal Exam

PROGRAMMING FUNDAMENTALS USING C/C++

Duration: 2 hrs Maximum Marks: 50Marks

Date & Session: Class : I BCA

Part – A (20x1=20 Marks)

(Answer all the questions)

1.The exception is generated in _________block.

a) try b)catch c) finally d)throw.

2. Which of the following is a two-dimensional array?

a) array anarray[20][20]; b) int anarray[20][20]; c) int array[20, 20];

d)char array[20];

3. The ____ functions are used to handle the single character I/O operation.

a) get() and put() b)clrscr() and getch() c) cin and cout

 d) None

4. The overloading operator must have atleast ________ operand that is of user-defined data

type.

a) Two b) Three c) One d) Four

5. The eof () stands for _____.

a) end of file b) error opening file c) error of file d) closing a file

6. _______ enables an object to initialize itself when it is created

a) Destructor b) constructor c) overloading

 d)member

7.What function should be used to free the memory allocated by calloc() ?

a) dealloc(); b) malloc(variable_name, 0) c) free();

 d)memalloc(variable_name, 0)

8. Constructors cannot be _________

a) Inherited b) destroyed c) both a & b

 d)created

9. The functions which are declared inside the class are known as ______

a) Member function b)member variables c) data variables

 d)function variable

10. Duplication of inherited members of ________ inheritance can be avoided by making the

common base class, a virtual base class.

a) Single b) Multi-level c) Multipath

 d)Hierarchical

11.The --------------- is invoked whenever an object of its associated class is created.

a) Default constructor b) destructor c) constructor d) parameterized

12. The class variables are known as ________

a) Functions b) members c) objects d) none of the

above

13. ________ inheritance may lead to duplication of inherited members from a ‘grand parent’

base class.

a) Multiple b) Multipath c) Hybrid d) Single

14. Multiple functions with the same name is known as ________________

a) Function overloading b) function polymorphism

c) both a & b d)operator overloading

15. ________ operator function should be a class member.

 a) Arithmetic b) Relational c) Casting

 d)Overloading

16. What are mandatory parts in function declaration?

a) return type, function name b) return type, function name,

parameters

c) both a and b d) none of the mentioned

17. Which of the following correctly declares an array?

a) int array[10]; b) int array; c) array{10}; d) array

array[10];

18. The ____ functions are used to handle the single character I/O operation.

a) get() and put() b) clrscr() and getch() c) cin and cout

 d)Printf()and scanf()

19. What function should be used to free the memory allocated by calloc() ?

a) dealloc(); b) malloc(variable_name, 0)

c) free(); d) memalloc(variable_name, 0)

20. A _____ is a sequence of bytes.

a) Stream b) class c) object d) function

Part – B (3*2=6 Marks)

(Answer all the questions)

21. Give the syntax for opening and closing a file.

Opening a file is performed using the library function in the "stdio.h" header

file: fopen().

The syntax for opening a file in standard I/O is:

ptr = fopen("fileopen","mode")

For Example:

fopen("E:\\cprogram\\newprogram.txt","w");

open("E:\\cprogram\\oldprogram.bin","rb");

Closing a file is performed using library function fclose().

fclose(fptr); //fptr is the file pointer associated with file to be closed.

22. What is a constructor?

 A constructor is a special type of member function that initialises an object

automatically when it is created. Compiler identifies a given member function is

a constructor by its name and the return type. Constructor has the same name as that of

the class and it does not have any return type.

23. What’s the difference between public, private and protected?

A public member is accessible from anywhere outside the class but within a program.

You can set and get the value of public variables without any member.

Aprivate member variable or function cannot be accessed, or even viewed from

outside the class. Only the class and friend functions can access private members.

Part – C (3*8=24 Marks)

(Answer all the questions)

24.a) With proper example explain new and delete operators in c++.

 new operator

The new operator denotes a request for memory allocation on the Heap. If sufficient memory is

available, new operator initializes the memory and returns the address of the newly allocated and

initialized memory to the pointer variable.

 Syntax to use new operator: To allocate memory of any data type, the syntax is:

 pointer-variable = new data-type;

Here, pointer-variable is the pointer of type data-type. Data-type could be any built-in data

type including array or any user defined data types including structure and class.

Example:

// Pointer initialized with NULL

// Then request memory for the variable

https://www.programiz.com/c-programming/library-function

int *p = NULL;

p = new int;

 // Combine declaration of pointer

// and their assignment

int *p = new int;

 Initialize memory: We can also initialize the memory using new operator:

 pointer-variable = new data-type(value);

 Example:
 int *p = new int(25);

 float *q = new float(75.25);

 Allocate block of memory: new operator is also used to allocate a block(an array) of

memory of type data-type.

 pointer-variable = new data-type[size];

where size(a variable) specifies the number of elements in an array.

Example:

 int *p = new int[10]

Dynamically allocates memory for 10 integers continuously of type int and returns pointer

to the first element of the sequence, which is assigned to p(a pointer). p[0] refers to first

element, p[1] refers to second element and so on.

Normal Array Declaration vs Using new
There is a difference between declaring a normal array and allocating a block of memory using

new. The most important difference is, normal arrays are deallocated by compiler (If array is

local, then deallocated when function returns or completes). However, dynamically allocated

arrays always remain there until either they are deallocated by programmer or program

terminates.

What if enough memory is not available during runtime?
If enough memory is not available in the heap to allocate, the new request indicates failure by

throwing an exception of type std::bad_alloc and new operator returns a pointer. Therefore, it

may be good idea to check for the pointer variable produced by new before using it program.

int *p = new int;

if (!p)

{

 cout << "Memory allocation failed\n";

}

http://cdncontribute.geeksforgeeks.org/wp-content/uploads/dynamic.png

delete operator
Since it is programmer’s responsibility to deallocate dynamically allocated memory,

programmers are provided delete operator by C++ language.

Syntax:

// Release memory pointed by pointer-variable

delete pointer-variable;

Here, pointer-variable is the pointer that points to the data object created by new.

Examples:

 delete p;

 delete q;

To free the dynamically allocated array pointed by pointer-variable, use following form

of delete:

// Release block of memory

// pointed by pointer-variable

delete[] pointer-variable;

Example:

 // It will free the entire array

 // pointed by p.

 delete[] p;

// C++ program to illustrate dynamic allocation

// and deallocation of memory using new and delete

#include <iostream>

using namespace std;

 int main ()

{

 // Pointer initialization to null

 int* p = NULL;

 // Request memory for the variable

 // using new operator

 p = new int;

 if (!p)

 cout << "allocation of memory failed\n";

 else

 {

 // Store value at allocated address

 *p = 29;

 cout << "Value of p: " << *p << endl;

 }

 // Request block of memory

 // using new operator

 float *r = new float(75.25);

 cout << "Value of r: " << *r << endl;

 // Request block of memory of size n

 int n = 5;

 int *q = new int[n];

 if (!q)

 cout << "allocation of memory failed\n";

 else

 {

 for (int i = 0; i < n; i++)

 q[i] = i+1;

 cout << "Value store in block of memory: ";

 for (int i = 0; i < n; i++)

 cout << q[i] << " ";

 }

 // freed the allocated memory

 delete p;

 delete r;

 // freed the block of allocated memory

 delete[] q;

 return 0;

}

Output:

Value of p: 29

Value of r: 75.25

Value store in block of memory: 1 2 3 4 5

b).Explain reading and writing text files.

Read/Write Class Objects from/to File in C++

Given a file “Input.txt” in which every line has values same as instance variables of a class.

Read the values into the class’s object and do necessary operations.

Theory :

The data transfer is usually done using '>>'

and <<' operators. But if you have

a class with 4 data members and want

to write all 4 data members from its

object directly to a file or vice-versa,

we can do that using following syntax :

To write object's data members in a file :

// Here file_obj is an object of ofstream

file_obj.write((char *) & class_obj, sizeof(class_obj));

To read file's data members into an object :

// Here file_obj is an object of ifstream

file_obj.read((char *) & class_obj, sizeof(class_obj));

Examples:

Input :

Input.txt :

Micheal 19 1806

Kemp 24 2114

Terry 21 2400

Operation : Print the name of the highest

 rated programmer.

Output :

Terry

// C++ program to demonstrate read/write of class

// objects in C++.

#include <iostream>

#include <fstream>

using namespace std;

// Class to define the properties

class Contestant {

public:

 // Instance variables

 string Name;

 int Age, Ratings;

 // Function declaration of input() to input info

 int input();

 // Function declaration of output_highest_rated() to

 // extract info from file Data Base

 int output_highest_rated();

};

// Function definition of input() to input info

int Contestant::input()

{

 // Object to write in file

 ofstream file_obj;

 // Opening file in append mode

 file_obj.open("Input.txt", ios::app);

 // Object of class contestant to input data in file

 Contestant obj;

 // Feeding appropriate data in variables

 string str = "Micheal";

 int age = 18, ratings = 2500;

 // Assigning data into object

 obj.Name = str;

 obj.Age = age;

 obj.Ratings = ratings;

 // Writing the object's data in file

 file_obj.write((char*)&obj, sizeof(obj));

 // Feeding appropriate data in variables

 str = "Terry";

 age = 21;

 ratings = 3200;

 // Assigning data into object

 obj.Name = str;

 obj.Age = age;

 obj.Ratings = ratings;

 // Writing the object's data in file

 file_obj.write((char*)&obj, sizeof(obj));

 return 0;

}

// Function definition of output_highest_rated() to

// extract info from file Data Base

int Contestant::output_highest_rated()

{

 // Object to read from file

 ifstream file_obj;

 // Opening file in input mode

 file_obj.open("Input.txt", ios::in);

 // Object of class contestant to input data in file

 Contestant obj;

 // Reading from file into object "obj"

 file_obj.read((char*)&obj, sizeof(obj));

 // max to store maximum ratings

 int max = 0;

 // Highest_rated stores the name of highest rated contestant

 string Highest_rated;

 // Checking till we have the feed

 while (!file_obj.eof()) {

 // Assigning max ratings

 if (obj.Ratings > max) {

 max = obj.Ratings;

 Highest_rated = obj.Name;

 }

 // Checking further

 file_obj.read((char*)&obj, sizeof(obj));

 }

 // Output is the highest rated contestant

 cout << Highest_rated;

 return 0;

}

// Driver code

int main()

{

 // Creating object of the class

 Contestant object;

 // Inputting the data

 object.input();

 // Extracting the max rated contestant

 object.output_highest_rated();

 return 0;

}

25.a) Explain class constructors with suitable example program

 Constructors in C++

What is constructor?

A constructor is a member function of a class which initializes objects of a class. In C++,

Constructor is automatically called when object(instance of class) create. It is special member

function of the class.

How constructors are different from a normal member function?

A constructor is different from normal functions in following ways:

 Constructor has same name as the class itself

 Constructors don’t have return type

 A constructor is automatically called when an object is created.

 If we do not specify a constructor, C++ compiler generates a default constructor for us

(expects no parameters and has an empty body).

Types of Constructors
1. Default Constructors: Default constructor is the constructor which doesn’t take any

argument. It has no parameters.

// Cpp program to illustrate the

// concept of Constructors

#include <iostream>

using namespace std;

class construct {

public:

 int a, b;

 // Default Constructor

 construct()

 {

 a = 10;

 b = 20;

 }

};

int main()

{

https://www.geeksforgeeks.org/c-internals-default-constructors-set-1/

 // Default constructor called automatically

 // when the object is created

 construct c;

 cout << "a: " << c.a << endl

 << "b: " << c.b;

 return 1;

}

Output:

a: 10

b: 20

Parameterized Constructors: It is possible to pass arguments to constructors. Typically,

these arguments help initialize an object when it is created. To create a parameterized

constructor, simply add parameters to it the way you would to any other function. When you

define the constructor’s body, use the parameters to initialize the object.

// CPP program to illustrate

// parameterized constructors

#include <iostream>

using namespace std;

class Point {

private:

 int x, y;

public:

 // Parameterized Constructor

 Point(int x1, int y1)

 {

 x = x1;

 y = y1;

 }

 int getX()

 {

 return x;

 }

 int getY()

 {

 return y;

 }

};

int main()

{

 // Constructor called

 Point p1(10, 15);

 // Access values assigned by constructor

 cout << "p1.x = " << p1.getX() << ", p1.y = " << p1.getY();

 return 0;

}

Output:

p1.x = 10, p1.y = 15

When an object is declared in a parameterized constructor, the initial values have to be passed

as arguments to the constructor function. The normal way of object declaration may not work.

The constructors can be called explicitly or implicitly.

 Example e = Example(0, 50); // Explicit call

 Example e(0, 50); // Implicit call

 b) List the different types of inheritance. Explain multiple with suitable program.

 Inheritance in C++

The capability of a class to derive properties and characteristics from another class is

called Inheritance. Inheritance is one of the most important feature of Object Oriented

Programming.

Sub Class: The class that inherits properties from another class is called Sub class or Derived

Class.

Super Class:The class whose properties are inherited by sub class is called Base Class or Super

class.

The article is divided into following subtopics:

1. Why and when to use inheritance?

2. Modes of Inheritance

3. Types of Inheritance

Why and when to use inheritance?

Consider a group of vehicles. You need to create classes for Bus, Car and Truck. The methods

fuelAmount(), capacity(), applyBrakes() will be same for all of the three classes.

Types of Inheritance in C++
1. Single Inheritance: In single inheritance, a class is allowed to inherit from only one class.

i.e. one sub class is inherited by one base class only.

Syntax:

class subclass_name : access_mode base_class

https://www.geeksforgeeks.org/inheritance-in-c/#Why%20and%20when%20to%20use%20inheritance?
https://www.geeksforgeeks.org/inheritance-in-c/#Modes%20of%20Inheritance
https://www.geeksforgeeks.org/inheritance-in-c/#Types%20of%20Inheritance

{

 //body of subclass

};

// C++ program to explain

// Single inheritance

#include <iostream>

using namespace std;

// base class

class Vehicle {

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

// sub class derived from two base classes

class Car: public Vehicle{

};

// main function

int main()

{

 // creating object of sub class will

 // invoke the constructor of base classes

 Car obj;

 return 0;

}

Output:

This is a vehicle

2. Multiple Inheritance: Multiple Inheritance is a feature of C++ where a class can inherit

from more than one classes. i.e one sub class is inherited from more than one base classes.

Syntax:

class subclass_name : access_mode base_class1, access_mode base_class2,

{

 //body of subclass

};

Here, the number of base classes will be separated by a comma (‘, ‘) and access mode for

every base class must be specified.

// C++ program to explain

// multiple inheritance

#include <iostream>

using namespace std;

// first base class

class Vehicle {

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

// second base class

class FourWheeler {

 public:

 FourWheeler()

 {

 cout << "This is a 4 wheeler Vehicle" << endl;

 }

};

// sub class derived from two base classes

class Car: public Vehicle, public FourWheeler {

};

// main function

int main()

{

 // creating object of sub class will

 // invoke the constructor of base classes

 Car obj;

 return 0;

}

Output:

This is a Vehicle

This is a 4 wheeler Vehicle

Multilevel Inheritance: In this type of inheritance, a derived class is created from another

derived class.

// C++ program to implement

// Multilevel Inheritance

#include <iostream>

using namespace std;

// base class

class Vehicle

{

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

class fourWheeler: public Vehicle

{ public:

 fourWheeler()

 {

 cout<<"Objects with 4 wheels are vehicles"<<endl;

 }

};

// sub class derived from two base classes

class Car: public fourWheeler{

 public:

 car()

 {

 cout<<"Car has 4 Wheels"<<endl;

 }

};

// main function

int main()

{

 //creating object of sub class will

 //invoke the constructor of base classes

 Car obj;

 return 0;

}

output:

This is a Vehicle

Objects with 4 wheels are vehicles

Car has 4 Wheels

Hierarchical Inheritance: In this type of inheritance, more than one sub class is inherited

from a single base class. i.e. more than one derived class is

created from a single base class.

// C++ program to implement

// Hierarchical Inheritance

#include <iostream>

using namespace std;

// base class

class Vehicle

{

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

// first sub class

class Car: public Vehicle

{

};

// second sub class

class Bus: public Vehicle

{

};

// main function

int main()

{

 // creating object of sub class will

 // invoke the constructor of base class

 Car obj1;

 Bus obj2;

 return 0;

}

Output:

This is a Vehicle

This is a Vehicle

Hybrid (Virtual) Inheritance: Hybrid Inheritance is implemented by combining more than

one type of inheritance. For example: Combining Hierarchical inheritance and Multiple

Inheritance.

Below image shows the combination of hierarchical and multiple inheritance:

// C++ program for Hybrid Inheritance

#include <iostream>

using namespace std;

// base class

class Vehicle

{

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

//base class

class Fare

{

 public:

 Fare()

 {

 cout<<"Fare of Vehicle\n";

 }

};

// first sub class

class Car: public Vehicle

{

};

// second sub class

class Bus: public Vehicle, public Fare

{

};

// main function

int main()

{

 // creating object of sub class will

 // invoke the constructor of base class

 Bus obj2;

 return 0;

}

Output:

This is a Vehicle

Fare of Vehicle

26.a) Explain in detail about overloading operators with example

 Operator Overloading in C++

In C++, we can make operators to work for user defined classes. This means C++ has the ability

to provide the operators with a special meaning for a data type, this ability is known as operator

overloading.

For example, we can overload an operator ‘+’ in a class like String so that we can concatenate

two strings by just using +.

Other example classes where arithmetic operators may be overloaded are Complex Number,

Fractional Number, Big Integer, etc.

A simple and complete example
#include<iostream>

using namespace std;

class Complex {

private:

 int real, imag;

public:

 Complex(int r = 0, int i =0) {real = r; imag = i;}

 // This is automatically called when '+' is used with

 // between two Complex objects

 Complex operator + (Complex const &obj) {

 Complex res;

 res.real = real + obj.real;

 res.imag = imag + obj.imag;

 return res;

 }

 void print() { cout << real << " + i" << imag << endl; }

};

int main()

{

 Complex c1(10, 5), c2(2, 4);

 Complex c3 = c1 + c2; // An example call to "operator+"

 c3.print();

}

Output:

12 + i9

b) Write note on catching all exceptions in c++.

 Exception Handling in C++

One of the advantages of C++ over C is Exception Handling. C++ provides following specialized

keywords for this purpose.

try: represents a block of code that can throw an exception.

catch: represents a block of code that is executed when a particular exception is thrown.

throw: Used to throw an exception. Also used to list the exceptions that a function throws, but

doesn’t handle itself.

Why Exception Handling?

Following are main advantages of exception handling over traditional error handling.

1) Separation of Error Handling code from Normal Code: In traditional error handling codes,

there are always if else conditions to handle errors. These conditions and the code to handle

errors get mixed up with the normal flow. This makes the code less readable and maintainable.

With try catch blocks, the code for error handling becomes separate from the normal flow.

2) Functions/Methods can handle any exceptions they choose: A function can throw many

exceptions, but may choose to handle some of them. The other exceptions which are thrown, but

not caught can be handled by caller. If the caller chooses not to catch them, then the exceptions

are handled by caller of the caller.

In C++, a function can specify the exceptions that it throws using the throw keyword. The caller

of this function must handle the exception in some way (either by specifying it again or catching

it)

3) Grouping of Error Types: In C++, both basic types and objects can be thrown as exception.

We can create a hierarchy of exception objects, group exceptions in namespaces or classes,

categorize them according to types.

	1.pdf (p.1-2)
	2.pdf (p.3-7)
	3.pdf (p.8-58)
	Procedural Programming
	Object-Oriented Programming

	4.pdf (p.59-64)
	Sheet1

	5.pdf (p.65-86)
	6.pdf (p.87-92)
	Sheet1

	7.pdf (p.93-116)
	Defining a Union
	Accessing Union Members

	8.pdf (p.117-122)
	Sheet1

	9.pdf (p.123-134)
	Allocating Memory Dynamically
	Resizing and Releasing Memory

	10.pdf (p.135-140)
	Sheet1

	11.pdf (p.141-170)
	C++ Destructor
	Note: C++ destructor cannot have parameters. Moreover, modifiers can't be applied on destructors.
	C++ Constructor and Destructor Example
	Constructor Overloading
	Default Copy Constructor

	Templates Classes
	Class templates
	Template specialization
	Non-type parameters for templates
	Templates and multiple-file projects

	C++ Overloading (Function and Operator)
	C++ Function Overloading
	C++ Function Overloading Example

	C++ Operators Overloading
	C++ Operators Overloading Example

	C++ Polymorphism
	C++ Runtime Polymorphism Example

	C++ virtual function
	Late binding or Dynamic linkage
	C++ virtual function Example

	C++ Exception Handling
	Advantage
	C++ Exception Classes

	C++ try/catch
	C++ example without try/catch

	12.pdf (p.171-176)
	Sheet1

	13.pdf (p.177-199)
	14.pdf (p.200-217)
	Read/Write Class Objects from/to File in C++
	Constructors in C++
	Inheritance in C++
	Operator Overloading in C++
	Exception Handling in C++

