

KARPAGAM ACADEMY OF HIGHER

EDUCATION
 (Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2017onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

SUBJECT:DATA STRUCTURES SEMESTER: III

CODE: 17CAU301 CLASS: II B.C.A

SCOPE
Data structures and algorithms are the building blocks in computer programming. This course

will give students a comprehensive introduction of common data structures, and algorithm

design and analysis. This course also intends to teach data structures and algorithms for solving

real problems that arise frequently in computer applications, and to teach principles and

techniques of computational complexity.

OBJECTIVES

 possess intermediate level problem solving and algorithm development skills on the

computer

 be able to analyze algorithms using big-Oh notation

 understand the fundamental data structures such as lists, trees, and graphs

 understand the fundamental algorithms such as searching, and sorting

UNIT-I

Arrays-Single and Multi-dimensional Arrays, Sparse Matrices (Array and Linked

Representation).Stacks Implementing single / multiple stack/s in an Array; Prefix, Infix and

Postfix expressions, Utility and conversion of these expressions from one to another;

Applications of stack; Limitations of Array representation of stack

UNIT-II

Linked Lists Singly, Doubly and Circular Lists (Array and Linked representation); Normal and

Circular, representation of Stack in Lists; Self Organizing Lists; Skip Lists Queues, Array and

Linked representation of Queue, De-queue, Priority Queues

UNIT-III

Trees - Introduction to Tree as a data structure; Binary Trees (Insertion, Deletion , Recursive and

Iterative Traversals on Binary Search Trees); Threaded Binary Trees (Insertion, Deletion,

Traversals); Height-Balanced Trees (Various operations on AVL Trees).

UNIT-IV

Searching and Sorting: Linear Search, Binary Search, Comparison of Linear and Binary Search,

Selection Sort, Insertion Sort, Insertion Sort, Shell Sort, Comparison of Sorting Techniques

UNIT-V

Hashing - Introduction to Hashing, Deleting from Hash Table, Efficiency of Rehash Methods,

Hash Table Reordering, Resolving collusion by Open Addressing, Coalesced Hashing, Separate

Chaining, Dynamic and Extendible Hashing, Choosing a Hash Function, Perfect Hashing,

Function

Suggested Readings

1. Adam Drozdek. (2012). Data Structures and algorithm in C++(3rded.). New Delhi: Cengage

Learning.

2. SartajSahni.(2011). Data Structures, Algorithms and applications in C++(2nded.). New Delhi:

Universities Press.

3. Aaron, M. Tenenbaum., Moshe, J. Augenstein., &YedidyahLangsam.(2009). Data Structures

Using C and C++(2nd ed.). New Delhi: PHI.

4. Robert, L. Kruse.(1999). Data Structures and Program Design in C++. New Delhi: Pearson.

5. Malik, D.S.(2010). Data Structure using C++(2nd ed.). New Delhi: Cengage Learning,.

6. Mark Allen Weiss.(2011). Data Structures and Algorithms Analysis in Java (3rd ed.). New

Delhi:Pearson Education.

7. Aaron, M. Tenenbaum., Moshe, J. Augenstein.,& YedidyahLangsam.(2003). Data Structures

Using Java.New Delhi: PHI.

8. Robert Lafore.(2003). Data Structures and Algorithms in Java(2
nd

 ed.). New Delhi: Pearson/

Macmillan Computer Pub.

9. John Hubbard.(2009). Data Structures with JAVA(2nd ed.). New Delhi: McGraw Hill

Education (India) Private Limited.

10. Goodrich, M., & Tamassia, R.(2013). Data Structures and Algorithms Analysis in Java(4th

ed.). New Delhi: Wiley.

11.Herbert Schildt.(2014).Java The Complete Reference (English)(9th ed.). New Delhi: Tata

McGraw Hill.

12. Malik, D. S., &Nair, P.S. (2003).Data Structures Using Java. New Delhi: Course

Technology.

WEB SITES

http://en.wikipedia.org/wiki/Data_structure

http://www.cs.sunysb.edu/~skiena/214/lectures/

www.amazon.com/Teach-Yourself-Structures-Algorithms

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University Established under Section 3 of UGC Act 1956)

Pollachi Main Road, Eacharani Post, Coimbatore-641 021

DEPARTMENT OF COMPUTER APPLICATIONS

SUBJECT NAME: DATA STRUCTURES

SUBJECT CODE: 17CAU301 SEMESTER: III

LECTURE PLAN

S. No
Lecture

Duration (Hr)
Topics to be Covered Support Materials

UNIT – I

1. 1
Introduction to Arrays, Single & Multi

Dimensional Array
T1:1 to 7

2. 1 Sparse Matrix T1: 51 to 61,W1

3. 1 Array & Linked Representation W1

4. 1
Stack Implementation Single / Multiple stack in

an array
T1: 77 to 86

5. 1 Prefix , Postfix , Infix Expression W1

6. 1
Utility & conversion of these Expression From

one to another
W1

7. 1 Application of stack R1: 97 to 100

8. 1 Limitation of Array Representation of stack W1

9. 1 Revision

 Total no. of Hours planned for Unit – I 9 hrs

S. No
Lecture

Duration (Hr)
Topics to be Covered Support Materials

UNIT – II

1. 1 Introduction to Linked List, Singly T1:106 to 110

2. 1 Doubly, Circular List T1:140 to 154

3. 1 Array & Linked Representation. T1: 140 to 154

4. 1 Normal & circular List W1

5. 1 Representation of Stack in List R1:128 to 134

6. 1 Self Organizing List, Skip List Queue W1

7. 1 Array, Linked Representation of Queue W1

8. 1 De-Queue, Priority Queue T1:112 to 115

9. 1 Revision

 Total no. of Hours planned for Unit – II 9 hrs

S. No
Lecture

Duration (Hr)
Topics to be Covered Support Materials

UNIT – III

1. Trees T1:218 to 223

2. 1
Introduction to Trees-Introduction to Trees as a

Data Structures
T1:218 to 223

3. 1 Binary Trees T1:223 to 230

4. Insertion , Deletion, Recursive T1:223 to 230

5. 1 Iterative Traversal on Binary Search Trees T1: 230 to 238

6. 1 Threaded Binary Trees T1:239 to 242

7. 1 Insertion, Deletion, Traversal W1

8. 1
Height-Balanced Trees Various Operations on

AVL Trees
W1

9. 1 Revision W1

 Total no. of Hours planned for Unit – III 9 hrs

S. No
Lecture

Duration (Hr)
Topics to be Covered Support Materials

UNIT – IV

1. 1 Introduction to Searching, Sorting T1:335 to 340

2. 1 Linear Search, Binary Search T1:340 to 341

3. 1 Comparison of Linear & Binary Search T1:341 to 345

4. 1 Selection sort, , Quick sort T1: 345 to 347

5. 1 Insertion sort T1: 347 to 350

6. 1 Shell Sort T1: 352 to 360

7. 1 Comparison of Sorting Technique T1:382 to 4000

8. 1 Comparison of Sorting Technique Cont… T1: 382 to 400

9. 1 Revision

 Total no. of Hours planned for Unit – IV 9 hrs

S. No
Lecture

Duration (Hr)
Topics to be Covered Support Materials

UNIT – V

1. 1 Hashing-Introduction to Hashing T1: 423 to 425

2. 1 Deleting from Hash Table T1: 423 to 425

3. 1
Efficiency of Re-Hashing Methods, Hash Table

Re-Ordering
T1:456 to 457

4. 1 Re-solving, Collusion by Open Addressing W1

5. 1 Coalesced Hashing W1

6. 1
Separate changing, Dynamic & Extendible

Hashing
W1

7. 1 Choosing a Hash Function W1

8. 1 Perfect Hashing Function W1

9. 1
Recapitalization of Previous Year End Semester

question Paper
-

10. 1 Discussion of ESE question Paper -

11. 1 Discussion of ESE question Paper -

12. 1 Discussion of ESE question Paper -

 Total no. of Hours planned for Unit – V 12hrs

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 1/24

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Under section 3 of UGC Act 1956)

 COIMBATORE – 641 021

 DEPARTMENT OF COMPUTER APPLICATIONS

UNIT-I

Arrays-Single and Multi-dimensional Arrays, Sparse Matrices (Array and Linked Representation).Stacks

Implementing single / multiple stack/s in an Array; Prefix, Infix and Postfix expressions, Utility and

conversion of these expressions from one to another; Applications of stack; Limitations of Array

representation of stack

Overview of Data Structures:

1.Introduction:

* To represent and store data in main memory or secondary memory we need a model. The different

models used to organize data in the main memory are collectively referred as data structures.

* The different models used to organize data in the secondary memory are collectively referred as file

structures.

2. Basic terminologies of Data Organization:

Data:

 The term ‗DATA‘ simply refers to a value or a set of values. These values may represent anything

about something, like it may be Roll No of a student, marks of a student, name of an employee, address

of a person etc.

Data item:

 A data item refers to a single unit of value. For example, roll number, name, date of birth, age,

address and marks in each subject are data items. Data items that can be divided into sub items are

called group items whereas those who cannot be divided into sub items are called elementary items.

For example, an ‗address‘ is a ‗group item‘ as it is usually divided into sub items such as house-number,

street number, locality, city, pin code etc. Likewise, a ‗date‘ can be divided into day, month and year, a

name can be divided into first name and surname. On the other hand, roll number, marks, city, pin code,

etc. are normally treated as ‗elementary items‘.

Entity:

 An entity is something that has a distinct, separate existence, though it need not be a material

existence. An entity has certain ‗attributes‘ or ‗properties‘, which may be assigned values. The values

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 2/24

assigned may be either numeric or non-numeric. For example, a student is an entity. The possible

attributes for a student can be roll number, name, date of birth, sex and class. The possible values for

these attributes can be 32, kanu, 12/03/84, F, 11.

 Entity Set:

 An entity set is a collection of similar entities. For example, students of a class, employees of an

organization etc. forms an entity set.

Record:

 A record is a collection of related data items. For example, roll number, name, date of birth, sex,

and class of a particular student such as 32, kanu, 12/03/84, F, 11. In fact, a record represents an entity.

File:

 A file is a collection of related records. For example, a file containing records of all students in

class, a file containing records of all employees of an organization. In fact, a file represents an entity

set.

Key:

 A key is a data item in a record that takes unique values. only one data item as a key called

primary key. The other key are known as alternate key. Combination of some fields is known as

composite key.

Information:

 The terms data and information are same. Data is collection of values(raw data).Information is

a processed data.

3. Concept of a Data Type:

A Data-Type in programming language is an attribute of a data, which tells the computer (and the

programmer) important things about the concerned data. This involves what values it can take and what

operations may be performed upon it. i.e. it declare:

 Ø Set of values

 Ø Set of operations

 Most programming languages require the programmer to declare the data type of every data object,

and most database systems require the user to specify the type of each data field. The available data

types vary from one programming language to another, and from one database application to another,

but the following usually exist in one form or another:

Integer:

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 3/24

Whole number; a number that has no fractional part. It takes digits as its set of values. The operations

on integers include the arithmetic operations i.e. addition (+), subtraction (-), multiplication (*), and

division (/).

Floating-point: A number with a decimal point. For example, 3 is an integer, but .5 is a floating-point

number.

Character (text): Readable text.

 3.1 Primitive Data-Type:

 A primitive data type is also called as basic data-type or built-in data type or simple data-type.

The primitive data-type is a data type for which the programming language provides built-in support;

i.e. you can directly declare and use variables of these kinds. You need not to define these data-types

before use. So we can also say that primitive data-type is data type that is predefined. These primitive

data types may be different for different programming languages. For example, C programming

language provides built-in support for integers (int, long), reals (float, double) and characters (char).

3.2 Abstract Data-Type:

 In computing, an abstract data type (ADT) is a specification of a set of data and the set of

operations that can be performed on the data; and this is organized in such a way that the specification

of values and operations on those values are separated from the representation of the values and the

implementation of the operations. For example, consider ‗list‘ abstract data type. The primitive

operations on a list may include adding new elements, deleting elements, determining number of

elements in the list etc. Here, we are not concerned with how a list is represented and how the above-

mentioned operations are implemented. We only need to know that it is a list whose elements are of

given type, and what can we do with the list.

3.3 Polymorphic Data-types:

 A heterogeneous list is one that contains data element of variety of data types. It is desirable to

create a data type that is independent of the values stored in the list. This kind of data type is known as

polymorphic data types.

4. Data Structure Defined:

 In computer science, a data structure is a particular way of organizing data in a computer so that

it can be used efficiently.

 The study of data structures includes:

 * Logical description of data structures.

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Algorithmic_efficiency

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 4/24

 * Implementation of data structures.

 * Quantitative analysis of the data structures.

5.Description of various Data Structures:

The various data structures are divided into following categories:

Linear Data-Structures:

 A data structure whose elements form a sequence, and every element in the structure has a

unique predecessor and unique successor. Examples of linear data structures are arrays, link-lists,

stacks and queues.

Non-linear Data-Structures:

 A data structure whose elements do not form a sequence, there is no unique predecessor or

unique successor. Examples of non-linear data structures are trees and graphs.

5.1. Arrays:

 An array is a collection of variables of the same type that are referred to by a common name.

Arrays offer a convenient means of grouping together several related variables, in one dimension or

more dimensions:

 • product part numbers:

 int part_numbers[] = {123, 326, 178, 1209};

 One-Dimensional Arrays:

 A one-dimensional array is a list of related variables. The general form of a one-dimensional

array declaration is:

 type variable_name[size]

• type: base type of the array,determines the data type of each element in the array

• size: how many elements the array will hold

• variable_name: the name of the array

Examples:

int sample[10];

float float_numbers[100];

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 5/24

char last_name[40];

Two-Dimensional Arrays:

 A two-dimensional array is a list of one-dimensional arrays.To declare a two-dimensional integer

array two_dim of size 10,20 we would write:

int matrix[3][4];

Multidimensional Arrays:

 C++ allows arrays with more than two dimensions.

 The general form of an N-dimensional array declaration is:

 type array_name [size_1] [size_2] ... [size_N];

For example, the following declaration creates a 4 x 10 x 20 character array, or a matrix of strings:

 char string_matrix[4][10][20];

This requires 4 * 10 * 20 = 800 bytes.

If we scale the matrix by 10, i.e. to a 40 x 100 x 20 array, then 80,000 bytes are needed.

5.2 Linked List:

A linked list is a data structure consisting of a group of nodes which together represent a sequence.

Under the simplest form, each node is composed of a data and a reference (in other words, a link) to the

next node in the sequence; more complex variants add additional links. This structure allows for

efficient insertion or removal of elements from any position in the sequence.

A linked list whose nodes contain two fields: an integer value and a link to the next node. The last node

is linked to a terminator used to signify the end of the list.

Singly linked list

Singly linked lists contain nodes which have a data field as well as a next field, which points to the

next node in line of nodes.

A singly linked list whose nodes contain two fields: an integer value and a link to the next node

Doubly linked list

In a doubly linked list, each node contains, besides the next-node link, a second link field pointing to

the previous node in the sequence. The two links may be called forward(s) and backwards, or next

and prev(previous).

http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Node_(computer_science)
http://en.wikipedia.org/wiki/Reference_(computer_science)

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 6/24

A doubly linked list whose nodes contain three fields: an integer value, the link forward to the next

node, and the link backward to the previous node

Circular list

In the last node of a list, the link field often contains a null reference, a special value used to indicate

the lack of further nodes. A less common convention is to make it point to the first node of the list; in

that case the list is said to be 'circular' or 'circularly linked'; otherwise it is said to be 'open' or 'linear'.

A circular linked list

In the case of a circular doubly linked list, the only change that occurs is that the end, or "tail", of the

said list is linked back to the front, or "head", of the list and vice versa.

5.3 Stack:

 A stack is a basic data structure that can be logically thought as linear structure represented by a real

physical stack or pile, a structure where insertion and deletion of items takes place at one end called top

of the stack. The basic concept can be illustrated by thinking of your data set as a stack of plates or

books where you can only take the top item off the stack in order to remove things from it. This

structure is used all throughout programming.

 The basic implementation of a stack is also called a LIFO (Last In First Out) to demonstrate the

way it accesses data, since as we will see there are various variations of stack implementations.

 There are basically three operations that can be performed on stacks . They are 1) inserting an item

into a stack (push). 2) deleting an item from the stack (pop). 3) displaying the contents of the

stack(pip).

5.4 Queues:

 A queue is a basic data structure that is used throughout programming. You can think of it as a

http://en.wikipedia.org/wiki/Node_(computer_science)
http://en.wikipedia.org/wiki/Null_pointer#Null_pointer

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 7/24

line in a grocery store. The first one in the line is the first one to be served. Just like a queue. A queue is

also called a FIFO (First In First Out) to demonstrate the way it accesses data.

5.5 Trees:

 A tree is a non-linear data structure that consists of a root node and potentially many levels of

additional nodes that form a hierarchy. A tree can be empty with no nodes called the null or empty tree

or a tree is a structure consisting of one node called the root and one or more subtrees.

 A binary tree is a tree data structure in which each node has at most two children (referred to as the

left child and the right child). In a binary tree, the degree of each node can be at most two. Binary trees

are used to implement binary search trees and binary heaps, and are used for efficient searching and

sorting.

5.6 Heaps:

 A heap is a specialized tree-based data structure that satisfies the heap property: If A is a parent

node of B then the key of node A is ordered with respect to the key of node B with the same ordering

applying across the heap. Either the keys of parent nodes are always greater than or equal to those of

the children and the highest key is in the root node (this kind of heap is called max heap) or the keys of

parent nodes are less than or equal to those of the children and the lowest key is in the root node (min

heap).

 max heap

5.7 Graphs:

 A graph data structure consists of a finite (and possibly mutable) set of ordered pairs, called edges

or arcs, of certain entities called nodes or vertices. As in mathematics, an edge (x,y) is said to point or

go from x to y. The nodes may be part of the graph structure, or may be external entities represented by

integer indices or references.

http://en.wikipedia.org/wiki/Tree_(data_structure)
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Child_node
http://en.wikipedia.org/wiki/Binary_search_tree
http://en.wikipedia.org/wiki/Binary_heap
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Sorting_algorithm
http://en.wikipedia.org/wiki/Tree_(data_structure)
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Node_(computer_science)
http://en.wikipedia.org/wiki/Set_(computer_science)
http://en.wikipedia.org/wiki/Reference_(computer_science)

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 8/24

A labeled graph of 6 vertices and 7 edges.

5.8 Hash Table:

 A hash table (also hash map) is a data structure used to implement an associative array, a structure

that can map keys to values. A hash table uses a hash function to compute an index into an array of

buckets or slots, from which the correct value can be found.

 Ideally, the hash function will assign each key to a unique bucket, but this situation is rarely

achievable in practice (usually some keys will hash to the same bucket). Instead, most hash table

designs assume that hash collisions—different keys that are assigned by the hash function to the same

bucket—will occur and must be accommodated in some way.

A small phone book as a hash table.

6.Common Operation on data structures:

 The following the main operations that can be performed on the data structures :

1. Traversing : It means reading and processing the each and every element of a data structure at

least once.

2. Inserting : It means inserting a value at a specified position in a data structure, this is also

know as insertion.

3. Deletion : It means deleting a particular value from a specified position in a data structure.

4. Searching : It means searching a particular data in created data structure.

5. Sorting : It means arranging the elements of a data structure in a sequential manner i.e. either in

ascending order or in descending order.

6. Merging: Combining the elements of two similar sorted structures into a single structure.

 7.Program Development Life Cycle:

http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Unique_key
http://en.wikipedia.org/wiki/Value_(computer_science)
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Collision_(computer_science)

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 9/24

1. Analyze the problem Precisely define the problem to be solved, and write program

specifications – descriptions of the program‘s inputs, processing, outputs, and user interface.

2. Design the program Develop a detailed logic plan using a tool such as pseudocode,

flowcharts, object structure diagrams, or event diagrams to group the program‘s activities into

modules; devise a method of solution or algorithm for each module; and test the solution

algorithms.

3. Code the program Translate the design into an application using a programming lanaguage

or application development tool by creating the user interface and writing code; include internal

documentation – comments and remarks within the code that explain the purpose of code

statements.

 4 .Test and debug the program Test the program, finding and correcting errors (debugging)

until it is error free and contains enough safeguards to ensure the desired results.

 5. Formalize the solution Review and, if necessary, revise internal documentation; formalise

and complete end-user (external) documentation

6. Maintain the program Provide education and support to end users; correct any

unanticipated errors that emerge and identify user-requested modifications (enhancements).

Once errors or enhancements are identified, the program development life cycle begins again at

Step one.

8.Introduction to Algorithms:

 An algorithm is the step-by-step solution to a certain problem. An algorithm can be

expressed in English like language, called ‗pseudocode‘, in a programming language, or in the form of

a ‗flowchart‘. Every algorithm must satisfy the following criteria:

 Input:There are zero or more values, which are externally supplied.

 Output: At least one value is produced.

 Definiteness: Each step must be clear and unambiguous.

 Finiteness: If we trace the steps of an algorithm, then for all cases, the algorithm must terminate after

a finite number of steps.

 Effectiveness: Each step must be sufficiently basic that it can in principle be carried out by a person

using only paper and pencil. We use algorithms every day. For example, a recipe for baking a cake is

an algorithm. Most programs, with the exception of some artificial intelligence applications, consist of

algorithms.

8.1. A Typical Example:

Simple Example of algorithm:

One of the simplest algorithms is to find the largest number out of given three number. Then we can

write an algorithm like this:

Algorithm MaxFind:

Let a, b and c be three integer numbers. This algorithm will find the maximum numbers out of these

three.

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 10/24

Step 1: Begin

Step 2:read a, b, c

Step 3:If (a > b) then

Step 3.1 :if (a > c) then

Step 3.1.1:write: a +‖ is largest‖

Step 3.1.2:else

Step 3.1.3:write: c + ―is largest‖

Step 3.1.4:end if

Step 3.2 :else

Step 3.2.1:if (b > c) then

Step 3.2.2:write: b + ―is largest‖

Step 3.2.3:else

Step 3.2.4:write: c + ―is largest‖

Step 3.2.5:end if

Step 3.3 :end if

Step 4: END.

8.2. Algorithm Description:

 As we know, algorithm is just step by step solution of a given problem written in simple English.

But the standard written algorithms follow some convention. It must be noted that an efficient

algorithm is one, which is capable of giving the solution of the problem using minimum resources of

the system such as memory used and processor‘s time. The format for presentation of the algorithms is

language free, well structured and detailed. It will enable the readers to translate it into a computer

program using any high-level language such as FORTRAN, Pascal or C/C++.

The format for the formal presentation of the algorithm consists of two parts:

 • The first part describes the input data, the purpose of the algorithm and identifies the variables

used in the algorithms.

 • The second part is composed of sequence of instruction that lead to the solution of the problem.

The following description summarizes certain conventions used in presenting the above algorithm.

Comments:

 Each instruction may be followed by a comment. The comments begin with a double slash, and

explain the purpose of the instruction, such as:

// this is sample comment

Appropriate use of comments enhances the readability of the algorithm, which in turn helps in

maintaining the algorithm.

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 11/24

Variable Names:

 For variable names, we can use any descriptive names like max, loc, etc. For variable names, we

will use lowercase letters such as ‗max‘, ‗loc‘ etc. whereas for defined constants, if any, we will use

uppercase letters.

Assignment Statement:

 The assignment statement will use the notation as

 Set max := a[i]

to assign the value of a[i] to max. The right hand side of the assignment statement can have a value, a

variable or an expression.

Input/Output:

 Data may be inputted and assigned to variables by means of a ‗read‘ statement with the following

format:

 read: variable-list

Where the variable-list consists one or more variables separated by comma.Similarly, the data held by

the variables and the messages, if any, enclosed in double quotes can be output by means of a write

statement with the following

format:

write: message and/or variable-list (or)

print: message and/or variable list

where the message and the variables in the variable-list are separated by comma.

Execution of Instructions:

 The instructions in the algorithm are usually executed one after the other as they appear in the

algorithm. However, there may be instances when some instructions are skipped or some instructions

may be repeated as a result of certain conditions.

Completion of the Algorithm:

 The algorithm is completed with the execution of the last instruction. However, the algorithm can

be terminated at any intermediate state using the exit instruction.With the help of these conventions,

one can write the algorithm easily in the standard fashion.

 9. Structured Programming Constructs:

In structured programming, the program is divided into small parts (functions) and each part performs a

specific job. The main importance is on functions rather than data. The same data can be used and

manipulated by several functions and such type of data is made global.

Structured Programming Constructs:
1. Sequence Control Structure (Sequence Logic or Sequential Flow).

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 12/24

2. Selection Control Structure (Selection Logic or Conditional Flow).

3. Repetition Control Structure (Iteration Logic or Repetitive Flow).

1. Sequence Control Structure (Sequence Logic or Sequential Flow)

If nothing is specified then the modules the executed in the sequence in which they are written. Thus in

it the modules are executed one after the other.

The sequence control structure is shown below:

Algorithm

 .

 .

 .

Module A

Module B

Module C

 .

 .

 .

2. Selection Control Structure (Selection Logic or Conditional Flow)

 In it there are various conditions on the basis of which one module is selected out of several given

modules. The structures which implement this logic are called conditional structures. The conditional

structures can be divided into following categories:

1. Single Alternative: This structure has the following form:

If condition, then:

 [Module A]

[End of If structure]

According to this if the condition is true then module A is executed. Otherwise, module A is skipped.

Its flowchart is:

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 13/24

2. Double Alternative: This structure has the following form:

If condition, then:

 [Module A]

Else:

 [Module B]

[End of If structure]

3. Multiple Alternative: This structure has the following form:

If condition (1), then:

 [Module A1]

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 14/24

Else If condition (2), then:

 [Module A2]

 .

 .

 .

Else If condition (n), then:

 [Module An]

Else:

 [Module B]

[End of If structure]

According to this only one of the modules will be executed. If condition 1 is true then module A1 will

be executed. Otherwise condition 2 will be checked. If condition 2 is true then module A2 will be

executed. And so on. If none of the conditions is true then module B will be executed. Its flowchart is:

4. Repetition Control Structure (Iteration Logic or Repetitive Flow): In it loops are implemented.

Loop is used to implement those statements which are to be repeated again and again until some

condition is satisfied. It implements while and for loops. Each of these begin with Repeat statement.

For example is case of Repeat-while structure:

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 15/24

Repeat steps 1 to n while condition:

 [Steps]

[End of Repeat-while structure]

Its flowchart is:

10.Algorithm Complexity:

 As an algorithm is a sequence of steps to solve a problem, there may be more than one

algorithm to solve a problem. So we have to choose one algorithm as a solution. Also we would like to

choose best algorithm in terms of resources used. This needs to analyze each algorithm deeply.

Analyzing an algorithm is to determine the amount of resources (such as time and storage) necessary to

execute it.

 Algorithm analysis helps us to choose the best algorithm for a given application. Two main

factors on which the performance of a program depends are the amount of computer memory

consumed and the time required to execute it successfully. There are two ways in which we can analyze

the performance of an algorithm. One of them is to in carry out experiments with the algorithm by

actually executing it and recording the space and time required. This method can be used only after

successful implementation.

 Another method, which can be used, is the analytical method. We can approximately find out

the space and time required before implementation. Implementing each algorithm and then recording

their complexity is not a practical way, as there may be thousands of solution (so, algorithms) of a

given problem. So, algorithm should be compared at the pseudocode stage, i.e. by analytical method.

 The choice of particular algorithm depends on following considerations:

 Ø Performance requirements, i.e., time complexity

 Ø Memory requirements, i.e., space complexity

 Ø Programming requirements

 Since programming requirements are difficult to analyze precisely, complexity theory

concentrate on performance and memory requirements. Performance requirements are usually more

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 16/24

critical than memory requirements; hence, in general, it is not necessary to worry about memory unless

they grow faster than performance requirements. Therefore, in general, the algorithms are analyzed

only on the basis of performance requirements, i.e., running-time efficiency.

 Space Complexity:

 The space complexity of an algorithm is the amount of memory it needs to run to completion.

Some of the reasons for studying space complexity are:

 • If the program is to run on multi-user system, it may be required to specify the amount

of memory to be allocated to the program.

 • We may be interested to know in advance that whether sufficient memory is available

to run the program.

 • There may be several possible solutions with different space requirements.

 • Can be used to estimate the size of the largest problem that a program can solve.

In general, the total space needed by a program can be divided in two parts:

1. A static part, which is independent of the instance characteristics. This includes the

space required to store the code. Again, the space required to store the code is

compiler and machine dependent. Other components are constants, variables, complex

data types etc.

2. A dynamic part, which consists of components whose memory

requirements,depends on the instance of the problem being solved. Dynamic memory

allocations and recursion are few components of this type. The factors, which can help

us in determining the size of the problem instance, are number of inputs, outputs etc.

Time Complexity:

 Time complexity of a program is the amount of time required to execute successfully. Some of

the reasons for studying time complexity are:

 • We may be interested to know in advance that whether the program will provide a

satisfactory real-time response. For example, an interactive program, such as an editor, must provide

such a response. If it takes even a few seconds to move the cursor one page up or down, it will not be

acceptable to the user.

 • There may be several possible solutions with different time requirements.

 To measure the time complexity accurately, we can count the all sort of operations performed in

an algorithm. If we know the time for each one of the primitive operations performed on a given

computer, we can easily compute the time taken by an algorithm to complete its execution. This time

will vary from system to system.

 A more acceptable approach will be to estimate the execution time of an algorithm irrespective

of the computer on which it will be used. Hence, the more reasonable

approach is to identify the key operations and count such operations performed till the program

completes its execution. A key operation in our algorithm is an operation that takes maximum time

among all possible operations in the algorithm The time complexity can now be expressed as a function

of a number of key operations performed.

Time-space Trade-off:

 The best algorithm, hence best program, to solve a given problem is one that requires less

space in memory and takes less time to complete its execution. But in practice, it is not always possible

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 17/24

to achieve both of these objectives. Also, there may be more than one approach to solve a same

problem. One such approach may require more space but takes less lime to complete its execution,

while the other approach requires less space but takes more time to complete its execution. Thus,we

may have to sacrifice one at the cost of the other. That is what we can say that there exists a time-space

trade among algorithms.

 Therefore, if space is our constraint, then we have to choose a program that requires less

space at the cost of more execution time. On the other hand, if time is our constraints such as in real-

time systems, we have to choose a program that takes less time to complete its execution at the cost of

more space.

 In the analysis of algorithms, we are interested in the ‗average case‘, the amount of time a

program might be expected to take on typical input data, and in the ‗worst case‘, the amount of time a

program would take on the worst possible input configuration.

 Expressing Space and Time Complexity:

 The space and/ or time complexity is usually expressed in the asymptotic notation. The

asymptotic notation is nothing but to assume the value of a function. In this notation the complexity is

usually expressed in the form of a function f(n), where ‗n‘ is the input size for a given instance of the

problem being solved. Expressing space and/or time complexity as a function f(n) is important because

of following reasons:

 • We may be interested to predict the rate of growth of complexity as the size of the problem

increases.

 • To compare the complexities of two or more algorithms solving the same problem in order to

find which is more efficient. Time and space complexity is measured in terms of asymptotic notations.

For example, let us consider a program which stores ‗n‘ elements:

void store()

{

int i, n;

printf(―Enter the number of elements ―);

scanf(―%d‖, &n);

for(i=0, i<n, i++)

{

//store the elements

}

}

 In the above program space is required to store the executable code and to store the ‗n‘

number of elements. The memory that is required to store the executable code is static. The

memory required to store the ‗n‘ elements depends on the value of ‗n‘. The time required to

execute the code also depends on the value of ‗n‘. In the above program we have two

executable statements printf and scanf. Let us assume there are ‗x‘ statements in the for loop.

Then the time required to execute the program will be equal to x*n+2. ‗n‘ is the instance

characteristics. At last this calculated time can be expressed in one of the asymptotic notation in

a function form f(n).

 The most commonly used asymptotic notations are: Big Oh (O), Big Omega (Ω), and

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 18/24

Big Theta (Θ).In these notations we use some terms like upper bound, lower bound etc. Upper

bound will give the maximum time or space required for a program. Lower bound will give the

minimum time/ space required. The most important notation used to express this function ‗f(n)‘

is Big Oh notation, which provides the upper bound for the complexity, and is described in next

section.Since in modern computers, the memory is not a severe constraint; therefore, our

analysis of algorithms will be on the basis of time complexity.

 11.Big Oh Notation:

 The algorithm complexity can be determined ignoring the implementation dependent

factors. This is done by eliminating constant factors in the analysis of the algorithms. Basically,

these are the constant factors that differ from computer to computer. Clearly, the complexity

function f(n) of an algorithm increases as ‗n‘increases. It is the rate of ‗f(n)‘ that we want to

examine.

Big-O is the formal method of expressing the upper bound of an algorithm's running time. It's a

measure of the longest amount of time it could possibly take for the algorithm to complete.

Based on Big Oh notation, the algorithms can be categorized as follows:

• Constant time (O(1)) algorithms

• Logarithmic time (O(log2n)) algorithms

• Linear time (O(n)) algorithms

• Polynomial time (O(nk), for k>1) algorithms

• Exponential time (O(kn), for k>1) algorithms

Many algorithms are of O(n log2n)

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 19/24

 Rate of growth of some standard functions

Observe that the logarithmic function log2n grows most slowly, whereas the exponential

function 2n grows most rapidly, and the polynomial function nk growsaccording to the

exponent ‗k‘.

Limitations of Big-Oh Notation:

 Big Oh notation has two basic limitations:

 • It contains no consideration of programming efforts

 • It masks (hides) potentially important constants.

 As an example of later limitation, imagine two algorithms, one using 500000n2 time, and

the other n3 time. The first algorithm is O(n2), which implies that it will take less time than the

other algorithm which is O(n3). However, the second algorithm will be faster for n<500000,

and this would be faster for many applications.

12.Arrays & Matrices:

Introduction:

An array is a data structure. It is a collection of similar type of (homogeneous) data elements and

is represented by a single name.

It has the following features:

1. The elements are stored in continuous memory locations.

2. The n elements are numbered by consecutive numbers i.e. 1, 2, 3, , n.

E.g.

An array STUDENT containing 8 records is shown below:

STUDENT

Ritika

Gurpreet

Anupama

Hanish

Harsh

Navdeep

Shalini

Kapil

1

2

3

4

5

6

7

8

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 20/24

13.Linear Arrays:

 The simplest type of data structure is a linear array. This is also called one-dimensional array. In

computer science, an array data structure or simply an array is a data structure consisting of a

collection of elements (values or variables), each identified by at least one array index or key. An array

is stored so that the position of each element can be computed from its index tuple by a mathematical

formula.

For example, an array of 10 integer variables, with indices 0 through 9, may be stored as 10 words at

memory addresses 2000, 2004, 2008, … 2036, so that the element with index i has the address 2000 +

4 × i.[4]

 Because the mathematical concept of a matrix can be represented as a two-dimensional grid, two-

dimensional arrays are also sometimes called matrices. In some cases the term "vector" is used in

computing to refer to an array, although tuples rather than vectors are more correctly the mathematical

equivalent. Arrays are often used to implement tables, especially lookup tables; the word table is

sometimes used as a synonym of array.

 Arrays are among the oldest and most important data structures, and are used by almost every

program. They are also used to implement many other data structures, such as lists and strings. They

effectively exploit the addressing logic of computers. In most modern computers and many external

storage devices, the memory is a one-dimensional array of words, whose indices are their addresses.

Processors, especially vector processors, are often optimized for array operations.

 Arrays are useful mostly because the element indices can be computed at run time. Among other

things, this feature allows a single iterative statement to process arbitrarily many elements of an array.

For that reason, the elements of an array data structure are required to have the same size and should

use the same data representation. The set of valid index tuples and the addresses of the elements (and

hence the element addressing formula) are usually,[3][5] but not always,[2] fixed while the array is in

use.

 The term array is often used to mean array data type, a kind of data type provided by most high-

level programming languages that consists of a collection of values or variables that can be selected by

one or more indices computed at run-time. Array types are often implemented by array structures;

however, in some languages they may be implemented by hash tables, linked lists, search trees, or other

data structures.

 The term is also used, especially in the description of algorithms, to mean associative array or

"abstract array", a theoretical computer science model (an abstract data type or ADT) intended to

capture the essential properties of array.

14.Two dimensional Arrays:

 Implementing a database of information as a collection of arrays can be inconvenient when we

have to pass many arrays to utility functions to process the database. It would be nice to have a single

data structure which can hold all the information, and pass it all at once.

 2-dimensional arrays provide most of this capability. Like a 1D array, a 2D array is a collection

of data cells, all of the same type, which can be given a single name. However, a 2D array is organized

as a matrix with a number of rows and columns.

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Value_(computer_science)
http://en.wikipedia.org/wiki/Variable_(programming)
http://en.wikipedia.org/wiki/Tuple
http://en.wikipedia.org/wiki/Word_(data_type)
http://en.wikipedia.org/wiki/Array_data_structure#cite_note-4
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Tuple
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Table_(information)
http://en.wikipedia.org/wiki/Lookup_table
http://en.wikipedia.org/wiki/List_(computing)
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/External_storage
http://en.wikipedia.org/wiki/External_storage
http://en.wikipedia.org/wiki/External_storage
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Vector_processor
http://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
http://en.wikipedia.org/wiki/Statement_(programming)
http://en.wikipedia.org/wiki/Array_data_structure#cite_note-garcia-3
http://en.wikipedia.org/wiki/Array_data_structure#cite_note-garcia-3
http://en.wikipedia.org/wiki/Array_data_structure#cite_note-garcia-3
http://en.wikipedia.org/wiki/Array_data_structure#cite_note-andres-2
http://en.wikipedia.org/wiki/Array_data_type
http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Search_tree
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Theoretical_computer_science
http://en.wikipedia.org/wiki/Abstract_data_type

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 21/24

How do we declare a 2D array?

 Similar to the 1D array, we must specify the data type, the name, and the size of the array. But the

size of the array is described as the number of rows and number of columns. For example:

 int a[MAX_ROWS][MAX_COLS];

This declares a data structure that looks like:

How do we access data in a 2D array?

 Like 1D arrays, we can access individual cells in a 2D array by using subscripting expressions

giving the indexes, only now we have two indexes for a cell: its row index and its column index. The

expressions look like:

 a[i][j] = 0; or x = a[row][col];

We can initialize all elements of an array to 0 like:

 for(i = 0; i < MAX_ROWS; i++)

 for(j = 0; j < MAX_COLS; j++)

 a[i][j] = 0;

15.Matrices:

 A matrix is a rectangular array of numbers or other mathematical objects, for which operations

such as addition and multiplication are defined Most commonly, a matrix over a field F is a rectangular

array of scalars from F.Most of this article focuses on real and complex matrices, i.e., matrices whose

elements are real numbers or complex numbers, respectively. More general types of entries are

discussed below. For instance, this is a real matrix:

The numbers, symbols or expressions in the matrix are called its entries or its elements. The horizontal

and vertical lines of entries in a matrix are called rows and columns, respectively.

http://en.wikipedia.org/wiki/Number
http://en.wikipedia.org/wiki/Matrix_(mathematics)#Basic_operations
http://en.wikipedia.org/wiki/Matrix_(mathematics)#Matrix_multiplication
http://en.wikipedia.org/wiki/Field_(mathematics)
http://en.wikipedia.org/wiki/Real_numbers
http://en.wikipedia.org/wiki/Complex_numbers
http://en.wikipedia.org/wiki/Matrix_(mathematics)#More_general_entries

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 22/24

16.Special Matrices:

Triangular Matrices

Definition 1 Given an n × n matrix A

 • A is called upper triangular if all entries below the main diagonal are 0.

 • A is called lower triangular if all entries above the main diagonal are 0.

 • A is called diagonal if only the diagonal entries are non-zero.

If D is a diagonal matrix with diagonal entries d1 , d2 , . . . dn , we may write it as diag(d1 , d2 , . . . ,

dn)

1. Upper Triangular

2. Lower Triangular

3. Diagonal

1. A matrix in REF is upper triangular.

2. The transpose of an upper triangular matrix is lower triangular and visa versa.

3. The product of two Upper triangular matricies is upper triangular.

4. The product of two Lower triangular matricies is Lower triangular.

5. The product of two Diagonal matricies is Diagonal.

6. The transpose of a Diagonal matrix is Diagonal.

 A diagonal, upper or lower triangular matrix is invertable if and only if its diagonal

entries are all non-zero.

 17.Sparse Matrices:

 In numerical analysis, a sparse matrix is a matrix populated primarily with zeros as elements

of the table. By contrast, if a larger number of elements differ from zero, then it is common to refer to

the matrix as a dense matrix. The fraction of zero elements (non-zero elements) in a matrix is called

the sparsity (density).

 Conceptually, sparsity corresponds to systems which are loosely coupled. Consider a line of

balls connected by springs from one to the next; this is a sparse system. By contrast, if the same line of

balls had springs connecting each ball to all other balls, the system would be represented by a dense

matrix. The concept of sparsity is useful in combinatorics and application areas such as network

theory, which have a low density of significant data or connections.

Huge sparse matrices often appear in science or engineering when solving partial differential equations.

When storing and manipulating sparse matrices on a computer, it is beneficial and often necessary to

use specialized algorithms and data structures that take advantage of the sparse structure of the matrix.

Operations using standard dense-matrix structures and algorithms are relatively slow and consume

large amounts of memory when applied to large sparse matrices. Sparse data is by nature easily

compressed, and this compression almost always results in significantly less computer data storage

usage. Indeed, some very large sparse matrices are infeasible to manipulate using standard dense

algorithms.

http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Combinatorics
http://en.wikipedia.org/wiki/Network_theory
http://en.wikipedia.org/wiki/Network_theory
http://en.wikipedia.org/wiki/Network_theory
http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Computer_memory
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Computer_data_storage

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 23/24

The above sparse matrix contains

only 9 nonzero elements of the 35,

with 26 of those elements as zero

Example of sparse matrix

 [11 22 0 0 0 0 0]

 [0 33 44 0 0 0 0]

 [0 0 55 66 77 0 0]

 [0 0 0 0 0 88 0]

 [0 0 0 0 0 0 99]

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 24/24

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Under section 3 of UGC Act 1956)

COIMBATORE – 641 021

DEPARTMENT OF COMPUTER APPLICATIONS

POSSIBLE QUESTIONS

UNIT-I

 2 MARKS:

1. Write about the Basic Terminology of Data Structures?

2. Define Array with example.

3. Define Data Structure.

4. Define Stack..

5. What is a Queue.

 6 MARKS:

 1. Define Data Structure. Explain in detail about various data structures.

 2. Explain about Single and Multidimensional array with example.

 3. Define Sparse Matrix and how it is represented in array and Linked List.

 4. Elaborate about Prefix, Infix and Postfix Expressions with example.

S.No QUESTION OPT 1 OPT 2 OPT 3 OPT 4 ANSWER

1

The logical or mathematical model of a particular

data organization is called as_____________ Data Structure

Software

Engineering Data Mining

Data Ware

Housing Data Structure

2

An algorithms _____________ is measured in

terms of computing time ad space consumed by

it. performance effectiveness finiteness definiteness performance

3

Which of the following is not structured data

type? Arrays Union. Queue Linked list. Union.

4

Which of the following is a valid non - linear

data structure. Stacks Trees Queues Linked list. Trees

5

Combining elements of two _______ data

structure into one is called Merging Similar Dissimilar Even Un Even Similar

6

Data structures are classified as ____________

data type. User Defined Abstract

Primitive &

Non

Primitive

predefined

only

Primitive & Non

Primitive

7 _______ are the commonl used ordered list. Graphs Trees

Stack and

Queues List

Stack and

Queues

8

Data structure can be classified as ________ data

type based on relationship with complex data

element.

Linear & Non

Linear Linear Non Linear

None of the

above

Linear & Non

Linear

9

A data structure whose elements forms a

sequence of ordered list is called as __________

data structure. Non Linear Linear. Primitive

Non

Primitive Linear.

UNIT I

Objective Type Questions

Karpagam Academy of Higher Education

Department of Computer Applications

 Subject : Data Structures

 Class: II BCA Subject code: 17CAU301

10

A data structure which represents hierarchical

relationship between the elements are called as

___________ data structure. Linear Primitive. Non Linear

Non

Primitive Non Linear

11

A data structure, which is not composed of other

data structure, is called as ___________ data

structure. Linear Non Primitive Non Linear Primitive Primitive

12

Data structures, which are constructed from one

or more primitive data structure, are called as

___________ data structure. Non Primitive Primitive. Non Linear Linear Non Primitive

13

__________ is the term that refers to the kinds of

data that variables may hold in a programming

language. data type data structure data Object data data type

14

The _______________ model of a particular data

organization is called as Data Structure.

software

Engineering

logical or

mathematical Data Mining

Data Ware

Housing

logical or

mathematical

15

The design approach where the main tast is

decomposed into subtasks and each subtask is

further decomposed into simpler solutions is

called ________ top down approach

bottom up

approach

hierarchical

approach

merging

approach

top down

approach

16

________ is a sequence of instructions to

accomplish a particular task Data Strucuture Algorithm Ordered List Queue Algorithm

17

_______ criteria of an algorithm ensures that the

algorithm terminate after a particular number of

steps. effectiveness finiteness definiteness particular finiteness

18

An algorithm must produce __________

output(s) many only one atleast one zero or more atleast one

19

_______ criteria of an algorithm ensures that the

algorithm must be feasible. effectiveness finiteness definiteness infinite effectiveness

20

_______ criteria of an algorithm ensures that

each step of the algorithm must be clear and

unambiguous. effectiveness finiteness definiteness infinite definiteness

21

The time factor whrn determining the efficiency

of the algorithm is measured by

counting micro

seconds

counting the

number of key

operatiuons

counting the

number of

statements

counting the

kilobyte of

the algorithm

counting the

number of key

operatiuons

22

Which of the following data strucutre is linear

data structure Trees Graphs Arrays Union Arrays

23

The operation of processing each element in a

list is called sorting merging Inserting Traversal Traversal

24

Finding the location of the element with a given

value is Traversal Search Sort Merging Search

25

Which of the following data structure are

indexed structures? Linear array Linked list

Stack and

Queues queue Linear array

26 Size of the int data type is 2 byte 4 byte

compiler

dependent

varies all the

time

compiler

dependent

27

Each array declaration need not give, implicitely

or explicitely the information about name of array

data type of

array

first data

from the set

to be stored

index set of

array

first data from

the set to be

stored

28

Which of the following data strucutre cannot

store the non-homogeneous data elements? Arrays Records Pointers Union Arrays

29

Which of the following data strucutre can only

store the homogeneous data elements? Union Arrays Pointers Strucutres Arrays

30

Which of the following data strucutre is linear

type? Strings Trees Graph B Tree Strings

31 An algorithm that directly calls itself is called Sub algorithm Recursion

polish

notation

traversal

algorithm Recursion

32 What term is used to describe O(N) algorithm? constant linear logarithmic quadratic linear

33

Which of these is the correct Big O expression

for 1 + 2 + 3 + …. + n ? O(log n) O(n log n) O(n) O(n2) O(n2)

34

Which of these is the correct Big O expression

for 35n + 6? O(log n) O(n log n) O(n) O(n2) O(n)

35 Find out the complexity of x = 3*y + 2; z=z+1; O(log n) O(n log n) O(n) O(1) O(1)

36

Representation of data structure in memory is

known as: recursive

abstract data

type

storage

structure file structure abstract data type

37

If the address of A[1][1] and A[2][1] are 1000

and 1010 respectively and each element

occupies 2 bytes then the array has been stored in

_________ order.

row major column major matrix major tuple major row major

38

When the maximum entries of (m*n) matrix are

zeros then it is called as _______. Transpose matrix Sparse Matrix

Inverse

Matrix

tridiagonal

matrix Sparse Matrix

39

A matrix of the form (row, col, n) is otherwise

known as _______. Transpose matrix Inverse Matrix

Sparse

Matrix

Diagonal

matrix Sparse Matrix

40

A list of finite number of homogeneous data

elements are called as _________ Stacks Records Arrays Linked list. Arrays

41

No of elements in an array is called the

_________ of an array. Structure Height Width Length. Length.

42 The size or length of an array = __________. UB – LB + 1 LB + 1 UB - LB UB – 1 UB – LB + 1

43

Searching is the Process of finding the ________

of the element with the given value or a record

with the given key. Place Location Value Operand Location

44

Length of an array is defined as ___________ of

elements in it. Structure Height Size Number Number

45 ________ is a set of pairs, index and value. stack queue Arrays Set Arrays

46

47 Sum of terms of the form ax
e
 is called _______. Array Matrix Expression Polynomial Polynomial

48 ________is a collection of data and links. Links Node List Item Node

49 Each item in a node is called a_______. Field Data item Pointer Data Field

50

The elements in the list are stored in a one

dimensional array called a _______ Value List Data Link Data

51

Data movement and displacing the pointers of

the Queue are tedious proplems in _________

representation of a Queue. Array Linked Circular lenear list Array

52

Solving different parts of a program directly and

combining these pieces into a complete program

is called _______ top down approach

bottom up

approach

hierarchical

approach

merging

approach

bottom up

approach

53

The number of times a statement in a program is

executed is called its _________ Piori estimate

Posteriori

estimate

Frequency

count

Program

count Frequency count

54

____________ means the computing time of the

algorithm is constant O(log n) O(n) O(n log n) O(1) O(1)

55

____________ means the computing time of the

algorithm is linear O(log n) O(n) O(n log n) O(1) O(n)

56

Algorithms with time complexity O(n
2
) are

called ________ linear exponential quadratic cubic quadratic

57

For large data set algorithms with complexity

greater than ________ are impractical O(log n) O(n) O(n log n) O(1) O(n log n)

58

Which of the following case does not exist in

complexity theory? Best case Worst case Average case Null case Null case

59

Two main measures for the efficiency of the

algorithm are

Processor and

memory

Complexity

and capacity

Time and

space

Data and

space Time and space

Data Structures 2018

Prepared by Dr.K.Prathapchandran, Department of Computer Applications 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Under section 3 of UGC Act 1956)

COIMBATORE – 641 021

DEPARTMENT OF COMPUTER APPLICATIONS

 UNIT-II

Linked Lists Singly, Doubly and Circular Lists (Array and Linked representation); Normal and

Circular, representation of Stack in Lists; Self Organizing Lists; Skip Lists Queues, Array and

Linked representation of Queue, De-queue, Priority Queues

Linked list:

1.Introduction:

A linked list is a data structure which can change during execution.

 – Successive elements are connected by pointers.

 – Last element points to NULL head

 – It can grow or shrink in size during execution of a program.

 – It can be made just as long as required.

 – It does not waste memory space.

Keeping track of a linked list:

 – Must know the pointer to the first element of the list (called start, head, etc.).

 • Linked lists provide flexibility in allowing the items to be rearranged efficiently.

 – Insert an element.

– Delete an element.

For insertion:

 – A record is created holding the new item.

 – The next pointer of the new record is set to link it to the item which is to follow it in the list.

 – The next pointer of the item which is to precede it must be modified to point to the new

item.

Data Structures 2018

Prepared by Dr.K.Prathapchandran, Department of Computer Applications 2

 For deletion:

 – The next pointer of the item immediately preceding the one to be deleted is altered, and

made to point to the item following the deleted item.

2.Implementing Lists:

2.1.Implementing Lists using Arrays:

 Arrays are suitable for:

 – Inserting/deleting an element at the end.

 – Randomly accessing any element.

 – Searching the list for a particular value.

2.2.Implementing Lists using Linked List:

Linked lists are suitable for:

 Inserting an element.

 Deleting an element.

 Applications where sequential access is required.In situations where the number of elements

cannot be predicted beforehand.

3.Linked List Defined:

 Depending on the way in which the links are used to maintain adjacency, several different types

of linked lists are possible.

– Linear singly-linked list (or simply linear list).

Circular linked list:

• The pointer from the last element in the list points back to the first element.

Doubly linked list:

• Pointers exist between adjacent nodes in both directions.

• The list can be traversed either forward or backward.

• Usually two pointers are maintained to keep track of the list, head and tail.

Basic Operations on a List:

Data Structures 2018

Prepared by Dr.K.Prathapchandran, Department of Computer Applications 3

Creating a list

Traversing the list

Inserting an item in the list

Deleting an item from the list

Concatenating two lists into one

Example: Working with linked list

• Consider the structure of a node as follows:

struct stud {

 int

 roll;

 char name[25];

int

age;

struct stud *next;

};

/* A user-defined data type called “node” */

typedef struct stud node;

node *head;

Creating a List

node *create_list()

{

int k, n;

node *p, *head;

printf ("\n How many elements to enter?");

scanf ("%d", &n);

for

Data Structures 2018

Prepared by Dr.K.Prathapchandran, Department of Computer Applications 4

{

(k=0; k<n; k++)

if (k == 0) {

head = (node *) malloc(sizeof(node));

p = head;

}

else {

p->next = (node *) malloc(sizeof(node));

p = p->next;

}

scanf ("%d %s %d", &p->roll, p->name, &p->age);

}

p->next = NULL;

return (head);

}

To be called from main() function as:

node *head;

.........

head = create_list();

Traversing the List:

Once the linked list has been constructed and head points to the first node of the list,

 – Follow the pointers.

 – Display the contents of the nodes as they are traversed.

 – Stop when the next pointer points to NULL.

Data Structures 2018

Prepared by Dr.K.Prathapchandran, Department of Computer Applications 5

void display (node *head)

{

int count = 1;

node *p;

p = head;

while (p != NULL)

{

printf ("\nNode %d: %d %s %d", count,

p->roll, p->name, p->age);

count++;

p = p->next;

}

printf ("\n");

}

To be called from main() function as:

node *head;

.........

display (head);

Inserting a Node in a List:

The problem is to insert a node before a specified node.

 – Specified means some value is given for the node (called key).

 – In this example, we consider it to be roll.

• Convention followed:

– If the value of roll is given as negative, the node will be inserted at the end of the list.

When a node is added at the beginning, Only one next pointer needs to be modified.

Data Structures 2018

Prepared by Dr.K.Prathapchandran, Department of Computer Applications 6

 • head is made to point to the new node.

 • New node points to the previously first element.

 • When a node is added at the end,

– Two next pointers need to be modified.

 • Last node now points to the new node.

 • New node points to NULL.

 • When a node is added in the middle,

– Two next pointers need to be modified.

 • Previous node now points to the new node.

 • New node points to the next node.

void insert (node **head)

{

int k = 0, rno;

node *p, *q, *new;

new = (node *) malloc(sizeof(node));

printf ("\nData to be inserted: ");

scanf ("%d %s %d", &new->roll, new->name, &new->age);

printf ("\nInsert before roll (-ve for end):");

scanf ("%d", &rno);

p = *head;

if (p->roll == rno)

{

new->next = p;

*head = new;

}

else

Data Structures 2018

Prepared by Dr.K.Prathapchandran, Department of Computer Applications 7

{

while ((p != NULL) && (p->roll != rno))

{

q = p;

p = p->next;

}

if

{

(p == NULL)

/* At the end */

q->next = new;

new->next = NULL;

}

else if

(p->roll

The pointers q and p always point to consecutive nodes.

== rno)

/* In the middle */

{

q->next = new;

new->next = p;

}

}

}

Data Structures 2018

Prepared by Dr.K.Prathapchandran, Department of Computer Applications 8

To be called from main() function as:

node *head;

.........

insert (&head);

Deleting a node from the list:

Here also we are required to delete a

specified node.

– Say, the node whose roll field is given.

• Here also three conditions arise:

 – Deleting the first node.

 – Deleting the last node.

 – Deleting an intermediate node.

void delete (node **head)

{

int rno;

node *p, *q;

printf ("\nDelete for roll :");

scanf ("%d", &rno);

p = *head;

if (p->roll == rno)

/* Delete the first element */

{

*head = p->next;

free (p);

}

Data Structures 2018

Prepared by Dr.K.Prathapchandran, Department of Computer Applications 9

else

{

while ((p != NULL) && (p->roll != rno))

{

q = p;

p = p->next;

}

if

(p == NULL)

/* Element not found */

printf ("\nNo match :: deletion failed");

else if (p->roll == rno)

/* Delete any other element */

{

q->next = p->next;

free (p);

}

}

}

4.More Types of lists:

4.1 Circular Linked List

1. Circular Linked List is Divided into 2 Categories .

 Singly Circular Linked List

 Doubly Circular Linked List

2. In Circular Linked List Address field of Last node contain address of “First Node“.

3. In short First Node and Last Nodes are adjacent .

4. Linked List is made circular by linking first and last node , so it looks like circular chain [

shown in Following diagram].

5. Two way access is possible only if we are using “Doubly Circular Linked List”

Data Structures 2018

Prepared by Dr.K.Prathapchandran, Department of Computer Applications 10

6. Sequential movement is possible

7. No direct access is allowed.

4.2. Header Linked List:

The following steps are used to create linked list with header:

1. Three pointers, i.e. header, first and rear are declared. The header pointer is initialized with

NULL. For example, header=NULL where, header is a pointer to structure. If it remains

NULL, it implies that the list has no element. Such list is known as NULL list or empty list,

which is shown in Fig. 6.12(a).

Figure 6.12(a). Empty list

2. In the second step, memory is allocated for the first node of the linked list. For example, the

address of first node is 1888. An integer, say 3, is stored in the variable num and value of

header is assigned to pointer next.

Figure 6.12(b). Link list

The address of first node is initialized by both the header and rear. The statement would be,

header=first;

rear=first;

3. The address of pointer first is assigned to pointers header and rear. The rear pointer is used

to identify the end of the list and to detect the NULL pointer.

4. Again, create a memory location suppose 1890 for the successive node.

Figure 6.12(c).

5. Link the element of 1890 by assigning the value of node rear->next. Move the rear pointer

to the last node.

5.Application of Linked Lists:

5.1 Polynomial manipulation:

Representing a polynomial using a linked list

javascript:moveTo('ch6fig12a');

Data Structures 2018

Prepared by Dr.K.Prathapchandran, Department of Computer Applications 11

 A polynomial can be represented in an array or in a linked list by simply storing the

coefficient and exponent of each term.

 However, for any polynomial operation , such as addition or multiplication of polynomials ,

you will find that the linked list representation is more easier to deal with.

First of all note that in a polynomial all the terms may not be present, especially if it is going to be a

very high order polynomial. Consider

5 x12 + 2 x9 + 4x7 + 6x5 + x2 + 12 x

Now this 12th order polynomial does not have all the 13 terms (including the constant term).

It would be very easy to represent the polynomial using a linked list structure, where each node can

hold information pertaining to a single term of the polynomial.

Each node will need to store the variable x, the exponent and the coefficient for each term.It often

does not matter whether the polynomial is in x or y. This information may not be very crucial for

the intended operations on the polynomial.

Thus we need to define a node structure to hold two integers , viz. exp and coff

Compare this representation with storing the same polynomial using an array structure.

In the array we have to have keep a slot for each exponent of x, thus if we have a polynomial of

order 50 but containing just 6 terms, then a large number of entries will be zero in the array.

It would be also easy to manipulate a pair of polynomials if they are represented using linked lists.

Addition of two polynomials

Consider addition of the following polynomials

5 x12 + 2 x9 + 4x7 + 6x6 + x3

7 x8 + 2 x7 + 8x6 + 6x4 + 2x2 + 3 x + 40

The resulting polynomial is going to be

5 x12 + 2 x9 + 7 x8 + 6 x7 + 14x6 + 6x4 +x32x2 + 3 x + 40

 Now notice how the addition was carried out. Let us say the result of addition is going to be

stored in a third list. We started with the highest power in any polynomial. If there was no item

having same exponent , we simply appended the term to the new list, and continued with the

process.

 Wherever we found that the exponents were matching, we simply added the coefficients and

then stored the term in the new list. If one list gets exhausted earlier and the other list still contains

some lower order terms, then simply append the remaining terms to the new list.

Data Structures 2018

Prepared by Dr.K.Prathapchandran, Department of Computer Applications 12

 Now we are in a position to write our algorithm for adding two polynomials.

Let phead1 , phead2 and phead3 represent the pointers of the three lists under consideration.

Let each node contain two integers exp and coff .

Let us assume that the two linked lists already contain relevant data about the two polynomials.

Also assume that we have got a function append to insert a new node at the end of the given list.p1

= phead1;

p2 = phead2;

Let us call malloc to create a new node p3 to build the third list

p3 = phead3;

/* now traverse the lists till one list gets exhausted */

while ((p1 != NULL) || (p2 != NULL))

{

/ * if the exponent of p1 is higher than that of p2 then

the next term in final list is going to be the node of p1* /

while (p1 ->exp

> p2 -> exp)

{

p3 -> exp = p1 -> exp;

p3 -> coff = p1 -> coff ;

append (p3, phead3);

/* now move to the next term in list 1*/

p1 = p1 -> next;

}

/ * if p2 exponent turns out to be higher then make p3

same as p2 and append to final list * /while (p1 ->exp

< p2 -> exp)

Data Structures 2018

Prepared by Dr.K.Prathapchandran, Department of Computer Applications 13

{

p3 -> exp = p2 -> exp;

p3 -> coff = p2 -> coff ;

append (p3, phead3);

p2 = p2 -> next;

}

/* now consider the possibility that both exponents are

same , then we must add the coefficients to get the term for

the final list */

while (p1 ->exp

= p2 -> exp)

{

p3-> exp = p1-> exp;

p3->coff = p1->coff + p2-> coff ;

append (p3, phead3) ;

p1 = p1->next ;

p2 = p2->next ;

}

}

/* now consider the possibility that list2 gets exhausted , and there are terms remaining only in list1.

So all those terms have to be appended to end of list3. However, you do not have to do it term by

term, as p1 is already pointing to remaining terms, so simply append the pointer p1 to phead3

*/

if (p1 != NULL)append (p1, phead3) ;

else

append (p2, phead3);

Data Structures 2018

Prepared by Dr.K.Prathapchandran, Department of Computer Applications 14

Now, you can implement the algorithm in C, and maybe make it more efficient.

5.2. Sparse Martrix:

Linked List Representation Of Sparse Matrix .

If most of the elements in a matrix have the value 0, then the matrix is called spare matrix.

Example For 3 X 3 Sparse Matrix:

| 1 0 0 |

| 0 0 0 |

| 0 4 0 |

3-Tuple Representation Of Sparse Matrix Using Arrays:

| 3 3 2 |

| 0 0 1 |

| 2 1 4 |

Elements in the first row represents the number of rows, columns and non-zero values in sparse

matrix.

First Row - | 3 3 2 |

3 - rows

3 - columns

2 - non- zero values

Elements in the other rows gives information about the location and value of non-zero elements.

| 0 0 1 | (Second Row) - represents value 1 at 0th Row, 0th column

| 2 1 4 | (Third Row) - represents value 4 at 2nd Row, 1st column

6.Stack:

6.1 Introduction:

Data Structures 2018

Prepared by Dr.K.Prathapchandran, Department of Computer Applications 15

 A stack is a basic data structure that can be logically thought as linear structure represented by

a real physical stack or pile, a structure where insertion and deletion of items takes place at one end

called top of the stack. The basic concept can be illustrated by thinking of your data set as a stack of

plateor books where you can only take the top item off the stack in order to remove things from it.

This structure is used all throughout programming.

The basic implementation of a stack is also called a LIFO (Last In First Out) to demonstrate the way

it accesses data, since as we will see there are various variations of stack implementations.

There are basically three operations that can be performed on stacks . They are 1) inserting an item

into a stack (push). 2) deleting an item from the stack (pop). 3) displaying the contents of the

stack(pip).

6.2 Operation on Stacks:

Stack<item-type> Operations

push(new-item:item-type)

Adds an item onto the stack.

top():item-type

Returns the last item pushed onto the stack.

pop()

Removes the most-recently-pushed item from the stack.

is-empty():Boolean

True if no more items can be popped and there is no top item.

is-full():Boolean

True if no more items can be pushed.

get-size():Integer

Returns the number of elements on the stack.

All operations except get-size() can be performed in time. get-size() runs in at worst

Data Structures 2018

Prepared by Dr.K.Prathapchandran, Department of Computer Applications 16

6.3 Representing of a stack in Memory using Arrays:

 Stack can be represented using a one-dimensional array. Allocate a block of memory required to

accommodate the full capacity of the stack, and the items of a stack are stored in a sequential

manner from the first location of the memory block.

Figure 6.2 Stack and its array representation

In Figure 6.2(a), stack is a one-dimensional array. Top is a pointer that points to the top element in

the stack.

Stack operations.

Insert a new item onto stack.

• push()

Remove and return the item most recently added.

• pop()

• isEmpty() Is the stack empty?

push

pop

public static void main(String[] args)

{

StackOfStrings stack = new StackOfStrings();

while(!StdIn.isEmpty())

{

String s = StdIn.readString();

stack.push(s);

}

while(!stack.isEmpty())

{

String s = stack.pop();

StdOut.println(s);

http://my.safaribooksonline.com/9788131755679/navPoint-145#img-C06F02

Data Structures 2018

Prepared by Dr.K.Prathapchandran, Department of Computer Applications 17

}

}

a sample stack client

6.3 Representing of a stack in Memory using Linked List:

A Linked List is an abstract data type for representing lists as collections of linked items

Instead of having an overall representation of the list, the ordering of the list is represented locally

– That is, the information about what element comes next in a list is stored as a pointer within the

element object.

– No list object (element) knows about any other elements in the list, just the ones to which it is

adjacent

.

The basic linked list implementation is one of the easiest linked list implementations you can do.

Structurally it is a linked list.

 type Stack<item_type>

 data list:Singly Linked List<item_type>

 constructor()

 list := new Singly-Linked-List()

 end constructor

 Most operations are implemented by passing them through to the underlying linked list. When

you want to push something onto the list, you simply add it to the front of the linked list. The

previous top is then "next" from the item being added and the list's front pointer points to the new

item.

 method push(new_item:item_type)

 list.prepend(new_item)

 end method

To look at the top item, you just examine the first item in the linked list.

 method top():item_type

 return list.get-begin().get-value()

 end method

When you want to pop something off the list, simply remove the first item from the linked list.

 method pop()

 list.remove-first()

 end method

A check for emptiness is easy. Just check if the list is empty.

 method is-empty():Boolean

 return list.is-empty()

Data Structures 2018

Prepared by Dr.K.Prathapchandran, Department of Computer Applications 18

 end method

A check for full is simple. Linked lists are considered to be limitless in size.

 method is-full():Boolean

 return False

 end method

A check for the size is again passed through to the list.

 method get-size():Integer

 return list.get-size()

 end method

end type

A real Stack implementation in a published library would probably re-implement the linked list in

order to squeeze the last bit of performance out of the implementation by leaving out unneeded

functionality. The above implementation gives you the ideas involved, and any optimization you

need can be accomplished by inlining the linked list code.

6.4 Multiple Stacks:

1. None fixed size of the stacks:

 Stack 1 expands from the 0th element to the right

 Stack 2 expands from the 12th element to the left

 As long as the value of Top1 and Top2 are not next to each other, it has free elements

for input the data in the array

 When both Stacks are full, Top1 and Top 2 will be next to each other

 There is no fixed boundary between Stack 1 and Stack 2

 Elements –1 and –2 are using to store the information needed to manipulate the stack

(subscript for Top 1 and Top 2)

2. Fixed size of the stacks:

 Stack 1 expands from the 0th element to the right

 Stack 2 expands from the 6th element to the left

 As long as the value of Top 1 is less than 6 and greater than 0, Stack 1 has free

elements to input the data in the array

 As long as the value of Top 2 is less than 11 and greater than 5, Stack 2 has free

elements to input the data in the array

 When the value of Top 1 is 5, Stack 1 is full

 When the value of Top 2 is 10, stack 2 is full

 Elements –1 and –2 are using to store the size of Stack 1 and the subscript of the

array for Top 1 needed to manipulate Stack 1

 Elements –3 and –4 are using to store the size of Stack 2 and the subscript of the

array for Top 2 needed to manipulate Stack 2

Sequential mapping of stacks into an array

• M[0..m-1]
 Example, two stacks, use M[0], M[m-1]

Data Structures 2018

Prepared by Dr.K.Prathapchandran, Department of Computer Applications 19

 Example, more than two stacks, n, use b[i]=t[i]=(m/n)*i-1

6.5 Application of Stack:

 Stacks have a wide range of applications. The following are some of the applications of stack:

 Expression evaluation

 Recursion

 Balancing of the matching parenthesis

Expression Evaluation

An arithmetic expression can be represented in three ways:

1. Infix: An operator between two operands is an infix expression.

 <operand><operator><operand>

 Ex: a+b

2. Postfix: An operator that follows two operands is a postfix expression.

 <operand><operand><operator>

 Ex: a b+

3. Prefix: An operator that is followed by two operands is a prefix expression.

 <operator><operand><operand>

 Ex: +ab

Stacks can be used to evaluate expressions and also to convert expressions from one form to

another.

b[0]

t[0]

M 0 1

m-1

b[1]

t[1]

b[n]

⌊m/n⌋− 1 2 ⌊m/n ⌋− 1

b[2]

t[2]

Data Structures 2018

Prepared by Dr.K.Prathapchandran, Department of Computer Applications 20

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Under section 3 of UGC Act 1956)

COIMBATORE – 641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Possible Questions

PART – A (20 Marks)
(Q.No 1 to 20 Online Examinations)

PART – B (2 Marks)

1. Define Linked List.
2. What is a Circular List.
3. What is a Doubly linked list.
4. What is Self Organizing List?
5. Define De-Queue

PART – C (6 Marks)

1. Discuss about Singly Linked List.
2. Discuss about Doubly Linked List.
3. Discuss about Circular List in detail.
4. Discuss about Representation of Stack in List.
5. Explain Normal and Circular List.

1

The data field of the _________ node usually

donot conatain any information.

first head tail last head

2

A___________is a linked list in which last node

of the list points to the first node in the list.

Linked list Singly linked

circular list

Circular list Insertion

node

Singly linked

circular list

3

A________in which each node has two pointers,

a forward link and a Backward link.

Doubly linked

circular list

Circular list Singly linked

circular list

Linked list Doubly linked

circular list

4

In sparse matrices each nonzero term was

represented by a node with ______ fields.

Five Six Three Four Three

5

We want to represent n stacks with 1 ≤ i ≤ n

then T(i)_______
Top of the i

th
stack Top of the (i +

1)
th

stack

Top of the (i

– 1)
th

stack

Top of the (i -

2)
th

stack

Top of the i
th

stack

6

We want to represent m queues with 1 ≤ i ≤ m

then F(i)_______
Front of the (i + 1)

th

Queue

Front of the i
th

Queue

Front of the (

i – 1)
th

Queue

Front of the (i

-2)
th

Queue

Front of the i
th

Queue

7

We want to represent m queues with 1 ≤ i ≤ m

then R(i)_______
Rear of the (i + 1)

th

Queue

Rear of the i
th

Queue

Rear of the (

i – 1)
th

Queue

Rear of the (i -

2)
th

Queue

Rear of the i
th

Queue

8

________ list allows traversing in only one

direction.

Singly linked list Doubly linked

list

Circular

Doubly

Linked List

Ordered List Singly linked list

9

________ allows traversing in both direction. Singly linked list Doubly linked

list

Circular

Singly

Linked List

Circular

Queue

Doubly linked

list

UNIT II

Objective Type Questions

Karpagam Academy of Higher Education

Department of Computer Applications

 Subject : Data Structures

 Class: II BCA Subject code: 17CAU301

10

The best application of Doubly Linked list in

computers is __________

Job scheduling in

Time sharing

environment

Processing

Procedure calls

Dynamic

Storage

Management

Evaluating

postfix

expressions

Dynamic Storage

Management

11

The computing time for manipulating the list is

__________for sequential Representation

Less then Greater than Less then

equal

Greater than

equal

Less then

12

In singly linked list ,each node has

_________field.

One Two Three Five Two

13

In linked list ,each node has fields

namely___________

Link, Value Link, Link Data, Link Data, Data Data, Link

14

In Doubly linked list ,each node has at least

_________field.

One Two Three Five Three

15

In Doubly linked list ,each node has fields

namely________

Link, Data1, Data2 Data and Link Only Llink

and Rlink

Llink, Data,

Rlink

Llink, Data,

Rlink

16

The doubly linked list is said to be empty if it

conatins _________

no nodes at all. nodes with data

fields empty.

only a head

node.

a node with

its link fields

points to null

only a head node.

17

In Linked representation of Sparse Matrix,

DOWN field used to link to the next nonzero

element in the same _________

Row List Column Diagonal Column

18

In Linked representation of Sparse Matrix,

RIGHT field used to link to the next nonzero

element in the same _________

Row Matrix Column Diagonal Row

19

The time complexity of the MREAD algorithm

that reads a sparse matrix of n rows, n columns

and r nonzero terms is ____

O(max {n, m, r}) O(m * n * r) O(m + n + r) O(max {n,

m})

O(m + n + r)

20

A __________ is a set of characters is called a

string.

Array String Heap List String

21

Adding a new element into a data structure called

Merging Insertion Searching Sorting Insertion

22

The Process of finding the location of the

element with the given value or a record with the

given key is __________.

Merging Insertion Searching Sorting Searching

23

Arranging the elements of a data structure in

some type of order is called __________.

Merging Insertion Searching Sorting Sorting

24

What is the index number of the last element of

an array with 29 elements? 29 28 0 25 28

25

The memory address of the first element of an

array is called

Floor address Foundation

address First address Base address Base address

26 Two dimensional array are also called as Table arrays Matrix arrays both a and b Special array both a and b

27

Arrays are best data structure for relatively

permanent

collection of data

for data are

constantly

changing both a and b

none of the

above

for relatively

permanent

collection of data

28 In a singly linkedlist how many fields are there? 1 2 3 4 2

29

Name the fields in circular linked list Data and link 2Data and link Data and

2link

2Data and

2link

2Data and link

30

To implement Sparse matrix dynamically, the

following data structure is used

Stacks linked list Trees Graphs linked list

31 How many fields are there in doubly linked list? 1 2 3 4 3

32

In the last node of the circular linked list the link

field contains null

pointer data

item

pointer to

next node

pointer to

first node pointer to first node

33

Name the fields in doubly linked list Data and link 2Data and 2link Data and

2link

2Data and

2link

Data and 2link

34

How many fields are there in circular doubly

linked list? 1 2 3 4 3

35

In the last node of the circular doubly linked list

the link field contains null

pointer data

item

pointer to

next node

pointer to

first node pointer to first node

36

What member function places a new node at the

end of the linked list?

addNode()

appendNode() lastNode() newNode() appendNode()

37

The largest element of an array index is called its

lower bound range upper bound subscript upper bound

38 If the elements “A”, “B”, “C” and “D” are placed in a stack and are deleted one at a time, in what order will they be removed?ABCD DCBA DCAB ABDC DCBA

39 Consider the usual implementation of parentheses balancing program using stack. What is the maximum number of parentheses that will appear on stack at any instance of time during the analysis of (() (()) (()))?1 2 3 4 3

40

Assume that the operators +,-, X are left

associative and

⋀

 is right associative. The order

of precedence (from highest to lowest) is

⋀

, X, +,

-. The postfix expression corresponding to the

infix expression a + b X c – d

⋀

 e

⋀

 f is

abc X+ def

⋀

⋀

 - abc X+ de

⋀

f

⋀

 - ab+c Xd – e

⋀

f

⋀
 -+aXbc

⋀

⋀

def abc X+ def

⋀

⋀

 -

41

The memory address of the first element of an

array is called floor address base address first address

foundation

address base address

42

What is the minimum number of stacks of size n

required to implement a queue of size n? 1 3 2 4 2

43

The situation when in a linked list

START=NULL is underflow overflow housefull saturated underflow

44

A linear collection of data elements where the

linear node is given by means of pointer is

called

linked list node list primitive list queue linked list

45

Which of the following operations is performed

more efficiently by doubly linked list than

 by singly linked list?

Deleting a node

whose location in

given

Searching of an

unsorted list for

a given item

Inverting a

node after

the node with

given

location

Traversing a

list to process

each node

Deleting a node

whose location in

given

46

How many nodes in a tree have no ancestors.

0 1 2 n 1

pointer to first node

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 1/26

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Under section 3 of UGC Act 1956)

COIMBATORE – 641 021

DEPARTMENT OF COMPUTER APPLICATIONS

UNIT-III:

 Trees - Introduction to Tree as a data structure; Binary Trees (Insertion, Deletion , Recursive

and Iterative Traversals on Binary Search Trees); Threaded Binary Trees (Insertion, Deletion,

Traversals); Height-Balanced Trees (Various operations on AVL Trees).

Trees:

Introduction to Tree as a data structure:

A tree is a data structure made up of nodes or vertices and edges without having any

cycle. The tree with no nodes is called the null or empty tree. A tree that is not empty

consists of a root node and potentially many levels of additional nodes that form a

hierarchy.

 Tree

Terminology used in trees:

Root

The top node in a tree.

Child

A node directly connected to another node when moving away from the Root.

Parent

The converse notion of a child.

Siblings

A group of nodes with the same parent.

Descendant

A node reachable by repeated proceeding from parent to child.

Ancestor

A node reachable by repeated proceeding from child to parent.

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 2/26

Leaf

(less commonly called External node)

A node with no children.

Branch

Internal node

A node with at least one child.

Degree

The number of sub trees of a node.

Edge

The connection between one node and another.

Path

A sequence of nodes and edges connecting a node with a descendant.

Level

The level of a node is defined by 1 + (the number of connections between the node and

the root).

Height of node

The height of a node is the number of edges on the longest path between that node and a

leaf.

Height of tree

The height of a tree is the height of its root node.

Depth

The depth of a node is the number of edges from the tree's root node to the node.

Forest

A forest is a set of n ≥ 0 disjoint trees.

Binary Trees:

In a normal tree, every node can have any number of children. Binary tree is a special

type of tree data structure in which every node can have a maximum of 2 children. One is

known as left child and the other is known as right child.

A tree in which every node can have a maximum of two children is called as Binary

Tree.

In a binary tree, every node can have either 0 children or 1 child or 2 children but not

more than 2 children.

Example:

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 3/26

Binary Search Trees:

A Binary Search Tree (BST) is a tree in which all the nodes follow the below-

mentioned properties −

 The left sub-tree of a node has a key less than or equal to its parent node's key.

 The right sub-tree of a node has a key greater than to its parent node's key.

Thus, BST divides all its sub-trees into two segments; the left sub-tree and the right sub-

tree and can be defined as −

left_subtree (keys) ≤ node (key) ≤ right_subtree (keys)

Representation:

BST is a collection of nodes arranged in a way where they maintain BST properties. Each

node has a key and an associated value. While searching, the desired key is compared to

the keys in BST and if found, the associated value is retrieved.

Following is a pictorial representation of BST −

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 4/26

 Binary Search Tree

We observe that the root node key (27) has all less-valued keys on the left sub-tree and

the higher valued keys on the right sub-tree.

Basic Operations:

Following are the basic operations of a tree −

Search − Searches an element in a tree.

Insert − Inserts an element in a tree.

Pre-order Traversal − Traverses a tree in a pre-order manner.

In-order Traversal − Traverses a tree in an in-order manner.

Post-order Traversal − Traverses a tree in a post-order manner.

Node:

Define a node having some data, references to its left and right child nodes.

struct node {

 int data;

 struct node *leftChild;

 struct node *rightChild;

};

Search Operation:

Whenever an element is to be searched, start searching from the root node. Then if the

data is less than the key value, search for the element in the left subtree. Otherwise,

search for the element in the right subtree. Follow the same algorithm for each node.

Algorithm:

struct node* search(int data){

struct node *current = root;

 printf("Visiting elements: ");

 while(current->data != data){

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 5/26

 if(current != NULL) {

 printf("%d ",current->data);

 //go to left tree

 if(current->data > data){

 current = current->leftChild;

 }//else go to right tree

 else {

 current = current->rightChild;

 }

 //not found

 if(current == NULL){

 return NULL;

 }

 }

 }

 return current;

}

Insert Operation:

Whenever an element is to be inserted, first locate its proper location. Start searching

from the root node, then if the data is less than the key value, search for the empty

location in the left subtree and insert the data. Otherwise, search for the empty location in

the right subtree and insert the data.

Algorithm:

 void insert(int data) {

 struct node *tempNode = (struct node*) malloc(sizeof(struct node));

 struct node *current;

 struct node *parent;

 tempNode->data = data;

 tempNode->leftChild = NULL;

 tempNode->rightChild = NULL;

 //if tree is empty

 if(root == NULL) {

 root = tempNode;

 } else {

 current = root;

 parent = NULL;

 while(1) {

 parent = current;

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 6/26

 //go to left of the tree

 if(data < parent->data) {

 current = current->leftChild;

 //insert to the left

 if(current == NULL) {

 parent->leftChild = tempNode;

 return;

 }

 }//go to right of the tree

 else {

 current = current->rightChild;

 //insert to the right

 if(current == NULL) {

 parent->rightChild = tempNode;

 return;

 }

 }

 }

 }

}

TRAVERSAL:

Traversal is a process to visit all the nodes of a tree and may print their values too.

Because, all nodes are connected via edges (links) we always start from the root (head)

node. That is, we cannot randomly access a node in a tree. There are three ways which we

use to traverse a tree −

 In-order Traversal

 Pre-order Traversal

 Post-order Traversal

Generally, we traverse a tree to search or locate a given item or key in the tree or to print

all the values it contains.

In-order Traversal

In this traversal method, the left subtree is visited first, then the root and later the right

sub-tree. We should always remember that every node may represent a subtree itself.

If a binary tree is traversed in-order, the output will produce sorted key values in an

ascending order.

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 7/26

We start from A, and following in-order traversal, we move to its left subtree B. B is also

traversed in-order. The process goes on until all the nodes are visited. The output of

inorder traversal of this tree will be −

D → B → E → A → F → C → G

Algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Visit root node.

Step 3 − Recursively traverse right subtree.

Pre-order Traversal:

In this traversal method, the root node is visited first, then the left subtree and finally the

right subtree.

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 8/26

We start from A, and following pre-order traversal, we first visit A itself and then move

to its left subtree B. B is also traversed pre-order. The process goes on until all the nodes

are visited. The output of pre-order traversal of this tree will be −

A → B → D → E → C → F → G

Algorithm

Until all nodes are traversed −

Step 1 − Visit root node.

Step 2 − Recursively traverse left subtree.

Step 3 − Recursively traverse right subtree.

Post-order Traversal:

In this traversal method, the root node is visited last, hence the name. First we traverse

the left subtree, then the right subtree and finally the root node.

We start from A, and following pre-order traversal, we first visit the left subtree B. B is

also traversed post-order. The process goes on until all the nodes are visited. The output

of post-order traversal of this tree will be −

D → E → B → F → G → C → A

Algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Recursively traverse right subtree.

Step 3 − Visit root node.

THREADED BINARY TREES:

Inorder traversal of a Binary tree is either be done using recursion or with the use of a

auxiliary stack. The idea of threaded binary trees is to make inorder traversal faster and

do it without stack and without recursion. A binary tree is made threaded by making all

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 9/26

right child pointers that would normally be NULL point to the inorder successor of the

node (if it exists).

There are two types of threaded binary trees.

Single Threaded: Where a NULL right pointers is made to point to the inorder successor

(if successor exists)

Double Threaded: Where both left and right NULL pointers are made to point to inorder

predecessor and inorder successor respectively. The predecessor threads are useful for

reverse inorder traversal and postorder traversal.

The threads are also useful for fast accessing ancestors of a node.

Following diagram shows an example Single Threaded Binary Tree. The dotted lines

represent threads.

 Representation of a Threaded Node:

struct Node

{

 int data;

 Node *left, *right;

 bool right Thread;

}

Since right pointer is used for two purposes, the boolean variable rightThread is used to

indicate whether right pointer points to right child or inorder successor. Similarly, we can

add leftThread for a double threaded binary tree.

Inorder Taversal using Threads

Following code for inorder traversal in a threaded binary tree.

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 10/26

// Utility function to find leftmost node in a tree rooted with n

struct Node* leftMost(struct Node *n)

{

 if (n == NULL)

 return NULL;

 while (n->left != NULL)

 n = n->left;

 return n;

}

// code to do inorder traversal in a threaded binary tree

void inOrder(struct Node *root)

{

 struct Node *cur = leftmost(root);

 while (cur != NULL)

 {

 printf("%d ", cur->data);

 // If this node is a thread node, then go to

 // inorder successor

 if (cur->rightThread)

 cur = cur->rightThread;

 else // Else go to the leftmost child in right subtree

 cur = leftmost(cur->right);

 }

}

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 11/26

INSERTION:

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 12/26

Insertion in Binary threaded tree is similar to insertion in binary tree but we will have to

adjust the threads after insertion of each element.

 representation of Binary Threaded Node:

struct Node

{

 struct Node *left, *right;

 int info;

 // True if left pointer points to predecessor

 // in Inorder Traversal

 boolean lthread;

 // True if right pointer points to successor

 // in Inorder Traversal

 boolean rthread;

};

In the following explanation, we have considered Binary Search Tree (BST) for insertion

as insertion is defined by some rules in BSTs.

Let tmp be the newly inserted node. There can be three cases during insertion:

Case 1: Insertion in empty tree

Both left and right pointers of tmp will be set to NULL and new node becomes the root.

root = tmp;

tmp -> left = NULL;

tmp -> right = NULL;

Case 2: When new node inserted as the left child

After inserting the node at its proper place we have to make its left and right threads

points to inorder predecessor and successor respectively. The node which was inorder

successor. So the left and right threads of the new node will be-

tmp -> left = par ->left;

tmp -> right = par;

Before insertion, the left pointer of parent was a thread, but after insertion it will be a link

pointing to the new node.

par -> lthread = par ->left;

par -> left = temp;

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 13/26

After insertion of 13,

Predecessor of 14 becomes the predecessor of 13, so left thread of 13 points to 10.

Successor of 13 is 14, so right thread of 13 points to left child which is 13.

Left pointer of 14 is not a thread now, it points to left child which is 13.

Case 3: When new node is inserted as the right child

The parent of tmp is its inorder predecessor. The node which was inorder successor of the

parent is now the inorder successor of this node tmp. So the left and right threads of the

new node will be-

tmp -> left = par;

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 14/26

tmp -> right = par -> right;

Before insertion, the right pointer of parent was a thread, but after insertion it will be a

link pointing to the new node.

par -> rthread = false;

par -> right = tmp;

Following example shows a node being inserted as right child of its parent.

After 15 inserted,

Successor of 14 becomes the successor of 15, so right thread of 15 points to 16

Predecessor of 15 is 14, so left thread of 15 points to 14.

Right pointer of 14 is not a thread now, it points to right child which is 15.

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 15/26

Height-Balanced Trees:

What if the input to binary search tree comes in a sorted (ascending or descending)

manner? It will then look like this −

It is observed that BST's worst-case performance is closest to linear search algorithms,

that is Ο(n). In real-time data, we cannot predict data pattern and their frequencies. So, a

need arises to balance out the existing BST.

Named after their inventor Adelson, Velski & Landis, AVL trees are height balancing

binary search tree. AVL tree checks the height of the left and the right sub-trees and

assures that the difference is not more than 1. This difference is called the Balance

Factor.

Here we see that the first tree is balanced and the next two trees are not balanced −

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 16/26

In the second tree, the left subtree of C has height 2 and the right subtree has height 0, so

the difference is 2. In the third tree, the right subtree of A has height 2 and the left is

missing, so it is 0, and the difference is 2 again. AVL tree permits difference (balance

factor) to be only 1.

BalanceFactor = height(left-sutree) − height(right-sutree)

If the difference in the height of left and right sub-trees is more than 1, the tree is

balanced using some rotation techniques.

AVL Rotations:

To balance itself, an AVL tree may perform the following four kinds of rotations −

 Left rotation

 Right rotation

 Left-Right rotation

 Right-Left rotation

The first two rotations are single rotations and the next two rotations are double rotations.

To have an unbalanced tree, we at least need a tree of height 2. With this simple tree, let's

understand them one by one.

Left Rotation

If a tree becomes unbalanced, when a node is inserted into the right subtree of the right

subtree, then we perform a single left rotation −

In our example, node A has become unbalanced as a node is inserted in the right subtree

of A's right subtree. We perform the left rotation by making A the left-subtree of B.

Right Rotation:

AVL tree may become unbalanced, if a node is inserted in the left subtree of the left

subtree. The tree then needs a right rotation.

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 17/26

As depicted, the unbalanced node becomes the right child of its left child by performing

a right rotation.

Left-Right Rotation:Double rotations are slightly complex version of already explained

versions of rotations. To understand them better, we should take note of each action

performed while rotation. Let's first check how to perform Left-Right rotation. A left-

right rotation is a combination of left rotation followed by right rotation.

State Action

A node has been inserted into the right subtree of the left

subtree. This makes C an unbalanced node. These scenarios cause

AVL tree to perform left-right rotation.

 We first perform the left rotation on the left subtree of C. This

makes A, the left subtree of B.

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 18/26

Node C is still unbalanced, however now, it is because of the left-subtree of the left-

subtree.

We shall now right-rotate the tree, making Bthe new root node of this subtree. C now

becomes the right subtree of its own left subtree.

The tree is now balanced.

Right-Left Rotation:

The second type of double rotation is Right-Left Rotation. It is a combination of right

rotation followed by left rotation.

State Action

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 19/26

 A node has been inserted into the left subtree of the right subtree. This

makes A, an unbalanced node with balance factor 2.

 First, we perform the right rotation along Cnode, making C the right

subtree of its own left subtree B. Now, B becomes the right subtree of A.

 Node A is still unbalanced because of the right subtree of its right

subtree and requires a left rotation.

 A left rotation is performed by making B the new root node of the

subtree. A becomes the left subtree of its right subtree B.

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 20/26

 The tree is now balanced.

Operations on an AVL Tree:

The following operations are performed on an AVL tree

 Search

 Insertion

 Deletion

Search Operation in AVL Tree:

In an AVL tree, the search operation is performed with O(log n) time complexity. The

search operation is performed similar to Binary search tree search operation. We use the

following steps to search an element in AVL tree...

Step 1: Read the search element from the user

Step 2: Compare, the search element with the value of root node in the tree.

Step 3: If both are matching, then display "Given node found!!!" and terminate the

function

Step 4: If both are not matching, then check whether search element is smaller or larger

than that node value.

Step 5: If search element is smaller, then continue the search process in left subtree.

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 21/26

Step 6: If search element is larger, then continue the search process in right subtree.

Step 7: Repeat the same until we found exact element or we completed with a leaf node

Step 8: If we reach to the node with search value, then display "Element is found" and

terminate the function.

Step 9: If we reach to a leaf node and it is also not matching, then display "Element not

found" and terminate the function.

Insertion Operation in AVL Tree: In an AVL tree, the insertion operation is

performed with O(log n) time complexity. In AVL Tree, new node is always inserted as

a leaf node. The insertion operation is performed as follows...

Step 1: Insert the new element into the tree using Binary Search Tree insertion logic.

Step 2: After insertion, check the Balance Factor of every node.

Step 3: If the Balance Factor of every node is 0 or 1 or -1 then go for next operation.

Step 4: If the Balance Factor of any node is other than 0 or 1 or -1 then tree is said to be

imbalanced. Then perform the suitable Rotation to make it balanced. And go for next

operation.

Example: Construct an AVL Tree by inserting numbers from 1 to 8.

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 22/26

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 23/26

Deletion Operation in AVL Tree:

In an AVL Tree, the deletion operation is similar to deletion operation in BST. But after

every deletion operation we need to check with the Balance Factor condition. If the tree is

balanced after deletion then go for next operation otherwise perform the suitable rotation

to make the tree Balanced.

Skip List (Introduction):

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 24/26

Can we search in a sorted linked list in better than O(n) time?

The worst case search time for a sorted linked list is O(n) as we can only linearly traverse

the list and cannot skip nodes while searching. For a Balanced Binary Search Tree, we

skip almost half of the nodes after one comparison with root. For a sorted array, we have

random access and we can apply Binary Search on arrays.

A schematic picture of the skip list data structure. Each box with an arrow represents a

pointer and a row is a linked list giving a sparse subsequence; the numbered boxes (in

yellow) at the bottom represent the ordered data sequence. Searching proceeds

downwards from the sparsest subsequence at the top until consecutive elements

bracketing the search element are found.

A skip list is built in layers. The bottom layer is an ordinary ordered linked list. Each

higher layer acts as an "express lane" for the lists below, where an element in layer i

appears in layer i+1 with some fixed probability p (two commonly used values for p are

1/2 or 1/4).

Implementation details:

The elements used for a skip list can contain more than one pointer since they can

participate in more than one list.

Insertions and deletions are implemented much like the corresponding linked-list

operations, except that "tall" elements must be inserted into or deleted from more than

one linked list.

 Inserting element to skip list

Can we augment sorted linked lists to make the search faster?

The answer is Skip List. The idea is simple, we create multiple layers so that we can skip

some nodes. See the following example list with 16 nodes and two layers. The upper

layer works as an “express lane” which connects only main outer stations, and the lower

layer works as a “normal lane” which connects every station. Suppose we want to search

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 25/26

for 50, we start from first node of “express lane” and keep moving on “express lane” till

we find a node whose next is greater than 50. Once we find such a node (30 is the node in

following example) on “express lane”, we move to “normal lane” using pointer from this

node, and linearly search for 50 on “normal lane”. In following example, we start from 30

on “normal lane” and with linear search, we find 50.

What is the time complexity with two layers?

The worst case time complexity is number of nodes on “express lane” plus number of

nodes in a segment (A segment is number of “normal lane” nodes between two “express

lane” nodes) of “normal lane”. So if we have n nodes on “normal lane”, √n (square root

of n) nodes on “express lane” and we equally divide the “normal lane”, then there will be

√n nodes in every segment of “normal lane” . √n is actually optimal division with two

layers. With this arrangement, the number of nodes traversed for a search will be O(√n).

Therefore, with O(√n) extra space, we are able to reduce the time complexity to O(√n).

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran , Department of Computer Applications , KAHE 26/26

 KARPAGAM ACADEMY OF HIGHER
EDUCATION

Coimbatore - 641021.

(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMPUTER SCIENCE,CA & IT

SUBJECT : DATA STRUCTURES SEMESTER: III

CODE: 17CAU301 CLASS: II B.C.A

POSSIBLE QUESTIONS

UNIT-III

 2 MARKS:

1. What is a Tree?

2. Define Binary Tree.

3. Write about Threaded Binary Tree.

4. Define Height-Balanced Tree.

5. Explain about AVL Trees.

 6 MARKS:

1. Explain Insertion, Deletion and Recursive Operations in Binary Search Tree.

2. What is Threaded Binary Tree explain in detail.

3. Write in detail about the Operations of Binary Search Tree.

4. Write about Iterative, Traversal Operations on Binary Search Trees.

5. Write about (i) Tree (ii)Binary Tree (iii)Height Balanced Trees.

Data Structures 2018

1 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Under section 3 of UGC Act 1956)

COIMBATORE – 641 021

DEPARTMENT OF COMPUTER APPLICATIONS

UNIT-IV

Searching and Sorting: Linear Search, Binary Search, Comparison of Linear and Binary Search,

Selection Sort, Insertion Sort, Insertion Sort, Shell Sort, Comparison of Sorting Techniques

Heap: Introduction

Heaps are based on the notion of a complete tree,

Formally:

A binary tree is completely full if it is of height, h, and has 2
h+1

-1 nodes.

A binary tree of height, h, is complete iff

a. it is empty or

b. its left subtree is complete of height h-1 and its right subtree is completely full of

height h-2 or

c. its left subtree is completely full of height h-1 and its right subtree is complete of

height h-1.

A complete tree is filled from the left:

 all the leaves are on

o the same level or

o two adjacent ones and

 all nodes at the lowest level are as far to the left as possible.

A heap can be used as a priority queue: the highest priority item is at the root and is trivially

extracted. But if the root is deleted, we are left with two sub-trees and we must efficiently re-

create a single tree with the heap property.

The value of the heap structure is that we can both extract the highest priority item and insert

a new one in O (logn) time.

Data Structures 2018

2 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

A heap is a binary tree that satisfies the following properties:

 Shape property

 Order property

By the shape property, we mean that heap must be a complete binary tree, whereas by order

property we mean that for every node in the heap, the value stored in that node is greater than or

equal to the value of its children.

A heap satisfies these properties are known as max heap.

Representing a heap in memory

Heap is represented in memory using linear arrays. i.e. by sequential representation.

 length[A]: the size of the array

 heap-size[A]: the number of items stored into the array A

 Note: heap-size[A] <= length[A]

 The root of the tree is at A[1], i.e., the indexing typically begins at index 1 (not 0). A[0] can

be reserved for the variable heap-size[A].

Since a heap is a complete or nearly complete binary tree, therefore a heap of size n is

represented in memory using linear array of size n.

Data Structures 2018

3 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

Figure 1: Binary tree and array representation for the MaxHeap containing elements (that has the

priorities) [16,14,10,8,7,9,3,2,4,1].

Routines to access the array

Lets consider the i:th node in a Heap that has the value A[i]

PARENT(i) = i/2 Return the index of the father node

LEFT(i) = 2i Return the index of the left child

RIGHT(i) = 2i+1 Return the index of the right child

Operations on Heaps

Insertion

Because our heaps are complete trees, we know where the new node must go. We have no

choice, it must go in the bottom level, as far left as possible. The new value is placed in this

node. We then check if the resulting tree is a heap: the place chosen for the new node guarantees

Data Structures 2018

4 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

that the structural property will be satisfied, but the ordering property might be be violated. The

ordering property is re-established by the `SIFT UP' operation.

The `SIFT UP' operation starts with a value in a leaf node. It moves the value up the path

towards the root by successively exchanging the value with the value in the node above. The

operation continues until the value reaches a position where it is less than its parent, or, failing

that, until it reaches the root node.

Example: insert 29 into the above heap.

`29' must start where indicated; then it is sifted up. Complexity = O(height) = O(logN)

The DELETE operation is based on `SIFT DOWN', which, as the name suggests, is the exact

opposite of SIFT UP.

SIFT DOWN starts with a value in any node. It moves the value down the tree by successively

exchanging the value with the smaller of its two children. The operation continues until the value

reaches a position where it is less than both its children, or, failing that, until it reaches a leaf.

Example: sift down 29 in this tree:

Steps:

 29 is compared with 15 and 38. Exchange 29 and 15 and repeat.

 29 is compared with 25 and 20. Exchange 29 and 20 and repeat.

 29 is compared with 30. 29 is smaller, so stop.

Data Structures 2018

5 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

Note: The tree's shape does not change. if it was a complete tree to start with, it will still be

complete when the operation is done.

Complexity = O(height) = O(logN)

Deleting a Value From a Heap

Delete has two postconditions that seem contradictory:

1. V must not be in the resulting heap

2. the resulting heap must be a complete tree.

Condition (2) tells us which node must disappear: we must take away the rightmost node in the

bottom level. This node must be `deleted' even if it is not the node containing V!

Example: delete 15 (the root) from this tree:

So we end up with a value (30) that has no node, and a node (`15') that has no value. The

algorithm, then, is obvious.

1. save the value, X, in the rightmost node in the bottom level then delete this node.

2. Put X into the node containing V and then SIFT X UP, if it is smaller than its parent, or

SIFT it DOWN if it is larger than either of its children.

Example: Delete 15 - delete the bottom right node, put its value (30) in the node where 15 was.

30 is smaller than 20 so we sift 30 down, with the final result:

Data Structures 2018

6 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

Example: Delete 50 from this tree - delete the bottom right node, put its value (37) in the node

where 50 was. 37 is smaller than 38 so we sift 37 UP, with the final result:

A special case of the DELETE operation is GET_SMALLEST, which returns the smallest value

in a given heap and deletes the value from the heap.

Applications of heaps

The main applications of heaps are:

 Implementing a priority queue

 Sorting an array using efficient technique known as heap sort.

Priority queue:

A priority queue is a structure with an interesting accessing function: only the highest priority

element can be accessed.

The operations defined for the priority queue are very much similar to the operation specified for

FIFO queue.

For example, a priority queue pq with storage capacity MAX is defined, the various operations

that can be implemented are described below

CreateEmptyPQ(pq,n)

Data Structures 2018

7 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

Begin

 Set n=0

End.

IsEmptyPQ(pq,n,status)

Begin

 If(n-0)then

 Set status=true

 Else

 Set status=false

 Endif

End

IsFullPQ(pq,n,status)

Begin

 If(n=MAX) then

 Set status=true

 Else

 Set status=false

 Endif

End

EnqueuePQ(pq,n,element)

Begin

 Call IsFullPQ(pa,n,status)

 If(status=true) then

 Print “Overflow”

 Else

 Call InsertElement(pq,n,element)

 Endif

End.

DequeuePQ(pa,n,element)

Begin

 Call IsEmptyPQ(pq,n,element)

 If(status=true)then

 Print “Overflow”

 Else

 Call DeleteElement(pq,n,element)

 Endif

End.

Building a Heap

Before applying heap sort technique for sorting an array, the first task is to build a heap(to

convert unsorted array into a heap).

Data Structures 2018

8 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

Downheap operation is the interchange the value of the root node with the value of the

child which is the largest among the children.

Apply the downheap operation from the leftmost non leaf node to all the subtrees in this

level. So that the

Heapify(a,n)

Begin

 Set index=Parent of node with index n

 For i=index to 1 by -1 do

 Call Downheap9a,I,n)

 End for

End.

Graph: Introduction, representation of graphs

Graph is an important non-linear data structure. This data structure is used to represent

relationship between pairs of elements which are not necessarily hierarchical in nature.

A graph is defined as “Graph G is an ordered set(V,E) where V(G) represent the set of elements,

called vartices, and E(G) represents the edges between these vertices”.

A graph can be either directed or undirected. In an undirected graph there is no specific direction

associated with the edges.

In an undirected graph, the edges are represented by an unordered pair whereas in a directed

graph, the edges are represented by an ordered pair.

Data Structures 2018

9 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

Directed Graph Undirected

graph

Graph terminologies

Adjacent vertices – as an edge e is represented by pair of vertices denoted by [u,v]. The vertices

u and v are called endpoints of e. these vertices are also called adjacent vertices are neighbours.

Degree of a vertex – the degree of vertex u, written as deg(u), is the number of edges containing

u. if deg(u)=0, this means that vertex u does not belong to any edge, then vertex u is called an

isolated vertex.

Path – a path p of length n from a vertex u to vertex v is defined as a sequence of (n+1) vertices,

i.e.

 P=(v1,v2,v3,…vn+1)

Such that v=v1, v=vn+1, and vi-1 is adjacent to vi for i=2,3,..,(n+1)

The path is said to be closed if the end points of the path are same i.e. v1=vn+1.

The path is said to be simple if all the vertices in the sequence are distinct, with the exception

that v1=vn+1. In that case it is known as closed simple path.

Cycle – a cycle is a closed simple path with length 2 or more. Sometimes, a cycle of length k(i.e.

k distinct vertices in the path) is known as k-cycle.

Connected graph- A graph G is said to be connected id there is path between any two of its

vertices. i.e. there is no isolated vertices.

A connected graph without any cycles is called a tree. Thus it is also called as special graph.

Data Structures 2018

10 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

Complete graph – A graph G is said to complete or fully connected if there is path from every

vertex to every other vertex. A complete graph with n vertices will have n(n-1)/2 edges.

Weighted graph – A graph is said to weighted graph id every edge in the graph is assigned some

data. The weight of the edge, denoted by w(e), is a non-negative value that may be representing

the cost of moving along that edge or distance between the vertices.

Multiple edges – Distinct edges e and e‟ are called multiple edges if they connect the same

endpoints. i.e. if e=[u,v] and e‟=[u,v].

Multigraph – A graph containing multiple edges.

Loop – An edge is a loop if it has identical end points. i.e. if e=[u,u].

Representation of graphs

Following two are the most commonly used representations of graph.

1. Adjacency Matrix

2. Adjacency List

There are other representations also like, Incidence Matrix and Incidence List. The choice of the

graph representation is situation specific. It totally depends on the type of operations to be

performed and ease of use.

Adjacency Matrix:

Adjacency Matrix is a 2D array of size V x V where V is the number of vertices in a graph. Let

the 2D array be adj[][], a slot adj[i][j] = 1 indicates that there is an edge from vertex i to vertex j.

Adjacency matrix for undirected graph is always symmetric. Adjacency Matrix is also used to

represent weighted graphs. If adj[i][j] = w, then there is an edge from vertex i to vertex j with

weight w.

The adjacency matrix for the above example graph is:

Data Structures 2018

11 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

Adjacency Matrix Representation of the above graph

Pros: Representation is easier to implement and follow. Removing an edge takes O(1) time.

Queries like whether there is an edge from vertex „u‟ to vertex „v‟ are efficient and can be done

O(1).

Cons: Consumes more space O(V^2). Even if the graph is sparse(contains less number of edges),

it consumes the same space. Adding a vertex is O(V^2) time.

Adjacency List:

An array of linked lists is used. Size of the array is equal to number of vertices. Let the array be

array[]. An entry array[i] represents the linked list of vertices adjacent to the ith vertex. This

representation can also be used to represent a weighted graph. The weights of edges can be

stored in nodes of linked lists. Following is adjacency list representation of the above graph.

Adjacency List Representation of the above Graph

Let max number of vertices as 50.

#define MAX 50

Typedef struct node_type

{

 Int vertex;

 Struct node_type *link;

}node;

http://d2o58evtke57tz.cloudfront.net/wp-content/uploads/adjacency_matrix_representation.png
http://d2o58evtke57tz.cloudfront.net/wp-content/uploads/adjacency_list_representation.png

Data Structures 2018

12 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

Operations on graph

Creating an empty graph

To create an empty graph, the entire adjacency list is set to NULL.

Void CreateGraph(node *adj[], int num)

{

 int i;

 for (i=1;i<=num;i++)

 adj[i]=(node *) NULL;

}

Entering Graph Information

void InputGraph (node *adj[], int num)

{

 node *ptr, *last;

 int i,j,m,val,wt;

for(i=1;i<=num;i++)

 {

 last=(node*)NULL;

 printf(“Number of nodes in the adjacency list of node %d:”,i);

 scanf(“%d”,&m);

 for(j=1;j<=m;j++)

 {

 printf(“Enter node #%d:”,j);

 scanf(“%d”,&val);

 Printf(“Enter weight for edge(%d,%d):”,i,val);

 Scanf(“%d”,&wt);

 Ptr=(node *)malloc(sizeof(node));

 Ptr->vertex=val;

 Ptr->weight=wt;

Ptr->link=(node *)NULL;

If(adj[i]==(node *)NULL)

 Adj[i]=last=ptr;

Else

{

 Last->link=ptr;

 Last=ptr;

 }

 }

}

Data Structures 2018

13 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

}

Outputting a Graph

Void PrintGraph(node *adj[],int num)

{

 Node *ptr;

 Int I;

 For(i=1;i<=num;i++)

 {

 Ptr=adj[i];

 Printf(“%d”,i);

 While(ptr!=NULL)

 {

 Printf(“->(%d,%d)”,ptr->vertex,ptr->weight);

 Ptr=ptr->link;

 }

 Printf(“\n”);

 }

}

Deleting a graph

Void DeleteGraph(node *adj[],int n)

{

 Int I;

Node *temp,*ptr;

 For(i=1;i<=n;i++)

 {

 Ptr=adj[i];

 While(ptr!=(node*)NULL)

 {

 Temp=ptr;

 Ptr=ptr->link;

 Free(temp);

 }

 Adj[i]=(node*)NULL;

 }

}

Traversal:Breadth first search

breadth-first search (BFS) is a strategy for searching in a graph when search is limited to

essentially two operations: (a) visit and inspect a node of a graph; (b) gain access to visit the

nodes that neighbor the currently visited node. The BFS begins at a root node and inspects all the

Data Structures 2018

14 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

neighboring nodes. Then for each of those neighbor nodes in turn, it inspects their neighbor

nodes which were unvisited, and so on.

The algorithm uses a queue data structure to store intermediate results as it traverses the graph,

as follows:

Enqueue the root node

Dequeue a node and examine it

If the element sought is found in this node, quit the search and return a result.

Otherwise enqueue any successors (the direct child nodes) that have not yet been discovered.

If the queue is empty, every node on the graph has been examined – quit the search and return

"not found".

If the queue is not empty, repeat from Step 2.

Pseudocode

Input: A graph G and a root v of G

1 procedure BFS(G,v) is

2 create a queue Q

3 create a set V

4 add v to V

5 enqueue v onto Q

6 while Q is not empty loop

7 t ← Q.dequeue()

8 if t is what we are looking for then

9 return t

10 end if

11 for all edges e in G.adjacentEdges(t) loop

12 u ← G.adjacentVertex(t,e)

13 if u is not in V then

14 add u to V

15 enqueue u onto Q

16 end if

17 end loop

18 end loop

19 return none

20 end BFS

Traversal:Depth first search

Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures.

One starts at the root(selecting some arbitrary node as the root in the case of a graph) and

explores as far as possible along each branch beforebacktracking.

Example

For the following graph:

http://en.wikipedia.org/wiki/Queue_(data_structure)
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Tree_data_structure
http://en.wikipedia.org/wiki/Graph_(data_structure)
http://en.wikipedia.org/wiki/Tree_(data_structure)#Terminology
http://en.wikipedia.org/wiki/Backtracking

Data Structures 2018

15 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

a depth-first search starting at A, assuming that the left edges in the shown graph are chosen

before right edges, and assuming the search remembers previously visited nodes and will not

repeat them (since this is a small graph), will visit the nodes in the following order: A, B, D, F,

E, C, G. The edges traversed in this search form a Trémaux tree, a structure with important

applications in graph theory.

Performing the same search without remembering previously visited nodes results in visiting

nodes in the order A, B, D, F, E, A, B, D, F, E, etc. forever, caught in the A, B, D, F, E cycle and

never reaching C or G.

Iterative deepening is one technique to avoid this infinite loop and would reach all nodes.

Applications of Graphs:

Spanning Tree:

A spanning tree for a graph, G=(V,E), is a subgraph of G that is a tree and contains all the

vertices of G. In a weighted graph, the weight of a graph is the sum of the weights of the edges

of the graph.

A minimum spanning tree(MST) for a weighted graph is a spanning tree with minimum weight.

If graph G with n vertices, then the MST will have (n-1) edges, assuming that the graph is

connected. In general, a weighted graph may have more than one MST.

If G is not connected, then it cannot have any spanning tree.

One example would be a telecommunications company laying cable to a new neighborhood.

EXAMPLE:

http://en.wikipedia.org/wiki/Tr%C3%A9maux_tree
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Iterative_deepening_depth-first_search
http://en.wikipedia.org/wiki/File:Graph.traversal.example.svg

Data Structures 2018

16 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

The Dijikstra/Prim algorithm begins by selecting an arbitrary starting vertex, and then branches

out from the part of the tree constructed so far by choosing a new vertex and edge at each

iteration, during the course of the algorithm, the vertices may be thought of as divided into three

disjoint categories as follows:

Tree vertices – Those in the tree constructed so far

Fringe vertices – Those vertices which are not in tree, but are adjacent to some vertex in the tree.

Unseen vertices – Remaining vertices of the graph.

The key stem in the algorithm is the selection of a vertex from the fringe vertices and an incident

edge.

Since the weights are on the edges, the focus of the choice is on the edge, not the vertex. The

Prim algorithm always chooses an edge from a tree vertex to a fringe vertex of minimum weight,

The general structure of the algorithm can be described as follows:

Begin

 Select an arbitrary vertex to start the tree

while there are fringe vertices do

select an edge of minimum weight between a tree and a fringe vertex

MST 1

MST2

Weighted graph

Data Structures 2018

17 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

add the seleted edge and the fringe vertex to the tree

 end while

 End

 After the each iterations of the algorithm‟s loop, there may be new fringe vertices, and

the set of edges from which the next selection is made. For each fringe vertex, only one edge to it

from the tree is being tracked. That edge is the one with lowest weight. Such edges are called as

candidate edges.

Algorithm:

MinimumSpanningTree(adj,n)

Begin

 for i=2 to n by 1 do

 Set status[i] =UNSEEN

 endfor

 set x=1

 set status[x] = INTREE

 set edge-count=0

 set stuck = false

 Create fringe-list

 while((edge-count<n-1)and(not stuck))do

 Set ptr=adj[x]

 while(ptr ≠NULL)do

 Set y=ptrvertex

 If((status[y]=fringe)and(ptrweight<fringe-wt[y])) then

 Set parent[y]=x

 Set fringe-wt[y]=ptrweight

 else if (status[y]=UNSEEN)then

 Set status[y]=FRINGE

 Insert vertex y into fringe-list

 Set parent[y]=x

 Set fringe-wt[y]=ptrweight

 endif

 Set ptr=ptrlink

 endwhile

 if(fringe-list is empty)then

 Set stuck =true

else

 Traverse the fringe list to find a vertex with minimum weight

 Set x=the fringe vertex incident with the edge

 Remove x from the fringe-list

 Set status[x]=INTREE

Data Structures 2018

18 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

 Set edge-count=edge-count+1

Endif

 endwhile

for x=2 to n by 1 do

 Print x, parent[x]

endfor

End.

Topological sort

A topological sort of a directed graph without cycles, also known as directed acyclic graph or

simple DAG,G=(V,E) is a linear ordering of all its vertices such that it G contains an edge(u,v),

then u appears before v in the ordering.

If the graph contains cycle(s), i.e. graph is not DAG, then no linear ordering is possible.

A topological sort of a graph can be viewed as an ordering of its vertices along a horizontal line

so that all directed edges go from left to right.

Directed acyclic graphs are used in many applications to indicate precedence among events.

Algorithm:

TopologicalSort(adj,n)

Begin

 Create linear linked LIST

 for i=1 to n by 1 do

 Set color[i] = WHITE

 endfor

 for i=1 to n by 1 do

 if(color[i] =WHITE)then

 Call DfsVisitModified(adj,n,i)

 endif

 endfor

 Set ptr=LIST

 while (ptr≠NULL)do

 Print ptrinfo

 Set ptr=ptrlink

 endwhile

End.

Algorithm for DfsVisitModified

DfsVisitModified(adj,n,u)

Begin

 Set color[u]=GRAY

Data Structures 2018

19 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

 Set ptr=adj[u]

 while(ptr≠NULL)do

 Set v=ptrinfo

 if(color[v]=WHITE)then

 Call DfsVisitModified(adj,n,v)

 endif

 Set ptr=ptrlink

 endwhile

 Insert vertex u in beginning of linear linked list LIST

 Set color[u]=BLACK

Data Structures 2018

20 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

End.

Data Structures 2018

21 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

Shortest path algorithm:

A path from source vertex v to x is shortest path from v to w if there is no path from v to

w with lower weights. The shortest paths are not necessarily unique.

 The distance from a vertex x to a vertex y, denoted by d(x,y), is the weight of a shortest

path from vertex x to vertex y. The dijikstra‟s shortest-path algorithm finds the shortest paths in

order of increasing distance from v. Like MST, it branches out by selecting certain edges that

lead to new edges.

 Like MST, the candidate edge (the best so far) is being tracked for each fringe vertex. For

each fringe vertex z, there is atleast one path v(=v0),v1,v2,…vk,z such that all the vertices except z

are already in the tree. The candidate edge for x is the edge vkz from a shortest path of this form.

This information is stored in linear array DIST.

Algorithm:

ShortestPath(adj,n,s,d)

Begin

 for i=1 to n by 1 do

 Set status [i] =UNSEEN,parent[i]=0

 endfor

 Setstatus[s]=INTREE

 Setdist[s]=0

 Create fringe=list

 Set x=s

 Set stuck=false

 while ((x≠d)and(not stuck))do

 Set ptr=adj[x]

 while (ptr≠NULL)do

 Set y=ptrnode

 if((status[y]=fringe)and(dist[x]+ptrweight<dist[y]))then

 Set parent[y]=x

 Set dist[y]=dist[x]+ptrweight

 else if (status[y]=UNSEEN)then

 Set status[y]=FRINGE

 Insert vertex y into fringe-list

 Set parent[y]=x

 Set dist[y]=dist[x]+ptrweight

Data Structures 2018

22 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

 endif

 Set ptr=ptrlink

 endwhile

 if(fringe-list is empty) then

 Set stuck=true

 else

 Traverse the fringe-list to find a vertex with minimum distance

 Set x=vertex with minimum distance from s

 Remove x from the fringe-list

 Set status[x]=INTREE

 endif

 endwhile

 if(parent[d]=0)then

 Print”No path from “,s,”to”,d,”exists”

 else

 Call print-path(s,d,parent)

 endif

End.

Algorithm for PrintPath

PrintPath(s,d,parent)

Begin

 if(s=d)then

 Print s

 else

 Call PrintPath(s,parent[d],parent)

 endif

End.

Articulation points,Bridges and Biconnected Components

Let G=(V,E) be a connected, undirected graph. An Articulation point, also called a cut point, of

G is a vertex whose removal disconnects G.

Data Structures 2018

23 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

A bridge of G is an edge whose removal disconnects G.

A biconnected component of G is a maximal set of edges such that any two edges in the

set lie on a common simple cycle. A graph with no articulation point is called biconnected. In

other words, a graph is biconnected iff any vertex is deleted the graph remains connected. A

biconnected graph is a maximal biconnected subgraph.

Biconnected and Non biconnected graphs:

Data Structures 2018

24 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

Strongly Connected Components

A directed graph is strongly connected if there is a path between all pairs of vertices. A

strongly connected component (SCC) of a directed graph is a maximal strongly connected

subgraph. For example, there are 3 SCCs in the following graph.

http://d2o58evtke57tz.cloudfront.net/wp-content/uploads/SCC.png

Data Structures 2018

25 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

EULERIAN TOUR

An Eulerian tour through an undirected graph is a path whose edge list contains each

edge of the graph exactly once. An Eulerian graph is a graph that possesses an Eulerian tour. It

has been proved that an undirected graph is Eulerian graph if and only if it is connected and has

either zero or two vertices with an odd degree.

HAMILTONIAN TOUR

A Hamiltonian tour through an undirected graph is a path whose vertex list contains each

vertex of the graph exactly once. A Hamiltonian graph is a graph that possesses a Hamiltonian

tour.

Data Structures 2018

26 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

KARPAGAM ACADEMY OF HIGHER EDUCATION
 (Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMPUTER SCIENCE,CA & IT

SUBJECT : DATA STRUCTURES SEMESTER: III

CODE: 17CAU301 CLASS: II B.C.A

POSSIBLE QUESTIONS

PART – A (1X20=20)

(Multiple Choice Questions)

PART-B (2 MARKS)

1. Define Searching.

2. What is Sorting.

3. What is Linear Search.

4. What is Binary Search.

5. Define Shell Sort.

PART C – (6 MARKS)

1. Define Searching. Write an Algorithm for Linear Search.

2. Write an Algorithm for Binary Search.

3. Compare Linear and Binary Search .

4. Write an Algorithm for Binary Search.

5. Write an Algorithm for Linear Search.

Data Structures 2018

27 Prepared by, Dr.K.Prathapchandran, Department of Computer Applications

S.No QUESTION OPT 1 OPT 2 OPT 3 OPT 4 ANSWER

1

Which of the following operations is performed

more efficiently by doubly linked

list than by singly linked list

Deleting a node

whose location is

given.

Searching of an

unsorted list for

a given item.

Inserting a

new node

after node

whose

location is

given.

Traversing

the list to

process each

node.

Deleting a node

whose location is

given.

2

Nodes that have degree zero are called

________. end node leaf nodes subtree root node leaf nodes

3

A binary tree with all its left branches supressed

is called a _________ balanced tree left sub tree

full binary

tree

right skewed

tree right skewed tree

4

All node except the leaf nodes are

called________. terminal node percent node non terminal children node non terminal

5

The roots of the subtrees of a node X, are the

_______ of X. Parent Children Sibling sub tree Children

6 X is a root then X is the ______ of its children. sub tree Parent Sibilings subordinate Parent

7

The children of the same parent are called

__________________. sibiling leaf child subtree sibiling

8

___________of a node are all the nodes along

the path form the root to that node. Degree sub tree Ancestors parent Ancestors

9

The ______________of a tree is defined to be a

maximum level of any node in the tree. weight length breath height height

10 A___________ is a set of n ≥ 0 disjoint trees Group forest Branch sub tree forest

UNIT IV

Objective Type Questions

Karpagam Academy of Higher Education

Department of Computer Applications

 Subject : Data Structures

 Class: II BCA Subject code: 17CAU301

11

A tree with any node having at most two

branches is called a _____________. branched tree sub tree binary tree forest binary tree

12

A ___________of depth k is a binary tree of

depth k having 2
K
-1 nodes. full binary tree half binary tree sub tree n branch tree full binary tree

13

Data structure represents the hierarchical

relationships between individual data item is

known as __________. Root Node Tree Address Tree

14

Node at the highest level of the tree is known as

_______. Child Root Sibiling Parent Root

15

The root of the tree is the _______of all nodes in

the tree. Child Parent Ancestor Head Ancestor

16 _____is a subset of a tree that is itself a tree. Branch Root Leaf Subtree Subtree

17 A node with no children is called _________. Root Node Branch Leaf Node Null tree Leaf Node

18

In a tree structure a link between parent and child

is called _______ Branch Root Leaf Subtree Branch

19

Height – balanced trees are also referred as as

___________trees. AVL trees Binary Trees Subtree Branch Tree AVL trees

20

Visiting each node in a tree exactly once is called

_________ searching travering walk through path travering

21

In________traversal ,the current node is visited

before the subtrees. PreOrder PostOrder Inorder End Order PreOrder

22

In________traversal ,the node is visited between

the subtrees. PreOrder PostOrder Inorder End Order Inorder

23

In________traversal ,the node is visited after the

subtrees. PreOrder PostOrder Inorder End Order PostOrder

24 Inorder traversal is also sometimes called______ Symmetric Order End Order PreOrder PostOrder Symmetric Order

25

Postorder traversal is also sometimes

called______ Symmetric Order End Order PreOrder PostOrder End Order

26

One can determine whether a Binary tree is a

Binary Search Tree by traversing it in Preorder Inorder Postorder Any order Inorder

27

Nodes of any level are numbered from

_________ Left to right Right to Left

Top to

Bottom

Bottom to

Top Left to right

28

In Threaded Binary Tree ,LCHILD(P) is a

normal pointer When LBIT(P) = ____ 1 2 3 0 1

29

In Threaded Binary Tree ,LCHILD(P) is a Thread

When LBIT(P) = ____ 1 2 3 0 0

30

In Threaded Binary Tree ,RCHILD(P) is a

normal pointer When RBIT(P) = ____ 2 1 3 0 1

31

In Threaded Binary Tree ,RCHILD(P) is a

Thread When LBIT(P) = ____ 1 2 0 4 0

32

Which of these searching algorithm uses the

Divide and Conquere technique for sorting Linear search Binary search

fibonacci

search m-way search Binary search

33

______ algorithm can be used only with sorted

lists. Linear search Binary search insertion sort merge sort Binary search

34

________ search involves comparision of the

element to be found with every elements in a list. Linear search Binary search

fibonacci

search m-way search Linear search

35

Binary search algorithm in a list of n elements

takes only _______ time. O(log2n) O(n) O(n
3
) O(n

2
) O(log2n)

36

_____ is used for decision making in eight coin

problem. trees graphs linked lists array trees

37

The Linear search algorithm in a list of n element

takes ________ time to compare in worst case. constant linear quadratic exponential constant

38

In _______ search method the search begins by

examining the record in the middle of the file. sequential fibonacci binary

non-

sequential binary

39

A binary tree with external nodes added is an ----

----------- binary tree extended expanded internal external extended

40

The search technique for searching a sorted file

that requires increased amount of space is

indexed sequential

search

interpolation

search

sequential

search tree search

indexed

sequential search

41

If hl and hr are the heights of the left and right

subtrees of a tree respectively and if |hl-hr|<=1

then this tree is called _____ extended binary tree

binary search

tree skewed tree

height

balanced tree

height balanced

tree

42

If hl and hr are the heights of the left and right

subtrees of a tree respectively then |hl-hr| is

called its _____ Average height minimal depth

Maximum

levels

Balance

factor Balance factor

43 For an AVL Tree the balance factor is =____ 0 2 3 4 0

44

In a binary search tree all values of the left

subtree is ____ than the root's value smaller larger equal multiples smaller

45

In a binary search tree all values of the right

subtree is ____ than the root's value smaller larger equal multiples larger

46 In BST, we can search for a value in O(log n) O(n) O(n2) O(1) O(log n)

47

In tree construction, which is the suitable

efficient data structure? array linked list stack queue linked list

48

In a balance binary tree, the height of two

subtrees of every node cannot differ by more

than? 4 8 5 3 8

49

The number of possible binary trees with 3 nodes

is 15 10 8 5 5

50

the number of possible binary trees with 4 nodes

is 14 10 15 12 14

51 the order of binary search algorithm is n log n n log n 1 log n

52 A connected graph T without any cycle is called Tree stack queue graph tree

53

A binary tree with 10 nodes has ______ null

branches 12 11 21 22 21

54 binary search algorithm can be applied to sorted binary trees sorted graph pointer array

sorted linked

list sorted linked list

55

If aaa, bbb and ccc are the elements of a lexically

ordered binary tree, then in pre order traversal

which node will be traversed first? aaa bbb ccc

cannot be

determined aaa

56

In an array representation of binary tree the right

child of the root will be at location of 1 2 3 0 3

57

The maximum number of nodes in a binary tree

of depth 5 is 31 16 32 15 31

58 A complete binary tree with n leaf nodes has n+1 nodes 2n-1 nodes 2n+1 nodes

n(n-1)/2

nodes 2n-1 nodes

59

In a binary tree, certain null entries are replaced

by special pointers which point to nodes higher

in tree for efficiency. These special pointers are

called leaf path branch thread thread

60

A binary tree whose every node has either zero or

two children is called

complete binary

tree

extended binary

tree

binary search

tree all of above

extended binary

tree

61

when cinverting binary tree into extended binary

tree, all the original nodes in binary tree are

internal nodes on

extended binary tree

external nodes

on extended

binary tree

vanished on

extended

binary tree

vanished on b

tree

internal nodes on

extended binary

tree

62

The inorder traversal will yield a sorting list of

elements of tree in binary tree

binary search

tree heaps AVL tree binary search tree

63

Which of the following traversal technique lists

the nodes of a binary search tree in ascending

order? postorder inorder preorder insertion inorder

64

Which of the following need not be a binary

tree? B-Tree AVL tree heaps Search tree B-Tree

65

A binary tree can be converted in to its mirror

image by traversing it in postorder inorder preorder insertion preorder

66 The prefix form of A-B/ (C * D ^ E) is, -/*^ACBDE -ABCD*^DE

 -

A/B*C^DE

 -

A/BC*^DE -A/B*C^DE

67

Consider that n elements are to be sorted. What

is the worst case time complexity of Bubble

sort? O(1)

O(log2n)

O(n) O(n2) O(n2)

68

Which of these searching algorithm uses the

Divide and Conquere technique for sorting Linear search Binary search

fibonacci

search Factorial Binary search

69

_______________ are genealogical charts which

are used to present the data Graphs

Pedigree and

lineal chart

Line , bar

chart pie chart

Pedigree and

lineal chart

70

A __ is a finite set of one or more nodes, with

one root node and remaining form the disjoint

sets forming the subtrees. tree graph list set tree

71 A _________ is a graph without any cycle. tree path set list tree

72

In binary trees there is no node with a degree

greater than _____ zero one two three two

73 Which of this is true for a binary tree. It may be empty

The degree of

all nodes must

be <=1

It contains a

leaf node

The degree of

all nodes

must be <2 It may be empty

74

Overflow condition in linked list may occur

when attempting to_____

Create a node when

free space pool is

empty.

Traverse the

nodes when

free space pool

is empty.

Create a

node when

linked list is

empty.

Search for

node

Create a node

when free space

pool is empty.

75

The Number of subtrees of a node is called its

_______. leaf terminal children degree degree

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 1/24

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Under section 3 of UGC Act 1956)

COIMBATORE – 641 021

DEPARTMENT OF COMPUTER APPLICATIONS

UNIT-V

Hashing - Introduction to Hashing, Deleting from Hash Table, Efficiency of Rehash

Methods, Hash Table Reordering, Resolving collusion by Open Addressing, Coalesced

Hashing, Separate Chaining, Dynamic and Extendible Hashing, Choosing a Hash Function,

Perfect Hashing, Function

Hash Table is a data structure which stores data in an associative manner. In a hash

table, data is stored in an array format, where each data value has its own unique index

value. Access of data becomes very fast if we know the index of the desired data.

Thus, it becomes a data structure in which insertion and search operations are very fast

irrespective of the size of the data. Hash Table uses an array as a storage medium and

uses hash technique to generate an index where an element is to be inserted or is to be

located from.

Hashing

Hashing is a technique to convert a range of key values into a range of indexes of an

array. We're going to use modulo operator to get a range of key values. Consider an

example of hash table of size 20, and the following items are to be stored. Item are in the

(key,value) format.

Hash Function

(1,20)

(2,70)

(42,80)

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 2/24

(4,25)

(12,44)

(14,32)

(17,11)

(13,78)

(37,98)

Sr. No. Key Hash Array Index

1 1 1 % 20 = 1 1

2 2 2 % 20 = 2 2

3 42 42 % 20 = 2 2

4 4 4 % 20 = 4 4

5 12 12 % 20 = 12 12

6 14 14 % 20 = 14 14

7 17 17 % 20 = 17 17

8 13 13 % 20 = 13 13

9 37 37 % 20 = 17 17

Linear Probing

As we can see, it may happen that the hashing technique is used to create an already used

index of the array. In such a case, we can search the next empty location in the array by

looking into the next cell until we find an empty cell. This technique is called linear

probing.

Sr. No. Key Hash Array Index After Linear Probing, Array Index

1 1 1 % 20 = 1 1 1

2 2 2 % 20 = 2 2 2

3 42 42 % 20 = 2 2 3

4 4 4 % 20 = 4 4 4

5 12 12 % 20 = 12 12 12

6 14 14 % 20 = 14 14 14

7 17 17 % 20 = 17 17 17

8 13 13 % 20 = 13 13 13

9 37 37 % 20 = 17 17 18

Basic Operations

Following are the basic primary operations of a hash table.

Search − Searches an element in a hash table.

Insert − inserts an element in a hash table.

delete − Deletes an element from a hash table.

DataItem

Define a data item having some data and key, based on which the search is to be

conducted in a hash table.

struct DataItem {

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 3/24

 int data;

 int key;

};

Hash Method

Define a hashing method to compute the hash code of the key of the data item.

int hashCode(int key){

 return key % SIZE;

}

Search Operation

Whenever an element is to be searched, compute the hash code of the key passed and

locate the element using that hash code as index in the array. Use linear probing to get the

element ahead if the element is not found at the computed hash code.

Insert Operation

Whenever an element is to be inserted, compute the hash code of the key passed and

locate the index using that hash code as an index in the array. Use linear probing for

empty location, if an element is found at the computed hash code.

Delete Operation

Whenever an element is to be deleted, compute the hash code of the key passed and

locate the index using that hash code as an index in the array. Use linear probing to get

the element ahead if an element is not found at the computed hash code. When found,

store a dummy item there to keep the performance of the hash table intact.

Example

struct DataItem* delete(struct DataItem* item) {

 int key = item->key;

 //get the hash

 int hashIndex = hashCode(key);

 //move in array until an empty

 while(hashArray[hashIndex] !=NULL) {

 if(hashArray[hashIndex]->key == key) {

 struct DataItem* temp = hashArray[hashIndex];

 //assign a dummy item at deleted position

 hashArray[hashIndex] = dummyItem;

 return temp;

 }

 //go to next cell

 ++hashIndex;

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 4/24

 //wrap around the table

 hashIndex %= SIZE;

 }

 return NULL;

}

EFFICIENCY OF REHASH METHODS:

RE-HASHING:

 Re-hashing schemes use a second hashing operation when there is a collision. If there is

a further collision, we re-hash until an empty "slot" in the table is found.

Rehashing code:

// Grows hash array to twice its original size.

 private void rehash() {

 List<Integer>[] oldElements = elements;

 elements = (List<Integer>[])

 new List[2 * elements.length];

 for (List<Integer> list : oldElements) {

 if (list != null) {

 for (int element : list) {

 add(element);

 }

 }

 }

}

Efficiency of rehash methods:

Hash table

Type Unordered associative array

Invented 1953

Time complexity in big O notation

Algorithm Average Worst Case

Space O(n) O(n)

https://en.wikipedia.org/wiki/List_of_data_structures
https://en.wikipedia.org/wiki/Associative_array
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Big_O_notation

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 5/24

Search O(1) O(n)

Insert O(1) O(n)

Delete O(1) O(n)

Hash Table Reordering:

If the table size increases or decreases by a fixed percentage at each expansion, the total

cost of these resizings, amortized over all insert and delete operations, is still a constant,

independent of the number of entries n and of the number m of operations performed.

For example, consider a table that was created with the minimum possible size and is

doubled each time the load ratio exceeds some threshold. If m elements are inserted into

that table, the total number of extra re-insertions that occur in all dynamic resizings of the

table is at most m − 1. In other words, dynamic resizing roughly doubles the cost of each

insert or delete operation.

Alternatives to all-at-once rehashing:

Some hash table implementations, notably in real-time systems, cannot pay the price of

enlarging the hash table all at once, because it may interrupt time-critical operations. If

one cannot avoid dynamic resizing, a solution is to perform the resizing gradually:

Disk-based hash tables almost always use some alternative to all-at-once rehashing, since

the cost of rebuilding the entire table on disk would be too high.

Incremental resizing:

One alternative to enlarging the table all at once is to perform the rehashing gradually:

 During the resize, allocate the new hash table, but keep the old table unchanged.

 In each lookup or delete operation, check both tables.

 Perform insertion operations only in the new table.

 At each insertion also move r elements from the old table to the new table.

 When all elements are removed from the old table, deallocate it.

To ensure that the old table is completely copied over before the new table itself needs to

be enlarged, it is necessary to increase the size of the table by a factor of at least (r + 1)/r

during resizing.

RESOLVING COLLUSION :

When two different keys produce the same address, there is a collision. The keys

involved are called synonyms. Coming up with a hashing function that avoids collision is

extremely difficult. It is best to simply find ways to deal with them. The possible

solution, can be:

Spread out the records

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 6/24

Use extra memory

Put more than one record at a single address.

An example of Collision

Hash table size: 11

Hash function: key mod hash size

So, the new positions in the hash table are:

Some collisions occur with this hash function as shown in the above figure.

Another example (in a phonebook record):

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 7/24

Here, the buckets for keys 'John Smith' and 'Sandra Dee' are the same. So, its a collision

case.

Collision Resolution:Collision occurs when h(k1) = h(k2), i.e. the hash function gives

the same result for more than one key. The strategies used for collision resolution are:

 Chaining

o Store colliding keys in a linked list at the same hash table index

 Open Addressing

o Store colliding keys elsewhere in the table

Chaining:

Fig: Separate Chaining

Strategy:

Maintains a linked list at every hash index for collided elements.

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 8/24

Lets take the example of an insertion sequence: {0 1 4 9 16 25 36 49 64 81}.

Here, h(k) = k mod tablesize = k mod 10 (tablesize = 10)

Hash table T is a vector of linked lists

Insert element at the head (as shown here) or at the tail

Key k is stored in list at T[h(k)]

So, the problem is like: "Insert the first 10 preface squares in a hash table of size 10"

The hash table looks like:

Collision Resolution by Chaining: Analysis

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 9/24

 Load factor λ of a hash table T is defined as follows:

N = number of elements in T (“current size”)

M = size of T (“table size”)

λ = N/M (“ load factor”)

i.e., λ is the average length of a chain

 Unsuccessful search time: O(λ)

Same for insert time

 Successful search time: O(λ/2)

 Ideally, want λ ≤ 1 (not a function of N)

Potential diadvantages of Chaining

 Linked lists could get long

Especially when N approaches M

Longer linked lists could negatively impact performance

 More memory because of pointers

 Absolute worst-case (even if N << M):

All N elements in one linked list!

Typically the result of a bad hash function

Open Addressing:

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 10/24

Fig: Open Addressing

As shown in the above figure, in open addressing, when collision is encountered, the next

key is inserted in the empty slot of the table. So, it is an 'inplace' approach.

Advantages over chaining

 No need for list structures

 No need to allocate/deallocate memory during insertion/deletion (slow)

Diadvantages

 Slower insertion – May need several attempts to find an empty slot

 Table needs to be bigger (than chaining-based table) to achieve average-case

constant-time performance

Load factor λ ≈ 0.5

Probing

The next slot for the collided key is found in this method by using a technique

called "Probing". It generates a probe sequence of slots in the hash table and we need to

chose the proper slot for the key 'x'.

 h0(x), h1(x), h2(x), …

 Needs to visit each slot exactly once

 Needs to be repeatable (so we can find/delete what we’ve inserted)

 Hash function

o hi(x) = (h(x) + f(i)) mod TableSize

o f(0) = 0 ==> position for the 0th probe

o f(i) is “the distance to be traveled relative to the 0th probe position, during

the ith probe”.

Some of the common methods of probing are:

1. Linear Probing:

Suppose that a key hashes into a position that has been already occupied. The simplest

strategy is to look for the next available position to place the item. Suppose we have a set

of hash codes consisting of {89, 18, 49, 58, 9} and we need to place them into a table of

size 10. The following table demonstrates this process.

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 11/24

The first collision occurs when 49 hashes to the same location with index 9. Since 89

occupies the A[9], we need to place 49 to the next available position. Considering the

array as circular, the next available position is 0. That is (9+1) mod 10. So we place 49 in

A[0].

Several more collisions occur in this simple example and in each case we keep looking to

find the next available location in the array to place the element. Now if we need to find

the element, say for example, 49, we first compute the hash code (9), and look in A[9].

Since we do not find it there, we look in A[(9+1) % 10] = A[0], we find it there and we

are done.

So what if we are looking for 79? First we compute hashcode of 79 = 9. We probe in

A[9], A[(9+1)]=A[0], A[(9+2)]=A[1], A[(9+3)]=A[2], A[(9+4)]=A[3] etc. Since A[3] =

null, we do know that 79 could not exists in the set.

Issues with Linear Probing:

 Probe sequences can get longer with time

 Primary clustering

o Keys tend to cluster in one part of table

o Keys that hash into cluster will be added to the end of the cluster (making

it even bigger)

o Side effect: Other keys could also get affected if mapping to a crowded

neighborhood

2. Quadratic Probing:

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 12/24

Although linear probing is a simple process where it is easy to compute the next available

location, linear probing also leads to some clustering when keys are computed to closer

values. Therefore we define a new process of Quadratic probing that provides a better

distribution of keys when collisions occur. In quadratic probing, if the hash value is K ,

then the next location is computed using the sequence K + 1, K + 4, K + 9 etc..

The following table shows the collision resolution using quadratic probing.

 Avoids primary clustering

 f(i) is quadratic in i: eg: f(i) = i
2

 hi(x) = (h(x) + i
2
) mod tablesize

Quadratic Probing: Analysis

 Difficult to analyze

 Theorem

New element can always be inserted into a table that is at least half empty and

TableSize is prime

 Otherwise, may never find an empty slot, even is one exists

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 13/24

 Ensure table never gets half full

If close, then expand it

 May cause “secondary clustering”

 Deletion

Emptying slots can break probe sequence and could cause find stop prematurely

 Lazy deletion:Differentiate between empty and deleted slot

When finding skip and continue beyond deleted slots

If you hit a non-deleted empty slot, then stop find procedure returning “not found”

 May need compaction at some time

3. Double Hashing

Double hashing uses the idea of applying a second hash function to the key when a

collision occurs. The result of the second hash function will be the number of positions

form the point of collision to insert.

There are a couple of requirements for the second function:

 it must never evaluate to 0

 must make sure that all cells can be probed

A popular second hash function is: Hash2(key) = R - (key % R) where R is a prime

number that is smaller than the size of the table.

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 14/24

4. Hashing with Rehashing:

 Once the hash table gets too full, the running time for operations will start to take

too long and may fail. To solve this problem, a table at least twice the size of the original

will be built and the elements will be transferred to the new table.

The new size of the hash table:

 should also be prime

 will be used to calculate the new insertion spot (hence the name rehashing)

 This is a very expensive operation! O(N) since there are N elements to rehash and

the table size is roughly 2N. This is ok though since it doesn't happen that often.

Coalesced Hashing:

The chaining method discussed above requires additional space for maintaining

pointers. The table stores only pointers but each node of the linked list requires

storage space for data as well as one pointer field. Thus, for n keys, n + MAX_SIZE

pointers are needed, where MAX_SIZE is the maximum size of the table in which

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 15/24

values are to be inserted. If the value of n is large, the space required to store this

table is quite large.

The solution to this problem is called coalesced hashing or coalesced chaining. This

method is the hybrid of chaining and open addressing. Each index position in the

table stores key value and a pointer to the next index position. The pointer generally

points to the index position where the colliding key value will be stored.

In this method, the next available position is searched for a colliding key and is

placed in that position. After each such insertion, pointer re – adjustment is required.

After inserting the key values at the right place, the next pointer of the previous

position is made to point to the position where the colliding key is inserted. In this

method, instead of allocating new nodes for the linked list of keys with collision,

empty position from the table itself is allocated.

 For Example, the values 25, 36, and 47 will be inserted thus in the table –

 Now, we insert key value 85 into this table. This method starts inserting the collided

key values from the bottom of the table. Key value 85 will go in at index position 9 in

the table and the pointer will be re – adjusted. That is, the next pointer of position 5

will point to index position 9.

Index position 9 is full and any key value hashing into this position will have to be

inserted into the next available empty location, starting from the bottom of the table.

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 16/24

So, if we insert key value 49 into the table, it will go into index position 8 with

pointer re – adjustment. The table will look like –

This process will continue for all the colliding key values.

 DYNAMIC AND EXTENDIBLE HASHING:

For a huge database structure, it can be almost next to impossible to search all the index

values through all its level and then reach the destination data block to retrieve the

desired data. Hashing is an effective technique to calculate the direct location of a data

record on the disk without using index structure.

Hashing uses hash functions with search keys as parameters to generate the address of a

data record.

Hash Organization:

Bucket − A hash file stores data in bucket format. Bucket is considered a unit of storage.

A bucket typically stores one complete disk block, which in turn can store one or more

records.

Hash Function − A hash function, h, is a mapping function that maps all the set of

search-keys K to the address where actual records are placed. It is a function from search

keys to bucket addresses.

Static Hashing

In static hashing, when a search-key value is provided, the hash function always

computes the same address. For example, if mod-4 hash function is used, then it shall

generate only 5 values. The output address shall always be same for that function. The

number of buckets provided remains unchanged at all times.

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 17/24

Operation

 Insertion − When a record is required to be entered using static hash, the hash

function h computes the bucket address for search key K, where the record will

be stored.

Bucket address = h(K)

 Search − When a record needs to be retrieved, the same hash function can be

used to retrieve the address of the bucket where the data is stored.

 Delete − This is simply a search followed by a deletion operation.

Bucket Overflow

The condition of bucket-overflow is known as collision. This is a fatal state for any

static hash function. In this case, overflow chaining can be used.

 Overflow Chaining − When buckets are full, a new bucket is allocated for the

same hash result and is linked after the previous one. This mechanism is

called Closed Hashing.

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 18/24

 Linear Probing − When a hash function generates an address at which data is

already stored, the next free bucket is allocated to it. This mechanism is

called Open Hashing.

Dynamic Hashing:

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 19/24

The problem with static hashing is that it does not expand or shrink dynamically as the

size of the database grows or shrinks. Dynamic hashing provides a mechanism in which

data buckets are added and removed dynamically and on-demand. Dynamic hashing is

also known as extended hashing.

Hash function, in dynamic hashing, is made to produce a large number of values and only

a few are used initially.

Organization

The prefix of an entire hash value is taken as a hash index. Only a portion of the hash

value is used for computing bucket addresses. Every hash index has a depth value to

signify how many bits are used for computing a hash function. These bits can address 2n

buckets. When all these bits are consumed − that is, when all the buckets are full − then

the depth value is increased linearly and twice the buckets are allocated.

Operation

Querying − Look at the depth value of the hash index and use those bits to compute the

bucket address.

Update − Perform a query as above and update the data.

Deletion − Perform a query to locate the desired data and delete the same.

Insertion − Compute the address of the bucket

 If the bucket is already full.

1. Add more buckets.

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 20/24

2. Add additional bits to the hash value.

3. Re-compute the hash function.

 Else

1. Add data to the bucket,

 If all the buckets are full, perform the remedies of static hashing.

Hashing is not favorable when the data is organized in some ordering and the queries

require a range of data. When data is discrete and random, hash performs the best.

Hashing algorithms have high complexity than indexing. All hash operations are done in

constant time.

Extendible hashing:

 Extendible hashing is a type of hash system which treats a hash as a bit string, and

uses a trie for bucket lookup. Because of the hierarchical nature of the system, re-hashing

is an incremental operation (done one bucket at a time, as needed). This means that time-

sensitive applications are less affected by table growth than by standard full-table

rehashes.

https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Trie

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 21/24

Choosing a Hash Function:

Choosing a good hash function is of the utmost importance. An uniform hash function is

one that equally distributes data items over the whole hash table data structure. If the hash

function is poorly chosen data items may tend to clump in one area of the hash table and

many collisions will ensue. A non-uniform dispersal pattern and a high collision rate

cause an overall data structure performance degradation. There are several strategies for

maximizing the uniformity of the hash function and thereby maximizing the efficiency of

the hash table.

One method, called the division method , operates by dividing a data item's key value by

the total size of the hash table and using the remainder of the division as the hash

function return value. This method has the advantage of being very simple to compute

and very easy to understand.

Selecting an appropriate hash table size is an important factor in determining the

efficiency of the division method. If you choose to use this method, avoid hash table sizes

that simply return a subset of the data item's key as the hash value. For instance, a table

one-hundred items large will result put key value 12345 at location forty-five, which is

undesirable. Further, an even data item key should not always map to an even hash value

(and, likewise, odd key values should not always produce odd hash values). A good rule

of thumb in selecting your hash table size for use with a division method hash function is

to pick a prime number that is not close to any power of two (2, 4, 8, 16, 32...).

int hash_function(data_item item)

{

 return item.key % hash_table_size;

}

Sometimes it is inconvenient to have the hash table size be prime. In certain cases only a

hash table size which is a power of two will work. A simple way of dealing with table

sizes which are powers of two is to use the following formula to computer a key: k = (x

mod p) mod m. In the above expression x is the data item key, p is a prime number, and

m is the hash table size. Choosing p to be much larger than m improves the uniformity of

this key selection process.

Yet another hash function computation method, called the multiplication method, can

be used with hash tables with a size that is a power of two. The data item's key is

multiplied by a constant, k and then bit-shifted to compute the hash function return value.

A good choice for the constant, k is N * (sqrt(5) - 1) / 2 where N is the size of the hash

table.

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 22/24

The product key * k is then bitwise shifted right to determine the final hash value. The

number of right shifts should be equal to the log2 N subtracted from the number of bits in

a data item key. For instance, for a 1024 position table (or 210) and a 16-bit data item

key, you should shift the product key * k right six (or 16 - 10) places.

int hash_function(data_item item)

{

 extern int constant;

 extern int shifts;

 return (int)((constant * item.key) >> shifts);

}

Note that the above method is only effective when all data item keys are of the same,

fixed size (in bits). To hash non-fixed length data item keys another method is variable

string addition so named because it is often used to hash variable length strings. A table

size of 256 is used. The hash function works by first summing the ASCII value of each

character in the variable length strings. Next, to determine the hash value of a given

string, this sum is divided by 256. The remainder of this division will be in the range of 0

to 255 and becomes the item's hash value.

int hash_function (char *str)

{

 int total = 0;

 while (*str) {

 total += *str++;

 }

 return (total % 256);

}

Yet another method for hashing non fixed-length data is called compression function

and discussed in the one-way hashing section.

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 23/24

Perfect hash function:

In computer science, a perfect hash function for a set S is a hash function that maps

distinct elements in S to a set of integers, with no collisions. In mathematical terms, it is

an injective function.

 In most general applications, we cannot know exactly what set of key values will

need to be hashed until the hash function and table have been designed and put to

use.

 At that point, changing the hash function or changing the size of the table will be

extremely expensive since either would require re-hashing every key.

 A perfect hash function is one that maps the set of actual key values to the table

without any collisions.

 A minimal perfect hash function does so using a table that has only as many

slots as there are key values to be hashed.

 If the set of keys IS known in advance, it is possible to construct a specialized

hash function that is perfect, perhaps even minimal perfect.

 Algorithms for constructing perfect hash functions tend to be tedious, but a

number are known.

Dynamic perfect hashing:

Using a perfect hash function is best in situations where there is a frequently queried

large set, S, which is seldom updated. This is because any modification of the set S may

cause the hash function to no longer be perfect for the modified set. Solutions which

update the hash function any time the set is modified are known as dynamic perfect

hashing, but these methods are relatively complicated to implement.

Minimal perfect hash function

A minimal perfect hash function is a perfect hash function that maps n keys

to n consecutive integers – usually the numbers from 0 to n − 1 or from 1 to n. A more

formal way of expressing this is: Let j and k be elements of some finite setS. F is a

minimal perfect hash function if and only if F(j) = F(k) implies j = k (injectivity) and

there exists an integer a such that the range of F is a..a + |S| − 1.

Order preservation

A minimal perfect hash function F is order preserving if keys are given in some

order a1, a2, ..., an and for any keys aj and ak, j < k implies F(aj) < F(ak). In this case, the

function value is just the position of each key in the sorted ordering of all of the keys. A

simple implementation of order-preserving minimal perfect hash functions with constant

access time is to use an (ordinary) perfect hash function or cuckoo hashing to store a

lookup table of the positions of each key. If the keys to be hashed are themselves stored

in a sorted array, it is possible to store a small number of additional bits per key in a data

structure that can be used to compute hash values quickly. Order-preserving minimal

perfect hash functions require necessarily Ω(n log n) bits to be represented.

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Hash_collision
https://en.wikipedia.org/wiki/Injective_function
https://en.wikipedia.org/wiki/Dynamic_perfect_hashing
https://en.wikipedia.org/wiki/Dynamic_perfect_hashing
https://en.wikipedia.org/wiki/Dynamic_perfect_hashing
https://en.wikipedia.org/wiki/Injectivity
https://en.wikipedia.org/wiki/Cuckoo_hashing

DATA STRUCTURES 2018

Prepared by, Dr.K.Prathapchandran, Department of Computer Applications, KAHE 24/24

 KARPAGAM ACADEMY OF HIGHER EDUCATION
Coimbatore - 641021.

(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMPUTER SCIENCE,CA & IT

SUBJECT : DATA STRUCTURES SEMESTER: III

CODE: 17CAU301 CLASS: II B.C.A

POSSIBLE QUESTIONS

UNIT-V

 2 MARKS:

1. What is Hashing?

2. Explain about Hash Table.

3. Define Hash Function.

4. Write about Resolving Collisions.

5. Write about Separate Chaining.

 6 MARKS:

1. Write about Deleting from Hash Table.

2. Discuss about Efficiency of Rehash Methods.

3. Discuss about Resolving Collusion by Open Addressing.

4. What is Coalesced Hashing

5. What is Resolving Collusion by Open Addressing.

S.No QUESTION OPT 1 OPT 2 OPT 3 OPT 4 ANSWER

1 The postfix form of A*B+C/D is *AB/CD+ AB*CD/+ A*BC+/D ABCD+/* AB*CD/+

2

A characteristic of the data that binary search

uses but the linear search ignores is

the___________.

Order of the

elements of the list.

Length of the

list.

Maximum

value in list.

Type of

elements of

the list.

3

In order to get the contents of a Binary search

tree in ascending order, one has to traverse it in pre-order in-order post order not possible. in-order

4

Which of the following sorting algorithm is

stable insertion sort. bubble sort. quick sort heap sort. heap sort.

5

The time required to delete a node x from a

doubly linked list having n nodes is O (n)

 O (log n)

O (1) O (n log n) O (1)

6

Which of these sorting algorithm uses the Divide

and Conquere technique for sorting selection sort insertion sort merge sort heap sort merge sort

7

A________ is defined to be a complete binary

tree with the property that the value of root node

is at least as large as the value of its children

node. quick radix merge heap heap

8 Binary trees are used in ______ sorting. quick sort merge sort heap sort lrsort heap sort

9

The ____ of the heap has the largest key in the

tree. Node Root Leaf Branch Root

10 ________ is a internal sorting method. sorting with disks quick sort

balanced

merge sort

sorting with

tapes quick sort

UNIT V

Objective Type Questions

Karpagam Academy of Higher Education

Department of Computer Applications

 Subject : Data Structures

 Class: II BCA Subject code: 17CAU301

11

Quick sort reads _______ space to implement the

recursion. stack queue

 circular

stacks

 circular

queue stack

12

The most popular method for sorting on external

storage devices is _____. quick sort radix sort merge sort heap sort merge sort

13

The 2-way merge algorithm is almost identical to

the ___________procedure. quick merge heap radix merge

14

In threaded binary tree all right child pointer

points to

postorder successor

of the node

Inorder

successor of the

node

Inorder

predecessor

of the node

Preorder

successor of

the node

15 What is the A of AVL tree? part of approach

name of one of

the inventors

algorithmic

abbreviation

property of

tree

name of one of

the inventors

16

In AVL Tree the difference between height of

left and right subtree is never more than 0 2 3 1 1

17

In an AVL tree, if the balance factor becomes 2

or -2 then the tree rooted at this node is balanced unbalanced pruned rotated unbalanced

18

Which of the following is not the required

condition for binary search algorithm?

The list must be

sorted

there should be

the direct

access to the

middle element

in any sublist

There must

be

mechanism

to delete

and/or insert

elements in

list none of above

There must be

mechanism to

delete and/or

insert elements in

list

19

Which of the following is not a limitation of

binary search algorithm?

must use a sorted

array

requirement of

sorted array is

expensive

when a lot of

insertion and

deletions are

needed

there must be

a mechanism

to access

middle

element

directly

binary search

algorithm is

not efficient

when the data

elements are

more than

1000.

binary search

algorithm is not

efficient when

the data elements

are more than

1000.

20

If a node having two children is deleted from a

binary tree, it is replaced by its Inorder predecessor

Inorder

successor

Preorder

predecessor

Preorder

successor of

the node Inorder successor

21

The postfix form of the expression (A +

B)

∗

(C

∗

D − E)

∗

F / G is

AB + CD

∗

E − FG

/

∗∗
AB + CD

∗

 E −

F

∗∗

G/

AB + CD

∗

 E

−

∗

F

∗

 G/

AB + CDE

∗

−

∗

 F

∗

 G/

AB + CD

∗

E −

FG /

∗∗

22 In worst case Quick Sort has order O (n log n)

O (n2

/2) O (log n)

 O (n2

/4)

O (n2

/2)

23

The complexity of searching an element from a

set of n elements using Binary search

algorithm is

 O (log n)

O (n2

/2) O (log n)

 O (n2

/4) O(log n)

24

Which of the following sorting methods would

be most suitable for sorting a list which is

almost sorted bubble sort quick sort merge sort radix sort bubble sort

25

The pre-order and post order traversal of a

Binary Tree generates the same output. The tree

can have maximum __________ nodes

1 2 3 4 1

26

The disadvantage of _____ sort is that is need a

temporary array to sort. Quick Merge Heap Insertion Merge

27

_________ techiniques are used for sorting large

files Topological sort

External

sorting

Linear

Sorting Heap sort External sorting

28

Sorting is not possible by using which of the

following methods? Insertion Selection radix Deletion Deletion

29

which of the following sorting procedure is

slowest? quick sort heap sort shell sort bubble sort bubble sort

30

The space factor when determining the efficiency

of the algorithm is measured by

counting the

maximum memory

needed by the

algorithm

counting the

minimum

memory needed

by the

algorithm

counting the

average

memory

needed by

the algorithm

counting the

maximum

disk space

needed by the

algorithm

counting the

maximum

memory needed

by the algorithm

31

The worst case occur in linear search algorithm

when

item is in middle of

array

item is not in

array

item is in last

element

item is in first

of the array

item is in last

element

32

which of the following sorting algorithm is

divide and conquer type? bubble sort insertion sort quick sort selection sort quick sort

33

A sort which relatively passes through a list to

exchange the first element with any element

less than it and then repeats with a new first

element is called insertion sort. selection sort heap sort.

 quick sort. quick sort.

34

An undirected graph G with n vertices and e

edges is represented by adjacency list. What is

the time required to generate all the connected

components?

O (n) O € O (e+n) O (n +2) O (e+n)

35

A graph with n vertices will definitely have a

parallel edge or self loop of the total number of

edges are more than n more than n+1

more than

(n+1)/2

more than n(n-

1)/2

more than n(n-

1)/2

36

The maximum degree of any vertex in a simple

graph with n vertices is n-1 n+1 2n-1 2n+1 n-1

37

The data structure required for Breadth First

Traversal on a graph is queue stack Arrays tree queue

38

The quick sort algorithm exploit _________

design technique) Greedy

 Dynamic

programming Divide and

Conquer Backtracking

Divide and

Conquer

39

A graph with n vertices will definitely have a

parallel edge or self loop if the total number of

edges are

greater than n–1 less than n(n–1)

greater than

n(n–1)/2

less than n2

/2

greater than n–1

40 The complexity of Bubble sort algorithm is O(n) O(log n) O(n2) O(n log n) O(log n)

41 The complexity of merge sort algorithm is O(n) O(log n) O(n2) O(n log n) O(n log n)

42 The complexity of linear search algorithm is O(n) O(log n) O(n2) O(n log n) O(n)

43 Graphs are represented using 12

Adjacency

linked list

Adjacency

graph

Adjacency

queue

Adjacency linked

list

44 The average case complexity of Insertion Sort is O(2n) O(n3) O(n2) O(2n) O(n2)

45

The sorting technique where array to be sorted is

partitioned again and again in such a

way that all elements less than or equal to

partitioning element appear before it and

those which are greater appear after it, is called merge sort quick sort selection sort bubble sort quick sort

Register Number____________
 [17CAU0301]

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.
COMPUTER APPLICATIONS

Third Semester
First Internal

Data Structures

Date & Session: Class : II BCA
Duration: 2 Hours Maximum : 50 Marks

Answer Key

PART-A (20 X 1 = 20 Marks)
Answer ALL the Questions

1. In Stack we can add elements at _______.

a)Bottom b)Top b)Front d)Rear

2. In Stack we can delete elements at ______

a)Front b)Rear c)Top d)Bottom

3. When Top = Bottom in stack, the total no of element in the stack is

a)1 b)2 c)3 d)0

4. When FRONT = REAR in queue, the total no of element in the queue is

a)0 b)1 c)2 d)3

5. In Stack the TOP is decremented by one after every ___ operation.

a)AddQ b)Pop c)Push d)DelQ

6. In Stack the TOP is incremeted by one before every ___ operation.

a)AddQ b)Pop c)Push d)DelQ

7. Data structure used for recursion is

a)stack b)queue c)array d)linked list

8. The data structure required to check whether an expression contains balanced parenthesis is?

a)stack b)queue c)array d)linked list

9. Removing the element from the top of the stack is called the

a)push b)pop c)delete d)remove

10. What data structure would you mostly likely see in a non recursive implementation of a recursive

algorithm?

a)stack b)queue c)array d)linked list

11. Which data structure is used to implement the queue most efficiently

a)array b)linked list c)structure d)union

12. The process of accessing data stored in a serial access memory is similar to manipulating data on a --?

a)stack b)queue c)array d)linked list

13. Which data structure is used to implement the double ended queue?

a)doubly linked list b)structure c)Trees d)graphs

14. What is the data structure used to implement circular queue?

a) circular linked list b)singly linked list c)double linked list d)multi list

15. Which data structure allows deleting data element from front and inserting at rear?

a)stack b)queue c)dequeue d)binary search tree

16. A _____________ is a procedure or function which calls itself.

a)Stack b)Recursion c)Queue d)Recursion

17. An example for application of stack is __________.

a) Train b)piles of plates c) tree d)ticket counter

18. What is the strategy of Stack?

a)LILO b)FIFO c)FILO d)LIFO

19. Inserting element in a stack is known as

a) Insertion b) Push c) pop d) Addition

20. deleting element from a stack is known as

a) addition b) pop c) push d)deletion

PART-B (3 X 2 = 6 Marks)

 (Answer ALL the Questions)

21. What is a data structure? Give examples.

 A data structure is a specialized format for organizing and storing data.

22. Define : Sparse Matrix

 A matrix is a two-dimensional data object made of m rows and n columns, therefore

having total m x n values. If most of the elements of the matrix have 0 value, then it is

called a sparse matrix.

23. What is prefix and postfix expression?

 Operators are written after their operands.

 Operators are written before their operands.

PART-C (3 X 8 = 24 Marks)

(Answer ALL the Questions)

24. a) Explain the concept of linked list with example. (OR)

 A linked list is a linear data structure, in which the elements are not stored at contiguous

memory locations. The elements in a linked list are linked using pointers as shown in the

below image:

 In simple words, a linked list consists of nodes where each node contains a data field and a

reference(link) to the next node in the list.

 Example

 Operations

 In a single linked list we perform the following operations...

o Insertion

o Deletion

o Display

b) List the basic operations in stack with example.

Stack operations may involve initializing the stack, using it and then de-initializing it. Apart

from these basic stuffs, a stack is used for the following two primary operations −

 push() − Pushing (storing) an element on the stack.

 pop() − Removing (accessing) an element from the stack.

When data is PUSHed onto stack.

To use a stack efficiently, we need to check the status of stack as well. For the same

purpose, the following functionality is added to stacks −

 peek() − get the top data element of the stack, without removing it.

 isFull() − check if stack is full.

 isEmpty() − check if stack is empty.

25. a). Write a C program for implementing stack using array. (OR)

#include<stdio.h>
 int stack[100],choice,n,top,x,i;
void push(void);
void pop(void);
void display(void);
int main()
{
 //clrscr();
 top=-1;
 printf("\n Enter the size of STACK[MAX=100]:");
 scanf("%d",&n);
 printf("\n\t STACK OPERATIONS USING ARRAY");
 printf("\n\t--------------------------------");
 printf("\n\t 1.PUSH\n\t 2.POP\n\t 3.DISPLAY\n\t 4.EXIT");
 do
 {
 printf("\n Enter the Choice:");
 scanf("%d",&choice);
 switch(choice)
 {
 case 1:
 {
 push();
 break;

 }
 case 2:
 {
 pop();
 break;
 }
 case 3:
 {
 display();
 break;
 }
 case 4:
 {
 printf("\n\t EXIT POINT ");
 break;
 }
 default:
 {
 printf ("\n\t Please Enter a Valid Choice(1/2/3/4)");
 }

 }
 }
 while(choice!=4);
 return 0;
}
void push()
{
 if(top>=n-1)
 {
 printf("\n\tSTACK is over flow");

 }
 else
 {
 printf(" Enter a value to be pushed:");
 scanf("%d",&x);
 top++;
 stack[top]=x;
 }
}
void pop()
{
 if(top<=-1)
 {
 printf("\n\t Stack is under flow");
 }
 else
 {
 printf("\n\t The popped elements is %d",stack[top]);
 top--;
 }
}
void display()
{
 if(top>=0)
 {
 printf("\n The elements in STACK \n");
 for(i=top; i>=0; i--)

 printf("\n%d",stack[i]);
 printf("\n Press Next Choice");
 }
 else
 {
 printf("\n The STACK is empty");
 }

}
b).Write a C program for implementing stack using linked list

#include <stdio.h>
#include <stdlib.h>

struct node
{
 int info;
 struct node *ptr;
}*top,*top1,*temp;

int topelement();
void push(int data);
void pop();
void empty();
void display();
void destroy();
void stack_count();
void create();

int count = 0;

void main()
{
 int no, ch, e;

 printf("\n 1 - Push");
 printf("\n 2 - Pop");
 printf("\n 3 - Top");
 printf("\n 4 - Empty");
 printf("\n 5 - Exit");
 printf("\n 6 - Dipslay");
 printf("\n 7 - Stack Count");
 printf("\n 8 - Destroy stack");

 create();

 while (1)
 {
 printf("\n Enter choice : ");
 scanf("%d", &ch);

 switch (ch)
 {
 case 1:
 printf("Enter data : ");
 scanf("%d", &no);
 push(no);
 break;
 case 2:

 pop();
 break;
 case 3:
 if (top == NULL)
 printf("No elements in stack");
 else
 {
 e = topelement();
 printf("\n Top element : %d", e);
 }
 break;
 case 4:
 empty();
 break;
 case 5:
 exit(0);
 case 6:
 display();
 break;
 case 7:
 stack_count();
 break;
 case 8:
 destroy();
 break;
 default :
 printf(" Wrong choice, Please enter correct choice ");
 break;
 }
 }
}

/* Create empty stack */
void create()
{
 top = NULL;
}

/* Count stack elements */
void stack_count()
{
 printf("\n No. of elements in stack : %d", count);
}

/* Push data into stack */
void push(int data)
{
 if (top == NULL)
 {
 top =(struct node *)malloc(1*sizeof(struct node));
 top->ptr = NULL;
 top->info = data;
 }
 else
 {
 temp =(struct node *)malloc(1*sizeof(struct node));
 temp->ptr = top;
 temp->info = data;
 top = temp;

 }
 count++;
}

/* Display stack elements */
void display()
{
 top1 = top;

 if (top1 == NULL)
 {
 printf("Stack is empty");
 return;
 }

 while (top1 != NULL)
 {
 printf("%d ", top1->info);
 top1 = top1->ptr;
 }
 }

/* Pop Operation on stack */
void pop()
{
 top1 = top;

 if (top1 == NULL)
 {
 printf("\n Error : Trying to pop from empty stack");
 return;
 }
 else
 top1 = top1->ptr;
 printf("\n Popped value : %d", top->info);
 free(top);
 top = top1;
 count--;
}

/* Return top element */
int topelement()
{
 return(top->info);
}

/* Check if stack is empty or not */
void empty()
{
 if (top == NULL)
 printf("\n Stack is empty");
 else
 printf("\n Stack is not empty with %d elements", count);
}

/* Destroy entire stack */
void destroy()
{
 top1 = top;

 while (top1 != NULL)
 {
 top1 = top->ptr;
 free(top);
 top = top1;
 top1 = top1->ptr;
 }
 free(top1);
 top = NULL;

 printf("\n All stack elements destroyed");
 count = 0;
}

26. a). Infix notation: (A + B) * C - (D - E) * (F + G)

 Convert this into prefix and postfix notation (OR)

 b) What is circular list? Explain with example.

Circular linked list is a linked list where all nodes are connected to form a circle. There is no

NULL at the end. A circular linked list can be a singly circular linked list or doubly circular linked list.

Advantages of Circular Linked Lists:

1) Any node can be a starting point. We can traverse the whole list by starting from any point. We

just need to stop when the first visited node is visited again.

2) Useful for implementation of queue.

3) Circular lists are useful in applications to repeatedly go around the list.

4) Circular Doubly Linked Lists are used for implementation of advanced data structures

like Fibonacci Heap.

http://en.wikipedia.org/wiki/Fibonacci_heap

Reg No. …….…………..

 [17CAU301]
KARPAGAM ACADEMY OF HIGHER EDUCATION
 (Established Under Section 3 of UGC Act 1956)

COIMBATORE – 64 021
BCA Degree Examination

(For the candidates admitted from 2017 onwards)
Third Semester

Second Internal Exam August 2018
Data Structures

Duration: 2 Hrs Maximum Marks: 50 Marks
Date & Session: Class: II BCA

Answer Key

Part - A (20 X 1 = 20 Marks)
(Answer all the Questions)

1. Nodes that have degree zero are called ________.

 a) end node b)leaf nodes c)subtree d)root node
2. All node except the leaf nodes are called________.

 a)terminal node b)percent node c)non terminal d)children node
3. X is a root then X is the ______ of its children.

 a) sub tree b)Parent c)Sibilings d)subordinate
4. A tree with any node having at most two branches is called a _____________.

 a)branched tree b)sub tree c)binary tree d)forest
5. In ________ graph the pair of vertices joined by any edge is unordered.

 a)directed b)undirected c)sub d)multi
6. A _________ is a graph without any cycle.

 a)tree b)path c)set d)list
7. In binary trees there is no node with a degree greater than _____

 a)zero b)one c)two d)three
8. The Number of subtrees of a node is called its _______.

a)leaf b)terminal c)children d)degree
9. In a graph G(V,E), V is a finite non-empty set of _______ and E is a set of edges.

 a)Nodes b)Items c)Vertices d)Circles
10. In a undirected graph G two vertices v1 and v2 are said to be ______if there is a path in G

from v1 to v2.
 a)connected b)adjacent c)neighbours d)incident

11. A ___________of depth k is a binary tree of depth k having 2K-1 nodes.
 a)full binary tree b)half binary tree c)sub tree d) n branch tree

12. Data structure represents the hierarchical relationships between individual data item is
 known as __________.

 a)Root b)Node c)Tree d)Address
13. The children of the same parent are called __________________.

 a)sibiling b)leaf c)child d) subtree
14. Node at the highest level of the tree is known as _______.

 a)Child b)Root c)Sibiling d)Parent
15. A ________ is a connected acyclic graph.

 a)graph b)component c)tree d)list

16. In a graph ____ of a vertex is the number of edges incident to it.
 a)path b)degree c)depth d)height

17. In a Graph G if there are n vertices the adjacency Matrix of the graph consists of _______
 rows and colums.

 a)n/2 b)2n c)n-1 d)n
18. Directed graph is also called _______.

 a)Line Graph b)sub graph c)connected graph d)di graph
19. A graph with weighted edge is called a ______.

 a)strong graph b)network c)component d)sub graph
20. Visiting each node in a tree exactly once is called _________

 a)searching b)travering c)walk through d)path

 Part - B (3 X 2=6 Marks)
 (Answer all the Questions)

21. What is binary tree? Give an example.

 A binary tree is a tree data structure in which each node has at most two children, which
are referred to as the left child and the right child.

22. Differentiate height and depth of the tree.
 The depth of a node is the number of edges from the node to the tree's root node.

A root node will have a depth of 0.
 The height of a node is the number of edges on the longest path from the node to a leaf. A

leaf node will have a height of 0.
23. Define: De-queue

 A deque, also known as a double-ended queue, is an ordered collection of items similar to
the queue. It has two ends, a front and a rear, and the items remain positioned in the
collection.

Part – C (3 X 8=24 Marks)
(Answer all the Questions)

24. a).Write a C program to calculate the GCD of 2 numbers with recursion and without
recursion.

#include<stdio.h>

// declaring the recursive function
int find_gcd(int , int);

int main()
{
 printf("\n\n\t\tStudytonight - Best place to learn\n\n\n");
 int a, b, gcd;
 printf("\n\nEnter two numbers to find GCD of \n");
 scanf("%d%d", &a, &b);
 gcd = find_gcd(a, b);
 printf("\n\nGCD of %d and %d is: %d\n\n", a, b, gcd);
 printf("\n\n\t\t\tCoding is Fun !\n\n\n");
 return 0;

}

// defining the function
int find_gcd(int x, int y)
{
 if(x > y)
 find_gcd(x-y, y);

 else if(y > x)
 find_gcd(x, y-x);
 else
 return x;
}

 (OR)
 b).Write a C program to implement binary search tree.

#include<stdio.h>
#include<stdlib.h>

typedef struct BST
{
 int data;
 struct BST *left;
 struct BST *right;
}node;

node *create();
void insert(node *,node *);
void preorder(node *);

int main()
{
 char ch;
 node *root=NULL,*temp;

 do
 {
 temp=create();
 if(root==NULL)
 root=temp;
 else
 insert(root,temp);

 printf("nDo you want to enter more(y/n)?");
 getchar();
 scanf("%c",&ch);
 }while(ch=='y'|ch=='Y');

 printf("nPreorder Traversal: ");
 preorder(root);

 return 0;
}

node *create()
{
 node *temp;
 printf("nEnter data:");
 temp=(node*)malloc(sizeof(node));
 scanf("%d",&temp->data);
 temp->left=temp->right=NULL;
 return temp;
}

void insert(node *root,node *temp)
{
 if(temp->data<root->data)
 {
 if(root->left!=NULL)
 insert(root->left,temp);
 else
 root->left=temp;
 }

 if(temp->data>root->data)
 {
 if(root->right!=NULL)
 insert(root->right,temp);
 else
 root->right=temp;
 }
}

void preorder(node *root)
{
 if(root!=NULL)
 {
 printf("%d ",root->data);
 preorder(root->left);
 preorder(root->right);
 }
}

25. a).What is AVL Tree? What is the need for balance? Discuss various rotations associated
with it.

 AVL tree is a self-balanced binary search tree. That means, an AVL tree is also a binary
search tree but it is a balanced tree.

 A binary tree is said to be balanced, if the difference between the heights of left and right
subtrees of every node in the tree is either -1, 0 or +1.

 There are four rotations and they are classified into two types.

 Single Left Rotation (LL Rotation)

o In LL Rotation every node moves one position to left from the current position. To
understand LL Rotation, let us consider following insertion operations into an AVL
Tree...

 Single Right Rotation (RR Rotation)
o In RR Rotation every node moves one position to right from the current position. To

understand RR Rotation, let us consider following insertion operations into an AVL
Tree...

 Left Right Rotation (LR Rotation)
o The LR Rotation is combination of single left rotation followed by single right rotation.

In LR Roration, first every node moves one position to left then one position to right
from the current position. To understand LR Rotation, let us consider following
insertion operations into an AVL Tree...

 Right Left Rotation (RL Rotation)
o The RL Rotation is combination of single right rotation followed by single left rotation.

In RL Roration, first every node moves one position to right then one position to left
from the current position. To understand RL Rotation, let us consider following
insertion operations into an AVL Tree...

 (OR)
 b).What is tree traversal? List and discuss the various tree traversal methods with suitable
 example.

 Unlike linear data structures (Array, Linked List, Queues, Stacks, etc) which have only one
logical way to traverse them, trees can be traversed in different ways. Following are the
generally used ways for traversing trees.

 Inorder Traversal:

Algorithm Inorder(tree)
 1. Traverse the left subtree, i.e., call Inorder(left-subtree)
 2. Visit the root.
 3. Traverse the right subtree, i.e., call Inorder(right-subtree)
Uses of Inorder
In case of binary search trees (BST), Inorder traversal gives nodes in non-decreasing order.
To get nodes of BST in non-increasing order, a variation of Inorder traversal where Inorder
traversal s reversed can be used.

 Preorder Traversal:

Algorithm Preorder(tree)
 1. Visit the root.
 2. Traverse the left subtree, i.e., call Preorder(left-subtree)
 3. Traverse the right subtree, i.e., call Preorder(right-subtree)
Uses of Preorder
Preorder traversal is used to create a copy of the tree. Preorder traversal is also used to get
prefix expression on of an expression tree. Please see
http://en.wikipedia.org/wiki/Polish_notation to know why prefix expressions are useful.

 Postorder Traversal:

Algorithm Postorder(tree)
 1. Traverse the left subtree, i.e., call Postorder(left-subtree)
 2. Traverse the right subtree, i.e., call Postorder(right-subtree)
 3. Visit the root.

26. a).What is threaded binary tree? Discuss the various operations of it.

 Inorder traversal of a Binary tree can either be done using recursion or with the use of a
auxiliary stack. The idea of threaded binary trees is to make inorder traversal faster and do it
without stack and without recursion. A binary tree is made threaded by making all right child
pointers that would normally be NULL point to the inorder successor of the node (if it exists).

 There are two types of threaded binary trees.
Single Threaded: Where a NULL right pointers is made to point to the inorder successor (if
successor exists)

 Double Threaded: Where both left and right NULL pointers are made to point to inorder
predecessor and inorder successor respectively. The predecessor threads are useful for
reverse inorder traversal and postorder traversal.

 (OR)
 b). List the various terminologies that associated with tree data structure and explain.
In a tree data structure, we use the following terminology...
1. Root
In a tree data structure, the first node is called as Root Node. Every tree must have root node. We
can say that root node is the origin of tree data structure. In any tree, there must be only one root
node. We never have multiple root nodes in a tree.

2. Edge
In a tree data structure, the connecting link between any two nodes is called as EDGE. In a tree with
'N' number of nodes there will be a maximum of 'N-1' number of edges.

https://www.geeksforgeeks.org/618/
https://www.geeksforgeeks.org/inorder-tree-traversal-without-recursion/
https://www.geeksforgeeks.org/inorder-tree-traversal-without-recursion/

3. Parent
In a tree data structure, the node which is predecessor of any node is called as PARENT NODE. In
simple words, the node which has branch from it to any other node is called as parent node. Parent
node can also be defined as "The node which has child / children".

4. Child
In a tree data structure, the node which is descendant of any node is called as CHILD Node. In
simple words, the node which has a link from its parent node is called as child node. In a tree, any
parent node can have any number of child nodes. In a tree, all the nodes except root are child
nodes.

5. Siblings
In a tree data structure, nodes which belong to same Parent are called as SIBLINGS. In simple
words, the nodes with same parent are called as Sibling nodes.

6. Leaf
In a tree data structure, the node which does not have a child is called as LEAF Node. In simple
words, a leaf is a node with no child.

In a tree data structure, the leaf nodes are also called as External Nodes. External node is also a
node with no child. In a tree, leaf node is also called as 'Terminal' node.

7. Internal Nodes
In a tree data structure, the node which has atleast one child is called as INTERNAL Node. In
simple words, an internal node is a node with atleast one child.

In a tree data structure, nodes other than leaf nodes are called as Internal Nodes. The root node
is also said to be Internal Node if the tree has more than one node. Internal nodes are also called
as 'Non-Terminal' nodes.

8. Degree
In a tree data structure, the total number of children of a node is called as DEGREE of that Node. In
simple words, the Degree of a node is total number of children it has. The highest degree of a node
among all the nodes in a tree is called as 'Degree of Tree'

9. Level
In a tree data structure, the root node is said to be at Level 0 and the children of root node are at
Level 1 and the children of the nodes which are at Level 1 will be at Level 2 and so on... In simple
words, in a tree each step from top to bottom is called as a Level and the Level count starts with '0'
and incremented by one at each level (Step).

10. Height
In a tree data structure, the total number of egdes from leaf node to a particular node in the longest
path is called as HEIGHT of that Node. In a tree, height of the root node is said to be height of the
tree. In a tree, height of all leaf nodes is '0'.

11. Depth
In a tree data structure, the total number of egdes from root node to a particular node is called
as DEPTH of that Node. In a tree, the total number of edges from root node to a leaf node in the
longest path is said to be Depth of the tree. In simple words, the highest depth of any leaf node in a
tree is said to be depth of that tree. In a tree, depth of the root node is '0'.

12. Path
In a tree data structure, the sequence of Nodes and Edges from one node to another node is called
as PATH between that two Nodes. Length of a Path is total number of nodes in that path. In below
example the path A - B - E - J has length 4.

13. Sub Tree
In a tree data structure, each child from a node forms a subtree recursively. Every child node will
form a subtree on its parent node.

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

	1.pdf (p.1-2)
	2.pdf (p.3-7)
	3.pdf (p.8-31)
	4.pdf (p.32-36)
	5.pdf (p.37-56)
	6.pdf (p.57-63)
	7.pdf (p.64-89)
	8.pdf (p.90-116)
	9.pdf (p.117-122)
	10.pdf (p.123-146)
	11.pdf (p.147-151)
	12.pdf (p.152-160)
	13.pdf (p.161-172)
	14.pdf (p.173-176)

