UNIT V SYLLABUS

The Riemann - Stieltjes integral : Introduction –Notation –The definition of Riemann – Stieltjes integral –linear properties –Integration by parts –change of variable in a Riemann –stieltjes integral – Reduction to a Riemann integral

1.1. The Riemann-Stieltjes Integral.

Definitions:

Let [a, b] be a given interval. Then a set $P = \{x0, x1, ..., xn-1, xn\}$ of [a, b] such that $a=x0 \le x1 \le ... \le xn-1 \le xn = b$ is said to be a Partition of [a, b]. The set of all partitions of [a, b] is denoted by P([a, b]). The intervals [x0, x1], [x0, x1], [x1, x2], ..., [xn-1, xn] are called the subintervals of [a, b]. Write $\Delta xi = xi - xi-1$ is called the length of the interval [xi-1, xi] (i = 1, ..., n) and max $|\Delta xi|$ is called the norm of the partition P and is denoted by ||P|| or Q is called the refinement or finer of the partition P. \subset (P). A partition Q of [a, b] such that P \subset Q is called the refinement or finer of the partition P. \subset (P). A partition Q of [a, b] such that P Suppose f is a bounded real valued function defined on [a, b] and 2 P([a, b]). TheMi = sup f(x), m i = inf f(x) (xi-1 \le x \le xi) for each P

Suppose f is a bounded real valued function defined on [a, b] and P([a, b]). Thene

 $Mi = \sup f(x)$, $mi = \inf f(x) (xi-1 \le x \le xi)$ for each P nn m i Δxi are called the Upper and Lower Riemann sums Σ M i Δxi and L(P, f) = $\Sigma U(P, f) = i = 1$ i = 1 or Upper and Lower Darboux sums of f on [a, b] with respect to the partition P.

Further write - $b b \int f dx = \inf U(P, f)$ and $\int f dx = \sup L(P, f)$ a - a where the inf and the sup are taken over all partitions P of [a, b] are called the Upper and Lower Riemann integrals of f over [a, b], respectively.

If the upper and lower Riemann integrals are R[a, b] and we denote ε equal, we say that f is Riemann-integrable on [a, b] and we write f the common value of these integrals by $b \int f d(x)$, a - b b b i.e., $\int f dx = \int f dx = \int f dx$.

R is bounded function then the upper and lower Riemann \rightarrow 1.1.1. Lemma . If f : [a, b] integrals of f are bounded. Since f is bounded, there exist two numbers m and M such that m \leq f(x) \leq M (a \leq x \leq b). Hence, for every partition P of [a, b] we have $M \leq Mi \leq mi \leq m mi\Delta xi\Sigma \leq m\Delta xi \Sigma \Rightarrow Mi\Delta xi\Sigma \leq M\Delta xi\Sigma \leq$, i = 1, 2, 3, ..., n. m(b –a) \leq L(P,f) \leq U(P,f) \leq M(b-a), \Rightarrow so that the numbers L(P,f) and U(P,f) form a bounded set. Therefore by the definition of lower and

upper Riemann integrals this shows that the upper and lower integrals are defined for every bounded function f are bounded also. The question of their equality, and hence the question of the integrability of f,

R is bounded function, P is any partition of [a, b] and P* is the \rightarrow

1.1.2. Lemma. If f : [a, b] refinement of P, then L(P, f) \leq L(P*, f) and U(P*, f) \leq U(P, f). R is bounded function and P1, P2 are any two partitions of [a, b] \rightarrow

1.1.3. Lemma. R is bounded function and P1, P2 are any two partitions of $[a, b] \rightarrow$ If f : [a, b]

 $L(P1, f) \le U(P2, f)$ and $L(P2, f) \le U(P1, f)$.

R are bounded functions and P is any partition of [a, b] then \rightarrow 1.1.4.

Lemma. If f, g : [a, b] (i) $L(P, f + g) \ge L(P, f) + L(P, g)$ (ii) $U(P, f + g) \le U(P, f) + U(P, g)$. R is bounded function .

Theorem. If $f : [a, b] - b b \int f dx \ge \int f dx a - a \varepsilon R$ is bounded function then for $\rightarrow 1.1.2$. Theorem (Darboux). If $f : [a, b] \delta > 0$ there exists > 0 such that $- b b U(P, f) < and L(P, f)\varepsilon \int f + \varepsilon > \int f dx - a - a R$ is bounded function is Riemann Integrable if the oscillatory \rightarrow

1.1.3. Theorem. If $f : [a, b] sum < (P, f) = U(P, f) - L(P, f)\omega$, i.e. $\epsilon < \epsilon$, for $\epsilon > 0$ and any partition P of [a, b]. R is Riemann Integrable.

1.1.4. Theorem. Every continuous function f : [a, b] R is Riemann Integrable. \rightarrow 1.1.5. Theorem. Every monotone function f : [a, b] Students you studied the properties given above and other properties of Riemann Integrals in previous classes therefore we are not interested to investigate these here. However we shall immediately consider a more general situation. be a monotonically increasing α R is bounded function and \rightarrow

1.1.2 Definition. Let f: [a, b] function on [a, b]. Let $P = \{x0, x1, ..., xn-1, xn\}$ such that $a = x0 \le x1 \le ... \le xn-1 \le xn = b$ be any Partition of [a, b]. We write $(xi-1), i = 1, 2, 3, ..., n.\alpha(xi) - \alpha i = \alpha \Delta$ is bounded on $[a, b], \alpha(b)$ are finite therefore $\alpha(a)$ and αBy the definition of monotone function $i \ge 0, i = 1, 2, 3, ..., n.\alpha\Delta$ is monotonically increasing function then clearly α also since P([a, b]). We define Let $Mi = \sup f(x)$, $mi = \inf f(x) (xi-1 \le x \le xi)$ for each P n n $i, \alpha \min \Delta \Sigma) = \alpha i$, and $L(P, f, \alpha Mi \Delta \Sigma) = \alpha U(P, f, i=1 i=1 are called the Upper and Lower Riemann Stieltjes sums respectively. Further we define <math>-b \ b$, $\alpha = \sup L(P, f, \alpha)$ and $\int f d\alpha = \inf U(P, f, \alpha) f d a - a$ where the inf and the sup are taken over all partitions P of [a, b], are called the Upper and Lower Riemann Stieltjes integrals of f over [a, b], respectively.

If the upper and lower Riemann Stieltjes integrals are equal, we say that f is Riemann Stieltjes integrable on [a, b]

Lower Riemann Stieltjes integrals of f over [a, b], respectively. If the upper and lower Riemann Stieltjes integrals are equal, we say that f is Riemann Stieltjes integrable on [a, b]

 $\int f d(x) \alpha \text{ or } \int f(x) d\alpha \int f d$

over α This is the Rientatm-Stieltjes integral (or simply the Slielljes integral of f with respect to (x) = x we see that the Riemann integral is the special case of the Riemann α [a,b]. If we put (x) = x

we see that the Riemann integral is the special case of the Riemanns

If f: [a, b] be a monotonically increasing function α R is bounded function

. Lemma If f: [a, b] on [a, b]. Let P be any Partition of [a, b] .Then the upper and lower Riemann-Stietjes integrals of be a monotonically increasing function on [a, b]. Let P be any Partition of [a, b] .Then the upper and lower Riemann-Stietjes integrals of are bounded. α f with respect to

Proof. Since f is bounded, there exist two numbers m and M such that $m \le f(x) \le M$ ($a \le x \le b$). Hence, for every partition P of [a, b] we have $M \le Mi \le mi \le m$ $i\alpha mi\Delta\Sigma \le i\alpha m\Delta\Sigma \Longrightarrow$ $i\alpha Mi\Delta\Sigma \le i\alpha M\Delta\Sigma \le$, i = 1, 2, 3, ..., n. (a)], $\alpha(b) - \alpha) \le M[\alpha) \le U(P, f, \alpha(a)] \le L(P, f, \alpha(b) - \alpha) = m[\Longrightarrow)$ form a bounded set.

Therefore by the definition of α) and U(P, f, α so that the numbers L(P, f, lower and upper Riemann-Stietjes integrals this shows that the upper and lower integrals are defined for every bounded function f are bounded also. 1.1.6.

Lemma. If P* is a refinement of the partition P of [a, b], then $).\alpha) \leq U(P, f, \alpha)$ and $U(P^*, f, \alpha) \leq L(P^*, f, \alpha L(P, f, \alpha))$

Proof. Let $P = \{x0, x1, ..., xn-1, xn\}$ such that $a = x0 \le x1 \le ... \le xn-1 \le xn = b$ be any Partition of [a, b] and P* the refinement of P contains just one point X* more than P such that xi-1< x*

where x i-1 and xi are two consecutive points of P.

Let mi, mi , mi' are the infimum of f(x) in'' mi $\leq [xi-1, xi], [xi-1, x^*]$ and $[x^*, xi]$ respectively then clearly mi mi \leq and mi'. Therefore'') = mi α) - L(P,f, α L(P*,f, (xi-1)] + mi $\alpha(x^*)$ - α ['(xi-1)] $\alpha(xi)$ - $\alpha(x^*)$] - mi[$\alpha(xi)$ - α ['' = mi(xi-1)] + mi $\alpha(x^*)$ - α ['(xi-1)] $\alpha(x^*)$ -

 $\alpha(x^*) + \alpha(xi) - \alpha(x^*)$] - mi[$\alpha(xi) - \alpha['' = (mi (xi-1)] + (mi\alpha(x^*) - \alpha - mi)[' 0. \ge (x^*)] \alpha(xi) - \alpha - mi)['']$.

If P* contains k points more than P then byb repeating the $\alpha L(P^*, f, \leq) \alpha$ Hence L(P, f,) is analogous $\alpha) \leq U(P, f, \alpha)$ same process we arrive at the same result.

Definition 7.1. Let $P = \{x_0, x_1, \dots, x_n\}$ be a partition of [a, b] and let t_k be a point in the subinterval $[x_{k-1}, x_k]$. A sum of the form

$$S(P, f, \alpha) = \sum_{k=1}^{n} f(t_k) \, \Delta \alpha_k$$

is called a Riemann-Stieltjes sum of f with respect to α . We say f is Riemannintegrable with respect to α on [a, b], and we write " $f \in R(\alpha)$ on [a, b]" if there exists a number A having the following property: For every $\varepsilon > 0$, there exists a partition P_{ε} of [a, b] such that for every partition P finer than P_{ε} and for every choice of the points t_k in $[x_{k-1}, x_k]$, we have $|S(P, f, \alpha) - A| < \varepsilon$.

Theorem 7.2. If $f \in R(\alpha)$ and if $g \in R(\alpha)$ on [a, b], then $c_1f + c_2g \in R(\alpha)$ on [a, b] (for any two constants c_1 and c_2) and we have

$$\int_a^b (c_1f + c_2g) d\alpha = c_1 \int_a^b f d\alpha + c_2 \int_a^b g d\alpha$$

Proof. Let $h = c_1 f + c_2 g$. Given a partition P of [a, b], we can write

$$S(P, h, \alpha) = \sum_{k=1}^{n} h(t_k) \Delta \alpha_k = c_1 \sum_{k=1}^{n} f(t_k) \Delta \alpha_k + c_2 \sum_{k=1}^{n} g(t_k) \Delta \alpha_k$$
$$= c_1 S(P, f, \alpha) + c_2 S(P, g, \alpha).$$

Given $\varepsilon > 0$, choose P'_{ε} so that $P \supseteq P'_{\varepsilon}$ implies $|S(P, f, \alpha) - \int_{a}^{b} f d\alpha| < \varepsilon$, and choose P''_{ε} so that $P \supseteq P''_{\varepsilon}$ implies $|S(P, g, \alpha) - \int_{a}^{b} g d\alpha| < \varepsilon$. If we take $P_{\varepsilon} = P'_{\varepsilon} \cup P''_{\varepsilon}$, then, for P finer than P_{ε} , we have

$$\left|S(P, h, \alpha) - c_1 \int_a^b f \, d\alpha - c_2 \int_a^b g \, d\alpha\right| \leq |c_1|\varepsilon + |c_2|\varepsilon,$$

and this proves the theorem.

Theorem 7.3. If $f \in R(\alpha)$ and $f \in R(\beta)$ on [a, b], then $f \in R(c_1\alpha + c_2\beta)$ on [a, b] (for any two constants c_1 and c_2) and we have

$$\int_a^b f \, d(c_1 \alpha + c_2 \beta) = c_1 \int_a^b f \, d\alpha + c_2 \int_a^b f \, d\beta.$$

The proof is similar to that of Theorem 7.2 and is left as an exercise.

A result somewhat analogous to the previous two theorems tells us that the integral is also additive with respect to the interval of integration.

Theorem 7.4. Assume that $c \in (a, b)$. If two of the three integrals in (1) exist, then the third also exists and we have

$$\int_{a}^{c} f \, d\alpha \, + \, \int_{c}^{b} f \, d\alpha = \int_{a}^{b} f \, d\alpha. \tag{1}$$

Proof. If P is a partition of [a, b] such that $c \in P$, let

 $P' = P \cap [a, c]$ and $P'' = P \cap [c, b]$,

denote the corresponding partitions of [a, c] and [c, b], respectively. The Riemann-Stieltjes sums for these partitions are connected by the equation

$$S(P, f, \alpha) = S(P', f, \alpha) + S(P'', f, \alpha).$$

Assume that $\int_a^c f d\alpha$ and $\int_c^b f d\alpha$ exist. Then, given $\varepsilon > 0$, there is a partition P'_{ε} of [a, c] such that

$$\left|S(P',f,\alpha)-\int_{a}^{c}f\,d\alpha\right|<\frac{\varepsilon}{2}$$
 whenever P' is finer than P'_{ε} ,

and a partition P''_{t} of [c, b] such that

$$\left|S(P'', f, \alpha) - \int_{c}^{b} f \, d\alpha\right| < \frac{\varepsilon}{2}$$
 whenever P'' is finer than P''_{ε} .

Then $P_{\varepsilon} = P'_{\varepsilon} \cup P''_{\varepsilon}$ is a partition of [a, b] such that P finer than P_{ε} implies $P' \supseteq P'_{\varepsilon}$ and $P'' \supseteq P''_{\varepsilon}$. Hence, if P is finer than P_{ε} , we can combine the foregoing results to obtain the inequality

$$\left|S(P,f,\alpha)-\int_a^c f\,d\alpha-\int_c^b f\,d\alpha\right|<\varepsilon.$$

Definition 7.5. If a < b, we define $\int_{b}^{a} f d\alpha = -\int_{a}^{b} f d\alpha$ whenever $\int_{a}^{b} f d\alpha$ exists. We also define $\int_{a}^{a} f d\alpha = 0$.

The equation in Theorem 7.4 can now be written as follows:

$$\int_a^b f \, d\alpha \, + \, \int_b^c f \, d\alpha \, + \, \int_c^a f \, d\alpha \, = \, 0.$$

Theorem 7.6. If $f \in R(\alpha)$ on [a, b], then $\alpha \in R(f)$ on [a, b] and we have

$$\int_a^b f(x) \ d\alpha(x) + \int_a^b \alpha(x) \ df(x) = f(b)\alpha(b) - f(a)\alpha(a).$$

NOTE. This equation, which provides a kind of reciprocity law for the integral, is known as the *formula for integration by parts*.

Proof. Let $\varepsilon > 0$ be given. Since $\int_a^b f \, d\alpha$ exists, there is a partition P_{ε} of [a, b] such that for every P' finer than P_{ε} , we have

$$\left|S(P',f,\alpha)-\int_{a}^{b}f\,d\alpha\right|<\varepsilon.$$
 (2)

Consider an arbitrary Riemann-Stieltjes sum for the integral $\int_a^b \alpha df$, say

$$S(P, \alpha, f) = \sum_{k=1}^{n} \alpha(t_k) \Delta f_k = \sum_{k=1}^{n} \alpha(t_k) f(x_k) - \sum_{k=1}^{n} \alpha(t_k) f(x_{k-1}),$$

where P is finer than P_{ϵ} . Writing $A = f(b)\alpha(b) - f(a)\alpha(a)$, we have the identity

$$A = \sum_{k=1}^{n} f(x_k) \alpha(x_k) - \sum_{k=1}^{n} f(x_{k-1}) \alpha(x_{k-1}).$$

Subtracting the last two displayed equations, we find

$$A - S(P, \alpha, f) = \sum_{k=1}^{n} f(x_k) [\alpha(x_k) - \alpha(t_k)] + \sum_{k=1}^{n} f(x_{k-1}) [\alpha(t_k) - \alpha(x_{k-1})].$$

The two sums on the right can be combined into a single sum of the form $S(P', f, \alpha)$, where P' is that partition of [a, b] obtained by taking the points x_k and t_k together. Then P' is finer than P and hence finer than P_{ϵ} . Therefore the inequality (2) is valid and this means that we have

$$\left|A - S(P, \alpha, f) - \int_a^b f \, d\alpha\right| < \varepsilon,$$

whenever P is finer than P_{ϵ} . But this is exactly the statement that $\int_a^b \alpha \, df$ exists and equals $A - \int_a^b f \, d\alpha$.

b = g(d). Let h and β be the composite functions defined as follows:

$$h(x) = f[g(x)], \qquad \beta(x) = \alpha[g(x)], \qquad \text{if } x \in S.$$

Then $h \in R(\beta)$ on S and we have $\int_a^b f d\alpha = \int_c^d h d\beta$. That is,

$$\int_{g(c)}^{g(d)} f(t) d\alpha(t) = \int_c^d f[g(x)] d\{\alpha[g(x)]\}.$$

Proof. For definiteness, assume that g is strictly increasing on S. (This implies c < d.) Then g is one-to-one and has a strictly increasing, continuous inverse g^{-1} defined on [a, b]. Therefore, for every partition $P = \{y_0, \ldots, y_n\}$ of [c, d], there corresponds one and only one partition $P' = \{x_0, \ldots, x_n\}$ of [a, b] with $x_k = g(y_k)$. In fact, we can write

$$P' = g(P)$$
 and $P = g^{-1}(P')$.

Furthermore, a refinement of P produces a corresponding refinement of P', and the converse also holds.

If $\varepsilon > 0$ is given, there is a partition P'_{ε} of [a, b] such that P' finer than P'_{ε} implies $|S(P', f, \alpha) - \int_{a}^{b} f d\alpha| < \varepsilon$. Let $P_{\varepsilon} = g^{-1}(P'_{\varepsilon})$ be the corresponding partition of [c, d], and let $P = \{y_0, \ldots, y_n\}$ be a partition of [c, d] finer than P_{ε} . Form a Riemann-Stieltjes sum

$$S(P, h, \beta) = \sum_{k=1}^{n} h(u_k) \Delta \beta_k,$$

where $u_k \in [y_{k-1}, y_k]$ and $\Delta \beta_k = \beta(y_k) - \beta(y_{k-1})$. If we put $t_k = g(u_k)$ and $x_k = g(y_k)$, then $P' = \{x_0, \ldots, x_n\}$ is a partition of [a, b] finer than P'_{ϵ} . Moreover, we then have

$$S(P, h, \beta) = \sum_{k=1}^{n} f[g(u_k)] \{ \alpha[g(y_k)] - \alpha[g(y_{k-1})] \}$$
$$= \sum_{k=1}^{n} f(t_k) \{ \alpha(x_k) - \alpha(x_{k-1}) \} = S(P', f, \alpha),$$

since $t_k \in [x_{k-1}, x_k]$. Therefore, $|S(P, h, \beta) - \int_a^b f d\alpha| < \varepsilon$ and the theorem is proved.

Theorem 7.8. Assume $f \in R(\alpha)$ on [a, b] and assume that α has a continuous derivative α' on [a, b]. Then the Riemann integral $\int_{a}^{b} f(x)\alpha'(x) dx$ exists and we have

$$\int_a^b f(x) \ d\alpha(x) = \int_a^b f(x) \alpha'(x) \ dx.$$

Proof. Let $g(x) = f(x)\alpha'(x)$ and consider a Riemann sum

$$S(P, g) = \sum_{k=1}^{n} g(t_k) \Delta x_k = \sum_{k=1}^{n} f(t_k) \alpha'(t_k) \Delta x_k.$$

The same partition P and the same choice of the t_k can be used to form the Riemann-Stieltjes sum

$$S(P, f, \alpha) = \sum_{k=1}^{n} f(t_k) \Delta \alpha_k.$$

Applying the Mean-Value Theorem, we can write

$$\Delta \alpha_k = \alpha'(v_k) \Delta x_k, \quad \text{where } v_k \in (x_{k-1}, x_k),$$

and hence

$$S(P, f, \alpha) - S(P, g) = \sum_{k=1}^{n} f(t_k) [\alpha'(v_k) - \alpha'(t_k)] \Delta x_k.$$

Since f is bounded, we have $|f(x)| \le M$ for all x in [a, b], where M > 0. Continuity of α' on [a, b] implies uniform continuity on [a, b]. Hence, if $\varepsilon > 0$ is given, there exists a $\delta > 0$ (depending only on ε) such that

$$0 \le |x - y| < \delta$$
 implies $|\alpha'(x) - \alpha'(y)| < \frac{\varepsilon}{2M(b - a)}$.

If we take a partition P'_{ε} with norm $||P'_{\varepsilon}|| < \delta$, then for any finer partition P we will have $|\alpha'(v_k) - \alpha'(t_k)| < \varepsilon/[2M(b-a)]$ in the preceding equation. For such P we therefore have

$$|S(P,f,\alpha)-S(P,g)|<\frac{\varepsilon}{2}.$$

Prepared by : Kohila.S , Department of Mathematics ,KAHE

On the other hand, since $f \in R(\alpha)$ on [a, b], there exists a partition P_{ε}'' such that P finer than P_{ε}'' implies

$$\left|S(P,f,\alpha)-\int_a^b f\,d\alpha\right|<\frac{\varepsilon}{2}.$$

Combining the last two inequalities, we see that when P is finer than $P_{\varepsilon} = P'_{\varepsilon} \cup P''_{\varepsilon}$, we will have $|S(P, g) - \int_{a}^{b} f d\alpha| < \varepsilon$, and this proves the theorem.

Theorem 7.9. Given a < c < b. Define α on [a, b] as follows: The values $\alpha(a)$, $\alpha(c)$, $\alpha(b)$ are arbitrary;

$$\alpha(x) = \alpha(a) \quad \text{if } a \leq x < c,$$

and

$$\alpha(x) = \alpha(b) \quad \text{if } c < x \le b.$$

Let f be defined on [a, b] in such a way that at least one of the functions f or α is continuous from the left at c and at least one is continuous from the right at c. Then $f \in R(\alpha)$ on [a, b] and we have

$$\int_a^b f \, d\alpha = f(c)[\alpha(c+) - \alpha(c-)].$$

Proof. If $c \in P$, every term in the sum $S(P, f, \alpha)$ is zero except the two terms arising from the subinterval separated by c, say

$$S(P, f, \alpha) = f(t_{k-1})[\alpha(c) - \alpha(c-)] + f(t_k)[\alpha(c+) - \alpha(c)],$$

where $t_{k-1} \leq c \leq t_k$. This equation can also be written as follows:

$$\Delta = [f(t_{k-1}) - f(c)][\alpha(c) - \alpha(c-)] + [f(t_k) - f(c)][\alpha(c+) - \alpha(c)],$$

where $\Delta = S(P, f, \alpha) - f(c)[\alpha(c+) - \alpha(c-)]$. Hence we have

$$|\Delta| \leq |f(t_{k-1}) - f(c)| |\alpha(c) - \alpha(c-)| + |f(t_k) - f(c)| |\alpha(c+) - \alpha(c)|.$$

If f is continuous at c, for every $\varepsilon > 0$ there is a $\delta > 0$ such that $||P|| < \delta$ implies

$$|f(t_{k-1}) - f(c)| < \varepsilon$$
 and $|f(t_k) - f(c)| < \varepsilon$.

In this case, we obtain the inequality

$$|\Delta| \leq \varepsilon |\alpha(c) - \alpha(c-)| + \varepsilon |\alpha(c+) - \alpha(c)|.$$

But this inequality holds whether or not f is continuous at c. For example, if f is discontinuous both from the right and from the left at c, then $\alpha(c) = \alpha(c-)$ and $\alpha(c) = \alpha(c+)$ and we get $\Delta = 0$. On the other hand, if f is continuous from the left and discontinuous from the right at c, we must have $\alpha(c) = \alpha(c+)$ and we get

 $|\Delta| \leq \varepsilon |\alpha(c) - \alpha(c-)|$. Similarly, if f is continuous from the right and discontinuous from the left at c, we have $\alpha(c) = \alpha(c-)$ and $|\Delta| \leq \varepsilon |\alpha(c+) - \alpha(c)|$. Hence the last displayed inequality holds in every case. This proves the theorem.

Definition 7.10 (Step function). A function α defined on [a, b] is called a step function if there is a partition

$$a = x_1 < x_2 < \cdots < x_n = b$$

such that α is constant on each open subinterval (x_{k-1}, x_k) . The number $\alpha(x_k+) - \alpha(x_k-)$ is called the jump at x_k if 1 < k < n. The jump at x_1 is $\alpha(x_1+) - \alpha(x_1)$, and the jump at x_n is $\alpha(x_n) - \alpha(x_n-)$.

Step functions provide the connecting link between Riemann-Stieltjes integrals and finite sums:

Theorem 7.11 (Reduction of a Riemann–Stieltjes integral to a finite sum). Let α be a step function defined on [a, b] with jump α_k at x_k , where x_1, \ldots, x_n are as described in Definition 7.10. Let f be defined on [a, b] in such a way that not both f and α are

discontinuous from the right or from the left at each x_k . Then $\int_a^b f \, d\alpha$ exists and we have

$$\int_a^b f(x) \ d\alpha(x) = \sum_{k=1}^n f(x_k) \alpha_k.$$

Proof. By Theorem 7.4, $\int_a^b f d\alpha$ can be written as a sum of integrals of the type considered in Theorem 7.9.

Definition 7.14. Let P be a partition of [a, b] and let

$$M_k(f) = \sup \{f(x) : x \in [x_{k-1}, x_k]\},\$$

$$m_k(f) = \inf \{f(x) : x \in [x_{k-1}, x_k]\}.$$

The numbers

$$U(P, f, \alpha) = \sum_{k=1}^{n} M_{k}(f) \Delta \alpha_{k} \quad and \quad L(P, f, \alpha) = \sum_{k=1}^{n} m_{k}(f) \Delta \alpha_{k},$$

are called, respectively, the upper and lower Stieltjes sums of f with respect to α for the partition P.

NOTE. We always have $m_k(f) \leq M_k(f)$. If $\alpha \nearrow$ on [a, b], then $\Delta \alpha_k \geq 0$ and we can also write $m_k(f) \Delta \alpha_k \leq M_k(f) \Delta \alpha_k$, from which it follows that the lower sums do not exceed the upper sums. Furthermore, if $t_k \in [x_{k-1}, x_k]$, then

$$m_k(f) \le f(t_k) \le M_k(f).$$

Theorem 7.15. Assume that $\alpha \nearrow$ on [a, b]. Then:

i) If P' is finer than P, we have

$$U(P', f, \alpha) \leq U(P, f, \alpha)$$
 and $L(P', f, \alpha) \geq L(P, f, \alpha)$.

ii) For any two partitions P_1 and P_2 , we have

$$L(P_1, f, \alpha) \leq U(P_2, f, \alpha).$$

Proof. It suffices to prove (i) when P' contains exactly one more point than P, say the point c. If c is in the *i*th subinterval of P, we can write

$$U(P', f, \alpha) = \sum_{\substack{k=1\\k\neq i}}^{n} M_k(f) \Delta \alpha_k + M'[\alpha(c) - \alpha(x_{i-1})] + M''[\alpha(x_i) - \alpha(c)],$$

where M' and M" denote the sup of f in $[x_{i-1}, c]$ and $[c, x_i]$. But, since

$$M' \leq M_i(f)$$
 and $M'' \leq M_i(f)$,

we have $U(P', f, \alpha) \leq U(P, f, \alpha)$. (The inequality for lower sums is proved in a similar fashion.)

To prove (ii), let $P = P_1 \cup P_2$. Then we have

$$L(P_1, f, \alpha) \leq L(P, f, \alpha) \leq U(P, f, \alpha) \leq U(P_2, f, \alpha).$$

E.2. PROPERTIES

279

as $n \to \infty$, we have

$$\int_0^{10} f(x) \, d\alpha(x) = 50 + 55 = 105.$$

E.2. Properties

<u>Theorem</u> E.4. Let c_1 , c_2 be two constants in \mathbb{R} .

If f, g ∈ R(α) on [a, b], then c₁f + c₂g ∈ R(α) on [a, b], and

$$\int_a^b (c_1 f + c_2 g) \, d\alpha = c_1 \int_a^b f \, d\alpha + c_2 \int_a^b g \, d\alpha.$$

(2) If f ∈ R(α) and f ∈ R(β) on [a, b], then f ∈ R(c₁α + c₂β) on [a, b], and

$$\int_a^b f \, d(c_1 \alpha + c_2 \beta) = c_1 \int_a^b f \, d\alpha + c_2 \int_a^b f \, d\beta.$$

(3) If $c \in [a, b]$, then

$$\int_{a}^{b} f \, d\alpha = \int_{a}^{c} f \, d\alpha + \int_{c}^{b} f \, d\alpha.$$

<u>Definition</u> E.5. If a < b, we define

$$\int_{b}^{a} f \, d\alpha = - \int_{a}^{b} f \, d\alpha.$$

<u>Theorem</u> E.6. If $f \in R(\alpha)$ and α has a continuous derivative on [a, b], then the Riemann integral $\int_{a}^{b} f(x)\alpha'(x) dx$ exists and

$$\int_{a}^{b} f(x) \, d\alpha(x) = \int_{a}^{b} f(x) \alpha'(x) \, dx.$$

POSSIBLE QUESTIONS PART - B $(5 \times 8 = 40)$

- 1. Assume $f \in R(\alpha)$ on [a, b] and assume that α has a continuous derivative α' on [a, b]. Then the Riemann integral $\int_a^b f(x)\alpha'(x) dx$ exists and $\int_a^b f(x)d\alpha(x) = \int_a^b f(x)\alpha'(x)dx$
- 2. State and prove formula for integration by parts of a Riemann-Stieltjes integral.
- 3. Assume that $c \in (a,b)$ if two of the three integrals $\int_a^c f \, d\alpha + \int_c^b f \, d\alpha = = \int_a^b f \, d\alpha$ exists then the third also exists
- 4.. State and prove Reduction of a Riemann-Stieltjes integral to a finite sum.
- 5. If $f \in R(\alpha)$ on [a,b] then $\alpha \in R(f)$ on [a,b] we have $\int_{a}^{b} f(x)d\alpha(x) + \int_{a}^{b} \alpha(x)df(x) = f(b)\alpha(b) - f(a)\alpha(a).$
- 6. Assume that $c \in (a,b)$ if two of the three integrals $\int_a^c f \, d\alpha + \int_c^b f \, d\alpha = = \int_a^b f \, d\alpha$ exists then the third also exists

Reg. No -----(15MMU601)**KARPAGAM ACADEMY OF HIGHER EDUCATION COIMBATORE-21 DEPARTMENT OF MATHEMATICS** Sixth Semester **I INTERNAL TEST - Jan '18 REAL ANALYSIS II** .01.18 () Time:2 hours Date : Class : III B.Sc (MATHEMATICS) Maximum Marks: 50 PART – A (20 x 1 = 20 Marks)**ANSWER ALL THE QUESTIONS** 1. The function f(x) = x, is continuous at -----a. for some real x b. for finite number of real x c. for all real x d. for no real x 2. If x < y = f(x) < f(y) then f is -----b. continuous a. constant d. strictly increasing c. increasing 3. The function f itself is called -----a. curve b. path d. open interval c. closed interval 4. If $f: S \rightarrow R$ is continuous and $A = \{ x: f(x) < 0 \}$ then A ----a. closed b. open c. both open and closed d. neither open nor closed 5. If x < y = f(x) < f(y) then f is -----a. constant b. decreasing d. strictly increasing c. increasing 6. If f is continuous on S and S is compact then f^{-1} is b. continuous a. not continuous

c. uniformly continuous d. constant

- 7. If X is connected and f is continuous then f(X) is ---a. connected
 b. open
 c. both open and connected
 d. disconnected
- 8. If f: R→ R is continuous is continuous then f ([0,1]) is ----a.connected
 b. compact
 c.not bounded
 d. not compact
- 9. A contraction of any metric space -----a. continuous
 b. not continuous
 c. Uniformly continuous
 d. onto
- 10. If f' is 0 everywhere on (a,b) then f is constant on ------a.(a, b)
 b. (a, b]
 c.[a,b)
 d. [a, b]
 11. A curve is a ------ subset of Rⁿ
 a. compact
 b. connected
 - c. compact and connected d. not compact
- 12. The function f itself is called -----a. curve b. path c. closed interval d. open interval
- 13. If f is strictly monotonic then f is -----a.onto b. 1-1
 c. bijection d. not 1-1
 14. If f is of bounded variation then 1/f is -----a. bounded b. of bounded variation
 - c. need not be bounded variation d. not exists
- 15. If f can be expressed as a difference of two increasing functions then f is ------ on [a,b]a. boundedb. of bounded variation
 - c. need not be bounded variation d. not exists

16. If both f and f^{-1} are continuous then f is called -----a.Increasing b. continuous c. continuous increasing d. decreasing 17. A Contraction of any metric space is -----b. discontinuous a. continuous c. uniformly continuous d. constant 18. Graph of f is called as -----a. curve b. path c. closed interval d. open interval 19. The contraction constant α is -----a. < 2 c. <1 $b_{.} > 2$ d. > 1 20. If f(x) = x on A, then f'(x) = ----- on Aa. 1 b. 0 c.3 d. ∞ **PART – B** $(3 \times 10 = 30 \text{ Marks})$

ANSWER ALL THE QUESTIONS

21. a) State and prove sign preserving property of continuous functions.

(OR)

b) Prove that continuous image of an open set is open.

22. a) State and prove fixed point theorem for contraction.

(**OR**)

b) Prove that continuous image of a connected set is connected .Then prove that X is compact.

23. a). State and prove Intermediate Valued Theorem for continuous functions

(**OR**)

b) State and prove Connectedness

PART A (20 x 1 = 20 Marks) ANSWER ALL THE QUESTIONS

1. If f is monotonic on [a,b] the set of discontinuous of f is
a) uncountable b) finite
c) infinite d) countable
2. If f is monotonic on [a,b] then f is bounded variation on
a) (a,b) b. (a,b] c. [a,b) d. [a,b]
3. If f has a derivative of order n then f is approximately a
polynomial of order
a)n b) n-1 c) 1 d) 3
4. If f and g are of bounded variation on [a,b] then f+g is
a) bounded b) of bounded variation
c)constant d) not of bounded variation
5. If f is of bounded variation on [a,b] then f can be expressed as
sum of
a) decreasing function b) increasing function
c) constant function d) continuous function
6. If f is decreasing then f is
a) n b) n-1 c) 1 d) 3
7. The function f itself is called
a)curve b) path c) closed interval d) open interval
8.If f is 0 everywhere is on (a, b) then f is constant on
a) (a,b) b) (a,b] c) [a,b) d) [a,b]

9. If f is of bounded variation that a) is boundedc. is need not be bounded variation to be bounded variation of the bounded vari	b. is of bounded variation
10. Graph of f is called as	
a)curve b. path	c. closed interval d. open interval
11. If f and g are of bounded var a)bounded on [a,b]	riation on [a,b] then f-g is of b. bounded variation on [a,b] d. onstant
12. Partition P of [a,b] is set of	d. Onstant
a)finite points	
c. infinite points	d. uncountable points
13. If f is continuous at c the a)differentiable at cc) 0	f is b) need not be differentiable at c d)1
14. If f and g are of bounded va	riation on [a,b] then fg is
a.) bounded	
c) strictly decreasing	d) bounded variation
15. If $\propto (x) = x$ then S (P , f, o a.)S(P, f, x) c.) S(P, f, 1)	
16. A partition P' is said to b a) $P' \subset P$ b) $P' \neq P$	e finer than P if
17. The constant function f(x)=1a) for some complex num	l/100, is continuous at bers x b) for complex numbers some

c) for all complex x

d) for some real x

18. $||P'|| \le ||P||$ if -----a) $P' \subset P$ b) $P' \ne P$ c) $P \subset P'$ d.) $P \cap P' = P$

19. If α (x) = x then S (P, f, α) = ----a).f $\in \mathbb{R}$ b) f $\in \alpha$ c.) f $\in \mathbb{R}$ and $f \in \alpha$ d) f $\in \mathbb{R}$ or $f \in \alpha$

20. The refinement of a partition P is ------ if its norm increases
a) increases
b) decreases
c) strictly increases
d) strictly increasing

PART B (3 x 10 = 30 Marks) ANSWER ALL THE QUESTIONS

(OR) b) State and prove algebra for derivatives

22. a) Explain about chain rule .

(OR)

b) State and prove Generalized Mean valued theorem.

s formula with remainder.

(OR)

b) State and prove additive property of total variations.

1. If f is monotonic on [a,b] the set of discontinuous of f is --a) uncountable b) finite c) infinite d) countable 2. If f is monotonic on [a,b] then f is bounded variation on -----c. [a,b) a) (a,b) b. (a.b] d. [a,b] 3. If f has a derivative of order n then f is approximately a polynomial of order----a)n b) n-1 c) 1 d) 3 4. If f and g are of bounded variation on [a,b] then f+g is-----b) of bounded variation a) bounded d) not of bounded variation c)constant 5. If f is of bounded variation on [a,b] then f can be expressed as sum of ----a) decreasing function b) increasing function d) continuous function c) constant function 6. If f is decreasing then f is -----b) n-1 c) 1 d) 3 a) n 7. The function f itself is called -----a)curve b) path d) open interval c) closed interval 8.If f is 0 everywhere is on (a, b) then f is constant on ----a) (a,b) b) (a,b]c) [a,b) d) [a,b] 9. If f is of bounded variation then 1/f ----a)is bounded b. is of bounded variation c. is need not be bounded variation d. not exists 10. Graph of f is called as -----c. closed interval a)curve b. path 11. If f and g are of bounded variation on [a,b] then f-g is of -----a)bounded on [a,b] b. bounded variation on [a,b]

d. onstant

c. uniformly continuous

14. If f and g are of bounded variation on [a,b] then fg is -----a.) bounded b) constant c) strictly decreasing d) bounded variation 15. If \propto (x) = x then S (P, f, \propto) = ----a.)S(P, f, x)b.) S(P, f)d.) S(P, , a) c.) S(P, f, 1) 16. A partition P' is said to be finer than P if -----a) $P' \subset P$ b) $P' \neq P$ c.) $P \subset P'$ d.) $P \cap P' = P$ 17. The constant function f(x)=1/100, is continuous at----a) for some complex numbers x b) for complex numbers some c) for all complex x d) for some real x 18. $||P'|| \le ||P||$ if -----a) $P' \subset P$ b) $P' \neq P$ c) $P \subset P'$ d.) $P \cap P' = P$

d)1

b. infinite pointsd. uncountable points

b) need not be differentiable at c

19. If α (x) = x then S (P, f, α) = ----a).f $\in \mathbb{R}$ b) f $\in \alpha$ c.) f $\in \mathbb{R}$ and $f \in \alpha$ d) f $\in \mathbb{R}$ or $f \in \alpha$

12. Partition P of [a,b] is set of -----

13. If f is continuous at c the f is ------

a)finite points

c. infinite points

a)differentiable at c

c) 0

d. open interval
20.20.The refinement of a partition P is ------ if its norm
increases
a) increases
b) decreases
c) strictly increasing

2) State and prove algebra for derivatives

3. Explain about chain rule .

4 State and prove Generalized Mean valued theorem.

5

6. State and prove additive property of total variations.

7. State and prove Tota l n\variations

8. If f is B.V on (a,b) then f is bounded on (a,b)

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956) Coimbatore – 641 021.

LECTURE PLAN DEPARTMENT OF MATHEMATICS

STAFF NAME : S.KOHILA SUBJECT NAME: REAL ANLAYSIS II SEMESTER: VI

SUB.CODE:15MMU601 CLASS: III B.SC MATHEMATICS

S.No	Lecture Duration Period	Topics to be Covered	Support Material/Page Nos
		UNIT-I	
1	1	Introduction and examples of continuous functions	T: Chapter 4, 80- 81
2	1	Theorems on Continuity and inverse images of a set	T: Chapter 4, 81- 82
3	1	Theorems on Continuity and inverse images of open and closed sets	T: Chapter 4, 82
4	1	Theorems on Functions continuous on compact sets	R1: Ch5, 134-135
5	1	Theorems on bounded functions	T: Chapter 4, 82- 83
6	1	Theorems for f^{-1} to be continuous	83
7	1	Examples and problems	T: Chapter 4, 82- 83
8	1	Definition and examples for topological mappings	T: Chapter 4, 83- 84
9	1	Definition and examples for topological mappings	T: Chapter 4, 84
10	1	sign preserving property	T: Chapter 4, 84
11	1	Bolzano's theorem	T: Chapter 4, 84
12	1	Continuation of Bolzano's theorem	T: Chapter 4, 84
13	1	Intermediate value theorem	T: Chapter 4, 84- 85
14	1	Problems on IVT	T: Chapter 4, 85

15	1	Recapitulation and discussion of possible questions	
	Total No of H	ours Planned For Unit 1=15	
		UNIT-II	
1	1	Introduction to Connectedness	T: Chapter 4, 86
2	1	Examples for Connectedness	T: Chapter 4, 86
3	1	Thereom on two valued function	T: Chapter 4, 86
4	1	Thereom on two valued function and Connectedness	T: Chapter 4, 87
5	1	Introduction to Connectedness	T: Chapter 4, 86
6	1	Thereom on continuous image of a connected set	T: Chapter 4, 87
7	1	IVT for real valued function	T: Chapter 4, 88
8	1	connected sets	T: Chapter 4, 89
9	1	Theroem on arcwise connectedness	T: Chapter 4, 89
10	1	Continuation of Theroem on arcwise connectedness	1: Chapter 4, 89: R2: Ch 6, 143-145
11	1	Continuation of Theroem on arcwise connectedness	T: Chapter 4, 89
12	1	Theorem on uniform connectivity	T: Chapter 4, 89- 90
13	1	Thereom on Uniform continuity and compact sets	T: Chapter 4, 90
14	1	Fixed point theorem	T: Chapter 4, 92
15	1	COntinuation of Fixed point theorem	T: Chapter 4, 92
16	1	Thereom on Monotonic functions	T: Chapter 4, 94
17	1	Continuation of Monotonic functions	T: Chapter 4, 95
18	1	Recapitulation and discussion of possible questions	
24	1	Recapitulation and discussion of possible questions	
	Total No of H	ours Planned For Unit II=24	
		UNIT-III	
1	1	Introduction and Definition	T: Chapter 5, 104

LESSON PLAN 2015-2018

		of derivative	105
2	1	Theorems on Derivative and continuity	T: Chapter 5, 105
3	1	Continuation of Theorems on Derivative and continuity	T: Chapter 5, 105- 106
4	1	Theorems on Algebra of derivatives	T: Chapter 5, 106
5	1	The chain rule	T: Chapter 5, 106- 107
6	1	One sided derivatives and infinite derivatives	1: Chapter 5, 107- 108
7	1	Theorems on Functions with non-zero derivatives	T: Chapter 5, 108- 109
8	1	Theorems on Zero derivatives and local extrema	1: Chapter 5, 109- 110
9	1	Rolle's theorem	T: Chapter 5, 110
10	1	The mean value theorem for derivatives	T: Chapter 5, 110
11	1	Generlized mean value theorem for derivatives	T: Chapter 5, 110- 111
12	1	Corralory of Generlized mean value theorem	T: Chapter 5, 110- 111
13	1	Corralory of mean value theorem	T: Chapter 5, 113
14	1	Taylor's formula with remainder	T: Chapter 5, 113- 114
15	1	Corralory of Taylor's formula with remainder	T: Chapter 5, 113- 114
16	1		
17	1	Recapitulation and discussion of possible questions	
1	1		
	1	Properties of monotonic functions	T: Chapter 6, 127
2	1	Properties of monotonic functions	T: Chapter 6, 127- 128
3	1	Theorems on bounded variation	T: Chapter 6, 128
4	1	Theorems on bounded variation	T: Chapter 6, 128- 129
5	1	Examples for bounded variation	T: Chapter 6, 128- 129

LESSON PLAN 2015-2018

6	1	Theorems Total Variation	T: Chapter 6, 129
7	1	Continuation of theorems on Total Variation	T: Chapter 6, 129- 130
8	1	Additive properties of total variation on (a, x) as a function of x	T: Chapter 6, 130
9	1	Continuation Additive properties of total variation on (a, x) as a function of x	T: Chapter 6, 130- 131
10	1	Total variation on (<i>a</i> , <i>x</i>) as a function of <i>x</i>	1: Chapter 6, 131- 132
11	1	Theorems on Continuous functions of bounded variation	T: Chapter 6, 132
12	1	Continuation of continuous functions of bounded varia-	T: Chapter 6, 132
13	1	Continuation of Continuous functions of bounded vari- ation.	T: Chapter 6, 133
14	1	Continuation of continuous functions of bounded varia-	T: Chapter 6, 133
	Total No of H	Iours Planned for unit IV=14	
1	1	The Riemann - Stieltjes integral- Introduction	T: Chapter 7, 140
2	1	Notation of Riemann Stieltjes integral	T: Chapter 7, 141
3	1	Definition of Riemann Stieltjes integral	T: Chapter 7, 141
4	1	Theorems on linear properties	T: Chapter 7, 142
5	1	Continuation of Theorems on linear properties	T: Chapter 7, 142- 143
6	1	Theorems on Integration by parts	T: Chapter 7, 144
7	1	Continuation of theorems on Integration by parts	T: Chapter 7, 144
8	1	Theorems on Change of variable	T: Chapter 7, 144- 145
9	1	Continuation of Theorems on Change of variable in a Riemann Stieltjes integral	T: Chapter 7, 144- 145
10	1	Theorems on Reduction to a Riemann integral.	1: Chapter 7, 145- 146
11	1	Ŭ	T: Chapter 7, 145-
11		Continuation of Theorems onReduction to a Riemann in- tegral.	146

LESSON PLAN 2015-2018

		integral.	146
Total	120		
Planned			
Hours			

TEXT BOOK

1. Apostol. T.M., 1990. Mathematical Analysis, Second edition, Narosa Publishing Company, Chennai.

LESSON PLAN

2015-

2018

REFERENCES

- 1. Balli. N.P, 1981. Real Analysis, Laxmi Publication Pvt Ltd, New Delhi.
- 2. Gupta . S.L , and N.R. Gupta ., 2003.Principles of Real Analysis, Second edition, Pearson Education Pvt.Ltd,Singapore.
- 3. Royden .H.L , 2002. Real Analysis, Third edition, Prentice hall of India,New Delhi.
- 4. Rudin. W,1976 .Principles of Mathematical Analysis, Mcgraw hill, Newyork .
- 5. Sterling. K. Berberian , 2004. A First Course in Real Analysis, Springer Pvt Ltd,

Prepared byS.KOHILA,Department of Mathematics ,KAHE

Page **6 / 6**

Reg. No ------(15MMU601) Karpagam Academy of Higher Education COIMBATORE-21 MODEL EXAMINATION -MAR '18 MATHEMATICS REAL ANALYSIS –II

Class : III B.Sc (MATHEMATICS)Time: 3 hoursDate :.3.18 ()Maximum Marks: 60 Marks

PART – A (20 x 1 = 20 marks) ANSWER ALL THE QUESTIONS

1.	If $f: R \to R$ by $f(x) = c$ t	hen imag	e of an open se	et is	
	a. open	b. closed	с.	not open	
2.	A real function f defin	ed on S is	said to be bou	nded if $ f(x) - \cdot$	_
	a. ≥	b. ≤	c. <	d. >	
3.	Inverse image of closed s	set is			
		b. o			
	c. both open and closed	d. ne	ither open nor	closed	
4.	If f is continuous on S a	and S is co	mpact then f^{-1}	is	
	a. not continuous	b. c	ontinuous		
	c. uniformly continuous	d. c	onstant		
5.	If $f(x) = f(y)$ for all x a	nd y ther	fis		
	a. constant b. dec	creasing			
	c. increasing d. str	ictly increa	using		
6.	If $f: R \rightarrow R$ is continuo	us then th	e image of [a,	b]is	
	a. bounded b. u	inbounde	d		
	c. closed d.	compact.			
7.	A contraction of any m	etric spac	e is		
	a. continuous	b. disc	ontinuous		
	c. uniformly continuous	d. con	stant		
8.	A real valued function	f is said t	o two valued i	f the range of f \subset	-
	a (0,1) b [0,1]		a (0,1)	1 (0 1)	

a. (0,1) b. [0,1] c. {0,1} d. (0,1]

9. If f has derivative at a and b and continous on (a, b) then f'(c) = 0 for -a. some c in (a,b) b. for all c in (a,b) c. for no c in (a,b) d. only one c in (a,b) 10. If $f'(x) \le 0$ for all $x \in I$ then fis - - - - on I a. increasing b. strictly decreasing c. strictly decreasing d. decreasing 11. If f' is 0 everywhere on (a, b) the f is constant on -----a. (a.b) b. (a,b] c. [a,b) 12. If f and g are continuous on [a, b] and f - g is - -on [a, b] -----b. not constant c.1-1 d. onto a. constant 13. Graph of f is called as -----b. path . closed interval d. open interval a. curve 14. $V_f(a, b) = -----$ a. $V_f(a, c) - V_f(c, b)$ b. $V_{f}(a, c) + V_{f}(c, b)$ c. $V_f(a, c) \times V_f(c, b)$ d. 0 d. both 5 opth faised elors ad ing then -f is ---------a docraela sining S b. increasing c. strictly decreasing d. strictly increasing 16. If f and g are of bounded variation on [a,b] then fg is -----a. bounded b. constant c. continuous d. bounded variation. 17. A curve is a -----subset of Rⁿ a. compact b. connected c. compact and connected d. not compact 18. If $\alpha(x) = x$ then - - - - c. $f \in R$ and $f \in \alpha$ b. f $\in \alpha$ a. $f \in R$ d f \in R or f $\in \alpha$ 19. $\int_{a}^{b} f d(c\alpha) = -----$ a. $c \int_{a}^{b} f d\alpha$ b. 0 c. 1 d. 1 20. Let A be a compact subset of S and f is continuous on S -----a. continuous on A b. uniformly continuou c. unifromly but not continuous on A d. continuous but not u

PART – B (5 x 8 = 40 Marks) ANSWER ALL THE QUESTIONS

21. a) Prove that f is continuous iff inverse image of a closed set is closed. also prove that continuous image of a closed set is need not be closed.

(**OR**)

b) State and prove Connectedness.

22. a) Prove that a metric space S is connected if and only if every two valued function on S is constant.

(**OR**)

b) Prove that continuous image of a Connected set is Connected.

23. a)State and prove mean value Theorem (Derivatives) (OR)

b) State and prove Taylor's theorem.

24. a) Prove that $\ \mbox{if } f \ \mbox{is monotonic on } [a,b] \ \mbox{then the set of}$

discontinuous of f is countable

(**OR**)

b) Prove that a metric space S is connected if and only if every

two valued function on S is constant.

25. a) State and prove formula for a Riemann- -Stieltjes integral

(**OR**)

b) State and prove formula for integration by parts of a Riemann-Stieltjes integral.

a. $V_f(\mathbf{a}, \mathbf{c}) - V_f(\mathbf{c}, \mathbf{b})$ b. $V_f(\mathbf{a}, \mathbf{c}) + V_f(\mathbf{c}, \mathbf{b})$ c. $V_f(\mathbf{a}, \mathbf{c}) \times V_f(\mathbf{c}, \mathbf{b})$ 15. If f is decreasing then –f is -----a. decreasing b. increasing c. strictly decreasing d. strictly i 16. If f and g are of bounded variation on [a,b] then fg is -----c. continuous a. bounded b. constant d. bounded variation. 17. If $\alpha(x) = x$ then $S(P, f, \alpha) = \dots$ a. $\mathbf{S}(\mathbf{P}, \mathbf{f}, \mathbf{x})$ b. $S(\mathbf{P}, \mathbf{f})$ d. $S(P, \alpha, \alpha)$ c. S(P, f, 1) 1. If $f: R \to R$ by f(x) = c then image of an open set is ----d. both open and closed ---b. closed c. not open a. open 2. A real function f defined on S is said to be bounded if |f(x)| - - - - - - M for all x in S b. $f \in \alpha$ c. $f \in R$ and $f \in \alpha$ a. \geq b. \leq c. < d. > 19. A partition P is said to be finer than P if -----d. f \in R or f $\in \alpha$ a. $P' \subset P$ b. $P' \neq P$ c. $\mathbf{P} \subset \mathbf{P}'$ d. $P \cap P' = P$ 3. Inverse image of closed set is -----c. both open and closed d. neither open nor closed a. closed b. open 20. Let A be a compact subset of S and f is continuous on S ------4. If f is continuous on S and S is compact then f^{-1} is ----c. uniformly continuoustia.ueuaseanA b. uniformly continuo b. continuous a. not continuous c. unifromly but not continuous on A d. continuous but not un 5. If f(x) = f(y) for all x and y then f is a. constant b. decreasing c. increasing d. strictly increasing 6. If $f: \mathbb{R} \to \mathbb{R}$ is continuous then the image of [a, b] is -----b. unbounded c. closed a. **bounded** d. compact. 7. A contraction of any metric space is -----c. uniformly continuous d. constant a. continuous b. discontinuous 8. A real valued function f is said to two valued if the range of $f \subset$ a. (0,1) b. [0,1] c. $\{0,1\}$ d. (0,1] 9. If f has derivative at a and b and continous on (a, b) then f'(c) = 0 for a. some c in (a,b) b. for all c in (a,b) c. for no c in (a,b) d. only one c in (a,b) 10. If $f'(x) \le 0$ for all $x \in I$ then fis - - - - on I b. strictly decreasing a. increasing c. strictly decreasing d. decreasing 11. If f' is 0 everywhere on (a, b) the f is constant on a. (**a.b**) b.(a,b]c. [a,b) d. [a,b] 12. If f and g are continuous on [a, b] and have equal finite derivatives the f - g is - -on [a, b]d. onto a. constant b. not constant c.1-1 13. Graph of f is called as -----c. closed interval d. open interval a. curve b. path

KARPAGAM ACADEMY OF HIGHER EDUCATION KARPAGAM ACADEMY OF HIGHER EDUCATION de la university Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021					
SUB : REAL ANALYSIS II Subject Code: 15MMU601					
Class : III B.SC MATHEMATICS Semester : VI	ODTION 1	ODTIONA	ODTIONA	ODTION 4	ANOWEDC
	OPTION 1		-	OPTION 4	ANSWERS
The constant function f(x)=c, is continuous at	for some real numbers			for no real x	for all real x
The constant function f(x)=c, is continuous at	for some complex num				for all complex x
The identity function f(x)=x, is continuous at	for some complex num				for all complex x
The identity function f(x)=x, is continuous at	for some real numbers	for finite number of re	for all real x	for no real x	for all real x
	1	0	-1	2	1
		1 1		1 .1 1 1	
The image of an open set under continuous function is	open		closed	need not be closed	need not be open
The image of a closed set under continuous function is	open		closed	need not be closed	need not be cloded
The image of a compact set under continuous function is	compact		connected	need not be connected	compact
The image of a connected set under continuous function is	compact	1	connected	need not be connected	connected
The inverse image of an open set under continuous function is	open		closed	need not be closed	open
The inverse image of a closed set under continuous function is	open	1	closed	need not be closed	closed
Which of the following is not a bounded function?	sin x		tan x	sec x	tan x
If f is continuous on a compact subset S of X then f is	bounded		constant	identity	bounded
The homeomorphic image of an open set is	open	1	closed	need not be closed	open
The homeomorphic image of an open set is	open		closed	need not be closed	closed
The topological image of an interval is	simple arc		square	rectangle	simple arc
The topological image of an interval is	simple arc	circle	square	rectangle	simple arc
A simple closed curve is the topological image of	simple arc	circle		rectangle	circle
If $f(a)f(b)<0$, then there ispoint c between a nd b such that $f(c)=0$	atmost one	atleast one	finite number of	infinite number of point	
The constant function $f(x)=-1$, is continuous at	for some real numbers			for no real x	for all real x
The constant function $f(x)=1/100$, is continuous at	for some complex num	for finite number of co	for all complex x	for no complex x	for all complex x
The constant function $f(x)=-100$, is continuous at	for some real numbers	for finite number of re	for all real x	for no real x	for all real x
The constant function $f(x)=10000/100$, is continuous at	for some complex num	for finite number of co	for all complex x	for no complex x	for all complex x

KARPAGAM ACADEMY OF HIGHER EDUCATION sement to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021 Subject Code: 15MUU(601

Construction SUB : REAL ANALYSIS II Class : III B.SC MATHEMATICS

Subject Code: 15MMU601 Semester : VI

UNIT III	OPTION 1	OPTION 2	OPTION 3	OPTION 4	ANSWERS
i j i s first derivative of j chen j is	an one to one function	a function	an onto function	a bijection	a function
If f is constant on A then on A, f'	>0	<0			
lf f(x) = x on A then on A, f'	>0	<0			
If $f(x) = x^4 - 4x^3 + 4x^2 - 1$ then the set of values at which f' is zero is	{1,2}	{0,-1,-2}	{0}	{0,1,2}	
If $f'(x) > 0$ for all x in I then f is $ on I$	increasing	decreasing	strictly increasing	strictly decreasing	increasing
$lf \ f'(x) < 0 \ for \ all \ x \ in \ l \ then \ f \ is on \ l$	increasing	decreasing	strictly increasing	strictly decreasing	decreasing
The function $f(x) = 2x^3 - 15x^2 + 36x + 6$ is strictly increasing in the interval	(2,3)	(3,4)	$(-\infty,3) \cup (4,\infty)$	$(-\infty,2) \cup (3,\infty)$	(2,3)
The function $f(x) = 2x^3 - 15x^2 + 36x + 6$ is strictly decreasing in the interval	(2,3)	(3,4)	$(-\infty,3)\cup(4,\infty)$	$(-\infty,2) \cup (3,\infty)$	(3,4)
If the function f defined by $f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + \dots + \frac{x^2}{2} + x + 1$ then $f'(0) =$	1	-1	100	-100	1
Assume f and g are defined on (a, b)and differentiable at c. Then $(f+g)^{\prime}(c)=$	f'(c)g'(c)	f'(c)-g'(c)	f'(c)+g'(c)	$\frac{f'(c)}{g'(c)}$	f'(c) + g'(c)
Assume f and g are defined on $(a,b) and differentiable at c. Then (f-g)^{\prime}(c)$	f'(c)g'(c)	$f^{\prime}(c)-g^{\prime}(c)$	f'(c)+g'(c)	$\frac{f'(c)}{g'(c)}$	f'(c) - g'(c)
Assume f and g are defined on $(a,b) and differentiable at c. \ Then \ (fg)^{\prime}(c) =$	f'(c)g'(c)	f'(c)-g'(c)	f'(c)+g'(c)	f'(c)g(c) + f(c)g'(c)	$f^\prime(c)g(c)+f(c)g^\prime(c)$
Assume f and g are defined on (a, b) and differentiable at c . Which of the following not exists?	f'(c) - g'(c)	$f^{\prime}(c)+g^{\prime}(c)$	f'(c)g(c) + f(c)g'(c)	$\frac{f'(c)}{g'(c)}$	$\frac{f'(c)}{g'(c)}$
To apply Rolle's theorem we must have	f(a) < f(b)	f(a) = f(b)	$f(a) \neq f(b)$	f(a) > f(b)	f(a) = f(b)
$lf f(a) = f(b)$ then by Rolle's theorem there is atleast one point $c \in (a, b)$ at which	f'(c) = 0	f'(c) > 0	f'(c) < 0	$f'(c) \neq 0$	f'(c) = 0
If $f(a) = f(b)$ then by Rolle's theorem there is $$ one point					
$c \in (a, b)$ at which $f'(c) = 0$	atleast	atmost	exactly	no	atleast
If f satisfies all the conditions of mean value theorem then	f(b) - f(a) = f'(a)(b - a)	f(b) - f(a) = f'(b)(b - a)	f(b) - f(a) = f'(c)(b - a)	f(b) - f(a) = (b - a)	f(b) - f(a) = f'(c)(b - a)
If f' takes only positive values on (a, b) then f is $$	increasing	striclty increasing	decreasing	striclty decreasing	striclty increasing
If f' takes only nonnegative values on (a, b) then f is $$	increasing	striclty increasing	decreasing	striclty decreasing	increasing
If f' takes only negative values on (a, b) then f is $$	increasing	stricity increasing	decreasing	striclty decreasing	striclty decreasing
If f' takes only nonpositive values on (a,b) then f is $$ function on (a,b)	increasing	stricity increasing	decreasing	stricity decreasing	decreasing
If f and g are are continuous on (a,b) and have equal and finite derivatives the $f - g$ is		saleny noreasing	storousing	accreasing	
on(a, b)	non constant	constant	stricity decreasing	striclty increasing	constant
A sufficiently smooth curve joining two points A and B has $$	tangent	normal	no	both tangent and normal	tangent
If $f'(x) \neq 0$ for $x \in (a, b)$ then f is $$ function on (a, b)	striclty increasing	striclty decreasing	monotonic	constant	monotonic
f' is continuous if f' exists and f is	constant	monotnoic	striclty increasing	striclty decreasing	monotnoic

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore –641 021 SUB : REAL ANALYSIS II Subject Code: 15MMU601 Class : III B.SC MATHEMATICS Semester : VI

SUB : REAL ANALYSIS II

UNIT IV	OPTION 1	OPTION 1	OPTION 1	OPTION 1	ANSWERS
If f is monotmonic on $[a,b]$ then the set of discontinuities of f is	countable	atmost countable	finite	uncountable	countable
If f is [a,b] then the set of discontinuities of f is countable	monotonic	con stant	stricity increasing	stricity decreasing	monontonic
If $f(x) > f(y)$ for $x < y$ in $[a, b]$ then the set of discontinuities of f is	countable	atmost countable	finite	uncountable	countable
If $f(x) < f(y)$ for $x < y$ in $[a, b]$ then the set of discontinuities of f is	countable	atmost countable	finite	uncountable	countable
If $f(x) = f(y)$ for x,y in $[a,b]$ then the set of discontinuities of f is	countable	atmost countable	finite	uncountable	countable
If $[a, b]$ is a compact interval then the set of points $ is$ called a partition of $[a, b]$	$a = x_0 < \dots < x_n = b$	$a = x_0 \le \dots \le x_n = b$		$a = x_0 \neq \dots \neq x_n = b$	$a = x_0 < \dots < x_n = b$
Which of the following is a partition of [0,1]?	$\{0, \frac{1}{2}, \frac{1}{4}, 1\}$	$\{0,\frac{1}{2},\frac{1}{2},1\}$	$\{0,\frac{1}{5},\frac{1}{2},1\}$	$\{0, \frac{13}{5}, \frac{1}{2}, 1\}$	$\{0, \frac{1}{5}, \frac{1}{2}, 1\}$
Number of partition of [0,1] with each subinterval length $\frac{1}{2}$ is	1	2	3	4	1
Number of partition of [0,1] with each subinterval length 0 is	0	1	2	3	0
If $P\{x_0, x_1,, x_n\}$ is a partition of $[a, b]$ then $\sum_k \Delta x_k =$	b-a	a-b	a	b	b-a
If $P\{x_0, x_1,, x_n\}$ is a partition of [0,1] then $\sum_{k=1}^{n} \Delta x_k =$	1	0	2	3	1
If $P\{x_0, x_1, \dots, x_n\}$ is a partition of [0,1] then $x_0 =$	1	0	2	3	0
If $P\{x_0, x_1,, x_n\}$ is a partition of [0,1] then $x_n =$	1	0	2	3	1
If $P \{x_0, x_1, \dots, x_n\}$ is a partition of $[a, b]$ with $f(x) = x_0$ then $\Delta f_k =$	1	0	2	3	
If $P\{x_0, x_1,, x_n\}$ is a partition of $[a, b]$ with $f(x) = x_0$ then $\Delta f_k = 0$ for	some k	all k	only one k	nok	all k
If $P\{x_0, x_1, \dots, x_n\}$ is a partition of $[a, b]$ with $f(x) = x$ then $\Delta f_k =$	$x_k - x_{k-1}$	x _k	x _{k-1}	NO K	$x_k - x_{k-1}$
If $P\{x_0, x_1,, x_n\}$ is a partition of $[a, b]$ with $f(x) = x$ then $\sum \Delta f_k =$	$-\sum \Delta f_k$	$\sum \Delta f_k$	0	1	$\sum \Delta f_k$
If $P\{x_0, x_1,, x_n\}$ is a partition of $[a, b]$ with $f(x) = 1$ then $\sum \Delta f_k = $	1		3		
f is said to be bounded variation on [a,b] if for all partitions [a, b], $\sum \Delta f_k $	≤ <i>M</i>	$\geq M$	= M	< M	≤ <i>M</i>
f is said to be bounded variation on $[a, b]$ if for $$ partitions $[a, b]$, $\sum \Delta f_{R} \leq M$	a11	some	no	only one	all
If f is $on [a, b]$ the f is of bounded variation on $[a, b]$	monotonic	decreasing	increasing	constant	monotonic
Which of the following is true?	if f is of bounded variation on [a,b] then f is bounded on [a,b]	-	both a and b	neither a nor b	if for insideration (p) (in / classica (p)
$If P_n = \left\{0, \frac{1}{2n}, 1\right\}, n = 1, 2, 3, \dots, is \ a \ partition \ of \ [0,1] \ then \ \bigcup_{n \ge 1} P_n = \right.$	$\{0,\frac{1}{2},1\}$	$[0, \dots, \frac{1}{8}, \frac{1}{2}, 1]$	$\{0, \dots, \frac{1}{16}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1\}$		$[0, \dots, \frac{1}{8}, \frac{1}{6}, \frac{1}{4}, \frac{1}{2}, 1]$
$ If P_n = \left\{0, \frac{1}{2n}, 1\right\}, n $ $= 1.2.3, \dots, is a partition of [0,1] then maximum subinterval length in \bigcup_{n \le k} F_n = 1.2.3, \dots, is a partition of [0,1] then maximum subinterval length in [0,1] then maximum subinterval length in [0,1] then [0,1] th$	1	0.5	2	3	0.5
$\begin{split} If P_n &= \Big\{0, \frac{1}{2n}, 1\Big\}, n \\ &= 1, 2, 3, \dots, is \ a \ partition \ of \ [0,1] \ then \ minimum subinterval length \ in \ P_1 \cup P_2 \\ &\cup P_3 = \end{split}$	1 6	1 4	$\frac{1}{2}$	1	1 6
$f(x) = x^{\frac{1}{2}} is$	monotonic	bounded variation	both a and b	neither a nor b	both a and b
If $f(x) = x^{\frac{1}{3}}$ then $f'(x) \toas x \to 0$	0	1	2	8	00
If f is of bounded variation on $[a, b]$ then $V_f(a, b)$ is	infinite	finite	not exists	1	finite
$V_{f}(a, b)$	≥ 0	≤ 0	0	1	≥ 0
If f is constant then $V_f(a, b)$	≥ 0	≤ 0	0	1	0
$lf V_f(a,b) = 0 the f is$	strictly increasing	strictly decreasing	constant	monotonic	constant
$V_{f\pm \theta} \leq$	$V_f \pm V_g$	$V_f + V_g$	$V_f - V_g$	0	$V_f + V_g$
$V_f(a,b) =V_f(a,c) + V_g(c,b) for \ c \in (a,b)$	5	=	≥	≠	=
$If V(x) = V_f(a,b), a < x \le b \text{ and } V(a) = 0 \text{ then } V \text{ is }function \text{ on } [a,b]$	stricity increasing	incresing	stricly decreasing	decreasing	increasing
$lf V(x) = V_f(a, b), a < x \le b \text{ and } V(a) = \text{ then } V \text{ is increasing function on } [a, b]$	1	2	a survey or dreaming	oreitusing	0
$\begin{split} & lf V(x) = V_f(a,b), a < x \le b \; and V(a) \\ & = then \; V - f \; is \; increasing function \; on \; [a,b] \end{split}$	1	2	2	0	0
$= = -inen V - f is intereasing function on [a, b]$ $= V_f(a, b), a < x \le b \text{ and } V(a) = 0 \text{ then } V - f is function on [a, b]$	etricitu increasing	increasing	etriclu decreasing		increasing
If f is of bounded variation on $[a, b]$ then f is difference of two $ f$ unctions on $[a, b]$					
If f is of bounded variation on $[a, b]$ then f is $$ of two increasing functions on $[a, b]$					
$lf f(x) = x \text{ for } x \in [2,3] \text{ then } f \text{ is}$					
If $f(x) = \sqrt{x}$ for $x \in [2,3]$ then f is	and a second			1111111	
If $f(x) = \frac{1}{x}$ for $x \in [2,3]$ then f is	stricity increasing	incresing	stricly decreasing	decreasing	stricity decreasing
$\begin{aligned} & lf f \text{ is of bounded variation on } [a, b] \text{ then } f \text{ is } \text{ of two increasing functions on } [a, b] \\ & lf f(x) = x \text{ for } x \in [2,3] \text{ then } f \text{ is} \\ & lf f(x) = \sqrt{x} \text{ for } x \in [2,3] \text{ then } f \text{ is} \end{aligned}$	stricity increasing sum stricity increasing stricity increasing	incresing difference incresing incresing	product	decreasing decreasing quotient decreasing decreasing	increasing increasing difference strictly increasing strictly decreasing

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eschanari (Po), Coimbatore -641 021

SUB : REAL ANALYSIS II Subject Code: 15MMU601

Class : III B.SC MATHEMATICS Semester : VI

UNIT III OPTION 1 OPTION 2 Suppose A and B are disjoint nonempty openests in S them S is called disconnected if $S = A \cup B$ $S = A \cap B$	2 OPTION 3	OPTION 4	ANSWERS	
		$S \neq A \cup B$	$S = A \cup B$	
Suppose A and B are disjoint nonempty opensets in S then S is called connected if $S = A \cup B$ $S = A \cap B$	$S \neq A \cap B$	$S \neq A \cup B$	$S \neq A \cup B$	
The matrix energy $S = B = 100$ with Euclidean matrix is				
Connected asconnec		closed	disconnected	
every open interval in K is connected disconne The set of all rational numbers Q with Euclidean metric is		closed	connnected	
Comedea asconne		closed	disconnected	
connected atsconne	1	open $f(S) \subset \{0,1\}$	connected	
	a < b only		$f(S) \subset \{0,1\}$	
		a > b only	a ≠ b	
		s continuous	constant	
If a metric space S is connected and f: $S \rightarrow (0,1)$ then $f(S) \subset \{0\}$ only $f(S) \subset \{1\}$			either $f(S) \subset [1]$ only or $f(S) \subset [0]$ only	
Continuous image of a connected set is connected disconne		closed	connected	
If $f: R \to R$ is continuous then $f(R)$ is connected disconnected		closed	connected	
$lf f: R \to R \text{ is continuous then } f((0,1)) \text{ is} \qquad \qquad \text{connected} \qquad \text{disconnected}$	ected compact	closed	connected	
If $f: \mathbb{R} \to \mathbb{R}$ is continuous then $f(\{a\})$ is connected disconnected	ected compact	closed	connected	
$lf \ f: R \to R \ is \ connected \ disconnected \ d$	ected compact	closed	disconnected	
If $f: R \to R$ is continuous then $f(R - (0))$ is connected disconnected	ected compact	closed	disconnected	
If $f: \mathbb{R} \to \mathbb{R}$ is continuous then $f(Q), Q$ is the set of all rational numbers, is connected disconnected	ected compact	closed	disconnected	
Every curve in R ^m is connected disconne	ected compact	closed	connected	
$lf f: R \rightarrow R$ is continuous function, then image of an interval is connected disconnected	ected compact	closed	connected	
If $f: \mathbb{R} \to \mathbb{R}^n$ is continuous function, then image of an interval is connected disconnected	ected compact	closed	connected	
If $f: \mathbb{R} \to \mathbb{R}^n$ is continuous function, then image of an interval is		استعمار أسمعه		
curve interval Every nonempty set contains connected subset	op en interval	closed interval	curve	
suppose 5 is any metric space and a E S. Which of the following is connected subset of S? (a) ()	ne exactly one $S = \{a\}$	no	atleast one (a)	
Component of $S, U(x)$ is $$ connected subset of S which contains x		s		
Every point x of a metric space S belongs to connected subset of S effect are attracted subset of S		not	maximal	
Union of connected sets is connected set if the intersection of connected sets is	ne exactly one	no	atleast one	
Suppose $A = ((a, b); a, b \in \mathbb{R})$. Then $\bigcup (a, b)$ is connected provided $\bigcap (a, b)$ is	singleton set	fininte set	non empty	
(abea non empty empty Suppose 5 is any metric space and 5 = [1,2,3,]. Then (x) is connected disconne	singleton set	fininte set closed	non empty	
Let $f(x) = \frac{1}{f}$ for $x > 0$ and $A = \{0,1\}$. Then f is continuous at	finite number	ctoseu	diconnected	
every point of A no point	of A of points of A y continuous continuous	1 only unifromly but	every point of A continuous but not	
Let $f(x) = \frac{1}{x} for x > 0$ and $A = (0,1]$. Then f is continuous on A on A microsoft.	y continuous but not continuous	not unifromly but	uniformly on A uniformly continuous on	
continuous on A on A	but not y continuous continuous	not unifromly but	A uniformly continuous on	
Let A be a compact subset of S and fis continuous on S, then fis continuous on A on A	y continuous continuous	not unifromly but	A uniformly continuous on	
Let A =[0,1] be a subset of S and f is continuous on S, then f is continuous on A on A	but not	not	A	
Let A =[a,b] be a subset of R and f is continuous on R, then f is continuous on A on A	y continuous continuous but not	unifromly but not	uniformly continuous on A	
The contraction constant a is >1 <1	9	0	<1	
	1	3	1	
Number of fixed point of a constant function is 0	itable finite	infinite	countable	
Number of fixed point of a constant function is 0 If $f: Z \to Z$ be a identity function then number of fixed points of f is countable uncount				
0	stable finite	infinite	uncountable	
$\frac{0}{1ff_{1}Z \rightarrow Z} \text{ be a identity function then number of fixed points of f is} \frac{0}{\text{uncount}}$		infinite infinite	uncountable countable	
$If f: Z \to Z$ be a identity function then number of fixed points of f is countable uncountable $If f: R \to R$ be a identity function then number of fixed points of f is countable uncountable $If f: Q \to Q$ be a identity function then number of fixed points of f is countable uncountable	stable finite	infinite	countable	
If $f: Z \to Z$ be a identity function then number of fixed points of f is countable uncountable If $f: Z \to Z$ be a identity function then number of fixed points of f is countable uncountable If $f: Q \to Q$ be a identity function then number of fixed points of f is countable uncountable If $f: Q \to Q$ be a identity function then number of fixed points of f is countable uncountable Contraction of any metric space is continuous only uniform A contraction of a complete metric space has = = = = = = = = = = = = = = = = = = =	itable finite	infinite a minashini unfamiy onimad	countable uniformly continuos	
If $f: Z \to Z$ be a identity function then number of fixed points of f is countable uncountable If $f: Z \to Z$ be a identity function then number of fixed points of f is countable uncountable If $f: R \to R$ be a identity function then number of fixed points of f is countable uncountable If $f: Q \to Q$ be a identity function then number of fixed points of f is countable uncountable Contraction of any metric space is continuous only uniform A contraction of a complete metric space has ===================================	table finite lly continuos s(m) starbachetentu number of countable	infinite e stashustafreijatase uncountable	countable uniformly continuos a unique	
If $f:Z \to Z$ be a identity function then number of fixed points of f is countable uncountable If $f:Z \to Z$ be a identity function then number of fixed points of f is countable uncountable If $f:Q - Q$ be a identity function then number of fixed points of f is countable uncountable If $f:Q - Q$ be a identity function then number of fixed points of f is countable uncountable Contraction of any metric space is continuous only uniform A contraction of a complete metric space has fixed point a unique a finite m Which of the following is a connected subset of R ? P (1.2.3)	stable finite thy continuos u(m) musherrone umber of countable (1,2,3,4,5,6,7)	infinite e structur(m) octure uncountable {1,2,3,}	countable uniformly continuos a unique Ø	
0 If $f:Z \rightarrow Z$ be a identity function then number of fixed points of f is countable uncountable If $f:R \rightarrow R$ be a identity function then number of fixed points of f is countable uncountable uncountable If $f:Q \rightarrow Q$ be a identity function then number of fixed points of f is countable uncountable uncountable If $f:Q \rightarrow Q$ be a identity function then number of fixed points of f is countable uncountable uncountable Contraction of any metric space is contraction of a complete metric space has fixed point a unique a finite m Which of the following is a connected subset of R? D (1.2.3) Which of the following is a connected subset of R? [1] [1.2.3]	table finite ily continuos a(m) muchanian umber of countable (1.2.3.4.5.6.7) (1.2.3.4.5.6.7)	infinite attract of (mi) ordinate uncountable {1,2,3,} both open and	countable uniformly continuos a unique 0 {1}	
0 If $f:Z \to Z$ be a identity function then number of fixed points of f is countable uncountable If $f:Z \to Z$ be a identity function then number of fixed points of f is countable uncountable If $f:Z \to Q$ be a identity function then number of fixed points of f is countable uncountable If $f:Q \to Q$ be a identity function then number of fixed points of f is countable uncount Contraction of any metric space is continuous only uniform A contraction of a complete metric space has =fixed point a unique a finite m Which of the following is a connected subset of R ? P (12.3) Which of the following is a connected subset of R ? $f 1$ $f 1 $ <td col<="" td=""><td>table finite ily continuos a(m) muchanian umber of countable (1.2.3.4.5.6.7) (1.2.3.4.5.6.7)</td><td>infinite uncountable (1,2,3,) (1,2,3,)</td><td>countable uniformly continuos a unique Ø</td></td>	<td>table finite ily continuos a(m) muchanian umber of countable (1.2.3.4.5.6.7) (1.2.3.4.5.6.7)</td> <td>infinite uncountable (1,2,3,) (1,2,3,)</td> <td>countable uniformly continuos a unique Ø</td>	table finite ily continuos a(m) muchanian umber of countable (1.2.3.4.5.6.7) (1.2.3.4.5.6.7)	infinite uncountable (1,2,3,) (1,2,3,)	countable uniformly continuos a unique Ø
0 0 If $f:Z \rightarrow Z$ be a identity function then number of fixed points of f is countable uncountable If $f:R \rightarrow R$ be a identity function then number of fixed points of f is countable uncountable If $f:Q \rightarrow Q$ be a identity function then number of fixed points of f is countable uncount If $f:Q \rightarrow Q$ be a identity function then number of fixed points of f is countable uncount Contraction of any metric space is contraction sonly uniform A contraction of a complete metric space has =fixed point a unique a finite m Which of the following is a connected subset of R ? \emptyset $(1,2,3)$ Which of the following is a connected subset of R ? $\{1\}$ $(1,2,3)$ If X is connected the closure of X is disconnected Let U(x) be the component of S containing x is closed opne	trable finite typeontimus upplications umber of countable (1.2.3.4.5.6.7) (1.2.3.4.5.6.7) d open	infinite starlets(m) attac uncountable {1,2,3,} both open and disconnected	countable uniformly continuos a unique 0 {1}	
If $f:Z \to Z$ be a identity function then number of fixed points of f is countable uncounting If $f:Z \to Z$ be a identity function then number of fixed points of f is countable uncounting If $f:R \to R$ be a identity function then number of fixed points of f is countable uncounting If $f:Q \to Q$ be a identity function then number of fixed points of f is countable uncounting Contraction of any metric space is contractions of any metric space is contraction of a complete metric space has = fixed point a unique a finite m A contraction of a complete metric space has =	table finite table finite tycontinuos w(m)smalexanu umber of countable (1.2.3.4.5.6.7) (1.2.3.4.5.6.7) d open neither open nor closed increasing	infinite mashrutu(m) actue uncountable (1,2,3,) both open and disconnected both open and closed strictly increasing	countable uniformby continuos a unique 0 {1} connected closed	
If $f:Z \to Z$ be a identity function then number of fixed points of f is countable uncountable If $f:Z \to Z$ be a identity function then number of fixed points of f is countable uncountable If $f:R \to R$ be a identity function then number of fixed points of f is countable uncountable If $f:Q \to Q$ be a identity function then number of fixed points of f is countable uncountable Contraction of any metric space is contraction of any metric space is contraction of f a complete metric space has = fixed point a unique a finite m A contraction of a complete metric space has = fixed point a unique a finite m Which of the following is a connected subset of R ? p (1,2,3) Which of the following is a connected subset of R ? [1] (1,2,3) If X is connected the closure of X is disconnected connected Let $U(x)$ be the component of S containing x is closed opne If $x < y = f(x) < f(y)$ then f is called constant function identity f	table finite trable finite trable finite trable trable transfer tr	infinite incountable (1.2.3,) (1.2.3,) both open and disconnected both open and closed strictly increasing	countable uniformly continuos a unique ø {1} connected closed strictly increasing function increasing function	
If $f:Z \to Z$ be a identity function then number of fixed points of f is countable uncounting If $f:Z \to Z$ be a identity function then number of fixed points of f is countable uncounting If $f:R \to R$ be a identity function then number of fixed points of f is countable uncounting If $f:Q \to Q$ be a identity function then number of fixed points of f is countable uncounting Contraction of any metric space is contraction of any metric space is contraction of f a complete metric space has = fixed points a unique a finite metric space has = fixed points A contraction of a complete metric space has = fixed points a unique a finite metric space has =	table finite table finite table finite upperstands typerstands typ	infinite uncountable [1,2,3,] [1,2,3,] both open and disconnected both open and closed strictly increasing strictly strictly decreasing	countable uniformly continuos a unique p {}} connected closed strictly increasing function	
If $f:Z \to Z$ be a identity function then number of fixed points of f is countable uncount If $f:Z \to Z$ be a identity function then number of fixed points of f is countable uncount If $f:R \to R$ be a identity function then number of fixed points of f is countable uncount If $f:Q \to Q$ be a identity function then number of fixed points of f is countable uncount Contraction of any metric space is contractions only uniform A contraction of of a complete metric space hasfixed point a unique a finite m Which of the following is a connected subset of R ? D (1.2.3) Which of the following is a connected subset of R ? $f f $ (1.2.3) If X is connected the closure of X is disconnected connected Let $U(x)$ be the component of S containing x is closed opne If $X \propto y = f(x) \leq f(y)$ then f is called constant function identity function If $x \propto y = f(x) \leq f(y)$ then f is called constant function identity function	table finite table finite table finite tycentmues whychmeleraneu umber of countable (1.2.3.4.5.6.7) (1.2.3.4.5.6.7) d open neither open nor closed increasing function functio	infinite insenteriority intere- uncountable [1.2.3,] incountable [1.2.3,] both open and disconnected both open and closed strictly increasing strictly decreasing strictly decreasing	countable uniformly continuos a unique p (1) connected closed strictly increasing function increasing function strictly decreasing	
If $f:Z \to Z$ be a identity function then number of fixed points of f is countable uncount If $f:Z \to Z$ be a identity function then number of fixed points of f is countable uncount If $f:R \to R$ be a identity function then number of fixed points of f is countable uncount If $f:Q \to Q$ be a identity function then number of fixed points of f is countable uncount Contraction of any metric space is contraction of f acomplete metric space has = fixed point a unique a finite m A contraction of of a complete metric space has = fixed point a unique a finite m Which of the following is a connected subset of R ? 0 (1.2.3) Which of the following is a connected subset of R ? $[1]$ (1.2.3) If f is connected the closure of X is disconnected connected Let $U(x)$ be the component of S containing x is closed opne $[f x < y = f(x) < f(y)$ then f is called constant function identity f $[f x < y = f(x) < f(y)$ then f is called constant function identity f $[f x < y = f(x) < f(y)$ then f is called constant function identity f $[f x < y = f(x) < f(y)$ then f is called constant function <	table finite table finite table finite tycontinuos upplometoramu umber of countable (1.2.3.4.5.6.7) (1.2.3.4.5.6.7) d open neither open not closed increasing function functio	infinite insenter adjust attack uncountable [1.2.3,] both open and closed stinctly increasing strictly decreasing strictly decreasing neither one-to- one nor onto	countable uniformby continuos a unique p [1] connected closed strictly increasing function increasing function function	
If $f:Z = Z$ be a identity function then number of fixed points of f is countable uncount If $f:Z = Z$ be a identity function then number of fixed points of f is countable uncount If $f:Q = Q$ be a identity function then number of fixed points of f is countable uncount If $f:Q = Q$ be a identity function then number of fixed points of f is countable uncount Contraction of any metric space is continuous only uniform A contraction of of a complete metric space has fixed point a unique a finite m Which of the following is a connected subset of R ? P (1.2.3) Which of the following is a connected subset of R ? $\{1\}$ (1.2.3) If X is connected the closure of X is disconnected constant function If $X < y = f(x) < f(y)$ then f is called constant function identity fix $y = f(x) < f(y)$ then f is called If $X = y = f(x) < f(y)$ then f is called constant function identity fix $y = f(x) < f(y)$ then f is called constant function If $X = y = f(x) < f(y)$ then f is called constant function identity fix $y = f(x) < f(y)$ then f is called constant function identity fix $y = f(x) < f(y)$ then f is called constant function identity fix = y = f(x) < f(y) then f	trable finite trable finite trable finite typeontinuos udministration umber of countable (1.2.3.4.5.6.7) (1.2.3.4.5.6.7) d open nor closed nor closed increasing function finetion function func	infinite inschift (1,2,3,) (1,2,3,) both open and disconnected both open and closed strictly increasing strictly decreasing strictly strictly strictly strictly strictly strictly strictly strictly strictly strictly strictly strictly s	countable uniformly continuoz a unique 0 {1} connected closed strictly increasing function increasing function strictly decreasing function decreasing function	

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanara (Po), Coimbatore -641 021

SUB : REAL ANALYSIS II

Subject Code: 15MMU601 Semester : VI

Class : III B.SC MATHEMATICS

UNIT III	OPTION 1	OPTION 2	OPTION 3	OPTION 4	ANSWERS

$lf P_n = \{0, \frac{1}{2n}, 1\}, n = 1, 2, 3, \dots$ is a partition of [0,1] then $\bigcup_{n \ge 1} P_n = 0$	$\{0,\frac{1}{2},1\}$	$\{0, \dots, \frac{1}{8}, \frac{1}{2}, 1\}$	$\{0, \dots, \frac{1}{16}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1\}$	$\{0,, \frac{1}{8}, \frac{1}{6}, \frac{1}{4}, \frac{1}{2}, 1\}$	$\{0, \dots, \frac{1}{8}, \frac{1}{6}, \frac{1}{4}, \frac{1}{2}, 1\}$
$\begin{split} & if P_n = \left\{0, \frac{1}{2n}, 1\right\}, n \\ & = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } \bigcup_{i \in I} P_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } \bigcup_{i \in I} P_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } U_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } U_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } U_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } U_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } U_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } U_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } U_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } U_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } U_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } U_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } U_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } U_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } U_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } U_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } U_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } U_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } U_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } U_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } U_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } U_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } U_n = 1, 2, 3, \dots \text{ is a partition of [0,1] then maximum subinterval length in } U_n = 1, 2, 3, \dots \text{ is a partin } U_n = 1, 2,$		1 0.5		2 3	0.5
$If P_{h} = \left[0, \frac{1}{2n}, 1\right], a \neq portion of [0,1] then minimum submerval length in P_{h} \cup P_{h} = \left[0, \frac{1}{2n}, 1\right], b = \frac{1}{n}$	1 6	1	1/2	1	1 6
$\begin{split} &r_{P_{n}} = \{ \alpha, \frac{\pi}{2n}, \frac{1}{2} \}_{\substack{i=1\\ i=k-2, \dots, i \ s \ a \ partition \ a \ r} \{0, 1\} \ then \ minimum submitterval length in \ P_{k} \cup P_{k} \\ & If \ P \left\{ x_{0}, x_{1}, \dots, x_{n} \right\} (s \ a \ partition \ of \ [a, b] \ then \ \sum_{k} \Delta x_{k} = \end{split}$	b-a	a-b	a	b	b-a
If $P\{x_0, x_1, \dots, x_n\}$ is a partition of [0,1] then $\sum_{k=0}^{\infty} \Delta x_k =$		1 0		2 3	1
If $P\{x_0, x_1,, x_n\}$ is a partition of [0,1] then $x_0 =$		1 0		2 3	0
If $P\{x_0, x_1,, x_n\}$ is a partition of [0,1] then $x_n =$		1 0		2 3	1
If $P\{x_0, x_1,, x_n\}$ is a partition of $[a, b]$ with $f(x) = x_0$ then $\Delta f_k =$		1 0		2 3	0
If $P\{x_0, x_1,, x_n\}$ is a partition of $[a, b]$ with $f(x) = x_0$ then $\Delta f_k = 0$ for	some k	all k	only one k	no k	all k
If $P\{x_0, x_1, \dots, x_n\}$ is a partition of $[a, b]$ with $f(x) = x$ then $\Delta f_k =$	$x_{k} - x_{k-1}$	x _k	x _{k-1}	Q	$x_k - x_{k-1}$
$\label{eq:lf_p} If\ P\left\{x_0, x_1,, x_n\right\} is\ a\ partition\ of\ [a,b]\ with\ f(x) = x\ \ then\ \sum \Delta f_k \ =$	$-\sum \Delta f_k$	$\sum \Delta f_k$		0 1	$\sum \Delta f_k$
$ If \ P\left\{x_{0}, x_{1}, \dots, x_{n}\right\} is \ a \ partition \ of \ [a, b] \ with \ f(x) = 1 \ then \ \sum \Delta f_{k} = $		1 2		3 0	0
If $[a, b]$ is a compact interval then the set of points $$ is called a partition of $[a, b]$	$a = x_0 < \dots < x_n = b$	$a = x_0 \le \dots \le x_n = b$	$a=x_0\geq\cdots\geq x_n=b$	$a = x_0 \neq \dots \neq x_n = b$	$a = x_0 < \dots < x_n = b$
Which of the following is a partition of [0,1]?	$\{0,\frac{1}{2},\frac{1}{4},1\}$	$\{0,\frac{1}{2},\frac{1}{2},1\}$	$\{0,\frac{1}{5},\frac{1}{2},1\}$	$\{0, \frac{13}{5}, \frac{1}{2}, 1\}$	$\{0,\frac{1}{5},\frac{1}{2},1\}$
Number of partition of [0,1] with each subinterval length $\frac{1}{2}$ is		1 2		3 4	1
Number of partition of [0,1] with each subinterval length 0 is	3	0 1		2 3	0
A partition P' of [a,b] is a refinement of P if	P' = P	$P' \subset P$	$P \subset P'$	$P \neq P'$	$P \subset P'$
A partition P' of [a, b] is finer than P if	P' = P	$P' \subset P$	$P \subset P'$	$P \neq P'$	$P \subset P'$
The norm of a partition P is	the largest subinterval of P	the smallest subinterval of P	the sum all subintervals	the number of points in P of P	the largest subinterval of P
$ If P_n = \{0, \frac{1}{2n}, 1\}$ then $ P_1 =$		1 2		3 1.5	1.5
$ If P_n = \left\{0, \frac{1}{2n}, 1\right\} then \ P_2 =$		1 2		3 0.25	0.25
$ If P_n = \left\{0, \frac{1}{2n}, 1\right\} \ then \ P_3 =$	1/2	$\frac{1}{4}$	$\frac{1}{6}$	0	1 6
If P' = P then P =		0 1		2	P'
If $P' \subset P$ then	$\big P \big = P' $	$\big P \big \leq P' $	$\left P' \right \leq P $	$\left P' \right = \left P \right = 0$	$ P \leq P' $
If $ S(P,f,\alpha) - \int f d\alpha < \epsilon$ then	$f \in R$	$f \in R(\alpha)$	$R \in f$	$R \in f(\alpha)$	$f \in R(\alpha)$
If $f \in R(\alpha)$ and $f \in R(\beta)$ then	$f \in R(\alpha + \beta)$	$f \in R(\alpha\beta)$	$f \in R(\frac{\alpha}{\beta})$	$f \in R(\frac{\beta}{\alpha})$	$f \in R(\alpha + \beta)$
$\int_{a}^{b} f d\alpha = 0 if$	a=0	b=0	a=b	a=1	a=b

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

SYLLABUS

		Semester - VI
		LTPC
15MMU601	REAL ANALYSIS II	5 0 0 4

Scope : After the completion of this course, the learner get a clear knowledge in the concept of analysis which is the motivating tool in the study of applied Mathematics.

Objectives :To introduce the concepts which provide a strong base to understand and analysis

mathematics.

UNIT I

Examples of continuous functions –continuity and inverse images of open or closed sets – functions continuous on compact sets –Topological mappings –Bolzano"s theorem.

UNIT II

Connectedness -components of a metric space - Uniform continuity :

Uniform continuity and compact sets –fixed point theorem for contractions – monotonic functions.

UNIT III

Definition of derivative –Derivative and continuity –Algebra of derivatives – the chain rule –one sided derivatives and infinite derivatives –functions with non-zero derivatives –zero derivatives and local extrema –Roll"s theorem –The mean value theorem for derivatives.

UNIT IV

Properties of monotonic functions –functions of bounded variation –total Variation –additive properties of total variation on (a, x) as a function of x – functions of bounded variation expressed as the difference of increasing functions.

UNIT V

The Riemann - Stieltjes integral : Introduction –Notation –The definition of Riemann –Stieltjes integral –linear properties –Integration by parts –change of variable in a Riemann –stieltjes integral – Reduction to a Riemann integral. **TEXT BOOK**

1.Apostol.T.M.,1990. Mathematical Analysis, Second edition, Narosa Publishing Company, Chennai.

- 1. Balli. N.P, 1981. Real Analysis, Laxmi Publication Pvt Ltd, New Delhi.
- 2. Gupta . S.L , and N.R. Gupta ., 2003. Principles of Real Analysis, Second

edition, Pearson Education Pvt.Ltd,Singapore.

- 3. Royden .H.L , 2002. Real Analysis, Third edition, Prentice hall of India, New Delhi.
- 4. Rudin. W,1976 .Principles of Mathematical Analysis, Mcgraw hill, Newyork .

<u>UNIT-I</u> SYLLABUS

Examples of continuous functions –continuity and inverse images of open or closed sets – functions continuous on compact sets –Topological mappings –Bolzano"s theorem.

Unit I

Example 1 Consider a function f(x) = c, a constant. Clearly,the above function is continuous. so,constant function function are continuous.

Example 2 Consider a function f(x) = x.

The above function is called identity function and the above function is continuous

Problem 1 Consider a polynomial of degree $n \ge 0$, $f(x) = a_0 + a_1x + \cdots + a_nx^n$ where $a_0 + a_1 + \cdots + a_n$ are real numbers. Prove that the polynomial is continuous.

Solution We have to prove the theorem by induction on n.

Consider,n = 0

 $f(x) = a_0 a_0$ is constant. $f(x) = a_0$ is a continuous function. \therefore The theorem is true for n = 0.

Now consider n = 1

 $f(x) = a_0 + a_1 x$

We know that,

f(x) - x is a continuous function

 $a_1 f(x) = a_1 x$ is also a continuous function as for n = 0 and n = 1 the function is continuous.

... The polynomial function

 $f(x) = a_0 + a_1 x + \cdots + a_n x^n$ is a continuous function. Hence the proof.

Remark 1 The familiar real value functions of elementary calculus such as the exponentials, trigonometric and logarithmic functions are all continuous where ever they define.

Continuity and inverse images of open (or) closed sets

Definition of inverse image:

Let f be a function from S to T ($f : S \rightarrow T$) be a function from a set S to a set T. If Y is a subset of T, the inverse image of Y under f, denoted by $f_{-}(Y)$, defined to be the largest subset of S which maps into Y.(i.e) $f^{-}(Y) = x \in S | f(x) \in Y$ Example 3 Let $S = \{1, 2, 3, 4\}$ and $T = \{a, b, c\}$ and f be a function from S to T such that f (1) = a f(2) = af(3) = bf(4) = c $let Y = \{b, c\}$

 $f^{-}(y) = \{3, 4\}$

Remark 2 If A is a subset of B then $f^{-}(A)$ subset of $f^{-}(B)$

Solution

Suppose $A \subseteq B$

To prove:
$$f^{-}(A) \subseteq f^{-}(B)$$

Let $x \in f^{-}(A)$ be arbitrary.
 \therefore There is a $x \in S/f(x) \in A$
 $f(x) \in A \subseteq B$
 $f(x) \in B$
(i.e) $x \in S$ and $f(x) \in B$
 $\therefore x \in f^{-}(B)$

 $\therefore f^{-}(A) \subseteq f^{-}(B)$

Theorem 1 Let $f : S \to T$ be a function from $S \to T$. If $x \subseteq S$ and $Y \subseteq T$, Then we have

a) $x = f^{-}(Y)$ implies $f(x) \subseteq Y b)Y$ = f(x) implies $X \subseteq f^{-}(Y)$

Theorem 2 Let $f : S \to T$ be a function from one metric space (S, d_s) to another (T, d_T) . Then f is continuous if and only if for every open set Y in T, the inverse image $f^{-}(Y)$ is open in S.

Dr. K.Kalidase

Proof Let *f* be continuous on *S*

Let Y be open in T. Suppose $f^{-}(Y) = \phi$ Then, clearly $f^{-}(Y)$ is open in S.

Suppose $f^{-}(Y) \not\subseteq \phi$

Then, there is a point $p \in f^{-}(Y)$

... There is a point y such that f(p) = y

(i.e) $y \in Y$ such that f(p) = y

Since Y is open, y is an interior point of Y.

 \therefore There is an open ball $B_T(y, z)$

Since f is continuous at p, there is a $\delta > 0$ such that

$$f(B_{S}(p, \delta)) \subseteq B_{T}(y, z)$$

$$\therefore B_{S}(p, \delta) \subseteq f^{-1}f(B_{S}(p, \delta))$$

$$\subseteq f^{-1}(B_T(y, Z))$$

$$\subseteq f^{-1}(Y)$$

 \therefore p is an interior point of $f^{-1}(Y)$

 $\therefore f^{-1}(Y)$ is open.

Conversely,

Assume that $f^{-1}(Y)$ is open in S for every open subset Y in T. Let $p \in s$ be arbitrary Then $f(p) \in f(s)$

 $\therefore f(p) = y$ (say)

Claim: f is continuous at p

for every z > 0, the ball $(B_T(y,z))$ is open in T. By our assumption, $f^{-1}B_T(y_T, z)$ is open in s.

 $\therefore p \in f^{-1}B_T(y_T, Z)$

Then p is an interior point of $f^{-1}B_T(y_T, z)$

- ∴There exist $\delta > 0$ such that
- $B_s(p, \delta) \subseteq f^{-1} B_T(y, z)$

$$\Rightarrow f(B_s(p, \delta)) \subseteq B_T(y, z)$$

 \Rightarrow f is continuous at p.

Example 4 The image of an open set under a continuous function is not necessarily open.

Solution Let f be a continuous function defined on S to R (i.e) $f : R \rightarrow R$ such that

Dr. K. Kalldase

f(x) = c, a constant for all $x \in s$

Let x be open set in S.

Then f(x) = c is closed in R.

Theorem 3 Let $f: S \to T$ then f is continuous on S if and only if for every closed set Y in T, the inverse image $f^{-1}(Y)$ is closed in S.

Proof Let y be a closed set in T Then Y^c is open in T (i.e) $Y^c = T - Y$ is open in T.

Claim : Now, $f^{-1}(Y)(T - Y) = S - f^{-1}(Y)$

Let $x \in f^{-1}(Y)$ be arbitrary Then $x \in S$ and $f(x) \in T - Y$ $\Rightarrow x \in S$ and $f(x) \in T$ and $f(x) \notin Y$

 $\Rightarrow x \in S$ and $f(x) \notin Y$

 $\Rightarrow x \in S$ and $x \neq f^{-1}(Y)$

$$\Rightarrow x \in S - f^{-1}(Y)$$

 $\Rightarrow f^{-1}(T - Y) \subseteq S - f^{-1}(Y)$

Similarly we can prove

$$S - f^{-1}(Y) \subseteq f^{-1}(T - Y)$$

 $\therefore f^{-1}(T - Y) = S - f^{-1}(T - Y)$ Suppose f is continuous Then $f^{-1}(T - Y)$ is open in S

(i.e) $S - f^{-1}(T - Y)$ is open in S (i.e) $(f^{-1}(T - Y))^c$ is open in S $\therefore f^{-1}(T - Y)$ is closed in S Conversely,

Assume that for every closed set Y in T, the inverse image $f^{-1}(Y)$ is closed in S.

Dr. K.Kalikass

 $\therefore (f^{-1}(Y))^c$ is open in S.

 $\therefore S - f^{-1}(Y)$ is open in S (i.e) $f^{-1}(T - Y)$ is open in S

 \therefore we have T-Y is open in T

 $\Rightarrow f^{-1}(T - Y) \text{ is open}$ in S By previous theorem, f is continuous Hence the proof

Example 5 The image of an closed set under a continuous function need not to be closed.

Solution Let f be a function defined on R to the open interval $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ such that $f(x) = tan^{-1}(x)$

We know that, R is closed and ($\frac{-\pi}{2}$, $^{\pi}$) is open.

But $f(R) = \left(\frac{-\pi}{2}, \pi\right)$ is open

Hence, continuous image of closed set need not be closed.

Continuous functions and Compact set:

Theorem 4 Let $f: S \to T$ if f is continuous on a compact subset X of S then, the image f(x) is a compact subset of T. In particular f(X) is closed and bounded in T

Proof

Let X be a compact subset of S Let A_{α} be an open covering of X.

Then,
$$X \stackrel{\subseteq}{\stackrel{n}{\underset{i=1}{\overset{i}{\overset{}}}} A_i}$$

Let f be a open covering of f(x)

where each A is open in T

Since f is continuous, inverse image of open set is open.

 \therefore Each $f^{-1}(A)$ is open in S

The sets $f^{-1}(A)$ form an open covering of X.

Since X is compact we have finite number of $f^{-1}(A)$ also covers X (i.e) $X \subseteq f^{-1}(A_1) \cup f^{-1}(A_2) \cup \cdots \cup f^{-1}(A_n)$ $\therefore f(X) \subseteq f[f^{-1}(A_1) \cup f^{-1}(A_2) \cup \cdots \cup f^{-1}(A_n)]$

- $\subseteq f[f^{-1}(A_1) \cup f^{-1}(A_2) \cup \cdot \cdot \cdot \cup f^{-1}(A_n)]$
- $\subseteq (A_1) \cup (A_2) \cup \cdots \cup (A_n)$
- \therefore f (X) has a finite sub-cover
- $\therefore f(X)$ is compact
- \therefore f (X) is closed and bounded.

Definition 1 A function $f: S \to R^k$ is called bounded on s if there is positive number M such that

 $||f(X)|| \leq M$ for all $x \in S$.

Theorem 5 Let $f: S \to R^k$ if f is continuous on a compact subset X of S then f is bounded on S.

Proof

Let X be a compact subset of S and f is continuous function Then f(x) is compact Then, f(x) is closed and bounded

Since f(x) is bounded and we have $a \le f(x) \le b$

where a = greatest lower bound b = least upper bound ∴ f is bounded

Theorem 6 Let $f: S \to T$. Assume that f is one-to -one on S so that the inverse function f^{-1} exists. If S is compact and if f is continuous on S, then f^{-1} is continuous on f(S).

Proof Given $f: S \to T$ Then $f^{-1}: f(S) \to S$ To prove:

 f^{-1} is continuous

It is enough to prove for every closet set X in S the image (the inverse image) f(X) is closed in T Since, X is closed and S is compact, We have X is compact

 $\therefore f(X)$ is compact

 \therefore *f*(*X*) is closed and bounded (i.e) *f*(*X*) is continuous.

Remark 3 Compactness of domain set S is an essential for f^{-1} to be continuous.

Example 6 Let f be a function from R with discrete metric space to R with usual metric, defined by f(x) = x

Proof Let X be an open subset of R

Then, $f^{-1}(X)$ is a subset of R with discrete metric space.

Since, every subset of discrete metric space is open, we have $f^{-1}(X)$ is open

∴ f is continuous

Let $\{x\} \subseteq R$ with discrete metric space

{x} is open subset of R Then, $(f^{-1})^{-1}({x}) = f(x)$ = {x}

But x is not open in R with usual metric

 $\therefore f^{-1}$ is not continuous Note that R is not compact

Topological Mappings:

Let $f : S \to T$. Assume that f is one -to- one on S. So, that the inverse image f^{-1} exists. If f is continuous on S and if f^{-1} is continuous on f(S) then f is called a topological mapping or homomorphism and the metric space S, d_S and (T, d_T) are said to be homomorphic

Remark 4 • If f is homomorphism then so is f^{-1} .

• A homomorphism maps open subsets of S onto open subset of f(S).

• A homomorphism maps closed subsets of S onto closed subset of f (S).

⇒

Definition 2 A function $f: S \to T$ is called isometry if f is one to one on S and preserves the metric. If there is an isometry from $S \to T$ then the two metric spaces are called isometric

Bolzano's Theorem

Theorem 7 sign preserving property

Let f be defined on an open interval S in R. Assume f is continuous at a point c in S and that $f(c) \subseteq 0$. Then there is a one ball $B(c, \delta)^T S$. **Proof** Let us assume that f (c) > 0 Given that, f is continuous at $c \in S$

: for every z > 0 there is $a\delta > 0$ such that $(f(x), f(c) < z \text{ if } d(x, c) > \delta$

$$|f(x) - f(c)| < z$$
 if $x \in B(c, \delta)$ S

 $\therefore -z < f(x) - f(c) < z \text{ if } x \in B(c, \delta)^{\mathsf{T}} S$ $f(c) - z < f(x) < z + f(c) \text{ if } x \in B(c, \delta)^{\mathsf{T}} S$ $\text{let} \qquad \frac{f(c)}{2} Z$ $\therefore \frac{4}{2} f(c) < f(x) < {}^{3}\overline{f}(c) \text{ if } x \in B(c, \delta)^{\mathsf{T}} S$ $\therefore f(x) > 0$ $\therefore f(x) \text{ has the same sign as } f(c)$

The proof is similar for f(c) < 0 with $z = -\frac{f(c)}{c}$

Theorem 8 Balzano Theorem

Let f be a real valued and continuous on a compact interval [a,b] in R, and suppose that f (a) and f (b) have opposite signs (i.e), assume f (a) f (b) < 0. Then there is atleast one point c in the open interval (a,b) such that f(c) = 0

Proof Given that f(a) and f(b) have opposite signs Suppose f(a) > 0 and f(b) < 0Let $A = \{x : x \in [a, b] and f(x) \ge 0\}$

```
∴ A is non empty
```

Since, A is subset of[a,b] A is bounded above by b Let $c = \sup A$ Claim: f(c) = 0Suppose $f(c) \subseteq 0$ By previous theorem, there is a one ball $B(c,\delta)$ in which f has the same sign as f(c) Suppose f(c) > 0Then there are points x > c at which f(x) > 0

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IIIB.Sc MATHEMATICSCOURSE NAME:REAL ANALYSIS IICOURSE CODE: 15MMU601UNIT: I(Continuous functions)BATCH-2015-2018

POSSIBLE QUESTIONS PART - B $(5 \times 8 = 40)$ UNIT I

1..State and prove Bolzano's theorem for continuous functions

2. Prove that a function f is continuous iff every inverse image of an open set is open.

3. Prove that continuous image of a compact is compact.

- 4. State and prove sign preserving property of continuous functions
- 5..Let f: S→ T ,If f is continuous on a compact subset X of S ,Then the image f(x) is a compact subset of T.In Particular f(x)is closed and bounded
- 6. Prove that a metric space S is connected if and only if every two valued function on S is constant.
- 7. Prove that f is continuous iff inverse image of a closed set is closed. Also prove that continuous image of a closed set is need not be closed.

CLASS: IIIB.Sc MATHEMATICS	5 COURSE NAME:REAL ANALYSIS
COURSE CODE: 15MMU601	UNIT: I(Continuous functions) BATCH-2015-2018

<u>UNIT-II</u> SYLLABUS

Connectedness -components of a metric space - Uniform continuity :

Uniform continuity and compact sets –fixed point theorem for UNIT II

Definition 3 *The metric space S is called disconnected if* $S = A \cup B$ *where A and*

Dr. K. Kalidass

B are disjoint non-empty open sets in S.

We call S connected if it is not disconnected.

Example 7 *Let* $S = R - \{0\}$

 $\therefore S = (-\infty, 0) \cup (0, \infty)$

Clearly, $(-\infty, 0)$ and $(0, \infty)$ are open sets and $(-\infty, 0)$

 $\cap (0,\infty) (-\infty,0) \cap (0,\infty) = \varphi$

: S is disconnected

Example 8 Every open interval in R is

connected R is connected

 \therefore Every open interval is connected and $R = (-\infty, \infty)$

 \therefore R is connected

Remark 5 • For each p in S the set {p} is connected

• Any discrete metric space S with more than one point is disconnected Let S be a discrete metric space with more than one point

Let A be a proper non-empty subset of S

Since, S has more than one point such a

set exists Now, A^C is also non-empty

Since, S is a discrete metric space, we have A and A^C are open

Also, $S = A \cup A^C$

: S is disconnected

⇒

Two valued function

Definition 4 *Two valued function*

A real valued function f which is continuous on a metric space on S is said to be

two valued on S if f(S) is a subset of $\{0, 1\}$

Remark 6 A two valued function is a continuous function whose only possible values are 0 and 1 This can be considered as a continuous function from S to the metric space $T = \{0, 1\}$, where T is the discrete metric space.

Theorem 10 A metric space S is connected if and only if every two valued function on S is constant

Proof Assume that S is connected

Let f be a continuous two valued

function on S To prove:

f is constant

Let $A = f^{-1} \{0\}$ and $B = \{1\}$ be the inverse image of the subsets $\{0\}$ and $\{1\}$ Since, $\{0\}$ and $\{1\}$ are open in discrete metric space $\{0, 1\}$ and f is continuous We have A and B are open in S

Dr. K.Kalidass. Also we have $A \cup B = S$

where A and b are disjoint open sets

Since, S is connected either A is empty or B is empty

 \therefore we must have S = A (or) S = B

Hence, f is constant.

Conversely,

Assume that every two valued function on S is

constant To prove:

S is connected

Suppose S is

disconnected then S = A

 \cup *B*,where $A \cap B = \varphi A$,

 $B \neq \phi$ and A,B are open

sets

Let f be function from S to R such that

f(x) = 0 if $x \in A$

1 if $x \in B$

+. +. 43/10855

Since, A and B are non empty, f takes both values 1 and 0

...vf is not constants

Also, f is continuous on S, because the inverse image of every open subset of $\{0, 1\}$ is open in S.

 \therefore The two valued function f is not constant.

Contradiction to every two valued function is

constant. Hence, S is connected

Continuous function and connected set

Theorem 11 *The continuous image of a connected set is connected.*

Proof Let f be a continuous function from

H to Y To prove:

f(X) is connected

Suppose f(x) is disconnected

Then, there exist a non-empty proper subset A of f(x) such that A is both open and closed.

Then, $f^{-1}(A)$ is a non-empty proper subset of X then X is

disconnected which is contradiction to X is connected

 \therefore f(X) is

connected

Hence the proof.

NOTE:

 \Rightarrow A metric space (X, d) is disconnected if and only if there exist a non empty

proper subset of X which is both open and closed.

⇒ In a metric space (*X*, *d*) is disconnected if there exist two non empty sets A and B such that $X = A \stackrel{S}{=} B, \overline{A} \cap \overline{B} = A \cap B = \varphi$

⇒ Let A and B be two connected subsets of X then, $A \cup B$ is also connected if $A \cap B \subsetneq \varphi$ **Problem:**

Let f be a continuous real valued function defined on a metric space S. Let $A = \{x \in S | f(x) \ge 0\}$. Prove that A is closed.

Solution:

Given $f: S \rightarrow R$ is continuous

function Also, $A = \{x \in S | f(x) \ge x\}$

0}

$$= \{x \in S \mid f(x) \in [0, \infty]\}$$
$$= x \in S \mid (x) \in f^{-1}([0, \infty])^{\Sigma}$$

Since, $[0, \infty] = ((-\infty, 0))^C$ is closed in R and f is continuous, we have $f^{-1}([0, \infty])$ is closed. \therefore A is closed.

Theorem 12 If A and B are connected subsets of S and if $A \cap B \subsetneq \varphi$ then $A \cup B$ is connected.

Proof Let $f : A \cup B \rightarrow \{0, 1\}$ be a continuous

function. Since, $A \cap B \not\subseteq \varphi x_o \in A \cup B$ is

possible.

Let $f(x_o) = 0$

since, f is continuous $f|_A : A \to \{0, 1\}$ is also

continuous since, A is connected, we have $f|_A$

is also constant.

 $\therefore f|_A$ is not onto

 \therefore f(x) = 0 or f(x) = 1 for all $x \in A$

Since, $f(x_0) = 0$ and $x_0 \in A$

 $\therefore f(x) = 0$ for all $x \in A$

Similarly,

We can prove f(x) = 0 for all $x \in B$

f(x)=0 for all $x \in A \cup B$

5

. f is constant

Dr. K.Kalidass. function Hence $A \cup B$ is connected. Hence the proof

Remark 7 Every interval in R is

connected. Every curve in \mathbb{R}^n is

connected.

Every subset S of R is connected if and only if S is an open interval.

Intermediate value theorem

Theorem 13 Intermediate valued theorem for real continuous functions:

Proof :

Let f be a real valued and continuous on a connected subsets S of R^1 . If f takes

an two different values in S say a and b then for each real c between a and b there

exist a point x in S such that,

f(x) = c. Even $f: S \to R$ is continuous Let a,b belongs to S and $f(a) \zeta f(b)$ Suppose f(a) < f(b)Let c be such that f(a) < c < f(b)

Since, S is connected and f is continuous, we have f(s) is connected and is subset of R.

Dr. H.Kalidass

 $\therefore f(s) \text{ is an}$ interval. Also. f(a), f(b) $\therefore [f(a), f(b)] \subseteq f$ (s) $S \text{ ince, } f(a) < c < f(b), c \in f(s)$ $\therefore c = f(x) \text{ for some x in S.}$

Remark 8 Let $A = (x, y) : x^2 + y^2 = 1^{\Sigma}$ is a connected subset of R^2

Every point x in a metric space S belongs to atleast one connected subset of S, namely $\{x\}$ The union of all connected subsets which contain x is also connected we call this union a component of s and is denoted by U(x)

U(x) is maximal connected subset of S which contains x.

Theorem 14 Every point or a metric space S belongs to a uniquely determined component of S. In other words, the components of S form a collection of disjoint sets whose union is S.

Proof

Let $x \in S$ be

arbitrary To prove:

 $\{U(x)\}$ form a disjoint components of S and whose union is S.

(i.e)
$$S = \frac{\mathbf{S}}{x \in S} U(x)$$
 and $\cap U(x) = \varphi$

and $U(x) \cap U(y) = \varphi$ for all $x \neq y \in S$

Suppose $x \in U(x)$ and U(y)

$$\Rightarrow x \in U(x) \cup U(y)$$

 $\Rightarrow U(x) \cap U(y) \not\subseteq \varphi U(x)$ and U(y)

connected sets Clearly,

 $U(x) \subseteq U(x) \cup U(y)$

and $U(y) \subseteq U(x) \cup U(y)$

- $\Rightarrow \Leftrightarrow$ to U(x) and U(y) are components
- $\therefore U(x) \cap U(y) = \varphi$

. Two distinct components cannot contain a point x.

Fixed point theorem for contractions

Definition 5 Let $f: S \to S$ be a function on a metric space (S, d). A point $p \in S$ is called a fixed point of f if f(p) = p.

Definition 6 *The function* $f: S \rightarrow S$ *is called a contraction of S if there is a constant* $\alpha < 1$ *such that*

$$d(f(x), f(y)) \leq \alpha \, d(x, y) \text{ for all } x, y \in S.$$

Remark 9 A contraction f of any metric space S is uniformly continuous on S.

Theorem 15 A contraction f on a complete metric space has a unique fixed point p.

Proof Let $x \in S$ be arbitrary and f be a contraction of S.

Consider a sequence $\{p_n\}$ such that

$$p_0 = x$$

 $p_1 = f(p_0) = f(x)$
 $p_2 = f(p_1) = f(f(x))$

Now

$$d(p_{n+1}, p_n) = d(f(p_n), f(p_{n-1}))$$

$$< \alpha d(p_n, p_{n-1})$$

$$= \alpha d(f(p_{n-1}), f(p_{n-2}))$$

$$\leq \alpha \alpha d(f(p_{n-2}), f(p_{n-2}))$$

$$= \alpha^2 d(p_{n-2}, p_{n-2})$$

$$\leq \alpha^n \ d(p_1, p_0)$$
$$= \alpha^n \ c$$

where $c = d(p_1, p_0)$

•.

Suppose m > n.

Then $n < n + 1 < \dots < m - 1 < m$

Now

As $n \to \infty$, we have $d(p_m, p_n) \to 0$. Hence $\{p_n\}$ is a cauchy sequence in S.

$$\leq c\alpha^{n} \alpha^{k} \alpha^{k}$$
$$= c\alpha^{n-1} \alpha^{n-1}$$
$$1 - \alpha$$

Since *S* is complete metric space, we have $\{p_n\}$

converges. That is $p_n \rightarrow p$.

Now

$$f(p) = f(\lim_{n \to \infty} p_n)$$

= $\lim_{n \to \infty} f(p_n)$ since f is continuous
= $\lim_{n \to \infty} p_{n+1}$
= p

Hence f has a fixed point p.

Uniqueness Suppose f has two fixed points p

and q. Then f(p) = p and f(q) = q.

Since f is contraction of S, we have

$$d(f(p), f(q)) \le$$

 $\alpha d(p,q) d(p, q)$

 $q) \leq \alpha d(p,q)$

Since $\alpha < 1$, we must have d(p, q) = 0.

Hence p = q.

Monotonic functions

Definition 7 Let f be a real valued function defined on a subset S of R. Then f is

said to be increasing function on f if for every pair of points $x, y \in S$,

 $x < y \Rightarrow f(x) \leq f(y)$

If $x < y \Rightarrow f(x) < f(y)$, then f is said to be strictly increasing function.

Remark 10 • Similarly we can define decreasing function and strictly decreasing function.

- A function f is said to be monotonic if it is either increasing or decreasing.
- If f is an increasing then f is decreasing function. Hence it is sufficient to consider increasing function in situations involving monotonic functions.

Theorem 16 Let f be a strictly increasing function on $S \subset \mathbb{R}$. Then f^{-1} exists and is strictly in- creasing on f(S).

Proof Let *f* be a strictly increasing function on $S \subset \mathbb{R}$.

Then

$$x < y \Rightarrow f(x) < f(y)$$

i.e.
$$x \not \subseteq y \Rightarrow f(x) \not \subseteq f(y)$$

Hence f is one-to-one on S.

Therefore f^{-1} exits. i.e. f^{-1} is a function on f

(S). Claim: f^{-1} is strictly increasing.

Suppose $y_1 < y_2$.

Let $x_1 = f^{-1}(y_1)$ and $x_2 = f^{-1}(y_2)$.

Then we have one of the possiblity $x_1 = x_2$ or $x_1 > x_2$ or $x_1 < x_2$.

Suppose $x_1 = x_2$.

$$\Rightarrow f^{-1}(y_1) = f$$
$$-1_{(y_2)}$$
$$\Rightarrow f(x_1) = f(x_2)$$
$$\Rightarrow y_1 = y_2$$
$$\Rightarrow \in t_0 \ y_1 < y_2$$

Suppose $x_1 > x_2$.

$$\Rightarrow f^{-1}(y_1) > f$$
$$-1(y_2)$$
$$\Rightarrow f(x_1) > f(x_2)$$
$$\Rightarrow y_1 > y_2$$
$$\Rightarrow \leftarrow \text{ to } y_1 < y_2$$

Hence we must have $x_1 < x_2$.

Therefore f^{-1} is strictly increasing function.

 CLASS: IIIB.Sc MATHEMATICS
 COURSE NAME:REAL ANALYSIS II

 COURSE CODE: 15MMU601
 UNIT: I(Connectedness)
 BATCH-2015-2018

POSSIBLE QUESTIONS PART - B (5×8 = 40)

- 1. State and prove Connectedness.
- 2. Let f be strictly increasing on a set S in R ,then f⁻¹ exists and its strictly increasing on f(s).
- 3. State and prove intermediate value theorem for continuous functions
- 4.Prove that continuous image of a connected set is connected .Then prove that X is compact.
- 5. Prove that a metric space S is connected if and only if every two valued function on S is constant.
- 6. State and prove fixed point theorem for contraction.

COURSE CODE: 15MMU601

UNIT-III

SYLLABUS

Definition of derivative – Derivative and continuity – Algebra of derivatives – the chain rule – one sided derivatives and infinite derivatives -functions with non-zero derivatives -zero derivatives and local extrema -Roll"s theorem -The mean value theorem for derivatives.

UNIT III

Definition 8 *Let f be defined on an interval* (a, b) *and* $c \in (a, b)$ *. Then f is said to*

be differentiable at c whwnever

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

exists. The limit, denoted by $f^{j}(c)$ and is called the derivative of f at c.

Remark 11 • *The limit process defines a new function f*^j *whose domain consists of those points in* (*a*, *b*) at which *f* is differentiable.

- The function f^{j} is called the first derivative of f.
- The process of finding f^{j} from f is called differentiation.

Theorem 17 If f is defined on (a, b) and differentiable at a point c in (a, b), then

there is function f^y which is continuous at c and which satisfies the equation

$$f(x) - f(c) = (x - c)f^{y}(x)$$

for all $x \in (a,b)$ with $f^{y}(c) = f^{j}(c)$. Conversely, if there is function f^{y} , continous at

c, which satisfies the above equation , then f is differentiable at c and $f^{y}(c) = f^{j}(c)$.

Proof

Suppose f is differentiable at a point c in (a, b).

Then we have

$$f^{j}(c) = \lim \frac{f(x) - f(c)}{c}$$

Let f be defined on (a, b) as

$$f(x) - f(c) = (x - c) f^{y}(x)$$
, if $x \neq c$

and $f^{y}(c) = f^{j}(c)$.

Then

$$f^{y}(x) = \frac{f(x) - f(c)}{(x - c)}$$
$$\lim f^{y}(x) = \lim \frac{f(x) - f(c)}{(x - c)}$$
$$x \rightarrow c \qquad x \rightarrow c \quad (x - c)$$
$$\lim f^{y}(x) = f^{j}(c)$$
$$x \rightarrow c$$
$$\lim f^{y}(x) = f^{y}(c)$$
$$x \rightarrow c$$

Hence f^{y} is continuous at c.

Conversely, suppose f^{y} is continuous at c with

$$f(x) - f(c) = (x - c) f^{y}(x), \text{ if } x \neq c$$

Dr. K.Kalidass

and $f^{y}(c) = f^{j}(c)$.

Then

$$\frac{f(x) - f}{c} = f^{y}(x)$$

$$\lim_{(c)} \frac{f(x) - f}{c} = \lim_{(c)} f^{y}(x)$$

$$x \rightarrow c \quad x - c \qquad x \rightarrow c$$

$$\lim_{(c)} \frac{f(x) - f(c)}{c} = f^{y}(c)$$

$$x \rightarrow c \quad x - c$$

$$\lim_{(c)} \frac{f(x) - f(c)}{c} = f^{j}(c)$$

Therefore the limit exists and is equal

to $f^{j}(c)$. Hence f is differentiable at c.

Theorem 18 If f is differentiable at c, then f is continous at c.

Proof Suppose *f* is differentiable

at c. and $f^{y}(c) = f^{j}(c)$.

Then by previous theorem, there is a function f^{y} continuous at c such that

$$f(x) - f(c) = (x - c)f^{y}(x), \text{ if } x \rightarrow c$$

and $f^{y}(c) = f^{j}(c)$. Therefore

$$\frac{f(x)-f}{(c)}x^{-} = f^{y}(x)$$

$$\lim_{(c)} \frac{f(x)-f}{(c)} = \lim_{(c)} f^{y}(x)$$

$$x \rightarrow c \quad x - c \qquad x \rightarrow c$$

$$f^{j}(c) = f^{y}(c)$$

Algebra of derivatives

Theorem 19 Assume f and g are defined on (a, b) and differentiable at c. Then f + g, f - g and $f \cdot g$

are also differentiable at c. This is also true of f g if $g(c) \not \subseteq 0$. The derivatives at c are given by the

following formulas

a
$$(f \pm g)^{j}(c) = f^{j}(c) \pm g^{j}(c)$$

b $(f \cdot g)^{j}(c) = f(c)g^{j}(c) + g(c)f^{j}(c)$
b $\frac{f^{\sum j}}{g}(c) = \frac{g(c) + j}{g(c)^{2}}(c) - f(c)g^{j}(c)$. provided $g(c) \neq 0$

Proof Suppose f and g are defined on (a, b) and differentiable at c.

By previous theorem, we have

$$f(x) - f(c) = (x - c) f^{y}(x), \text{ if } x \zeta c$$
$$g(x) - g(c) = (x - c)g^{y}(x), \text{ if } x \zeta c$$

Now

$$f(x) \pm g(x) = f(c) + (x-c)f^{y}(x) \pm g(c) + (x-c)g^{y}(x)$$

$$= f(c) \pm g(c) + (x-c)^{2}f^{y}(x) \pm g^{y}(x)^{2}$$

$$f(x) \pm g(x)^{2} - f(c) \pm g(c)^{2} = (x-c)^{2}f^{y}(x) \pm g^{y}(x)^{2}$$

$$\frac{f(x) \pm g(x)^{2} - f(c) \pm g(x)^{2} - g^{y}(x) \pm g^{y}(x)^{2}}{g(c)^{2}} = \lim^{2} f^{y}(x) \pm g^{y}(x)^{2}$$

$$\frac{g(c)^{2}}{x-c} = \lim^{2} f^{y}(x) \pm g^{y}(x)^{2}$$

$$\lim_{g(c)^{2}} \frac{f(x) \pm g(x)^{2} - f(c) \pm g(c)^{2}}{x-c} = x \rightarrow c$$

$$(f \pm g)^{j}(c) = f^{y}(c) \pm g^{y}(c)^{2}$$

$$= f^{j}(c) \pm g^{j}(c)^{2}$$

$$f(x)g(x) = f(c)g(c)^{2} + (x-c)f(c)g^{y}(x) + (x-c)g(c)f^{y}(x) + (x-c)^{2}f^{y}(x)g^{y}(x)$$

$$f(x)g(x) - f(c)g(c) = (x-c)^{2}f(c)g^{y}(x) + g(c)f^{y}(x)^{2} + (x-c)f^{y}(x)g^{y}(x)$$

$$\frac{f(x)g(x) - f(c)g(c)}{-c} = f^{2}(c)g^{y}(x) + g(c)f^{y}(x)^{2} + (x-c)f^{y}(x)g^{y}(x)$$

$$\frac{f(x)g(x) - f}{(c)g(c)}x = f(c)g^{y}(x) + g(c)f^{y}(x)^{2} + (x-c)f^{y}(x)g^{y}(x)$$

$$\lim_{x \to c} f^{y}(x)g^{y}(x) + g^{y}(c)f^{y}(x)^{2} + \lim_{x \to c} f^{y}(x)g^{y}(x)$$

$$\lim_{x \to c} f^{y}(x)g^{y}(x) + g^{y}(c)f^{y}(x)^{2} + \lim_{x \to c} f^{y}(x)g^{y}(x)$$

$$\lim_{x \to c} f^{y}(x)g^{y}(x) + g^{y}(c)f^{y}(x)^{2} + \lim_{x \to c} f^{y}(x)g^{y}(x)$$

$$\lim_{x \to c} f^{y}(x)g^{y}(x) + g^{y}(c)f^{y}(x)^{2} + \lim_{x \to c} f^{y}(x)g^{y}(x)$$

$$\lim_{x \to c} f^{y}(x)g^{y}(x) + g^{y}(c)f^{y}(x)^{2} + \lim_{x \to c} f^{y}(x)g^{y}(x)$$

$$\lim_{x \to c} f^{y}(x)g^{y}(x) + g^{y}(c)f^{y}(x)^{2} + \lim_{x \to c} f^{y}(x)g^{y}(x)$$

$$\lim_{x \to c} f^{y}(x)g^{y}(x) + g^{y}(c)f^{y}(x)^{2} + \lim_{x \to c} f^{y}(x)g^{y}(x)$$

The chain rule

Theorem 20 Let f be defined on an open interval S, let g be defined on f(S), and

consider the composite function g of defined on S by the equation

$$(g \circ f)(x) = g \cdot f(x)$$

Assume there is a point c in S such that f(c) is an interior point of f(S). If f is differentiable at c and if g is differentiable at f(c) then $g \circ f$ is differentiable at c and we have

$$(g \circ f)^{\mathbf{j}}(c) = g^{\mathbf{j}} \cdot f(c) \cdot f^{\mathbf{j}}(c)$$

Proof Given that *f* is differentiable at *c* and *g* is differentiable at *c*.

By prevolus theorem, there is a function f^{y} continuous at c such that

$$f(x) - f(c) = (x - c)f^{y}(x)$$

for all $x \in S$ with $f^{y}(c) = f^{j}(c)$ and there is a function g^{y} continuous at f(c) such that

$$g(y) - g[f(c)] = (y - f(c))g^{y}(y)$$

for all y in some open interval T of f(S) with $g^{y}[f(c)]$ = $g^{j}[f(c)]$. Let $x \in S$ such that $y = f(x) \in T$.

Then we have

$$g[f(x)] - g[f(c)] = (f(x) - f(c))g^{y}[f(x)]$$

 $= (x-c)f^{y}(x)g^{y}[f(x)]$

Since f^{y} continuous at c and g^{y} continuous at f(c), we have

$$\lim_{x \to c} g^{y}[f(x)] = g^{y}[f(c)]$$
$$x \to c$$
$$= g^{j}[f(c)]$$

Hence

$$\frac{g[f(x)] - g[f(c)]}{c} (x - g_{j} \cdot f(c) \cdot f)$$

$$j_{c}(c)$$

Functions with nonzero derivative

Theorem 21 Let f be defined on an open interval (a,b) and assume that for some c

 \in (*a*,*b*) we have $f^{j}(c) > 0$ or $f^{j}(c) = +\infty$. Then there is a 1-ball $B(c) \subset (a,b)$ in

which

$$f(x) > f(c)$$
 if $x > c$ and $f(x) < f(c)$ if $x < c$

Proof Suppose $f^{j}(c) > 0$.

i.e. f is differentiable at c and $f^{j}(c)$ is finite and positive.

By prevolus theorem, there is a function f^{y} continuous at c such that

$$f(x) - f(c) = (x - c)f^{y}(x)$$

for all
$$x \in S$$
 with $f^{y}(c) = f^{j}(c)$.

By sign preserving property of continuous functions there is a 1-ball $B(c) \subset (a, b)$

in which $f^{y}(x)$ has the same sign as $f^{y}(c)$.

Since $f^{j}(c) > 0$, we have f

y(c) > 0. Therefore f y(x) > 0.

Suppose x - c < 0.

Then

$$f(x) - f(c) = (x - c)f^{\mathsf{y}}(x)$$

< 0

Suppose x - c > 0.

Then

 $f(x) - f(c) = (x - c)f^{\mathbf{y}}(x)$

Hence f(x) - f(c) has the same sign as x - c.

Rolle's theorem

Theorem 22 Assume f has a derivative(finite or infinite) at each point of an open

interval (a, b), and assume that f is continuous at both endpoints a and b. If f(a) =

f(b) there is at least one interior point c at which $f^{j}(c) = 0$.

Proof Given that *f* is differential

on (a,b). Then f is continuous on

(*a*, *b*).

Also given that f is continuous at both end points a

and b. Therefore f is continous on [a, b].

Since [a, b] is compact, f([a, b]) is compact.

i.e. f([a, b]) is closed and

bounded. Then $m \le f(x) \le M$

for all $x \in [a, b]$.

To prove: There is at least one interior point c at which f

f(c) = 0. Suppose there is no interior point c at which f(c)

 $= 0. f^{j}(c) Q 0$ for all $c \in (a, b)$.

The Mean value theorem for derivatives

Theorem 23 Generalized mean value theorem Let f and g be two functions, each having a derivative at each point of an open interval (a, b) and each

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: IIIB.Sc MATHEMATICSCOURSE NAME:REAL ANALYSIS IICOURSE CODE: 15MMU601UNIT: III (Derivatives)BATCH-2015-2018

continuous at the end points a and b. Assume also that there is no interior point x

at which both $f^{j}(x)$ and $g^{j}(x)$ are finite. Then for some

interior point c we $f^{j}(c) \cdot g(b) - g(a) = g^{j}(c) \cdot f(b) - f(a)$ have

•

•

Proof Let h(x) = f(x) g(b) - g(a) - g(x) f(b) - g(a) -

f(a). Suppose both $f^{j}(x)$ and $g^{j}(x)$ are finite.

Then $h^{j}(x)$ is also finite.

Suppose either $f^{j}(x)$ or $g^{j}(x)$ is

infinite. Then $h^{j}(x)$ is also

infinite.

Since f is continuous at the end points a and b, f(x)g(b) - g(a) is continuous at the end points a and b.

Similarly, g(x) f(b) - f(a) is continuous at the end points *a* and *b*. Hence h(x) is continuous at the end points *a* and

1

b.

Also

$$h(a) = f(a) \cdot g(b) - g(a) \cdot -g(a) \cdot f(b) - f(a)$$

= $f(a)g(b) - g(a)f(b)$
$$h(b) = f(b) \cdot g(b) - g(a) \cdot -g(b) \cdot f(b) - f(a)$$

= $f(a)g(b) - g(a)f(b)$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: IIIB.Sc MATHEMATICSCOURSE NAME:REAL ANALYSIS IICOURSE CODE: 15MMU601UNIT: III (Derivatives)BATCH-2015-2018

By Rolle's theorem, for some interior point *c* we have $h^{j}(c) = 0$.

fj (С) . g (b) g (а) = g j (С) f(b

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: IIIB.Sc MATHEMATICS COURSE NAME:REAL ANALYSIS II COURSE CODE: 15MMU601 UNIT: III(DERIVATIVES) BATCH-2015-2018

Theorem 24 Mean value theorem Assume that f has a derivative (finite or

infinite) at each point of an open interval (a, b) and also assume that f is

continuous at both end points a and b.

Then for

some interior point c we have

Proof Let g(x) = x on a,

 $f^{j}(c)[b-a] = f(b) - f(a)$

Theorem 25 *Assume f has a derivative (finite or infinite) at each point od an open interval (a, b) and that f is continous at the end points a and b.*

a) If f^j takes only positive values (finite or infinite) in (a,b), then f is strictly increasing on [a,b].
b) If f^j takes only negative values (finite or infinite) in (a, b), then f is strictly decreasing on [a, b].

c) If f^{j} is zero in (a, b), then f is constant on [a, b].

Proof Let x < y and $[x, y] \subset [a, b]$.

By mean value theorem, $f^{j}(c)(y - x) = f(y) - f(x)$ where $c \in (x, y)$

a) Suppose f^{j} takes only positive values. Then $f^{j}(c) > 0$.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IIIB.Sc MATHEMATICSCOURSE NAME:REAL ANALYSIS IICOURSE CODE: 15MMU601UNIT: III(DERIVATIVES)BATCH-2015-2018

Since (y - x) > 0, $f^{j}(c)(y - x) > 0$.

i.e. f(y) - f(x) > 0.

f is strictly increasing on [x, y].

b) Suppose f^{j} takes only negative

values. Then $f^{j}(c) < 0$.

Since (y - x) > 0, $f^{j}(c)(y - x) < 0$.

i.e. f(y) - f(x) < 0.

f is strictly decreasing on [x, y].

c) Suppose f^{j} is zero in

(x, y). Then $f^{j}(c) = 0$.

Hence f(y) - f(x) = 0.

i.e. f(y) = f(x).

f is constant on [x, y].

Theorem 26 If f and g are continuous on [a,b] and have equal finite derivatives in (a,b), then f-g is constant on [a,b].

Proof Given that f and g are continuous on [a, b]. Then f - g is continous on [a, b].

Also given that *f* and *g* have finite derivatives in (a, b) Then f - g has a finite derivative in [a, b]. Now

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: IIIB.Sc MATHEMATICS COURSE NAME:REAL ANALYSIS II COURSE CODE: 15MMU601 UNIT: III(DERIVATIVES) BATCH-2015-2018

 $(f-g)^{\mathbf{j}}(x) = f^{\mathbf{j}}(x) - g^{\mathbf{j}}(x)$ = 0

By previous theorem, f - g is constant on [a, b].

Intermediate value theorem for derivatives

Theorem 27 Assume f has a derivative (finite or infinite) at each point od an open interval (a, b) and that f is continous at the end points a and b. If $f^{j}(x) \notin 0$ for all x in (a, b) then f is strictly monotonic.

Proof Suppose $f^{j}(x) = \zeta 0$ for all x in (a, b). Then either $f^{j}(x) > 0$ or $f^{j}(x) <$ By previous theorem, we have f is strictly increasing or strictly decreasing on [a, b].

CLASS: IIIB.Sc MATHEMATICSCOURSE NAME:REAL ANALYSIS IICOURSE CODE: 15MMU601UNIT: III(DERIVATIVES)BATCH-2015-2018

POSSIBLE QUESTIONS PART - B (5×8=40) UNIT III

- 1. State and prove Rolle's theorem.
- 2. Let f & g be two functions, each having a derivative at each point of (a,b). At the end points assume that the limits f(a +), g(a +), f(b -) and g(b -)exists at finite values. Assume further that there is no interior point x at which both f'(x) and g'(x) are infinite. Then for some interior point c we have to prove that f'(c)[g(b -) - g(a +)] = g'(c)[f(b -) - f(a +)]
- 3. State and prove intermediate value theorem for derivatives.
- 4. State and prove generalized mean value theorem for derivatives.
- 5. State and prove function of function for derivatives.
- 6. Prove that f is monotonic on [a,b] then the set of discontinuous of f is countable
- 7. Prove that a metric space S is connected if and only if every two valued function on S is constant.

<u>UNIT-IV</u>

SYLLABUS

Properties of monotonic functions –functions of bounded variation –total Variation –additive properties of total variation on (a, x) as a function of x – functions of bounded variation expressed as the difference of increasing functions.

Definition 9 *Let* $F : \mathbb{R} \to \mathbb{R}$ *be a function. We say that F has bounded variation and write* $B \in BV(\mathbb{R})$

If
$$\{ | - | -\infty \infty \}$$

 $\sup \sum_{i=1}^{n} F(x_i) F(x_{j-1}) : < x_0 < ... < x_n < + < + .$

Suppose that F is a function of bounded variation. We define the variation function of F by

$$T_F(x) = \sup_{x_1 \in I} \int_{X_1}^{x_1} F(x_j) F(x_{j-1}) : < x_0 < \dots < x_n = |x|$$

T.t.o

Clearly, T_F is a non-decreasing function and $T_F(+\infty) = \lim_{x \to +\infty} T_F(x) < +\infty$.

Example 9 1. A constant function has bounded variation.

- 2. each monotone bounded function has bounded variation.
- 3. If $F, G \in BV(\mathbb{R})$ then $aF + bG \in BV(\mathbb{R})$ for any $a, b \in \mathbb{R}$.
- F(x) = sin x has unbounded variation on (-∞,+∞) but bounded variation on any finite inter- val.
- 5. $F(x) = \sin(1/x)$ has unbounded variation on (0, 1).
- 6. $F(x) = x \sin(1/x) \in C([0, 1])$ and has unbounded variation on [0, 1].

Properties of monotonic functions

Theorem 28 Let $F \in BV(\mathbb{R})$, then $T_F - F$ is non-decreasing.

Proof Suppose that x < y we want to show that $T_F(x) - F(x) \le T_F(y) - F(y)$. For any z > 0 we can find $-\infty < x_0 < ... < x_n = x$ such that $T_F(x) < |F(x_{j-1} - x_j)| + z$. Then we have

$$T_F(y) - F(y) \ge |F(x_{j-1} - x_j)| + |F(y) - F(x)| - F(y) >$$
$$T_F(x) - z + F(y) - F(x) - F(y) = T_F(x) - F(x) - z.$$

Since it is true for any z > 0 we get the required inequality.

Functions of bounded variation

Definition 10 If [a, b] is a compact interval, a set of points $P = \{x_0, x_1, \dots, x_n\}$ satisfying the in- equalities $a = x_0 < x_1 < \dots < x_n = b$, called a partition of [a, b]. The interval $[x_{k-1}, x_k]$ is called the kth subinterval of P and we write $\Delta x_{\frac{1}{k}} = x_k$ partitions of [a, b] will be denoted by P[a, b]

Definition 11 Let f be defined on [a, b]. If $P = \{x_0, x_1, \dots, x_n\}$ is a partition of [a, b], write $\Delta f_k = f(x_k) \cdot f(x_{k-1})$, for k = 1, 2, n. If there exists a positive number M such that Δf_k M for all partitions of [a, b], then f is said to be of bounded variation on [a, b].

Theorem 29 If f is monotonic on [a, b], then f is of bounded variation on [a, b].

Proof Let *f* be increasing function. Then $x_{k-1} < x_k$ implies *f*

 $(x_{k-1}) \leq f(x_k)$. Therefore for

every partition of [a, b],

$$\Delta f_k = f(x_k) - f(x_{k-1}) \ge 0$$

Now

$$= f(b) - f(a)$$

Since f(b) - f(a) > 0, there is a positive number M such that $f(b) - f(a) \le M$. Hence $\lim_{k \to \infty} \Delta f_{k} \le M$.

 \therefore *f* is of bounded variation on [*a*, *b*].

Theorem 30 If f is continuous on [a,b] and if f^j exists and is bounded in the interior, say $|f^j(x)| \le A$ for all $x \in (a, b)$, then f is of bounded variation on [a,b].

Proof Applying mean value theorem, we have

Now

$$f_{k} = f(x_{k}) - f(x_{k-1})$$

$$= f^{j}(t_{k})(x_{k} - x_{k-1})$$

$$\leq A \Delta x_{k}$$

$$= 1$$

$$= A(b-a)$$

Hence f is of bounded variation on [a, b].

Theorem 31 If f is of bounded variation on $\begin{bmatrix} a \\ a \\ b \end{bmatrix}$, say Δf_k M for all partitions of [a, b], then f is bounded on [a, b]. In fact, $|f(x)| \le |f(a)| + M$ for all $x \in a, b$.

Let $x \in (a, b)$.

Then $P = \{a, x, b\}$ is a partition of

[a, b]. Since f is of bounded

variation on [a, b],

$$\begin{array}{l} \underline{n} \\ |\Delta f_k| \leq M \\ k=1 \end{array}$$

$$|f(x) - f(a)| + |f(b) - f| \leq M$$

$$(x)|$$

$$|f(x) - f(a)| \leq M - |f(b) - f|$$

$$(x)|$$

$$\leq M$$

WKT

$$|f(x)| - |f(a)| \leq |f(x) - f(a)|$$
$$\leq M$$
$$|f(x)| \leq M + |f(a)|$$

Hence f is bounded on [a,

on [0, 1].

Clearly f is continuous on

[0, 1]. Let $P_{2\overline{n}-1}, \underline{1}, \underline{1}, \dots, \underline{1}$ $^{1}, 1^{\Sigma}.$

Then P is a partition of [0, 1].

Dr. L.Kalidase \therefore *f* is not of bounded variation on [*a*, *b*].

п **Definition 12** Let f be of bounded variation on [a, b], and let • |

(P) denote the sum Δf_k corre-=

sponding to the partition $P = \{x_0, x_1, \dots, x_n\}$ of [a, b]. The number

$$V_f(a,b) = \sup(P) : P \in \mathbf{P}([a, b])$$

b])^{Σ}, is called the total variation of f on the interval [a, b].

Remark 12 • We will write V_f instead of $V_f(a,b)$.

- Since f is of bounded variation on [a, b], V_f is finite
- Since each sum $(P) \ge 0$, $V_f \ge 0$
- Suppose f is constant. i.e. f(x) = c, for all $x \in [a, b]$

$$\begin{array}{cccc}
\underline{n} & \underline{n} \\
|\Delta f_k| = & |f(x_k) - f(x_{k-1}) \\
k=1 & k= \\ & 1 & | \\
& = & n \\ & c - c \\
& k=1 \\
\end{array}$$

Hence $\cdot(P) = 0$ for all partitions of

[a, b]. Therefore, $V_f = 0$.

Converse of the above is alos true.

Theorem 32 Assume f and g are of bounded variation on [a, b]. Then so are their sum, difference and product. Also, we have $V_{f \neq g} \leq V_f + V_g$ and $V_{f \mid g} \leq A \mid V_f + B \mid V_g$ where

$$A = \sup \{ |g(x)| : x \in [a, b] \},\$$

$$B = \sup \{ |f(x)| : x \in [a, b] \},\$$

Additive property of total variation &

Total variation on [a, x] as a function of x

Functions of bounded variation expressed as the difference of increasing functions

Now we may give a different characterization of functions of bounded variation.

Theorem 33 *The function* $F : \mathbb{R} \to \mathbb{R}$ *has bounded variation if and only if* F *is the difference of two bounded non-decreasing functions.*

Proof Suppose that $F \in BV(\mathbb{R})$; then F is bounded (Q1:check it!). We can write $F(x) = T_F(x) - (T_f(x) - F(x))$. Both functions T_F and $T_F - F$ are non-decreasing; T_F is bounded by the definition of $BV(\mathbb{R})$. Further, $T_F - F$ is also bounded since F is bounded.

POSSIBLE QUESTIONS PART - B $(5 \times 8 = 40)$

1.Prove that f is monotonic on [a,b] then the set of discontinuous of f is countable

2. Prove that a metric space S is connected if and only if every two valued function on S is constant.

3. Assume $f \in R(\alpha)$ on [a, b] and assume that α has a continuous derivative α' on [a, b]. Then the Riemann

integral $\int_a^b f(x)\alpha'(x) dx$ exists and $\int_a^b f(x)d\alpha(x) = \int_a^b f(x)\alpha'(x)dx$

4. State and prove formula for integration by parts of a Riemann-Stieltjes integral.

- 5. Additive properties of total variation?
- 6. Continuous function on bounded variation ?
- 7. Reduction and concept of Riemann integral