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    UNIT V 

SYLLABUS 

 

 

 

 

 

 
. 

1.1. The Riemann-Stieltjes Integral. 

Definitions:  

 Let [a, b] be a given interval. Then a set P = {x0 , x1, …, xn-1 , xn } of [a, b] such that 

a= x0 ≤ x1≤…… ≤ xn-1 ≤ xn = b is said to be a Partition of [a, b]. The set of all partitions of [a, 

b] is denoted by P([a, b]). The intervals [x0 , x1 ], [x0 , x1 ], [x1 , x2 ], …, [xn-1 , xn] are called 

the subintervals of [a, b]. Write ∆xi = xi – xi-1 is called the length of the interval [xi-1, xi ] (i = 1, 

…, n) and max |∆xi | is called the norm of the partition P and is denoted by ||P|| or  Q is called the 

refinement or finer of the partition P.(P). A partition Q of [a, b] such that P   Q is called the 

refinement or finer of the partition P.(P). A partition Q of [a, b] such that P  Suppose f is a 

bounded real valued function defined on [a, b] and 2  P( [a, b]). ThMi = sup f(x) , m i = inf f(x) 

(xi-1 ≤ x ≤ xi) for each P 

Suppose f is a bounded real valued function defined on [a, b] and P( [a, b]). Then 

Mi = sup f(x) , m i = inf f(x) (xi-1 ≤ x ≤ xi) for each P  n n  m i ∆xi are called the Upper 

and Lower Riemann sums M i ∆xi and L(P, f ) = U(P, f ) =  i =1 i =1 or Upper and Lower 

Darboux sums of f on [a, b] with respect to the partition P .  

Further write - b b ∫ f dx = inf U(P, f) and ∫ f dx = sup L(P, f) a - a where the inf and the 

sup are taken over all partitions P of [a, b] are called the Upper and Lower Riemann integrals of f 

over [a, b], respectively. 

 If the upper and lower Riemann integrals are  R[a, b] and we denoteequal, we say that f 

is Riemann-integrable on [a, b] and we write f  the common value of these integrals by b ∫ f d(x), 

a - b b b i.e., ∫ f dx = ∫ f dx = ∫ f dx . 

R is bounded function then the upper and lower Riemann1.1.1. Lemma . If f : [a, b]  

integrals of f are bounded. Since f is bounded, there exist two numbers m and M such that m ≤ 

f(x) ≤ M (a ≤ x ≤ b). Hence, for every partition P of [a, b] we have  M Mi  mi m  mi∆xi 

m∆xi   Mi∆xi  M∆xi  , i = 1, 2, 3, …, n.  m(b –a) ≤ L(P,f) ≤ U(P,f) ≤ M(b-a), so that 

the numbers L(P,f) and U(P,f) form a bounded set. Therefore by the definition of lower and 

The Riemann - Stieltjes integral : Introduction –Notation –The definition of Riemann –

Stieltjes integral –linear properties –Integration by parts –change of variable in a 

Riemann –stieltjes integral – Reduction to a Riemann integral 
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upper Riemann integrals this shows that the upper and lower integrals are defined for every 

bounded function f are bounded also. The question of their equality, and hence the question of 

the integrability of f, 

R is bounded function, P is any partition of [a, b] and P* is the 

1.1.2. Lemma. If f : [a, b]  refinement of P, then L(P, f) ≤ L(P*, f) and U(P*, f) ≤ U(P, f).  

R is bounded function and P1, P2 are any two partitions of [a, b] 

1.1.3. Lemma. R is bounded function and P1, P2 are any two partitions of [a, b]If f : [a, 

b] 

L(P1, f) ≤ U(P2, f) and L(P2, f) ≤ U(P1, f). 

R are bounded functions and P is any partition of [a, b] then1.1.4.  

Lemma. If f, g : [a, b]  (i) L(P, f + g) ≥ L(P, f) + L(P, g) (ii) U(P, f + g) ≤ U(P, f) + U(P, 

g).  R is bounded function . 

Theorem. If f : [a, b]  - b b ∫ f dx ≥ ∫ f dx a - a R is bounded function then for 1.1.2. 

Theorem (Darboux). If f : [a, b]  > 0 there exists  > 0 such that - b b U(P, f) <  and L(P, f)∫ f +  

> ∫ f dx -  a - a  R is bounded function is Riemann Integrable if the oscillatory 

1.1.3. Theorem. If f : [a, b]  sum < (P, f) = U(P,f) – L(P,f), i.e.  <  , for  > 0 and any 

partition P of [a, b].  R is Riemann Integrable. 

 1.1.4.Theorem. Every continuous function f : [a, b]   R is Riemann Integrable.1.1.5. 

Theorem. Every monotone function f : [a, b]  Students you studied the properties given above 

and other properties of Riemann Integrals in previous classes therefore we are not interested to 

investigate these here. However we shall immediately consider a more general situation.  be a 

monotonically increasing R is bounded function and  

1.1.2 Definition. Let f : [a, b]  function on [a, b]. Let P = {x0 , x1, …, xn-1 , xn } such 

that a= x0 ≤ x1≤…… ≤ xn-1 ≤ xn = b be any Partition of [a, b] . We write (xi-1), i = 1, 2, 3, … , 

n.(xi) - i =  is bounded on [a, b],(b) are finite therefore (a) and By the definition of 

monotone function  i ≥ 0, i = 1, 2, 3, …, n. is monotonically increasing function then clearly 

also since   P( [a, b]). We defineLet Mi = sup f(x) , mi = inf f(x) (xi-1 ≤ x ≤ xi) for each P  n n 

i, mi ∆) = i, and L(P, f,  Mi ∆) = U(P, f,  i=1 i=1 are called the Upper and Lower 

Riemann Stieltjes sums respectively. Further we define -b b ), = sup L(P, f, ) and ∫ f d = inf 

U(P, f, ∫ f d a -a where the inf and the sup are taken over all partitions P of [a, b], are called the 

Upper and Lower Riemann Stieltjes integrals of f over [a, b], respectively. 
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 If the upper and lower Riemann Stieltjes integrals are equal, we say that f is Riemann 

Stieltjes integrable on [a, b] 

Lower Riemann Stieltjes integrals of f over [a, b], respectively. If the upper and lower 

Riemann Stieltjes integrals are equal, we say that f is Riemann Stieltjes integrable on [a, b] 

∫ f d (x) or ∫ f(x) d∫ f d 

overThis is the Rientatm-Stieltjes integral (or simply the Slielljes integral of f with 

respect to  (x) = x we see that the Riemann integral is the special case of the Riemann[a,b]. If 

we put (x) = x  

we see that the Riemann integral is the special case of the Riemanns 

If f: [a, b] be a monotonically increasing function R is bounded function 

. Lemma If f: [a, b]  on [a, b]. Let P be any Partition of [a, b] .Then the upper and lower 

Riemann-Stietjes integrals of be a monotonically increasing function on [a, b]. Let P be any 

Partition of [a, b] .Then the upper and lower Riemann-Stietjes integrals of  are bounded.f with 

respect to 

Proof. Since f is bounded, there exist two numbers m and M such that m ≤ f(x) ≤ M (a ≤ 

x ≤ b). Hence, for every partition P of [a, b] we have  M Mi  mi m  imi∆ i m∆  

iMi∆  iM∆  , i = 1, 2, 3, …, n. (a)],(b) – ) ≤ M[) ≤ U(P, f, (a)] ≤ L(P, f, (b) –  

m[ ) form a bounded set.  

Therefore by the definition of) and U(P, f, so that the numbers L(P, f,  lower and 

upper Riemann-Stietjes integrals this shows that the upper and lower integrals are defined for 

every bounded function f are bounded also. 1.1.6.  

Lemma. If P* is a refinement of the partition P of [a, b], then ).) ≤ U(P, f , ) and U(P*, 

f , ) ≤ L(P*, f , L(P, f ,  

 Proof. Let P = {x0 , x1, …, xn-1 , xn } such that a = x0 ≤ x1≤…… ≤ xn-1 ≤ xn = b be 

any Partition of [a, b] and P* the refinement of P contains just one point X* more than P such 

that xi-1< x* 

where x i-1 and xi are two consecutive points of P. 

 Let mi, mi , mi  are the infimum of f(x) in  mi[xi-1 , xi], [xi-1 , x*] and [ x* , xi] 

respectively then  clearly mi   mi  and mi  . Therefore ) = mi) - L(P,f, L(P*,f , (xi-1)] + 

mi(x*) -  [ (xi-1)](xi) - (x*)] - mi[(xi) -  [ = mi (xi-1)] + mi(x*) - [ (xi-1)](x*) - 
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(x*) + (xi) - (x*)] - mi[(xi) - [ = (mi (xi-1)] + (mi(x*) - - mi)[  0.(x*)] (xi) - - 

mi)[  ).  

If P* contains k points more than P then byb repeating the L(P*, f , ) Hence L(P, f ,  ) 

is analogous) ≤ U(P, f ,  )same process we arrive at the same result.  
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POSSIBLE QUESTIONS 

PART - B 

( 5 × 8 = 40 ) 

 

1. Assume 𝑓 ∈ 𝑅(𝛼) on [𝑎, 𝑏] and assume that 𝛼 has a continuous derivative 𝛼 ′ on [𝑎, 𝑏].        

Then the Riemann integral ∫ 𝑓(𝑥)𝛼′(𝑥)  𝑑𝑥
𝑏

𝑎
 exists   and  ∫ 𝑓(𝑥)𝑑𝛼(𝑥) =

𝑏

𝑎

∫ 𝑓(𝑥)𝛼′(𝑥)𝑑𝑥
𝑏

𝑎
 

2.  State and prove formula for integration by parts of a Riemann-Stieltjes integral. 

   

3.  Assume that c ∈ ( a,b) if two of the three integrals ∫ 𝑓 𝑑𝛼
𝑐

𝑎
 +∫ 𝑓 𝑑𝛼 =

𝑏

𝑐
 =∫ 𝑓 𝑑𝛼

𝑏

𝑎
 exists  then 

the third also exists 

4.. State and prove Reduction of a Riemann-Stieltjes integral to a finite sum. 

5.   If f ∈ R (α ) on [ a,b] then α ∈ R (f ) on [a,b,] we have  

            ∫ 𝑓(𝑥)𝑑
𝑏

𝑎
 α (x) + ∫  α (𝑥)𝑑

𝑏

𝑎
 f (x) =f (b) α ( b) -  f (a) α (a). 

    

6.  Assume that c ∈ ( a,b) if two of the three integrals ∫ 𝑓 𝑑𝛼
𝑐

𝑎
 +∫ 𝑓 𝑑𝛼 =

𝑏

𝑐
 =∫ 𝑓 𝑑𝛼

𝑏

𝑎
 exists  then 

the third also exists 
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               PART – A       (20 x 1 = 20 Marks)   

ANSWER ALL THE QUESTIONS 

1.    The  function f(x) = x, is continuous at ------------ 
      a. for some  real x           b. for  finite number of real x     

      c. for all real x                d.  for no real x 
 

2. If  x < y  = > f ( x) <  f( y) then f is ---------- 

     a.  constant                b. continuous       
    c. increasing              d.  strictly increasing 

 

3.    The function f itself is called ---------- 

        a. curve                            b. path      
       c. closed interval              d.  open interval 

 

4.   If f : S  R is continuous and A= { x: f(x) < 0 } then A ----- 
         a. closed                                  b. open  

         c. both open and closed          d.  neither open nor closed 

 
5. If  x < y = > f(x) < f(y) then f is ------------- 

       a. constant                b. decreasing         

      c. increasing             d.  strictly increasing 

6.   If f is continuous on S and S is compact then 𝑓−1 𝑖𝑠 
           a. not continuous                   b. continuous             

          c.  uniformly continuous       d.   constant   

 
7.  If X is connected and f is continuous then f(X) is ---- 

      a. connected                                   b. open        

      c. both open and connected           d.  disconnected 

 
8.   If f : R R is continuous is continuous then f  ([0,1] ) is ------ 

         a.connected                             b.  compact     

         c.not bounded                         d.    not compact 
 

9.  A contraction of any metric space -------- 

         a.  continuous                       b. not continuous        
         c.  Uniformly continuous     d. onto 

 

10.  If  f’  is 0 everywhere on  ( a ,b ) then f is constant on -------- 

         a.(a , b )                             b.  ( a, b ]         
         c.[ a ,b)                              d.  [ a , b ] 

11.  A curve is a ----------- subset of 𝑅𝑛  

          a. compact                               b. connected              
          c. compact and connected      d.  not compact 

 

 12. The function f itself is called ---------- 

       a. curve                             b. path       
       c. closed interval               d.  open interval 

 

13.  If f is strictly monotonic then f is ------------- 
           a.onto                      b. 1-1 

          c. bijection               d.  not 1-1  

14.  If f is of bounded variation then  1/f   is  -----------  
       a.    bounded                                      b. of bounded variation    

       c.  need not be bounded variation     d. not exists 

15. If f can be expressed as a difference of  two increasing functions  

      then f is ------- on [a,b] 
       a.  bounded                                        b. of bounded variation   

       c.  need not be bounded variation     d. not exists 

 
 



 16. If both f and  f −1are continuous then f is called ------------- 
         a.Increasing                              b. continuous      

    c. continuous increasing           d.  decreasing  

 17. A  Contraction of any metric space is ------------- 
         a. continuous                         b.  discontinuous          

         c.  uniformly continuous      d. constant 

  18. Graph of  f  is called  as ------------- 

           a.  curve                      b. path 
           c. closed interval       d. open interval  

 19. The contraction constant 𝛼 𝑖𝑠  ------------ 
           a. < 2         b. > 2            c.   < 1          d. > 1 
 20.  If  f ( x ) = x on A,then f ‘ (x) =  -------- on A 

           a. 1          b.  0           c.3            d. ∞ 

                        PART – B  (3 x 10 = 30 Marks)          

ANSWER ALL THE QUESTIONS 

    21. a) State and prove sign preserving property of continuous  

              functions. 
 (OR)  

         b)  Prove that continuous image of  an  open set is   open.  

   22. a) State and prove fixed point theorem for contraction.  

(OR)  

          b) Prove that continuous image of a connected set is       

              connected .Then prove that X is  compact. 

   23. a). State and prove Intermediate Valued Theorem for     

              continuous functions 

                                    (OR) 

        b)  State and prove Connectedness 
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                         PART – A       (20 x 1 = 20 Marks)   

ANSWER ALL THE QUESTIONS 

 1.  If f is monotonic on [a,b] the set of discontinuous of  f is --- 

        a) uncountable             b) finite      

        c) infinite                    d) countable   

2. If f is monotonic on [a,b] then f is bounded variation on ------- 

       a) (a,b)        b. (a,b]                  c. [a,b)                    d.  [a,b] 

3. If   f  has a derivative of order n then  f is approximately a 

   polynomial of order------------ 

       a)n    b) n-1   c) 1     d) 3 

4. If f and g are of  bounded variation on [a,b] then f+g is----------- 

        a) bounded          b) of bounded variation   

        c)constant           d) not of bounded variation 

5. If f is  of bounded variation on [a,b] then f can be expressed as 

    sum of ------------ 

         a)  decreasing function         b) increasing function     

         c) constant function              d)  continuous function 

6.  If f is decreasing then –f is ------------ 

        a) n       b) n-1          c) 1    d)  3     

7. The function f itself is called --------- 

      a)curve     b)  path          c) closed interval       d)  open interval                

8.If f 
‘  is 0 everywhere is on ( a, b) then f is constant on  ------------ 

       a) (a,b)             b) (a,b]                 c)  [a,b)                     d)  [a,b]  

 

 

 

 9. If f is of bounded variation then 1/f ----------------- 

        a)is bounded                                      b. is of bounded variation    

        c. is need not be bounded variation     d. not exists 

 

10. Graph of f is called  as -------- 

    a)curve         b. path               c. closed interval            d. open interval 

 

11. If f and g are of bounded variation on [a,b]  then f-g is of  ---------- 

       a)bounded on [a,b]                            b. bounded variation on [a,b ] 

       c. uniformly continuous                     d.  onstant 

12.  Partition P of [a,b] is set of  ------------- 

            a)finite points                   b. infinite points          

            c. infinite points              d.  uncountable points     

 

13.  If  f  is continuous at c the f ′ is -------------- 

          a)differentiable at c            b)  need not be differentiable at c 

          c)  0                                    d)1 

 

14.  If f and g are of bounded variation on [a,b]  then fg is -------------- 

        a.) bounded                        b)  constant      

        c) strictly decreasing          d) bounded variation 

 

15.  If   ∝ (x) = x  then S ( P ,f, ∝  ) = ------ 

          a. )S(P, f, x)                        b.) S(P, f) 

          c.) S(P, f, 1)                         d.) S(P, α, a) 

16.    A  partition 𝑃′  is said to be finer than 𝑃 if ------------- 

      a) 𝑃′ ⊂ 𝑃         b)  P' ≠ P     c.)  P ⊂ P'    d.)  P ∩ P' = P  
 
17. The constant function f(x)=1/100, is continuous at---------- 

        a) for some   complex  numbers x           b) for   complex  numbers  some x 

        c) for all complex  x                                d)  for  some  real  x 



 

18.   ||𝑃′|| ≤ ||𝑃||  if --------- 

      a) 𝑃′ ⊂ 𝑃         b) 𝑃′ ≠ 𝑃           c)  𝑃 ⊂ 𝑃′     d.)  𝑃 ∩ 𝑃′ = 𝑃 

 

19. If  ∝ (x) = x  then S ( P ,f, ∝  ) =  -------- 

        a ).f  ∈  R                                     b) f  ∈  ∝       

        c.) f  ∈  R   and  𝑓 ∈  𝛼                d)  f  ∈  R  or  f ∈  α  

  

 20.  The refinement of  a partition P  is --------------- if its norm 

            increases 

           a) increases                      b) decreases            

           c)strictly increases          d) strictly increasing  

 

 
 

     PART – B  (3 x 10 = 30 Marks) 

     ANSWER ALL THE QUESTIONS 

    21. a) State  and   prove  Rolle’s theorem. 

    (OR)  

          b) State  and   prove  algebra for derivatives  

  

  22. a) Explain about chain rule . 

(OR)  

       b) State  and   prove  Generalized Mean valued  

           theorem. 

  23.  a) State and prove Taylor’s formula with remainder . 

(OR) 

         b)  State  and prove additive property of total    

               variations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.  If f is monotonic on [a,b] the set of discontinuous of  f is --- 

        a) uncountable             b) finite      

        c) infinite                    d) countable   

2. If f is monotonic on [a,b] then f is bounded variation on ------- 

       a) (a,b)        b. (a,b]                  c. [a,b)                    d.  [a,b] 

3. If   f  has a derivative of order n then  f is approximately a 

   polynomial of order------------ 

       a)n    b) n-1   c) 1     d) 3 

4. If f and g are of  bounded variation on [a,b] then f+g is----------- 

        a) bounded          b) of bounded variation   

        c)constant           d) not of bounded variation 

5. If f is  of bounded variation on [a,b] then f can be expressed as 

    sum of ------------ 

         a)  decreasing function         b) increasing function     

         c) constant function              d)  continuous function 

6.  If f is decreasing then –f is ------------ 

        a) n       b) n-1          c) 1    d)  3     

7. The function f itself is called --------- 

      a)curve     b)  path          c) closed interval       d)  open interval                

8.If f 
‘  is 0 everywhere is on ( a, b) then f is constant on  ------------ 

       a) (a,b)             b) (a,b]                 c)  [a,b)                     d)  [a,b]  

 

 

 

 9. If f is of bounded variation then 1/f ----------------- 

        a)is bounded                                      b. is of bounded variation    

        c. is need not be bounded variation     d. not exists 

 

10. Graph of f is called  as -------- 

    a)curve         b. path               c. closed interval            d. open interval 

 

11. If f and g are of bounded variation on [a,b]  then f-g is of  ---------- 

       a)bounded on [a,b]                            b. bounded variation on [a,b ] 

       c. uniformly continuous                     d.  onstant 

12.  Partition P of [a,b] is set of  ------------- 

            a)finite points                   b. infinite points          

            c. infinite points              d.  uncountable points     

 

13.  If  f  is continuous at c the f ′ is -------------- 

          a)differentiable at c            b)  need not be differentiable at c 

          c)  0                                    d)1 

 

14.  If f and g are of bounded variation on [a,b]  then fg is -------------- 

        a.) bounded                        b)  constant      

        c) strictly decreasing          d) bounded variation 

 

15.  If   ∝ (x) = x  then S ( P ,f, ∝  ) = ------ 

          a. )S(P, f, x)                        b.) S(P, f) 

          c.) S(P, f, 1)                         d.) S(P, α, a) 

16.    A  partition 𝑃′  is said to be finer than 𝑃 if ------------- 

      a) 𝑃′ ⊂ 𝑃         b)  P' ≠ P     c.)  P ⊂ P'    d.)  P ∩ P' = P  
 
17. The constant function f(x)=1/100, is continuous at---------- 

        a) for some   complex  numbers x           b) for   complex  numbers  some x 

        c) for all complex  x                                d)  for  some  real  x 

 

18.   ||𝑃′|| ≤ ||𝑃||  if --------- 

      a) 𝑃′ ⊂ 𝑃         b) 𝑃′ ≠ 𝑃           c)  𝑃 ⊂ 𝑃′     d.)  𝑃 ∩ 𝑃′ = 𝑃 

 

19. If  ∝ (x) = x  then S ( P ,f, ∝  ) =  -------- 

        a ).f  ∈  R                                     b) f  ∈  ∝       

        c.) f  ∈  R   and  𝑓 ∈  𝛼                d)  f  ∈  R  or  f ∈  α  

  

 20.  The refinement of  a partition P  is --------------- if its norm 

            increases 

           a) increases                      b) decreases            

           c)strictly increases          d) strictly increasing  

 



 
 

    1) State  and   prove  Rolle’s theorem. 

      

    2) State  and   prove  algebra for derivatives  

  

     3. Explain about chain rule . 

    4 State  and   prove  Generalized Mean valued  

           theorem. 

   5.  State and prove Taylor’s formula with remainder . 

   6. State  and prove additive property of total    

        variations. 

  7. State and prove Tota l n\variations 

  8. If f is  B.V on (a,b) then f is bounded on (a,b) 
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S.No Lecture 

Duration 

Period 

Topics to be Covered Support 

Material/Page Nos 

  UNIT-I  

1 1 Introduction and examples of 
continuous functions 

T: Chapter 4, 80- 
81 

2 1 Theorems on Continuity and 
inverse images of a set 

T: Chapter 4, 81- 
82 

3 1 
Theorems on Continuity and 
inverse images of open and 
closed sets 

T: Chapter 4, 82 

4 1 Theorems on Functions 
continuous on compact sets 

T: Chapter 4, 82: 
R1: Ch 5, 
134-135 

5 1 Theorems on bounded 
functions 

T: Chapter 4, 82- 
83 

6 1 Theorems for f −1 to be 
continuous 

83 

7 1 Examples and problems T: Chapter 4, 82- 
83 

8 1 Definition and examples for 
topological mappings 

T: Chapter 4, 83- 
84 

9 1 Definition and examples for 
topological mappings 

T: Chapter 4, 84 

10 1 sign preserving property  
T: Chapter 4, 84 

11 1 Bolzano’s theorem T: Chapter 4, 84 

12 1 Continuation of Bolzano’s 
theorem 

T: Chapter 4, 84 

13 1 Intermediate value theorem T: Chapter 4, 84- 
85 

14 1  
Problems on IVT 

T: Chapter 4, 85 
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15 1 Recapitulation and discussion 
of possible questions 

 

 Total No of Hours Planned For Unit 1=15  

  UNIT-II  

1 1 Introduction to 
Connectedness 

T: Chapter 4, 86 

2 1 Examples for Connectedness T: Chapter 4, 86 

3 1 Thereom on two valued 
function 

T: Chapter 4, 86 

4 1 Thereom on two valued 
function and Connectedness 

T: Chapter 4, 87 

5 1 Introduction to 
Connectedness 

T: Chapter 4, 86 

6 1 Thereom on continuous 
image of a connected set 

T: Chapter 4, 87 

7 1 IVT for real valued function 
T: Chapter 4, 88 

8 1 connected sets T: Chapter 4, 89 

9 1  
Theroem on arcwise 
connectedness 

T: Chapter 4, 89 

10 1 Continuation of Theroem on 
arcwise connectedness 

T: Chapter 4, 89: 
R2: Ch 6, 
143-145 

11 1 Continuation of Theroem on 
arcwise connectedness 

T: Chapter 4, 89 

12 1 Theorem on uniform 
connectivity T: Chapter 4, 89- 

90 
13 1 Thereom on Uniform 

continuity and compact sets T: Chapter 4, 90 

14 1 Fixed point theorem T: Chapter 4, 92 

15 1 COntinuation of Fixed point 
theorem 

T: Chapter 4, 92 

16 1 Thereom on Monotonic 
functions 

T: Chapter 4, 94 

17 1 Continuation of Monotonic 
functions 

T: Chapter 4, 95 

18 1 Recapitulation and discussion 
of possible questions 

 

24 1 Recapitulation and discussion 
of possible questions 

 

  

Total No of Hours Planned For Unit II=24 

 

  UNIT-III  

1 1 Introduction and Definition T: Chapter 5, 104- 
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  of derivative 105 

2 1 Theorems on Derivative and 
continuity 

T: Chapter 5, 105 

3 1 Continuation of Theorems on 
Derivative and continuity 

T: Chapter 5, 105- 
106 

4 1 Theorems on Algebra of 
derivatives 

T: Chapter 5, 106 

5 1 The chain rule T: Chapter 5, 106- 
107 

6 1 One sided derivatives and 
infinite derivatives 

T: Chapter 5, 107- 
108 

7 1 Theorems on Functions with 
non-zero derivatives 

T: Chapter 5, 108- 
109 

8 1 Theorems on Zero 
derivatives and local extrema 

T: Chapter 5, 109- 
110 

9 1 Rolle’s theorem T: Chapter 5, 110 

10 1 
The mean value theorem for 
derivatives 

T: Chapter 5, 110 

11 1 
Generlized mean value 
theorem for derivatives 

 
T: Chapter 5, 110- 
111 

12 1 Corralory of Generlized 
mean value theorem 

T: Chapter 5, 110- 
111 

13 1 Corralory of mean value 
theorem 

T: Chapter 5, 113 

14 1 Taylor’s formula with 
remainder 

T: Chapter 5, 113- 
114 

15 1 
Corralory of Taylor’s formula 
with remainder 

T: Chapter 5, 113- 
114 

16 1 

17 1 Recapitulation and discussion 
of possible questions 

 

   

    

1 1 
Properties of monotonic 
functions 

T: Chapter 6, 127 

2 1 Properties of monotonic 
functions 

T: Chapter 6, 127- 
128 

3 1 Theorems on bounded 
variation 

T: Chapter 6, 128 

4 1 Theorems on bounded 
variation 

T: Chapter 6, 128- 
129 

5 1 Examples for bounded 
variation 

T: Chapter 6, 128- 
129 
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6 1 Theorems Total Variation T: Chapter 6, 129 

7 1 Continuation of theorems on 
Total Variation 

T: Chapter 6, 129- 
130 

8 1 
Additive properties of total 
variation on (a, x) as a func- 
tion of x 

T: Chapter 6, 130 

9 1 
Continuation Additive 
properties of total variation 
on 
(a, x) as a function of x 

T: Chapter 6, 130- 
131 

10 1 Total variation on (a, x) as a 
function of x 

T: Chapter 6, 131- 
132 

11 1 
Theorems on Continuous 
functions of bounded 
variation 

T: Chapter 6, 132 

12 1 
Continuation of continuous 
functions of bounded varia- 
tion. 

T: Chapter 6, 132 

13 1 
Continuation of Continuous 
functions of bounded vari- 
ation. 

T: Chapter 6, 133 

14 1 
Continuation of continuous 
functions of bounded varia- 
tion. 

T: Chapter 6, 133 

 Total No of Hours Planned for unit IV=14  

1 1 The Riemann - Stieltjes integral- 
Introduction 

T: Chapter 7, 140 

2 1 Notation of Riemann Stieltjes 
integral 

T: Chapter 7, 141 

3 1 Definition of Riemann Stieltjes 
integral T: Chapter 7, 141 

4 1 Theorems on linear properties T: Chapter 7, 142 

5 1 Continuation of Theorems on 
linear properties 

T: Chapter 7, 142- 
143 

6 1 Theorems on Integration by 
parts 

T: Chapter 7, 144 

7  

1 
Continuation of theorems on 
Integration by parts 

T: Chapter 7, 144 

8 1 Theorems on Change of variable T: Chapter 7, 144- 
145 

9 1 Continuation of Theorems on 
Change of variable in a 
Riemann Stieltjes integral 

T: Chapter 7, 144- 

145 

10 1 Theorems on Reduction to a 
Riemann integral. 

T: Chapter 7, 145- 
146 

11 1 Continuation of Theorems 
onReduction to a Riemann in- 
tegral. 

T: Chapter 7, 145- 

146 

12 1 Continuation of Theorems on 
Reduction to a Riemann 

T: Chapter 7, 145- 



LESSON PLAN 2015-
2018 

 

  integral. 146 

Total 

Planned 

Hours 

120   
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1. Apostol.T.M.,1990.  Mathematical  Analysis, Second edition, Narosa Publishing Company, 
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Reg. No ----------------  

(15MMU601) 

Karpagam Academy of Higher Education 

COIMBATORE-21  

MODEL EXAMINATION -MAR '18 

MATHEMATICS 

REAL ANALYSIS –II 

 

Class : III B.Sc (MATHEMATICS)        Time:3 hours                                                        

 Date :        .3.18 (   )     Maximum Marks: 60 Marks 

                      PART – A    (20 x 1 = 20 marks)   

ANSWER ALL THE QUESTIONS 

  1.   If  f: R → R by f(x) = c then image of an open set is ------------- 
        a. open                         b. closed                       c. not open                d.  both open and closed 

  2.    A  real function f defined on S is said to be bounded if |f(x)| − − − − − − M for all x in S  
          a. ≥                               b. ≤                 c. <                 d.  > 
3.  Inverse image of closed set is ---------- 

       a. closed                                  b. open        

      c. both open and closed         d.  neither open nor closed 

4.    If f is continuous on S and S is compact then f −1 is ---------- 

        a. not continuous                    b. continuous     

       c. uniformly continuous         d.  constant 

5.  If f (x) = f(y) for  all x and y  then f is  
         a. constant          b. decreasing        

         c. increasing      d.  strictly increasing 

6.   If  f: R → R is  continuous then the  image of [a, b]is ------- 
        a. bounded              b. unbounded        

       c. closed                   d.  compact.             
7.   A contraction of any metric space is --------- 
        a. continuous                      b. discontinuous                
       c. uniformly continuous    d.   constant 

8.   A real   valued function f is said to two valued if the range of f ⊂   
      a. (0,1)              b.  [0,1]                 c. {0,1}          d. (0 ,1]         
  

9.  If  f has  derivative at a and b and continous on (a, b)  then f ′(c) = 0 for − − − −  
        a.   some  c in (a,b)              b.   for all c in (a,b)         

        c.  for no c in (a,b)               d.  only one c in (a,b) 

10. If f ′(x) ≤ 0 for all x ∈ I  then fis − − − − − on I 
        a. increasing                       b.  strictly decreasing            
        c. strictly decreasing          d.  decreasing 

 11.  If f ′ is 0 everywhere on (a, b)the f is constant on ---------- 
       a. (a,b)                                  b. (a,b]                                        c. [a,b)                                               d.  [a,b]  

 12. If  f and g are continuous on [a, b] and  f − g is − −on [a, b] --------- 
      a. constant                 b. not constant         c.1-1                     d.  onto 

13.  Graph of f is called  as ------------ 

      a. curve                 b. path      . closed interval               d. open interval 
14.  Vf(a, b) = --------- 

         a. Vf(a, c) − Vf(c, b)         b. . Vf(a, c) + Vf(c, b)     
          c. . Vf(a, c) ×  Vf(c, b)       d. 0 

15.   If f is decreasing then   –f is ----------- 

      a.  decreasing                       b. increasing     
      c.   strictly decreasing          d.   strictly increasing  

16.  If f and g are of bounded variation on [a,b]  then fg is --------- 

     a. bounded       b. constant         c. continuous            d. bounded variation. 

17.  A curve is a -----------subset of Rn 

       a. compact  b. connected    c. compact and connected    d.  not compact  
18.  If  α(x) = x  then − − − − −   
       a.   f ∈ R            b. f ∈ α               c. f ∈ R     and f ∈ α            d. f ∈ R or f ∈ α 

19.  ∫ f d(cα) =
b

a
------- 

        a.  c ∫ f dα
b

a
    b.  0    c. 1        d.  1 

20.  Let A be a compact subset of S and f is continuous on S ------------- 

         a. continuous on A                                                          b. uniformly continuous on A       

         c. unifromly but not continuous on A                              d. continuous but not uniformly on A 

 

 

 
 

 
 



PART – B (5 x 8 = 40 Marks)  

ANSWER ALL THE QUESTIONS 

21.  a)   Prove that f is continuous iff inverse image of a closed    

             set is closed. also prove that   continuous image of a     

            closed set is need not be closed. 

 

(OR) 

      b) State and prove Connectedness. 

22.  a) Prove that a metric space S is connected if and only if 

every two valued function on  S is constant. 

  

(OR) 

      b)  Prove that  continuous image of a Connected set is 

Connected. 

23.  a)State and prove  mean value Theorem  ( Derivatives) 

(OR) 

      b)  State and prove Taylor’s theorem. 

24. a) Prove that  if f is monotonic on [a,b] then the set of     

          discontinuous of f is countable 

 (OR) 

      b)   Prove that a metric space S is connected if and only if every   

            two valued function on S is constant. 

25. a) State and prove formula for a Riemann- -Stieltjes 

integral  

(OR) 

      b) State and prove formula for integration by parts of a 

Riemann-Stieltjes integral. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 1.   If  f: R → R by f(x) = c then image of an open set is ------------- 
        a. open                         b. closed                       c. not open                d.  both open and closed 

  2.    A  real function f defined on S is said to be bounded if |f(x)| − − − − − − M for all x in S  
          a. ≥                               b. ≤                                 c. <                 d.  > 
3.  Inverse image of closed set is ---------- 

       a. closed                                  b. open                    c. both open and closed    d.  neither open nor closed 

4.    If f is continuous on S and S is compact then f −1 is ---------- 
        a. not continuous                    b. continuous                          c. uniformly continuous  d.  constant 

5.  If f (x) = f(y) for  all x and y  then f is  
         a. constant                                  b. decreasing                c. increasing                       d.  strictly increasing 

6.   If  f: R → R is  continuous then the  image of [a, b]is ------- 
        a. bounded                                 b. unbounded                             c. closed                   d.  compact.             
7.   A contraction of any metric space is --------- 
        a. continuous                                  b. discontinuous                  c. uniformly continuous    d.   constant 

8.   A real   valued function f is said to two valued if the range of f ⊂   
      a. (0,1)                               b.  [0,1]                                c. {0,1}                                             d.    (0,1] 

9.  If  f has  derivative at a and b and continous on (a, b)  then f ′(c) = 0 for   
       a.   some  c in (a,b)              b.   for all c in (a,b)                        c.  for no c in (a,b)           d.  only one c in (a,b) 

10. If f ′(x) ≤ 0 for all x ∈ I  then fis − − − − − on I 
     a. increasing                                  b.  strictly decreasing                      c. strictly decreasing          d.  decreasing 

11.  If f ′ is 0 everywhere on (a, b)the f is constant on  
       a. (a,b)                                  b. (a,b]                                        c. [a,b)                                               d.  [a,b]  

 12. If  f and g are continuous on [a, b] and have equal finite derivatives the f − g is − −on [a, b]  
      a. constant                                  b. not constant                                  c.1-1                              d.  onto 
13.  Graph of f is called  as ------------ 

   a. curve                 b. path                c. closed interval               d. open interval 
14.  Vf(a, b) = ---------  

       a. 𝐕𝐟(𝐚, 𝐜) − 𝐕𝐟(𝐜, 𝐛)         b. . Vf(a, c) + Vf(c, b)           c. . Vf(a, c) ×  Vf(c, b)       d. 0 
15.   If f is decreasing then –f is ----------- 

      a.  decreasing            b. increasing          c.   strictly decreasing          d.   strictly increasing  

 

16.  If f and g are of bounded variation on [a,b]  then fg is --------- 
     a. bounded       b. constant         c. continuous            d. bounded variation. 

 

 

17.  If  α(x) = x    then   S(P, f, α) = --------- 

       a. 𝐒(𝐏, 𝐟, 𝐱)       b. S(P, f)            c. S(P, f, 1)                d.  S(P, α, α) 

18.  If  α(x) = x  then − − − − −   
       a.   f ∈ R            b. f ∈ α               c. 𝐟 ∈ 𝐑     𝐚𝐧𝐝 𝐟 ∈ 𝛂            d. f ∈ R or f ∈ α 

19.  A partition P′  is said to be finer than P if  ------- 

        a. P′ ⊂ P               b.  P′ ≠ P           c. 𝐏 ⊂ 𝐏′                       d.  P ∩ P′ = P 
 

20.  Let A be a compact subset of S and f is continuous on S ------------- 

         a. continuous on A                                                          b. uniformly continuous on A       
        c. unifromly but not continuous on A                              d. continuous but not uniformly on A 
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Unit I OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWERS
The constant function f(x)=c, is continuous at for some  real numbers xfor  finite number of real xfor all real x for no real x for all real x
The constant function f(x)=c, is continuous at for some   complex  numbers xfor  finite number of complex  xfor all complex  x for no  complex  x for all complex  x
The identity function f(x)=x, is continuous at for some   complex  numbers xfor  finite number of complex  xfor all complex  x for no  complex  x for all complex  x
The identity function f(x)=x, is continuous at for some  real numbers xfor  finite number of real xfor all real x for no real x for all real x

1 0 -1 2 1

The image of an open set under continuous function is open need not be open closed need not be closed need not be open
The image of a closed set under continuous function is open need not be open closed need not be closed need not be cloded
The image of a compact set under continuous function is compact need not be compact connected need not be connected compact
The image of a connected set under continuous function is compact need not be compact connected need not be connected connected
The inverse image of an open set under continuous function is open need not be open closed need not be closed  open
The inverse  image of a closed set under continuous function is open need not be open closed need not be closed  closed
Which of the following is not a bounded function? sin x cos x tan x sec x tan x
If f is continuous on a compact subset S of X then f is bounded unbounded constant identity bounded
The homeomorphic image of an open set is open need not be open closed need not be closed open
The homeomorphic image of an open set is open need not be open closed need not be closed closed
The topological image of an interval is simple arc circle square rectangle simple arc
The topological image of an interval is simple arc circle square rectangle simple arc
A simple closed curve is the topological image of simple arc circle square rectangle circle
If f(a)f(b)<0, then there is -------------point  c between a nd b such that f(c)=0 atmost one atleast one finite number of infinite number of point atleast one
The constant function f(x)=-1, is continuous at for some  real numbers xfor  finite number of real xfor all real x for no real x for all real x
The constant function f(x)=1/100, is continuous at for some   complex  numbers xfor  finite number of complex  xfor all complex  x for no  complex  x for all complex  x
The constant function f(x)=-100, is continuous at for some  real numbers xfor  finite number of real xfor all real x for no real x for all real x
The constant function f(x)=10000/100, is continuous at for some   complex  numbers xfor  finite number of complex  xfor all complex  x for no  complex  x for all complex  x
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                                                                                         UNIT III OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWERS

an one to one 
function a function an onto function a bijection a function

>0 <0

>0 <0

{1,2} {0,-1,-2} {0} {0,1,2}

increasing decreasing strictly increasing strictly decreasing increasing

increasing decreasing strictly increasing strictly decreasing decreasing

1 -1 100 -100 1

atleast atmost exactly no atleast

increasing striclty increasing decreasing striclty decreasing 
striclty 
increasing

increasing striclty increasing decreasing striclty decreasing increasing

increasing striclty increasing decreasing striclty decreasing 
striclty 
decreasing 

increasing striclty increasing decreasing striclty decreasing decreasing

non constant constant striclty decreasing striclty increasing constant

tangent normal no
both tangent and 
normal tangent

striclty 
increasing

striclty 
decreasing monotonic constant monotonic

constant monotnoic striclty increasing striclty decreasing monotnoic
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                                                                                           UNIT IV OPTION 1 OPTION 1 OPTION 1 OPTION 1 ANSWERS 

countable atmost countable finite uncountable countable

monotonic constant striclty increasing striclty decreasing monontonic

countable atmost countable finite uncountable countable

countable atmost countable finite uncountable countable

countable atmost countable finite uncountable countable

1 2 3 4 1

0 1 2 3 0

b-a a-b a b b-a

1 0 2 3 1

1 0 2 3 0

1 0 2 3 1

1 0 2 3 0

some k all k only one k no k all k

0

0 1

1 2 3 0 0

all some no only one all

monotonic decreasing increasing constant monotonic

both a  and b neither a nor b

1 0.5 2 3 0.5

1

monotonic bounded variation both a and b neither a  nor b both a and b

0 1 2

infinite finite not exists 1 finite

0 1

0 1 0

strictly increasing strictly decreasing constant monotonic constant

0

striclty increasing incresing stricly decreasing decreasing increasing

1 2 3 0 0

1 2 3 0 0

striclty increasing incresing stricly decreasing decreasing increasing

striclty increasing incresing stricly decreasing decreasing increasing

sum difference product quotient difference

striclty increasing incresing stricly decreasing decreasing strictly increasing

striclty increasing incresing stricly decreasing decreasing striclty decreasing

striclty increasing incresing stricly decreasing decreasing striclty decreasing
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                                                                                         UNIT III OPTION 1 OPTION 2 OPTION 3 OPTION 4 ANSWERS

connected disconnected compact closed disconnected

connected disconnected compact closed connnected

connected disconnected compact closed disconnected

connected disconnected compact open connected

curve interval open interval closed interval curve

atleast one atmost one exactly one no atleast one

S

minimal maximal only not maximal

atleast one atmost one exactly one no atleast one

non empty empty singleton set fininte set non empty

non empty empty singleton set fininte set non empty

diconnected

every point of A no point of A
finite number 
of points of A 1 only every point of A

continuous on A
uniformly continuous 
on A

continuous 
but not 

unifromly but 
not 

continuous but not 
uniformly on A

continuous on A
uniformly continuous 
on A

continuous 
but not 

unifromly but 
not 

uniformly continuous on 
A

Let A be a compact subset of S and f is continuous on S, then f is continuous on A
uniformly continuous 
on A

continuous 
but not 

unifromly but 
not 

uniformly continuous on 
A

Let A =[0,1] be a subset of S and f is continuous on S, then f is continuous on A
uniformly continuous 
on A

continuous 
but not 

unifromly but 
not 

uniformly continuous on 
A

Let A =[a,b] be a subset of R and f is continuous on R, then f is continuous on A
uniformly continuous 
on A

continuous 
but not 

unifromly but 
not 

uniformly continuous on 
A

The contraction constant α is >1 <1 1 0 <1

0 1 2 3 1

a unique a finite number of countable uncountable a unique

{1} {1}

disconnected connected open
both open and 
disconnected connected

closed opne
neither open 
nor closed

both open and 
closed closed

constant function identity function
increasing 
function

strictly 
increasing 

strictly increasing 
function

constant function identity function
increasing 
function

strictly 
increasing increasing function

constant function identity function
decreasing 
function

strictly 
decreasing 

strictly decreasing 
function

constant function identity function
decreasing 
function

strictly 
decreasing decreasing function

one-to-one onto
both one-to-
one and onto

neither one-to-
one nor onto one-to-one

one-to-one onto
both one-to-
one and onto

neither one-to-
one nor onto one-to-one

one-to-one onto
both one-to-
one and onto

neither one-to-
one nor onto one-to-one
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1 2 3 0 0

1 2 3 4 1

0 1 2 3 0

the largest subinterval of P
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1 2 3 1.5 1.5

1 2 3 0.25 0.25

0

0 1 2

a=0 b=0 a=b a=1 a=b



REAL ANALYSIS II 2015-2018 ory II                             Syllabus  

 

Bachelor of Science, Mathematics, 2017, KAHE Page 1 
 

KARPAGAM ACADEMY OF HIGHER EDUCATION 

 (Deemed to be University Established Under Section 3 of UGC Act 1956) 

Coimbatore – 641 021.  

   SYLLABUS 

Semester - VI 

                        L   T   P   C 

15MMU601                                    REAL ANALYSIS II                                       5    0     0    4 

 

Scope : After the completion of this course, the learner get a clear knowledge 

in the concept of analysis which is the motivating tool in the study of applied 

Mathematics. 

 

Objectives :To introduce the concepts which provide a strong base to 

understand and analysis     

           mathematics. 

UNIT I 

Examples of continuous functions –continuity and inverse images of open or closed sets –

functions continuous on compact sets –Topological mappings –Bolzano‟s theorem. 

UNIT II 

Connectedness –components of a metric space – Uniform continuity : 

Uniform continuity and compact sets –fixed point theorem for contractions –

monotonic functions. 

UNIT III 

Definition of derivative –Derivative and continuity –Algebra of derivatives – the 

chain rule –one sided derivatives and infinite derivatives –functions with non-zero 

derivatives –zero derivatives and local extrema –Roll‟s theorem –The mean value 

theorem for derivatives. 

UNIT IV 

Properties of monotonic functions –functions of bounded variation –total Variation 

–additive properties of total variation on (a, x) as a function of x – functions of 

bounded variation expressed as the difference of increasing functions. 

UNIT V 

The Riemann - Stieltjes integral : Introduction –Notation –The definition of 

Riemann –Stieltjes integral –linear properties –Integration by parts –change of 

variable in a Riemann –stieltjes integral – Reduction to a Riemann integral. 
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 UNIT-I 

SYLLABUS 

     

 

 

 

 

 

       

 

                                                          Unit I 
 
Example 1 Consider a function f (x) = c, a constant. 
Clearly,the above function is continuous. 

so,constant function function are continuous. 

 

Example 2 Consider a function f (x) = x. 

 
The above function is called identity function and the above function is continuous 

 

Problem 1 Consider a polynomial of degree n ≥ 0, f (x) = a0 + a1 x + · · · an xn where a0 + a1 + · · · an 
are real numbers. Prove that the polynomial is continuous. 

 
Solution We have to prove the theorem by induction on n. 

 
Consider,n = 0 

 

f (x) = a0 a0 is constant. f (x) = a0 is a continuous function. ∴ The theorem is true for n = 0. 

Now consider n = 1 

 
f (x) = a0 + a1 x 

 
We know that, 

 

f (x) − x is a continuous function 

a1 f (x) = a1 x is also a continuous function as for n = 0 and n = 1 the function is continuous. 

 

∴ The polynomial function 

f (x) = a0 + a1 x + · · · an xn is a continuous 
function. Hence the proof. 

 
Remark 1 The familiar real value functions of elementary calculus such as the exponentials, trigono- 
metric and logarithmic functions are all continuous where ever they define. 

4 

Examples of continuous functions –continuity and inverse images of open or closed sets –

functions continuous on compact sets –Topological mappings –Bolzano‟s theorem. 
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 Continuity and inverse images of open (or) closed sets 

 

Definition of inverse image: 

 

Let f be a function from S to T ( f : S → T )be a function from a set S to a set 

T. If Y is a subset of T, the inverse image of Y under f, denoted by f−(Y), 

defined to be the largest subset of S which maps into Y.(i.e) f −(Y) = x ∈ S | f 

(x) ∈ Y 

Example 3 Let S = {1, 2, 3, 4} and T = {a, b, c} and f be a function from S to T such that f 
(1) = a 

f (2) = a 

 
f (3) = b 

 
f (4) = c 

 

let Y = {b, c} 

Clearly Y ⊆ T 

f −(y) = {3, 4} 

Remark 2 If A is a subset of B then f −(A) subset of f −(B) 

 

Solution 

 

Suppose A ⊆ B 

To prove: f −(A) ⊆ f −(B) 

Let x ∈ f −(A) be arbitrary. 

∴ There is a x ∈ S / f (x) ∈ A 

f (x) ∈ A ⊆ B 

f (x) ∈ B 

(i.e) x ∈ S and f (x) ∈ B 

∴ x ∈ f −(B) 
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∴ f −(A) ⊆ f −(B) 

 
 

Theorem 1 Let f : S → T be a function from S → T . If x ⊆ S and Y ⊆ T , Then we have 

a) x = f −(Y) implies f (x) ⊆ Y b)Y 

= f (x) implies X ⊆ f −(Y) 

Theorem 2 Let f : S → T be a function from one metric space (S , ds) to another (T, dT ). Then f is 

continuous if and only if for every open set Y in T, the inverse image f −(Y) is open in S. 

Proof Let f be continuous on S 

 
Let Y be open in T . 

Suppose f −(Y) = φ 

Then, clearly f −(y) is open in S. 

Suppose f −(Y) Ç φ 

Then, there is a point p ∈ f −(Y) 

∴There is a point y such that f (p) = y 

(i.e) y ∈ Y such that f (p) = y 

Since Y is open, y is an interior point of Y. 

 

∴ There is an open ballBT (y, z) 
 

Since f is continuous at p, there is a δ > 0 such that 

 

f (BS (p, δ)) ⊆ BT (y, z) 

∴ BS (p, δ) ⊆ f −1 f (BS (p, δ)) 

⊆ f −1(BT (y, z)) 

⊆ f −1(Y) 

∴ p is an interior point of f −1(Y) 

∴ f −1(Y) is open. 
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Conversely, 
 

Assume that f −1(Y) is open in S for every open 

subset Y in T. Let p ∈ s be arbitrary 

Then f (p) ∈ f (s) 

∴ f (p) = y (say) 

 
Claim: f is continuous at p 

 
for every z > 0, the ball (BT (y, z)) is 
open in T. By our assumption, 

f −1 BT (yT , z) is open in s. 

∴ p ∈ f −1 BT (yT , z) 

Then p is an interior point of f −1 BT (yT , z) 

∴There exist δ > 0 such that 

Bs(p, δ) ⊆ f −1 BT (y, z) 

⇒ f (Bs(p, δ)) ⊆ BT (y, z) 

⇒ f is continuous at p. 

 

 
Example 4 The image of an open set under a continuous function is not necessarily open. 

 
Solution Let f be a continuous function defined on S to R (i.e) f : R → R such that 

f (x) = c, a constant for all x ∈ s 

Let x be open set in S. 

 
Then f (x) = c is closed in R. 

 

 

 
Theorem 3 Let f : S → T then f is continuous on S if and only if for every closed set Y in T, the 

inverse image f −1(Y) is closed in S. 
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Proof Let y be a closed 

set in T Then Yc is open in 
T 

(i.e) Yc 
= T − Y is open in T. 

Claim : Now, f −1(Y)(T − Y) = S − f −1(Y) 

Let x ∈ f −1(Y) be arbitrary 

Then x ∈ S and f (x) ∈ T − Y 

⇒ x ∈ S and f (x) ∈ T and f (x) g Y 

⇒ x ∈ S and f (x) g Y 

⇒ x ∈ S and x g f −1(Y) 

⇒ x ∈ S − f −1(Y) 

⇒ f −1(T − Y) ⊆ S − f −1(Y) 

Similarly we can prove 
 

S − f −1(Y) ⊆ f −1(T − Y) 

∴ f −1(T − Y) = S − f −1(T − Y) 

Suppose f is 

continuous Then f −1(T 

− Y) is open in S 

(i.e)S − f −1(T − Y) is open in S 

(i.e)( f −1(T − Y))c is open in S 

∴ f −1(T − Y) is closed 

in S Conversely, 

Assume that for every closed set Y in T,the inverse image f −1(Y) is closed in S. 

∴ ( f −1(Y))c is open in S. 

∴ S − f −1(Y) is open in S 

(i.e) f −1(T − Y) is open in S 
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S
⊆ 

i   1 

S 

 

∴ we have T-Y is open in T 

⇒ f −1(T − Y) is open 
in S By previous 
theorem, 

f is continuous 

Hence the proof 

 

 
Example 5 The image of an closed set under a continuous function need not to be closed. 

 
Solution Let f be a function defined on R to the open interval ( −π , π ) such that f (x) = tan−1(x) 

  

2    2 

 

We know that, R is closed and ( −π , π ) is open. 
  

2    2 
 

But f (R) = ( −π , π ) is open 
  

2 2 
 

Hence, continuous image of closed set need not be closed. 

 
 

 
 Continuous functions and Compact set: 

 
Theorem 4 Let f : S → T if f is continuous on a compact subset X of S then, the image f (x) is a 
compact subset of T. In particular f (X)is closed and bounded in T 

 

Proof 

Let X be a compact subset 
of S Let Aα be an open 
covering of X. 

n 

Then, X Ai 
= 

Let f be a open covering of f (x) 

 

∴ f (x) ⊆ 
A∈F 

A 

where each A is open in T 

 
Since f is continuous, inverse image of open set is open. 
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∴ Each f −1(A) is open in S 

The sets f −1(A) form an open covering of X. 

Since X is compact we have finite number of f −1(A) also covers X (i.e) 

X ⊆ f −1(A1) ∪ f −1(A2) ∪ · · · ∪ f −1(An) 

∴ f (X) ⊆ f [ f −1(A1) ∪ f −1(A2) ∪ · · · ∪ f −1(An)] 

⊆ f [ f −1(A1) ∪ f −1(A2) ∪ · · · ∪ f −1(An)] 

⊆ (A1) ∪ (A2) ∪ · · · ∪ (An) 

∴ f (X) has a finite sub-cover 

∴ f (X) is compact 

∴ f (X) is closed and bounded. 

 

 
 

Definition 1 A function f : S → Rk is called bounded on s if there is positive number M such that 

|| f (X)|| ≤ M for all x ∈ S . 

Theorem 5 Let f : S → Rk if f is continuous on a compact subset X of S then f is bounded on S. 

 
 

Proof 

 
Let X be a compact subset of S and f is continuous 
function Then f (x) is compact 

Then, f (x) is closed and bounded 

 

Since f (x) is bounded and we have a ≤ f (x) ≤ b 

where a = greatest lower 

bound b = least upper 
bound 

∴ f is bounded 
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Theorem 6 Let f : S → T . Assume that f is one-to -one on S so that the inverse function f −1 exists. 

If S is compact and if f is continuous on S, then f −1 is continuous on f (S ). 

Proof Given f : S → T 

Then f −1 : f (S ) → S 
To prove: 

f −1 is continuous 

 
It is enough to prove for every closet set X in S the image (the inverse 
image) f (X) is closed in T Since, X is closed and S is compact, We have X is 
compact 

∴ f (X) is compact 

∴ f (X) is closed and 

bounded (i.e) f (X) is 
continuous. 

 

Remark 3 Compactness of domain set S is an essential for f −1 to be continuous. 

 
Example 6 Let f be a function from R with discrete metric space to R with usual metric, defined by 
f (x) = x 

Proof Let X be an open subset of R 

Then, f −1(X) is a subset of R with discrete metric space. 

Since, every subset of discrete metric space is open, we have f −1(X) is open 

∴ f is continuous 

Let {x} ⊆ R with discrete metric space 

{x} is open subset of R 

Then, ( f −1)−1({x}) = f (x) 

= {x} 

But x is not open in R with usual metric 
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∴ f −1 is not 

continuous Note that 
R is not compact 

 

 

 Topological Mappings: 

Let  f  : S  → T .   Assume that f is one -to- one on S. So,  that the inverse 

image  f −1  exists.   If     f is continuous on S and if f −1 is continuous on f (S ) 
then f is called a topological mapping or homomorphism and the metric space 
S , dS and (T, dT ) are said to be homomorphic 

 
Remark 4 • If f is homomorphism then so is f −1. 

 
• A homomorphism maps open subsets of S onto open subset of f (S ). 

 

• A homomorphism maps closed subsets of S onto closed subset of f (S ). 

 
⇒ 

 

Definition 2 A function f : S → T is called isometry if f is one to one on S and preserves the metric. 

If there is an isometry from S → T then the two metric spaces are called isometric 

 Bolzano’s Theorem 

 
Theorem 7 sign preserving property 

 
Let f be defined on an open interval S in R. Assume f is continuous at a point c in S and that f (c) Ç 0. 

Then there is a one ball B(c, δ) 
T 

S . 

Proof Let us assume that f 
(c) > 0 Given that, f is 

continuous at c ∈ S 

∴ for every z > 0 there is aδ > 0 such that ( f (x), f (c) < z if d(x, c) > δ 

| f (x) − f (c)| < z if x ∈ B(c, δ) 
T 

S 
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let f (c)z 

=
 

∴ 1 f (c) < f (x) < 3 f (c) if x ∈ B(c, δ) 
T 

S 

2 

 

∴ −z < f (x) − f (c) < z if x ∈ B(c, δ) 
T 

S 

f (c) − z < f (x) < z + f (c) if x ∈ B(c, δ) 
T 

S 

2 

 

2 2 

 

∴ f (x) > 0 
 

∴ f (x) has the same sign as f (c) 

The proof is similar for f (c) < 0 with z = − f (c) 
 
 

 

Theorem 8 Balzano Theorem 

 
Let f be a real valued and continuous on a compact interval [a,b] in R, and suppose that f (a) and  f 

(b) have opposite signs (i.e), assume f (a) f (b) < 0. Then there is atleast one point c in the open 
interval (a,b) such that f (c) = 0 

Proof Given that f (a) and f (b) have opposite signs 

Suppose f (a) > 0 and f (b) < 0 

Let A = {x : x ∈ [a, b]and f (x) ≥ 0} 

∴ A is non empty 

 
Since, A is subset 
of[a,b] A is 
bounded above by 
b Let c = sup A 
Claim: f (c) = 0 
Suppose f (c) Ç 

0 
By previous theorem, there is a one ball B(c, δ) in which f has the 
same sign as f(c) Suppose f (c) > 0 

Then there are points x > c at which f (x) > 0 
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POSSIBLE QUESTIONS 

PART - B 

( 5 × 8 = 40 ) 
UNIT I 

1..State and prove Bolzano’s theorem for continuous functions 

 

2.Prove that a function 𝑓 is continuous iff every inverse image of an open set is open.  

 

3. Prove that  continuous image of a compact is compact.  

 

4. State and prove sign preserving property of continuous functions 

 
5..Let f: S T ,If f is continuous on a compact subset X of S ,Then the image f(x) is a      

             compact subset of T.In Particular  f(x)is closed and bounded 

6. Prove that a metric space S is connected if and only if   every two valued function on S is  

    constant. 

7. Prove that 𝑓 is continuous iff inverse image of a closed set is closed. Also prove that  

    continuous image of a closed set is need not be closed. 
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UNIT-II 

SYLLABUS 

 

 

 

UNIT II 

Definition 3 The metric space S is called disconnected if S = A ∪ B where A and 

B are disjoint non-empty open sets in S. 

We call S connected if it is not disconnected. 

 

Example 7 Let S = R − {0} 

∴ S = (−∞, 0) ∪ (0, ∞) 

Clearly, (−∞, 0) and (0, ∞) are open sets and (−∞, 0) 

∩ (0, ∞) (−∞, 0) ∩ (0, ∞) = φ 

∴ S is disconnected 

 

Example 8 Every open interval in R is 

connected R is connected 

∴ Every open interval is connected and R = (−∞, ∞) 

∴ R is connected 

 

Remark 5 • For each p in S the set {p} is connected 

 

 

• Any discrete metric space S with more than one point is 

disconnected Let S be a discrete metric space with more 

than one point 

Let A be a proper non-empty subset of S 

C        Connectedness –components of a metric space – Uniform continuity :  

              Uniform continuity and compact sets –fixed point theorem for  

                 contractions –monotonic functions. 

 

     compact sets –Topological mappings –Bolzano‟s theorem. 
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Since, S has more than one point such a 

set exists Now, Ac is also non-empty 

Since, S is a discrete metric space, we have A and Ac are open 
 

Also, S = A ∪ Ac 

∴ S is disconnected 

 

⇒ 

 Two valued function 

 

Definition 4 Two valued function 

 

A real valued function f which is continuous on a metric space on S is said to be 

two valued on S if f(S) is a subset of {0, 1} 

Remark 6 A two valued function is a continuous function whose only possible values are 0 and 1 

 

This can be considered as a continuous function from S to the metric space T = {0, 

1}, where T is the discrete metric space. 

 

Theorem 10 A metric space S is connected if and only if every two valued function on S is constant 

 

Proof Assume that S is connected 

 

Let f be a continuous two valued 

function on S To prove: 

f is constant 

 

Let A = f −1 {0} and B = {1} be the inverse image of the 

subsets {0} and {1} Since, {0} and {1} are open in discrete 

metric space {0, 1} and f is continuous We have A and B are 

open in S 
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Also we have A ∪ B = S 

where A and b are disjoint open sets 

 

Since, S is connected either A is empty or B is empty 

 

∴ we must have S = A (or) S = B 

 

 

Hence, 

 f is constant. 

 

Conversely, 

 

Assume that every two valued function on S is 

constant To prove: 

S is connected 

Suppose S is 

disconnected then S = A 

∪ B,where A ∩ B = φ A, 

B Ç φ and A,B are open 

sets 

 

Let f be function from S to R such that 

 

f (x) = 0 if x ∈ A 

1 if x ∈ B 

Since, A and B are non empty, f takes both values 1 and 0 

 

∴vf is not constants 

Also, f is continuous on S, because the inverse image of every open subset of {0, 1} is open in S. 

∴The two valued function f is not constant. 

Contradiction to every two valued function is 

constant. Hence, S is connected 



4 Dr. K.Kalidass. 
 

 

 Continuous function and connected set 

 

Theorem 11 The continuous image of a connected set is connected. 

 

Proof Let f be a continuous function from 

H to Y To prove: 

f(X) is connected 

 

Suppose f(x) is disconnected 

 

 

Then, there exist a non-empty proper subset A of f(x) such that A is both open and closed. 

 

Then, f −1(A) is a non-empty proper subset of X then X is 

disconnected which is contradiction to X is connected 

∴ f(X) is 

connected 

Hence the proof. 

                  NOTE: 

 

⇒ A metric space (X, d) is disconnected if and only if there exist a non empty 

proper subset of X which is both open and closed. 

⇒ In a metric space (X, d) is disconnected if there exist two non empty sets A and B such that 

X = A 
S 

B, A ∩ B = A ∩ B = φ 

⇒ Let A and B be two connected subsets of X then, A ∪ B is also connected if A ∩ B Ç φ 

                     Problem: 

 

Let f be a continuous real valued function defined on a metric space S. Let A = {x 

∈ S | f (x) ≥ 0}. Prove that A is closed. 

Solution: 
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Given f : S → R is continuous 

function Also,A = {x ∈ S | f (x) ≥ 

0} 

= {x ∈ S | f (x) ∈ [0, ∞]} 

= 
.
x ∈ S |(x) ∈ f −1([0, ∞])

Σ
 

Since,[0, ∞] = ((−∞, 0))c is closed in R and f is continuous,we have f −1([0, ∞]) is closed 

∴ A is closed. 

 

 

Theorem 12 If A and B are connected subsets of S and if A ∩ B Ç φ then A ∪ B is connected. 

Proof Let f : A ∪ B → {0, 1} be a continuous 

function. Since, A ∩ B Ç φ xo ∈ A ∪ B is 

possible. 

Let f (xo) = 0 

 

since, f is continuous f |A : A → {0, 1} is also 

continuous since, A is connected, we have f |A 

is also constant. 

∴ f |A is not onto 

∴ f(x) = 0 or f(x) = 1 for all x ∈ A 

Since, f (x0) = 0 and x0 ∈ A 

∴ f (x) = 0 for all x ∈ A 

Similarly, 

 

We can prove f(x) = 0 for all x ∈ B 

f(x)= 0 for all x ∈ A ∪ B 

∴ f is constant 



6 Dr. K.Kalidass. 
 

function Hence A ∪ B 

is connected. Hence 

the proof 

 

Remark 7 Every interval in R is 

connected. Every curve in Rn is 

connected. 

Every subset S of R is connected if and only if S is an open interval. 

 

 Intermediate value theorem 

 

Theorem 13 Intermediate valued theorem for real continuous functions: 

 

Proof : 

     Let f be a real valued and continuous on a connected subsets S of R1. If f takes 

an two different values in S say a and b then for each real c between a and b there 

exist a point x in S such that, 

f (x) = c. Even f : S → R is continuous Let a,b belongs to S and f (a) Ç f (b) Suppose f (a) < f (b) 

Let c be such that f (a) < c < f (b) 

 

Since, S is connected and f is continuous, we have f (s) is connected and is subset of R. 

 

∴ f (s) is an 

interval. 

Also. f (a), f (b) 

 ∴ [ f (a), f (b)] ⊆ f 

(s) 

S ince, f (a) < c < f (b), c ∈ f (s) 

∴ c = f (x) for some x in S. 



7 Dr. K.Kalidass. 
 

Remark 8 Let A = 
.
(x, y) : x2 + y2 = 1

Σ 
is a connected subset of R2 

Every point x in a metric space S belongs to atleast one connected subset of S, namely {x} 

The union of all connected subsets which contain x is also connected we call this 

union a component of s and is denoted by U(x) 

U(x) is maximal connected subset of S which contains x. 

 

 

 

Theorem 14 Every point or a metric space S belongs to a uniquely determined 

component of S. In other words, the components of S form a collection of disjoint 

sets whose union is S. 

Proof 

 

Let x ∈ S be 

arbitrary To prove: 

{U(x)} form a disjoint components of S and whose union is S. 

 

(i.e) S  = 
x

S

∈S 
U(x) and ∩U(x) = φ 

and U(x) ∩ U(y) = φ for all x Ç y ∈ S 

Suppose x ∈ U(x) and U(y) 

⇒ x ∈ U(x) ∪ U(y) 

⇒ U(x) ∩ U(y) Ç φ U)(x) and U(y) 

connected sets Clearly, 

U(x) ⊆ U(x) ∪ U(y) 

and U(y) ⊆ U(x) ∪ U(y) 



8 Dr. K.Kalidass. 
 

⇒⇔ to U(x) and U(y) are components 

∴ U(x) ∩ U(y) = φ 

∴ Two distinct components cannot contain a point x. 

 

 Fixed point theorem for contractions 

 

Definition 5 Let f : S → S be a function on a metric space (S , d). A point p ∈ S is 

called a fixed point of f if f (p) = p. 

 

Definition 6 The function f : S → S is called a contraction of S if there is a 

constant α < 1 such that 

   

d( f (x), f (y))    ≤ α d(x, y)  for all x, y ∈ S . 

 

Remark 9 A contraction f of any metric space S is uniformly continuous on S . 

Theorem 15 A contraction f on a complete metric space has a unique fixed point p. 

 

Proof Let x ∈ S be arbitrary and f be a contraction of S . 

Consider a sequence {pn} such that 

 

p0 = x 

 

p1 = f (p0) = f (x) 

 

p2 = f (p1) = f ( f (x)) 

 

Now 

d(pn+1, pn)    = d( f (pn), f (pn−1)) 

<   α d(pn, pn−1) 

= α d( f (pn−1), f (pn−2)) 

≤ α α d( f (pn−2), f (pn−2)) 

=   α2 d(pn−2, pn−2) 



9 Dr. K.Kalidass. 
 

.. 

 

≤   αn  d(p1, p0) 

=   αn c 

 

where  c    =   d(p1, p0) 

Suppose m > n. 

 

Then n < n + 1 < · · · < m − 1 < m 
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. 

m.−
1 

 

 

Now 

 

d(pm, pn) ≤ d(pm, pm−1) + d(pm−1, pn) 

≤ d(pm, pm−1) + d(pm−1, pm−1) + d(pm−2, pn) 

≤ d(pm, pm−1) + d(pm−1, pm−1) + d(pm−2, pn) + · · · + d(pn+1, pn) 

 

 

                                                                 (pk+1, pk) 

 

As n → ∞, we have d(pm, pn) → 0. Hence {pn} is a cauchy sequence in S . 

                            ≤ cαn 
∞ 

αk 

                                k=0 

                                    =   cαn   1 
 

                                   1 − α 
 

Since S is complete metric space, we have {pn} 

converges. That is pn → p. 

Now 

 
f (p)   = f ( lim pn) 

n→∞ 

= lim  f (pn) since f is continuous 
n→∞ 

= lim pn+1 
n→∞ 

= p 

 

 

Hence f has a fixed point p. 

 

Uniqueness Suppose f has two fixed points p 

and q. Then f (p) = p and f (q) = q. 

Since f is contraction of S , we have 

 

d( f (p), f (q)) ≤ 

αd(p, q) d(p, 

q) ≤ αd(p, q) 
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Since α < 1, we must have d(p, q) = 0. 

 

Hence p = q. ❑ 

 Monotonic functions 

 

Definition 7 Let f be a real valued function defined on a subset S of R. Then f is 

said to be increasing function on f if for every pair of points x, y ∈ S , 

x < y    ⇒ f (x) ≤ f (y) 

 

If x < y ⇒ f (x) < f (y), then f is said to be strictly increasing function. 

 

Remark 10 • Similarly we can define decreasing function and strictly decreasing function. 

 

• A function f is said to be monotonic if it is either increasing or decreasing. 

 

• If f is an incresing then − f is decreasing function. Hence it is sufficient to 

consider increasing function in situations involving monotonic functions. 

 

Theorem 16 Let f be a strictly increasing function on S ⊂ R. Then f −1 exists and 

is striclty in- creasing on f (S ). 

 

Proof Let f be a strictly increasing function on S ⊂ R. 

Then 

 

x < y    ⇒ f (x) < f (y) 

i.e. x Ç y    ⇒ f (x) Ç f (y) 

 

Hence f is one-to-one on S . 

 

Therefore f −1 exits. i.e. f −1 is a function on f 

(S ). Claim: f −1 is strictly increasing. 

Suppose y1 < y2. 
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Let x1 = f −1(y1) and x2 = f −1(y2). 

 

Then we have one of the possiblity x1 = x2 or x1 > x2 or x1 < x2. 

 

Supoose x1 = x2.  

 

⇒ 

⇒ 

⇒ 

⇒⇐ 

f −1(y1) = f 

−1(y2) 

 

f (x1) = f (x2) 

 

y1 = y2 

 

to y1 < y2 

Supoose x1 > x2. 
  

 

⇒ 

⇒ 

⇒ 

⇒⇐ 

f −1(y1) > f 

−1(y2) 

 

f (x1) > f (x2) 

 

y1 > y2 

 

to y1 < y2 

Hence we must have x1 < x2. 

Therefore f −1 is striclty increasing function. 
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POSSIBLE QUESTIONS 

PART - B 

( 5 × 8 = 40 ) 

 

          1.  State and prove Connectedness. 

          2. Let  f  be  strictly increasing on a set S in  R ,then f  -1 exists and its strictly 

              increasing on  f( s). 

                                 3. State and prove intermediate value theorem for continuous functions 

           4.Prove that continuous image of a connected set is       
               connected  .Then prove that X is  compact. 

         5. Prove that a metric space S is connected if and only if every two valued function on 

             S is constant. 

         6. State  and  prove  fixed point  theorem for contraction. 
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UNIT-III 

SYLLABUS 

 

 

 

UNIT III 

Definition 8 Let f be defined on an interval (a, b) and c ∈ (a, b). Then f is said to 

be differentiable at c whwnever 

lim
 f (x) − f (c) 

x→c x − c 

 

exists. The limit, denoted by f j(c) and is called the derivative of f at c. 

 

Remark 11 • The limit process defines a new function f j whose domain consists of those points in 

(a, b) at which f is differentiable. 

 

• The function f j is called the first derivative of f . 

 

• The process of finding f j from f is called differentiation. 

 

Theorem 17 If f is defined on (a, b) and differentiable at a point c in (a, b), then 

there is function  f y which is continuous at c and which satisfies the equation 

f (x) − f (c)   =   (x − c) f y(x) 

 

        Definition of derivative –Derivative and continuity –Algebra of derivatives – the chain rule –one 
sided derivatives and infinite derivatives –functions with non-zero derivatives –zero derivatives and 
local extrema –Roll‟s theorem –The mean value theorem for derivatives. 

                 contractions –monotonic functions. 

 

     compact sets –Topological mappings –Bolzano‟s theorem. 
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for all x ∈ (a, b) with f y(c) = f j(c). Conversely, if there is function f y, continous at 

c, which satisfies the above equation , then f is differentiable at c and f y(c) = f 

j(c). 

Proof  

    Suppose f is differentiable at a point c in (a, b). 

 

    Then we have  

f 
j 

(c)    = lim
 f (x) − f (c) 

 

Let f be defined on (a, b) as   

f (x) − f (c)   =   (x − c) f y(x),  if x Ç c 

 

 

and f y(c) = f j(c). 

 

Then  

f y(x)   = 
f (x) − f (c) 

(x − c) 

lim f y(x)   = lim
 f (x) − f (c)

 

x→c x→c (x − c) 

 

 

 

 

Hence f y is continuous 

at c. 

lim f y(x)   = f 
j 
(c) 

x→c 

lim f y(x)   = f y(c) 

x→c 

 

Conversely, suppose f y is continuous at c with 
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f (x) − f (c)   =   (x − c) f y(x),  if x Ç c 

 

and f y(c) = f j(c). 

 

Then  
 f (x) − f 

(c) x − 
c 

lim
 f (x) − f 

(c) 

 

 

= f y(x) 

 
= lim f y(x) 

x→c x − c x→c 

lim
 f (x) − f (c) = f y(c) 

x→c x − c 

lim
 f (x) − f (c) = f 

j 
(c) 

x→c x − c 

Therefore the limit exists and is equal 

to f j(c). Hence f is differentiable at c. 

Theorem 18 If f is differentiable at c, then f is continous at c. 

Proof Suppose f is differentiable 

at c. and f y(c) = f j(c). 

Then by previous theorem, there is a function f y continuous at c such that 

 

f (x) − f (c)   =   (x − c) f y(x),  if x- c 
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g 

g g(c)2 

 

and f y(c) = f j(c). 

Therefore 

 

 f (x) − f 
(c) x − 
c 

lim
 f (x) − f 

(c) 

 

 

= f y(x) 

 
= lim f y(x) 

x→c x − c x→c 

 

 

 Algebra of derivatives 

f 
j 
(c)   = f y(c) 

 

Theorem 19 Assume f and g are defined on (a, b) and differentiable at c. Then f + g, f − g and f · g 

are also differentiable at c. This is also 

true of f 

 

if g(c) Ç 0. The derivatives at c are given by the 

 

following formulas 

 

a ( f ± g)j(c) = f j(c) ± gj(c) 

b ( f · g)j(c) = f (c)gj(c) + g(c) f j(c) 

b 
. f Σj 

(c) = g(c) f 
j (c)− f (c)gj (c) . provided g(c) Ç 0 

Proof Suppose f and g are defined on (a, b) and differentiable at c. 

 

By previous theorem, we have 

 

f (x) − f (c)   =   (x − c) f y(x), if x Ç c 

g(x) − g(c)   =   (x − c)gy(x), if x Ç c 
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x − c 

 

 Now 

f (x) ± g(x)   = f (c) + (x − c) f y(x) ± g(c) + (x − c)gy(x) 

= f (c) ± g(c) + (x − c) 
. 
f y(x) ± gy(x)

.
 

. 
f (x) ± g(x)

. 
− 

. 
f (c) ± g(c)

. 
= (x − c) 

. 
f y(x) ± gy(x)

.
 

. 
f (x) ± g(x)

. 
− 

. 
f (c) ± 

g(c)
.
 

  

lim 
. 
f (x) ± g(x)

. 
− 

. 
f (c) ± 

g(c)
.
 

  

= 
. 
f y(x) ± gy(x)

.
 

= lim 
. 
f y(x) ± gy(x)

.
 

x→c 

 

 

 

 

 

x − c x→c 

( f ± g)
j 
(c) = 

. 
f y(c) ± gy(c)

.
 

= 
. 
f 

j 
(c) ± g

j 
(c)

.
 

 

f (x)g(x)   = f (c)g(c) + (x − c) f (c)gy(x) + (x − c)g(c) f y(x) + (x − c)2 f y(x)gy(x) 

f (x)g(x) − f (c)g(c) = (x − c) 
. 
f (c)gy(x) + g(c) f y(x)

. 
+ (x − c)2 f y(x)gy(x) 

 f (x)g(x) − f 
(c)g(c) x 
− c 

lim
 f (x)g(x) − f 

(c)g(c) 

= 
. 
f (c)gy(x) + g(c) f y(x)

. 
+ (x − c) f y(x)gy(x) 

= lim 
. 
f (c)gy(x) + g(c) f y(x)

. 
+ lim(x − c) f y(x)gy(x) 
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 The chain rule 

 

Theorem 20 Let f be defined on an open interval S , let g be defined on f (S ), and 

consider the composite function g ◦ f defined on S by the equation 

(g ◦ f )(x)    = g 
. 
f (x)

.
 

 

 

Assume there is a point c in S such that f (c) is an interior point of f (S ). If f is 

differentiable at c and if g is differentiable at f (c) then g ◦ f is differentiable at c 

and we have 

(g ◦ f )
j 
(c)   =   g

j . 
f (c)

. 
f 

j 
(c) 

Proof Given that f is differentiable at c and g is differentiable at c. 

 

By prevoius theorem, there is a function f y continuous at c such that 

 

f (x) − f (c)   =   (x − c) f y(x) 

 

for all x ∈ S with f y(c) = f j(c) and there is a function gy continuous at f (c) such that 

 

g(y) − g[ f (c)] = (y − f (c))gy(y) 

 

for all y in some open interval T of f (S ) with gy[ f (c)] 

= gj[ f (c)]. Let x ∈ S such that y = f (x) ∈ T . 

Then we have 

g[ f (x)] − g[ f (c)]   =   ( f (x) − f (c))gy[ f (x)] 
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= (x − c) f y(x)gy[ f (x)] 

Since f y continuous at c and gy continuous at f (c), we have 

 

lim gy[ f (x)]    = gy[ f (c)] 

x→c 

=  g
j 
[ f (c)] 

 

 

Hence 

 

 

 

 

 
g[ f (x)] − g[ f (c)] (x − 

c) 

 

= g
j . 

f (c)
. 
f 

j 
(c) 
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 Functions with nonzero derivative 

 

Theorem 21 Let f be defined on an open interval (a, b) and assume that for some c 

∈ (a, b) we have f j(c) > 0 or f j(c) = +∞. Then there is a 1-ball B(c) ⊂ (a, b) in 

which 

f (x) > f (c) if x > c and f (x) < f (c) if x < c 

Proof Suppose f j(c) > 0. 

i.e. f is differentiable at c and f j(c) is finite and positive. 

By prevoius theorem, there is a function f y continuous at c such that 

 

f (x) − f (c)   =   (x − c) f y(x) 

for all x ∈ S with f y(c) = f j(c). 

By sign preserving property of continuous functionsnthere is a 1-ball B(c) ⊂ (a, b) 

in which f y(x) has the same sign as f y(c). 

Since f j(c) > 0, we have f 

y(c) > 0. Therefore f y(x) > 0. 

Suppose x − c < 0. 

Then 

f (x) − f (c) = (x − c) f y(x) 

< 0 

Suppose x − c > 0. 

Then 

f (x) − f (c) = (x − c) f y(x) 

> 0 
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Hence f (x) − f (c) has the same sign as x − c. 

 

 

 Rolle’s theorem 

 

Theorem 22 Assume f has a derivative(finite or infinite) at each point of an open 

interval (a, b), and assume that f is continuous at both endpoints a and b. If f (a) = 

f (b) there is at least one interior point c at which f j(c) = 0. 

Proof Given that f is differential 

on (a,b). Then f is continuous on 

(a, b). 

Also given that f is continuous at both end points a 

and b. Therefore f is continous on [a, b]. 

Since [a, b] is compact, f ([a, b]) is compact. 

i.e. f ([a, b]) is closed and 

bounded. Then m ≤ f (x) ≤ M 

for all x ∈ [a, b]. 

To prove: There is at least one interior point c at which f 

j(c) = 0. Suppose there is no interior point c at which f j(c) 

= 0. f j(c) Ç 0 for all c ∈ (a, b). 

 The Mean value theorem for derivatives 

 

Theorem 23 Generalized mean value theorem Let f and g be two functions, 

each having a derivative at each point of an open interval (a, b) and each 
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. . 

. . 

. . . . 

continuous at the end points a and b. Assume also that there is no interior point x 

at which both f j(x) and gj(x) are finite. Then for some 

 

 

interior point c we 

have 

 

f 
j 

(c) 
.
g(b) − g(a)

. 
= g

j 
(c) 

. 
f (b) − f (a)

.
 

 

Proof Let h(x) = f ( x) g(b) − g(a) − g(x) f (b) − 

f (a) . Suppose both f j(x) and gj(x) are finite. 

Then hj(x) is also finite. 

Suppose either f j(x) or gj(x) is 

infinite. Then hj(x) is also 

infinite. 

Since f is continous at the end points a and b, f ( x) g(b) − g(a) is continuous at the end points a and 

b. 

 

Similarly, g(x) f (b) − f (a) is continuous at the end points 

a and b. Hence h(x) is continuous at the end points a and 

b. 

Also 

h(a)   = f (a) 
.
g(b) − g(a)

. 
− g(a) 

. 
f (b) − f (a)

.
 

= f (a)g(b) − g(a) f (b) 

h(b)   = f (b) 
.
g(b) − g(a)

. 
− g(b) 

. 
f (b) − f (a)

.
 

= f (a)g(b) − g(a) f (b) 
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By Rolle’s theorem, for some interior point c we have hj(c) = 0. 

 

f

 

j

 

(

c

)

 

.

g

(

b

)

 

−

 

g

(

a

)

.

 

=

 

g

j

 

(

c

)

 

.

 

f

 

(

b 
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Theorem 24 Mean value theorem Assume that f has a derivative (finite or 

infinite) at each point o f an open interval (a, b) and also assume that f is 

continuous at both end points a and b.  

Then for 

 

some interior point c we have 

 

Proof Let g(x) = x on  a,  

                        f 
j 
(c) [b − a] = 

. 
f (b) − f (a)

.
 

 

 

Theorem 25 Assume f has a derivative (finite or infinite) at each point od an open 

interval (a, b) and that f is continous at the end points a and b. 

a) If f j takes only positive values (finite or infinite) in (a, b), then f is strictly increasing on [a, b]. 

 

b) If  f j  takes only negative values (finite or infinite) in (a, b),  then  f  is strictly decreasing on 

[a, b]. 

 

c) If f j is zero in (a, b), then f is constant on [a, b]. 

 

Proof Let x < y and [x, y] ⊂ [a, b]. 

By mean value theorem, f j(c)(y − x) = f (y) − f (x) where c ∈ (x, y) 

a) Suppose f j takes only positive 

values. Then f j(c) > 0. 
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Since (y − x) > 0, f j(c)(y − x) > 0. 

i.e. f (y) − f (x) > 0. 

f is strictly increasing on [x, y]. 

 

b) Suppose f j takes only negative 

values. Then f j(c) < 0. 

Since (y − x) > 0, f j(c)(y − x) < 0. 

i.e. f (y) − f (x) < 0. 

f is strictly decreasing on [x, y]. 

 

c) Suppose f j is zero in 

(x, y). Then f j(c) = 0. 

Hence f (y) − f (x) = 0. 

i.e. f (y) = f (x). 

 

f is constant on [x, y. 

 

Theorem 26 If f and g are continuous on [a, b] and have equal finite derivatives in 

(a, b), then f − g is constant on [a, b]. 

Proof Given that f and g are continuous 

on [a, b]. Then f − g is continous on [a, 

b]. 

Also given that f and g have finite derivatives 

in (a, b) Then f − g has a finite derivative in 

[a, b]. 

Now 
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( f − g)
j 
(x)   = f 

j 
(x) − g

j 
(x) 

=   0 

 

By previous theorem, f − g is constant on [a, b]. 

 Intermediate value theorem for derivatives 

Theorem 27 Assume f has a derivative (finite or infinite) at each point od an open 

interval (a, b) and that f is continous at the end points a and b. If f j(x) Ç 0 for all x 

in (a, b) then f is strictly monotonic. 

 

Proof Suppose f j(x) = Ç 0 for all x in 

(a, b). Then either f j(x) > 0 or f j(x) <  

By previous theorem, we have f is 

strictly increasing or strictly 

decreasing on [a, b]. 
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POSSIBLE QUESTIONS 

PART - B 

( 5 × 8 = 40 ) 

UNIT III 

           

     1. State  and   prove  Rolle’s theorem. 

   2.   Let  𝑓  &  𝑔 be two functions, each having a derivative at each point of  (𝑎, 𝑏).  

        At the end  points assume that the limits   𝑓(𝑎 +),   𝑔(𝑎 +), 𝑓(𝑏 −)    𝑎𝑛𝑑    𝑔(𝑏−)   

         exists at finite values. Assume further that there is no interior point x at which both    𝑓 ′(𝑥)  𝑎𝑛𝑑 𝑔′(𝑥) are infinite. Then 

for some interior point   𝑐 we have to prove that  
𝑓 ′

(𝑐)[𝑔(𝑏 −) −    𝑔(𝑎 +)] = 𝑔′(𝑐)[𝑓(𝑏 −) − 𝑓(𝑎 +)] 

   3. State  and   prove  intermediate value theorem for derivatives. 

   4.   State and prove generalized mean value theorem for derivatives. 

 

   5. State  and   prove   function of function  for derivatives. 

   6. Prove that f is monotonic on [a,b] then the set of discontinuous of f is countable 

   7.  Prove that a metric space S is connected if and only if every two valued function on S is constant. 
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UNIT-IV  

SYLLABUS 

 

 

 

Definition 9 Let F : R → R be a function. We say that F has bounded variation and write B ∈ BV(R) 

   If   

sup F(x j)  F(x j−1) : < x0 < ... < xn < + < + . 

1 

 

Suppose that F is a function of bounded variation. We define the variation function of F by 

 

n 

TF (x) = sup F(x j)  F(x j−1) : < x0 < ... < xn = x 

1 

 

Clearly, TF is a non-decreasing function and TF (+∞) = limx→+∞ TF (x) < +∞. 

 

Example 9 1. A constant function has bounded variation. 

 

2. each monotone bounded function has bounded variation. 

 

3. If F, G ∈ BV(R) then aF + bG ∈ BV(R) for any a, b ∈ R. 

 

4. F(x) = sin x has unbounded variation on (−∞, +∞) but bounded variation on 

any finite inter- val. 

 

5. F(x) = sin(1/x) has unbounded variation on (0, 1). 

 

6. F(x) = x sin(1/x) ∈ C([0, 1]) and has unbounded variation on [0, 1]. 

 

 

 

 Properties of monotonic functions 

 

Theorem 28 Let F ∈ BV(R), then TF − F is non-decreasing. 

       Properties of monotonic functions –functions of bounded variation –total Variation –additive properties 
of total variation on (a, x) as a function of x – functions of bounded variation expressed as the difference of 

increasing functions. 

                 contractions –monotonic functions. 

 

     compact sets –Topological mappings –Bolzano‟s theorem. 
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.
−  −− 

k   

1
 

.
− · · ·  | | ≤− 

k   1
 

 

Proof Suppose that x < y we want to show that TF (x) − F(x) ≤ TF (y) − F(y). For 

any z > 0 we can find −∞ < x0 < ... < xn = x such that TF (x) < 
. 

|F(x j−1 − x j)| + z. Then 

we have 

TF (y) − F(y) ≥ 
. 

|F(x j−1 − x j)| + |F(y) − F(x)| − F(y) > 

TF (x) − z + F(y) − F(x) − F(y) = TF (x) − F(x) − z. 

Since it is true for any z > 0 we get the required inequality. 

 

 Functions of bounded variation 

Definition 10 If [a, b] is a compact interval, a set of points P = {x0, x1, · · · , xn} 

satisfying the in- equalities a = x0 < x1 < · · · < xn = b, called a partition of [a, b]. 

The interval [xk−1, xk] is called 

n 
the kth subinterval of P and we write ∆xk = xk xk  1, so that ∆xk = b a. The collection of all 

= 

partitions of [a, b] will be denoted by P[a, b] 

 

Definition 11 Let f be defined on [a, b]. If P = {x0, x1, · · · , xn} is a partition of [a, b], write ∆ fk = 

n 
f (xk) f (xk 1), for k = 1, 2, , n. If there exists a positive number M such that ∆ fk M for all 

= 

partitions of [a, b], then f is said to be of bounded varition on [a, b]. 

 

Theorem 29 If f is monotonic on [a, b], then f is of bounded variation on [a, b]. 

 

Proof Let f be increasing 

function. Then xk−1 < xk implies f 

(xk−1) ≤ f (xk). Therefore for 

every partition of [a, b], 

 

∆ fk = f (xk) − f (xk−1) ≥ 0 
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. 
. 

. . . 

 

 

Now 

 

n 

|∆ fk| = 

k=1 

 

= 

n 

∆ fk 

k=

1 

n 

f (xk) − f (xk−1) 

k=1 
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. 
| | ≤

k   1
 

. 
| | ≤

k   1
 

. 

= f (b) − f (a) 

 

Since f (b) − f (a) > 0, there is a positive mumber M such that f (b) − f (a) ≤ M. 

n 
Hence ∆ fk M. 

= 

∴ f is of bounded variation on [a, b]. 

 

Theorem 30  If f is continuous on [a, b] and if f j exists and is bounded in the 

interior, say | f j(x)| ≤ A for all x ∈ (a, b), then f is of bounded varition on [a, b]. 

Proof Applying mean value theorem, we have 

 

 

Now 

                                  fk = f (xk) − f (xk−1) 

                 =  f 
j 
(tk) (xk − xk−1) 

≤ A ∆xk 

k=1 

= A(b − a) 

 

Hence f is of bounded variation on [a, b]. 

 

 

n 
Theorem 31  If f is of bounded variation on [a, b], say ∆ fk M for all partitions of [a, b], then 

= 

f is bounded on [a, b]. In fact, | f (x)| ≤ | f (a)| + M for all x ∈ a, b. 

 

Let x ∈ (a, b). 

Then P = {a, x, b} is a partition of 

[a, b]. Since f is of bounded 

variation on [a, b], 

n 

|∆ fk|  ≤ M 

k=1 
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| f (x) − f (a)| + | f (b) − f 

(x)| 

≤ M 

| f (x) − f (a)| ≤ 

≤ 

M − | f (b) − f 

(x)| 

M 

WKT 
  

 
| f (x)| − | f (a)|  ≤ 

≤ 

| f (x)|  ≤ 

| f (x) − f (a)| 

M 

 

M + | f (a)| 

Hence f is bounded on  [a,  
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2

n 

2n−1 2 

. . 
|  

|
k 1

 

                                             
. 

 
 

on [0, 1]. 

 

Clearly f is continuous on 

[0, 1]. Let P = 
.
0, 1 , 1 , · · · , 

1 , 1
Σ

. 

Then P is a partition of [0, 1]. 

∴  f is not of bounded variation on [a, b]. 

 

 Total variation 

 

n 
Definition 12  Let f be of bounded variation on [a, b], and let 
 
 
 
 
 
 
 
(P) denote the sum ∆ fk corre- 

= 

sponding to the partition P = {x0, x1, · · · , xn} of [a, b]. The number 

V f (a, b)    =   sup 
..

(P) : P ∈ P([a, 

b])
Σ 

, is called the total variation of f on the interval [a, b]. 

Remark 12 • We will write V f instead of V f (a, b). 

 

• Since f is of bounded variation on [a, b], V f is finite 

 

• Since each sum 
.

(P) ≥ 0, V f  ≥ 0 

• Suppose f is constant. i.e. f (x) = c, for all x ∈ [a, b] 
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. . 
| | 

. 
| | 

 

 
n 

|∆ fk| = 

k=1 

 

= 

 
n 

f (xk) − f (xk−1) 

k=

1 

n 

c − c 

k=1 
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=   0 

 

Hence 
.

(P) = 0 for all partitions of 

[a, b]. Therefore, V f = 0. 

Converse of the above is alos true. 

 

Theorem 32 Assume f and g are of bounded variation on [a, b]. Then so are their 

sum,difference and product. Also, we have V f ±g ≤ V f + Vg and V f ·g ≤ A V f + B Vg 

where 

A   =  sup {|g(x)| : x ∈ [a, b]} , 

B   =  sup {| f (x)| : x ∈ [a, b]} , 

 Additive property of total variation 

 Total variation on [a, x] as a function of x 

 Functions of bounded variation expressed as the difference of 

increasing functions 

 

Now we may give a different characterization of functions of bounded variation. 

 

Theorem 33 The function F : R → R has bounded variation if and only if F is the 

difference of two bounded non-decreasing functions. 

 

Proof Suppose that F ∈ BV(R); then F  is bounded (Q1:check  it!).  We  can 

write  F(x) = TF (x) − (T f (x) − F(x)). Both functions TF and TF − F are non-

decreasing; TF is bounded by the definition of BV(R). Further, TF − F is also 

bounded since F is bounded. 
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POSSIBLE QUESTIONS 

PART - B 

( 5 × 8 = 40 ) 

 
             

                 1.Prove that f is monotonic on [a,b] then the set of discontinuous of  f is countable 

                 2.   Prove that a metric space S is connected if and only if every two valued function on S is constant. 

                 3.Assume 𝑓 ∈ 𝑅(𝛼) on [𝑎, 𝑏] and assume that 𝛼 has a continuous derivative 𝛼 ′ on [𝑎, 𝑏].   Then the Riemann  

                    integral ∫ 𝑓(𝑥)𝛼′(𝑥)  𝑑𝑥
𝑏

𝑎
 exists   and  ∫ 𝑓(𝑥)𝑑𝛼(𝑥) = ∫ 𝑓(𝑥)𝛼′(𝑥)𝑑𝑥

𝑏

𝑎

𝑏

𝑎
 

               4.State and prove formula for integration by parts of a Riemann-Stieltjes integral. 

               5. Additive properties of total variation? 

               6.  Continuous function on bounded variation ? 

               7.  Reduction and concept of Riemann  integral 
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